
Domenic Forte · Swarup Bhunia
Mark M. Tehranipoor Editors

Hardware
Protection
through
Obfuscation

Hardware Protection through Obfuscation

Domenic Forte • Swarup Bhunia
Mark M. Tehranipoor
Editors

Hardware Protection through
Obfuscation

123

Editors
Domenic Forte
University of Florida
Gainseville, FL
USA

Swarup Bhunia
University of Florida
Gainseville, FL
USA

Mark M. Tehranipoor
University of Florida
Gainseville, FL
USA

ISBN 978-3-319-49018-2 ISBN 978-3-319-49019-9 (eBook)
DOI 10.1007/978-3-319-49019-9

Library of Congress Control Number: 2016955916

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Over the last two decades, the semiconductor industry has slowly moved toward the
globalization of its supply chain. Due to increasing costs and complexity, it is no
longer possible for a single corporation or entity to design, test, and fabricate
today’s integrated circuits (ICs) under one roof. With state-of-the-art semiconductor
fabrication facilities or ‘foundries’ located across the world, the ability for IC design
houses to monitor their own intellectual property (IP) has become limited.
Similarly, system-on-chips or SoCs have also given rise to the concept of reusable
IP-based design, whereby IP cores are sourced from several different vendors and
integrated into one single SoC design. These trends have helped the industry to deal
with the ever-growing complexity of ICs while keeping costs low and accelerating
time-to-market.

Unfortunately, the benefits of globalization come at the inevitable cost of secu-
rity. The convoluted supply chain introduces numerous opportunities for malicious
parties to engage in IP piracy, counterfeiting and even introducing backdoors into a
design. These malicious parties could be in the form of (i) untrusted foundries that
fabricate the IC, (ii) third-party IP vendors, (iii) electronic design automation
(EDA) tools, (iv) rogue insiders and disgruntled employees in a design house,
(v) test or assembly facilities, and (vi) reverse engineers once the IC enters the supply
chain. Thus, threats exist in each stage of the supply chain, and it is virtually
impossible for one entity to ‘trust’ others with their IP in such a global landscape.

This book introduces the state of the art in hardware obfuscation which can be
used to protect semiconductor IP at various levels of abstraction (e.g., register
transfer, gate, or layout level). Hardware obfuscation techniques either conceal or
lock the functionality and/or structure of the IC/IP so that it becomes difficult for a
malicious or unauthorized party to engage in piracy or backdoor insertion. In
contrast to watermarks or patents which are passive methods for IP protection,
hardware obfuscation techniques are active; i.e., they deter reverse engineering and
prevent piracy from ever happening in the first place.

While software obfuscation has received much attention over the years, the field
of hardware obfuscation is relatively new. The past five years have seen an almost
exponential growth in the amount of research work that has been done in the field.

v

Further, semiconductor companies and government entities have also shown an
increased interest in developing viable options for hardware obfuscation, especially
in light of numerous recent news on IP infringement cases, potential backdoors in
chips manufactured offshore, IC reverse engineering techniques which were once
thought to be impossible, and so on.

This book provides a comprehensive overview of various hardware obfuscation
techniques that have been recently proposed by the research community. Although
none of the individual techniques can provide a one-size-fits-all solution for all
problems in hardware IP protection, they counter specific threats in the semicon-
ductor supply chain, be it in the form of an untrusted foundry, reverse engineers in
the supply chain, or a SoC designer willing to compromise a vendor’s IP. The
proposed techniques are also applicable to various levels of design abstraction, with
some of them working to protect register transfer or gate-level IPs and others
working to secure an IC layout.

A brief outline of the book is provided below.

1. Hardware Obfuscation Preliminaries: The first part of the book includes two
introductory chapters on hardware obfuscation and background topics.

• Chapter 1 describes the modern semiconductor supply chain, including each
step of IC design and fabrication, the parties involved in these steps, and the
resulting threats to security and trust. Recent advances in the field of hard-
ware obfuscation, which are the subject of the remaining book chapters, are
introduced as well. In addition, hardware obfuscation is differentiated from
software obfuscation, cryptography, and other related work.

• Chapter 2 provides background material on VLSI verification and testing.
Topics include satisfiability, equivalence, fault modeling, controllability,
observability, design-for-test, and other testing concepts that are often
applied during hardware obfuscation methods and attacks. Popular hardware
security primitives such as physical unclonable functions (PUFs) and true
random number generators (TRNGs) that appear frequently throughout the
book are also discussed.

2. Logic-Based Hardware Obfuscation: The second part of the book focuses on
hardware obfuscation for combinational logic circuits, based on mechanisms
such as key-based locking, permutation, and secure test infrastructure.

• Chapter 3 introduces the concept of logic encryption, which involves ‘lock-
ing’ the functionality of a combinational circuit by inserting key-controlled
gates. The chapter introduces basic logic encryption techniques, heuristics for
inserting key gates, recent attacks on logic encryption (such as boolean sat-
isfiability attacks and key propagation), and appropriate countermeasures.

• Chapter 4 introduces the concept of circuit camouflaging, which involves
configuring cells to perform different functionalities while maintaining an
identical look to reverse engineers. A circuit partition-based attack and
corresponding mitigation approach are proposed. The advantages of
multiplexer-based circuit obfuscation cells are also discussed.

vi Preface

• Chapter 5 focuses on permutation-based obfuscation. The authors discuss the
impact of permutation networks (such as Benes network) on resistance to
brute-force attacks, discuss details of obfuscation on printed circuit boards
(PCBs), and analyze the resiliency of permutation-based obfuscation to
various physical attacks.

• Chapter 6 discusses data leakage vulnerabilities introduced by test infras-
tructures such as scan chains and JTAG. Obfuscation techniques that lock
the scan chain, scramble test responses, etc., are discussed to protect against
such attacks.

3. Finite State Machine (FSM) Based Hardware Obfuscation: The third part
of the book deals with sequential circuit obfuscation by locking of the
finite-state machine (FSM) description of the circuit.

• Chapter 7 introduces the concept and flow of active hardware metering
where the finite-state machine (FSM) description of a design is modified
with additional states and a PUF. The security of the proposed approach is
evaluated against FSM reverse engineering and brute-force attacks to guess
the state transitions needed to unlock the design.

• Chapter 8 introduces a hybrid scheme for FSM locking, in which
modifications to the state transition graph of a circuit are combined with
modifications to the original circuit in order to maximally deviate the circuit
from its correct functionality. The benefits of this approach with respect to IP
protection and targeted hardware Trojan insertion are also discussed.

• Chapter 9 introduces the concept of ‘best possible obfuscation’ for sequential
circuits. Four unique structural transformation operations along with a key
are employed to lock the IC which functions in a degraded mode unless it is
initialized properly.

4. Hardware Obfuscation Based on Emerging Integration Approaches: The
fourth part of the book looks at emerging integration technologies such as
2.5D/3D ICs and split manufacturing for obfuscation against untrusted
foundries.

• Chapter 10 leverages split manufacturing techniques to securely conceal
design information from an untrusted foundry. Heuristic algorithms and gate
anonymity metrics are introduced for lifting wires to the trusted
back-end-of-line or BEOL layers.

• Chapter 11 discusses the limitations of using split manufacturing and built-in
self-authentication (BISA) independently against an untrusted foundry.
A combined technique, called obfuscated BISA (OBISA), is introduced in
order to combat both piracy and hardware Trojan threats. In OBISA,
wire-lifting and filling of white spaces with fully testable functional filler
cells are simultaneously performed to actively detect any tampering done by
an untrusted foundry.

• Chapter 12 leverages 2.5D IC technology in order to protect the design
against an untrusted foundry. In 2.5D integration, an interposer layer

Preface vii

connecting different die is kept secret. Algorithms that partition a gate-level
netlist and place-and-route with security and performance in mind are
described.

5. Other Hardware Obfuscation Building Blocks: The fifth and last part of the
book looks at secure mechanisms for key exchange to enable obfuscation at
various steps in the semiconductor supply chain.

• Chapter 13 discusses the building blocks and cryptographic primitives needed
to transfer and protect secret keys (used by obfuscation) in different appli-
cation instances (3PIP vendor and SoC designer, SoC designer and foundry,
etc.). The IEEE P1735 standard is combined with hardware obfuscation and
digest mechanisms in order to protect from additional attacks such as IP
piracy and tampering.

We hope that this book serves as an invaluable reference for students,
researchers, and practitioners in the field of hardware IP protection.

Gainesville, FL, USA Domenic Forte
Swarup Bhunia

Mark M. Tehranipoor

viii Preface

Contents

Part I Hardware Obfuscation Preliminaries

1 Introduction to Hardware Obfuscation: Motivation,
Methods and Evaluation . 3
Bicky Shakya, Mark M. Tehranipoor, Swarup Bhunia
and Domenic Forte

2 VLSI Test and Hardware Security Background
for Hardware Obfuscation . 33
Fareena Saqib and Jim Plusquellic

Part II Logic-Based Hardware Obfuscation

3 Logic Encryption . 71
Jeyavijayan (JV) Rajendran and Siddharth Garg

4 Gate Camouflaging-Based Obfuscation . 89
Xueyan Wang, Mingze Gao, Qiang Zhou,
Yici Cai and Gang Qu

5 Permutation-Based Obfuscation . 103
Zimu Guo, Mark M. Tehranipoor and Domenic Forte

6 Protection of Assets from Scan Chain Vulnerabilities
Through Obfuscation . 135
Md Tauhidur Rahman, Domenic Forte
and Mark M. Tehranipoor

Part III Finite State Machine (FSM) Based Hardware Obfuscation

7 Active Hardware Metering by Finite State Machine
Obfuscation . 161
Farinaz Koushanfar

ix

8 State Space Obfuscation and Its Application in Hardware
Intellectual Property Protection . 189
Rajat Subhra Chakraborty and Swarup Bhunia

9 Structural Transformation-Based Obfuscation 221
Hai Zhou

Part IV Hardware Obfuscation Based on Emerging
Integration Approaches

10 Split Manufacturing . 243
Siddharth Garg and Jeyavijayan (JV) Rajendran

11 Obfuscated Built-In Self-authentication . 263
Qihang Shi, Kan Xiao, Domenic Forte
and Mark M. Tehranipoor

12 3D/2.5D IC-Based Obfuscation . 291
Yang Xie, Chongxi Bao and Ankur Srivastava

Part V Other Hardware Obfuscation Building Blocks

13 Obfuscation and Encryption for Securing Semiconductor
Supply Chain . 317
Ujjwal Guin and Mark M. Tehranipoor

Index . 347

x Contents

Contributors

Chongxi Bao University of Maryland, College Park, MD, USA

Swarup Bhunia Department of Electrical and Computer Engineering, University
of Florida, Gainesville, FL, USA

Yici Cai Tsinghua University, Beijing, People’s Republic of China

Rajat Subhra Chakraborty Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Mingze Gao Tsinghua University, Beijing, People’s Republic of China;
University of Maryland, College Park, MD, USA

Domenic Forte ECE Department, University of Florida, Gainesville, FL, USA

Siddharth Garg New York University, New York City, NY, USA; The
University of Texas at Dallas, Richardson, TX, USA

Ujjwal Guin Auburn University, Auburn, AL, USA

Zimu Guo University of Florida, Gainesville, FL, USA

Farinaz Koushanfar University of California, San Diego, CA, USA

Jim Plusquellic University of New Mexico, Albuquerque, NM, USA

Gang Qu University of Maryland, College Park, MD, USA

Jeyavijayan (JV) Rajendran Department of Electrical Engineering, The
University of Texas at Dallas, Richardson, TX, USA; New York University,
New York City, NY, USA

Fareena Saqib Florida Institute of Technology, Melbourne, FL, USA

Bicky Shakya University of Florida, Gainesville, FL, USA

Qihang Shi ECE Department, University of Connecticut, Storrs, CT, USA

xi

Ankur Srivastava University of Maryland, College Park, MD, USA

Md Tauhidur Rahman University of Florida, Gainesville, USA

Mark M. Tehranipoor University of Florida, Gainesville, FL, USA

Xueyan Wang University of Maryland, College Park, MD, USA; Tsinghua
University, Beijing, People’s Republic of China

Kan Xiao Intel Corporation, Santa Clara, CA, USA

Yang Xie University of Maryland, College Park, MD, USA

Hai Zhou Northwestern University, Evanston, IL, USA; Tsinghua University,
Beijing, People’s Republic of China

Qiang Zhou Tsinghua University, Beijing, People’s Republic of China

xii Contributors

Part I
Hardware Obfuscation Preliminaries

Chapter 1
Introduction to Hardware Obfuscation:
Motivation, Methods and Evaluation

Bicky Shakya, Mark M. Tehranipoor, Swarup Bhunia and Domenic Forte

1.1 Introduction

While piracy of intellectual property (IP) relating to daily commodities such as cloth-
ing, medicine, and fashion items has had a long history, IP violation of technological
assets, such as computer software and hardware, has become a recent albeit concern-
ing problem. InApril 2016, aWisconsin grand jury slapped a $940million penalty on
Tata Consultancy Services for allegedly stealing Epic System Inc.’s healthcare data-
base management software and incorporating it into its own products [1]. In 2013,
two men, Jason Vuu and Glen Crissman, were indicted by the NY state Supreme
Court for allegedly stealing source code from their former employer, flow trader, and
amarket-trading software provider [2]. In the same year, there was also a high-profile
case involving Xilinx, a reputed and well-known FPGAmanufacturer, and Flextron-
ics International Ltd., a chip supplier. Xilinx alleged that Flextronics bought Xilinx’s
FPGA chips at a discounted rate (by lying about the intended end users), remarked
the chips as higher grade and sold them for elevated prices, thereby violating Xilinx’s
IP through misrepresentation and exposing them to liabilities [3]. In 2015, Versara,
a Texas-based software company, filed a lawsuit against automotive giant Ford [4].
The lawsuit alleged that Ford developed an in-house tool based on Versara’s intellec-
tual property, immediately after terminating its longtime contract with the company
which provided Ford with its proprietary vehicle management software. The inci-
dents highlighted above are just a modest sampling of the countless cases in which
the electronic intellectual property of companies (and people) was violated, resulting
in protracted litigation and massive loss of revenue/reputation.

B. Shakya (B) · M.M. Tehranipoor · S. Bhunia · D. Forte
University of Florida, Gainesville, FL, USA
e-mail: bshakya@ufl.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_1

3

4 B. Shakya et al.

1.1.1 Obfuscation for Intellectual Property Protection

In a world of tough competition, companies often spend a great deal of time and
resources in reverse engineering and understanding their competitor’s products. This
routinely happens in industries ranging from automotive and computer software to
electronics. While reverse engineering in itself is not a crime (in fact, it is protected
by law), the information derived from reverse engineering could be used in a number
of malicious ways. Consider a company that exploits their competitor’s intellectual
property by incorporating the IP into their own products, without providing any
credit or compensation to the IP’s rightful owner. Now, think of this scenario in
the context of today’s global economy where IP protection laws (and the degree
of their enforcement) vastly vary from one part of the globe to another. Due to
such realities of today’s global economy, IP protection can no longer be limited to
passive methods such as patents, copyrights, and watermarks. An active approach to
intellectual property protection is required, of which obfuscation is a vital part.

1.1.1.1 Definitions

Obfuscation is defined as the technique of obscuring or hiding the true meaning of a
message or the functionality of a product, in order to protect the intellectual property
(IP) inherent in the product. A more formal definition of obfuscation, in the con-
text of ‘circuits’ (boolean operators computing a logic function) or programs (that
implement an algorithm or a function), has been provided in the field of cryptology.
Formally, an obfuscatorO is defined as a ‘compiler’ that transforms a program P into
its obfuscated version O(P) that has the same functionality as P yet is unintelligible
to an adversary trying to recover P fromO(P). The obfuscatorO has two key require-
ments: (i) O(P) computes the same function as P (i.e., it is functionality-preserving)
and (ii) anything that can be efficiently computed (in polynomial time) from O(P)
can also be computed given ‘oracle’ access to P (i.e., O(P) can be used as a ‘virtual
black box’) [5].

1.1.1.2 Encryption Versus Obfuscation

Encryption is the most effective way to achieve security and privacy of data and
communication, but it cannot provide a full-fledged solution for IP piracy. The over-
all differences between encryption algorithms and obfuscation are summarized in
Fig. 1.1. As is clear from the figure, algorithms, such as Advanced Encryption Stan-
dard (AES) and Rivest–Shamir–Adleman (RSA), are cryptographic primitives that
transform plaintext data into mathematically random ciphertext given a key (encryp-
tion phase). They also perform the reverse operation (ciphertext to plaintext) on
application of the same or different key (decryption phase). In contrast to encryp-
tion, obfuscation does not necessarily rely on key-based access control. It allows

1 Introduction to Hardware Obfuscation: Motivation … 5

Encryp onPlaintext
(Hello There!)

Ciphertext
(4R$w#!#@$H65)

Decryp on

Symmetric Asymmetric

(i)

Obfuscator
OF F’

In
(How are you?)

Out
(Good!)

(ii)

In
(How are you?)

Out
(Good!)

Fig. 1.1 a Encryption. b Obfuscation

an attacker to use the obfuscated program O(P) as a virtual black box and is only
concerned with the protection of the program P. Obfuscators are also commonly
used in the context of obfuscating programs that implement an algorithm as opposed
to general data (e.g., user information/authentication and passwords) that encryption
can be used for.

Unfortunately, one major weakness that obfuscation has in relation to encryption
is that the security of obfuscation techniques cannot be reduced to mathematically
‘hard’ problems such as integer factorization for RSA. In a landmark paper [5], it was
shown that the general notion of virtual black-box obfuscation is not achievable for
all programs. The authors argued that there exists a family of functions (represented
as boolean circuits) that were inherently ‘unobfuscatable.’ In other words, given
a program P′ that computes the same input–output relationship as P, the attacker
can feasibly reconstruct P or extract a secret s from P′ about P with non-negligible
probability. This means that unlike encryption, which does not prevent any set of
data from being encrypted securely, obfuscation is not a universal operation.

1.1.1.3 Alternative Definitions

In spite of the above, later work has shown that although ‘all functions’ cannot be
securely obfuscated (reduced to a ‘hard’ computational problem), some functions
(such as a point function, which can be thought of as a password checking program)
can be securely obfuscated [6]. Later, the authors in [7] showed that the virtual
black-box property, which implies that the program should leak absolutely no other
information than its input–output relationship, might be too strong to be achievable
in practice. They proposed a relaxed definition termed as ‘best possible obfuscation’
which states that an obfuscated programO(P) implementing a function F can leak as
little information as any other program that computes the same function F. In other
words, an adversary can learn no more information about the obfuscated program
O(P) than he or she can learn from any other program computing the same function.

6 B. Shakya et al.

While this does not guarantee what kind of information is securely hidden in O(P),
it assures that the obfuscation is literally the best possible [7].

In parallel, another definition of obfuscation, termed as ‘indistinguishability
obfuscation,’ has also been proposed [5]. This definition implies that given two
programs (or circuits) C1 and C2 which compute the same function F, an indistin-
guishability obfuscator O exists such that O(C1) and O(C2) are indistinguishable.
This means that an attacker only has a random chance of being able to figure out
whether he has C1 or C2 given possession of O(C1) or O(C2). Candidate con-
structions for such indistinguishability obfuscators have also been recently proposed
using multilinear maps [8]. Note that the definition of indistinguishability obfus-
cation does not consider the strength of obfuscation of C1 or C2, i.e., it only says
O(C1) and O(C2) are indistinguishable, not how strongly obfuscated they are on
their own. It should also be noted that such obfuscators, although provably secure,
are nowhere near practical at this point, as shown by a case study on a 16-bit point
function (consisting of 15 AND gates) which blew up to a 31.1GB file after running
on a 32-core server for 9h [9]. Nonetheless, the field of program obfuscation has
received a great amount of attention in the past few years. More developments in
optimization (as well as cryptanalysis) of these techniques can ensure practicality of
provably secure obfuscation in the near future. It can also help us to gradually move
away from ad hoc obfuscation practices such as code scrambling and white space
removal for software obfuscation (see Sect. 1.3), which rely on the highly contested
notion of ‘security through obscurity.’

1.2 Hardware Obfuscation

Hardware obfuscation, as it relates to circuits (combinational, sequential, or system-
on-chip), is concerned with protecting semiconductor intellectual property (IP). In
the context of hardware, IP refers to a reusable unit of logic, cell, or chip layout design
that is either licensed to another party or owned and used solely by a single party.
IP protection has become a hot topic for research (and practical implementation),
especially in light of today’s globalized semiconductor production flow where trust
between various entities in the supply chain is hard, if not impossible, to maintain.
While techniques for achieving hardware obfuscation may be completely different
than its software counterpart (see Sect. 1.3), the basic motivation remains the same
in both cases: protecting intellectual property from adversaries capable of reverse
engineering, piracy, andmalicious alteration. Before discussing howhardware obfus-
cation can be realized, it is vital to understand the semiconductor supply chain and
all the threats that are involved in the production of today’s integrated circuits (ICs).

1 Introduction to Hardware Obfuscation: Motivation … 7

1.2.1 Integrated Circuit Supply Chain

Figure1.2 shows the various steps involved in today’s semiconductor supply chain.
Each step is carried out in different parts of the globe by different entities (not
necessarily under the same company) in order to reduce the insurmountable costs
associated with producing state-of-the-art ICs and to reduce time-to-market.

• IP Vendor: Integrated circuits today are most commonly in the form of system-on-
chips or SoCs. This means that a single silicon die contains intellectual property
from several different vendors who could be scattered all across the globe. For
example, the power management circuitry may come from an analog IP vendor
in Texas, while the cryptographic IP core might come from a separate vendor in
Europe. With increasing complexity of today’s ICs and short turnaround times, it
only makes sense for a design house (or SoC integrator) to buy IPs from several
different vendors (usually at a much better rate) than to build the entire IC in-house
from scratch. These IPs can generally be classified as (i) soft IP (RTL level, e.g.,
in the form of Verilog or VHDL), (ii) firm IP (gate-level IPs), and (iii) hard IPs
(layout-level IPs, also known as hard macros, e.g., embedded SRAM).

• Design House/SoC Integrator: After collecting the necessary IP blocks, the
design house puts these IPs in a single design and performs exhaustive simu-
lations/verification to ensure that the overall design functions as intended. During
this stage, electronic design automation (EDA) tools, which are commonly pur-
chased from external EDA vendors, are heavily employed in order to perform
synthesis, place and route (P&R), timing analysis, and verification. Note that most
design houses today have gone ‘fabless’ meaning that they do not maintain their
own silicon production facility (i.e., foundry).

• Design-for-Test: Design-for-Test (DFT) is a stage in the IC design process where
infrastructures are integrated on-chip for post-manufacturing tests. A few decades
ago, itwas feasible to comprehensively test bare circuits aftermanufacturing so that
defects generated during fabrication (e.g., short-circuit, damaged gates) could be
detected quickly.However, with the sheer scale of ICs today, it is no longer possible
to engage in exhaustive logic testing post-fabrication. As a result, the design house
can choose to send its entire design (usually in gate-level form) to a separate DFT
facility that specializes in inserting test infrastructures into the circuit. This can
include specialized flip-flops (FFs) called scan FFs, which can allow a tester to
observe and control internal parts of the design (which, otherwise, might not be
accessible through the primary inputs of the circuit). Other advanced test structures
for self-diagnosis such as built-in-self-test or BIST and test compression can also
be incorporated at this stage to ensure good fault coverage of the circuit-under-test.

• Foundry: After performing comprehensive tests and design, the SoC integrator
generates a final layout file (usually in the form of a GDSII file) and sends it to
a semiconductor foundry. The foundry first generates a mask from the file and
then etches the patterns from the mask onto an actual silicon wafer to produce
the IC die (after dicing the wafer). The foundry may also test the individual die
at this point, using manufacturing test patterns that are provided by the design

8 B. Shakya et al.

Fig. 1.2 Semiconductor
supply chain

Market and End User

Mul ple IP Vendors
• So IP (VHDL, Verilog)
• Firm IP (Gate-Level)
• Hard IP (Layout)

Design House, SoC Integrator

Design-for-Test (DFT)

Semiconductor Foundry

Assembly

1 Introduction to Hardware Obfuscation: Motivation … 9

house/DFT facility. It is important to note that the foundry is usually the most
cost-intensive stage in the flow, as advanced nodes (<22nm) require state-of-
the-art tools for atomic layer deposition (ALD), extreme ultraviolet lithography
(EUV), and a large-scale clean room capable of high-volume production. As a
result, most foundry facilities are located offshore where labor and operation costs
can be kept to a minimum.

• Assembly: After a foundry manufactures the IC, they are sent to a separate facility
that specializes in packaging the die into a complete chip. The die is first mounted
on a substrate after which bond wires or solder bumps (for flip-chip packaging) are
used to connect the I/O, clock, and power ports on the die to actual pins on a plastic
packaging.1 After this, the packaged IC is again tested and ready for incorporation
within a larger electronic system.

• Market, End User: Once the ICs are integrated into a system, it usually reaches a
distributor who is then responsible for delivering the product to the final vendors,
after which it reaches the market and ultimately the consumer.

3D Integrated Circuits

While the flow described above applies to most ICs in production today, newer
technologies such as 3D or 2.5D integrated circuits add a few additional steps to the
pre-existing flow. Both 3D and 2.5D ICs allow the integration of multiple dies on
the same package (vertically for 3D and horizontally for 2.5D) with high-bandwidth
interconnects between them. They offer numerous advantages in terms of reduced
footprint for increased computational power, shorter average wire length for reduced
parasitics and power dissipation, possibility of heterogenous integration (e.g.,MEMs
stacking and dies at different technology nodes in the same package), and reduced
latency (e.g., when stacking processor and memory). In through-silicon-via (TSV)
enabled 3D ICmanufacturing,multiple dies (orwafers)with different partitions of the
design are fabricated separately. After fabrication, the die (orwafers) is aligned on top
of each other and die-to-die (orwafer-to-wafer) high-bandwidth interconnects (called
TSVs) are created to connect the partitions. In 2.5D IC, two (or more) dies are placed
on top of a single interposer layer and microbumps on the individual die connect to
wires in the interposer layer to create a final integrated die. Note that the die-to-die or
wafer-to-wafer integration can take place in the same foundry or a separate foundry.
More detailed discussions on these emerging integration technologies can be found
in their respective chapters in this book.

FPGA Manufacturing

While the IC design flow we presented is geared for ASICs (application-specific
integrated circuits), one could also consider the design flow for FPGAs (field-
programmable gate arrays), which are widely used today. While FPGA manufac-
turing follows the same flow as ASICs, the design flow for a FPGA-based product is
completely different. In the FPGA product flow, a design house simply buys FPGA
chips from a vendor (who specializes in manufacturing FPGAs). The design house

1Note that the foundry might also have packaging capabilities.

10 B. Shakya et al.

then combines soft IPs (frommultiple vendors as well as the design house itself) and
then integrates them into one final wrapper, which is then converted to a bitstream
file (using vendor EDA tools). This file configures the lookup tables (basic building
blocks of FPGAs) and routing resources of the FPGA to realize the design in sil-
icon. Note that this FPGA flow is much shorter (and simpler) than that of ASICs.
However, the high monetary cost associated with FPGAs (per unit), difficulty of
high-volume production, lower performance (in terms of clock speed), and higher-
power consumption limit the scope of FPGAs despite their flexibility. Nonetheless,
the protection of IP contained within the FPGA bitstream is an important area of
research.

PCB Manufacturing

Printed circuit board manufacturing, while not as complex as IC manufacturing, also
tends to have a distributed supply chain, which is described below.

• Design House

– A design house who manufacturers electronic/embedded systems first creates
the layout file of his or her PCBwith the help of an electronic design automation
tool. During this stage, ICs that are part of the PCB are placed onto a template
and wires are created between components by a combination of manual and
autorouting.

– After placement and routing, extensive simulations are performed to check the
integrity of signals as they pass through the board (e.g., in terms of cross talk
and signal degradation in the case of long wires).

– The final layout of the PCB (in the form of a Gerber file) is then produced with
contains information about (i) the number of layers in the board (modern PCBs
have as many as 8–10 layers stacked) and (ii) exact coordinates of vias, wires,
and components.

• PCB Manufacturer

– The (Gerber) design is then electronically transmitted to a PCB manufacturer
who uses it to produce the final board. The production can involve photolitho-
graphy, milling, silk-screen printing, or a combination of the three to create the
copper wire traces and vias on FR4 layers (the insulating base of a PCB). The
PCB manufacturer also usually offers services for mounting + soldering the
desired ICs on the board as well. After manufacturing, the PCB can go back to
the design house, but it is usually forwarded to an assembly or distributor, who
integrates the PCB into a complete electronic system.

1.2.2 Threats in the Supply Chain

It is clear that while the distributed supply chain for IC production has helped to
drive cost and time-to-market down, it has also created a number of security and

1 Introduction to Hardware Obfuscation: Motivation … 11

trust concerns among different entities. These threats, as they pertain to silicon IP
security, are discussed below.

1.2.2.1 Reverse Engineering

The goal of reverse engineering is for the malicious party to recover the IP. After
recovery, the malicious party can (i) use it to create a product that it can then sell
to other parties; (ii) use the IP in its own product without compensating the rightful
IP owner (breach of contract); (iii) find security vulnerabilities in the IP (e.g., weak
random number generation) and exploit it later on; and (iv) insert a targeted backdoor
in the IP after gaining a complete white box understanding of the IP. The threats could
be present in different stages.

• Design House: The design house could potentially reverse engineer the IP core it
receives from the IP vendor (firm and/or hard IP).

• Foundry: The design house provides the complete design in the formof aGDSII file
to the foundry, along with manufacturing test patterns. The foundry could easily
recover the netlist from the GDSII file by finding the connectivity information
from the layout and coupling it with the standard cell library it had previously
provided to the design house.

• Market: Once an adversary obtains a manufactured IC (either through the open
market or through theft), he or she could try to reverse engineer the chip through
destructive means to recover the complete design/IP [10]. Note that since we are
concernedwith IP protection here, side-channel/noninvasive/semi-invasive attacks
that try to recover the secret key will not be considered. For destructive reverse
engineering, the attack begins by decapsulating the chip from its packaging (either
by mechanical abrasion or by corrosive acids), which exposes the bare die. Once
the die is exposed, the attacker begins the slow process of imaging of all the layers
of the IC (via scanning/transmission electron microscopy, high-resolution optical
microscopy, focused ion beam, etc.). After imaging each layer, the attacker reaches
for the next layer by using techniques such as chemical mechanical polishing
(CMP) or plasma etching which helps to grind away a specific depth of the chip
(and specific materials, depending on the etchant used). Once images for each
layer are obtained, they are stitched together using automated image processing
algorithms to obtain the full layout of the IC. If a standard cell library is available,
the layout can then be converted to a gate-level netlist. While the process seems
extensive, there are dedicated companies (e.g., TechInsights and Chipworks in
Canada and Integrated Circuit Engineering Corp. in Arizona) that can perform the
RE tasks at reasonable price/turnaround time and impressive accuracy. For a more
detailed treatment of invasive reverse engineering, we refer the reader to [11].

– PCB Reverse Engineering: Similar kinds of destructive delayering and imaging
attacks can also be applied to PCBs in order to recover the design. Since PCB
traces are not nanoscale (yet), noninvasive techniques such as X-ray computed
tomography can be used to image each layer of the PCB and get the connectivity

12 B. Shakya et al.

information (which can be used to produce a Gerber file) in a matter of hours
[12].

– FPGAReverseEngineering:When it comes to an FPGA, the IP that an adversary
would try to steal would be the FPGA bitstream, which is usually stored in
an onboard/on-chip nonvolatile memory. If the bitstream is unencrypted, the
attacker could read out the memory, by either probing or imaging. In case of
an encrypted bitstream, side-channel attacks can first be used to recover the
encryptionkey [13].After recovering thebitstream, the attacker canuse it illicitly
on another FPGA device. He or she could also convert the bitstream to its
corresponding netlist [14].

1.2.2.2 IP Piracy

Apart from reverse engineering, an adversary in the supply chain could also use the
IP illicitly as is. With respect to the supply chain, the following threats are involved.

• Foundry: A foundry may only be contracted to produce a certain number of the
design house’s IP. However, since the foundry has the complete working design,
they may produce excess copies of the design and sell them in the market (as is or
relabeled/remarketed as a ‘cloned’ product). This effectively allows them to forgo
any research and development (R&D) costs and make a profit by illicitly using
someone else’s IP. This practice is referred to as ‘overproduction’.

• Design House: A design house may only be licensed to use a vendor’s IP core on a
limited number of chips (and paying royalties depending on howmany chips were
manufactured) or for a specified period of time. Unfortunately, if the IP vendor
does not have a means to ‘meter’ the number of chips produced or actively track
the IP’s license, the design house could engage in IP piracy by ‘overusing’ the IP.
This is in addition to the threat of the design house modifying the IP and selling it
under a new name to other unauthorized parties.

• Design-for-Test: An offshore untrusted DFT facility may also pirate the IP (by
producing a cloned version of the IP and selling it to unauthorized third parties),
as it has the complete gate-level design in its possession.

1.2.2.3 Tampering

An adversary in the supply chain could also tamper with the design and introduce
vulnerabilities or backdoors (i.e., hardware Trojans) into it. Two types of attacks
might be possible in this scenario: targeted and untargeted. In a targeted attack,
an adversary, such as an untrusted foundry, design house, DFT facility, or even an
untrusted EDA tool, could gain a partial or complete understanding of the IP-under-
attack and insert Trojans that bring about a specific malicious effects. For example,
a foundry could decrease the entropy produced by a random number generator in a
fabricated crypto-core [15]. It could also severely thin down the interconnect on a

1 Introduction to Hardware Obfuscation: Motivation … 13

critical path on the design, such that it fails prematurely. An untrusted DFT facility
could increase the observability of an internal node in the design, such that it reveals
a critical internal asset directly through its primary outputs.

In an untargeted attack, an adversary’s goal is sabotage or denial-or-service attack,
by exploiting some critical portions of the design (e.g., power supply net and clock
pin) andwithout gaining a complete understanding of the underlying design (through
reverse engineering). For example, a foundry, if it finds unused space in the layout
of the design, could implement a Trojan that, once triggered, resets a number of
flip-flops or dramatically decreases the clock speed in the design. Similar kind of
attacks could also be implemented by an untrusted DFT facility (without any space
constraints, since the design is at gate level). It should also be noted that such targeted
and untargeted Trojan attacks can also be implemented by an IP vendor (who perhaps
has cloned another vendor’s design introduced a Trojan into it and then sold it to a
design house). For a comprehensive review of hardware Trojan attacks, we refer the
readers to [16].

1.2.3 Why Isn’t Encryption a Solution?

Due to the convoluted nature of the supply chain, numerous attacks which could
compromise an entity’s IP rights are possible. On quick thought, one might naively
think that the solution to most, if not all of these issues, is to encrypt the IP. How-
ever, unlike software, encryption is not a viable option for ICs. While encryption
implies a certain storage or speed overhead in software, hardware encryption implies
actual gates. Since these gates are cast in silicon and encryption/decryption cores are
not exactly area-efficient, encryption becomes unreasonable. Moreover, during most
stages in the supply chain (such as foundry, DFT, and design house), the design is a
completewhite box to the adversary, i.e., information relating to all the gates and their
interconnections is available. Since most encryption/decryption cores have repeating
structures of arithmetic operations (e.g., AES-128 has 10 identical rounds of permu-
tation/substitution), they are easily identifiable under a white-box attack model. This
means that the adversary could simply go in and remove the core, thereby nullify-
ing the security provided by the crypto-core. Lastly, encryption, as we discussed in
Sect. 1.1.1.2, requires keys. This implies that a key management infrastructure must
be available throughout each stage of the supply chain, and the design would also
need to be periodically ‘unlocked’ in order to perform tests (especially in the case of
encrypted soft IP cores—see Sect. 1.2.4.1). This creates further logistical issues to
an already complex supply chain. Thus, alternatives are required in order to protect
semiconductor intellectual property which could potentially cost billions to develop.

14 B. Shakya et al.

Hardware
Obfusca on

RTL

IP Encryp on

RTL Locking

White-Box
Obfusca on

Gate

Logic
Encryp on

FSM Locking

Protocol-Based

Secure Test

Layout

Monolithic Split
Fabrica on

2.5D/3D IC Split
Fabrica on

Camouflaging

Instruc on Set
Obfusca on

Randomize

Thwart
Disassembly

PCB
Obfusca on

Permuta on
Block

Emerging
Techniques

Circuit Edit

Nano Device
Enabled

Fig. 1.3 A taxonomy of hardware obfuscation techniques

1.2.4 Techniques for Hardware Obfuscation

With the semiconductor supply chain and its inherent threats in mind, researchers
have developed numerous hardware obfuscation techniques over the past decade. A
taxonomy of these techniques is presented in Fig. 1.3 and is briefly introduced below.

1.2.4.1 RTL Level

Register-transfer level intellectual properties (IPs), also known as soft IPs, are com-
monly in the form of Verilog or VHDL code. Soft IP obfuscation can be achieved
through the following methods.

• IP Encryption: The entire soft IP can be encrypted by common encryption tech-
niques such as AES or RSA. In this setting, key management is usually handled by
the EDA tools (which are assumed to be trusted2) and the IP buyer simply uses the
encrypted IP as a black box. Unfortunately, the technique is limited to flexibility as
the buyer/customer might be limited to a particular EDA tool. Recently introduced
standards such as the IEEE P1735 encryption standard [17] have attempted to ease
the interoperability of encrypted IPs across various EDA tools.

• RTL-level Locking: The authors in [18, 19] have proposed separate key-based
locking approaches for RTL-based IPs. In these approaches, RTL code is first
represented as a data flow [18] or state transition graph [19]. The graph is then

2A trusted party is committed to ensuring a proper IC design/fabrication flow (i.e., does not insert
Trojans and protects IP confidentiality).

1 Introduction to Hardware Obfuscation: Motivation … 15

modified with key states, i.e., additional states in the FSM representation of the
code that must be traversed with the help of a key sequence [18] or code word
[19]. The IP comes into functional mode only when the correct keys are applied;
otherwise, the IP is stuck in a non-functional, obfuscated mode. After obfuscating
the graph and embedding locking features, the RTL code is regenerated from the
graph, resulting in the final obfuscated IP.

• White-box Obfuscation: Soft IPs can also be obfuscated in terms of intelligibil-
ity and readability. The authors in [20] have utilized techniques such as loop
transformations and reordering of statements in order to make a VHDL source
code unintelligible yet functionally akin to the original code. The work in [21]
explores control flow flattening, where a function or loop is broken into blocks
and delegated to ‘switch’ statements, due to which the control flow of the program
becomes much less obvious to an attack (as opposed to a simple ‘for’ loop where
the execution order is obvious). Both of these techniques are more in line with tra-
ditional software obfuscation, which will be explored in Sect. 1.3. Unfortunately,
such white-box obfuscation does not lock or obfuscate the functionality of the IP,
leaving it vulnerable to IP piracy and overuse.

1.2.4.2 Gate Level

Gate level IPs, commonly referred to as firm IPs, are expressed in the form of netlists.
In a netlist, the IP is expressed in the form of nets (connections) and a collection of
standard logic cells. In order to protect gate-level IP, traditional encryption can be
applied. However, this usually comes at the cost of significant hardware overhead
and possible ‘removal’ attacks, as we previously discussed in Sect. 1.2.3. With these
challenges in mind, several novel obfuscation techniques at the gate level have been
recently proposed, of which the notable ones include the following.

• Logic Encryption: In this technique, extra gates such as XOR, XNOR, and MUX
are inserted into the netlist of a design [22, 23]. These gates (and their logical out-
put) are controlled by key bits which can be stored in a tamper-resistant nonvolatile

Fig. 1.4 A logic-locked
circuit with three key gates
[23]

16 B. Shakya et al.

memory or be derived from PUFs (see Fig. 1.4). The security of this approach lies
in the fact that only the trusted design house knows and can apply all the cor-
rect key bits. Without the correct key bits, incorrect logical values are generated
in the internal circuit nodes which eventually lead to faulty outputs. This effec-
tively obfuscates the circuit to a third party who does not possess the correct key.
Unfortunately, such locking techniques are vulnerable to Boolean satisfiability
(SAT)-based attacks [24] as well as attacks that directly propagate the key bits
to the circuit outputs [23] (details regarding both these attacks can be found in
Sect. 1.2.5.2). Also, such techniques have only been studied on small-sized bench-
mark circuits, and their scalability is yet to be assessed.

• FSM-based locking: Several finite-state machine (FSM)-based locking techniques
that are geared specifically toward sequential circuits have also been proposed.
Among the most notable approaches, the authors in [25] have proposed the
embedding of an authenticating FSM into a gate-level design. This authenticating
FSM has to be traversed by an authorized user through a series of specific state
transitions which are triggered by applying a series of input patterns only known
to the user. If the chip is not unlocked via such a traversal, faulty values are gener-
ated by an additional modification kernel function and injected into the gate-level
design in order to obfuscate the functionality of the locked chip. The security of the
approach lies in the fact that the whole circuit is resynthesized after embedding the
authentication and obfuscation features into the design, leaving an attacker with an
insurmountable challenge of identifying (and removing) the implemented obfus-
cation. Although the authors propose utilizing pre-existing unreachable states in
the FSM to incorporate the locking mechanism, the technique remains high in
overhead (in terms of area, power, and delay).

• Protocol-level: The authors in [22, 26] have also utilized such locking techniques
at a protocol level (with key exchange), in order to prevent an untrusted foundry
from engaging in IC overproduction and IP piracy. These techniques are also
commonly referred to as hardware metering. In [26], the authors utilize the afore-
mentioned FSM-based locking technique, with the addition of a PUF to generate
a unique start-up state for each IC. Upon manufacturing, a foundry relays the
generated challenge–response pair from the PUFs so that the trusted design house
can compute a unique unlocking FSM sequence for each chip. Additionally, the
concept of black-hole states are introduced, which are irreversible state transitions
from which the FSM cannot be reset. These black-hole states help in tamper
detection in case a foundry attempts to randomly traverse the locked FSM.
Although a cryptographically secure construction of the locked FSM is provided in
[26] (via reduction to multi-point functions), such metering techniques are costly
in overhead and do not take into account the testing procedure for ICs, a concern
which has been more adequately addressed in [27].

• Secure Test: Recent work has shown that crypto-cores (AES, RSA, etc.) are par-
ticularly vulnerable to scan-based attacks, i.e., attacks that exploit scan flip-flops
(FFs) embedded in a design as part of DFT, in order to reveal internal circuit values
(including the secret key itself) [28]. These attacks are all possible because scan
FFs are just normal registers in a design that can either be configured as scan or

1 Introduction to Hardware Obfuscation: Motivation … 17

normal FFs, depending on a ‘scan enable bit’ that is loaded from a multiplexer
driving the D pin of the FF. Attackers who gain access to the scan chain can load
multiple plaintexts into the cryptographic core (e.g., DES and AES) and switch
from normal to scan mode. After doing this, they can flush out the corresponding
intermediate values in internal registers and use hamming distance-based analysis
to extract the secret key (or at least the individual round keys). Further, if the reg-
isters storing the round keys are part of the scan chain, the key could be directly
read out without any analysis [29]. In order to prevent the attacker from access-
ing the scan chain, various obfuscation techniques have been employed. Simple
solutions include the use of test compression structures that compress the value of
several scan flip-flops into a single output, thereby making the observation of indi-
vidual FF values unfeasible. Unfortunately, such compression-based obfuscation
technique comes at the cost of high area overhead. Locking techniques have also
been proposed that allow the designer to scramble the responses of the scan chain
(chain of scan FFs) unless a secret key is applied. The lock-and-key technique
proposed in [30] breaks up the scan chain into sub-chains. These sub-chains are
configured properly and can be fed with the patterns sequentially only when the
correct key is applied. If the wrong key is applied, the sub-chains are configured
incorrectly by an LFSR, resulting in a ‘lock’ of the scan chains, which then results
in wrong scan-out values. The work in [27] uses a similar concept to combat IC
piracy. In the proposed technique, a ‘scan locking block’ (composed of a scram-
bling block and an XOR network) is utilized in order to perturb the scan chain
responses. These perturbed responses can only be verified as correct by the design
house, who can then appropriately chose whether to ‘pass’ or ‘fail’ a chip, thereby
preventing the foundry from engaging in overproduction and allowing the design
house to meter the number of chips produced. This approach also prevents out-of-
spec/defective ICs from entering the market by giving the IP owner remote access
to test responses. A more detailed treatment of scan-based attack and defenses can
be found in the chapter on scan chain security in this book.

1.2.4.3 Layout Level

Layout-level IPs, also known as hard IPs, come in the form of geometrical and spatial
information about the designwhich can be directly fabricated by a foundry. In order to
protect the layout from piracy and possible Trojan insertion by an untrusted foundry,
several split-manufacturing techniques have been proposed [31–33] (see Fig. 1.5).

• Monolithic Integration: In a traditional split-manufacturing flow, an untrusted
foundry only fabricates the front-end-of-line (FEOL) layers, which include the
expensive and state-of-the-art transistor/active layers. After FEOL fabrication, the
design is sent back at the wafer level to the design house, who then uses a trusted
foundry in order to complete the less costly back-end-of-line (BEOL) metal lay-
ers (see Fig. 1.6). While such techniques hide connectivity information from the
foundry, attacks have been mounted on naive split manufacturing, which utilize

18 B. Shakya et al.

Fig. 1.5 A camouflaged
standard cell that can
function as a NAND,NOR,
or XOR, depending on
contact configuration [35]

proximity information from the assumptions that EDA tools use (e.g., gate distance
to minimize wire length) [34]. Moreover, the biggest hurdle to split manufactur-
ing is that the design house is still required to maintain a foundry to complete
the BEOL, whose cost might be prohibitively expensive depending on the split
layer. Further, foundry compatibility and wafer alignment with such monolithic
split-fabrication techniques may also hurt IC yield.

• 2.5D/3D IC: Attempts have also beenmade to utilize pre-existing 3D/2.5D IC tech-
nology to perform split manufacturing, as opposed to the monolithic integration
technique proposed in [31]. In [32], wire-lifting is performed on a layout so that
the lifted wires can be fabricated as separate layer at a trusted facility and the com-
plete IC can be assembled by through-silicon-via (TSV) bond points in a normal
3D IC design flow. The authors also introduce the notion of k-security, by which
every gate in the design in the FEOL layers is structurally akin to at least k other
gates in the same design (as the BEOL information of the upper tier is missing).

Fig. 1.6 Split
manufacturing leveraging
monolithic integration [37]

1 Introduction to Hardware Obfuscation: Motivation … 19

This makes it infeasible for the attacker (untrusted foundry) to identify the gates
and thus launch a targeted hardware Trojan attack. In [33], 2.5D IC technology
is leveraged in order to securely partition a gate-level design so that two or more
partitions of the design can be fabricated at an untrusted foundry and the inter-
poser layer connecting these partitions can be fabricated at a trusted facility. They
introduce the concept of ‘secure’ partitioning, in which gates are iteratively moved
from one partition to another until the global objective of a set wire-length penalty
and 50% hamming distance (see Sect. 1.3.1) is met. Unfortunately, split manufac-
turing based on 3D/2.5D IC technology has the same drawbacks of requiring a
separate fabrication facility. Further, these techniques require significant amounts
of gate-swapping and wire-rerouting operations for obfuscation, leading to large
area and delay overheads.

• Camouflaging: In order to protect against chip-level reverse engineering, the
authors in [35] have proposed the use of special camouflaged standard cells. These
cells have a layout that makes them appear the same to an invasive reverse engi-
neer, whether they implement aNAND,NOR, orXOR functions. This is achievable
through dummy contacts in the dielectric layer of the gate: Some contacts in the
gate go all the way through the dielectric layer and into the metal layers above,
while others are cut off. However, to an adversary, the contact looks the same
from the top regardless of whether the contact is cut off or joined, giving rise to
ambiguity while trying to identify the gate. This prevents the attacker from obtain-
ing the complete netlist of the design. On the downside, the camouflaged gates
themselves have a non-negligible power, area, and delay overhead, and a large
number of these gates might have to be used in a design to achieve strong security
for industrial designs. Further, recent attacks have shown that a design, even with
an unrealistic number of camouflaged gates, can be effectively ‘decamouflaged.’
These attacks leverage SAT solvers and discriminating input patterns to resolve
the hidden functionality of the camouflaged gates in negligible time [36].

1.2.4.4 Instruction Set Obfuscation

Every computer system has an underlying instruction set architecture (ISA) associ-
ated with it, which dictates the type of commands, data types, address space, and
operation codes (opcodes) it can handle. The ISA serves as an intermediary between
the software and hardware of the computer and is usually public knowledge. Unfor-
tunately, this also means that for any attacker trying to remotely attack a system (or
even invasively, via compromise of the memory unit holding the instructions), the
ISA is well defined too, and thus, he or she can plant the attack on all computers using
the same ISA. This serves as a basis for attacks such as buffer overflow. To combat the
predictability of the ISA, the authors in [38] proposed a technique to scramble each
byte of code (using pseudorandom numbers) and reversing the scrambling only when
the code is executed in machine. This means that any unauthorized program, which
was never scrambled, will be descrambled to random bits, thereby preventing any
targeted malicious behavior. A similar approach which XOR’s the instructions with

20 B. Shakya et al.

a secret key as they are transmitted between the processor and the main memory (as
implemented on a simulated x86 environment), was proposed in [39]. An attacker
without key access can only inject malicious code which is incorrectly decoded,
thereby raising a flag or causing a detectable error.

Another technique for instruction set obfuscation focuses on disrupting the disas-
sembly phase of reverse engineering (i.e., conversion of machine code, in hexadeci-
mal or binary form, to assembly code in human-readable form) [40]. This is achieved
by carefully inserting ‘junk bytes’ in the instruction stream of the code. These
junk bytes cause an automatic disassembler to either misinterpret the instructions
or the control flow of the program but do not affect the program’s functionality
(i.e., semantics) as they are unreachable instructions during run-time.

1.2.4.5 PCB Obfuscation

In order to prevent a PCB design from piracy, the authors in [41] propose the inclu-
sion of a permutation block on the board. The permutation block, implementedwith a
complex programmable logic device (CPLD) or an FPGA, takes in suitable pins (e.g.,
general-purpose I/O) from programmable component in the design (e.g., microcon-
trollers) and permutes its pin connections before they reach their destination. The
permutation is resolved to the correct configuration only when the correct key is
applied to the CPLD or the FPGA (the permutation block).

1.2.4.6 Emerging Techniques

There have also been a variety of novel obfuscation techniques that have been pro-
posed recently. A few of the notable ones are highlighted below.

• Chip Editor: The basic idea of circuit edit (CE) is to utilize technologies such as
focused ion beam (FIB) in order to edit an integrated circuit after fabrication on
a one-by-one basis. CE has been widely used in the semiconductor industry in
order to perform failure analysis and circuit/mask repair without undergoing the
humongous costs of remaking the IC mask. Recent work has focused on leverag-
ing circuit edit for logic obfuscation and trusted fabrication [42]. The proposed
technique called Chip Editor involves the inclusion of extra gates or wires into
the IC design which is then fabricated and tested by an untrusted foundry. After
fabrication, the IC is returned to the design house (or other trusted party), who
then uses circuit edit techniques such as FIB in order to remove the added gates
or wires and revert the circuit to its intended functionality. The security of the
approach lies in the fact that the foundry is unable to determine the gates or wires
that are added in or modified by the design house, even when the added gates have
been accommodated with design-for-circuit-edit features such as widened pads.
Figure1.7 shows one example of a gate insertion-based obfuscation enabled by
circuit edit, where anAND gate is inserted and is edited to a buffer post-fabrication,

1 Introduction to Hardware Obfuscation: Motivation … 21

Fig. 1.7 Gate insertion
enabled by circuit edit. a
Original design with selected
net i. b Gate D and wire k
added. c Wire k edited to
make gate D act as a buffer
[42]

by tying one of its inputs to VDD. The authors in [42] also outline several other
techniques for obfuscation, such as wire-swapping and insertion with other gate
types. Compared to split manufacturing and 2.5D/3D IC obfuscation, the circuit
edit technique removes the need for the design house to maintain a costly foundry
to complete the BEOL or interposer layers and only requires a moderate cost FIB
machine. The need for key management and secure key storage (e.g., in logic
encryption) is also alleviated. However, the drawback of the approach is that it
can only be utilized for low-volume IC production (since FIB operations take time
and can only be done on a one-by-one basis). Similar to split manufacturing and
2.5D/3D IC obfuscation, it also does not prevent the IC from being reverse engi-
neered once it enters the open market, thus limiting its scope to tightly controlled
supply chains (e.g., military and aerospace).

• Nanodevice enabled: Several other techniques leveraging emerging nanoscale
devices for circuit obfuscation have also been proposed. The authors in [43] pro-
pose the use of polarity-controllable silicon nanowire FETs (SiNWFETs) in order
to make low-overhead IC camouflaging gates. As opposed to traditional camou-
flaged gates which require as much as 12 transistors, the authors show that it is
possible to use only 4 SiNW to achieve a NAND, NOR, XNOR, and buffer func-
tionality from the same gate, resulting in significant area and power savings. They
also utilize SiNW FETs to make polymorphic gates, which can be configured to
be either a NAND or a NOR gate depending on how the VDD and GND termi-
nals are configured. Unfortunately, the drawback of using these novel devices is
that they suffer from high leakage current and fabrication issues (imprecise device
characteristics and limited scaling from top-down or traditional fabrication and
yield issues from bottom-up or gate-first fabrication) [44].

1.2.5 Key-Based Classification

Hardware obfuscation techniques can also be classified on the basis of whether they
employ a key-based locking mechanism or not.

22 B. Shakya et al.

1.2.5.1 Keyless

Keyless hardware obfuscation techniques ensure security by stripping away specific
information regarding the design from the adversary. This includes techniques such
as (i) white-box obfuscation for RTL (control flowgraph obfuscation, removing com-
ments, code compression, etc., to prevent reverse engineering); (ii) split fabrication
(take away BEOL connectivity information from foundry so that they do not have the
complete design); (iii) 2.5D/3D IC obfuscation (take away partition of a design, in
the form of a separate die, from the foundry); (iv) instruction set obfuscation (make
reverse engineering of code difficult); (v) IC camouflaging (make a gate incompre-
hensible for reverse engineers); and (vi) circuit edit (foundry is unable to find the
added/modified gates or wires), all of which were discussed in detail in Sect. 1.2.4.
While these techniques do not require key management, they usually have a more
restrictive attack model (e.g., tightly controlled supply chain so that an attacker does
not gain information about the design).

1.2.5.2 Key-Based

Key-based hardware obfuscation techniques include (i) IP encryption (via AES); (ii)
RTL/FSM locking (correct sequence of state transitions required to unlock IP/IC);
(iii) logic encryption (through embedding of locking key gates into design); and (iv)
permutation block PCB locking. These techniques rely on the fact that the key used
to unlock the design stays secret. Without the secret key, the design remains non-
functional to an adversary. The idealistic assumption is that the adversary is reduced
to using brute force in order to guess the correct secret key for the locked design.
Assuming a large enough key length, such attacks become quickly unfeasible for
most key-based obfuscation techniques (e.g., 2128 guesses for 128-bit key). However,
several recent attacks have shown that an attacker can domuch better than brute force
in order to extract the secret key from an unlocked IC (and thereby use it to unlock
other ICs) or check the correct key in far fewer tries than brute force. Some of these
attacks are discussed below.

• Boolean satisfiability (SAT) solvers: Logic encryption techniques have recently
been subjected to Boolean satisfiability (SAT) solver-based attacks [24]. In this
attack, it is assumed that an adversary gains an unlocked version of the IC from
the open market and uses this unlocked IC to query the correct input–output (IO)
functionality of the design. Using this correct IO information and a separate locked
IC implementing the same functionality, the attacker iteratively tries to rule out
multiple incorrect key values. This is done by inputting the circuit in conjunctive
normal form (CNF) to a SAT solver. Using the solver, the attacker identifies dis-
tinguishing input pairs (DIPs) that can help him or her to rule out multiple wrong
keys in a single guess. This drastically reduces the key search space, enabling the
attacker to deduce the right keys in a very reasonable amount of time.

1 Introduction to Hardware Obfuscation: Motivation … 23

• Key propagation attacks: The authors in [45] propose an automatic test pattern
generation (ATPG)-based attack on logic encryption. In this approach, test patterns
are generated, which can selectively ‘mute’ the effect of other gates in a circuit
(e.g., by applying non-controlling values, such as logic 0 to an OR gate) and cause
the key value on the key gates to propagate all the way to the primary outputs.
Thus, through a topological evaluation of the circuit and generation of appropriate
test patterns, the attacker can use to obtain the secret key and use it to unlock other
ICs.

More details regarding both of these attacks can be found in the following chapter
on logic encryption. The chapter also highlights appropriate countermeasures to
these attacks, such as interference graph-based logic encryption (allowing key gate
insertion at locations which do not allow propagation of the key bits to the output)
and SARLock (utilizing the output of one-way random functions such as AES to set
the key bits; this prevents an attacker from correlating the AES key to the circuit
outputs, making SAT attacks provably unfeasible). However, note that both of these
countermeasures are ad hoc in nature, thereby requiring large area overhead.

Besides these attacks based on intelligently stealing the key, key-basedHWobfus-
cation techniques also suffer from an array of issues arising due to key management.
Most of the obfuscation techniques rely on the key being stored in some form of non-
volatile memory, which themselves are prone to imaging and probing attacks [46].
Further, key management (i.e., exchange of keys through a network allowing remote
activation and authentication) is a non-trivial requirement, requiring area overhead
for key exchange circuitry (e.g., RSA) and a secure network resistant to man-in-the-
middle and replay attacks. An attempt at secure key exchange for remote authenti-
cation/activation of chips is presented in [47]. In the proposed FORTIS approach,
RSA is utilized for end-point authentication between the chip at the foundry and the
design house, and one-time pad (OTP) symmetric encryption is used for protecting
the keys during exchange. A detailed treatment of the entire protocol can be found
in the chapter on FORTIS in this book.

1.3 Software Obfuscation

Computer software is the field that the term ‘obfuscation’ is most commonly asso-
ciated with. While software obfuscation is beyond the scope of this book, we briefly
introduce the field and highlight some reasons for utilizing it below.

Informally, software obfuscation relates to the practice of programmers conceal-
ing the implementation of their algorithm in code. This can include techniques rang-
ing from simple comment or white space removal to more elaborate techniques such
as loop unrolling (from the control flow graph or CFG representation of the program)
[48]. While the overarching goal of obfuscation is IP protection (through prevention
of reverse engineering), more specific reasons for considering obfuscation include
the following.

24 B. Shakya et al.

• Protection against malicious intent: Computer vulnerabilities such as malware,
virus, and Trojan horses often require the adversary to have a complete white
box understanding of the software system they are targeting. For example, a buffer
overflowattack requires the attacker to exactly know the instruction set architecture
(ISA) of the victim’s host system. Obfuscation techniques such as address space
randomization [49] can be effective in preventing such attacks. Also, a software
company, on discovering a bug in their software, could obfuscate their program
with a patch to the bug and release it. This could be done so that an adversary
is unable to recover the original bug from the patched program, so that he/she is
prevented fromexploiting customers of the softwarewithout the patch. Conversely,
a malware could also employ obfuscation on itself in order to prevent detection
by antivirus or intrusion detection packages [50].

• Protection against IP theft and misuse: One of the strongest reasons for obfus-
cation, in terms of IP protection, is to prevent IP theft and misuse. The software
piracy cases that we discussed in Sect. 1.1 show the importance of strong obfus-
cation and why measures need to be taken to actively protect software IP from
competitors and even potential customers.

• Code Minification: Apart from IP protection, obfuscation is also routinely used in
the software industry in order to perform code compaction. Popular tools such as
ProGuard [51] work with specific programming languages such as Java in order
to simultaneously obfuscate and minimize code by removing unnecessary classes,
shortening variable names, etc. This helps to produce executables that are compact
in size and ease memory/storage constraints. Note that such ‘minification’ (and
software obfuscation, in general) does not affect the functionality of the original
code.

• Recreational Obfuscation: On a lighter note, competitions such as the international
obfuscated C code contest (IOCCC) encourage participants to reproduce a code
or algorithm in the most artistic or esoteric way possible [52] (Fig. 1.8).

1.3.1 Metrics for Hardware Obfuscation

Although we discussed the various techniques used for hardware obfuscation at
different levels of abstraction, it is also important to note the metrics that go into (i)
implementing and (ii) evaluating these techniques. Implementation metrics, which
can be used for performing ‘good’ obfuscation, have two key requirements. First,
they should be reasonably fast to compute (e.g., linear complexity) so that they can
still be practical when applied to large circuits. Second, they should ideally be able
to incorporate overhead (area, power, delay, etc.) and security constraints as the
obfuscation technique is iteratively applied to the circuit. In this way, the designer
does not have to wait till the entire obfuscation procedure is complete in order to
evaluate the resulting security and overheads.

1 Introduction to Hardware Obfuscation: Motivation … 25

Fig. 1.8 IOCCC Flight Simulator: Winning entry of the 1998 International Obfuscated C Code
Contest [53]

Evaluation metrics can be grouped into two categories: preobfuscation and post-
obfuscation. Preobfuscation evaluation metrics can be used to judge the difficulty
in obfuscating a circuit before the actual technique is applied to it. These kinds of
metrics help the designer to gauge the effort required (e.g., overheads that might

26 B. Shakya et al.

need to be committed and computation time) in order to obfuscate the circuit before
performing the actual obfuscation. They could also help in deciding from an array of
candidate obfuscation techniques. Post-obfuscation evaluation metrics are applied
to a circuit after the obfuscation is complete. In order to use these metrics, a golden
circuit (i.e., the unobfuscated circuit) is required which is then compared to the
obfuscated version in order to evaluate the resultant security and overheads.

Some of the metrics frequently which recur across different obfuscation tech-
niques and can be used for implementation and/or evaluation are briefly discussed
below.

• Implementation Metrics

– Fault Impact: The authors in [23] have used fault impact in order to judge the
appropriate locations to insert key gates into a circuit. The fault impact for a
gate can be expressed as the product of the total number of test patterns that
detect a stuck-at-0 fault at the gate’s output and the number of outputs that get
affected by the stuck-at-0 fault at the gate’s output (the total fault impact is the
sum of stuck-at-0 fault impact and stuck-at-1 fault impact). This metric roughly
tells how likely it is that a fault (which, in this case, is the bit-flip induced by
applying a wrong key at the key gate) can propagate to the outputs and cause
an output error. The shortcoming of this approach is that fault detection is a
computationally hard problem, and generating the patterns for detecting the
faults would require exponential run-time as the circuit size scales. The authors
in [33] have utilized a similar metric, which they term as mean observe and
control values (MOV/MCV). As opposed to a stuck-at fault detection approach
which was used by fault impact, MOV/MCV tracks the number of bit-flips in
a wire and the corresponding number of bit-flips of the outputs in output cone
(for MOV) or inputs in the input cone (for MCV) of the same wire. MOV/MCV
has the same linear computational complexity as logic simulation.

– k-security: The authors in [32] introduce the notion of k-security for indistin-
guishability of a gate in a circuit fabricated by split manufacturing. Given that
an attacker has the complete netlist of the design and a partial netlist recovered
from the FEOL layer, the authors claim that a design is k-secure if for every gate
in the FEOL design, there exists at least k subgraph isomorphisms, i.e., k distinct
gates in the complete netlist that the gate can be mapped to. For example, if a
gate in the FEOL netlist has k = 2, it implies that the attacker has to randomly
guess between two gates in the original netlist in order to identify the gate in
the FEOL netlist. Unfortunately, the authors showed that determining whether a
circuit is k − secure is NP-complete. Therefore, they employed a SAT solver to
gradually lift wires from the FEOL to the BEOL and heuristically check graph
isomorphism after each lifting operation to construct a k-secure circuit. This
also unfortunately leads to impractical area overheads.

1 Introduction to Hardware Obfuscation: Motivation … 27

• Evaluation Metrics

– Hamming Distance: Hamming distance (HD) is a metric used to evaluate the
difference between two given bitstreams b1 and b2. It performs a bit-by-bit
comparison of two bitstreams and uses a percentage figure to describe how
many bits are different between b1 and b2. For circuits, the output bits of a
combinational circuit (or a sequential circuit at the same time instance) can
be thought of as a bitstream. An average HD of 50% between b1, the output
of a circuit and b2, the output of its obfuscated or locked counterpart, tells
us that the responses between the two circuits can be the same only with a
probability that is as good as random chance. In other words, the obfuscated
circuit’s response is completely different than that of the original circuit. This
metric has been widely used for evaluating gate-level obfuscation techniques
such as logic locking [23] and also camouflaging [35]. It is either calculated once
post-obfuscation or recursively calculated after each change (e.g., after one key
or camouflaged gate insertion). The drawback of this metric is that it is based on
outputs and requires logic simulation which does not scale well with the number
of inputs and size of the circuit. Most techniques employing HD estimate the
figure by a random sampling of the input space (e.g., 1000 randomly selected
input vectors).

– Verification Failure: The authors in [25, 42] have used percentage verification
failure as ametric for evaluating theperformanceof their obfuscation techniques.
To calculate thismetric, formal verification tools such as Synopsys Formality are
used to perform logical equivalence checking between the obfuscated design and
its original counterpart. The equivalence checking involves the use of proprietary
static analysis techniques on the logic cones of the two designs to compare their
output ports and flip-flop outputs (pseudo-output ports). The final verification
failure figure is expressed as a percentage of failing comparison points (ports that
failed equivalence checking) to the total number of comparison points (total no.
of ports). The advantage of thismetric over simulation-basedHamming distance
is that it is much faster and scalable and does not suffer from the inaccuracies or
coverage issues that arise due to simulationwith a limited set of vectors/patterns.
However, for purely combinational circuits, the metric might not be applicable
due to the increased size of the logic cones (extending from the primary inputs
all the way to the primary outputs, without any flip-flops in between). Note that
verification failure can only be used as a post-obfuscation evaluation metric, as
it requires the complete obfuscated circuit and the original circuit.

– Entropy: Entropy refers to the amount of information contained in a system. In
terms of obfuscation, entropy is used to determine the extent of information that
can be non-trivially attained by an adversary by observing the obfuscated version
of the circuit. The authors in [54] have used entropy as a measure of how easy it
is for the attacker to gain information about the functionality of the circuit from
the distribution of gate types. For example, a circuit synthesized with only two
types of gates will have a very high entropy compared to a circuit synthesized
with 30 different types of gates, from which the attacker might deduce clues

28 B. Shakya et al.

(e.g., a collection of XOR gates might hint to the addRoundKey stage of AES).
Along the same lines, the authors also proposed a complimentary metric they
term as ‘standard cell composition bias.’ This metric analyzes the proportion
of standard cells (such as XOR, flip-flops, or arithmetic gates) in the design. A
design with high bias (e.g., with a lot of XORs and few FFs/arithmetic gates)
might indicate a cryptographic core, while a design with significantly more FFs
might indicate a state machine logic. The goal is to synthesize the design with
low bias, i.e., with equal proportion of different types of standard cells so that
the attacker cannot make a generalized guess about the high-level functionality
or purpose of the circuit. Both entropy and composition bias can be used as
preobfuscation and post-obfuscation evaluation metrics.

– Neighbor connectedness: The authors in [54] introduce neighbor connected-
ness, which gives us an idea of how connected a cell in a design (in layout form,
with respect to split manufacturing) is. If a cell is connected to a lot of other
cells in its neighborhood (e.g., a 4× 4 grid within a small radius R), its function-
ality/purpose could be deduced from the connectivity information. On the flip
side, if connected cells are more ‘spread out’ (i.e., R is increased), an attacker
without BEOL information could wrongly assume that a cell is connected to
another functionally unrelated cell. Therefore, a design with low neighbor con-
nectedness (i.e., where connected cells are far apart) would increase the reverse
engineering required by the adversary (as he or she would keep making wrong
connections based on distance (mis)information). Note that low neighbor con-
nectedness also unfortunately implies an increase in wire length. This metric
can be used for both preobfuscation and post-obfuscation evaluation.

Thus, there are an array of metrics that have been proposed in order to implement
as well as evaluate hardware obfuscation techniques. The key issue with most of the
proposed metrics is that they are impractical, either in terms of computing the met-
ric itself or implementing the design guided by the metric. For example, evaluation
metrics such as HD require logic simulation, which are unscalable on large designs,
have significant errors when estimated with a small set of random vectors, and cannot
be calculated as is by partitioning the design (as we discussed above). On the other
hand, metrics such as k-security end up being too strong and an unfeasible notion of
security, as is evident by the unacceptable area overhead that arises in trying to meet
the metric. Thus, there exists a delicate trade-off between the computational com-
plexity involved in metric computation and the overhead that results from adopting
a particular metric to guide obfuscation.

1.3.1.1 Software Obfuscation Metrics

Although an in-depth treatment of software obfuscation is beyond the scope of this
chapter/book, a few relevant metrics for software obfuscation, which indicate the
level of complexity in reverse engineering or comprehending a program, are high-
lighted below.

1 Introduction to Hardware Obfuscation: Motivation … 29

• Cyclomatic complexity relates to the control flow graph (CFG) representation of a
program. A program without any control statements (e.g., IF) would be assigned
a complexity of 1, whereas a program with one IF statement and one evaluation
condition would be assigned a complexity of 2 (one part evaluating to TRUE and
another evaluating to FALSE, for a total of two linearly independent paths in the
CFG). The complexity increases as more control flow statements are introduced
in the program, indicating an increase in the test cases required to comprehend the
program functionality.

• Halstead complexity metric defines a suite of measures such as program length,
difficulty, and effort, which are all based on the number of distinct operators and
operands that are utilized in the program [55]. Since this metric solely relies on
the operators + operands, it is language-independent and has no notion of control
flow. Nonetheless, the metric directly correlates to program execution time and
amount of time a reverse engineer has to spend to evaluate the program.

1.3.2 Hardware Obfuscation Benchmarks

In order to show the efficacy of their obfuscation techniques, researchers frequently
utilize ‘benchmark circuits’ on which they apply the technique and present results
on the incurred area/delay/power overhead and security metric utilized. For gate-
level techniques, popular examples of used benchmarks include the ISCAS ’85 [56],
’89 [57], and ITC ’99 [58] benchmark sets (which are widely available in synthe-
sized netlist form). Researchers have also utilized the placed-and-routed layout of
these benchmarks to explore split-manufacturing obfuscation. These benchmarks
were initially created as example designs (to be used as functional black boxes) for
researchers to explore test pattern generation, scan chain insertion, fault coverage,
and other VLSI test-related topics. As a result, their use in HW obfuscation has
been more or less ad hoc. Moreover, most of these benchmarks date back decades
and are only a few thousands in gate count. Due to these reasons, it becomes hard
to argue about the scalability of HW obfuscation techniques implemented on these
benchmarks to the million gate designs that are commonplace today.

1.4 Conclusion

In this chapter, we presented a general overview of hardware as well as software
obfuscation. Software obfuscation focuses on developing general-purpose obfuscat-
ing compilers that can work for all programs. However, hardware obfuscation can
vary in technique and scope, depending on the threat model and level of abstraction.
Due to this, there cannot be a one-size-fits-all solution for all hardware obfuscation
problems.

30 B. Shakya et al.

We also explored the various threats involved in each stage of the integrated circuit
supply chain and presented a brief review of obfuscation techniques that have been
developed to counter these threats. Lastly, we reviewed relevant metrics for HW
obfuscation that the reader will encounter throughout the rest of this book.

References

1. Weber J (2016) Epic systems wins $940 mln US jury verdict in Tata trade secret case, reuters.
http://www.reuters.com/article/us-tata-epic-verdict-idUSKCN0XD135. Accessed April 2016

2. Kirk J (2013) Three indicted in alleged source code theft from trading house,
PC world. http://www.pcworld.com/article/2053020/three-indicted-in-alleged-source-code-
theft-from-trading-house.html. Accessed Oct 2013

3. Rosenblatt J (2013) Xilinx sues Flextronics alleging fradulent chip resale, bloomberg technol-
ogy. http://www.bloomberg.com/news/articles/2013-12-11/xilinx-sues-flextronics-alleging-
fraudulent-chip-resale. Accessed Dec 2013

4. Bunkley N (2015) Ford accused by software maker of intellectual property theft, auto-
motive news. http://www.autonews.com/article/20150604/OEM06/150609919/ford-accused-
by-software-maker-of-intellectual-property-theft. Accessed June 2015

5. Barak B, Goldreich O, Impagliazzo R, Rudich S, Sahai A, Vadhan S, Yang K (2001) On the
(im) possibility of obfuscatingprograms.Annual international cryptology conference. Springer,
Heidelberg, pp 1–18

6. Canetti R, Dakdouk RR (2008) Obfuscating point functions with multibit output. Annual
international conference on the theory and applications of cryptographic techniques. Springer,
Heidelberg, pp 489–508

7. Goldwasser S, Rothblum GN (2007) On best-possible obfuscation. Theory of cryptography
conference. Springer, Heidelberg, pp 194–213

8. Garg S, Gentry C, Halevi S, Raykova M, Sahai A, Waters B (2013) Candidate indistinguisha-
bility obfuscation and functional encryption for all circuits. In: IEEE 54th annual symposium
on foundations of computer science (FOCS). IEEE, pp 40–49

9. Apon D, Huang Y, Katz J, Malozemoff AJ (2014) Implementing cryptographic program obfus-
cation. IACR Cryptol ePrint Arch 2014:779

10. Torrance R, James D (2009) The state-of-the-art in ic reverse engineering. In: Cryptographic
Hardware and Embedded Systems-CHES. Springer, pp 363–381

11. Quadir SE, Chen J, Forte D, Asadizanjani N, Shahbazmohamadi S, Wang L, Chandy J, Tehra-
nipoor M (2016) A survey on chip to system reverse engineering. ACM J Emerg Technol
Comput Syst (JETC) 13(1):6

12. Asadizanjani N, Shahbazmohamadi S, Tehranipoor M, Forte D (2015) Non-destructive PCB
reverse engineering using x-raymicro computed tomography. In: 41st International symposium
for testing and failure analysis, ASM, 1–5 November 2015

13. Moradi A, Barenghi A, Kasper T, Paar C (2011) On the vulnerability of fpga bitstream encryp-
tion against power analysis attacks: extracting keys from xilinx virtex-ii fpgas. In: Proceedings
of the 18th ACM conference on Computer and communications security, pp. 111–124. ACM,
2011

14. Note JB, Rannaud E (2008) From the bitstream to the netlist. In: Proceedings of the 16th
international ACM/SIGDA symposium on field programmable gate arrays, series FPGA 2008,
New York, USA. ACM, pp 264–264. http://doi.acm.org/10.1145/1344671.1344729

15. Becker GT, Regazzoni F, Paar C, Burleson WP (2013) Stealthy dopant-level hardware trojans.
In: International workshop on cryptographic hardware and embedded systems. Springer, pp
197–214

16. Tehranipoor M, Koushanfar F (2010) A survey of hardware trojan taxonomy and detection.
IEEE Des Test Comput 27(1):10–25

http://www.reuters.com/article/us-tata-epic-verdict-idUSKCN0XD135
http://www.pcworld.com/article/2053020/three-indicted-in-alleged-source-code-theft-from-trading-house.html
http://www.pcworld.com/article/2053020/three-indicted-in-alleged-source-code-theft-from-trading-house.html
http://www.bloomberg.com/news/articles/2013-12-11/xilinx-sues-flextronics-alleging-fraudulent-chip-resale
http://www.bloomberg.com/news/articles/2013-12-11/xilinx-sues-flextronics-alleging-fraudulent-chip-resale
http://www.autonews.com/article/20150604/OEM06/150609919/ford-accused-by-software-maker-of-intellectual-property-theft
http://www.autonews.com/article/20150604/OEM06/150609919/ford-accused-by-software-maker-of-intellectual-property-theft
http://doi.acm.org/10.1145/1344671.1344729

1 Introduction to Hardware Obfuscation: Motivation … 31

17. IEEE computer society, IEEE recommended practice for encryption and management of
electronic design intellectual property. https://standards.ieee.org/findstds/standard/1735-2014.
html. Accessed December 2014

18. ChakrabortyRS, Bhunia S (2010) RTLhardware IP protection using key-based control and data
flow obfuscation. In: 2010 23rd international conference on VLSI design. IEEE, pp 405–410

19. Desai AR, Hsiao MS, Wang C, Nazhandali L, Hall S (2013) Interlocking obfuscation for
anti-tamper hardware. In: Proceedings of the eighth annual cyber security and information
intelligence research workshop. ACM, p 8

20. Brzozowski, M, Yarmolik VN (2007) Obfuscation as intellectual rights protection in VHDL
language. In: 6th International conference on computer information systems and industrial
management applications, CISIM 2007. IEEE, pp 337–340

21. Kainth M, Krishnan L, Narayana C, Virupaksha SG, Tessier R (2015) Hardware-assisted code
obfuscation for FPGA soft microprocessors. In: Proceedings of the 2015 design, automation
and test in Europe conference and exhibition. EDA Consortium, pp 127–132

22. Roy JA, Koushanfar F, Markov IL (2008) Epic: ending piracy of integrated circuits. In: Pro-
ceedings of the conference on design, automation and test in Europe. ACM, pp 1069–1074

23. Rajendran J, PinoY, SinanogluO,Karri R (2012) Logic encryption: a fault analysis perspective.
In: Proceedings of the conference on design, automation and test in Europe. EDA Consortium,
pp 953–958

24. Subramanyan P, Ray S, Malik S (2015) Evaluating the security of logic encryption algorithms.
In: IEEE international symposium on hardware oriented security and trust (HOST) (2015).
IEEE, pp 137–143

25. Chakraborty RS, Bhunia S (2009) Harpoon: an obfuscation-based soc design methodology for
hardware protection. IEEE Trans Comput Aided Des Integr Circuits Syst 28(10):1493–1502

26. Koushanfar F (2012) Provably secure active IC metering techniques for piracy avoidance and
digital rights management. IEEE Trans Inf Forensics Secur 7(1):51–63

27. Contreras GK, Rahman MT, Tehranipoor M (2013) Secure split-test for preventing IC piracy
by untrusted foundry and assembly. In: IEEE international symposium on defect and fault
tolerance in VLSI and nanotechnology systems (DFTS). IEEE, pp 196–203

28. Yang B, Wu K, Karri R (2004) Scan based side channel attack on dedicated hardware imple-
mentations of data encryption standard. In: Proceedings of the ITC international test conference
on 2004. IEEE, pp 339–344

29. Nahiyan A, Xiao K, Yang K, Jin Y, Forte D, Tehranipoor M (2016) AVFSM: a framework for
identifying and mitigating vulnerabilities in FSMS. In: Proceedings of the 53rd annual design
automation conference. ACM, p 89

30. Lee J, Tehranipoor M, Patel C, Plusquellic J (2007) Securing designs against scan-based side-
channel attacks. IEEE Trans Dependable Secure Comput 4(4):325–336

31. Vaidyanathan K, Liu R, Sumbul E, Zhu Q, Franchetti F, Pileggi L (2014) Efficient and secure
intellectual property (IP) design with split fabrication. In: IEEE international symposium on
hardware-oriented security and trust (HOST) 2014. IEEE, pp 13–18

32. Imeson F, Emtenan A, Garg S, Tripunitara M (2013) Securing computer hardware using 3d
integrated circuit (IC) technology and split manufacturing for obfuscation. In: Presented as
part of the 22nd USENIX security symposium (USENIX security 2013), pp 495–510

33. Xie Y, Bao C, Srivastava A (2015) Security-aware design flow for 2.5D IC technology. In:
Proceedings of the 5th international workshop on trustworthy embedded devices. ACM, pp
31–38

34. Rajendran JJ, Sinanoglu O, Karri R (2013) Is split manufacturing secure? In: Proceedings of
the conference on design, automation and test in Europe. EDA Consortium, pp 1259–1264

35. Rajendran J, Sam M, Sinanoglu O, Karri R (2013) Security analysis of integrated circuit
camouflaging. In: Proceedings of the 2013 ACM SIGSAC conference on computer and com-
munications security. ACM, pp 709–720

36. El Massad M, Garg S, Tripunitara MV (2015) Integrated circuit (IC) decamouflaging: reverse
engineering camouflaged ICS within minutes. In: NDSS

https://standards.ieee.org/findstds/standard/1735-2014.html
https://standards.ieee.org/findstds/standard/1735-2014.html

32 B. Shakya et al.

37. Vaidyanathan K, Das BP, Sumbul E, Liu R, Pileggi L (2014) Building trusted ICS using split
fabrication. In: 2014 IEEE international symposium on hardware-oriented security and trust
(HOST), pp 1–6, May 2014

38. Barrantes EG, Ackley DH, Palmer TS, Stefanovic D, Zovi DD (2003) Randomized instruc-
tion set emulation to disrupt binary code injection attacks. In: Proceedings of the 10th ACM
conference on Computer and communications security. ACM, pp 281–289

39. KcGS,Keromytis AD, Prevelakis V (2003) Countering code-injection attackswith instruction-
set randomization. In: Proceedings of the 10th ACM conference on computer and communi-
cations security. ACM, pp 272–280

40. Linn C, Debray S (2003) Obfuscation of executable code to improve resistance to static dis-
assembly. In: Proceedings of the 10th ACM conference on computer and communications
security. ACM, pp 290–299

41. Guo Z, Tehranipoor M, Forte D, Di J (2015) Investigation of obfuscation-based anti-reverse
engineering for printed circuit boards. In: Proceedings of the 52nd annual design automation
conference, series DAC 2015, New York, NY, USA. ACM, pp 114:1–114:6. http://doi.acm.
org/10.1145/2744769.2744862

42. Shakya B, Asadizanjani N, Forte D, Tehranipoor M (2016) Chip editor: leveraging circuit
edit for logic obfuscation and trusted fabrication. In: IEEE/ACM international conference on
computer-aided design (ICCAD)

43. Bi Y, Shamsi K, Yuan J-S, Gaillardon P-E, Micheli GD, Yin X, Hu XS, Niemier M, Jin Y
(2016) Emerging technology-based design of primitives for hardware security. ACM J Emerg
Technol Comput Syst (JETC) 13(1):3

44. Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire
field effect transistors. Nano Lett 3(2):149–152

45. Rajendran J, Zhang H, Zhang C, Rose GS, Pino Y, Sinanoglu O, Karri R (2015) Fault analysis-
based logic encryption. IEEE Trans Comput 64(2):410–424

46. Skorobogatov SP (2005) Semi-invasive attacks: a new approach to hardware security analysis,
Ph.D. dissertation, Citeseer

47. Guin U, Shi Q, Forte D, Tehranipoor MM (2016) Fortis: a comprehensive solution for estab-
lishing forward trust for protecting IPS and ICS. ACM Trans. Des. Autom. Electron. Syst.,
21(4):63:1–63:20. http://doi.acm.org/10.1145/2893183

48. Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating transformations. The
University of Auckland, New Zealand, Technical report, Department of Computer Science

49. Bhatkar S, DuVarneyDC, Sekar R (2003) Address obfuscation: an efficient approach to combat
a broad range of memory error exploits. Usenix Secur 3:105–120

50. You I, Yim K (2010) Malware obfuscation techniques: a brief survey. In: 2010 international
conference on broadband, wireless computing, communication and applications (BWCCA),
pp 297–300

51. Lafortune E et al. (2004) Proguard. http://proguard.sourceforge.net
52. Noll LC, Cooper S, Seebach P, Leonid AB (2005) The international obfuscated C code contest
53. IOCCC, IOCCC flight simulator. In: International obfuscated C code contest (1998). http://

www.ioccc.org/1998/banks.c
54. Jagasivamani M, Gadfort P, Sika M, Bajura M, Fritze M (2014) Split-fabrication obfuscation:

metrics and techniques. In: 2014 IEEE international symposium on hardware-oriented security
and trust (HOST), pp 7–12

55. Halstead MH Elements of software science, vol 7
56. Hansen MC, Yalcin H, Hayes JP (1999) Unveiling the iscas-85 benchmarks: a case study in

reverse engineering. IEEE Desi Test 16(3):72–80
57. Brglez F, Bryan D, Kozminski K (1989) Combinational profiles of sequential benchmark cir-

cuits. In: IEEE international symposium on circuits and systems. IEEE, pp 1929–1934
58. Corno F, ReordaMS, SquilleroG (2000) RT-level ITC 1999 benchmarks and first ATPG results.

Ieee Des Test Comput 17(3):44–53

http://doi.acm.org/10.1145/2744769.2744862
http://doi.acm.org/10.1145/2744769.2744862
http://doi.acm.org/10.1145/2893183
http://proguard.sourceforge.net
http://www.ioccc.org/1998/banks.c
http://www.ioccc.org/1998/banks.c

Chapter 2
VLSI Test and Hardware Security
Background for Hardware Obfuscation

Fareena Saqib and Jim Plusquellic

2.1 Introduction

Hardware obfuscation is a technique to conceal the design frommalicious insider and
outsider adversaries. Obfuscation techniques transform the original design such that
the obfuscated version is functionally equivalent to the original design, but it does
not reveal the design details and is much harder to reverse-engineer [1]. As discussed
earlier in Chap.1, the business model of distributed and outsourced design, integra-
tion, manufacturing, packaging, and distribution channels creates challenges such
as intellectual property (IP) piracy, reverse engineering of the netlist from GDSII,
integrated circuit (IC) cloning, and counterfeiting opportunities.

Nanometer-sized integrated circuit feature sizes and increased gate density per
wafer have been made possible with the advancements in photolithography tech-
niques. However, this has driven the cost and maintenance of fabrication facilities
into the billions of dollars, making the business model difficult to justify and sustain.
Consequently, many major companies have become fabless and instead outsource
their designs to offshore foundries as a cost-effective alternative to owning andoperat-
ing their own fabs. Unfortunately, the horizontal dissemination of the design process
to companies all over the world decreases the trustworthiness and increases the secu-
rity risks of the design process [2, 3].

This chapter overviews the traditional design flow of integrated circuits and
assesses processes in termsof howmuch information is revealed to aid in reverse engi-
neering the design. We survey the proposed schemes that are designed to enhance
the security properties of traditional verification and testing mechanisms to make
designs resilient to attacks. This chapter also investigates IP protection schemes that

F. Saqib (B)
Florida Institute of Technology, Melbourne, FL, USA
e-mail: fsaqib@fit.edu

J. Plusquellic
University of New Mexico, Albuquerque, NM, USA

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_2

33

http://dx.doi.org/10.1007/978-3-319-49019-9_1

34 F. Saqib and J. Plusquellic

are designed to prevent illegal modifications and piracy for system-on-chip (SoC)
IP reuse-based design flows. This problem is challenging because IP can be distrib-
uted as soft (RTL level), firm (netlist level), or hard (GDSII level) and is usually
transparent at system design level, in manufacturing facility, and in the distribu-
tion chain, making it susceptible to security and privacy attacks. The objective of
hardware obfuscation is to make it difficult for an adversary to reverse-engineer the
functionality at any level of abstraction throughout the design process.

Threat Models:

IC piracy, cloning, counterfeiting, and sabotage have become major security con-
cerns under the current business model of IP reuse and offshore manufacturing. The
following provides a partial list of attack vectors open to an adversary:

(1) Reverse engineering: GDSII-to-netlist reverse engineering enables the adversary
to steal and reproduce the IP.

(2) Clones: An attacker in the system design flow can steal the IP or IC and make
exact clones or, with a few modifications, claim the ownership and make illegal
copies.

(3) Overbuilding: Building more copies of the IC than requested by the customer is
referred as overbuilding. Overbuilt ICs can be sold on the black market. Without
specialized metering techniques, preventing overbuilding is a challenge.

(4) Counterfeit chips: Counterfeit chips are intended to deceptively represent an
authentic component and can be created from recycled chips or from cloning [4].

(5) Trojan detection insertion: After reverse engineering the design, the adversary
can insert hardware Trojans in a set of counterfeit clones. Hardware Trojans
are hidden malicious circuits that can be designed to allow activation through
backdoors during the fielded operation of the chip.Activation can involve leaking
sensitive information or causing the chip and system to fail catastrophically.

This chapter is organized as follows: Sect. 2.2 introduces the VLSI verification
and test concepts and discusses the vulnerabilities, attacks, and countermeasures.
Section2.3 describes the obfuscation techniques that can be integrated into the
design flow to make the design more resilient to reverse engineering and summa-
rizes the evaluation metrics for these techniques. Section2.4 covers the review of
nonvolatilememory and emerging technologies and discusses the associated vulnera-
bilities of keymanagement on nonvolatile memories (NVMs). Section2.5 introduces
the hardware-based cryptographic primitives, physical unclonable functions (PUFs),
and true random number generator (TRNG) and their use in hardware obfuscation
techniques to improve the resilience against reverse engineering.

2.2 VLSI Verification and VLSI Test Concepts

Very large-scale integration (VLSI) verification is a presilicon procedure to verify the
design before fabrication. Random test vectors and formal verification techniques are
used to verify design behavior and coverage of generated test vectors. Satisfiability

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 35

(SAT) solvers are used in formal verification to find design issues presilicon. Several
SAT solver algorithms have been integrated into the electronic design automation
(EDA) tools.

In contrast, VLSI testing is applied post-silicon to ensure high quality and reliabil-
ity in the shipped IC products and to find design problems that affect yield early. The
increasing level of complexity and smaller geometries used in modern IC fabrication
introduces new failure mechanisms that act to reduce the yield and the quality of
shipped products. VLSI testing is critically important to screening defective prod-
ucts, with the ultimate goal of reaching zero defects. VLSI testing also provides
important feedback for accelerating product yield ramps and has a direct impact on
profitability.

2.2.1 Satisfiability (SAT) Problem

Satisfiability is defined as a condition of boolean expression evaluating to be true
for a set of logical values of the variables. Outputs of combinational logic can be
expressed as boolean expressions, constituting conjunctions (and) of disjunctive (or)
clauses and variables in the form of conjunctive normal form (CNF).

An example of function in the CNF form is as follows:

F = (a v b v c) ∧ (a′ v c v d) ∧ (b′ v d′) (2.1)

where a, b, c, and d are the variables that can be ‘1’ or ‘0’.

The decision problem for SAT, to find a satisfying assignment that makes the
function true, is a nondeterministic polynomial (NP) problem. For example, for
n variables, 2n boolean combinations of input variables are examined. Each SAT
formula has a polynomial time verifier that takes an input string, a zero, or one
assignment for all the variables and outputs a true or false evaluation for the provided
inputs.

The SAT problem has exponential complexity in the worst case, but given the
importance of the algorithm in CAD, researchers have developed many types of
efficient heuristically SAT solvers that provide near-optimal solutions. These SAT
solvers have many applications in the electronic design automation (EDA) in ver-
ification as well as in the synthesis. The SAT solver algorithms are categorized as
conflict-driven clause learning and stochastic local search algorithms. These algo-
rithms have been developed to automatically solve the instances/combinations with
large number of variables and clauses. Recent work in the development of efficient
SAT solvers includes GRASP [5], Satz [6], and Chaff [7]. These algorithms use SAT
solvers in formal or semiformal verification methods.

SAT solvers can also be used by malicious attackers to circumvent logic
encryption-based hardware obfuscation by applying SAT-based algorithms to derive
the keys [8]. The technique utilizes the approach of iteratively applying input pat-

36 F. Saqib and J. Plusquellic

terns on a set of selected inputs and identifying distinguishing inputs, for which
the functions become unsatisfiable. This approach of testing key combinations has
proven to weaken the security of hardware obfuscation, and research has focused
on countermeasures designed to instill worst-case (exponential) behavior in SAT
algorithms.

2.2.2 Equivalence of Circuits

Equivalence checking is one approach to functional verification. Equivalence check-
ing is performed at different stages of design flow to verify the functional equivalence
of combinational and sequential logic. Equivalence checking takes two descriptions
of the design that are structurally different and verifies whether their behavior is func-
tionally equivalent. The designs are compared using formal methods and simulation
techniques. Formal methods such as binary decision diagram (BDD) and SAT-based
are applied to the compare points in both the reference design and the implemented
design, and functional equivalence is verified using simulations. Traditional equiva-
lence checking utilizes the logic cones by analyzing the compare points. Logic cones
are generic attributes of digital circuits consisting of reconvergent segments that fan-
in to a common output. The input and outputs of cones are connected to the primary
inputs, registers, or primary outputs that are also referred as compare points.

The implemented design is verified to prove or disprove the functional equivalence
once all the compare points are verified. Several commercial tools such as Cadence
Conformal equivalence checker and Synopsys Formality are equivalence checking
tools. These tools use the netlist generated fromGenus (Cadence) orDesignCompiler
(Synopsys) synthesis generated netlist to compare with the RTL design description
using mathematical models.

Additional research is needed that investigates the equivalence checking in the
design flows that implement obfuscation techniques. Equivalence checking of the
reference design with the obfuscated netlists shown in Fig. 2.1 is further discussed
in another chapter.

