
Eran Yahav (Ed.)

 123

LN
CS

 8
85

5

10th International Haifa Verification Conference, HVC 2014
Haifa, Israel, November 18–20, 2014
Proceedings

Hardware and Software:
Verification and Testing

Lecture Notes in Computer Science 8855
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Eran Yahav (Ed.)

Hardware and Software:
Verification and Testing

10th International
Haifa Verification Conference, HVC 2014
Haifa, Israel, November 18-20, 2014
Proceedings

13

Volume Editor

Eran Yahav
Technion
Faculty of Computer Science
Haifa 32000, Israel,
E-mail: yahave@cs.technion.ac.il

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-13337-9 e-ISBN 978-3-319-13338-6
DOI 10.1007/978-3-319-13338-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014953963

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 10th Haifa Verification Conference
(HVC 2014). The conference was hosted by IBM Research - Haifa and took
place during November 18–20, 2014. It was the tenth event in this series of
annual conferences dedicated to advancing the state of the art and state of
the practice in verification and testing. The conference provided a forum for
researchers and practitioners from academia and industry to share their work,
exchange ideas, and discuss the future directions of testing and verification for
hardware, software, and complex hybrid systems.

Overall, HVC 2014 attracted 43 submissions in response to the call for pa-
pers. Each submission was assigned to at least three members of the Program
Committee and in many cases additional reviews were solicited from external
experts. The Program Committee selected 21 papers for presentation.

In addition to the 21 contributed papers, the program included five in-
vited talks by Moshe Vardi (Rice University), Bradley McCredie (IBM), Mar-
tin Vechev (ETH Zurich), Harry Foster (Mentor Graphics), and Ziv Binyamini
(Cadence).

I would like to extend our appreciation and sincere thanks to Ronny Morad for
serving as general chair and handling the conference details. Our thanks also go
to Raviv Gal for arranging the tutorials day, and Rachel Tzoref-Brill for serving
as the publicity chair. I would like to thank the Organizing Committee: Moshe
Levinger, Laurent Fournier, Amir Nahir, Karen Yorav, Avi Ziv, and Sharon
Keidar Barner.

Finally, I would like to thank our support team: Eti Jahr for managing the
technical aspects of the conference, and Gili Aizen and Chani Sacharen handling
communication.

HVC 2014 received sponsorships from IBM, Cadence, Mellanox, Mentor
Graphics, Quallcom, SanDisk, and Technion TCE.

Submissions and evaluations of papers, as well as the preparation of this
proceedings volume, were handled by the EasyChair conference management
system.

October 2014 Eran Yahav

Organization

Program Committee

Earl Barr University College London, UK
Valeria Bertacco University of Michigan, USA
Tevfik Bultan University of California at Santa Barbara, USA
Swarat Chaudhuri Rice University, USA
Hana Chockler King’s College, UK
Isil Dillig UT Austin, USA
Kerstin Eder University of Bristol, UK
Franco Fummi University of Verona, Italy
Patrice Godefroid Microsoft Research
Aarti Gupta NEC Laboratories America
Barbara Jobstmann EPFL, Jasper DA, and CNRS-Verimag, France
Laura Kovacs Chalmers University of Technology, Sweden
Daniel Kroening University of Oxford, UK
Florian Letombe Synopsys
João Lourenço CITI - Universidade Nova de Lisboa, Portugal
Shan Lu University of Wisconsin, Madison, USA
Rupak Majumdar MPI-SWS
Darko Marinov University of Illinois at Urbana-Champaign,

USA
Mayur Naik Intel Labs
Aditya Nori MSR India
Corina Pasareanu CMU/NASA Ames Research Center, USA
Ruzica Piskac Yale University, USA
Itai Segall IBM Haifa Research Labs, Israel
Martina Seidl Johannes Kepler University Linz, Austria
Ohad Shacham Yahoo! Labs
Sharon Shoham Academic College of Tel Aviv Yaffo, Isreal
Zhendong Su UC Davis, USA
Rachel Tzoref IBM Haifa Research Labs, Israel
Jan Vitek Purdue University, USA
Heike Wehrheim University of Paderborn, Germany

Additional Reviewers

Bocic, Ivan
Busany, Nimrod
Chakarov, Aleksandar
Cobb, Jake

Dimitrova, Rayna
Dragan, Ioan
Ferreira, Bernardo
Forejt, Vojtech

VIII Organization

Fu, Zhoulai
Gabmeyer, Sebastian
Grumberg, Orna
Gyori, Alex
Heule, Marijn
Horn, Alexander
Isenberg, Tobias
Itzhaky, Shachar
Joshi, Saurabh
Karbyshev, Aleksandr
Kloos, Johannes
Konnov, Igor
Kuncak, Viktor
Landsberg, David
Le, Vu
Legunsen, Owolabi
Mangal, Ravi
Maoz, Shahar
Milicevic, Aleksandar

Parikh, Ritesh
Qiu, Rui
Rinetzky, Noam
Ringert, Jan Oliver
Schäf, Martin
Sen, Shayak
Shi, August
Sun, Chengnian
Tentrup, Leander
Torfah, Hazem
Van Delft, Bart
van Den Elsen, Susanne
Vizel, Yakir
Wachter, Björn
Yahav, Eran
Yorav, Karen
Zhang, Xin
Ziegert, Steffen
Ziv, Avi

Abstracts

SAT Counting and Sampling - From Theory

to Practice

Moshe Vardi

Rice University

Abstract. Counting the the number of satisfying truth assignments of
a given Boolean formula or sampling such assignments uniformly at ran-
dom are fundamental computational problems in computer science with
numerous applications. In computer-aided design, these problems come
up in constrained-random verification, where test input vectors are de-
scribed by means of constraints. While the theory of these problems has
been thoroughly investigated in the 1980s, approximation algorithms de-
veloped by theoreticians do not scale up to industrial-sized instances.
Algorithms used by the industry offer better scalability, but give up cer-
tain correctness guarantees to achieve scalability. We describe a novel
approach, based on universal hashing and SMT, that scales to formulas
with hundreds of thousands of variable without giving up correctness
guarantees.

Joint work with Supratik Chaudhuri, Daniel Fremont, Kuldeep Meel,
and Sanjit Sheshia.

Statistical Program Analysis and Synthesis

Martin Vechev

Department of Computer Science

ETH Zurich

Abstract. The increased availability of massive codebases, sometimes
referred to as “Big Code”, creates a unique opportunity for new kinds
of program analysis and synthesis techniques based on statistical rea-
soning. These approaches will extract useful information from existing
codebases and will use that information to provide statistically likely
solutions to problems that are difficult or impossible to solve with tradi-
tional techniques.

As an example, I will present several statistical engines developed
in our lab which instantiate this vision. I will highlight the key chal-
lenges when designing such systems including the importance of care-
fully combining and interfacing programming language techniques (e.g.
static analysis) with powerful machine learning approaches (e.g. graphi-
cal models).

Navigating the Perfect Storm:

New Trends in Functional Verification

Harry Foster

Mentor Graphics

Abstract. Between 2006 and 2014, the average number of IPs inte-
grated into an advanced SoC increased from about 30 to over 120. In the
same period, the average number of embedded processors found in an
advanced SoC increased from one to as many as 20. However, increased
design size is only one dimension of the growing verification complex-
ity challenge. Beyond this growing functionally phenomenon are new
layers of requirements that must be verified. Many of these verification
requirements did not exist ten years ago, such as multiple asynchronous
clock domains, interacting power domains, security domains, and com-
plex HW/SW dependencies. Add all these challenges together, and you
have the perfect storm brewing. This talk introduces todays trends and
challenges in SoC design and then discusses emerging verification strat-
egy to navigate the perfect storm.

Table of Contents

Using Coarse-Grained Abstractions to Verify Linearizability on TSO
Architectures . 1

John Derrick, Graeme Smith, Lindsay Groves, and Brijesh Dongol

Enhancing Scenario Quality Using Quasi-Events . 17
Yoav Katz, Eitan Marcus, and Avi Ziv

Combined Bounded and Symbolic Model Checking for Incomplete
Timed Systems . 30

Georges Morbé, Christian Miller, Christoph Scholl,
and Bernd Becker

DynaMate: Dynamically Inferring Loop Invariants for Automatic Full
Functional Verification . 48

Juan Pablo Galeotti, Carlo A. Furia, Eva May, Gordon Fraser, and
Andreas Zeller

Generating Modulo-2 Linear Invariants for Hardware Model
Checking . 54

Gadi Aleksandrowicz, Alexander Ivrii, Oded Margalit, and Dan Rasin

Suraq — A Controller Synthesis Tool Using Uninterpreted Functions . . . 68
Georg Hofferek and Ashutosh Gupta

Synthesizing Finite-State Protocols from Scenarios and Requirements . . . 75
Rajeev Alur, Milo Martin, Mukund Raghothaman, Christos Stergiou,
Stavros Tripakis, and Abhishek Udupa

Automatic Error Localization for Software Using Deductive
Verification . 92

Robert Könighofer, Ronald Toegl, and Roderick Bloem

Generating JML Specifications from Alloy Expressions 99
Daniel Grunwald, Christoph Gladisch, Tianhai Liu, Mana Taghdiri,
and Shmuel Tyszberowicz

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 116
Sergiy Bogomolov, Goran Frehse, Marius Greitschus, Radu Grosu,
Corina Pasareanu, Andreas Podelski, and Thomas Strump

Handling TSO in Mechanized Linearizability Proofs 132
Oleg Travkin and Heike Wehrheim

Partial Quantifier Elimination . 148
Eugene Goldberg and Panagiotis Manolios

XVI Table of Contents

Formal Verification of 800 Genetically Constructed Automata
Programs: A Case Study . 165

Mikhail Lukin, Maxim Buzdalov, and Anatoly Shalyto

A Framework to Synergize Partial Order Reduction with State
Interpolation . 171

Duc-Hiep Chu and Joxan Jaffar

Reduction of Resolution Refutations and Interpolants
via Subsumption . 188

Roderick Bloem, Sharad Malik, Matthias Schlaipfer,
and Georg Weissenbacher

Read, Write and Copy Dependencies for Symbolic Model Checking 204
Jeroen Meijer, Gijs Kant, Stefan Blom, and Jaco van de Pol

Efficient Combinatorial Test Generation Based on Multivalued Decision
Diagrams . 220

Angelo Gargantini and Paolo Vavassori

Formal Verification of Secure User Mode Device Execution
with DMA . 236

Oliver Schwarz and Mads Dam

Supervisory Control of Discrete-Event Systems via IC3 252
Mohammad Reza Shoaei, Laura Kovács, and Bengt Lennartson

Partial-Order Reduction for Multi-core LTL Model Checking 267
Alfons Laarman and Anton Wijs

A Comparative Study of Incremental Constraint Solving Approaches in
Symbolic Execution . 284

Tianhai Liu, Mateus Araújo, Marcelo d’Amorim, and Mana Taghdiri

Author Index . 301

Using Coarse-Grained Abstractions to Verify
Linearizability on TSO Architectures

John Derrick1, Graeme Smith2, Lindsay Groves3, and Brijesh Dongol1

1Department of Computing, University of Sheffield, UK
2School of Information Technology and Electrical Engineering,

The University of Queensland, Australia
3 School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand

Abstract. Most approaches to verifying linearizability assume a sequentially
consistent memory model, which is not always realised in practice. In this pa-
per we study correctness on a weak memory model: the TSO (Total Store Order)
memory model, which is implemented in x86 multicore architectures.

Our central result is a proof method that simplifies proofs of linearizability on
TSO. This is necessary since the use of local buffers in TSO adds considerably to
the verification overhead on top of the already subtle linearizability proofs. The
proof method involves constructing a coarse-grained abstraction as an interme-
diate layer between an abstract description and the concurrent algorithm. This
allows the linearizability proof to be split into two smaller components, where
the effect of the local buffers in TSO is dealt with at a higher level of abstraction
than it would have been otherwise.

1 Introduction

There has been extensive work on correctness of fine-grained concurrent algorithms
over the last few years, where linearizability is the key criteria that is applied. This re-
quires that fine-grained implementations of access operations (e.g., insertion or removal
of an element of a data structure) appear as though they take effect “instantaneously at
some point in time” [12], thereby achieving the same effect as an atomic operation.
There has been considerable work on verifying linearizability, and a variety of proof
techniques have been developed, some of them with automated support.

However, most of this work assumes a particular memory model; specifically a se-
quentially consistent (SC) memory model, whereby program instructions are executed
by the hardware in the order specified by the program. Typical multicore systems com-
municate via shared memory and, to increase efficiency, use (local) store buffers. Whilst
these relaxed memory models give greater scope for optimisation, sequential consis-
tency is lost, and because memory accesses may be reordered in various ways it is even
harder to reason about correctness. Typical multiprocessors that provide such weaker
memory models include the x86 [16], Power [17] and ARM [1] multicore processor
architectures.

In this paper we focus on one such memory model, the TSO (Total Store Order)
model [17] which is implemented in the x86 architecture. The notion of correctness

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014

2 J. Derrick et al.

we adopt for this architecture is TSO-linearizability as defined in [9]. If verifying
linearizability was not hard enough, the reordering of the memory accesses in TSO
brings an additional layer of complexity. The purpose of this paper is to simplify this
complexity as much as we can. To do so we use the key observation that in many
cases for an algorithm on TSO the conditions that linearizability require can be split
into two. One aspect deals with the fine-grained nature of the concurrent algorithm,
and the other with the effect the local buffers have on when effects become visible
in the shared memory.

We exploit this in our proof method, which uses an intermediate description, specif-
ically a coarse-grained abstraction that lies between the abstract specification and the
concurrent algorithm. The coarse-grained abstraction captures the semantics of the con-
current algorithm when there is no fine-grained interleaving of operations by different
processes. Our simplified proof method then requires one set of proof obligations be-
tween the concurrent algorithm and the coarse-grained abstraction, and a different set of
proof obligations between the coarse-grained abstraction and the abstract description.

The structure of the paper is as follows. In Section 2 we introduce the TSO model as
well as our running example, the spinlock algorithm along with an abstract and concrete
specification of it in Z. (We assume the reader is familiar with Z — for details see [18]).
In Section 3 we provide a coarse-grained abstraction of spinlock. In Section 4 we adapt
the standard definition of linearizability to allow the concrete specification to be proved
linearizable to the coarse-grained specification. In Section 5 we define a transformation
from the coarse-grained abstraction to the abstract one which together with the results
of Section 4 allows us to prove overall correctness of the concrete specification with
the abstract one. This is shown to be sound in Section 6 with respect to a notion of
linearizability on TSO previously published in [9]. We conclude in Section 7.

2 The TSO Memory Model

In the TSO architecture [17] each processor core uses a write buffer, which is a FIFO
queue that stores pending writes to memory. A processor core performing a write to a
memory location enqueues the write to the buffer and continues computation without
waiting for the write to be committed to memory. Pending writes do not become visible
to other cores until the buffer is flushed, which commits (some or all) pending writes
to memory. The value of a memory location read by a process is the most recent in
the processor’s local buffer. If there is no such value (e.g., initially or when all writes
corresponding to the location have been flushed), the value of the location is fetched
from memory. The use of local buffers allows a read by one process, occurring after a
write by another, to return an older value as if it occurred before the write.

In general, flushes are controlled by the CPU, and from the programmer’s perspective
occur non-deterministically. However, a programmer may explicitly include a fence, or
memory barrier, instruction in a program’s code to force a flush to occur. Therefore,
although TSO allows some non-sequentially consistent executions, it is used in many
modern architectures on the basis that these can be prevented, where necessary, by
programmers using fence instructions. A pair of lock and unlock commands allows a
process to acquire sole access to the memory. Both commands include a fence which
forces the store buffer of that process to be flushed completely.

Using Coarse-Grained Abstractions to Verify Linearizability on TSO Architectures 3

2.1 Example – Spinlock

Spinlock is a locking mechanism designed to avoid operating system overhead associ-
ated with process scheduling and context switching. The abstract specification simply
describes a lock, with operations Acquirep, Releasep and TryAcquirep parameterised by
the identifier of the process p ∈ P performing the operation (P is the set of all process
identifiers). A global variable x represents the lock and is set to 0 when the lock is held
by a thread, and 1 otherwise. As in [16], we assume that only a process that has acquired
the lock will release it, and a process will only attempt to acquire the lock if it doesn’t
already hold it.

AS
x : {0, 1}

Init
AS

x = 1

Acquirep

ΔAS

x = 1

x′ = 0

Releasep

ΔAS

x′ = 1

TryAcquirep

ΔAS
out! : {0, 1}
if x = 1

then x′ = 0 ∧ out! = 1

else x′ = x ∧ out! = 0

A typical implementation of spinlock [11] is shown in Figure 1, given as pseudo-code
(where a1, etc. are line numbers). A thread trying to acquire the lock spins, i.e., waits
in a loop, while repeatedly checking x for availability.

word x=1;

void acquire()
{

a1 while(1) {
a2 lock;
a3 if (x==1) {
a4 x=0;
a5 unlock;
a6 return;

}
a7 unlock;
a8 while(x==0){};

}}

void release()
{

r1 x=1;
}

int tryacquire()
{

t1 lock;
t2 if (x==1) {
t3 x=0;
t4 unlock;
t5 return 1;

}
t6 unlock;
t7 return 0;

}

Fig. 1. Spinlock implementation

A terminating acquire operation will always succeed to acquire the lock. It will
lock1 the global memory so that no other process can write to x. If, however, another

1 Locking the global memory using the TSO lock command should not be confused with
acquiring the lock of this case study by setting x to 0.

4 J. Derrick et al.

thread has already acquired the lock (i.e., x==0) then it will unlock the global mem-
ory and spin, i.e., loop in the while-loop until it becomes free, before starting over.
Otherwise, it acquires the lock by setting x to 0.

The operation release releases the lock by setting x to 1. The tryacquire
operation differs from acquire in that it only makes one attempt to acquire the lock.
If this attempt is successful it returns 1, otherwise it returns 0.

The lock and unlock commands act as memory barriers on TSO. Hence, writes to
x by the acquire and tryacquire operations are not delayed. For efficiency, how-
ever, release does not have a memory barrier and so its write to x can be delayed
until a flush occurs. The spinlock implementation will still work correctly, the only ef-
fect that the absence of a barrier has is that a subsequentacquiremay be delayed until
a flush occurs, or a tryacquire operation by a thread q may return 0 after the lock
has been released by another thread p. For example, the following execution is possible,
where we write (q,tryacquire(0)) to denote process q performing a tryacquire
operation and returning 0, and flush(p) to denote the CPU flushing a value from pro-
cess p’s buffer: 〈(p,acquire), (p,release), (q,tryacquire(0)),flush(p)〉.

Thus p performs an acquire, then a release, and then q a tryacquire that
returns 0 even though it occurs immediately after the release. This is because the
flush(p), which sets the value of x in memory to 0 has not yet occurred.

The Z specification that corresponds to the concrete system has one operation per
line of pseudo-code, and each operation can be invoked by a given process. The concrete
state consists of the shared memory, given as a global state GS and local state LS for
each process. GS includes the value of the shared variable x (initially 1), a variable lock
which has value {p} when a process p currently has the global memory locked (and is
∅ otherwise), and a buffer for each process modelled as a sequence of 0 and 1’s.2

GS
x : {0, 1}
lock : PP
buffer : P → seq{0, 1}
#lock ≤ 1

GSInit
GS

x = 1

lock = ∅

∀ p : P • buffer(p) = 〈 〉

For a given process, LS is specified in terms a program counter, PC, indicating which
operations (i.e., lines of code) can next be performed. Let

PC ::= 1 | a1 | . . . | a8 | t1 | . . . | t7 | r1

The value 1 denotes that the process is not executing any of the three operations. The
values ai, for i ∈ 1 . . 8, denote the process is ready to perform the ith line of code of
acquire, and similarly for ti and tryacquire. The value r1 denotes the process is
ready to perform the first line of release.

LS
pc : PC

LSInit
LS

pc = 1

2 In a more complex example, the buffer would also store the name of the variable assigned.

Using Coarse-Grained Abstractions to Verify Linearizability on TSO Architectures 5

Given this specification, the lines of code are formalised as Z operations.3 For a given
process p, we have an operation A0p corresponding to the invocation of the acquire
operation, and an operation A1p corresponding to the line of code while(1).

A0p

ΞGS; ΔLS

pc = 1 ∧ pc′ = a1

A1p

ΞGS; ΔLS

pc = a1 ∧ pc′ = a2

The operation A2p corresponds to the line of code lock. To model the next line of
code, if (x==1), we use two operations: A31p for the case when x = 1, and A30p

for the case when x = 0. These operations are only enabled when the buffer is empty,
modelling the fact that the lock of A2p is a fence, i.e., a sequence of flush operations on
p’s buffer (specified below) must occur immediately after A2p if the buffer is non-empty.

A2p

ΔGS; ΔLS

pc = a2 ∧ lock = ∅

pc′ = a3 ∧ lock′ = {p}

A31p

ΞGS; ΔLS

buffer(p) = 〈 〉
pc = a3 ∧ x = 1

pc′ = a4

A30p

ΞGS; ΔLS

buffer(p) = 〈 〉
pc = a3 ∧ x = 0

pc′ = a7

The operation A4p, corresponding to the line x=0, adds the value 0 to the buffer. The
operations corresponding to the other lines of acquire are modelled similarly. The
two operations corresponding to while(x==0), A80p and A81p, are only enabled
when either x can be read from the buffer, i.e., buffer �= 〈 〉, or the buffer is empty and
the memory is not locked (and so x can be read from the global memory).

A4p

ΔGS; ΔLS

pc = a4

buffer′(p) = buffer(p)� 〈0〉
pc′ = a5

A5p

ΔGS; ΔLS

buffer(p) = 〈 〉
pc = a5 ∧ pc′ = a6 ∧ lock′ = ∅

A6p

ΞGS; ΔLS

pc = a6 ∧ pc′ = 1

A7p

ΔGS; ΔLS

buffer(p) = 〈 〉
pc = a7 ∧ pc′ = a8 ∧ lock′ = ∅

A80p

ΞGS; ΞLS

pc = a8
buffer(p) = 〈 〉 ⇒ lock = ∅ ∧ x = 0

buffer(p) 	= 〈 〉 ⇒ last buffer(p) = 0

A81p

ΞGS; ΔLS

pc = a8
buffer(p) = 〈 〉 ⇒ lock = ∅ ∧ x = 1

buffer(p) 	= 〈 〉 ⇒ last buffer(p) = 1

pc′ = a1

3 To simplify the presentation we adopt the convention that the values (of variables or in the
range of a function) that are not explicitly changed by an operation remain unchanged.

6 J. Derrick et al.

The operations fortryacquire are similar to those ofacquire. Those forrelease
are given below. We also have an operation, Flushcpu, corresponding to a CPU-controlled
flush which outputs the process whose buffer it flushes.

R0p

ΞGS
ΔLS

pc = 1 ∧ pc′ = r1

R1p

ΞGS
ΔLS

pc = r1 ∧ pc′ = 1

buffer′(p) = buffer(p)� 〈1〉

We also have an operation, Flushcpu, corresponding to a CPU-controlled flush which
outputs the process whose buffer it flushes.

Flushcpu

ΔGS
p! : P

lock = ∅ ∨ lock = {p!}
buffer(p!) 	= 〈 〉 ⇒ x′ = head buffer(p!) ∧ buffer′(p!) = tail buffer(p!)
buffer(p!) = 〈 〉 ⇒ x′ = x ∧ buffer′(p!) = buffer(p!)

The task in its most general setting is to prove that this concrete specification is lineariz-
able with respect to the abstract one given earlier. The rest of this paper is concerned
with a method by which one can show this and similar algorithms correct. First we re-
cap on the notion of linearizability and then discuss how it can be used to provide a
coarse-grained abstraction of our concrete specification.

3 Coarse-Grained Abstraction

Linearizability [12] is the standard notion of correctness for concurrent algorithms, and
allows one to compare a fine-grained implementation against its abstract specification.
For example, in spinlock the concurrent system might perform an execution such as:
〈(p,A0), (q,R0), (p,A1), (q,R1)〉. The idea of linearizability is that any such concrete
sequence must be consistent with some abstract execution (i.e., a sequence of Acquire’s,
Release’s etc. also performed by p and q):

(1) Linearizability provides the illusion that each operation applied by concur-
rent processes takes effect instantaneously at some point between its invocation
and its return. This point is known as the linearization point [12].

In other words, if two operations overlap, then they may take effect in any order from
an abstract perspective, but otherwise they must take effect in program order.

There has been an enormous amount of interest in deriving techniques for verifying
linearizability. These range from using shape analysis [2, 4] and separation logic [4] to
rely-guarantee reasoning [20] and refinement-based simulation methods [7, 10]. Most
of this work has been for sequentially consistent architectures, but some work has been
done for TSO [3, 9, 11, 19]. In particular, in [9] we have defined a simulation-based

Using Coarse-Grained Abstractions to Verify Linearizability on TSO Architectures 7

proof method for linearizability on TSO. The key point in defining linearizability on
TSO is to take into account the role of the local buffers. Since the flush of a process’s
buffer is sometimes the point that the effect of an operation’s changes to memory be-
come globally visible, the flush can be viewed as being the final part of the operation.
For example, the flush of a variable, such as x, after an operation, such as release,
can be taken as the return of that operation. Under this interpretation, the release
operation extends from its invocation to the flush which writes its change to x to the
global memory. Thus [19] and [9] use the following principle:

(2) The return point of an operation on a TSO architecture is not necessarily
the point where the operation ceases execution, but can be any point up to the
last flush of the variables written by that operation.

However, any proof method will be complicated by having to deal with both the
inherent interleaving handled by linearizability and the additional potential overlapping
of concrete operations resulting from the above principle. For example, in spinlock, a
process may perform a release but not have its buffer flushed before invoking its
next operation.

The idea in this paper is simple. We use an intermediate specification (between the
abstract and concrete) to split the original proof obligations into two simpler compo-
nents. The first (between the concrete and intermediate specifications) deals with the
underlying linearizability, and the second (between intermediate and abstract) deals
with the effects of local buffers. The intermediate specification is a coarse-grained ab-
straction that captures the semantics of the concrete specification with no fine-grained
interleaving of operations by different processes. We describe how to define such a
coarse-grained abstraction in the next section.

Figure 2 illustrates this idea for a specific execution: at the bottom is a concrete
execution, and in the middle is an execution of the intermediate specification which
linearizes it (as per Section 4). Finally at the top is an execution of the abstract speci-
fication that is related to the intermediate one by the transformation TRANS defined in
Section 5. Overall this will guarantee that the concrete execution is TSO-linearizable to
the abstract one, as we show in Section 6.

3.1 Defining the Coarse-Grained Abstraction

The coarse-grained abstraction is constructed by adding local buffers to the abstract
specification. Thus, it is still a description on the TSO architecture – since it has buffers
and flushes – but does not decompose the operations. The state space is the abstract
state space with the addition of a buffer for each process (as in the concrete state space
GS). Like in the concrete state space, all buffers are initially empty. Hence for spinlock
we have:

BS
x : {0, 1}
buffer : P → seq{0, 1}

BSInit
BS

x = 1 ∧ ∀ p : P • buffer(p) = 〈 〉

Each operation is like that of the abstract specification except that

8 J. Derrick et al.

A0 A1 A2 A3

TA0

A5A4p

TA
1

TA
2

A6 R0 R1

q
TA
6

TA7

Flushcpu

CS

q: Try
Acquire

cpu: Flush BS

p: Acquire p: Release
q: Try
Acquire AS

TRANS

linearizability

TSO-linearizability
p: Releasep: Acquire

Fig. 2. Three executions in abstract, intermediate and concrete models

– reads are replaced by reads from the process’s buffer or from memory, i.e., the
operation refers to the latest values of variables in the buffer, and to their actual
values otherwise,

– writes are replaced by writes to the buffer (unless the corresponding concrete oper-
ation has a fence),

– because we have buffers in the intermediate state space we need to include fences
and flushes: the buffer is set to empty when the corresponding concrete operation
has a fence, and a flush is modelled as a separate operation.

For example, for the abstract operation Acquirep, x = 1 represents a read, and x′ = 0
represents a write. Using the above heuristic, we replace x = 1 by buffer(p) �= 〈 〉 ⇒
last buffer(p) = 1 ∧ buffer(p) = 〈 〉 ⇒ x = 1 since the latest value of x is that in the
buffer when the buffer is not empty, and the actual value of x otherwise. We also replace
x′ = 0 by buffer′(p) = 〈 〉 ∧ x′ = 0 since the corresponding concrete operation has a
fence. Similarly, while the operation TryAcquirep writes directly to x and sets the buffer
to empty (since it has a fence), the operation Releasep writes only to the buffer.

Acquirep

ΔBS

buffer(p) 	= 〈 〉 ⇒ last buffer(p) = 1

buffer(p) = 〈 〉 ⇒ x = 1

buffer′(p) = 〈 〉 ∧ x′ = 0

Releasep

ΔBS

buffer′(p) = buffer(p)� 〈1〉

TryAcquirep

ΔBS
out! : {0, 1}
if buffer(p) 	= 〈 〉 ∧ last buffer(p) = 1 ∨ buffer(p) = 〈 〉 ∧ x = 1

then buffer′(p) = 〈 〉 ∧ x′ = 0 ∧ out! = 1

else buffer′(p) = 〈 〉 ∧ x′ = 0 ∧ out! = 0

Using Coarse-Grained Abstractions to Verify Linearizability on TSO Architectures 9

Note that x′ = 0 in the else-predicate of TryAcquireP since if the buffer is empty, x is 0
and does not change, and if the buffer is not empty, the last element in buffer is 0 and
the buffer is completely flushed by the lock command in tryacquire.

Finally, the course-grained abstraction is completed with the Flushcpu operation. As
in the concrete specification, this operation is performed by the CPU process.

Flushcpu

ΔBS
p! : P

buffer(p!) 	= 〈 〉 ⇒ x′ = head buffer(p!) ∧ buffer′(p!) = tail buffer(p!)
buffer(p!) = 〈 〉 ⇒ x′ = x ∧ buffer′(p!) = buffer(p!)

The coarse-grained abstraction is chosen purposefully to reflect the abstract specifica-
tion; this facilitates the final part of the proof. The inclusion of buffers and flush op-
erations, however, means it can be shown to linearize the concrete specification using
standard proof methods.

4 Linearizability: From Concrete to Intermediate Specification

To prove the concrete specification is correct with respect to the intermediate one, we
can use a slight adaption of the standard notion of linearizability. Below we describe
how we adapt the formal definition and proof method for linearizability given in [7].

In the standard definition of linearizability, histories are sequences of events which
can be invocations or returns of operations from a set I and performed by a particular
process from a set P. On the TSO architecture, operations can be flushes and we assume
that a flush is only executed by a CPU process cpu ∈ P, different from all other pro-
cesses. We also assume that invocations of flushes are immediately followed by their
returns. Invocations have an associated input from domain In, and returns an output
from domain Out.

Event ::= inv〈〈P× I × In〉〉 | ret〈〈P× I × Out〉〉
History == seq Event

For a history h, #h is the length of the sequence, and h(n) its nth element (for n :
1..#h). Predicates inv?(e) and ret?(e) determine whether an event e ∈ Event is an
invoke or return, respectively. We let e.π ∈ P and e.i ∈ I be the process executing the
event e and the operation to which the event belongs, respectively.

Let mp(p,m, n, h) denote matching pairs of invocations and returns by process p in
history h as in [7]. Its definition requires that h(m) and h(n) are executed by the same
process p and are an invocation and return event, respectively, of the same operation.
Additionally, it requires that for all k between m and n, h(k) is not an invocation or
return event of p. That is, mp(p,m, n, h) holds iff

0 < m < n ≤ #h ∧
inv?(h(m)) ∧ ret?(h(n)) ∧ h(m).π = h(n).π = p ∧ h(m).i = h(n).i ∧
∀ k • m < k < n⇒ h(k).π �= p

10 J. Derrick et al.

We say a history h is legal iff for each n : 1..#h such that ret?(h(n)), there exists an
earlier m : 1..n− 1 such that mp(p,m, n, h).

A formal definition of linearizability is given below. A history is incomplete if it has
either (i) an operation which has been invoked and has linearized but not yet returned, or
(ii) results in a non-empty buffer. An incomplete history h is extended with a sequence
h0 of flushes and returns of non-flush operations, then matched to a sequential history hs
by removing the remaining pending invocations using a function complete. Let HistFR

be the set of histories that are sequences of flushes and returns of non-flush operations.

Definition 1 (Linearizability). A history h : History is linearizable with respect to
some sequential history hs iff lin(h, hs) holds, where

lin(h, hs) =̂ ∃ h0 : HistFR • legal(h � h0) ∧ linrel(complete(h � h0), hs)

where

linrel(h, hs) =̂ ∃ f : 1..#h �→ 1..#hs • (∀ n : 1..#h • h(n) = hs(f (n)))∧
(∀ p : P; m, n : 1..#h • m < n ∧ mp(p,m, n, h)⇒ f (n) = f (m) + 1) ∧
(∀ p, q : P; m, n,m′, n′ : 1..#h •

n < m′ ∧ mp(p,m, n, h) ∧ mp(q,m′, n′, h)⇒ f (n) < f (m′)) �

That is, operations in hs do not overlap (each invocation is followed immediately by its
matching return) and the order of non-overlapping operations in h is preserved in hs.

For example, the history h corresponding to the concrete execution in Figure 2 is

〈inv(p,acquire,), inv(q,tryacquire,), ret(p,acquire,), inv(p,release,),
ret(p,release,), ret(q,tryacquire, 0), inv(cpu,flush,), ret(cpu,flush, p)〉
This history is complete and legal, and is linearized by the history hs

〈inv(p,Acquire,), ret(p,Acquire,), inv(p,Release,), ret(p,Release,),
inv(q, TryAcquire,), ret(q, TryAcquire, 0), inv(cpu,Flush,), ret(cpu,Flush, p)〉
which corresponds to the intermediate-level execution in Figure 2.

Correctness requires showing all concrete histories are linearizable. Existing proof
methods for showing this include the simulation-based approach in [7]. This is based
on showing that the concrete specification is a non-atomic refinement of the abstract
one. Examples of its use are given in [5–8, 14, 15]. This approach is fully encoded in a
theorem proving tool, KIV [13], and has been proved sound and complete — the proofs
themselves being done within KIV. The key point for us is that, for this portion of the
correctness proof, we do not have to adapt the proof method.

5 Transforming the Intermediate Specification to an Abstract One

The previous section has shown how to prove that a concrete specification is lineariz-
able with respect to an intermediate, coarse-grained abstraction. The inclusion of local
buffers in this intermediate specification avoided us needing to deal with the effects
of the TSO architecture. In this section, we introduce a deterministic history trans-
formation which when coupled with the linearization method of the previous section

Using Coarse-Grained Abstractions to Verify Linearizability on TSO Architectures 11

guarantees the overall correctness of concrete specification with respect to the abstract
one. Correctness involves showing every history of the intermediate specification is
transformed to a history of the abstract one. Soundness of this approach is proved in
Section 6.

The histories of the intermediate specification are sequential, i.e., returns of opera-
tions occur immediately after their invocations, but the specification includes buffers
and flush operations. The transformation turns the histories of the intermediate specifi-
cation into histories of an abstract one, i.e., without buffers, with the same behaviour. It
does this according to principle (2) in Section 3, i.e., it moves the return of an operation
to the flush that make its global behaviour visible. To keep histories sequential, we also
move the invocation of the operation to immediately before the return.

To define the transformation, denoted TRANS, we need to calculate which flush an
operation’s return (and invocation) should be moved to. This is done by a function
mpf (standing for matching pair flush) which in turn uses mp defined in Section 4. A
flush returns an operation, i.e., makes its effects visible globally, when it writes the last
variable which was updated by that operation to memory. Let bs(p,m, h) denote the size
of process p’s buffer at point m in the history h. Given an operation whose invocation
is at point m and return at point n, if the buffer is empty when the operation is invoked,
then the number of flushes to be performed before the operation returns is equal to the
size of the buffer at the end of the operation, i.e., bs(p, n, h); if this number is 0 then
the return does not move. Similarly, if an operation contains a fence then the number
of flushes before the operation returns is also equal to bs(p, n, h). In all other cases,
we need to determine whether the operation has written to any global variables. If it has
written to one or more global variables then again the number of flushes to be performed
before the operation returns is bs(p, n, h).

To determine whether an operation has written to global variables, we compare the
size of the buffer at the start and end of the operation taking into account any flushes that
have occurred in between. Let nf (p,m, n, h) denote the number of flushes of process p’s
buffer from point m up to and including point n in h. The number of writes between the
two points is given by

nw(p,m, n, h) =̂ bs(p, n, h)− bs(p,m, h) + nf (p,m, n, h) .

The function mpf is then defined below where m, n and l are indices in h such that
(m, n) is a matching pair and l corresponds to the point to which the return of the
matching pair must be moved.

mpf (p,m, n, l, h) =̂ mp(p,m, n, h) ∧ n ≤ l ∧
if nw(p,m, n, h) = 0 ∨ bs(p, n, h) = 0 then l = n
else h(l) = ret(cpu,Flush, p) ∧ nf (p, n, l, h) = bs(p, n, h)

The first part of the if states that l = n if no items are put on the buffer by the
operation invoked at point m, or all items put on the buffer have already been flushed
when the operation returns. The second states that l corresponds to a flush of p’s buffer
and the number of flushes between n and l is precisely the number required to flush the
contents of the buffer at n.

12 J. Derrick et al.

The history transformation TRANS is then defined as follows. It relies on the fact that
the intermediate histories are sequential, i.e., comprise a sequence of matching pairs.
Each matching pair of a history is either moved to the position of the flush which acts
as its return (given by mpf), or left in the same position relative to the other matching
pairs. The transformation also removes all flushes from the history. Informally we can
think of TRANS(hs) creating a new history determined by applying two steps to the
history hs. The first step introduces a new history hs1 which includes dummy events δ
and invocations and returns of flushes. The second step removes these resulting in an
abstract history:
Step 1. For all indices m, n and l such that mpf (p,m, n, l, h) holds for some p:

if n = l then hs1(m) := hs(m) and hs1(n) := hs(n)
else hs1(l) := hs(n) and hs1(l− 1) := hs(m) and hs1(n) := δ and hs1(m) := δ

Step 2. All δ and flush invocations and returns are removed.
Although this is the best intuition of TRANS, the formal definition is based on identi-

fying the matching pairs, and ordering them by the positions that invocations and returns
are moved to. The key point is that the positions that returns get moved to are different
for each event, so we can order them, and this order defines our new history.

Definition 2 (TRANS). Let hs be a history of the intermediate specification, S =
{(m, n, l) | ∃ p : P • mpf (p,m, n, l, hs) ∧ hs(m).i �= Flush}, and k = #S. We can order
elements of S by the 3rd element in the tuple: l1 < l2 < . . . < lk. Then TRANS(hs) is
an abstract history with length 2k defined (for i : 1 . . 2k) as:

TRANS(hs)(i) =

{
hs(n) if i is even and (m, n, li/2) ∈ S
hs(m) if i is odd and (m, n, l(i+1)/2) ∈ S

Furthermore, this mapping induces a function G which identifies the index that any
particular invocation or return has been moved to. G is defined (for j : 1 . .#hs) by:

G(j) =

{
2i if (m, j, li) ∈ S and so hs(j) is a return
2i− 1 if (j, n, li) ∈ S and so hs(j) is an invocation �

Definition 3 (TSO-equivalence). An intermediate specification BS is TSO-equivalent
to an abstract specification AS whenever for every history hs of BS, TRANS(hs) is a
history of AS. �

For example, given the intermediate-level history hs in Section 4, the indices which
are related by mpf are as follows: for Acquire we get mpf (p, 1, 2, 2, hs), for Release
we get mpf (p, 3, 4, 8, hs), for TryAcquire we get mpf (q, 5, 6, 6, hs) and for Flush we
get mpf (cpu, 7, 8, 8, hs). S will include the first three tuples which are then ordered:
(1, 2, l1), (5, 6, l2), (3, 4, l3) (where l1 = 2, l2 = 6 and l3 = 8). Thus, TRANS(hs)(1) =
hs(1) since 1 is odd and (1, 2, l1) ∈ S. Similarly, TRANS(hs)(6) = hs(4) as 6 is
even and (3, 4, l3) ∈ S. Overall, TRANS(hs) is the following which corresponds to the
abstract execution in Figure 2: 〈inv(p,Acquire,), ret(p,Acquire,), inv(q, TryAcquire,),
ret(q, TryAcquire, 0), inv(p,Release,), ret(p,Release,)〉.

6 Gluing it Together: From Concrete to Abstract Specification

Overall, we want to show the correctness of the concrete specification with respect to
the abstract one. The notion of correctness we adopt is TSO-linearizability as defined in

Using Coarse-Grained Abstractions to Verify Linearizability on TSO Architectures 13

[9]. We summarise this definition below before proving that the effect of linearizability
followed by TSO-equivalence implies TSO-linearizability.

6.1 TSO-Linearizability

To prove linearizability on TSO, we introduce a history transformation Trans which
(according to principle (2) in Section 3) moves the return of each operation to the flush
which makes its global behaviour visible, if any. Trans is similar to TRANS of Section 5
except it does not also move the invocation of the operation. The informal intuition for
Trans alters the first step of the transformation to the following:
Step 1. For all indices m, n and l such that mpf (p,m, n, l, h) holds for some p:

if n = l then h1(m) := h(m) and h1(n) := h(n)
else h1(m) := h(m) and h1(l) := h(n) and h1(n) := δ

In a manner similar to TRANS, this is formalised in the following definition:

Definition 4 (Trans). Let h be a history of the concrete specification, S1 = {(m, n, l, x) |
∃ p : P • mpf (p,m, n, l, h) ∧ h(m).i �= Flush ∧ x ∈ {m, l}}, and k1 = #S1. We can
order the elements of S1 by their 4th elements: x1 < x2 < . . . < xk1 . Then Trans(h) is
an abstract history with length k1 defined (for i : 1 . . k1) as:

Trans(h)(i) =

{
h(xi), if (xi, n, l, xi) ∈ S, for some n and l
h(n), if (m, n, xi, xi) ∈ S, for some m

Furthermore, this mapping induces a function g which identifies the index that any
particular invocation or return has been moved from. g is defined (for i : 1 . . k1) by:

g(i) =

{
xi, if (xi, n, l, xi) ∈ S, for some n and l
n, if (m, n, xi, xi) ∈ S, for some m �

For example, given the concrete history h in Section 4, the indices which are re-
lated by mpf are as follows: for acquire we get mpf (p, 1, 3, 3, h), for tryacquire
we get mpf (q, 2, 6, 6, h), for release we get mpf (p, 4, 5, 8, h) and for flush we
get mpf (cpu, 7, 8, 8, h). The elements of set S1 are ordered as follows: (x1, 3, 3, x1),
(x2, 6, 6, x2), (1, 3, x3, x3), (x4, 5, 8, x4), (2, 6, x5, x5), (4, 5, x6, x6) (where x1 = 1, x2 =
2, x3 = 3, x4 = 4, x5 = 6 and x6 = 8). Thus, Trans(h)(1) = h(1) since x1 = 1, and
Trans(h)(6) = h(8) since x6 = 8. Overall Trans(h) is

〈inv(p,Acquire,), inv(q, TryAcquire,), ret(p,Acquire,), inv(p,Release,),
ret(q, TryAcquire, 0), ret(p,Release,)〉 .

A key part of adapting the definition of linearizability from Section 4 to TSO is what
we mean by a matching pair of invocations and returns. The formal definition of the
function mp requires that for all k between m and n, h(k) is not an invocation or return
event of p. This is not true for our transformed histories on TSO since operations by
the same process may overlap. Therefore, we will use a new version of matching pairs
mpTSO defined as follows.

mpTSO(p,m, n, h) iff mpf (p, x, z, y, h)
where m = x−

∑
p:P

nf (p, 1, x, h) and n = y−
∑
p:P

nf (p, 1, y, h) and x < z ≤ y

14 J. Derrick et al.

We then adopt the definition of TSO-linearizability from [9]. After extending an incom-
plete concrete history with flushes and returns of non-flush operations, we apply Trans
to it before matching it to an abstract history.

Definition 5 (TSO-linearizability). A history h : History is TSO-linearizable with
respect to some sequential history hs iff linTSO(h, hs) holds, where

linTSO(h, hs) =̂ ∃ h0 : HistFR • legal(h � h0) ∧ linrelTSO(Trans(complete(h � h0)), hs)

where

linrelTSO(h, hs) =̂ ∃ f : 1..#h �→ 1..#hs • (∀ n : 1..#h • h(n) = hs(f (n)))∧
(∀ p : P; m, n : 1..#h • m < n ∧ mpTSO(p,m, n, h)⇒ f (n) = f (m) + 1) ∧
(∀ p, q : P; m, n,m′, n′ : 1..#h •

n < m′ ∧ mpTSO(p,m, n, h) ∧ mpTSO(q,m′, n′, h)⇒ f (n) < f (m′))

We say that a concrete specification is TSO-linearizable with respect to an abstract
specification if and only if for all concrete histories h, there exists an abstract history
hs such that linTSO(h, hs). �

The new matching pairs in the example history Trans(h) above are mpTSO(p, 1, 3, h1),
mpTSO(q, 2, 5, h1) and mpTSO(p, 4, 6, h1). It is easy to see that this is linearized by the
abstract history corresponding to the execution in Figure 2.

6.2 Soundness

Assume a concrete specification CS is linearizable with respect to an intermediate spec-
ification BS, and BS is TSO-equivalent to an abstract specification AS. Given a concrete
history h, to prove our approach sound we have to find an abstract history hs such that
linTSO(h, hs). It is clear that any incomplete concrete history can be extended to a com-
plete and legal history, therefore we assume h is complete and legal.

Since CS is linearizable with respect to BS, there exists an hs1 such that lin(h, hs1)
and an associated bijection f1. Let hs =̂ TRANS(hs1). To show CS is TSO-linearizable
with respect to AS, we define a bijection f between the indices of Trans(h) and hs as
follows. Let f (n) = G(f1(g(n))) where n ∈ 1 . . #Trans(h), and G and g are given in
Definitions 2 and 4 respectively. f is a bijection since:

(i) Since #h = #hs1 (property of lin), we get #Trans(h) = #TRANS(hs1) (since
both remove flush invocation and returns) and hence #hs = #Trans(h).

(ii) f is surjective since each event in TRANS(hs1) is either an invocation or return of a
non-flush operation. Therefore, there exists an invocation or return of a non-flush
operation in hs1 that is mapped to this event by G. Then surjectivity of f1 implies
there exists an invocation or return of a non-flush operation in h which maps to the
event in hs1. Since this event is of a non-flush operation, there exists an invocation
or return in Trans(h) which is mapped to it by g.

(iii) f is injective since g, f1 and G are all injective.

Using Coarse-Grained Abstractions to Verify Linearizability on TSO Architectures 15

We now show that f satisfies the three conjuncts of linrelTSO and hence that TSO-
linearizability holds.

(i) Trans(h)(n) = hs(f (n)) follows by construction of f .
(ii) Given m, n : 1 . .#Trans(h) and p : P, suppose that m < n∧mpTSO(p,m, n, h). In

the case where h(g(n)) is the return of a non-flush operation, mp(p, g(m), g(n), h)
holds so we know f1(g(n)) = f1(g(m)) + 1 (property of lin). G does not change
this relationship between f1(g(n)) and f1(g(m)). Hence, f (n) = f (m) + 1.
On the other hand if h(g(n)) is the return of a flush operation, G moves f1(g(m))
and f1(g(m + 1)) to f1(g(n− 1)) and f1(g(n)) respectively. Again, we get f (n) =
f (m) + 1.

(iii) Given m, n,m′, n′ : 1. .#Trans(h) and p, q : P such that n < m′∧mpTSO(p,m, n, h)
∧mpTSO(q,m′, n′, h), it follows that mp(p, g(m), g(n), h)∧mp(q, g(m′), g(n′), h).
This means f1(g(n)) < f1(g(m′)) (property of lin). G does not change this rela-
tionship between f1(g(n)) and f1(g(m′)). Hence, f (n) < f (m′).

7 Conclusions

In this paper we have developed a method by which to simplify proofs of linearizability
for algorithms running on the TSO memory model. Instead of having to deal with the
effects of both fine-grained atomicity and local buffers in one set of proof obligations,
we have used an intermediate specification to partition the proof obligations in two.
One set of proof obligations is simply the standard existing notion of linearizability
(where flushes are treated as normal operations), and any existing proof method can be
employed to verify this step (we in fact use our mechanised simulation-based method).
The second set of proof obligations involves verifying that an appropriate transforma-
tion (given by TRANS defined in Section 5) holds.

Although there is existing work on defining linearizability on TSO, to the best of
our knowledge this is the first work that provides simplified reasoning for showing
how linearizability can be verified for algorithms running on TSO, although mention
should be made of the approach in [19] that uses SPIN to check specific runs for TSO-
linearizability. Clearly this work could be extended in a number of directions. Specifi-
cally, we would like to mechanise the proof obligations inherent in TRANS using KIV
in the same way that the existing proof methods for standard linearizability, such as
those in [5–8, 14, 15], have already been encoded in the theorem prover. Additionally,
we aim to look at the issue of completeness and related to this will be how one can cal-
culate the required intermediate description from the concrete algorithm and abstract
and concrete state spaces.

References

1. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.: The
Semantics of Power and ARM Multiprocessor Machine Code. In: Petersen, L., Chakravarty,
M.M.T. (eds.) DAMP 2009, pp. 13–24. ACM (2008)

16 J. Derrick et al.

2. Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under abstraction for
verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 477–490. Springer, Heidelberg (2007)

3. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library correctness on the
TSO memory model. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 87–107. Springer,
Heidelberg (2012)

4. Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular safety checking for fine-grained con-
currency. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–248.
Springer, Heidelberg (2007)

5. Derrick, J., Schellhorn, G., Wehrheim, H.: Proving linearizability via non-atomic refine-
ment. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 195–214. Springer,
Heidelberg (2007)

6. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanizing a correctness proof for a lock-free
concurrent stack. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 78–95. Springer, Heidelberg (2008)

7. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations for
linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

8. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with potential lineari-
sation points. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 323–337.
Springer, Heidelberg (2011)

9. Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures. In: Albert,
E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 341–356. Springer, Heidelberg
(2014)

10. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical lock-free
queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 97–114. Springer, Heidelberg (2004)

11. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: Sequentially consistent specifi-
cations of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 31–45.
Springer, Heidelberg (2012)

12. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

13. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive
proofs with KIV. In: Automated Deduction, pp. 13–39. Kluwer (1998)

14. Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable. In: Mad-
husudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 243–259. Springer, Heidel-
berg (2012)

15. Schellhorn, G., Wehrheim, H., Derrick, J.: A sound and complete proof technique for lin-
earizability of concurrent data structures. ACM Trans. on Computational Logic (2014)

16. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous and
usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7), 89–97 (2010)

17. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache Coher-
ence. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers (2011)

18. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall (1992)
19. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak mem-

ory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp. 311–326.
Springer, Heidelberg (2013)

20. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, University of
Cambridge (2007)

Enhancing Scenario Quality Using Quasi-Events

Yoav Katz, Eitan Marcus, and Avi Ziv

IBM Research Laboratory in Haifa, Israel
{katz,marcus,aziv}@il.ibm.com

Abstract. A major challenge for processor-level stimuli generators is
the need to generate stimuli that exercise deep micro-architectural mech-
anisms. Advanced generators address this challenge by applying expert
testing knowledge that bias the stimuli toward interesting verification
events. In this paper, we present a new approach whereby scenarios are
not just enhanced, but are actually modified by testing knowledge. By
allowing such mutations, scenarios are diverted toward quasi-events that
are semantically related, though not identical, to the original intent of
the scenario. We describe the importance of quasi-events and the useful-
ness of automated scenario mutations for improving the verification of
speculative execution.

1 Introduction

Modern processors use a combination of architectural and micro-architectural in-
novations to improve performance and power consumption [7]. This significantly
increases the complexity of a processor’s design and its verification. Generating
processor-level stimuli is one of the main challenges in the verification of pro-
cessors. The need to thoroughly exercise the micro-architecture and reach all
its corners led to the development of sophisticated stimuli generators that are
based on techniques such as machine learning [6], constraints satisfaction [2,4],
and formal methods [11].

The input to a processor-level stimuli generator is a test template, which
describes the desired characteristics of the test cases to be generated on a high
level. Given a test template as input, the stimuli generator produces a large
set of architecturally valid tests that satisfy the template request by filling all
unspecified details in a pseudo-random way.

Existing processor-level test generators (such as [1,5]) provide a rich language
for specifying requests at the instruction-level. As processor micro-architecture
complexity increases, the ability of these generators to reach all desired cor-
ner cases has been strained. Advances in verification methodologies and test-
generation tools led to new features that target the micro-architecture. For ex-
ample, tools embed testing knowledge [1] to increase the probability of generating
interesting micro-architectural events (e.g., creating register dependency between
instructions to trigger pipeline forwarding). The tools also include elaborate user
control in the test template to help the stimuli reach specific micro-architectural
events.

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 17–29, 2014.
c© Springer International Publishing Switzerland 2014

18 Y. Katz, E. Marcus, and A. Ziv

Nevertheless, we observe a growing gap between the goals of the verification
plan, which targets events deep inside the processor, and the capabilities of
available test generation tools. This impacts both the quality of the verification
and the effort needed to complete the verification process. A major cause of this
gap is that the goals of the verification plan are typically formulated in terms
of high-level scenarios, whereas existing template languages focus on individual
instructions and the interactions between them.

Test Plan Automation (TPA) [8,9] bridges this semantic gap by introducing a
test template language that more closely resembles the level of abstraction found
in the verification plan. The basic construct of TPA’s language is the scenario,
which targets events that are associated with some micro-architectural mecha-
nism modeled in the tool. A simple scenario is expressed as a set of instructions
and the required constraints between them. An example of such a scenario is two
instructions that access the same cache line to create a cache hit. Additionally,
the language provides constructs to combine existing scenarios into hierarchically
more complex ones. For example, the simple cache hit and cache miss scenarios
can be combined to create a scenario that hits the L1 cache but misses the L2.

To improve the quality of the test cases it generates, TPA extends the notion of
testing knowledge from the instruction to the scenario level. Testing knowledge is
the embodiment of expert verification knowledge in a stimuli generator so that it bi-
ases the stimuli toward interesting verification events without the need for explicit
direction from the user. Scenario level testing knowledge automatically elaborates
the original scenario to reach interesting variants of the targeted events. This is
accomplished in TPA in two ways: by selectively ordering and placing the instruc-
tions in the scenario, and by adding background instructions. For example, TPA
may choose to place two instructions involved in a collision scenario close to each
other to increase the probability that the instructions collide. In addition, it may
insert a background instruction that causes the first instruction in the collision to
stall, so that the instructions have a greater chance of executing out of order.

In this paper, we propose a new approach to testing knowledge in which sce-
narios are not just enhanced by the testing knowledge, but are actually modified
by it. This allows scenarios to be diverted toward novel areas of the verification
space that would not likely be explored by the original scenario. The purpose
of these mutations is to generate stimuli that cover simulation events that were
not the original intent of the scenario but are semantically related to it.

There are a number of different mutation strategies that TPA can use: chang-
ing program order and control flow, modifying the contents of individual instruc-
tions, and exchanging the micro-architectural mechanisms used by the scenario.
One mutation strategy, which we describe in depth, is to take existing instructions
of a scenario and move them onto the speculative path of some branch instruc-
tion. The handling of speculative executed instructions significantly complicates
a processor’s design, and exercising a processor’s speculation mechanism is an im-
portant component of its verification plan. By modifying a scenario so that some
of its instructions are speculatively executed, TPA provides greater testing and
coverage of a design’s speculation mechanism.

Enhancing Scenario Quality Using Quasi-Events 19

The rest of the paper is organized as follows. Section 2 describes a simple
scenario that we use as an example throughout this paper. In Section 3, we
describe scenario mutations in general, while Section 4 looks at speculation mu-
tations in particular. Section 5 provides experimental results. Finally, we present
our conclusions in Section 6.

2 Simple Scenario Example

To illustrate the power and usefulness of scenarios, we define a scenario that
combines two sub-scenarios – a load-hit-store (LHS) and a store-hit-load (SHL).
As shown in Figure 1, both of these sub-scenarios involve collisions in buffers
commonly found in the load store units of a processor. In the case of LHS, the
collision occurs in the store reorder queue (SRQ) buffer, whereas for the SHL
scenario, it occurs in the load reorder queue (LRQ) buffer.

Both the SRQ and LRQ buffers store memory access requests until they have
completed. When a memory access is stored in one of these buffers, additional
accesses to the same memory location cause collisions that may lead to special
treatment of the colliding instructions. More specifically, in the implementation
of the SRQ of the verified processor, data write accesses to memory are stored in
the SRQ until the instruction completes. However, if a read access hits an address
that is in the SRQ, it may be forwarded its value even if the corresponding write
access has not yet completed. Furthermore, for designs which support out-of-
order execution, a write access stored in the SRQ will be flushed whenever it is
executed before an earlier read access to the same address.

As shown in Figure 1, the LHS and SHL scenarios both call for a read-after-
write (RAW) collision in their respective buffers. The RAW collision scenario is
defined generically for all memory buffers with the following specification: The
scenario includes two instructions, one (wr) which writes to the buffer, while
the other (rd) reads, but does not write to it. Furthermore, the two instructions
must collide with each other, with the writer ordered before, but close to the
reader. Finally, it is necessary to disable exceptions since exceptions clear the
buffers of the processor and must be avoided if a read-after-write is to occur.

The readers and writers of a buffer, as well as the criteria for when instructions
collide in a buffer, depend upon the particular buffer. For the SRQ, instructions
that write data to memory also write to the SRQ, and instructions that read
data from memory read from the SRQ. For the LRQ, it is the opposite. In both
cases, collisions occur when the reader from the buffer shares the same address
as the writer, and its data is fully contained in the writer’s data. The details
for the readers, writers, and collision criteria of a buffer is defined in the TPA
micro-architecture model of a design [9].

In TPA, the order in which instructions are defined in a scenario does not
necessarily determine the order in which instructions will be generated or where
they will be placed in the resulting test program. This is also true with regard
to the order in which sub-scenarios are invoked by a scenario. TPA therefore has
great flexibility in deciding where to place generated instructions. In the RAW

20 Y. Katz, E. Marcus, and A. Ziv

scenario LSUCollisions {

SRQ.RAW() // LHS

LRQ.RAW() // SHL

}

scenario MemoryBuffer:RAW {

Instruction wr : writers()

Instruction rd : readers()

collision(wr, rd)

Order(wr,rd)

Distance(wr,rd) < 5

Directive: NoException

}

Fig. 1. Scenario construction

scenario, the writer to the buffer has been explicitly ordered before the reader
using the Order directive. This ensures that the scenario does indeed generate a
read after write. In the case of the LSUCollisions scenario on the other hand, no
order is specified between the LHS and the SHL sub-scenarios. Therefore, TPA is
free to generate these sub-scenarios in any order it chooses, whether randomly or
by applying some relevant testing knowledge. It can decide to generate the two
sub-scenarios in different threads, or in the same thread with any combination
of interleaving between their instructions.

3 Scenario Mutations

As we explained, advanced stimuli generators use testing knowledge to bias stim-
uli toward interesting verification events. A generator’s testing knowledge base
contains information verification engineers have accumulated over years of ex-
perience that describe the error-prone areas of a design and the test conditions
needed to verify them. For example, testing knowledge may bias a generated
arithmetic instruction to produce more interesting results such as underflow or
overflow, or it may create address collisions between memory access instructions
to exercise some cache or memory buffer mechanism.

A fundamental principle of traditional testing knowledge is the need to be
faithful to what was specified by the user in the input test template. This means
that any testing knowledge rule that contravenes what appears or is implied by
the scenario must be disregarded. As a consequence, the application of testing
knowledge yields stimuli that are directed toward a subset of the events that
make up the solution space of a scenario. Events that were previously unreach-
able however remain unreachable even when testing knowledge is considered.