Fig. 2.1 Logic equivalence of reference and obfuscated design

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 37

2.2.3 Types of Testing: Functional Testing and Structural
Testing

2.2.3.1 Functional Testing

Functional test verifies that the chip performs the correct operations, i.e., can the chip
run the Windows operating system or carry out a matrix inverse software operation.
ATPGcan alternatively and/or additionally be used to generate functional test vectors.
For example, vectors can be generated to test the ‘critical paths,’ which are the longest
paths in the chip, and test the chip under worst-case power conditions. Therefore,
the roles of functional testing also include timing and power verification.

2.2.3.2 Structural Testing

Structural testing refers to techniques that are based on fault models as discussed
above. The goal is to check the integrity of the structural characteristics of the chip,
i.e., its individual wires and logic gate functions. SSF tests verify that circuit nodes
are not shorted to VDD or VSS, while transition and path delay tests verify that
the logic gates and selected paths are able to propagate transitions to capture points
(flip-flops and POs) using the functional (‘at-speed’) clock frequency. As indicated,
ATPG is used to derive the test vectors and automatic test equipment (ATE) is used
to apply them. Note that both functional testing and structural testing are constrained
by the economics of testing, i.e., a great deal of effort is made to determine the
smallest set of test vectors that meets the coverage requirements. This is true because
manufacturing tests are applied to every chip, and therefore, to be economical, the
test time per chip must be as small as possible.

2.2.4 Fault Modeling

Physical defects can occur in the IC during the manufacturing process, such as
interconnect defects or packaging defects, gate–oxide shorts, metal trace bridges,
open vias, and shorts to power or ground. Fault modeling is a mechanism to abstract
and simplify all the possible ways defects can cause amalfunction in a chip. Themost
common fault models are single stuck-at fault (SSF), and transition and path delay
fault models. The SSFmodels have also been proposed as a mechanism to strengthen
hardware obfuscation techniques, as discussed below.TheSSFmodel represents each
defect as a single gate-level pin or net shorted to VDD or VSS. The terms ‘stuck-at-1
(SA1)’ and ‘stuck-at-0 (SA0)’ are used to represent these conditions. The SSFmodel
assumes that only one fault (or no fault) exists in each chip. Figure2.2a shows 6 gate
stuck-at faults for a two-input NAND gate, and Fig. 2.2b shows one instance of SA0
fault in combinational logic.

38 F. Saqib and J. Plusquellic

Fig. 2.2 a NAND gate inputs and output stuck-at model. b Combinational stuck-at fault

A combinational SSF is detected by determining the primary inputs (PIs) input
assignments that introduce the appropriate state on the target gate inputs while simul-
taneously ensuring that the target gate output is observable on one or more primary
outputs (POs). A stuck-at fault test determines whether the target node is SA0 or
SA1 but also implicitly tests all gate inputs along the path for fault conditions.

The SSF model verifies the structural integrity and truth table description of com-
binational logic but does not verify whether the chip meets its timing specification.
Separate fault models and sets of test vector sequences are required to verify tim-
ing. The transition and delay fault models target timing-related defects that cause
logic transitions to take longer than expected to propagate through gates and along
paths in the chip, i.e., conditions that cause the chip to violate timing constraints.
Figure2.3 shows the examples of delay faults. Defects that affect the drive strength of
the gate, transistor doping levels, metal capacitive loading, open vias, and/or resistive
gate–oxide shorts can introduce transition and delay faults in the chip.

The delay fault can be represented as a single gate fault, interconnect fault, or
path delay fault. A single gate delay fault models the defects that affect gate strength,
transistor doping, etc., i.e., anything that causes the timing of the input value at a
pin to be slow-to-rise or slow-to-fall. Interconnect delay faults model defects that
introduce variations in wire width or cause signal degradation because of resistive
shorts to other nodes. Path delay faults model distributed defects, i.e., defects that
effect the delay of the entire path. Delay tests are timed two-vector sequences (unlike
SSF tests) that are applied at a constant rate using the clock. Such tests are critical
for ensuring quality in modern nanometer-sized technologies.

2.2.5 Fault Coverage

Testing methods are evaluated in terms of fault coverage, where it is represented as
follows:

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 39

Fig. 2.3 Delay fault model

Fault coverage = Total detected faults

Total fault population
(2.2)

Fault coverage refers to fraction of faults under a given faultmodel that are covered
by the test patterns. Fault coverage is typically computed and reported by automatic
test pattern generation (ATPG) tools as these tools derive test patterns to test the
faults. Ideally, the coverage should be 100%. Unfortunately, deriving test patterns is
an NP-complete problem, and therefore, ATPG algorithms employ heuristics which,
inmany cases, are not able to find tests for all of the faults. Despite this limitation, test
pattern generation using theSSF faultmodel is able to achieve high levels of coverage,
typically 95–99%. It should be noted that fault coverage can be reported differently
by different ATPG tools. For example, some tools eliminate the untestable faults
from the fault population before applying the equation given above, while others
do not. Fault coverage can also be used to identify difficult-to-test nodes and can
therefore serve as a basis to guide design-for-testability (DFT) strategies.

2.2.6 Automatic Test Pattern Generation (ATPG)

As indicated above, ATPG is CAD software tool that automatically derives a set
of test patterns for a specified list of faults using heuristic algorithms. The fault

40 F. Saqib and J. Plusquellic

model defines the nodes and/or paths in the chip that are the targets of ATPG. ATPG
algorithms automatically derive a fault list from the netlist and fault model given as
inputs. With the fault list available, a long, incremental process is started in which
tests are derived that detect the faults. The faults detected by a test pattern are checked
off in the fault list, and fault simulation is typically run to determine other faults that
are ‘accidentally’ detected by the test pattern. Commercial vendors provide a variety
of different runtime options and support for a fixed set of fault models, including SSF
and transition and path delay fault models. ATPG and fault models can be leveraged
in hardware obfuscation algorithms to produce strong keys, as discussed in Sect. 2.3.
Figure2.4 shows a typical ATPG flow.

Fig. 2.4 ATPG flow

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 41

2.2.7 Testing Metrics: Controllability and Observability

As indicated above, test pattern generation is an NP-complete problem. As is true of
many NP-complete problems, the task of generating a test pattern is doable in poly-
nomial time for most of the faults in the fault list. Unfortunately, there are typically
a small set of faults that elicit worst-case (exponential) time behavior in the ATPG
algorithm. In response to this issue, the manufacturing test community developed a
new set of algorithms that compute metrics for each of the faults in advance of ATPG
that reflect the likely level of difficulty in generating test patterns for the faults. The
metrics are probabilistic measures called controllability and observability. It should
be noted that these algorithms also address an NP-complete problem and, like ATPG
algorithms, employ heuristics. Unlike ATPG which can fail to find a test pattern for
hard-to-test nodes, the heuristics used in algorithms that compute controllability and
observability may produce inaccurate information for cases in which the task falls
into a worst-case scenario.

Algorithms that compute controllability and observability (first coined byRutman
in 1972) produce numerical estimates regarding the difficulty of setting an internal
node to a specific logic value and making an internal node observable on an output
of the circuit. Several approaches to computing these testability measures have been
proposed including SCOAP [9, 10], CAMELOT [11], TMEAS [12], COP [13],
and PREDICT [14]. Testability analysis involves circuit topological analysis. For
example, SCOAP traces through the design description and assigns controllability
and observability weights to the nodes designated using the following six labels:

1. Combinational 0-controllability CC0(sig),
2. Combinational 1-controllability CC1(sig),
3. Combinational observability CO(sig),
4. Sequential 0-controllability SC0(sig),
5. Sequential 1-controllability SC1(sig), and
6. Sequential observability SO(sig).

The primary inputs (PI-sig) are all set to 1 for both combinational and sequential
‘0’ and ‘1’ controllabilities, i.e., CC0(PI-sig) = 1, CC1(PI-sig) = 1, SC0(PI-sig) =
1, and SC1(PI-sig) = 1. Combinational 0 and 1 controllabilities of internal nodes
are calculated as the minimum number of combinational node assignments needed
to justify a ‘0’ or ‘1’ on the output of a gate driving the node. Sequential 0 and 1
controllabilities on the other hand estimate the minimum number of sequential nodes
that must be specified to set the internal node to ‘0’ or ‘1’. Starting from the primary
inputs to primary outputs, node weights are computed such that the circuit depth of
the node is factored into the combinational controllability equations. The following
rules are used to compute the output combinational controllability

42 F. Saqib and J. Plusquellic

Fig. 2.5 SCOAP controllability calculation

Outputcontrollabili t y =

⎧
⎪⎪⎨

⎪⎪⎩

min(input controllability) + 1 , if one input sets gate output
sum(input controllability) + 1 , if all inputs sets gate output
min (controllabilities of input sets), if output is determined

by multiple input sets, e.g., XOR
(2.3)

Figure2.5 describes the output controllability calculation for a set of standard
cells. In contrast, for observability, all the primary outputs (PO-sig) are set to 0.
A PO to PI traversal adds 1 to internal nodes as their depth, measured to a PO, is
increased. For example, the observability of a gate input is computed using the gate’s
output observability and the controllabilities on its inputs as follows:

Input observability = output observability + sum (controllabilities of all other input pins to noncontrollable value) +1
(2.4)

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 43

Fig. 2.6 SCOAP observability calculation

Figure2.6 gives the equations for a common set of logic gates, including NOT,
AND, OR, and XOR. The SC0 and SC1 calculations carried out for the sequential
gates, e.g., the D-FF, take into account how many times the FF must be clocked to
reach a particular output state of ‘0’ or ‘1’.

The heuristics used in computing testability metrics provide the algorithms with
linear runtime complexity. The analysis aids in the design process and can be used to
provide guidance to ATPG algorithms as to which nodes are difficult to test. Designs
for testability (DFT) techniques can be used in the design flow to add additional nodes
as a means of improving the overall controllability and observability of circuit nodes.
DFT methods are categorized as ad hoc methods and structured methods. In ad hoc
methods, test structures are inserted into designs to target-specific problem areas on a
case-by-case basis. Structured DFTmethods, on the other hand, include standardized
test structures such as scan and built-in self-test (BIST). DFT is typically carried out
as an integral component of the design flow to ensure testing requirements can be
met. For example, DFT can improve fault coverage and reduce the test generation
time.

44 F. Saqib and J. Plusquellic

2.2.8 Testing and Security

The goal of manufacturing test is to detect defects that occur during fabrication
or packaging before chips are shipped to customers or enter the supply chain. For
security and trust, the goal is to provide a high assurance, trusted product. Unfor-
tunately, detecting security and trust problem is much more difficult than providing
high-quality, defect-free chips. This is true because the random nature of manufac-
turing defects makes it possible to find nearly all of them with the test vectors that
provide high levels of fault coverage. The adversary for security and trust, on the
other hand, will apply sophisticated techniques to break security systems and add
malicious components (hardware Trojans) that are nearly impossible to activate and
discover using current manufacturing test techniques.

Secondly, traditional approaches that are based on ‘security-by-obscurity,’ where
internal design components are manipulated to impair reverse engineering attacks,
are in fact partially defeated by DFT structures that assist with manufacturing test.
Scan and other ad hoc DFT approaches that increase controllability and observability
make it easier for adversaries to obtain internal design details in reverse engineering
attacks. In subsequent sections, we discuss the security vulnerabilities introduced by
DFT and the proposed countermeasures to allow test engineers to leverage them for
finding defects, but simultaneously prevent adversaries from using them for reverse
engineering attacks and as a ‘backdoor’ to break securitymechanisms.DFT strategies
that enable attack vectors include the following:

(1) Scan,
(2) Boundary scan, and
(3) Built-in self-test (BIST)

2.2.8.1 Scan-Based

Scan Cells

Most DFT strategies, including scan insertion, are implemented during synthesis.
Scan insertion replaces the flip-flops (FFs) in the design with a special scan-based
FFs. Scan FFs add a special ‘test mode’ of operation to the FF that allows all or a
portion of the FFs to be linked together into a scan chain. The scan input of the scan
chain is connected to a primary input, and the scan-chain output is connected to a
primary output. This enables the test engineer to set and observe the internal state
of the FFs directly and therefore significantly simplifies the task of testing internal
combinational blocks for defects.

Figure2.7 shows the modifications that are made to conventional DFF to convert
them into scan FFs. Two styles of scan insertion are shown, called MUXD-SFF and
LSSD-SFF. The MUXD-SFF cell now includes a multiplexed input and a control
signal that allows functional mode (with normal D input selected) and scan mode

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 45

Fig. 2.7 Scan flip-flop design. a MUXD-SFF. b LSSD-SFF

(with scan input selected). During manufacturing test, the test mode signal called
scan enable is asserted to enable the scan operation. The operation of scan-based
testing (Fig. 2.8) is a three-step process:

(a) Configuration of the scan cells with a test vector,
(b) Application of the system clock to capture the results, and
(c) Readout of the scan data for analysis.

Built-in self-test (BIST) also adds DFT components to the chip as a mechanism
to enable a self-testing mode of operation. BIST can significantly reduce the test
costs by making it possible for the chip to self-detect problems, which reduces the
dependency and time required on expensive automatic test equipment (ATE).

Scan-Based Attacks on Obfuscation

Scan-based testing is a significant and important tool for reducing cost and improv-
ing coverage of manufacturing test, but it can also be used to support noninvasive
attacks designed to steal important information such as keys or to bypass security
mechanisms and aid adversaries in reverse engineering attacks. Scan chains are easily
exploitable by an adversary who has access to the chip and can use it as a ‘side chan-
nel’ for malicious activities such as cryptanalysis [15, 16]. Scan-based attacks are
categorized broadly into two categories: scan-based observability attacks and scan-
based controllability/observability attacks. A scan chain provides the adversary with

46 F. Saqib and J. Plusquellic

Fig. 2.8 Scan-based testing

the ability to take snapshots of the chip in different states to help reverse-engineer the
design. Alternatively, the adversary can set registers to specific values while operat-
ing the chip in test mode and hence can access internal secrets, such as key registers,
and change key operational modes as a means of bypassing any inserted security
mechanisms.

Countermeasures for Scan-Based Attacks

Several techniques are proposed to secure the scan chain, such as disabling scan
chain after manufacturing test and scrambling scan chain to make it harder for the
adversary to carry out reverse engineering attacks. The scan infrastructure can be
secured by blowing fuses to disable scan chain after manufacturing test [17]. In this
approach, the protected registers can be made uncontrollable and unobservable by
eliminating physical access to them. The disadvantage of this approach includes the
fuse-blowing post-processing step and the vulnerability of fuses to focused ion beam
(FIB) attacks [18]. FIB tools have been developed to enable ‘circuit edit,’ i.e., the
adding and removal of metal at specific regions in the chip. The adversary can use
FIB to repair the blow fuses and re-enable access to the secret keys and design details.

Scan-chain scrambling techniques obfuscate the register-to-scan-chain mapping
to make it harder to interpret scan data [19]. The technique requires a key to establish
the correct assignment of register-to-scan-chain mapping. Incorrect keys randomly
map the registers to scan-chain elements, effectively scrambling the data. This tech-
nique protects embedded secret information as well as details of the internal design,
making it difficult to reverse-engineer the chip.

An alternative is to implement a key separation method that disables access to the
secret key register in test mode [16]. The proposed method introduces a mirror key
register (MKR) which is muxed-in when scan mode is enabled and which prevents

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 47

Fig. 2.9 Algorithmic state machine and data path for mirror key

access to the cryptographic key register. This approach enables the cryptographic
unit to be tested for manufacturing defects but prevents an adversary from using scan
to steal the secret key during functional mode. The control signal to the MKR is
the scan-enable signal, so the switch to the MKR is performed automatically when
scan is enabled. A block diagram of the proposed method is shown in Fig. 2.9 using
the algorithmic state machine and data path. This technique protects the secret key,
but still allows the probing of internal design details and therefore does not prevent
reverse engineering attacks.

A low-cost secure scan (LCSS) technique is proposed to overcome this deficiency
by introducing dummy flip-flops in the scan chain [20]. The proposed architecture is

48 F. Saqib and J. Plusquellic

Fig. 2.10 Low-cost secure scan (LCSS)

shown in Fig. 2.10. LCSS requires only small changes to be made in the design flow
to accommodate the insertion of additional scan cells and can be used to protect secret
embedded keys and the chip’s intellectual property. All the dummy cells are checked
with key checking logic (KCL) to determine whether the dummy cells have been
programmed with the correct code. Incorrect codes disable access to the scan-chain
data and instead enable a q-bit LFSR which generates random data on the scan-chain
output.

2.2.8.2 Boundary Scan

Boundary scan is a DFT mechanism for printed circuit board (PCB)-level testing,
that is similar to the scan DFT technique used inside the chip. Boundary scan creates
a shift register out of the I/O pads of chip and allows the chip solder connections
and interconnect on the PCB to be tested for manufacturing defects. JTAG is an
IEEE standard 1149.1 developed by a working group called the Joint Test Access
Group, alongwith other scan architectures including IEEEStd. 1500 and IEEEP1687
(IJTAG) for reconfigurable scan networks.

JTAG

JTAG provides a single test interface across heterogeneous components/devices on
a printed circuit board (PCB) and hence facilitates testing. Figure2.11 shows the
interface signals of the test access port (TAP).

The test signals for the JTAG interface are defined as follows:

TCK: Test clock—all the boundary scan cells are shifted with the event on TCK.
TMS: Test mode select determines the next state. There are 16 states in JTAG.
TDI: Test data in—test vectors are provided through this signal. Additional JTAG

instructions are also provided by TDI.
TDO: Test data out—scan out the responses.

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 49

Fig. 2.11 JTAG

JTAG-Based Attacks on Obfuscation

JTAG makes the chips and entire PCB vulnerable to attacks because it does not
implement any type of device authentication in its daisy chain topology. Several
attacks have been reported that exploit the JTAG interface as a means of stealing
secret keys, of carrying out piracy of intellectual property, and to circumvent standard
policies. The adversary can also replace genuine chipswith counterfeit cloneswithout
fear of being detected. Therefore, JTAG has the same type of vulnerabilities as scan-
chain design and additionally is vulnerable to the insertion of malicious devices.
One such attack model is discussed in [21] explaining that the adversary can hijack
the shared resources, such as bus, and launch a denial-of-service attack or spoof
information.

Countermeasures Against JTAG Attacks

One countermeasure proposed in [22] is to implement JTAG interface using fuses and
electronically destroy it after the completion of manufacturing test, thus eliminating
security risks. A better solution is to add a security mechanism to JTAG that is
designed to limit the access to authorized users. An authentication mechanism can
also be added to allow a controller or centralized trusted server to authorize chips
to perform certain tests [23]. An alternative is to allow the controller chip to abort
test traffic by introducing security policies [24]. Compact cryptographic modules
can be further included to encrypt test data and carry out key-based authentication of
chip under test [21]. Keys can be programmed on chip in tamper-evident nonvolatile
memory or they can be generated on the fly using physical unclonable functions [25].

2.2.8.3 Built-In Self-Test (BIST)

Built-in self-test is a testing technique that can generate and apply random test vectors
on chip and then validate that the results are fault-free, thus eliminating ATE at the
cost of additional area overhead on the chip. BIST is commonly used to test embedded
memories that do not provide external pins for direct access. An example showing

50 F. Saqib and J. Plusquellic

Fig. 2.12 Built-in self-test process

how BIST can be implemented is shown in Fig. 2.12. The controller applies random
test vectors to the macro under test (MUT) and verifies the responses on chip. The
interface control signals only convey whether the circuit is passed or failed and does
not transfer the responses. BIST can be implemented with chips and boards that also
include JTAG. Since BIST does not reveal the data or state of the system, it naturally
provides obfuscation.

2.3 Hardware-Based Obfuscation Design Primitives

To better understand hardware primitives that are currently used in several obfusca-
tion techniques, we first discuss a classification scheme for obfuscation techniques.

2.3.1 Types of Hardware Obfuscation

Hardware-based obfuscation is broadly categorized as passive hardware obfuscation,
active hardware obfuscation, and reconfigurable logic-based obfuscation. Recently
proposed method includes active key-based hardware obfuscation schemes that can
be further classified as combinational logic obfuscation and finite state machine
(FSM)-based obfuscation.

2.3.1.1 Passive Hardware Obfuscation

In keyless or passive hardware obfuscation techniques, the design description is
obfuscated and/or encrypted using cryptographic primitives. A register transfer-level
(RTL) design obfuscation technique is discussed in [26], which renames signals and
reorganizes the code to obscure its meaning to adversaries. Research reported in
[27–29] encrypts the hardware description language (HDL) before distributing to
untrusted entities in the supply chain. The IP designer provides key to legal customers
to decrypt the design for integration or for fabrication.

In passive or keyless hardware obfuscation, the functionality is not modified and
only the design file or netlist is obfuscated. Passive hardware obfuscation techniques

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 51

do not stop the adversary from using the design as a black box or from distributing
or overbuilding the design. Also, passive techniques cannot prevent the customers
from distributing the decrypted copy.

2.3.1.2 Active Hardware Obfuscation

Active hardware obfuscation or key-based techniques, on the other hand, modify
the functionality as a mechanism to harden the design against reverse engineering.
Logic-based obfuscation involves embedding the key in the functional unit itself and
requires the user to provide the correct keys alongwith the functional inputs to get the
correct results. Key integration is accomplished by the insertion of key-based logic
in the combinational logic paths and/or finite state machine (FSM) of the design.
For example, most proposed techniques add states to the FSM and XOR and XNOR
gates to the data path.

Combinational Logic Obfuscation

Logic obfuscation modifies the design by incorporating additional gates such as
XOR and XNOR to the data path, which have one or more of their inputs driven
by registers that store the key. Timing analysis is typically performed in advance to
select insertion points that do not impact the timing characteristics of the design.
The insertion points can be selected randomly [30, 31] among the noncritical paths
available, or more sophisticated techniques can be employed, such as those based
on graph theory [32] or fault model analysis [33]. These techniques are covered in
detail in Chaps. 5 and 6.

FSM-Based Logic Obfuscation

FSM-based obfuscation, also referred as IC metering, modifies the circuit design
and locks each chip using a unique state transition path that can only be unlocked
when the chip receives the correct key from a key management authority or design
house. The key ensures the chip follows an unlocking sequence of state transitions
when powered up to run in functional mode [34]. These techniques can be designed
to require a unique key for each chip, that is either stored in a NVM such as an
EEPROM or fuses or be generated on the fly using a physical unclonable function
(PUF). The key is paired with an augmented FSM in such a way that only the design
house can unlock the chip. Sections2.4 and 2.5 discuss the key management using
NVMs, PUFs, and TRNGs.

Reconfigurable Logic-Based Obfuscation

Reconfigurable logic-based obfuscation technique suggests to make a small com-
ponent of the design reconfigurable in the chip. This approach hides the functional
details of the obfuscation method during the manufacturing process which hinders
the untrusted fabrication facility from reverse engineering the design. The technique
proposed in [35] utilizes a fingerprinting technique by altering the implementation

http://dx.doi.org/10.1007/978-3-319-49019-9_5
http://dx.doi.org/10.1007/978-3-319-49019-9_6

52 F. Saqib and J. Plusquellic

slightly as amechanism to detect clones or overbuilding. The use of embedded recon-
figurable logic against code injection attacks on an open source SPARC processor is
discussed in [36, 37].

2.3.2 Metrics of Hardware Obfuscation

Active hardware-based obfuscation hardens the design against reverse engineering,
but such a scheme is vulnerable to side-channel attacks on keys and simulation-based
attacks designed to decode key–gate values. It is assumed that if the malicious user
is given enough time and resources, the obfuscation will fail. The authors of [38]
propose the following objectives and metrics for hardware obfuscation:

(I) The size of the input space must be large enough to make brute force attacks on
FSM and combinational logic obfuscation infeasible.

(II) The obfuscation method should attempt to maximize the impact of wrong key
guesses, such as the hamming distance between the correct outputs and obfus-
cated outputs is 50%.

2.4 Volatile and Nonvolatile Memories

Active hardware obfuscation techniques require a key storage mechanism to produce
the correct results, and for the case of programmable logic, netlist configuration
informationmust be available at power-on to reconfigure the field programmable gate
components. A variety of technologies exist to permanently store the keys including
volatile memory and nonvolatile memory (NVM).

2.4.1 Volatile Memory

Key-related information stored in a volatilememory, such as dynamic random-access
memory (DRAM) or static RAM(SRAM), is lost over power cycles of the chip unless
it is powered from a battery, which represents a cost overhead for the system and
reduces its reliability and availability. Other disadvantages of using volatile memory
for key storage are that it is vulnerable to ‘cold boot attacks’ and requires the key
communication process to be secure.

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 53

2.4.2 Nonvolatile Memory

NVMretains data across power cycles and can be categorized according to thewriting
mechanism that they employ. ROM, EPROM, EEPROM, and FLASH are common
NVMs that are read-only, read mostly, and rewritable, respectively.

2.4.2.1 Read-only Memory (ROM)

ROM is a read-only memory that is programmed during the manufacturing process
and cannot be changed in the field. ROM is a high-speed, high-density, and low-cost
memory, thus making it an attractive medium for low-cost and embedded devices.
Keys are permanently stored, are immutable, and are usually the same for all theman-
ufactured devices. Furthermore, ROMs are vulnerable to attackswhereby adversaries
can use specialized tools to read out their contents.

2.4.2.2 Reprogrammable Memory

EPROM and EEPROM are reprogrammable memories that can be programmed after
manufacturing. These memories utilize floating gate-type technology which allows
the data storage transistor to be reprogrammed by changing the trapped charge on
the gate input. The floating gate retains the trapped charge across power cycles, and
therefore, it does not require a battery. However, specialized hardware is required to
add and remove the trapped charge. A benefit of floating gate technologies is that
keys can be programmed after manufacturing, thereby preventing the manufacturer
from engaging in reverse engineering attacks.

2.4.2.3 One-Time Programmable Memory

Antifuse, e-fuse, and laser fuses are one-time programmable memories and therefore
represent a class of fused-based technologies. Fused-based storage ismore vulnerable
to invasive attacks which probe the layout of the chip as a means of stealing the secret
information and bypassing the security mechanisms.

2.4.2.4 Emerging Technologies: RRAM or ReRAM, PCM, and
STT-MRAM

Resistive random-access memory (RRAM) or ReRAM is a NVM that stores ‘0’ and
‘1’ by changing the resistance of memristor devices. PCM is similar to ReRAM,
which stores information using resistance levels. STT-RAM stores information on
ferromagnetic layers using magnetic polarization and has the access speeds close to

54 F. Saqib and J. Plusquellic

the caches. These memories are nonvolatile and therefore do not require an energy
source to maintain their contents.

2.4.3 Limitations of Current Key Storage Mechanisms

The advantage of storing information in RAM is that the secret information is lost
after a power cycle. On the other hand, the battery-backedRAM introduces reliability
issues because data is lost if the battery fails. Conventional key management systems
utilize NVMs to store master keys or session keys, but as pointed out earlier, NVMs
are vulnerable to invasive and noninvasive attacks.

Invasive attacks such asmicroprobing and laser-cutting attacks allow the adversary
to learn the secrets by decapping the chip and reading the memory cells. To mitigate
physical attacks, variants of tamper-resistant NVM include sensors to detect physical
access to the device. The sensors require a battery to remain active while power is
turned off. Therefore, NVM is not attractive for use in embedded and resource-
constraint devices.

Noninvasive attacks that target key extraction from NVM include glitch attacks,
fault injection (timing, voltage, temperature, radiation), and power analysis. Mitiga-
tion techniques include randomized design flows or design techniques that equalize
power consumption. The drawback of these approaches is that it does not follow tradi-
tional design flows and increase area overhead to the design. Furthermore, emerging
NVM technologies are promising but have not been validated as to whether they
provide enhanced security properties over conventional NVMs.

2.5 Design Obfuscation: PUF and TRNG

2.5.1 Physical Unclonable Functions (PUFs)

Physical unclonable function (PUF) is an emerging physical layer cryptographic
primitive used in hardware security and privacy protocols. They are embedded struc-
tures that utilize inherent manufacturing process variations to extract unique but
reproducible secrets. The concept was first introduced as physical one-way func-
tions [39] and later as physical unclonable functions [40]. PUFsmeasure variations in
propagation delays, wire resistances, and other analog circuit parameters to produce
digital bitstrings that are random and unique across instances of the chip popula-
tion. PUFs are unclonable because the random information source on which they are
based (the source of entropy) cannot be replicated, i.e., manufacturing process con-
trol cannot reduce the physical and electrical variations that occur across and within
chips to zero tolerance levels. PUF bitstrings are generated on the fly as needed and
therefore eliminate the need for NVM, e.g., EEPROM and e-fuses. This new key

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 55

generation mechanism eliminates the probing attack vulnerabilities discussed earlier
in reference to NVMs because PUFs do not store digital versions of the bitstrings and
the analog nature of the entropy source makes it tamper-evident whereby physical
probing changes and/or destroys the ability to regenerate the same bitstring.

2.5.1.1 PUF Operation

(a) Apply Challenges
PUFs are based on a challenge–response pair (CRP) mechanism. The challenge

for a PUF is defined as a digital input, usually in the form of a bitstring of ‘0’s
and ‘1’s. The output of a PUF is also digital, but for most PUFs, this requires an
on-chip mechanism to convert the small analog variations leveraged by the PUF to
be digitized. The digitization process occurs automatically for some PUFs, such as
the SRAM PUF, where the bitstring is produced immediately after power-up. The
challenge to the PUF typically selects a unique set of elements from the entropy
source or, as is more common, selects a set of elements that are combined in a
unique fashion. The randomness of the entropy source ensures that the CRPs are
unique across chips, i.e., the response bitstring produced by the PUF is different for
each chip even when using the same challenge. In the best case, 50% of the bits in
the response bitstring are uniquely defined by each PUF instance.

(b) Enrollment
PUF-based security applications require an enrollment process. Enrollment is

carried out in a secure environment where CRPs are measured and stored by a trusted
authority in a secure database. Enrollment can also be done while the chip is in the
field as long as the PUF’s existing secrets can be used to securely transmit new CRPs
to the trusted authority.

(c) Regeneration
Regeneration is a process that is carried out by a fielded chip usually in response

to a request issued by an application that requires a key for encryption or a unique
bitstring for authentication. When exact replication of the bitstring is required, e.g.,
key generation for encryption, PUFs require some type of helper data as a means
of fixing or avoiding bit flip errors that occur when the CRPs are reapplied. Helper
data is typically stored by the trusted authority during the enrollment process and
is transmitted to the fielded device in-the-clear when needed. Therefore, helper data
does not leak any, or leaks very little information, about the secret bitstring. In other
applications such as authentication, exact reproduction of the bitstring may not be
required, and instead, a close match is sufficient to confirm the identity of the chip.

56 F. Saqib and J. Plusquellic

2.5.2 PUF Evaluation Measures and Parameters:

2.5.2.1 Effect of Environmental Variations

Reproducing the bitstring exactlywithout helper data is challenging for PUFsbecause
of changes that occur to the entropy source when the environment changes, i.e.,
the outside temperature is high or a low battery causes the supply voltage to drop
on the chip. Changes in the environment introduce bit flip errors in the response
bitstring, making it difficult to achieve high reliability. Error-tolerant mechanisms
can be designed into the PUF architecture to help mitigate these types of adverse
effects, e.g., [41]. However, error tolerance is not sufficient in many applications, and
helper data must also be used as described above to meet the reliability requirements.

2.5.2.2 Evaluation Metrics of PUF

A survey on the PUF evaluation metrics is reported in [42] and includes techniques
designed to measure and quantify the quality of PUF response bitstrings. The most
important of these are summarized as follows:

1. Uniqueness

Uniqueness is a quality metric that ensures the responses generated by any two
chips for a given challenge should be substantially different. Interchip hamming
distance (HD) is used to quantize the difference, and in the ideal case, it is 50%.

uniqueness = 2

k(k − 1)

n−1∑

i=1

.

n∑

j=i+1

(
HD(Ri , R j)

n

)

(2.5)

where ‘R’ is the response, ‘k’ is the number of chips, and ‘n’ is the length of the
response bitstring. Interchip (HD) quantifies the number of differences that occur
across a set of response bitstrings. Ideally, each bit position of the response bitstring
has the equal probability of being a ‘0’ or ‘1’. If some bits are biased to one value
or the other, then these bits are ‘more predictable’ from an adversarial point of view.
Bit biasing is measured across each bit position in the response bitstrings from a set
of chip using hamming weight as given by Eq.2.3, where ‘i’ is the bit position and
‘m’ is the number of chips.

Bit aliasing[i] = 1

k

k∑

j=1

(
R j

)
(2.6)

2. Reproducibility

Response bitstring reliability or reproducibility is measured using intrachip HD.
The data used in the analysis is the response bitstring measured under different

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 57

environmental conditions from the same chip using the same challenge. The data
from other chips is typically factored in by computing the average intrachip HD from
the individual analyses. The ideal value is 0%, i.e., no chip has any bit flip errors under
any environmental conditions. As indicated above, this ideal result is not possible
using the ‘raw’ response bitstrings directly, and instead, helper data is required to
achieve error-free regeneration. PUFs that are able to achieve relatively low interchip
HDs without helper data can be used in some authentication applications that just
require most of the bits in enrollment and regeneration bitstrings to match.

Reproducibili t y = 1

m

m∑

i ′=1

(
HD (Ri , Ri ′)

n

)

(2.7)

Equation2.4 gives the formula for computing intrachip HD. It counts the number
of bits that are different in the bitstrings collected over ‘m’ different environmental
conditions, called temperature–voltage corner conditions.

2. Randomness

The PUF architecture, including the circuit structure used as the source of entropy,
and measurement technique can induce bias and reduce the randomness in the
sequence of bits generated by each chip. Bitstring randomness is measured using
statistical tests; for example, NIST has developed statistical testing software for
evaluating randomness in bitstrings generated by pseudorandom number generators
[43]. The test includes uniformity and frequency tests that count the number of ‘0’s
and ‘1’s in a bitstring. The frequency test requires the balance of ‘0’s and ‘1’s in any
given bitstring to fall within a tolerance; otherwise, the bitstring fails the test. The test
suite includes other tests that look for patterns in a set of bitstring subsequences that
occur more often than expected from bitstrings drawn from a truly random source.
The NIST software tool suite applies a set of up to 15 different tests to each of the
input bitstrings and reports the number of tests that each bitstring passes. Several
other randomness evaluation tools have also been developed including DIEHARD
[44] and AIS.31 [45].

2.5.3 Classification of PUFs

PUFs are classified into weak and strong PUFs, based primarily on two criteria:
the size of their CRP space and the level of resilience they have against model-
building attacks. A third related criteria is the size of the entropy source, i.e., how
many independent random varying components are used to generate the bitstrings. A
second PUF classification uses the terms ‘intrinsic’ and ‘nonintrinsic,’ which relates
to whether the PUF is self-contained on the chip (intrinsic) or requires external
instrumentation to support it. Yet a third classification uses the terms ‘nonelectronic’
and ‘electronic’ to refer to the underlying structure of the entropy source, e.g., silicon
versus a material that exhibits random properties.

58 F. Saqib and J. Plusquellic

2.5.3.1 Weak and Strong PUFs

Strong PUFs can produce a very large, unique set of bits per device and have a very
large CRP space to support this characteristic. The very large CRP space makes it
impractical for an adversary, who has possession of the PUF chip, to apply them all
as a means of building a database, i.e., a ‘digital’ clone of the PUF. Many consider a
second property, i.e., model-building resistance, to be equally important to the very
large CRP space. Model-building refers to an attack mechanism whereby the adver-
sary uses the machine learning algorithms to derive a system capable of predicting
the response of the PUF after being trained on only a small portion of the CRPs.
Resistance to model-building attacks is best realized using an entropy source with
a large set of randomly varying components, but many proposed PUF architectures,
e.g., the Arbiter PUF, only have a small set and instead use cryptographic primitives
such as secure hash functions and XOR networks to obscure the CRP interface. The
HELP PUF is an example of a PUF which is based on a large entropy source, i.e.,
the best-case scenario [25].

Weak PUFs on the other hand have fewer CRPs and, in some cases, only one
response pair which is the case for the SRAM PUF. Weak PUFs are usually limited
to key generation where model-building attacks do not apply because the secret
does not leave the chip. Weak PUFs can also serve applications that require only a
unique ID from the PUF. Weak PUFs have capabilities similar to those provided by
an NVM, but provide a tamper-evident property which enhances their security over
NVM. Examples of weak PUFs include physically obfuscated keys (POKs) [41],
SRAM PUF [46], and Butterfly PUF [47].

2.5.3.2 Intrinsic and Nonintrinsic PUFs

As indicated above, intrinsic PUFs are completely self-contained architectures on the
chip, capable of making measurements, and carry out bitstring generation, whereas
nonintrinsic PUFs require benchtop instrumentation, e.g., photonic-based sensors,
to implement the measurement components. Intrinsic PUFs are far more popular,
and the number of proposed architectures continues to grow. Manufacturing process
variations on the chip manifest in many forms on the chip including within-transistor
threshold voltages and metal resistance characteristics. For example, PUFs based on
variations in delay include the Arbiter [48, 49], Ring Oscillator [41], and HELP
[25] PUFs. Delay is popular because there are many well-defined on-chip delay
measurement techniques that are available.

2.5.3.3 Sources of Entropy

Examples of nonelectronic PUFs include coating PUFs, optical PUFs, and CDPlayer
PUFs. Nonelectronic PUFs, to date, have not been considered as support primitives
for implementing hardware obfuscation functions. Electronic intrinsic PUFs are the

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 59

most common class of PUFs proposed for this purpose and include those based
on variations in transistor threshold voltages [50, 51], propagation delay (as indi-
cated above, the Arbiter, Ring Oscillator [41], and HELP [25] PUF are examples),
and power-up patterns in memory, e.g., the SRAM PUF [46]. The list of electronic
intrinsic PUFs keeps growing and includes the ROM PUF [52], leakage current PUF
[53], the metal resistance PUF [54, 55], the transistor transconductance PUF [56],
and other path delay-based PUFs [57, 58].

2.5.4 PUFs: Candidates for Hardware Obfuscation

In this section, we discuss the following PUFs, both weak and strong, that are con-
sidered good candidates for hardware obfuscation applications:

(1) Memory-based intrinsic SRAM PUF.
(2) Delay-based intrinsic PUFs including the Arbiter, Ring Oscillator, and HELP

PUFs.

(1) SRAM PUF

The SRAM PUF is classified as a weak intrinsic PUF that uses the randomness
in the power-up bit patterns of SRAM as source of entropy [46]. The SRAM cell
is implemented as a pair of cross-coupled invertors whose geometries are identical
(Fig. 2.13). Manufacturing process variations cause mismatches in the transconduc-
tance parameters of the inverters resulting in the random power-up states that remain
constant for the majority of the cells. The power-up pattern varies from one chip
to the next, enabling the SRAM PUF to serve in chip identification roles and in
PUF-based hardware obfuscation protocols to map reconfigurable logic to a specific
function.

SRAMPUFbehavior is affected by the systematic variations, where the number of
‘1’s and ‘0’s can be biased, thus degrading its randomness statistical metric, making
it vulnerable tomodel-building attacks (SRAMPUFs cannot bemodel-built). SRAM

Fig. 2.13 Cross-oupled
NOT gate SRAM cell

60 F. Saqib and J. Plusquellic

Fig. 2.14 Arbiter PUF

PUFs typically have poor reproducibility, reported as high as 20% or more in some
cases.

(2) Arbiter PUF

The Arbiter PUF is a delay-based PUF defined using a sequence of multiplexers
and an arbiter, e.g., a cross-coupled NAND latch as a mechanism to provide an
unbiased evaluation mechanism as shown in Fig. 2.14 [48, 49]. The PUF leverages
the delay variation between two identical paths to generate a bit. Challenge bits select
the configuration of the switches that in turn determines the specific configuration of
the paths. The pairs ofmultiplexers serve as switch boxes, either routing the two paths
straight through the switches or flipping their connections. For a given challenge,
the Arbiter PUF measures the delay of two identical length paths. A rising signal is
given input to leftmost pair of multiplexers, as shown in Fig. 2.14. The input signal
races along the two delay lines, and the arbiter at the end assigns a ‘0’ or ‘1’ based
on which path is faster. The connection of the path endpoints to the D and Clk inputs
allows the arbiter gate to automatically compute the result of the race.

The arbiter PUF is vulnerable tomodel-building attacks because of its linear struc-
ture and small number of components. A precise timing model can be constructed
to learn the parameters from a relatively small set of CRPs. To reduce the effective-
ness of model-building attacks, the authors of [41, 59] propose a parallel Arbiter
architecture which includes an XOR obfuscation network on the outputs.

(3) Ring Oscillator PUF

A Ring Oscillator PUF (RO PUF) is a weak PUF composed of identical delay
loops and counters [41]. RO PUFsmeasure path delay variations as differences in the
‘ring’ frequency of the delay loops (Fig. 2.15). Challenges select a pair of identical
oscillators and compare the number of oscillations produced by each oscillator of
the pair. Frequency is measured by connecting the output of each RO to a separate

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 61

Fig. 2.15 Ring oscillator PUF

counter. The result of the comparison generates a single ‘0’ or ‘1’ bit in the bitstring.
Other pairings are used to construct the additional components of the bitstring.

RO PUFs are also subject to model-building attacks in common usage scenarios
in which the same RO is used in multiple different pairings. Machine learning algo-
rithms attempt to determine the relative frequencies of all ROs, which, once known,
make it possible to predict the response bitstring to any sequence of challenges used
to build the bitstring [60].

(4) HELP PUF

A hardware-embedded delay PUF (HELP PUF) proposed in [25, 57] is a strong
PUF. It leverages delay variations in existing design functional units and does not
require identical structures, unlike other existing delay-based PUFs. HELP also
implicitly provides tamper protection of the existing functional unit(s), i.e., any
change in the structural characteristics of the functional unitwill change themeasured
path delays.

Figure2.16 shows the architecture of HELP with the functional unit representing
the entropy source. The inputs and outputs of the functional unit are connected to a
set of launch row and capture row flip-flops (FFs), respectively. A series of launch–
capture clocking events are applied to the functional unit using two clocks, Clk1
and Clk2 as shown on the left side of Fig. 2.16. The phase shift between Clk1 and
Clk2 is adjusted dynamically across the sequence of launch–capture tests, where the
digitally selected value of the fine phase shift between the two clocks is referred as the
launch–capture interval (LCI). The smallest LCI interval that allows the propagating
edge along a path to be captured in the capture FF is used as the digitized timing
value for the path.

PUF response bits are computed from delay differences between nonidentical
path delays. A modulus technique is proposed as a means of removing the bias in
the path delays of the nonidentical paths used in the difference operation while fully
preserving the smaller within-die delay variations.

62 F. Saqib and J. Plusquellic

Fig. 2.16 HELP PUF

2.5.5 True Random Number Generator (TRNG) Use in
Hardware Obfuscation

True random number generators are hardware primitives that are used in many
hardware-based security techniques, including hardware obfuscation. A true random
number generator (TRNG) uses randomness and noise to generate secrets that are
not reproducible. The randomness or noise should have uniform distribution to avoid
bias. The TRNG is an important primitive for cryptographic applications, which is
used for generating nonces for authentication protocols, for generating one-time pads
and for providing a selection mechanism for primes, as a unique key per device, etc.
Hardware obfuscation and hardware metering using a TRNG are proposed in [31] to
define randomized chip IDs upon power-up that are then stored in tamper-resistant
NVM.

A TRNG can be implemented using on-chip variations [46, 48]. Examples of
suchTRNGare arbiter-basedTRNGs, ring oscillator-basedTRNGs, and technology-
independent TI-TRNGs [61]. TRNGs are evaluated with respect to randomness and
the uniformity of their distribution. Environmental variations such as supply voltage
or temperature variation can adversely affect the noise distribution and introduce
bias, making the output from the TRNG more predictable.

TRNGs are used to generate unique keys for input to key gates in combinational
logic and in obfuscated state machines. The obfuscated data path and control path
produce the correct output when the correct key is applied. TRNG-based key gener-
ation requires storage of the generated key in a battery-backed RAM or NVM.

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 63

The disadvantages of using TRNGs for producing keys are that the stored keys
in battery-backed memory or NVM can be stolen and cloned, allowing designs to
be reverse-engineered and security features completely eliminated from the design.
Additionally, the overhead of manufacturing of NVM requires additional masks and
manufacturing steps, thus increasing the costs of the chip. Thus, other alternatives
such as physical unclonable functions are better suited for the generation of repro-
ducible secret keys, as long as high reliability to bit flip errors can be ensured.

2.5.6 Applications of PUFs and TRNG in Hardware-Based
Obfuscation Techniques

PUFs and TRNGs can be incorporated into logic obfuscation for the chip authentica-
tion [31, 34] or for obfuscation of logic [62]. PUFs and TRNGs can use nonelectrical
properties such as heat, atmospheric noise, and fiber optics as a source of entropy;
however, focus has been on the silicon process variations that can be more easily
measured and digitized. PUF-based obfuscation and activation schemes can be used
to improve security by allowing each chip to be assigned its own unique challenge-
response pairs, thereby allowing each chip to exclusively modify and hide the design
and authenticate to allow correct functionality, respectively.

A finite state machine (FSM)-based metering technique described in [34] hides
the functionality with an augmented FSM structure known as black hole finite state
machine (BFSM). The PUF response directs the state transition from obfuscated
states to the valid state, and only valid transitions can bring the chip to a properly
functioning operational state. The PUF is used to generate a unique key for the finite
state-based activation and hides actual functionality from the adversary, thereby
preventing illegitimate overbuilt chips. This augmented FSM can be implemented
using reconfigurable logic, where each chip has a unique key based on the chip
identifier. A PUF-based BFSM technique is shown in Fig. 2.17.

Fig. 2.17 PUF-based BFSM technique

64 F. Saqib and J. Plusquellic

This technique was subsequently modified by [63] using a smaller number of
obfuscated states for remote activation of resource-constraint devices. Some valid
states are replicated, and the transition through the replicated states is only possible
with the correct key.

An FSM-based hardware obfuscation and metering technique using TRNG is
described in [31]. As explained earlier, a TRNG can be used to define randomized
and unique identification (ID) upon power-up that is burnt into the electrically pro-
grammable fuses, such as an electronic fuse unit (EFU).

A PUF is proposed in [62] to implement hardware obfuscation for logic and
interconnect obfuscation. The scheme is shown in Fig. 2.18, where each instance
of the obfuscated integrated circuit is different, thus making it resilient to reverse
engineering. The adversary not only is required to guess the gates but also needs to
characterize the PUF responses or use a brute forcemethod to explore all possibilities.
Interconnect obfuscation is achieved by using switching gates such as multiplexers
to create wire swapping. As shown in Fig. 2.19, only the correct key or PUF response
will establish correct connections.

Fig. 2.18 a PUF-based random logic obfuscation. b Integration in design flow

Fig. 2.19 Signal path obfuscation

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 65

By choosing PUF-based logic that affects multiple outputs, placement of obfus-
cated logic with uncontrollable flip-flops can further improve the security of these
types of obfuscation techniques. Additionally, the selection of wire pairs to imple-
ment swaps between highly correlated pairs can increase the difficulty in reverse
engineering. Therefore, hardware obfuscation schemes based on PUFs and TRNGs
can effectively mitigate piracy attacks.

Summary

This chapter covered preliminary concepts and techniques of VLSI verification and
testing. We describe a set of related vulnerabilities associated with VLSI verification
techniques and testing structures that can expose the design details and help reverse-
engineer the functionality to compromise the security through obscurity. Proposed
changes to existing techniques are discussed that are designed to provide counter-
measures against such attacks. The taxonomy of hardware obfuscation techniques is
also presented, as well as a set of hardware primitives and related concepts. Hard-
ware obfuscation techniques are motivated because of growing trend of offshoring
the fabrication process, where the foundry has the complete knowledge of the design
details in the form of GDSII. Obfuscation techniques modify the design and require
correct keys as input in order to make the designs functional. Section2.4 discusses
different key storage schemes, such as nonvolatile memory and their vulnerabilities
and overhead. Section2.5 covers hardware-based cryptographic functions, physical
unclonable functions (PUFs), and true random number generator (TRNG) as build-
ing blocks that further enhance the IC design obfuscation resilience against reverse
engineering and mitigate IC piracy attacks. Subsequent chapters further discuss their
applications tomitigate IC piracy, cloning, overbuilding, and use of counterfeit chips.

References

1. Zhuang X, Hsien-Hsin TZ, Lee S, Pande S (2004) Hardware assisted control flow obfuscation
for embedded processors. In: Proceedings of international conferences on compilers, architec-
ture, and synthesis for embedded system, pp 292–302

2. Rajendran J, Sinanoglu O, Karri R (2013) Is split manufacturing secure? In: Proceedings of
the IEEE design, automation and test in Europe conference and exhibition (DATE), Grenoble,
France, 18–22 March 2013, pp 1259–1264

3. Tehranipoor M, Wang C (eds) (2011) Introduction to hardware security and trust. Springer,
New York, p 427

4. GuinU,DiMaseD, TehranipoorM (2014) Counterfeit integrated circuits: detection, avoidance,
and the challenges ahead. J Electr Test Theory Appl (JETTA) 30:9–23

5. Marques-Silva JAP, Sakallah KA (1996) GRASPVA new search algorithm for satisfiability. In:
Proceedings of the ICCAD, pp 220–227

6. Li CM, Anbulagan (1997) Heuristics based on unit propagation for satisfiability problems. In:
Proceedings of IJCAI, pp 366–371

7. Malik S, ZhaoY,MadiganCF, Zhang L,MoskewiczMW(2001) Chaff: engineering an efficient
SAT solver. In Proceedings of the DAC, pp 530–535. ([62] Marques-Silva JAP, Sakallah KA
(1996) GRASPVA new search algorithm for satisfiability. In: Proceedings of the ICCAD, pp
220–227)

66 F. Saqib and J. Plusquellic

8. Subramanyan P, Ray S, Malik S (2015) Evaluating the security of logic encryption algorithms,
HOST

9. Goldstein LH (1979) Controllability/observability analysis of digital circuits. IEEE Trans Cir-
cuits and Syst (CAS) 26(9):685–693

10. Goldstein L, Thigpen E (1980) SCOAP sandia controlability/observability analysis program.
In: Proceedings of the 1980 design automation conference, pp 190–196

11. Bennetts R (1984) Design of testable logic circuits. Addison-Wesley, Reading
12. http://www.eng.auburn.edu/~agrawvd/COURSE/E7250_05/REPORTS_TERM/Kantipudi_

Tmeas.pdf
13. Brglez F, Pownall P, Hum R (1984, October) Applications of testability analysis: from ATPG

to critical delay path tracing. In Proceedings of the 1984 international test conference on the
three faces of test: design, characterization, production (ITC’84). IEEE Computer Society,
Washington, DC, USA, pp 705–712

14. Seth SC, Pan L, Agrawal VD (1985, June) PREDICT-probabilistic estimation of digital circuit
testability. In: Proceedings of the fault tolerant computing symposium, pp 220–225

15. Yang B, Wu K, Karri R (2004) Scan based side channel attack on dedicated hardware imple-
mentations of data encryption standard. In: Proceeding of the IEEE international test conference
2004 (ITC 2004), 26–28 October 2004, pp 339–344

16. Yang B, Wu K, Karri R (2005) Secure scan: a design-for-test architecture for crypto chips.
IEEE Trans Comput Aided Des Integr Circuits Syst 25(10):2287–2293

17. Ebrard E, Allard B, Candelier P, Waltz P (2009) Review of fuse and antifuse solutions for
advanced standard CMOS technologies. Elsevier Microelectr J 40(12):1755–1765

18. Young R, Carlson P (2004) (Dual-beam FIB/SEM): a tool for advanced failure analysis. In:
Evaluation engineering, online magazine September 2004. http://www.evaluationengineering.
com/

19. Hely D, Flottes ML, Bancel F, Rouzeyre B, Berard N, Renovell M (2004) Scan design and
secure chip (secure IC testing). In: Proceedings of the 10th IEEE international on-line testing
symposium, pp 219–224

20. Lee J, Tehranipoor M, Patel C, Plusquellic J (2007) Securing designs against scan-based side-
channel attacks. IEEE Trans Dependable Secure Comput 4(4):325–336

21. Rosenfeld K, Karri R (2010) Attacks and defenses for JTAG. IEEEDes Test Comput 27(1):36–
47

22. Sourgen L (1993) Security locks for integrated circuit. US Patent # 5264742
23. Busky RF, Frosik BB (2006) Protected JTAG. Proceeding of the IEEE 2006 international

conference on parallel processing workshops. Columbus, OH, USA, pp 407–414
24. Clark CJ, Riccihetti M (2004) A code-less BIST processor for embedded test and in-system

configuration of boards and systems. IEEE test conference 2004:857–866
25. Saqib F, Areno M, Aarestad J, Plusquellic J (2014) An ASIC implementation of a hardware-

embedded physical unclonable function. In: IET Comput Dig Tech 8(6):288–299 (Patent Pend-
ing)

26. Thicket family of source code obfuscators. http://www.semdesigns.com
27. Batra T, Methodology for protection and licensing of HDL IP. http://www.us.design-reuse.

com/news/?id=12745&print=yes
28. Goering R, Synplicity initiative eases IP evaluation for FPGAs. http://www.scdsource.com/

article.php?id=170
29. Xilinx IP evaluation. http://www.xilinx.com/ipcenter/ipevaluation/index.htm
30. Chakraborty RS, Bhunia S (2009) HARPOON: an obfuscation-based SoC design methodol-

ogy for hardware protection. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD)
28(10):1493–1502

31. Roy J, Koushanfar F, Markov I, EPIC: ending piracy of integrated circuits. In: Proceedings of
the design automation and test in Europe (DATE), pp 1069–1074

32. Rajendran J, PinoY, SinanoghuO,Karri R (2012) Security analysis of logic obfuscation. ACM/
IEEE49th design automation conference (DAC), 3–7 June 2012. CA, USA, San Francisco, pp
83–89

http://www.eng.auburn.edu/~agrawvd/COURSE/E7250_05/REPORTS_TERM/Kantipudi_Tmeas.pdf
http://www.eng.auburn.edu/~agrawvd/COURSE/E7250_05/REPORTS_TERM/Kantipudi_Tmeas.pdf
http://www.evaluationengineering.com/
http://www.evaluationengineering.com/
http://www.semdesigns.com
http://www.us.design-reuse.com/news/?id=12745&print=yes
http://www.us.design-reuse.com/news/?id=12745&print=yes
http://www.scdsource.com/article.php?id=170
http://www.scdsource.com/article.php?id=170
http://www.xilinx.com/ ipcenter/ipevaluation/index.htm

2 VLSI Test and Hardware Security Background for Hardware Obfuscation 67

33. Ranjendran J, ZhangH, ZhangC,RoseGS, PinoY, SinanoghuO,Karri R (2015) Fault analysis-
based logic encryption. IEEE Trans Comput 64(2):410–424

34. Alkabani Y, Koushanfar F (2007) Active hardware metering for intellectual property protection
and security. Proceedings of 16 USENIX security symposium, (2007) USENIX Association.
Berkley, CA, USA, pp 291–306

35. Koushanfar F, QuG (2001) Hardwaremetering. In: Proceedings of the IEEE design automation
conference 2001 (DAC 2001), pp 490–493

36. Liu B,Wang B (2014) Reconfiguration-based VLSI design for security. IEEE J Emerg Selected
Top Circuits Syst 2014 (JETCAS 2014), 5(1):98-=108

37. Baumgarten A, Tyag A, Zambreno J (2010) Preventing IC piracy using reconfigurable logic
barriers. IEEE Des Test Comput 27(1):66–75

38. Rostami M, Koushanfar F, Rajendran J, Karri R (2013) Hardware security: threat models and
metrics. In: Proceedings of the 2013 IEEE/ACM international conference on computer-aided
design (ICCAD 2013). San Jose, CA, USA, 18–21 November 2013, pp 819–823

39. PappuR (2001) Physical one-way functions, PhD thesis,Massachusetts Institute of Technology
40. Gassend B, Clarke D, Van Dijk M, Devadas S (2002) Silicon physical random functions. In:

Proceedings of the 9th ACM conference on computer and communication security, 2002, pp
148–160

41. Suh GE, Devadas S (2007) Physical unclonable functions for device authentication and secret
key generation. In: Proceedings of the 44th ACM/IEEE design automation conference (DAC
’07). San Diego, CA, USA, 4–8 June 2007, pp 9–14

42. Maiti A, Gunreddy V, Schaumont P (2011) A systematic method to evaluate and compare the
performance of physical unclonable functions. J Int Assoc Cryptogr Res (IACR) ePrint, 657:22

43. NIST: computer security division, statistical tests. http://csrc.nist.gov/groups/ST/toolkit/rng/
stats_tests.html

44. Marsaglia G (1995) Diehard battery of tests of randomness. http://www.stat.fsu.edu/pub/
diehard/

45. Killmann W, Schindler W (2011) A proposal for: functionality classes for random number
generators. In: AIS, September 2011, p 133

46. Su Y, Holleman J, Otis B (2007) A 1.6pJ/bit 96 percant stable chip ID generating circuit
using process variations. In: Proceedings of the 2007 IEEE international solid-state circuits
conferences (ISSCC), pp 200–201

47. Kumar SS, Guajardo J, Maes R, Schrijen GJ, Tuyls P (2008) Extended abstract: the butterfly
PUF protecting IP on every FPGA. In: Proceedings of the IEEE international workshop on
hardware-oriented security and Trust, 2008 (HOST 2008). Anaheim, CA, USA, June 2008, pp
67–70

48. Gassend B, Lim D, Clarke D, Van Dijk M, Devadas S (2004) Identification and authentication
of integrated circuits. Concurrency Comput Pract Exper 16(11):1077–1098

49. Lee JW, Lim D, Gassend B, Suh GE, Dijk MV, Devadas S (2004) A technique to build a
secret key in integrated circuits for identification and authentication applications. In: Digest of
Technical Papers, IEEE 2004 VLSI Circuits Symposium, 17–19 June 2004, pp 176–179

50. Lofstrom K, Daasch WR, Taylor D (2000) IC identification circuits using device mismatch.
In: IEEE digest of technical papers, (2000) international solid state circuits conference. IEEE,
San Francisco, CA, USA. February, 2000, pp 372–373

51. Puntin D, Stanzione S, Iannaccone G (2008) CMOS unclonable system for secure authentica-
tion based on device variability. Conference on solid-state circuits 2008:130–133

52. Ruhrmair U, Jaeger C, Bator M, Stutzmann M, Lugli P, Csaba G (2011) Applications of high-
capacity crossbar memories in cryptography. IEEE Trans Nanotech 10(3):489–498

53. GantaD,VivekrajaV, PriyaK,Nazhandali L (2011)Ahighly stable leakage-based silicon phys-
ical unclonable functions. IEEE 2011 24th international conference on VLSI design. Chennai,
India, 2–7 January 2011, pp 135–140

54. Helinski R,AcharyyaD, Plusquellic J (2009) Physical unclonable function defined using power
distribution system equivalent resistance variations. In: 46th ACM/IEEE design automation
conference. San Francisco, CA, USA 26–31 July 2009, pp 676–681

http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/

68 F. Saqib and J. Plusquellic

55. Ismari D, Plusquellic J (2014) IP-level implementation of a resistance-based physical unclon-
able function. In: 2014 IEEE international symposium on hardware-oriented security and trust
(HOST, 2014). Arlington, VA, USA, 6–7 May 2014, pp 64–69

56. Chakraborty R, Lamech C, Acharyya D, Plusquellic J (2013) A transmission gate physical
unclonable function and on-chip voltage-to-digital conversion technique. In: IEEE 2013 50th
ACM/EDAC/IEEE design automation conference (DAC, 2013). Austin, TX, USA, 29 May–7
June 2013, pp 1–10

57. Che W, Saqib F, Plusquellic J (2015) PUF-based authentication, invited paper, international
conference on computer aided design, November 2015, pp 337–344

58. Zheng Y, Krishna AR, Bhunia S (2013) ScanPUF: robust ultralow-overhead PUF using scan
chain. In: IEEE 2013 18th Asia and South Pacific design automation conference (ASP-DAC,
2013). Yokohama, Japan, 22–25 January 2013, pp 626–631

59. Rahman T, Forte D, Fahrny J, Tehranipoor M (2014) ARO-PUF: An aging-resistant ring-
oscillator PUF design. In: IEEE design, automation, and test in Europe conference, 2014
(DATE, 2014). Dresden, Germany 24–28 March 2014, pp 1–6

60. Rührmair U, Sehnke F, Sölter J, Dror G, Devadas S, Schmidhuber J (2010) Modeling attacks
on physical unclonable functions. In: Proceedings of the 17th ACM conference computer and
communications security 2010 (CCS ’10), pp.237–249

61. Rahman MT, Xiao K, Forte D, Zhang X, Shi J, Tehranipoor M (2014) TI-TRNG: technology
independent true random number generator. In: 2014 51st ACM/EDAC/IEEE design automa-
tion conference (DAC 2014). San Francisco, CA, USA, June 2014, pp 1–6

62. Wendt JB, Potkonjak M (2014) Hardware obfuscation using PUF-based logic. In: 2014
IEEE/ACM international conference on computer-aided design (ICCAD 2014). San Jose, CA,
USA, 2–6 November 2014, pp 270–271

63. Alkabani Y, Koushanfar F, Potkonjak M (2007) Remote activation of ICs for piracy prevention
and digital right management. In: Proceedings of the IEEE/ATM international conference on
computer-aided design (CAD), 2007. San Jose, CA, USA, 4–8 November 2007, pp 674–677

64. Eichelberger EB,Williams TW (1977) A logic design structure for LSI testability. In: Proceed-
ings of the design automatic conference (DAC), pp 462–468

Part II
Logic-Based Hardware Obfuscation

Chapter 3
Logic Encryption

Jeyavijayan (JV) Rajendran and Siddharth Garg

3.1 Introduction

Logic encryption1 hides the functionality and the implementation of a design by
inserting additional gates into the original design [4–6]. In order for the design to
exhibit its correct functionality (i.e., produce correct outputs), a valid key has to be
applied to the encrypted design. The gates inserted for encryption are the key-gates.
Upon applying a wrong key, the encrypted design will exhibit a wrong functionality
(i.e., produce wrong outputs).

Example. Consider the circuit shown in Fig. 3.1 which is encrypted using key-
gates K1 and K2. The inputs I1–I6 are the functional inputs, and K1 and K2 are the
key-inputs connected to the key-gates. On applying the correct values of the keys
(K1 = 0 and K2 = 1), the design will produce a correct output; otherwise, it will
produce a wrong output.

EPIC [1] incorporates logic encryption into the IC design flow, as shown in
Fig. 3.2. In the untrusted design regime, the IC is encrypted, and its functionality
is not revealed. Post-fabrication, the IP vendor activates the encrypted design by
applying the valid key. The key is stored in a tamper-evident memory inside the
design to prevent access to an attacker.

Logic encryption prevents attacks such as piracy and hardware Trojans. Since the
design is encrypted by the designer, the foundry cannot use any copies or overproduce

1Researchers have previously used the terms “logic obfuscation” [1, 2] and “logic locking” [3]
for this purpose.

J. Rajendran (B)
Department of Electrical Engineering, The University of Texas at Dallas,
800 W Campbell Road, Richardson, TX 75080, USA
e-mail: jv.ee@utdallas.edu

S. Garg
New York University, New York, NY, USA
e-mail: siddharth.garg@nyu.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_3

71

72 J. Rajendran and S. Garg

(a) (b)

Fig. 3.1 a Original circuit. b A circuit encrypted using two key-gates K1 and K2 based on the
technique proposed in [1]. By applying the input pattern 100000, an attacker can sensitize key-bits
K1 and K2 to the outputs O1 and O2

Fig. 3.2 The top blue box represents the EPIC design flow [1]. The design is in the encrypted form
in the untrusted design regime. In the untrusted regime, an attacker can obtain the encrypted netlist
from (1) the IC design or by reverse engineering the (2) layout, (3) mask, or (4) a fabricated IC, and
(5) the functional IC from the market. Using this attack, the attacker can get a deciphered netlist
and make pirated copies

ICs without the secret keys. Furthermore, it prevents an attacker from analyzing the
structural behavior of the design, thereby hindering Trojan insertion.

Outline of the chapter. Section3.2 explains the protocol on how logic encryp-
tion can be used in an IC supply chain, and Sect. 3.3 defines the threat model for
logic encryption, listing out the capabilities of the attackers and their limitations.
Section3.4 lists the different security properties and metrics for logic encryption.
Since its introduction in 2008, several attacks have been introduced against logic
encryption. Section3.5 details a set of attacks that enables an attacker to learn the
correct outputs of the design, even when the design is subjected to logic encryption.
In another set of attacks explained in Sect. 3.6, an attacker can learn the correct key
used for logic encryption, by observing input–output pairs. Additionally, this section
also explains the set of countermeasures against this class of attacks. Recently, new
vulnerabilities due to an untrusted test facility have undermined the security of logic
encryption. Unlike the previous attacks, this class of attacks relies only on the test pat-
terns and responses. Section3.7 details this class of attacks. Finally, there are several

3 Logic Encryption 73

techniques that rely on the security offered by logic encryption, which are explained
in Sect. 3.8. Section3.9 concludes this chapter by comparing different attacks and
their countermeasures.

3.2 Protocol

The protocol for logic encryption is as follows [1].
Step 1: The designer encrypts the design with a common key, CK . This is the key
shown in Fig. 3.2. On applying CK, the encrypted design produces correct outputs.
The target IC is then designed along with the encrypted design, a public key crypto-
graphic algorithm (e.g., RSA) and an on-chip random number generator. The IC also
has a master public key (Master-Pub). Master-Pub’s private pair is master private key
(Master-Pri), which is not stored on-chip.
Step 2: The designer sends this design to the untrusted foundry, where the chip is
manufactured. The manufactured chip is then sent to the designer.
Step 3: The designer activates the on-chip random number generator to generate a
public–private key pair, RCK-Pub and RCK-Pri, respectively. RCK-Pub is known
to everyone. The designer encrypts CK with MK-Pri and RCK-Pub. The resultant
ciphertext is called input key (IK).
Step 4: IK is given to the user of this chip. The user applies IK to the chip to activate
it. The public key cryptographic module within the chip decrypts IK with MK-Pub
and RCK-Pri to obtain CK. The on-chip infrastructure applies CK to the encrypted
design and makes the IC functional. This process is called activation. Since IK is
encrypted with public–private key pairs, it does not reveal CK. Thus, the user may
not be able to unlock (i.e., reverse engineer) the design, even if he is able to unlock
his chip (i.e., make the IC functional).

Identifying MK-Pri and RCK-Pub will help an attacker to overproduce the ICs.
An attacker does not need design to a new mask. He can reuse the existing mask
and unlock them by determining their IKs using MK-Pri and RCK-Pub. Identifying
CK will help an attacker to pirate the design and identify “safe” places in a design
to insert Trojans2. An attacker can extract the protected design (without the public
key cryptographic algorithm and on-chip random number generator), unlock it using
CK, create a new mask, and manufacture the pirated ICs. For the rest of this chapter,
we will consider how an attacker can extract CK. We refer to CK as the “key.”

3.3 Threat Model

The attacker can be either in the foundry or be the end user. The objective of the
attacker is to determine the secret keys used for logic encryption. By determining
the keys, he/she can decipher the functional netlist, make pirated copies, and sell

2Safe places in a design in the context of hardware Trojans refer to circuit nodes with low observ-
ability, low controllability, minimal impact on power and delay [7, 8]. places to insert Trojans.

74 J. Rajendran and S. Garg

them illegally, thereby defeating the purpose of logic encryption. Furthermore, with
the knowledge of the keys, he/she can analyze the structural behavior of the design,
thereby inserting Trojans at “safe places.”

The attacker needs the encrypted netlist and a functional IC. He/she can obtain
the encrypted netlist from (1) the IC design, or by reverse engineering the (2) layout,
(3) mask, or (4) a manufactured IC as shown in Fig. 3.2. The functional IC, (5) in
Fig. 3.2, is bought in the open market.

3.4 Security Properties and Metrics

In the rest of this chapter, we focus on security of logic encryption assuming that the
common key (CK) is the most critical security asset. Indeed, if CK is compromised,
the attacker learns the IC’s intended functionality, thus compromising the designer’s
IP and opening the door to hardware Trojan insertion. Furthermore, we note that
even though the EPIC protocol does protect against overbuilding even if CK is com-
promised (each chip is activated only after the designer supplies the chip-specific
IK), a determined attacker can still overbuild ICs using a new mask in which CK
is hardwired to its compromised value. Such an attack is easily within the range of
capabilities of a foundry attacker.

To thwart these attacks, a logic encryption technique has to satisfy the following
properties:

1. Correctness.A logic encryption technique should produce a correct output upon
applying the correct key. If it produces an incorrect output upon applying the
correct key, the encrypted IC/design will violate the design specification, and the
design will be considered “defective.”

2. Resilient against output-guessing attacks.A logic encryption technique should
prevent an attacker from guessing the correct outputs from previously observed
input–output pairs. To thwart such attacks, the output entropy upon applying the
wrong key should be maximized. In other words, the Hamming distance between
the outputs of the design upon applying the incorrect key should be 50%, as this
value maximizes the entropy [4].

3. Entanglement.One should not be able to remove the key-gates from the protected
circuit. Otherwise, an attacker can remove the key-gates, analyze the unprotected
components, and obtain the original design.

4. Resilient against key-guessing attacks. A logic encryption technique should
prevent an attacker from guessing the correct key value from previously observed
input–output pairs. To thwart such attacks, key-gates should be inserted such that
the number of input–output pairs required to obtain the key value is exponential
to the size of the key.

5. Overhead. The logic encryption technique should aim to minimize area, delay,
and power overheads, but not at the expense of the security objectives listed above.

3 Logic Encryption 75

3.5 Thwarting Output-Guessing Attacks

In logic encryption, different combinational logic elements are inserted in a circuit to
conceal the functionality of a design. These elements can be XOR/XNOR gates [1, 4,
5, 9], AND/ORgates [6],MUXes [3, 4], or a combination of these elements [10]. One
of the inputs to these gates serves as a key-input, which is a newly added signal driven
by a tamper-evident on-chip memory. Unless the correct key is loaded onto the on-
chip memory, a design will not work correctly. The activation of a encrypted IC can
be conducted either prior to or after the manufacturing test. Secure communication
infrastructure is needed if the keys are to be loaded remotely onto the chip [9, 11].

EPIC [9] is a logic encryption framework which inserts XOR/XNOR gates,
referred as key-gates, such that these gates have minimal impact on circuit delay.
One can configure these gates as buffers or inverters using these key-inputs. The
insertion of the gates is done after logic synthesis and before physical synthesis. The
design can then be resynthesized. If the key-gates were left as such without any other
modifications to the circuit, the key-bits could be extracted by inspecting if a key-
gate is XOR or XNOR. To eradicate such a simple deduction analysis of the key-gate
types and the key values, the netlist can be synthesized such that the XOR/XNOR
key-gates are replaced with other gates like AND/OR/NAND, or the inverters in the
design can be moved around to change the polarity of the key-gates.

Since EPIC inserts the key-gates based on only delay overhead as a constraint,
there is no guarantee that an incorrect key produces incorrect output for all the input
patterns. Rajendran et al. [4, 5] developed a method, based on the principles of VLSI
testing, that inserts XOR/XNOR gates or MUXes to achieve controllable corruption
of the output bits. This technique maximizes the Hamming distance between the
correct output and the incorrect outputs on applying a random incorrect key.

Testing principle-based insertion of key-gates Key-gates should be inserted in
such a way that any wrong key causes a wrong output. This is similar to the situation
where a circuit produces a wrong output when it has a fault that has been excited and
propagated to the outputs. The following observations relate logic encryption and
fault analysis in IC testing. These observations are used to insert XOR/XNOR gates.

Fault excitation: Application of a wrong key can be associated with the activation
of a fault. For a wrong key, either a stuck-at-0 (s-a-0) or a stuck-at-1 (s-a-1) fault will
get excited when key-gates are used for encryption.

Consider the C17 circuit (from the ISCAS’85 benchmark set) encrypted with one
XOR gate (E1) as shown in Fig. 3.3(b). Here, E1 is the key-gate. If a wrong key (K1
= 1) is applied to the circuit, the value of net B is the negated value of net A. This
is the same as exciting an s-a-0 (when A = 1) or an s-a-1 (when A = 0) fault at the
output of G7 as shown in Fig. 3.3(a). Please note that s-a-0 (s-a-1) fault activation
can be attributed to the case where the net in question is supposed to yield a value of
1 (0) during the functional mode of operation.

Fault propagation: Not all wrong keys can corrupt the output as the effects of
a wrong key may be blocked for some of the input patterns. This is similar to

76 J. Rajendran and S. Garg

(a) (b) (c)

Fig. 3.3 Relation between logic encryption and IC testing: a fault excitation, b propagation, and c
masking

the scenario where not all input patterns can propagate the effect of a fault to the
output [12].

Consider the circuit shown in Fig. 3.3(b). Let a wrong key (K1 = 1) be applied
to the circuit. For the input pattern 00000, an s-a-0 fault gets excited at the output of
E1 and propagates to both outputs. The value at the output of E1 is 0 instead of 1,
and the output is 11 instead of 00. For the input pattern 01110, even though the s-a-0
fault gets excited at the output of E1, the output is 11, which is the correct output, as
the fault effects have been blocked.

To propagate the effect of an excited fault, in our case the wrong key, non-
controlling values should be applied to the other inputs of the gates that are on
the propagation path of the fault. Since not all input patterns guarantee the non-
controlling values on the fault propagation path, a wrong key will not always corrupt
the output.

Faultmasking: Inserting a single key-gate and applying awrong key are equivalent
to exciting a single stuck-at fault. Likewise, inserting multiple key-gates and apply-
ing a wrong key are equivalent to simultaneously exciting multiple stuck-at faults.
However, when multiple faults are excited, they might mask one another. Therefore,
in logic encryption, when multiple key-gates are inserted, the effect of one key-gate
might mask the effect of other key-gates.

Consider the encrypted circuit shown in Fig. 3.3(c).When the key-bits are 000, the
correct functional output is 00 for the input pattern 00000. However, if the key-bits
are 111 (wrong key), the effect introduced by the XOR gate, E1, is masked by the
XOR gates E2 and E3. Consequently, the design produces the correct output, 00.
Similar to fault masking in IC testing, the effect of one XOR gate is masked by the
effect of the other two XOR gates.

Fault impact. To insert an XOR/XNOR as a key-gate, one needs to determine
the location in the circuit where, if a fault occurs, it can affect most of the outputs for
most of the input patterns. To determine this location, one uses fault impact defined
by Eq.3.1. From a set of test patterns, one can compute the number of patterns that
detect the s-a-0 fault (NoP0) at the output of a gate Gx and the total number of output
bits that get affected by that s-a-0 fault (NoO0). Similarly, NoP1 and NoO1 for s-a-1
faults are computed.

3 Logic Encryption 77

Fault impact = (NoP0 × NoO0) + (NoP1 × NoO1) (3.1)

By inserting anXOR/XNORkey-gate at the locationwith the highest fault impact,
an invalid key will likely have the most impact on the outputs (i.e., the wrong out-
puts appear), indirectly enabling the logic encryption technique to reach the 50%
Hamming distance metric.

Improving fault analysis-based insertion. XOR/XNORkey-gates are combined
with MUX key-gates to achieve a Hamming distance closer to 50% [10]. Dupuis et
al. [6] propose a technique that inserts AND/OR key-gates to minimize the number
of low controllability locations in a circuit, making it difficult to insert hardware
Trojans in the circuit.

3.6 Key-Guessing Attacks

Multiple attacks have been presented against existing logic encryption techniques.
The objective of an attacker is to figure out the key used for encryption of the circuit [3,
10, 13]. These attacks assume that the attacker has access to an encrypted netlist and
a functional IC, on which one can apply inputs and observe outputs. There are two
main types of attacks — key propagation and SAT attacks — that are described
below:

3.6.1 Key Propagation Attacks [13]

The value of an key-bit can be determined if it can be sensitized3 without being
masked/corrupted by the other key-bits and/or inputs. By observing the output, the
value of sensitized key-bit can be determined, given that other key-bits (similar to
unknown X-sources4) do not interfere with the sensitized path.

Once an attacker determines an input pattern that sensitizes the key-bit to an output
without any interference, it is applied to the functional IC, i.e., the IC with the correct
keys. Now, this pattern will sensitize the correct value of the key-bit to an output. An
attacker can observe this output and resolve the value of the key.

Example: Consider the key-input K1 in Fig. 3.1. It will be sensitized to output
O1 if the value at the other input of gate G6 is 0 (non-controlling value for an OR
gate). This can be achieved by setting I1 = 1, I2 = 0, and I3 = 0. As the attacker has
access to the functional IC, he/she can apply this pattern and determine the value of

3Sensitization of an internal line l to an output O refers to the condition (values applied from the
primary inputs to justify the side input of gates on the path from l toO to the non-controllable values
of the gates) which surjectively maps l to O and thus renders any change on l observable on O.
4X-sources: Uninitialized memory units, bus contentions, or multicycle paths are the source of
unknown response bits, i.e., unknown-Xs in testing. They are non-controllable.

78 J. Rajendran and S. Garg

Fig. 3.4 Miter-like circuit to
determine DIPs [13]

K1 on O1. For example, if the value of O1 is 0 for that input pattern, then K1 = 0;
otherwise, K1 = 1.

3.6.2 Boolean Satisfiability (SAT) Attacks [13, 14]

The SAT attack iteratively rules out incorrect key values using distinguishing input
patterns (DIPs). A distinguishing input pattern Xd is an input value for which at
least two different key values, k1 and k2, produce differing outputs, o1 and o2,
respectively. Since o1 and o2 are different, at least one of the key values or both of
them are incorrect. It is possible for a single DIP to rule out multiple incorrect key
values.

The DIPs are found by constructing a miter-like circuit as illustrated in Fig. 3.4.
The primary inputs are common to the two copies of the encrypted circuit, while the
key-inputs are left independent. The corresponding outputs of the two circuits are
XORed and then ORed to generate diff signal. The conjunctive normal form (CNF)
of the resultant circuit is generated and passed to a SAT solver. The SAT solver finds
a DIP Xd for which diff = 1, i.e., the outputs of the two circuits are different. Xd is
applied to the functional IC, and correct output Id is obtained. The input–output pair
(Xd, Id) is used to identify incorrect key values.

A single pattern may not rule out all incorrect keys. Hence, an iterative process
is used in the SAT attack, as shown in Fig. 3.5. A new pair (Xd, Id) is added to the
SAT formula in each iteration, and the SAT formula is updated. The generated DIP
is applied to the functional IC, and the set of keys that results in an incorrect output is
eliminated. The attack is successful when no further DIP is found, which implies that
all incorrect key values have been pruned. Example. Let us consider the application
of the SAT attack on the encrypted example circuit in Fig. 3.6. Figure3.7 presents
the output of the original circuit in column Y and the output of the encrypted circuit
for different key values in the following columns. For three key-inputs, there are
eight possible key values, which are represented as k0, k1,..., k7. When the SAT
attack is launched on the encrypted circuit, it takes four DIPs to identify the correct
key [13]. In iteration 1, the DIP 011 is used. For this DIP, the key value k4 alone

3 Logic Encryption 79

Fig. 3.5 SAT attack on logic encryption [13]

Fig. 3.6 Logic encryption usingXOR/XNORgates [1]. The correct key value is 110. This technique
is vulnerable to SAT attack [13]

Fig. 3.7 Analysis of the SAT attack against logic encryption [13]. Columns k0–k7 show the
encrypted circuit’s output for different key values. Red entries in each row denote an incorrect
output. The correct key is k6

produces a wrong output as highlighted in red. Thus, only one incorrect key is ruled
out in the first iteration. In the second and third iterations, key values k1 and k7 are
ruled out, using the patterns 111 and 101, respectively. The pattern 100, used in the

80 J. Rajendran and S. Garg

Fig. 3.8 A circuit encrypted
using two key-gates K1 and
K2 based on the technique
proposed in [15]. This
prevents key propagation
attacks

fourth iteration, eliminates all incorrect keys and the attack successfully identifies
the correct key as k6.

The attack could have succeeded in the first iteration with a single DIP 100, if
this input pattern was tried first. Thus, the execution time of the attack depends on
the order in which the input patterns are applied for the SAT attack. The SAT attack,
however, chooses the DIPs arbitrarily [13]. The larger the number of incorrect key
values ruled out per DIP, the fewer the patterns needed for the attack, which implies
a smaller execution time of the attack algorithm.

3.6.3 Countermeasures to Attacks

Countermeasures to Key Propagation Attacks

In order to thwart key propagation attacks, key-gates are inserted such that an attacker
cannot propagate the output of a single key-gate [15]. This way, the observed output
value is a function of multiple key-gates. Key-gates are inserted such that their
sensitization path is blocked by each other. Such key-gates form a “clique.” As
the size of the clique increases, the attacker’s effort increases.

Example. Consider the circuit shown in Fig. 3.8 which is the same functional
circuit shown in Fig. 3.1, but the two key-gates K1 and K2 are at different locations.
Here, if the attacker has to propagate the effect of either of the keys, then one has to
force a “0” (non-controlling value of NOR gates) on the other input of G4. In order
to force this value, one has to control the key-inputs, which are inaccessible. Thus,
one cannot propagate the effect of a key to an output, failing to determine the values
of the key.

To break this scheme, the attack proposed in [10] targets the logic cones with the
smallest number of key-inputs and recovers the secret key by employing brute force.
The process is then repeated for the remaining logic cones in the circuit, sorted in an
increasing order by the logic cone size. To increase the complexity, the number of
MUX key-gates is increased to increase the size of the logic cone.

Countermeasure to SAT-Based Attacks [16]

To thwart this attack, clique-based insertion is used along with a cryptographic prim-
itive called one-way random functions (ORFs) [17]. ORFs, such as AES with a fixed

3 Logic Encryption 81

Fig. 3.9 ORF-based
countermeasure against
SAT-based attacks. K1 out of
K key-inputs in the
encrypted netlist is
connected to the ORF circuit

secret key, prevent an attacker from determining the inputs from the output [18].
First, the designer synthesizes an AES design with a fixed secret key (unknown to
the attacker). The resultant design implements a random function. Then, he applies a
randomly selected input to the AES with the fixed secret key, which serves as the key
for logic encryption. The output of the AES (with fixed secret key) is connected to a
subset of XOR/XNOR key-gates added for logic encryption. The designer knows the
fixed secret key to the AES and the input applied to AES, and he can configure the
key-gates as XOR/XNORs accordingly. This technique is illustrated in Fig. 3.9. The
original netlist is encrypted with K = K1 + K2 number of key-bits. K1 key-inputs
of the encrypted netlist are connected to the output of the AES (with fixed secret
key) circuit, and the remaining K2 key-inputs are connected to the on-chip memory.

This modified scheme will now withstand the SAT attack. A property of the AES
is that it is computationally infeasible to determine the inputs of AES from its outputs
when the key is unknown [18]. Thus, one cannot backtrace from the outputs of the
design and determine the inputs to the AES. In other words, the input to the AES is
the secret key for logic encryption.

The limitation of this scheme is it assumes the function-to-be-protected is an
unknown logic. Thus, it cannot protect against known functions, because an attacker
can “carve out” the logic implemented by the known function. It also assumes that the
AES with a fixed key implements a random function. When this random function is
cosynthesized with the target unknown function, an attacker cannot classify whether
a given gate in the resultant design is part of the random function or the function-to-
be-protected.

3.7 Impact of Testing on Logic Encryption

3.7.1 Motivation

Each fabricated chip goes through a manufacturing test that screens out the defec-
tive chips. Design for testability (DfT) engineers target generating test patterns that
maximize the fault coverage, minimize test pattern count, and reduce test power con-
sumption [19]. The state-of-the-art logic encryption frameworks pursue two different

82 J. Rajendran and S. Garg

Fig. 3.10 Logic encryption and IC activation in the IC design flow. Pretest activation and post-test
activation models

activation models, pretest and post-test activations, that differ in the time of activa-
tion of an IC with respect to the manufacturing test. The two models are illustrated
in Fig. 3.10 and highlighted in red and green colors, respectively.

Pretest activation. The ICs are activated prior to the manufacturing test, typically
conducted in the foundry or outsourced to anOSAT. Since the IP owner does not want
to reveal the secret key to the untrusted foundry, on-chip public key cryptographic
infrastructure [1] is used to load the secret key securely on the chip. On passing the
manufacturing test, the ICs are shipped for assembly/sales directly from the foundry,
which is useful in meeting time-to-market constraints.

Post-test activation. The ICs are activated after performing the manufacturing
test. Either remote activation [20] or in-house activation [21] can be employed. In-
house activation requires shipping of the encrypted IC from the foundry to the trusted
facility, eliminating the need for on-chip cryptography.

Evolving business and threat models. Fabless and fab-lite are the evolving busi-
ness models for semiconductor companies [22]. Fabless companies, such as Apple
Inc., outsource IC fabrication (to Samsung and TSMC [23]), testing, and assem-
bly services. Fab-lite companies such as TI [22] may outsource IC fabrication (to
SMIC [24]) and testing, but conduct packaging and assembly in-house. Given the
above business models, Apple may activate the ICs remotely using pretest activation,
and TI may activate the ICs in-house using post-test activation. However, the test
and security implications of these scenarios have never been studied.

3.7.2 Pretest Activation

In pretest activation, the secret key is loaded onto the IC prior to the manufacturing
test. Themanufacturing test can be conducted in the foundry or a separate test facility
(OSAT [25]). Since an IP owner wants to protect the secret key from being exposed to
either the foundry or the OSAT, he can load the secret key securely on the chip using
public key cryptography infrastructure. Such infrastructure can incur significant area
overhead [1].

As the test is to be conducted with the key in place, the secret key values are
applied as constraints on the key-inputs during the test generation phase, which can
impact the test quality and costs, as well as the security of logic encryption.

3 Logic Encryption 83

3.7.2.1 Threat Model

The attacker is a person in the foundry or test facility with access to the following:

1. An encrypted netlist EK , which can be obtained by reverse engineering [26] or IP
piracy [27].

2. Test stimuli T and responses Γ .

Impact on Security

To highlight the security vulnerabilities of pretest activation, we develop a test data
mining attack that can reveal the secret key used in pretest activation of logic encryp-
tion.

Attack methodology. During the test pattern generation phase, a DfT engineer
will apply the correct key Kcorr as a constraint and obtain a set of test patterns that
maximize fault coverage.

An attacker can therefore apply the test stimuli as input constraints and the test
responses as output constraints and search for the potentially correct key KP that
maximizes the fault coverage under the specified constraints. The attack is an opti-
mization problem: The objective is to maximize the fault coverage FC under the test
stimulus T and test response Γ constraints, as follows:

maximize FC

subject to ∀
1≤i≤N

EK(KP,Ti) = Γi

solve for KP

(3.2)

The rationale for the attack to return the correct key is that the test patterns have
been generated with the objective of maximizing the fault coverage in the presence
of the correct key as a constraint. When the same set of test patterns are used as
constraints, the key that maximizes the fault coverage will be the one that is used to
generate the patterns.

Equation3.2 formulates a system of Boolean equations which can be solved
using techniques such as Boolean satisfiability (SAT) or integer linear program-
ming (ILP) [28]. Test generation (ATPG) algorithms are capable of solving a system
of Boolean equations while maximizing the fault coverage at the same time; ATPG
is, therefore, a natural candidate for solving the optimization problem in Eq. 3.2. The
complexity of the attack is NP-hard [29].

Let us consider the netlist shown in Fig. 3.8.When the correct key valueKcorr = 00
is used as a constraint, eight test patterns are generated by the ATPG tool as listed
in Table3.1. An attacker will launch the attack described in Eq.3.2 by applying the
test stimuli and responses as constraints and search for the potential key KP that
maximizes the fault coverage. The only key KP that maximizes the fault coverage
and satisfies these test pattern constraints is 00, and the corresponding fault coverage
is 82.43%. None of the other key values satisfies the test pattern constraints.

84 J. Rajendran and S. Garg

Table 3.1 Test patterns
(pretest activation) for the
netlist in Fig. 3.8. The correct
key Kcorr is used as a
constraint during ATPG

Key(Kcorr) Stimulus (T) Response (Γ)

00 011001 10

00 101010 01

00 101111 01

00 011101 10

00 111010 11

00 000111 11

00 110001 00

00 001011 10

3.7.3 Post-test Activation

In post-test activation, the manufacturing test is conducted on an encrypted IC with
the rationale that manufacturing test is a “structural” test and that the chip need not
be functional during the test. The IC can be activated post-test in one of the following
ways:

1. Aftermanufacturing test, defect-free ICs are shipped to a trusted facility, activated
by the IP owner, and shipped out for sale.

2. Tested ICs can also be activated remotely, similar to the case of pretest activation,
via public key cryptography infrastructure [30].

Impact on security. In post-test activation, both test pattern generation and man-
ufacturing test are conducted in the absence of the secret logic encryption key. Any
analysis performed by the attacker will only reveal these arbitrary key values and not
the secret key value. Therefore, post-test activation has no detrimental impact on the
security of logic encryption.

3.7.4 Hill Climbing Attack

The hill climbing search-based attack [21] uses test data information to guess the
secret key for pretest activated ICs. The attack tries to achieve zeroHamming distance
HDO between the test response and the encrypted circuit, for multiple random key
guesses. The individual bits in the initial key guess are flipped if the flip minimizes
the Hamming distance HDO.

Example. Consider the circuit shown in Fig. 3.8 and the test patterns shown in
Table3.1. In iteration 1, the hill climbing attack startswith a randomkeyvalue, say 00.
With this key value, the test patterns are applied and the responses are collected. The
cumulative Hamming distance between the collected responses and the responses
from the test set is calculated. In this case, it is 12. Now, one of the key-bits will
be flipped, say the new key is 01. The cumulative Hamming distance between the

3 Logic Encryption 85

collected responses and the responses from the test set is now reduced to 6. Since
there is a reduction in the cumulative Hamming distance, the second bit is retained
as 1. Now, the remaining bit is flipped (key = 00) and the cumulative Hamming
distance is 0. Thus, the attacker identifies that 00 is the correct key.

3.8 Other Techniques Based on Logic Encryption

Logic encryption is used not only in the context of IP protection, but also in other
applications as well. Two of them are described below:

3.8.1 Secure Split Test (SST) [20, 30]

An untrusted test facility can mark a defective IC, which failed the test, as a good
quality one. Consequently, a designer unknowingly sells low-quality ICs, spoiling
his reputation. Further, a test facility can also label “good” ICs as “faulty” ICs and sell
them in the blackmarket. Such an attack is possible onlywhen the attacker (malicious
tester) can identify whether an IC is defective or not. In order to prevent this attack, a
designer should hide the test responses. For this purpose, the test infrastructure should
be protected. Logic encryption aids in protecting the test infrastructure, thereby
hiding the correct responses.

3.8.2 Securing Processor Architectures [31]

Modern processors are equipped with several security modules to aid detection and
prevention of attacks. These modules usually inform the processor pipeline about
the attack through a signal, which is carried by a wire. Unfortunately, such wires are
susceptible to Trojan attacks, enabling an attacker to modify the target signal value
at will. Detecting a Trojan that modifies a single wire is difficult. Consequently, he
can launch traditional software attacks and still go undetected.

To prevent such attacks, logic encryption encrypts a processor module and stores
the key within a security module. The security module, instead of sending the signal,
sends the correct key to unlock a processor pipeline, when it does not detect an attack.
When it detects an attack, it sends a wrong key, resulting in an incorrect computation.
Since the size of Trojan required to mask/modify a multibit key is bigger than the
one required to modify a single wire, such Trojans can be easily detected.

86 J. Rajendran and S. Garg

Table 3.2 A comparison of the attacks against logic encryption

Study Attacker’s
location

Attacker’s
capabilities

Attack method Defense

Rajendran et
al. [15]

Foundry and end
user

Encrypted netlist
and an activated
IC

Sensitization of
key-bits to
outputs

Clique-based
insertion [15]

Subramanyan et
al. [13]

Foundry and end
user

Encrypted netlist
and an activated
IC

SAT-based
algorithm to rule
incorrect keys

Strong logic
encryption
OWF [16]

Plaza and
Markov [21]

Foundry and test
facility

Encrypted netlist
and test set

Find the key that
minimizes
Hamming
distance

Test-aware
combinational
logic encryption

Test data mining
attack [32]

Foundry and test
facility

Encrypted netlist
and test set

Find the key that
maximizes fault
coverage

Post-test
activation

SST [30] Foundry Activated ICs to
be tested

Reduce yield Encrypting test
circuits

3.9 Conclusion

Logic encryption is an emerging technique to thwart IP piracy, reverse engineering,
and hardware Trojans. Initially, most of the techniques proposed in the literature are
based on VLSI testing principles. However, recent attacks have broken these tech-
niques, even though the complexity of those techniques is NP-hard. Researchers are
now trying to adopt concepts from cryptography and apply them to logic encryption.

Table3.2 summarizes the different attacks and their countermeasures on logic
encryption. Clique-based insertion of key-gates can prevent sensitization attacks but
is susceptible to SAT attacks. Strong logic encryption can prevent both SAT and
sensitization attacks, but it is applicable only for random unknown logic. Test data
mining attack is applicable only when the attacker has access to test patterns and
responses, which are generated for the correct key; they can be prevented by post-
test activation.

References

1. Roy J, Koushanfar F, Markov IL (2008) EPIC: ending piracy of integrated circuits. In: Pro-
ceedings of the IEEE/ACM design, automation and test in Europe, pp 1069–1074

2. Chakraborty RS, Bhunia S (2009) HARPOON: an obfuscation-based SoC designmethodology
for hardware protection. IEEETransComput-AidedDes IntegrCircuits Syst 28(10):1493–1502

3. Plaza SM, Markov IL (2015) Solving the third-shift problem in IC piracy with test-aware logic
locking. IEEE Trans Comput-Aided Des Integr Circuits Syst 34(6):961–971

3 Logic Encryption 87

4. Rajendran J, Zhang H, Zhang C, Rose G, Pino Y, Sinanoglu O, Karri R (2015) Fault analysis-
based logic encryption. IEEE Trans Comput 64(2):410–424

5. Rajendran J, PinoY, SinanogluO,Karri R (2012) Logic encryption: a fault analysis perspective.
In: Proceedings of the IEEE/ACM design, automation and test in Europe, pp 953–958

6. Dupuis S, Ba P, Natale GD, Flottes M, Rouzeyre B (2014) A novel hardware logic encryption
technique for thwarting illegal overproduction and hardware trojans. In: Proceedings of the
IEEE international on-line testing symposium, pp 49–54

7. Karri R, Rajendran J, Rosenfeld K, Tehranipoor M (2010) Trustworthy hardware: identifying
and classifying hardware trojans. IEEE Comput 43(10):39–46

8. Tehranipoor M, Koushanfar F (2010) A survey of hardware trojan taxonomy and detection.
IEEE Des Test Comput 27(1):10–25

9. Roy JA, Koushanfar F, Markov IL (2010) Ending piracy of integrated circuits. Comput
43(10):30–38

10. Lee Y-W, Touba N (2015) Improving logic obfuscation via logic cone analysis. In: Proceedings
of the Latin-American test symposium, pp 1–6

11. Contreras GK, Rahman MT, Tehranipoor M (2013) Secure split-test for preventing IC piracy
by untrusted foundry and assembly. In: Proceedings of the IEEE international symposium on
defect and fault tolerance in VLSI and nanotechnology systems, pp 196–203

12. Bushnell ML, Agrawal VD (2000) Essentials of electronic testing for digital, memory, and
mixed-signal VLSI circuits. Kluwer Academic Publishers, Boston

13. Subramanyan P, Ray S, Malik S (2015) Evaluating the security of logic encryption algorithms.
In: Proceedings of the IEEE international symposium on hardware oriented security and trust,
pp 137–143

14. Massad ME, Garg S, Tripunitara MV (2015) Integrated circuit (IC) decamouflaging: reverse
engineering camouflaged ICs within minutes. In: NDSS

15. Rajendran J, Pino Y, Sinanoglu O, Karri R (2012) Security analysis of logic obfuscation. In:
Proceedings of the IEEE/ACM design automation conference, pp 83–89

16. YasinM, Rajendran J, Sinanoglu O, Karri R (2015) On improving the security of logic locking.
IEEE Trans Comput-Aided Des Integr Circuits Syst 99:1–1

17. Matsuzaki N, Tatebayashi M (1994) Apparatus and method for data encryption with block
selection keys and data encryption keys. US Patent 5,351,299

18. Goldreich O (2001) Foundations of cryptography: basic tools, vol 1. Cambridge University
Press, Cambridge

19. BushnellM,AgrawalVD (2000) Essentials of electronic testing for digital, memory andmixed-
signal VLSI circuits, vol 17. Springer, New York

20. Contreras G, Rahman M, Tehranipoor M (2013) Secure split-test for preventing IC piracy
by untrusted foundry and assembly. In: Proceedings of the IEEE international symposium on
defect and fault tolerance in VLSI and nanotechnology systems, pp 196–203

21. Plaza SM, Markov IL (2014) Protecting integrated circuits from piracy with test-aware logic
locking. In: Proceedings of the IEEE/ACM international conference on computer-aided design,
pp 262–269

22. McLellan P (2013) A brief history of the foundry industry, part 2, [Sep 1, 2015]. https://www.
semiwiki.com/forum/content/2109-brief-history-foundry-industry-part-2-a.html

23. AppleInsider (2015) Samsung reportedly nabs 75% of Apple’s next-gen ’A9’ SoC orders,
[Aug 10, 2015]. http://appleinsider.com/articles/15/01/26/samsung-to-reportedly-take-75-of-
apples-nextgen-a9-soc-orders

24. Releases SP (2014) SMICs Beijing fab wins TI quality excellence award, [Aug 10, 2015].
http://www.smics.com/eng/press/press_releases_details.php?id=107870

25. Wire B (2014) Research and markets: outsourced semiconductor assembly and test market
(OSAT) trends, [Aug 22, 2015]. http://www.businesswire.com/news/home/20140324005628/
en/Research-Markets-Outsourced-Semiconductor-Assembly-Test-Market

26. Torrance R, James D (2011) The state-of-the-art in semiconductor reverse engineering. In:
Proceedings of the IEEE/ACM design automation conference, pp 333–338

https://www.semiwiki.com/forum/content/2109-brief-history-foundry-industry-part-2-a.html
https://www.semiwiki.com/forum/content/2109-brief-history-foundry-industry-part-2-a.html
http://appleinsider.com/articles/15/01/26/samsung-to-reportedly-take-75-of-apples-nextgen-a9-soc-orders
http://appleinsider.com/articles/15/01/26/samsung-to-reportedly-take-75-of-apples-nextgen-a9-soc-orders
http://www.smics.com/eng/press/press_releases_details.php?id=107870
http://www.businesswire.com/news/home/20140324005628/en/Research-Markets-Outsourced-Semiconductor-Assembly-Test-Market
http://www.businesswire.com/news/home/20140324005628/en/Research-Markets-Outsourced-Semiconductor-Assembly-Test-Market

88 J. Rajendran and S. Garg

27. Rostami M, Koushanfar F, Karri R (2014) A primer on hardware security: models, methods,
and metrics. Proc IEEE 102(8):1283–1295

28. Clarke E, Gupta A, Kukula J, Strichman O (2002) SAT based abstraction-refinement using ILP
and machine learning techniques. In: Proceedings of the computer aided verification, Springer,
pp 265–279

29. Krishnamurthy B, Akers SB (1984) On the complexity of estimating the size of a test set. IEEE
Trans Comput 33(8):750–753

30. Rahman MT, Forte D, Shi Q, Contreras GK, Tehranipoor MM (2014) CSST: preventing distri-
bution of unlicensed and rejected ICs by untrusted foundry and assembly. In: Proceedings of
the IEEE international symposium on defect and fault tolerance in VLSI and nanotechnology
systems, pp 46–51

31. Rajendran J, Kanuparthi AK, ZahranM, Addepalli SK, Ormazabal G, Karri R (2013) Securing
processors against insider attacks: a circuit-microarchitecture co-design approach. IEEE Des
Test 30(2):35–44

32. Yasin M, Saeed SM, Rajendran J, Sinanoglu O (2016) Activation of logic encrypted chips:
pre-test or post-test?. In: Proceedings of the IEEE/ACM design, automation and test in Europe

Chapter 4
Gate Camouflaging-Based Obfuscation

Xueyan Wang, Mingze Gao, Qiang Zhou, Yici Cai and Gang Qu

4.1 Circuit Camouflaging with Configurable Gates

One of the greatest threats to VLSI design intellectual property (IP) is reverse engi-
neering [1]. Reverse engineering (RE) is the process of extracting the IP and design
information from the target product and reproducing the product [2, 3]. Motivations
of RE vary from the paranoia of the Cold War, through commercial piracy, to com-
petitive intelligence, and courts of patent law. The targets of RE include systems as
large as an aircraft or as small as a microchip, programming codes, a pill of medical
drug, or any sort of IPs [2]. In the semiconductor sector, RE has become a powerful
tool for IP piracy where the attacker analyzes a design and reproduces it with no
or much less investment in research and development. These low cost illegitimate
products bring security vulnerabilities to critical commercial and military systems,
or they can be sold at a much lower price, giving them an unfair competitive edge
against the authenticated products.

The popular digital circuit watermarking and fingerprinting techniques [1] are
passive IP protection schemes because they do not prevent RE from happening or
make it more difficult. Watermark and fingerprint can be embedded into the IP to
make each instance of the IP unique. When necessary, they can be revealed to show
the authorship or ownership of the IP and identify the parties that misuse the IP.
Although it is hard or impossible to completely remove thewatermark andfingerprint,
RE attackers can still extract valuable information from the IP and reproduce the IP
sillegally. The existence of watermark and fingerprint in the IP can deter RE attacks,
but will not increase the complexity of RE.

X. Wang · Q. Zhou · Y. Cai
Tsinghua University, Beijing, People’s Republic of China

M. Gao · G. Qu (B)
University of Maryland, College Park, MD, USA
e-mail: gangqu@umd.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_4

89

90 X. Wang et al.

Table 4.1 The configurable CMOS cell in Fig. 4.1 can perform three different functions: NAND,
NOR, or XOR, based on different true and dummy contact combinations [7]

Function Contacts

TRUE DUMMY

NAND 2,4, 6, 8, 11, 12, 16, 17 1,3, 5, 7, 9, 10, 13, 14, 15, 18, 19

NOR 2,5, 6, 11, 12, 18, 19 1,3, 4, 7, 8, 9, 10, 13, 14, 15, 16, 17

XOR 1,3, 4, 7, 9, 10, 12, 13, 14, 15, 18, 19 2,5, 6, 8, 11, 16, 17

Gate camouflaging techniques have emerged as an effective countermeasure for
RE attacks [4–7]. These techniques rely on the general belief that RE technology is
normally 2–3 generations behind the latest CMOS design technology. That is, certain
CMOS design features cannot be completely reverse engineered until several years
later. For example, some logic cells can be configured to perform different function-
alities while maintaining an identical look to RE attackers. In circuit camouflaging,
conventional logic gates are intentionally replaced by these configurable CMOS cells
to thwart RE attacks.

4.1.1 Configurable CMOS Cells

One popular approach to construct configurable CMOS cells is to use the true and
dummycontacts [4, 5].A true contact spans the dielectric between twoadjacent layers
and represents an electrical connection, while a dummy contact has a gap in the mid-
dle thus fakes the connection between layers. Figure4.1 shows an example where 19
contacts are utilized in the configurable CMOS cell [7]. As demonstrated in Table4.1,
with different combinations of true and dummy contacts, the camouflaging gate can
perform three different logic functions: NAND, NOR, or XOR. For instance, when
contacts 2, 4, 6, 8, 11, 12, 16, 17 are true and contacts 1, 3, 5, 7, 9, 10, 13, 14, 15, 18, 19
are dummy, the camouflaged CMOS cell performs the functionality of a NAND gate.

When an attacker performs the top-down image processing-based RE attack, he is
unable to detect whether a contact is true or dummy, because from the top view of the
chip, the true and dummy contacts appear identical even under most powerful optical
and electrical microscopes. Therefore, this configurable CMOS cell will appear the
same look to the attacker regardless of the functionality it implements. Without
knowing the functionalities of the camouflaged gates, the attacker will fail to reverse
engineering the IP. Of course, the attacker can guess and try all the different possible
configurations, whichwill increase the complexity of the RE attack. This also implies
that against such brute force attack, the more camouflaged gates we have in the IP
and the more functionalities a camouflaged gate can achieve, the more difficult it
will be for attackers to recover the IP.

4 Gate Camouflaging-Based Obfuscation 91

4.1.2 Circuit Camouflaging Technique

The circuit camouflaging technique proposed in [7] obfuscates a circuit by disguising
the functionality of selective XOR, NAND, or NOR gate behind the configurable
CMOS cell illustrated in Fig. 4.1. That is, each camouflaged gate will have the same
appearance but three possible functionalities to an RE attacker. In the circuit shown in
Fig. 4.2, two logic gates have been replaced by the configurable CMOS cells C1 and
C2. Even when an RE attacker has successfully recovered the layout of the circuit,
he cannot rebuild the circuit unless he knows the types of the two camouflaged cells
C1 and C2.

Fig. 4.1 A configurable CMOS cell with 19 contacts that can be configured to be either true or
dummy [7]

I1

I2

I4
I3

G1

G5
I5
I6

I8

I7

G2

G4

G6G3

O1G9

O2G10

?

?

C1

C2

Fig. 4.2 A circuit with two camouflaged gates C1 and C2, which can be resolved individually by
VLSI testing-based attack

92 X. Wang et al.

Intuitively, the attacker has to guess 32 = 9 possibly combinations, because each
of the two camouflaged cells can be an XOR, NAND, or NOR gate. Moreover, since
the attacker can only give input values to the circuit’s primary inputs (PI) and observe
the corresponding primary output (PO) values to verify whether a guess is correct or
not. This seems to make attacker’s job very challenging. Unfortunately, this is not
the case.

In the above example, based on the fact that (i) the output of a camouflaged gate
under input ‘00’ can differentiate {XOR} from {NAND, NOR} (XOR outputs 0,
while both NAND and NOR output 1), and (ii) the output under input ‘01’ or ‘10’
can differentiate {NAND} and {NOR} (NAND outputs 1, while NOR outputs 0), the
attacker can apply the input pattern ‘010XXXXX’ (X represents do not care values)
at the PIs, this justifies the camouflaged gate C1’s inputs as ‘00’, and sensitize C1’s
output to POO1. If O1 is 0, the functionality of C1 is resolved to be XOR. Otherwise,
when O1 is 1, C1 will be either NAND or NOR. The attacker will then apply input
pattern ‘110XXXXX’ at PIs to justify C1’s inputs as ‘10’ and sensitize C1’s output
to O1. If O1 is 0, C1 is resolved to be NOR, otherwise C1 is resolved to be NAND.

This is known as VLSI testing-based attack, where the attacker resolves a cam-
ouflaged gate’s functionality by justifying the gate’s inputs to certain values from
the circuit’s PIs then sensitizing the gate’s corresponding output to PO to observe
from a functional IC. In such attack, it is not necessary to obtain the entire truth
table to resolve a camouflaged gate, a couple of selective input–output pairs will be
sufficient. Thus, it is a very effective way to attack circuit camouflaging.

4.1.3 Enhanced Circuit Camouflaging

In the above example, we see that randomly selecting gates to camouflage is vul-
nerable to the VLSI testing-based attack. This can be fixed by judiciously selecting
candidate gates to camouflage such that these gates will be interfered and cannot be
revealed one by one [7].

Two camouflaged gates are interfered if one gate lies on a path between the other
gate and an output, or the outputs of these two gates go into the same gate. Clearly,
in Fig. 4.3, the three camouflaged gates C1, C2, and C3 are interfered. If gate G4 is
also camouflaged, it will not interfere with C3, but it will interfere with C2 because
their outputs meet at gate G6.

On the other hand, when camouflaged gates do not have any path in the circuit
interfering with other camouflaged gates, they are called isolated. Isolated camou-
flaged gates can be resolved independently by VLSI testing-based attack as we have
seen in Fig. 4.2. However, this will not be the case when camouflaged gates are
interfered.

For example, in Fig. 4.3, none of the camouflaged gates C1, C2, and C3 can be
resolved by VLSI testing-based attack individually: C1’s output cannot be observed
from any of the POs without resolving C2 and C3 first; C3’s inputs cannot be con-
trolled before C1 and C2 are resolved; both the controllability of C2’s inputs and the
observability of its output rely on the functionalities of C1 and C3.

4 Gate Camouflaging-Based Obfuscation 93

?

?

?
I1

I2

I4

I3

I5

O1

O2

C1

C2

C3

G1

G2

G3

G4

G5

G6

Fig. 4.3 A camouflaged circuit where the three camouflaged gates C1, C2, and C3 are interfered

In [7], it is argued that this will force the attackers to brute force search all the
possible functionality combinations of these camouflaged gates. Specifically, for
each possible combination, the attacker will simulate input patterns at PIs of the
circuit to get the corresponding outputs at POs and compare them with an unpack-
aged/functional circuit. If they are not the same, the guess is incorrect and the attacker
will check the next possible combination. Considering that each camouflaged gate
has 3 possible functionalities, the needed brute force efforts will be 33. When the
circuit has N selective camouflaged gates, the complexity will be 3N. This exponen-
tial complexity leads to the claim that when there are sufficient number of interfered
camouflaged gates, the circuit camouflaging is secure [7]. To end this section, we
demonstrate by an example that this claim is not accurate, which motivates us to
propose more accurate metrics to define the security of circuit camouflaging.

4.1.4 Defeating the Enhanced Circuit Camouflaging

Figure4.4 is a sub-circuit of the secure camouflaged circuit in Fig. 4.3, where the two
camouflaged gates C1 and C2 are clearly interfered with each other. We now show
how both camouflaged gates can be revealed with no more than four input–output
pairs.

?

?

I2

I4

I3

I5

O2

C1

C2

G2

G3

G4

G5

G6

Fig. 4.4 A sub-circuit of the secure camouflaged circuit in Fig. 4.3

94 X. Wang et al.

We consider the output O2 as a function of inputs I2, I3, I4, and I5 and denote it
by O2(I2, I3, I4, I5). That is, when input values are I2 = 1, I3 = 1, I4 = 0, and I5 =
0, for example, the output value can be written as O2(1,1,0,0). Here is how an attack
can reveal C1 and C2 easily:

(1) Apply (0, 1, 0, 1) as the input values for (I2, I3, I4, I5);
(2) If O2(0, 1, 0, 1) = 0 : apply (0, 1, 1, 0) as the input;
(3) if O2(0, 1, 1, 0) = 1 : apply (0, 0, 1, 0) as the

input;
(4) If O2(0, 1, 0, 1) = 1 : apply (0, 1, 1, 1) as the input;
(5) apply (0, 1, 0, 0) as the input;
(6) if O2(0, 1, 0, 0) = 1 : apply (0, 0, 0, 0) as the

input;

In step (1), we apply (0,1,0,1) as input to the circuit. If C1 is either NANDorNOR,
C1(0,0) = 1; so G4(1,1) = 0 and we should be able to observe O2 = 1 regardless of
the output of G5. Therefore, we conclude that if O2(0,1,0,1) =0, C1 must be XOR.
Next, in order to reveal C2, we apply (0,1,1,0) in step (2). C1(1,1) = XOR (1,1)
= 0, hence C2 will have both its input as 1 and it will output 0 only if C2 is XOR;
otherwise, we need another input pattern to determine whether C2 is NOR or NAND,
this can be done by for example using (0,0,1,0) as in step (3). Similar analysis can
be done for steps (4)–(6) when C1 is either an NOR or an NAND.

Once we fully resolve the two camouflaged gates C1 and C2 in Fig. 4.4 (by apply-
ing no more than four input patterns), it will be trivial to resolve the last camouflaged
gate C3 in Fig. 4.3 (with no more than two input patterns). Note that this takes us
no more than six input–output pairs, much less than trying 33 possible combina-
tions with multiple input–output pairs for each combination. We are able to do this
because that the circuit can be partitioned to smaller sub-circuits and the set of {XOR,
NAND, NOR} can be effectively distinguished. Next, we will elaborate an attack
against circuit camouflaging based on circuit partitioning and then discuss several
countermeasures to this attack.

4.2 Circuit Partition-Based Attack

It is believed that the enhanced IC camouflaging is secure because of the high brute
force complexity that is exponential to the number of camouflaged gates [7]. How-
ever, this is just secure against the naïve brute force search. Like many other studies
in security literature, a new type of attack would break a system that was previously
proven secure.

As we have seen from the last example, an intelligent attacker does not need to
resolve all the camouflaged gates together even though they are interfered. Instead, he
may first partition the circuit to sub-circuits whose functions can be tested individu-

4 Gate Camouflaging-Based Obfuscation 95

ally from a functional IC, and then perform a brute force search for the functionalities
of the camouflaged gates in each sub-circuit individually. He can of course use some
other smarter approaches that leverage the input–output difference of the potential
gate types of the camouflaged gates.

The key idea of the circuit partition-based attack is to leverage the divide and
conquer methodology to partition camouflaged gates into multiple sub-circuits, then
target each sub-circuit individually. The benefit of circuit partition is breaking down
the original large interference circles of camouflaged gates to multiple small interfer-
ence circles in order to reduce the brute force complexity. Before elaborating circuit
partition-based attack, we first give the definition:

Definition 1 The Maximum FanIn-Cone rooted at a primary output Z is defined as
MFICZ = {Gi | gate Gi belongs to the circuit and there exists a path Gi → Z}, which
is the set of all the gates whose outputs will directly or indirectly feed into the gate
that generate output Z.

Thewordmaximum inMFICZ indicates that all the gates that will impact the value
of output Z should be included. In another word, if a gate does not belong to MFICZ

for someoutput Z, thenwewill not be able to observe fromZany changes on that gate.
Notice that in this chapter, unless it is specified otherwise, we will use MFICZ for
both the maximum fanin-cone rooted at the primary output Z and the corresponding
sub-circuit that includes all these logic gates. For example, in the circuit shown
in Fig. 4.3, we have MFICO1 = {C1, C2, C3, G1, G2, G3, G5}, and MFICO2 =
{C1, C2, G2, G3, G4, G5, G6}, where the latter is the sub-circuit shown in Fig. 4.4.

Accordingly, MFIC’s function, as a sub-circuit, can be studied by directly feeding
the PIs of the MFIC and observing the corresponding output. A camouflaged gate,
like other logic gates, may belong to multiple MFICs. For instance, five logic gates,
including C1 and C2, belong to both MFICO1 and MFICO2 in the above example.
Thus, when an attacker applies brute force attack to resolve the camouflaged gates,
he can start with the MFIC that has the fewest number of camouflaged gates. In the
above example, after he resolves C1 and C2 from MFICO2, MFICO1 will have only
one camouflaged gate C3 left to solve. This greedy approach is the basic idea behind
the following smart circuit partition-based attack shown in Algorithm1.

In line 1, we partition the circuit into MFICs, which can be done with standard
algorithm. In the rest of the algorithm, we iteratively resolve the camouflaged gates
in one MFIC at a time. We greedily choose MFIC with the minimum number of
unresolved camouflaged gates to apply brute force attack (lines 2–3) (for example
in Fig. 4.3, there are three camouflaged gates in MFICO1 and two camouflaged gates
in MFICO2, so we will start with MFICO2). This selection ensures that brute force
efforts in current iteration can be minimized (line 7). The obfuscated netlist will
then be updated by replacing the resolved camouflaged gates with the corresponding
logic gates they implement (line 8). When there are multiple eligible MFICs with
the same minimum number of camouflaged gates, the algorithm will choose the one
that minimizes the maximum number of camouflaged gate number in the remaining
MFICs (lines 4–6). The while loop in lines 9–12 checks whether there exist relevant

96 X. Wang et al.

unresolvable camouflaged gates that will become resolvable when the obfuscated
netlist is updated (in Fig. 4.3, C3will become resolvable after C1 and C2 are resolved
in MFICO2). If there is any, we resolve it by the VLSI testing principles-based
attack [7].

ALGORITHM 1. Smart Circuit Partition based Attack
Input: Camouflaged Netlist, Functional IC.
Output: Original Netlist.
1: partition the circuit to MFICs;
2: while there exist unresolved camouflaged gates in the netlist
3: find MFIC(s) with minimum unresolvable camouflaged gates;
4: while there is more than one MFIC eligible
5: select the one minimizes next maximum camouflaged gates number;
6: end
7: brute force search possible functionality combinations;
8: update netlist;
9: while there are unresolvable camouflaged gates become resolvable
10: resolve them;
11: update netlist;
12: end
13: end
14: return the resolved netlist.

Suppose that there are N camouflaged gates in the netlist and each camouflaged gate
can implement any one of the three logic gates {XOR,NAND, orNOR}.When anRE
attacker does not have any more information, there will be 3N possible functionality
combinations to enumerate. However, the circuit partition-based attack algorithm in
Algorithm.1 clearly shows that the attacker can resolve all the camouflaged gates
much more efficiently. Let ni be the number of camouflaged gates in the MFIC we
selected during the i-th iteration (line 3), the brute force search process will search
3ni cases in the worst case. Let ri be the number of camouflaged gates that become
resolvable (lines 9–12) during the same iteration after the i-th MFIC is resolved, we
have�i=1,2,...(ni + ri) = N. Since it takes only two PI patterns to resolve each of the ri
camouflaged gates in line 10 [7], it becomes clear that the complexity of the algorithm
in Algorithm1 is dominated by 3nmax , where nmax = max{ni}, the largest number of
camouflaged gates in the sameMFIC that need to be resolved simultaneously. In real
design, nmax normally is much smaller than N and does not increase with N. Our
experiments on benchmark circuits indicate that nmax is usually small (less than 10)
[8].

Theorem 1 The security of a camouflaged circuit against the circuit partition-based
attack is determined by nmax, the largest number of camouflaged gates in the same
MFIC that need to be resolved simultaneously.

4 Gate Camouflaging-Based Obfuscation 97

4.3 Mitigating the Circuit Partition-Based Attack

From Theorem1, we see that it is crucial to have a large nmax, which means that we
want to keep the camouflaged gates together such that the attacker cannot partition
them into multiple sub-circuits and resolve separately. A gate classification method
can help us to select the to-be camouflaged gates for this purpose.

Definition 2 For a gateG,MFICSG is the set ofMFICPO that G belongs to. Formally,
MFICSG = {MFICPOi |POi is a primary output and G ∈ MFICPOi}.

To compute MFICSG, we can first compute MFICPO for all the primary outputs,
then construct each of the MFICSG by examining which MFICPO gate G belongs to.
For example, for the circuit in Fig. 4.5, we have

MFICO1 = {G1,G2,G3,G5},
MFICO2 = {G2,G3,G4,G6},
thus
MFICSG1 = MFICSG5 = {MFICO1},
MFICSG2 = MFICSG3 = {MFICO1, MFICO2},
MFICSG4 = MFICSG6 = {MFICO2}.
Theorem 2 MFICS is an equivalent relation and thus we can partition the circuit
by putting the gates with the same MFICS into the same equivalent class. That is,
gates G1, G2, …, Gn are partitioned to the same class if and only if MFICSG1 =
MFICSG2 = · · · = MFICSGn.

In the above example, the circuit will be partitioned into three equivalent classes:
{G1, G5}, {G2, G3}, and {G4, G6}. Notice that gates in the same equivalent class
cannot be partitioned further. This is an important feature for the following practical
gate selection method that mitigates circuit partition-based attack.

As a reverse engineering attacker can only assign values to the PIs and observe the
corresponding POs from an unpackaged functional IC,MFICPO will be theminimum
sub-circuit whose function can be tested by the attacker. Therefore, if we select gates
to obfuscate from the same equivalent class, for any MFICPOi of the circuit that the
attacker can attack, either all of the camouflaged gates belong to it, or none of them
belongs to it. Thus the attacker will not be able to partition the camouflaged gates

Fig. 4.5 A circuit example
for gate classification. Gates
in the same class, {G1, G5},
{G2, G3}, and {G4, G6}, are
marked with the same color

98 X. Wang et al.

into multiple sub-circuits to perform attacks individually. This criterion should be
added to the enhanced circuit camouflaging method in [7] for better security.

4.4 Multiplexer-Based Circuit Obfuscation

Recall that the more functionalities a camouflaged gate can achieve, the more dif-
ficult it will be for attackers to resolve the camouflaged gate. As we have demon-
strated above, when the configurable CMOS cell can only implement the function-
ality of XOR, NAND, or NOR gate, there will be two major security concerns. First,
it restricts the selection of the gates to be camouflaged to only these three types
of gates, limiting the value of nmax. Second, such camouflaged gate can be easily
resolved by applying two distinct input patterns (as shown in the examples above).
The multiplexer-based circuit obfuscation method [9, 10] solves this problem.

A 4× 1 multiplexer (MUX) has four data lines {X1, X2, X3, X4}, two selection
bits {A, B} and one output line S that comes from one of the data lines determined
by the value of the selection bits A and B. Specifically, the output can be expressed as

S = A′B′X1 + A′BX2 + AB′X3 + ABX4

By assigning proper values to the data lines, a 4× 1MUX can implement any 2-input
logic function (see Table4.2). For example, when X1 = 0, X2 = 1, X3 = 1, and X4
= 0, the MUX becomes XOR.

4 Gate Camouflaging-Based Obfuscation 99

In multiplexer-based circuit obfuscation, special designed MUX is utilized as
the configurable logic unit to replace conventional gates. Programmable camouflage
connector is used to configure the functionality of configurable logic unit. Similar to
the contacts used in [7], the programmable camouflage connector can be programmed
to be either a connection or an isolation,while appears to be physically identical under
optical or electron microscopy.

More specifically, as shown in Fig. 4.6, the selection lines A and B and output
line S of the multiplexer act as the inputs and output of the configurable logic unit,
respectively. Each input line Xi (i = 1,2,3,4) is connected to Vdd and Vss by two

Table 4.2 A 4× 1 MUX can implement all the 16 2-input Boolean functions

Function Number X1 X2 X3 X4 Logic expression of S

1 0 0 0 1 AB

2 0 0 1 0 AB

3 0 0 1 1 A+0· B=A

4 0 1 0 0 ĀB

5 0 1 0 1 0·A+B=B

6 0 1 1 0 A ⊕ B

7 0 1 1 1 A+B

8 1 0 0 0 Ā · B̄ = A + B

9 1 0 0 1 A � B

10 1 0 1 0 B̄

11 1 0 1 1 A + B

12 1 1 0 0 Ā

13 1 1 0 1 Ā + B

14 1 1 1 0 AB

15 1 1 1 1 const 1

16 0 0 0 0 const 0

Fig. 4.6 Each input line of
the MUX is connected to two
programmable camouflage
connectors, one is configured
to be a connection and the
other to be an isolation

X1 X2 X3 X4

A
B

S

Xi, i=1,2,3,4

Vdd Vss

Programmable
Camouflage Connectors

100 X. Wang et al.

camouflage connectors, but only one is programmed to be a connection, the other
one is programmed to be an isolation. Xi =1 when the camouflage connector that
connected to Vss is configured as a connection, and Xi = 0 when the camouflage
connector that connected to Vdd is configured as a connection.

Algorithm 2 shows a heuristic algorithm to perform circuit obfuscation with such
MUXs. As analyzed in the previous section, we select gates from the same equivalent
class so they cannot be resolved individually. The algorithm makes the gate that
generates the PO, called outGates, of the MFICS of an equivalence class to appear as
black boxes by obfuscating the outGates with MUXs, and blocking at least one input
of the MUX (lines 4–9). Then desired number of gates are iteratively selected from
the class to obfuscate, following the principle of minimizing performance overhead
(lines 10–18). When there are more than one eligible gate class, the algorithm will
get different versions of obfuscated circuits (line 19) and will return the one that
results in minimum performance overhead (line 21).

4 Gate Camouflaging-Based Obfuscation 101

4.5 Conclusions

In this chapter, we study the popular gate camouflaging-based obfuscation with focus
on its security analysis. We use the circuit partition-based attack to demonstrate that
the selection of camouflaged gates is crucial to increase the attack complexity of
reverse engineering. We show that mitigation methods such as smart gate selection
and the use of multiplexer can help to secure gate camouflaging against reverse
engineering. It is our belief that both ‘spear’ and ‘shield’ need to be developed in the
war against attackers.

To make this promising circuit camouflaging technique practical in thwarting
reverse engineering attacks, there still exist many challenges. Perhaps the most sig-
nificant one is that the overhead in applying CMOS camouflaging gates can be rather
high in terms of circuit timing, power consumption, and area, especially when a
high level of protection is needed. How to reduce the overhead incurred by circuit
camouflagingwould continue to be an urgent need. The second challenge is the devel-
opment of countermeasures against the newly proposed and powerful de-obfuscation
attacks based on SAT solver. Such attacks can effectively exclude incorrect function-
ality combinations of the camouflaged gates, successfully bypassing the exponential
complexity of brute force. Although it cannot ensure to be effective in all circum-
stances, it has already posed a serious threat to many circuit camouflaging scenarios.
Finally, it will be interesting to study intrinsic reconfigurable properties of emerging
devices and how they can be utilized for circuit camouflaging.

Acknowledgements Mingze Gao and Gang Qu were supported in part by AFOSR MURI under
award number FA9550-14-1-0351.

References

1. QuG,PotkonjakM(2003) Intellectual property protection inVLSI designs: theory andpractice.
Kluwer Academic Publishers, Dordrecht. ISBN 1-4020-7320-8

2. Torrance R, James D (2011) The state-of-the-art in semiconductor reverse engineering. In:
Proceedings of the ACM/IEEE design automation conference (DAC), pp 333–338

3. Quadir SE, Chen J, Forte D et al (2016) A survey on chip to system reverse engineering[J].
ACM J Emerg Technol Comput Syst (JETC) 13(1):6

4. Chow L, Baukus J, Clark W (2002) Integrated circuits protected against reverse engineering
and method for fabricating the same using an apparent metal contact line terminating on field
oxide. US Patent 20020096776

5. Chow L, Baukus J, Wang B, Cocchi R (2012) Camouflaging a standard cell based integrated
circuit, US Patent 8151235

6. Cocchi RP, Baukus JP, Chow LW,Wang BJ (2014) Circuit camouflage integration for hardware
ip protection. In: Proceedings of the 51st annual design automation conference (DAC 14), New
York, NY, USA. ACM, pp 153:1–153:5

7. Rajendran J, Sam M, Sinanoglu O, Karri R (2013) Security analysis of integrated circuit cam-
ouflaging. In: Proceedings of the ACM conference on computer and communications security
(CCS), pp 709–720

102 X. Wang et al.

8. WangX,ZhouQ,CaiYet al (2016) Is the Secure IC camouflaging really secure. In: Proceedings
of the IEEE international symposium on circuits and systems (ISCAS), pp 1710–1713

9. Liu B, Wang B (2014) Embedded reconfigurable logic for ASIC design obfuscation against
supply chain attacks. In: Proceedings of the design automation and test in Europe (DATE).
IEEE, pp 1–6

10. Wang X, Jia X, Zhou Q et al (2016) Secure and low-overhead circuit obfuscation technique
with multiplexers. In: Proceedings of the ACM great lakes symposium on VLSI, pp 133–136

Chapter 5
Permutation-Based Obfuscation

Zimu Guo, Mark M. Tehranipoor and Domenic Forte

5.1 Introduction

As discussed in previous chapters, hardware obfuscation techniques can be
categorized into chip level [1] and board level [2] according to the platform where
these techniques are implemented. Chip-level obfuscation is performed on inte-
grated circuits (ICs), while board-level obfuscation is performed on printed circuit
boards (PCBs). The chip-level obfuscation techniques can be further classified into
register-transfer (RT) level and gate level as per the design abstraction level. Several
approaches can be exploited to accomplish design obfuscation. Based on the mech-
anism of these approaches, they can be classified as finite-state machine (FSM)
obfuscation, logic encryption, and logic permutation. Figure5.1 presents the rela-
tionship between these approaches and the design levels where they are applied. No
single obfuscation approach can fit all the design levels. Additionally, some of them
can be easily broken when implemented on a particular design level.

An obfuscation-protected system often consists of two operation modes: func-
tional mode and obfuscated mode [3]. These two modes are controlled by one or
more keys/configurations. The functional mode indicates that the system performs
the designed functionalities, while obfuscated mode implies that the system presents
no meaningful behavior.

Z. Guo (B) · M.M. Tehranipoor · D. Forte
University of Florida, Gainesville, FL, USA
e-mail: zimuguo@ufl.edu

M.M. Tehranipoor
e-mail: tehranipoor@ece.ufl.edu

D. Forte
e-mail: dforte@ece.ufl.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_5

103

104 Z. Guo et al.

Fig. 5.1 Hardware
obfuscation classification

During the rest of this section, a brief introduction about each of the obfuscation
approaches is provided. Section5.1.1 talks about chip-level obfuscation techniques,
and Sect. 5.1.2 deals with board-level obfuscation. The rest of the chapter focuses on
chip and board-level logic permutation.

5.1.1 Chip Level

For chip-level application, the following three obfuscation approaches can be applied.

• FSM obfuscation
• Logic encryption
• Logic permutation

As stated in Fig. 5.1, theFSMobfuscation can only be implemented bymodifying
theRTLdesign [4]. A general FSMobfuscation approach involves adding extra states
into the original state transition graph (STG) of the design. These inserted states pre-
vent the system fromentering the functionalmodewithout a correct key/configuration
[4]. This key (which can either be fixed or generated based on the chip’s ID) trans-
forms the chip from the obfuscated mode to the functional mode. Some designs also
contain another FSM called a black-hole FSM which permanently locks the chip if
the applied key is incorrect [5]. The aforementioned FSM-based approach cannot
be applied on gate-level nor board-level designs since neither of them provides the
states which can be modified.

The logic encryption approach inserts locking blocks into the gate-level design
[6]. These blocks can be as simple as a set of XOR gates which mask the internal
signals with the keys or configuration bits. Since these encrypting units block the
internal data/signal paths of the original design, they are also named as logic barriers
[6]. These logic barriers can only be inserted in gate-level and board-level designs
since there is no data/signal path abstraction at RTL level. However, logic encryption
is much easier to be broken on board-level designs. A short answer for this is that
it is much simpler to remove the encrypting blocks from board-level designs than
chip-level ones. More detailed explanations will be given in Sect. 5.1.2.

5 Permutation-Based Obfuscation 105

The logic permutation approach permutes the data/signal paths instead of
encrypting them. This method can be utilized to accomplish the obfuscation goal
at both the gate level [7] and the board level [2]. By adding a permutation block,
the correct orders of internal connections are concealed. Similar to other obfusca-
tion approaches, a key/configuration is assigned to drive the system to the functional
mode.

5.1.2 Board Level

Significantly, different constraints can be observed between chip and board-level
obfuscation. These differences include the design modification opportunities, attack
challenges, and design dimension differences. Limited by these differences, the num-
ber of obfuscation techniques which can be applied on PCBs is less than on ICs. The
design modification feasibility indicates what levels of design can be manipulated to
achieve obfuscation. For instance, the RTL and gate-level design can be obfuscated
for a chip. For a board-level design, no RTL definition can be found. However, the
chip-level intergate connections can be extended to board-level interchip connec-
tions. As a result, the gate-level obfuscation approaches, such as logic encryption
and logic permutation, can also be applied at the board level. However, these obfus-
cation methods may be easily broken when they are applied directly on the board
level under low-cost attacks. The designers should also be aware of the dimension
difference between chips and boards. The onboard connections (e.g., between chips)
are more straightforward to be discovered than the chip-level ones. The differences
mentioned above enable the attackers to identify, bypass, or remove inserted obfus-
cation components from the board more quickly. An example is provided as follows
to clarify how certain chip-level obfuscation techniques fail on the board level.

A simple bypass attack on board-level logic encryption is provided as follows.
Shown in Fig. 5.2a, as logic barriers, XOR and XNOR gates are inserted in the
middle of the in-chip paths [6]. These barriers are embedded within a fabricated
chip and can only be identified and bypassed by applying costly techniques such
as IC reverse engineering [8]. For board-level logic encryption, these logic barriers
are implemented on a dedicated chip. The same attack on the boards can be simply
accomplished by bypassing the logic barriers with jumper wires. As presented in
Fig. 5.2b, the attacker only needs to connect corresponding inputs and outputs of the
logic barrier chip. These jumper wires are presented in red dashed line in Fig. 5.2b.
Even though these connections are not public, the attackers can always find the
correct input/output pairs by matching waveforms. This matching process is named
as the probing attack and will be elaborated on in Sect. 5.8.

106 Z. Guo et al.

Fig. 5.2 Comparison of
logic encryption on chip
level and board level

5.1.3 Chapter Organization

In this chapter, the detailed framework for implementing logic permutation on
both chip level and board level is provided. Section5.2 presents the high-level
permutation-based obfuscation framework. The goals of the attacker, as well as the
designer, are discussed. In Sect. 5.3, the major differences between chip-level and
board-level designs are presented. These differences should be carefully considered
when obfuscating the design on different levels. Section5.4 performs the analyses
on implementing the permutation. These analyses help in determining which paths
are good permutation candidates and why. This section provides a guideline for the
designer to achieve the best obfuscation performance. Section5.5 introduces the per-
mutation networkswhich could be used for obfuscation. These permutation networks
are studied by their capabilities and area utilizations. Capability indicates whether a
permutation network can achieve the full permutation or not. Besides these analyses,
two configuration scenarios of a popularly used permutation network are presented.
According to these scenarios, the attacker’s goal is reanalyzed. Section5.6 discusses

5 Permutation-Based Obfuscation 107

the ways to generate and store the key/configurations used for obfuscation. The
advantages and drawbacks of each key generation/storage approach are provided.

Section5.7 provides a comprehensive flow for evaluating the performance of an
obfuscated system against various attacks. This performance indicates how diffi-
cult an attacker can break the obfuscation. In Sect. 5.8, potential attacks and their
corresponding countermeasures are provided. Both the permutation network and its
key/configurations can be attacked. These attacks are discussed at the chip as well
as board level. The attacks are organized into three classes based on the required
information and resources to carry them out. Next, the countermeasures are grouped
into three levels of security requirement. The coverage of the countermeasures is
also discussed. Finally, the conclusions are summarized in Sect. 5.9.

5.2 Permutation-Based Obfuscation Overview

A general idea of hardware obfuscation is shown in Fig. 5.3. The solid-line rectan-
gles imply the components which belong to the original design. For the chip level,
these components can be either logic gates or registers. For the board level, these
components can be chips on the board. In the original design, these components are
connected directly by fixed wires or traces. Since all the intercomponent connections
are established in the original designs, these products are also functional after being
sold in the market. An attacker with the chip-level or board-level reverse engineering
capabilities can obtain the design. The question mark in Fig. 5.3 denotes the obscu-
rity introduced by the obfuscation which prevents simple reverse engineering. This
mystery can be in the form of interconnection permutation, modification of signal
values, or a combination of the two. In hardware obfuscation, typically a secret key is
used to remove the obscurity and allow the design to behave as originally intended. In
this chapter, we consider that the obscurity is provided by a permutation block. This
permutation block consists of a key-controlled permutation network and permutes
the selected intercomponent connections.

Fig. 5.3 General
obfuscation scheme

108 Z. Guo et al.

Breaking the permutation-based obfuscation can be achieved by discovering the
mystery above. Themost straightforwardway to accomplish this task is through brute
force attacks. Two possible brute force objectives may be realized: (i) retrieving the
original connections and (ii) key entries to the obfuscation chip. In the former, an
attacker tests all the possible intercomponent connections to identify the one that
results in the correct operation. This attack is usually achieved on board level since
it is simple to examine the obfuscated connections by physically connecting them.
On the other hand, the same procedure is nearly impossible to be accomplished
at the chip level. The reason is that connecting the traces within the chip requires
chip-level reverse engineering. Since such reverse engineering is usually destructive,
the chip under test would no longer be functional. Compared with the former brute
force objective, the latter one can be applied on both chip level and board level.
Achieving this attacking goal, an attacker tests all possible key inputs through the
permutation network’s interface until the system functions correctly. Note that this
objective differs from the first one because it depends entirely on the implementation
of the permutation network (i.e., the relationship between keys and input/output
combinations).

The term breaking probability denotes the likelihood of discovering the mystery
through these two brute force methods.We use Pcom to denote the breaking proba-
bility for examining the input/output combinations of the permutation network, and
Pkey denotes the breaking probability for reviewing the key entries. These breaking
probabilities are used to evaluate the performance/strength of the permutation-based
obfuscation. Besides the brute force attack, the feasibility analyses of other potential
attacks are discussed in Sect. 5.8.

5.3 Obfuscation Considerations

Since significant design differences exist between ICs and PCBs, the obfuscation
implementedon these platforms should be considered separately. In this section, these
considerations are classified into two categories: obfuscation-induced overheads
and the cost of obtaining the design.

The obfuscation-induced overheads indicate the amount of area, power, and cost
overheads introduced by obfuscating the original design. Higher overheads make the
obfuscation less practical. For the board-level obfuscation, the permutation block is
usually implemented within an additional chip. The reason for adding another chip is
that the functionalities of the chips in the original design are dedicated and cannot be
used to permute the interconnections. However, this extra component induces over-
head to the original design. Compared with obfuscating the board, accomplishing the
same task within a chip presents fewer overheads. The area overhead is negligible
when inserting hundreds of gates into millions of gates. For chip-level obfuscation,
the obfuscation procedure should be achieved during the IC design phase. The inser-
tion of the permutation block may require redesigning the entire IC.

5 Permutation-Based Obfuscation 109

Learning the layout or schematic of the obfuscated design benefits the attacker
in breaking the obfuscation. Since this design information is usually not public, the
attackers would exploit techniques such as hardware probing [9] and reverse engi-
neering [10] to realize this goal. To learn the internal structure of an IC, an attacker
can apply destructive [10] or nondestructive [11] reverse engineering. Destructive
reverse engineering requires delayering of the chip and capturing high-resolution
images for each layer. With these images, the layout of the chip can be recovered.
However, reverse engineering a PCB is much easier. PCBs can be destructively
reverse engineered by a similar process. However, automated nondestructive tech-
nique based on X-ray can be used to extract the PCB internal structure without
delayering [11]. Many online resources provide low-cost PCB reverse engineering
services. Besides reverse engineering, hardware probing aims to monitor the signals
on a running board or chip. Similar to reverse engineering, probing the board is more
straightforward than the chip. The interchip connections of a board are accessible
simply by probing the traces exposed on the surface [12]. These low-cost board-level
reverse engineering and hardware probing make it harder to hide secrets in a board
than a chip.

5.4 Design Modification

As presented in Fig. 5.3, a mystery (i.e., permutation block) hides the actual inter-
component connections from the attackers. The designer needs to modify the design
by inserting the permutation block and selecting the intercomponent connections
to be obfuscated. For the board level, this permutation block can be implemented
by a complex programmable logic device (CPLD), field-programmable gate array
(FPGA), or application-specific integrated circuit (ASIC). For the chip level, this
permutation block is inserted by modifying the gate-level design.

The intercomponent connections used for obfuscation shouldbe carefully selected.
A smart designer would not involve all the intercomponent connections into the
permutation-based obfuscation. Even though performing this selection strategy
increases the attack difficulty, it may cause significant timing, area, and power over-
heads on both chip and board levels. Further, many onboard chips may be commonly
used parts, whose connections can be easily guessed by an attacker (e.g., clock sig-
nals and analog signal pins). This further constrains the type of interconnections
that may be used for permutation-based obfuscation. Moreover, not all the types of
signals can by permuted by the permutation block (e.g., the CPLD and FPGA can
only take digital signals as input). In summary, three general requirements need to
be met before involving an intercomponent connection into the obfuscation. These
requirements are as follows:

(i) The obfuscated connection should not be easily guessed, matched, or bypassed;
(ii) The obfuscated connection should not be on a timing-critical path; and
(iii) The type of connection (digital or analog) should be manipulated by the per-

mutation block.

110 Z. Guo et al.

Requirement (ii) should be considered when implementing both the chip-level and
board-level obfuscations, while requirements (i) and (iii) are considered only during
the board-level obfuscation. In this section, these design modification requirements
are discussed on board level and chip level, respectively. Besides these three general
rules, other more detailed design frameworks have been provided by researchers [2,
7, 13] to either minimize the overheads or improve the obfuscation performance.

5.4.1 Board Level

When implementing theboard-level permutation-basedobfuscation, all three require-
ments should be considered. First of all, it is crucial to obfuscate the connections
which do not performdedicated functionalities. The term functionality indicateswhat
these ports can be utilized as (e.g., analog-to-digital converter and serial peripheral
interface bus). This information is usually public and can be accessed by anyone
including the attackers (e.g., by publicly available data sheets of the ICs).

As an example, a reference design from NXP is shown in Fig. 5.4. The refer-
ence design is based on Freescale ColdFire V1MCF51MM256CLL microcontroller
unit (MCU). This instrument is a noninvasive acquisition system incorporating a
pedometer, ECG, food intake table, data storage, wireless communication, timer,
and a chronometer. Biometric data can be saved and stored in the integrated Micro
SD Card Reader. A touch-sensing interface allows the user to have control of the
device through a capacitive touch-sensing film. As shown in Fig. 5.4, the digital
accelerometer chip communicates with the MCU via interintegrated circuit (I2C)
bus. This chip only consists of 10 pins, and most of them are either reserved or
required to be attached to the power/ground according to the datasheet. Thus, these
reserved pins cannot be obfuscated. If the rest of the chip’s pins are obfuscated, the
attackers need to figure out the corresponding ports from MCU to break the obfus-
cation. Achieving this task, they may examine the MCU’s ports which provide the
I2C function. According to the datasheet of this MCU, only two sets of port preform
the I2C function. As a result, the attacker could partially figure out the obfuscated
connections. The breaking probability will be significantly increased if these I2C
pins are involved in the obfuscation.

The scenario above can be found in most of the modern embedded systems.
Besides I2C, the serial peripheral interface (SPI) is also widely utilized in interchip
communications. These highly dedicated ports/connections are not good candidates
for implementing obfuscation. On the other hand, examples of good obfuscation can-
didates can be the general-purpose input/output (GPIO) pins. They are generic pins on
an integrated circuit whose behaviors are controllable by the user at run-time. Since
GPIOpins havenopredefinedpurpose, it is exceedingly difficult to discover the actual
connections by their functionalities. Thus, the components which provide a signifi-
cant number of these pins are ideal candidates for obfuscation. A system/PCB can be
protected by the permutation-based obfuscation if it consists of one or more of these
components. CPLDs, FPGAs, andMCUs are examples of the componentsmentioned

5 Permutation-Based Obfuscation 111

Fig. 5.4 Block diagram of NXPs activity monitor reference design

above. These components are named as programmable components since they can
be programmed by the designer [2]. The components connected and controlled by
the programmable components are named as non-programmable components. For
instance, the heart rate monitor and display block in Fig. 5.4 are examples of the
non-programmable components.

The second requirement is related to the timing constraints. Since the permu-
tation block introduces additional propagation delays, the delay-sensitive interchip
connections should be avoided in implementing the obfuscation. These connections
consist of clock inputs, other control signals with strict timing requirements, etc. The
last requirement specifies the types of the signal which can be permuted. Since the
permutation block can only take digital signal as inputs, only the digital signals in
the original design can be permuted.

Besides the connected ports in the original design, the system may not utilize
all the ports of the programmable component. These unconnected ports can also
be used in the obfuscation if they satisfy the requirements mentioned earlier. These
unconnected ports are referred to as dummy ports, while the connected ones are
referred to as real ports [2]. Involving dummy ports increases the total number of
combinations which an attacker needs to examine. All the real ports and dummy
ports are the inputs of the permutation block.

The schematic view of the board-level design modification is shown in Fig. 5.5. In
this figure, the original connections are permuted by the permutation block. More-
over, only part of the permutation block’s inputs are real inputs.

112 Z. Guo et al.

Fig. 5.5 Board-level design modification

5.4.2 Chip Level

For the chip-level application, the internal connections are the paths between gates.
The functionalities of the intergate connections are difficult to be discovered without
knowing the full design. Additionally, since the permutation network is merged into
the gate-level design, all the intergate signals are digital. Thus, all the chip-level
interconnections besides the timing-critical paths can be permuted since they are
tough to be bypassed physically. As a result, the requirements (i) and (iii) need not
be considered in the chip-level permutation-based obfuscation. However, the timing
constraint, which is the requirement (ii), is crucial to be studied when inserting the
permutation network.

Researches in [13] proposed a bus-based hardware IP protection scheme. This
scheme is applicable to a broad category of electronic systems with a primary bus.
Such designs include (1) numerous IP offerings for USB, PCI, PCI-E, AMBA,
and other bus standards typically used in system-on-a-chip designs and computer
peripherals, (2) SRAM-based FPGAs that are programmed through an input bus,
(3) general-purpose and embedded microprocessors, including soft cores, (4) DSPs,
(5) network processors, and (6) game consoles. This requirement is illustrated in
Fig. 5.6 using a SoC architecture as an example.

The bus is equipped with additional bus-key inputs such that only a certain key
combination activates the bus, while other combinations scramble it. In other words,
a lock is merged with the bus and only the correct can remove the lock. According
to Fig. 5.6, this lock can be allocated at the region where the bus is implemented.
Several techniques can be utilized to accomplish this locking, such as bit-wise XOR,
arithmetic transformations, and bit permutations.

5 Permutation-Based Obfuscation 113

Fig. 5.6 Bus-based IP
protection [13]

Comparing the requirements which need to be met in the chip-level and board-
level obfuscation, obfuscating chip-level designs ismore flexible than the board-level
ones.

5.5 Permutation Network

Choosing a proper permutation network and implementing it in this permutation
block play an essential role. The inputs of this inserted permutation block come from
the selected components in the original design. The outputs are connected with the
components in which these obfuscated connections are originally attached to.

In this section, the background of various permutation networks is introduced,
and the best candidate for implementing the permutation-based obfuscation scheme
is selected. As an example, according to the selected permutation network, this
section provides the configuration approaches under different scenarios. Based on
the capability of achieving full input/output permutations, permutation networks can
be classified into blocking and non-blocking networks [14].

Blocking permutation network indicates that the network can only realize par-
tial input/output combinations. Butterfly network [15] and basic Omega network
[16] are two examples of blocking permutation network. These blocking networks
are presented in Fig. 5.7. In this figure, the rectangles represent 2-to-2 switches.
Each of these switches is controlled by a binary number. The key is formed by con-
catenating all these binary numbers. The total number of different keys is directly
related to the number of switches. For instance, either of the permutation networks
shown in Fig. 5.7 consists of 12 switches. The total number of different keys is
212 = 4096 for either butterfly network or Clos network. On the other hand, the
total number of input/output combinations needed for any 8-input permutation net-
work is 8! = 40320. This number is greater than the total number of the keys. This
observation indicates that a large percentage of input/output combinations cannot be
accomplished, no matter how one configures the switches.

114 Z. Guo et al.

Fig. 5.7 Examples of blocking networks

Non-blocking permutation network indicates that the network can realize all
input/output combinations with or without constraints. This permutation network
category consists of three subcategories.

(i) Strict-sense non-blocking network [17] can construct a new path connecting
unconnected inputs and outputs regardless of any pre-established paths. Designers
can switch any two paths without adjusting the rest of the network settings. This path
independence propertymakes strict-sense non-blocking network ideal for a telephone
router. The multiplexer (MUX) array network and Clos network with high-order
switches [18] are two examples of this type of network. A general design of Clos
network is presented in Fig. 5.8. Clos networks have three stages: the ingress stage
(Stage1), middle stage (Stage2), and the egress stage (Stage3). Each stage is made
up of a number of crossbar switches, often just called crossbars. Clos networks are
defined by three parametersn,m, and r. n represents the number of sourceswhich feed
into each of r ingress stage crossbar switches. Each ingress stage crossbar switch has
m outlets, and there are m middle stage crossbar switches. These parameters should
follow the relationship m ≥ 2n − 1, in order to achieve the non-blocking property
[19].

An example of 4-bitMUXarray network is provided in [7]. This network is named
as wire scrambling (WS) cells which shuffle the intergate connections. A generic
WS-cell can be implemented by using multiplexers or pass transistors as shown in
Fig. 5.9. The full shuffler (Fig. 5.9b) meets the definition of strict-sense non-blocking
network, while the partial shuffler (Fig. 5.9c) does not. The permutations which can
be achieved by this partial shuffler are a subset of the permutations that the full
shuffler can achieve. For the MUX array network, to preserve the strict-sense non-
blocking property, the number of MUXs should be equal to the number of the inputs
of the permutation network. Additionally, each MUX should have the capability to
select any input of the permutation network.

(ii) Wide-sense non-blocking network [20] does not provide the strict indepen-
dence guarantee as a strict-sense non-blocking network does. It is still possible to
connect any unused input to any unused output with certain algorithms.

5 Permutation-Based Obfuscation 115

Fig. 5.8 N × N three-stage non-blocking Clos network [19]

Fig. 5.9 a Structure of a generic WS-cell. b MUX base WS-cell structure, Full shuffler. c Partial
shuffler. The multiplexers are shown as the triangles [7]

116 Z. Guo et al.

(iii) The weakest notion of non-blocking permutation network is rearrangeable
non-blocking network [21]. This kind of network is not capable of fully realizing
network configurations without the prior knowledge of inputs’ and outputs’ order.
Benes network [22] is one example of this kind of network.

5.5.1 Area Utilization

Comparisons of implementation area utilization are performed among three per-
mutation networks: basic Omega network (blocking), MUX array-based network
(strict-sense non-blocking), and Benes network (rearrangeable non-blocking). The
Omega network and Benes network consist of 2-to-2 switches, while themultiplexer-
based network is composed by n-to-1 multiplexers. The parameter n depends on the
number of inputs of the permutation network.

These networks are synthesized using Quartus II software and implemented in
Altera MAX V CPLD. Target CPLD consists of 570 logic elements (LEs), which
is the basic logic unit in CPLD. The area utilizations are presented by the percent-
age of exploited LEs. The results are summarized in Table5.1. It can be observed
that the Benes network utilizes about half of the LEs (60%) compared with the
multiplexer-based network (115%). The number of gates needed to achieve each
network increases exponentially as the number of inputs/outputs increases.

Benes network is a good candidate in implementing the permutation block for
the following two reasons: (i) It is apparent that blocking permutation networks
are inappropriate since they produce limited inputs/outputs combinations. For our
case, designers should choose a candidate from non-blocking networks. (ii) Benes
network is much better than multiplexed based network considering the hardware
area utilization. For this application, the strict-sense non-blocking networks have
significant overhead and their benefits for the permutation-based obfuscation are not
needed.

Even though the strict-sense non-blocking networks present much larger area
utilizations, they have a unique advantage, which is presented in Fig. 5.10. According
to this figure, this type of network can route any input to one or more outputs. This
unique benefit provides the designer more choices in intercomponent connection
selection. For certain applications, one signal may be routed to multiple chips/gates
(e.g., the chip selection signal which controls multiple memory chips). In these
applications, the above capability of the permutation network is required.

Table 5.1 Permutation network CPLD area utilization

I/O 4/4 8/8 16/16 32/32

Omega network (%) 2 6 20 23

Benes network (%) 2 7 22 60

Multiplex router (%) 2 10 31 115

5 Permutation-Based Obfuscation 117

Fig. 5.10 TheMultiterminal net connection inWS-cells. a IN(0) should be routed to all the outputs.
b The MUX-based hardware implementation of the routing requirement shown in a [7]

5.5.2 Network Configuration

After selecting a permutation network, it should be configured properly. Since the
Benes network presents several advantages mentioned above, its configuration sit-
uations are discussed in this section as an example. The most basic Benes network
unit is a 1-bit controlled 2-to-2 switch as shown in Fig. 5.11a. The switches operate
in two modes: straight mode when the control bit is 0 and exchange mode when the
control bit is 1. Bits from the obfuscation key are used as the control bits for each
switch. We define each column of switches as one stage. Two Benes network prop-
erties play a crucial role in the configuration process: (i) Recursion indicates that a
Benes network can be split into two identical lower-dimension Benes networks. For
example, in Fig. 5.11a, the 8-input Benes network can be split into two 4-input Benes
networks (shown in red dashed boxes). This splitting can be recursively repeated on
any lower-dimension Benes networks till reaching the basic unit (2-to-2 switch).
(ii) Symmetry indicates that the Benes network possesses rotational symmetry across
the center stage. According to this property, the stages on the left of center stage are
named as Forward stages and the stages on the right as Backward stages. These stage
categories are shown in Fig. 5.11b. A designer can take advantage of these properties
for simplifying the configuration.

Network configurations can be classified into two situations based on the prior
knowledge and the goals.

Situation 1: Designers aim to find the order of outputswith the knowledge of input
order and a predefined key. Since Benes network possesses rotational symmetry, it
always consists of an odd number of stages. The number of stages (S) can be found
by S = 2∗ log2 N − 1, where N is network dimension (i.e., the number of inputs
to the Benes network). Each stage can be mathematically represented by a square
permutationmatrix (PM) derived from the key. A permutationmatrix has exactly one
‘1’ in each row/column and ‘0’ elsewhere. Each permutation matrix represents the

118 Z. Guo et al.

Fig. 5.11 a 8-inputs Benes network and b stage partition

permuted inputs passing the corresponding stage. Multiplying permutation matrices
represents the inputs passing multiple stages coherently. The property of symmetry
benefits designers by simplifying the permutation matrix calculation. With PMs
computed and the input order (I), we can formalize the output order (O) as follows

O = I ×
log2 N−1∏

i=1

PMi (5.1)

where N represents the number of inputs. The same procedure can be repeated for
computing input order with the knowledge of output order and the key.

Situation 2: The designer’s objective is to find one or more keys achieving a
required input/output permutation. This procedure is also known as the network
routing. Prior work such as [23] proposed an efficient routing algorithm based on
searching loops (defined later) of outer stages. Outer stages (OS) are defined as
mirrored stage pairs such as Stage 0 and Stage 4 in Fig. 5.11b. The number of outer
stages K is defined according to the number of inputs N as follows,

5 Permutation-Based Obfuscation 119

Fig. 5.12 Outer stage
schematic [23] a switches
connections and b groups
illustration

K = log2 N − 1 (5.2)

The loop structure is shown in Fig. 5.12. As an example, assume the network input
as [0 1 2 3 4 5 6 7] and the output as [3 7 1 0 4 2 5 6]. To determine the loops, the
proposed approach illustrates each switch as a node labeled x0, y0, etc., in Fig. 5.12b.
The connections between nodes are constructed based on the input/output orders. A
loop collects the interconnected nodes. For example, the dashed-line loop consists
of nodes x0 and y1. Nodes within one loop should not connect the nodes outside
this loop. Besides the outer stage formalized by Stage 0 and Stage 4, similar loop
structures can be found in other outer stages such as Sub Stage 1.1 and Sub Stage
3.1 in Fig. 5.11b. A configuration can be accomplished by assigning ‘0’ or ‘1’ to
each node (switch). As mentioned in [23], two equivalent key configurations can be
assigned to each loop. These two configurations are complementary binary chains,
such as ‘1011’ and ‘0100’.

This multiple-configuration phenomenon can lead tomore than one key achieving
the same input/output combination. In this chapter, we refer to this phenomena as the
multiple-key effect. This effect could diminish the protection strength by increasing
the breaking probability. At the beginning of Sect. 5.2, the breaking probabilities are
classified into two categories depending on what information the attacker attempts
to obtain. This breaking probability refers to the probability of the attacker receiving
the correct key by exhaustive search (Pkey).

5.5.3 Multiple-Key Effect

For an 8-bit Benes network with a 20-bit key, the breaking probability is Pcom =
1/8! = 2.5e − 5 when the attacker examines the input/output pairs. If the attacker
examines the keys instead of input/output pairs, the size of the key space to examine

120 Z. Guo et al.

is Pkey = 220 = 1048576. Besides the Benes network, this effect may be observed in
other permutation networks where the key space is larger than the input/output com-
binations. Let the number ofmultiple keys bem for a given input/output combination.
The following scenariosmayhappen: (i)m/220 < 1/8!,multiple-key effect decreases
the breaking probability. (ii) m/220 > 1/8!, multiple-key effect increases the break-
ing probability. (iii)m/220 = 1/8!, the breaking probability remains unchanged. The
last situation only holds when a one-to-one correspondence between the key and the
input/output combination holds. However, this situation does not hold when certain
permutation networks, such as the Benes network, are implemented. Discovering
minimal, maximal, mean, and medium values of m is invaluable for precisely eval-
uating obfuscation performance of the overall approach.

The breaking probability can be computed as Eq. (5.3) when the attacker chooses
to examine the keys.

Pkey = Number of correct keys

Total number of keys
(5.3)

Since the total number of keys is more than the total number of input/output combi-
nations, the multiple-key effect may or may not increase the breaking probability.

The second configuration situation in Sect. 5.5.2 indicates that the switches within
each loop can be configured in two ways, such as ‘1101’ and ‘0010’. These switches’
configurations are connected formalizing the key. In general, a relationship between
the number of loops and multiple keys (Mkey) can be described in Eq. (5.4).

Mkey =
K∏

k=1

2li = 2
∑K

i=1 lk (5.4)

where K is the number of outer stages (OS), and each of them consists of lk loops.
The number of loops (lk) depends on the input/output combinations.

In order to break the proposed board-level obfuscation by brute force, the
attacker would choose from the following two strategies: Strategy (i) examines
the input/output order combinations and Strategy (ii) examines the keys. These
two strategies correspond to the two types of breaking probabilities: Pcom and Pkey.
Affected bymultiple keyswith the same permutated outcome, the attacker only needs
to figure out one of the keys when choosing the strategy (ii).

Effects of multiple keys on obfuscation strength are studied by comparing the
breaking probabilities of applying strategy (i) and strategy (ii). Applying Strategy
(i), the breaking probability is 1/32! = 3.8004E − 36 for a 32-bit Benes network.
For Strategy (ii), the breaking probabilities can be computed through dividing the
numbers of multiple keys by the total number of keys. The breaking probabilities
under strategy (i) and strategy (ii) are summarized in Table5.2. Row # of multiple
keys represents the minimal, maximal, and mean number of multiple keys under
strategy (ii). These values can be obtained from the number of loops distribution.
Row Probability shows the corresponding breaking probabilities. The mean break-
ing probability is computed based on uniform distribution assumption of the Benes
network input/output combinations.

5 Permutation-Based Obfuscation 121

Table 5.2 Effects of multiple keys

Strategy (i) Strategy (ii)

Min. Max. Mean

Multiple keys N/A 32768 1.8447E+19 8.1859e+07

Probability 3.8004E−36 1.4694E−39 8.2719E−25 3.6706e−36

Since breaking probabilities vary with different input/output combinations when
applying strategy (ii), we compare the mean breaking probability with the breaking
probability under strategy (i). According to Table5.2, exploiting the multiple-key
effect of the Benes network decreases the expected (average) breaking probability.
This means that it is even harder to execute strategy (ii) compared to strategy (i).

5.6 Key Management

The permutation obfuscation is controlled by a key. This key configures the system
(either a board or chip) and removes the mystery (the question mark in Fig. 5.3).
Several options can be exploited to generate and store the key/configuration. Each
of these options has advantages and drawbacks.

The key/configuration can be input into the permutation/obfuscated chip either
internally or externally as shown in Fig. 5.13. The internal mode (Fig. 5.13a) implies
that this key is permanently stored in the on-chip nonvolatile memory such as electri-
cally erasable programmable read-only memory (EEPROM) or Flash. The booting
unit automatically loads the saved configuration into the permutation network during
each power-up. As discussed in Sect. 5.5.3, the stored key can be either the same or
different among the various chips. Reference [13] proposed an IC activation proto-
col which utilizes the Diffie–Hellman (D-H) key exchange scheme. This protocol is
presented in Fig. 5.14.

Fig. 5.13 Key loading modes

122 Z. Guo et al.

Fig. 5.14 IC activation protocol [13]

5 Permutation-Based Obfuscation 123

In this protocol, the obfuscated chip generates a unique identity number exploiting
its embedded physical unclonable function (PUF) structure. The unique ID for the
pertinent chip under test would be used as the D-H component b. The value gb mod p
is then communicated to the design house (user A), who has also generated a unique
ID a corresponding to the chip under test. In turn, A sends ga mod p to B. Now, the
design house and the chip under test share the same secret. The key to unlock the chip
can be computed by this shared secret by a secret one-way function f . This function
is implemented in the hardware of the chip and only known by the designer. If the
chip can be successfully activated, the key will be printed in this chip. The internal
key storage mode is a convenient but unsafe scheme since these memories represent
serious security concerns if they are compromised, and the keys are stolen [10, 24].
Besides the storage vulnerability, the D-H key exchange scheme encounters several
known attacks. These vulnerabilities will be elaborated in Sect. 5.8.

Alternatively, the key can be loaded into the permutation network from outside
the chip during powering up (Fig. 5.13b, c). The configuration information is stored
in the embedded volatile memory and erased after the system loses power. As shown
in Fig. 5.13b, the key is encrypted outside the chip and decrypted within the chip.
Constrained by the power consumption, area overhead, etc., not all the permuta-
tion/obfuscated chips have this decryption capability.Amore general case is provided
in Fig. 5.13c. In this case, the key is loaded into the permutation block directly. For
example, this could be done by the owner of the system through a USB drive or smart
card.

5.6.1 Biometric-Based Key Generation

Besides the binary keys stored in the tokens, this key can be generated from a person’s
biometrics in the external key loadingmodes [25]. Biometrics have been investigated
for identification, authentication, and key generation formany years [26].Most of the
biometric modalities, such iris and electrocardiogram (ECG), present strong capabil-
ity against being duplicated by the attackers. A general ECG-based key generation
flow is shown in Fig. 5.15. In this figure, the upper block illustrates the enrollment
phase. During this phase, the user’s biometric signal is collected and processed. The
features of the processed signal are extracted and quantized to generate the enrolled
key. The helper data shown in the enrollment phase consist of the information related
to the key regeneration process. It is unnecessary to keep these helper data confidential
since the enrolled key cannot be recovered from it. This enrolled key can be utilized
to design the permutation network following the configuration situation 1 provided
in Sect. 5.5.2. The key regeneration phase is presented in the lower block. This phase
processes the following steps: preprocessing, feature extraction, and quantization
with the support of helper data. These steps are the same as the enrollment phase and
can be executed by the hardware integrated into the obfuscated system.

124 Z. Guo et al.

Fig. 5.15 ECG-based binary key generation

Bonding the biometrics and the obfuscated system provides a unique benefit.
Combining the biometric-based key and the obfuscation protection enables a one-
to-one relationship between the device and its operator. Based on the advantages of
utilizing biometric-based keys, they are ideal candidates for some critical applications
such as military devices.

5.7 Obfuscation Performance Evaluation

The obfuscation performance indicates how much work/time an attacker needs to
devote in breaking the obfuscation. A comprehensive evaluation approach should be
provided with the obfuscation framework. This evaluation can be split into two parts:
(i) the feasibility of breaking the obfuscation by brute force and (ii) the robustness
against other attacks.

The part (i) evaluation can be accomplished by providing expected time to break
the obfuscation by brute force. This validation (T) can be calculated in Equation

T = t

P
(5.5)

where t refers to the time needed to verify one brute force guess. This guess can be
either a key or an input/output combination of the permutation block. P refers the
breaking probability defined at the beginning of Sect. 5.2. This breaking probability
can be Pcom or Pkey depending which attacking strategy is applied. Pcom and Pkey

are equal if and only if a one-to-one correspondence exists between the input/output
combination and the key. As proved in Sect. 5.5.3, the expected Pkey is smaller than
Pcom when the Benes network is attacked in a brute force manner. Thus, the break-
ing probability Pcom evaluates the obfuscation performance better when the Benes

5 Permutation-Based Obfuscation 125

network is engaged. For other types of permutation networks, both of Pkey and Pcom

should be computed, and the larger one indicates the obfuscation performance.
The calculation of Pkey only depends on the total number of keys and the number

of correct keys. For calculating the probability Pcom, the result not only depends
on the number of correct input/output combinations and the total combinations. For
the board-level obfuscation, other knowledge from the chips’ datasheets may help to
increasePcom. An example [2] is provided in this section to show how this knowledge
benefits in attacking the obfuscation. In the reference design presented in Fig. 5.4, the
touch-sensing block will communicate withMCU via Rapid GPIO (RGPIO). Not all
ports on the MCU have the capability to work as RGPIO (in fact, only 16 ports). In
this sense, the attacker can shrink the scope by searching the correct connection for
the touch-sensing device from 16 ports instead of all the obfuscated ports on MCU.
In computing the breaking probability Pcom, the functionalities of each obfuscated
ports should be considered.

Part of the board-level obfuscation performance evaluations provided in [2] is
presented in Table5.3. The reference designs are listed below:

• Driving a Stepper Motor Reference Design with High-Performance MCU
• Ultralow Power Multi-sensor Data Logger with NFC Interface Reference Design
• Single-axis Motor Control Reference Design with Integrated Power Factor Cor-
rection

• SimpleLink Multi-Standard CC2650 SensorTag Reference Design

In the table, the column ‘Programmable Component’ provides the models of MCUs
utilized in the reference. The column ‘Break Probability’ refers to the probability
of breaking the obfuscation by examining the input/output combinations. The col-
umn ‘Clock frequency’ indicates the maximal operating clock frequencies of the
programmable components. The parameter t in Eq. (5.5) is assumed as one clock
cycle. Then, the column ‘Validation Time’ is computed by Eq. (5.5). The real vali-
dation time would be much longer than the value in Table5.3 since it is extremely
difficult for the attacker to validate each input/output combination in single clock
cycle. In real world, he needs to observe the behavior of the board to tell whether
this combination under test is correct. This process will be much slower than one
clock cycle. Hence, these results should be considered as pessimistic. According
to this table, besides the Design No.4, the validation times for the rest are longer
than thousands of years. It is impossible to break the obfuscation by brute force in a
reasonable time period. The validation time for Design No.4 is extremely short since
this design only consists of a small programmable component with less than 32 pins.
Among these pins, few of them can be obfuscated. Thus, in order to achieve a good
board-level obfuscation performance, the original design is required to consist of a
programmable component with more than 32 pins.

Besides the brute force attack feasibility analysis, the robustness against other
attacks such as the hardware probing and reverse engineering should also be eval-
uated. The part (ii) evaluation studies the obfuscation’s resistance of other types of
attacks. This part of evaluation is presented in Sect. 5.8. In the same section, the
corresponding countermeasures are also provided.

126 Z. Guo et al.

Table 5.3 Board-level obfuscation performance evaluation

Design no. Programmable
component

Break probability
(Pcom)

Clock frequency
(f) (Mhz)

Validation time
(T)

1 TM4C123GH6PM 9.70E−41 60 5.4E+24 yrs

2 MSP430FR5969 1.34E−18 16 1.5E+03 yrs

3 TMS320F28050 1.23E−32 60 2.6E+24 yrs

4 CC2650 2.81E−15 48 85.8h

5.8 Attack Analyses and Countermeasures

In the section, a list of potential attacks is provided. These attacks are grouped
into three categories based on the attackers’ capabilities. Against these attacks, the
countermeasures are organized by the levels of security requirement.

5.8.1 Potential Attacks

To break the permutation-based obfuscation, the attacker needs to discover the fol-
lowing information: true intercomponent connections or the correct keys as discussed
in Sect. 5.2. The following attacks can be carried out by the attacker to accomplish the
attacking goal. These attacks cover the ones that can be either applied on chip level
or board level. All the following attacks can be implemented on board level, while
only a few of them are applicable on chips. Some of these attacks directly provide the
attackers the information they desired, while some of them reinforce others. Since
different attacks demand various equipment and knowledge, the capabilities of the
attackers are studied.

Brute force attack is the most straightforward one and can be applied on both
board level and chip level.As discussed earlier in Sect. 5.2, this attack entails attackers
trying all the keys or the input/output permutations. The success of such attacks is
highly dependent on the breaking probabilities (either Pcom or Pkey) and the time
required to validate the system for correct behavior. It is extremely difficult for the
attackers to break our obfuscation method by brute force as reported in [2].

Surface trace probing attack: The waveform between permutation block inputs
and the corresponding outputs are the same for every system even though the keymay
be different. Attackers with a working system can probe all the I/Os of the permu-
tation block with a multichannel logic analyzer. By simply matching the waveforms
of the probed signals, attackers would find out the true connections between the pro-
grammable and non-programmable components. This attack can only be applied on
board level since it applies to traces on the surface.

5 Permutation-Based Obfuscation 127

Storage compromise attack: The attacker may attempt to extract the keys/
configurations if they are stored in the system. Several techniques can be utilized
to retrieve the data from the nonvolatile memory [10, 24]. This attack is applicable
on both board level and chip level when the internal key storage mode is applied.
If the keys are the same for different chips/boards, this attack becomes powerful.
Extracting one key from one chip enables the attacker to unlock other chips/boards.

Man-in-the-middle attack [13]: This is a well-known attack on the D-H key
exchange scheme. Differing from the storage compromise attack, this attack provides
an attacker the ability to compute the key for each chip/board. In this attack, the
adversary intercepts designers public value and transmits its public value to the
IC. When the IC sends its public value, the attacker substitutes it with it own and
transmits it to the designer. Therefore, the adversary and designer agree on one shared
key and IC and attacker agree on another shared key. Now, the attacker can simply
decrypt messages transmitted by the designer and the IC and can read and potentially
modify them before re-encrypting with the proper key and sending them to the other
party. This vulnerability is possible because D-H key exchange protocol does not
authenticate the users.

Permutation block reinstallation attack: This attack can only be applied on
the board level. Removing the permutation block from the fabricated chip damages
both the permutation block and the chip. Applying this attack, attackers unmount the
permutation block (typically a CPLD) off the board and reinstall onto other platforms
without damaging the package. Reinstalling the unmounted CPLDmakes the surface
trace probing applicable. This attack does not provide the attacker secret information
directly. However, combining this attack makes surface trace probing attack more
powerful.

Middle-layer probing attack: This is another attack which aims to empower
the surface trace probing attack. Thus, this attack can be only applied on the board
level. Attackers can discover full PCB layout by nondestructive reverse engineering
approaches such as X-ray-based techniques [11, 27]. Guided by the layout informa-
tion, attackers can mill holes for probing every CPLD port. These holes enable the
attacker to access the CPLD ports without damaging other traces on the board. For
the chip-level attack, microprobing could be used to read buses on the chip. This
attack enables the attacker to sniff the data transmitted on the buses. However, this
attack is much more expensive than the board-level probing.

IC Reverse engineering attack: The attacker can fully reverse engineer any chip
on the board and learn completely secret information stored in these chips. These
chips can be either the permutation block in board-level application or obfuscated
chip in chip level. This secret information includes the firmware of the programmable
component, internal or external memory content, and the permutation network struc-
ture. This attack can be applied on both chip level and board level.

In a well-known article from IBM [28], the authors suggest that the attackers
can be grouped into three classes, depending on their expected abilities and attack
strength:

128 Z. Guo et al.

• Class I (clever outsiders):
They are often very intelligent but may have insufficient knowledge of the system.
They may have access to only moderately sophisticated equipment. They often try
to take advantage of an existing weakness in the system, rather than try to create
one.

• Class II (knowledgeable insiders):
They have solid specialized technical education and experience. They have varying
degrees of understanding of parts of the system but potential access to most of it.
They often have access to highly sophisticated tools and instruments for analysis.

• Class III (funded organizations):
They can assemble teams of specialists with related and complementary skills
backed by excellent funding resources. They are capable of in-depth analysis of
the system, designing sophisticated attacks, and using the most advanced analysis
tools. They may use Class II adversaries as part of the attacking team.

The brute force attack, the surface probing attack, and the man-in-the-middle
attack can be achieved by Class I attackers. Since these attackers only have insuf-
ficient knowledge of the system, brute force attack is the most straightforward one.
Equipped with oscilloscopes, this class of attackers can accomplish the surface prob-
ing attacks. ComparedwithClass I attackers,Class II attackers can apply the storage
compromise attack, permutation block reinstalling attack, and middle-layer probing
attack with more sophisticated instruments. The tools required for these attacks
should have the capabilities of uninstalling CPLDs without damaging the package,
applying nondestructive reverse engineering, and drilling holes on a multilayer PCB.
Class III attackers are the only ones that can apply IC reverse engineering attack
since they have access to most advanced analysis tools and greatly funded.

5.8.2 Countermeasures and Attack Coverage

Considering the various classes of attackers and their capabilities, the countermea-
sures are organized into three security requirement levels.

Low-level security requirement: Devices satisfying this security requirement
level directly store the same key in nonvolatile memories. To achieve low-level secu-
rity requirement, we suggest that ball grid array (BGA) packages should be exploited
for both the programmable component and permutation block and at least one mid-
dle layer in the PCB to route connections. The requirement of multiple layers is
easy to meet due to the complexity of current PCBs. For the requirement of BGA
package, a statistical result in Table5.4 shows a significant portion of obfuscation
candidates have BGA/VTLA (a package standard used by Microchip very similar
with BGA package) package among the programmable components with equal to or
more than 64 pins. As discussed in Sect. 5.7, a programmable component with more
than 32 pins is required to guarantee a good obfuscation performance. Using BGA
package introduces no additional area and power overhead. The cost is the same

5 Permutation-Based Obfuscation 129

Table 5.4 Percentage of obfuscation candidates with BGA/VTLA package

Manufacturer �64 pins BGA/VTLA Percentage (%)

Microchip 241 107 44.40

Freescale 85 80 94.12

NXP 93 93 100

Total 419 280 66.82

between BGA package and other packages for the same model of the chip as well.
When routing the PCB, the designer should identify all the connections between the
programmable component and the permutation block and route them in the middle
layers. The routing requirement is named as middle-layer routing for the remainder
of the paper. This step is meant to reduce the attackers’ chance of probing a working
device to identify connections between chips. Low-cost tamper resistance techniques
[29] should also be applied.

Medium-level security requirement: System rebooting is unavoidable for most
industry systems and consumer electronics. Since reapplying keys after every reboot
is often impracticable in this case, these systems need to store the keys in nonvolatile
memory and reload them prior to rebooting automatically. This behavior provides
attackers opportunities of breaking the obfuscation by certain techniques such as the
permutation block reinstalling attack and storage compromise attack.

To obtain medium-level security requirements, the BGA packages and middle-
layer routing need to be engaged.Moreover, instead of storing the same key for all the
chips/boards, each of these systems should have its unique key. Since the internal key
storage mode is applied, we can take advantage of the D-H key exchange scheme
and the one-way function as provided in Sect. 5.6. Combining D-H key exchange
scheme and a unique ID, each chip/board can be assigned a unique key. This unique
ID can be generated by incorporating a chip-level or board-level PUF.

High-level security requirement: In this case, the key is not stored in system’s
nonvolatile memories and needs to be reapplied into the system after rebooting.
Devices satisfying this security requirement should be capable of preventing all
known attacks. Critical applications such as military installations and commercial
devices storing sensitive data require this level of protection. The biometric-based
keys (discussed in Sect. 5.6.1) can also contribute to this level of security requirement.

Since the key is not stored in nonvolatile memory, a D flip-flop chain is utilized
to form a shift register in permutation block or obfuscated chip. One dedicated port
on the chip is designed as the serial key input. When the system is powered off, D
flip-flops lose their values, and the key is destroyed. The user needs to input the key
to the system whenever it reboots. Additionally, BGA packages and middle-layer
routing should also be involved in this level of security requirement.

Considering various attackers’ capabilities with aforementioned security require-
ment levels, the protection coverage is analyzed in Fig. 5.16.

130 Z. Guo et al.

Fig. 5.16 Attacks coverage analysis

Devices satisfying low-level security requirement eliminate the brute force and
surface trace probing attacks applied by Class I attackers. The surface trace probing
attack is unavailable since the obfuscated connections are hidden in themiddle layers.
However, since the key is stored in the onboard nonvolatilememory, Class II attackers
can unmount and reinstall the permutation block onto their platforms (permutation
block reinstalling attack) for applying hardware probing attack. The techniques for
extracting the content from the nonvolatile memory (storage compromise attack)
also directly enable an attacker to learn the key. Since this key is the same among
different boards, this compromised key can be used to active other boards.

Thepermutationblock reinstalling attack, storage compromise attack, andman-in-
the-middle attack can be eliminated if the device is compatiblewith themedium-level
security requirement. Devices under this level of security requirement incorporate
the obfuscation scheme with the following techniques: chip-level/board-level unique
identifier; the D-H key exchange scheme; and the one-way function. This combina-
tion guarantees the following: (i) The permutation block can unlock the system using
the prestored key only when it is attached to its original PCB; (ii) each chip/board can
be only activated by a unique key; (iii) the man-in-the-middle attack is prevented.
The permutation block reinstalling attack can be eliminated by the first guarantee,
and the second guarantee prevents the storage compromise attack. Even if a man-in-
the-middle attack establishes two different channels (one with the IC and one with
the designer), he will not be able to compute the key specific to the IC or to use the
key given for another chip.

Unfortunately, automatically loading the key after system rebooting again makes
middle-layer probing attack available. Instead of reallocating the permutation block,
this attack extracts the board layout nondestructively through techniques such as X-
ray [11]. With this knowledge, Class II attackers can design and create holes to probe
the permutation block pins. This attack can be accomplished during run-timewithout
delayering the PCB. Even if the middle-layer probing attack cannot be achieved due
to extremely complex middle layers, Class III attackers can always learn the key by
reverse engineering the chips.

5 Permutation-Based Obfuscation 131

For completely preventing all known attacks, the key should be destroyed when
the system loses power. High-level security requirement enables devices achieving
this objective through storing the key in volatile memory (e.g., in the embedded D
flip-flop chain). Since Class II and Class III attackers require a working device after
rebooting, it is impossible for them to apply attacks on the devices which the keys
are destroyed after powering off.

5.9 Conclusions

Among various obfuscation-based hardware protection approaches, the permutation-
based technique presents certain advantages. For instance, this technique is the only
one that can be exploited in protecting PCBs. Other obfuscation techniques such as
logic encryption can be easily broken if applied at board level.

The permutation-based obfuscation permutes the intercomponent connections of
either an IC or PCB. The designer needs to be aware of selecting these connections.
Several requirements should be met when determining whether a connection is suit-
able for permutation. These requirements consist of the timing, functionalities, and
signal types. Note that the requirements needed for the chip-level application are
fewer than the ones for the board level. After appropriate connections are chosen,
they will be permuted by a permutation network. The permutation network capa-
bility and its area utilization should be carefully balanced. For certain permutation
networks (i.e., Benes network), the multiple-key effect can be observed. This effect
causes more than one kind of the network’s configuration result to end up with the
same permutation outcome. This effect entails the designer to evaluate the brute force
breaking probabilities in two ways (i.e., the probability when the attacker examines
the keys or the input/output combinations). The larger breaking probability is used
to determine the robustness against the brute force attack. The time required to break
the obfuscation has a direct relationship with this breaking probability. As reported
by the existing work, it may take longer than thousands of years to break a properly
obfuscated system.

Besides the brute force attack, the designer should also evaluate the robustness
against other attacks such as the hardware probing and reverse engineering. Since
these attacks require various equipment and resources, they are classified into three
levels based on the difficulty to execute them. Although some attacks are powerful in
breaking the obfuscation, they can be mitigated by certain countermeasures. Similar
to the classification of the attacks, the countermeasures are grouped into three levels
based on the attacks they cover.

Since the permutation-based obfuscation is controlled by a key/configuration,
various schemes can be exploited to manage the key either internally or externally.
Each of these schemes has its advantages and drawbacks. The more convenient the
key management scheme is, the less secure the system will be.

132 Z. Guo et al.

References

1. Roy JA, Koushanfar F, Markov IL (2008) Epic: Ending piracy of integrated circuits. In: Pro-
ceedings of the conference on Design, automation and test in Europe. ACM, pp 1069–1074

2. Guo Z, Tehranipoor M, Forte D, Di J (2015) Investigation of obfuscation-based anti-reverse
engineering for printed circuit boards. In: Proceedings of the 52nd annual design automation
conference. ACM, p 114

3. Chakraborty R, Bhunia S (2009) Harpoon: An obfuscation-based soc design methodology for
hardware protection. IEEE Trans Comput-Aided Design Integr Circuits Syst 28:1493

4. Chakraborty R, Bhunia S (2010) Rtl hardware ip protection using key-based control and data
flow obfuscation. In: 23rd international conference on VLSI design, VLSID’10. IEEE, pp
405–410

5. Koushanfar F (2012) Provably secure active ic metering techniques for piracy avoidance and
digital rights management. IEEE Trans Inf Forensics Secur 7(1):51–63

6. Baumgarten AC (2009) Preventing integrated circuit piracy using reconfigurable logic barriers
7. Zamanzadeh S, Jahanian A (2016) Higher security of asic fabrication process against reverse

engineering attack using automatic netlist encryption methodology. Microprocess Microsyst
42:1–9

8. Tehranipoor M, Wang C (2011) Introduction to hardware security and trust. Springer Science
& Business Media, New York

9. Handschuh H, Paillier P, Stern J (1999) Probing attacks on tamper-resistant devices. Crypto-
graphic hardware and embedded systems. Springer, Berlin, pp 303–315

10. Quadir SE, Chen J, Forte D, Asadizanjani N, Shahbazmohamadi S, Wang L, Chandy J, Tehra-
nipoor M (2016) A survey on chip to system reverse engineering. ACM J Emerg Technol
Comput Syst (JETC) 13(1):6

11. Asadizanjani N (2015) Non-destructive pcb reverse engineering using x-ray micro computed
tomography. In: ISTFA

12. Zhang F, Hennessy A, Bhunia S (2015) Robust counterfeit pcb detection exploiting intrinsic
trace impedance variations. In: IEEE 33rd VLSI test symposium (VTS). IEEE, pp 1–6

13. Roy JA, Koushanfar F, Markov IL (2008) Protecting bus-based hardware ip by secret sharing.
In: Proceedings of the 45th annual design automation conference. ACM, pp 846–851

14. Waksman A (1968) A permutation network. In: JACM
15. Thamarakuzhi A, Chandy JA (2010) 2-dilated flattened butterfly: A nonblocking switching

network. In: HPSR
16. Mitra D, Cieslak RA (1987) Randomized parallel communications on an extension of the

omega network. In: JACM
17. Giacomazzi P, Trecordi V (1995) A study of non blocking multicast switching networks. IEEE

Trans Commun 43:1163
18. Jajszczyk A (2003) Nonblocking, repackable, and rearrangeable clos networks: fifty years of

the theory evolution. IEEE Commun Mag 41(10):28–33
19. Yang J, Yang J, Li X, Chang S, Su S, Ping X (2011) Optical implementation of polarization-

independent, bidirectional, nonblocking clos network using polarization control technique in
free space. In: Optic Eng 50(4):045 003–045 003

20. Feldman P, Friedman J, Pippenger N (1988) Wide-sense nonblocking networks. SIAM J Dis-
crete Math 1(2):158–173

21. Pippenger N (1978) On rearrangeable and non-blocking switching networks. J Comput Syst
Sci 17(2):145–162

22. Chang C, Melhem R (1997) Arbitrary size benes networks. Parallel Process Lett 7(3):279–284
23. Nassimi D, Sahni S (1982) Parallel algorithms to set up the benes permutation network. IEEE

Trans Comput vC-31(2):148–154
24. Jeong H, Choi Y, JeonW, Yang F, Lee Y, Kim S,Won D (2007) Vulnerability analysis of secure

usb flash drives. In: IEEE international workshop on memory technology, design and testing,
MTDT. IEEE, pp 61–64

5 Permutation-Based Obfuscation 133

25. Guo Z, Karimian N, Tehranipoor MM, Forte D (2016) Hardware security meets biometrics for
the age of iot. In: IEEE International Symposium on Circuits and Systems (ISCAS)

26. Wayman J, Jain A, Maltoni D, Maio D (2005) An introduction to biometric authentication
systems. Springer, London

27. Ahi K, Asadizanjani N, Shahbazmohamadi S, Tehranipoor M, Anwar M (2015) Terahertz
characterization of electronic components and comparison of terahertz imaging with x-ray
imaging techniques. In: SPIE sensing technology + applications

28. AbrahamDG, Dolan GM, Double GP, Stevens JV (1991) Transaction security system. In: IBM
Syst J

29. Karri R, Rajendran J, Rosenfeld K, Tehranipoor M (2010) Trustworthy hardware: Identifying
and classifying hardware trojans. IEEE Trans Comput 43(10):39–46

Chapter 6
Protection of Assets from Scan Chain
Vulnerabilities Through Obfuscation

Md Tauhidur Rahman, Domenic Forte and Mark M. Tehranipoor

6.1 Background

Security and trust have become a critical aspect of modern IC design. Understanding
the basic functionality of a system is essential for designing, analyzing, implement-
ing, and assessing a system.

6.1.1 Cryptographic Algorithms and Security

Cryptographic primitives for data encryption and decryption, signature generation,
and verificationwith the necessary cryptographic protocols are the core of all security
and trust critical applications. System on Chips (SoCs) consist of a large number of
sensitive assets that need to be protected from unauthorized access and malicious
attacks or communications [1].Multiple designblocksmaybe affected by the security
policies because of the involvement of subtle interactions among hardware, firmware,
OS kernel, and applications [1]. It requires end-to-end, layered security beginning
at the device level to protect a device/system from all of these potential attacks.
Cryptographic hardware unit is used to protect critical assets of a SoC from many
forms of attack. It also assures that the code running in the board is authentic and/or
trusted [1, 2]. In most of the cases, cryptographic primitives and schemes are critical
blocks of a security solution. Confidentiality or privacy, integrity, authentication,
identification, non-repudiation, and access control are the fundamental properties that
need to be assured by the secure system. Confidentiality ensures that the information
is secret from unauthorized parties. The integrity confirms that unauthorized party
cannot change ormodify any entity of a secure system. It also assures that the original

M. Tauhidur Rahman (B) · D. Forte · M.M. Tehranipoor
University of Florida, Gainesville, USA
e-mail: rahman.tauhid@ufl.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_6

135

136 M. Tauhidur Rahman et al.

data cannot be transmitted by an unauthorized party. Authentication is a service that
identifies the origin of a message correctly. Non-repudiation prevents the message
sender from denying any actions. Access control restricts the access to a resource
for only authentic users [2–4].