Enhancing Scenario Quality Using Quasi-Events 21

While fulfilling scenario requirements is important to achieve quality verifi-
cation, it is also useful to produce stimuli that almost meet these requirements.
Quasi-events are events that are different, yet semantically related, to those tar-
geted by a scenario. For example, if the test template contains a scenario to fill
some buffer in the design, thereby ensuring that the design stalls until there is a
vacancy in the buffer, then generating a stimuli that almost fills the buffer is also
important, since it ensures that the design does not stall unnecessarily. As shown
in Figure 2(a), scenarios are specifically written to reach their intended targeted
events, which often leaves quasi-events outside their solution space. Frequently
quasi-events are overlooked when drawing up a test plan since these events may
be of secondary importance, or they may be less precisely defined and therefore
harder to target.

(a) Main scenario only (b) Extended main sce-
nario

(c) Main scenario with
scenarios for quasi-
events

Fig. 2. Quasi-events

Currently, there are two main approaches for dealing with quasi-events. The
first is to relax the scenario defined in the test template and use the modified
scenario to try and reach the quasi-events. As shown in Figure 2(b), a relaxed
scenario has an enlarged solution space which, in addition to containing tar-
geted and quasi-events, potentially contains many unrelated events as well. As
a result, such a scenario may sacrifice reaching targeted events without signif-
icantly increasing the probability of reaching quasi ones. A second approach is
to specifically define the desired quasi-events and create scenarios that target
them explicitly, as shown in Figure 2(c). The drawback to this approach is that
it may require significant effort by the user to define these events and to create
the necessary test templates to cover them.

22 Y. Katz, E. Marcus, and A. Ziv

We introduce a new technique in TPA, called scenario mutation, which au-
tomatically mutates a given input scenario so that the generated stimuli inten-
tionally misses the original requirements of the scenario but targets quasi-events
instead. This technique saves the need to manually specify the quasi-events and
create specific test templates to hit them. Furthermore, it does not rely on the
stimuli generator to “accidentally” hit these quasi-events.

Mutations have many uses in hardware verification. Mutations of the target
design are used to detect simple bugs, such as wrong operator in an expres-
sion [10], and to quantify the quality of a verification environment [13]. Muta-
tions are also used in coverage directed generation (CDG) systems to improve
the ability of test cases to hit specific coverage events [3]. While our scenario
mutation approach relies on mutations, it is not related to these other uses of
mutations. Specifically, [3] uses mutation to modify test cases and test templates
to hit a given event. Scenario mutation, on the other hand, uses mutations to
intentionally miss the event and hit unspecified quasi-events instead.

TPA can perform many types of scenario mutations on a given scenario. These
can be broadly classified into the following categories: (1) mutations on the gen-
erated program order and control flow, (2) mutations on specific instructions
that are generated, and (3) mutations on some underlying micro-architectural
mechanisms used by the scenario. Examples of program order mutations include
swapping the order of two instructions or generating part of the scenario in
a speculative path. Mutations on specific instructions may involve replacing an
instruction with another or modifying constraints placed by the user on a partic-
ular instruction. Finally, TPA can replace or generalize a scenario’s mechanism
with another mechanism (e.g., LRQ with SRQ) or change the behavior of some
aspect of the mechanism itself (e.g., a buffer’s size).

Mutations can be further augmented with additional testing knowledge to
increase the likelihood of reaching quasi-events. The mutation that swaps two
instructions for example, may decide that it is preferable to swap instructions
that are close to each other in the test program, or are related by some property
or constraint.

Scenario mutations are a special form of testing knowledge, albeit one that
relaxes the scenario fidelity principle mentioned earlier. Like traditional testing
knowledge, mutations are applied heuristically during some invocations of the
tool. TPA may therefore decide to mutate a given input scenario to increase the
likelihood of reaching some quasi-events.

4 Speculation Mutations

Hardware-based branch speculation is performed by most modern processor de-
signs to increase parallel execution and throughput of instructions [12]. The
mechanism works by predicting the outcome of conditional branch instructions
in a program and executing instructions immediately following these branches,
as if the prediction was known to be correct. With speculation, the processor
fetches, issues, and executes instructions as normal, but results of the execution

Enhancing Scenario Quality Using Quasi-Events 23

are not written back into architected resources until the speculation is resolved.
If the speculation was incorrect, that is, if the branch was mis-predicted, all
instructions executed speculatively after the branch must be flushed from the
pipeline.

Speculative execution considerably complicates a processor’s design since it
triggers a complex undo chain that must be performed before the processor can
continue fetching and executing instructions from the correct path. Furthermore,
it necessitates additional hardware buffers to hold the results of all executed but
not yet committed instructions, as well as hardware support to pass results
among speculatively executing instructions. Hence, hardware-based speculation
is a challenging and bug-prone feature of a design, and a critical feature to verify.

Scenarios are presumably written to cover events that are triggered by com-
plex architectural or micro-architectural mechanisms. For each such mechanism,
there exists a corresponding recoverymechanism that is activated whenever spec-
ulation occurs. Typically, the more complex a mechanism, the more complex its
recovery. Therefore an event targeted by a scenario often has a correspond-
ing quasi-event for when the scenario, or part of the scenario, is speculatively
executed. While it is true that speculatively executing a scenario makes it un-
likely that the events originally intended by the scenario will be reached, it does
however significantly increase the chance of hitting corresponding speculative
quasi-events.

Consider the load-hit-store scenario previously described. This scenario tar-
gets, among other events, the event that is triggered when a store forwards its
value to a subsequent load. By speculatively executing the store (and leaving
the load in the actual program), the load no longer obtains its value from the
store. This means that the original store forwarding event will not be covered.
The chances however of hitting its corresponding speculative quasi-event (i.e.,
flushing the speculatively executed store from the SRQ buffer) will have greatly
increased. Thus speculatively executing the store in the load-hit-store scenario
no longer tests that store forwarding happens when it should, but rather, that
store forwarding does not happen when it shouldn’t.

Existing processor stimuli generators typically enable users to define instruc-
tions that should be generated both for the leg taken and the leg not taken of
a conditional branch. This allows users to hit events caused by speculation. The
drawback to this approach, as we have already seen with quasi-events in general,
is that it requires the user to define these events and to construct specific test
templates to target them.

An alternative approach, and the one adopted by TPA, is to use scenario mu-
tations to handle speculation. With speculation mutations, TPA randomly injects
conditional branches into the stimuli, and moves or copies existing scenario in-
structions onto the speculative path of these branches. This enables some of the
instructions of the scenario to be executed speculatively (assuming the branch
was mis-predicted) leaving the other instructions to execute on the true program
path. As a result, quasi-events caused by the recovery from speculatively exe-
cuting instructions will be tested. The advantage of speculation mutation is that

24 Y. Katz, E. Marcus, and A. Ziv

no special scenarios need to be written to explicitly test for speculation. Fur-
thermore, all existing scenarios in a design’s verification plan can be mutated
to execute speculatively. Therefore, all scenarios in the plan can be used not
only to test for the events specifically targeted by the scenario, but to test for
corresponding speculative quasi-events as well.

In TPA, speculation mutation is implemented as a multiple step process. First,
TPA chooses the number of conditional branches to inject into the test. This is a
weighted random selection based on the total number of instructions found in the
scenario. Next, for each injected branch, TPA chooses the number of instructions
to move or copy to the branch’s speculative path. This too is a weighted random
selection based on the total number of instructions in the scenario as well as the
number of injected branches. Finally, TPA iteratively selects instructions until
the desired number of instructions per speculation is reached.

4.1 Handling Ordered Instructions

When an order directive is specified between instructions in a scenario (e.g.,
between the wr and rd instructions in the RAW scenario), TPA ensures that
the instructions appear in the generated test program according to the order
given. Program order, however, only makes sense for non-speculatively executed
instructions. Still, TPA tries to retain some notion of order even for instructions
that are speculatively executed.

Consider a scenario with instructions i1 and i2 with i1 ordered before i2 in the
scenario. Figure 3 shows the different ways these instructions can be placed in the
generated program. In the case in which both i1 and i2 are placed on the same
leg of the branch, i1 will appear before i2 in the test, regardless if they are on
the non-speculative (Figure 3(a)) or speculative (Figure 3(b)) leg of the branch.
More interesting is when one of the instructions is speculatively transferred and
the other is not. If i1 is the speculatively transferred instruction, then i2 is placed
after the injected branch in the program (Figure 3(c)). This ensures that if i1 is
executed, it will be executed before i2. Conversely, i1 will be placed before the
branch when i2 is the instruction that is speculatively transferred (Figure 3(d)).

4.2 Eliminating Speculation Candidates

Before choosing the next instruction to transfer to the speculative path, TPA
may need to eliminate certain instructions from consideration. This can happen
for a number of reasons, such as the user explicitly stating in the test template
that an instruction should not be mutated. Another possibility is when the user
specifies that two instructions should be generated in different threads. In this
case, it is not legal to move both instructions onto the same speculative path.
Finally, TPA must be careful when moving an instruction to a speculative path
if an instruction already exists on the path which is ordered, either before it or
after it, in the scenario. This may lead to an impossible situation if there is an
intervening instruction between them not on the speculative path.

Enhancing Scenario Quality Using Quasi-Events 25

(a) Move none (b) Move both (c) Move I1 (d) Move I2

Fig. 3. Moving two ordered instructions to speculative path

4.3 Selecting Speculative Instructions

Once instructions that are illegal to transfer have been eliminated from consid-
eration, TPA must choose the next instruction to move or copy from the list of
remaining candidates. Instead of selecting instructions totally at random, TPA
uses heuristics to determine which instruction would most likely increase the
probability of hitting quasi-events if placed on a speculative path. The heuristic
ranking of an instruction is based on three properties, the size of its footprint,
the strength of its connectivity with other instructions, and its order relative to
other instructions.

An instruction’s footprint is related to the amount of residue it leaves after it
has been executed. It is a measure of the complexity of the micro-architectural
mechanism that is involved in its execution. The larger an instruction’s footprint,
the more complicated the recovery needed if it was speculatively executed. In-
dications of the size of an instruction’s footprint comes from the type of the
instruction, the unit in which it is to be executed, and the number of resources
it needs to access, all which can be extracted automatically with static analysis
from the design. An example of an instruction with a large footprint is one that
accesses memory. Because of their footprint size, TPA assigns a higher ranking
to such instructions.

The connectivity of an instruction is based on a number of static properties
of the instruction in the test template. These properties include whether the
instruction is part of a scenario (as opposed to being a background instruction),
and the number of constraints and order directives in which the instruction
participates. Inter-connected instructions are more likely to play a crucial role
in exercising some underlying micro-architectural mechanism. In contrast, iso-
lated instructions with low connectivity are less likely to have an impact. TPA
attempts to break interconnected components by placing some, but not all, of
their instructions onto the speculative path. By favoring mutating instructions
that participate in different connected components, TPA increases the probabil-
ity that some mechanism will be speculatively activated and the mechanism’s
corresponding quasi-events will be reached.

26 Y. Katz, E. Marcus, and A. Ziv

Finally, for instructions that are ordered in the test template, a preference is
given to transfer instructions that appear early in the order. This is because an
instruction is more likely to impact instructions that appear after it rather than
before it in the program. This can be seen in the load-hit-store example where
the consequence of executing the store affects the subsequent load since it can
forward its value to the load. The reverse, however, is not true.

Returning to the load-hit-store scenario, the preference is to speculatively
mutate the store since it satisfies all three criteria for mutation. Stores, like
all memory access instructions, have a relatively large footprint. Furthermore,
the store is part of the load-hit-store scenario and has both collision and order
constraints with its corresponding load. Finally, the store is ordered before the
load in the scenario specification.

Once all the instructions are ranked, TPA performs a weighted random se-
lection to determine the next instruction to move to the speculative path. The
higher an instruction ranking, the more likely it will be chosen. This process
of eliminating illegal candidates and selecting a next instruction based upon its
computed ranking continues until the desired number of instructions has been
speculatively mutated.

5 Experimental Results

To validate the utility of quasi-events in general, and our speculation mutation
approach specifically, we performed an experiment that measured the ability of
TPA to reach more interesting events when speculation mutation is used. We
performed the experiments on a multi-threaded, out-of-order, superscalar IBM
Power processor core.

The target of the experiment was creating potential collisions in buffers in the
load store unit of the processor. More specifically, we targeted the load-hit-store
(LHS) and store-hit-load (SHL) collisions in the store reorder queue (SRQ) and
load reorder queue (LRQ) described in Section 2. The coverage model we used to
measure the collisions was a cross-product, functional coverage model that looks
at the type of the colliding instructions (load or store), whether they executed
speculatively, whether they accessed the same memory address, whether the
instructions appeared in the same thread, whether they were executed out of
order, and the difference in cycles between their issue times. The size of the
coverage space is 384 events of which 240 events are legal. Note that the coverage
model looks for potential collisions because if the processor works correctly, we
do not expect collisions between speculative and non-speculative instructions to
actually occur. Still, these potential collisions are important quasi-events because
they can expose bugs in the clean-up of the buffers from speculative instructions.

To cover this coverage model and trigger the requested collisions, we used a
test template that contained 50 instances of LSUCollisions scenario of Figure 1.
That is, each test case generated from the template contained 50 RAW collisions
on the SRQ and 50 RAW collisions on the LRQ. The ordering and placement
testing knowledge of TPA splits the requested instructions between the threads

Enhancing Scenario Quality Using Quasi-Events 27

and interleaves the instructions of the various collisions, while maintaining order
and distance requirements of each collision. This allows TPA to generate many
variants of the requested collisions.

To validate the utility of the speculation mutation approach, we compared the
coverage obtained when running TPA with the test template described above in
the following three modes:

Random Speculative Path. In this mode, TPA generated random instructions
in the speculative path, with bias for load and store instructions. Collisions
between instructions in the speculative and normal paths are generated using
the generic testing knowledge used in TPA.

Speculation Mutation (Random Transfer). This mode used the speculation
mutation approach described in Section 4. The instructions that were transferred
from the normal path to the speculative path were selected randomly.

Speculation Mutation (Heuristic Transfer). This mode is similar to the
previous mode, except that speculative instructions are chosen from the scenario
according to the heuristic criteria described in Section 4.3.

We generated and simulated 400 test cases in each mode. In all the modes the
generation parameters were set such that on average, each test case included ten
branch instructions and on average, two load or store instructions were in the
speculative path. That is, two random load or store instructions were generated
in the random speculative path mode and two load or store instructions were
moved to the speculative path in the speculation mutation modes. This resulted
in roughly five millions simulation cycles per mode.

Figure 4 shows coverage progress as a function of simulation cycles for each of
the modes. We observe that the coverage obtained with speculation mutation is
higher than the coverage when random speculative path is used. This is because
speculation mutation maintains the collision properties of instructions that are
moved to the speculative path, while the random speculative path relies on the
generic testing knowledge that is less targeted toward such collisions. Moreover,
the heuristic for transferring instructions provides faster coverage progress than
the random transfer because it is able to maintain more collision relations be-
tween the speculative and normal paths. However, eventually both modes reach
the same coverage because even the random transfer is able to create enough
collisions between speculative and normal paths.

Table 1 shows a deeper look at the speculation collisions data. It confirms the
observations from Figure 4. The first two rows (below the title row) compare the
number of load/store instructions executed in the normal and speculative paths
in each mode. The results in these rows are close. The speculation mutations
modes executed more speculative load/store instructions, but the 15% percent
difference does not explain the difference in the collisions in the bottom rows
of the table. The third row in the table shows that the random speculative
path has more than 10% more collisions between instructions in the normal
path than the speculation mutations modes. The reason for this is that in the

28 Y. Katz, E. Marcus, and A. Ziv

Fig. 4. Coverage progress for speculation events

speculation mutations modes colliding instructions are moved from the normal
to the speculative path.

The last row in the table shows the number of collisions between instructions
executed on the speculative and normal paths. These collisions correspond to
the quasi-events which we hoped to reach. We see that many more of these
collisions occurred when speculation mutations were used, which explain the
difference in coverage between these modes and the random speculation mode.
Moreover, when comparing between the two speculation mutations modes, the
transfer heuristics increased the number of collisions between speculative and
normal instructions, causing the faster coverage progress.

Table 1. Speculative collisions data

Random Speculation mutations
Mode Speculative Random Heuristic

Normal LS 100298 98839 98584

Speculative LS 5868 6639 6568

Normal Collisions 44565 39568 38895

Speculative
collisions 105 3191 3643

6 Conclusions

In this paper, we defined quasi-events and described the importance of these
events in enhancing the quality of scenario verification. We also introduced sce-
nario mutations as a technique for reaching quasi-events. The advantage of sce-
nario mutations over previous methods is that it increases the probability of
hitting quasi-events without significantly sacrificing the ability to reach the in-
tended targeted events of the scenario. Furthermore, scenario mutations can

Enhancing Scenario Quality Using Quasi-Events 29

be automatically applied to any scenario in the verification test suite, thereby
reducing the effort needed to cover quasi-events.

Speculation mutation is a type of scenario mutation where instructions from
a scenario are transferred to the speculative path of a conditional branch. With
speculation mutation, quasi-events that are triggered when a scenario is specu-
latively executed have a higher probability of being reached. We described the
heuristics that we used to select instructions for speculation mutation, and pre-
sented experimental results that demonstrate the effectiveness of our approach.

Speculation mutation is just one of the many different types of mutations
that can be applied to a given scenario. In the future, we plan to look at other
mutation strategies, and investigate how different types of mutations can be
combined to improve verification plan coverage.

References

1. Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon, M., Vinov, M., Ziv, A.:
Genesys-Pro: Innovations in test program generation for functional processor ver-
ification. IEEE Design and Test of Computers 21(2), 84–93 (2004)

2. Bin, E., Emek, R., Shurek, G., Ziv, A.: Using a constraint satisfaction formula-
tion and solution techniques for random test program generation. IBM Systems
Journal 41(3), 386–402 (2002)

3. Bose, M., Shin, J., Rudnick, E.M., Dukes, T., Abadir, M.: A genetic approach to
automatic bias generation for biased random instruction generation. In: Proceed-
ings of the 2001 Congress on Evolutionary Computation, CEC 2001, pp. 442–448
(May 2001)

4. Gutkovich, B., Moss, A.: CP with architectural state lookup for functional test gen-
eration. In: Proceedings of the High-Level Design Validation and Test Workshop,
pp. 111–118 (2006)

5. Hennenhoefer, E., Typaldos, M.: The evolution of processor test generation
technology, http://www.obsidiansoft.com/pdf/evolution.pdf

6. Ioannides, C., Barrett, G., Eder, K.: Feedback-based coverage directed test gener-
ation: An industrial evaluation. In: Barner, S., Harris, I., Kroening, D., Raz, O.
(eds.) HVC 2010. LNCS, vol. 6504, pp. 112–128. Springer, Heidelberg (2010)

7. Kalla, R., Sinharoy, B., Starke, W., Floyd, M.: POWER7: IBM’s next-generation
server processor. IEEE Micro 30(2), 7–15 (2010)

8. Katz, Y., Rimon, M., Ziv, A.: Generating instruction streams using abstract CSP.
In: Proceedings of the 2012 Design, Automation and Test in Europe Conference,
pp. 15–20 (March 2012)

9. Katz, Y., Rimon, M., Ziv, A.: A novel approach for implementing microarchitec-
tural verification plans in processor designs. In: Biere, A., Nahir, A., Vos, T. (eds.)
HVC 2012. LNCS, vol. 7857, pp. 148–161. Springer, Heidelberg (2013)

10. Marick, B.: The Craft of Software Testing, Subsystem Testing Including Object-
Based and Object-Oriented Testing. Prentice-Hall (1985)

11. Mishra, P., Dutt, N.: Automatic functional test program generation for pipelined
processors using model checking. In: Seventh Annual IEEE International Workshop
on High-Level Design Validation and Test, pp. 99–103 (October 2002)

12. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann (1997)

13. Certitude functional qualification system,
http://www.springsoft.com/products/functional-qualification/certitude

http://www.obsidiansoft.com/pdf/evolution.pdf
http://www.springsoft.com/products/functional-qualification/certitude

Combined Bounded and Symbolic Model

Checking for Incomplete Timed Systems�

Georges Morbé, Christian Miller, Christoph Scholl, and Bernd Becker

Department of Computer Science, University of Freiburg, Freiburg, Germany
{morbe,millerc,scholl,becker}@informatik.uni-freiburg.de

Abstract. We present a hybrid model checking algorithm for incom-
plete timed systems where parts of the system are unspecified (so-called
black boxes). Here, we answer the question of unrealisability, i.e., “Is
there a path violating a safety property regardless of the implemen-
tation of the black boxes?” Existing bounded model checking (BMC)
approaches for incomplete timed systems exploit the power of modern
SMT solvers, but might be too coarse as an abstraction for certain prob-
lem instances. On the other hand, symbolic model checking (SMC) for
incomplete timed systems is more accurate, but may fail due to the size
of the explored state space. In this work, we propose a tight integration
of a backward SMC routine with a forward BMC procedure leveraging
the strengths of both worlds. The symbolic model checker is hereby used
to compute an enlarged target which we then try to hit using BMC. We
use learning strategies to guide the SMT solver’s search into the right
direction and manipulate the enlarged target to improve the overall accu-
racy of the current verification run. Our experimental results show that
the hybrid approach is able to verify incomplete timed systems which
are out of the scope for BMC and can neither be solved in reasonable
time using SMC. Furthermore, our approach compares favourably with
UPPAAL-TIGA when considering timed games as a special case of the
unrealisability problem.

1 Introduction
Real-time systems appear in many areas of life, such as time-critical communica-
tion protocols or embedded controllers for automobiles. Here, in addition to the
logical result, the time when the result is produced is relevant. The correctness
of timing constraints is even more important for medical devices or for safety-
critical systems as they appear in the transportation domain. For this reason it
is crucial to perform formal verification of safety-critical systems. Moreover, as
these systems steadily grow in complexity, verifying their correctness becomes
harder and increasingly more important. Nowadays, timed automata (TAs) [2,1],
which are an extension of conventional discrete automata by real-valued clock
variables, are a common model for real-time systems and have become a standard
in industry.

� This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 30–47, 2014.
c© Springer International Publishing Switzerland 2014

Combined Bounded and Symbolic Model Checking 31

In this work, we focus on the verification of incomplete timed systems, i.e.,
timed systems that contain unknown components (so-called black boxes). The
purpose is to add a layer of abstraction if a design is too large to verify in
its entirety, or to allow to start the verification process earlier when certain
components of the design are only partially completed. Here, we aim to refute
the realisability of a property, that is, we tell the designer, no matter how you
implement the unknown parts of the system, the property will always fail. To put
it in other words, the error is already in the implemented system. More formally,
we prove, given an incomplete system T and a safety property φ (unsafe states
are not reachable), that no matter what the black box BB looks like, the parallel
composition of T and BB cannot satify φ. If this is the case, then we call the
property unrealisable.

The unrealisability problem generalises the controller synthesis problem
[14,4,11]. Here, the system communicates with an unknown controller which
is more powerful than the remaining system in the sense that it may always
enforce an immediate interaction with the system. In contrast to the controller
synthesis problem, our scenario defines the black box as an equitable part of the
system having the same impact as the implemented components. (However, we
will see later, that it is also possible to define special black boxes having the
same power as the unknown controller in timed games.)

Whereas some approaches to controller synthesis look into properties like LTL
[12], TCTL [13] or MTL [6], we restrict our attention to safety properties which
state the unreachability of certain discrete states in a timed system (as already
mentioned above).

One possible method to prove unrealisability of properties in incomplete timed
systems is bounded model checking (BMC). Generally, BMC starts with the
initial state, iteratively unfolds the system k times, adds the negated property,
and converts the BMC instance into a satisfiability problem which is solved
by an appropriate solver. If the k-th instance is satisfiable, a path of length k
violating the property has been found. BMC instances for real-time systems are
typically encoded into so-called SAT-Modulo-Theory (SMT) formulas, since they
are augmented with continuous time constraints over real-valued variables. BMC
for incomplete timed systems is studied in [16,17,15]. In this paper, we use their
encoding where the verification problem is limited to those transitions which are
independent of the behaviour of the black boxes. This approach still yields SMT
formulas which typically are easy to solve, however, due to its approximative
nature this encoding limits the class of problems which can be verified. A second
option for solving the unrealisability problem is symbolic model checking (SMC)
for incomplete timed systems. In general, beginning with those states directly
violating the property, SMC performs a backwards traversal of the state space
using adequate data structures for the symbolic representation and manipulation
of the state space and the transition functions. If at some point, the so far
explored states include the initial state, there exists a path leading to an unsafe
state. For our work, we use the symbolic model checking algorithm presented
in [19]. It verifies incomplete finite state machines with time (FSMT) [20,18],

32 G. Morbé et al.

which is a formal model to represent incomplete real-time systems1. State sets
and transition functions are represented using so-called LinAIGs [9,22,8], a data
structure which can hold arbitrary Boolean combinations of Boolean variables
and linear constraints over real-valued variables. SMC for incomplete FSMTs is
more accurate than BMC for incomplete timed systems, however, it often fails
due to the size of the state sets which are generated along the verification task.

In this paper, we adopt the idea of combining BMC and SMC for incomplete
discrete systems [21] to the timed world. In the timed world the main challenge is
that various (known and unknown) components of the system can influence the
time evolution by enforcing and/or preventing certain discrete steps. We present
a verification algorithm where we use SMC for incomplete FSMTs to compute
an enlarged target which we then try to hit using BMC. This tight integration
in combination with learning strategies and on-the-fly manipulations of the en-
larged target makes it possible to verify incomplete timed systems, which are out
of reach for BMC respectively SMC alone. In other words, our approach makes
BMC for incomplete timed systems more accurate and prevents SMC for in-
complete timed systems from exploring state sets which are too big to verify. To
show the efficacy of our hybrid verification technique, we give preliminary exper-
imental results using multiple parameterized timed benchmarks. Furthermore,
our results show that we are able to outperform the state-of-the-art controller
synthesis tool UPPAAL-TIGA, when considering timed games as a special case
of the unrealisability problem.

The paper is structured as follows. In Section 2, we review incomplete net-
works of timed automata and BMC on the one hand, and FSMT-based SMC
on the other hand. Our novel method is given in Section 3. After presenting
experimental results in Section 4 we conclude the paper in Section 5.

2 Preliminaries

2.1 Timed Automata

Real-time systems are often modelled using timed automata (TAs) [1,2], an
extension of conventional automata by a set X of real-valued clock variables to
represent the continuous time. The set of clock constraints C(X) contains atomic
constraints of the form (xi ∼ d) and (xi − xj ∼ d) with d ∈ Q, xi, xj ∈ X and
∼ ∈ {<,≤,=,≥, >}. We consider TAs extended with bounded integer variables.
Let Int be a set of bounded integer variables each having a fixed lower and
upper bound. Let Assign (Int) be the set of assignments to integer variables. Let
C(Int) be a set of constraints of the form (inti ∼ d) and (inti ∼ intj) with d ∈ Z,
∼ ∈ {<,≤,≥, >} and inti, intj ∈ Int. Let Cc(X, Int) be the set of conjunctions
over clock constraints and constraints from C(Int). Using this information we
define a timed automaton as follows:

Definition 1 (Timed Automaton). A timed automaton (TA) is a tuple
〈L, l0, X,Act, Int, lb, ub, E〉 where L is a finite set of locations, l0 ∈ L is an

1 Note that networks of timed automata can easily be transformed into FSMTs.

Combined Bounded and Symbolic Model Checking 33

initial location, X = {x1, . . . , xn} is a finite set of real-valued clock variables,
Act = Actnu ∪ Actu with Actnu ∩ Actu = ∅, Actnu is a finite set of non-urgent
actions and Actu is a finite set of urgent actions, Int = {int1, . . . , intm} is a
finite set of integer variables, lb : Int → Z and ub : Int → Z assign lower
and upper bounds to each inti ∈ Int with lb(inti) ≤ ub(inti) for 1 ≤ i ≤ m,
E ⊆ L×Cc(X, Int)×(Act∪{εu, εnu})×2X×2Assign(Int)×L is a set of transitions
with E = Enu ∪ Eu. Enu = {(l, ge, a, re, Assigne, l

′) ∈ E | a ∈ Actnu ∪ {εnu}}
is the set of non-urgent transitions and Eu = {(l, ge, a, re, Assigne, l

′) ∈ E | a ∈
Actu∪{εu}} is the set of urgent transitions. If for e = (l, ge, a, re, Assigne, l

′) ∈ E
it holds that a ∈ Act, then we call e a transition with an (urgent or non-urgent)
synchronising action, if a ∈ {εu, εnu} then we call e an (urgent or non-urgent)
transition without synchronising action.

A state si = 〈li, νi, μi〉 of a TA is a combination of a location li and a valu-
ation νi of the clock variables and a valuation μi of the integer variables. A TA
may perform a continuous transition, that is, all clock variables evolve over time
with the same rate and neither the location nor the values of the integer variables
change. Discrete transitions describe the change of the location. A discrete transi-
tion happens instantaneously and can only be taken, if its guard is satisfied, that
is, if the transition is enabled. We consider networks of timed automata having an
interleaving semantics, however, transitions labelled with the same action have to
be taken simultaneously. If several transitions without action are enabled at the
same time it is chosen non-deterministically which one is taken.

A discrete transition may be declared as urgent. Whenever an urgent transi-
tion labelled by εu is enabled, the current state must be left without any time
delay. Analogously, whenever in all components containing au-transitions with
au ∈ Actu a transition labelled with au is enabled, then there must not be any
time delay before taking any transition. In literature, location invariants are used
to enforce discrete transitions. However, in [18,19] the authors showed that TAs
having closed invariants can be converted into semantically equivalent TAs using
urgency. The translation consists in adding a supplementary urgent transition
once the upper limit of the invariant is reached. A similar technique is used in
the context of timed games where “forced transitions” labelled with upper limits
of invariants are added in order to prevent one player from forcing the system
into a timelock [3].

2.2 Incomplete Networks of Timed Automata

x ≥ 5 anu

au

au
x ≥ 3
x ≤ 4

anu

l1

l2

l0 BBl3

Fig. 1. Incomplete Timed System

In this paper, we focus on incomplete net-
works of TAs where parts of the system are
not specified (black box (BB)), however, the
interface to the remaining system (white box
(WB)) is defined. Here, we aim to prove the
unrealisability of a safety property. We call
a property unrealisable if there exists no re-
placement of the BB such that the property
holds for the resulting overall design.