Cryptographic algorithms are used to encrypt and decrypt confidential data. The
secure communication and trusted executions rely on two important schemes: asym-
metric or public-key cryptography and symmetric key cryptography.

A key encrypts a plaintext (confidential data in the form of a word, number, or
phrase) and results in a ciphertext. The same key is used to decrypt the ciphertext
in symmetric key algorithm where a different key is used to decrypt the ciphertext
or encrypted message in public-key algorithm. The quality of both symmetric key
algorithm and public-key algorithm depends on the secrecy of the keys being used
because the algorithms are public. In symmetric key algorithm, the exchange of keys
between two parties is critical since both encryption and decryption use the same
key.

Block ciphers and stream ciphers are the two main divisions of symmetric key
algorithm. Data encryption standard (DES) [3], advanced encryption standard (AES)
[4], and triple DES [3] are the most popular block ciphers. However, AES is efficient
for both hardware and software implementations. On the other hand, stream cipher
encrypts or decrypts message bit by bit. OTP is the most popular example of stream
cipher [5]. However, secure key exchange and storing those keys are the major
challenges to the symmetric key cryptography. Another major problem is that the
sender needs to store many keys for each receivers [6].

Public-key cryptography solves these problem by offering key pairs scheme: one
for encrypting, the other for decrypting [6]. One key may be public and the other
one is private so that only valid receiver can decrypt the message. Simplified key
distribution, digital signature, and long-term encryption are the advantages of public-
key algorithmover symmetric key algorithm.Digital signature ensures that amessage
is authenticated much like a signature or fingerprint on a paper document. RSA,
ElGamal cryptosystem, and Elliptic curve cryptography (ECC) are the most popular
examples of public-key cryptography [6–10].

In cryptography, hash functions are used for digital signatures, random number
generator, one-way functions, message authentication codes (MAC), etc. [6]. Hash
function takes an input of arbitrary or almost arbitrary length to output a fixed-length
uniformly distributed numbers. SHA and MD families are the most popular hash
function in cryptographic algorithm.

6.1.2 Fabless Supply Chain Vulnerabilities: Piracy
and Prevention

In recent years, preventing IC theft, piracy, overproduction, out-of-spec/defective
ICs by contract foundries or assembly is essential to both government and industries.

6 Protection of Assets from Scan Chain … 137

With the high costs associated with modern IC fabrication, most semiconductor
companies have gone fabless, i.e., they outsource manufacturing of their designs to
contract foundries. This horizontal business model has led to many well-documented
issues associated with untrusted foundries including IC overproduction and shipping
improperly or insufficiently tested chips.

Recycled, remarked, cloned, out-of-spec/defective, overproduced, cloned, forged
documented, and tampered ICs are the types of counterfeit ICs that may be encoun-
tered in today’s horizontal semiconductor supply chain. The following types aremost
relevant to this chapter.

• Overproduced: In horizontal business model, any untrusted foundry/assembly
that has access to a designer’s IP can exceed the agreed volume contact and sell
the overproduced ICs on the gray/black market to gain high profit by avoiding the
IP development cost [11–14].

• Out-of-spec/defective: There is no guarantee that untrusted fab or assembly will
perform IC testing correctly, or even at all. Such defective parts may exhibit correct
functionality for the most part and therefore be very difficult to spot in the supply
chain. Untrusted foundry or untrusted third party can sell these rejected or out-of-
spec components to open markets. These components can pose a serious threat to
the quality and reliability of a system [11–13, 15].

• Cloned: A malicious manufacturer can obtain the design files illegally and clone
the device in order to gain huge profit without developing IP. A cloned component
is an unauthorized production without a legal IP and a very popular practice by
the adversaries or untrusted parties. Cloning can be done through theft, espionage,
or reverse engineering. Untrusted party can add changes and resue IP in its own
products. Reverse engineering is usually used to obtain the whole design by tak-
ing their mask data. The mask data is then converted to functional level through
transistor-level netlist and gate-level abstraction. Reverse engineering is also used
to recover unavailable specifications of integrated circuits and to design new ICs
using recovered data. Sometimes cloning can be done by copying the contents of
a memory used in a tag for electronic chip ID, bitstream targeted to programmable
gate arrays, etc. [11, 14, 15].

6.1.3 Overview: IC Testing, Scan Chain, and Industrial
Compression Scheme

6.1.3.1 Scan-Based IC Testing

The main objective of a Design-for-Test (DfT) engineer is to maximize the test
coverage while minimizing the costs and test time associated with testing. Scan
chains are the most effective way to support testability of any ICs. Access to any
nodes and observing them make scan chains based testing easier and popular. Scan
chains based testing covers both functionality of an IC and stuck-at-faults caused by

138 M. Tauhidur Rahman et al.

SFF1 SFF2 SFF3 SFF4

TC
CLK

Combination Logic
SI
PIs

SO

POs

Fig. 6.1 Scan chain based testing [16]

manufacturing defects. Low overhead, effectiveness, and high fault coverage have
made the scan chain the most popular and a standard method of testing digital chips.
Setting and observing every flip-flop of an IC is the most prominent feature of scan
chain based testing.

An example of scan chain is shown in Fig. 6.1. With scan chain, a synchronous
sequential circuit works in two modes: normal mode and test mode. One additional
pin, test control (TC), to the primary I/O is used in order to switch between test
mode and normal mode. A MUX is placed at the input of flip-flop (FF) in such a
way that all FFs can be connected in a shift register for one mux selection and to
work in a normal mode in the other. The standard FFs with MUX are known as scan
FFs (SFFs). Controllability and observability are the two main features that have
made the scan chain testing popular. Controllability refers to the fact that the user
can set the FFs to a desired state, while observability refers to the power to observe
the content of the FFs. The FF registers make up the I/O to the combinational logic
blocks in the chip, so test engineers are able to manipulate the values that are input
(controllability) and view the output (observability) of each block. This is performed
by multiplexing one primary input pin and one primary output pin as the scan-in (SI)
pin and scan-out (SO) pin, respectively. Using the SI pin while the TC is enabled,
a test pattern is scanned into the scan chain as dictated by the system clock [9, 10,
17]. When the entire pattern is scanned in, the TC is disabled, and the chip is run
in normal mode for one cycle storing the responses back into the SFFs. TC is again
enabled to scan out the response, while at the same time, scanning in a new test
pattern to check for new faults that previous patterns were not able to detect. Using
this method of test, sequential logic essentially becomes combinational logic during
test. Creating test patterns that achieve high fault coverage is a much easier task for
combinational logic than it is for sequential logic, significantly speeding up the test
pattern generation process [9, 10, 17].

6.1.3.2 Advanced DfT Structures

Scan chain based testing offers better testability in terms of high fault coverage.
Higher integration and short time to market have been major concerns because of
the rapid growth of test volume of data. The testing time depends on the test data

6 Protection of Assets from Scan Chain … 139

Fig. 6.2 Compression block diagram (source [19])

volume, core’s test data bandwidth, and automatic test equipment (ATE) channel
capacity. The production capacity, time to market, and test cost rely on testing time,
and the goal of test engineers is to reduce the test time with a very high test coverage.
Scan compression is the most commonly used DfT architecture to serve the above
purposes. Figure6.2 shows a typical compression structure which consists of three
distinct blocks: a decompressor, a compressor, and anX-tolerance or X-mask. A long
scan chain is split into multiple shorter scan chains in order to reduce the test cost
and time. The decompression unit expands the input test patterns to fill several scan
chains, and the compression unit compresses the scan outputs (i.e., response) to sup-
port limited number of output pins. XOR, multiple input signature register (MISR),
serial MISR compression, on-product MISR (OPMISR), hybrid compression, etc.
are commonly used compressors. On the other hand, broadcast and spreader are the
most common decompessor techniques. Masking is used to filter out the unknown
states so that they do not corrupt the responses. The unknown values (i.e., Xs) are
due to uninitialized memories and flip-flops, or bus contention [18]. Test stimuli
patterns, which are generated and stored in the tester, are applied to the decom-
pressor. DFTMAX of Synopsys, Cadence encounter with OPMISR, VirtualScan of
SynTest, and Tessent TestKompress of Mentor Graphics are the popular industrial
test compression tools.

6.2 Assets, Threats, and Scan-Based Attack

Security ensures that anything in a circuit is safely stored within itself. The most
common manner of providing security is to hide the information behind some form
of recognition that would be able to tell a valid user from an attacker. Modern day
security in all realms uses this method to protect vital belongings, whether it is a
security code for a home, retinal scanner for a lab, or encryption key for information.
Security relies on making information obscure and difficult to figure out. To build a

140 M. Tauhidur Rahman et al.

secure integrated circuit, a designer must decide what assets to protect, and which
of the possible attacks to prevent. Further, IC designers must also understand who
the players (attackers and defenders) are in the IC design supply chain and have
the means for quickly evaluating the security vulnerabilities and the quality of the
countermeasures against a set of well-defined rules and metrics.

6.2.1 Assets

As defined in [20], asset is a resource of value which is worth protecting with respect
to the adversary. The main limit of a security solution of a system is that it cannot
shield against all type of attacks. So an asset is an important design consideration for
a particular system. An asset may be a tangible object, such as a signal in a circuit
design, ormay be an intangible asset, such as controllability of a signal. Driven by the
increasing demand for secure computation and communication in the era of Internet
of Things (IoT), more assets are created and need to be protected. Sample assets that
must be protected in a SoC are listed below [15, 20, 21]:

• On-device key: Secret key for cryptographic applications.
• Programcontent:Change in algorithm (e.g., changingprogram to controlmileage
reading in automobile or changing program in banking).

• Entitlements: Accessing to sensitive information by right person.
• Random numbers [22]: Used in cryptographic operations.
• Embedded firmware: Low-level program instructions, proprietary firmware.
• Design and user data: Sensitive data such as personal information of clients and
mileage reading of automobile.

• Device configuration: Configuration data of devices, initialization data for secu-
rity processing, etc.

The secret key/random number used for different hardware obfuscation techniques
is also an asset in need of protection.

6.2.2 Features and Assumptions to Perform Attack

To ensure a secure design, a threat model is created for a system that anticipates
different kinds of threats and seeks to mitigate them. The security designer is also
building in layers of protection, seeking to isolate a threat before it can affect secure
operations. The main focus of this chapter is to focus on scan chain based security.
As it has been said before that by designing for testability, a designer is essentially
revealing all information about the chip through the use of scan test. If the aim of
designing a chip is security, it is very difficult to justify the amount of controllability
andobservability that testability aims to provide because of these leaks. The following
features and assumptions are key and resources of scan chain based attack [23].

6 Protection of Assets from Scan Chain … 141

• Assets are secret: Key for obfuscation, cryptographic key, random numbers, etc.
are unknown.

• Scan chain and assets: Secret key is not connected to the scan chain. However,
the flip-flops of locked IC form scan chain.

• Control of TC pin: The attacker has the ability to run the device under normal
mode or test mode interchangeably using TC pin.

• Known cryptographic algorithm:The cryptographic algorithmsmight be known
to attacker.

• Architecture of scan chain is known:Depending on the attackers, the architecture
of scan chain might be known or unknown to the attackers.

6.2.3 Attack Model

In this section, we discuss about different types of potential attackers. There aremany
attackers in the world with many different motivations. They range from the noble,
attempting to make their fellow developers aware of their pitfalls, the malicious,
stealing information that does not rightfully belong to them, and simply the curious
[17, 24]. Classification of attackers is vital for the chip designers to choose the right
countermeasures.

Different attackers target different phases of IC supply chain depending on their
capability, availability, and resources. The attackers can be classified in terms of
attack at different phases of supply chain as follows [25]:

• Authorized test engineer: The attacker has full access to the test mode and he/she
also knows the design but not the assets.

• In-the-field attacker: This type of attacker tries to activate the test features in the
field.

• IP provider: A third party designer who designs hardware/software module for
the system.

• Foundry/assembly in fabless semiconductor model: Foundry/assembly does
not know about the functionality of an IC but may attempt to get the functionality
in order to overproduce or sell the design to a third party.

6.2.4 Scan-Based Attack

6.2.4.1 Attack Principle

The main objective of a test engineer is to shift-in test input vectors and shift-out the
corresponding responses. On the other hand, the attacker’s main objective is to shift-
in the corrupted/controlled data and shift-out the confidential data. The attackers can
observe confidential data by controlling and observing the contents of SFFs. The

142 M. Tauhidur Rahman et al.

Normal
Mode Op.

Scan
Mode Op.

Analyzed
Scan
O/P

Steal
Assets (e.g.

Keys)

Generate
New
I/P

I/P Stimuli
Take

Snapshot

Collected
Enough

Data
I/P Pattern /Take

Snapshot

Generate
New
I/P

Take
Snapshot

Collected
Enough

Data

Normal
Mode Op.

Analyzed
Scan
O/P

Scan
Mode Op.

I/P Pattern

Steal
Assets (e.g.

Keys)

(a) (b)

Fig. 6.3 a Scan-based observability attack and b Scan-based controllability/observability attack
[17, 24]

scan-based attacks can be categorized into the following: scan-based observability
and scan-based controllability/observability attacks. In both cases, an attacker has
access to the test control (TC) pin. The type of attack depends on how a hacker
decides to apply stimuli.
Scan based ob@Scan-based observability Attack: A scan-based observability
attack relies on attackers’ ability to use the scan chain to take snapshots of the
system at any time, which is a result of the observability from scan-based testing.
Figure6.3a shows the necessary steps to perform a scan-based observability attack.
The hacker begins this attack by observing the position of critical registers in the
scan chain. First, a known vector is placed on the primary input (PI) of the chip and
the chip is allowed to run in functional mode until the targeted register is supposed
to have data in it. At this point, the chip is placed into test mode using TC and the
response in the scan chain is scanned out. The chip is reset and a new vector that will
cause a new response only in the targeted register is placed on PI. The chip again
is run in functional mode for the specific number of cycles and then set into test
mode. The new response is scanned out and analyzed with the previous response.
This process continues until there are enough responses to analyze where in the scan
chain the targeted register is positioned. Once the targeted register is determined, a
similar process can be used to either determine a secret key in the case of cryptochips
or determine design secrets for a particularly innovative chip.
Scan-based controllability/observability: Scan-based controllability/observability
attacks take a different approach to applying stimuli to the CUT, which is shown
in Fig. 6.3b. Scan-based controllability/observability attacks begin by applying the
stimuli directly into the scan chain as opposed to the PI. In order tomount an effective
attack, the hacker must first determine the position of any critical registers as was
done for the scan-based observability attack. Once located, the hacker can load the
registers with any desired data during test mode. Next, the chip can be switched to
functional mode using the vector the hacker scanned-in, potentially bypassing any
information security measures. Finally, the chip can be switched back to test mode to
allow the hacker a level of observability the system primary output (PO) would not

6 Protection of Assets from Scan Chain … 143

provide otherwise. As opposed to using a known vector to scan into the chain, hackers
also have the opportunity to choose a random vector to induce a fault in the system.
Based off of the fault-injection side-channel attack [26, 27], by inducing a fault, the
chip may malfunction potentially revealing critical data. The scan chain becomes
an easily accessible entry point for inducing a fault and makes the attack easily
repeatable. In order to protect from such side-channel attacks, additional hardware
security measures must be included in the design.

6.2.4.2 Existing Scan-Based Attacks

As previously explained, attacker can know the information of an asset by control-
ling the state of SFF and observing the scan-out. However, the scan-based attacks
have been more powerful when combined with side-channel attacks. Implementing
encryption algorithms in hardware have revealed quite a few methods to discover
the secret keys through side channels. These side-channel attacks include differen-
tial power analysis, timing analysis, fault injection and, most recently, scan chain
hijacking, as demonstrated in [28]. It is also possible to reveal proprietary informa-
tion through these side-channel attacks making these a particularly large concern to
semiconductor industry. There have been different types of attacks that have been
proposed and/or performed on cryptographic algorithms and DfT structures.

Differential scan-based attack is themost common and useful approach for retriev-
ing secret keys. Figure6.4 shows the basic concept of differential scan-based attack.
In this method, an attacker applies a pair of plaintext {P1,P2} in order to check
the hamming distance between the values of intermediate registers, {SO1, SO2},
collected from scan output. The CUT is first reset and then the plaintext P1 is loaded
through test data input (TDI). Then, after some clock cycles, the contents of interme-
diate registers, SO1, are read through scan output. A test mode select (TMS) is used
to move from normal mode to scan mode. The same procedure is used for the other
plaintext, i.e., P2, and corresponding contents of intermediate registers, i.e., SO2.
The hamming distance between SO1 and SO1 helps to retrieve the secret information.
Figure6.5 shows different types of attack.

Plaintext

Crypto Unit

A
dv

an
ce

d
D

fT
 S

tr
.

P1 P2

Test
Controller

SO1 SO2

Scan In

Scan Out

Scan En.
TMS TDI

TDO
Intermediate Registers

JTAG

Fig. 6.4 Differential scan-based attack

144 M. Tauhidur Rahman et al.

Attacks

Private cipher Public cipher

RSA AES

DES ECC

Attack on advanced
DfT structure

Attack on test interface
protocol

X-masking

MISR

JTAG

IJTAG

Potential threats to IC
supply chain

Fig. 6.5 Existing major scan-based attacks

• Attacks on symmetric/private key encryption: For symmetric key encryption,
the intermediate state of a SFF depends onmultiple secret bits. Yang et al. proposed
the first scan-based attack onDES block cipher [28]. DES algorithm is a symmetric
key encryption developed by IBM. In DES, a 56-bit user key and algorithm are
applied to a 64-bit block of data simultaneously rather than one bit at a time.
Each block is enciphered using the secret key into a 64-bit ciphertext by means
of permutation and substitution. The process involves 16 rounds and can run in
four different modes, encrypting blocks individually or making each cipher block
dependent on all the previous blocks. A brute force attack would take a maximum
of 256, or 72058 trillion attempts to find the correct key. The proposed scan-based
attack is performed in two phases. The structure of the scan chain is determined in
the first phase. This is done by switching the CUT between normal mode and test
mode using TC (see Fig. 6.4). In this phase, at first, the CUT is run in normal mode
for a clock cycle. Meanwhile, the result of XORing plaintext with the key and the
first round is stored in the round register. Then, it is switched back to scan mode in
order to collect the scan outputs. It is repeated another time for different plaintexts
with a hamming distance of 1 byte. The locations of intermediate registers are
found by observing the scan output patterns. In next phase, the attackers find the
round key in a byte-by-byte manner by applying plaintext with a particular. At the
same time, the corresponding word is observed on the round registers. One byte of
the key is deduced by XORing corresponding ciphertext byte and plaintext byte.
The process continues until all of the bytes of the key are deduced.
TheNational Institute of Standards andTechnology (NIST) announced an initiative
to choose a successor to DES because the length of 56-bit key was not enough for
strong encryption in modern computers. The advanced encryption standard (AES)
replaces the DES to support strong encryption for modern computing. AES, also
symmetric key encryption, offers three block varieties, AES-128, AES-192, and
AES-256. Each cipher encrypts and decrypts data in blocks of 128 bits using
cryptographic 128-bit, 192-bit, and 256-bit keys, respectively. Initially, the main
target of researchers was to design an encryption mechanism that is capable of
protecting sensitive information well into the next century. However, an attack on
AES is proposed in 2005 by Yang et al. [29]. The attack was based on differential
scan attack with the fact that two particular inputs to the round function of a block

6 Protection of Assets from Scan Chain … 145

cipher can transform into output vectors with a unique Hamming distance after
one round of encryption. In the proposed attack, the difference of scan contents
is analyzed rather than the direct value itself. The proposed attack in [29] proves
that the AES is vulnerable to scan-based attacks.

• Attacks on public-key encryption: Several scan-based attacks have been pro-
posed to retrieve secret key of public-key cryptography [7, 30]. The Rivest–
Shamir–Adleman (RSA) algorithm is the most popular public-key cryptographic
algorithm. RSA is used in a wide range of key exchange protocols and digital
signature schemes. Nara et al. [30] proposed scan-based attack on RSA using
differential scan-based technique. The attack is focused on a 1-bit time sequence
which is specific to some intermediate value called scan signature. Elliptic curve
cryptography (ECC) is used to give the same level of security provided by an RSA.
The attack on ECCwas reported in [7]. Scan-based attack was proposed on stream
ciphers in [31].

• Attacks on advanced DfT infrastructure: The advanced DfT structure is also
susceptible to scan-based attack [32–34]. Liu et al. [35] showed that the advanced
DfT structure (see Sect. 6.1.3.2) prevents some initially proposed scan-based
attacks such as [28, 29]. They analyzed the complexity of side-channel attacks
on designs with embedded decompression and compaction circuit [35]. Without
compaction, the values stored in the SFFs are directly observable at the test output.
In contrast, each bit of compaction output depends on contents of multiple SFFs.
However, Rolt et al. [34] showed in signature-based attack that it is possible to
retrieve the secret from compacted responses, even if the amount of information
related to the secret key is extremely decreased by observing almost any FF con-
taining information related to the secret data. But, the proposed signature-based
attack focuses only on full-scan circuits with linear spatial response compactors.
Rolt et al. expand the scan-based attack from linear spatial response compactors
to common industrial techniques such as partial scan, X-masking, and MISR, all
techniques for which only part of the circuit state can be observed on scan-out pins
[33].

• Attacks on test interface: Secure test wrappers (protocol countermeasures) are
inserted around the circuit under test (CUT) interface. Test wrappers provide both
test access and test isolation during scan pattern application. The IEEE 1149.1
Boundary scan test, also known as the Joint Test Action Group (JTAG) standard,
has beenwidely accepted andpracticed in the testing community. The standard pro-
vides excellent testing features with low complexity. JTAG enables serial access
to internal scan chains through external pins. Furthermore, instruction memory
access is given to allow uploading and modification of the software/component.
Access to these tools can allow an adversary to steal or change the intellectual
property of an IC. Possible attacks and security for JTAG were presented in
[36, 37].

The IEEE P1687 (IJTAG) standard, designed to access embedded instruments, is
an extension of 1149.1. [38]. In this standard, there is a scan network that allows
access to embedded instruments by opening and closing Segment Insertion Bits

146 M. Tauhidur Rahman et al.

(SIBs). A SIB has to be open to access a new segment of the scan network. The
SIB has to be closed in order to bypass the segment that makes the overall scan
path shorter [38]. An attacker is able to find and open all SIBs by walking a logic
1 (or a logic 0) through the network with iterative DR scans [39].

• Potential threats to IC supply chain:Active metering, logic obfuscation, source
code encryption, and bitstream encryption for FPGA are the major existing solu-
tions to mitigate the reported attacks [12, 13, 15, 40–44]. Many of these schemes
rely on encryption of combinational logic and/or finite-state machine (FSM) block
via obfuscation and locking mechanisms. In the locking mechanism with obfusca-
tion, only a valid specific input vector (i.e., a unique key) leads the IC to its correct
functionality. Otherwise, the circuit/algorithmwill function incorrectly because of
logic obfuscation of the design. In logic obfuscation, extra logic blocks are inserted
in the main design that only become transparent with a valid key. For example,
a group of extra finite states are added in order to lock the FSM and only valid
input sequence can bring the modified FSM to the correct initial state in normal
working mode.
Active metering allows the IP owner to lock and unlock each IC remotely. The
lockingmechanism is a function of the unique ID generated for each IC by a physi-
cally unclonable function (PUF, [45–50]). Only the IP owner/authentic user knows
the transition table and can unlock the IC from this ID. In EPIC [43], each IC is
obfuscated with randomly inserted XOR gates. The XOR gates will only become
transparent with the application of valid key (effectively unlocking the IC). In
this technique, a set of public/private keys needs to be generated by the IP owner,
foundry, and each IC. The primary objective of these approaches is to give the IP
owner control over the exact number of ICs that can enter the market by obfus-
cating the correct behavior. However, Maes et al. [51] presented a technique that
finds the proper functionality and the placement of XORs. The above-mentioned
techniques cannot prevent overproducing completely. Also, there is a chance that
out-of-spec or defective ICs are sent to the market without letting the IP owners
know.
Contreras et al. [12] proposed a technique called secure split test (SST) that pre-
vents overproduction and out-of-spec or defective ICs being in market along with
other IC piracy. This technique locks both functionality and scan chain so that
assembly and foundry do not know what are the responses of corresponding test
vectors. This functional locking and scan locking mechanism helps IP owner to
decide which chips should go to the market. The scan-locking mechanism has to
be very strong to prevent IC piracy. A simple attack scenario is that an attacker
will purchase an unlocked IC from the market and test that IC to get the correct
response. However, a strong scan obfuscation with key is required to prevent this
attack.

6 Protection of Assets from Scan Chain … 147

Fig. 6.6 Existing
countermeasures against
scan-based attacks

Countermeasures

Obfuscation based Non-obfuscation based

UnboundingSecure flipped scan chain

Scan chain scrambling

Lock and key technique

Partial scan chain

Obfuscation based protocol countermeasures (SAM, LSIB, etc.)

Advanced DfT architectures

Built-In Self-Test (BIST)

Obfuscation to prevent of IC piracy

6.3 Countermeasures Against Scan-Based Attacks

Due to the side-channel attacks, a lot of attention has begun to be paid toward the
inclusion of security during design. There have been several countermeasures against
side-channel-based attacks. Traditional side-channel leaks have often been secured
with the use of additional circuitry. Power analysis attacks can be prevented with
noise inducing circuitry or applying additional circuitry to hide supply variations
[52]. Timing attacks can be prevented by adding additional gates, so all operations
are performed in the same amount of time or to add random delays to the processing
time [53]. Finally, fault-injection attacks can be detected with additional logic that
performs the inverse operation of the original logic to check if the result reproduces
the input [54, 55]. There has not been much work done that is directly related to the
security of scan chains. Each countermeasure technique suffers some limitations.

Two classes of countermeasures can be found in literature (Fig. 6.6): obfuscation-
based and non-obfuscation-based.

6.3.1 Non-obfuscation-based Countermeasures

The main non-obfuscated countermeasure techniques and their limitations include
the following:

• Unbounding: A traditional method, which has become popular in smart card
security, has been to blow polysilicon fuses that interrupt interconnects to the test
ports or directly in the scan paths. However, it has been shown that the fuses can be
reconnected with minimally invasive techniques [56]. There is also the option to
completely cut off the test interface with a wafer saw [57]. Either option eliminates
any possibility for in-field testing. Most have gotten around the concern by using

148 M. Tauhidur Rahman et al.

BIST. Probing attack was proposed in [58]. There is also the option to completely
cut off the test interface with a wafer saw.

• Built-In Self-Test (BIST):BIST provides inherent security since the test response
patterns are not available externally. BIST is well known for its numerous advan-
tages such as improved testability, at-speed testing, and reduced need for automatic
test equipment (ATE). In BIST, a linear feedback shift register (LFSR) generates
test patterns and an MISR compacts test responses [59]. In [60], Hafner et al. used
BIST to test the entire cryptochip they designed. It provided high fault coverage
for both the standard cells and memories but did not do fair nearly as well on the
custom-designed portions of the chip. Both BIST and boundary scan were used
in [61]. The fault coverage still was not nearly as high as what could have been
achieved with automatic test pattern generation (ATPG) for scan-based design.
Any security sensitive I/O were excluded from the boundary scan, and it was not
specified how such I/O were tested.

6.3.2 Obfuscation-based Countermeasures

On the other hand, obfuscation-based countermeasures are less expensive and do not
require secure test wrapper. In this technique, a secret function is inserted within the
scan chains in order to obfuscate the contents of scan chains. Existing obfuscation-
based countermeasures for scan-based attacks are presented in Fig. 6.6 and are briefly
introduced below.

• Secure flipped scan chain: In this method, a certain number of inverters are
inserted between randomly selected scan cells [63]. The working principle of
secured flipped scan chain is similar to conventional scan chains and does not
use any additional test key bits or clock cycles. One of the major advantages
of this technique is that the random presence of inverters makes it very difficult
for attackers to ascertain the structure of the scan chain. The randomly inserted
inverters into the internal scan path change the values of scanned data. However,
the positions of inverters can be determined by resetting all the flip-flops in the
scan chain.

• Scan chain scrambling: Hely et al. [62] present a method to prevent invasive
and semi-invasive attacks by modifying the scan chains to internally scramble the
values if the test mode was not properly secured. In order to do so, Hely proposed
splitting up the scan chain into segments that connect to some other segments in the
scan chain. By using a random number generator, the segments would internally
scramble the contents of the scan chain making the output difficult to decipher. In
secure mode, the scan chain elements are ordered in predetermined manner, but
the order is changed randomly in insecure mode (Fig. 6.7).

• Lock and key technique: Yang et al. [29] proposed a method that only prevents
access to sensitive registers during test mode. With the use of a mirror key register
(MKR), they were able to remove the encryption key of an AES hardware imple-

6 Protection of Assets from Scan Chain … 149

ScramblerSI SO

Combinational Logic

FF FFFFFF

Random Number Test Key

Fig. 6.7 Scan chain scrambling [62]

Subchain 1

Subchain 2

Subchain 3

Subchain m

LFSR
Decoder

Test Key Compactor

En1

Enm

En2

En3

Test Security Controller (TSC)

FSM

[En1….Enm]

SO

SI

log
2mSI

TC
CLK

Fig. 6.8 Architecture of lock and key security measure [16]

mentation from the scan chain while the chip was set to insecure mode. Although
this method works effectively to hide the secret key, it only provides security for
special registers and not for the entire scan design. This method also requires a
modification to the JTAG standard [64] in order to be effective.
Lee et al. proposed [16] a Lock andKey securitymeasure that can be used to secure
both single andmultiple scan designs. For either case, the scan chain can be divided
into smaller equal length subchains. Test vectors are not sequentially shifted into
each subchain but rather a linear feedback shift register (LFSR) randomly selects a
subchain to be filled. Figure6.8 shows a general architecture for the proposed Lock
and Key method for single scan design. The goal of this method is to prevent those
who do not hold the test key from manipulating the scan chain and revealing vital
information about the chip. This is ensured by the test security controller (TSC),
which consists of a finite-state machine (FSM), test key comparator, LFSR, and
decoder. The whole procedure can be summarized as follows:

150 M. Tauhidur Rahman et al.

– There are two states the TSC can be in: secure and insecure modes. When the
CUT is initially reset, the FSM sets the TSC into insecure mode and will remain
in this insecure state until TC is enabled.

– It is only after TC has been enabled for the first time and a test key has been
entered that the TSC may exit the insecure state. When a test key is entered and
a user has been ensured to be a trusted user, the FSM allows the TSC to enter
secure mode.

– There are two steps the FSM must take before scanning in a test vector for the
first time. When TC is initially enabled, the FSM will first need to check for
a correct test key. It will feed the first k bits of the test pattern, which makes
up the test key, to the test key comparator. The comparator will then return a
pass or fail response to the FSM, which will then decide the next state. If the
key passes, the FSM will switch the TSC to secure mode allowing predictable
operation of the scan chains and will remain in this state until the CUT is reset.
Otherwise, the TSC will remain in insecure mode and the behavior of the scan
chain will no longer be predictable.

– Assuming the test key comparator returned a pass response to the FSM, the
next q = log2(m + 1) bits will then be fed to the LFSR and used as an ini-
tial seed, where q is the size of the LFSR and m is the number of subchains
being implemented. The seeded LFSR will then use a decoder as an interface to
the subchains for a one-hot output, which individually enables each subchain.
Assuming l is the length of each subchain, the LFSR/decoder generates the next
one-hot output after l clock cycles. Finally, the FSM connects SI to the inputs
of the subchains and the test pattern can be shifted into the scan chain.

– Once the scanning in process is finished for the first round, TC goes low and
the CUT will function in normal mode capturing the response in the SFFs.

– Once the CUT returns to test mode, a new test vector is scanned into the sub-
chains in the same or a new random order, depending on the design, as the
previous vector was scanned in. The response is shifted out at the same time the
new pattern is shifted in.

– If the entered key fails, the TSC remains in insecure mode and will seed the
LFSR with an unpredictable random seed, essentially locking the scan chains
from being used correctly. Since the choice of subchain is pseudorandom due
to the LFSR, it is difficult to predict the response on SO if both the seed and
the configuration of the LFSR are unknown. Even if the configuration of the
LFSR taps is known, if the LFSR is large enough, it is difficult to know the
subchain order without first realizing the initial seed. The need for a test key
also compounds any attempt made by an unauthorized party to use the scan
chain.

• Partial scan chain: Inoue et al. [65] propose partial scan method, based on par-
tial scan and logic obfuscation, to guarantee high security and high testability
simultaneously. This method is used to protect non-scan registers from scan-based
attacks by employing a test controller that enables the test mode only [65, 66].
The proposed attack in [33] is quite effective against partial scan combined with

6 Protection of Assets from Scan Chain … 151

X-masking and X-tolerant logic [66]. Some FFs move to test mode from normal
mode in VIm-Scan with the proper sequence of test keys [10].

• Advanced DfT architectures: Advanced DfT (i.e., compression) architectures
are used to reduce the time overhead for large designs. It has been reported in [35,
67] that the advanced DfT architecture is resilient to scan-based attacks. Without
compression, the contents of SFFs are directly observable. However, the value of
a scan output pin depends on the contents of multiple SFFs, and thus, attacking
advanced DfT structure is more complex compared to DfT structures without
compression unit [35, 67, 68]. However, advanced DfT structures are not possible
in resource limited IPs/designs. Recently, attacks on advanced DfT attacks have
been proposed in [18, 32–34, 66, 68].

• Obfuscation-based protocol countermeasures: Pierce et al. proposed a [69]
detailed hardware specifications for the enforcement of a multilevel access JTAG
system. Their proposed challenge–response-based authentication protocol, they
called it secure authentication module (SAM), is shown in Fig. 6.9. In the power-
up, the JTAG interface is set to a locked state. This locked state prevents access
to the JTAG instruction registers. There are also some dedicated instruction regis-
ters, accessible anytime, for SAM operation. The SAM instruction decoder only
responds to an unlocking request instruction while in the locked state. The user is
not able to change the selected registers through JTAG instruction registers with-
out a complete authentication. At first, to complete the authentication process,
the user sends a challenge request through the time delay integration port. SAM
generates a challenge and loads back them into SAM instruction registers. The
user then shifts out the challenge and reads it serially from the time delay observer
port. The user passes this data to an authentication server along with his user ID
and password. The authentication server sends back corresponding response and
is able to access the internal assets.
An unauthorized access to the JTAG ports must be denied in order to prevent any
form of attacks. Chiu et al. [70] presented a similar approach targeting IEEE 1500
standard. IEEE 1500 is a standard architecture for enabling test reuse and integra-
tion for embedded cores and associated circuitry. This secure test wrapper always
stays in lock mode to prohibit access to internal scan chains and primary inputs
and outputs. Secure test wrapper is only unlocked when a secure test wrapper key
is applied. Das et al. [71] proposed challenge–response-based test protocol using
KATAN lightweight block cipher [72].

Fig. 6.9 Secure
authentication module
protocol [69]

JT
A

G

U
se

r

Se
rv

er

Unlock Request

Challenge

Response, Access Level

Acknowledgement

Challenge (user)

Response, Access Level

152 M. Tauhidur Rahman et al.

An early solution to prevent attacks through JTAG is to disable JTAG access ports
with anti-fuse [36, 73] with the cost of in-field debugging/updates. Controlling
access to JTAG port by using secret keys is a solution to prevent attacks through
JTAG [74]. In this method, a valid key allows to gain access to the CUT. An
invalid/wrong key bypasses the inputs (to TDI) to the output pins (to TDO) (See
Fig. 6.4). Key management and delay introduced by encryption/decryption are
open issues of this technique’s applicability in real-life JTAG (for debugging).
However, a reliable physical unclonable function is able to solve this unique key
management problem.Buskey et al. [75] proposed a three-entity protocol to protect
the JTAG. In this method, an independent authentication server is used to manage
authentication keys of each individual authenticated user/person. The server uses
asymmetric encryption for secure communication. The advantage of this technique
with the previous two-entity protocol (i.e., [74]) is that the key is unknown to the
users/attackers. However, the high level of security provided by the three-entity
protocol is achieved by the cost of area and time overhead compared to previous
two-entity protocol. Park et al. [37] proposed a superior technique of [75].
On the other hand, the Segment Insertion Bit (SIB) in the IEEE P1687 standard is
used to add or subtract scan path segments based upon the data scanned through the
scan chain on aDRscan. In themethod proposed byDworak et al. [39], information
related to key bits, LSIBs (locking SIBs), P1687 network structures, and secure
instrument vectors are encapsulated in a license file. A secure communication
is performed in order to make sure that there is no unauthorized access. In this
method, each licensed copy of the software works only with a specific set of
selected chip IDs (from physical instance). They also proposed a method to ensure
communication between the chips on the board and the test access software tool. In
thismethod, the software requests an encrypted chip ID from the board (Fig. 6.10a).
The software also sends a random key (s-key) with the request. The board XORs
s-key, real-time clock value, and chip ID and forms the encrypted chip ID (see
Fig. 6.10b) and sends them to the software tool. The software allows access to the
LSIB(s) if and only if the returned ID matches a permitted ID in the license file.

• Obfuscation to prevention of IC piracy: Secure split test (SST) [12, 13, 15] is
a technique which prevents IC piracy. SST gives control over testing back to the
IP owner. In SST, each chip and its scan chains are locked during test and only
the IP owner can interpret the locked test results and unlock passing chips. The
IP owner is the only entity who can interpret the locked test results and unlock
passing chips. In this way, SST can prevent overproduced, defective, and cloned
chips from reaching the supply chain. The quality of security depends on the qual-
ity of scan-locking mechanism. The SST uses scan chain scrambling technique to
perturb the test responses.
Scan-locking block is used to perturb the test response so that an outsider cannot
determine the true test response from even an unlocked IC. Figure6.11 shows
the scan-locking block and its mechanism. The yellow blocks represent the scan
chain of the design and the test structure commonly used in practice while the
rest are required to implement SST. Test data compression is required to over-
come the limitations of the automatic test equipment (ATE). The outputs of the

6 Protection of Assets from Scan Chain … 153

Chip on board
containing
embedded
instruments

hiding behind
LSIBs

SW containing
Database of
authorized

chip IDs

Request chip ID
in encrypted form

Return encrypted
chip ID

Open LSIB(s) for
instrument access only

if chip ID matches

S-key

Chip ID RT clk

Encrypted
chip ID

Op onal

(a) (b)

Fig. 6.10 a Authorized access to the chip/board under test and b Encrypting chip ID with data
received from software tool (and real-time clock) [39]

SO-XOR

Scan-chain 1

Scan-chain 2

Scan-chain NSC

SI1

SI2

SINSC

C
om

pr
es

si
onI/P

C
om

pa
ct

io
n

SO1

SO2

SONSC

SOSB1

O/P

SBCU
TSIP

To the 2nd input
of SO-XOR

CSB/PSB

LFSR

SOSB2

SOSBNsc

SOIN1

SOIN2

SO
INNSC

LFSR

OTP3

TS

RIP

TSIP

TIP

CSB

CSB can be placed
After compaction unit

Fig. 6.11 Scan-locking block for preventing leakage information of assets

scan chains are scrambled through a scrambling block (SB) in order to perturb
the functionally locked/unlocked response. The output of scrambling block (SB)
is sent through SO-XOR blocks for further perturbation. Scrambling blocks are
an essential component in telecommunication and microprocessor communica-
tion [76]. The scrambling block can be completely shuffled or partially shuffled.
Complete scrambling block, CSB, is designed such that all inputs to the block can
potentially go to any output pin received by a compaction circuit. On the other
hand, a partial scrambling block (PSB) is designed in such a way that an input to
the scrambling block is connected with only NSB different outputs. Non-blocking
crossbar switch [76] is a strong candidate for the scrambling block and can be
designed with pass transistors or transmission gates.
The security strength depends on the type of shuffling block. A CSB will provide
maximum security but higher cost.NSB can be tuned with the consideration of area
overhead and desired security strength. The scrambling block’s controlling unit
(SBCU) assures that all inputs to the scrambling block, either CSBor PSB, are seen
at the output. The logic of SBCUdepends on the PSB or CSB structure and number
of scan chains (NSC). The output of LFSR, which controls the SBCU, changes in

154 M. Tauhidur Rahman et al.

each clock cycle and depends on initial seed, TSIP = TS ⊕ TIP, which is known by
the IP owner only. TIP is the value stored in OTP3. In foundry, TIP is set to all 0s or
all 1s. But in assembly, the IP owner sends a random number, RIP, independent to
IC and TRN values. The initial seed of LFSR, TSIP, is different for assembly and
foundry for the same IC; hence, SBCU performs different scrambling (see more
in Sect. 6.3). The output of CSB/PSB is sent through an SO-XOR block to add
another layer of security. The scrambling block has to be ready before intermediate
output of scan chain, SOIN , is ready. In order to avoid timing failure, LFSR can be
activated in the negative clock edge so that scrambling block is ready and SOIN

can pass through it.
The SO-XOR block is controlled by TSIP. Depending on the second input of XOR
in SO-XOR block, the output of scrambling block flips or goes transparent and is
known by the IP owner only (as TS is revealed to the IP owner). The scrambling
block and SO-XOR block make it impossible for untrusted fab and untrusted
assembly to determine the correct output responses.
The number of scannable flip-flops have been increasing significantly with the size
of designs. Traditional full-scan test method, occupying between 5 and 20% of
silicon area, is expensive in terms of test time and test volume because of long scan
chains. Designs require on-chip test hardware to compress the time andmemory of
ATPG. The size of scan chains increases with gate counts and flip-flops, but ATE
has only limited number of channels. Compaction circuitry is used to support the
ATE. MISR is commonly used to compact the scan chain responses. CSB requires
large area to support all scan chains in order to get high-quality perturbed response.
The cost reduces with the size of CSB; for example, a 10× 10 complete shuffle
crossbar switch requires 100 transmission gates whereas a 4× 4 requires 16. The
CSB provides the best security level but requires large area. In order to reduce the
cost, CSB can be placed after the compactor (we name it alternative place). An
r : 1 compactor reduces r2 times area for scrambling block.

6.4 Conclusion

In this chapter, we discussed the importance of cryptodevices inmodern semiconduc-
tor industry because many IPs need to make available in public.We also reviewed the
scan chain security to protect the assets of an IP/design.We focused the importance of
scan chain security to prevent digital right management. We reviewed existing scan-
based attackmodels and existing countermeasures.We also presented the importance
of IC piracy and its prevention. We also discussed how obfuscation can protect an
asset from scan-based attack. We also presented a scan chain locking mechanism
and key exchange mechanism to prevent IC piracy.

6 Protection of Assets from Scan Chain … 155

References

1. Ray S, Jin Y, Raychowdhury A (2016) The changing computing paradigm with internet of
things: a tutorial introduction. IEEE Des Test Comput 33(2):76–96

2. McGill K (2013) Trusted mobile devices: requirements for a mobile trusted platform module.
http://www.jhuapl.edu/techdigest/TD/td3202/32_02-McGill.pdf

3. National Institute of Standards and Technology, FIPS-46-3: Data Encryption Standard (DES).
October 1977, reaffirmed in October 1999

4. National Institute of Standards and Technology, FIPS197: Specification for the Advanced
Encryption Standard (AES), 2001

5. Vernam GS (1926) Cipher printing telegraph systems for secret wire and radio telegraphic
communications. J Am Inst Electr Eng 55:109–115

6. Wolf M, Weimerskirch A, Wollinger T (2007) State of the art: embedding security in vehicles.
EURASIP J Embed Syst 2007:074706

7. Nara R, Togawa N, Yanagisawa M, Ohtsuki T (2010) Scan-based attack against elliptic curve
cryptosystems. In: 15th IEEE Asia and South Pacific design automation conference, pp 407–
412

8. Tehranipoor M, Wang C (2011) Introduction to hardware security and trust. Springer, New
York

9. Ali SS, Sinanoglu O (2015) Scan attack on elliptic curve cryptosystem. In: IEEE international
symposium on defect and fault tolerance in VLSI and nanotechnology systems (DFTS), IEEE

10. Paul S, Chakraborty R, Bhunia S (2007) VIm-scan: a low overhead scan design approach for
protection of secret key in scan-based secure chips. In: 25th IEEE VLSI test symposium, pp
455–460

11. Guin U, Tehranipoor M, DiMase D, Megrdichian M (2013) Counterfeit IC detection and
challenges ahead. ACM SIGDA Newsl 43(3):1–5

12. Contreras GK, Rahman MT, Tehranipoor M (2013) Secure split-test for preventing IC piracy
by untrusted foundry and assembly. In: 2013 IEEE international symposium on defect and fault
tolerance in VLSI and nanotechnology systems (DFT), IEEE

13. Rahman MT, Forte D, Shi Q, Contreras GK, Tehranipoor M (2014) CSST: an efficient secure
split-test for preventing IC piracy. In: 2014 IEEE 23rd North Atlantic test workshop (NATW),
IEEE

14. Maes R et al (2009) Analysis and design of active IC metering schemes. In: IEEE international
workshop on hardware-oriented security and trust, 2009. HOST’09, IEEE

15. RahmanMT, Forte D, Shi Q, Contreras GK, Tehranipoor M (2014) CSST: preventing distribu-
tion of unlicensed and rejected ICs by untrusted foundry and assembly. In: IEEE international
symposium on defect and fault tolerance in VLSI and nanotechnology systems

16. Lee J, Tehranipoor M, Patel C, Plusquellic J (2007) Securing designs against scan-based side-
channel attacks. IEEE Trans. Dependable Secure Comput 4(4):325–336

17. Rolt D et al (2014) Test versus security: past and present. IEEE Trans Emerg Top Comput
2(1):50–62

18. Rolt J et al (2013) A novel differential scan attack on advanced DFT structures. ACM Trans
Des Autom Electron Syst 18(4):58

19. Choosing the Right Scan Compression Architecture for Your Design. http://www.cadence.
com/rl/Resources/white_papers/Test_Compression_wp.pdf

20. ARM inc. Building a Secure System using TrustZone Technology. http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf

21. Peeters E (2015) SoC Security Architecture: Current Practices and Emerging Needs, DAC
22. Rahman MT, Xiao K, Forte D, Zhang X, Shi J, Tehranipoor M (2014) Ti-TRNG: technol-

ogy independent true random number generator. In: Proceedings of the 51st annual design
automation conference, ACM

http://www.jhuapl.edu/techdigest/TD/td3202/32_02-McGill.pdf
http://www.cadence.com/rl/Resources/white_papers/Test_Compression_wp.pdf
http://www.cadence.com/rl/Resources/white_papers/Test_Compression_wp.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

156 M. Tauhidur Rahman et al.

23. Banik S,ChowdhuryA (2013) Improved scan-chain based attacks and related countermeasures.
In: Paul G, Vaudenay S (eds) Proceedings of the 14th international conference on progress in
cryptology, INDOCRYPT 2013 -, vol 8250., Vol 8250Springer, New York, pp 78–97

24. Tehranipoor M, Lee J (2012) Protecting IPs against scan-based side-channel attacks. Introduc-
tion to hardware security and trust. Springer, New York, pp 411–427

25. Hly D, Kurt R, Karri R (2011) Security challenges during VLSI test. In: Proceedings of the
9th IEEE NEWCAS conference

26. Goering R (2004) Scan Design Called Portal for Hackers. http://www.eetimes.com/news/
design/-showArticle.jhtml/articleID=51200154

27. Scheiber S (2005) The Best-Laid Boards. http://www.reedelectronics.com/tmworld/article-/
CA513261.html

28. YangB,WuK,Karri R (2004) Scan based side channel attack on dedicated hardware implemen-
tations of data encryption standard. In: Proceedings of the IEEE international test conference,
pp 339–344

29. Yang B, Wu K, Karri R (2005) Secure scan: a design-for-test architecture for crypto chips. In:
Proceedings of the 42nd annual conference on design automation, pp 135–140

30. Nara R, Satoh K, Yanagisawa M, Ohtsuki T, Togawa N (2010) Scan-based side-channel attack
against RSA cryptosystems using scan signatures. IEICE Trans Fundam Electron Commun
Comput Sci E93–A(12):2481–2489

31. Liu Y, Wu K, Karri R (2011) Scan-based attacks on linear feedback shift register based stream
ciphers. ACM Trans Des Autom Electron Syst (TODAES) 16(2):1–15

32. Da Rolt J, Das A, Di Natale G, Flottes M-L, Rouzeyre B, Verbauwhede I (2012) A new scan
attack on RSA in presence of industrial countermeasures. In: Schindler W, Huss SA (eds)
Proceedings of the third international conference on constructive side-channel analysis and
secure design (COSADE’12). Springer, Heidelberg, pp 89–104

33. Rolt J et al (2012) Are advanced DfT structures sufficient for preventing scan-attacks. IEEE
30th VLSI test symposium (VTS). Hyatt Maui, HI, pp 246–251

34. Rolt J et al (2011) New security threats against chips containing scan chain structures. 2011
IEEE international symposium on hardware-oriented security and trust (HOST). San Diego,
CA, pp 110–110

35. Liu C, Huang Y (2007) Effects of embedded decompression and compaction architectures on
side-channel attack resistance. In: 25th IEEE VLSI test symposium (VTS’07). Berkeley, CA,
pp 461–468

36. Rosenfeld K, Karri R (2010) Attacks and defenses for JTAG. IEEEDes Test Comput 27(1):36–
47

37. Park K, Yoo SG, Kim T, Kim J (2010) JTAG security system based on credentials. J Electron
Test 26(5):549–557

38. Dworak J, Crouch AL (2015) A call to action: securing IEEE 1687 and the need for an IEEE
test security standard. In: IEEE 33rd VLSI test symposium (VTS). pp 1–4

39. Dworak J, Conroy Z, Crouch A, Potter J (2014) Board security enhancement using new locking
SIB-based architectures. In: International test conference

40. Chakraborty R, Bhunia S (2009) HARPOON: an obfuscation-based SoC design methodology
for hardware protection. IEEETransComput-AidedDes IntegrCircuits Syst 28(10):1493–1502

41. Chakraborty R, Bhunia S (2010) RTL hardware IP protection using key-based control and data
flow obfuscation. In: 23rd international conference on VLSI design, 2010. VLSID’10, IEEE

42. Jeyavijayan R et al (2013) Security analysis of integrated circuit camouflaging. In: Proceedings
of the 2013 ACM SIGSAC conference on computer and communications security, ACM

43. Roy A, Koushanfar F, Markov IL (2008) EPIC: ending piracy of integrated circuits. In: Pro-
ceedings of the conference on design, automation and test in Europe, ACM

44. Clark A (2009) Preventing integrated circuit piracy using reconfigurable logic barriers
45. Rahman MT, Forte D, Fahrny J, Tehranipoor M (2014) ARO-PUF: an aging-resistant ring

oscillator PUF design. In: Proceedings of the conference on design, automation and test in
Europe, European Design and Automation Association

http://www.eetimes.com/news/design/-showArticle.jhtml/articleID=51200154
http://www.eetimes.com/news/design/-showArticle.jhtml/articleID=51200154
http://www.reedelectronics.com/tmworld/article-/CA513261.html
http://www.reedelectronics.com/tmworld/article-/CA513261.html

6 Protection of Assets from Scan Chain … 157

46. Xiao K, Rahman MT, Forte D, Huang Y, Su M, Tehranipoor M (2014) Bit selection algorithm
suitable for high-volume production of SRAM-PUF. In: IEEE international symposium on
hardware-oriented security and trust (HOST), 2014, IEEE

47. Hosey A, Rahman MT, Xiao K, Forte D, Tehranipoor M (2014) Advanced analysis of cell
stability for reliable SRAM PUFs. In: IEEE 23rd Asian test symposium (ATS). IEEE

48. MazadyA, RahmanMT, Forte D, AnwarM (2015)Memristor PUF: a security primitive: theory
and experiment. IEEE J Emerg Sel Top Circuits Syst 5(2):222–229

49. Rahman MT, Rahman F, Forte D, Tehranipoor M, An aging-resistant RO-PUF for reliable
key generation. IEEE Trans Emerging Topics Comput, PP(99):1-1. doi:10.1109/TETC.2015.
2474741

50. Rahman MT, Forte D, Rahman F, Tehranipoor M (2015) A pair selection algorithm for robust
RO-PUF against environmental variations and aging. In: 33rd IEEE international conference
on computer design (ICCD), IEEE

51. Maes R, Schellekens D, Tuyls P, Verbauwhede I (2009) Analysis and design of active IC
metering schemes. In: IEEE international workshop on hardware-oriented security and trust,
(2009) HOST ’09. Francisco, CA, pp 74–81

52. Ratanpal GB,Williams RD, Blalock TN (2004) An on-chip signal suppression countermeasure
to power analysis attacks. IEEE Trans Dependable Secure Comput 1(3):179–188

53. Kocher, PC (1996) Timing attacks on implementations of diffieHellman, RSA, DSS and other
systems. In: Proceedings on 16th annual international cryptology conference on advances in
cryptology, pp 104–113

54. Karri R, Wu K, Mishra P (2001) Fault-based side-channel cryptanalysis tolerant architecture
for Rijndael symmetric block cipher. In: Proceedings of the IEEE international symposium on
defect and fault tolerance in VLSI systems, pp 427–435

55. Karri R, Wu K, Mishra P, Kim Y (2002) Concurrent error detection schemes for fault-based
side-channel cryptanalysis of symmetric block ciphers. IEEE Trans Comput-Aided Des Integr
Circuits Syst 21(12):1509–1517

56. Skorobogatov SP (2005) Semi-invasive attacks: a new approach to hardware security analysis.
Ph.D. Dissertation, University of Cambridge

57. Kommerling O, Kuhn MG (1999) Design principles for tamper resistant smartcard processors.
In: Proceedings of the USENIX workshop on smartcard technology. pp 9–20

58. Kmmerling O, Kuhn MG (1999) Design principles for tamper resistant smartcard processors.
In: Proceedings of the USENIX workshop on smartcard technology

59. Ahmed N, Tehranipour MH, Nourani M (2004) Low power pattern generation for BIST archi-
tecture. In: Proceedings of the 2004 international symposium on circuits and systems, 2004.
ISCAS ’04, vol 2. pp II-689-92

60. Hafner K, Ritter HC, Schwair TM,Wallstab S, DeppermannM, Gessner J, Koesters S, Moeller
W-D, Sandweg G (1991) Design and test of an integrated cryptochip. IEEE Des Test Comput
8(4):6–17

61. Zimmermann R, Curiger A, Bonnenberg H, Kaeslin H, Felber N, Fichtner W (1994) A 177
Mbit/s VLSI implementation of the international data encryption algorithm. IEEE J. Solid-State
Circuits 29(3):303–307

62. Hely D, Flottes M-L, Bancel F, Rouzeyre B, Berard N, Renovell M (2004) Scan design and
secure chip. In: Proceedings of the 10th IEEE international on-line testing symposium, pp
219–224

63. Sengar G, Mukhopadhyay D, Chowdhury DR (2007) Secured flipped scan-chain model for
crypto-architecture. IEEE Trans CAD 26(11):2080–2084

64. Standard IEEE, 1149.1-2001, (2001) Standard Test Access Port and Boundary-Scan Architec-
ture. Technical report, IEEE Standards Board

65. Inoue M, Yoneda T, Hasegawa M, Fujiwara H (2009) Partial scan approach for secret infor-
mation protection. In: 14th IEEE European test symposium. Seville, pp 143–148

66. Ege B, Das A, Batina L, Verbauwhede I (2013) Security of countermeasures against state-of-
the-art differential scan attacks. In: TRUDEVICE. Radboud University Nijmegen, Nijmegen

http://dx.doi.org/10.1109/TETC.2015.2474741
http://dx.doi.org/10.1109/TETC.2015.2474741

158 M. Tauhidur Rahman et al.

67. Mentor Graphics ST,Whitepaper YA (2010) High quality test solutions for secure applications.
Wilsonville, OR, USA. Mentor Graph. Corp., Apr. 2010

68. Rolt J et al (2012) A new scan attack on RSA in presence of industrial countermeasures,
COSADE 2012. Lect Notes Comput Sci 7275:89–104

69. Pierce L, Tragoudas S (2013) Enhanced secure architecture for joint action test group systems.
IEEE Trans Very Large Scale Integr (VLSI) Syst 21(7):1342–1345

70. Chiu GM, Li JCM (2012) A secure test wrapper design against internal and boundary scan
attacks for embedded cores. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(1):126–134

71. Das A, Knezevic M, Seys S, Verbauwhede I (2011) Challenge-response based secure test
wrapper for testing cryptographic circuits. In: IEEE European test symposium, ETS

72. Canniere C, Dunkelman O, Kneevi M (2009) KATAN & KTANTAN - A family of small and
efficient hardware-oriented block ciphers, CHES

73. Hely D et al (2007) Securing scan control in crypto chips. J Electron Test 23(5):457–464
74. Novak F, Biasizzo A (2006) Security extension for IEEE std 1149.1. J Electron Test Theory

Appl 22(3):301–303
75. Buskey RF, Frosik BB (2006) Protected JTAG. 2006 international conference on parallel

processing workshops (ICPPW’06). Columbus, OH, pp 406–414
76. Tamir Y, Chi HC (1993) Symmetric crossbar arbiters for VLSI communication switches. IEEE

Trans Parallel Distrib Syst 4(1):13–27

Part III
Finite State Machine (FSM) Based

Hardware Obfuscation

Chapter 7
Active Hardware Metering by Finite State
Machine Obfuscation

Farinaz Koushanfar

7.1 Introduction

The escalating cost of updating and maintaining silicon foundries has caused a major
paradigm shift in the semiconductor business model. Many of the key design houses
are entirely fabless (i.e., without a fabrication plant), outsourcing their fabrication
to third-party providers. Several design companies that have traditionally fabricated
their designs in house either have formed alliances to share the cost, or have moved
parts of their fabrication offshore to third-party providers. In the older vertical mar-
ket model, in-house fabrication together with the clandestine nature of the packaged
chips was enough for protection of design IPs. In the present business model, how-
ever, fabrication outsourcing requires revealing the design intellectual property (IP)
to external entities, creating many opportunities for IP infringements. The problem
is exacerbated by contracting the offshore foundries to lower the labor and manufac-
turing cost, since many such fabrication plants are in countries with malpractice of
IP enforcement laws [1]. The Alliance for Gray Market and Counterfeit Abatement
has estimated that about 10% of the leading edge technology products available on
the market are counterfeits [2]. The problem arises since the mass production of inte-
grated circuits (ICs) m a common mask prohibits individual marking and tracking
of each siliopiece. Several government and industry task force with members from
the leading semiconductor companies are actively working to address the important
problem of counterfeiting [3–5].

To enable tracking of the designer IPs and ICs, a suit of new security mechanisms
and protocols called hardware metering was introduced [6–11]. Metering enables
the designers to have post-fabrication control over their designed IPs by passively
or actively monitoring or counting the number of produced ICs, by monitoring their
properties and usages, and by remote runtime enabling/disabling. The term hardware

F. Koushanfar (B)
University of California, San Diego, CA, USA
e-mail: farinaz@ucsd.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_7

161

162 F. Koushanfar

metering was originally coined by Koushanfar, Qu, and Potkonjak to refer to meth-
ods for unique functional identification of ICs made by the same mask [6, 7]. Their
metering methods were the first that could be used for specific functional tagging
of ICs, or for monitoring and estimating the number of fake components in case of
piracy detection. Methods for unique identification of chips based on process varia-
tions were suggested in 2000 [12], but hardware metering was the first to integrate
the unique chip identifiers into the IC’s functionality. Note that hardware meter-
ing is fundamentally different from IP fingerprinting, watermarking, and foundry
identification [13, 14]. IP watermarking adds the same sign to all instances of a
design [15–19], while fingerprinting gives a unique signature to each IP (typically
on a reconfigurable hardware) [20, 21]. Foundry identification addresses the prob-
lem of finding the original fabrication facility of an IC by evaluating certain chip
characteristics [22].

Passive methods for metering by post-silicon processing or adding programmable
parts were proposed as early as 2001, but the first set of active methods for metering
or tracking ICs was introduced in 2007 [9]. Several subsequent metering methods
have been suggested since [10, 23–29]. For a comprehensive review and novel clas-
sification of metering, we refer the interested readers to survey on the topic [30–32].
What is most exciting about metering is that the mechanisms for integrating the
unique IDs in functionality can be used to enable a host of other important hard-
ware security applications [33–39], including but not limited to third-party IP and
system protection [8, 40–46], obfuscation [47–49], FPGA security [45, 50, 51],
anti-tampering/reverse engineering [52–54], as well as IoT security [55–58].

In hardware metering, each chip is uniquely and unclonably identified, for exam-
ple, by using a physical unclonable function (PUF) module [59–61]. The PUF typ-
ically extracts the unique delay or current variations on each chip to assign a set
of unclonable identifiers (IDs). To meter, the IDs are linked to parts of the IC’s
functional components, e.g., the combinational part or the sequential part of the
computer circuitry. This way, a part of the design functionality is uniquely tailored
to the unclonable properties (fingerprint) of the IC and is used to form a unique
lock for each IC’s functionality [9]. Only the designer who has the knowledge of the
high-level design would be able to find the specific key to unlock each IC. Although
we discuss a specific PUF in this chapter, it is important to note that one can build
new metering and obfuscation systems by employing more novel and reliable PUF
structures, e.g., [27, 60–77].

Security of the earlier active control methods is ensured by one of the two
approaches: (1) expanding the finite state machine (FSM) of the functional spec-
ification such that the added states and transitions are hidden in high-level design
and are only known to the designers [9, 23] or (2) employing a known cryptographic
primitive such as public-key cryptography, secret sharing, or AES [24–26]. The sur-
veys on active metering distinguish between the two methods [30, 31]. The first set
of methods based on introducing locks embedded in the behavioral description of
the design are called internal active IC metering. The second set of methods based
on embedding locks within the design and interfacing (controlling) the access by an
external cryptography function are termed external active IC metering.

7 Active Hardware Metering by Finite … 163

This chapter presents a detail description and comprehensive security analysis of
the FSM-based metering methods based upon the model and analysis suggested in
[10]. The locking and controlling methods introduced here are internal and sequen-
tially designed. Although combinational-only internal locks have been used in the
context of external active hardware metering [24–26], those locks are interfaced
with cryptographic hardware that is often sequentially implemented. Therefore, the
control method as a whole is a sequential design. Furthermore, the power/area over-
head of the cryptographic module interfaced with the combinational locks is greater
than the overhead of the internally embedded control circuitry. We show that the
construction of locks by finite state manipulation and compilation during the hard-
ware synthesis and interfacing to a unique PUF state is an instance of an efficiently
obfuscatable program under the random oracle model. The significance of this con-
struction and security proofs for the obfuscated FSMgoes beyond hardwaremetering
and extends to the earlier work in information hiding and obfuscation of sequential
circuits, e.g., [47, 48]. The highlights of this chapter are as follows.

• We comprehensively discuss the first known method for active IC metering and
IC piracy prevention which allow uniquely locking each manufactured IC at the
foundry. The locking structure is embedded during hardware synthesis by FSM
modifications such that the IC would not be functional without a proper chip-
specific passkey that can only be computed by the designer (IP rights owner).

• Weshow the analogy between the hardware synthesis transformations and program
compilation. We pose the problem of extending the FSM for hiding the locks as
an instance of the classic program obfuscation problem.

• We demonstrate a construction of the locks within FSM as an instance of a gen-
eral output multi-point function family. This family is known to be effectively
obfuscatable in the random oracle model. Therefore, the locks can be efficiently
hidden.

• Automatic low overhead implementation of secure metering lock structure during
synthesis is demonstrated by obfuscatable topology construction, secure passkey
selection, and iterative synthesis.

• Potential attacks and security of the presented method against each attack are
discussed.

• We show the low overhead and practicability of the suggested metering technique.

The remainder of this chapter is organized in the following way. The next section
introduces the global flow. Background and assumptions are outlined in Sect. 7.3.
Details of the active hardware metering method are presented in Sect. 7.4, where
secure hiding of the locks within the FSM structure is discussed. We also briefly
mention a number of potential applications of active metering. Section7.5 discusses
the details of the automatic synthesis and implementation. Attacks and countermea-
sures are discussed in Sect. 7.6. Overhead of this method is discussed in Sect. 7.7.
We conclude in Sect. 7.8.

164 F. Koushanfar

7.2 Flow

Figure7.1 shows the global flowof thefirst knownactive hardwaremetering approach
as described in [9]. Similar flows were later adopted for both internal and external
active integrated circuits metering, e.g., [25, 26]. There are typically two main enti-
ties involved: (i) a design house (a.k.a., designer) that holds the IP rights for the
manufactured ICs and (ii) a foundry (a.k.a., fab) that manufactures the designed ICs.

The steps of the flow are as follows. The designer uses the high-level design
description to form the design’s behavioral model in the FSM format. Next, the
FSM is modified so that the extra locking structure composed of additional states
and transitions is integrated within the FSM. The term boosted finite state machine
(BFSM) is used to refer to the modified FSM. The subsequent design phases (e.g.,
RTL, synthesis, mapping, layout, and pin placement) take their routine courses. The
foundrywould receive theOASISfiles (orGDS-II) and other required information for
fabricating the chips, and also the test vectors. The test vectors include the challenge
set (input) to be applied to the PUF unit on each IC [61]. The design house typically
pays the foundry an upfront cost for a mask to be lithographed from the submitted
OASIS files and for the required number of defect-free ICs to be fabricated.

Building a mask is a costly and complex process, involving multiple fine steps
that should be closely controlled [78, 79]. Once the foundry lithographs amask, mul-
tiple ICs could be fabricated from this mask. Because of the specific PUF responses
integrated within the locks on the chips, each IC would be uniquely locked (nonfunc-
tional) upon fabrication. During a start-up test phase, the fab inputs the challenge
vectors to the chips that would run through the scan chains. The states stored in the
chip FFs (a.k.a., power-up state or the start-up state) would be scanned at this point.
The scanned FF values are sent back to the design house (IP rights owner) who has
the full specifications of the hidden states. The design house is the only entity who
could compute the unlocking sequence for each locked chip. This article introduces
provably secure BFSM construction methods, so the transitions from each power-up
state to the original reset state can be efficiently hidden. Additionally, the designer
often computes the error correcting code (ECC) to adjust for any further changes to
the start-up state because of the noise or other sources of physical uncertainty. The

Fig. 7.1 The global flow of the suggested IC activation approach [9]

7 Active Hardware Metering by Finite … 165

ECC is very important since a few of PUF response bits may be unstable and alter at
a later time because of noise, environmental conditions (e.g., temperature), or circuit
instability [80]. The key and the ECC would then be sent back to the fab.

The nonvolatile on-chipmemorieswould be used to store the power-up test vectors
(PUF challenges), the unlocking sequence (passkeys), and the relevant ECC bits on
each pertinent activated IC. From this point on, every time the IC starts up, it would
automatically read the passkey and error correcting codes and use them for traversing
the chip to aworking state.As it can be easily seen, activemetering is nicely integrated
within the regular phases of the hardware design, synthesis, and tape-out flow. The
only added phase is the key exchange protocol for unique activation of each IC. The
common functional and structural tests would be done on the unlocked ICs. We note
that if a defect or a fault affects the states and sequences traversed during the start-up
state or the traversal from the locked start-up state to the functional state, the IC
cannot be unlocked and would be defective.

7.3 Background and Assumptions

We introduce a number of general terms and concepts that are used throughout the
chapter. More specific definitions would be described as necessary.
Design description We consider the case where the sequential design represents a
fully synchronous flow. The description of the design input/output functionality is
publicly available. We assume that the functional description is fully fixed, and the
I/O behavior is fully specified. Our metering technique is applicable when the IP
is available in structural HDL description, or in form of a netlist that may or may
not be technology dependent. Thus, it can protect both firmware and hardware [15].
During the IC design flow, the designer maps the circuit behavioral description to a
specific technology provided by the target foundry. Several logic-level optimizations
(including timing closure, power optimizations, and synthesis transformations) are
applied by the designer. Very often, a designed IP is integrated within a larger circuit
or a system-on-a-chip.
Finite State Machine Digital sequential circuits are commonly modeled by a finite
state machine (FSM). An FSM is an abstract machine that can be in one of a finite
number of states at a certain time instant. Transition between states can be triggered
by an input. At each transition, the next state depends on the inputs and the current
state. Two types of FSMs are distinguished in digital circuits: a Moore machine
where the outputs are function of only the current state and a Mealy machine where
the outputs are function of both the current state and the input.

A deterministic FSM is often formally defined by a sextuple,
FSM = (Σ ,Δ,S,s0,δ,λ), where

• Σ �= Φ is a finite set of input symbols;
• Δ �= Φ is a finite set of output symbols;
• S={s0,s1,. . . }�= Φ denotes a finite set of states;

166 F. Koushanfar

Transition
Function

δ

States
S

Output
Function

λ

Inputs, Σ Outputs, ∆

Fig. 7.2 Finite state machine

• s0 is the FSM “reset” state;
• δ (s, i) is transition function on s and i (S × Σ → S); and
• λ (s, i) is output function on s and i (S → Δ for Moore, S × Σ → Δ for Mealy).

In δ and λ definitions, s is the state and i is the input.
Figure7.2 illustrates the structure of an FSM. The transition function δ and the

output function λ are designedwith combinational logic. The dotted connection from
the inputs to the output function is present only in the Mealy machine.

To represent the transitions and output functions of the FSM, we use the state
transition graph (STG) with nodes corresponding to states and edges defining the
transition conditions based on the current state and the edge inputs. Throughout the
chapter, we use the terms STG and FSM interchangeably.

We demonstrate FSM with two simple examples. Figure7.3 shows the STGs for
an edge detector circuit that detects the flip of the input bit b. Input Σ = {b} and
output Δ = {pos_edge, neg_egde}. The “reset” state is marked with double circle.
In the Moore state machine in Fig. 7.3a, the output is displayed inside the circles
depicting states since it is function only of the current state, while in the Mealy state
machine in Fig. 7.3b, the output is displayed along the edges since, in this case, it
depends on both the current state and the inputs.

The FSM is commonly used for realizing the control path of a circuit. The STG
for a memory control unit placed between the processor and the memory is shown
in Fig. 7.4. The input from the processor Σ = {access, r/w, burst} and the output
to the memory Δ = {rd_en,wr_en}. The system powers up in the “reset” state and
stays in that state as long as access = 0. Both rd_en andwr_en is set to 0 at this state.

1

0

0 1

s0

00

s1

00

1

s2

00

s3

0

s4

1

10

0

010

1

(a) Moore machine

0/00

0/00 1/00

s0

s1

1/00

s2

1/10

0/01

(b) Mealy machine

Fig. 7.3 STG for edge detection

7 Active Hardware Metering by Finite … 167

s2

01

11x

s0

00

s1

01

s2

10

s2

01

s4

10

10x

0xx

xx0

xx0

xx1

xx1

xxx

xxx
s4

10

xxx

xxx

Processor
Memory

Controller
Memory

access

r/w

burst

rd_en

wr_en

Memory Controller FSM

Fig. 7.4 STG for memory controller

If access is set to 1, the FSM asserts either rd_en if r/w = 1 orwr_en if r/w = 0. If
burst = 0, the system performs only one read/write operation and returns to the idle
state. If burst = 1, the selected operation is performed three times before returning
to the idle state. Only the Moore style implementation is presented here for space
consideration.
Assumptions The hardware metering objective is to protect the ICs so they cannot
be pirated or overbuilt by the foundry. There are a number of realistic assumptions
that we make about the potential adversary (foundry). First, the foundry has access
to layout (e.g., OASIS or GDS-II files) and the netlist but does not have access
to FSM because: (i) the layout files, the netlist, and the test vectors are sufficient
for fabricating the chip and a high-level behavioral description is not needed, and
(ii) the details of the FSM behavioral description are a key part of the designer’s IP
and trade secret that maintains their revenue in the competitive semiconductor mar-
ket. Second, a significant design modification would impact power, yield, and most
importantly timing. In such scenarios, redoing timing, physical design, verification,
and debugging would require an effort equivalent to designing a new IC and a new
mask. Therefore, the attack cost and complexity do not justify its benefits. Third,
the scan chains are available and it is possible to scan and read out the FF values
storing the FSM states on each chip. Fourth, the designer’s objective is to protect
her/his design from piracy and other related tampering. The designer’s objective is
not to protect the overall functionality. For example, while designing a H.264 media
player, the different submodules are known at the protocol level and at the block
level. However, the specific details of a design are to be protected by the design
house (so it cannot be readily reproduced) for competitive advantages reasons.

7.4 Secure Active Hardware Metering Methodology

During the IC design flow, a designer devises the behavioral specification in a FSM
format. At this stage, the FSM will be modified to include multiple added states and
transitions. This modified FSM is called the boosted finite state machine (BFSM).
The initial power-up state of the BFSM is determined by the PUF and is unique for
each IC.

168 F. Koushanfar

Fig. 7.5 The PUF response
is fed to the FFs storing the
states of the BSFM. The
original states are shown in
dark, and the added states are
demonstrated in white color
on the STG that represents
the BFSM

7.4.1 Designing a BFSM

Wefirst demonstrate theBFSMmodification and activemeteringmechanisms using a
small example.We then discuss parameter selection for ensuring the randomness and
uniqueness of each activated IC. Comprehensive details of the parameter selection
for a secure BFSM construction are discussed in later subsections.

On the small example in Fig. 7.5, the original FSM states are shown in dark color
on the right side of the figure. The BFSM includes the original FSM, along with a
number of added states that are shown in white. Assume that the original FSM has
|S| states. Therefore, it can be implemented using K = log|S| FFs. Now assume that
we add to the number of states in FSM to build a BFSM with |S′| + |S| states that
can be implemented by K ′′ = log{|S′| + |S|} FFs. Observe that for a linear growth
in the number of FFs denoted by K ′ = K ′′ − K , the number of states exponentially
increases.

On the left side of Fig. 7.5, there is a PUF unit that generates random bits based
on the unclonable process variations of the silicon unique to each chip. A fixed
challenge is applied to the chip upon power-up. The PUF response is fed to the FFs
that implement the BFSM. Since there are K ′′ = log{|S′| + |S|} FFs in the BFSM,
one would need K ′′ response bits from the PUF for a proper operation.

As shown in Fig. 7.5, upon the IC’s power-up, the initial values of the design’s
FFs (i.e., power-up state) are determined by the unique response from the PUF
on each chip. The PUF challenges are determined by fixed test vectors given by
the designer. For a secure PUF design, the probability of the response should be
uniformly distributed over the possible range of values [62]. The number of added
FFs can be set such that the value 2K

′′
>> 2K . In other words, the value K ′′ is set by

the designer such that for a uniform probability of selecting the state, the probability
of selecting a state in the original FSM is extremely low. We will leverage more on
this point in the next subsection.

Because there are exponentially large number of added states, there is a high
probability that the unique PUF response on each chip sets the initial power-up state
to one of the added states. Note that unless the design is in one of the original states, it
would be nonfunctional. Therefore, the random FF states driven by the PUF response
would place the design in a nonfunctional state. One would need to provide inputs
to the FSM, so it can transition from this nonfunctional initial power-up state to the
functional reset state of the original FSM shown by double circle on the example.

7 Active Hardware Metering by Finite … 169

For the IP rights owners with access to the BFSM state transition graph, finding
the set of inputs for traversing from the initial power-up state to the reset state
(shown by double circle on the figure) is easy. All what is needed is to form a path
on the graph and use the input values corresponding to the path transitions (from
the STG description), so the chip transitions to the reset state. However, there is
only one combination from exponentially large number of possibilities for the input
corresponding to each edge transition. Thus, it would be extremely hard for anybody
without access to the BFSM edge transition keys to find the exact inputs that cause
traversal to the original reset states. The access to the full BFSM structure and the
transition function on its edges is what defines the designer’s secret. The passkey
for unlocking the chip is the sequence of inputs that can traverse the BFSM states
(describing the control component of the chip) from the initial random power-up
state to the reset state. Note that although the initial power-up state is random, the
assumption is that for a given PUF input (challenge), the response remains constant
over time for one chip.

A set of passkeys (α1, α2, α3) required for traversal from the power-up state to the
reset state is shown on Fig. 7.5. This locking and unlocking mechanism provides a
way for the designer to actively control (meter) the number of unlocked functional
(activated) ICs from one blueprint (mask), and hence the name active hardware
metering. In Sect. 7.4.3, we will describe a number of other important applications
of this active control method.

While constructing the BFSM for hardware metering purposes, a number of
requirements must be satisfied. The first set of requirements has to do with the
probability of randomly powering up in a state that was not in the original FSM. Let
us assume that by design, we require this probability to be lower than a given value
ε. This low probability is satisfied by the following two conditions:
(i) The value |S′| should be selected such that the probability of not powering up in
an added state is smaller than ε:

P(power-up ∈ S′) = S′ − S

S′ + S
≥ 1 − ε. (7.1)

(ii) The value |S′| should be selected so that the probability of two ICs having the
same start-up states is extremely low. Assume that we need to have m distinct ICs
each with a unique start-up state. Fortunately, for a linear increase in the number
of FFs, we obtain an exponential increase in the number of states. The unclonable
response from the PUF is used to set each IC in a unique random state. To achieve
completely random and independent states, one can employ the birthday paradox
to calculate this probability and to set it to low values. Consider the probability
Pcollision(S′,m) that no two ICs out of a group of m will have matching start-ups out
of |S′| equally possible states. Assume S′ >> S. Start with an arbitrary chip’s start-

up. The probability that the second chip’s start-up is different is 2K
′′ −1
2K ′′ . Similarly, the

probability that the third IC’s start-up is different from the first two is 2K
′′ −1
2K ′′ . 2

K ′′ −2
2K ′′ .

The same computation can be extended through the 2K
′′
-th start-up. More formally,

170 F. Koushanfar

Pcollision(K
′′,m) = 2K

′′ − 1

2K ′′ .
2K

′′ − 2

2K ′′ . . .
2K

′′ − (m − 1)

2K ′′

= 2K
′′ !

(2K ′′ − m)!2m.K ′′ . (7.2)

For a large value of 2|S′|, the formula can be asymptotically approximated [81]

m =
√

2|S′|+1 × ln

(
1

1 − Pcollision(|S′|,m)

)

(7.3)

This equation yields the approximate closed formula:

Pcollision(|S′|,m) = 1 − e
− m2

2|S′ |+1 . (7.4)

Another set of important requirements has to do with the BFSM edge traversal
and state reachability. For an STG with the initial reset state (denoted by s0), we
call this graph reset state reachable if and only if for each and every state in STG
there is at least one sequence of inputs (α1, α2, . . . , αk) of arbitrary cardinality such
that it can be applied to the pertinent state, and the final transition destination (after
applying the input sequence) is the reset state. From this definition, it is clear that
the desired BFSM needs to be reset state reachable.

7.4.2 Secure BSFM Construction

In this subsection, we show that our construction of finite state manipulation, com-
pilation by hardware synthesis, and interfacing to the unique IDs coming from the
PUF comprise an instance of an efficiently obfuscatable program.

7.4.2.1 Secure Program Obfuscation

Let us go through the steps of hardware design and synthesis flow. The designer
starts at a functional description level that can be demonstrated by a FSM, whose
states and transitions are known. Given the FSM model, for each input, the designer
would be able to compute the corresponding output. The specifications are typically
implemented in a hardware description language (HDL) format, e.g., VHDL, or
Verilog. The register-transfer level (RTL) description of this HDL format along with
the technology libraries and design constraints is then input to the hardware synthesis
tool. The output of the synthesis tool may be either in form of a netlist with boolean
gate types, ormight bemapped to a specific library. The remainder steps of the design
process use the resultant netlist.

7 Active Hardware Metering by Finite … 171

Fig. 7.6 Active hardware metering as a program obfuscation

Figure7.6 demonstrates a black-box model of the metering synthesis flow from
the high-level computational model (modeled by an FSM) to the lower level netlist.
In effect, hardware synthesis is a compiler. Recall that a compiler provides a transfor-
mation from a source program written in a higher level computer language (source
language) into another lower level computer language (target language). Here, the
input source program is the description of the circuit behavior in finite state automata
domain, and the target program is the circuit description in the netlist domain.

The FSM-based hardware metering attempts at hiding information in a source
program by modifying the FSM. The modifications add multiple states to the STG,
where the modified expanded state space is used for hiding the power-up state. The
objective is to hide information such that the concealed data cannot be extracted
from the target program presented in a lower level netlist. The two programs have
(almost) the same functionality from the input/output program perspective. In effect,
the objective of this type of active hardware metering is to build a program obfusca-
tion that would conceal the secret passkey information (shown by αi s on Fig. 7.5), so
the hidden state and its corresponding traversal cannot be retrieved from the netlist.
Informally speaking, an obfuscator is a compiler that transforms a program (e.g.,
a Boolean circuit) into an obfuscated program (also a circuit), such that the obfus-
cated program has the same input/output relationships as the original program, but
is otherwise obscure (unintelligible).

7.4.2.2 Secure Program Obfuscation

Let us discuss obfuscation in a more formal setting and outline the positive results on
this subject. Under a random oracle model,1 a function familyF can be obfuscated
when there is an algorithm O that takes an input in form of a Turing machine (i.e., a
program, a circuit) computing P ∈ F and outputs another Turing machine (circuit)
such that the obfuscating requirements are satisfied [82]. If the requirements are
assured, O is an obfuscator for F , and the obfuscation of the program is shown
by O(P). O is called efficient if its computations are done in polynomial time,
and then O(P) is said to be efficiently obfuscatable. Before we formally outline
the requirements, let us define a number of notations. The notation k specifies the
feasibility parameter that is associated with one family Fk of functions that we

1In cryptography, a random oracle is a mathematical abstraction used in proofs when no imple-
mentable function (except for an oracle) could provide the properties required.

172 F. Koushanfar

obfuscate; the size of P ∈ Fk is polynomial in k. The family F is the union of the
familiesFk .

1. Approximate functionality. There is a negligible function ν such that ∀k and
∀P ∈ Fk , we would have Pr[∃ inputs x ∈ {0, 1}∗: O(P)(x) �= P(x)] ≤ ν(k);

2. Polynomial slowdown. There is a polynomial p such that ∀P ∈ F , |O(P)| ≤
p(|P|) and for the Turing machine if P spends t time steps to compute on the
input x ∈ {0, 1}∗, O(P) would spend p(t) time steps at most;

3. Virtual black box. For a probabilistic polynomial time Turing machine A , there
is another probabilistic polynomial time Turing machine S and a small negli-
gible function denoted by ν such that ∀P ∈ F we have |Pr[A (O(P)) = 1] -
Pr[S P(1|P|) = 1]| ≤ ν(|M |), where the probabilities are over A and S ran-
domness.

The work in [82] was the first to start a formal theoretical study of obfuscation.
In particular, they showed a negative result for the possibility of having a generic
obfuscator for all function classes by demonstrating a family of functions that could
not be obfuscated. Thereafter, several theoretical studies and results for obfuscation
have emerged [83, 84]. Thework in [84] provided thefirst positive results for provable
obfuscation of the family of point functions in the random oracle model.

The simplest example for a point function is a program that requires a password
to login and operate. The password is typically hidden in the program and should be
obfuscated such that nobody else with access to the program would be able to extract
the password as long as it cannot be guessed. Password hiding can be modeled as
an obfuscation of a point function under the random oracle model. More formally,
a point function {Pα} is defined as a function Pα such that for all inputs x , the
function Pα = 1 if the input is equal to the specific access key (password) α. The
function would not do anything otherwise.

Reference [84] has demonstrated a point functionP satisfies the three properties
specified for an efficiently obfuscatable function. This result was further extended
to the family of multi-point functions that have a general output. The function
P(α1,β1),...,(αq ,βq) on the domain {0, 1}k → ({0, 1}ς(k))q is a q-point function and has
a general output of length ς(k) iff:

P(α1,β1),...,(αq ,βq) =

⎧
⎪⎨

⎪⎩

b ∈ ({0, 1}ς(k))q where bi = βi
if and only if x = αi ;

⊥ Otherwise.
(7.5)

This latter proof is given by showing that the multi-point function can be self-
decomposed to several smaller point functions. The generalized output multi-point
function is a program with q passwords with a string output of length ς(k) (gener-
alizing a single binary output case).

7 Active Hardware Metering by Finite … 173

7.4.2.3 Provable Obfuscation of the Locks Within the BFSM

In this subsection, we show that a secure construction for the BFSM used in meter-
ing can be modeled as a multi-point function with a general output and thus can
be efficiently obfuscated. The hardware metering approach introduced in [9] adds
exponentially many states to the FSM such that the probability of powering up in one
of the added states is extremely high. Because of the unique chip identifiers com-
ing from the PUF, each chip would power up in one of the added states. An added
state is nonfunctional with a very high probability, so the chip would be locked. The
designer would be the only entity who can provide the unique set of unlocking inputs
for transiting between the specific power-up state and the original “reset” state for
each chip. In the remainder of the chapter, we use the term passkey to refer to the
set of inputs corresponding to each traversed edge during unlocking. Let us more
formally define the problem.
Input: Given an original sequential specification of a circuit P in form of an FSM =
(Σ ,Δ,S,s0,δ,λ), and given a compiler that transforms this functional specification to
a netlist.
Objective: Construct a modified FSM denoted by BFSM=(Σ + Σ ′,Δ,S + S′,
s0,δ + δ′,λ + λ′) such that transitions from a state s ′ ∈ S′ to one of the original FSM
states s ∈ S would require “strong” passkeys for transiting the edges. A passkey
sequence of length l denoted by α={α1, . . . , αl} applied to the state s ′ would result
in a sequence of transitions before it gets to reset state s. By strong passkeys, we
mean they are random and long such that they cannot be guessed by the brute
force attack. Without the loss of generality, let us assume that each edge passkey
length is fixed to the value k. The reached state s then would be s = δ(s ′, α) =
δ(δ(δ(. . . δ(s ′, α1) . . .), αl−1), αl). The corresponding output would be λ(s ′, α) =
λ(δ(δ(. . . δ(s ′, α1) . . .), αl−1), αl).
Methodology: To address the above problem, we demonstrate a BFSM construction
such that the addition of states and transitions to the original graph is an instance of a
general output multi-point function that is efficiently obfuscatable. Using this result,
we devise a strong passkey mechanism to build a secure hardware metering.

To show the obfuscatable BFSM construction, we form a set of extra state tran-
sition relations that are added to the original FSM. The addition is such that for
reaching the states in the original FSM from each potential power-up state s ′ ∈ S′,
one has to traverse one or more of the added states or transitions. Let us add a
number of transitions to each state s ′ ∈ S′ such that each s ′ has at most t outgoing
transitions denoted by δ′(s ′, αs1), . . . δ′(s ′, αst). The upper bound t on the number
of transitions from one added state is set such that there is a sequence of transi-
tions to traverse from each added state to one of the states in the original FSM
(our implicit assumption is that the “reset” state is reachable from all the states
in the FSM). In other words, ∀s ′ ∈ S′, ∃α = {α1, . . . , αl} such that s = δ′′(s ′, α) =
δ′′(. . . δ′′(s, α1) . . .), αl−1), αl), where δ′′ may be either δ (transition on the original
state machine) or δ′ (transition on the added state machine).

174 F. Koushanfar

Assume that the BFSM is at the state s ′ ∈ S and the user inputs a vector of inputs
{x1, . . . , xl}. Let us first define a function W (x1, . . . , xl) as follows:

W (x1, . . . , xl) =
⎧
⎨

⎩

s ∈ S if ∃s ′
0, . . . , s

′
l s.t. s

′
0 ≡ s ′ and

s ′
l ≡ s, and s j = δ′′(s j−1, x j)

⊥ Otherwise.
(7.6)

Consider the family of functionsW (.) over the set of allW (.) that can be defined
for the BFSM with parameters S′ and t and the transition functions δ′′. Our interest
is in cases where there is a polynomial number of traversed edges in terms of the
parameters S′ and t . We notice that there are exponentially many possible valid
sequences of input transitions that can traverse from the initial power-up state to one
of the original states. Therefore, the function W (.) cannot be immediately shown
to be obfuscatable by directly using the theoretical results for obfuscating general
output multi-point functions.

Instead of discussing the W (.) functions on the general BFSM structure, we
decompose the transition path to state-to-state transition edges. Each state s j can be

represented by its incident transition functions denoted by δ′′(t ′)
j (s j , α

(t ′)
j) for traver-

sal to the “neighboring states”. The neighboring states, denoted by s(t ′)
j are those

reachable by applying a single passkey, i.e., s(t ′)
j = δ′′(t ′)

j (s j , α
(t ′)
j), 0 < t ′ ≤ t . For

each state s(t ′)
j , there is a unique passkey π(t ′) from {0, 1}k (recall that k is the valid

passkey length for the BFSM graph). Define the function ω(.) as follows:

ω(s(t ′)
j , π ′′, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(s j , δ′′(t ′)
j (s j , π(t ′))) ifπ ′′ = π(t ′)& ∃s j

incident to s(t ′)
j s.t.

s(t ′)
j = δ′′(t ′)

j (s j , π ′′)
⊥ otherwise.

The obfuscation ofW (.) consists of obfuscation ofω(.) that is a multi-point func-
tion with at most t |S′| points where the output is not ⊥ and hence can be efficiently
obfuscated. Informally, this is an efficient obfuscation since the adversary (with a
high probability) cannot guess a set of randomly selected keys that would result
in a valid transition. Reference [84] has shown that a composition of obfuscatable
functions is also efficiently obfuscatable under the random oracle model. Therefore,
we conclude that W (.) is also efficiently obfuscatable since it can be written as a
composition of obfuscatable functions.

More importantly, it was demonstrated that for such functions that can be written
by decompositions, exploring parts of the passkeys for transitions on the composite
structure (in our case BFSM) would not reveal the remainder of passkeys, as long as
the two passkey sets are not correlated and do not include all the same compositional
unit (in our case the same state) [83, 84]. Therefore, as long as the traversal paths from
the power-up state to the original set of states for a locked IC are at least different
in one state from a previously unlocked IC, obfuscation of a multi-point function
remains secure.

7 Active Hardware Metering by Finite … 175

7.4.3 Additional Considerations and Applications

So far, we have described construction of a BFSM such that the structure can be used
for obfuscating the initial power-up state. It is clear that to ensure randomness and
protection of the scheme, it is desired to have an unbiased PUF that can generate an
output bit of 0 or 1 with completely equal probabilities. The diversity of the power-
up state is guaranteed if the PUF output is completely random. The other important
factors to consider are stability of PUF responses and its vulnerability to operational
and temperature conditions. As we mentioned earlier, to ensure robustness and full
operability in presence of fluctuating operational and environmental conditions, we
use error correction codes (ECC) in conjunction with PUF responses. As long as the
PUF response is unclonable, the security of our method is not based on keeping the
PUFoutput secret (it is the passkeys on the transition graph that are secret). Therefore,
the ECC syndromes would not reveal much beyond the PUF value. The use of ECC
for PUF is not new, and several other works have used ECC in conjunction with PUF
to ensure its robustness. We refer the readers to the related work in this domain for
the studies of added overhead and security of different ECC methods [80]. Another
important issue that we address is storage of the passkeys. Once the passkey is given
for unlocking one chip, its value would be stored on NVM inside the chip along with
the ECC code. Therefore, every time the IC is powered up, it automatically reads the
passkeys to transition to the original reset state.

An interesting and important observation is that the mechanisms described in the
previous section for hiding a number of states within the FSM such that only the
designer knows about the traversal to/from those states could be used as a basis for a
suite of other security protocols. For example, this state hiding can be used for remote
authentication or identification by the designer, online integrity checking, and real-
time monitoring, controlling, enabling, or disabling the chip [23]. An application of
the method for trusted integration of multiple IP cores was demonstrated in [40].

An example structure for disabling the chip, in case of tamper detection, is creation
of blackhole states. The blackholes are states that cannot be exited regardless of the
incident input sequence. Their design is very simple as shown in Fig. 7.7, where the
blackhole states do not have a route back to the original reset state. A special case is

Fig. 7.7 An example of a
blackhole FSM that can be
used for online controlling
and disabling the ICs. They
can also provide a
countermeasure against the
brute force attacks (Sect. 7.6)

176 F. Koushanfar

creation of trapdoor grayhole FSM. Grayhole FSMs are designed in such a way that
only a long sequence of input signals (known by the passkey transition holder) can
bring the control out of these states to the original functional states of the design.
A greyhole construction is similar to a blackhole, with the exception of at least one
edge in the greyhole that can take the design back to its functional states.

7.5 Automatic Synthesis and Implementation

In this section, we present the details of the implementation of secure BFSM con-
struction that was introduced in the previous section. There is a need to devise a
low overhead automatic construction for the high-level specification. Since the con-
ventional tools are not optimized for synthesizing a relatively large state space, our
solution for a low overhead implementation is careful selection of the BFSM topol-
ogy by pre-synthesis and then performing automatic iterative synthesis. Our secure
BFSM implementationmethod has three steps. The first step is BFSMgraph topology
construction described in Sect. 7.5.1. Second, transition (edge) passkey assignment
is outlined in Sect. 7.5.2). Finally, Sect. 7.5.3 presents the iterative synthesis method.

7.5.1 BFSM Graph Topology Construction

The BFSM inputs are termed primary inputs (PI) and its outputs are termed primary
outputs (PO) since they are the same as the PI and PO to the original design. The
output at the POwould be correct for an unlocked chip. This value would be incorrect
for a locked IC with a very high probability.

The number of states is increased to ensure randomness and uniqueness of
the start-up state, as described in earlier equations. For a BFSM=(Σ + Σ ′,Δ,S +
S′,s0,δ + δ′,λ) with S′ added states, our method first uses a partition approach. A par-
titioning method was introduced in [9], where the low overhead implementation of
smaller partitioned FSMs is determined by pre-synthesizing and evaluating various
random configurations of small FSMs (e.g., with 24 or 25 states). The partitions are
then combined by randomly added edges to form the added state space and transi-
tions. We refer to the added edges and logic for connecting and mixing the original
FSM with the new partitions by the term glue logic.

An example for a partition is shown in Fig. 7.8, where the steps for construction
of a partition STG with 8 states are demonstrated. A ring counter is used as the
starting point as shown in Fig. 7.8a. Next, a few states are randomly selected and
reconnected. Say on Fig. 7.8b, the state q1 is reconnected, such that still there will
be a path from each state to every other state. Finally, a few random transitions are
added to STG. In the example shown in Fig. 7.8c, the states q1 and q4 are randomly
reconnected, and the edges {q4 → q1, q7 → q3, q2 → q2,q7 → q7} are randomly
added. Therefore, the random perturbations on the ring counter are organized such

7 Active Hardware Metering by Finite … 177

Fig. 7.8 A partition with 23 = 8 states formed by random perturbations on a ring counter to store
connectivity

that the graph connectivity is preserved. Note that our partitioning approach is more
systematic and guided than [9], but it uses similar principles. The key difference
is because our secure construction method constrains the number of directed edges
incident to one added state to be t , such that t ensures the graph connectivity and
multiplicity of keys.

In our implementation, connectivity in each group is ensured by construction,
such that every state in the partitioned group of states is reachable from every other
state. Next, transitions are added among the partitioned FSMs such that the reset
state is reachable from all other states. For checking the connectivity of the added
group of new states on a generic graph to the original reset state, we devise an
algorithm as follows: For a state transition graph (STG) demonstrating the BFSM
in graph format, form a corresponding graph STG′′ whose vertices are a one-to-one
mapping of the vertices in STG, but reverses the direction of the edges. This may be
a cyclic graph. Next, use a spanning tree algorithm (e.g., Kruskal’s algorithm [85])
to extract a directed acyclic graph (DAG) rooted at the initial reset state. If all nodes
are reachable from the root node on this DAG (can be checked by a breadth first
search (BFS) on the graph), then the connectivity condition is satisfied. Otherwise,
more edges between the unreachable states and the reachable states are needed. For a
graph with |S| + |S′| vertices and E edges, the complexity of the Kruskal algorithm
is O(E log{|S| + |S′|}) and the complexity of the BFS is O(|E | + |S| + |S′|). Since
log {|S| + |S′|} is typically larger than (1 + |S|+|S′ |

E), the overall complexity is in the
order of O(E log{|S| + |S′|}).

Now, a natural question that may arise is that for traversing to the original reset
state, one has to pass one of its neighbors so there could only be at most t distinct
passkeys which do not share the states. As we mention in our attacks and counter-
measures section, this attackwould be effectively avoided as long as there are enough
number of added states and the passkeys, for some parts of the unlocking sequence
are unique and hard to guess. Another important class of attacks that we discuss is
the capturing and removal attacks.

178 F. Koushanfar

7.5.2 Selecting and Computing the Transition Passkeys

Selecting strong passkeys is integral to the security of active hardware metering.
Generally speaking, a random passkey is a vector of symbols of a certain length
taken from a set of symbols by a random selection process. Each symbol must be
equally likely to be selected. The strength of randompasskeys depends on the entropy
of the underlying random number generator. In our case, the selected passkeys can
also serve a dual purpose: The designer can use them as a proof of ownership in
addition to using them for unlocking.

For this reason, in order to generate the passkey (pre-synthesis in software), we
use the hash value of the designer generated words that are signed by a private key
(PrK) of a public-key cryptographic (PKC) system. Now, others with access to the
public-key (PuK) of the same system can verify the ownership of the designer upon
unlocking. However, an eavesdropper, who can unlock the chip using a stolen BFSM
structure, would not be able to claim ownership.

The steps for selecting the transition passkeys for the edges on the added graph
(E) are as follows. First, the IP rights owner selects E symbol strings and uses its
own PrK to sign each of the strings. The strings must be long enough to be resilient
against the brute force guessing attack. Next, a strong hash function (e.g., SHA-2) is
applied to the signed strings, so a fixed-length digest message is obtained. Note that
the edge transition passkeys are independent of the state encodings performed by
the synthesis software. Therefore, reading out the state values from the FFs would
not help in revealing the incident edge passkeys. Note that since for each chip a new
transition passkey has to be found as a path on the BFSM, this computation needs to
be efficient. To provide efficiency, binary decision diagrams (BDDs) can be used to
store the BFSM and computing the key pairs.

7.5.3 Iterative Automatic Synthesis

Once the BFSM is selected and the transition passkeys are determined, the structure
has to be synthesized. To perform the synthesis, we first modify the original FSM
adding extra control inputs. These inputs represent the transitions from the BFSM
with the correct passkeys. Next, we synthesize each partition of the BFSM with an
output representing the incident edge transitions. After synthesizing each component
separately, we connect the extra inputs of the original FSM to the outputs of the
partitioned FSMs and resynthesize the whole system. This way, if the original design
has K FFs and theBFSMhas K ′′ FFs, then |S| ≤ 2K and |S′| = 2K

′′ − 2K that implies
|S′| is much larger than |S|.

7 Active Hardware Metering by Finite … 179

7.6 Attacks and Countermeasures

In this section, we state the attacks identified on active hardwaremetering and discuss
how the newly proposed method is secure against the proposed attacks.

(1) Brute force attack. The adversary attempts at randomly generating inputs to
randomly traverse from the power-up state until it reaches a state that was reached
on the previously unlocked ICs, or it reaches the reset state.
– Under the construction of general output multi-point function, probability of find-
ing the correct passkey resulting in a valid edge transition is extremely low, and
therefore, this class of attacks would not be able to break the security. Another effec-
tive countermeasure against the brute force attack is creation of blackhole states as
discussed in Sect. 7.4.3. All what is needed is to strategically place the blackhole
states and their adjacent edges such that the probability of randomly entering them
is high. To avoid the problem of starting up in one of the blackhole states, one can
use the greyholes that can be exited by a long sequence of passkeys.

(2) BFSM reverse engineering. The adversary uses the states revealed by unlocking
each chip to gradually build a BFSMmodel to enable finding the passkeys to unlock
the new ICs.
–Our constructionmethod is secure against this attack by the decomposition property
(Sect. 7.4.2) [84]. The way to ensure security is by finding paths that are at least not
intersecting on one edge. As an example, for a 128-bit input, each passkey has
2128 possibilities, so even finding the passkey string for one edge is of exponential
complexity.

(3) PUF removal/tampering attack. The adversary removes/tampers the PUF on a
locked IC and instead places a piece of SRAM that contains the PUF responses from
a previously unlocked chip. Now, the passkeys for unlocking the previous chip can
be used for unlocking a new IC.
– To protect against PUF removal, there are multiple measures that can be taken.
One such measure is to use the time bound and single-cycle property of an authentic
integrated PUF device (a memory lookup takes more cycles) [63, 66, 68, 69, 86,
87]. The PUF signal timing can be designed to be an integrated part of the timing
path of the main functional description. Therefore, removing PUF would affect the
circuit timing. Recall that in our attack model, redoing the timing closure is as hard
as designing a chip from scratch and is not a valid attack. Another measure is to add
obfuscated states within the FSM for PUF checking. The self-check signals from this
test states would verify the existence of the PUF during unlocking and while the chip
is in operation by testing for randomness (by adding a randomness test modules) or
by supplying challenges such that the PUF response can be continuously checked or
it’s timing is taken into account [63, 66, 68, 69, 86, 87]. Also, the prohibitive cost
of mask/retiming should be considered when targeting removal of an integrated PUF
that is on the design’s timing path.

180 F. Koushanfar

(4) State capture and replay attack(s). The adversary captures the states from a
previously unlocked chip and would try to force a new chip to power up in a similar
state, or it forces the unlocked IC to start at the original reset state.
– To overcome this attack, in addition to the power-up states, also the traversal
passkeys can be set to be a function of PUF. Now, the passkeys for one chip would
not work on the next because of the uniqueness of PUF responses. All what is needed
is to have a number of challenges (inputs) for the PUF and their associated ECC for
the corresponding traversals. Since the responses from the PUF cannot be cloned
on another chip, we have safeguarded our method against this attack. The PUF
removal/tampering attack was already discussed.

7.7 Performance and Hardware Overhead

In this section, we analyze the overhead in terms of area, power, and timing of the
synthesized circuits from the ISCAS benchmark suite. The hardware overhead is
evaluated on the H.264/MPEG-4 or Advance Video Coding (AVC) decoder circuit,
synthesized and implemented on FPGA.

7.7.1 Performance Overhead

As already stated, the finite state machine description is commonly used for realizing
the control path of the circuitry. It is important to note that in modern designs, the
control path is only a small part of the overall structure (<<1%) [88]. Therefore,
even doubling or tripling the control part would not have a significant impact on the
overall design overhead in terms of area or power. The timing increase would impact
the design delay though. Aswewill see in our evaluations, the timing overhead of our
method is negligible and it could be even further suppressed by alternative synthesis
methods.

The BFSM construction used in our simulations adds 20 flip-flops to the original
design. As we mentioned earlier, the number of new states ought to be large. Let us
assume that K is the number of FFs in the original design corresponding to S = 2K

states, and K + 20 is the number of FFs in the modified design corresponding to
S′ = 2K+20 − 2K states. It is clear that the S′ >> S condition is satisfied. The length
of the edge transition passkeys in our evaluations is set to 64 bits. An unlocking
sequence on one chip would find a path of at least 8 edges on the BFSM state
transition graph. Therefore, the minimum length of a passkey for a chip is 512 bits.
This number could be fixed or could be any multiple of 64 bits.

The table in Fig. 7.9 demonstrates comprehensive performance overhead evalua-
tions on the ISCAS benchmark suite. The first column denotes the benchmark circuit
name (sorted by the benchmark number order). The next three columns (Columns
2–4) show the original design properties: the number of primary inputs, the num-

7 Active Hardware Metering by Finite … 181

Circuit In Out FFs Orig.
Area

Added
Area

OH
(%)

Orig.
Power

Added
Power

OH
(%)

Orig.
Delay

OH
(%)

s820 18 19 5 769 +1411 186 2773 +5924 213.6 28.2 0
s1196 14 14 18 1009 +1524 151 2558 +8223 321.4 35.8 3
s1238 14 14 18 1041 +1472 141 2709 +7153 264.0 34.4 1
s1423 17 5 74 1164 +1393 120 4883 +5564 114.0 92.4 0
s1488 8 19 6 1387 +1261 91 3859 +2804 72.7 38 1
s1494 8 19 6 1393 +1591 114 3913 +9632 246.1 38.4 2
s5378 35 49 164 4212 +1203 28.6 12459 +1874 15.0 32.2 3
s9234 36 39 211 7971 +1425 17.9 19386 +6312 32.6 75.8 0
s13207 31 121 669 11241 +1571 14 37844 +9334 24.7 85.6 1
s15850 14 87 597 13659 +1281 9.3 40003 +3404 8.5 116 0
s35932 35 320 1728 28269 +1383 4.9 122048 +5279 4.3 299.4 0
s38584 12 278 1452 32910 +1226 3.7 112707 +2357 2.1 94.2 2

Fig. 7.9 Metering overhead on the benchmark suite

ber of primary outputs, and the number of flip-flops post-synthesis. Columns 5–7
demonstrate the design area (in terms of the number of gates in the ABC tool) in
the following order: the original post-synthesis area, the added area post-BFSM syn-
thesis after applying our method, and the ratio between the two former metrics (in
%). The original design’s power post-synthesis, the newly added power post-BFSM
synthesis after applying the hardwaremetering, and the ratio between the two powers
(in %) are reported in Columns 8–10. The post-synthesis delay of the original design
and the ratio between the added delay (post-BFSM construction and synthesis) to
the original delay are shown in the last two columns, respectively.

Let us start by analyzing the area overhead. As can be seen in Column 6, the added
area by the BFSM seems to be independent of the benchmark circuit size, with a
standard deviation of 131 around its mean of 1395. Observe that the circuits on the
top of the table are the smaller ones in the benchmark set, with a limited number of
inputs and outputs and FFs, occupying a small area (in the original circuit synthesis).
Given this observation, it is natural that the overhead (%) is much more significant
on the smaller circuits compared to the larger ones. The mean of the percentage
overhead in the area is about 73%, with a standard deviation of 67% indicating large
fluctuations among the circuits. Looking at the bottom half of the table that includes
the larger designs, the mean of the overhead (%) is set at a much lower 13%, with still
a relatively large standard deviation of 9%.These figures show that formost industrial
designs that are of larger complexity (making them worthwhile to protect), the area
overhead for the BFSM construction is quite low, especially since the control path
is a small part of the overall design.

Next, we analyze the power consumption (Columns 8–10). Note that the units for
this report are the same units reported by the ABC synthesis tool. We see that the
added power (Column 9) has a large variation that seems not to follow the benchmark
size. It has a standard deviation of 2650 around itsmean of 5655. For the small circuits
in the suite that are shown in the upper half of the table, the overhead ratio is very

182 F. Koushanfar

large, with a mean of 205% and standard deviation of ∼95%. The overhead ratio
is much lower for the larger circuits in the benchmark set in the lower half of the
table, with a mean of 14.5% and a standard deviation of 12%. Since the circuits in
the benchmark set are small compared to the industrial strength circuitry in design
and use today, it is safe to say that the power overhead of the metering method is
low, in particular, since the control path by itself is very small compared to the entire
design.

Last but not least, we evaluate the impact of the BFSM construction methodology
on the circuit timing (Columns 11–12). The unit for timing is the same unit reported
by ABC. The ratio of the added critical path delay overhead compared to the original
delay seems to be independent of the circuit size, with a mean of 1% and standard
deviation of 1.15%. Therefore, we see that the overhead in the critical path delay
introduced by our method is rather low.

It is also worthwhile to compare these figures to the hardware metering methodol-
ogy introduced in [9]. In comparison, the secure BFSM construction method intro-
ducedhere produces a visibly higher overhead.This is because the latestmethodology
introduced in this chapter follows the theoretical guarantees described in the previous
sections. The heuristic-only solutions offered in [9] could not provide strong proof
of security.

7.7.2 Hardware Implementation Overhead

The H.264/MPEG-4 Part 10 or AVC (Advanced Video Coding) is a video com-
pression standard. It is presently one of the most used formats for recording, com-
pressing, and distributing the high-definition videos. It is widely used in Blu-Ray
systems, YouTube, iTunes, and other Internet video distribution centers. Designing
efficient H.264/MPEG-4 is both a big challenge and opportunity, especially with the
move toward smartphones and other low power portable systems with video decod-
ing capabilities. We selected the H.264/MPEG-4 for our hardware implementation
and evaluation purposes. The original design was written in the Verilog hardware
description language. The tool flow for synthesizing this design was described earlier
in this section. Note that we do not report the overhead of implementing PUFs on the
FPGA. The overhead for implementing PUF on FPGA on Xilinx boards is readily
available in the contemporary literature [60, 63, 69, 80, 89].

The table in Fig. 7.10 shows the design area after synthesis to the FPGA in terms
of the number of equivalent gates and the number of occupied look-up tables (LUTs),
alongwith the percentage overhead. The second column reports the number of equiv-
alent gates and the number of LUTs for the original design. The third column shows
the overhead for a BFSM with 20 new FFs and a key length of 1024. It can be seen
that the percentage of added equivalent gates is about 6.7%, and the percentage of
added LUTs is about 13%. We also experimented with two other cases with 40 and
64 added FFs, as shown on the fifth and sixth columns, with key lengths of 2048
and 5120, respectively. As we mentioned earlier, the key length is determined by the

7 Active Hardware Metering by Finite … 183

Fig. 7.10 Metering
overhead for H.264/MPEG4
on FPGA

Original
H.264

(+20 states) (+40 states) (+64 states)
Key: 1024b Key: 2048b Key: 5120b

Number of
Gates 381,176 407,068 429,075 457,574

Gate overhead - 6.79% 12.56% 20.04%
Number of
LUTs 26,485 29,996 33,160 37,106

LUT overhead - 13.25% 25.19% 40.09%

number of edge transitions required for unlocking and the passkey on each edge. The
passkey on each edge is set to the number of inputs on the edge, α = 64 bits. A key
length of 1024 means that we require 16 edge transitions in our unlocking sequence.

We see that with the increase in the number of added FFs, the percentage overhead
in terms of the number of equivalent gates and the number of LUTs increases linearly.
Since adding to the number of FFs could yield exponentially stronger proofs for secu-
rity, our protection method is relatively low overhead for very secure construction.
As noted earlier, for MPEG4 decoding and many other data-intensive applications
that are implemented in hardware for efficiency reasons, the bottleneck is in the data
path optimization and not in the control path which is a much smaller part of the
overall design. Note that the earlier work in hardware metering was only evaluated
on benchmark simulations.

7.8 Conclusion

This chapter describes active hardware metering, a method which uniquely locks
each integrated circuit (IC) at the fabrication facility. The locking mechanism works
by embedding unique chip identifiers coming from a physical unclonable function
(PUF) into the device’s control function. The designer (IP rights owner) who has
access to the full state encoding of the design is the only entity who can provide
the passkeys for unlocking the chip. The unique identifiers are integrated within the
states of the design’s finite state machine (FSM). The FSM is boosted—in a way that
does not alter the functionality of the original design—to include many added states.

We demonstrate provable security guarantees for active hardware metering. We
show a construction for active hardware metering by modifying the behavioral
description of the design in the finite state machine domain such that the modifi-
cations form an instance of a general output multi-point function that was shown to
be efficiently obfuscatable. The hardware synthesis that takes the behavioral-level
specification and transforms it to a netlist must be an obfuscating compiler for the
metering to be secure so the passkeys cannot be guessed or attacked. The theo-
retical results on obfuscating the family of point functions are leveraged to ensure
security of the new construction in the random oracle model. Automated synthesis
methods for integration of the new secure metering construction are derived. We
discuss the attacks and safeguards. The efficiency and practicality of the methods are

184 F. Koushanfar

demonstrated by experimental evaluations on sequential benchmarks and by proof-
of-concept hardware metering implementation on a H.264MPEG decoder on Xilinx
Virtex-5 FPGA.

Acknowledgements This work discussed in this article was in parts supported by the Defense
Advanced Research Projects Agency (DARPA) grant No. W911NF-07-1-0198, Office of Naval
Research (ONR) grantNo.R16480,AFOSR-MURI grant onNano-Hardware Security, andNational
Scient Foundation Trust-Hub. Dr. Golsa Ghiaasi-Hafezi, Dr. Azalia Mirhoseini, and Mr. Siam
Hussain helped with reading and editing the chapter.

References

1. Defense science board (DSB) study on high performance microchip supply. http://www.acq.
osd.mil/dsb/reports/2005-02-hpms_report_final.pdf

2. Pecht M, Tiku S (2006) Bogus! electronic manufacturing and consumers confront a rising tide
of counterfeit electronics. IEEE Spectr 43(5):37–46

3. Pope S (2008) Trusted integrated circuit strategy. IEEE Trans Compon Packag Technol
31(1):230–235

4. Managing the risks of counterfeiting in the information technology industry. a white paper by
KPMG and the Alliance for Gray Market and counterfeit Abatement (AGMA)

5. Defense industrial base assessment: Counterfeit electronics (2010) a report by Bureau of
Industry and Security’s (BIS)Office of TechnologyEvaluation (OTE). http://www.agmaglobal.
org/

6. Koushanfar F, Qu G, Potkonjak M (2001) Intellectual property metering. In: International
workshop on information hiding (IH), pp 81–95

7. Koushanfar F, Qu G (2001) Hardware metering. In: Design automation conference (DAC), pp
490–493

8. Koushanfar F, Potkonjak M (2007) textscCAD-based security, cryptography, and digital rights
management. In: Design automation conference (DAC), pp 268–269

9. Alkabani Y, Koushanfar F (2007) Active hardware metering for intellectual property protection
and security. In: USENIX security symposium, pp 291–306

10. Koushanfar F (2012) Provably secure active ic metering techniques for piracy avoidance and
digital rights management. IEEE Trans Forensics Secur (TIFS) 7(1):51–63

11. M. Potkonjak and F. Koushanfar, “Identification of integrated circuits,” Dec. 31 2013, uS Patent
8,620,982

12. Lofstrom K, Daasch WR, Taylor D (2000) Ic identification circuit using device mismatch. In:
IEEE international solid-state circuits conference (ISSCC), pp 372–373

13. Qu G, Potkonjak M (2003) Intellectual property protection in VLSI design. Academic Pub-
lisher, Kluwer

14. Chang C-H, Potkonjak M (2016) Zhang L, Hardware in watermarking and fingerprinting. In:
Secure system design and trustable computing. Springer, pp 329–368

15. OliveiraA (2001)Techniques for the creationof digitalwatermarks in sequential circuit designs.
IEEE Trans Comput Aided Design 20(9):1101–1117

16. Koushanfar F, Hong I, Potkonjak M (2005) Behavioral synthesis techniques for intellectual
property protection. ACM Trans Design Autom Electron Syst 10(3):523–545

17. Torunoglu I, Charbon E (2000) Watermarking-based copyright protection of sequential func-
tions. IEEE J Solid-State Circuits (JSSC) 35(3):434–440

18. Kirovski D, HwangY-Y, PotkonjakM, Cong J (1998) Intellectual property protection bywater-
marking combinational logic synthesis solutions. In: International conference on computer-
aided design (ICCAD), pp 194–198

http://www.acq.osd.mil/dsb/reports/2005-02-hpms_report_final.pdf
http://www.acq.osd.mil/dsb/reports/2005-02-hpms_report_final.pdf
http://www.agmaglobal.org/
http://www.agmaglobal.org/

7 Active Hardware Metering by Finite … 185

19. Koushanfar F, Alkabani Y (2010) Provably secure obfuscation of diverse watermarks for
sequential circuits. In: International symposium on hardware-oriented security and trust
(HOST), pp 42–47

20. Lach J, Mangione-Smith W, Potkonjak M (1998) Signature hiding techniques for FPGA intel-
lectual property protection. In: International conference on computer-aided design (ICCAD),
pp 186–189

21. Qu G, Potkonjak M (2000) Fingerprinting intellectual property using constraint-addition. In:
Design automation conference (DAC), pp 587–592

22. Wendt JB, Koushanfar F, PotkonjakM (2014) Techniques for foundry identification. In: Design
automation conference (DAC). ACM, pp 1–6

23. Alkabani Y, Koushanfar F, Potkonjak M (2007) Remote activation of ICs for piracy prevention
and digital rightmanagement. In: International conference on computer-aided design (ICCAD),
pp 674–677

24. Huang J, Lach J (2008) IC activation and user authentication for security-sensitive systems.
In: International symposium on hardware-oriented security and trust (HOST), pp 76–80

25. Roy J, Koushanfar F, Markov I (2008) EPIC: ending piracy of integrated circuits. In: Design
automation and test in Europe (DATE), pp 1069–1074

26. Roy J, Koushanfar F, Markov I (2008) Protecting bus-based hardware ip by secret sharing. In:
Design automation conference (DAC), pp 846–851

27. Alkabani Y, Koushanfar F, Kiyavash N, Potkonjak M (2008)Trusted integrated circuits: a
nondestructive hidden characteristics extraction approach. In: Information hiding (IH), pp 102–
117

28. Dabiri F, PotkonjakM (2009)Hardware aging-based softwaremetering. In:Design, automation
and test in Europe conference and exhibition DATE, pp 460–465

29. WeiA,NahapetianM, PotkonjakM (2011) Robust passive hardwaremetering. In: International
conference on computer-aided design (ICCAD)

30. Koushanfar F (2011) Hardware metering: a survey. Book chapter in introduction to hardware
security and trust. Springer, Berlin

31. Koushanfar F (2011) Integrated circuits metering for piracy protection and digital rights man-
agement: an overview. In: Great lakes symposium on VLSI (GLSVLSI), pp 449–454

32. Koushanfar F (2012) Hardware metering: a survey. In: Introduction to hardware security and
trust. Springer, pp 103–122

33. Koushanfar F, Fazzari S, McCants C, Bryson W, Sale M, Song P, Potkonjak M (2012) Can
eda combat the rise of electronic counterfeiting? In: Design automation conference (DAC), pp
133–138

34. Potkonjak M, Chen D, Kalla P, Levitan SP (2015) Da vision 2015: from here to eternity. In:
International conference on computer-aided design (ICCAD). IEEE Press, pp 271–277

35. M. Potkonjak, “Secure authentication,”May 12 2015, uS Patent 9,032,476. [Online]. Available:
https://www.google.com/patents/US9032476

36. Rostami M, Koushanfar F, Karri R (2014) A primer on hardware security: models, methods,
and metrics. Proc IEEE 102(8):1283–1295

37. PotkonjakM (2015) Usage metering based upon hardware aging. US Patent 9,177,119. https://
www.google.com/patents/US9177119. Accesed 3 Nov 2015

38. Koushanfar F, Potkonjak M (2015) Methods and systems of digital rights management for
integrated circuits. US Patent 8966660B2. Accesed 24 Feb 2015

39. Karri R, Koushanfar F (2014) Trustworthy hardware. Proc IEEE, vol 102(8)
40. Alkabani Y, Koushanfar F (2008) Active control and digital rights management of integrated

circuit IP cores. In: International conference on compilers, architecture, and synthesis for
embedded systems (CASES), pp 227–234

41. Chang C-H, Potkonjak M (2015) Secure system design and trustable computing. Springer,
Berlin

42. Rostami M, Koushanfar F, Rajendran J, Karri R (2013)Hardware security: threat models and
metrics. In: International conference on computer-aided design (ICCAD). IEEE Press, pp 819–
823

https://www.google.com/patents/US9032476
https://www.google.com/patents/US9177119
https://www.google.com/patents/US9177119

186 F. Koushanfar

43. Kong J, Koushanfar F (2014) Processor-based strong physical unclonable functions with aging-
based response tuning. IEEE Trans Emerg Topics Comput 2(1):16–29

44. Koushanfar F, Karri R (2014) Can the shield protect our integrated circuits? In: Midwest
symposium on circuits and systems (MWSCAS). IEEE, pp 350–353

45. Zhang J, Lin Y, Lyu Y, Qu G (2015) A puf-fsm binding scheme for fpga ip protection and
pay-per-device licensing. IEEE Trans Inf Forensics Secur (TIFS) 10(6):1137–1150

46. Roy JA, Koushanfar F, Markov IL (2014) Protecting hardware circuit design by secret sharing.
US Patent 8,732,468. Acessed 20 May 2014

47. Yuan L, Qu G (2004) Information hiding in finite state machine. In: Information hiding con-
ference (IH), pp 340–354

48. Chakraborty R, Bhunia S (2008) Hardware protection and authentication through netlist level
obfuscation. In: International conference on computer-aided design (ICCAD), pp 674–677

49. Guo Z, Tehranipoor M, Forte D, Di J (2015) Investigation of obfuscation-based anti-reverse
engineering for printed circuit boards. In: Design automation conference (DAC). ACM, p 114

50. Zhang J, Lin Y, Qu G (2015) Reconfigurable binding against fpga replay attacks. ACM Trans
Design Autom Electron Syst (TODAES) 20(2):33

51. Zhang J, Qu G (2014) A survey on security and trust of fpga-based systems. In: FPT, pp
147–152

52. Kiyavash N, Koushanfar F, Coleman TP, Rodrigues M (2013) A timing channel spyware for
the csma/ca protocol. IEEE Trans Inf Forensics Secur (TIFS) 8(3):477–487

53. Rührmair U, Xu X, Sölter J, Mahmoud A, Majzoobi M, Koushanfar F, Burleson W (2014)
Efficient power and timing side channels for physical unclonable functions. In: International
workshop on cryptographic hardware and embedded systems (CHES), vol 8731, pp 476–492

54. Shahrjerdi D, Rajendran J, Garg S, Koushanfar F, Karri R (2014) Shielding and securing inte-
grated circuits with sensors. In: International conference on computer-aided design (ICCAD).
IEEE, pp 170–174

55. Xu T,Wendt JB, PotkonjakM (2014) Security of iot systems: design challenges and opportuni-
ties. In: International conference on computer-aided design (ICCAD). IEEE Press, pp 417–423

56. Abera T, Asokan N, Davi L, Koushanfar F, Paverd A, Sadeghi A-R, Tsudik G (2016) Invited-
things, trouble, trust: on building trust in iot systems. In: Design automation conference (DAC).
ACM, p 121

57. Mirhoseini A, Songhori EM, Koushanfar F (2013) Idetic: a high-level synthesis approach
for enabling long computations on transiently-powered asics. In: Pervasive Computing and
Communications (PerCom). IEEE, pp 216–224

58. Koushanfar F, Sadeghi A-R, Seudie H (2012) Eda for secure and dependable cybercars: chal-
lenges and opportunities. In: Design automation conference (DAC). ACM, pp 220–228

59. Gassend B, Clarke D, van Dijk M, Devadas S (2002) Silicon physical random functions. In:
Conference on computer and communications security (CCS), pp 148–160

60. Suh G, Devadas S (2007) Physical unclonable functions for device authentication and secret
key generation. In: Design automation conference (DAC), pp 9–14

61. Rührmair U, Devadas S, Koushanfar F (2011) Security based on physical unclonability and
disorder. Book chapter in introduction to hardware security and trust. Springer, Berlin

62. Majzoobi M, Koushanfar F, Potkonjak M (2008) Testing techniques for hardware security. In:
International test conference (ITC), pp 1–10

63. Majzoobi M, Koushanfar F, Potkonjak M (2009) Techniques for design and implementation of
secure reconfigurable pufs. ACM Trans Reconfig Technol Syst (TRETS) 2(1):5:1–5:33

64. Majzoobi M, Koushanfar F, Devadas S (2010) Fpga puf using programmable delay lines. In:
International workshop on information forensics and security (WIFS)

65. Majzoobi M, RostamiM, Koushanfar F,Wallach DS, Devadas S (2012) Slender puf protocol: a
lightweight, robust, and secure authentication by substring matching. In: Security and privacy
workshops (SPW), pp 33–44

66. Meguerdichian S, PotkonjakM (2011)Matched publicPUF: ultra low energy security platform.
In: International symposium on low power electronics and design (ISLPED)

7 Active Hardware Metering by Finite … 187

67. Majzoobi M, Ghiaasi G, Koushanfar F, Nassif SR (2011) Ultra-low power current-based puf.
In: 2011 IEEE international symposium of circuits and systems (ISCAS), pp 2071–2074

68. Potkonjak M, Meguerdichian S, Nahapetian A, Wei S (2011) Differential public, physically
unclonable functions: architecture and applications. In: Design automation conference (DAC)

69. Majzoobi M, Koushanfar F (2011) Time-bounded authentication of FPGAs. In: IEEE transac-
tion on information forensics and security (TIFS)

70. Rostami M, Majzoobi M, Koushanfar F, Wallach DS, Devadas S (2014) Robust and reverse-
engineering resilient puf authentication and key-exchange by substring matching. IEEE Trans
Emerg Topics Comput 2(1):37–49

71. Xu T, Potkonjak M (2015) The digital bidirectional function as a hardware security primitive:
architecture and applications. In: International symposium on low power electronics and design
(ISLPED). IEEE, pp 335–340

72. Rajendran J, Rose GS, Karri R, Potkonjak M (2012) Nano-ppuf: a memristor-based security
primitive. In: Annual symposium on VLSI. IEEE, pp 84–87

73. PotkonjakM, Goudar V (2014) Public physical unclonable functions. Proc IEEE 102(8):1142–
1156

74. Xu T, Wendt JB, Potkonjak M (2014) Secure remote sensing and communication using digital
pufs. In: Symposium on architectures for networking and communications systems. ACM, pp
173–184

75. Rostami M, Wendt JB, Potkonjak M, Koushanfar F (2014) Quo vadis, puf?: trends and chal-
lenges of emerging physical-disorder based security. In: Design, automation and test in Europe
(DATE). European Design and Automation Association, p 352

76. Hussain SU, Yellapantula S, Majzoobi M, Koushanfar F (2014) Bist-puf: Online, hardware-
based evaluation of physically unclonable circuit identifiers. In: International conference on
computer-aided design (ICCAD). IEEE, pp 162–169

77. Hussain SU,MajzoobiM,Koushanfar F (2016)Abuilt-in-self-test scheme for online evaluation
of physical unclonable functions and true random number generators. IEEE Trans Multi-Scale
Comput Syst 2(1):2–16

78. Mouli C, Carriker W (2007) Future fab: how software is helping intel go nano-and beyond.
IEEE Spectr 44(3):38–43

79. Santo B (2007) Plans for next-gen chips imperiled. IEEE Spectr 44(8):12–14
80. Yu M, Devadas S (2010) Secure and robust error correction for physical unclonable functions.

IEEE Design Test Comput 27:48–65
81. Ahmed SE, McIntosh RJ (2000) An asymptotic approximation for the birthday problem. Crux

Math Math Mayhem 26(3):151–155
82. Barak B, Goldreich O, Impagliazzo R, Rudich S, Sahai A, Vadhan S, Yang K (2001) On the

(im)possibility of obfuscating programs. In: International cryptology conference (CRYPTO),
pp 1–18

83. Goldwasser S, Rothblum G (2007) On best-possible obfuscation. In: Theory of Cryptography
(TCC), pp 194–213

84. Lynn B, Prabhakaran M, Sahai A (2004) Positive results and techniques for obfuscation. In:
International conference on the theory and applications of cryptographic techniques (EURO-
CRYPT), pp 20–39

85. Corman T, Leiserson C, Rivest R, Stein C (2001) Introduction to algorithms. MIT Press,
Cambridge

86. Beckmann N, PotkonjakM (2009) Hardware-based public-key cryptography with public phys-
ically unclonable functions. In: Information hiding conference (IH), pp 206–220

87. Rührmair U, Chen Q, Stutzmann M, Lugli P, Schlichtmann U, Csaba G (2010) Towards elec-
trical, integrated implementations of SIMPL systems. Inf Secur Theory Pract 6033:277–292

88. Hennessy J, Patterson D (2006) Computer architecture: a quantitative approach, 4th edn. Mor-
gan Kaufmann, Massachusetts

89. Meguerdichian S, Potkonjak M (2011) Device Aging-Based physically unclonable functions.
In: Design automation conference (DAC)

Chapter 8
State Space Obfuscation and Its Application
in Hardware Intellectual Property Protection

Rajat Subhra Chakraborty and Swarup Bhunia

8.1 Introduction

Reuse-based System-on-Chip (SoC) design using hardware intellectual property (IP)
cores has become a pervasive practice in the industry. These IP cores usually come
in the following three forms: synthesizable register transfer level (RTL) descriptions
in hardware description languages (HDLs) (“Soft IP”); gate-level designs mapped
to a standard cell technology library (“Firm IP”); and GDSII design database (“Hard
IP”). The approach of designing complex SoCs by integrating tested, verified, and
reusable modules reduces the SoC design time and cost dramatically while drastically
reducing the time to market [1].

Unfortunately, recent trends in IP piracy and reverse engineering efforts to produce
counterfeit integrated circuits (ICs) have led to serious concerns in the IC design
community [1–5]. IP piracy can take diverse forms, as illustrated by the following
example scenarios:

• A chip design house buys the IP core from the IP vendor, and a rogue designer in
the design house makes an illegal copy or “clone” of the IP. The IC design house
then uses the IP without paying the required royalty or sells it to another IC design
house (after minor modifications) claiming the IP to be its own design [3].

• An untrusted fabrication house makes an illegal copy of the GDS-II database
supplied by a chip design house, and then manufactures and sells counterfeit
copies of the IC under a different brand name [6].

R.S. Chakraborty (B)
Department of Computer Science and Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, West Bengal, India
e-mail: rschakraborty@cse.iitkgp.ernet.in

S. Bhunia
Department of Electrical and Computer Engineering,
University of Florida, 336A Larsen Hall, Gainesville, FL 32611-6200, USA
e-mail: swarup@ece.ufl.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_8

189

190 R.S. Chakraborty and S. Bhunia

• A company performs post-silicon reverse engineering on an IC to manufacture its
illegal clone [7].

These scenarios demonstrate that all parties involved in the IC design flow are
vulnerable to different forms of IP infringement, which can result in the loss of
revenue and market share.

In addition to the problem of IP piracy, the threat of hardware Trojans, i.e., mali-
cious modifications to an IC design, is also on the rise [8]. Over the past decade,
the semiconductor industry has gradually shifted to a horizontal business model in
which design and manufacturing of ICs is distributed to different entities across the
globe. Although such offshoring helps to reduce the enormous costs associated with
IC manufacturing, it also causes the design house to lose control and oversight of the
manufacturing process. Due to this, it becomes possible for adversaries in each stage
of the distributed IC supply chain to engage in hardware Trojan insertion as well as IP
piracy. Concerns about this kind of vulnerability in ICs and the resultant compromise
of security have been expressed globally [9, 10]. Some have also attributed several
unexplained military mishaps to the presence of malicious hardware Trojans [8, 11].

Several techniques have been recently proposed in order to counter the threats of
IP piracy and hardware Trojans. Unfortunately, each of these techniques has their
own limitations and cannot be applied to counter both the threats simultaneously.
The authors in [7] have proposed gate-level design modifications to prevent illegal
manufacturing of ICs by fabrication houses. However, such techniques are not useful
in preventing hardware IP theft. For instance, they do not provide protection against
possible IP piracy from the SoC design house. Hardware Trojan detection techniques
also have their own set of challenges. Ideally, any undesired modification made to an
IC should be detectable by presilicon verification/simulation and post-silicon test-
ing. However, presilicon verification or simulation requires a golden model of the
entire IC. This might not always be available, especially for IP-based designs where
IPs can come from third-party vendors. Besides, a large multimodule design is usu-
ally not amenable to exhaustive verification. Post-silicon, the design can be verified
either through destructive depackaging and reverse engineering of the IC [12], or by
comparing its functionality or circuit characteristics with a golden version. However,
the existing state-of-the-art approaches do not allow destructive verification of ICs
to be scalable. Moreover, as pointed out in [12], it is possible for the adversary to
insert Trojans in only some ICs on a wafer, not the entire population, which limits
the usefulness of a destructive approach.

Traditional post-manufacturing logic testing is also not suitable for detecting hard-
ware Trojans. This is due to the stealthy nature of hardware Trojans and inordinately
vast spectrum of possible Trojan instances an adversary can employ. Typically, the
adversary would design a Trojan that triggers a malfunction only under rare circuit
conditions in order to evade the detection. Due to the finite size of the test set, the
rare condition for activation of the Trojan might not be realized during the testing
period, especially if the Trojan acts as a sequential state machine or “time bomb” [13].
Special algorithms must be developed to increase the accuracy of logic testing tech-
niques [14]. On the other hand, the techniques for detecting Trojans by comparison

8 State Space Obfuscation and Its Application in Hardware … 191

with the “side-channel parameters,” such as power trace [15] or delay [16], are limited
by the large process variation effect in nanoscale IC technologies, reduced detection
sensitivity for ultrasmall Trojans, and measurement noise [15, 17].

In this chapter, we focus on obfuscation as a means to protect ICs against piracy
and hardware Trojans. An effective obfuscation procedure needs to simultaneously
achieve the following two goals: (1) It should affect the intelligibility of a design so
that its true functionality is hidden, even from an adversary who could potentially
have full access to the design. Doing so prevents the adversary from engaging in
reverse engineering. It also makes it hard for the adversary to insert a carefully
targeted hardware Trojan which would need full understanding of the design. (2)
The obfuscation should prevent black-box usage of a design, so that an adversary
cannot use it to fabricate properly functional ICs, thereby engaging in cloning or
counterfeiting.

We present two low-overhead obfuscation techniques, each of which can serve as
the basis for a secure SoC design methodology. We consider the circuits to be generic
sequential circuits and follow a key-based state space obfuscation approach, where
normal functionality is enabled only upon the application of a specific input initial-
ization key sequence. As a result of the adopted state space obfuscation technique
through the structural modifications, an adversary might find it difficult to correctly
comprehend the circuit functionality. This in turn might cause an inserted Trojan to
either not trigger, or become more vulnerable to logic testing-based Trojan detec-
tion techniques. Additionally, black-box usage of the IC or IP to perform piracy or
counterfeiting is also prevented as the design is essentially locked to the party that
does not possess the correct key. One of the major advantages of the proposed tech-
nique is that the state space obfuscation takes place without explicit enumeration of
the circuit state space. Such an enumeration is usually an infeasible computational
problem, even for moderately sized sequential circuits. As a result, the state space
obfuscation becomes feasible for the implementation from a designer’s perspective.
At the same time, it also makes it impossible for an adversary to enumerate the state
space while trying to reverse engineer the obfuscated design.

For the proposed approach, we initially develop the theory and design method-
ology for gate-level obfuscation. Later, we extend the technique to the RTL design
descriptions. This ensures the applicability of the proposed methodology to a major-
ity of commercial hardware IPs which come in the RTL (“soft”) format. The RTL
applicability also offers better portability by allowing design houses to map a cir-
cuit using a preferred tool flow to the technology library of a chosen manufacturing
process [18]. We note that a conceptually similar protection scheme has also been sug-
gested in [19] for software, whereby decreasing the comprehensibility of a program,
malicious software modification is prevented. However, in general, the concepts of
hardware obfuscation should not be confused with the term “obfuscation” as is used
in the context of software; this will be explained later in this chapter.

This chapter is structured as follows. In Sect. 8.2, we discuss the proposed state
space obfuscation technique. In this section, we first discuss some prior work on
hardware and software obfuscation. We then provide details on how to implement
the proposed state space obfuscation technique by state transition graph (STG) and

192 R.S. Chakraborty and S. Bhunia

netlist modification. We also provide some sample results to show the efficiency of
the approach and the overheads involved. In Sect. 8.3, we discuss how the proposed
state space obfuscation can help in protecting against hardware Trojans by discussing
the obfuscation’s impact on Trojan effectiveness (e.g., potency and detectability). In
Sect. 8.4, we discuss how the technique can be extended to the RTL designs. We
conclude this chapter in Sect. 8.5.

8.2 State Space Obfuscation

8.2.1 Previous Work on Obfuscation

In obfuscation-based IP protection, the IP vendor usually affects the human read-
ability of the HDL code [20], or relies on cryptographic techniques to encrypt the
source code [21]. In [20], the code is reformatted by changing the internal net names
and removing the comments, so that the circuit description is no longer intelligible
to the human reader. The RTL obfuscation for VHDL descriptions has been explored
in [22], where the authors use rudimentary transformations of the code such as vari-
able name changes, inlining of code, loop unrolling, and statement order changing
to make the code difficult to understand. However, usually, the IP interface and port
names cannot be modified or obfuscated to comply with the specifications. As the
above two techniques do not modify the functionality of the IP core, they cannot
prevent an IP from being stolen by an adversary and used as a “black-box” circuit
module. In [21], the HDL source code is encrypted and the IP vendor provides the
key to decrypt the source code only to its customers using a particular secure design
platform. A similar approach has been proposed in [23], where an infrastructure
for IP evaluation and delivery for FPGA applications has been proposed based on
the Java applets. However, the above techniques force the use of a particular design
platform, a situation that might be unacceptable to many SoC designers who seek
the flexibility of multiple tools from diverse vendors in the design flow. Also, none
of the above techniques prevent possible reverse engineering effort at later stages of
the design and manufacturing flow (to produce IC clones or insert hardware Trojan)
and thus does not benefit the other associated parties (e.g., the SoC designers and the
system designers). One important point to note is that a given hardware obfuscation
technique should not affect any change in the standard interface of a hardware IP
module. In other words, obfuscation of a hardware IP module should have minimum
impact on the workflow of an IC designer.
Software Obfuscation: It has been shown that it is possible to recover software
source code by decompilation of binary or byte code. One of the most popular
approaches of preventing such reverse engineering is to obfuscate the control flow
of a program to produce “spaghetti code” that is difficult to decompile from the
binary form to a higher level program [24–27]. Another technique is the so-called
code morphing [28], where a section of the compiled code is substituted with an

8 State Space Obfuscation and Its Application in Hardware … 193

entirely new block that expects the same machine state when it begins execution of
the previous section, and leaves with the same machine state after execution as the
original. Other software obfuscation approaches include self-modifying code [29]
(code that generates other code at run-time), self-decryption of partially encrypted
code at run-time [30, 31], and code redundancy and voting to produce “tamper-
tolerant software” (conceptually similar to hardware redundancy for fault tolerance)
[32]. A general shortcoming of these approaches is that they do not scale well in
terms of memory footprint and performance as the size of the program (or the part of
the program to be protected) increases [33]. Hence, the RTL obfuscation approaches
motivated along similar lines are also likely to result in inefficient circuit implemen-
tations of the obfuscated RTL with unacceptable design overhead. Also, the value of
such techniques is the matter of debate because it has been theoretically proven that
software obfuscation in terms of obfuscating the “black-box functionality” does not
exist [34]. In contrast, we modify both the structure and the functionality of the circuit
description under question; hence, the above result of impossibility of obfuscation
is not applicable in our case.

8.2.2 Obfuscation Through State Transition Graph
Modification

We start with the description of the scheme for gate-level designs. Later, we extend
it for the RTL designs.

8.2.2.1 Goals of the Obfuscation Technique

In order to achieve the comprehensive protection of hardware IPs, the proposed
approach focuses on obfuscating the functionality and structure of an IP core by
modifying the gate-level netlist, such that it both obfuscates the design and embeds
the authentication features in it. The IC is protected from unauthorized manufacturing
by the fact that the system designer depends on input from the chip designer to use
the IC. Consequently, the manufacturing house cannot simply manufacture and sell
unauthorized copies of an IC without the knowledge of the design house. In addition,
by adopting a physically unclonable function (PUF)-based activation scheme, the
security can be increased further since it ensures that the activation pattern is specific
to each IC instance. The embedded authentication feature helps in proving illegal
usage of an IP during litigation. Finally, the obfuscation remains transparent to the
end user who has the assurance of using a product that has gone through an anti-piracy
secure design flow.

194 R.S. Chakraborty and S. Bhunia

8.2.3 Hardware IP Piracy: Adversary’s Perspective

An adversary trying to determine the functionality of an obfuscated gate-level IP core
can take resort to either (1) simulation-based reverse engineering to determine the
functionality of the design or (2) structural analysis of the netlist to identify and isolate
the original design from the obfuscated design. The proposed obfuscation approach
targets to achieve the simulation mismatch for the maximum possible input vectors,
as well as structural mismatch for maximum possible circuit nodes. To achieve the
structural mismatch between the reference and the obfuscated design, we modify the
state transition function as well as internal logic structure.

8.2.3.1 Modification by Input Logic-Cone Expansion

Consider the simple example shown in Fig. 8.1a. It shows a modified 2-input AND
gate. If en = 0, it works as an ordinary AND gate; however, if en = 1, the original

(a) Simple scheme using XOR
gate

(b) Scheme using expansion of logic
cone

(c) Modification cell

Fig. 8.1 Schemes for boolean function modification and modification cell

8 State Space Obfuscation and Its Application in Hardware … 195

functionality of the AND gate is obfuscated because the output is inverted. Simulation
of the simple circuit of Fig. 8.1a against an ordinary 2-input AND gate will report
4 possible input vectors with en = 1 as failing patterns. To increase the number of
failing patterns for this circuit, we must increase its input logic-cone size, while
ensuring that it continues to function properly when en = 0. Figure 8.1b shows an
alternative scheme, where the input logic cone has been expanded to include the
nodes c and d. A complete enumeration of the truth table of the modified circuit will
show failures for 13 input patterns.

The modification scheme of Fig. 8.1b can be generalized to a form shown in
Fig. 8.1c. Here, f is the Boolean function corresponding to an internal node and
g is any arbitrary Boolean logic function. It is worthwhile to note that the simple
modification scheme of Fig. 8.1a is a special case with g = 1. As shown, the modified
logic function is of the form:

fmod = f ·en + f ·g·en (8.1)

Let us call the function g as the Modification Kernel Function (MKF). It is clear
that for en = 1, if g = 1 for a given set of primary inputs and state element output
state, fmod = f and the test pattern is a failing test pattern. To increase the amount of
dissimilarity between the original and the modified designs, we should try to make
g evaluate to logic-1 as often as possible. At first glance, the trivial choice seems to
be g = 1. However, in that case the input logic cone is not expanded, and thus, the
number of failing vectors reported by a formal verification approach is limited. For
any given set of inputs, this is achieved by a logic function which is the logical-OR
of the input variables.
Selection of theModificationKernel Function (g): Although it might be intuitive to
select primary inputs or state element outputs to design the MKF (g), in practice, this
could incur a lot of hardware overhead to generate the OR-functions corresponding to
each modified node. An alternative approach is to select an internal logic node of the
netlist to provide the Boolean function g. It should have the following characteristics:

1. The modifying node should have a very large fan-in cone, which in turn would
substantially expand the logic cone of the modified node.

2. It should not be in the fan-out cone of the modified node.
3. It should not have any node in its fan-in cone which[4.] is in the fan-out cone of

the modified node.

Conditions (2) and (3) are essential to prevent any combinational loop in the modified
netlist. Such a choice of g does not, however, guarantee it to be an OR-function and
is thus suboptimal.

196 R.S. Chakraborty and S. Bhunia

8.2.4 System-Level Obfuscation

In this section, we present the secure SoC design methodology for hardware protec-
tion based on the analysis presented in the previous section.

8.2.4.1 State Transition Function Modification

The first step of the obfuscation procedure is the modification of the state transition
function of a sequential circuit by inserting a small finite state machine (FSM).
The inserted FSM has all or a subset of the primary inputs of the circuit as its
inputs (including the clock and reset signals) and has multiple outputs. At the start
of operations, the FSM is reset to its initial state, forcing the circuit to be in the
obfuscated mode. Depending on the applied input sequence, the FSM then goes
through a state transition sequence and only on receiving N specific input patterns
in sequence, and goes to a state which lets the circuit operate in its normal mode.
The initial state and the states reached by the FSM before a successful initialization
constitute the “pre-initialization state space” of the FSM, while those reached after
the circuit has entered its normal mode of operation constitute the “post-initialization
state space”. Figure 8.2 shows the state diagram of such a FSM, with P0→P1→P2
being the correct initialization sequence. The input sequence P0 through P2 is
decided by the IP designer.

The FSM controls the mode of circuit operation. It also modifies selected nodes
in the design using its outputs and the modification cell (e.g., M1 through M3). This
scheme is shown in Fig. 8.2 for a gate-level design that incorporates the modifications
of three nodes n1 through n3. The MKF can either be a high fan-in internal node
(avoiding combinational loops) in the unmodified design, or the OR-function of
several selected primary inputs. The other input (corresponding to the en port of
the modification cell) is a Boolean function of the inserted FSM state bits with the
constraint that it is at logic-0 in the normal mode. This modification ensures that when
the FSM output is at logic-0, the logic values at the modified nodes are the same as
the original ones. On the other hand, in the obfuscated mode, for any FSM output that
is at logic-1, the logic values at the modified nodes are inverted if g = 1 and logic-0
if g = 0. Provided the modified nodes are selected judiciously, modifications at even
a small number of nodes can greatly affect the behavior of the modified system.
This happens even if the en signal is not always at logic-0. In our implementation,
we chose to have the number of outputs of the inserted FSM as a user-specified
parameter. These outputs are generated as random Boolean functions of the state
element bits at design time with the added constraint that in the normal mode, they
are at logic-0. The randomness of the Boolean functions adds to the security of the
scheme. Such a node modification scheme can provide higher resistance to structural
reverse engineering efforts than the scheme in [35].

8 State Space Obfuscation and Its Application in Hardware … 197

Fig. 8.2 The proposed functional and structural obfuscation scheme by modification of the state
transition function and internal node structure

8.2.5 Embedding Authentication Features

The proposed obfuscation scheme allows us to easily embed authentication signature
into a gate-level design with negligible design overhead. Such an embedded signature
acts as a digital watermark and hence helps to prevent the attacks from trusted parties
in the design flow with knowledge of the initialization sequence. Corresponding to
each state in the pre-initialization state space, we arrange to have a particular pattern
to appear at a subset of the primary outputs when a predefined input sequence is
applied. Even if a hacker arranges to bypass the initialization stage by the structural
modifications, the inserted FSM can be controlled to have the desired bit-patterns
corresponding to the states in the pre-initialization state space, thus revealing the
watermark. For post-silicon authentication, scan flip-flops can be used to bring the
design to the obfuscated mode. Because of the prevalent widespread use of full-scan
designs, the inserted FSM flip-flops can always be controlled to have the desired
bit-patterns corresponding to the states in the authentication FSM, thus revealing the

198 R.S. Chakraborty and S. Bhunia

Fig. 8.3 Modification of the initialization state space to embed authentication signature

watermark. Figure 8.3 illustrates the modification of the state transition function for
embedding authentication signature in the obfuscated mode of operation.

To mask or disable the embedded signature, a hacker needs to perform the fol-
lowing steps, assuming a purely random approach:

1. Choose the correct inserted FSM state elements (np) from all the total state ele-
ments (nt). This has

(nt
n p

)
possible choices.

2. Apply the correct input vector at the ni input ports where the vectors are to be
applied to get the signature at the selected no output ports. This is one out of 2ni

choices.
3. Choose the no primary outputs at which the signature appears from the total set

of primary outputs (npo). This has
(npo

no

)
possibilities.

4. For each of these recognized no outputs, identify it to be one among the possible
22(ni+n p)

Boolean functions (in the obfuscated mode) of the ni primary inputs and
np state elements, and change it without changing the normal functionality of the
IP.

Hence, in order to mask one signature, the attacker has to make exactly one
correct choice from among N = (nt

n p

) · 2ni · (npo

no

) · 22(ni+n p)

possible choices, resulting

in a masking success probability of Pmasking
∼= 1

N . To appreciate the scale of the
challenge, consider a case with nt = 30, np = 3, ni = 4, no = 4, and npo = 16.
Then, Pmasking ∼ 10−47. In actual IPs, the masking probability would be substantially
lower because of higher values of np and nt .

8 State Space Obfuscation and Its Application in Hardware … 199

8.2.6 Choice of Optimal Set of Nodes for Modification

To obfuscate a design, we need to choose an optimal set of nodes to be modified,
so that maximum obfuscation is achieved under the given constraints. We estimate
the level of obfuscation by the amount of verification mismatch reported by a formal
verification-based equivalence checker tool. Formal equivalence checker tools essen-
tially try to match the input logic cones at the state elements and the primary outputs
of the reference and the implementation [36]. Hence, nodes with larger fan-out logic
cone would be preferred for modification since that will in turn affect the input logic
of comparatively larger number of nodes. Also, large input logic cone of a node is
generally indicative of its higher logic depth; hence, any change at such a node is
likely to alter a large number of primary outputs. Thus, in determining the suitability
metric for a node as a candidate for modification, we need to consider both these
factors. We propose the following metric to be used as the suitability metric for a
node:

Mnode =
(w1·FO
FOmax

+ w2·F I

F Imax

)
× FO·F I

F Imax ·FOmax
(8.2)

where F I and FO are the number of nodes in the fan-in and the fan-out cone of
the node, respectively. F Imax and FOmax are the maximum number of fan-in and
fan-out nodes in the circuit netlist and are used to normalize the metric. w1 and w2

are weights assigned to the two factors, with 0 ≤ w1, w2 ≤ 1, and w1 + w2 = 1. We
chose w1 = w2 = 0.5 which gives us the best results (verified experimentally). Note
that 0 < Mnode ≤ 1. Because of the widely differing values of FOmax and F Imax

in some circuits, it is important to consider both the sum and the product terms
involving FO

FOmax
and F I

F Imax
. Considering only the sum or the product term results in

an inferior metric that fails to capture the actual suitability of a node, as observed in
our simulations.

8.2.7 Obfuscation-Based Design Methodology

The overall hardware obfuscation design flow is shown in Fig. 8.4. First, from the
synthesized gate-level HDL netlist of an IP core, the fan-in and fan-out cones of
the nodes are obtained. Then, an iterative ranking algorithm is applied to find the
most suitable Nmax modifiable nodes, where Nmax is the maximum number of nodes
that can be modified within the allowable overhead constraints. The ranking is a
multipass algorithm, with the metric for each node being dynamically modified based
on the selection of the node in the last iteration. The algorithm takes into account
the overlap of the fan-out cones of the nodes which have been already selected and
eliminates them from the fan-out cones of the remaining nodes. On the completion
of each iteration, the top ranking node among the remaining nodes is selected, so
that selection of Nmax nodes would take Nmax iterations. In this way, as the iterations

200 R.S. Chakraborty and S. Bhunia

Fig. 8.4 Hardware obfuscation design flow along with steps of the iterative node ranking algorithm

progress, the nodes with more non-overlapping fan-out cones are assigned higher
weight.

A “don’t touch” list of nodes can be optionally input to the tool direct it not to
modify certain nodes, e.g., nodes which fall in the critical path. In large benchmarks,
we observed that there were sufficient nodes with high fan-outs, such that skipping
a few “don’t touch” nodes still maintains the effectiveness of node modification
algorithm in achieving functional and structural obfuscation. For each node to be
modified, proper MKF (g) is selected either on the basis of its fan-in cone size,
or by OR-ing several primary inputs which were originally not present in its input
logic cone. The FSM is then integrated with the gate-level netlist, and the selected
nodes are modified. The modified design is resynthesized and flattened to generate a
new gate-level netlist. The integrated FSM and the modification cells are no longer
visually identifiable in the resultant netlist. This resynthesis is performed under timing
constraint, so that it maintains circuit performance.

The IP vendor applies the hardware obfuscation scheme to create a modified
IP and supplies it to the design house, along with the activating sequences. The
design house receives one or multiple IPs from the IP vendors and integrates them
on chip. To activate the different IPs, the designer needs to include a low-overhead
controller in the SoC. This controller module can perform the initialization of the
different IP blocks in two different ways. In the first approach, it serially steers the
different initialization sequences to the different IP blocks from the primary inputs.
This controller module will include an integrated FSM which determines the steering

8 State Space Obfuscation and Its Application in Hardware … 201

of the correct input sequences to a specific IP block. Multiplexors are used to steer
initialization sequences to the IP blocks, or the primary inputs and internal signals
during normal operation. The chip designer must modify the test benches accordingly
to perform block-level or chip-level logic simulations.

In the second approach, the initialization sequences is stored permanently on chip
in a ROM. In the beginning of operations, the controller module simply reads the
different input sequences in parallel and sends them to the different IP blocks for
initialization. The advantage of this approach is that the number of initialization
cycles can be limited. However, additional overhead is incurred for storing the input
sequences in an on-chip ROM. To increase the security of the scheme, the chip
designer can arrange an instance-specific initialization sequence to be stored in an
one-time programmable ROM. In that case, following the approach in [37], we can
have the activating patterns to be simple logic function (e.g., XOR) of the patterns
read from the ROM and the output of a physically unclonable function (PUF) block.
The patterns are written to the ROM post-manufacturing after receiving instructions
from the chip designer, as suggested in [37]. Because the output of a PUF circuit is
not predictable before manufacturing, it is not possible to have the same bits written
into the programmable ROMs for each IC instance. Figure 8.5 shows this scheme.

The manufacturing house manufactures the SoC from the design provided by the
design house and passes it on to the test facility. If a PUF block has been used in the
IC, the test engineer reports the output on the application of certain vectors back to
the chip designer. The chip designer then calculates the specific bits required to be
written in the one-time programmable ROM. The test engineer does so and blows
off an one-time programmable fuse, so that the output of the PUF block is no longer

Fig. 8.5 SoC design
modification to support
hardware obfuscation. An
on-chip controller combines
the input patterns with the
output of a PUF block to
produce the activation
patterns

202 R.S. Chakraborty and S. Bhunia

visible at the output. The test engineer then performs post-manufacturing testing,
using the set of test vectors provided by the design house. Ideally, all communication
between parties associated with the design flow should be carried out in an encrypted
form, using cryptographic protocols such as Diffie–Hellman Key Exchange [7]. The
tested ICs are passed to the system designer along with the initialization sequence
(again in an encrypted form) from the design house.

The system designer integrates the different ICs in the board-level design and
arranges to apply the initialization patterns during “booting” or similar other ini-
tialization phase. Thus, the initialization patterns for the different SoCs need to be
stored in read only memory (ROM). In most ASICs composed of multiple IPs, several
initialization cycles are typically needed at start-up to get into the “steady-stream”
state, which requires accomplishing certain tasks such as initialization of specific
registers [38]. The system designer can easily utilize this inherent latency to hide the
additional cycles due to initialization sequences from the end user.

Finally, this secure system is used in the product for which it is meant. It provides
the end user with the assurance that the components have gone through a secure and
piracy-proof design flow. Figure 8.6 shows the challenges and benefits of the design
flow from the perspectives of different parties associated with the flow. It is worth
noting that the proposed design methodology remains valid for a SoC design house
that uses custom logic blocks instead of reusable IPs. In this case, the designer can
synthesize the constituent logic blocks using the proposed obfuscation methodology
for protecting the SoC.

Fig. 8.6 Challenges and benefits of the HARPOON design methodology at different stages of a
hardware IP life cycle

8 State Space Obfuscation and Its Application in Hardware … 203

8.2.8 Results

In this section, we present simulation results to show the effectiveness of the proposed
hardware obfuscation methodology for a set of ISCAS-89 benchmark circuits [39].

8.2.8.1 Simulation Setup

All circuits were synthesized using Synopsys Design Compiler with optimization
parameters set for minimum area and mapped to a LEDA 250 nm standard cell library.
The flow was developed using the TCL scripting language and was directly integrated
in the Design Compiler environment. All formal verification was carried out using
Synopsys Formality. The verification nodes considered by Formality constituted of
the inputs of state elements (e.g., flip-flops) and primary outputs.

8.2.8.2 Effect of Obfuscation on ISCAS-89 Benchmark Circuits

A simple four-state FSM was designed for each of the benchmarks to achieve hard-
ware and functional obfuscation. For each of the benchmarks, random internal nodes
were selected while making sure that combinational loops were avoided. The bench-
marks were then subjected to the hardware obfuscation design flow (including the
iterative ranking algorithm). The modified and resynthesized benchmarks were then
subjected to formal verification using Synopsys Formality. Figure 8.7 shows the
observed percentage of verification nodes failing verification reported by Formality
for the different benchmark circuits.

Fig. 8.7 Observed verification failures (with application of the HARPOON methodology) for
ISCAS-89 circuits

204 R.S. Chakraborty and S. Bhunia

Ta
bl
e
8.
1

D
es

ig
n

ov
er

he
ad

s
(%

)
fo

r
di

ff
er

en
ta

re
a

co
ns

tr
ai

nt
s

B
en

ch
m

ar
k

ci
rc

ui
t

5%
ar

ea
co

ns
tr

ai
nt

10
%

ar
ea

co
ns

tr
ai

nt
15

%
ar

ea
co

ns
tr

ai
nt

20
%

ar
ea

co
ns

tr
ai

nt

A
re

a
D

el
ay

Po
w

er
A

re
a

D
el

ay
Po

w
er

A
re

a
D

el
ay

Po
w

er
A

re
a

D
el

ay
Po

w
er

s2
98

3.
91

0.
00

5.
26

8.
64

0.
00

14
.0

4
14

.7
4

0.
50

16
.6

7
19

.2
9

0.
00

18
.4

2

s3
44

3.
45

−2
.9

8
5.

38
8.

83
−8

.9
6

9.
87

14
.8

9
−6

.2
0

14
.3

5
18

.5
9

−7
.9

0
18

.8
3

s4
44

4.
63

0.
00

9.
62

9.
50

0.
00

18
.2

7
14

.1
5

0.
00

20
.1

9
18

.2
6

0.
00

23
.0

8

s5
26

3.
64

0.
00

7.
06

8.
12

0.
00

16
.1

7
14

.8
9

−1
.6

0
21

.8
7

19
.3

0
−0

.7
8

25
.2

8

s6
41

4.
96

−3
.6

6
8.

20
9.

74
−3

.6
6

13
.9

0
14

.0
2

−4
.6

0
19

.5
9

19
.6

3
−4

.2
0

23
.0

1

s7
13

4.
06

−3
.6

6
7.

34
9.

07
−3

.6
6

14
.6

9
14

.4
3

−2
.6

0
20

.3
4

19
.2

6
−2

.6
0

22
.8

8

s8
38

2.
20

−2
.3

9
6.

92
9.

00
−8

.5
7

9.
76

14
.1

7
−5

.5
0

12
.9

3
19

.1
3

0.
00

14
.0

0

s1
19

6
3.

96
0.

00
6.

04
6.

06
0.

00
16

.0
9

14
.4

5
−1

.7
6

19
.1

4
18

.1
0

0.
00

20
.5

5

s1
23

8
4.

52
−0

.4
2

6.
52

9.
99

−0
.4

2
9.

97
14

.8
7

0.
00

18
.2

6
18

.2
3

−0
.9

0
23

.7
9

s1
42

3
4.

70
−0

.7
8

8.
02

9.
61

−2
.6

4
14

.9
1

14
.9

7
−1

.0
8

22
.4

3
19

.9
9

−2
.4

2
26

.1
9

s1
48

8
3.

27
−2

.7
9

3.
13

8.
65

−0
.9

3
8.

33
13

.1
9

0.
00

10
.4

9
18

.1
7

0.
00

13
.6

2

s5
37

8
4.

34
0.

00
8.

91
9.

87
0.

00
13

.8
0

13
.8

4
0.

00
20

.4
3

19
.9

3
0.

00
23

.7
0

s9
23

4
4.

74
0.

00
5.

80
8.

82
3.

60
12

.3
7

8.
82

3.
50

15
.5

2
14

.2
9

3.
80

19
.7

2

A
ve

ra
ge

4.
03

−1
.2

8
8.

83
8.

92
−1

.9
4

13
.3

1
14

.3
8

−1
.4

9
17

.8
1

19
.0

6
−1

.1
5

20
.9

1

8 State Space Obfuscation and Its Application in Hardware … 205

Table 8.1 shows the area, delay, and power overheads of the resynthesized bench-
mark circuits, following the application of our obfuscation scheme, for the projected
area overheads of 5, 10, 15, and 20%, respectively. From the table, it is clear that the
actual area overheads were smaller than the imposed constraints in all cases, while
the timing overhead was negative; i.e., the timing constraint was met with positive
slack in most cases. The power overheads in all cases were within acceptable limits.
The design overhead is caused by the addition of both combinational (in the form of
the modification cells) and few sequential elements to implement the inserted FSM.
Although sequential memory elements do not scale as well as combinational ones,
the percentage overhead is expected to remain unchanged for more advanced tech-
nology nodes because the combinational overhead forms the major fraction of the
total overhead.

8.3 State Space Obfuscation for Protection
Against Hardware Trojans

We now apply the concept of space obfuscation to ruggedize circuit netlists, such that
an adversary finds it difficult to insert hard-to-detect combinational HTH instances.
As before, the normal circuit functionality is achieved by the application of a sequence
of secret “initialization keys” at the circuit output. Also, the state space obfuscation
is achieved without the explicit enumeration of the sequential circuit state space.

8.3.1 Trojan Variants

Different methods of classifying hardware Trojans based on various characteristics
have been proposed. In [40], the authors propose a simple classification of Trojans—
combinational (whose activation depends on the occurrence of a particular condition
at certain internal nodes of the circuit) and sequential (whose activation depends on
the occurrence of a specific sequence of rare logic values at internal nodes). Although
there are other ways of classifying hardware Trojans (based on the activation mech-
anism, threat model, etc.), we limit our discussion and experiments to combinational
and sequential Trojans.

Figure 8.8a shows an example of a combinationally triggered Trojan where the
occurrence of the condition a=0, b=c=1 at the trigger nodes a, b, and c, respec-
tively, causes a payload node S to have an incorrect value at S�. Typically, an adversary
would choose an extremely rare activation condition so that it is very unlikely for
the Trojan to trigger during conventional manufacturing test.

Sequentially triggered Trojans (the so-called time bombs), on the other hand, are
activated by the occurrence of a sequence or a period of continuous operation. The
simplest sequential Trojans are counters, which trigger a malfunction on reaching

206 R.S. Chakraborty and S. Bhunia

Fig. 8.8 Examples of a combinational and b sequential hardware Trojans that cause malfunction
conditionally

a particular count. Figure 8.8b shows a 3-bit counter which increases its count if
a=0, b =1 at the positive clock edges. The Trojan activates when the count reaches
7, by modifying the node S to have an incorrect value at node S�.

The obfuscation in our scheme is achieved by two important modifications of the
state transition graph (STG) of the circuit:

• The size of the reachable state space is “blown up” by a large (exponential) factor
using extra state elements.

• Certain states, which were unreachable in the original design, are used and made
reachable only in the obfuscated mode of operation.

These two modifications make it difficult for an adversary to design a function-
ally potent and well-hidden Trojan, as shown through the analysis presented in
Sects. 8.3.2, 8.3.3, and 8.3.4. As would be evident from the following, this modi-
fication of the STG is different in methodology and goals from the ones proposed in
[6, 7, 37, 41], in which no state space explosion is attempted.

Figure 8.9a shows the proposed obfuscation scheme based on the change in the
STG of the circuit. On power-up, the circuit is initialized to a state (SO

0) in the
obfuscated mode. On the application of an input sequence K1→K2→K3 in order,
i.e., the initialization key sequence, the circuit reaches the state SN

0 , which is the reset
state in the original state space, allowing normal mode of operation. The states SO

0 ,
SO

1 , and SO
2 constitute the initialization state space. The application of even a single

incorrect input vector during the initialization process takes the circuit to states in
the isolation state space, a set of states from which it is not possible to come back
to the initialization state space or enter the original state space. The initialization
state space and the isolation state space together constitute the obfuscation state
space. All state encodings in the obfuscation state space are done using unreachable
state bit combinations for selected state elements of the circuit. This ensures that
the circuit cannot perform its normal functionality until the correct initialization
key sequence has been applied. As for the hardware IP obfuscation scheme, this
initialization latency (typically < 10 clock cycles) can be easily hidden from the end
user by utilizing the inherent latency of most ASICs during a “boot-up” or similar
procedure on power-ON. We consider the post-manufacturing testing phase to be
“trusted” such that there is no possibility of the secret initialization key to be leaked
to the adversary in the fab. This is a commonly accepted convention which was
first explicitly stated in [12]. To protect against the possibility of an user releasing

8 State Space Obfuscation and Its Application in Hardware … 207

Fig. 8.9 The obfuscation scheme for protection against hardware Trojans: a modified state transi-
tion graph and b modified circuit structure

the initialization key sequence of the design in the public domain, user-specific
initialization key sequence or in the extreme case instance-specific initialization key
sequence might be employed.

To “blow up” the size of the obfuscation state space, a number of extra state
elements are added depending on the allowable hardware overhead. The size of the
obfuscation state space has an exponential dependence on the number of extra state
elements. An inserted parallel finite state machine (PSM) defines the state transitions
of the extra state elements. However, to hide possible structural signature formed by

208 R.S. Chakraborty and S. Bhunia

the inserted PSM, the circuit description of the PSM is folded into the modified
state machine in the original circuit (MOSM) (as shown in Fig. 8.9b) to generate
an integrated state machine. A logic resynthesis step is performed, including logic
optimization under design constraints in terms of delay, area, or power. In effect, the
circuit structures such as the input logic cones of the original state elements change
significantly compared to the unobfuscated circuit, making reverse engineering of
the obfuscated design practically infeasible for a adversary. This effect is illustrated
in Sect. 8.3.5 through an example benchmark circuit.

To increase the level of structural difference between the obfuscated and the
original circuits, the designer can choose to insert modification cells as proposed
earlier in the chapter at selected internal nodes. Furthermore, the level of obfuscation
can be increased by using more states in the obfuscated state space. This can be
achieved by the following: (1) adding more state elements to the design and/or (2)
using more unreachable states from the original design. However, this can increase
the design overhead substantially. In Sect. 8.3.9, we describe a technique to reduce
the design overhead in such cases.

Selected states in the isolation state space can also serve the purpose of authenti-
cating the ownership of the design, as described in [6]. Authentication for sequential
circuits is usually performed by embedding a digital watermark in the STG of the
design [42, 43], and our idea of hiding such information in the unused states of the
circuit is similar to [44]. Figure 8.9 shows such a scheme where the states SA

0 , SA
1 ,

and SA
2 in the isolation state space and the corresponding output values of the cir-

cuit are used for the purposes of authenticating the design. The design goes through
the state transition sequence SO

0 →SA
0 →SA

1 →SA
2 on the application of the sequence

A1→A2→A3. Because these states are unreachable in the normal mode of opera-
tion, they and the corresponding circuit output values constitute a property that was
not part of the original design. As shown in [6], the probability of determining such
an embedded watermark and masking it is extremely small, thus establishing it as a
robust watermarking scheme.

8.3.2 Effect of Obfuscation on Trojan Insertion

As mentioned before, to design a functionally catastrophic but hard-to-detect Trojan,
the adversary would try to select a “rare” event at selected internal “trigger nodes” to
activate the Trojan. To select a sufficiently rare trigger condition for the Trojan to be
inserted, the adversary would try to estimate the signal probability [45] at the circuit
nodes by simulations with random vectors (and random starting states). However,
the adversary has no way to know whether the starting state of the simulations is
in the normal state space or the obfuscation state space. If the initial state of the
simulations lie in the obfuscation state space, there is a high probability that the
simulations would remain confined in the obfuscation state space. This is because
the random test generation algorithm of the adversary most likely would be unable
to apply the correct input vector at the correct state to cause the state transition

8 State Space Obfuscation and Its Application in Hardware … 209

to the normal state space. Essentially, the STG of the obfuscated circuit has two
near-closed (NC) set of states [46], which would make accurate estimation of the
signal probabilities through a series of random simulations extremely challenging.
An algorithm was proposed in [46] to detect the NC sets of a sequential circuit;
however, the algorithm requires the following: (a) knowledge of the state transition
matrix of the entire sequential circuit, which is not available to the adversary, and
(b) a list of all the reachable states of the circuit, which is extremely computationally
challenging to enumerate for a reasonably large sequential circuit. Hence, we can
assume that the adversary would be compelled to resort to a random simulation-based
method to estimate the signal probabilities at internal circuit nodes.

8.3.3 Effect of Obfuscation on Trojan Potency

To decrease the potency of the inserted Trojan, the designer of the obfuscated circuit
must ensure that if the adversary starts simulating the circuit in the obfuscation state
space, the probability of the circuit being driven to the normal state space is minimal.
Consider a sequential circuit originally with N state elements and M used states, to
which n state elements are added to modify the STG to the form shown in Fig. 8.9a.
Let the number of states in the obfuscation state space be Si = f1·2n· (2N − M

) =
f1·2n·B, where B = (

2N − M
)
, and f1 < 1 represents a utilization factor reflecting

the overhead constraint.
Let I denote the set of states in the obfuscation state space, U denote the set

of states in the normal state space, and T denote the set of states actually attained
during the simulations by the adversary. Let p be the number of primary inputs (other
than the clock and reset) where the initialization key sequence is applied, and let the
length of the initialization key sequence be k. Then, it takes k correct input vectors in
sequence to reach the normal state space from state SO

0 , k − 1 correct input vectors
from state SO

1 , and so on. Then, the probability that the simulation started in the
initialization state space was able to reach the normal state space by the application
of random input vectors:

P
(
T ⊆

{
I
⋃

U
})

= k

Si + M
·
(

1

2p
+ 1

22p
+ · · · 1

2pk

)

(8.3)

≈ k·2−p

(f1·2n·B + M) (1 − 2−p)
(8.4)

assuming 2−pk � 1. The probability that the simulations started in the normal state
space and remained confined there is:

P (T ⊆ U) = M

f1·2n·B + M
(8.5)

210 R.S. Chakraborty and S. Bhunia

To maximize the probability of keeping the simulations confined in the obfuscation
state space, the designer should ensure:

P
(
T ⊆

{
I
⋃

U
′})

	 P (T ⊆ U) + P
(
T ⊆

{
I
⋃

U
})

(8.6)

Approximating M 	 k·2−p

1−2−p , and simplifying, this leads to:

f1·2n·B 	 M (8.7)

This equation essentially implies the size of the obfuscation state space should be
much larger compared to the size of the normal state space, a result that is intuitively
expected. From this analysis, the two main observations are:

• The size of the obfuscation state space has an exponential dependence of the
number of extra state elements added.

• In a circuit where the size of the used state space is small compared to the size
of the unused state space, higher levels of obfuscation can be achieved at lower
hardware overhead.

As an example, consider the ISCAS-89 benchmark circuit s1423 with 74 state ele-
ments (i.e., N = 74) and > 272 unused states (i.e., 2N − M > 272) [47]. Then,
M < 1.42×1022, and considering 10 extra state elements added (i.e., n = 10),
f1 > 0.0029 for Eq. (8.7) to hold. Thus, expanding the state space in the modified
circuit by about 3% of the available unused state space is sufficient in this case.

8.3.4 Effect of Obfuscation on Trojan Detectability

Consider a Trojan designed and inserted by the adversary with q trigger nodes,
with estimated rare signal probabilities p1, p2, . . .pq , obtained by simulating the
obfuscated circuit. Let the rare logic value probabilities of these internal nodes be
pi + �pi , for the i th trigger node. Then, the Trojan would be activated once (on
average) by:

N
′ = 1

q∏

i=1

(pi + �pi)

= N
q∏

i=1

(1 + �pi
pi

)

(8.8)

test vectors. The difference between the estimated and the actual number of test
vectors before the Trojan is activated is �N = N − N

′
, which leads to a percentage

normalized difference (assuming �pi
pi

= f ∀i = 1, 2. . .q):

�N

N
(%) =

(

1 − 1

(1 + f)q

)

× 100% (8.9)

8 State Space Obfuscation and Its Application in Hardware … 211

Fig. 8.10 Fractional change
in average number of test
vectors required to trigger a
Trojan, for different values
of average fractional
mis-estimation of signal
probability f and Trojan
trigger nodes (q)

Figure 8.10 shows this fractional change plotted versus the number of trigger nodes
(q) for different values of the fractional mis-estimation of the signal probability (f).
From this plot and Eq. (8.9), it is evident that:

• The probability of the Trojan getting detected by logic testing increases as the
number of Trojan trigger nodes (q) increases. However, it is unlikely that the
adversary will have more than 10 trigger nodes, because otherwise as shown by
our simulations, it becomes extremely difficult to trigger the Trojans at all.

• For values 2 ≤ q ≤ 10, the number of random input patterns required to activate
the trojan decreases sharply withq. The improvement is more pronounced at higher
values of f . This observation validates the rationale behind an obfuscation-based
design approach that resists the adversary from correctly estimating the signal
probabilities at the internal circuit nodes.

8.3.5 Effect of Obfuscation on Circuit Structure

The resynthesis of the circuit after its integration with the RTL description cor-
responding to the obfuscation state space flattens the circuit into a single netlist,
resulting in drastic changes to the input logic cones of the primary outputs and the
state elements. This makes it infeasible to manually or automatically analyze and
identify the modifications made to a practical circuit with reasonably large number
of gates, even if the adversary is in possession of an unmodified version of the orig-
inal circuit netlist. If the adversary is not in possession of an unmodified reference
gate-level design, this task is even more difficult, as the adversary would have no
idea about the netlist structure of the original design. The theoretical complexity of
reverse engineering similar key-based obfuscation schemes for circuits has been ana-

212 R.S. Chakraborty and S. Bhunia

lyzed in [48, 49], where such systems were shown to be “provably secure” because
of the high computational complexity.

8.3.6 Determination of Unreachable States

The construction of the obfuscation state space requires the determination ofunreach-
able states in a given circuit. First, for a set of S state elements in a given circuit,
all the possible 2S state bit combinations are generated for the S state elements.
Then, each state of these 2S states are subjected to full sequential justification at the
inputs of the selected S state elements, using Synopsys Tetramax. The justified states
are discarded, while the states which fail justification are collected to form the set
U = {U1, . . . ,UN } of structurally unreachable states.

8.3.7 Determination of Effectiveness

To determine the decrease in potency of the Trojans by the proposed scheme, we
reduce a given vector set to eliminate those vectors with state values in the obfuscation
state space. We then resimulate the circuit with the reduced test set to determine the
Trojan coverage. The decrease in the Trojan coverage obtained from the reduced test
set indicates the Trojans which are activated or effective only in the obfuscation state
space and, hence, become benign.

To determine the increase in detectability of the Trojans, we compare the Sp values
at the Trojan trigger nodes between two cases: (1) a large set of random vectors
and (2) a modified set of random vectors which ensure operation of the obfuscated
design in only normal mode. The increase in Trojan detectability is estimated by the
percentage of circuit nodes for which the Sp values differ by a predefined threshold.
The difference in estimated Sp prevents an adversary from exploiting the true rare
events at the internal circuit nodes in order to design a hard-to-detect Trojan. On the
other hand, true non-rare nodes may appear as rare in the obfuscated design, which
potentially serve as decoy to the adversary. The above two effects are summed up
by the increase in Trojan detection coverage due to the obfuscation. The coverage
increase is estimated by comparing the respective coverage values obtained for the
obfuscated and the original design for the same number of test patterns.

Figure 8.11 shows the steps to estimate the effectiveness of the obfuscation scheme
[50]. In the figure, RO-Finder (Rare Occurrence Finder), ReTro (Reduced pattern
generator for Trojans), and TrojanSim (Trojan Simulator) refer to the three C rou-
tines we developed to compute the internal signal probabilities, generate a reduced
test set that can trigger rare conditions multiple times, and perform a cycle-accurate
simulation of the circuit. Note that we assumed the Trojan model shown in Fig. 8.8a.

8 State Space Obfuscation and Its Application in Hardware … 213

Fig. 8.11 Framework to estimate the effectiveness of the obfuscation scheme

8.3.8 Results

Tables 8.2 and 8.3 show the effects of obfuscation on increasing the security against
hardware Trojans for a set of ISCAS-89 benchmark circuits with 20,000 random
instances of suspected Trojans, trigger threshold (θ) of 0.2, and trigger nodes (q) 2 and
4, respectively. Optimized vector set was generated using N=1000. The same value
of n + S applies to both sets of results. The length of the initialization key sequence
was 4 (k = 4) for all the benchmarks. The effect of obfuscation was estimated by
three metrics: (a) the fraction of the total population of structurally justifiable Trojans
becoming benign; (b) the difference between the signal probabilities at internal nodes
of the obfuscated and original circuit; and (c) the improvement in the functional
Trojan coverage, i.e., the increase in the percentage of valid Trojans detected by
logic testing. Note that the number of structurally justifiable Trojans (as determined
by TetraMax) decreases with the increase in the number of trigger nodes of the Trojan
and increase in the size of the benchmark circuits. From the tables, it is evident that
the construction of the obfuscation state space with even a relatively small number

214 R.S. Chakraborty and S. Bhunia

Table 8.2 Effect of obfuscation on security against Trojans (100,000 random patterns, 20,000
Trojan instances, q = 2, k = 4, θ = 0.2)

Benchmark
circuit

Trojan
instances

Obfus. flops
(n+S)

Obfuscation effects

Benign
Trojans (%)

False prob.
nodes (%)

Func. troj.
cov. incr. (%)

s1488 192 8 38.46 63.69 0.00

s5378 2641 9 40.13 85.05 1.02

s9234 747 9 29.41 65.62 1.09

s13207 1190 10 36.45 83.59 0.56

s15850 1452 10 40.35 68.95 2.65

s38584 342 12 33.88 81.83 0.45

Table 8.3 Effect of obfuscation on security against Trojans (100,000 random patterns, 20,000
Trojan instances, q = 4, k = 4, θ = 0.2)

Benchmark
circuit

Trojan instances Obfuscation effects

Benign Trojans
(%)

False prob. nodes
(%)

Func. troj. cov.
incr. (%)

s1488 98 60.53 71.02 12.12

s5378 331 70.28 85.05 15.00

s9234 20 62.50 65.62 25.00

s13207 36 80.77 83.59 20.00

s15850 124 77.78 79.58 18.75

s38584 11 71.43 77.21 50.00

of state elements (i.e., a relatively small value of n + S) still makes a significant
fraction of the Trojans benign. Moreover, it obfuscates the true signal probabilities
of a large number of nodes. The obfuscation scheme is more effective for 4-trigger
node Trojans. This is expected since a Trojan with larger q is more likely to select
at least one trigger condition from the obfuscation state space.

Table 8.4 shows the design overheads (at iso-delay) and the run-time for the pro-
posed obfuscation scheme. The proposed scheme incurs modest area and power
overheads, and the design overhead decreases with the increase in the size of the
circuit. The results and trends are comparable with the STG modification-based
watermarking schemes proposed in [42, 44]. As mentioned earlier, the level of pro-
tection against Trojan can be increased by choosing a larger n + S value at the cost
of greater design overhead. The run-time presented in the table is dominated by
TetraMax, which takes more than 90% of the total time for sequential justifications.

8 State Space Obfuscation and Its Application in Hardware … 215

Table 8.4 Design overhead (at iso-delay) and run-timea for the proposed design flow

Benchmark circuit Overhead (%) Run-time (mins.)

Area Power

s1488 20.09 12.58 31

s5378 13.13 17.66 186

s9234 11.84 15.11 1814

s13207 8.10 10.87 1041

s15850 7.04 9.22 1214

s38584 6.93 2.63 2769
aThe run-time includes the sequential justification time by Synopsys Tetramax, which in most cases
was over 90% of the total runtime

8.3.9 Discussions

8.3.9.1 Protection Against Malicious CAD Tools

Besides protecting a design in foundry, the proposed obfuscation methodology can
provide effective defense against malicious modifications (manual or automated)
during the IC design steps. Compromised CAD tools and automation scripts can
also insert Trojans in a design [12, 51]. Obfuscation can prevent insertion of hard-
to-detect Trojans by CAD tools due to similar reasons as applicable in a foundry.
It prevents an automatic analysis tool from finding the true rare events, which can
be potentially used as Trojan triggers or payloads. Moreover, since large number of
states belong to the obfuscation state space, an automation tool is very likely to insert
a Trojan randomly that is only effective in the obfuscation mode. Note that since we
obfuscate the gate-level netlist, protection against CAD tools can be achieved during
the design steps following logic synthesis (e.g., during physical synthesis and layout).

To increase the scope of protection by encompassing the logic synthesis step, we
propose a single, small modification in the obfuscation-based design flow. In the
conventional design flow, the RTL is directly synthesized to a technology-mapped
gate-level netlist, and obfuscation is applied on this netlist. However, in the mod-
ified design flow, the RTL is first compiled to a technology-independent (perhaps
unoptimized) gate-level description, and obfuscation is applied on this netlist. Such
a practice is quite common in the industry, and many commercial tools support such
a compilation as a preliminary step to logic synthesis [52]. The obfuscated netlist
is then optimized and technology mapped by a logic synthesis tool. Note that the
logic synthesis step now operates on the obfuscated design, which protects the design
from potential malicious operations during logic synthesis. Also, the RTL compila-
tion (without logic optimization) is a comparatively simpler computational step for
which the SoC design house can employ a trusted in-house tool. This option provides
an extra level of protection.

The same kind of flow can also be applied to FPGA-based designs, where the
CAD tool is assumed to be malicious. The RTL corresponding to the circuit can be

216 R.S. Chakraborty and S. Bhunia

“compiled” to a unoptimized, technology-independent gate-level netlist. This netlist
can then be obfuscated, and the obfuscated design can then be optimized and mapped
by either third-party CAD tools or vendor-specific tools to a netlist in an intermediate
format. This netlist is then converted to a vendor-specific bitstream format by the
FPGA mapping tool to map the circuit to the FPGA.

8.3.9.2 Improving Level of Protection and Design Overhead

Equation (8.7) suggests that for large designs with a significantly large original state
space, to attain satisfactory levels of design obfuscation, it is necessary to have
the obfuscation state space much larger than the original state space. This can be
achieved by either (a) addition of a large number of extra state elements, or (b) using a
large number of unreachable states in the obfuscation state space. However, finding
large number of unreachable states through sequential justification in a complex
design is extremely computationally expensive. To keep the problem computationally
tractable and reduce the design overhead, we propose a systematic approach to modify
the state transition function as shown in Fig. 8.12. The n extra state elements are
grouped into p different groups to form parallel FSMs PSM1 through PSMp, and
the RTL code for each of them is generated separately. Similarly, the S existing state
elements (corresponding to the unreachable states) used for state encoding in the
obfuscation state space are grouped in q different groups PSM

′
1 through PSM

′
q . The

Fig. 8.12 Obfuscation for large designs can be efficiently realized using multiple parallel state
machines which are constructed with new states due to the additional state elements as well as
unreachable states of original state machine

8 State Space Obfuscation and Its Application in Hardware … 217

RTL code for each of the parallel FSMs PSM
′
1 through PSM

′
q is generated separately

based on the unreachable states. Such a scheme of having multiple parallel FSMs
to design the obfuscation state space achieves similar design obfuscation effects,
without incurring high computational complexity and design overhead.

8.4 Extension to Register Transfer Level (RTL) Designs

While we have described the proposed design methodologies for gate-level designs,
in reality, the majority of the commercial hardware IPs come in the RTL (“soft”)
format which offers better portability by allowing design houses to map the circuit to
a preferred platform in a particular manufacturing process [18]. Two approaches have
been proposed to extend the state space obfuscation technique to the RTL designs:

1. The first approach is based on extraction and modification of the state transition
from the gate-level synthesized design, such that normal operation is possible only
on the successful application of a correct initialization sequence. An obfuscated
register transfer level (RTL) design can be generated by decompilation of the
obfuscated netlist [53].

2. In the second approach, a register transfer level IP is obfuscated by manipulating
its control and data flow graphs (CDFG) derived from the RTL [54].

Experimental results have demonstrated that both these techniques are effec-
tive, although the second approach results in lesser hardware overhead and is more
scalable [54].

8.5 Conclusions

We have proposed and demonstrated the application of design obfuscation for active
defense against IP infringement and IC overproduction at different stages of the SoC
design and fabrication flow, and to resist the insertion of hardware Trojans in the
manufactured ICs at untrusted fabrication facilities. The obfuscation steps operate
on gate-level designs, can be easily automated and integrated in the IC design flow,
and do not affect the test/verification of a SoC design for legal users. The method-
ology can be extended to the RTL designs also. We have shown that they incur low
design and computational overhead and cause minimal impact on end-user experi-
ence while providing satisfactory levels of protection. The proposed approaches are
easily scalable to large designs (e.g., processor) and in terms of level of security.
Further improvement in hardware overhead can be obtained by utilizing normally
unused states of the circuit.