34 G. Morbé et al.

The interface of BB components and WB components consists of non-urgent
and urgent synchronisation actions. Since the behaviour of the BB is unknown
it is unclear when the BB is ready to synchronise. In fact, in case of an urgent
action, the BB is even able to stop time evolution of the whole system until the
synchronisation takes place or until the conditions enabling the synchronising
transition are not fulfilled anymore. In other words, allowing the above men-
tioned communication methods to define the interface of the BB, the unknown
parts are able to affect the discrete behaviour of the WB and, in case of urgency,
also may influence their timing behaviour. In the following, we distinguish three
kinds of discrete transitions: f-transitions (also referred to as fixed transitions)
are not labelled with any action synchronising with the BB, nu-transitions are
labelled with a non-urgent action synchronising with the BB, and u-transitions
are labelled with an urgent action synchronising with the BB.

Example 1. Consider the incomplete timed system shown in Fig. 1. The BB
uses a non-urgent action anu and an urgent action au to interact with the imple-
mented system. The nu-transition from l2 to l1 can only be taken if it synchro-
nises with the BB via anu, and thus, the BB is able to influence the behaviour
of the system in that way. Being in location l0, the BB has the power to enforce
the u-transition labelled with au leading to l2 (dashed arrow) when 3 ≤ x ≤ 4.
In that case, time evolution is stopped and a discrete transition has to be taken,
instantaneously. All remaining transitions in the system are f-transitions which
can not be affected through the BBs behaviour.

2.3 Bounded Model Checking of Incomplete Networks of Timed
Automata

Generally, the BMC procedure [5,7] starts with the initial state I0 (superscript
numeral denotes the unfolding depth), iteratively unfolds a system k times by
adding a conjunction of transition relations T i,i+1, and connects the negated
property ¬P k. Finally, the BMC instance is converted into a satisfiability prob-
lem. If an appropriate solver finds the k-th problem instance satisfiable, a path
of length k violating the property has been found.

When proving unrealisability using BMC, the unknown behaviour of the BB
needs an adequate modelling. Taking incomplete networks of TAs into account,
BMC based on fixed transitions [16,17] is one option to solve the unrealisability
problem as long as the system does not contain any u-transitions. The idea is that
the BB can prevent the system from taking the nu-transitions on a path to an
error state (by disabling those transitions). Thus, nu-transitions are omitted in
the search for an error path, which does not depend on the BB behaviour, and the
transition relation is reduced to f-transitions. To encode the transition relation,
we differentiate between a discrete step T i,i+1

jump , which describes all possibilities

of changing a location via f-transitions, and a continuous step T i,i+1
flow , where all

subautomata stay in their locations, and time passes equally for all clocks (for
a detailed description of the BMC encoding please refer to [16,17]). Finally, the

Combined Bounded and Symbolic Model Checking 35

k-th BMC instance is constructed as follows

BMC (k) := I0 ∧
k−1∧
i=0

{
T i,i+1
jump if i is even,

T i,i+1
flow otherwise

∧ ¬P k (1)

using an alternation of discrete and continuous steps and then passed to an
arbitrary SMT solver, which supports the theory of linear arithmetic for integers
and reals. If BMC (k) is satisfiable, there is a run r = 〈s0, s1, . . . , sk〉 of length k
with si = 〈li, νi, μi〉, 0 ≤ i ≤ k and li being a location, νi a clock valuation, and
μi being an integer valuation which does not depend on the BB behaviour and
leads to a state sk that violates the property P .

Whereas this encoding yields easy-to-solve SMT formulas in many cases, the
model in [16] assumes that the BB may only enable and disable transitions in the
WB, but never may enforce transitions in the WB. Thus the BB may not syn-
chronise over urgent actions, i.e., the implemented system may not contain any
u-transitions. This is a really strong restriction and limits the class of problems
that can be verified.

Example 2. In this example, we show that unrealisability proofs based on f-
transitions may be wrong, if u-transitions are present in the WB. We consider
the incomplete timed system given in Fig. 1 and the property that the location
l1 can never be reached. The BMC procedure as defined above confines the
consideration to f-transitions and it would find a path leading to l1 (e.g. 〈l0, x =
0〉 → 〈l0, x = 5〉 → 〈l1, x = 5〉). However, due to the u-transition which is enabled
in location l0 once x reaches the value 3, this error path is not valid for all possible
black box implementations, since the BB may stop time evolution and force the
network to synchronise via au. If afterwards, the BB never synchronises via anu,
then l1 can never be reached, i.e., there is a BB-implementation which fulfills
the property and unrealisability does not hold.

2.4 Symbolic Backward Model Checking Based on FSMTs

The symbolic methods we will use are based on finite state machines with time
(FSMTs) [20,18] which are symbolic representations of networks of TAs well
suited for fully symbolic model checking algorithms. Basically, an FSMT consists
of a set of Boolean location variables Y , a set of real-valued clock variables
X , a set of Boolean input variables I, a predicate init describing the set of
initial states, and a predicate urgent indicating when an urgent transition is
enabled. Each location variable yi ∈ Y is determined by a transition function
δi, and reset conditions resetxi , which deterimine when each clock variable xi is
reset. A state of an FSMT is a valuation of the clock variables and the location
variables. An FSMT performs a discrete step depending on the current state and
the input variables. Here, the location variable yi is set to 0 (1) iff δi evaluates
to 0 (1) and the clock xi is reset iff resetxi evaluates to 1. In a continuous step
time may pass unless the urgent predicate evaluates to 1. FSMTs communicate
by reading each other’s location variables, clock variables, and shared input

36 G. Morbé et al.

variables. In [20] the authors show how to translate timed systems into FSMTs
(integer communication is encoded using Boolean variables which are included
into Y). In [18,19] this translation is extended to incomplete timed systems.
Here, we additionally define a predicate urgentBB , which evaluates to 1 if any
u-transition is enabled.

The symbolic backward model checking algorithm for incomplete timed sys-
tems presented in [19] starts with the negation of a given safety property and
computes predecessor state sets until the initial state is reached. The generated
state sets contain those states from which the negated property is reachable
regardless of the behaviour of the BB. Similarly to BMC, we define two kinds
of predecessor operators. Starting from a state set φ the discrete predecessor
operator computes a state set Pred(φ) containing only states from which φ is
reachable taking a discrete transition in the WB independently from any BB
behaviour. The BB can not prevent the WB from taking f-transitions and thus,
only those are considered for the computation of the discrete predecessor (u-
transitions and nu-transitions can be blocked when the BB is not sending the
appropriate synchronisation action). The continuous predecessor operator com-
putes a state set Prec(φ), which contains only states from which φ is reachable
regardless of the behaviour of the BB when performing continuous transitions.
A state s is added to Prec(φ) if it is possible to reach φ from s through time
evolution which may not be blocked by the BB. Here we have to account for the
fact that the BB is able to influence the timing behaviour of the WB by sending
urgent actions and thus enabling u-transitions which stop time evolution. Con-
sider the case that a state sφ in φ is reachable through time evolution starting in
s, but there is another state t on the way between s and sφ which is the source
of an enabled u-transition labelled with the urgent action au. Now we have to
consider two cases in order to decide whether s can be included into Prec(φ):

(1) Assume that all enabled u-transitions labelled with au and starting from t
lead to some state which is not in φ. By sending the action au the BB can
cause time evolution to stop and it can impede the WB from reaching φ
starting in s. Thus we may not include s into Prec(φ).

(2) Assume that there is some enabled u-transition that starts in t, is labelled
with au, and leads to a state t′′ ∈ φ. In that case, the choice of the BB
is irrelevant, since in both cases (synchronising via au gives the WB the
opportunity to move to t′′ ∈ φ, not synchronising leads to φ through time
evolution) the resulting state is included in φ. Thus, in this case, and if there
is no other state t̃ on the way from s to sφ fulfilling the condition of case
(1), we may include s into Prec(φ) and, since we are only interested in the
question from which states we may reach φ regardless of the BB behaviour
(and not how), we do not need to consider stopping time evolution at t due
to urgent synchronisation with the BB.

In order to know whether the WB is able to force u-transitions into some state
in φ or not, which is crucial for the continuous predecessor operator, SMC has
to be able to compute a special discrete predecessor state set of φ only over u-
transitions (in the following named pre-urgent (PU) respectively Preud(φ)). Put

Combined Bounded and Symbolic Model Checking 37

in other words, a state s is included into Preud(φ) if for all urgent actions on
enabled outgoing transitions from s, there is at least one enabled u-transition
in the WB synchronising over this action, which leads to φ. For details on the
exact computation of Pred(φ), Prec(φ), and Preud(φ) we refer to [19].

Example 3. As an example consider again the incomplete timed system of Fig. 1
and a state set φ1 with 〈l1, x ≥ 0〉 ∈ φ1. Then the state s1 = 〈l2, x ≥ 0〉 is no
discrete predecessor of φ1, s1 /∈ Pred(φ1), since it is backwards reachable from φ1

only over the nu-transition (l2, l1), which can be disabled by the BB not sending
the action anu. State s2 = 〈l0, x ≥ 5〉, reachable via the f-transition (l0, l1) is the
only discrete predecessor of φ1, Pred(φ1) = {s2}, as it is the only state reachable
over f-transitions.

Consider now another state set φ2 with 〈l2, x ≥ 0〉 ∈ φ2 and 〈l0, x ≥ 5〉 ∈ φ2.
We ask the question whether the state s0 = 〈l0, x = 0〉 can be included into
Prec(φ2). When the BB does not interfere by sending the urgent action au,
〈l0, x ≥ 5〉 and thus φ2 is reachable from s0 through normal time passing. By
sending au in any state s3 = 〈l0, x = c〉 with 3 ≤ c ≤ 4, the BB can stop time
evolution. However, in that case the WB can take the enabled u-transition (l0, l2)
leading to the state 〈l2, x = c〉 which is in φ2 (since 〈l2, x = c〉 ∈ φ2, s3 is in
pre-urgent of φ2, i.e., s3 ∈ Preud(φ2)). Hence state set φ2 is reachable starting in
s0 independently from the BB behaviour and thus, s0 ∈ Prec(φ2).

3 Hybrid Verification of Incomplete Real-Time Systems

In this section we present a hybrid BMC/SMC algorithm to prove unrealisability
in incomplete networks of TAs which (1) makes it possible for BMC to handle
u-transitions and (2) avoids full SMC runs possibly exceeding resources.

To this end, we extend the BMC encoding given in Section 2.3 by the possibil-
ity to handle urgency. We modified the initial state and the transition relations
in a way that time evolution is blocked immediately (i.e. the length of the time
evolution is enforced to be 0) whenever either an urgent transition is enabled or
an urgent synchronisation within WB components can take place. We call such
a state where time evolution has to be blocked immediately an urgent state. Fur-
thermore, time evolution started in a non-urgent state is stopped when an urgent
state is reached.2 BMC as defined above computes a path based on f-transitions
without considering the timing constraints imposed by u-transitions. In that way,
BMC over-approximates the set of possible runs leading to an error state, however,
our novel approach excludes spurious error paths by using SMC methods.

The idea of the overall algorithm combining BMC and SMC is as follows:
We use SMC to compute an enlarged target, that is a symbolic representation
of states from which there exists a path to the negated property no matter
how the BB is implemented. We then try to hit this target by searching a path
via f-transitions which starts in the initial state of the incomplete network and

2 Since we need a well-defined starting point in time for the urgent state, we forbid
constraints with ‘>’ instead of ‘≥’ guarding any urgent transition.

38 G. Morbé et al.

finally ends in one of the states of the enlarged target. Whenever along this path
there is a state s with an enabled u-transition, we additionally test whether for
all urgent actions on enabled outgoing transitions from s, there is at least one
enabled u-transition in the WB, synchronising over this action, which leads to
the enlarged target. In this case we say “the WB can force the u-transitions into
the enlarged target”. Then the decision of the BB is irrelevant and the error
state is reached in every case. If not, we have to extend the BMC problem by
additional information learnt from SMC.

In the following, we describe the algorithm in general and then give a detailed
description of the interaction with the enlarged target and the pre-urgent state
set, respectively.

3.1 Overall Algorithm

Algorithm 1 shows the procedure to prove unrealisability of a property in an
incomplete network of TAs, and consists of two steps, in the first step (lines 5 to
17) BMC is used to search for a fixed path, reaching ET, based on f-transitions,
and in the second step, using SMC methods, it is checked whether the WB can
force all enabled u-transitions along this error path candidate into ET (lines 20
to 31). To this end, we compute the set Preud(ET) of all states which have the
property that the WB can force all outgoing u-transitions into the enlarged target
and check whether all states on the error path candidate, which have enabled
u-transitions, are included in Preud(ET). We call this test the “PU inclusion
check”. The enlargement of ET and the necessitated manipulations of the SMT
solver are described in Algorithm 2.

We introduce a set ΠET holding the conflict clauses, which are generated
after an unsuccessful inclusion check of the enlarged target. Next, we store in
a set ΠPU additional constraints resulting from the PU inclusion check, which
restrict the continuous transitions of future BMC runs. Furthermore, let BMC
be an SMT formula representing the current BMC instance and nr of fixed paths
a counter, storing the number of so far explored paths based on f-transitions.
Lastly, we use a predefined number K which limits the number of BMC steps.
In informal words, K defines the influence of BMC in the combined approach.
As a special case consider K = 0 where a pure SMC run is performed.

After initialising the procedure (lines 1–2), the enlarged target (ET) is com-
puted (line 3) by performing a predefined number (#stepsinit) of continuous and
discrete backward steps (Prec and Pred) as described in Section 2.4, using the
negated property as a starting point. In lines 5 to 17 the algorithm searches
for a path based on f-transitions. When constructing the BMC formula we omit
the negated property, and thus, the pure BMC instance (i.e. the BMC instance
without any additional conflict clauses) is naturally satisfiable. The state (as-
signment to location variables, clocks variables and integer variables) computed
by the SMT solver at the end of the last unfolding is checked for inclusion in ET
(line 8). If this check is successful, a path based on f-transitions has been found
and we continue with the next step of the algorithm. However, in the negative
case a conflict clause, which forbids the current assignment to the state variables

Combined Bounded and Symbolic Model Checking 39

Algorithm 1. Hybrid Algorithm BMC–SMC

1: ΠET = ∅; ΠPU = ∅; k = 0; BMC = I0; nr of fixed paths = 0;
2: add transition relation to BMC();
3: compute ET(#stepsinit);
4: while true do
5: fixed path found = false;
6: while !fixed path found do
7: if SMT solve(BMC) == SAT then
8: if is in ET(state vars(k)) then
9: fixed path found := true; nr of fixed paths++;
10: else
11: π = generate ET cc; ΠET = ΠET ∪ π; add to solver(π, k);

12: else
13: k = k + 1;
14: if k < K then
15: add transition relation to BMC();
16: remove from solver(ΠET , k − 1); add to solver(ΠET , k);
17: if k is continuous transition then add to solver(ΠPU , k);

18: else
19: enlarge ET and reset(#steps);

20: fixed path valid = true;
21: while fixed path valid && untested continuous transition si → si+1 exists

along fixed path do
22: if !check PU(si, si+1) then
23: fixed path valid = false;
24: if nr of fixed paths < max fixed paths then
25: π = generate PU constraint;
26: for j=0. . . k do
27: if j is continuous transition then
28: add to solver(π, j);

29: ΠPU = ΠPU ∪ π;
30: else
31: enlarge ET and reset(#steps);

32: if fixed path valid then return Unrealisability proven

at the end of the last unfolding is generated, added to the BMC problem and
thus, prevents the solver to explore the same path of length k again (see Sec-
tion 3.2 for details). The solver is invoked again and the new solution for the
state variables of the last unfolding is tested, etc.. This procedure is repeated
until either a path of length k leading into ET has been found, or the BMC
instance including all generated conflict clauses gets unsatisfiable. In the latter
case, there exists no path of length k into ET and we continue the search for
k + 1. The generated conflict clauses exclude states which are not part of ET,
and thus, they contain valuable information for future unfolding depths. Since
the index of the last unfolding has increased by 1, prior to the new search, we

40 G. Morbé et al.

Algorithm 2. enlarge ET and reset(#steps)

1: enlarge ET(#steps);
2: if I ∩ET 	= ∅ then return Unrealisability proven

3: else if fixed point(ET) then return Unrealisability not proven

4: reduce k = min(#steps− 1, k); k = k − reduce k;
5: remove transition relations(reduce k);
6: update ET cc(ΠET); add to solver(ΠET , k);
7: remove PU constraints from solver(); ΠPU = ∅;
8: nr of fixed paths=0;

remove all conflict clauses having time index k and add them again with the
incremented time index k + 1 (line 16).

If it is not possible to find a fixed path within K steps (line 18), the en-
larged target is further extended by ’#steps’ backward steps and the combined
procedure is reset (see line 19 and Algorithm 2).

Once a fixed path leading to ET is found (line 9), Algorithm 1 continues to
check whether the BB is able to force the implemented system to leave that
path by sending urgent actions (lines 20 to 31). That is, for each continuous
transition along the path, we test whether there is any u-transition enabled
during this time step, and – in a positive case – whether the WB can force all
enabled u-transitions into ET (see Section 3.3 for details on the interaction with
this state set). If this test is successful for all continuous transitions, the current
fixed error path is valid and unrealisability of the system has been proven. Once
this test fails for some continuous transition (line 22), the BB is able to enforce
a transition leaving the current fixed error path. To avoid this situation in the
future, a constraint is generated and added to ΠPU (lines 25 to 29). Since the
current fixed error path is not valid, the algorithm starts searching for a new
fixed path taking all conflict clauses included in ΠET and all constraints in ΠPU

into account.
It may be the case that the current ET is too small to lead to a result (if

the BB is able to enforce transitions leaving the current fixed error path into
states not in ET). Therefore from time to time (when a predefined amount of
fixed paths using the same ET has been explored) we enlarge the target further
(line 31). In that case, the overall accuracy is increased by expanding the ET
which in turn necessitates a restart of the procedure.

Algorithm 2 performs a target enlargement (line 1) followed by necessary
manipulations of the BMC instance. After the target enlargement we check in
line 2 whether the new ET already contains some initial states which proves
unrealisability (line 2). A fixed point check determines whether new states could
be added to the enlarged target. If not, it is clear that we will never be able
to prove unrealisability (line 3). However, in case new states could be added,
the algorithm is restarted using the new ET as a basis after removing the last
#steps− 1 transition relations from the BMC problem in lines 4–5 (since it has
been proven that there exists no fixed paths at previous unfolding depths). In

Combined Bounded and Symbolic Model Checking 41

order to keep as much learnt information as possible for the next search of a fixed
path, we update ΠET in update ET cc() as follows: For each conflict clause in
ΠET (which describes a state set not belonging to the old ET) we test whether
it still describes a state set not belonging to the extended ET. If the outcome
of the test is negative, we have to remove the conflict clause from ΠET . At
the end, the updated ET conflict clauses again describe state sets which should
be excluded from the solvers search and the conflict clauses are added to the
last time frame k (line 6). In contrast, the so far generated PU constraints limit
the timing behaviour of continuous transitions in BMC based on the old ET and
thus, they might prevent the solver from finding valid error paths in future runs
(after extending ET). Hence, we remove all PU constraints from the solver and
set ΠPU = ∅ (line 7).

3.2 Enlarged Target Inclusion Check and Conflict Clause
Generation

One connection point of BMC and SMC is a test whether a state sk = 〈lk, νk, μk〉
of the last BMC unfolding is included in ET (line 8 of Algorithm 1). If the test
fails, a conflict clause is generated and passed to the SMT solver to prevent
the search from exploring the same branch again. The inclusion check and the
conflict clause generation is performed in three steps: First, we test whether
there exists any state in ET having location lk. This can be reduced to an SMT
check fixing in ET the location variables y1, . . . , yl to the valuation ξk, which
represents lk. If not, it is clear that sk cannot be part of ET as well and another
possible error path has to be found. As a conflict clause, it would be sufficient to
exclude only ξk, however, we can exclude a larger part of the search space when
lifting the location variables y1, . . . , yl: A location variable yi can be removed
from the conflict clause if the assignment to yi is irrelevant for the SMT check.
As a result, the conflict clause contains only those location variables which are
essential to exclude lk and additionally excludes further states which are not part
of ET. However, if ET contains states having the location lk, the second step
tests for the integer valuation μk. In a negative case, the conflict clause forbids
〈lk, μk〉. Otherwise, a third test includes the valuation νk of the clock variables.
If this SMT check succeeds as well, sk is part of ET and a fixed error path hitting
ET has been found. If not, instead of sk, we can exclude 〈lk, Z, μk〉 /∈ ET with
Z being a clock zone which contains νk. We obtain Z by a conjunction of all
linear clock constraints of ET which are satisfied by νk and the negations of all
clock constraints which are not satisfied by νk.

3.3 Pre-Urgent Inclusion Check and Conflict Constraint Generation

In contrast to the ET inclusion check, where one specific state sk = 〈lk, νk, μk〉
was considered, the check whether a u-transition leads to ET needs to be per-
formed for all states in which a u-transition is enabled. The PU inclusion check
takes as an input a complete continuous BMC step of length λ from the state

42 G. Morbé et al.

si = 〈l, ν, μ〉 to its successor state si+1 = 〈l, ν + λ, μ〉 along the current path
based on f-transitions. Using the urgentBB predicate of the incomplete FSMT,

x ≥ 5 anu

au

au
x ≥ 3
x ≤ 4

anu

l1

l2

l0

ET1

BB

ET0

l3

Fig. 2. Example

SMC computes the set of states φu in which
a u-transition is enabled along this continu-
ous transition. If φu is empty, the BB is not
able to enforce the WB to leave this path, and
the procedure simply returns true. If not, the
procedure checks whether φu is completely
included in Preud(ET), that is, the WB is able
to force all u-transitions emerging from states
in φu into ET. In a positive case the pro-
cedure returns true and continues with the
succeeding continuous transition of the can-
didate error path. However, if there is some
state s in φu, such that the WB is not able to force the u-transitions starting
in s into ET, we generate a constraint which prevents the SMT solver to take
the same continuous transition in future BMC runs. To this purpose, through
SMT solving, we pick one single state s̃ ∈ φu \ Preud(ET), and similarly to the

ET conflict clause generation, we compute a state set φ̃ with φ̃∩Preud(ET) = ∅,
and furthermore restrict this set to states which are source of a u-transition by
using the urgentBB predicate again. In this way, we obtain a critical state set

〈l,
n∧

i=1

(ai ≤ xi ≤ bi), μ〉 which must be avoided in future continuous steps. To

avoid the critical state set, we add to each continuous time frame of the BMC
problem a constraint which is a conjunction of the following two conditions:
(a) If we are in location l with integer valuation μ and the valuation of at least

one clock variable xj of the starting point of a continuous transition is lower
than aj , then time passing has to be stopped before all clock variables xk

obtain valuations greater than ak. In this way, reaching the critical state set
through time evolution is prevented.[

(si = l) ∧ (inti = μ) ∧
(n∨
j=1

(xi
j < aj)

)]
=⇒

(n∨
j=1

(xi+1
j ≤ aj)

)
(b) It might be possible that a state of the critical state set is reached through

a discrete transition. In this case, we have to ensure that time must not
proceed, that is, another discrete transition must be taken immediately.[

(si = l) ∧ (inti = μ) ∧
(n∧
j=1

(aj ≤ xi
j ≤ bj)

)]
=⇒

(n∧
j=1

(xi+1
j = xi

j)
)

We consider the example shown in Figure 2 and the property that location l3
can never be reached. Assume that initially the enlarged target (ET0) contains
only the location l3. Next, BMC finds a path based on f-transitions leading into
ET0 as follows:

pfix0 = 〈l0, x = 0〉 → 〈l0, x = 5〉 → 〈l1, x = 5〉 → ET0

Combined Bounded and Symbolic Model Checking 43

During the time step, the BB may enforce the u-transition eu from l0 to l2 when
x has a value between 3 and 4. To check whether pfix0 is still valid in this situation
we perform the PU inclusion check for the time step 〈l0, x = 0〉 → 〈l0, x = 5〉
which tests whether 〈l0, 3 ≤ x ≤ 4〉 is included in Preud(ET0) = ∅. Obviously,
this is not the case. To prevent time steps from touching 〈l0, 3 ≤ x ≤ 4〉, we add
the constraint[
(si = l0)∧(xi < 3) =⇒ (xi+1 ≤ 3)

]
∧
[
(si = l0)∧(3 ≤ xi ≤ 4) =⇒ (xi+1 = xi)

]
to the time step of any BMC unfolding depth. However, using these constraints,
BMC is not able to find another fixed path leading to ET0 and thus, the proce-
dure is rerun using the expanded enlarged target ET1, containing l1, l2, and l3.
The new fixed path found by the SMT-solver is

pfix1 = 〈l0, x = 0〉 → 〈l0, x = 5〉 → ET1

Again, being in location l0 with x = 3 there is a u-transition eu which the BB can
enforce to be taken. However, using ET1, the pre-urgent inclusion check succeeds
since 〈l0, 3 ≤ x ≤ 4〉 is included in Preud(ET1) = {〈l0, 3 ≤ x ≤ 4〉}. To put it
in words, no matter whether the BB synchronises on au or not, the enlarged
target can always be reached either using pfix1 or eu and, as a consequence, the
unrealisability has been proven.

Theorem 1. An error path π found by Algorithm 1 is valid for all possible BB
implementations.

Proof (sketch). π is based on fixed transitions and each u-transition along π is
leading to ET. Assume that the SMC methods are correct [19], then ET contains
only states which lead to states violating the property for all implementations
of the BB. The BB cannot influence fixed transitions, and thus, the only way
the BB can enforce the system to leave π is by synchronising over u-transitions.
However, since the WB can force all u-transitions which are enabled along π into
ET, a state violating the property is reached regardless of the behaviour of the
BB, and thus, the property is unrealisable.

Thrm. 1 proves the soundness of the approach. Note that Algorithm 1 is only
complete, if we assume that (1) the safety property does not contain disjunctions
and (2) the BB has the ability to make different decisions depending on the state
of the WB. For this the BB has to be able to read the state of the WB or to infer
the state of the WB (e.g. by reading synchronization actions which are internal
to the WB). (This assumption is implicitly made in classical controller synthesis
approaches as well [4,11].)

4 Experiments

To evaluate our hybrid approach for the unrealisability proof in incomplete timed
systems we combined the BMC tool timemachine [16,15] which uses Yices [10]

44 G. Morbé et al.

as underlying SMT solver and the SMC tool fsmtMC [20,19] which is based on
LinAIGs [9,22,8] as the core data structure. We extended timemachine by the
encoding of urgency and implemented the ET and PU routines using the methods
provided by fsmtMC.

We use extended versions of the parameterizable arbiter [20,19] and cpp [19]
benchmarks. The arbiter benchmark models n processes which try to access
a shared resource and are controlled by an erroneous distributed arbiter and
one counter module yielding 2n+ 1 components in total. We model all but two
processes as a BB and prove the unrealisability of the property that the two
processes cannot access the shared resource at the same time. The cpp bench-
mark models a ring of n parallel processes where each component communicates
with its neighbours. We model 1

2n successive components as a BB and prove
the unrealisability of the property that the first two components never enter an
unsafe location at the same time.

Table 1. Results

fsmtMC hyVer

TA time time BMC SMC ET/CC PU/C

o
ri
g
.
A
rb

it
e
r 5 161.0 53.9 3 10 34/28 5/5

10 2064.5 55.3 3 10 42/36 5/5
12 5932.3 26.6 7 8 33/28 5/4
13 - 32.0 7 8 32/27 5/4
15 - 28.3 7 8 32/27 5/4
25 - 75.4 3 10 40/34 5/5
30 - 87.9 3 10 39/33 5/5

C
P
P

4 3.0 1.3 5 2 7/5 1/1
5 - 2.4 5 2 7/5 1/1
6 232.6 3.5 5 2 7/5 1/1
7 - 5.5 5 2 7/5 1/1

23 - 156.8 5 2 7/5 1/1
24 - 372.1 5 2 6/4 1/1

We compare our hybrid approach
with pure SMC. Since all tested
benchmarks use urgent synchroni-
sation in their BB interface,
timemachine was not able to prove
the unrealisability of any benchmark
instance. It is neither possible to
solve the unrealisability problem of
our benchmark set using controller
synthesis methods, since timed games
are a special case of our scenario
where the unknown controller has
more power than the remaining com-
ponents. However, we are able to
modify the arbiter benchmark (by
changing the power of the individual components within the network) making it
possible to construct a semantically equivalent timed game. Using this modified
benchmark, we are able to compare the results of our combined method to those
obtained using the state-of-the-art controller synthesis tool UPPAAL-TIGA.

To test our prototype implementation we used an AMD Opteron processor
running on 2.3 GHz and having 64 GB RAM. We put a time limit of 2 CPU
hours and a memory limit of 2 GB.

Table 1 compares the runtime of pure SMC (fsmtMC) with our hybrid ap-
proach (hyVer). The number of instantiated components of the respective bench-
mark is given in Column 1 (TA) followed by the runtime of fsmtMC in Column
2. Additionally to the runtime of hyVer (time), we report the number of forward
steps (BMC) and backward steps (SMC) in order to successfully find an error
path which proves the unrealisability. Furthermore, the table gives the number
of ET inclusion checks and the resulting conflict clauses (ET/CC), analogously
we give the number of PU inclusion checks and resulting constraints (PU/C).

Combined Bounded and Symbolic Model Checking 45

The hybrid approach outperforms pure SMC for both the orig. arbiter and
the cpp benchmark sets. Using SMC methods, the arbiter benchmark ran into
timeouts for 13 processes and beyond, however hyVer was able to complete
the verification task for up to 30 processes in a reasonable amount of time. A
similar picture is valid for the cpp benchmark set. Here, SMC fails to prove
unrealisability for instances having more than 6 processes whereas hyVer is able
to complete the task within the given timeout for up to 24 processes.

In this setting, we used the negated property as the initial ET (that is,
#stepsinit = 0). Later on, ET is always expanded by one discrete symbolic
step followed by one continuous symbolic step (#steps = 2). max fixed paths
is set to 1. We pick out three examples to explain the detailed results of our
combined approach. First, consider the arbiter benchmark with 5 instantiated
components. For this example, 5 fixed paths are discarded, since a continuous
transition on the fixed path passes through a state in which a u-transition not
leading to ET is enabled. The sixth candidate path is a valid error path, since it
does not contain any state which is the source of a u-transition. In total, 28 ET
conflict clauses are needed to find the candidate paths (6 ET inclusion checks are
successful). The length of the valid path is the sum of the number of BMC steps
and the number of SMC steps (in this example the length is 13). For the original
arbiter benchmark having 12 instantiated components, the algorithm discards
only 4 fixed paths and the fifth PU inclusion check is successful. In this case the
final path contains a state which is the source of a u-transition, but using SMC
it is proved that this transition leads into the ET.