218 R.S. Chakraborty and S. Bhunia

References

1. Castillo E, Meyer-Baese U, García A, Parrilla L, Lloris A (2007) IPP@HDL: efficient intel-
lectual property protection scheme for IP cores. IEEE Trans VLSI 15:578–591

2. Charbon E, Torunoglu I (2003) Watermarking techniques for electronic circuit design. In:
IWDW’02: Proceedings of the international conference on digital watermarking, pp 147–169

3. Kahng A, Lach J, Mangione-Smith W, Mantik S, Markov I, Potkonjak M, Tucker P, Wang
H, Wolfe G (2001) Constraint-based watermarking techniques for design IP protection. IEEE
Trans CAD 20(10):1236–1252

4. Lach J, Mangione-Smith W, Potkonjak M (1999) Robust FPGA intellectual property protec-
tion through multiple small watermarks. Proceedings of the 36th annual ACM/IEEE design
automation conference, DAC’99. ACM, New York, pp 831–836

5. Oliveira A (2001) Techniques for the creation of digital watermarks in sequential circuit designs.
IEEE Trans CAD 20(9):1101–1117

6. Chakraborty RS, Bhunia S (2009) HARPOON: a SoC design methodology for hardware pro-
tection through netlist level obfuscation. IEEE Trans CAD 28(10):1493–1502

7. Roy JA, Koushanfar F, Markov IL (2008) EPIC: ending piracy of integrated circuits. In:
DATE’08: Proceedings of the conference on Design, automation and test in Europe, pp 1069–
1074

8. Adee S (2008) The hunt for the kill switch. IEEE Spectr 45(5):34–39
9. Australian Government DoD-DSTO: Towards countering the rise of the silicon trojan

(2008). http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/9736/1/DSTO-TR-2220%
20PR.pdf

10. Defense Science Board: Task force on high performance microchip supply (2005). http://www.
acq.osd.mil/dsb/reports/200502HPMSReportFinal.pdf

11. King ST, Tucek J, Cozzie A, Grier C, Jiang W, Zhou Y (2008) Designing and implementing
malicious hardware. In: LEET’08: Proceedings of the Usenix workshop on large-scale exploits
and emergent threats, pp 5:1–5:8

12. DARPA: TRUST in Integrated Circuits (TIC) - Proposer Information Pamphlet (2007). http://
www.darpa.mil/MTO/solicitations/baa07-24/index.html

13. Wolff F, Papachristou C, Bhunia S, Chakraborty RS (2008) Towards Trojan-free trusted ICs:
problem analysis and detection scheme,. In: DATE’08: Proceedings of the conference on design,
automation and test in Europe, pp 1362–1365

14. Chakraborty RS, Wolff F, Paul S, Papachristou C, Bhunia S (2009) MERO: a statistical approach
for hardware Trojan detection using logic testing. In: Clavier C, Gaj K (eds) Cryptographic
Hardware and Embedded Systems - CHES 2009, vol 5737. Lecture Notes on Computer Sci-
enceSpringer, Heidelberg, pp 396–410

15. Agrawal D, Baktir S, Karakoyunlu D, Rohatgi P, Sunar B (2007) Trojan detection using IC
fingerprinting. In: SP’07: Proceedings of the IEEE symposium on security and privacy, pp.
296–310

16. Jin Y, Makris Y (2008) Hardware Trojan detection using path delay fingerprint. In: HOST’08:
Proceedings of the international workshop on hardware-oriented security and trust, pp 51–57

17. Narasimhan S, Du D, Chakraborty R, Paul S, Wolff F, Papachristou C, Roy K, Bhunia S (2010)
Multiple-parameter side-channel analysis: a non-invasive hardware Trojan detection approach.
In: HOST’10: Proceedings of the international workshop on hardware oriented security and
trust, pp 13–18

18. Chinese firms favoring soft IP over hard cores (2011). http://www.eetasia.com/ART_
8800440032_480100_NT_ac94df1c.HTM

19. Wang C, Hill J, Knight JC, Davidson JW (2001) Protection of software-based survivability
mechanisms. In: DSN’01: Proceedings of the international conference on dependable systems
and networks, pp 193–202

20. ThicketTM family of source code obfuscators (2011). http://www.semdesigns.com
21. Methodology for protection and licensing of HDL IP (2011). http://www.us.design-reuse.com/

news/?id=12745&print=yes

http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/9736/1/DSTO-TR-2220%20PR.pdf
http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/9736/1/DSTO-TR-2220%20PR.pdf
http://www.acq.osd.mil/dsb/reports/200502HPMSReportFinal.pdf
http://www.acq.osd.mil/dsb/reports/200502HPMSReportFinal.pdf
http://www.darpa.mil/MTO/solicitations/baa07-24/index.html
http://www.darpa.mil/MTO/solicitations/baa07-24/index.html
http://www.eetasia.com/ART_8800440032_480100_NT_ac94df1c.HTM
http://www.eetasia.com/ART_8800440032_480100_NT_ac94df1c.HTM
http://www.semdesigns.com
http://www.us.design-reuse.com/news/?id=12745&print=yes
http://www.us.design-reuse.com/news/?id=12745&print=yes

8 State Space Obfuscation and Its Application in Hardware … 219

22. Brzozowski M, Yarmolik VN (2007) Obfuscation as intellectual rights protection in VHDL
language. Proceedings of the 6th international conference on computer information systems and
industrial management applications. IEEE Computer Society, Washington, DC, pp 337–340

23. Wirthlin MJ, McMurtrey B (2002) IP delivery for FPGAs using applets and JHDL. Proceedings
of the 39th annual design automation conference, DAC’02. ACM, New York, pp 2–7

24. Hou T, Chen H, Tsai M (2006) Three control flow obfuscation methods for Java software. IEE
Proc Softw 153(2):80–86

25. Huang YL, Ho F, Tsai H, Kao H (2006) A control flow obfuscation method to discourage
malicious tampering of software codes. In: ASIACCS’06: Proceedings of the 2006 ACM
symposium on information, computer and communications security, pp 362–362

26. Linn C, Debray S (2003) Obfuscation of executable code to improve resistance to static dis-
assembly. In: Proceedings of the ACM conference on computer and communications security,
pp 290–299

27. Zhuang X, Zhang T, Lee H, Pande S (2004) Hardware assisted control flow obfuscation for
embedded processors. In: CASES’04: Proceedings of the 2004 international conference on
compilers, architecture, and synthesis for embedded systems, pp 292–302

28. Obfuscation by code morphing (2011). http://en.wikipedia.org/wiki/Obfuscated_code#
Obfuscation_by_code_morphing

29. Joepgen H, Krauss S (1993) Software by means of the protprog method. Elecktronik 42:52–56
30. Aucsmith D (1996) Tamper resistant software: an implementation. In: IH’96: Proceedings of

the international workshop on information hiding, pp. 317–333
31. Schulman A (1993) Examining the windows AARD detection code. Dr. Dobb’s J 18 (1993)
32. Jakubowski M, Saw C, Venkatesan R (2009) Tamper-tolerant software: modeling and imple-

mentation. In: IWSEC’09: Proceedings of the international workshop on security: advances in
information and computer security, pp 125–139

33. Chang H, Atallah M (2002) Protecting software code by guards. In: DRM’01: Revised papers
from the ACM CCS-8 workshop on security and privacy in digital rights management, pp
160–175

34. Barak B, Goldreich O, Impagliazzo R, Rudich S, Sahai A, Vadhan S, Yang K (2001) On the
(im)possibility of obfuscating programs. In: CRYPTO’01: Proceedings of the international
cryptology conference on advances in cryptology, pp 1–18

35. Chakraborty RS, Bhunia S (2009) Hardware protection and authentication through netlist
level obfuscation. In: ICCAD’08: Proceedings of the IEEE/ACM international conference on
computer-aided design, pp 674–677

36. Wang F (2004) Formal verification of timed systems. Proc IEEE 92(8):1283–1305
37. Alkabani YM, Koushanfar F, Potkonjak M (2007) Remote activation of ICs for piracy preven-

tion and digital right management. In: ICCAD’07: Proceedings of the international conference
on CAD, pp. 674–677

38. Moore WA, Kayfes PA (2007) US Patent 7213142 - system and method to initialize reg-
isters with an EEPROM stored boot sequence. http://www.patentstorm.us/patents/7213142/
description.html

39. The ISCAS-89 Benchmark Circuits. http://www.fm.vslib.cz/~kes/asic/iscas/
40. Banga M, Hsiao MS (2008) A region based approach for the identification of hardware Trojans.

In: HOST’08: Proceedings of the IEEE international workshop on hardware-oriented security
and trust, pp 40–47

41. Alkabani YM, Koushanfar F (2007) Active hardware metering for intellectual property pro-
tection and security. In: SS’07: Proceedings of USENIX security symposium, pp. 20:1–20:16

42. Oliveira A (1999) Robust techniques for watermarking sequential circuit designs. In: DAC’99:
Proceedings of the ACM/IEEE design automation conference, pp 837–842

43. Torunoglu I, Charbon E (2000) Watermarking-based copyright protection of sequential func-
tions. IEEE J Solid-State Circ 35(3):434–440

44. Yuan L, Qu G (2004) Information hiding in finite state machine. In: IH’04: Proceedings of the
international conference on information hiding, IH’04, pp 340–354

http://en.wikipedia.org/wiki/Obfuscated_code#Obfuscation_by_code_morphing
http://en.wikipedia.org/wiki/Obfuscated_code#Obfuscation_by_code_morphing
http://www.patentstorm.us/patents/7213142/description.html
http://www.patentstorm.us/patents/7213142/description.html
http://www.fm.vslib.cz/~kes/asic/iscas/

220 R.S. Chakraborty and S. Bhunia

45. Najm FN (1993) Transition density: a new measure of activity in digital circuits. IEEE Trans
CAD 14(2):310–323

46. Chou T, Roy K (1996) Accurate power estimation of CMOS sequential circuits. IEEE Trans
VLSI 4(3):369–380

47. Yotsuyanagi H, Kinoshita K (1998) Undetectable fault removal of sequential circuits based on
unreachable states. In: VTS’98: Proceedings of the IEEE VLSI test symposium, pp 176–181

48. Koushanfar F (2012) Provably secure active IC metering techniques for piracy avoidance and
digital rights management. IEEE Trans Inf Forensics Secur 7(1):51–63

49. Lynn B, Prabhakaran M, Sahai A (2004) Positive results and techniques for obfuscation. Cryp-
tology ePrint Archive, Report 2004/060. http://eprint.iacr.org/

50. Chakraborty RS, Bhunia S (2009) Security against hardware Trojan through a novel application
of design obfuscation. In: ICCAD’09: Proceedings of the international conference on CAD,
pp 113–116

51. Roy JA, Kaushanfar F, Markov IL (2008) Extended abstract: circuit CAD tools as a security
threat. In: HOST’08: Proceedings of the international workshop on hardware-oriented security
and trust, pp 61–62

52. Systems, I.: Concorde – fast synthesis (2009). http://www.interrasystems.com/eda/eda_
concorde.php

53. Chakraborty R, Bhunia S (2009) Security through obscurity: an approach for protecting Reg-
ister transfer level hardware IP. In: HOST’08: Proceedings of the international workshop on
hardware oriented security and trust, pp 96–99

54. Chakraborty R, Bhunia S (2010) RTL hardware IP protection using key-based control and data
flow obfuscation. In: VLSID’10: Proceedings of the international conference on VLSI Design,
pp 405–410

http://eprint.iacr.org/
http://www.interrasystems.com/eda/eda_concorde.php
http://www.interrasystems.com/eda/eda_concorde.php

Chapter 9
Structural Transformation-Based
Obfuscation

Hai Zhou

9.1 Introduction

A variety of techniques have been proposed for fighting against hardware piracy.
There are two main classes of approaches. One approach is hardware metering [15],
which enables design houses to have post-fabrication control on the produced ICs. By
metering, the designer can count the number of fabricated ICs, monitor their usage,
and even remotely lock/unlock the ICs. Hardware watermarking [21], as another
popular approach to IP protection, is inspired by the traditional digital watermark-
ing technique. It inserts certain identity information into behavioral specification
or sequential structure of the design. Watermarking is more passive compared with
metering. But since watermarking has a unified signature for all ICs and does not
involve any designer–manufacturer interaction, it will usually be less expensive.

Both hardware metering and watermarking techniques are intimately related to
program/circuit obfuscation. Informally speaking, an obfuscator is a probabilistic
compiler O that transforms a source program/circuit F into a new program/circuit
O(F) that has the same functionality as F but less intelligible in some sense. The
technique of obfuscation is often used to protect the secrets in programs by making
them harder to comprehend. However, circuit (hardware) obfuscation is radically
different from program (software) obfuscation. A program is usually obfuscated
to hide its function, but the functionality of a commercial IC must be known to
different parties other than the designer. The value of a hardware IP is determined
by their efficiency of implementation in terms of performance, power consumption,
reliability, etc. Thus, instead of hiding the information within the original circuit,
circuit obfuscation usually tries to hide extra secret information (e.g., watermarking)
that is intentionally added to the circuit in order to prevent illegal use of the IC.

H. Zhou (B)
Northwestern University, 2145 Sheridan Rd, Evanston, IL, USA
e-mail: haizhou@northwestern.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_9

221

222 H. Zhou

In this chapter, we discuss two popular notions of obfuscation: black-box obfus-
cation [3] and best-possible obfuscation [9]. Black-box obfuscation is stronger but
has been proved impossible on general families containing point functions [3], while
the best-possible obfuscation is weaker and possible to obtain [9]. Defined as disclos-
ing only functionality, the best-possible obfuscation is more realistic in the context
of hardware IP protection. Based on its definition, we show that any best-possible
obfuscation of a sequential circuit can be accomplished by structural transformation
composed of four types of operations: retiming, resynthesis, sweep, and conditional
stuttering. We then develop a Key-Locked OBfuscation (KLOB) scheme for hard-
ware IP protection. In KLOB, a circuit will first be inserted with a stuttering logic
with conditions both on key checking and on the state of the circuit. The conditionally
stuttered circuit will then be further obfuscated by a sequence of retiming, resynthe-
sis, and sweep operations. In the presence of the correct key value, the obfuscated
circuit will run in the same speed as the original circuit; without the key, it will run
in much slower speed. An simple version of the KLOB has been implemented to
measure its overhead, and the effectiveness of the approach is thoroughly discussed.

9.2 Related Approaches

Program/circuit obfuscation is a fundamental problem in computer security. Barak
et al. [3] initiated the theoretical study of obfuscation and demonstrated that generic
“virtual black-box” program obfuscator does not exist. Later Lynn et al. [20] proved
the first positive result about obfuscation that the family of point and multi-point
functions can be perfectly obfuscated under random oracle model. Goldwasser and
Rothblum [9] argued that the black-box model be too strong for many real appli-
cations. They proposed a new notion of “best-possible” obfuscation under relaxed
requirements and studied its properties. Yet there is still lack of common agreement
on the definition of obfuscation.

The concept of hardware metering is first introduced by Koushanfar and Qu in
2001 [15]. The idea was to assign a unique signature to the IC’s functionality by
making a small part of the design programmable. There followed some works that
exploitmanufacturing variability to generate unique random ID for each IC to achieve
metering [16, 18, 27, 28]. These methods are all passive. Alkabani and Koushanfar
[1, 2, 12] proposed the first active hardware metering scheme. The method utilized
physically unclonable function (PUF) [28] to generate the unique initial FF values
(power-up state) for each IC. The power-up state will have very high probability to
be in the non-functional part of an augmented FSM structure; thus, the IC will be
locked. Only the designers who have knowledge about the augmented FSM structure
would be able to send the key (transitions to legitimate reset state) to unlock the IC.
According to a comprehensive survey about piracy avoidance [11], the methods
based on embedding locks in the behavioral description of the design is also called
internal active IC metering. In contrast, external active IC metering [10, 25, 26]
usually embeds locks in the physical level of the design, which are further controlled

9 Structural Transformation-Based Obfuscation 223

by external cryptography function. The latter set of methods tends to have larger
power and area overhead due to the complexity of cryptographic modules interfaced
with the locks.

Oliveira first proposed to hide a secret watermark in a sequential circuit [21, 22].
The watermarking was performed by modifying the State Transition Graph (STG)
to go through a chosen path of state transitions with certain set of inputs (secret
keys). The insertion of watermark will not have any effect on the IC’s functionality.
The proof of authorship is ensured by the fact that the displayed input-transition
behavior would be extremely rare in non-watermarked circuit. Later Koushanfar and
Alkabani [14] proposed to add multiple watermarks to further enhance security, and
they showed that hidingmultiple watermarks in the STG is an instance of obfuscating
a multi-point function with a general output. Yuan and Qu proposed the idea of hid-
ing information in the unused transitions of FSM [29]. They developed a SAT-based
algorithm to find the maximal set of redundant transitions for a given minimized
FSM and took advantage of this redundancy to hide the information in the FSM
without changing the given minimized FSM. Hardware watermarking looks similar
as passive hardware metering, but they have some critical differences. The water-
marking signatures are uniform in all ICs of the same product, while metering will
assign a specific signature for each IC. For this reason, watermarking cannot track
the number of fabricated copies from one mask.

9.3 Structural Transformation for Best-Possible
Obfuscation

9.3.1 Best-Possible Obfuscation

The definition of obfuscation had been intuitive but not vigorous before its theoretical
study was initiated by Barak et al. [3]. Barak et al. defined obfuscation in very strong
requests that 1) the obfuscated circuit computes the same function as the original
circuit with at most a polynomial-time slow-down and 2) the obfuscated circuit
should leak no more information than its “black-box” (input–output invocation)
functionality. Formally, “black-box” obfuscation requires that anything that can be
efficiently learned from the obfuscated circuit can also be learned efficiently from
input–output access to the circuit. Barak et al. showed that the general “black-box”
obfuscator does not exist. The proof comes from the intuition that even an obfuscated
program provides a complete function description, while a “black-box” oracle access
may not be able to help to learn the complete function. This is especially true for
point functions defined as follows:

Cα,β(x) =
{

β if x = α

0 otherwise.

224 H. Zhou

More specifically, we can define another function Dα,β whose input is a function C :

Dα,β(C) =
{
1 if C(α) = β

0 otherwise.

Having the obfuscations of the two functions, Cα,β and Dα,β , the adversary will
apply the second function on the first one. The result is always one. However, if we
only have “black-box” access to these functions, the probability for any simulator to
get one is negligibly small. Therefore, there is no “black-box” obfuscation for any
family that includes point functions.

The results of Barak et al. indicate that the “black-box” requirement in the def-
inition may be too strong. In fact, it is indeed too strong in the context of circuit
obfuscation for IP protection. When an IP block is provided, its functionality must
be known and agreed up on by all parties. If it is a soft block, an obfuscated netlist is
also visible to the parties. Thus, an IP block cannot be treated simply as a black-box.
Following the study by Barak et al., Goldwasser and Rothblum [9] proposed a new
definition of the best-possible obfuscation with a relaxed requirement in place of the
“black-box” requirement. Intuitively, a best-possible obfuscation only leaks as much
information as any circuit of the same function. In other words, it only leaks the
functionality of the original circuit. While this relaxed notion of obfuscation gives
no absolute guarantee about what information is hidden in the obfuscated circuit, it
does guarantee that the obfuscation is literally the best-possible if the functionality
is known.

Goldwasser and Rothblum also proved that there exists a best-possible obfusca-
tion for a family of circuits that does not have “black-box” obfuscation. It shows
that the definition of the best-possible obfuscation is strictly weaker than that of the
“black-box” obfuscation. The family is the Polynomial-sized Ordered Binary Deci-
sion Diagrams (POBDD) [6]. Bryant [6] has shown that each OBDD has a canonical
representation which can be efficiently computed. The best-possible obfuscation of
any POBDD P is its canonical representation, which can be computed efficiently
from any POBDD P ′ of the same function as P . Now, consider the point functions
Cα,1(x) encoded in POBDD. As shown by Barak et al. [3], there is no “black-box”
obfuscation for them.

9.3.2 Functional Equivalence of Finite State Machines

Starting from this section, we are going to show that the best-possible obfuscation
can be computed by a sequence of structural transformations on the sequential cir-
cuit. Here, structural transformation means operations only on circuit netlist, not on
state transition graph. Based on the definition, any obfuscated circuit must have the
equivalent function as the original circuit. In this section, we will formally define
functional equivalence between two circuits/FSMs.

9 Structural Transformation-Based Obfuscation 225

Finite State Machine (FSM): FSM specifies how the system changes its states and
produces outputs responding to inputs.

Definition 1 A FSM is quintuple (Q, I, O, λ, δ) where Q is a finite set referred
to as the states, I and O are finite sets referred to as the set of inputs and outputs
respectively, δ : Q × I → Q is the next-state function and λ : Q × I → O is the
output function.

Functional Equivalence: If we view a circuit as a black-box system, then its visible
behavior can be described as its possible sequences of inputs and outputs. A circuit
may exhibit an externally visible behavior like a sequence

〈〈E0 = (I0, O0), E1 = (I1, O1), E2 = (I2, O2), . . .〉〉

Note that in our specification every step in the sequence corresponds to a clock cycle
in the sequential circuit. Traditionally, the equivalence of two FSMs [30] requires that
their visible behavior should be precisely the same in every single clock cycle. In this
chapter, we will define this strict form of equivalence as cycle-accurate equivalence
to avoid ambiguity.

Definition 2 Two FSMs C and C ′ are cycle-accurate-equivalent if any sequence of
external behavior 〈〈E0, E1, E2, . . .〉〉 that is allowed by C will be also allowed by
C ′.

Nevertheless, the relation of two FSMs computing the same function may not be
restricted to cycle-accurate equivalence. If there exists internal states for the circuit,
we can also have the complete behavior

〈〈(E0, S0), (E1, S1), (E2, S2), . . .〉〉

where S is the internal state (register values). In practice, sometimes only the internal
state changes for example

〈〈(E0, S0), (E1, S1), (E1, S
′
1), (E1, S

′′
1), (E2, S2), . . .〉〉

Since the internal states are invisible to the users, the sequence of external behav-
ior 〈〈E0, E1, E1, E1, E2, . . .〉〉 and 〈〈E0, E1, E2, . . .〉〉 compute the same function.
Accordingly, we define the equivalence of two behavior sequences and derive the
definition for equivalence of circuit behavior.

Definition 3 Two sequence of external behavior 〈〈E0, E1, E2, . . .〉〉 and
〈〈E∗

0 , E
∗
1 , E

∗
2 , . . .〉〉 are stuttering-equivalent if one can be obtained from the other

by repeating states or deleting repeated states (by adding or removing finite amount
of stuttering).

Definition 4 Two FSMs C and C ′ are functional-equivalent if for any sequence of
external behavior 〈〈E0, E1, E2, . . .〉〉 that is allowed by C , there exists a stuttering-
equivalent sequence of external behavior 〈〈E∗

0 , E
∗
1 , E

∗
2 , . . .〉〉 that is allowed by C ′.

226 H. Zhou

9.3.3 Structural Transformation

Previous approaches to circuit obfuscation usually operate on behavioral level of the
design and require substantial modification on the STG of the design. The cost is
potentially high since the STG will usually have exponential size in terms of the
netlist. In this chapter, we will focus on operating on structural level of the design.
Our approach has lower cost since we do not need to generate any STG. All the oper-
ations are done on the circuit netlist. We introduce four structural operations applied
on sequential circuits: retiming, resynthesis, sweep, and conditional stuttering. An
example of applying the first three of them to transform one circuit into another is
shown in Fig. 9.1. The example of conditional stuttering will be shown later.

Retiming [17, 19] moves the registers in a sequential circuits while preserving
its logic functionality. Two elementary operations can be applied: deleting a register
from each input of a combinational node while adding a register to every output,
or conversely adding a register to each input of a combinational node and deleting
a register from every output. As can be seen from Fig. 9.1, retiming will change
the state transition function and the state encoding while keeping the input/output
functionality.

Resynthesis restructures the netlist within the register boundaries without chang-
ing its logic functionality. As seen from Fig. 9.1, resynthesis will not change the state
transition, but it can create new signals in the circuit. These new signals can become
new states if we move registers on them by retiming. The first resynthesis in Fig. 9.1
created two new signals for the subsequent retiming to use. Retiming becomes more
powerful when combined with resynthesis due to new signals generated. Resynthesis
also becomesmore powerfulwhen combinedwith retiming due to newcombinational
blocks generated by register moves.

Sweep adds or removes registers not having effect on the output. In Fig. 9.1, the
sweep operation removes one register with the XOR gate since they do not affect
the output. The sweep operation is necessary to change cycle lengths in the state
transition graph. In Fig. 9.1 example, it reduces the length of the cycle in STG by
half. Since synthesis normally simplifies the circuit structure, sweep is usually used
as an operation to remove redundant registers and logic.

Conditional stuttering adds control logic to the circuit to stutter the registers, i.e.,
copy the register values in the current cycle to the next cycle, if a given logic condition
is true. Stuttering is necessary if we want to transform a circuit into another that is
not cycle-accurate-equivalent. It is easy to see that an obfuscated circuit can hide
more information if it is not required to be cycle-accurate-equivalent to the original
one. The simplest implementation is to add a multiplexer to the input of each register
to select between the current register value and the next register value.

9 Structural Transformation-Based Obfuscation 227

NOT

XOR

NOT
XOR

NOT

NOT

XOR

XOR

NOT

XOR

XOR

resynthesis

resynthesis

pe
e

ws

gn
i

mit
er

00 01 11 10

0 1 10

0 1

0 1

00 01 10 11

0 1 10

Fig. 9.1 Structural operations: retiming, resynthesis, and sweep

9.3.4 GCD Example for Conditional Stuttering

To better illustrate structural transformation for functional equivalence, we use two
small circuits that compute the greatest common divisor (GCD) of two natural num-
bers as an example. They are different implementations of Euclid’s algorithm. The
two original circuits (dark lines) as shown in Fig. 9.2 have the same functionality
but different netlists due to different resource allocation. Circuit GCD_A uses two
subtracters, while GCD_B uses only one subtracter. Each circuit has registers for
two integers. The basic iteration in Euclid’s algorithm is to reduce the larger number

228 H. Zhou

x

SUB

1 0

y
GCD_A

c X
O

R

SUB

 0 1

0 1 1 0

1 0

X
O

R

a

s

SUB

1 0 1 0

b

GCD_B

Fig. 9.2 The GCD example for conditional stuttering

to the difference of two numbers until they become the same. However, with only
one subtracter, GCD_B may conduct a subtraction in wrong order, in which case, it
needs to swap the two numbers. Because of it, GCD_B is slower than GCD_A. The
circuits will output one number when they are the same. For simplicity, the outputs
are not shown in the circuits.

Our first observation is thatGCD_Bwill usemore cycles thanGCD_A for the same
computation because it needs extra cycles to swap the two numbers if the subtraction
result is negative. ThusGCD_A andGCD_B are functional-equivalent but not cycle-
accurate-equivalent. In order tomake them cycle-accurate-equivalent,GCD_A needs
to be stuttering for one cycle whenGCD_B is swapping the two numbers. Therefore,
in order to know when GCD_B swaps, we need to keep track whether the number
order in GCD_A is different from that in GCD_B. We introduce a register c for that
purpose. Its value is 0 at the beginning and needs to be flipped when GCD_B swaps.
The conditional stuttering in GCD_A is shown in gray lines in Fig. 9.2. With the
conditional stuttering, the two circuits are cycle-accurate-equivalent. To make the
mapping between the states of the two circuits explicit, we also introduce a history
variable s in GCD_B by (inverse) sweep (shown in gray lines). It starts at 0 and flips
when the number swaps.With these transformations, the mapping between the states
of the two circuits is given as follows.

9 Structural Transformation-Based Obfuscation 229

F :

⎧
⎪⎨

⎪⎩

a = (c == 1)?y : x
b = (c == 1)?x : y
s = c

⇔ F−1 :

⎧
⎪⎨

⎪⎩

x = (s == 1)?b : a
y = (s == 1)?a : b
c = s

As an example, consider giving the input of 4 and 6 to the two GCD circuits.
It means that x = a = 4 and y = b = 6 at the very beginning. The circuit GCD_A
will generate a sequence of states (x, y) as (4, 6), (4, 2), (2, 2). The circuit GCD_B
will generate a sequence of states (a, b) as (4, 6), (6, 4), (2, 4), (4, 2), (2, 2). As
we can see that the two circuits are functional-equivalent since their final result is
the same. However, they are not cycle-accurate-equivalent, since they take different
numbers of cycles to reach the final states. But with the conditional stuttering in
GCD_A and the history variable inGCD_B, the sequence of states (x, y, c) inGCD_A
is (4, 6, 0), (4, 6, 1), (4, 2, 1), (4, 2, 0), (2, 2, 0), while the sequence of (a, b, s) in
GCD_B is (4, 6, 0), (6, 4, 1), (2, 4, 1), (4, 2, 0), (2, 2, 0). It is easy to check that
the corresponding states satisfy the mapping functions. The two cycle-accurate-
equivalent circuits can be transformed from each other by a sequence of retiming
and resynthesis. Therefore, we can transform GCD_A to GCD_B by a sequence of
conditional stuttering, retiming, resynthesis, and sweep.

9.3.5 Structural Transformation Sufficient for Best-Possible
Obfuscation

Now we will show that the best-possible obfuscation of a sequential circuit can be
done by a sequence of structural transformations. As already demonstrated on a
simple example in Fig. 9.1, we can transform any circuit into any other one that is
cycle-accurate-equivalent to the original one. This is stated as the following lemma
given by [30].

Lemma 1 If two circuits are cycle-accurate-equivalent, then one of them can be
transformed to the other by a sequence of sweep (inverse), resynthesis, retiming,
resynthesis, and sweep, given that the second resynthesis operation is allowed to use
one-cycle reachability.

Similar to Fig. 9.2, it can be shown that conditional stuttering can transform a
circuit into a circuit that is cycle-accurate-equivalent to any circuit that is functional-
equivalent to the original one. Combined with the Lemma 1,

Lemma 2 If two circuits C1 and C2 are functional-equivalent, then C1 can be trans-
formed into a new circuit C ′

1, and C2 into a new circuit C ′
2, by conditional stuttering,

such that C ′
1 and C

′
2 are cycle-accurate-equivalent.

With Lemmas 1 and 2, we can show that any functional-equivalent transformation
can be done if conditional stuttering is used in addition to retiming, resynthesis, and
sweep.

230 H. Zhou

Theorem 1 Retiming, resynthesis, sweep, and conditional stuttering are complete
for structural transformation between any functional-equivalent circuits.

The following corollary shows the existence of structural transformations for any
best-possible obfuscation of a sequential circuit. It is based on the above theorem that
structural transformations can derive any functional-equivalent circuit from a given
circuit, and the definition that the best-possible obfuscation reveals at most infor-
mation as any other equivalent program. Given the current state of art in behavioral
synthesis and logic synthesis, we can safely state that giving a program (no matter
what computational model it is on) is the same as giving an equivalent sequential
circuit.

Corollary 1 Any best-possible obfuscation of a sequential circuit can be accom-
plished by a sequence of retiming, resynthesis, sweep, and conditional stuttering.

9.4 Key-Locked OBfuscation (KLOB)

The previous section shows the existence of structural transformation-based best-
possible obfuscations. However, it does not provide a specific procedure, not even
a guide, to do transformations for any best-possible obfuscation. The reason is that,
even though Goldwasser and Rothblum [9] gave the definition of the best-possible
obfuscation–one equivalent circuit, they did not show which one it is or not even
which subset it belongs to. In this section, wewill address this problem by developing
a scheme called Key-Locked OBfuscation (KLOB).

9.4.1 KLOB Framework

We first argue that Key-Locked OBfuscation (KLOB) is the correct scheme for
hardware IP protection. Based on the definition [9], the best-possible obfuscation
of a circuit is one of equivalent circuits. Intuitively, in order to hide the original
circuit, the obfuscation should be most different from the original one. But please
note that it should not be the most different one if that helps to identify the original.
Such a request helps to prevent the original to be understood or reverse-engineered.
However, for hardware IP protection, thatmay not be sufficient: an adversarymay not
want to understand or modify the original, but to produce and use the circuit without
permission. Therefore, an obfuscation that is very different from the original but with
similar performance (speed, power consumption, etc.) is not very useful. However,
if the obfuscation performs much worse than the original, then the legal users will
suffer and complain. Therefore, any obfuscation for hardware IP protection should
perform differently between an adversary and a legal user. And it is necessary to
employ a secret key in the obfuscated circuit to differentiate the two modes, giving
the Key-Locked OBfuscation (KLOB) scheme.

9 Structural Transformation-Based Obfuscation 231

Behaviorally, the KLOB scheme works as follows. It uses a point function at the
key value to select between two functional-equivalent circuits: the original one and
its best-possible obfuscation with much worse performance. With the key, a legal
user is served by the original circuit; without the key, an adversary is almost surely
getting the much worse circuit. Of course, it is necessary to use obfuscation to mixed
up the three parts of the circuit: the two versions of the circuit and the selection by
the point function. Otherwise, an adversary may be able to extract the original circuit
by analyzing the circuit.

Instead of starting with two equivalent circuits and then mixing them up, we will
start with the original circuit and employ conditional stuttering to transform it. As
shown in the previous section, stuttering based on circuit condition can mimic the
behavior of any other equivalent circuit. If we only do this followed by a sequence
of retiming, resynthesis, and sweep, what we can get is just a slower circuit of the
best-possible obfuscation. In addition, KLOB does the stuttering also based on key
checking. In other words, stuttering is happening inKLOB if and only if the key input
is wrong and the circuit stuttering condition is true. Intuitively, the former encodes
the selection by a point function at the key, while the latter encodes a slower circuit
equivalent to the original one. The advantage of doing this is to make sure that the
two circuits of the same function are tightly entangled together. After this conditional
stuttering, a sequence of retiming, resynthesis, and sweep will be employed to make
sure the three parts are inseparable.

The KLOB scheme after the conditional stuttering step is shown in Fig. 9.3. The
components in dark color Ro and Co are the registers and combinational logic of
the original circuit, respectively. The components in light color are the conditional
stuttering logic, which includes the combinational circuit Cs to generate stuttering
condition s based on the original state Ro and the extra registers Rs, and the key
checking circuit Ck to generate the mismatching signal k. Only under the condition
s and k the original circuit is stuttering. Please note that Ck in a straight-forward
design may not have the dashed connections in Fig. 9.3 and is only a combinational
implementation of a point function that will only generate zero at a given key point.

Fig. 9.3 Key-Locked
OBfuscation (KLOB)
scheme after conditional
stuttering

Ro

Co

1 0 AND

Cs

Ck

Rs

Rk

PI PO

Key

s

k

232 H. Zhou

Fig. 9.4 Behavior of the key
checking circuit

Such Ck is hard to be obfuscated by retiming and resynthesis, since there is only one
bit and one-directional connection from Ck to the rest the whole circuit. In the next
subsection, we will enhance the obfuscation of Ck by introducing extra registers Rk
and the connection from Ro to Ck. With these modifications, it is easy to see that
all the registers in Ro, Rs, and Rk can be retimed through or into Co, Cs, and Ck.
It will greatly increase the security of the obfuscation by the followed retiming and
resynthesis operations.

9.4.2 Stuttering Control Logic

This section will elaborate on the design of the stuttering control logic, including
both Cs with Rs and Ck with Rk. As already mentioned, it is better to introduce
extra registers Rk to Ck and to connect Ro to Ck to facilitate the obfuscation by
later retiming and resynthesis operations. The idea is to make Rk to stay at the same
state if and only if the correct key value is presented at the correct cycle, otherwise it
will be trapped in the mismatch states (black hole states), as shown in Fig. 9.4. The
transitions among the black hole states are dependent on Ro, making Rk depending
on both Ro and Rk.

A simple design for stuttering signal s generation may make Cs with Rs as
a counter such that Rs ′ = (Rs + 1)%2w and set s = (Rs%t == 0)?0 : 1, where
1 − 1/t is the frequency of stuttering. In other words, the slow circuit is approxi-
mately t times slower than the original circuit. However, such a design will make Cs
independent of Ro, which will hurt the obfuscation of the whole circuit. From the
structural point of view, it may limit the capability to retime registers on Cs; from
the behavioral point of view, a very regular stuttering on the original circuit may only
transform it into a very specific equivalent circuit, from which the original circuit
may be easily derived.

As can be seen from the GCD example in Fig. 9.2, the right stuttering condition
should be decided by the target circuit. The ideal approach is to follow the procedure
shown in Fig. 9.2, that is, first come up with an equivalent circuit with much worse
performance, then figure out a mapping between the states of the two circuits, and
finally design the stuttering control logic to make the mapping one-to-one. An easier
approach could first find an approximate formular of the reachable states in the origi-
nal circuit (either by simulation or static analysis), then reformat it into a disjunction

9 Structural Transformation-Based Obfuscation 233

Fig. 9.5 Re-encoding of sequential circuits by retiming and resynthesis

of a few simple expressions, and finally give different numbers of stuttering cycles
to different expressions.

Since the insertion of stuttering control logic results in extra delay, area, and
power consumptions, its design has to consider not only obfuscation effect, but also
the overhead. A good design must have a good trade-off between these effects.

9.4.3 Obfuscation by Retiming and Resynthesis

As shown in Sect. 9.3.5, conditional stuttering by itself is not sufficient for obfusca-
tion. This can be easily seen on Fig. 9.3: by analyzing the circuit, an adversary can
easily remove the stuttering control logic and get the original circuit! The condition-
ally stuttered circuit (shown in Fig. 9.3) has to be obfuscated by other structural trans-
formations: retiming, resynthesis, and sweep. However, the transformation space by
these operations is so huge, and it includes all cycle-accurate-equivalent circuits. We
propose some basic ideas in this section. It should be note that any extra sequence of
retiming and resynthesis operations can be applied on top of each other, and random
operations of retiming and resynthesis can enhance the obfuscation.

It can be seen that one vulnerability of the conditional stuttered circuit in Fig. 9.3 is
the relative independence of the three register groups Ro, Rs, and Rk. By carefully
re-encoding the states, we can increase the dependency among them, thus make
it harder to extract useful information from the netlist.1 It is well known that any
re-encoding of a sequential circuit can be done by a sequence of retiming and resyn-
thesis, as shown in Fig. 9.5. The identity function at the register outputs is resynthe-
sized to F ∗ F−1, where F is the one-to-one mapping from states of C to the target
states of circuit C ′. Then retiming moves the registers forward over F . The last step

1See Sect. 9.5 for detailed discussion.

234 H. Zhou

resynthesizes F−1 ∗ C ∗ F into C ′. Note that retiming and resynthesis may also
help to reduce the overhead caused by adding stuttering control logic. Different re-
encoding functions may be evaluated and the one resulting in the least overhead will
be chosen as the final re-encoding function.

A linear transformation can be used as the re-encoding function. An elementary
linear transformation transforms the set of variables X = {x1, . . . , xi , . . . , x j , . . . ,

xn} into the set of variables X = {x1, . . . , xi , . . . , xi ⊕ x j , . . . , xn}. An arbitrary lin-
ear transformation can be obtained by a sequence of elementary linear transforma-
tions, each one of them implementable by two xor gates, one gate in the transcoder
before the registers (F) and one gate in the transcoder after the registers (F−1).

9.4.4 Implementation Overhead

In this section, we report the overhead in terms of area, power, and timing of the syn-
thesized circuits from the ISCAS89 benchmark suite. We first generate the original
BLIF netlist of the benchmark circuits by ABC synthesis tool [5], which will be used
as the baseline for obfuscated circuits. Then, we will generate the BLIF netlist of the
stuttering control logic. Finally, the original circuit and stuttering control logic will
be merged and obfuscated by resynthesis and retiming. All benchmark circuits are
mapped to a standard cell library. In the experiments, we use 8 bits for the stuttering
indicator and 24 bits for the key indicator.

Table9.1 demonstrates comprehensive performance overhead evaluations on the
ISCAS benchmark suite. The first column denotes the benchmark circuit name. The
next three columns (Columns 2–4) show the original design statistics: the number
of primary inputs, the number of primary outputs, and the number of FFs. Columns
5–7 demonstrate the design maximum delay in the following order: the original
synthesized delay, the added delay post-obfuscation, and the percentage of increase.
The original designs power post-synthesis, the added power post-obfuscation, and
the ratio between the two are reported in Columns 8–10. The post-synthesis area of
the original design, the added area post-obfuscation, and the ratio between are shown
in the last three columns, respectively.

We first analyze the impact of obfuscation on the circuit timing. From Fig. 9.3, we
can see that the critical path may be affected by newly added control signal, and the
ratio of the added critical path delay overhead compared to the original delay seems
to be independent of the circuit size. However, this overhead can be alleviated by
the followed retiming and resynthesis optimization. Therefore, the actual overhead
in the critical path delay introduced by our obfuscation is rather low, especially for
large designs that have much flexibility for retiming and resynthesis to leverage. For
the tested cases with small or modest design size, on average the delay overhead is
3.35%.

9 Structural Transformation-Based Obfuscation 235

Ta
bl
e
9.
1

E
xp
er
im

en
tr
es
ul
ts

C
ir
cu
its

St
at
s

D
el
ay

(n
s)

Po
w
er

(μ
W
)

A
re
a
(l
it
er
al
)

PI
PO

FF
O
ri

In
cr

%
O
ri

In
cr

%
O
ri

In
cr

%

s3
82

3
6

21
0.
46
3

0.
03
2

6.
9

16
1.
1

11
8.
3

73
.5

25
5

19
5

76
.3

s4
00

3
6

21
0.
49
3

0.
01
6

3.
2

16
7.
2

10
6.
0

63
.3

26
4

17
4

65
.9

s5
26

3
6

21
0.
43
4

0.
04
2

9.
6

19
0.
4

13
6.
9

72
.2

33
8

22
5

66
.7

s8
38

34
1

32
1.
22
7

0.
01
9

1.
6

34
1.
0

14
9.
1

43
.8

53
1

25
3

47
.6

s9
53

16
23

29
0.
91
1

0.
04
6

5.
0

39
1.
8

15
6.
6

40
.0

59
5

26
3

44
.2

s5
37
8

35
49

17
9

0.
73
6

0.
02
1

2.
8

14
11
.0

25
6.
3

18
.2

22
48

51
2

22
.8

s9
23
4

36
39

21
1

1.
75
5

0.
03
4

1.
9

21
57
.1

26
7.
0

12
.4

34
92

54
3

15
.5

s1
32
07

62
15
2

63
8

1.
86

0.
02
8

1.
5

41
10
.2

50
1.
0

12
.2

63
39

11
14

17
.6

s1
58
50

77
15
0

53
4

2.
78

0.
03
1

1.
1

45
65
.7

59
0.
9

13
.0

71
04

13
16

18
.5

s3
59
32

35
32
0

17
28

1.
18

0.
04
2

3.
6

17
78
7

12
71
.3

7.
2

24
93
4

29
98

12
.0

s3
84
17

28
10
6

16
36

1.
46

0.
02
1

1.
5

11
73
1

12
42
.7

10
.6

18
41
7

29
23

15
.8

s3
85
84

38
30
4

14
26

1.
90

0.
02
9

1.
5

12
45
8

92
9.
3

7.
5

20
92
0

21
79

10
.4

A
ve
ra
ge

–
–

–
–

–
3.
35

–
–

31
.2

–
–

34
.4

236 H. Zhou

The area and power overhead is closely related in our approach. In addition, they
are not independent of the design size in the worst case since the control signal for all
original FFs are changed. The overhead for area and power in our testcases are 31.2
and 34.4% on average. It can be seen that the overhead of our obfuscation scheme
decreases as the size of the original design increases. Since our testcases are typically
much smaller than current industrial designs, it can be estimate that the overhead for
area and power will not exceed 10% for realistic designs.

9.5 Attack Resiliency

In this section, we enumerate possible attacks on KLOB scheme and discuss how
the proposed method is secured against them.

• Brute force attack: The adversary attempts at guessing the key until the throughput
of tested IC is obviously better. It is well known that such an approach could be
successful with very tiny probability.

• Stuttering control logic identification: Assume that the adversary knows that the
circuit is obfuscated by KLOB, thus will try to identify the stuttering control logic.
Running without the key, the circuit in Fig. 9.3 must have many stuttering steps
in Ro, but not in Rs or Rk. This may be explored by the adversary to identify
Ro. However, in KLOB, re-encoding and other retiming and resynthesis steps
has been done on this circuit. Suppose A is a stuttering register in Ro and B
is a changing register in Rs, a linear transformation A′ = A ⊕ B will make A′
changing, defeating the suggested attack.

It is already mentioned in Sect. 9.4.2 that it is better to make Rs and Rk dependent
on Ro. Otherwise, since every register in Ro is dependent on Rs and Rk, a register
dependence analysis may separate Ro from the others. Here again, even we did a bad
job such that the dependence of Rs and Rk on Ro is weak, a linear transformation
B ′ = A ⊕ B will make register B ′ dependent on register A. Therefore, a general
linear transformation on all the registers in Ro, Rs, and Rk will also prevent register
dependence analysis.

• Inverse structural transformation: The adversary may attempt to inversely transform
the obfuscated IC into the original IC via structural transformation. However, without
any knowledge on the obfuscation transformations, the adversary can only randomly
guess the reverse re-encoding and transformations and test correctness by stuttering
control logic identification. In reality, this attack is too expensive and time consuming
for the purpose of piracy.

• Key-based de-obfuscation: Here, we consider an extreme case where the key has
been somehow leaked and want to check how easy the adversary can get the original
circuit. If no re-encoding or other retiming and resynthesis is done on the circuit in
Fig. 9.3, applying the key can identify Rk since they are not changing. This can further
help to identify k and s, thus to get the original circuit. However, with a thorough
linear transformation on Ro, Rs, and Rk together, all the registers are mixed up, and

9 Structural Transformation-Based Obfuscation 237

it is impossible to identify Ck. Therefore, we can safely say that, even when the key
is leaked, its damage to a KLOB circuit is limited since the adversary can only use
the original circuit but cannot get the design.

9.6 Conclusion

This chapter presents a circuit obfuscation technique called KLOB (Key-Locked
OBfuscation) based on structural transformations. It first shows that any best-possible
obfuscation of a sequential circuit can be accomplished by a sequence of retiming,
resynthesis, sweep, and conditional stuttering. Then the KLOB is presented for hard-
ware IP protection. Starting with an original circuit, KLOB first adds stuttering with
conditions both on key checking and on the original circuit, and then obfuscates the
conditionally stuttered circuit by a sequence of retiming, resynthesis, and sweep.
With the correct key, the circuit will run in the original speed; otherwise, it will
run much slower. The efficiency of the method was demonstrated by evaluations on
ISCAS89 benchmarks. We also discussed the possible attacks and how KLOB is
secure against them.

As we already mentioned, the benefit of structural transformations is to avoid the
expensive STG manipulation. Therefore, the structural transformation-based obfus-
cation ismore efficient than STG-based obfuscations. Logic obfuscation (also known
as logic encryption) is a technique that uses a key and extra logic to modify the com-
binational design of a given circuit [4, 7, 8, 13, 23–25]. Since it only modifies the
combinational logic, logic obfuscation can be viewed as a subset of the structural
transformation-based obfuscation, where the allowed operations is only resynthesis.

For hardware IP protection, circuit performance is the key treasure to be protected.
If the obfuscated circuit performs similarly as the original, an adversarywill be happy
to take it. If it performsmuchworse, then no user wants it. This means that the KLOB
scheme is the right choice for circuit obfuscation:with the key, legal users get a circuit
with the same performance as the original one; without the key, an adversary gets the
best-possible obfuscation—an equivalent circuit with much worse performance. The
theory in Sect. 9.3.5 ensures that, even when the key is known, an adversary will still
not be able to get the original circuit. Our future work will study more sequences of
structural operations to better obfuscate the conditionally stuttered circuit, especially
the key checking circuit. We will leverage existing obfuscation techniques for point
functions since key checking is essentially a point function.

References

1. Alkabani Y, Koushanfar F (2007) Active hardware metering for intellectual property protec-
tion and security. In: Proceedings of 16th USENIX security symposium on USENIX security
symposium, pp 20:1–20:16

238 H. Zhou

2. Alkabani Y, Koushanfar F, Potkonjak M (2007) Remote activation of ICs for piracy prevention
and digital right management. In: Proceedings of the 2007 IEEE/ACM international conference
on computer-aided design, pp 674–677

3. Barak B, Goldreich O, Impagliazzo R, Rudich S, Sahai A, Vadhan SP, Yang K (2001)
(im)possibility of obfuscating programs. In: Proceedings of the 21st annual international cryp-
tology conference on advances in cryptology, pp 1–18

4. Baumgarten A, Tyagi A, Zambreno J (2010) Preventing IC piracy using reconfigurable logic
barriers. IEEE Design and Test 27:1

5. Brayton R, Mishchenko A (2010) ABC: an academic industrial-strength verification tool. In:
Proceedings of the 22nd international conference on computer aided verification, pp 24–40

6. Bryant R (1986) Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput. 35:677–691

7. Chakraborty R, Bhunia S (2008) Hardware protection and authentication through netlist level
obfuscation. In: IEEE/ACM international conference on computer-aided design

8. Dupuis S, Ba P-S, Natale GD, Flottes M-L, Rouzeyre B (2014) A novel hardware logic encryp-
tion technique for thwarting illegal overproduction and hardware trojans. In: IEEE international
on-line testing symposium

9. Goldwasser S, Rothblum GN (2007) On best-possible obfuscation. In: Proceedings of the 4th
conference on theory of cryptography, pp 194–213

10. Huang J, Lach J (2008) IC activation and user authentication for security-sensitive systems.
In: Proceedings of the 2008 IEEE international workshop on hardware-oriented security and
trust, pp 76–80

11. Koushanfar F (2011) Integrated circuits metering for piracy protection and digital rights man-
agement: an overview. In: great lakes symposium on VLSI, GLSVLSI ’11, pp 449–454

12. Koushanfar F (2012) Provably secure active IC metering techniques for piracy avoidance and
digital rights management. Inf. forensics and secur., IEEE Trans. 7(1):51–63

13. Koushanfar F (2012) Provably secure active IC metering techniques for piracy avoidance and
digital rights management. IEEE Trans. on Inform. Forensics and Secur. 7:1

14. Koushanfar F, Alkabani Y (2010) Provably secure obfuscation of diverse watermarks for
sequential circuits. In: IEEE international symposium on hardware-oriented security and trust
(HOST), pp 42–47

15. Koushanfar F, Qu G (2001) Hardware metering. In: Proceedings of the 38th annual design
automation conference, pp 490–493

16. Koushanfar F, Qu G, Potkonjak M (2001) Intellectual property metering. Inform. Hiding.
Springer, Heidelberg, pp 81–95

17. Leiserson CE, Saxe JB (1991) Retiming synchronous circuitry. Algorithmica 6(1):5–35
18. Lofstrom K, Daasch W, Taylor D (2000) IC identification circuit using device mismatch. In:

IEEE international solid-state circuits conference, pp 372–373
19. Lu Y, Zhou H (2013) Retiming for soft error minimization under error-latching window con-

straints. In: Design automation and test in Europe conference
20. Lynn B, Prabhakaran M, Sahai A (2004) Positive results and techniques for obfuscation. In: In

EUROCRYPT 04
21. Oliveira AL (1999) Robust techniques for watermarking sequential circuit designs. In: Pro-

ceedings of the 36th annual ACM/IEEE design automation conference, pp 837–842
22. OliveiraA (2001)Techniques for the creationof digitalwatermarks in sequential circuit designs.

IEEE Trans. on Comput.-Aided Design of Integr. Circuits and Syst. 20(9):1101–1117
23. Rajendran J, Pino Y, Sinanoglu O, Karri R (2012) Security analysis of logic obfuscation. In:

Design automation conference
24. Rajendran J, Zhang H, Zhang C, Rose GS, Pino Y, Sinanoglu O, Karri R (2015) Fault analysis-

based logic encryption. IEEE Trans. on Comput. 64:2
25. Roy JA, Koushanfar F, Markov IL (2008) EPIC: ending piracy of integrated circuits. In Design,

Automation and Test in Europe
26. Roy JA, Koushanfar F, Markov IL (2008) Protecting bus-based hardware IP by secret sharing.

In: Proceedings of the 45th annual design automation conference, pp 846–851

9 Structural Transformation-Based Obfuscation 239

27. SuY,Holleman J, Otis B (2007) A 1.6pj/bit 96% stable chip-ID generating circuit using process
variations. In: IEEE international solid-state circuits conference, pp 406–611

28. Suh GE, Devadas S (2007) Physical unclonable functions for device authentication and secret
key generation. In: Proceedings of the 44th annual design automation conference, pp 9–14

29. Yuan L, Qu G (2004) Information hiding in finite state machine. In: Proceedings of the 6th
international conference on information hiding, pp 340–354

30. ZhouH(2009)Retiming and resynthesiswith sweep are complete for sequential transformation.
In: Proceedings of 9th international conference on formal methods in computer-aided design,
pp 192–197

Part IV
Hardware Obfuscation Based on Emerging

Integration Approaches

Chapter 10
Split Manufacturing

Siddharth Garg and Jeyavijayan (JV) Rajendran

10.1 Introduction

The idea behind split manufacturing (or split fabrication) is to partition (or “split”)
an IC netlist into multiple “parts” and fabricate each part at a separate foundry.
Intuitively, since no one foundry gets access to the full design of the IC, its ability to
either pirate the design or maliciously modify it in a targeted way is hindered.

In its simplest instantiation, an IC is split into two parts. One part has of all
the active components (transistors) and some of the interconnect (wires), while the
other part has the remaining interconnections. As wewill discuss, more sophisticated
instantiations of split manufacturing might even involve splitting active components
across gates.

Technologically, split manufacturing can be achieved in one of two ways: either
using an FEOL/BEOL split, or using 3D integration technology. These are discussed
below.

• FEOL/BEOL splitting: this technique, shown in Fig. 10.1a, involves splitting the
front-end of line (FEOL) and the back-end of line (BEOL) fabrication steps across
two foundries. The FEOL part consists of transistors as well as lower metal layers
(for example Metal 4 and below), and the BEOL part consists of the upper metal
layers [1]. The untrusted, high-end foundrymanufactures the FEOLpart (including
the lower BEOL layers), since these steps involve the smallest feature sizes and
require access to advanced fabrication technology. Next, the trusted, low-end, in-
house foundry manufactures the remaining BEOL layers. Clearly, the attacker in
the high-end untrusted foundry only has access to a partial netlist; he has only

S. Garg (B) · J. Rajendran
New York University, New York City, NY, USA
e-mail: siddharth.garg@nyu.edu; sg175@nyu.edu

S. Garg · J. Rajendran
The University of Texas at Dallas, Richardson, TX, USA

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_10

243

244 S. Garg and J. Rajendran

Fig. 10.1 Two approaches to split manufacturing. a FEOL/BEOL split manufacturing and b 3D
integration-based split manufacturing

the FEOL part but not the BEOL part. The feasibility of this approach has been
demonstrated by Vaidyanathan et al. [2] in a 0.13µm technology node.

• 2.5D/3D integration: As shown in Fig. 10.1b, the netlist is split across two or more
wafers, each containing a part of the netlist. The wafers are fabricated in different
foundries and integrated through 3D integration technology. When the top part
consists of only metal layers, the technology is more commonly referred to as
2.5D integration and the top tier is referred to as an interposer.

Split manufacturing is advantageous over other IP protection techniques as it does
not require any key-storage mechanisms, as logic encryption does. In addition, as
we will see, split manufacturing can be used to defend against strong attack models
in which the attacker has access to the netlist the defender wishes to fabricate and
aims to maliciously modify targeted parts of the netlist. On the other hand, hand
split manufacturing is susceptible to proximity attacks that exploit physical design
information, while logic encryption is not. Mitigating this vulnerability potentially
introduces high overheads.

10.1.1 Split Manufacturing Flow

Figure10.2 shows an exemplar split manufacturing flow that leverages 2.5D integra-
tion. The designer starts with the design netlist and first partitions the netlist into two
tiers—the bottom tier consists of all gates and some wires, while the top tier consists
of the remaining wires. The top tier is also referred to as the hidden tier since it is
hidden from the view of the untrusted foundry. Note that partitioning for 2.5D/3D
integration is a well-studied problem in the EDA community [3]. However, these
partitioning strategies try to optimize metrics like delay and power, not security.

After partitioning, the next step is physical design. At the end of this step, the
GDSII files for the bottom and top tiers are ready to be sent to their respective
foundries. As mentioned earlier, the attacker should not have access to the layout

10 Split Manufacturing 245

Fig. 10.2 Split manufacturing flow using 2.5D integration. The steps in the green boxes must be
performed securely, while all others are potentially subject to attack. The flows for single-wafer and
full 3D integration-based split manufacturing are similar

of wires in the top tier. Traditional physical design tools optimize for metrics like
average wire length and can potentially leak information to the attacker, thus com-
promising security. In Sect. 10.4, we discuss a security-aware layout strategy for split
manufacturing.

The two tiers aremanufactured at their respective foundries. The assumption is that
the two foundries cannot collude—for this reason, the top tier must be fabricated in a
trusted, in-house foundry. Finally, the top and bottom tiers are stacked and packaged
by a trusted integrator.

An inherent assumption in any split manufacturing process is that the IC has not
been manufactured before, or at the very least, previously manufactured versions
cannot be purchased commercially. If this were the case, the untrusted foundry could
simply purchase the IC from themarket and reverse engineer the wiring in the hidden
tier.

The rest of this chapter is organized as follows. Section10.2 details two specific
threat models in the context of split manufacturing. The weak threat model assumes
an attacker who is interested in thieving the designer’s IP. In contrast, the strong
threat model strengthens the weak attacker with apriori knowledge of the IC’s netlist
(hence, IP theft is moot)—the strong attacker wishes tomaliciouslymodify the chip’s
functionality.

Next, Sect. 10.3 discusses a specific security metric, k-security, that quantifies the
amount of security that split manufacturing buys in the context of the strong attack
model. Intuitively, k-security measures the extent to which the attacker is confused
as to the functionality of each gate in the (partial) netlist she observes.

Section10.4 discusses how the traditional design automation tool flow should be
modified to obtain a certain level of security while minimizing cost and information

246 S. Garg and J. Rajendran

leakage. In the secure partitioning step, the netlist is partitioned so as to maximize
k-security within a cost constraint. In the secure layout step, the placement of gates
in the netlist outsourced to the untrusted foundry is decided so as to ensure that
the layout/placement does not reveal information about the wiring in the part of the
netlist hidden from the attacker. We conclude in Sect. 10.6.

10.2 Threat Models

We now discuss two specific threat models in the context of split manufacturing. In
the first, we assume that the attacker only has access to the GDSII file of the bottom
tier. We call this the weak attack model. The attacker’s goal is to reverse engineer
the full netlist when the designer is fabricating. In the second, we assume that in
addition to the GDSII file of the bottom tier, the attacker also has access to the full
netlist when the designer is fabricating. Here, the attacker’s goal is not IP theft, but
instead is hardware Trojan insertion.

10.2.1 Weak Attack Model

In the weak attack model, the goal of the designer is to keep the IC’s netlist hid-
den from the attacker. Formally, let the designer’s private netlist be C = (V, E).
The part of the netlist sent to the untrusted foundry is referred to as CPART =
(VPART , EPART), where |V | = |VPART | for FEOL/BEOL splitting or 2.5D
integration-based split manufacturing. We assume that the attacker can reliably
recover the netlist CPART from its layout file. Can a determined attacker recover
C knowing only CPART ?

Rajendran et al. [4] have shown that attacker’s can potentially infer the hidden
connectivity in the top tier by leveraging the proximity of gates in the bottom tier. This
is referred to as a proximity attack. Proximity attacks can be particularly successful
if the defender uses conventional layout techniques. Such techniques try to minimize
sumwire length; thus, connected gates are likely to be proximal. This is illustrated in
Fig. 10.3 using a simple example in which connecting proximal bond points recovers
the hidden wires correctly. Figure10.4 shows the histogram of Euclidean distances
between pairs of connected and unconnected gates obtained using a commercial
layout tool—observe that connected gates are far more likely to be proximal than
unconnected gates.

Using even a simple strategy in which the attacker connects each unconnected
gate input to its closest unconnected gate output results in >90% correct recovery
of hidden connections when a conventional netlist partitioning technique such as
hMetis [5] and a commercial layout tool are used in the split fabrication flow.

10 Split Manufacturing 247

Fig. 10.3 c17 benchmark circuit with two hidden wires. Connecting proximal bond points recovers
the correct netlist

Fig. 10.4 Layout of a sample benchmark and corresponding wire length distribution for uncon-
nected and connected gates

10.2.2 Strong Attack Model

In the weak attack model, the designer’s netlist is private. However, what if the
designer’s goal is to fabricate logic for which the functionality, and perhaps even
the netlist, is public knowledge? Examples of such functions are abundant. Most
cryptographic protocols are publicly known, for instance advanced encryption stan-
dard (AES) and the data encryption standard (DES) protocols, and often have known
optimized hardware implementations [6, 7]. The primary threat in such a scenario
arises from hardware Trojan insertion. As noted by [8], hardware Trojans can have a
disastrous impact on IC security, from unauthorized privilege escalation [9] to secret
key leakage [10]. Hardware Trojans are broadly categorized into: (1) always active,

248 S. Garg and J. Rajendran

(2) trigger and payload, and (3) reliability-based [11], i.e., those that use device
degradation as an implicit trigger.

Specifically, in the strong attack model, we assume that attacker has access to the
full netlist, C , that the designer wishes to fabricate. In addition, as in the weak attack
model, the attacker also has the partial netlist CPART . We assume that the designer
has scrubbed the layout file from which CPART is derived of all identifying labels,
and therefore, the labels in CPART are arbitrary and unrelated to those in the original
netlist C .

The attackerwishes tomodify the design, i.e., insert a hardware Trojan, in a certain
targeted way. For instance, for the privilege escalation attack [9], the attacker’s goal
is to modify the gates that control the bits that determine whether the processor
executes in user or kernel mode. That is, the attacker needs to determine where in
the design to insert the hardware Trojan payload. Similarly, to insert a Trojan that
triggers when a certain sequence of instructions is observed [12], the attacker needs
to identify certain wires/gates in the decode logic. As another example, the reliability
attack discussed in [11] also requires modifications of certain targeted parts of the
netlist.

To succeed in its objective, therefore, the attacker must first correctly identify
the gate(s) in CPART that it wishes to modify (recall that gates in CPART and C are
differently labeled). It does so by matching the gates in the partial netlist to those
in the public netlist. If the match is correct, the attacker succeeds. The attacker’s
objective can therefore be formulated mathematically as follows. To match gates in
CPART to those inC , the attacker wishes to find a bijective mapping φ : V → VPART

such that < φ(u), φ(v) >∈ EPART only if < u, v >∈ E . That is, the attacker knows
that if an edge exists in CPART , the corresponding edge must exist in C . On the other
hand, if an edge does not exist in CPART , the corresponding can still exist in C since
it might be hidden.

The condition above is equivalent to the attacker determining a sub-graphofC , one
that consists of all of the vertices in C but only some of the edges, that is isomorphic
to CPART . Two graphs are said to be isomorphic if they have the structure, i.e., there
is a way to permute the vertices of the first graph to obtain the second. When a
sub-graph of one graph is isomorphic to another, this is referred to as a sub-graph
isomorphism.

The crux of using split fabrication as a defense mechanism in this setting is
that many such sub-graph isomorphisms might exist, thus hindering the attacker in
identifying a correct mapping.

Note that the proximity attacks discussed above are still relevant in the context of
the strong attack model—that is, in addition to finding sub-graph isomorphisms, the
attacker could use proximity information to match gates inCPART toC . In this sense,
the strong attack model subsumes the weak attack model. The rest of this chapter
therefore focuses on the strong attack model.

10 Split Manufacturing 249

10.3 Security Metric

Imeson et al. [13] have proposed a security metric, k-security, that quantifies the
security obtained fromsplitmanufacturing against targeted hardwareTrojan insertion
attacks. Consider, for example, the public netlist in Fig. 10.8a and the partial netlist
sent to the untrusted foundry, shown in Fig. 10.8b. Five wires from the public netlist
have been hidden, and bond points are added to allow these wires to be implemented
in the top tier. Now observe that gate G6 in the public netlist can correspond to
either gate GF and GG in the partial netlist. We thus say that gate G6 is 2-secure. To
attack G6, the attacker can either pick one of GF/GG and fail with probability 0.5
(modifying both gates will change the nature of the attack). On the other hand, note
that the attacker can uniquely identify that gate GC in the partial netlist is gate G3
in the public netlist. Gate G3 is therefore only 1-secure. The definition of k-security
is formalized below (Fig. 10.5).

Definition 1 (k-security) A gate u ∈ VPUB is k-secure if there exist k distinct sub-
graph isomorphisms {φ1, φ2, . . . , φk} between CPUB and CPART where φi (u) �=
φ j (u) for all i, j ∈ [1, k] and i �= j . A partial netlist CPART is k-secure with respect
to the public netlist CPUB if each vertex u ∈ VPUB is k-secure.

10.3.1 Relevance of k-Security

To further understand the relevance of the k-security metric, consider the hardware
implementation of the DES protocol shown in Fig. 10.6a. It has been shown that if
an attacker can modify the LSB output of the 14th round, then she can easily recover

(a) c17 Benchmark Netlist (b) Secure Partitioning

Fig. 10.5 The c17 benchmark netlist (a), and the part of the netlist sent to the untrusted foundry
after secure partitioning (b)

250 S. Garg and J. Rajendran

Fig. 10.6 A hardware implementation of DES encryption (left) and the partial netlist sent to the
untrusted foundry after partitioning. Each round of the DES implementation is 16-secure since it
cannot be distinguished from any other round

the DES key from plaintext–ciphertext combinations [14]. Without obfuscation, an
untrusted foundry might try to leverage this vulnerability by maliciously modifying
the DES implementation such that the least significant bit (LSB) output of the 14th

round flips when a certain trigger condition occurs. Obviously, to carry out such
a targeted attack, the foundry must first identify the wire that corresponds to this
vulnerable bit.

Now consider the implementation in Fig. 10.6b where all wires between rounds
are hidden. Since the functionality (and netlist) of each round is identical, any one of
the 16 modules could correspond to the one that implements the 14th round. Indeed,
in this case, the LSB output of the 14th round is 16-secure.

Other examples of security-critical gates that an attacker might wish to target in
a netlist include:

• The gate that outputs the privilege bit in amicroprocessor. Bymodifying the output
of this gate, the attacker can launch a privilege escalation attack [15].

• Bits that indicate the type of instruction in a processor decode unit. Rarely occur-
ring instruction types, or more generally, gate outputs that rarely switch, can be
used as triggers for attacks [16].

10 Split Manufacturing 251

10.3.2 Computing k-Security

For a given partitioning, that is, givenC andCPART , how can the defender determine
the security level k? As indicated by the definition of k-security, the problem deter-
mining the security level is closely related to the sub-graph isomorphism problem,
which is NP-complete. Indeed, Imeson et al. [13] formally prove that the problem
of determining whether a given partitioning meets a security constraint, k, is also
NP-complete.

Having characterized the complexity of the problem, the next step is to devise a
concrete algorithm to determine the security level for a given partitioning solution. To
do so, the defender iterates through vertices in C . For each vertex in C , the defender
iteratively checks if it can be mapped to each vertex in CPART . Specifically, to check
whether vertex u ∈ V can map to vertex v ∈ VPART , she checks if a sub-graph of C
is isomorphic to CPART with the constraint that u must map to v (φ(u) = v).

The check above can be performed in one of twoways: (1) directly using sub-graph
isomorphism solvers (since it is an instance of a sub-graph isomorphism problem);
or (2) reducing the check to an instance of a CNF-SAT and calling a SAT solver. The
reason to try the second approach is that fast, off-the-shelf solvers are available for
the SAT problem.

The reduction to SAT approach (which is the one recommended by Imeson
et al. [13]) introduces Boolean variables φi j that are 1 if node vi in CPART maps
to node r j in C , and 0 otherwise. Constraints are then introduced that ensure that a
node in CPART maps to only one node in C and vice versa. Finally, constraints are
also introduced to ensure that an edge in CPART only maps to an edge in C . The
three sets of constraints are conjoined and input to a SAT solver.

Given graphs C and CPART , and a bijective mapping φ as defined above, we
now construct a Boolean formula that is true if and only if graphs C and CPART are
sub-isomorphic for the mapping φ. We will construct the formula in parts.

First, we ensure that each vertex in C maps to only one vertex in CPART :

F1 =
|VPART |∏

i

|V |∑

j

⎛

⎝φi, j

|V |∏

k �=i

¬φi,k

⎞

⎠

and vice versa:

F2 =
|V |∏

j

|VPART |∑

i

⎛

⎝φi, j

|VPART |∏

k �=i

¬φk, j

⎞

⎠

Finally, we need to ensure that each edge in CPART maps to an edge in C . Let
EPART = {e1, e2, . . . , e|EPART |} and E = { f1, f2, . . . , f|E |}. Furthermore, let ek =
〈qsrc(ek), qdest (ek)〉 ∈ EPART and fk = 〈rsrc(fk), rdest (fk)〉 ∈ E . This condition can be
expressed as follows:

252 S. Garg and J. Rajendran

Fig. 10.7 Run-time of
SAT-based a domain-specific
sub-iso solver-based
approaches for computing
security. The sub-iso solver
used is VF2

F3 =
|EPART |∏

k

|E |∑

l

φsrc(ek),src(fl) ∧ φdest (ek),dest (fl)

The formula F that is input to the SAT solver is then expressed as a conjunction
of the three formulae above: F = F1 ∧ F2 ∧ F3. The formula F has O(|VPART ||V |)
variables and O(|EPART ||E |) clauses.

Empirically (and perhaps surprisingly), the SAT approach is faster than using a
domain-specific sub-iso solver. This is illustrated in Fig. 10.7.

10.4 Defense Mechanisms

Designer’s must mitigate the threat from strong attackers in two ways: (1) secure
partitioning to maximize k-security so as to defeat sub-iso attacks and (2) secure
layout to defeat proximity attacks. Note that to defend against weak attackers, only
the second method would be required. We now describe these defense mechanisms
in detail.

10.4.1 Secure Partitioning

Split manufacturing incurs a cost—wires that cross from one tier to the other use
large, capacitive bond points. This increases the area, delay, and power consumption
of the chip. Thus, on the one hand, increasing the number of hidden wires increases
security, but also increases area, delay, and power. The goal of secure partitioning is
to explore the trade-offs between security and cost. As a starting point, we adopt a
simple notion of cost, the number of hidden wires. Security is measured using the
k-security metric described earlier.

Given C and constraint on maximum number of hidden wires, H , the goal of
secure partitioning can be formulated as finding CPART as follows:

10 Split Manufacturing 253

Fig. 10.8 Example of greedy secure partitioning heuristic. In each iteration, a new edge is added
in a way to minimize the reduction in security. Each gate is annotated with its security level in each
iteration

max
CPART

k(C,CPART)

such that
|E | − |EPART | ≤ H

and
CPART ⊆ C,

where k(C,CPART) returns the security level of a partitioning solution.
El Massad [17] has shown that there exists no polynomial time approximation

scheme for the secure partitioning problem. As an alternative, Imeson et al. [13] have
proposed a greedy heuristic to solve this problem.

The greedy heuristic initializes CPART to have all the gates in C but none of the
wires. That is, CPART is initialized to have maximum security, but at maximum cost.
Then, in each iteration, a new edge/wire is added to CPART , specifically, one that
results in the smallest reduction in security. These iterations continue till EPART =
E − H , at which point the procedure terminates.

An example illustrating the greedy procedure is shown in Fig. 10.8. The original
netlist has 6 gates. Each gate can be at best 2-secure because it can, at best, be
confused for the other gate of the same type. Starting with the maximally secure
netlist in which all wires are hidden, we observe that the new wire added in the first
iteration does not reduce security. The same is true for the second iteration. In the
third iteration, adding any new wire will result in a drop in security—the wire that is
added results in the least drop in security (the security of the two NAND gates goes
down to 1). Adding any other wire would have resulted in even larger reduction in

254 S. Garg and J. Rajendran

Fig. 10.9 Security versus
cost trade-offs obtained
using the greedy secure
partitioning and random
partitioning approaches

Fig. 10.10 Impact of choice
of technology library on
security. More diverse
technology libraries yield
greater security

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160

S
ec

ur
ity

|E(H)|

lib-3
lib-4
lib-5
lib-6
lib-7

security. Adding any further wires makes all the gates 1-secure, i.e., at this point we
obtain no security at all.

Figure10.9 shows the security versus cost trade-offs obtained by using the greedy
approach on the c432 benchmark circuit from the ISCAS-85 benchmark suite. The
results obtained from the greedy heuristic are compared to randomly hiding wires
from the netlist, a strategy suggested in a white paper by Tezzaron. Note that the
greedy secure partitioning approach significantly outperforms random partitioning.

The upper bound on security in Fig. 10.9 is set by the gate type that appears the
fewest times in the netlist. In theory, if there is a unique gate in the netlist (one
that appears only once), it will always be 1-secure, and correspondingly, the entire
netlist would only be 1-secure. This suggests that the diversity of the technology
library has a role to play in security—the more diverse the technology library, the
less effective we would expect secure partitioning to be. This is indeed the case, as
shown in Fig. 10.10.

10 Split Manufacturing 255

10.4.2 Secure Layout

Figure10.11 shows a secure layout tool flow that provably defends against proximity
attacks [4]. In this flow, the bottom tier layout is performed independently of the top
tier—since the layout tool has no information about connectivity in the top tier, this
information cannot be embedded in the resulting layout. After layout, conventional
routing is performed for the top and bottom tiers.

Figure10.12 compares the results after conventional 2D layout to secure layout
for the bottom and top tiers. Of note, the routing in the top tier is more “convoluted”
than in the optimized 2D layout—this reflects the fact that the proximity of gates in
the bottom tier reveals no information about their connectivity in the top tier. This
assertion was empirically verified using a statistical hypothesis test for the layout in
Fig. 10.12.

We note that although the secure layout tool flow guarantees security, it comes at
extra cost because of increased wire length in the top tier. Increased wire length
implies greater delay and power consumption. Table10.1 reproduces data from
Imeson et al. [13] that illustrates the relationship between delay, power, total wire

Fig. 10.11 Secure layout tool flow. The bottom tier layout is performed separately from the top
tier after partitioning using a commercial layout tool. The resulting layout is independent of the
connectivity of the hidden (top) tier

Fig. 10.12 Layout of the bottom and top tiers after secure layout, compared to the original, opti-
mized 2D layout

256 S. Garg and J. Rajendran

Table 10.1 Power, delay, wire length, and area analysis for different levels of security on the c432
circuit. 1∗ is the base circuit with no wires lifted and 48∗ has all of the wires lifted

Security Power ratio Delay ratio Total wire length
(µm)

Total area (µm2)

1∗ 1.00 1.00 2739 1621

2 1.54 1.73 6574 4336

4 1.55 1.76 7050 4416

8 1.61 1.82 8084 4976

16 1.62 1.86 8161 5248

24 1.71 1.98 9476 6048

32 1.73 1.99 9836 6368

48∗ 1.92 2.14 13058 8144

length and area as the k-security level is increased. These results are for a relatively
small benchmark (c432); for large benchmarks, it is possible that beyond a certain
security level the design becomes unroutable.

10.4.3 Raising the Bar on the Attacker

As a consequence of the defense mechanisms studied in this section, the attacker
is now confounded. For any gate in the original netlist that the attacker wishes to
modify, there are k − 1 other gates that can conceivably correspond to that specific
gate.

An attacker could now choose one of those k gates at random and fail in her
objective with a high probability. Or, the attacker could try and modify all gates,
modifying one at a time (since modifying all together will not result in the mali-
cious functionality the attacker desires). Figure10.13 shows the minimal hardware
the attacker would need to sequentially modify each of the k gates. The additional
hardware significantly increases the Trojan area and likelihood of being detected in
post-fabrication testing.

10.5 Future Opportunities and Challenges for Split
Manufacturing

10.5.1 Reducing Cost

As we have seen, existing split manufacturing approaches can incur high cost,
although they do provide strong security guarantees. Several opportunities exist to
reduce the cost without compromising security.

10 Split Manufacturing 257

Fig. 10.13 Attack scenarios
of 1- and k-secure circuits

Modified
Target

Target

Trigger

8:256
t1

t255

t2

FSM

Trigger

Attacking a non-secure circuit

target1

t1

Attacking a k-secure circuit

target2

t2

target255

t255

Attacking all k
possible targets

Usingdecoygates: simply duplicating a netlist and connecting only one of the netlists
to the chip’s IO pins (the IO pins are implemented in the hidden tier) automatically
provides 2-security with low overhead in terms of number of bond points, power,
and delay. The trade-off is in the area of the bottom tier, but these trade-offs might
be acceptable especially in the era of dark silicon [18]. In this solution, one of the
two netlists acts a decoy. The same idea can be deployed at the gate level instead
of at the netlist level, i.e., the security level of individual gates can be increased by
introducing decoys in the bottom tier.
Leveraging full 3D integration: Full 3D integration allows each tier to have both
gates and wires. Using full 3D would allow gates to be hidden in the top tier along
with wires. The top tier is still fabricated by a trusted foundry, but one with access
to more mature CMOS fabrication technology. Security-critical gates in the design,
for example, the sub-circuit that controls super-user privileges in a microprocessor,
can be selectively implemented on the top tier.
Reducing cost of secure layout: A significant contributor to the cost of split man-
ufacturing is secure layout, especially as the number of hidden wires exceed. The
secure layout approach discussed so far guarantees that the placement of gates in
the bottom tier leaks no information their connectivity—in practice, a solution that
allows designers to trade off a limited amount of information leakage for reduced
cost is desirable. Xie et al. [19] have taken in a step in that direction using simulated
annealing-based layout flow. However, the authors do not quantify the amount of

258 S. Garg and J. Rajendran

information leaked by the proposed approach. More details on this approach can be
found in Chap.12.

10.5.2 Alternative Security Metrics

A criticism of the k-security metric is that it is perhaps too conservative. For one, it
assumes that the attacker knows the original netlist, a potentially unrealistic assump-
tion. Second, the metric requires that every gate in the netlist be k-secure while this
might only be required of certain security-critical gates.

Jagasivamani et al. [20] have proposed alternative metrics for split manufacturing
that might be relevant in the weak attack model. These metrics depend only on
the partial netlist that the attacker observes, CPART and not on the original netlist,
CPUB . Two specific metrics proposed by [20] and their relationship to k-security are
discussed below:
Standard cell entropy: thismetricmeasures the diversity of standard cells in the design
using its entropy; a design that only uses cells of one type (say NANDs) has entropy
0, while one that has the same number of cells of each type has the highest possible
entropy.Counter-intuitively, however, the authors advocate for lower entropy as being
beneficial for security. This is antithetical to the traditional interpretation of greater
entropy (i.e., greater disorder) being useful from a security perspective [21]. A simple
example illustrates why using entropy in the way that Jagasivamani et al. suggest
might be misleading.

Consider a netlist with N/2 gates of type 1 and N/2 gates of type 2 versus one
with N − 1 gates of type 1 and a single gate of type 2. Based on the entropy metric,
the former netlist has higher entropy than the latter and is therefore less secure. On
the other hand, k-security suggests the opposite: The former netlist is N/2-secure
while the latter is only 1-secure.

This discussion illustrates the potential danger in simply adopting metrics, like
entropy, that are used in entirely different security contexts. While entropy is a useful
metric for side-channel vulnerability assessment, for instance, it is not clear how it
directly relates to the split manufacturing problem. In contrast, k-security has a
precise attack model and relates directly to the success probability of the attacker in
this model.
Neighbor connectedness: To address the threat from proximity attacks, Jagasivamani
et al. [20] suggest the use of ametric thatmeasures how likely proximal (neighboring)
gates are to be connected. While this metric captures, abstractly, resilience against
proximity attacks, metrics that can precisely estimate the attackers success probabil-
ity are needed.

10 Split Manufacturing 259

Table 10.2 Overview of split manufacturing-based obfuscation techniques

Work Domain Attack model Attacker intent Methods

Reference [13] Logic Strong attacker Trojan insertion 2.5D integration
Provably
randomized layout

Reference [22] Logic Strong attacker Trojan insertion Obfuscated built-in
self-authentication
Optimized layout
with filler extra filler
cells

Reference [2] Logic Weak attacker IP theft FEOL/BEOL split
(M1 and above)
Optimized layout

Reference [23] Logic Weak attacker IP theft FEOL/BEOL split
(poly and above)
Obfuscated layout of
standard cells

Reference [24] SRAM Weak attacker Trojan insertion FEOL/BEOL split
(M1 and above)
Partially randomized
layout
nonconventional
design decoys

Reference [25] RF Weak attacker IP theft FEOL/BEOL split
(M4–M7 on)
obfuscated inductors
and capacitors

10.5.3 Complementary Uses of Split Manufacturing

Split manufacturing can be used in a number of security-related setting that are
complementary or orthogonal to the setting discussed in this chapter. Vaidyanathan
et al. [24] for SRAM blocks and analog IP, while Bi et al. [25] have proposed similar
ideas for RF ICs.

In particular, Vaidyanathan et al. [2] identify hard IP blocks such as SRAM arrays
and analog IP as specific sources of weakness because they typically have very
regular layout patterns. Even with only FEOL and M1 access, attackers can easily
reverse engineer these patterns.

To address this vulnerability, the authors propose to use (a) randomized place-
ment of peripheral logic (akin to the secure layout approach discussed before), (b)
nonconventional design approaches for common logic blocks like decoders, and (c)
nonstandard, application-specific features to confound the attacker (in part, similar
to decoy cells discussed earlier).

Bi et al. [25] observe that for RF designs, removing the top metal layers has the
effect of hiding inductors from the design. Further removing lower metal layers hides

260 S. Garg and J. Rajendran

capacitors from the design. As a consequence, the inductance and/or capacitance val-
ues in the design can be hidden from the attacker. The authors then posit that without
that an attacker cannot recover these values without knowing the original design
intent, for example, the center frequency. In many practical settings, RF designs for
standard operating bands, for example, the designer’s objectives are readily apparent
from the standards documentation. Whether or not the hidden inductance and capac-
itance values can be reverse engineered for this stronger attack model remains to be
addressed.

Otero et al. [23] have proposed techniques to obfuscate connections within stan-
dard cells, instead of across cells as we have discussed so far in this chapter. While
this fine-grained level of obfuscation enables even distinct standard cells to look
identical, it raises the bar on the capabilities of foundry entrusted with the BEOL
connections.

Finally, Xiao et al. [22] have proposed to leverage split manufacturing in a differ-
ent way, i.e., to obfuscate the implementation of built-in self-authentication circuits
(BISA) on the chip. BISA cells occupy what would otherwise be nonfunctional filler
cells and deter a foundry from using these cells for malicious purposes. Obfuscating
BISA using split fabrication makes it even harder for a foundry to maliciously mod-
ify the original netlist without triggering an alert. More details of this approach are
discussed in Chap.11.

Table10.2 provides a summary of the different proposals for the use of split
manufacturing to achieve obfuscation.

10.6 Conclusion

Split manufacturing is an emerging technique to defend against the threat of out-
sourced semiconductor fabrication at untrusted foundries. By hiding a part of the
design from the attacker, split manufacturing can be used to prevent IP theft and
targeted hardware Trojan insertion. In this chapter, we have discussed existing threat
models in the context of split manufacturing and presented state-of-the-art defense
mechanisms and associated security metrics to mitigate these threats. We have also
provided pointers to outstanding challenges that remain to be addressed and oppor-
tunities to further improve the effectiveness of split manufacturing.

References

1. Intelligence Advanced Research Projects Activity. Trusted Integrated Circuits Program
2. Vaidyanathan K, Das BP, Sumbul E, Liu R, Pileggi L (2014) Building trusted ics using split

fabrication. In: IEEE international symposiumon hardware-oriented security and trust (HOST),
2014. IEEE, pp 1–6

3. Goplen B, Spatnekar S (2007) Placement of 3d ics with thermal and interlayer via considera-
tions. In: Proceedings of the 44th annual design automation conference. ACM, pp 626–631

10 Split Manufacturing 261

4. Rajendran J, Sinanoglu O, Karri R (2013) Is split manufacturing secure? In: Proceedings of
IEEE/ACM conference on design automation and test in Europe, pp 1259–1264

5. SelvakkumaranN, Karypis G (2006)Multiobjective hypergraph-partitioning algorithms for cut
and maximum subdomain-degree minimization. IEEE Trans Comput-Aid Des Integr Circuits
Syst 25(3):504–517

6. Hoornaert F, Goubert J, Desmedt Y (1985) Efficient hardware implementation of the des. In:
Advances in cryptology. Springer, pp 147–173

7. Ichikawa T, Kasuya T, Matsui M (2000) Hardware evaluation of the aes finalists. In: AES
candidate conference, pp 279–285

8. Tehranipoor M, Koushanfar F (2010) A survey of hardware trojan taxonomy and detection.
IEEE Des Test Comput 27(1):10–25

9. King ST, Tucek J, Cozzie A, Grier C, Jiang W, Zhou Y (2008) Designing and implementing
malicious hardware. In: Proceedings of the 1st usenix workshop on large-scale exploits and
emergent threats. USENIX Association, p 5

10. Lin L, Kasper M, Güneysu T, Paar C, Burleson W (2009) Trojan side-channels: lightweight
hardware trojans through side-channel engineering. In: Cryptographic hardware and embedded
systems-CHES 2009. Springer, pp 382–395

11. Shiyanovskii Y, Wolff F, Rajendran A, Papachristou C, Weyer D, Clay W (2010) Process
reliability based trojans through nbti and hci effects. In: 2010 NASA/ESA conference on
adaptive hardware and systems (AHS). IEEE, pp 215–222

12. Yang K, Hicks M, Dong Q, Austin T, Sylvester D (2016) A2: analog malicious hardware
13. Imeson F, Emtenan A, Garg S, Tripunitara M (2013) Securing computer hardware using 3D

integrated circuit (IC) technology and split manufacturing for obfuscation. In: Proceedings of
USENIX security, pp 495–510

14. Boneh D, DeMillo RA, Lipton RJ (1997) On the importance of checking cryptographic pro-
tocols for faults. In: Proceedings of the international conference on theory and application of
cryptographic techniques, pp 37–51

15. HicksM, FinnicumM,King ST,MartinMMK, Smith JM (2010) overcoming an untrusted com-
puting base: detecting and removing malicious hardware automatically. In: IEEE symposium
on security and privacy, pp 159–172

16. Bhunia S, Hsiao MS, Banga M, Narasimhan S (2014) Hardware trojan attacks: threat analysis
and countermeasures. Proc IEEE 102(8):1229–1247

17. El Massad M (2014) On the complexity of the circuit obfuscation problem for split manufac-
turing

18. Shafique M, Garg S, Henkel J, Marculescu D (2014) The eda challenges in the dark silicon
era. In: Design automation conference (DAC), 2014 51st ACM/EDAC/IEEE. IEEE, pp 1–6

19. Xie Y, Bao C, Srivastava A (2015) Security-aware design flow for 2.5 d ic technology. In:
Proceedings of the 5th international workshop on trustworthy embedded devices. ACM, pp
31–38

20. Jagasivamani M, Gadfort P, Sika M, Bajura M, Fritze M (2014) Split-fabrication obfuscation:
metrics and techniques. In: 2014 IEEE international symposium on hardware-oriented security
and trust (HOST). IEEE, pp 7–12

21. Cachin C (1997) Entropy measures and unconditional security in cryptography. PhD thesis,
Swiss Federal Institute of Technology Zurich

22. Xiao K, Forte D, Tehranipoor MM (2015) Efficient and secure split manufacturing via obfus-
cated built-in self-authentication. In: 2015 IEEE international symposium on hardware oriented
security and trust (HOST). IEEE, pp 14–19

23. Otero CTO, Tse J, Karmazin R, Hill B, Manohar R (2015) Automatic obfuscated cell layout
for trusted split-foundry design. In: 2015 IEEE international symposium on hardware oriented
security and trust (HOST). IEEE, pp 56–61

24. Vaidyanathan K, Liu R, Sumbul E, Zhu Q, Franchetti F, Pileggi L (2014) Efficient and secure
intellectual property (ip) design with split fabrication. In: 2014 IEEE international symposium
on hardware-oriented security and trust (HOST). IEEE pp 13–18

262 S. Garg and J. Rajendran

25. Bi Y, Yuan J-S, Jin Y (2015) Split manufacturing in radio-frequency designs. In: Proceedings of
the international conference on security and management (SAM), p 204. The steering commit-
tee of the world congress in computer science, computer engineering and applied computing
(WorldComp)

Chapter 11
Obfuscated Built-In Self-authentication

Qihang Shi, Kan Xiao, Domenic Forte and Mark M. Tehranipoor

11.1 Introduction

As discussed in Chap. 1, changing economic trends have resulted in a global IC
supply chain. For all but a few semiconductor companies, IC fabrication is now
being performed by contract foundries and outside the purview of original intellec-
tual property (IP) owners. There are serious concerns about whether trust between
an IP owner and such fabs/foundries can be established [1]. A untrusted foundry
with malicious intent could conduct a number of attacks including IP piracy [2], IC
cloning/overproduction [3, 4], and hardware Trojan insertion [5].

A great deal of research has been performed to address the attacks associated with
untrusted foundries. One approach introduced by DARPA [6] is split manufacturing.
In this approach, an untrusted foundry manufactures the front-end-of-line (FEOL)
part of the IC (the transistors and lower metal layers) and then ships it to a trusted
foundry to deposit back-end-of-line (BEOL) layers, which includes the remaining
metal layers (see Fig. 11.1). By concealing complete layout information, split manu-
facturing prevents the untrusted foundry from stealing IP information or committing
attacks that require reverse engineering of the design.

Q. Shi (B)
ECE Department, University of Connecticut, Storrs, CT, USA
e-mail: qihang.shi@engr.uconn.edu

K. Xiao
Intel Corporation, Santa Clara, CA, USA
e-mail: kan.xiao@intel.com

D. Forte · M.M. Tehranipoor
ECE Department, University of Florida, Gainesville, FL, USA
e-mail: dforte@ece.ufl.edu

M.M. Tehranipoor
e-mail: tehranipoor@ece.ufl.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_11

263

http://dx.doi.org/10.1007/978-3-319-49019-9_1

264 Q. Shi et al.

F
ig
.1
1.
1

Ty
pi

ca
ls

pl
it

m
an

uf
ac

tu
ri

ng
ar

ra
ng

em
en

t(
as

su
m

in
g

sp
lit

m
ad

e
be

tw
ee

n
M

et
al

2
an

d
M

et
al

1
la

ye
rs

)

11 Obfuscated Built-In Self-authentication 265

There has also been a lot of work on protection against the threat of hardware
Trojans. Techniques against hardware Trojan insertion can be grouped into two cat-
egories, depending on how they address the issue.

• Detection: The first category includes Trojan detection techniques, such as func-
tional verification, side-channel signal analysis, or by new front-end design tech-
niques such as design-for-trust [7–15]. Such techniques detect the existence of
hardware Trojans by generating a signature of the circuit under test (CUT) and
then classifying the CUT with this signature. To perform classification, they require
a golden model, i.e., signature of a copy of the same circuit that is known to be
free from hardware Trojans. Unfortunately, it remains doubtful whether golden
models can be acquired for real-world applications (e.g., commerical off-the-shelf
parts). In addition, process variations introduce errors in classification, especially
for small, hard-to-detect Trojans.

• Prevention: The second category includes hardware Trojan prevention techniques
that stop an adversary from inserting a Trojan in the first place and also do not
require a golden model. Built-in self-authentication (BISA) is the first proposed
technique to prevent hardware Trojan insertion in the circuit layout and mask.
By occupying all available spaces for Trojan insertion and detecting malicious
removal through built-in self test, BISA is able to deter hardware Trojan insertion
without the requirement of golden models and classification errors introduced by
process variation.

However, problems remain. Techniques against IP piracy do not usually consider
the threat of hardware Trojan insertion. Conversely, techniques against hardware
Trojan insertion (such as BISA) do not consider IP theft. Unfortunately, IP piracy
and Trojan insertion often go hand-in-hand, with the same adversary capable of
pirating the IP as well as inserting a Trojan.

An untrusted foundry is characterized by two attributes: (1) The service of an
untrusted foundry is imperative (e.g., due to the high cost associated with advanced
nodes). Otherwise, security could be ensured by simply using a trusted foundry and
(2) an untrusted foundry cannot be trusted with the security of the intellectual property
(IP). Hence, additional measures need to be taken to prevent potential IP piracy. Since
both attributes need to be present for split manufacturing to be necessary, we can
assume that all untrusted foundries in the adversarial model possess both attributes.

Therefore, in order to ensure the security of fabrication with split manufacturing,
we must ensure security against all possible attacks from an untrusted foundry. Due
to attribute (1), it is likely that the untrusted foundry is aware of its own criticality,
so there is no disincentive for the untrusted foundry to refrain from all possible
attacks given its technical capability. At the same time, as a result of attribute (2),
the IP owner has no reason to trust the untrusted foundry. It can be reasonable to
assume that the untrusted foundries will likely try all attacks in their arsenal, and IP
owners will desire an overall solution that can secure their design against all attacks.
Therefore, a complete security solution to address the threats from an untrusted
foundry is needed. Unfortunately, both split manufacturing and BISA are limited
when it comes to comprehensively countering the problem of an untrusted foundry.

266 Q. Shi et al.

11.1.1 Limitations of Built-In Self-authentication (BISA)

To explain how built-in self-authentication (BISA) works, we need to first establish
how normal back-end design of an IC works. Back-end design of an IC is usually in
the form of a netlist, i.e., a list of gates and how the nets connect them. This netlist is
used to build a layout, which can be used to generate a photolithography mask, which
in turn is used to fabricate the IC. The layout phase consists of at least two steps: (i)
placement of the gates and (ii) routing of the nets. Normally, during the placement
step of the back-end design, gates in the circuit are placed at optimized locations
based on density and routability [16]. This leaves so-called white spaces, i.e., spaces
in the layout that are not filled by standard cells in the layout (see Fig. 11.2a). White
spaces have to exist, because gates placed too close to each other will make routing
of nets very difficult or impossible. Power dissipation as well as cross talk due to
high-frequency gate operations in close vicinity could also generate enough heat and
noise in the IC to render it useless.

For security-oblivious design purposes, these white spaces are usually filled with
filler cells to serve as decoupling capacitors and/or extension of power tracks [17]. For
such purposes, a filler cell design containing only power tracks, or power tracks and
decoupling capacitors, is usually adopted, since they consume less leakage power
than standard cells. However, such a simple and unsupervised design also makes
these filler cells prone to malicious removal by Trojan inserters in order to make room
for hardware Trojans. This is because white spaces are not monitored by any logic.
Decoupling capacitors serve performance purposes rather than functional needs. The
very reason white spaces exist is because these spaces cannot be occupied with normal
functional logic. The problem is that Trojan gates are mostly dormant throughout the
host IC’s life span. If white spaces or decoupling capacitors are replaced by Trojan
gates, it would likely incur a mild level of performance loss (e.g., slight drop in
operating frequency). However, the magnitude of a Trojan impact could be so low
that designers could simply attribute it to transient conditions. The symptom would
be comparable to the case of a mild fever in humans: The patient usually attributes it
to stress or other temporary factors, without suspecting any major problem at play.

BISA prevents hardware Trojan insertion by occupying white spaces with testable
standard cells instead of non-functional filler cells (see Fig. 11.2b). All inserted BISA
cells are organized to form a built-in self test (BIST) circuitry, so that they can
be tested to verify that no BISA cells have been removed. BISA is designed so
that removal of its member cells will lead to a BIST failure, so that no attempt to
make room for hardware Trojans will evade detection. As a technique against Trojan
insertion, BISA is highly effective.

Unfortunately, simply securing the design against all hardware Trojan insertion
is insufficient at addressing the intended adversary. As we have discussed above,
untrusted foundries can and should be expected to commit all kinds of attacks within
its capabilities. Unfortunately, the intended attacks BISA is capable of securing
against are quite limited in scope. It is unwise to assume an untrusted foundry willing
to attempt Trojan insertion will not attempt to commit other attacks, e.g., steal IC

11 Obfuscated Built-In Self-authentication 267

(a) Layout of an AES crypto-core, with unfilled white spaces.

(b) Layout of an AES crypto-core, with white spaces filled with BISA cells.

Fig. 11.2 Layout of an AES crypto-core, with unfilled white spaces

layout in order to perform IP piracy or IC cloning [2, 3]. Therefore, BISA is not
a complete solution. Moreover, specific attacks exist for BISA. For example, if the
attacker can distinguish BISA cells from original circuitry, it is theoretically possible
to perform a “redesign attack” so that BISA detection could be evaded. We shall
discuss limitations of BISA in more details in Sect. 11.2.2.

268 Q. Shi et al.

11.1.2 Limitations of Split Manufacturing

Split manufacturing prevents all attacks that require complete knowledge of the whole
layout, which also includes attacks against BISA such as identification of BISA
cells. However, not all attacks require complete knowledge of the whole layout. One
example of these kinds of attacks is untargeted Trojan insertion [18].

A “targeted” hardware Trojan is designed to trigger at certain specified states
of the original circuit or to maliciously modify a specific function of the original
circuit, or both. Hence, it requires knowledge of the related modules in the original
circuitry. In the case where the adversary is an untrusted foundry, this knowledge
will also require their locations on the FEOL layout. In a split fabricated IC, at least
some nets consist of BEOL interconnects, whose information is thus denied to the
untrusted foundry. This will complicate or deter targeted Trojan insertion by making
it harder for the untrusted foundry to identify the site that he wants to insert the Trojan
trigger or payload. This deterrence is most significant when the split is optimized to
maximize the effect of obfuscation, e.g., through the use of wire lifting to maximize
security rating k as described earlier in the chapter on 3D IC- based obfuscation. To
overcome this obfuscation, the untrusted foundry will have to insert Trojan payloads
at all possible sites and/or generate trigger signals using net values from all possible
sites, proportional to the design’s security rating k. This will cause the Trojan to be
proportionally larger and easier to discover and/or trigger.

On the other hand, untargeted Trojan does not require knowledge of the original
circuitry [19] and can still pose a threat to split manufactured ICs. Such a Trojan
can be designed as long as a sufficiently rare triggering condition can be produced.
For example, consider an original circuitry where only front-end-of-line (FEOL)
part of the layout is visible, i.e., the portion of the layout visible to an untrusted
foundry under split manufacturing. In this scenario, all cells of the original circuitry
are visible; therefore, all pins are available for the hardware Trojan. Granted, split
manufacturing is effective in denying the untrusted foundry access to backend-of-line
(BEOL) information, and the untrusted foundry would not be able to distinguish the
functionality the signals at these pins may serve; however, hardware Trojan payloads
do not depend on knowing the functionality of the original circuitry, and therefore
neither does it require such access to begin with. As long as the Trojan trigger is
hard enough to trigger during manufacturing test, the Trojan is capable of evading
detection and can cause security concerns.

One way to do this is to choose structurally hard-to-reach nets for the Trojan
trigger inputs. Since such nets can be expected to be difficult for manufacture tests
to place values at without knowing what functions they serve, it is also unlikely for
the manufacture test patterns to trigger the Trojans. This is shown in Fig. 11.3. In
this example, D-pins (i.e., input pins) of flip-flops are used to generate the trigger
signal. D-pins are a suitable option because they are structurally hard to reach for
manufacture test patterns. As is shown in Fig. 11.3, D-pins of flip-flops are at one
end of timing paths. During manufacture test, test patterns are fed into the flip-flops
with scan paths and launched from the other end of timing paths as shown in the

11 Obfuscated Built-In Self-authentication 269

Fig. 11.3 One approach to insert untargeted hardware Trojan into split manufacturing protected
layout

figure. This naturally makes D-pins the furthest away from the origin of manufacture
test patterns, in terms of number of gates in between. Since each gate in between
exponentially increases the number of inputs necessary to control any net (i.e., to
place a desired logic state at a given net), this makes D-pins hardest to control
from a test coverage point of view. In other words, the number of tests necessary
to completely traverse the complete state space of the D-pin nets in order to trigger
the Trojan will be too large for manufacture test to implement. Consequently, using
D-pins as inputs to generate trigger signal makes the hardware Trojan very hard to
discover with manufacture tests.

Another possible way for the proposed hardware Trojan to be discovered during
manufacture test is through its impact on path delay. Since D-pin nets are used as
inputs to the Trojan’s trigger, the trigger adds load capacitance to the net, which
adds delay to paths that contain that net. There exists a realistic possibility that this
additional delay overhead will change the timing of the affected paths significantly
enough to lead to discovery during delay test. Another realistic constraint is the
distance between available space for a Trojan gate to be inserted and the D-pin. If
the minimum distance is too large, it could also lead to a large resistance on the
interconnect between the D-pin net and the trigger gate. This can also add delay,
possibly resulting in Trojan detection.

270 Q. Shi et al.

A simple solution to these issues is to add the smallest gate to buffer the trigger
input. This is done in the example shown in Fig. 11.3 with inverters. An inverter is
the smallest cell in a standard cell library. It can help in minimizing the distance
and input capacitance that contributes to delay change to paths that contain D-pin
nets. Its weakness is its fan-out load capacity, a quality essential in meeting tim-
ing requirement, but this is rather unimportant for inserting hardware Trojans since
Trojans usually do not have rigid timing requirements. Therefore, to evaluate the
possibility of untargeted Trojan insertion in a layout, one may simply insert filler
cells into it, but use an inverter instead of usual filler cell models. This will insert
inverters at all available white spaces for it, and a simple geometric search using
a reasonably set radius centered at the coordinate of D-pins will yield all possible
inverter site candidates that are reasonably close to the D-pins. The layout editor
may then be employed to create an interconnect between the inverter inputs and the
D-pins to study the impact on delays of paths that ends at those D-pins. Indeed,
in one such experiment, we performed with an untargeted Trojan insertion on an
open source advanced encryption standard (AES) crypto-core, insertion at 2601 of
all 2602 D-pins does not even impact worst-case delays of all paths containing them.
In a real implementation where parametric drift of devices due to fabrication can
lead to path delay variation of 10 % or more [20], the timing impact will be even less
distinguishable.

Untargeted hardware Trojans do not target specific functions of the original cir-
cuitry and therefore cannot commit attacks that require knowledge of such functions.
Nevertheless, untargeted hardware Trojans are still capable of degrading the perfor-
mance and/or reliability of manufactured ICs or triggering a denial-of-service (DoS)
attack in critical control systems [21]. These are threats that need to be addressed.

Like BISA, split manufacturing has its own share of issues, in addition to the
problem of lacking security against untargeted Trojan insertion. As has been intro-
duced in Chap. 10, k-security is an existing security metric of split manufacturing. It
evaluates the effectiveness of obfuscation (via denial of BEOL information) by cal-
culating the least number (the security rating k) of mutually indistinguishable gates
or nets that exist for any observable gate or net in FEOL. This definition is mathe-
matically sound, but places some rather heavy restrictions on the original circuitry
design. For example, unconnected nets are indistinguishable from each other by
default, but unconnected gates are not. An inverter is distinguishable from an AND
gate and so is an AND gate from another AND gate with twice as much fan-out
capacity. As mentioned in Chap. 10, normal synthesis and netlist optimization yield
many standard cell models with very few numbers of instances, which will seriously
restrict how high k can reach. Consequently, a design that optimizes its k-security
rating will have to restrict the standard cell models it uses. Indeed, the authors in [22]
restricted the standard cell model count in their experiments between 3 and 7, while
an otherwise unconstrained synthesis of an AES core yields 37. This restriction will
undoubtedly lead to elevated area and power overhead as well as performance loss.
Moreover, white spaces also exist in split fabricated ICs, whose existence and spatial
distribution on the FEOL layout could be used to deduct BEOL connections as part
of proximity attack [23] (see Chap. 10).

http://dx.doi.org/10.1007/978-3-319-49019-9_10
http://dx.doi.org/10.1007/978-3-319-49019-9_10
http://dx.doi.org/10.1007/978-3-319-49019-9_10

11 Obfuscated Built-In Self-authentication 271

11.1.3 Chapter Overview

While split manufacturing and BISA are excellent techniques, they are still incom-
plete. An apparent solution is to create a technique that combines the best of both
worlds. In this chapter, we term this combined technique as the obfuscated built-
in self-authentication (OBISA). This chapter provides background information to
OBISA, investigation of different ways in which OBISA can be implemented, as
well as how protection against both IP theft and hardware Trojan insertion can be
better implemented by OBISA than BISA or split manufacturing alone. The rest
of this chapter is organized as follows: Sect. 11.2 provides background on BISA
and elaborates on existing problems and weakness of BISA that could be improved;
Sect. 11.3 reviews split manufacturing techniques introduced in the previous chapter,
comments on their relevance to BISA, and investigates possible benefits of their inte-
gration with BISA; Sects. 11.4 and 11.5 investigate two possible ways that OBISA
can be implemented and provide their implementation flow, their respective strengths,
and potential attacks; and finally, Sect. 11.6 concludes this chapter.

11.2 Built-In Self-authentication (BISA)

The purpose of BISA, as we briefly visited in Sect. 11.1, is to prevent hardware Trojan
insertion. This objective is achieved by implementing two major features:

1. occupying all white spaces in the layout that could be used for Trojan insertion
and

2. ensuring no inserted filler cell for the purpose of preventing Trojan has been
removed.

As was discussed in Sect. 11.1, existing design flow already occupies white spaces
in the layout with filler cells. That alone is not sufficient to deter malicious Trojan
insertion because conventional filler cells are not under any kind of surveillance to
prevent them from being removed by an attacker in order to make room for hardware
Trojans. Therefore, the second feature is really essential to prevent hardware Trojan
insertion. BISA implements this by replacing filler cells with combinational logic
cells from the standard cell library and then organizing them into a BIST. Removal
of any BISA cell will lead to changes in BIST test signatures and thus detection.

As shown in Fig. 11.4a, BISA consists of three parts: the BISA circuit under test,
the test pattern generator (TPG), and the output response analyzer (ORA). The BISA
circuit under test is composed of all BISA cells that have been inserted into unused
spaces during layout design. In order to increase its stuck-at fault test coverage,
the BISA circuit is divided into a number of smaller combinational logic blocks,
called BISA blocks as shown in Fig. 11.4a. Each BISA block can be considered as
an independent combinational logic block. The TPG generates test vectors that are
shared by all BISA blocks. The ORA will process the outputs of all BISA blocks

272 Q. Shi et al.

Fig. 11.4 Structure of a
BISA, b four-stage LFSR,
and c four-stage MISR

and generate a signature. TPG has been implemented with linear feedback shift
register (LFSR), while ORA has been implemented with multiple input signature
register (MISR) in prior work [24]. Examples of four-stage LFSR and four-stage
MISR are shown in Fig. 11.4b, c. They are used in the generation of random vectors
and compression of responses into a signature. SFF in the figure represents a scan
flip-flop. Other types of TPG and ORA can also be applied [25].

The main advantage of BISA is that it does not require a golden chip/model. Most
other researches on addressing the issue of Trojan insertions have focused on the
development of:

1. hardware Trojan detection techniques using functional verification and side-
channel signal analysis (applied post-silicon) or

2. new design techniques to improve detection capabilities (applied to front-end
design) [26].

Most detection approaches need golden chips either fabricated by a trusted foundry or
verified to be Trojan-free through reverse engineering, both of which are prohibitively
expensive, if not impossible in many scenarios. Since BISA relies on logic testing,
process variation is not a factor either, as compared to Trojan detection techniques
based on side-channel analysis. As an additional advantage, impact of BISA on
original design in terms of area and power is also negligible.

11 Obfuscated Built-In Self-authentication 273

Fig. 11.5 BISA design flow

11.2.1 Implementation Flow

Figure 11.5 shows the BISA design flow and where it fits within the conventional
ASIC design flow. The white rectangles in the figure are steps taken in a conventional
ASIC design flow, and the gray ones are the additional steps for inserting BISA
circuitry.

The first step in BISA design flow is called preprocessing, where information
such as dimensions of each standard cell, the number of input pins, and the name of
a cell is acquired from the standard cell library for use in later steps.

After obtaining the necessary information for all standard cells, BISA cells will
be selected from them and marked according to the following criteria:

1. BISA cells must be the minimum-sized cell for every logic function, so they are
resistant to a resizing attack by the adversary (see Sect. 11.2.2).

2. The amount of decoupling capacitance the cells can provide and the input count
should be considered as well. Fewer inputs help to improve test coverage; there-
fore, a normalized input count is used here to represent the number of inputs of a
standard cell if the same cell has the same area of the minimum-sized cell (e.g.,
INVx0 in Synopsys 90 nm library).

3. The smallest cell in the library must also be included in order to ensure that no
cell can be inserted in any remaining unused space.

The second step is called unused space identification, where the BISA flow iden-
tifies white spaces by using a matrix to record the state of each point in the layout.
Every standard cell placed in the layout will be processed one by one, and eventually,

274 Q. Shi et al.

(a) Original placement (c) Available BISA cells

(b) Unused spaces file (.unsp) (d) Placement after BISA insertion

Fig. 11.6 BISA cell insertion and placement

the matrix reveals the location and size of unused spaces. The matrix is then used to
insert BISA cells into these spaces, as shown in Fig. 11.6.

The final step in the flow is to place and route BISA cells. Placement solutions
can be found and optimized (e.g., dynamic programming algorithm was used in
[24]) based on white space identified in the previous step. Optimization of BISA
placement is an interesting problem; however, it is not of central importance in
BISA. On the other hand, all placed BISA cells need to be connected into a number
of combinational BISA circuits (referred to as BISA blocks) to ensure test coverage
of the BISA circuit. Test coverage is a key issue for BISA since its security relies on
its capability to discover tampering of its constituent cells. A higher test coverage
leads to a higher credibility of results from BISA. Several approaches are employed
to enhance stuck-at fault test coverage:

• First, create as many BISA blocks as possible to make each BISA block with fewer
gates so that higher test coverage is easier to achieve. Since the output of every
BISA block will connect to MISR, the number of BISA blocks is determined by
the size of MISR. If M is the size of MISR, all placed BISA cells are divided into
M groups (BISA blocks).

• Second, redundant gates could deteriorate controllability and observability of the
circuit and lower the test coverage significantly, so a tree-structure circuit is con-
structed to eliminate redundant gates, as shown in Fig. 11.7. If every input is
independent of other inputs in a tree-structure circuit, every net is controllable
and observable, so the theoretical test coverage of stuck-at fault is 100 %. Here,
a tree-structure BISA block is constructed according to the sequence of cells in a
block set.

11 Obfuscated Built-In Self-authentication 275

Fig. 11.7 Routing a BISA block

Figure 11.7 shows that two different sequences lead to two different tree-structure
circuits. The first gate becomes the root of the tree-structure circuitry, i.e., it is on the
top (first) level of tree. The outputs of the next x cells (x being the number of inputs
of the root cell) are connected to its inputs as its children cells, on the second level.
The same is repeated on the third level to connect new cells to cells on the second
level. Cells are sequentially connected to cells on upper levels until all of them are
processed, as shown in Fig. 11.7a, b. After complete routing in each block, all inputs
of each block should connect to the LFSR sequentially to avoid sharing of inputs. In
the end, the M bit outputs from M BISA blocks connect to a MISR with size of M .

11.2.2 Possible Attacks Against BISA

To attack BISA, an attacker would have to find a way to remove enough cells to make
room for his Trojan insertion, without triggering detection by BISA. Depending on
targets and methods used in this removal, several possible strategies exist to attack
BISA:

1. attack TPG or ORA of BISA,
2. directly remove cells from BISA or original circuitry. This is known as a removal

attack,
3. Replace BISA or original circuitry with a smaller functionally equivalent circuit.

This is known as a redesign attack. In particular, if standard cells of greater fan-
out are replaced with their equivalent counterparts of lower fan-out, this is known
as a resizing attack.

Of the three possible attacks against BISA, attacking TPG or ORA is the least
likely to succeed. BISA uses pseudo-random pattern to perform BIST, which makes
it very easy to increase pattern count and consequently very difficult for the attacker
to make sure all responses of the modified TPG and/or ORA will stay the same
for arbitrarily many patterns. Similarly, direct removal of BISA cells is unlikely

276 Q. Shi et al.

to succeed as they are covered by BISA test coverage during BISA insertion. It is
indeed possible to remove cells from original design as long as they do not serve
crucial functions. However, design optimization and test coverage will minimize this
opportunity for the attacker.

The attack that is most likely to succeed against BISA is the redesign attack. Both
BISA and the original circuitry can be targeted in this attack. Redesign attack on
original circuitry is restricted by manufacture test as well as other detection-based
anti-Trojan approaches. If attackers redesign the original layout for Trojan insertion,
moving gate locations and altering wire interconnections will result in significant
changes in the electrical parameters, such as power and path delay. These can be
detected much more easily by delay-based and power-based techniques [27–36].

It is more likely for the removal attack to succeed against BISA cells since the
BISA cells cannot be expected to meet a uniform timing constraint: Their inser-
tion has to prioritize area occupation. The attacker may try to first reverse engineer
BISA circuitry—a monumental effort, but not impossible—and then perform logic
optimization, hoping to remove redundant BISA cells. It is possible to further secure
BISA cells by performing this optimization on BISA design to prevent this particular
attack. However, the attacker can also choose to design a custom cell functionally
equivalent to several BISA cell at the cost of fan-out and/or delay in order to make
room for Trojan insertion. Prevention of such an attack would require anticipation
of all possible custom cell designs that are functionally equivalent to any combina-
tion of BISA cells. That is not likely feasible except for very small BISA circuitry.
Therefore, this attack, called the custom cell attack, is also not a likely threat to BISA
security.

11.2.3 Limitations of BISA

BISA adversarial model is more or less limited to Trojan attacks after the back-end
design. This is because Trojan attacks on the original circuitry can be expected to be
detected by other techniques such as functional and delay tests. This leaves untrusted
foundry as the most likely adversary to BISA.

One valid limitation of BISA is its inability to prevent IP piracy or IC cloning—a
task perfect for split manufacturing to tackle. Another small limitation is that due
to the possibility of resizing attacks (see Sect. 11.2.2), all BISA cells have to be of
the smallest variant in area among standard cells of the same function, which might
make it easier for the attacker to identify them.

11.3 Combining BISA with Split Manufacturing

In light of the respective limitations of BISA and split manufacturing, it makes sense
to combine them so that benefits of both techniques can be reaped. We henceforth
term the combined technique as obfuscated BISA (OBISA).

11 Obfuscated Built-In Self-authentication 277

The most apparent advantage of the resulting technique is the security against
untargeted hardware Trojan insertion, as well as security against IP piracy and IC
cloning, both of which are primary strengths of BISA and split manufacturing, respec-
tively. Combining with split manufacturing can also make the resulting OBISA tech-
nique secure against redesign attack, since the attacker must first identify which
existing cells are connected together before designing a functionally equivalent cir-
cuit to replace these existing cells. This will be much harder if the designer lifts the
wires that connect them to BEOL, so that BISA structure becomes indistinguishable
from the original circuitry.

The obfuscation effect from split manufacturing can further enhance OBISA
beyond protection against redesign attack. As mentioned previously in Sects. 11.2.2
and 11.2.3, conventional BISA requires functional and delay tests as well as
detection-based anti-Trojan techniques for the security of the original circuitry
against redesigning. Although this does not make BISA insecure, detection-based
anti-Trojan techniques do rely on golden models for effectiveness. Reliance on these
techniques erodes BISA’s advantage of not requiring a golden model. Combining
with split manufacturing makes the threat of redesign attack much less of a problem
due to security of BEOL information and therefore reduces the necessity of using
detection based anti-Trojan techniques (which often require a golden model that is
not always available). In addition, obfuscation also deters reverse engineering. A
relaxed threat from reverse engineering could allow relaxation of other limitations
that was not possible with BISA alone, e.g., the requirement of only using the small-
est standard cells may not be necessary if the designer can be reasonably confident
that OBISA cells will not be identified.

On the other hand, obfuscation in OBISA could also benefit from BISA insertion,
owing to additional cells and FEOL interconnects that BISA insertion introduces to
the layout. Since the purpose of split manufacturing is to hide BEOL information,
most theorized attacks and security metrics (see Chap. 10) define split manufacturing
security as anonymity of broken interconnects in FEOL layout [22, 23, 37]: In other
words, even and uniform distribution of FEOL features help split manufacturing
security. Additional cells and interconnects introduced by BISA circuitry can be
very helpful here, because they can be used to compensate rare gate models and
interconnect types so that signatures of original circuitry can be hidden. Without
such additional obfuscating material, cells of rare gate models have to be banned
during synthesis optimization of original circuitry [22], leading to performance loss.
Further, proximity attack based on FEOL-observable distribution of gates as well
as white spaces could also be foiled by occupying white spaces and compensating
spatial distribution of gate types with BISA cells.

To summarize, a combined OBISA technique could derive advantages from both
split manufacturing and BISA, as shown in Fig. 11.8.

http://dx.doi.org/10.1007/978-3-319-49019-9_10

278 Q. Shi et al.

F
ig
.1
1.
8

Po
ss

ib
le

ad
va

nt
ag

es
of

ob
fu

sc
at

ed
B

IS
A

(O
B

IS
A

)
te

ch
ni

qu
e

11 Obfuscated Built-In Self-authentication 279

11.3.1 Trade-Off Between BEOL Security
and Computational Cost

Split manufacturing techniques, as discussed in Chaps. 10 and 12, come in a number
of different implementations. It can be implemented simply by separating FEOL from
BEOL at a certain layer without any modification to the design flow; alternatively,
wires and/or cell placements in FEOL can be modified to avoid information leakage
[23, 37]. In the most secure form of implementation, a list of wires to be elevated to
BEOL fabrication can be optimized to obtain a mathematically provable metric of
obfuscation [22]. Unfortunately, this is also computationally the most complicated.
Generally speaking, there is a trade-off between security and computational cost
among split manufacturing techniques.

Depending on how much complexity is dedicated to the split manufacturing side of
the technique, OBISA can have different implementation approaches. In this chapter,
we introduce two sample approaches:

1. Approach A assumes minimum computational cost is dedicated to split manu-
facturing (i.e., assume split manufacturing is simply implemented by separating
FEOL from BEOL at a certain layer) and

2. Approach B assumes maximum level of security is desired (i.e., wire lifting—as
was introduced in Chap. 10—is optimized using the notion of k-security).

11.4 Approach A: Obfuscated Connection

As has been discussed in Sect. 11.3.1, there is a trade-off between security and compu-
tational cost among split manufacturing techniques. There is also a trade-off between
security and fabrication difficulty, in terms of which layer is used to split the design
between FEOL and BEOL. Generally speaking, splitting at higher layers would lead
to easier fabrication, higher yield, and lower requirements on the technical capability
of the trusted foundry, but would likely leak more interconnect information to the
FEOL and thereby the untrusted foundry. From an industrial point of view, a higher
split layer is more desirable. In this approach, we assume a split layer at or higher
than M3 [18].

To maintain the security of this approach despite reduced obfuscation (due to
splitting at higher metal layers), modifications are performed based on the classic
BISA structure (which we introduced earlier in the chapter). Specifically, two new
types of connections are introduced (see below), and critical wires are lifted to BEOL.

1. The inter-BISA-block fan-outs: This refers to an input of a OBISA block being
driven by a net in another OBISA block. By doing this, the typical tree-like
structure of OBISA blocks can be broken, so that it will become more complicated
for an attacker to identify OBISA cells.

http://dx.doi.org/10.1007/978-3-319-49019-9_10
http://dx.doi.org/10.1007/978-3-319-49019-9_12
http://dx.doi.org/10.1007/978-3-319-49019-9_10

280 Q. Shi et al.

(b) An obfuscation connection is made.

(a) A fan-out is made between two OBISA blocks.

Fig. 11.9 Two new types of connections to improve obfuscation

2. The obfuscation connection (OC): This refers to an input of a OBISA block being
driven by a net in the original circuitry. By doing this, logic cones in original
circuitry are obfuscated with OBISA cells, and identifiable logic patterns are
broken.

Adding inter-OBISA-block fan-outs (henceforth called “fan-outs”) could poten-
tially produce redundant gates and thereby lower controllability of gates. To avoid
this, fan-outs can be created using following the rules:

• The fan-out is created between a net in one block i and an input pin of another
block j (i �= j) and

• The net in block i and the root output in block j have no common related inputs
from OBISA LFSR.

If these two conditions are satisfied, the net and the input pin can form a candidate
pair for a fan-out. Figure 11.9a shows an example of the fan-out creation. The net
N14 in OBISA block i has completely different related inputs of LFSR from the root
output N10 in OBISAv block j , so N14 can have a fan-out to connect to any input in

11 Obfuscated Built-In Self-authentication 281

OBISA block j . In Fig. 11.9a, the pin for the net N7 is selected. Note that a fan-out
cannot be made on the net N13, because the net N13 and net N10 share related inputs
of LFSR, A1 and A2.

The creation of obfuscation connections involves two issues. First, activity from
the original circuitry must not propagate into OBISA. Otherwise, it could cause
unnecessary power consumption. This is ensured by choosing the right kind of gates
that have the same controlling value as the LFSR’s idle states so that they can isolate
OBISA from the original circuitry when OBISA is idle. As shown in Fig. 11.9b, cells
BC1 and BC2 are both gated in idle state. BC1 is selected since it is a leaf cell in the
tree-structure OBISA block. The other issue that needs consideration is that it will
inevitably add capacitive load to the original circuitry net it is attached to. The added
capacitance could potentially cause paths to fail in the original circuitry. Thus, we
must select target nets in the original circuitry for the obfuscation connection very
carefully to avoid timing violations. One way to do this is to perform static timing
analysis (STA) prior to the creation of obfuscation connections and only choose nets
whose worst-case paths are faster than the critical path by a margin.

A final step of this approach is to perform wire lifting to restrict FEOL interconnect
information. The main problem with wire lifting is that finding the best solution
requires high computational cost. Since Approach A is geared toward minimizing
computational cost, wire lifting in this approach is limited to security critical block
key to OBISA functions, for example, the mode select net, the feedback nets in
LFSR/MISR, and nets connecting flip-flops in LFSR/MISR.

11.4.1 Implementation Flow

Figure 11.10 presents the design implementation flow of Approach A. The flow fits
within the conventional ASIC design flow and is compatible with current commercial
physical design tools. OBISA insertion procedure begins after clock tree synthesis. At
that point, the whole original circuit has been placed and no more cells will be added
in conventional flow (the most left column in Fig. 11.10). The unused spaces would
be identified in DEF file, and various standard cells are inserted depending on size of
each unused space. Once all unused spaces are filled with OBISA cells, all OBISA
cells in each geometric region will be connected to construct an OBISA block. These
steps as shown in the middle column were developed in [24, 38]. New steps, as shown
in the third column in Fig. 11.10, are introduced to strengthen obfuscation, including
fan-out creation, adding obfuscation connections, and lifting secure-critical paths
within OBISA. After the OBISA process, the flow resumes the procedures in the
conventional design flow. The physical design tool will perform routing for the entire
design including original circuit and OBISA circuit. All constraints for the original
design can be taken care of by the physical design tool during routing process.
Once the timing and sign-off of the design are successful, the last step involves the
generation of a GDSII format of the design for final tape-out.

282 Q. Shi et al.

Fig. 11.10 Implementation flow of OBISA technique, Approach A

11.4.2 Design Issues and Trade-Offs

The main trade-off of Approach A results from the two new types of connections it
adds to the original BISA design. Both fan-outs and obfuscation connections modify
BISA’s built-in self test architecture, which could lead to redundant gates, redun-
dant nets, and loss of controllability. These translate into test coverage loss, which
means that “blind corners” of OBISA gates are created, whose removal cannot be
detected by OBISA. As long as reverse engineering of the OBISA structure can be
prevented, this will not be a security issue, but a lowered test coverage nevertheless
hurts the credibility of the authentication result. Comparatively, fan-outs between
OBISA blocks are easier to handle as they can be made to be fully controllable,
while the obfuscation connections will cause more severe loss of test coverage, since
their value comes from and is subjected to the status of the original circuitry. However,
this can be remedied by performing multiple tests, each starting from an independent
state of the original circuitry. Indeed, results in [18] show that even for obfuscation
connections which are as many as 25 % of all OBISA inputs, 100,000 random pat-
terns yield just above 60 % coverage, while 10,000 random patterns applied from 10
iterations of the original circuitry can boost the test coverage to almost 100 %.

One optional feature of Approach A is it can choose to use only minimum-sized
cells for OBISA structure to keep its security against resizing attacks or dropping
that requirement for better obfuscation between OBISA cells and original circuitry
cells. This is due to the fact that Approach A does not perform optimized wire lifting
as is done in Approach B, nor does it need to introduce compensation OBISA cells
that may not have minimum sizes, as we shall see in Approach B. In this regard,
Approach A is closer to the classic BISA design.

11 Obfuscated Built-In Self-authentication 283

11.4.3 Potential Attacks

One possible attack against Approach A of OBISA technique is redesign attack.
Owing to a higher split layer, it is likely that many small-scale logic blocks such as
adders, decoders, and finite-state machines can be identified and optimized by an
untrusted foundry. Wire lifting could prevent this. However, large-scale wire lifting
would not be possible under our assumption that Approach A is supposed to serve as
an example of OBISA technique with minimum computational cost dedicated to the
split manufacturing side. Obfuscation connections and inter-OBISA-block fan-outs
could help in reducing such signatures. Unfortunately, without a metric dedicated to
computational complexity, it is hard to say how much this could help.

11.5 Approach B: OBISA with Wire Lifting

In Sect. 11.4, we discussed an approach to implement OBISA with minimum com-
putational cost. In this section, we discuss the possibility on the other end of the
cost-security trade-off axis, which is how maximum security could be achieved with
large-scale wire lifting.

To achieve maximum security, it is necessary to first define security. In this
approach, we use the k-security definition as was introduced in [22]. k-security
has been discussed in more detail in Chap. 10, so we are only giving a brief revisit
of the idea here. Consider an IC secured with split manufacturing. Its netlist can be
modeled as a graph, where each of its gates is represented by a vertex and each inter-
connect by a number of edges connecting such vertices. Assuming limited number
of custom cells, all models of the gates can be represented by coloring the vertices.
Now, remember that we are considering an IC secured with split manufacturing. The
FEOL part of its layout contains netlist information of all the gates and a subset of
all interconnects. The corresponding graph of the FEOL part, compared to the graph
of the complete netlist, will look like the second graph with some of its edges hidden
away. Those hidden edges correspond to interconnects reserved to the BEOL part of
the IC.

An example of this process is shown in Fig. 11.11. Shown on top is a netlist of a
full adder, where black lines mark interconnects visible in FEOL layout, while gray
lines mark interconnects in BEOL layout. If we further assume FEOL layout of the
full adder splits at its input and output pins, the FEOL layout of the full adder is
represented by the graph below.

From the figure, we notice it is impossible to distinguish the two XOR gates
(represented by vertices shaded in red slash) in FEOL layout. According to k-security,
XOR gates in this full adder have a k = 2 security. If the same can be said for all other
gate models, k-security metric dictates the FEOL layout has at least k = 2 security.
Unfortunately, as we can see from the figure, it is impossible for the full adder to

http://dx.doi.org/10.1007/978-3-319-49019-9_10

284 Q. Shi et al.

Fig. 11.11 Example: netlist
and graph of a split
manufactured full adder

reach k = 2, even if we lift all edges to BEOL, simply because it has only one OR
gate. For this full adder, any optimization of wire-lifting solution is futile.

There are a few ways to address this issue. In [22], only 3 to 7 gate models are
allowed during design synthesis, in order to prevent rare gate models from restricting
wire-lifting optimization. From a designer’s point of view, however, this approach
seriously impacts the performance of the original circuitry and could cause serious
overhead in area and power.

However, an OBISA technique that performs wire lifting does not have to sub-
mit to this restriction, because the number of instances of rare gate models can
be compensated with OBISA cells. For example, an AES crypto-core netlist after
unconstrained synthesis and optimization has more than 26,000 gates. Among them,
20 gate models have less than 100 instances. Meanwhile, simple BISA insertion into
its layout at a normal 0.7 utilization ratio typically yields about 5,000 BISA cells.
In other words, OBISA cell count under typical utilization ratio is more than suffi-
cient to compensate rare gate models to 100 instances, a number much higher than
what existing wire-lifting algorithm will likely be able to work at within realistic
processing time. In [22], the highest reported k is 48 and was only achieved on a
much smaller benchmark circuit (c432 from ISCAS, gate count 147).

An example of this advantage is shown in Fig. 11.12. The same full adder is used
as shown in Fig. 11.11. In this example, OBISA cells and interconnects are added, as
shown in dashed lines. We can see from the example how the bottleneck in previous
example—the single OR gate—is compensated with OBISA cells. In the shown wire-
lifting example, k = 2 security is reached. If we consider a more extreme solution,
for example, lifting all wires to BEOL, at maximum, the layout could reach k = 4
security rating.

11 Obfuscated Built-In Self-authentication 285

Fig. 11.12 Example: With OBISA insertion, the same full adder can benefit from wire-lifting
optimization to achieve higher k-security rating

We can also see from the example that to reach a high security rating k, a large
percentage of wires has to be lifted to BEOL for almost every gate. One advantage of
this result is that most logic blocks will unlikely be distinguishable in the resulting
FEOL layout. This will greatly deter IP piracy as well as redesign attacks, making
this approach much more secure. On the other hand, this will also result in a lot
of vias having to be matched between FEOL and BEOL, making fabrication more
complicated.

Another inference from this example is that the previous limitation (to only use
the smallest standard cell models for BISA cells to prevent resizing attacks) must be
dropped. This is because it is unlikely for all rare gate models to be of the smallest
size. However, as long as obfuscation due to wire lifting holds (i.e., the circuit has
a high k-security rating), the attacker will not be able to distinguish OBISA cells
from original circuitry cells. Resizing original circuitry cells runs the risk of being
discovered by a simple delay test, and this will likely be a sufficient deterrent against
resizing attacks.

11.5.1 Implementation Flow

The implementation flow of the OBISA technique (Approach B) is shown in
Fig. 11.13. As shown in the diagram, boxes shaded with blue slashes represent proce-
dures already existing in the BISA flow, while boxes shaded with red crosses repre-

286 Q. Shi et al.

Fig. 11.13 Implementation flow of OBISA technique, Approach B

sent new procedures in this approach. This technique departs from classic BISA after
unused space identification: Instead of performing BISA cell placement, cells of the
rare gate models are placed first to compensate gate model distribution. After these
cells are inserted, placement of BISA cells with random gate models is performed
to fill remaining white spaces. After that, normal BISA cell routing is performed.
Before signal routing, an optimized wire-lifting solution is found for the complete
layout. Wire lifting can then be performed with the help of layout editor, for exam-
ple, by simply elevating routed interconnects to BEOL metal layers. The rest of the
design flow does not differ from existing back-end design flow.

11.5.2 Design Issues and Trade-Offs

The main issue with this approach is cost. Searching for optimal wire-lifting solution
is computationally costly, and lifting a sizable percentage of wires to BEOL results
in cost in yield loss, elevated requirement on trusted foundry, etc. Between the two
costs, another trade-off exists: Obviously, if we choose to lift all wires to BEOL,
computational cost will be minimal, security will be maximum, but fabrication cost
will be astronomical. The dilemma here is that computational complexity of wire-

11 Obfuscated Built-In Self-authentication 287

lifting solution optimization is a Sharp-P problem, because it consists of a greedy
algorithm that exhaustively traverses and verifies the entire solution space, where each
step is a Boolean satisfiability problem—a known NP-hard problem. Meanwhile,
fabrication cost is not exactly easy to accommodate either. Unless an improvement
on at least one of both problems emerges, the cost of Approach B is likely caught in
between rock and hard places.

11.5.3 Potential Attacks

One possible attack is based on spatial distribution of cells in FEOL layout. Although
k-security metric is defined as at least k mutually indistinguishable instances of each
gate model, it goes without saying that this does not account for where those instances
are located on FEOL layout. For example, it is certainly logical to assume that a
NAND gate very close to a memory cell array is more likely to be a part of the
load-store unit than the execution unit. The problem with this kind of information
leakage is that little has been established on how the attacker can utilize it. Further,
although it is still unclear how the attacker could utilize this information, methods
to restrict this leakage of information nevertheless exist. In [22], it is proposed that
performing layout design after wire lifting could anonymize the layout and prevent
any information leakage. Unfortunately, this will likely make back-end optimization
of timing a nightmare. Besides, this is not applicable in OBISA since BISA insertion
has to come after placement. Still, OBISA in Approach B can partition the complete
layout into a number of smaller sublayouts and perform wire lifting on each of
them so that wire lifting in each sublayout is relevant to cells in close vicinity. This
technique may limit the maximum achievable security rating, but it makes it possible
to parallelize the wire-lifting algorithm.

11.6 Conclusion

In this chapter, we first reviewed both BISA and split manufacturing techniques
in terms of their adversarial models and pointed out their common adversary, the
untrusted foundry. We also explained why the untrusted foundry cannot be trusted to
not try attacks that are beyond the scope of a BISA-only design flow (IP piracy) or
split manufacturing-only approach (Trojan insertion). We then provided a detailed
background for the BISA technique and showed how a combination of both tech-
niques, which we termed as “OBISA,” could be expected to be effective against
both kinds of attacks. We then investigated two possible approaches to implement
the OBISA technique depending on the trade-offs between security and computa-
tional/fabrication cost. We provided details on their implementation, discussed the
design trade-offs involved, introduced their respective strengths and weaknesses, and
theorized how either approach could be attacked.

288 Q. Shi et al.

References

1. Guin U, Forte D, Tehranipoor M (2013) Anti-counterfeit techniques: from design to resign. In:
14th international workshop on microprocessor test and verification, pp 89–94. IEEE

2. Tehranipoor MM, Guin U, Forte D (2015) Counterfeit integrated circuits. Springer, Switzerland,
pp 15–36

3. Guin U, Shi Q, Forte D, Tehranipoor MM (2016) Fortis: a comprehensive solution for establish-
ing forward trust for protecting ips and ics. ACM Trans Des Autom Electron Syst (TODAES)
21(4):63

4. Guin U (2016) Establishment of trust and integrity in modern supply chain from design to
resign

5. Xiao K (2015) Techniques for improving security and trustworthiness of integrated circuits
6. IARPA Trusted Integrated Circuits (TIC) program announcement. http://www.fbo.gov
7. Salmani H, Tehranipoor M, Plusquellic J (2012) A novel technique for improving hardware

trojan detection and reducing trojan activation time. IEEE Trans Very Large Scale Integr (VLSI)
Syst 20(1):112–125

8. Li J, Lach J (2008) At-speed delay characterization for ic authentication and trojan horse
detection. In: IEEE international workshop on hardware-oriented security and trust, 2008.
HOST 2008. IEEE, pp 8–14

9. Jin Y, Kupp N, Makris Y (2010) Dftt: design for trojan test. In: 2010 17th IEEE international
conference on electronics, circuits, and systems (ICECS). IEEE, pp 1168–1171

10. Rajendran J, Jyothi V, Sinanoglu O, Karri R (2011) Design and analysis of ring oscillator based
design-for-trust technique. In: 29th VLSI Test Symposium. IEEE, pp 105–110

11. Salmani H, Tehranipoor M (2012) Layout-aware switching activity localization to enhance
hardware trojan detection. IEEE Trans Inf Forensics Secur 7(1):76–87

12. Chakraborty RS, Bhunia S (2009) Security against hardware trojan through a novel application
of design obfuscation. In: Proceedings of the 2009 international conference on computer-aided
design. ACM, pp 113–116

13. Banga M, Hsiao MS (2011) Odette: a non-scan design-for-test methodology for trojan detection
in ics. In: 2011 IEEE international symposium on hardware-oriented security and trust (HOST).
IEEE, pp 18–23

14. Chakraborty RS, Bhunia S (2009) Harpoon: an obfuscation-based soc design methodology for
hardware protection. IEEE Trans Comput Aided Des Integr Circ Syst 28(10):1493–1502

15. Rajendran J, Pino Y, Sinanoglu O, Karri R (2012) Security analysis of logic obfuscation. In:
Proceedings of the 49th annual design automation conference. ACM, pp 83–89

16. Yang X, Choi B-K, Sarrafzadeh M (2003) Routability-driven white space allocation for fixed-
die standard-cell placement. IEEE Trans Comput Aided Des Integr Circ Syst 22(4):410–419

17. Charlebois S, Dunn P, Rohrbaugh G (2008) Method of optimizing customizable filler cells in
an integrated circuit physical design process, 28 October 2008, uS Patent 7,444,609. https://
www.google.com/patents/US7444609

18. Xiao K, Forte D, Tehranipoor MM (2015) Efficient and secure split manufacturing via obfus-
cated built-in self-authentication. In: 2015 IEEE international symposium on hardware oriented
security and trust (HOST). IEEE, pp 14–19

19. Xiao K, Forte D, Jin Y, Karri R, Bhunia S, Tehranipoor M (2016) Hardware trojans: lessons
learned after one decade of research. ACM Trans Des Autom Electron Syst 22(1):6:1–6:23.
http://doi.acm.org/10.1145/2906147

20. Shi Q, Tehranipoor M, Wang X, Winemberg L (2014) On-chip sensor selection for effective
speed-binning. In: 2014 IEEE 57th international midwest symposium on circuits and systems
(MWSCAS). IEEE, pp 1073–1076

21. Turk RJ et al (2005) Cyber incidents involving control systems. Idaho National Engineering
and Environmental Laboratory

22. Imeson F, Emtenan A, Garg S, Tripunitara M (2013) Securing computer hardware using 3d
integrated circuit (ic) technology and split manufacturing for obfuscation. In: Presented as part
of the 22nd USENIX security symposium (USENIX Security 13), pp 495–510

http://www.fbo.gov
https://www.google.com/patents/US7444609
https://www.google.com/patents/US7444609
http://doi.acm.org/10.1145/2906147

11 Obfuscated Built-In Self-authentication 289

23. Jagasivamani M, Gadfort P, Sika M, Bajura M, Fritze M (2014) Split-fabrication obfuscation:
metrics and techniques. In: 2014 IEEE international symposium on hardware-oriented security
and trust (HOST). IEEE, pp 7–12

24. Xiao K, Forte D, Tehranipoor M (2014) A novel built-in self-authentication technique to prevent
inserting hardware trojans. IEEE Trans Comput Aided Des Integr Circ Syst 33(12):1778–1791

25. Bushnell M, Agrawal VD (2000) Essentials of electronic testing for digital, memory and mixed-
signal VLSI circuits, vol 17. Springer Science & Business Media, New York

26. Jha S, Jha SK (2008) Randomization based probabilistic approach to detect trojan circuits.
In: 11th IEEE high assurance systems engineering symposium, 2008. HASE 2008. IEEE,
pp 117–124

27. Wang X, Tehranipoor M, Plusquellic J (2008) Detecting malicious inclusions in secure hard-
ware: challenges and solutions. In: IEEE international workshop on hardware-oriented security
and trust, 2008. HOST 2008. IEEE, pp 15–19

28. Agrawal D, Baktir S, Karakoyunlu D, Rohatgi P, Sunar B (2007) Trojan detection using ic
fingerprinting. In: 2007 IEEE symposium on security and privacy (SP’07). IEEE, pp 296–310

29. Narasimhan S, Wang X, Du D, Chakraborty RS, Bhunia S (2011) Tesr: a robust temporal self-
referencing approach for hardware trojan detection. In: 2011 IEEE international symposium
on hardware-oriented security and trust (HOST). IEEE, pp 71–74

30. Zhang J, Yu H, Xu Q (2012) Htoutlier: hardware trojan detection with side-channel signature
outlier identification. In: 2012 IEEE international symposium on hardware-oriented security
and trust (HOST). IEEE, pp 55–58

31. Wei S, Meguerdichian S, Potkonjak M (2010) Gate-level characterization: foundations and
hardware security applications. In: Proceedings of the 47th design automation conference.
ACM, pp 222–227

32. Aarestad J, Acharyya D, Rad R, Plusquellic J (2010) Detecting trojans through leakage current
analysis using multiple supply pad s. IEEE Trans Inf Forensics Secur 5(4):893–904

33. Alkabani Y, Koushanfar F (2009) Consistency-based characterization for ic trojan detec-
tion. In: Proceedings of the 2009 international conference on computer-aided design. ACM,
pp 123–127

34. Jin Y, Makris Y (2008) Hardware trojan detection using path delay fingerprint. In: IEEE inter-
national workshop on hardware-oriented security and trust, 2008. HOST 2008. IEEE, pp 51–57

35. Xiao K, Zhang X, Tehranipoor M (2013) A clock sweeping technique for detecting hardware
trojans impacting circuits delay. IEEE Des Test 30(2):26–34

36. Cha B, Gupta SK (2013) Trojan detection via delay measurements: a new approach to select
paths and vectors to maximize effectiveness and minimize cost. In: Design, automation & test
in Europe conference & exhibition (DATE). IEEE, pp 1265–1270

37. Rajendran JJ, Sinanoglu O, Karri R (2013) Is split manufacturing secure? In: Proceedings of the
conference on design, automation and test in Europe. EDA Consortium, 2013, pp 1259–1264

38. Xiao K, Tehranipoor M (2013) Bisa: built-in self-authentication for preventing hardware trojan
insertion. In: 2013 IEEE international symposium on hardware-oriented security and trust
(HOST). IEEE, pp 45–50

Chapter 12
3D/2.5D IC-Based Obfuscation

Yang Xie, Chongxi Bao and Ankur Srivastava

12.1 Introduction

Physical limit of transistor miniaturization has driven chip design into the third
dimension. 3D integration technology emerges as a viable option to improve chip
performance in a direction orthogonal to costly device scaling [10]. A typical stacked
3D IC structure is illustrated in Fig. 12.1a. It expands the circuit design space by ver-
tically stacking multiple device layers and interconnecting them using vertical con-
nections called Through-Silicon-Vias (TSVs). This emerging technology improves
chip performance in various aspects. The vertical stacking structure is an attractive
option for increasing transistor density. It breaks new ground in system-level integra-
tion by integrating more devices and resources into one chip. Besides, 3D integration
reduces interconnect wirelength because two distant devices in a conventional 2D
design can be placed vertically close to each other and connected with a shorter con-
nection in 3D ICs. The reduction in wirelength scales down interconnect power and
delay, which can be leveraged by implementing a more highly connected architec-
ture such as the high-bandwidth Memory-on-Chip architecture [10]. Moreover, 3D
integration allows heterogeneous integration. Separate layers can be fabricated using
disparate materials and technologies. Heterogeneous integration optimizes existing
System-on-Chip (SoC) designs by integrating components of different novel tech-
nologies into a single chip. Another structure of 3D IC is called interposer-based 3D
IC (or 2.5D IC), as shown in Fig. 12.1b. In this structure, multiple dies are placed
side-by-side on a silicon interposer, which provides chip-scale interconnections

Y. Xie (B) · C. Bao · A. Srivastava
University of Maryland, College Park, MD 20742, USA
e-mail: yangxie@umd.edu

C. Bao
e-mail: borisbcx@umd.edu

A. Srivastava
e-mail: ankurs@umd.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_12

291

292 Y. Xie et al.

Fig. 12.1 Two common
structures of 3D ICs: a
Stacked 3D IC and b
Interposer-based 3D IC
(2.5D IC)

(a)

(b)

among different dies. 2.5D integration offers a better thermal cooling option than
stacked 3D ICswhile still enjoys comparable performance benefits, hence it is viewed
as a step stone to stacked 3D integration.

As 3D/2.5D integration is becoming a promising technology for next-generation
chip design, researchers have started to investigate it from a hardware security per-
spective [46]. One line of research focuses on utilizing 3D/2.5D IC technology to
protect IC designs from being pirated or tampered during outsourced fabrication [4,
15, 26, 38, 45, 47]. Nowadays, IC designs are increasingly outsourced to an offshore
fabrication foundry due to the increasing complexity of modern IC designs and the
huge capital expenditure for developing an advanced semiconductor foundry [11].
This poses new security threats on the outsourced designs since the offshore foundry
might not be trustworthy. Potential attacks include intellectual property (IP) piracy,
overproduction, and malicious modification (hardware Trojans), as discussed in pre-
vious chapters. With 3D/2.5D integration, a designer can choose a portion of layers
at his discretion and fabricate them in a trusted foundry while outsourcing the rest to
untrusted foundries for advanced fabrication technology. This split fabrication strat-
egy of 3D/2.5D ICs creates a new opportunity to obfuscate the outsourced designs.
Without the knowledge of the layers that are fabricated in the trusted foundry, an
attacker in the untrusted foundry can only observe an incomplete netlist that is a
part of an original design. Therefore, it is difficult for him to pirate or counterfeit
the complete design, or insert hardware Trojans at a targeted place. 3D/2.5D-based
obfuscation enables the access of offshore semiconductor foundries while reducing
the security threats in outsourced fabrication.

3D/2.5D integration not only boosts chip performance, but also unlocks new
opportunities to thwart security threats in a global IC supply chain. At the same time,
it also brings new design and security challenges. This chapter presents the current
state of 3D/2.5D IC-based obfuscation techniques and highlights potential security
opportunities and challenges of this technology in hardware intellectual property (IP)
protection. The outline of this chapter is as follows. Section12.2 gives an overview of

12 3D/2.5D IC-Based Obfuscation 293

3D/2.5D integration technology. Section12.3 discusses 3D/2.5D IC-based obfusca-
tion enabled by 3D/2.5D split fabrication strategy. Section12.4 summarizes different
design objectives, metrics and granularities of 3D/2.5D split fabrication. Section12.5
introduces a security-aware 2.5D IC design flow that aims at thwarting hardware IP
piracy. Section12.6 discusses various security challenges in 3D/2.5D ICs. Finally,
Sect. 12.7 summarizes the implications of 3D/2.5D-based obfuscation on the design
of computer-aided design (CAD) tool and Sect. 12.8 concludes this chapter.

12.2 3D/2.5D Integration Technology

3D integration is a technology that vertically integrates multiple 2D dies to create a
single high-performance chip, referred to as 3D IC. In general, 3D ICs can be fabri-
cated in two ways. Conventional die-stacking-based 3D fabrication utilizes existing
2D IC fabrication process to fabricate multiple 2D dies separately on different sub-
strates and then stack them vertically. Vertical interconnects between different layers
are enabled by TSVs. TSVs are vertical electrical connections which are typically
made of copper or tungsten. They penetrate through a silicon substrate to connect
device layers of different dies, as shown in Fig. 12.1a. TSVs are essential components
in die-stacking-based 3D ICs because they provide inter-layer signal communication,
thermal conducting and power delivery. Another emerging 3D IC fabrication tech-
nology is monolithic 3D fabrication [5]. Unlike die-stacking-based 3D fabrication,
it grows multiple device layers vertically on the same substrate in a serial order, so it
does not require die alignment and bonding while die-stacking-based 3D fabrication
does. Because die-stacking-based 3D fabrication has received more attention from
both academia and industry due to its fabrication compatibility, we focus on this
technique in the following discussion.

Two common structures of 3D ICs are stacked: 3D IC and interposer-based 3D
IC (also known as 2.5D IC). Figure12.1a illustrates the structure of a stacked 3D IC.
Multiple TSV-penetrated dies are stacked and bonded vertically. The stacking struc-
ture offers various performance advantages as discussed in Sect. 12.1. However, the
increased device density in stacked 3D ICs brings about thermal, power and reliabil-
ity issues. To alleviate these issues while still enjoying the performance benefit, 2.5D
IC has been proposed (as shown in Fig. 12.1b). Unlike stacked 3D ICs, 2.5D IC places
multiple dies side-by-side and bonds them on a silicon interposer through fine-pitch
micro-bumps. The interposer contains both horizontal chip-scale interconnect wires
between dies as well as vertical interconnect TSVs to external I/O pins. However,
TSVs are not required for inter-die communication in 2.5D ICs. The absence of TSVs
in the dies of 2.5D IC makes it easier to design and fabricate than TSV-penetrated
stacked 3D IC. Although 2.5D ICs might not achieve the same amount of perfor-
mance improvement as 3D ICs, it offers better cooling options, which is essential for
high-performance computing systems. While commercial large scale 3D IC is still
being developed, large-volume commercial 2.5D products are already in the market,
such as the Xilinx Virtex-7 2000T FPGA [34].

294 Y. Xie et al.

3D integration can be done at different granularities [22]. Coarse-grained 3D
integration can be implemented at core level, such as the 3D memory-on-chip archi-
tectures. This approach could offer significant improvements to performance and
power and alleviate the memory bandwidth wall problem, a situation in which the
chip-to-memory bandwidth is becoming a performance and throughput bottleneck.
But the core-level integration does not take full advantage of the benefits of 3D ICs. A
finer grained functional block level integration allows functional blocks to be distrib-
uted across multiple layers but maintain each functional block as a 2D circuit. This
can reduce intra-core wirelength and allow reduced clock period or power. To take
this idea even further, 3D integration at the logic-gate level offers even more savings
in power and delay. It implements an individual functional block across multiple
layers so as to reduce intra-block delays and power. A recent study [17] of full-chip
3D design of a SPARC chip multiprocessors (CMP) showed that a 3D design using
2D functional blocks can reduce power by 14% compared to a baseline 2D design,
however when the logic-gate level 3D integration is applied this reduction in power
becomes 20%. Even finer grained integration at the transistor level (e.g. separate
layer for NMOS and PMOS) has been considered [22], but the ability to manufac-
ture TSVs at the size and pitch required for such a scheme is yet to be realized.
Moreover, the reliability and yield implications of such an approach are expected to
be prohibitive [23].

12.3 3D/2.5D IC-Based Obfuscation

As 3D/2.5D integration is becoming a promising technology for next-generation
chip design, researchers have started to investigate it from a hardware security per-
spective. One line of research focuses on utilizing 3D/2.5D ICs to mitigate security
threats in outsourced fabrication [4, 15, 26, 38, 45, 47]. In order to access advanced
semiconductor technology at a lower cost, most IC design companies that once pos-
sessed their own foundries are now adopting a fabless model: they concentrate their
resources and efforts on IC designs while outsourcing the fabrication. Although such
outsourcing model is cost-effective, it poses new security threats on the outsourced
designs since the offshore foundry might not be trustworthy. Without close monitor-
ing and direct control, the outsourced designs are vulnerable to various attacks such
as piracy, overproduction and hardware Trojan insertion, as discussed in previous
chapters. These attacks (also known as supply chain attacks) pose not only an eco-
nomic risk to commercial IC design companies, but also security threats for sensitive
electronic systems. In this section, we discuss how to utilize 3D/2.5D integration to
mitigate these attacks.

12 3D/2.5D IC-Based Obfuscation 295

12.3.1 3D/2.5D Split Fabrication

In 3D/2.5D integration, multiple dies (active layers) are fabricated independently on
separate substrates and then integrated together into a single chip. This fabrication
process offers inherent support for split fabrication, where different dies can be
fabricated in different foundries. A designer can choose a portion of the design at his
discretion and manufacture it in a trusted foundry for security while manufacturing
the rest in an untrusted foundry for state-of-the-art fabrication technology. Because
a portion of the original design will be hidden from the untrusted foundry, 3D/2.5D
split fabrication creates a new opportunity to access offshore fabrication foundries
while preventing potential security threats.

3D split fabrication can take place in two different forms [38, 42]. In one embodi-
ment, some dies (active layers) of a stacked 3D IC are fabricated in a trusted foundry,
referred to as trusted tier while others are outsourced to one or more untrusted
foundries, referred to as untrusted tier, as shown in Fig. 12.2a. The final integra-
tion is also implemented in the trusted foundry. With that, each untrusted foundry
can only obtain one portion of design and thus it is difficult to reverse-engineer the
original design or insert hardware Trojans at a desired place. Even if we assume all
untrusted foundries are colluded (as one untrusted foundry), the portion of IC design
in the trusted tier is not directly accessible to the untrusted foundries and hence
it is protected from potential attacks by the adversary. In another embodiment, all
active layers are outsourced to the offshore foundries and then securely routed and
bonded in a trusted foundry. By doing so, the vertical connections between layers
are kept secret. Although the offshore foundries can reverse-engineer the netlist of
each layer, the resultant incomplete netlist (lacking the inter-layer connections) is
incomprehensible if a design is intelligently partitioned into different layers in an
obfuscated manner.

For 2.5D split fabrication [15, 45, 47], the most common split fabrication strategy
is to fabricate the silicon interposer in a trusted foundry as the trusted tier while

Fig. 12.2 3D split
fabrication for a stacked 3D
IC and b 2.5D IC

(a)

(b)

296 Y. Xie et al.

outsourcing the dies as the untrusted tier, as shown in Fig. 12.2b. If all untrusted
foundries are independent (not colluded), an attacker in one untrusted foundry can
only obtain the netlist of a die that is fabricated in this foundry. Even if the offshore
foundries are colluded, they can at most obtain an incomplete design that lacks
these interconnect wires. The incomplete netlist will be incomprehensible if the
wires in the interposer layer are intelligently selected. As discussed in Sect. 12.2,
2.5D integration has less severe thermal and reliability challenges while offering
a comparable performance improvement compared to the stacked 3D integration.
Moreover, leveraging this technology requires only minor modification to current
IC design flow and fabrication process. As a result, recent research work on 3D IC-
based obfuscation [15, 45, 47] focuses more on 2.5D split fabrication than stacked
3D IC-based split fabrication.

12.3.2 Comparison Between 3D/2.5D and 2D Split
Fabrication

Notice that the split fabrication strategy can also be applied to conventional 2D IC
technology [16, 29, 40, 41]. As shown in Fig. 12.3, 2D IC-based split fabrication
(also known as split manufacturing) splits a 2D IC into a Front-End-Of-Line layer
(FEOL) that contains active devices and lower metal layers, and a Back-End-Of-
Line (BEOL) layer that contains higher metal layers. The FEOL layer is outsourced
to an untrusted foundry for advanced fabrication technology while the fabrication
of BEOL layer and final integration are securely implemented in a trusted foundry.
Thus, interconnect wires in BEOL layer of a split 2D IC are kept secret from the
untrusted foundry.

Compared to 2D split fabrication, 3D/2.5D split fabrication requires less strict
fabrication compatibility between the untrusted foundry and the trusted foundry and
can provide more flexibility on obfuscation design. The difference between 2D and
3D/2.5D split fabrication are summarized as follows.

• Alignment and integration: for a split 2D IC, the alignment and integration are
more challenging especially when the 2D IC is split from a low metal layer [45].
In general, a low-layer split 2D IChas smaller pitch length (eg 0.1–1.6 µm [45]) and

Fig. 12.3 2D split
fabrication. A 2D IC is split
into a FEOL layer that
contains active devices and
lower metal layers, and a
BEOL layer that contains
higher metal layers

12 3D/2.5D IC-Based Obfuscation 297

dense connections across trusted BEOL and untrusted FEOL layer, which requires
more precise alignment and integration techniques. In contrast, the alignment of
TSVs of 3D/2.5D IC is less challenging because of larger pitch size (eg 5 µm [24])
and less number of connections.

• Fabrication process: the split fabrication strategy of 3D/2.5D IC is adaptable to
off-the-shelf 3D/2.5D IC fabrication process. Each die is an individual component
that can be fabricated separately and then integrated together, either in a single
foundry or in different foundries. Interconnecting separately made dies using 3D
integration is already a proven technology [42]. Thus, the extra effort for 3D/2.5D
IC to adapt the split fabrication is lower than that of 2D IC.

• Obfuscation flexibility: in terms of obfuscation, the trusted tier of 3D IC consists of
active layers which can be used to hide logical gates and functional circuits while
for 2D ICs, the trusted BEOL layer is restricted to be metal wires. As a result,
the complexity for an adversary to reconstruct the whole design for 3D/2.5D split
fabrication is much higher than 2D split fabrication [20].

12.3.3 Comparison Between 3D/2.5D Split
Fabrication and Logic Locking

Logic locking [3, 18, 21, 27, 28, 31, 33, 43] is another hardware IP protection
technique that hides the functionality of an IC by inserting additional key-controlled
logic gates (eg XOR/XNOR) and key-inputs into a circuit, as introduced in previous
chapter. The locked circuit preserves the correct functionality only when the key-
inputs are set correctly. Although both logic locking and 3D/2.5D split fabrication
aim at obfuscating the outsourced design to prevent security threats in outsourced
fabrication, these two techniques differ in various aspects:

• Obfuscation Approach: Obfuscation by logic locking is implemented by “adding”
extra logic gates to make the original circuit become a key-controlled reconfig-
urable circuit. On the contrary, 3D/2.5D split fabrication is implemented by “sub-
tracting” a portion of gates/wires and hiding them in the trusted tier so as to prevent
the complete exposure of the original design.

• Attack Resistance: 3D/2.5D split fabrication is believed to be more attack-resistant
than logic locking [20]. For logic locking, although the outsourced design is locked
with additional key-gates, its layout and hence netlist are completely exposed to
the untrusted foundry. Once the correct key is known, the correct functionality and
netlist are accessible to an attacker. Various attacks have been proposed to infer the
correct key of logic locking techniques [27, 28, 36, 48]. On the contrary, 3D/2.5D
split fabrication hides a portion of design in the trusted tier, so the untrusted foundry
does not have access to the complete netlist. The trusted tier behaves as a black
box and thus it is more difficult for an adversary to infer the functionality of the
trusted tier.

298 Y. Xie et al.

• Fabrication Compatibility: 3D/2.5D split fabrication requires the usage of emerg-
ing 3D/2.5D integration technology while logic locking can utilize existing well-
developed 2D IC technology.

12.4 Design of 3D/2.5D Split Fabrication

3D/2.5D IC technology offers a new opportunity to obfuscate the outsourced IC
designs by hiding partial circuitry into a trusted tier that’s fabricated in a trusted
foundry. To fully exploit this idea, one important challenge is to determine the portion
of circuit design that needs to be hidden andprotected in the trusted tier. In this section,
we introduce different design objectives, metrics and granularities for 3D/2.5D split
fabrication.

12.4.1 Design Objectives and Metrics

12.4.1.1 Functionality Obfuscation

Functionality obfuscation by 3D/2.5D split fabrication aims at obfuscating the func-
tionality of an outsourced design (the untrusted tier). It hides gates/wires into the
trusted tier such that the functionality of the untrusted tier (or a reconstructed circuit
that is inferred based on the untrusted tier) differs substantially from the original
functionality. By obfuscating the functionality, an attacker who has the knowledge
of the untrusted tier cannot infer or utilize the functionality of the original complete
design, thereby protecting the outsourced design from piracy and overproduction.

Hamming distance (HD) is widely used to quantify the security level of function-
ality obfuscation [29, 30, 32, 47]. It is defined as the number of different output bits
between original netlist and reconstructed netlist on applying a same input vector.
Given one input vector Xi, the function of original netlist F will produce an output
vectorYi = F(Xi), while the function of reconstructed netlistF

′
will produce another

output vector Yi
′ = F

′
(Xi), the HD between two outputs HD(Y

′
i,Yi) is the number

of different bits in two output vectors, and the normalized HD of two functions can
be calculated as follows:

HD(F,F
′
) = 1

n

n∑

i=1

HD(Y
′
i,Yi)

|y| × 100% (12.1)

where n is the number of input vectors and |Y| is the number of output bits. Since the
objective of functionality obfuscation is to restrain the attacker’s ability to infer or
utilize the correct functionality, HD approaching 50% is desirable, which indicates
that the functionality of the reconstructed netlist deviates substantially away from
the original functionality.

12 3D/2.5D IC-Based Obfuscation 299

12.4.1.2 Netlist Obfuscation

Netlist obfuscation by 3D/2.5D split fabrication aims at obfuscating the netlist struc-
ture of the untrusted tier (eg the connection degree of each gates and the gate types)
so that an attacker is not capable of identifying a desired place to insert hardware
Trojans in the untrusted tier. These hardware Trojans are referred to as targeted
hardware Trojans, because they aim at modifying specific targeted gates/wires to
achieve some purposeful attacks such as privilege level escalation [15] or tampering
hardware Trojan detection circuitries [26, 45]. By hiding enough gates/wires into
the trusted tier, a targeted circuitry is partially (or completely) hidden in the trusted
tier, thereby preventing the attacker for identifying the target gates/wires to attack.

Imerson et al. [15] proposed a security metric called k-security for evaluating the
netlist obfuscation level of a 2.5D split fabrication design under targeted hardware
Trojan insertion. An incomplete netlist in the untrusted tier is said to be k-secure if
every gate in the original netlist can be mapped to at least k indistinguishable gates
in the incomplete netlist. The k-security ensures that an attacker cannot find out the
targeted gate out of the k indistinguishable gates to attack. As a result, he can either
insert Trojans at one gate but has only 1/k success probability, or he can attack all k
gates but at the risk of being detected since he needs to modify more gates.

12.4.1.3 Layout Obfuscation

The security of 3D/2.5D split fabrication rests upon the assumption that the attacker
does not know the hidden portion (trusted tier) and cannot infer it based on the
exposed portion of design (untrusted tier). Otherwise, the attacker can reconstruct
the complete design and continue to conduct the supply chain attacks. For example,
Rajendran et al. [29] proposed an attack called proximity attack that can be utilized
to infer the hidden connection in 2.5D split fabrication. In a split-fabricated 2.5D
IC, a portion of wires are hidden in the trusted tier (interposer), and they are not
accessible to the untrusted foundry. However, modern floor planning and placement
(F&P) tool will place two connected pins closely in the untrusted tier so as to reduce
the wirelength, thereby leaking the information of the hidden connections. Since the
layout information for each die is known to the attacker, he can iteratively connect
an output pin in one die to its closet input pin in other die and thus reconstruct the
circuit. Therefore, it is of great significance to obfuscate the layout (by placing two
connected pins far away) in order to prevent the leakage of the trusted tier, especially
in the case of 2.5D split fabrication.

Proximity-attack correctness is a security metric that is used to quantify the layout
obfuscation level under the proximity attack. For 2.5D split fabrication, it is defined
as the percentage of correct connections that are recovered by the proximity-attack
algorithm. Attack correctness approaching 0% is desirable for a secure layout design,
which indicates that the attacker cannot infer the correct connections in the trusted
tier of a split 2.5D design.

300 Y. Xie et al.

12.4.1.4 Trusted Tier Protection

In Sect. 12.4.1.3, we introduce the proximity attack that utilizes the layout informa-
tion of the trusted tier to infer the connections in the untrusted tier of a 2.5D IC.
Another potential attack to infer the trusted tier can be implemented by reverse-
engineering the final product obtained from the open market. The attacker can pur-
chase the IC from the open market and utilize state-of-the-art reverse-engineering
technique [39] to obtain the design of the trusted tier by delayering and extracting the
chip. Therefore, tamper-resistant techniques should be applied to protect the trusted
tier.

The percentage of gates correctly extracted from a layout is one of the security
metrics for IC reverse-engineering [32, 39]. Thus, the security metric for trusted tier
protection against reverse-engineering can be defined as the percentage of gates/wires
extracted from the layout of the trusted tier, referred to as the reverse-engineering
correctness.

12.4.1.5 Performance and Fabrication Cost

Noticing that usually the untrusted offshore foundries support more advanced tech-
nology nodes and operate at a lower cost than the trusted foundries, the choice of
which part to hide is actually a trade-off among security, performance and fabrica-
tion cost. If more gates/wires need to be fabricated in the trusted foundry, the overall
fabrication cost will be increased (if same technology is used). If a less advanced
semiconductor technology is used for the trusted tier to reduce cost, the performance
of the overall circuit will be compromised.

Area, wirelength, delay and power are widely used to quantify the performance of
an IC design. In summary, the objective of a secure 3D/2.5D split fabrication design
is to increase the circuit obfuscation level and prevent the leakage of the trusted layer
at an acceptable performance/fabrication cost. The summary of design objectives
and metrics is shown in Table12.1.

Table 12.1 Design objectives and metrics for 3D/2.5D split fabrication

Design objectives Metrics

Functionality obfuscation HD [29, 47]

Netlist obfuscation k-security [15]

Layout obfuscation Proximity-attack correctness [29, 47]

Trusted tier protection Reverse-engineering correctness [32, 39]

Performance Area, wirelength, delay, power [15, 29, 47]

12 3D/2.5D IC-Based Obfuscation 301

12.4.2 Design Granularities

3D/2.5D split fabrication can be designed at different granularities.
At block-level, the trusted tier can conceal thewhole security-critical circuit blocks

such as hardware Trojan detection sensors in order to protect them from being tam-
pered or removed by the attacker. Recent years have seen a huge proliferation of
hardware Trojan detection research based on functionality verification [35], side-
channel signatures [2], built-in self-authentication (BISA) [44] and so on. Most
of these techniques require additional circuits to assist in Trojan activation and/or
detection, including dummy flip-flops, sensors and authentication circuits, which are
referred to as design-for-security (DfS) circuitries. However, these DfS circuitries
may also be tampered or bypassed, which undermines the system’s security. With
3D/2.5D split fabrication, the DfS circuitries can be placed in the trusted tier, thereby
preventing them from being identified and tampered.

At gate-level, the trusted tier can withhold a portion of original wires and/or
gates that can maximally obfuscate the functionality and/or netlist of the exposed
untrusted tier in order to prevent piracy or targeted hardware Trojan, as discussed in
Sects. 12.4.1.1 and 12.4.1.2.

With technology progresses, future 3D/2.5D split fabrication might be imple-
mented at transistor level. Although such fine-grained integration has not yet been
realized, it offers a novel opportunity for obfuscating a lower-level component such
as standard cells.

12.5 Security-Aware 2.5D IC Design Flow Against IP
Piracy

Due to the advantages in thermal cooling and fabrication compatibility, 2.5D-based
obfuscation has been investigated more in recent research work [15, 45, 47] com-
pared to 3D-based obfuscation. By fabricating the interposer of 2.5D IC in a trusted
foundrywhile outsourcing the rest to an untrusted foundry, an attacker in the untrusted
foundry can only obtain an incomplete netlist which lacks the wires in the trusted tier
(interposer). However, this does not imply that a conventional performance-driven
2.5D IC design flow followed by a split fabrication strategy is security optimal. In
a performance-driven 2.5D IC design flow, a netlist is first partitioned in a way that
minimizes the number of cut-wires to reduce the number of wires that need to be
routed in the trusted tier. Then, corresponding layouts are generated using placement
and routing tools tominimize layout area and routingwirelength. Although amin-cut
partitioning has a lower performance overhead, it might not hide enough wires to
fully obfuscate the functionality of outsourced designs. Also, a performance-driven
placement might place two connected pins/gates close-by, thereby leaking the infor-
mation about the hidden connections that can be exploited by the proximity-attack
algorithm, as introduced in Sect. 12.4.1.1.

302 Y. Xie et al.

Fig. 12.4 A security-aware
2.5D IC design flow [47]

In this section, we introduce a security-aware 2.5D IC physical design flow that
aims at thwarting hardware IP piracy. The security-aware 2.5D IC design and split
fabrication flow of is shown in Fig. 12.4. The objective of this design flow is to thwart
IP piracy by producing a security-aware partitioning and placement solution that can
obfuscate the original functionality while defending the proximity attack. The secure
2.5D design flow problem can be defined as follows:

Given a netlist of a combinational circuit and the Boolean function F that maps
its primary outputs (PO)Y to its primary inputs (PI)X:Y = F(X), the objective of a
security-aware 2.5D IC design flow is to find a bi-partition and a corresponding gate-
level placement result, so that the placement result of two partitions will disclose the
least functionality and netlist of the original circuit at a minimum performance cost.

Notice that this design and fabrication flow assumes only one untrusted offshore
foundry that is responsible for fabricating two dies. However, it is possible that two
dies can be outsourced to different foundries, and if these foundries are completely
independent (no collusion), the information leakage to each foundry can be reduced.
Moreover, this design flow focuses only on bi-partitioning for simplicity, but it would
be possible to partition into more layouts and use more “independent” foundries for
better security.

12 3D/2.5D IC-Based Obfuscation 303

12.5.1 Security Metrics and Objectives

Two security metrics are utilized in order to quantify the security level of a 2.5D
IC design flow, namely HD and proximity-attack correctness, as discussed in
Sects. 12.4.1.1 and 12.4.1.3.

• HD, as defined in Eq.12.1, is widely used to quantify the security level of function-
ality obfuscation [29, 30, 32]. To ensure that the functionality of a reconstructed
netlist deviates substantially away from the original functionality, HD approaching
50% is desirable.

• Proximity-attack correctness is defined as the percentage of correct connections
under proximity-attack algorithm. Attack correctness approaching 0% is desirable
for a secure layout design, which indicates that the attacker cannot infer the correct
connections in the trusted tier.

Based on these two security metrics, the objective of our problem can be formu-
lated as follows:

minimize |HD − 50%| + Correctness (12.2)

A secure design flow for 2.5D IC should achieve two objectives: (a) incorrect outputs
will be produced on applying incorrect connections between two partitions, i.e., the
HD between the functionalities of the original netlist and the netlist reconstructed
using proximity-attack algorithm is 50%; (b) the proximity-attack algorithm has 0%
attack correctness.

12.5.2 Secure Partitioning

The partitioning phase plays a pivotal role in functionality obfuscation because
it determines the hidden wires in interposer layer. Figure12.5 illustrates a bi-
partitioning of the c17 circuit from ISCAS85 benchmark. The cut-wires are selected
as the hidden wires that will be routed in the interposer layer. The resulting cut-
wires have a significant impact on the incorrectness of output logics of reconstructed
netlist, because they decide whether faults can be generated and propagated to pri-
mary outputs (POs) when incorrect connections are made.

To evaluate the capability of fault occurrence and fault propagation for a cut-set,
we utilize the concepts of controllability and observability. As discussed in previous
chapters, controllability and observability are the two characteristics that are widely
used in IC testing and security techniques. Controllability of an internal wire is the
sensitivity of the wire w.r.t. the logic transition of primary inputs (PIs). It quantifies
the ability of setting a wire to some values (1 or 0) through PIs in order to activate
a fault (due to incorrect reconnections) inside a circuit. Observability of a wire is
the sensitivity of POs w.r.t. the logic transition of the internal wire. It quantifies the
ability of observing faults in POs when the logic value of a wire inside the circuit is

304 Y. Xie et al.

Fig. 12.5 Abi-partitioning of the c17 circuit from ISCAS85 benchmark. The cut-wires are selected
as the hidden wires that will be routed in the interposer

flipped. In order to activate and produce more faults when incorrect connections are
made between two partitions, we aim at selecting cut-wires with high controllability
and observability. The controllability CTRL(w) and observability OBS(w) of a wire
w can be simulated and normalized to a value between 0 to 1 [47], where 1 indicates
high controllability/observability.

12.5.2.1 Secure Min-Cut Algorithm

The secure min-cut problem is to find a bi-partitioning with minimum cut-size while
satisfying balance constraint and security constraint. The balance constraint ensures
that two partitions have roughly equal sizes while the security constraint enforces
that the controllability and observability of the wires in the cut-set are relatively
large. The overall algorithm is based on Fiduccia-Mattheyses (FM) algorithm [9],
a linear time heuristic approach to solve hypergraph bi-partitioning problem. The
overall algorithm is as follows:

• Initialization: a balanced partitioning is randomly initialized so that two partitions
have roughly equal sizes. PI pins and PO pins are separated into two partitions.
Moreover, the controllability and observability of all wires are simulated.

• Maintenance: after initialization, the FM algorithm will iteratively move a gate
that has the maximum cut-size drop from one block to another while maintaining
the following two constraints:

– Balance constraint: |A(P1)−A(P2)|
A(P1)+A(P2)

≤ Bth, where A(P1), A(P2) are the sizes of two
partitions P1 and P2, and Bth is a pre-defined balance threshold 0 ≤ Bth ≤ 1.

– Security constraint: if a gate’s output wire w is in the cut-set and it has high
controllability/observability CTRL(w) + OBS(w) ≥ Sth, then do not move this
gate. Sth is a pre-defined security threshold 0 ≤ Sth ≤ 2.

• Termination: After all possible gate moves, the algorithm obtains a series of moves
that will result in the most cut-size reduction, which produces a new partitioning
solution. The algorithm is continued until it cannot find a partitioning solution
with smaller cutsize. Then, a final partitioning solution is generated and each gate
is assigned to a partition.

12 3D/2.5D IC-Based Obfuscation 305

Fig. 12.6 Impact of security constraint Sth on a cut-size and b HD [47]

We normally run the FM algorithmmultiple times with random initial partitioning
solution and select the best partitioning solution with minimum cut-size as the final
solution.

12.5.2.2 Trade-Off Between Cutsize and HD

In partitioning phase, we set the balance threshold Bth to be 0.1 to allow a slight
imbalance between two partitions. Since a new security constraint is added in the
secure partitioning algorithm, the feasible solution space is normally reduced. As
a result, the cut-size of a partitioning solution will be increased when the security
constraint is tight (Sth is small). The impact of Sth on cut-size and HD is shown in
Fig. 12.6. The experiment is conducted on 8 combinational circuits from ISCAS85
and ITC99 benchmark suites. As Sth increases (security constraint becomes loose),
the cutsize and HD decreases for all benchmarks, since a large Sth indicates that only
few wires with large controllability and observability will be locked in the cut-set
to prevent cut-size reduction. Based on this simulation results, we define secure
partitioning (SecPart) as the partitioning with Sth that makes HD larger than a pre-
defined threshold (eg 40%). Also, we define normal partitioning (NormPart) as
the partitioning that does not consider the security constraint.

Table12.2 shows the partitioning results of three partitioning settings, namely
normal partitioning (NormPart), secure partitioning (SecPart) and normal partition-
ing with cut-size lower-bound that is set to the cut-size of secure partitioning solu-
tion (NormPart_LargeSize). Comparing NormPart and SecPart, we can see that HD
increases from 13.24 to 46.35% on average. This is because that we have enforced the
security constraint to select enough cut-wires with high controllability/observability
so that more faults will be produced for an incorrectly reconstructed netlist. How-
ever, the security constraint inevitably increases the cut-size of secure partitioning.
As seen, the cut-size of SecPart is 3.4× the cut-size of NormPart on average. The
extra cut-wires will increase the performance overhead such as area and wirelength

306 Y. Xie et al.

Table 12.2 Benchmark information and partitioning results of normal partitioning (NormPart),
normal partitioning with large cut-size (NormPart_LargeCutsize) and secure partitioning (Sec-
Part) [47]

Benchmark #PIs #POs #Gates NormPart NormPart_LargeSize SecPart

Cutsize HD (%) Cutsize HD (%) Cutsize HD (%)

c499 41 32 202 16 0.86 45 48.20 45 49.84

c1355 41 32 546 16 7.08 43 45.01 43 49.96

c1908 33 25 880 35 20.09 37 33.46 37 44.79

c3540 50 22 1669 57 32.82 74 33.28 74 42.67

c5315 178 123 2307 30 8.65 168 19.13 168 41.07

c7552 207 108 3512 25 5.46 155 14.34 155 48.55

b14_1 277 299 4048 99 14.85 386 19.14 386 44.76

b15 485 519 7022 168 16.14 625 27.76 625 49.12

Average – – – – 13.24 – 30.04 – 46.35

in the placement phase. To validate the efficiency of the security constraint, we com-
pare the partitioning results of SecPart and NormPart_LargeSize. It can be seen that
although these two cases have the same cut-size, SecPart can ensure 46.35% HD
while NormPart_LargeSize can only achieve 30.04% HD. Therefore, with security
constraint, the secure partitioning algorithm can achieve 50% HD more efficiently.

12.5.3 Secure Placement

The placement phase is designed to thwart the proximity attack by obfuscating the
layouts of the untrusted tier so as to mislead the proximity-attack algorithm into
making wrong connections. The goal of secure placement is to minimize the area,
intra-chip wirelength, inter-chip wirelength and proximity-attack correctness.

12.5.3.1 Secure Placement Algorithm

The secure 2.5D IC placement algorithm is based on a B*-tree and simulated anneal-
ing (SA)-based 2.5D IC placement algorithm proposed by Ho et al. [13]. Figure12.7
shows the overall flow of the secure placement algorithm.

The placement algorithm utilized the B*-tree to represent a compacted place-
ment solution [6]. Two B*-trees are firstly constructed to represent the geometry
relationship for all gates and I/O pins of two sub-netlists. A node in the B*-tree
represents a gate or an I/O pin and each B*-tree represents a compacted placement
for one sub-netlist. Using two B*-trees allows us to optimize the placement of two
sub-netlists simultaneously. Three node perturbation operations are implemented in
the SA process, as defined in [13]:

12 3D/2.5D IC-Based Obfuscation 307

• Rotation: the rotation of a gate or I/O pin.
• Move within a B*-tree: the move of a gate or an I/O pin within same die.
• Swap two nodes within a B*-tree: the swap of two gates or I/O pin within same
die.

After perturbation, two new B*-trees are formed and corresponding compact place-
ments for two chips can be obtained. Based on the placement solution, we can
calculate its area, inter-chip wirelength and intra-chip wirelength and perform the
proximity attack to obtain the proximity-attack correctness.

The cost function of SA optimization is defined as:

Φ = α × Area + β × WLintra + γ × WLinter + θ × Correctness (12.3)

where α, β, γ and θ are user-specified weighting parameters, Area is the total area
of two chips, WLintra is the total intra-chip wirelength, WLinter is the total inter-
chip wirelength and Correctness is the proximity-attack correctness obtained by
proximity-attack algorithm. Two SA processes are used to generate an effective and
secure placement, as shown in Fig. 12.7. The first performance-driven (θ = 0) SA
process creates an initial placement that has optimized area and total wirelength.
Based on this initial placement, the second security-driven (θ �= 0) SA process
attempts to trade-off between performance and security.

In placement phase, in order to determine the optimal weights in cost function, we
tested different setups on all benchmarks and define the setup α = 0.2, β = 0.7, γ =
0.1, θ = 0 as normal placement (NormPlace) since it can obtain relatively optimal
results in area and total wirelength. For secure placement (SecPlace), we increase
θ to 0.05 and decrease γ to 0.05.

Fig. 12.7 B*-tree and
SA-based secure placement
algorithm flow [47]

θ

θ≠

308 Y. Xie et al.

b14_1
Benchmarks

0
10
20
30
40
50
60

H
D

 (%
)

11
.9

8
13

.2
4

43
.8

7
46

.3
5

NormPart+NormPlace NormPart+SecPlace SecPart+NormPlace SecPart+SecPlace

c499 c1355 c1908 c3540 c5315 c7552

c499 c1355 c1908 c3540 c5315 c7552 b14_1

b15 average

b15 average
Benchmarks

0

20

40

60

80

A
tta

ck
 C

or
re

ct
ne

ss
 (%

)

20
.1

3
0.

22 9.
00

0.
27

Fig. 12.8 HD and attack correctness for four design flows (NormPart + NormPlace, NormPart +
SecPlace, SecPart + NormPlace, SecPart + SecPlace) [47]

12.5.4 Security and Performance Trade-Off

In order to evaluate the overall security-aware 2.5Ddesignflow (SecPart+SecPlace),
we compare four possible combinations, namely NormPart+NormPlace, NormPart
+ SecPlace, SecPart + NormPlace and SecPart + SecPlace in terms of attack cor-
rectness, Hamming distance, area and total wirelength.

Figure12.8 shows the correctness and HD of proximity-attack for four cases.
For ‘NormPart + NormPlace’, the attack correctness is 20.13%, and HD is only
11.98% because no security constraint is enforced in the NormPart to conceal the
functionality, and the NormPlace does not minimize attack correctness during SA
optimization. When SecPlace is performed on NormPart, we noticed that the attack
correctness is limited to 0.22%, and the HD increases to 13.24%, which is still far
below 50% as a large amount of functionality is exposed due to the normal min-
cut partitioning. For the case ‘SecPart + NormPlace’, the HD increases to 43.87%,
which proves the effectiveness of SecPart in concealing the functionality of a design.
Finally, if we perform SecPlace on top of SecPart, compared to the ‘SecPart +
NormPlace’ case, the attack correctness is reduced from 9.00% to 0.27% and the HD
increases from43.87% to 46.35%.The ‘SecPart+SecPlace’ design flowachieves the
optimal security among four design flows. Overall, the SecPart algorithm is capable
of approaching 50% HD, and the SecPlace algorithm can effectively achieve 0%
attack correctness.

Figure12.9 shows the area and total wirelength for four cases. Chip area and wire-
length are two metrics that are commonly used to evaluate the performance of gate
placement algorithm [13]. The ‘NormPart+NormPlace’ design flow is considered as

12 3D/2.5D IC-Based Obfuscation 309

c499 c1355 c1908 c3540 c5315 c7552 b14_1 b15 average
Benchmarks

0.8

1

1.2

A
re

a
R

at
io

1.
03 1.

05 1.
09

NormPart+NormPlace NormPart+SecPlace SecPart+NormPlace SecPart+SecPlace

c499 c1355 c1908 c3540 c5315 c7552 b14_1 b15 average
Benchmarks

0.8

1

1.2

1.4

W
L

R
at

io

1.
01

1.
14 1.
17

Fig. 12.9 Area and total wirelength overhead for four design flows (NormPart + NormPlace,
NormPart + SecPlace, SecPart + NormPlace, SecPart + SecPlace) [47]. The NormPart + Norm-
Place is considered as the baseline design flow for calculating overheads, hence its overhead is 0%
for all benchmarks

a baseline for calculating overheads. As seen, the main overheads come from the
SecPart, as it requires a larger cut-set than NormPart to ensure 50% HD, which will
inevitably increase the area and wirelength. The average overheads for SecPart are
5.29%on area and 14.27%on total wirelength. The SecPlace algorithm contributes to
additional overhead because it perturbs the layout geometry to produce a placement
with 0% attack correctness. Overall, the average overheads for ‘SecPart+SecPlace’
design flow are 8.95% on area and 17.27% on total wirelength.

12.6 Security Challenges in 3D/2.5D ICs

While providing the great promise in terms of performance and security, 3D/2.5D
integration technology might also bring about adverse security impacts. In this
section, we discuss various security challenges in 3D/2.5D ICs.

12.6.1 3D/2.5D IC Testing

IC testing is significant for detecting counterfeit components [12] and hardware
Trojans [1, 19, 35] introduced in a global IC supply chain. The challenge of 3D IC
testing stems from three aspects [24]: (1) a complicated test flow that consists of

310 Y. Xie et al.

pre-bond test, mid-bond test and post-bond test; (2) new test contents such as TSVs;
(3) limited internal test accesses and mismatch between probe (50 µm) and fine-pitch
micro-bumps (20 µm) for external test accesses.

Split fabrication further complicates the testing of 3D/2.5D IC. Pre-bond test per-
formed at the untrusted foundries before die-bonding and post-bond test performed
at the trusted foundry after die-bonding are both important to ensure the correctness,
reliability and authenticity of an IC. However, the pre-bond test performed at the
untrusted foundries might not be trustworthy. If a functional test is performed, a set
of correct input–output patterns (for a die) are given to the untrusted foundries and
thus there is information leakage that could help the attackers.

Emerging solutions to these challenges have been proposed. A test cost analy-
sis has been performed to develop an economic and effective 3D test flow [37].
Redundant TSV has been proposed to reduce the yield loss due to TSV defects dur-
ing fabrication [14]. Additional probe pads are integrated into each die to enable
external test access and novel DfT architecture [25] for internal test access has been
demonstrated. For 2.5D ICs, corresponding interposer-centric DfT architecture and
post-bond testing strategy have also been proposed [7]. Moreover, secure test mech-
anisms such as the secure split test [8] might be employed to ensure the security of
3D/2.5D IC testing.

12.6.2 3D/2.5D IC Authentication

3D/2.5D IC is designed and fabricated by stacking/connecting multiple conventional
2D dies. How these 2D dies are connected, and how secure the dies are, will deter-
mine the vulnerability of a 3D/2.5D design. These 2D layers may contain functional
IPs that are provided by third-party IP vendors and may be fabricated by different
foundries. The complicated global supply chain introduces new chances for attackers
to insert inauthentic (counterfeit and maliciously modified) designs to compromise
the performance and security of the whole chip. Once all the layers are bonded, it
is difficult to detect an inauthentic layer in the middle since the stacking structure
of 3D ICs complicates physical testing and electrical testing. Thus, security-aware
authentication techniques before and after bonding are of great significance. More
design-for-security run-time mechanisms can also be developed to detect and/or
isolate the inauthentic layers during runtime.

12.7 Implications of 3D/2.5D-Based Obfuscation
on CAD Tool

While 3D/2.5D-based obfuscation offers new security opportunities to thwart various
attacks, it also brings about new design challenges to the CAD tool designers since
corresponding security-aware design techniques have not been well developed for
the emerging technology.We summarize some of the implications on different phases
of a 3D/2.5D design flow as follows:

12 3D/2.5D IC-Based Obfuscation 311

1. Logic Synthesis: When 2.5D split fabrication strategy is utilized, logic synthesis
poses a new impact on security [15]. Since different gate types (e.g. a NAND gate
or a NOR gate) are distinguishable by their layouts, the number of gate types used
in a design actually affects the difficulty of netlist obfuscation. A netlist that is
synthesized using a limited number of gate types will be easier to be obfuscated
using 2.5D split fabrication. However, it restricts the optimization space for logic
synthesis and will result in a less optimal synthesis solution.

2. Partitioning: Partitioning is the core of a security-aware 3D/2.5D design flow
because it determines the portion of design that is hidden from the attacker. A gate-
level partitioning selects wires and/or gates into the trusted tier that canmaximally
obfuscate the netlist and/or functionality. Designing an optimal partitioning that
can balance performance and security is challenging.

3. Placement and Routing: With 3D/2.5D split fabrication, a security-aware P&R
algorithm is important for maintaining the secrecy of hidden portion in the trusted
tier. Conventional P&R algorithmwill place two connected gates/pins close-by in
order to reduce wirelength. Eliminating the relationship between connectedness
of two gate/pins and their physical layout proximity demands a security-aware
P&R algorithm.

4. Design Verification: IC testing is essential to ensuring not only the correctness
and reliability of an IC, but also its integrity and authenticity. 3D/2.5D integra-
tion technology complicates the testing process by introducing more layers, new
contents such as TSVs while providing limited test accesses. The split fabrication
strategy introduces additional complexity into the test process. The development
of efficient test flow, direct test access and effective design-for-test circuitries
such as build-in self-test (BIST) circuits would mitigate the testing challenge for
3D/2.5D ICs.