For the cpp benchmark all paths found by BMC do not contain any states
which are sources of a u-transition, i.e., the effect of u-transitions is handled by
SMC only. Two additional SMC backward steps (discrete and continuous) are
enough to find a valid fixed error path.

Table 2. Modified Arbiter Benchmark

fsmtMC TIGA hyVer

TA BB time time time BMC SMC ET/CC PU/C

5 3 1052.1 0.1 1.0 0 12 1/0 0/0
5 2 - 0.2 1.4 3 8 2/1 0/0
5 1 - 4.1 2.8 3 12 2/1 0/0

6 4 1707.6 0.1 1.3 0 14 1/0 0/0
6 3 - 0.2 1.5 3 8 2/1 0/0
6 2 - 4.3 4.7 0 20 1/0 0/0
6 1 - 761.3 7.4 0 20 1/0 0/0

7 5 1502.9 0.1 2.5 0 22 1/0 0/0
7 4 - 0.2 2.2 0 16 1/0 0/0
7 3 - 4.4 2.4 5 10 11/10 0/0
7 2 - 901.9 25.5 5 8 28/26 1/1
7 1 - - 149.6 5 10 12/12 1/1

8 6 2952.9 0.1 2.1 6 22 12/11 1/0
8 5 - 0.2 2.9 0 22 1/0 0/0
8 4 - 4.6 2.6 5 10 11/10 0/0
8 3 - 1010.1 41.9 7 8 194/192 1/1
8 2 - - 127.7 3 10 125/123 1/1
8 1 - - 1280.1 15 10 234/231 2/2

Table 2 shows the re-
sults of the modified ar-
biter benchmark when
using fsmtMC, TIGA,
and hyVer. Again, TA
denotes the number of
instantiated components,
however, in this set-
ting we vary the num-
ber of black boxed com-
ponents (BB). Column
TIGA reports the run-
time of UPPAAL-TIGA,
the remaining columns of
the table are structured
as before. We slightly
changed the setting for
this set of experiments.

46 G. Morbé et al.

In particular, as a further optimisation in the initial target enlargement pro-
cedure, we only perform continuous steps, if performing discrete steps does not
add new states to ET. In that way, for many instances the paths found by BMC
do not contain any states which are sources of a u-transition. fsmtMC is only
able to solve benchmarks where the maximum number of components (that is,
all but 2) is abstracted. TIGA can solve more benchmarks than fsmtMC, how-
ever, the runtime increases dramatically for more than 4 WB components. hyVer
is the only tool which is able to solve the whole benchmark set within the given
timeout. It also completes the verification task in significant less time than TIGA
for benchmarks which are solvable by both tools.

We also implemented a version of hyVer where ET is converted into an SMT
formula and then directly connected to the BMC formula to avoid possibly mul-
tiple inclusion checks in order to generate one fixed error path. However, this
version was not competitive compared to the procedure depicted in Algorithm 1
and justifies to perform inclusion checks and the usage of conflict clauses.

5 Conclusion

We presented a hybrid model checking algorithm to prove unrealisability for
incomplete real-time systems. We use backward SMC methods to compute an
enlarged target which we then try to hit using SMT-based forward BMC proce-
dures. In order to accelerate the verification process we apply learning strategies
and manipulate the enlarged target along the verification run to improve the
overall accuracy. Our combined approach makes it possible to verify incomplete
timed systems, which can neither be solved using pure BMC due to its inaccu-
racy nor using pure SMC due to the state space explosion problem. Finally, we
showed the efficacy using parameterized incomplete timed benchmark sets. Our
results show advantages compared to UPPAAL-TIGA when we consider timed
games as a special case of the unrealisability problem.

References

1. Alur, R.: Timed automata. Theoretical Computer Science (1999)
2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science

(1994)
3. Behrmann, G., Cougnard, A., David, R., Fleury, E., Larsen, K.G., Lime, D.: Uppaal

tiga user-manual
4. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:

UPPAAL-tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

6. Bouyer, P., Bozzelli, L., Chevalier, F.: Controller synthesis for MTL specifications.
In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 450–464.
Springer, Heidelberg (2006)

Combined Bounded and Symbolic Model Checking 47

7. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Form. Methods Syst. Des (2001)

8. Damm, W., Dierks, H., Disch, S., Hagemann, W., Pigorsch, F., Scholl, C., Wald-
mann, U., Wirtz, B.: Exact and fully symbolic verification of linear hybrid au-
tomata with large discrete state spaces. Sci. Comput. Program. (2012)

9. Damm, W., Disch, S., Hungar, H., Jacobs, S., Pang, J., Pigorsch, F., Scholl, C.,
Waldmann, U., Wirtz, B.: Exact state set representations in the verification of
linear hybrid systems with large discrete state space. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 425–440.
Springer, Heidelberg (2007)

10. Dutertre, B., de Moura, L.: The YICES SMT solver. Tech. rep., Computer Science
Laboratory, SRI International (2006)

11. Ehlers, R., Mattmüller, R., Peter, H.-J.: Combining symbolic representations for
solving timed games. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010.
LNCS, vol. 6246, pp. 107–121. Springer, Heidelberg (2010)

12. Faella, M., La Torre, S., Murano, A.: Automata-theoretic decision of timed
games. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 94–108. Springer,
Heidelberg (2002)

13. Faella, M., La Torre, S., Murano, A.: Dense real-time games. In: LICS (2002)
14. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed

systems (an extended abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995.
LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)

15. Miller, C., Gitina, K., Becker, B.: Bounded model checking of incomplete real-time
systems using quantified smt formulas. In: Proc. of MTV (2011)

16. Miller, C., Gitina, K., Scholl, C., Becker, B.: Bounded model checking of incomplete
networks of timed automata. In: Proc. of MTV (2010)

17. Miller, C., Scholl, C., Becker, B.: Verifying incomplete networks of timed automata.
In: Proc. of MBMV (2011)

18. Morbé, G., Scholl, C.: Fully symbolic tctl model checking for incomplete timed
automata. In: Proc. of AVOCS (2013)

19. Morbé, G., Scholl, C.: Fully symbolic TCTL model checking for complete and
incomplete real-time systems. Reports of SFB/TR 14 AVACS 104, SFB/TR 14
AVACS (September 2014), http://www.avacs.org

20. Morbé, G., Pigorsch, F., Scholl, C.: Fully symbolic model checking for timed au-
tomata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
616–632. Springer, Heidelberg (2011)

21. Nopper, T., Miller, C., Lewis, M.D.T., Becker, B., Scholl, C.: Sat modulo bdd – a
combined verification approach for incomplete designs. In: MBMV (2010)

22. Scholl, C., Disch, S., Pigorsch, F., Kupferschmid, S.: Computing optimized repre-
sentations for non-convex polyhedra by detection and removal of redundant linear
constraints. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 383–397. Springer, Heidelberg (2009)

http://www.avacs.org

DynaMate: Dynamically Inferring Loop Invariants
for Automatic Full Functional Verification

Juan Pablo Galeotti1, Carlo A. Furia2, Eva May1, Gordon Fraser3, and Andreas Zeller1

1 Software Engineering Chair, Saarland University, Saarbrücken, Germany
lastname@cs.uni-saarland.de

2 Chair of Software Engineering, Department of Computer Science, ETH Zurich, Switzerland
caf@inf.ethz.ch

3 Department of Computer Science, University of Sheffield, UK
gordon.fraser@sheffield.ac.uk

Abstract. DYNAMATE is a tool that automatically infers loop invariants and
uses them to prove Java programs correct with respect to a given JML functional
specification. DYNAMATE improves the flexibility of loop invariant inference
by integrating static (proving) and dynamic (testing) techniques with the goal of
combining their complementary strengths. In an experimental evaluation involv-
ing 26 Java methods of java.util annotated with JML pre- and postconditions,
it automatically discharged over 97% of all proof obligations, resulting in auto-
matic complete correctness proofs of 23 out of the 26 methods.

1 The Challenge of Automating Program Verification

Full automation still eludes generic program verification techniques. The neologism
auto-active—a portmanteau of automatic and interactive—has been introduced [11]
to characterize some state-of-the-art tools for the formal verification of arbitrary func-
tional properties of code. SMT-based verifiers such as ESC/Java2 [2], Dafny [10], and
VCC [3] do not depend on a step-by-step interaction with the user, and hence are not
purely interactive tools; but they still require substantially more input than just a pro-
gram and its functional specification (typically given in the form of pre- and postcon-
dition). For programs with loops, loop invariants are a crucial ingredient of any formal
correctness proof; but the support to automatically infer loop invariants is generally
limited and rarely available as part of the same tools used to perform verification. The
general expectation is that users will provide detailed additional annotations (includ-
ing loop invariants) whenever the tool needs them. DYNAMATE aims at providing more
automation in these situations.
How DYNAMATE Works. The DYNAMATE tool presented in this paper combines dif-
ferent techniques with the overall goal of providing fully automatic verification of pro-
grams with loops. The only required input to DYNAMATE is a Java program (method)
annotated with a JML functional specification (pre- and postcondition). DYNAMATE will
try to construct a correctness proof of the program with respect to the specification; to
this end it will infer necessary loop invariants. Even in the cases where it fails to find
all required loop invariants, DYNAMATE still may find some useful invariants and use
them to discard some proof obligations, thus providing partial verification.

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 48–53, 2014.
c© Springer International Publishing Switzerland 2014

DynaMate: Dynamically Inferring Loop Invariants 49

We presented the details of how DYNAMATE works in a companion paper [8].
Figure 1 highlights its components and their high-level interactions: the program and
its JML specification (center) are first fed into a test generator (left, EVOSUITE [6] in
the current implementation), which generates executions covering possible behavior.
Two dynamic invariant detector techniques (top) suggest possible loop invariants, based
both on fixed patterns (DAIKON [5]) and on postconditions (GIN-DYN, a component de-
signed as part of DYNAMATE). The candidates not invalidated by the generated runs are
then fed into a static program verifier (right, ESC/Java2 [2] invoked with the -loopsafe

option for sound verification of unbounded loops). When the verifier cannot produce a
program proof (bottom), the test generator initiates another iteration where it tries to
produce new tests that falsify candidates unproven as of yet.

While any test case generator could work with DYNAMATE, our prototype integrates
the search-based test generator EVOSUITE. Besides being a fully automated tool, a spe-
cific advantage of EVOSUITE is that its genetic algorithm evolves test suites towards
covering all program branches at the same time, and hence infeasible branch conditions
(common in the presence of candidates that are in fact loop invariants, and hence won’t
be falsified) do not ultimately limit search effectiveness. A directed search is also useful
to guide the successive iterations searching for new tests that specifically try to exercise
unproven candidates under new conditions.
Advantages of DYNAMATE. The integration of techniques and tools in DYNAMATE
compensates for individual shortcomings and achieves a greater whole in terms of flex-
ibility and degree of automation. Dynamic techniques are capable of conclusively in-
validating large amounts of loop invariant candidates, thus winnowing a smaller set of
candidate invariants that hold in all executions, and can test candidates in isolation (de-
pendencies are not an issue). This leaves the static verifier with a more manageable
task in terms of number of candidates to check at once. The GIN-DYN component is
an original contribution of DYNAMATE. Based on the observation that loop invariants
can often be seen as weakened forms postconditions [7], GIN-DYN derives loop in-
variant candidates by mutating postconditions. This enables inferring loop invariants
that are not limited to predefined templates but stem from the annotated Java program

Code + Spec

Dynamic Invariant Detector
(DAIKON + GIN-DYN)

Static Program Verifier
(ESC/Java2 using -loopsafe)

Test Generator
(EVOSUITE)

filtered candidatesexecutions

unproved candidates program proof

Fig. 1. How DYNAMATE works

50 J.P. Galeotti et al.

under analysis. DYNAMATE still avails of the advantages of static techniques in terms
of soundness: the static verification module scrutinizes the output of the dynamic parts
until it can verify it (and uses verified invariants to construct a correctness proof).

2 Using DYNAMATE

We briefly present DYNAMATE in action on the implementation of binary search avail-
able in class java.util.Arrays from Java’s JDK. 1

1 /∗@ r e q u i r e s a �= n u l l
2 @ r e q u i r e s TArrays . w i t h i n (a , fromIndex , t o I n d e x)
3 @ r e q u i r e s TArrays . s o r t e d (a , fromIndex , t o I n d e x) ;
4 @ ensures \ r e s u l t ≥ 0 =⇒ a [\ r e s u l t] = key ;
5 @ ensures \ r e s u l t < 0 =⇒ ¬TArrays . ha s (a , fromIndex , to Index , key) ; @∗ /
6 p r i v a t e s t a t i c i n t b i n a r y S e a r c h 0 (i n t [] a , i n t fromIndex , i n t t o Index , i n t key)

Fig. 2. JML specification of the binary search method from java.util. The specification in-
cludes a precondition (requires) and two postconditions (ensures)

The input to DYNAMATE consists of the method binarySearch0 annotated with the
JML specification of Figure 2. Note that predicate has is a shorthand for a quantification
over [fromIndex..toIndex); dealing with quantified invariants is a challenges for fully
automatic verification. When it starts, DYNAMATE opens an HTML report, which shows
the program and specification with all elements (statements or annotations) that trigger
an ESC/Java2 warning highlighted in yellow. Clicking on a highlighted element displays
its current status, including ESC/Java2’s warning messages.

After each iteration of its main loop (Figure 1), DYNAMATE updates the report: el-
ements for which all associated ESC/Java2 warnings have been discharged are high-
lighted in green. In addition, users can inspect the generated loop invariants by clicking
on any loop header. By default only verified loop invariants are shown (in green). Candi-
date invariants can be viewed (in yellow) by de-selecting a check-box. These candidates
have not been falsified by a test, nor have they been verified by ESC/Java2.

Figure 3 shows a report after the first iteration on binarySearch0: DYNAMATE has
proven several simple scalar invariants for the selected loop. These simple invariants
come from predefined templates; they are sufficient to prove the first postcondition
(line 4 in Figure 2) and to show that array accesses are within bounds.

As DYNAMATE continues its search, it uses the postconditions as a basis for more
complex invariants. In the example, the postcondition on line 5 in Figure 2 (correspond-
ing to when the search returns unsuccessfully) mentions predicate ¬has(a,fromIndex,
toIndex, key); DYNAMATE mutates its arguments and checks if any of the muta-
tions are loop invariants. Among many mutations,¬has(a, fromIndex, low, key) and
¬has(a, high + 1, toIndex, key) are valid loop invariants, essential to establishing
the postcondition. DYNAMATE finds them during iteration # 9, validates them, and uses
them to prove the second postcondition. This concludes DYNAMATE’s run, which ter-
minates successfully having achieved full verification. Upon terminating, the tool re-
ports all inferred loop invariants—including those listed in Figure 4—which include
both scalar invariants and quantified ones (obtained by mutating postconditions).

1 DYNAMATE’s output report for this example is available at http://goo.gl/7TxE9d .

http://goo.gl/7TxE9d

DynaMate: Dynamically Inferring Loop Invariants 51

Fig. 3. DYNAMATE’s report after iteration # 1 on binarySearch0. Verified statements and
annotations (first and last highlighted element) are shown in green, unverified ones in yellow.
Loop headers are highlighted in light blue. The right frame shows the proven loop invariants for
the selected loop.

In spite of its brevity in lines of code, automatically verifying binarySearch0 with-
out extra input in the form of loop invariants or other annotations is a task that challenges
most fully-automatic verifiers. In fact, we tried to verify the same method against the
specification in Figure 2 using the state-of-the-art automatic tools INVGEN [9],
BLAST [1], and cccheck [4]. None of them could complete a correctness proof of
binarySearch0 against its full functional specification.

7 fromIndex ≤ low ∧ low ≤ high + 1 ∧ high < toIndex

8 ¬TArrays.has(a,fromIndex,low,key)
9 ¬TArrays.has(a,high+1,toIndex,key)

Fig. 4. Loop invariants inferred by DYNAMATE

3 Empirical Evaluation

We evaluated DYNAMATE on 26 methods with loops from the java.util standard
package of Java, including algorithms operating on data structures such as arrays, lists,
deques, and vectors. To account for the randomized algorithm used by EVOSUITE’s
test-case generator, we ran each example 30 times; column success rate in Table 1 re-
ports the percentage of those runs that found a full correctness proof. The other columns
report means over the 30 runs: the percentage of proven proof obligations2; the num-
ber of iterations of the DYNAMATE algorithm; the number of proven invariants; and the
total running time.

DYNAMATE was never successful only with methods merge0, quicksortPartition,
and sort, for a total of 4 missing necessary invariants, one for each of merge0 and

2 These include pre- and postcondition checks, class invariant checks, and implicit checks for
out-of-bound array accesses and null dereferencing.

52 J.P. Galeotti et al.

quicksortPartition and two for sort. These invariants have a form that is neither
among DAIKON’s templates nor among GIN-DYN’s mutants. We repeated the experi-
ments by manually adding the four missing invariants; as expected, DYNAMATE suc-
cessfully verified the methods.

Since mutating postconditions is a heuristic approach, it is bound to fail on some
examples. However, previous analysis [7] and the results of DYNAMATE’s experiments
suggest that the heuristics if often applicable—and even when it cannot suggest all nec-
essary invariants it often can provide partial, useful instances. In all, we gain in flexi-
bility, but we cannot expect to overcome intrinsic limitations due to dealing with logic
fragments including quantifiers that are undecidable in general.

Table 1. Experimental results for DYNAMATE on methods from java.util.

SUCCESS OBLIGATIONS DYNAMATE INVARIANTS TOTAL
CLASS METHOD RATE PROVEN ITERATIONS PROVEN TIME

ArrayDeque contains 57 % 98 % 7 14 2158 s
ArrayDeque removeFirstOccurrence 53 % 98 % 7 14 2180 s
ArrayDeque removeLastOccurrence 87 % 99 % 9 43 3281 s
ArrayList clear 70 % 95 % 6 9 1524 s
ArrayList indexOf 23 % 91 % 7 16 1914 s
ArrayList lastIndexOf 20 % 93 % 6 14 1574 s
ArrayList remove0 23 % 93 % 7 16 2065 s

Arrays binarySearch0 100 % 100 % 11 30 4200 s
Arrays equals0 100 % 100 % 7 7 2240 s
Arrays fill0 100 % 100 % 6 5 1391 s
Arrays fill1 100 % 100 % 7 15 1880 s
Arrays fillInteger0 100 % 100 % 6 7 1375 s
Arrays fillInteger1 100 % 100 % 7 18 1857 s
Arrays hashCode0 100 % 100 % 2 4 389 s
Arrays hashCodeInteger 100 % 100 % 2 4 343 s
Arrays insertionSort1 100 % 100 % 11 73 4512 s
Arrays merge0 0 % 90 % 11 78 8034 s
Arrays quicksortPartition 0 % 94 % 9 57 5657 s
Arrays vecswap 100 % 100 % 8 18 2698 s

Collections replaceAll 77 % 97 % 6 16 1801 s
Collections sort 0 % 73 % 9 17 3933 s

Vector indexOf1 100 % 100 % 6 24 1698 s
Vector lastIndexOf1 90 % 99 % 7 19 1859 s
Vector removeAllElements 100 % 100 % 5 12 1218 s
Vector removeRange0 63 % 96 % 7 17 2574 s
Vector setSize 100 % 100 % 7 31 2003 s

AVERAGE 72 % 97 % 7 22 2475 s

Many more details on the experiments, as well as a detailed comparison of DYNA-
MATE against state-of-the-art tools are presented in a companion paper [8].

4 Conclusions

DYNAMATE’s prototype is currently quite limited in terms of scalability, as it takes a
considerable amount of time even on structurally simple methods. However, over 65%
of the total time is taken up by testing. Even if dynamic techniques are generally slower
than purely static ones, there are significant margins to improve the implementation for
speed by customizing the test generator (which is currently used as black box) to cater
to DYNAMATE’s special requirements.

These details should not, however, distract us from assessing DYNAMATE’s specific
contributions with the right poise: fully automated program verification features an in-
trinsic formidable complexity; and even the shortest algorithms (in terms of lines of

DynaMate: Dynamically Inferring Loop Invariants 53

code) may require complex invariants [12]. DYNAMATE worked successfully on real
code annotated with non-trivial (often complete) functional correctness specifications.
It automatically built correctness proofs for 23 out of 26 subjects3; and discharged over
97% of all proof obligations on average. These results demonstrate the benefits of in-
tegrating static and dynamic verification techniques with complementary strengths and
shortcomings, and improve over the state of the art in terms of complete automation
and flexibility.

Availability: The current prototype of DYNAMATE is available for download at
http://www.st.cs.uni-saarland.de/dynamate-tool/ . The download page includes
a virtual-machine image with all dependencies as well as scripts to run the examples
mentioned in Section 3.

Acknowledgments. This work was funded by the European Research Council (ERC)
Advanced Grant “SPECMATE – Specification Mining and Testing”. The second author
was partially funded by the Swiss SNF Grant ASII 200021-134976.

References

1. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast.
STTT 9(5-6), 505–525 (2007)

2. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced specification
and verification with JML and eSC/Java2. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363. Springer, Heidelberg
(2006)

3. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42.
Springer, Heidelberg (2009)

4. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully automatic
and scalable array content analysis. In: POPL, pp. 105–118. ACM (2011)

5. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE TSE 27(2), 99–123 (2001)

6. Fraser, G., Arcuri, A.: Evolutionary generation of whole test suites. In: QSIC, pp. 31–40.
IEEE Computer Society (2011)

7. Furia, C.A., Meyer, B., Velder, S.: Loop invariants: Analysis, classification, and examples.
ACM Comp. Sur. 46(3) (2014)

8. Galeotti, J.P., Furia, C.A., May, E., Fraser, G., Zeller, A.: Automating full functional verifi-
cation of programs with loops (submitted, July 2014), http://arxiv.org/abs/1407.5286

9. Gupta, A., Rybalchenko, A.: InvGen: An efficient invariant generator. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg (2009)

10. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer, Hei-
delberg (2010)

11. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification Work-
shop (2010), http://fm.csl.sri.com/UV10/

12. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In:
PLDI, pp. 349–361. ACM (2008)

3 The average success rate is below 23/26 = 88% because not all repeated runs succeeded.

http://www.st.cs.uni-saarland.de/dynamate-tool/
http://arxiv.org/abs/1407.5286
http://fm.csl.sri.com/UV10/

Generating Modulo-2 Linear Invariants

for Hardware Model Checking

Gadi Aleksandrowicz1, Alexander Ivrii1, Oded Margalit1, and Dan Rasin2

1 IBM Research – Haifa, Israel
2 Technion, Israel

Abstract. We present an algorithm to automatically extract inductive
modulo-2 linear invariants from a design. This algorithm makes use of
basic linear algebra and is realized on top of an incremental SAT solver.
The experimental results demonstrate that a large number of designs
possess linear invariants that can be efficiently found by our method.
We study how these invariants can be helpful in the contexts of model
checking and synthesis.

1 Introduction

Automatically extracting and exploiting invariants (Boolean functions that are
constant on all reachable states) is one of the central themes in model checking
[CNQ07,CMB07]. In this paper we are interested in mod-2 linear invariants

n∑
i=1

aixi = b (mod 2), ai, b ∈ {0, 1}.

This class of linear invariants naturally generalizes the class of constant invari-
ants (invariants of the form xi = b) and the class of equivalences and anti-
equivalences (invariants of the form xi xor xj = b).

The main contribution of this work is a method to find the smallest inductive
linear over-approximation of the set of reachable states in the design, that is, the
smallest linear subspace that includes all the initial states and is closed under
transitions.We also show that the orthogonal complement of this subspace can be
naturally identified with the maximal set of mutually inductive linear invariants
that hold on all reachable states. Our algorithm is based on basic linear algebra
and makes use of an incremental SAT solver. We show that this approach works
reasonably well in practice, and we discuss a series of optimizations to improve
it further.

We have evaluated the algorithm on HWMCC’11 and HWMCC’13 bench-
marks, and we show that a large number of designs possess many linear invari-
ants, even after most of the constants and equivalences have been filtered out
by alternative methods. In addition, every linear invariant directly allows to ex-
press one of its variables as a linear combination of the remaining variables, thus
allowing to reduce the total number of state variables in the design. We compare

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 54–67, 2014.
c© Springer International Publishing Switzerland 2014

Generating Modulo-2 Linear Invariants for Hardware Model Checking 55

Fig. 1. European peg solitaire game and the proof that it is unsolvable

the runtimes of IC3 [Bra11] on the original and the simplified designs, and show
that (non-surprisingly) such a reduction has a positive impact on verification.

The rest of this paper is organized as follows. In Section 2 we describe an
easy-to-understand verification example which demonstrates the usefulness of
large linear invariants (and which has in fact motivated this paper). Section 3 is
the core of the paper containing full algorithms and implementation details. In
Section 4 we present experimental results, discussing both the numbers of linear
invariants and their impact on verification. In Section 5 we discuss related work,
and Section 6 concludes the paper.

2 Toy Verification Example

The European peg solitaire is a single-player game played on a grid board shown
in Figure 1a. Initially each cell of the board except for the middle square contains
a peg. A legal move consists of choosing a peg and jumping it either horizontally
or vertically over an adjacent peg into an empty cell two squares away. After-
wards, the jumped-over peg is removed. Figure 1b shows how such a move is
performed. The goal is to find a sequence of moves which ends up with a single
peg in the middle of the board, as in Figure 1c. It is well known that this version
of peg solitaire has no solution. A classical proof of this fact is to color the board
as shown in Figure 1d, to observe that for every legal move the number modulo
2 of colored squares containing pegs remains constant, and that this number
evaluates to 0 on the board in Figure 1a and to 1 on the board in Figure 1c.

Peg solitaire can be easily described as a verification problem by introducing
a state variable xi for each cell of the board, with the interpretation that xi = 1
iff there is a peg in this cell. Compared to most industrial designs, the size of

56 G. Aleksandrowicz et al.

this toy problem is tiny, and yet deducing that it is unsolvable proved to be very
difficult even for very powerful model-checking algorithms either BDD-based or
SAT-based (including Interpolation [McM03] and IC3 [Bra11]).

On the other hand, the previous observation that the number modulo 2 of
colored squares containing pegs remains 0 on all forward reachable states di-
rectly translates to a single invariant of the form

∑
i∈C xi = 0 (mod 2), where C

enumerates the colored cells. Using this invariant makes the verification problem
trivial as it immediately implies that the final position is not reachable. Further-
more, the invariant itself can be proved by a simple induction (and so will be
found by our algorithm in Section 3).

We note that this problem also admits other mod-2 linear invariants but all
of them involve a large number of state variables and so cannot be easily found
by classical methods. In other words, being able to find linear invariants of large
size is a key for solving this problem.

3 Algorithms

3.1 Preliminaries

We represent a finite state system T as a tuple 〈i, x, I(x), T (i, x, x′)〉, which con-
sists of primary inputs i, state variables x, predicate I(x) defining the initial
states, and predicate T (i, x, x′) defining the transition relation. Next-state vari-
ables are denoted as x′. We also denote by T (x, x′) the predicate ∃i : T (i, x, x′).

We say that a state x is reachable if there is a sequence x0, . . . , xm of states
such that x0 ∈ I, (xi, xi+1) ∈ T for i = 0, . . . ,m − 1, and xm = x. We denote
the set of all reachable states by Reach. A Boolean function F is an invariant
if it holds on all the reachable states (Reach ⇒ F), and a Boolean function
F is inductive if it contains the initial states (I ⇒ F) and is closed under
transitions (F (x) ∧ T (x, x′)⇒ F (x′)). An inductive function is an invariant but
not necessarily vice versa.

We use standard notations from linear algebra. If a, b ∈ Zn
2 we denote their

scalar product by a · b =
∑n

i=1 aibi (mod 2). Given any set D ⊆ Zn
2 we denote by

span(D) = {d ∈ Zn
2 | ∃d1, . . . , dk ∈ D, ∃a1, . . . , ak ∈ Z2 : d = a1d1 + · · ·+ akdk}

the space of all linear combinations of elements ofD, and byD⊥ = {r ∈ Zn
2 | ∀d ∈

D : r · d = 0} the orthogonal complement of D. A canonical basis for Zn
2 is the

set {e1, . . . , en}, where ei is the vector (0, . . . , 1, . . . , 0) with the unique 1 at the
i’th position. We denote by 0 the zero element in Zn

2 .
For simplicity we limit the analysis to state variables in the design. We say that

an expression of the form {(
⊕

j∈J xj) = b} is xor (or mod-2 linear) invariant
(where J ⊆ {1, . . . , n} and b ∈ {0, 1}) if the function 1 ⊕ b ⊕

⊕
j∈J xj is an

invariant, or in other words if Reach⇒ (
⊕

j∈J xj = b).

Generating Modulo-2 Linear Invariants for Hardware Model Checking 57

3.2 Overview

For simplicity of description we first assume that I = {0}, that is the initial
states consist of a single all-zero element. We will extend the ideas to general
initial states at the very end of this section. The proofs of the propositions appear
in [AIMR].

We denote by n the number of state variables in the design, and by V = Zn
2

the set of all states. By the assumption on I, the state 0 is reachable, and so we
only need to look for linear invariants of the form {

∑n
i=1 aixi = 0}.

We can identify each linear invariant {
∑n

i=1 aixi = 0} with a point (a1, . . . , an)
∈ V and note that the set of all linear invariants forms a linear subspace of V
(for example, if both {

∑n
i=1 aixi = 0} and {

∑n
i=1 bixi = 0} hold on Reach, then

so also does {
∑n

i=1(ai + bi)xi = 0}). We denote this vector subspace by Inv.
We also look at a dual problem of finding a vector subspace of V containing all

reachable states. To this end we define a displacement set DS = {d ∈ V | ∃x, x′ :
T (x, x′) ∧ (d = x′ ⊕ x)} and a displacement vector space D = span(DS). In
other words, an element in DS describes a possible change in the state under
one transition step, and an element of D represents a linear combination of such
changes. We define R to be the orthogonal complement of D.

Proposition 1. Reach ⊆ D and R ⊆ Inv.

Example 1. Suppose that n = 3 and the only transitions are as follows: 000 →
011 → 101 → 000 (and each state not explicitly mentioned has a single transi-
tion back to itself). Then DS = {000, 011, 110, 101} (for example, the transition
011 → 101 results in the displacement 011 ⊕ 101 = 110), D � span(DS) =
span({011, 110}), and R � D⊥ = span({111}) = {000, 111}. The element 111 ∈
R represents the xor-invariant x1⊕x2⊕x3 = 0 that holds on all reachable states.
Reach = {000, 011, 101} is a proper subset of D, and Inv = R (i.e. there are no
other xor-invariants).

In Section 3.3 we describe an efficient algorithm to compute (the bases of) D
and R. This algorithm is based on linear algebra over Z2 and makes n queries
to a SAT solver. By proposition 1, every element of R is a xor-invariant.

Unfortunately R does not necessarily equal Inv, due to transitions from non-
reachable states (in particular, D is not necessarily the smallest vector subspace
of V containing Reach). We illustrate this by the following example.

Example 2. Suppose that n = 3 and the only transitions are as follows: 000 →
011 → 101 → 000, 100 → 000 (and each state not explicitly mentioned has a
single transition back to itself). Then D = span({000, 011, 110, 101, 100}) = V ,
R = {000}, while Inv = span({111}) as before. Note that the “problem” results
from considering the displacement from the unreachable state 100.

In Section 3.4 we remedy the situation to a large extent (albeit not per-
fectly) by describing an efficient algorithm to compute (the basis of) the small-
est inductive linear subpace DI containing Reach. For the previous example,

58 G. Aleksandrowicz et al.

DI = span({011, 110}), and RI � D⊥
I = span({111}) = Inv. This new algo-

rithm makes at most n2 queries to a SAT solver (and much fewer in practice).
In Sections 3.5-3.6 we describe various optimizations, implementation issues,

and the extension to general initial states.
Finally, in Section 3.7 we show that linear invariants can be effectively used as

a reparameterization technique for reducing the total number of state variables
in the design.

3.3 Computing Displacements and Invariants

Recall that the displacement vector space D is defined as span{d ∈ V | ∃x, x′ :
T (x, x′) ∧ (d = x′ ⊕ x)}. The algorithm ComputeDI (Algorithm 1) accepts the
transition relation T (x, x′), and returns a basis δ forD and a basis ρ for R = D⊥.

Algorithm 1. ComputeDI
(Compute Displacements and Invariants)

Input: T (x, x′)
Output: a basis δ for D, and a basis ρ for R = D⊥

1: δ ← ∅, ρ ← ∅, γ ← {e1, . . . , en}
2: while γ 	= ∅ do
3: Pick a vector t ∈ γ and remove it from γ
4: if ∃x, x′, d : (d = x′ ⊕ x) ∧ T (x, x′) ∧ (t · d = 1) then
5: δ ← δ ∪ {d}
6: for all v ∈ γ do
7: If v · d = 0, leave v unchanged
8: If v · d = 1, replace v by v + t in γ
9: end for
10: else
11: ρ ← ρ ∪ {t}
12: end if
13: end while

The bases δ and ρ are computed incrementally. We initialize them to empty
sets, we also initialize γ to the canonical basis of V (line 1). On each iteration
of the algorithm (lines 2-13) we pick an element t ∈ γ and check if t · D =
0. More precisely, we make a SAT query shown on line 4, checking whether
there exist a state x and a state x′ reachable from x in one transition step
so that the corresponding displacement d = x ⊕ x′ satisfies t · d = 1. If this
query is unsatisfiable (and thus t · D = 0), then t ∈ D⊥ and we add t to the
basis ρ of R (line 11). Otherwise we have found a new displacement vector d
which we add to the basis δ of D (line 5). In addition, we update the remaining
elements of γ by projecting them to D⊥ (lines 6-9). Note that since the size
of γ decreases each time by one, the algorithm stops after exactly n iterations
and hence makes exactly n calls to a SAT solver. The following proposition
summarizes the correctness of the algorithm.

Generating Modulo-2 Linear Invariants for Hardware Model Checking 59

Proposition 2. When ComputeDI terminates, δ is a basis for D and ρ is a basis
for D⊥.

3.4 Computing the Smallest Inductive Subspace

We define the smallest inductive subspace DI ⊆ V as the smallest linear subspace
of V which contains Reach and which is inductive with respect to the transition
relation. Note that the use of the word smallest is justified: if D1 andD2 are both
linear and inductive subspaces containingReach, then so also is their intersection
D1∩D2. We define RI = D⊥

I . The following proposition shows that RI in general
computes a larger set of invariants than given by Proposition 1.

Proposition 3. Reach ⊆ DI ⊆ D and R ⊆ RI ⊆ Inv.

Before presenting an algorithm to compute DI and RI , we need a modifi-
cation ComputeRDI of ComputeDI that only finds displacements starting from
a restricted set of states specified by a Boolean function J(x). More precisely,
ComputeRDI accepts J(x) and T (x, x′) as input, and replaces the SAT query on
line 4 by the query

∃x, x′, d : (d = x′ ⊕ x) ∧ J(x) ∧ T (x, x′) ∧ (t · d = 1).

The output of ComputeRDI is a basis δ for the vector space of displacements
starting from J , and a basis ρ for the orthogonal complement of this space.
Because the set of considered displacements is restricted, the elements of ρ are
not necessarily invariants.

The following algorithm ComputeInductiveInvariants to compute the small-
est inductive subspace (Algorithm 2) is in the spirit of Interpolation [McM03], in
the sense that it constructs linear over-approximations of states reachable in at
most k steps from {0}, and stops when a fixpoint is reached.

Algorithm 2. ComputeInductiveInvariants
(Computes the Smallest Inductive Subspace)

Input: I(x) = {0}, T (x, x′)
Output: a basis δ for DI , and a basis ρ for RI = D⊥

I

1: δ0 ← {}
2: for k in 1, 2, 3, . . . do
3: (δk, ρk) ← ComputeRDI(span(δk−1), T)
4: if |δk| = |δk−1| then
5: return (δk, ρk)
6: end if
7: end for

We set δ0 to the empty set (line 1), and we let D0 = span(δ0) = I = {0}. In
the main loop of the algorithm (lines 2-7) we call ComputeRDI to compute the

60 G. Aleksandrowicz et al.

basis δk of the set of displacements starting from Dk−1 = span(δk−1). In this
way each Dk represents a linear over-approximation of the set of states reachable
from Dk−1 in one transition step, and in particular a linear over-approximation
of the set of states reachable in k steps from the initial states. The algorithm
terminates when Dk = Dk−1, at this stage Dk represents an inductive linear
over-approximation of reachable states (and as the following proposition shows,
the smallest inductive linear over-approximation). Also note that since I = {0},
we have that Dk−1 ⊆ Dk for all k, and in particular the fixpoint condition can
be checked just by comparing the sizes of bases for Dk (line 4).

Proposition 4. When ComputeInductiveInvariants terminates, δ is a basis
for DI and ρ is a basis for RI .

We note that ComputeInductiveInvariants makes at most n2 calls to a
SAT solver: the loop of the algorithm can be executed at most n times, and each
invocation of ComputeRDI makes n SAT queries. In the next section we describe
several important optimizations which significantly reduces the number of SAT
queries in practice.

3.5 Implementation Details and Optimizations

Non-surprisingly, in ComputeDI and ComputeInductiveInvariantsmost of the
time is spent on SAT-solving, and thus it is important to optimize the total
number of SAT calls and the time spent on each individual call.

Optimizing the Number of SAT Calls. We can modify ComputeDI and
ComputeRDI by taking the set of already known displacements into account. In
this case, instead of choosing a vector t ∈ γ and making a SAT call to find a
displacement d with t ·d = 1, we can first check the pool of known displacements
to see if such d is known already. Even better, we can first look for pairs {t, d}
with t · d = 1 (for t ∈ γ and d in the known displacement set) and process such
t’s first (and only when no such pairs are present resort to SAT queries). In
particular, we can reuse the sets δk found from one invocation of ComputeRDI

for the next iteration – this is legitimate since Dk−1 ⊆ Dk and so the space of
displacements starting from Dk−1 is a subspace of displacements starting from
Dk. In addition, we can run upfront simulation to compute the starting set of
displacements D0 which can be used both in ComputeRDI and as a starting point
for ComputeInductiveInvariants (by initializing δ0 to the basis of D0 instead
of an empty set).

Optimizing SAT Calls. An undoubtedly one of the most useful (and well-
known) optimizations is to use an incremental SAT solver (that supports the
MiniSat-like “solve under assumptions” mechanism [ES03]). We can implement
the main SAT query “∃x, x′, d : (d = x′ ⊕ x) ∧ T (x, x′) ∧ (t · d = 1)” (line 4 of
ComputeDI) as follows. Given a CNF representing the transition relation (and

Generating Modulo-2 Linear Invariants for Hardware Model Checking 61

in particular involving variables x1, . . . , xn and x′
1, . . . , x

′
n), create additional

variables d1, . . . dn, and add clauses describing di = xi ⊕ x′
i. Create additional

variables t1, . . . , tn and “partial sum” variables s1, . . . , sn, and add clauses de-
scribing s1 = 0, sn = 1, and si = si−1 ⊕ (ti ∧ di) for i = 2, . . . , n. Now
each SAT query can be realized by passing the corresponding vector t via as-
sumptions. This allows to keep a single copy of the SAT solver for all queries
in ComputeDI and hence to automatically reuse all learned clauses from one
SAT call to the next. As an alternative to the “partial sums” technique, we
can encode an expression t · d = 1 directly using XOR-clauses if the underly-
ing SAT solver can handle such clauses natively (as for example CryptoMin-
iSat [Cryt2]). More precisely, to encode t1d1 + · · · + tndn = 1 (mod 2), we can
introduce auxiliary variables y1, . . . , yn, encode yi = ti ∧ di (for each i), and add
a single XOR-clause (y1 ⊕ · · · ⊕ yn). When we call the procedure ComputeRDI

from ComputeInductiveInvariants, we need to create a CNF expression for
the constraint x ∈ J , where J = span(δk−1). Suppose that δk−1 is given as
{d1, . . . , dm}. A direct way to encode x ∈ span{d1, . . . , dk} would be to create
auxiliary variables a1, . . . , ak and to encode xi = a1d

1
i + · · ·+ akd

k
i for all i. We

have found that in general it is better to encode x · J⊥ = 0. In other words, if
J⊥ = span{r1, . . . , rn−k}, then we need to add constraints for x · ri = 0. Note
that since each ri is given explicitly, each such constraint translates to a single
XOR-clause.

Improving Memory Consumption. In general the vectors considered in the
algorithms have very few 1s, and as such storing only the positions of 1’s (rather
than the full vectors) keeps the memory consumption significantly lower.

3.6 Extension to General Initial States

We note that there are simple design transformations mapping a general design
to a design with a single initial state, and this allows to immediately extend all
of the methods to general initial states. However, such transformations might
introduce additional displacements between pairs of initial states, which were
not present in the design initially, and so we outline an alternative approach
which is useful on designs with many initial states.

We construct a set of states S of the form S = I +D, where I(x) denotes the
initial states and D is a linear subspace, satisfying the following conditions:

1. Reach ⊆ S(x),
2. S(x) is inductive (i.e. S(x) ∧ T (x, x′)⇒ S(x′)), and
3. S(x) is a minimal set of states of the form I +D that satisfies (1) and (2).

In the above, I + D denotes the Minkowski sum of I and D, that is I + D =
{c = a+ b | a ∈ I, b ∈ D}. Strictly speaking, S itself is not linear, but rather it
is a linear space D “shifted” by all possible initial states values.

The only change to ComputeInductiveInvariants (see Algorithm 3) consists
of iteratively computing displacements from I + span(δk−1).

62 G. Aleksandrowicz et al.

Algorithm 3. ComputeInductiveInvariants
(Extension to General Initial States)

Input: I(x), T (x, x′)
Output: a basis δ for D, and a basis ρ for D⊥

1: δ0 ← {}
2: for k in 1, 2, 3, . . . do
3: (δk, ρk) ← ComputeRDI(I(x) + span(δk−1), T)
4: if |δk| = |δk−1| then
5: return (δk, ρk)
6: end if
7: end for

Suppose that ComputeInductiveInvariants returns a basis δ for D, and a
basis ρ for D⊥, and that (a1, . . . , an) ∈ span(ρ). It follows that the value of
the linear combination

∑
i aixi remains constant on every path in the design

that starts in an initial state, although this value may differ for different paths.
However, if this value is the same for all initial states (as can be checked with a
SAT solver), then we indeed find a linear invariant of the form

∑
i aixi = b that

holds on all reachable states.

3.7 State Variables Reduction

Given any linear independent set of invariants of the form {
∑

i aijxi = bi}kj=1 (as
for example computed by ComputeInductiveInvariants), we can apply Gaus-
sian Elimination to express exactly k of the variables in terms of the remaining
variables. In other words, linear inductive invariants have an immediate applica-
tion as a reparameterization technique (see for example [CCK04]) that reduces
the total number of state variables in a design. We will study the effect of this
reduction in Section 4.

4 Experimental Evaluation

All experiments were performed on a 2.0Ghz Linux-based machine with In-
tel Xeon E7540 processor and 4GB of RAM, using the techniques presented
in this paper as implemented in the IBM verification tool Rulebase-Sixthsense
[MBP+04].

4.1 Effect on Reduction Size

In the first set of experiments, we investigate the numbers of mod 2 linear
invariants as would be witnessed in a typical verification flow. We consider
633 designs from the single-property HWMCC’11 and HWMCC’13 benchmark
sets [Har11, Har13]. On each of these designs we apply a round of standard
logic optimization (to reduce the design size), followed by combinatorial and

Generating Modulo-2 Linear Invariants for Hardware Model Checking 63

Fig. 2. Absolute numbers of invariants (for each of the designs)

Fig. 3. Relative numbers of invariants (for each of the designs)

sequential redundancy removal [MBMB09] (to identify and merge sequentially
equivalent registers), followed by another round of logic optimization. In particu-
lar, in the 532 designs that were not solved by the preprocessing alone, there are
no constant, equivalent, or anti-equivalent registers that can be detected either
via SAT-sweeping or induction.

Our algorithm ComputeInductiveinvariants is successful in finding at least
one linear invariant on 128 of the designs (that is, in 24% of the cases). In Figure 2
we present the detailed data on the number of invariants for each of these designs.
Note that the designs are sorted by the increasing number of invariants, and that
the y-axis follows a logarithmic scale. It can be readily observed that in cases
the number of invariants can be substantial: for example, the designs starting
from 81 possess at least 10 linear invariants, while the designs starting from 121
possess at least 50 linear invariants.

64 G. Aleksandrowicz et al.

Table 1. Numbers of solved benchmarks for IC3 and for ComputeInvariants + IC3.
The number in parenthesis is the number of benchmarks uniquely solved by the given
configuration.

reachable unreachable
IC3 2 (0) 41 (1)
ComputeInvariants + IC3 3 (1) 43 (3)

As we have observed in Section 3.7, the number of invariants also represents
the number of state variables that can be removed by reparameterization, and
so the same graph also represents the size of the reduction (in the number of
state variables) achieved by our method. Note that such reduction may in turn
enable additional reductions and so on.

It might be also interesting to look at the percentage of state variables that
can be removed in each of the designs, and we present a plot in Figure 3. In this
case we have sorted the designs by the percentages. The y-axis again follows a
logarithmic scale. Again, it can be observed that in many cases the numbers are
considerably high: for example, in 22 designs at least 3% of the registers can be
removed, while in 4 designs at least 9% of the registers can be removed (with
the maximum reduction of 17%).

4.2 Effect on IC3 Resources

In the second set of experiments, we study the impact of our reduction on (our
implementation of) the IC3 algorithm [Bra11]. Note that IC3 is one of the most
competitive model checking algorithms and thus presents a natural choice for
the evaluation. We consider the 128 benchmarks from the previous section (i.e.,
those with at least one invariant found). Recall that these designs were pre-
processed using logic optimization and sequential redundancy removal. For each
of these designs we have run (1) IC3; (2) Our algorithm to compute mod 2
linear invariants and to express some of the state variables as functions of the
remaining variables using Gaussian Elimination, followed by a quick round of
logic optimization, followed by IC3 (note that including an extra round of logic
optimization is natural in a typical verification flow, and that the additional
optimizations, if any, are only made possible by our reduction). We refer to the
latter configuration as “ComputeInvariants + IC3”. In both cases the total time
limit was set to 3 hours.

As presented in Table 1, the standalone IC3 was successful for 2 reachable
properties and for 41 unreachable properties, while ComputeInvariants + IC3
was successful for 3 reachable properties and 43 unreachable properties. We can
see that the number of solved instances is higher for IC3 on the reduced designs,
both for reachable and for unreachable properties.

For a more detailed comparison between the two flows (IC3 vs. ComputeIn-
variants + IC3), we consider the scatter plot shown in Figure 4, representing
the 47 testcases where at least one of the two strategies was successful. Both

Generating Modulo-2 Linear Invariants for Hardware Model Checking 65

Fig. 4. CPU time comparison between IC3 and ComputeInvariants + IC3 (in seconds)
on the designs with at least one linear invariant

axis follow a logarithmic scale. The points below the diagonal represent the test-
cases in which computing linear invariants helps to reduce the total runtime,
and the points above the diagonal – where it does not. It should be noted that
in general the behavior of IC3 is heavily influenced even by the smallest changes
to the design, which explains the spread of the data. However, ComputeInvari-
ants + IC3 does perform slightly better on average, and we have computed this
improvement to be approximately 20%. We also note that the actual time to
compute linear invariants is reasonably small in most of the cases cases, and
so this improvement also corresponds to the reduction in the IC3 runtime due
to the reduction in the number of state variables. This effect is by no means
surprising: it is widely believed that a reduction in the number of state variables
is in general helpful for model checking – and we have simply confirmed this in
the context of IC3.

Finally, we note that from the 46 testcases solved by IC3 with reparameteri-
zation, 1 testcase was actually solved before passing the problem to IC3. In this
example the property is unreachable, and the reparameterization together with
logic optimization is sufficient to detect that.

5 Related and Future Work

First of all, the class of mod 2 linear invariants naturally generalizes the class of
constants and (anti)equivalences. From this point of view, [vE00] describes a tech-

66 G. Aleksandrowicz et al.

nique to extract equivalences, and [CMB06] and [CNQ07] extract both equiva-
lences and binary implications. A further optimized algorithm for signal corre-
spondence is described in [MBMB09]. As we have shown in the experiments, de-
tecting and exploiting general mod 2 linear invariants has practical value even af-
ter signal correspondence. In fact, it is also possible to use our approach instead of
signal correspondence, however at the current state the approach in [MBMB09] is
significantly more scalable for larger designs. An interesting direction for further
research would be to combine the two sets of ideas.We are also planning to extend
our algorithm to all gates in the design (and not just state-variables). In addition,
there might be linear invariants that are not part of the maximal inductive sub-
space, and it would be interesting to find them as well.

Other works on extracting inductive invariants from designs include IC3 [Bra11]
and related model checking algorithms as they can directly produce inductive in-
variants in the form of clauses. In addition, [FH09] extracts inductive invariants
from the bounded proofs of the property.

To some extent our algorithm can be viewed as an instance of abstract inter-
pretation, with existing approaches to compute linear invariants between pro-
gram variables (see for example [MOS07]). In the context of software model
checking, [KS08,KS10] describe a similar (and in fact a more general) algorithm
on inferring invariants that are expressible as congruence equations. In partic-
ular, it would be interesting to see whether such more general linear invariants
could be useful in the context of hardware model checking. In fact, it is easy
to generalize our algorithm to detect all inductive mod-p linear invariants, how-
ever we have found that for the preprocessed HWMCC benchmarks there are
significantly fewer mod-p invariants than mod-2 invariants (when p �= 2). Inci-
dentally, this also shows that most of the mod-2 linear invariants detected by
our algorithm do not correspond to one-hot constraints.

We are also planning to investigate the applicability of linear invariants to-
wards detection of higher-level structures present in the designs. One immediate
example of this is parity logic (a set of gates, where one of the gates represents a
parity computation of the remaining gates). As another example, suppose that
the design possesses a group of variables x1, . . . , xm such that on every reachable
state exactly k out of {x1, . . . , xm} are true (as for example in the case of one-hot
constraints), in which case x1⊕ · · · ⊕ xm represents a linear invariant which can
be found by our method.

6 Conclusion

We have presented an efficient SAT-based method to extract all inductive mod 2
linear invariants from a design. We have demonstrated that a large number of de-
signs possess linear invariants which are not just constants or (anti)equivalences,
and that the reductions entailed by these linear invariants have a positive impact
on verification.

Acknowledgements. We would like to thank the anonymous reviewers for
their constructive comments.

Generating Modulo-2 Linear Invariants for Hardware Model Checking 67

References

[AIMR] Aleksandrowicz, G., Ivrii, A., Margalit, O., Rasin, D.: Generating
modulo-2 linear invariants for hardware model checking. Full version with
appendix, available at
http://researcher.watson.ibm.com/researcher/files/

il-ALEXI/xor.pdf
[Bra11] Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala,

R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87.
Springer, Heidelberg (2011)

[CCK04] Chauhan, P., Clarke, E.M., Kroening, D.: A sat-based algorithm for repa-
rameterization in symbolic simulation. In: DAC, pp. 524–529 (2004)

[CMB06] Case, M.L., Mishchenko, A., Brayton, R.K.: Inductively finding a reach-
able state space over-approximation. In: IWLS (2006)

[CMB07] Case, M.L., Mishchenko, A., Brayton, R.K.: Automated extraction of
inductive invariants to aid model checking. In: FMCAD, pp. 165–172
(2007)

[CNQ07] Cabodi, G., Nocco, S., Quer, S.: Boosting the role of inductive invariants
in model checking. In: DATE, pp. 1319–1324 (2007)

[Cryt2] CryptoMiniSat, http://www.msoos.org/cryptominisat2/
[ES03] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E.,

Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer,
Heidelberg (2004)

[FH09] Fuhrmann, O., Hoory, S.: On extending bounded proofs to inductive
proofs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 278–290. Springer, Heidelberg (2009)

[Har11] Hardware Model Checking Competition (2011),
http://fmv.jku.at/hwmcc11

[Har13] Hardware Model Checking Competition (2013),
http://fmv.jku.at/hwmcc13

[KS08] King, A., Søndergaard, H.: Inferring congruence equations using SAT.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 281–293.
Springer, Heidelberg (2008)

[KS10] King, A., Søndergaard, H.: Automatic abstraction for congruences.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944,
pp. 197–213. Springer, Heidelberg (2010)

[MBMB09] Mony, H., Baumgartner, J., Mishchenko, A., Brayton, R.K.: Specu-
lative reduction-based scalable redundancy identification. In: DATE,
pp. 1674–1679 (2009)

[MBP+04] Mony, H., Baumgartner, J., Paruthi, V., Kanzelman, R., Kuehlmann,
A.: Scalable automated verification via expert-system guided transforma-
tions. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312,
pp. 159–173. Springer, Heidelberg (2004)

[McM03] McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13.
Springer, Heidelberg (2003)

[MOS07] Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. ACM Trans.
Program. Lang. Syst. 29(5) (2007)

[vE00] van Eijk, C.A.J.: Sequential equivalence checking based on structural sim-
ilarities. IEEE Trans. on CAD of Integrated Circuits and Systems 19(7),
814–819 (2000)

http://researcher.watson.ibm.com/researcher/files/il-ALEXI/xor.pdf
http://researcher.watson.ibm.com/researcher/files/il-ALEXI/xor.pdf
http://www.msoos.org/cryptominisat2/
http://fmv.jku.at/hwmcc11
http://fmv.jku.at/hwmcc13

Suraq — A Controller Synthesis Tool

Using Uninterpreted Functions�

Georg Hofferek1 and Ashutosh Gupta2

1Graz University of Technology, Austria
2IST, Austria

Abstract. Boolean controllers for systems with complex datapaths are
often very difficult to implement correctly, in particular when concur-
rency is involved. Yet, in many instances it is easy to formally specify cor-
rectness. For example, the specification for the controller of a pipelined
processor only has to state that the pipelined processor gives the same
results as a non-pipelined reference design. This makes such controllers
a good target for automated synthesis. However, an efficient abstraction
for the complex datapath elements is needed, as a bit-precise description
is often infeasible. We present Suraq, the first controller synthesis tool
which uses uninterpreted functions for the abstraction. Quantified first-
order formulas (with specific quantifier structure) serve as the specifica-
tion language from which Suraq synthesizes Boolean controllers. Suraq
transforms the specification into an unsatisfiable SMT formula, and uses
Craig interpolation to compute its results. Using Suraq, we were able to
synthesize a controller (consisting of two Boolean signals) for a five-stage
pipelined DLX processor in roughly one hour and 15 minutes.

1 Introduction

When developing a complex digital system, some parts are more difficult to im-
plement correctly than others. For example, creating a combinational circuit that
multiplies two 64-bit integers is easier than implementing the stall and forward-
ing logic of a pipelined microprocessor. On the other hand, some system parts
are also easier to formally specify than others. For the pipeline controller, the
specification simply states that the execution of any program on the pipelined
processor should output the same results as executing the same program on a
non-pipelined reference processor. This notion has been introduced by Burch and
Dill [5], who used this paradigm for verification of pipelined processors. Another
key feature of their work was the use of uninterpreted functions for abstraction
of complex datapath elements. A bit-precise description of, e.g., a multiplier
would have been exponentially — and thus prohibitively — large. Hofferek and
Bloem [12] have shown how to turn this verification setting into a synthesis

� The work presented in this paper was supported in part by the European Research
Council (ERC) under grant agreement 267989 (QUAREM) and the Austrian Science
Fund (FWF) through projects RiSE (S11406-N23) and QUAINT (I774-N23).

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 68–74, 2014.
c© Springer International Publishing Switzerland 2014

A Controller Synthesis Tool Using Uninterpreted Functions 69

neg

i1
o1

c1

neg

i2
o2

c2

(a)

(declare-fun i_1 () Value)
(declare-fun i_2 () Value)
(declare-fun o_1 () Value :no_dependence)
(declare-fun o_2 () Value :no_dependence)
(declare-fun c_1 () Control)
(declare-fun c_2 () Control)
(declare-fun neg (Value) Value)
(declare-fun pos (Value) Bool)
(assert

(=>
(and

(xor (pos i_1) (pos (neg i_1)))
(xor (pos i_2) (pos (neg i_2)))
(ite c_1 (= o_1 i_1) (= o_1 (neg i_1)))
(ite c_2 (= o_2 i_2) (= o_2 (neg i_2))))

(xor (pos o_1) (pos o_2))))

(b)

Fig. 1. (a) A controller synthesis example with missing controllers of signals c1 and
c2. The specification for the controllers states that the outputs always have opposite
signs. (b) The corresponding sythesis query to Suraq in SMTLIB-like format.

setting. They introduced specifications that are quantified first-order formulas
which state that for all inputs/states, there exist values for Boolean control sig-
nals such that (for all values of auxiliary variables) a correctness criterion Φ
holds. The formula Φ can be a Burch-Dill style verification condition, or — for
different applications — another first-order formula that states correctness of
the system in question. The certificates for the existentially quantified Boolean
control signals is a correct-by-construction implementation of the controller. One
way to compute such certificates — which is based on (a generalization of) Craig
interpolation [6] — has been introduced in [13].

In this paper, we present Suraq [1], an open source tool that implements the
synthesis approach of [13]. The most impressive result we achieved with Suraq

so far is the synthesis of two Boolean control signals for a five-stage pipelined
DLX processor [10]. The required time for this synthesis is roughly one hour and
15 minutes. More details on Suraq can be found in [11].

Related Work. Research on automated synthesis has flourished over the last
years. A lot of work (e.g. [14,17,7,18,16,8]) is concerned with synthesis of reac-
tive systems from temporal specifications. However, the specification languages
used by these approaches are bit-precise. Thus, they are not suitable for the
controller synthesis problems we consider. Our approach is closer to program
sketching [19], a mixed imperative/declarative paradigm where parts of a pro-
gram are implemented manually and some missing (constant) expressions are
synthesized automatically. Functional synthesis [15] by Kuncak et al. is orthog-
onal to our work. Whereas we assume that data operations are already imple-
mented, they focus on synthesizing data-oriented functions from specifications
about their input-output behavior.

70 G. Hofferek and A. Gupta

2 Synthesis Method

Suraq implements the synthesis method presented in [13], although with some
improvements. We start from a formula of the form

∀x . ∃c . ∀x′ . Φ, (1)

where c is a vector of Boolean control signals which we want to synthesize, x
and x′ are vectors of first-order variables, and Φ is a formula in the combina-
tion of the quantifier-free fragment of the theory of uninterpreted functions and
equality (“QF UF”), and the array property fragment [4]. A precise definition of
this combination of theories is given in [12]. Suraq first performs the index set
construction [4] to reduce Φ to an equivalent formula in QF UF. Next, Suraq
instantiates the existential quantifier, renames the universally quantified x′ vari-
ables in each of the resulting 2|c| instantiations, and negates the whole formula.
This yields an unsatisfiable SMT formula in QF UF. Suraq uses the veriT SMT
solver [3] to obtain a refutation proof.

Based on this refutation proof, Suraq supports two modes. In iterative mode,
Suraq first computes a solution for one control signal, using the interpolation
method of Fuchs et al. [9]. This solution is then resubstituted into the origi-
nal formula, before performing the aforementioned reduction, expansion (now
yielding only 2|c|−1 instantiations), and transformation again. From the result-
ing SMT instance, the solution for the next control signal is computed. This is
repeated until solutions for all control signals have been obtained.

In contrast to this, in n-interpolation mode, Suraq computes all control sig-
nals from the first refutation proof. To perform this so-called n-interpolation,
the proof must be made colorable and local-first [13]. To obtain these proper-
ties, we follow the proof transformations outlined in [13], with one significant
improvement: We do not perform the transformation to remove non-colorable
literals from the proof. Instead, when parsing the proof, we immediately discard
the subproofs of any proof nodes that are solely derived from theory lemmata.
This way, the proofs never contain any non-colorable literals. Splitting of non-
colorable theory lemmata is done in parallel. Suraq provides a command-line
parameter to specify how many threads should be used for splitting.