12.8 Summary

The stacking structure of 3D/2.5D ICs enables a new split fabrication strategy to
obfuscate and protect outsourced design from supply chain attacks. A secure split
fabrication-enhanced 2.5D/3D IC design flow consists of two important phases:
netlist partitioning (wire and/or gate lifting) and placement. The core of the design
flow is partitioning,which determines the secret information hidden from the attacker.
Overall, it requires a comprehensive analysis and optimization to obtain a secure
2.5D/3D IC design flow to prevent the supply chain attacks. The true potential of 3D
ICs in presence of modern security challenges has not been investigated in substan-
tial depth. With the effort made in 3D IC security characterization and modelling,
future chip designers can take security into consideration at an early phase of the
design while optimizing the chip for performance and power. Moreover, novel archi-
tectures such as memory-on-chip enabled by 3D integration offer new opportunities
to apply aggressive (ie high-performance overhead) security policies and mecha-

312 Y. Xie et al.

nisms to obfuscate the information flow between memory and CPU. Future 3D CPU
design can incorporate security and performance advantages in 3D integration while
tackling the challenges in power management, thermal dissipation and testing.

References

1. Bao C, Forte D, Srivastava A (2014) On application of one-class SVM to reverse engineering-
based hardware trojan detection. In: 2014 15th International symposium on quality electronic
design (ISQED). IEEE, New York, pp 47–54

2. Bao C, Forte D, Srivastava A (2015) Temperature tracking: toward robust run-time detection
of hardware trojans. IEEE Trans Comput-Aided Des Integr Circuits Syst 34(10):1577–1585

3. Baumgarten A, Tyagi A, Zambreno J (2010) Preventing ic piracy using reconfigurable logic
barriers. IEEE Des Test Comput 27(1):66–75

4. BilzorM (2011) 3Dexecutionmonitor (3D-EM): using 3Dcircuits to detect hardwaremalicious
inclusions in general purpose processors. In: Proceedings of the 6th international conference
on information warfare and security, Academic Conferences Limited, p 288

5. Bobba S, Chakraborty A, Thomas O, Batude P, Pavlidis VF, DeMicheli G (2010) Performance
analysis of 3-D monolithic integrated circuits. In: IEEE international 3D systems integration
conference (3DIC), 2010, IEEE, pp 1–4

6. Chang YC, Chang YW,WuGM,Wu SW (2000) B*-trees: a new representation for non-slicing
floorplans. In: Proceedings of the 37th annual design automation conference,ACM, pp 458–463

7. Chi CC, Marinissen EJ, Goel SK, Wu CW (2011) Post-bond testing of 2.5 d-sics and 3d-sics
containing a passive silicon interposer base. In: IEEE international test conference (ITC), 2011,
IEEE, pp 1–10

8. Contreras GK, Rahman MT, Tehranipoor M (2013) Secure split-test for preventing IC piracy
by untrusted foundry and assembly. In: IEEE international symposium on defect and fault
tolerance in VLSI and nanotechnology systems (DFT), 2013, IEEE, pp 196–203

9. Fiduccia CM,Mattheyses RM (1982) A linear-time heuristic for improving network partitions.
In: 19th conference on design automation, 1982, IEEE, pp 175–181

10. Garrou P, Bower C, Ramm P (2011) Handbook of 3d integration: volume 1-technology and
applications of 3D integrated circuits. Wiley, New York

11. Gartner Inc (2012) Market trends: Rising costs of production limit availability of leading-edge
fabs. https://www.gartner.com/doc/2163515

12. Guin U, Huang K, DiMase D, Carulli JM, Tehranipoor M, Makris Y (2014) Counterfeit
integrated circuits: a rising threat in the global semiconductor supply chain. Proc IEEE
102(8):1207–1228

13. Ho YK, Chang YW (2013) Multiple chip planning for chip-interposer codesign. In: 2013 50th
ACM/EDAC/IEEE design automation conference (DAC), IEEE, pp 1–6

14. Hsieh AC, Hwang T (2012) TSV redundancy: architecture and design issues in 3-D IC. IEEE
Trans Very Large Scale Integr (VLSI) Sys 20(4):711–722

15. Imeson F, Emtenan A, Garg S, Tripunitara M (2013) Securing computer hardware using 3d
integrated circuit (IC) technology and split manufacturing for obfuscation. In: Presented as
part of the 22nd USENIX security symposium (USENIX Security 13), pp 495–510

16. Jagasivamani M, Gadfort P, Sika M, Bajura M, Fritze M (2014) Split-fabrication obfuscation:
metrics and techniques. In: IEEE international symposium on hardware-oriented security and
trust (HOST), 2014, IEEE, pp 7–12

17. Jung M, Song T, Wan Y, Peng Y, Lim SK (2014) On enhancing power benefits in 3d ICs: block
folding and bonding styles perspective. In: Proceedings of the 51st annual design automation
conference, ACM, pp 1–6

https://www.gartner.com/doc/2163515

12 3D/2.5D IC-Based Obfuscation 313

18. Khaleghi S, Da Zhao K, Rao W (2015) IC piracy prevention via design withholding and
entanglement. In: The 20th Asia and south Pacific design automation conference, IEEE, pp
821–826

19. Li J, Lach J, (2008) At-speed delay characterization for IC authentication and trojan horse
detection. In: IEEE international workshop on hardware-oriented security and trust (HOST),
2008, IEEE, pp 8–14

20. Liu B, Qu G (2016) VLSI supply chain security risks and mitigation techniques: a survey.
Integr. VLSI J 55:438–448

21. Liu B, Wang B (2014) Embedded reconfigurable logic for asic design obfuscation against
supply chain attacks. In: Proceedings of the conference on design, automation& test in Europe,
European Design and Automation Association, p 243

22. Loh GH, Xie Y, Black B (2007) Processor design in 3d die-stacking technologies. IEEEMicro
27(3):31–48

23. Lu T, Srivastava A (2015) Electromigration-aware clock tree synthesis for tsv-based 3d-ics. In:
Proceedings of the 25th edition on Great Lakes symposium on VLSI, ACM, pp 27–32

24. Marinissen EJ (2012) Challenges and emerging solutions in testing TSV-based 2 1/2D-and
3D-stacked ICs. In: Proceedings of the conference on design, automation and test in Europe,
EDA Consortium, pp 1277–1282

25. Marinissen EJ, De Wachter B, O’Loughlin S, Deutsch S, Papameletis C, Burgherr T (2014)
Vesuvius-3D: a 3D-DfT demonstrator. In: IEEE international test conference (ITC), 2014,
IEEE, pp 1–10

26. Narasimhan S, Yueh W, Wang X, Mukhopadhyay S, Bhunia S (2012) Improving IC secu-
rity against trojan attacks through integration of security monitors. IEEE Des Test Comput
29(5):37–46

27. Plaza SM, Markov IL (2015) Solving the third-shift problem in ic piracy with test-aware logic
locking. IEEE Trans Comput-Aided Des Integr Circuits Syst 34(6):961–971

28. Rajendran J, Pino Y, Sinanoglu O, Karri R (2012) Security analysis of logic obfuscation. In:
Proceedings of the 49th annual design automation conference, ACM, pp 83–89

29. Rajendran J, SinanogluO,Karri R (2013) Is split manufacturing secure? In: Design, automation
& test in Europe conference & exhibition (DATE), 2013, IEEE, pp 1259–1264

30. Rajendran J, Sinanoglu O, Karri R (2014) Regaining trust in VLSI design: design-for-trust
techniques. Proc IEEE 102(8):1266–1282

31. Rajendran J, Zhang H, Zhang C, Rose GS, Pino Y, Sinanoglu O, Karri R (2015) Fault analysis-
based logic encryption. IEEE Trans Comput 64(2):410–424

32. Rostami M, Koushanfar F, Rajendran J, Karri R (2013) Hardware security: threat models and
metrics. In: Proceedings of the international conference on computer-aided design, IEEE Press,
pp 819–823

33. Roy JA, Koushanfar F, Markov IL (2008) Epic: ending piracy of integrated circuits. In: Pro-
ceedings of the conference on design, automation and test in Europe, ACM, pp 1069–1074

34. Saban K (2011) Xilinx stacked silicon interconnect technology delivers breakthrough FPGA
capacity, bandwidth, and power efficiency. Xilinx, White Paper

35. Salmani H, Tehranipoor M, Plusquellic J, (2009) New design strategy for improving hard-
ware trojan detection and reducing trojan activation time. In: IEEE international workshop on
hardware-oriented security and trust (HOST’09), 2009, IEEE, pp 66–73

36. Subramanyan P, Ray S, Malik S (2015) Evaluating the security of logic encryption algorithms.
In: IEEE international symposium on hardware oriented security and trust (HOST), 2015,
IEEE, pp 137–143

37. Taouil M, Hamdioui S, Beenakker K, Marinissen EJ (2010) Test cost analysis for 3D die-to-
wafer stacking. In: 19th IEEE asian test symposium (ATS), 2010, IEEE, pp 435–441

38. Tezzaron (2008) 3D-ICs and integrated circuit security. http://www.tezzaron.com/about/
papers/3D-ICs_and_Integrated_Circuit_Security.pdf

39. Torrance R, James D (2009) The state-of-the-art in IC reverse engineering. In: Cryptographic
hardware and embedded systems-CHES 2009, Springer, Berlin, pp 363–381

http://www.tezzaron.com/about/papers/3D-ICs_and_Integrated_Circuit_Security.pdf
http://www.tezzaron.com/about/papers/3D-ICs_and_Integrated_Circuit_Security.pdf

314 Y. Xie et al.

40. Vaidyanathan K, Das BP, Sumbul E, Liu R, Pileggi L (2014) Building trusted ics using split
fabrication. In: IEEE international symposiumon hardware-oriented security and trust (HOST),
2014, IEEE, pp 1–6

41. Vaidyanathan K, Liu R, Sumbul E, Zhu Q, Franchetti F, Pileggi L (2014) Efficient and secure
intellectual property (IP) design with split fabrication. In: IEEE international symposium on
hardware-oriented security and trust (HOST), 2014, IEEE, pp 13–18

42. Valamehr J, Sherwood T, Kastner R, Marangoni-Simonsen D, Huffmire T, Irvine C, Levin T
(2013) A 3-D split manufacturing approach to trustworthy system development. IEEE Trans
Comput-Aided Des Integr Circuits Syst 32(4):611–615

43. Wendt JB, Potkonjak M (2014) Hardware obfuscation using puf-based logic. In: Proceedings
of the 2014 IEEE/ACM international conference on computer-aided design, IEEE Press, pp
270–277

44. Xiao K, Tehranipoor M (2013) BISA: Built-in self-authentication for preventing hardware
trojan insertion. In: IEEE international symposium on hardware-oriented security and trust
(HOST), 2013, IEEE, pp 45–50

45. Xiao K, Forte D, Tehranipoor MM (2015) Efficient and secure split manufacturing via obfus-
cated built-in self-authentication. In: IEEE international symposium on hardware oriented
security and trust (HOST), 2015, IEEE, pp 14–19

46. Xie Y, Bao C, Serafy C, Lu T, Srivastava A, Tehranipoor M (2015) Security and vulnerability
implications of 3d ics. IEEE Trans Multi-Scale Comput Syst 2(2):108–122

47. Xie Y, Bao C, Srivastava A (2015) Security-aware design flow for 2.5 d ic technology. In:
Proceedings of the 5th international workshop on trustworthy embedded devices, ACM, pp
31–38

48. Yasin M, Saeed SM, Rajendran J, Sinanoglu O (2016) Activation of logic encrypted chips:
Pre-test or post-test? In: 2016 design, automation & test in Europe conference & exhibition
(DATE), IEEE, pp 139–144

Part V
Other Hardware Obfuscation Building

Blocks

Chapter 13
Obfuscation and Encryption for Securing
Semiconductor Supply Chain

Ujjwal Guin and Mark M. Tehranipoor

13.1 Cryptographic Primitives

With the advent of the Internet, security has become an integral part of our day-to-day
lives. Modern cryptography is used in almost every application in communication
systems including department of defense, mobile, banking, medical, and many more
applications to provide security and protection against unwanted access by an adver-
sary. However, it is less widely used in securing semiconductor supply chain from
various different attacks which include IP piracy, IP overuse, and IC overproduction.
In the following, we will first introduce various cryptographic primitives and then
use them to secure semiconductor supply chain.

Figure13.1 shows a taxonomy of cryptographic primitives. These primitives are
broadly classified based on their usage—(i) encryption and decryption, and (ii)
authentication. There are symmetric and asymmetric ciphers for the encryption and
decryption of text messages. Symmetric ciphers are classified into stream ciphers
and block ciphers. On the other hand, we have discrete logarithm algorithm [1],
Rivest-Shamir-Adleman (RSA) algorithm [2], and elliptic curve algorithms [3, 4]
for asymmetric ciphers. Message Authentication Codes [5, 6] and digital signatures
[7] are widely used for integrity, authentication, and non-repudiation. We will briefly
describe these primitives below.

U. Guin (B)
Auburn University, Auburn, AL, USA
e-mail: ujjwal.guin@auburn.edu

M.M. Tehranipoor
University of Florida, Gainesville, FL, USA
e-mail: tehranipoor@ece.ufl.edu

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9_13

317

318 U. Guin and M.M. Tehranipoor

Encryption &
Decryption

Symmetric
Ciphers

Asymmetric
Ciphers

Stream
Ciphers

Block
Ciphers

Discrete
logarithm RSA Elliptic

Curves

Cryptographic
Primitives

Authentication

MAC
Digital

Signatures

Fig. 13.1 A taxonomy of cryptographic primitives used in modern communication systems

Alice (Trusted) Bob (Trusted)

Oscar
(Adversary)

Encryption
K(.)

Decryption
K(.)

Insecure
Channel

Key (K)

Plaintext
(p)

Ciphertext
(c)

Ciphertext
(c)

Plaintext
(p)

Ciphertext (c)

Fig. 13.2 Symmetric key cryptographic system

13.1.1 Symmetric Ciphers

Symmetric ciphers are used in symmetric key cryptographic systems (cryptosys-
tems), where two trusted parties (Alice and Bob) want to communicate privately with
each other. Figure13.2 shows a symmetric key cryptosystem, where Alice encrypts
the plaintext (p) with a key (K) and transmits the ciphertext (c = K(p)) resulting
in a secure communication channel. Bob receives the ciphertext, c, and then per-
forms decryption to construct the plaintext p, where p = K(c). An adversary, Oscar,
observes the ciphertext and cannot construct the original plaintext as he does not
possess the key, K . Note that both the encryption and decryption process use the
same unique key (K) for these cryptosystems. The security of these systems lies in
the fact that Alice and Bob’s shared key remains a secret. This also implies that Bob
and Alice must have previously agreed upon a key or secretly transferred the key
from one party to the other.

13 Obfuscation and Encryption for Securing Semiconductor … 319

Encryption. The encryption process can be expressed as:

c = fK(p)

= K(p)

where, p is the plaintext; c is the ciphertext; and fK(.) or simply K(.) is the encryption
function.
Decryption. The decryption process can be expressed as:

p = f −1
K (c)

where, f −1
K (.) is the decryption function.

For a symmetric key cryptosystem, the encryption keymust be the key for decryp-
tion. Thus, we can simply write:

p = K(c).

13.1.1.1 Stream Ciphers

Stream ciphers are the first type of ciphers that are used in symmetric key cryp-
tosystems. Stream ciphers encrypt plaintext in bitwise fashion, and decryption of the
ciphertext is performed similarly.As streamciphers are small and fast, they aremostly
used in lightweight applications. The encryption and decryption are performed by
modulo 2 additions (XOR equivalent).
Encryption. The encryption process can be written as follows:

ci = pi + ki mod 2

= pi ⊕ ki (13.1)

Decryption. The decryption process is as follows:

pi = ci + ki mod 2

= ci ⊕ ki (13.2)

where,

pi is the ith bit of the plaintext, p
ki is the ith bit of the key, K
ci is the ith bit of the ciphertext, c
pi, ki, ci ∈ {0, 1}
Gilbert S. Vernam presented a perfectly secret cipher, which was granted the US

Patent 1310719 in 1919 [8]. This cipher is most widely known as the one-time pad
(OTP) but is also referred to Vernam’s cipher in honor of its inventor. Interested

320 U. Guin and M.M. Tehranipoor

p=
{p1,p2,…,pn}

K=
{k1,k2,…,kn}

c=
{c1,c2,…,cn}

p=
{p1,p2,…,pn}

c=
{c1,c2,…,cn}

Encryption Decryption

Insecure
Channel

Fig. 13.3 Symmetric key cryptosystem using one-time pad

readers can find details of OTP and its perfect secrecy in the book, Introduction to
Modern Cryptography [9].

Figure13.3 shows a symmetric key cryptosystem that uses anOTP. The encryption
and decryption are performed by using Eqs. 13.3 and 13.4. Even though it provides
the perfect secrecy, the application of one-time pad in a symmetric key cryptosystem
possesses two severe limitations. First, the length of the key must be equal to the
data (plaintext) to be encrypted. It is practically impossible to maintain a key of
such length for long messages. For example, a 4GB key would be needed to encrypt
a movie or a computer game of size 4GB. Second, the key can only be used once.
Otherwise, the cipher leaks information. Both of these limitations become evenmore
problematic given that Alice needs to send the key securely to Bob beforehand. If
Alice can already securely send a key (equal to the data) to Bob (e.g., in person)
then why not send the data itself by the same method. For these reasons, OTPs are
rarely useful in practical applications. OTP tends to be used in applications where
the length of the plaintext is very small (few bits). In this chapter, we will use OTP
in Sect. 13.4 to provide security against IP overuse and IC overproduction since it
provides a very low area overhead compared to block-based symmetric ciphers.

Various other stream cipherswere used in practical applications over the years. For
example, GSM mobile phones widely use A5/1 stream cipher for voice encryption.
However, there are various attacks reported on the stream ciphers due to their shorter
key length. It is computationally feasible to break a stream cipher by brute force with
current computing resources. We shall not discuss stream ciphers in further detail as
it is beyond the scope of this chapter. Interested readers can find more in any modern
cryptography book, such as [9, 10].

13.1.1.2 Block Ciphers

Block ciphers are the symmetric ciphers that arewidely used inmodern cryptographic
systems. These ciphers encrypt plaintext in blocks of n bits, unlike stream ciphers
where the encryption takes place bitwise. For example, if the block size in 128
bits (n = 128), the plaintext needs to be divided into 128-bit blocks, which will be
encrypted independently. The decryption of the ciphertext is also performed in the
similar fashion like encryption. Data encryption standard (DES) [11] and advance

13 Obfuscation and Encryption for Securing Semiconductor … 321

encryption standard (AES) [12] are the two popular block ciphers already employed
in modern systems.

The data encryption standard (DES) encrypts a plaintext of a block of 64 bits
(8 bytes). The key size for DES is 56 bits. The encryption process is performed in
16 rounds. Each round uses the Feistel Network, which performs the confusion and
diffusion. The famous mathematician Claude Shannon proposed that confusion and
diffusion are the key elements to achieve a strong encryption process. In confusion
stage, the relationship between the key and ciphertext is obscured, whereas the effect
of plaintext is spread out in the ciphertext at the diffusion stage [10]. DES was
widely used in various cryptosystems until 1999, when its short key length made
it susceptible to brute force attacks. The US National Institute of Standards and
Technology (NIST) then recommended triple DES (3DES) where the key size is 112
bit. However, due to its implementation challenges and shorter key size, NIST called
for proposals for a new block cipher, Advance Encryption Standard, in 1997.

In 2001, NIST selected Rijndael proposed by Joan Daemen and Vincent Rijmen
as the new Advanced Encryption Standard (AES) [12]. The block size for AES
encryption is 128 bits (16 bytes). There are three key sizes (128 bit, 192 bit, and 256
bit) that one can select for encryption and decryption processes depending on the
desired level of security. There are 10, 12, and 14 internal rounds for 128 bit, 192 bit,
and 256 bit keys, respectively. The number of the internal rounds also depends on the
key size, allowing its security to scale more easily than DES. Each round consists of
Byte Substitution Layer, ShiftRows Layer, MixColumns Layer, and Key Addition
Layer, except for the final round. The detailed description of AES can be found in
[10, 12].

13.1.2 Asymmetric Ciphers

The symmetric ciphers (OTP, DES, AES, etc.) cannot provide security over a com-
munication channel even though they are inherently secure. The major challenges
associated with the symmetric ciphers are key management and end-point authenti-
cation. For keymanagement, a secure channel must be set to transfer the key between
Alice and Bob. In addition, if Alice wants to securely communicate with both Bob
and Tom, she needs to store the different keys for Bob and Tom. Thus, commu-
nication based solely on symmetric cryptography scales poorly when it is needed
between multiple different parties. In end-point authentication, both Alice and Bob
must verify the identity of each other. There is no way that Bob knows the iden-
tity of Alice when they use symmetric ciphers. For example, an adversary, Oscar,
can replay an old ciphertext to Bob. Due to these shortcomings, Diffie and Hellman
introduced an algorithm widely known as Diffie–Hellman Key Exchange based on
discrete logarithm [1] that laid the foundation for public key cryptography or asym-
metric key cryptography. At the same time, Rivest, Shamir, and Adleman proposed
an algorithm based on integer factorization (widely known as RSA) [2] to achieve
something similar.

322 U. Guin and M.M. Tehranipoor

Alice (Trusted) Bob (Trusted)

Oscar
(Adversary)

Encryption
Kpub(.)

Decryption
Kpri(.)

Insecure
Channel

Key ({Kpub, Kpri})

Plaintext
(p)

Ciphertext
(c)

Ciphertext
(c)

Plaintext
(p)

Ciphertext (c)

Fig. 13.4 Asymmetric key cryptographic system

Figure13.4 shows an asymmetric key cryptographic system,whereAlice encrypts
the plaintext (p) with the public key (Kpub) of Bob and transmits the ciphertext
(c) through an insecure channel. Bob receives the ciphertext, c, and then performs
decryption using his private key (Kpri) to construct the plaintext p. An adversary,
Oscar, observes the ciphertext and cannot construct the original plaintext as he does
not possess the private key of Bob, Kpri.
Encryption. The encryption process can be expressed as:

c = fKpub(p)

= Kpub(p)

where, fKpub(.) or simply Kpub(.) is the encryption function.
Decryption. The decryption process can be expressed as:

p = fKpri(c)

= Kpri(c)

where, fKpri(.) or simply Kpri(.) is the decryption function.
The RSA algorithm has gained the popularity over the years due to its simplicity

and has become almost synonymous with public key cryptography. It is worth not-
ing, however, that RSA and public key cryptography in general are not intended to
replace the symmetric ciphers (e.g., AES), but rather to provide support for end-point
authentication (see Sect. 13.1.4). RSA requires two keys Kpub = {n, e} and Kpri = d.
Encryption. The encryption process is as follows:

c = Kpub(p)

= pe mod n (13.3)

Decryption. The decryption process is as follows:

13 Obfuscation and Encryption for Securing Semiconductor … 323

p = Kpri(c)

= cd mod n (13.4)

where e, d ∈ Zn, and Zn is an integer ring with value {0, 1, . . . , n − 1}. Interested
readers can find more description on RSA and its relevant mathematical background
in [2, 10].

13.1.3 Message Authentication Codes

Message Authentication Codes (MACs) are widely used in message integrity ver-
ification and message authentication. MACs are commonly known as keyed hash
functions which provide the cryptographic checksum [5]. MACs are formed based
on secret symmetric keys, where the signing (Alice) and verifying (Bob) parties must
share a secret key (k) before the communication. MACs are often generated by using
secure hash functions and are called as a keyed-hash message authentication code
(HMAC).

MAC = HMAC(p, k)

= H
[
(k+ ⊕ opad)||H[

(k+ ⊕ ipad)||p]]

where,

p is the message or plaintext;
H(.) is the secure hash function (e.g., SHA-256) [13];
k+ is the expanded symmetric key, k;
opad is outer pad; and
ipad is the inner pad.

One can find the detailed description of HMAC in [10, 14]. MACs can also be
generated from block ciphers. One of the popular approach is to use AES in cipher
block chaining (CBC-MAC) and counter with cipher block chaining (CCM) [15].

13.1.4 Digital Signature

Adigital signature is a cryptographic techniquewidely used for authenticating an end
user. It ensures the authenticity of a message originated from a unique user, who is
the sole owner of it. Based on the scheme used for generating digital signatures, they
can be of different types, such as RSA digital signature, Elgamal digital signature,
and elliptic curve digital signature. In the following, we will only describe the digital
signature generated from the RSA algorithm for simplicity.

324 U. Guin and M.M. Tehranipoor

Let us assume that Alice wants to communicate with Bob. Alice generates two
keys (KApri = d and KApub = {n, e}) and publishes her public key (say in her Web
site). She now encrypts the message (plaintext, p) with her private key and forms the
signature (sig) and sends {p, sig(p)} to Bob.

sig = KApri(p)

= pd mod n

Alice is the only person, who can claim the sole ownership of sig as KApri is only
known to her. Bob can retrieve the message by performing:

KApub(sig) = (pd mod n)e mod n

= pde mod n

= p mod n

A simple equality check of KApub(sig) and p provides necessary proof of the
origination of the message. Due to the large size of the message, a small fixed size
message digest (e.g., hash of p) is computed first and then a signature of the message
digest is generated for end-point authentication.

13.2 Vulnerabilities in SoC Design and Fabrication
Processes

So far, we have discussed various cryptographic primitives for securing a communi-
cation channel. In this section, we will now focus our discussion on:

• Design and fabrication stages of the semiconductor supply chain; and
• Lack of forward trust between various entities involved with these stages.

13.2.1 Design Process

The persistent trend of device scaling has enabled designers to fit more and more
functionality on an SoC while reducing the overall area and cost of a system. The
design of large complex integrated circuits (ICs) has evolved to a stage where it is
extremely challenging to complete the entire design in-house. Therefore, the semi-
conductor industry has shifted gears to the concept of design reuse rather than design-
ing the whole SoC from scratch. Nowadays, the SoC designers obtain licenses for
various functional blocks (known as intellectual properties or IPs) for their SoCs to
optimize the design process and decrease time-to-market. These IPs can be hard IPs
(GDSII layout level designs), firm IPs (netlists and HDL designs with parameterized

13 Obfuscation and Encryption for Securing Semiconductor … 325

constraints), and soft IPs (synthesizable register-transfer level (RTL) designs). In
addition, the flow from RTL to GDSII is performed in many different places (even
in different countries) mainly to reduce development costs and time-to-market.

13.2.2 Fabrication Process

The increased complexity of the fabrication process has resulted in a majority of
SoC designers no longer maintaining a fabrication unit (or foundry) of their own.
Building and maintaining such fabs for modern SoCs are reported to cost more than
several billions of dollars and increasing as technology further scales [16]. Given the
increasing cost, the semiconductor business has largely shifted to a contract foundry
businessmodel (horizontal businessmodel) over the past twodecades. In this business
model, the SoC designers outsource their SoC design to the foundries and assemblies
(mostly located offshore) for fabrication and packaging.At fabrication, foundries first
fabricate defect-free wafers, which contains hundreds of working SoCs, which are
commonly known as die. After fabrication, the foundry sends tested wafers to an
assembly unit to cut the wafers into die, package the die, and perform final tests
before shipping them to the market.

13.2.3 Forward Trust Issue

Counterfeiting and piracy have been recognized as amajor concern in the SoC design
and fabrication processes [17–19]. To be more specific, entities participating in this
design and fabrication process must share their intellectual property (IP) with those
further down the chain, and trust that they use it appropriately. We refer to this type
of trust as ‘forward trust’ in this chapter. As an example, forward trust includes the
trust of SoC designers by IP owners and the trust of foundries/assemblies by the
IP owners and/or SoC designers. Note that forward trust is distinct from the more
common notion of trust used in the literature when discussing the supply chain. This
includes the trust of IP owners by SoC designers. To more carefully distinguish the
two, we refer to the latter as ‘backward trust’ in this chapter since it involves trust
of entities in the opposite direction of the supply chain. Ensuring backward trust is
beyond the scope of this chapter. Interested readers can find more information on the
detection and prevention of hardware Trojans in [20], which we believe is the key to
ensuring backward trust.

The lack of forward trust may lead to the following vulnerabilities, which are
highlighted as red in Fig. 13.5.

• IP overuse: Due to the increased complexity of SoCs and continuous demand for
shorter time-to-market, the SoC designers use third party IPs in their design and
pay a licensing fee for these 3PIPs. However, an untrusted SoC designer may

326 U. Guin and M.M. Tehranipoor

3PIP1

3PIP2

3PIPn

IP Owners

Foundry/
Assembly

Chips

SoC Designer

SoC Design

IP Piracy

IP Overuse IC
Overproduction

Supply Chain

Another SoC
Designer

Sell

License

Sell
Contract

#chips

#chips
#chips

Trust Trust

Fig. 13.5 Lack of trust between various entities involving in SoC design and fabrication

produce more ICs and report a lesser amount to the IP owners. This results in
an illegal advantage and reduction in licensing cost. At the same time, the SoC
designer may illegally use an IP that was licensed to be used in a different design.
In short, the IP owners have no or little means to verify how many chips have been
fabricated with their IPs and where their IPs have been used. When an untrusted
SoC designer overuses the IPs by selling extra ICs in the market, the IP owners
lose any possible revenue that could have been generated from those chips.

• IP piracy: IP piracy occurs when an untrusted entity in the supply chain acquires
an IP legally or illegally and then gains undue advantages from it [21–24]. The
IPs are of different forms, such as hard IPs (layout level designs), firm IPs (netlists
and HDL designs with parameterized constraints), and soft IPs (synthesizable
register-transfer level (RTL) designs). The attacks on these IPs are of different
types depending on the nature of these IPs. An untrusted foundry can sell illegal
copies of the hard IPs (GDSII files) that they receive from SoC designers for
fabrication. An untrusted SoC designer can—(i) resell an IP ‘as is’ like untrusted
foundries; (ii) strip the IP of certain features and sell it as a new IP; and (iii) add
some extra features, which can be malicious (e.g., a backdoor) or nonmalicious,
to the soft and firm IPs. Aside from the financial loss of the original IP owners,
security is at stake whenever one uses one of these pirated IPs as the IC may leak
secret information to the attacker or disable a system at some critical point in time.

• IC overproduction: Due to the complex fabrication process and extremely high
cost of maintaining a fabrication unit, the SoC designers provide contracts to
the foundries to fabricate their SoCs. The foundry agrees to manufacture certain
number of chips and in return the SoC designer incurs all the cost for develop-
ing the masks and fabrication costs. An untrusted foundry/assembly can produce
more than the number of chips they are contracted to manufacture [24–26]. As no

13 Obfuscation and Encryption for Securing Semiconductor … 327

R&D cost is incurred for these chips, they can receive illegitimately larger profits
by selling these chips with the name of SoC designer. In addition, an untrusted
foundry/assembly can also overbuild chips practically at zero cost by reporting a
lower yield (i.e., percentage of defect-free chips to the total number of chips) to
the SoC designer [27, 28]. Like IP overuse, the IP owners or the SOC designers
lose revenue due to the overproduction of ICs. Overproduced ICs may have relia-
bility concerns as they simply end up in the market with minimal or no testing for
evaluating reliability and/or functionality. Since these ICs have the same name of
the SoC designers, their failure would tarnish company reputation.

13.3 Establishing Forward Trust in SoC Design
and Fabrication Processes

Figure13.6 shows the solution for establishing forward trust between the IP owners,
SoC designers, and foundries/assemblies, which was introduced in [29, 30]. The
entry point for sourcing out-of-contract chips (overused IPs and overproduced ICs)
can be blocked by obfuscating the design. Obfuscation is a technique where a design
is transformed to a different one often by using a unique key to obfuscate the inner
details of the original design, thus preserving the original functionality. Whenever
an untrusted entity wants to sell a chip to the market, it requires a unique key. On the
other hand, IP piracy can be prevented by encrypting the design. In the following,
we will discuss the prior works on netlist obfuscation and netlist encryption.

3PIP1

3PIP2

3PIPn

IP Owners

Foundry/
Assembly

Chips

SoC Designer

SoC Design

Encrypted and
Locked

Need Keys from
3PIP Owners

Need Keys from
SoC Designers

Supply Chain

Another SoC
Designer

Sell

License

Sell
Contract

#chips

#chips
#chips

Trust Trust

Fig. 13.6 Establishment of forward trust between various entities involving in SoC design and
fabrication

328 U. Guin and M.M. Tehranipoor

13.3.1 Netlist Obfuscation

Roy et al. first proposed to obfuscate a netlist by using a lock (a set of XOR/XNOR
gates), and it can only be unlocked by using a unique unlock key [26]. We will refer
to this key as the chip unlock key or CUK for the rest of the chapter. The XOR and
XNOR gates in the obfuscated netlist indicate 0 and 1 at CUK location, respectively.
The basic problem with this approach is the direct relationship of the bits in CUK to
the XOR/XNOR gates. An adversary can reverse engineer a netlist to identify these
key gates and can easily obtain the key. In addition,CUK can be leaked to the primary
output of the chip while manufacturing test [31]. Rajendran et al. addressed those
problems by proposing different logic obfuscation techniques, where the identity of
the key gates are hidden [31]. Chakraborty et al. proposed a methodology which
can be integrated into the SoC design and manufacturing flow to simultaneously
obfuscate and authenticate a design [23]. In this approach, the circuit operates in a
normal mode when it receives a predefined sequence of patterns, known as a key, at
its input. However, it is not clear how this key will be hidden from the foundries or
assemblies as it is necessary to prevent overproduction. In addition, this technique
does not address IP overuse.

13.3.2 Netlist Encryption

The Design Automation Standards Committee of the IEEE recently developed the
P1735 standard [32] to provide the guidance for encryption and management of IPs.
P1735 has been adopted by most IP and EDA vendors. In the encryption approach,
the IP is encrypted with a random symmetric session key. This session key is then
encrypted with the public keys of different EDA vendors and attached to the IP such
that these vendors can later reconstruct the original IP.

Figure13.7a shows a very simple IP (written in Verilog) which performs AND
operation in every clock cycle. The IP is encrypted by using Synopsys
encryptP1735.pl script [33] to protect it from any unwanted modification. The code
inside the ‘pragma protect block (encircled in red in Fig. 13.7a) will be encrypted
when we run encryptP1735.pl script. The encrypted IP is shown in Fig. 13.7b, where
the code inside the ‘pragma protect block (encircled in red) is not recognizable.
Unfortunately, this encryption approach cannot prevent placing additional features
to an existing IP as it does not provide any integrity verification. Figure13.7c shows
this modified encrypted IP where an adversary adds an extra feature (OR operation)
to the existing AND operation.

In this chapter, we will present a solution by adding an IP digest resulting from
a cryptographic hash function [13] in the IP header (see Sect. 13.5) to prevent any
unauthorized modifications. In addition, the encrypted IP does not provide any pro-
tection against copying of the whole IP to make an exact clone. However, combining
the obfuscation and encryption can solve the threat of making a perfect clone as the

13 Obfuscation and Encryption for Securing Semiconductor … 329

Fig. 13.7 Modification of an encrypted IP to add extra features

adversary needs to know the correct CUK . He can copy the netlist but cannot make
a chip operational.

13.3.3 Flow for Establishing Forward Trust

Establishing forward trust in the semiconductor supply chain by ensuring the pre-
vention of IP overuse, IP piracy, and IC overproduction requires the implementation
of four separate measures. First, it is necessary to obfuscate the netlist of original
IPs and SoCs, which can only be functional when they receive proper chip unlock
keys, CUKs. Second, the secure transfer of these CUKs to the chips without being
intercepted by the foundries/assemblies is required. A foundry/assembly can activate
as many chips as it wants once it finds the properCUK . Third, the testing is necessary
before the activation of chips. An untrusted foundry/assembly can manipulate the
manufacturing yield to build a stockpile of defect free chips by simply reporting a
lower value to the SoC designer. Finally, the IPs need to be encrypted in such a way
that the SoC designers cannot find the inner details of an IP. In addition, the IPs
need to be tamper resistant and should be rendered useless if any modifications are
performed on them.

330 U. Guin and M.M. Tehranipoor

GDSII
Fabrication

Wafer Test

PackagingPackage Test

Defect Free
Chips

Functional
Activation

Test Pattern
Repository

SoC

Simulation

IP Owners SoC Designer Foundry/Assembly

3PIPs
Gate-level

Netlist

Lock
Insertion

Modified
RTL

Test
Patterns

Test Pattern
Generation

RTL

In-house IP
Gate-level

Netlist

Lock
Insertion

Modified
RTL

Test
Patterns

Test Pattern
Generation

RTL

Other in-house IPs
Gate-level

Netlist

Test
Patterns

Test Pattern
Generation

RTL

Trust Trust

Fig. 13.8 FORTIS for enabling IC/3PIP metering to ensure forward trust in the SoC design and
fabrication

Figure13.8 shows our proposed design flow for establishing forward trust between
IP owners, SoC designers, and foundries/assemblies. The design flow is very similar
to the existing IC design flow. Two additional steps are required, and they are lock
insertion and functional activation highlighted in red. The design process starts with
the insertion of locks by using a set of key (XOR/XNOR) gates using an existing
secure logic obfuscation technique. The chip produces functionally correct output
when it is activatedwith a properCUK . The number of XORorXNORgates depends
on the level of security one wants to achieve. The gate level netlist is modified to
enable manufacturing tests before the activation of chips (see details in Sect. 13.3.4).

Each 3PIP owner inserts key gates to lock their design to protect their IPs from
overuse, and then generates test patterns. The SoC designer receives all these locked
IPs and integrates them into the design. The SoC designer can also generate the
test patterns for these locked IPs, as they do not need the CUK during test patterns.
The SoC designer also inserts a lock in one of the in-house IP to protect against
IC overproduction. The SoC designer collects all the test patterns from different IP
owners or generates the test patterns for all these IPs and stores them in a pattern
repository for future manufacturing tests (e.g., wafer and package tests). As all the
3PIPs are locked, the simulation may be a challenge for an SoC designer. Simulation
support is described in Sect. 13.5 for these locked IPs.

The SoC designer sends the GDSII file corresponding to the SoC design to the
foundry for fabrication and assembly. The foundry first processes wafers, which
generally contains hundreds of dies in a single wafer. Foundry then performs wafer
test to inspect dies to find gross defects. It rejects the whole wafer if toomany dies are
defective. After wafer tests, the defect-free dies are sent to assembly for packaging.
The good chips are then sorted out by using package tests and the chips that have been
damaged during the packaging process are discarded. Finally, each chip is unlocked
using a valid CUK by the entity who performs the final manufacturing test (foundry,
assembly, or SoC designer) before being sent to the market.

13 Obfuscation and Encryption for Securing Semiconductor … 331

I1

(c) Proposed Netlist

1

g3 Y1m

ki

D
X

0

D
g0

A1

A2 g2

g1
A3

A4

An

D

g3 Y1

(a) Original Netlist

g0
A1

A2 g2

g1
A3

A4

An

(b) Obfuscated netlist

g3 Y1m

CUK[i]

ki

D
X

0

1/0

D/D

D/D

g0
A1

A2 g2

g1
A3

A4

An

CUK[i] 0

1
D

SE

Q

CLK
FFi

SI

Fig. 13.9 Modification of an obfuscated netlist to enable manufacturing test before the activation
of chips

13.3.4 Obfuscation Key Requirements: Enabling Structural
Test Before Activation

Enablingmanufacturing tests is one of the key requirements for preventing IP overuse
and IC overproduction. A foundry or assembly can perform tests right after the chips
are manufactured and reject the defective ones. If the activation takes place before
the test, an untrusted foundry or assembly can pile up defect free chips by hiding
actual yield to the SoC designer. In this section, we will present an architecture that
enables structural tests before the activation of chips.

In the previously proposed architectures, the structural test patterns used in man-
ufacturing tests are generated considering a predetermined CUK value. This is due
to the existence of forward implication of the key gates. A forward implication exists
when the inputs of a logic gate are assigned in a way that the output is uniquely
identified [34]. For a two input XOR gate, one of the inputs will be transferred to the
output when the other input is either 1 or 0. If we do not assign a value at CUK[i],
the ATPG tool will consider this input as unknown (X), and all the faults before the
gate ki (logic cone shown in shaded grey color in Fig. 13.9) will be untestable due to
the nonexistence of the forward implication.

Let us illustrate this point with an example by considering a fault D, shown in
Fig. 13.9b. This fault will be testable if it is being propagated to the output Y1m. If
CUK[i] is 1 then the output of the gate ki becomes D̄, otherwise it becomes D. The
corresponding Y1m will be D̄ or D depending on the CUK[i].

Y1m =
{

D if CUK[i] = 0
D̄ if CUK[i] = 1

332 U. Guin and M.M. Tehranipoor

To maintain a forward implication, it is required to provide the CUK during test
pattern generation. Thus, the previously proposed designs need a CUK (for example,
CUK[i] = 0 or CUK[i] = 1) before the structural test pattern generation to test the
logic cone before the key gate. It is now necessary to load the same key into the
chips before the manufacturing test begins, which is basically the activation of chips.
An untrusted foundry/assembly can overbuild chips by asking for more keys and
reporting a lower yield to the SoC designer if the chips are activated before the
manufacturing tests.

To solve this problem, a flip-flop is added in between the CUK[i] and the key
gate to reach the key gate from the primary input (PI) or pseudo primary input (PPI).
The ATPG tool assigns a unique value at the I1 input during the scan shift through
SI input (e.g., 1) for the key gate to transfer the fault D̄ to the output Y1m. Thus, the
ATPG tool can generate test patterns without knowing the exact key. In this chapter,
we refer structural or scan test patterns as patterns.

Figure13.9c shows the desired netlist, where the key bit CUK[i] is connected to
a scan flip-flop (FFi). The output of FFi drives the key gate k1. In the test mode,
when the scan enable (SE) signal is asserted, this flip-flop becomes a part of the
scan chain. The ATPG tool generates test pattern for this modified netlist with n + 1
inputs (A1,A2, . . . ,An, I1) rather than the original netlist (Fig. 13.9a) with n inputs
(A1,A2, . . . ,An) or obfuscated netlist (Fig. 13.9b) with n inputs (A1,A2, . . . ,An) and
CUK[i] = 0/1.

13.3.5 Attack Analysis and Countermeasure

Let us now consider an attack on the design presented in Fig. 13.9c, where an adver-
sary wants to recover the key (CUK) by observing the test responses. As CUK[i]
is directly connected to the scan flip-flop, it will be propagated to the output and
an adversary can recover the key by observing the non-changing response values
for different test patterns. However, this attack may not be feasible in any design,
which uses an on-chip test response compaction module. On-chip test response com-
paction is very common in today’s designs [35–37]. Almost every chip uses response
compaction to significantly reduce test data not out of preference, but of necessity.

Figure13.10 shows an example of a compressor logic structurewith a compression
ratio 2 (8 scan chains and 4 outputs). Let us consider the key bits as Xs (an adversary
does not know the value, but it will be 1 or 0 in real chips). The effect of Xs will
be suppressed at the output dout if at least two of the inputs of the XOR gates in
the compressor are Xs. In this example, we can select scan chain 3, 4, and 5. At ith

clock cycle three key bits (k − 1, k, k + 1) will be at dout simultaneously and their
individual effect cannot be separated.

13 Obfuscation and Encryption for Securing Semiconductor … 333

ith Clock Cycle k+1 k k-1

C
om

pr
es

so
r

Sc
an

 c
ha

in
s

Fig. 13.10 Compressor logic structure example for 8-to-4 compressor [38]

dout[0] = din[4] ⊕ din[3] ⊕ din[2] ⊕ din[0]
= k ⊕ (k − 1) ⊕ . . .

= X ⊕ X ⊕ . . .

dout[1] = din[5] ⊕ din[3] ⊕ din[2] ⊕ din[1]
= (k + 1) ⊕ (k − 1) ⊕ . . .

= X ⊕ X ⊕ . . .

dout[2] = din[6] ⊕ din[5] ⊕ din[4] ⊕ din[2]
= (k + 1) ⊕ k ⊕ . . .

= X ⊕ X ⊕ . . .

dout[3] = din[7] ⊕ din[5] ⊕ din[4] ⊕ din[3]
= . . . ⊕ (k + 1) ⊕ k ⊕ (k − 1)

= . . . ⊕ X ⊕ X ⊕ X

The key propagation will fail as there is no forward implication for these XOR
gates (two of the inputs are Xs). Thus, by selecting the scan chains carefully and
place key gates at the same location on these scan chains, we can circumvent this
attack.

One could argue that the diagnostics done for failure analysismay be impacted due
to the compressed test responses. However, modern EDA tools provide diagnostic
support (high defect coverage and accurate fault diagnostics) with compression in
place [35–37]. The compacted responses collected during the test can be used for
diagnostics without going back to the traditional DFT (without compressions). So

334 U. Guin and M.M. Tehranipoor

with this added feature, we do not see any reason why the SoC designers will not
use test compression in their SoCs.

It is worthwhile to mention here that this key insertion flow does not impact the
test process using JTAG [39] in the field as the test patterns are generated after the
insertion of the key gates and has no impact on CUK . No modifications to the design
are made after test pattern generation.

13.4 Secure Key Exchange Between IP Owner,
SoC Designer, and Foundry

Thus far, we have discussed how locks inserted in a netlist can provide protection
against IP overuse and IC overproduction. However, a major question, “How can
the IP owners or SoC designer transfer CUK to the chips without interception by
any untrusted entity in the supply chain?”, remains unanswered. In this model, an
untrusted foundry or assembly becomes the adversary and attempts to find CUK
such that it can activate any number of chips. In this section, we will present a secure
communication protocol to transfer the CUK from SoC designer to the chips to
prevent IC overproduction. Then, we will extend this communication protocol to
transfer CUKs from 3PIP owners to the chips to prevent IP overuse.

To ensure the safe transfer of CUK from the IP owners or SoC designers to the
chips, the following are required:

• Message integrity: The IP owners or SoC designers must ensure the integrity of the
request received from the chips. If they detect an altered request, either modified
by an attacker or errors in the transmission, it is necessary to stop the transmission
of the encrypted CUKs.

• End-point authentication: The IP owners or SoC designers must verify that the
request was initiated by the chips and not by an untrusted foundry or any other
entity in the supply chain. As the chip cannot communicate by its own, the foundry
or assembly only gets the information from the chip and forwards it to the SoC
designer.

• Confidentiality: Only the IP owners or SoC designers and the chip should under-
stand the contents of the transmitted messages.

All these can be achieved by using a combination of asymmetric and symmetric
key encryption. The widely used Rivest-Shamir-Adleman (RSA) algorithm [2] is
used as the asymmetric key encryption algorithm to provide message integrity and
end-point authentication. Note that Discrete logarithm or elliptic curve algorithms
[10] can also be used instead of RSA. Depending on the area budget, one can select
one of the algorithms from the above. One-time pad (OTP) [10] is used for symmetric
key encryption to provide the confidentiality. OTP has low area overhead as it only
requires a simple XOR network for the encryption and decryption.

13 Obfuscation and Encryption for Securing Semiconductor … 335

+

m KCpri (.)

OTP

+

KS KDpub (.)TRNG

-

KDpri(.)

OTP

KS

-

KCpub (.)

Compare

m

OTP

Yes

KS

CUKOTPCUK

Chip SoC Designer

m

sig(m)

{m,sig(m)}

TK=
{IK,KDpub(KS)}

KDpub(KS)

TK’=
KS(CUK)

IK

sig(m)

IK1

4 6

2

3

5

7 8 9

10
11

1314

KDpub(KS) 12

Fig. 13.11 Communication protocol for secure transfer of CUK from the SoC designer to the chip

13.4.1 Protection Against IC Overproduction

Untrusted foundries/assemblies produce more number of chips beyond the contract
from the SoC designers and commonly known as IC overproduction. Here, the rele-
vant parties are the SoC designers and untrusted foundries/assemblies. Our objective
is to provide a secure transfer of CUK from SoC designer to the fabricated chips
without being intercepted by an untrusted foundry or assembly.

Figure13.11 shows our proposed protocol to securely transfer CUK from SoC
designer to the fabricated chips. To achieve this, we need the keys (public key of
the SoC designer (KDpub) and private key (KCpri) of the design) to be embedded in
the design. Thus all the fabricated chips have the same CUK , KDpub, and KCpri. The
SoC designer has the other two keys, KDpri, and KCpub. The steps for transferring
the CUK from the SoC designer to the chip are listed below:

Step 1: The on-chip TRNG generates a message (m) which is unique for each
and every chip.

Step 2: The message m is encrypted with the private key KCpri stored in the chip
to form a signature, i.e., sig(m) = KCpri(m). This signature will be used
to validate message integrity and verify end-point authentication.

Step 3: The message m and its signature sig(m) are concatenated.
Step 4: The TRNG generates a random session key (KS), which is unique for

every communication. This session key can be stored in a nonvolatile
memory for future decryption to receive CUK . If the entire activation
is performed while the chips are powered on, we can even store KS in
a volatile memory. This unique session key helps us to prevent replay
attacks.

Step 5: A one-time pad (OTP) encrypts the concatenated message (m) and its
signature (sig(m)) with KS .

IK = KS({m, sig(m)}) = KS ⊕ {m, sig(m)}

336 U. Guin and M.M. Tehranipoor

Step 6: The session key, KS , is encrypted with the public key, KDpub, of the SoC
designer.

Step 7: The transmission key is formed by concatenating encrypted KS and IK .
TK = {KDpub(KS), IK}. The foundry receives TK from the chip and for-
wards it to the SoC designer.

Step 8: Upon receiving the TK from the foundry, the SoC designer separates
encrypted KS and IK .

Step 9: Session key KS is retrieved by decrypting KDpub(KS) with KDpri.

KS = KDpri(KDpub(KS))

Step 10: A one-time pad is used to decrypt IK to retrieve the concatenated m and
its signature sig(m).

IK ⊕ KS = KS ⊕ {m, sig(m)} ⊕ KS = {m, sig(m)}

Step 11: The SoCdesigner retrieves themessage from the signature by using chip’s
public key, KCpub.

KCpub(sig(m)) = KCpub(KCpri(m)) = m

Step 12: A comparison is performed to match m and decrypted signature sig(m).
This step verifies the integrity of m and end-point authenticity. The SoC
designer now knows that the TK is originally coming from the chip if m
equals to the KCpub(sig(m)), not from an attacker.

Step 13: After verifying the authenticity of the sender, the SoC designer encrypts
CUK by using an OTP with the session key KS and sends another trans-
mission key (TK ′) to the foundry.

TK ′ = KS(CUK) = KS ⊕ CUK

Step 14: The foundry applies this TK ′ to the chip. The chip now reconstructs the
correctCUK after decryptingTK ′ by using theOTPwith its stored session
key, KS .

KS(TK ′) = KS ⊕ CUK ⊕ KS = CUK

This correct CUK is then stored in a nonvolatile memory (NVM) [40] to provide
inputs to the key gates. The size of the NVM depends on the size of the CUK . One
needs to make sure that the CUK values are not accessible by the JTAG [39] in the
field.

13 Obfuscation and Encryption for Securing Semiconductor … 337

Fig. 13.12 Architecture and communication flow of FORTIS to prevent IP overuse

13.4.2 Protection Against IP Overuse

The overuse of IP occurs when an SoC designer makes a foundry manufacture extra
chips (including IC overproduction) without the knowledge of the 3PIP owners,
which results in a loss of revenue for the IP owners. The relevant parties are the IP
owners, SoC designers and untrusted foundries/assemblies. An IP owner obfuscates
his/her IP in such a way that it requires a unique CUK to become completely func-
tional. This CUK has to be completely unknown to the SoC designer; otherwise,
there will be no point of obfuscating an IP. Now the question becomes how can an
SoC designer simulate an SoC in the design phase if he does not know the CUK of
a 3PIP? We address this simulation problem in Sect. 13.5.

To control the number of chips from a manufacturing unit, our objective is to
provide a secure transfer of CUKs from the different IP owners to the fabricated
chips without being intercepted by an untrusted SoC designer, foundry, or assembly.

Figure13.12 shows the architecture and communication flow to prevent IP
overuse. Each IC contains a trusted authentication platform (TAP), which is intro-
duced in the SoC design in order to reduce the area of each 3PIP by eliminating
individual encryption/decryption blocks for each IP block and is trusted by all the
3PIPs in that SoC. In addition, TAP can be encrypted by our propose approach (see
Sect. 13.5) such that inner details are hidden to the SoC designer and it is tamper
resistant. The connection details between the TAP and 3PIPs are also obfuscated
by the EDA tool such that SoC designers cannot add additional circuitry to observe
CUKs and provide them to the 3PIPs directly. Note that we assume trusted EDA
tools throughout the chapter, and it cannot be modified to get an undue advantage by
the SoC designers.

Each IP contains a lock (i.e., the key gates) which can only be unlocked by using
the correct chip unlock key CUKi of IP i. This CUKi is only known by the ith IP
owner. The IPs only receive CUKis from the TAP for the activation. TAP holds its

338 U. Guin and M.M. Tehranipoor

Fig. 13.13 Architecture of TAP and communication flow to reconstruct CUKs for all 3PIPs in a
SoC

own private key (KApri) and public keys ({Kipub}) for all the IPs in the design. TAP
generates the transmission keys (TK1,TK2, . . . ,TKn) using Steps 1 to 7 of Fig. 13.11
and sends them to the SoC designer. The SoC designer forwards each transmission
key (TKi) to the corresponding IP owner. In return, the IP owners send the encrypted
chip unlock key (TK ′i) to the SoC designer. Upon receiving all the TK ′is from the
IP owners, the SoC designer sends them to the foundry to unlock each IP in the
fabricated chips.

Figure13.13 shows the generation of transmission keys by the trusted authentica-
tion platform. TAP has a built-in TRNG, which generates a message (m) and separate
session keys (KS) for all different IP owners. First, the signature of m is generated
and then concatenated with its signature. This ensures the message integrity and end-
point authentication for all the IP owners and also that the request is indeed coming
from the trusted platform module. TAP then generates one transmission key in each
step. At step 1, a session key (KS1) for IP owner 1 is obtained from the TRNG. This
session key helps to encrypt {m, sig(m)} and the encrypted output is concatenated

13 Obfuscation and Encryption for Securing Semiconductor … 339

with the encrypted KS1 to form TK1. At step 2, a different session key (KS2) for
IP owner 2 is received from the TRNG. This session key is then used to encrypt
{m, sig(m)}, and the encrypted output is concatenated with the encrypted KS2 to
form TK2. In a similar fashion, all the transmission keys (TKi) are generated. Then
the foundry receives all the TKi, sends them to the SoC designer, and waits for the
encrypted CUKs.

After receiving the transmission keys (TK ′is), the foundry applies them to the
TAP, which decrypts these TK ′is by using its session keys, KSs, to generate the chip
unlock keys, CUKis, for all different IPs.

13.4.3 Area Overhead Analysis

The purpose of the area overhead analysis is to analyze the overhead from different
modules of the communication protocol described in Sect. 13.4.1. As the activation of
chips is performed only once, the time for the activation (the end-point authentication
and then transfer of keys from IP owners/SoC designers to the chips) is not the major
concern, rather than the area overhead. We need to optimize the area by selecting
minimum size crypto modules. The below modules are the contributors for the area
overhead:

(1) RSA module: The RSA crypto primitive is used in the design to encrypt the
session keys and generate the signature, which makes up a major part of the area
overhead. However, this overhead can be reduced significantly, if we choose a
slower RSA module. As the speed of encryption is not our major concern, we
can select a slower, but more area efficient RSA module. It is reported that a
minimum size RSA datapath can be implemented by using only 861 gates [41].

(2) OTP module: The size of the one-time pad depends on the size of the CUK .
For a 128 bit CUK , we need 128 XOR gates. The same OTP can be used in
multiple passes for the encryption of {m, sig(m)} and decryption of TK ′, where
the typical size of the RSA signature is 1024 or 2048 bits.

(3) Keys gates: The size due to keys also depends on the CUK . To implement one
key bit, we need one XOR/XNOR gate and a scan flip-flop.

(4) RSA Keys: Extra storage or logic is needed to keep or generate at least 1024 or
2048 bits (80-bit or 112-bit block cipher equivalent security, respectively) KCpri

for chips or KApri for TAP.
(5) TRNG: A single TRNG is used for generating the message, m and session keys,

KSs. We propose the use of an area efficient cryptographically secure pseudo-
random number generator [42] or [43] depending on the implementation choice.

(6) Nonvolatile memory: The size of the nonvolatile memory depends of the session
keys, KSs. We need nonvolatile memory of |m||sig(m)| bits to store KS .

There is no area overhead of any 3PIPs for preventing IP overuse except for
the key gates. The trusted authentication platform (TAP) provides the CUKs to all

340 U. Guin and M.M. Tehranipoor

different 3PIPs. The primary motivation for implementing TAP in any design for a
SoC designer is that they need to prevent IC overproduction.

13.4.4 Security Analysis

The security of our proposed protocol is of prime importance to prevent the overpro-
duction of ICs and overuse of 3PIPs. In the following, we will perform the security
analysis of our proposed approach.

(1) Exhaustive key search: The length of a chip unlock key, CUK , should be long
enough such that it can withstand exhaustive key search or brute-force attacks.
We need to achieve at least 80 bits of security as this is the lower minimum
requirement for exhaustive key search [10]. To achieve this, we require 80 key
gates (XOR/XNOR). However, the key size may be increased up to 256 bits for
higher security, which will hardly impact the overall area of a modern design.

(2) Encryption: In our approach, we use RSA to encrypt the session key and generate
signature. One can achieve 80 bit of security while the key length is 1024 bits.
However, 128 bit security can be achieved with the key length of 3072 bits [44].
Depending on the area budget, one can select a desired security level of n bits.
We have used one-time pad to encrypt {m, sig(m)}. As the session keys, KSs,
are generated from a TRNG, a perfect secrecy can be achieved. Thus, we can
achieve an overall RSA equivalent secrecy in our proposed protocol.

(3) Man-in-the-middle attack: As the key-pairs for the RSA are generated by the
IP owners and reside in the circuit, no key transfer is required. This prevents an
attacker (e.g., untrusted foundry) from becoming a man-in-the-middle.

(4) Replay attack: In this attack scenario, the attacker copies a message between two
parties and replays that message to one or more of them. Our proposed protocol
is inherently resistant to replay attacks as a new session key, KS , is generated
every time during encryption, which will be used later to decrypt the encrypted
CUK .

(5) Reverse engineering: It is extremely hard for an attacker to find CUK by reverse
engineering for modern designs manufactured with a latest technology node
(22 nm or lower). Even if we assume that reverse engineering is possible to find
the key, an attacker cannot feed the CUK to a chip, as they do not know the
private key of the SoC designer (KDpri) to retrieve KS . As the session key, KS ,
is unique for every chip, it is not economical for the attackers to retrieve KS

for each chip by reverse engineering. We also assumed that the attacker cannot
model the TRNG to predict its output after observing certain KSs.

(6) Tampering RSA Keys: In this attack scenario, an untrusted foundry reconstructs
new masks to replace the keys, KCpri and KDpub, with its own. This enables the
foundry to unlock unlimited number of chips when it receives the CUKs from
the IP owners. Fortunately, this attack can easily be prevented by the IP owners.
The SoC designer can request only one locked chip and then verify the correct

13 Obfuscation and Encryption for Securing Semiconductor … 341

keys. If the foundry replaces KCpri and KDpub by its own, the SoC designer will
not be able to unlock the chip and consequently, it can detect mask modification.

(7) Tampering TRNG: An untrusted foundry can modify the masks to bypass the
TRNG and write a permanent value for KSs and m. Once it knows the CUK , it
can unlock any number of chips. Fortunately, this attack can also be detected by
the IP owners and can be prevented. Like before, the SoC designer can request
few locked chips to monitor the message, m and the session key, KS . If either m
or KSs from these chips are the same or biased, it will definitely be the indication
of the tampering of TRNG. As it is extremely expensive to design a new set of
masks, there is little economic incentive for an untrusted foundry to manufacture
a product with two different set of masks.

13.5 IP Piracy

We have discussed so far the secure transfer of the chip unlock keys from the IP
owners or SoC designers to the untrusted foundries and assemblies to prevent IP
overuse and IC overproduction. This final section will introduce a SoC design flow
to prevent IP piracy, such as cloning, and unwanted modification of IPs by the
untrusted SoC designers and foundries.

Let us first discuss IEEE P1735 standard to prevent IP piracy. Figure13.14 shows
the normal practice for the generation of encrypted IPs and retrieval of the original
IPs inside the EDA tool [33]. An IP owner encrypts a part of his/her IP (referred as
IP Data) to protect from the SoC designers and other IP owners by using a random
symmetric session key (KS). KS is then encrypted with the public key of the EDA
tool to form EnKS and is attached to the encrypted IP such that the EDA tool can later
reconstruct the original IP data. In this model, the EDA tools are always trusted. One

IP Data

Symmetric
Encryption

EnKS||
EnIPDataIP Owners EDA Tool

Session
Key (KS)

Asymmetric
Encryption

EDA Tool’s
Public Key

EnIPData

EnKS

EnKS

EnIPData

Asymmetric
Decryption

EDA Tool’s
Private Key

Symmetric
Encryption

IP Data

KS

Fig. 13.14 Encryption and decryption process of IP using IEEE standard 1735 [33]

342 U. Guin and M.M. Tehranipoor

can find the public key of different EDA tools in the corresponding EDA vendors’
Web site.

During the synthesis or simulation processes, the EDA tool first separates EnKS

from the encrypted IP. It then recovers the session key, KS , by using its private key.
Once the KS is recovered, the tool uses the session key to recover IP data from the
encrypted IP.

This IP encryption process prevents an adversary from finding the inner details
of an IP. Unfortunately, it neither prevents placing additional features to an existing
IP (already described in Sect. 13.3.2), nor making a clone which the exact copy of
the original IP. How can we then prevent an adversary placing additional features to
an existing IP or making a perfect clone? We can prevent an adversary to modify an
IP by simply introducing integrity verification in the encryption process. Similarly,
the obfuscated netlist (see details in Sect. 13.3.3) inherently prevents the cloning of
IPs. As each IP is locked by using a set of key gates, even if the attackers copy the
netlist completely, they cannot unlock it without a proper CUK . If we incorporate
these two solutions in the design phase, we can completely eliminate IP piracy.

Note that the simulation of an SoC having these locked 3PIPs needs to be
addressed, as these IPs will work properly only upon receiving a proper CUK . It
is necessary to protect these CUKs from the SoC designer. Otherwise, there is no
point of adding the locks into the IPs in the first place. In the following, we will
present a solution of simulating a 3PIP by providing a valid CUK securely to the
simulation tool without the interception by untrusted SoC designers.

The integrity verification of an IP is necessary to prevent IP modification by an
untrusted SoC designer aswe described before.We use a cryptographic hash function
[13] to create an IP digest (see message digest [10]) to make it resistant against
modification. Any modification, including addition or deletion of extra features, to
a 3PIP will result in a different IP digest than the original one, which can easily be
detected by comparison in an EDA tool.

Figure13.15 shows our proposed flow to prevent cloning and modification of
3PIPs. The IP owners first compute an IP digest which is the hash of the entire
locked netlist. An IP header is then created which contains the CUK for the sim-

IP

Compute
Hash

Create
IP Header

Encrypt IP Digest,
CUK and IP Body

Decrypt IP Digest,
CUK and IP Body

Compute IP
Digest

Compare
(Equal ?)

Apply CUK to the IP to
Simulate, or Synthesize

Program
Termination

IP Owners EDA Tools

Yes

No

Fig. 13.15 Proposed flow to prevent IP piracy integrated into FORTIS

13 Obfuscation and Encryption for Securing Semiconductor … 343

(a) (b)

Fig. 13.16 IP header insertion for the simulation of a locked IP

ulation of an SoC and the IP digest. The IP is then encrypted (the code inside the
‘pragma protect blocks) by using a symmetric encryption method (e.g., Advanced
Encryption Standard-Cipher Block Chaining (AES-CBC) [45]) recommended in
encryptP1735.pl script [33]. This symmetric key is now encrypted by the public
keys of different EDA vendors such that these vendors can later on decrypt them to
get the IP.

We propose a new IP digest comparison flow during synthesis and simulation of
SoCs. The EDA tool first needs to decrypt the encrypted portion of the IP header
and the IP body. An IP digest has to be calculated from the decrypted IP by using
the same hash function used before to form the IP digest. A comparison needs to
be performed with the IP digest retrieved from the IP header and newly computed
IP digest. If both of them are equal, then it is ensured that no modifications to the
program has been made; otherwise, the program has to be terminated.

Figure13.16 shows an example of our proposed encrypted IP. We use SHA-512
[13] to form an IP digest, which is attached to the IP header along with the CUK .
We use Synopsys encryptP1735.pl script [33] to encrypt the IP header and IP body.
Figure13.16a shows a locked IP. The encryption is carried out in two parts - (i) The
IP vendor encrypts the IP data (data block) using its own symmetric key which is
called the data key.We use aes256-cbc as symmetric encryption algorithm to encrypt
the data block. (ii) The IP vendor then encrypts the data key with its public key by
using asymmetric encryption to create a key block. The encryption version, encode
type, key owner, key name, and key method need to be mentioned. We use RSA as
asymmetric encryption to generate the key block which is attached to the IP header
(see Fig. 13.16b).

344 U. Guin and M.M. Tehranipoor

13.6 Conclusion

In this chapter, we have presented various cryptographic primitives from modern
cryptography and used them along with obfuscation to provide forward trust for dif-
ferent entities involved in the SoC design and manufacturing process. We obfuscate
the netlist by using a set of key gates. The obfuscated netlist works properly when
it receives a correct chip unlock key during the activation. We also present a com-
munication protocol between the fabricated chips and the SoC designers/IP owners
for preventing IP overuse and IC overproduction that operates before the activation
of chips by the unlock key. Our proposed modification does not have any impact on
manufacturing test process. To address IP overuse, we presented a trusted authenti-
cation platform in the SoC. This TAP is trusted by the all parties involved in the SoC
design. The encrypted IP with additional IP digest check prevents the SoC designer
from IP piracy. As the IPs are locked by using a set of XOR/XNOR gates, even if the
attackers copy the netlist completely, they cannot unlock it without the proper CUK ,
which prevents IP cloning. Finally, we have shown that the design flow for ensuring
forward trust is resistant to all known attacks.

References

1. DiffieW,HellmanM(1976)Newdirections in cryptography. IEEETrans InfTheory 22(6):644–
654

2. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-
key cryptosystems. Commun ACM 21(2):120–126

3. Koblitz N (1987) Elliptic curve cryptosystems. Math Comput 48(177):203–209
4. Miller VS (1985) Use of elliptic curves in cryptography. Conference on the theory and appli-

cation of cryptographic techniques. Springer, Berlin, 1985, pp 417–426
5. Krawczyk H, Canetti R, Bellare M (1997) HMAC: keyed-hashing for message authentication
6. FIPS, “198-1,” (2007) The keyed-hash message authentication code (HMAC). National Insti-

tute of Standards and Technology
7. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-

key cryptosystems. Commun ACM 21(2):120–126
8. Vernam GS (1919) Secret signaling system. US Patent 1,310,719
9. Katz J, Lindell Y (2014) Introduction to modern cryptography. CRC Press, Boca Raton
10. Paar C, Pelzl J, (2009) Understanding cryptography: a textbook for students and practition-

ers. Springer Science & Business Media, Berlin
11. Standard DE (1977) Federal information processing standards publication 46. National Bureau

of Standards, US Department of Commerce
12. PubNF (2001) 197:Advanced encryption standard (aes). Fed Inf Process Stand Publ 197:0311–

441
13. NIST (2012) FIPS PUB 180-4: secure hash standard
14. NIST (2008) FIPS PUB 198-1: the keyed-hash message authentication code (HMAC)
15. Dworkin M (2004) Recommendation for block cipher modes of operation: the CCMmode for

authentication and confidentiality (nist sp 800-38c)
16. Yeh A (2012) Trends in the global IC design service market. DIGITIMES research
17. Tehranipoor MM, Guin U, Forte D (2015) Counterfeit integrated circuits: detection and avoid-

ance. Springer, Berlin
18. GuinU,HuangK,DiMaseD, Carulli J, TehranipoorM,Makris Y (2014) Counterfeit integrated

circuits: a rising threat in the global semiconductor supply chain. Proc IEEE 102(8):1207–1228

13 Obfuscation and Encryption for Securing Semiconductor … 345

19. GuinU,DiMaseD, TehranipoorM (2014) Counterfeit integrated circuits: detection, avoidance,
and the challenges ahead. J Electron Test 30(1):9–23

20. Tehranipoor M, Salmani H, Zhang X (2014) Integrated circuit authentication: hardware trojans
and counterfeit detection. Springer, Berlin

21. Castillo E, Meyer-Baese U, García A, Parrilla L, Lloris A (2007) “IPP@HDL: efficient intel-
lectual property protection scheme for IP cores. IEEE Trans Very Large Scale Integr Syst
15(5):578–591. http://dx.doi.org/10.1109/TVLSI.2007.896914

22. Kahng AB, Lach J, Mangione-Smith WH, Mantik S, Markov IL, Potkonjak M, Tucker P,
Wang H, Wolfe G (2006) Constraint-based watermarking techniques for design IP protection.
Trans Comput-Aided Des Integr Circuits Syst 20(10):1236–1252. http://dx.doi.org/10.1109/
43.952740

23. Chakraborty RS, Bhunia S (2009) HARPOON: an obfuscation-based SoC designmethodology
for hardware protection. IEEETransComput-AidedDes IntegrCircuits Syst 28(10):1493–1502

24. Tehranipoor M, Wang C (2012) Introduction to hardware security and trust. Springer, Berlin
25. Koushanfar F, Qu G (2001) Hardware metering. In: Proceedings of the IEEE-ACM design

automation conference, pp 490–493
26. Roy J, Koushanfar F, Markov I (2008) EPIC: ending piracy of integrated circuits. In: Proceed-

ings of the conference on design, automation and test in Europe, pp 1069–1074
27. Contreras G, Rahman T, Tehranipoor M (2013) Secure split-test for preventing IC piracy by

untrusted foundry and assembly. In: Proceedings of the international symposium on fault and
defect tolerance in VLSI systems

28. Rahman MT, Forte D, Shi Q, Contreras GK, Tehranipoor M (2014) CSST: preventing dis-
tribution of unlicensed and rejected ICS by untrusted foundry and assembly. In (2014) IEEE
international symposium on defect and fault tolerance in VLSI and nanotechnology systems
(DFT). IEEE, pp 46–51

29. GuinU, ShiQ, ForteD, TehranipoorM (2016) FORTIS: a comprehensive solution for establish-
ing forward trust for protecting IPs and ICs. ACM Trans Des Autom Electron Syst (TODAES)

30. Guin U (2016) Establishment of trust and integrity in modern supply chain from design to
resign

31. Rajendran J, Pino Y, Sinanoglu O, Karri R (2012) Security analysis of logic obfuscation. In:
2012 49th ACM/EDAC/IEEE design automation conference (DAC), pp 83–89

32. DASC (2014) 1735–2014 - IEEE approved draft recommended practice for encryption and
management of electronic design intellectual property (IP)

33. Synopsys (2014) Synopsys FPGA synthesis synplify pro for lattice: user guide
34. Bushnell M, Agrawal V. (2000) Essentials of electronic testing for digital, memory, and mixed-

signal VLSI circuits. Springer, Berlin
35. Synopsys (2015) Compression for highest test quality and lowest test cost. https://www.

synopsys.com/Tools/Implementation/RTLSynthesis/Test/Pages/dftmax-ultra-ds.aspx
36. Synopsys (2015) High quality, low cost test. https://www.synopsys.com/Tools/

Implementation/RTLSynthesis/Test/Pages/DFTMAX.aspx
37. Nagaraj P (2015) Choosing the right scan compression architecture for your design. Technical

report
38. Synopsys (2015) DFT compiler, DFTMAXTM , and DFTMAXTM ultra user guide
39. IEEE Standards Association and others (2001) 1149.1–2001 - IEEE standard test access port

and boundary scan architecture. IEEE
40. Jeong DS, Thomas R, Katiyar R, Scott J, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging

memories: resistive switching mechanisms and current status. Rep Prog Phys 75(7):076502
41. Miyamoto A, Homma N, Aoki T, Satoh A (2011) Systematic design of RSA processors

based on high-radix montgomery multipliers. IEEE Trans Very Large Scale Integr (VLSI)
Syst 19(7):1136–1146

42. Holcomb DE, BurlesonWP, Fu K (2007) Initial SRAM state as a fingerprint and source of true
random numbers for RFID tags. In: Proceedings of the conference on RFID security

43. Sunar B, Martin W, Stinson D (2007) A provably secure true random number generator with
built-in tolerance to active attacks. IEEE Trans Comput 56(1):109–119

http://dx.doi.org/10.1109/TVLSI.2007.896914
http://dx.doi.org/10.1109/43.952740
http://dx.doi.org/10.1109/43.952740
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Test/Pages/dftmax-ultra-ds.aspx
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Test/Pages/dftmax-ultra-ds.aspx
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Test/Pages/DFTMAX.aspx
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Test/Pages/DFTMAX.aspx

346 U. Guin and M.M. Tehranipoor

44. Kaliski B (2003) Twirl and RSA key size. http://www.emc.com/emc-plus/rsa-labs/historical/
twirl-and-rsa-key-size.htm

45. DworkinM (2001)NIST special publication 800-38A: recommendation for block ciphermodes
of operation

http://www.emc.com/emc-plus/rsa-labs/historical/twirl-and-rsa-key-size.htm
http://www.emc.com/emc-plus/rsa-labs/historical/twirl-and-rsa-key-size.htm

Index

A
Active hardware metering, 163, 164, 178,

179, 183
Active hardware obfuscation, 51
Area utilization, 116
Asymmetric ciphers, 317, 321
Attack analyses and countermeasures, 126
Attack resiliency, 236
Automatic test pattern generation (ATPG),

39

B
Backward trust, 325
Benchmarks, 29
Benes network, 116, 117, 119, 120, 124, 131
BEOL, 243, 244, 246, 259, 260
Best-possible obfuscation, 222, 224, 229–

231, 237
BFSM graph topology, 176
Biometric-based Key Generation, 123
BISA, 265–268, 271–279, 282, 285–287
Blackhole FSM, 175
Board level, 105
Boolean satisfiability, 78
Boosted Finite State Machine (BFSM), 164,

167, 168, 183
Boundary scan, 48
Built-in-self-authentication, 265, 266, 271
Built in self test (BIST), 49

C
Chapter organization, 106
Chip editor, 20
Chip level, 104
Choice of optimal set of nodes, 199
Circuit camouflaging, 89–94

Circuit partition attack, 94–97, 101
Clone, 137
Comparison b/w 3D/2.5D Split Fabrication

and Logic Locking, 297
Computing k-Security, 251
Configurable CMOS, 90, 91, 98
Counterfeit, 137
Counterfeit integrated circuit, 189
Countermeasures, 179
Countermeasures and attack coverage, 128
Cryptographic algorithms, 135
Cryptographic primitives, 317

D
3D/2.5D IC authentication, 310
3D/2.5D IC-Based Obfuscation, 292
Design flow against IP piracy, 301
Design-for-test (DfT), 137, 139, 143, 145,

151
Design granularities, 301
Design modification, 109
Determination of effectiveness, 212
3Dictest/2.5D IC testing, 309
Differential scan-based attack, 143
Digital signature, 323
2.5D Integration, 292–295, 298, 309
3D Integration, 243–245, 257, 291, 294, 296,

311, 312

E
Effect of environmental variations, 56
Encryption, 4, 5, 12–15, 22, 23
Equivalence of circuits, 36
Error correcting code (ECC), 164, 165, 175,

180

© Springer International Publishing AG 2017
D. Forte et al. (eds.), Hardware Protection through Obfuscation,
DOI 10.1007/978-3-319-49019-9

347

348 Index

F
Fabrication cost, 300
Fault coverage, 38
Fault modeling, 37
FEOL, 243, 244, 246, 259
Fingerprinting, 89
Finite state machine (FSM), 162, 163, 166–

171, 173, 175, 178–180, 183
Finite state machines functional equiva-

lence, 224
Flow, 164
Forward trust, 324, 325, 327, 329, 330, 344
Functional testing, 37

G
Gate level, 15
Goals of the obfuscation technique, 193
Greatest Common Divisor (GCD), 227

H
Hardware metering methodology, 167
Hardware obfuscation, 6, 14, 21, 24, 28, 29,

33–35, 37, 50–52, 59, 62, 64, 65, 71
Hardware obfuscation benchmarks, 29
Hardware trojan, 190–192, 205, 213, 217,

246–249, 260, 263, 265, 266, 268,
269, 271, 272, 277, 294, 299, 301

Hill climbing attack, 84

I
IC overproduction, 317, 320, 329–331, 334,

335, 340, 341, 344
Instruction set Obfuscation, 19
Integrated Circuit, 7
Intellectual property (IP), 3, 4, 6, 13
Intrinsic and nonintrinsic PUFs, 58
IP digest, 328, 342–344
IP infringement, 190, 217
IP overuse, 317, 320, 328, 329, 331, 334,

337, 341
IP piracy, 4, 12, 16, 83, 86, 189, 190, 194,

263, 265, 267, 276, 277, 285, 287,
293, 302, 317, 327, 329, 341, 342,
344

ISCAS-89 benchmark circuits, 203
Isolated gates, 92
Iterative automatic synthesis, 178

J
Joint Test Action Group (JTAG), 145, 149,

151, 152

K
Key based, 22
Key based classification, 21
Key-guessing attacks, 74, 77
Key-Locked OBfuscation (KLOB), 222,

230, 231, 237
Key management, 121
Key propagation attacks, 77
Key transfer, 340
K-security, 245, 246, 249, 251, 252, 258,

270, 279, 283, 285

L
Layout level, 17
Layout obfuscation, 299
Locking SIB, 152
Logic encryption, 81
Logic locking, 71

M
Malicious CAD Tool, 215
Man-in-the-middle attack, 127, 128, 130
Mealy machine, 165, 166
Message authentication codes (MACs), 323
Metrics, 24, 25, 28
Metrics of Hardware Obfuscation, 52
Min-Cut algorithm, 304
Mitigating the circuit, 97
Modification by input logic-cone, 194
Modification Kernel Function, 195
Moore machine, 165
Multiple-key effect, 119
Multiplexer-based circuit, 98
Multiplexer-based obfuscation, 98, 99

N
Netlist encryption, 327, 328
Netlist obfuscation, 327, 328
Network configuration, 117
Nonvolatile Memory (NVM), 52–55, 58, 63

O
Obfuscation considerations, 108
Obfuscation for Intellectual, 4
Obfuscation performance evaluation, 124
OBISA, 271, 277–285, 287
One-time programmable memory, 53
One-way random functions, 80
Output-guessing attacks, 74
Overproduction, 136, 146

Index 349

P
P1735, 328, 341
Partitioning, 249
PCB obfuscation, 20, 108
Permutation based Obfuscation, 107
Permutation network, 106–108, 112–114,

116, 121, 123, 127, 131
Physical Unclonable Function (PUF), 34,

49, 51, 54–61, 63–65, 162–165, 168,
170, 175, 179, 180, 183

Point function, 163, 172, 183
Post-test activation, 84
Potential attacks, 126
Probing attack, 105, 126–128, 130
Protocol, 73
Provable obfuscation of the locks, 173
Proximity attack, 246
PUF operation, 55

R
Read only memory (ROM), 53
Redesign attack, 267, 275–277, 283
Register Transfer Level (RTL), 189, 217
Reinstalling attack, 128–130
Relevance of k-Security, 249
Removal attack, 177
Replay attack, 180
Reprogrammable memory, 53
Resizing attack, 273, 275
Resynthesis, 222, 226, 227, 229–234, 236,

237
Retiming, 222, 226, 227, 229–234, 236, 237
Reverse engineering, 4, 11, 12, 20, 72, 74,

83, 86, 89, 90, 97, 105, 107–109, 125,
127, 128, 130, 131, 179

RTL level, 14

S
Satisfiability (SAT) Problem, 35
Scan based, 44
Scan-based attack, 139
Scan-based observability attack, 142
Scan chain, 137, 138, 140, 142–144, 146,

148–150, 152, 154
Scan compression, 139
Secure layout, 246, 252, 255, 257, 259
Secure partitioning, 246, 252–254
Secure placement algorithm, 306
Secure Split Test (SST), 85, 146, 152
Security properties, 74
Segment Insertion Bit (SIB), 146, 152

Software obfuscation, 6, 15, 23, 24, 28, 29
Software obfuscation metrics, 28
Split Fabrication, 295–301, 311
Split manufacturing, 246, 249, 252, 256–

260, 263–265, 268, 270, 271, 276,
277, 279, 283, 287

State space obfuscation, 191, 205, 217
State transition graph (STG), 191, 193, 207
Storage mechanisms, 54
Structural testing, 37
Structural transformation, 222–224, 229,

230, 236, 237
Stuttering, 222, 226, 228, 229, 231–234,

236, 237
Sub-graph isomorphism, 248, 251
Symmetric ciphers, 317, 318, 320–322

block ciphers, 320
stream ciphers, 319

System-level obfuscation, 196
System-on-Chip (SoC), 189

T
Tampering, 12
Taxonomy, 14
Test compression, 334
Testing and security, 44
Threat model, 83, 246
Thwarting output guessing attacks, 75
Tier protection, 300
Trade-off b/w BEOL security and computa-

tional, 279
Trade-Off b/w Cutsize and HD, 305
Trojan insertion effect, 208
Trojan potency, 209
True Random Number Generator (TRNG),

34, 62, 63

U
Untargeted Trojan, 268, 270
Untrusted test facility, 72, 85

V
VLSI verification and testing, 34
Volatile and nonvolatile memories, 52
Volatile memory, 52

W
Watermarking, 89
Wire lifting, 268, 279, 281, 283–287

	Preface
	Contents
	Contributors
	Part I Hardware Obfuscation Preliminaries
	1 Introduction to Hardware Obfuscation: Motivation, Methods and Evaluation
	1.1 Introduction
	1.1.1 Obfuscation for Intellectual Property Protection

	1.2 Hardware Obfuscation
	1.2.1 Integrated Circuit Supply Chain
	1.2.2 Threats in the Supply Chain
	1.2.3 Why Isn't Encryption a Solution?
	1.2.4 Techniques for Hardware Obfuscation
	1.2.5 Key-Based Classification

	1.3 Software Obfuscation
	1.3.1 Metrics for Hardware Obfuscation
	1.3.2 Hardware Obfuscation Benchmarks

	1.4 Conclusion
	References

	2 VLSI Test and Hardware Security Background for Hardware Obfuscation
	2.1 Introduction
	2.2 VLSI Verification and VLSI Test Concepts
	2.2.1 Satisfiability (SAT) Problem
	2.2.2 Equivalence of Circuits
	2.2.3 Types of Testing: Functional Testing and Structural Testing
	2.2.4 Fault Modeling
	2.2.5 Fault Coverage
	2.2.6 Automatic Test Pattern Generation (ATPG)
	2.2.7 Testing Metrics: Controllability and Observability
	2.2.8 Testing and Security

	2.3 Hardware-Based Obfuscation Design Primitives
	2.3.1 Types of Hardware Obfuscation
	2.3.2 Metrics of Hardware Obfuscation

	2.4 Volatile and Nonvolatile Memories
	2.4.1 Volatile Memory
	2.4.2 Nonvolatile Memory
	2.4.3 Limitations of Current Key Storage Mechanisms

	2.5 Design Obfuscation: PUF and TRNG
	2.5.1 Physical Unclonable Functions (PUFs)
	2.5.2 PUF Evaluation Measures and Parameters:
	2.5.3 Classification of PUFs
	2.5.4 PUFs: Candidates for Hardware Obfuscation
	2.5.5 True Random Number Generator (TRNG) Use in Hardware Obfuscation
	2.5.6 Applications of PUFs and TRNG in Hardware-Based Obfuscation Techniques

	References

	Part II Logic-Based Hardware Obfuscation
	3 Logic Encryption
	3.1 Introduction
	3.2 Protocol
	3.3 Threat Model
	3.4 Security Properties and Metrics
	3.5 Thwarting Output-Guessing Attacks
	3.6 Key-Guessing Attacks
	3.6.1 Key Propagation Attacks [13]
	3.6.2 Boolean Satisfiability (SAT) Attacks [13, 14]
	3.6.3 Countermeasures to Attacks

	3.7 Impact of Testing on Logic Encryption
	3.7.1 Motivation
	3.7.2 Pretest Activation
	3.7.3 Post-test Activation
	3.7.4 Hill Climbing Attack

	3.8 Other Techniques Based on Logic Encryption
	3.8.1 Secure Split Test (SST) [20, 30]
	3.8.2 Securing Processor Architectures [31]

	3.9 Conclusion
	References

	4 Gate Camouflaging-Based Obfuscation
	4.1 Circuit Camouflaging with Configurable Gates
	4.1.1 Configurable CMOS Cells
	4.1.2 Circuit Camouflaging Technique
	4.1.3 Enhanced Circuit Camouflaging
	4.1.4 Defeating the Enhanced Circuit Camouflaging

	4.2 Circuit Partition-Based Attack
	4.3 Mitigating the Circuit Partition-Based Attack
	4.4 Multiplexer-Based Circuit Obfuscation
	4.5 Conclusions
	References

	5 Permutation-Based Obfuscation
	5.1 Introduction
	5.1.1 Chip Level
	5.1.2 Board Level
	5.1.3 Chapter Organization

	5.2 Permutation-Based Obfuscation Overview
	5.3 Obfuscation Considerations
	5.4 Design Modification
	5.4.1 Board Level
	5.4.2 Chip Level

	5.5 Permutation Network
	5.5.1 Area Utilization
	5.5.2 Network Configuration
	5.5.3 Multiple-Key Effect

	5.6 Key Management
	5.6.1 Biometric-Based Key Generation

	5.7 Obfuscation Performance Evaluation
	5.8 Attack Analyses and Countermeasures
	5.8.1 Potential Attacks
	5.8.2 Countermeasures and Attack Coverage

	5.9 Conclusions
	References

	6 Protection of Assets from Scan Chain Vulnerabilities Through Obfuscation
	6.1 Background
	6.1.1 Cryptographic Algorithms and Security
	6.1.2 Fabless Supply Chain Vulnerabilities: Piracy and Prevention
	6.1.3 Overview: IC Testing, Scan Chain, and Industrial Compression Scheme

	6.2 Assets, Threats, and Scan-Based Attack
	6.2.1 Assets
	6.2.2 Features and Assumptions to Perform Attack
	6.2.3 Attack Model
	6.2.4 Scan-Based Attack

	6.3 Countermeasures Against Scan-Based Attacks
	6.3.1 Non-obfuscation-based Countermeasures
	6.3.2 Obfuscation-based Countermeasures

	6.4 Conclusion
	References

	Part III Finite State Machine (FSM) Based Hardware Obfuscation
	7 Active Hardware Metering by Finite State Machine Obfuscation
	7.1 Introduction
	7.2 Flow
	7.3 Background and Assumptions
	7.4 Secure Active Hardware Metering Methodology
	7.4.1 Designing a BFSM
	7.4.2 Secure BSFM Construction
	7.4.3 Additional Considerations and Applications

	7.5 Automatic Synthesis and Implementation
	7.5.1 BFSM Graph Topology Construction
	7.5.2 Selecting and Computing the Transition Passkeys
	7.5.3 Iterative Automatic Synthesis

	7.6 Attacks and Countermeasures
	7.7 Performance and Hardware Overhead
	7.7.1 Performance Overhead
	7.7.2 Hardware Implementation Overhead

	7.8 Conclusion
	References

	8 State Space Obfuscation and Its Application in Hardware Intellectual Property Protection
	8.1 Introduction
	8.2 State Space Obfuscation
	8.2.1 Previous Work on Obfuscation
	8.2.2 Obfuscation Through State Transition Graph Modification
	8.2.3 Hardware IP Piracy: Adversary's Perspective
	8.2.4 System-Level Obfuscation
	8.2.5 Embedding Authentication Features
	8.2.6 Choice of Optimal Set of Nodes for Modification
	8.2.7 Obfuscation-Based Design Methodology
	8.2.8 Results

	8.3 State Space Obfuscation for Protection Against Hardware Trojans
	8.3.1 Trojan Variants
	8.3.2 Effect of Obfuscation on Trojan Insertion
	8.3.3 Effect of Obfuscation on Trojan Potency
	8.3.4 Effect of Obfuscation on Trojan Detectability
	8.3.5 Effect of Obfuscation on Circuit Structure
	8.3.6 Determination of Unreachable States
	8.3.7 Determination of Effectiveness
	8.3.8 Results
	8.3.9 Discussions

	8.4 Extension to Register Transfer Level (RTL) Designs
	8.5 Conclusions
	References

	9 Structural Transformation-Based Obfuscation
	9.1 Introduction
	9.2 Related Approaches
	9.3 Structural Transformation for Best-Possible Obfuscation
	9.3.1 Best-Possible Obfuscation
	9.3.2 Functional Equivalence of Finite State Machines
	9.3.3 Structural Transformation
	9.3.4 GCD Example for Conditional Stuttering
	9.3.5 Structural Transformation Sufficient for Best-Possible Obfuscation

	9.4 Key-Locked OBfuscation (KLOB)
	9.4.1 KLOB Framework
	9.4.2 Stuttering Control Logic
	9.4.3 Obfuscation by Retiming and Resynthesis
	9.4.4 Implementation Overhead

	9.5 Attack Resiliency
	9.6 Conclusion
	References

	Part IV Hardware Obfuscation Based on Emerging Integration Approaches
	10 Split Manufacturing
	10.1 Introduction
	10.1.1 Split Manufacturing Flow

	10.2 Threat Models
	10.2.1 Weak Attack Model
	10.2.2 Strong Attack Model

	10.3 Security Metric
	10.3.1 Relevance of k-Security
	10.3.2 Computing k-Security

	10.4 Defense Mechanisms
	10.4.1 Secure Partitioning
	10.4.2 Secure Layout
	10.4.3 Raising the Bar on the Attacker

	10.5 Future Opportunities and Challenges for Split Manufacturing
	10.5.1 Reducing Cost
	10.5.2 Alternative Security Metrics
	10.5.3 Complementary Uses of Split Manufacturing

	10.6 Conclusion
	References

	11 Obfuscated Built-In Self-authentication
	11.1 Introduction
	11.1.1 Limitations of Built-In Self-authentication (BISA)
	11.1.2 Limitations of Split Manufacturing
	11.1.3 Chapter Overview

	11.2 Built-In Self-authentication (BISA)
	11.2.1 Implementation Flow
	11.2.2 Possible Attacks Against BISA
	11.2.3 Limitations of BISA

	11.3 Combining BISA with Split Manufacturing
	11.3.1 Trade-Off Between BEOL Security and Computational Cost

	11.4 Approach A: Obfuscated Connection
	11.4.1 Implementation Flow
	11.4.2 Design Issues and Trade-Offs
	11.4.3 Potential Attacks

	11.5 Approach B: OBISA with Wire Lifting
	11.5.1 Implementation Flow
	11.5.2 Design Issues and Trade-Offs
	11.5.3 Potential Attacks

	11.6 Conclusion
	References

	12 3D/2.5D IC-Based Obfuscation
	12.1 Introduction
	12.2 3D/2.5D Integration Technology
	12.3 3D/2.5D IC-Based Obfuscation
	12.3.1 3D/2.5D Split Fabrication
	12.3.2 Comparison Between 3D/2.5D and 2D Split Fabrication
	12.3.3 Comparison Between 3D/2.5D Split Fabrication and Logic Locking

	12.4 Design of 3D/2.5D Split Fabrication
	12.4.1 Design Objectives and Metrics
	12.4.2 Design Granularities

	12.5 Security-Aware 2.5D IC Design Flow Against IP Piracy
	12.5.1 Security Metrics and Objectives
	12.5.2 Secure Partitioning
	12.5.3 Secure Placement
	12.5.4 Security and Performance Trade-Off

	12.6 Security Challenges in 3D/2.5D ICs
	12.6.1 3D/2.5D IC Testing
	12.6.2 3D/2.5D IC Authentication

	12.7 Implications of 3D/2.5D-Based Obfuscation on CAD Tool
	12.8 Summary
	References

	Part V Other Hardware Obfuscation Building Blocks
	13 Obfuscation and Encryption for Securing Semiconductor Supply Chain
	13.1 Cryptographic Primitives
	13.1.1 Symmetric Ciphers
	13.1.2 Asymmetric Ciphers
	13.1.3 Message Authentication Codes
	13.1.4 Digital Signature

	13.2 Vulnerabilities in SoC Design and Fabrication Processes
	13.2.1 Design Process
	13.2.2 Fabrication Process
	13.2.3 Forward Trust Issue

	13.3 Establishing Forward Trust in SoC Design and Fabrication Processes
	13.3.1 Netlist Obfuscation
	13.3.2 Netlist Encryption
	13.3.3 Flow for Establishing Forward Trust
	13.3.4 Obfuscation Key Requirements: Enabling Structural Test Before Activation
	13.3.5 Attack Analysis and Countermeasure

	13.4 Secure Key Exchange Between IP Owner, SoC Designer, and Foundry
	13.4.1 Protection Against IC Overproduction
	13.4.2 Protection Against IP Overuse
	13.4.3 Area Overhead Analysis
	13.4.4 Security Analysis

	13.5 IP Piracy
	13.6 Conclusion
	References

	Index