2.1 Using Suraq

As an input, Suraq requires a specification in form of a formula as shown in
Equation 1. The formula Φ should be given in SMTLIB-like [2] format. The quan-
tifier prefix is implicitly given by the variable declarations. Variables declared
with sort Control are bound by the existential quantifier (and thus, certificates
for them should be synthesized). Variables declared with a :no dependence at-
tribute are bound by the inner universal quantifier. Thus, these are auxiliary
variables that the synthesized functions cannot depend on. All other variables
are bound by the outer universal quantifier. An example is shown in Figure 1.

A Controller Synthesis Tool Using Uninterpreted Functions 71

Table 1. Runtime Results (n-Interpolation Mode). Column 1 names the bench-
mark. Column 2 gives the time for the formula reductions, that is, the total time
required for reading the specification, performing the formula reductions, and creating
an input file for veriT. Column 3 gives the time required by veriT to produce a proof.
Column 4 gives the (wall clock) time taken to split all non-colorable theory lemmata,
using 24 parallel threads. Column 5 gives the time taken by veriT for propositional
SAT solving with the stronger theory lemmata obtained from splitting. Column 6 gives
the time for reorder the proof to make it local-first. Column 7 gives the time spent on
proof parsing, including splitting of multi-resolution nodes. This combines the time for
parsing the SMT proof and the propositional SAT proof. Column 8 gives the total time
of synthesis. All times are given in seconds, and rounded to integers.

1 2 3 4 5 6 7 8

Name
Formula
Reduction

SMT
Solving

Splitting
Leaves

SAT
Solving

Re-
ordering

Proof
Parsing

Total

simple pipeline <1 <1 <1 <1 <1 <1 1
illus 02 <1 <1 <1 <1 <1 <1 <1
illus 03 <1 <1 <1 <1 <1 <1 1
illus 04 1 <1 <1 <1 <1 <1 2
illus 05 2 <1 <1 <1 <1 <1 3
illus 06 4 <1 <1 <1 <1 <1 5
illus 07 7 <1 <1 <1 <1 <1 11
illus 08 14 1 <1 <1 <1 <1 17
illus 09 28 3 <1 <1 <1 <1 34
simple processor <1 <1 <1 <1 <1 <1 4
dlx stall f-a-ex 6 1718 6 7 n/a 442 n/a

As its output, Suraq also produces a file in SMTLIB format, where the
solution for each control signal is given as an expression of the form (assert (=

c i <expr.>)). Moreover, the declarations and main formula from the input file
is copied, in a slightly modified way: The sort Control is replaced by Boolean,
all :no dependence attributes are removed, and the main formula is negated.
This way, the output file can directly be used for third-party verification of the
synthesis result. One simply has to give the file to an SMT solver, which will
return unsat if the result is correct.

3 Experimental Results

We have evaluated Suraq with several benchmarks. First, we used the simple
pipeline example from [12]. Furthermore, we used several instances of the scal-
able, illustrative example from [13] (see also Fig. 1). We also tried the simple,
two-stage pipelined processor from [13]. Finally, to demonstrate the applica-
bility of our approach to real-world problems, we synthesized a controller for a

72 G. Hofferek and A. Gupta

Table 2. Proof Sizes. The Col. 1 gives the name of the benchmark. Col. 2 states the
size of the proof, as obtained from veriT, however with subproofs of theory lemmata
already removed. Col. 3 gives the number of leaves that are non-colorable and need
to be split, and Col. 4 gives the total number of leaves. Col. 5 gives the size of the
proof obtained by calling a SAT solver on the skeleton of the original formula, together
with the colorable theory lemmata and the (stronger) theory lemmata obtained from
splitting. This is the proof that is given to the reordering procedure. The size of the
proof after reordering is given in Col. 6. Col. 7 gives the size of the proof that is used
for n-interpolation, that is, the reordered proof with local subproofs removed. All proof
sizes are given as the number of nodes in the DAG.

1 2 3 4 5 6 7

Name
Original
Proof

Leaves
to split

Leaves
(total)

Before
Reordering

After
Reordering

w/o Local
Subproofs

simple pipeline 506 2 178 496 494 12
illus 02 102 2 44 106 106 12
illus 03 179 3 77 198 218 26
illus 04 390 7 133 356 428 46
illus 05 408 9 165 700 971 115
illus 06 669 4 176 758 1 576 320
illus 07 1 006 11 219 916 2 823 785
illus 08 1 101 6 242 2 214 8 082 1 347
illus 09 1 101 7 269 1 388 5 364 1 293
simple processor 9 576 123 1 503 6 853 7 899 73
dlx stall f-a-ex 856 121 2 748 21 349 333 260 n/a n/a

five-stage pipelined DLX processor [10]. We have created several variants of
the DLX benchmark, where we synthesize different control signals (while the
other are implemented manually); in the dlx stall f-a-ex benchmark, we even
synthesize 2 signals simultaneously.

In Table 1, we present runtime results for n-interpolation mode. Note that the
reordering of the resolution proof times out for the dlx stall f-a-ex benchmark. In
Table 2, we give sizes of the proofs (in various stages of transformation). Table 3
gives results (runtimes and proof sizes) for the iterative mode.

From this data, we can see that neither iterative mode, nor n-interpolation
mode is clearly superior over the other. Instead, it depends on the characteristics
of the benchmark which approach performs better. While for some benchmarks
n-interpolation clearly outperforms iterative interpolation, in other instances the
need for proof reordering makes n-interpolation inapplicable.

A Controller Synthesis Tool Using Uninterpreted Functions 73

Table 3. Iterative Mode. The 8 columns after the name give the SMT solving time
(in seconds) and the proof size per iteration, in the format “time; size”. Columns not
required are left empty. The last column gives the total synthesis time.

Iteration Total

Name 1 2 3 4 5 6 7 8 9 Time

simple pipeline <1; 506 <1

illus 02 <1; 102
<1;
166

1

illus 03 <1; 179
<1;
493

<1;
508

2

illus 04 <1; 390
<1;
680

<1;
724

<1;
1 251

3

illus 05 <1; 408
<1;
2 133

<1;
3 608

<1;
3 298

<1;
3 361

6

illus 06 <1; 669
<1;
2 521

<1;
1 799

<1;
3 906

<1;
9 043

<1;
10 088

12

illus 07 <1; 1 006
<1;
6 430

<1;
7 210

1;
26 072

<1;
23 941

<1;
26 543

<1;
32 009

31

illus 08 1; 1 101
<1;
7 352

<1;
3 332

1;
16 312

2;
32 087

2;
52 782

2;
60 822

1;
73 887

66

illus 09 3; 1 101
5;
27 210

22;
60 002

45;
165 636

24;
117 535

23;
243 332

10;
231 789

9;
391 277

6;
281 313

485

simple processor <1; 9 576
<1;
8 682

4

dlx stall
267;
898 345

537

dlx f-a-ex
573;
1 490 028

1 358

dlx f-b-wb
590;
2 271 288

2 174

dlx stall f-a-ex
1711;
856 121

923;
1 460 582

4 528

4 Conclusion

Suraq is a controller synthesis tool based on the method presented in [13].
Suraq has successfully synthesized a controller for a five-stage pipelined DLX
processor [10]. Since the DLX benchmark is of realistic size and complexity,
our experiments suggest that the approach is scalable enough for real-world
problems.

References

1. Suraq — Synthesizer using Uninterpreted functions, aRrays and eQuality (2014),
http://www.iaik.tugraz.at/content/research/design_verification/suraq/

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Proc.
of the 8th Int. Workshop on Satisfiability Modulo Theories (2010)

3. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS,
vol. 5663, pp. 151–156. Springer, Heidelberg (2009)

4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In:
Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–
442. Springer, Heidelberg (2006)

http://www.iaik.tugraz.at/content/research/design_verification/suraq/

74 G. Hofferek and A. Gupta

5. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg
(1994)

6. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic 22(3), 269–285 (1957)

7. Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer,
Heidelberg (2009)

8. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012)

9. Fuchs, A., Goel, A., Grundy, J., Krstic, S., Tinelli, C.: Ground interpolation for
the theory of equality. Logical Methods in Computer Science 8(1) (2012)

10. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative
Approach, 2nd edn. Morgan Kaufmann (1996)

11. Hofferek, G.: Controller Synthesis with Uninterpreted Functions. Ph.D. thesis, Graz
University of Technology (July 2014)

12. Hofferek, G., Bloem, R.: Controller synthesis for pipelined circuits using uninter-
preted functions. In: MEMOCODE (2011)

13. Hofferek, G., Gupta, A., Könighofer, B., Jiang, J., Bloem, R.: Synthesizing multiple
boolean functions using interpolation on a single proof. In: FMCAD (2013)

14. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A tool for prop-
erty synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 258–262. Springer, Heidelberg (2007)

15. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Functional synthesis for linear arith-
metic and sets. STTT 15(5-6) (2013)

16. Morgenstern, A., Schneider, K.: Exploiting the temporal logic hierarchy and the
non-confluence property for efficient LTL synthesis. GANDALF (2010)

17. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

18. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the synthesis of
reactive systems. STTT 15(5-6) (2013)

19. Solar-Lezama, A.: Program sketching. STTT 15(5-6) (2013)

Synthesizing Finite-State Protocols

from Scenarios and Requirements�

Rajeev Alur1, Milo Martin1, Mukund Raghothaman1,
Christos Stergiou1,2, Stavros Tripakis2,3, and Abhishek Udupa1

1 University of Pennsylvania
2 University of California, Berkeley

3 Aalto University

Abstract. Scenarios, or Message Sequence Charts, offer an intuitive way
of describing the desired behaviors of a distributed protocol. In this paper
we propose a new way of specifying and synthesizing finite-state proto-
cols using scenarios: we show that it is possible to automatically derive
a distributed implementation from a set of scenarios augmented with a
set of safety and liveness requirements, provided the given scenarios ade-
quately cover all the states of the desired implementation. We first derive
incomplete state machines from the given scenarios, and then synthesis
corresponds to completing the transition relation of individual processes
so that the global product meets the specified requirements. This com-
pletion problem, in general, has the same complexity, PSPACE, as the
verification problem, but unlike the verification problem, is still hard
(NP-complete) even for a constant number of processes. We present an
algorithm for solving the completion problem, based on counterexample-
guided inductive synthesis. We evaluate the proposed methodology for
protocol specification and the effectiveness of the synthesis algorithm
using the classical alternating-bit protocol, the VI cache-coherence pro-
tocol, and a consensus protocol.

1 Introduction

In formal verification, a system model is checked against correctness require-
ments to find bugs. Sustained research in improving verification tools over the
last few decades has resulted in powerful heuristics for coping with the com-
putational intractability of problems such as Boolean satisfiability and search
through the state-space of concurrent processes. The advances in these analysis
tools now offer an opportunity to develop new methodologies for system design
that allow a programmer to specify a system in more intuitive ways. In this
paper, we focus on distributed protocols: the multitude of behaviors arising due

� This work was partially supported by the Academy of Finland and by the NSF via
projects COSMOI: Compositional System Modeling with Interfaces and ExCAPE:
Expeditions in Computer Augmented Program Engineering. This work was also par-
tially supported by IBM and United Technologies Corporation (UTC) via the iCyPhy
consortium.

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 75–91, 2014.
c© Springer International Publishing Switzerland 2014

76 R. Alur et al.

to asynchronous concurrency makes the design of such protocols difficult, and
the benefits of using model checkers to debug such protocols have been clearly
demonstrated. Traditionally, a distributed protocol is described using commu-
nicating finite-state machines (FSMs). The goal of this paper is to develop a
methodology aimed at simplifying the task of designing them.

An intuitive way of specifying the desired behaviors of a protocol is by scenar-
ios, where each scenario describes an expected sequence of message exchanges
among participating processes. Such scenarios are used in textbooks and class-
rooms to describe the protocol and can be specified using the intuitive visual
notation of Message Sequence Charts. In fact, the MSC notation is standardized
by IEEE [1], and it is supported by some system development environments as
design supplements. These observations raise the question: is it plausible to ask
the designer to provide enough scenarios so that the protocol implementation
can be automatically synthesized? Although one cannot expect a designer to
provide scenarios that include all the possible behaviors, our key observation is
that even a representative set of scenarios covers all the states of the desired
implementation. The (local) states of a process are obtained from a scenario —
using the explicit state-labels that appear as annotations as well as from the his-
tories of events in which the process participates. If we consider all the states and
the input/output transitions out of these states for a given process that appear
in the given set of scenarios, we obtain a skeleton of the desired FSM implemen-
tation of that process. The synthesis problem now corresponds to completing
this skeleton by adding transitions. This requires the synthesizer to infer, for
instance, how to respond to a particular input event in a particular state even
when this information is missing from the specified scenarios. The more such
completions that the synthesizer can learn successfully, the lower the burden
on the designer to specify details of each and every case. To rule out incorrect
completions, we ask the designer to provide a model of the environment and
correctness requirements. Some requirements such as absence of deadlocks can
be generic to all the protocols, whereas other requirements can be specific to
the coordination problem being solved by the protocol and given as finite-state
monitors for safety and liveness properties in the form commonly used in model
checkers. Note that scenarios and correctness requirements are used as under-
and over-approximations of the behaviors of the protocol, respectively.

The synthesis problem then maps to the following protocol completion prob-
lem: given (1) a set of FSMs with incomplete transition functions, (2) a model of
the environment, and (3) a set of safety/liveness requirements, find a completion
of the FSMs such that the composition satisfies all the requirements. We show
this problem, similar to the model checking problem, to be Pspace-complete,
but, unlike the model checking problem, to be NP-hard even for just one pro-
cess. We present an algorithm for solving the protocol completion problem. The
algorithm is an example of counterexample-guided synthesis [2]: candidates from
the search space of completions are evaluated with respect to requirements and
violations of the correctness requirements are used to prune the space.

Synthesizing Finite-State Protocols from Scenarios and Requirements 77

To evaluate our methodology, we first consider the Alternating Bit Protocol
(ABP), a classical solution to provide reliable transmission over unreliable chan-
nels. The canonical description of the protocol uses four scenarios to explain its
behavior [3]. It turns out that the first scenario corresponding to the typical
behavior contains a representative of each local state of both the sender and re-
ceiver processes. Our algorithm for protocol completion is able to find a correct
implementation from just one scenario, and thus, automatically learn how to
cope with message losses and message duplications. We vary the input, both in
terms of the set of scenarios and the set of correctness requirements, and study
how it affects the computational requirements and the ability to learn the correct
protocol. We also evaluate the effectiveness of scenarios on two other protocols:
a cache coherence protocol and a distributed consensus protocol. In both cases,
as in ABP, the scenarios produce automata that cover all the states of a desired
implementation and our algorithm is able to synthesize the missing behaviors in
a reasonable amount of time.

Related Work

Our work builds on techniques and tools for model checking [4] and also on the
rich literature for formal modeling and verification of distributed protocols [5].

The problem of deriving finite-state implementations from formal require-
ments specified, for instance, in temporal logic, is called reactive synthesis, and
has been studied extensively [6–8]. When the implementation is required to be
distributed, the problem is known to be undecidable [9–12]. In bounded synthe-
sis, one fixes a bound on the number of states of the implementation, and this
allows algorithmic solutions to distributed synthesis [13]. Another approach uses
genetic programming combined with model checking, to search through protocol
implementations to find a correct one, which has been shown to be effective in
synthesizing protocols such as leader election [14, 15].

Specifying a reactive system using example scenarios has also a long tradi-
tion. In particular, the problem of deriving an implementation that exhibits at
least the behaviors specified by a given set of scenarios is well-studied (see, for
instance, [16–18]). A particularly well-developed approach is behavioral program-
ming [19] that builds on the work on an extension of message sequence charts,
called live sequence charts [20], and has been shown to be effective for specifying
the behavior of a single controller reacting with its environment. The work in [21]
generalizes Angluin’s learning algorithm to synthesize automata from MSCs but
does not allow for the specification of requirements and relies on the program-
mer to answer classification and equivalence queries. More recently, scenarios —
in the form of “flows” — have been used in the modular verification of cache
coherence protocols [22].

Our approach of using both the scenarios and the requirements in an inte-
grated manner and using scenarios to derive incomplete state machines offers a
conceptually new methodology compared to the existing work. We are inspired
by recent work on program sketching [2, 23] and on protocol specification [24].
PSKETCH [2] uses similar techniques but targets concurrent data structures

78 R. Alur et al.

and is limited to safety properties. Compared to Transit [24] in this paper
we limit ourselves to finite-state protocols but consider both safety and liveness
requirements and provide a fully automatic synthesis procedure.

The protocol completion problem itself has conceptual similarities to problems
such as program repair studied in the literature [25], but differs in technical
details.

2 Methodology

We explain our methodology by illustrating it on an example, the well-known
Alternating Bit Protocol (ABP). The ABP protocol ensures reliable message
transmission over unreliable channels which can duplicate or lose messages. As
input to the synthesis tool the user provides the following:

– The protocol skeleton: this is a set of processes which are to be synthesized,
and for each process, the interface of that process, i.e., its inputs and outputs.

– The environment : this is a set of processes which are known and fixed, that
is, are not to be synthesized nor modified in any way by the synthesizer. The
environment processes interact with the protocol processes and the product
of all these processes forms a closed system, which can be model-checked
against a formal specification.

– A specification: this is a set of formal requirements. These can be expressed
in different ways, e.g., as temporal logic formulas, safety or liveness (e.g.,
Büchi) monitors, or “hardwired” properties such as absence of deadlock.

– A set of scenarios : these are example behaviors of the system. In our frame-
work, a scenario is a type of message sequence chart (MSC).

In the case of the ABP example, the above inputs are as follows. The overall
system is shown in Figure 1. The protocol skeleton consists of the two unknown
processes ABP Sender and ABP Receiver. Their interfaces are shown in the
figure, e.g., ABP Sender has inputs a′0, a

′
1, and timeout and outputs send, p0, and

p1. The environment processes are: Forward Channel (FC) (from ABP Sender
to ABP Receiver, duplicating and lossy), Backward Channel (BC) (from ABP
Receiver to ABP Sender, also duplicating and lossy), Timer (sends timeout
messages to ABP Sender), Safety Monitor, and a set of Liveness Monitors.

As specification for ABP we will use the following requirements: (1) deadlock-
freedom, i.e., absence of reachable global deadlock states (in the product system)
(2) safety, captured using safety monitors, which guarantee that send and deliver
messages alternate (3) Büchi liveness monitors, which accept incorrect infinite
executions in which either a send message is not followed by a deliver, a deliver
is not followed by a send, or a send never appears, provided that the channels
are fair and that the processes do not indefinitely ignore input messages.

We will use the four message sequence charts shown in Figure 2 to describe
the behavior of the ABP protocol. They come from a textbook on computer
networking [3]. The first scenario describes the behavior of the protocol when
no packets or acknowledgments are lost or duplicated. The second and the third

Synthesizing Finite-State Protocols from Scenarios and Requirements 79

ABP
sender

Forward
Channel

Backward
Channel

ABP
receiver

Safety Monitor

Liveness Monitors

Timer

timeout

send, deliver, p0, p1, p
′
0, p

′
1, a0, a1, a

′
0, a

′
1

p0, p1 p′0, p
′
1

a′
0, a

′
1 a0, a1

deliversend

Fig. 1. ABP system architecture

before
sending 0send

Sender Receiver

before
recv. 0

before
recv. 0

p0

deliver
a0

before
sending 1send before

recv. 1p1

deliver
a1

send
p0

deliver
a0

before
sending 0

send

Sender Receiver

p0

deliver
a0

send
p1

timeout
p1

deliver
a1

send
p0

deliver
a0

Sender Receiver

send
p0

deliver
a0

send
p1

a1

timeout
p1

deliver

a1

send
p0

deliver
a0

Sender Receiver

send
p0

deliver
a0

send
p1

deliver
a1

send
p0

deliver
a0

timeout

Fig. 2. Four scenarios for the alternating-bit protocol. From left to right: No loss, Lost
packet, Lost ACK, Premature timeout/duplication.

scenarios correspond to the expected behaviors of the protocol in the event of the
loss of a packet and in the event of the loss of an acknowledgment respectively.
Finally, the fourth scenario describes the behavior of ABP on premature timeouts
and/or packet duplication.

A candidate solution to the ABP synthesis problem is a pair of processes,
one for the ABP Sender and one for the ABP Receiver. Such a candidate is a
valid solution if: (a) the two processes respect their I/O interface and satisfy
some additional requirements such as determinism (these are defined formally in
Section 3.1), (b) the overall ABP system (product of all processes) may exhibit
each of the input scenarios, and (c) it satisfies all correctness requirements.

80 R. Alur et al.

Figure 3 shows for the ABP sender automaton, on the left, a manually con-
structed solution, and on the right, the output of the synthesis algorithm, when
invoked with the requirements mentioned above and only the first scenario from
Figure 2. It can be checked that the two instances of the ABP sender automaton
are “similar” in the sense that they satisfy the same intuitive properties that
one expects from the ABP protocol. In particular, the computed solution differs
from the manual one in that it eagerly re-transmits p0 when an unexpected ac-
knowledgment a′1 is received. This might incur additional traffic but satisfies all
the safety and liveness properties for the ABP protocol. The computed solution
for the ABP Receiver is the same as the manually constructed automaton.

send?

p0!

timeout?

a′
1?

a′
0?

send?

p1!

timeout?

a′
0?

a′
1?

send?

p0!

timeout?

a′
1?

a′
0?

send?

p1!

timeout?

a′
0?

a′
1?

Fig. 3. ABP Sender “manual” solution (left) and solution computed by the synthesis
algorithm using only the first scenario (right)

3 The Automata Completion Problem

We now describe how the problem described in Section 2 can be viewed as a
problem of completing the transition relations of finite IO automata.

3.1 Finite-State Input-Output Automata

A finite-state input-output automaton is a tuple A = (Q, q0, I, O, T,Of) where
Q is a finite set of states, q0 ∈ Q is the initial state, I is a finite (possibly empty)
set of inputs, O is a finite (possibly empty) set of outputs, with I ∩ O = ∅,
T ⊆ Q × (I ∪ O) × Q is a finite set of transitions,1 and Of ⊆ O is a (possibly
empty) set of outputs representing a fairness constraint.

We write a transition (q, x, q′) ∈ T as q
x?→ q′ when x ∈ I, and as q

x!→ q′ when
x ∈ O. We write q → q′ if there exists x such that (q, x, q′) ∈ T . A transition
labeled with x ∈ I (respectively, x ∈ O) is called an input transition (respectively,
an output transition).

A state q ∈ Q is called a deadlock if it has no outgoing transitions. q is called an
input state if it has at least one outgoing transition, and all outgoing transitions
from q are input transitions. q is called an output state if it has a single outgoing
transition, which is an output transition.

1 The framework and synthesis algorithms can easily be extended to handle internal
transitions as well, but we suppress this detail for simplicity of presentation.

Synthesizing Finite-State Protocols from Scenarios and Requirements 81

Automaton A is called deterministic if for every state q ∈ Q, if there are
multiple outgoing transitions from q, then all these transitions must be labeled
with distinct inputs. Determinism implies that every state q ∈ Q is a deadlock,
an input state, or an output state. Automaton A is called closed if I = ∅.

A safety monitor is an automaton equipped with a set of error states Qe,
A = (Q, q0, I, O, T,Of , Qe). A liveness monitor is an automaton equipped with
a set of accepting statesQa, A = (Q, q0, I, O, T,Of , Qa). A monitor could be both
safety and liveness, in which case it is a tuple A = (Q, q0, I, O, T,Of , Qe, Qa).

A run of an automaton A is a finite or infinite sequence of transitions starting
from the initial state: q0 → q1 → q2 → · · · . A state q is called reachable if there
exists a finite run reaching that state: q0 → q1 → · · · → q. A safety monitor is
called safe if it has no reachable error states. An infinite run of a liveness monitor
is called accepting if it visits accepting states infinitely often. An infinite run is
called fair, if for every o ∈ Of , if it infinitely often visits some state q such that
o ∈ {x | (q, x, q′) ∈ T } (o is “enabled” at q), then it makes a transition with
output o infinitely often.2 A liveness monitor is called empty if it has no infinite
accepting fair runs.

se
n
d?

p0! a′
0? se

n
d?

p1! a′
1? se

n
d?

p0! a′
0?

timeout?
p1! a′

1? se
n
d?

p0! a′
0?

a′
1?

a′
0?

Fig. 4. Incomplete protocol automaton for ABP Sender using all scenarios from Fig-
ure 2, without using symmetric scenarios or labels.

3.2 Composition

Wedefineanasynchronous (interleaving-based)parallel compositionoperatorwith
rendezvous synchronization. Given two automata A1 = (Q1, q0,1, I1, O1, T1, Of,1)
andA2 = (Q2, q0,2, I2, O2, T2, Of,2), the compositionofA1 andA2, denotedA1‖A2,
is defined, providedO1 ∩O2 = ∅, as the automaton

A1‖A2 =̂ (Q1 ×Q2, (q0,1, q0,2), (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2, T, Of,1 ∪Of,2)

where ((q1, q2), x, (q
′
1, q

′
2)) ∈ T iff one of the following holds:

– x ∈ O1 and q1
x!→ q′1 and either x ∈ I2 and q2

x?→ q′2 or x �∈ I2 and q′2 = q2.

– x ∈ O2 and q2
x!→ q′2 and either x ∈ I1 and q1

x?→ q′1 or x �∈ I1 and q′1 = q1.

2 Of the many notions of fairness which are discussed in literature, we have chosen one
notion of fairness that is adequate for the case studies in this paper. Our approach
can be extended to more general forms of fairness assumptions.

82 R. Alur et al.

– x ∈ (I1∪I2)\(O1∪O2) and at least one of the following holds: (1) x ∈ I1 \I2
and q1

x?→ q′1 and q′2 = q2, (2) x ∈ I2 \ I1 and q2
x?→ q′2 and q′1 = q1, (3)

x ∈ I1 ∩ I2 and q1
x?→ q′1 and q2

x?→ q′2.

During composition, the product automaton A1‖A2 “inherits” the safety and
liveness properties of each of its components. Specifically, a product state (q1, q2)
is an error state if either q1 or q2 are error states. A product state (q1, q2) is an
accepting state if either q1 or q2 is an accepting state.

Note that ‖ is commutative and associative. So we can write A1‖A2‖ · · · ‖An

without parentheses, for a set of n automata.

3.3 From Scenarios to Incomplete Automata

The first step in our synthesis method is to automatically generate from the set of
input scenarios an incomplete automaton for each protocol process. The second
step is then to complete these incomplete automata to derive a complete protocol.
In the sections that follow, we formalize and study the automata completion
problem. In this section, we illustrate the first step of going from scenarios to
incomplete automata, by means of the ABP example.

The idea for transforming scenarios into incomplete automata is simple. First,
for every “swim lane” in the message sequence chart corresponding to a given
scenario, we identify the corresponding automaton in the overall system. For
example, in each scenario shown in Figure 2, the left-most lane corresponds to
ABP Sender and the right-most lane to ABP Receiver. These scenarios omit the
environment processes for simplicity. In particular channel processes are omitted,
however, we will use a primed version of a message when referencing it on the
process that receives it.

Second, for every protocol process P , we generate an incomplete automaton
AP as follows. For every message history ρ (ρ is a finite sequence of messages
received or sent by the process) specified in some scenario in the lane for P , we
create a state sρ in AP . If ρ

′ = ρ ·x is an extension of history ρ by one message x,

then there is a transition sρ
x→ sρ′ in AP . At this point, we check that the inputs

and outputs of AP are included in the interface of P in the protocol skeleton and
that AP is deterministic. Applying this procedure to the scenarios in Figure 2,
we obtain the incomplete automaton shown in Figure 4 for the ABP Sender.

Third, scenarios are annotated with labels. As shown in the first scenario of
Figure 2, labels appear between messages on swim lanes. These are used to merge
the states that correspond to message histories that are followed by the same
label. Merging occurs for states of a single scenario as well as across multiple
ones if the same label is used in different scenarios. If consistent labels are given
to the initial and final positions in all swim lanes of the scenarios the resulting
incomplete automata can be made cyclic. Furthermore, labels are essential for
specifying recurring behaviors in scenarios and the structure of the incomplete
automaton depends on the number and positions of labels used.

Finally, it is often the case that different behaviors of a system are equivalent
up to simple replacement of messages. For example, all the ABP scenarios express

Synthesizing Finite-State Protocols from Scenarios and Requirements 83

q1 q2 q5

q3 q4

before
sending

0

before
sending

1

send? p0! a′
1? a′

0?

a′
0?

timeout? a′
0?p0!

send?

Fig. 5. Incomplete protocol automaton for ABP Sender from all scenarios of Figure 2
and their symmetric and after merging labeled states. (Only one half of the automaton
is shown, the rest is the symmetric case for packet 1.)

valid behaviors if p0 and a0 messages are consistently replaced with p1 and a1
messages respectively and vice-versa. Thus, our framework allows for scenarios
to be characterized as “symmetric”.

We annotate the swim lanes of the ABP Sender scenarios of Figure 2 with
“before sending 0” and “before sending 1” labels, and the swim lanes of the ABP
Receiver with “before receiving 0” and “before receiving 1” labels. We also add
the symmetric scenarios by switching 0 messages with 1 messages. The resulting
incomplete automaton for ABP Sender is shown in Figure 5.

3.4 Automata Completion

Having transformed the input scenarios into incomplete automata, the next step
is to complete those automata by adding the appropriate transitions, so as to
synthesize a complete and correct protocol. In this section we formalize this
completion problem. We define two versions of the problem: a special version
with only a single incomplete automaton and a general version. In Section 4.1
we show that these problems are combinatorially hard.

Consider an automaton A = (Q, q0, I, O, T). Given a set of transitions T ′ ⊆
Q × (I ∪ O) × Q, the completion of A with T ′ is the new automaton A′ =
(Q, q0, I, O, T ∪ T ′).

Problem 1. Given automaton E (the environment) and deterministic automaton
P (the process) such that E‖P is defined, find a set of transitions T such that,
if P ′ is the completion of P with T , then P ′ is deterministic and E‖P ′ has no
reachable deadlock states.

Note that if E‖P is defined then E‖P ′ is also defined, because, by definition,
completion does not modify the interface (inputs and outputs) of an automaton.

Problem 2. Given a set of environment automata E1, ..., Em (some of which can
be safety or liveness monitors), and a set of deterministic process automata
P1, ..., Pn such that E1‖ · · · ‖Em‖P1‖ · · · ‖Pn is defined, find sets of transitions
T1, ..., Tn such that, if P ′

i is the completion of Pi with Ti, then for i = 1, ..., n,

– P ′
i is deterministic, for i = 1, ..., n,

– if the product automaton Π := E1‖ · · · ‖Em‖P ′
1‖ · · · ‖P ′

n is a safety automa-
ton then it is safe,

84 R. Alur et al.

– if Π is a liveness automaton then it is empty,
– and, Π has no reachable deadlock states.

4 Solving Automata Completion

In this section, we first show that Problems 1 and 2 are NP-complete and
PSPACE-complete respectively. We then present a synthesis algorithm to solve
the automata completion problem.

4.1 Complexity

It can be shown that Problem 2 is PSPACE-complete. Note that this is not sur-
prising, as the verification problem itself is PSPACE-complete, for safety proper-
ties of distributed protocols. However, in the special case of one process and one
environment automaton, while verification can be performed in polynomial time,
a reduction from 3-SAT shows that the corresponding completion Problem 1 is
NP-complete. The proofs are omitted due to lack of space, and can be found
in [26].

Theorem 1. Problem 1 is NP-complete and Problem 2 is PSPACE-complete.

4.2 Synthesis Algorithm

We propose an algorithm for solving the automata completion problem that can
be viewed as an instance of counter-example guided inductive synthesis [2]. At
a high-level the algorithm works by maintaining a set of constraints on correct
completions. The algorithm repeatedly chooses a candidate completion such that
it satisfies these constraints. If this candidate completion satisfies the correctness
requirements, the algorithm terminates. Otherwise, the information from the
violation of the requirements is used to create more constraints on the set of
correct completions and prune the search space.

We associate a Boolean variable with every candidate transition that can be
added to the individual automata. The constraints maintained by the algorithm
are propositional formulas over these transition variables. We initialize the con-
straint set with determinism and deadlock constraints. The first enforce that
the protocol automata are deterministic, as described in subsection 3.1. For the
second, we explore the reachable state space of the product of the environment
and incomplete process automata; for every deadlock state, we add constraints
that guarantee that at least one transition will be enabled out of that state. In
the remainder of this section we will use ti to refer both to transitions and their
corresponding Boolean variables.

At the beginning of every iteration, a constraint solver — an ILP solver in
our implementation — produces an assignment to the transition variables such
the assignment satisfies the constraints. If the constraints are unsatisfiable, the
algorithm concludes that no solution is possible and terminates. Otherwise, we
translate the assignment to a set of transitions T , such that for every transition

Synthesizing Finite-State Protocols from Scenarios and Requirements 85

variable that the assignment sets to true, the corresponding transition is in T . Let
T = {t1, . . . , tn}. We complete the process automata with T , form their product
with the environment automata, and monitors, and we check the absence of
deadlocks, safety, and liveness violations using a model checker. The following
cases are possible:

1. No violations are found. In this case, T is a correct completion, and the
algorithm terminates.

2. A safety violation is found. This case means that the candidate solution T is
incorrect. Moreover, any candidate T ′ obtained by adding extra transitions to
T , i.e., T ′ ⊇ T , will also be incorrect, because adding extra local transitions
can only add, but not remove, global transitions. This in turn implies that
any reachable error state with T will also be a reachable error state with
T ′, so any safety violation with T will also be a safety violation with T ′. To
enforce that no superset of T is included in any future candidate set, we add
the formula ¬(t1 ∧ t2 ∧ . . . ∧ tn) to the constraint set.

3. A liveness violation is found. This case also means that the candidate solu-
tion T is incorrect. A liveness violation, according to the definition of the
problem 2, corresponds to a fair infinite accepting run, represented by a
reachable cycle, that contains an accepting state of a liveness monitor. Al-
though adding more transitions cannot eliminate the cycle, it is possible
that additional transitions can render a fair run unfair: if a particular out-
put o ∈ Of was not enabled in the cycle, then adding local transitions can
cause o to become enabled. Let T ′ = {t′1, . . . , t′m} be the set of transitions
that, if added, would make the infinite run unfair.3 We add as a constraint
the formula ¬(t1∧t2∧ . . .∧tn)∨(t′1∨t′2∨ . . .∨t′m). The constraint guarantees
that in all future candidate sets, the cycle will be unreachable, broken, or
not fair.

4. A deadlock state is found. In this case, T is also incorrect, but could poten-
tially be made correct by adding more transitions. Let T ′ = {t′1, . . . , t′m} be
the set of candidate transitions such that, if any transition in T ′ is added,
a transition is enabled out of the deadlock state. We add the constraint
(t1 ∧ . . . ∧ tn)→ (t′1 ∨ . . . ∨ t′m).

In every iteration, either a correct completion is found or the search space is
pruned. We use an ILP solver to generate candidate sets from the constraints
with an objective function that minimizes the size of the candidate set. In that
way, in each iteration, we examine the smallest set of transitions that satisfies
the constraints. This keeps the size of the product of the automata small and
allows for faster checking of the properties.

We employ the following heuristic to prune the search space faster. Assume
that a candidate set T = {t1, . . . , tn} is tested in an iteration of the algorithm and
a safety violation is discovered. As described so far, the algorithm will remove

3 For simplicity, we assume that process automata only communicate with environ-
ment automata. The constraint for the general case is more complicated but concep-
tually similar.

86 R. Alur et al.

all supersets of T from the search space by adding the constraint ¬(t1 ∧ . . .∧ tn).
However, if the safety violation is reachable by using only a subset of T , T ′′,
then it is safe to also remove all supersets of T ′′ from the search space. Ideally,
one would find all minimal subsets of T that alone can lead to a violation and
remove all supersets of them. We approximate this by finding a minimal path to
a safety violation using breadth-first search. If the path contains a subset of the
transitions in T , we remove all supersets of that subset from the search space.

5 Evaluation

In this section we evaluate the effectiveness of scenarios and our methodology for
specifying finite-state protocols. We use three benchmarks: the ABP protocol,
a cache coherence protocol, and a consensus protocol. We first check whether
the corresponding scenarios result in incomplete automata that cover all the
states of a desired implementation. We then evaluate our synthesis algorithm on
those benchmarks and investigate the effectiveness of scenarios in reducing the
empirical complexity of the automata completion problem. Lastly, we discuss
the interaction between the number of scenarios used to construct the initial
incomplete automata and the number of requirements that are necessary to
synthesize a correct protocol. A quantitative summary of our experiments can
be found in Table 1. Each row corresponds to a combination of benchmark and
set of input scenarios used for that benchmark, column “time” shows the total
time that the synthesis algorithm took to find a correct completion, column “#
iterations” shows the number of iterations of the algorithm, i.e., the number of
candidate sets of transitions tested, and “# candidate transitions” is the total
number of candidate transitions for all process automata. Note that this last
number, n, represents individual local transitions and not number of candidate
completions. The size of the space of all possible completions is the number of
subsets of the set of candidate transitions, i.e., 2n.

5.1 Benchmarks

ABP. This protocol was described in Section 2. We use different sets of input
scenarios to create three versions of this benchmark. ABP1 used only the first
scenario of Figure 2 to construct the incomplete automata, ABP2 used the second
scenario, while ABP1-4 used all four scenarios.

We also construct a variation of the protocol that allows the clients to send
different types of messages. In the protocol described in Section 2, only one
type of message can be sent and received. In experiments ABPcolored1, ABP-
colored2, and ABPcolored1-4, there are two types of messages that can be sent
and received representing the different data that messages could carry.

VI Protocol. The VI protocol is a protocol for maintaining coherence among
the private caches of a multi-processor system. The coherence requirement is
that the value read by any processor is the same as the last value written to
that location by any processor in the system. The scenarios shown in Figure 6

Synthesizing Finite-State Protocols from Scenarios and Requirements 87

Cache 1

Invalid

Directory

Invalid
REQ

GET

RSP

ACK

Valid

Owner:C1

Valid

Cache 1

Valid

Directory

Valid

Owner:C1
WB

WBREQ

WBAC
K Invalid

Invalid

Cache 1

Invalid

Directory

Valid

Owner:C2

Cache 2

Valid

REQ
GET

INV

INVACK

InvalidRSP

ACK
Valid
Owner:C1

Valid

Fig. 6. Scenarios for the VI protocol

describe the working of the protocol. In the first scenario, Cache 1 acquires
permissions to read or write to the cache block from the directory when no
other processor in the system has permissions on the block. The second scenario
demonstrates how a directory invalidates a cache that already has permissions
on a block to fulfill the request of another cache for the block. These scenarios
do not describe the behavior of the protocol when the second and third scenarios
are interleaved, i.e., Cache 1 relinquishing permissions while Cache 2 attempts
to acquire permissions.

We examine two variations of the VI protocol: one where there is a unique
value for the data, in which case the protocol reduces to a distributed locking
protocol (VI-no-data), and one where the data can take values 0 or 1, which
captures the essence of the VI cache coherence protocol (VI).

Consensus. In this problem we specify a protocol that describes how two pro-
cesses can reach consensus on one value. Each process chooses initially a preferred
value and then they coordinate using shared memory to decide which of the two
values to choose. The properties that the protocol has to satisfy are agreement
(the two decisions must be the same), validity (the common decision must equal
one of the preferred values), and wait-freedom (at any point, if only one process
makes progress it will be able to make a decision). It has been shown that wait-
freedom can be achieved only if a test-and-set register is used. The test-and-set
register allows a process to write a value to it and read its previous value as an
atomic operation

Figure 7 shows the scenario used for the consensus protocol. Both processes
begin by non-deterministically choosing a value, messages “Prefer0” and “Pre-
fer1”, then write their choices in shared registers, “Register1” and “Register2”,
and then compete on setting the common test-and-set register which is initialized
with 0. In this case, Process1 succeeds, the return value of the test-and-set opera-
tion is 0, and Process1 decides on its preferred value with message “decide0”. On
the other hand, Process2 fails, the test-and-set register returns 1, and Process2
reads the value chosen by Process1, and decides on that with messages “read0”
and “decide0”. We first attempt to synthesize the protocol starting from the
incomplete automata constructed from the “success path”, i.e., Process 1 lane
of the scenario, and the “fail path”, i.e., Process 2 lane. These two experiments

88 R. Alur et al.

Register1Process1

Test&Set
Register Register2 Process2

Prefer0

Set0

test-and-set-0

decide0

Prefer1

Set1

test-and-set-1

read0

decide0

Fig. 7. Scenarios for the consensus protocol

correspond to rows “Consensus-success” and “Consensus-fail” of the Table 1.
Finally, we implement a consensus protocol that does not use a test-and-set
register, row “Consensus-no-test-and-set”.

5.2 State Coverage

We first observe that in all our experiments, except for “Consensus-success” and
“Consensus-no-test-and-set”, the states of the incomplete automata constructed
by the scenarios cover all states of the protocols. In the “Consensus-success”
experiment, the incomplete automaton is constructed using only the successful
path of the protocol. A large part of the protocol’s logic is missing from the input
scenario, leaving the automaton with not enough states. The synthesis algorithm
terminates and thus proves that no successful completion is possible. When we
add an extra state in the incomplete automata without any edges to or from
the rest of the states, the synthesis algorithm returns a completion that uses
the extra state to implement the missing behavior. Row “Consensus-success+1”
corresponds to that experiment.

5.3 Generalization and Inference of Unspecified Behaviors

In all cases where the given scenarios covered all the states of the desired imple-
mentation the synthesis algorithm terminated with a correct completion. For the
case of ABP with just one scenario specified, the algorithm successfully performs
the generalization required to obtain a correct completion. The generalization
performed is non-obvious: the correct protocol behaviors on packet loss, loss of
acknowledgments and message duplication are inferred, even though the scenario
does not describe what needs to happen in these situations. As can be seen in
Figure 8, the incomplete automata constructed from the scenario describe only
the protocol behavior over lossless channels. The algorithms are guided solely by
the liveness and safety specifications to infer the correct behavior. In contrast,
when all four scenarios are used, the scenarios already contain information about
the behavior of the protocol when a single packet loss or a single message du-
plication occurs. The algorithm thus needs to only generalize this behavior to
handle an arbitrary number of losses and duplications.

Synthesizing Finite-State Protocols from Scenarios and Requirements 89

Table 1. Quantitative summary of experiments

Benchmark time (s) # iterations # candidate transitions

ABP1 2.8 44 84

ABP2 9.9 87 172

ABP1-4 11.5 59 240

ABPcolored1 63.8 197 260

ABPcolored2 168.9 273 652

ABPcolored1-4 409.4 293 1012

VI-no-data 28.6 208 1170

VI 183.7 215 4538

Consensus-fail 0.3 5 264

Consensus-success 13.8 162 112

Consensus-success+1 21.4 163 216

Consensus-no-test-and-set 11.2 156 88

The same is true about the generalizations made by the algorithm in the other
benchmarks. Specifically, in the case of VI, the synthesis algorithm correctly in-
fers that in a complete protocol write-back and invalidate messages should be
treated in the same way both from the caches and from the directory. Note that
this behavior cannot be inferred by looking at caches and directory indepen-
dently: they both have to implement it for the result to be correct.

5.4 Scalability

To validate our hypothesis that scenarios make the synthesis problem easier, we
attempted to synthesize the ABP protocol with no scenarios specified, but with
bounds on the number of states of the processes. These bounds were set to be
equal to the corresponding number of states in the manually constructed version
of the ABP protocol. We required that the protocol satisfy all the properties
discussed in Section 2. The synthesis algorithm ran out of time with no correct
completion with a timeout of thirty minutes.

5.5 Scenarios and Requirements

We observed that when fewer scenarios were used we needed to specify more
properties — some of which were non-obvious — so that the algorithms could
converge to a correct completion. For instance, when only one scenario was spec-
ified, we needed to include the liveness property that every deliver message was

send?
p0!

a′
0?

send?
p1!

a′
1?

p′0?
deliver!

a0!

p′1?
deliver!a1!

Fig. 8. Incomplete automata constructed from the first scenario of Figure 2

90 R. Alur et al.

eventually followed by a send message. Owing to the structure of the incomplete
automata, this property was not necessary to obtain a correct completion when
all four scenarios were specified. Another property which was necessary to reject
trivial completions when no scenarios were specified was that there has to be at
least one send message in every run. Therefore, in some cases, using scenarios
can compensate for the lack of detailed formal specifications.

6 Conclusions

The main contribution of this paper is a new methodology, supported by an auto-
matic synthesis technique, for specifying finite-state distributed protocols using
a mix of representative behaviors and correctness requirements. The synthesizer
derives a skeleton of the state machine for each process using the states that ap-
pear in the scenarios and then finds a completion that satisfies the requirements.
The promise of the proposed method is demonstrated by the ability of the syn-
thesis algorithm to learn the correct ABP protocol from just a single scenario
corresponding to the typical case. We would like to look at protocols that are
best described using extended FSM with variables, such as more advanced cache-
coherence protocols. In such cases, it will be necessary to synthesize symbolic
guards and updates for each transition, see for example [24].

References

1. ITU Telecommunication Standardization Sector: ITU-R recommendation Z.120,
Message Sequence Charts (MSC 1996) (May 1996)

2. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures. In:
Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2008) (2008)

3. Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach, 5th edn.
Addison-Wesley Publishing Company, USA (2009)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2000)
5. Lynch, N.A.: Distributed algorithms. Morgan Kaufmann (1996)
6. Ramadge, P., Wonham, W.: The control of discrete event systems. IEEE Transac-

tions on Control Theory 77, 81–98 (1989)
7. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of

the 16th ACM Symposium on Principles of Programming Languages (1989)
8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-

tive(1) designs. J. Comput. Syst. Sci. 78(3) (2012)
9. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: 31st

Annual Symposium on Foundations of Computer Science, pp. 746–757 (1990)
10. Tripakis, S.: Undecidable Problems of Decentralized Observation and Control on

Regular Languages. Information Processing Letters 90(1), 21–28 (2004)
11. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: IEEE Symposium

on Logic in Computer Science, pp. 321–330 (2005)
12. Lamouchi, H., Thistle, J.: Effective control synthesis for DES under partial obser-

vations. In: 39th IEEE Conference on Decision and Control, pp. 22–28 (2000)

Synthesizing Finite-State Protocols from Scenarios and Requirements 91

13. Finkbeiner, B., Schewe, S.: Bounded synthesis. Software Tools for Tchnology Trans-
fer 15(5-6), 519–539 (2013)

14. Katz, G., Peled, D.: Model checking-based genetic programming with an applica-
tion to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008)

15. Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using
model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011)

16. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Transactions on Software Engineering 29(7) (2003)

17. Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavioral models from scenarios.
IEEE Trans. Softw. Eng. 29(2) (2003)

18. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In:
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (2012)

19. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),
90–100 (2012)

20. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal
Methods in System Design 19(1) (2001)

21. Bollig, B., Katoen, J., Kern, C., Leucker, M.: Learning Communicating Automata
from MSCs. IEEE Transactions on Software Engineering 36(3), 390–408 (2010)

22. O’Leary, J., Talupur, M., Tuttle, M.R.: Protocol verification using flows: An indus-
trial experience. In: Formal Methods in Computer-Aided Design, FMCAD 2009,
pp. 172–179 (November 2009)

23. Solar-Lezama, A., Rabbah, R., Bodik, R., Ebcioglu, K.: Programming by sketch-
ing for bit-streaming programs. In: Proceedings of the 2005 ACM Conference on
Programming Language Design and Implementation (2005)

24. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M.K., Alur,
R.: Transit: specifying protocols with concolic snippets. In: Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2013, pp. 287–296 (2013)

25. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005)

26. Alur, R., Martin, M.M.K., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa,
A.: Synthesizing finite-state protocols from scenarios and requirements. CoRR
abs/1402.7150 (2014)

Automatic Error Localization for Software

Using Deductive Verification�

Robert Könighofer, Ronald Toegl, and Roderick Bloem

IAIK, Graz University of Technology, Austria

Abstract. Even competent programmers make mistakes. Automatic
verification can detect errors, but leaves the frustrating task of finding
the erroneous line of code to the user. This paper presents an automatic
approach for identifying potential error locations in software. It is based
on a deductive verification engine, which detects errors in functions anno-
tated with pre- and post-conditions. Using an automatic theorem prover,
our approach finds expressions in the code that can be modified such that
the program satisfies its specification. Scalability is achieved by analyz-
ing each function in isolation. We have implemented our approach in the
widely used Frama-C framework and present first experimental results.

1 Introduction

Formal verification attempts to detect mismatches between a program and its
specification automatically. However, the time-consuming work of locating and
fixing detected bugs is usually performed manually. At the same time, the diag-
nostic information provided by the tools is often limited. While model checkers
commonly provide counterexamples, deductive software verification engines usu-
ally only give yes/no (or worse: only yes/maybe) answers. Analyzing a proof or
witness given by the underlying theorem prover is usually not a viable option.

In this work, we strive to lessen this usability defect in the context of deductive
software verification [2]. This approach assumes that source code is annotated
with pre- and post-conditions. It computes a set of proof obligations, i.e., formulas
that need to be proven to attest correctness. These formulas are then discharged
by an automatic theorem prover. Scalability is achieved by analyzing functions
in isolation. We extend this verification flow such that the tool does not only
report the existence of an error, but also pinpoints its location.

Our solution assumes that some code expression is faulty. This fault model is
fine-grained and quite general. If verification of a function fails, we iterate over
each expression in this function and analyze if it can be modified such that the
function satisfies its contract for all inputs. If so, we report this expression as
potential error location. Expressions that cannot be modified such that the error
goes away do not have to be analyzed by the developer when trying to fix the

� This work was supported by the European Commission through project STANCE
(31775) and the Austrian Science Fund (FWF) through project RiSE (S11406-N23).

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 92–98, 2014.
c© Springer International Publishing Switzerland 2014

Automatic Error Localization for Software Using Deductive Verification 93

error. We have implemented a proof-of-concept in Frama-C [2], and provide first
experimental results comparing our approach to FoREnSiC [1] and Bug-Assist [6].

Related Work. Our fault model has been successfully applied before [7,1]:
This approach also checks repairability of expressions, but only for fixed inputs.
It uses assertions as specification, and SMT solvers as reasoning engines. [4]
is similar but uses a model checker. In [6] a MAX-SAT engine is used. Our
work resolves many drawbacks of these existing works: pre- and post-conditions
are more powerful than assertions, we check repairability for all inputs, and we
achieve scalability by analyzing functions in isolation. Model-based diagnosis [10]
has already been applied in many settings (cf. [7]). Our approach is similar (we
also check repairability), but focuses on single-fault diagnoses to avoid floods
of diagnoses. Dynamic methods [5] rely on the quality of available test cases.
In contrast, our method is purely formal. An extended version [8] of this paper
contains an additional appendix with more detailed experimental results.

2 Automatic Error Localization

2.1 Fault Models

Intuitively, a fault model defines what can go wrong in a program, thereby induc-
ing a set of candidate error locations. An error localization algorithm can then
decide which of these can-
didates can actually be re-
sponsible for the detected
problem. A good fault model needs to balance conflicting objectives: it should
cover many errors, be fine-grained, allow for efficient error localization and not
yield too many spurious error locations. Existing approaches include fault pat-
terns [9] specifying common bugs, mutation-based fault models [3] assuming that
the error is a small syntactic change, and faulty expressions [4,7] assuming that
the control structure is correct but some code expression may be wrong. In this
work we use faulty expressions because this fault model is fine-grained, more
generic than mutation-based models, more automatic than fault patterns, and
still allows for efficient error localization, as shown below.

2.2 Basic Idea for Error Localization

Our approach is inspired by [4,7]: An expression in the source code is a potential
error location if it can be replaced such that the detected error is resolved.

Example 1. The program on the right is supposed to compute the maximum of

1 /*@ensures \result >= b;@*/
2 int max(int a, int b) {
3 int r = a;
4 i f (b > a)
5 r = a; //correct : r = b
6 return r; }

a and b, but contains a bug in line 5. The post-
condition \result >= b is incomplete but suf-
ficient to detect the bug: it is violated if b > a.
Our fault model (incorrect expressions) identi-
fies 4 candidate error locations: Candidate C1

is the expression “a” in line 3, C2 is “b > a” in line 4, C3 is the “a” in line 5,

94 R. Könighofer, R. Toegl, and R. Bloem

and C4 is the “r” in line 6. Neither C1 nor C2 are error locations. C1 cannot be
changed to satisfy the post-condition because r is overwritten with the incorrect
value “a” if b > a. If we change only C2, \result will always be “a”, which is in-
correct if b > a. C3 and C4 are possible error locations, because these expressions
can be replaced by “b” to make the program satisfy its specification.

2.3 Realization with Deductive Verification

We now discuss how to answer such repairability questions automatically. From
a high-level perspective, most formal verification tools compute a correctness
condition correct(i) in some logic, where i is the vector of input variables of the
program. Next, a solver checks if ∀i : correct(i) holds. If not, an error has been
detected. Deductive verification tools like the WP plug-in of Frama-C [2] follow
this pattern by defining correct as implication: if the pre-condition of a function
holds, then the function must satisfy its post-condition. Loops are handled with
user-provided invariants, and a theorem prover checks ∀i : correct(i). In practice,
correct may be composed of parts that can be solved independently.

If a function is incorrect, we compute if a certain expression C is a potential
error location as follows. First, we replace C by a placeholder c for a new ex-
pression. Next, we compute the correctness condition correct(i, c), which depends
now also on c. Finally, C is a potential error location if ∀i : ∃c : correct(i, c). This
formula asks if expression C can, in principle, be replaced such that the function
satisfies its contract. For every input i, there must exist a value c to which the
replacement of C evaluates such that the function behaves as specified. Note that
this approach can, in principle, also compute a repair if the underlying theorem
prover can produce a witness in form of a Skolem function for the c variable.
However, this feature is not supported by our current implementation.

Example 2. We continue Example 1. We check if expression C1 is a potential

1 /*@ensures \result >= b;@*/
2 int max(int a, int b) {
3 int r = c1;
4 i f (b > a)
5 r = a; //correct : r = b
6 return r; }

error location by replacing it with a placeholder
c1, as shown on the right. Next, we compute
correct(a, b, c1) = (b ≤ a) ∧ (c1 ≥ b) using
deductive verification. C1 is not an error loca-
tion because ∀a, b : ∃c1 : correct(a, b, c1) is false.
When replacing C3 we get correct(a, b, c3) = (b ≤ a) ∨ (c3 ≥ b). We have that
∀a, b :∃c3 :(b ≤ a)∨(c3 ≥ b), so C3 is a potential error location— as expected.

2.4 Implementation in Frama-C

We implemented our error localization approach as a proof of concept in the WP
plug-in of the widely used software verification framework Frama-C [2]. We dis-
cuss implementation challenges and reasons for imperfect diagnostic resolution.

Instrumentation. Frama-C normalizes the source code while parsing it into
an Abstract Syntax Tree (AST). For instance, it decomposes complicated state-
ments using auxiliary variables. Our instrumentation, replacing candidate ex-
pressions by a placeholder c, operates on this normalized AST. This makes it

Automatic Error Localization for Software Using Deductive Verification 95

robust when handling complicated constructions. The disadvantage is that our
approach may report error locations that are only present in the normalization.
However, we do not consider this a severe usability issue, because the line num-
ber in the original code is available, and Frama-C presents the normalized source
code and how it links to the original source code in its GUI.

Computation of correct(i, c). Internally, the WP plug-in of Frama-C performs
simplifications that may rewrite or eliminate our newly introduced placeholder
c, and thus, we cannot use WP a black-box to compute the correctness formula
correct(i, c) after instrumentation. We solve this issue by extending Frama-C’s
memory model such that the placeholder c is not touched by simplifications.

Quantification. Once we have correct(i, c), we need to add the quantifier prefix
∀i : ∃c. Unfortunately, correct may also contain auxiliary variables t that express
values of variables at specific program points. Intuitively, c should not depend on
variables that are assigned later in the program. This would violate the causality
and lead to false-positives. Hence, we need to separate the variables of correct
to construct the formula ∀i : ∃c : ∀t : correct(i, t, c). This is done by computing
the input variables (parameters and globals) of the function under analysis and
linking them to the corresponding variables in the formula.

Axiomatization. WP uses axiomatized functions and predicates in correct. For
instance, for a < b it writes zlt(a, b), where the predicate zlt : Z × Z → B is
axiomatized as ∀x, y : (zlt(x, y)→ x < y) ∧ (¬zlt(x, y)→ x ≥ y). In our exper-
iments we observed cases where the automatic theorem prover (AltErgo) could
not decide formulas when using the axiomatization, but had no difficulty when
the axiomatized predicates and functions are replaced by the corresponding na-
tive operators. Hence, we modified the interface to the theorem prover such that
formulas do not contain axiomatized functions and predicates, where possible.

Diagnostic Resolution.Our implementation is neither guaranteed to be sound
(it may produce spurious error locations) nor complete (it may miss potential
error locations). The reasons are:

– The theorem prover may time-out or return “Unknown” if it could neither
prove nor disprove the formula. We treat such verdicts as if the program was
incorrect (a choice justified by experience), which results in incompleteness.

– Instead of one monolithic formula correct, WP may compute multiple formu-
las that are checked independently. In error localization, we also check each
formula in isolation. This is weaker than checking the conjunction, i.e., can
result in spurious error locations, but increases efficiency.

– Incomplete specifications can result in spurious error locations.
– The bug may not match our fault model. E.g., code may be missing or the

control flow may be incorrect. This results in missed error locations.

3 First Experimental Results

Despite the potential imprecisions discussed in the last section, our implementa-
tion produces meaningful results. We evaluated our proof-of-concept

96 R. Könighofer, R. Toegl, and R. Bloem

implementation1 on the widely used TCAS benchmark [11], which implements
an aircraft traffic collision avoidance system in 180 lines of C code. It comes in
41 faulty versions that model realistic bugs. We annotated all functions with
contracts.

3.1 Performance Evaluation

We compare the execution time and effectiveness of our approach with that of
FoREnSiC [7,1] and Bug-Assist [6] on an ordinary laptop.2 For our new approach,
the error localization time (at most 129 [s], 37 [s] on average) is acceptable for
all TCAS instances. For 37% of the cases, the execution time increases by only
<40% when going from error detection to localization. FoREnSiC is slightly faster
on average (17 [s]) but the median runtime is on par (16 vs. 18 [s]). With 7 [s] on
average, Bug-Assist is even faster. Although only 66% of the benchmarks match
our fault model, errors were successfully located in 90.2%. While FoREnSiC and
Bug-Assist reported 15 error locations on average, our approach reported only
3.5. Thus, in our experiments, our tool provides much higher accuracy with only
slightly longer runtime. The user has to examine only a few expressions in the
code, which can speed-up debugging significantly.

3.2 Examples

This section investigates the reported error locations for a few TCAS versions.

Version 7. A constant is changed from 500 to 550 in an initialization function.
Our tool reports exactly this constant 550 as the only possible error location.
This takes 6 seconds, whereof 5.1 seconds are spent on error detection.

Version 9. This version contains the following function:

119 bool NonCrossBiasedDescend() {
120 bool r;
121 i f (InhibitBiasedClimb() >= DwnSep) {
122 r = OwnBlTh () && VerSep >= MSEP && DwnSep >= ALIM();
123 } else {
124 r = !(OwnAbTh ()) || (OwnAbTh () && UpSep >= ALIM());
125 }
126 return r; }

The correct pro-
gram has a “>”
instead of the
“>=” in line 121.
Our tool reports
two potential er-
ror locations: tmp 6 >= DwnSep in line 121, and tmp 1 in line 122. This output
looks cryptic because the code has been normalized by Frama-C. tmp 6 is an
auxiliary variable that stands for InhibitBiasedClimb(). This is shown in the
GUI. Hence, the first error location is just what we expect. tmp 1 holds the
value for r in line 122. This value can be changed to satisfy the specification for
all inputs as well. Hence, it is also reported. NonCrossBiasedDescend() is not
long, but contains complex logic. Analyzing this logic to locate a bug can be
cumbersome. The diagnostic information provided by our approach helps.

1 See www.iaik.tugraz.at/content/research/design_verification/others/
2 Table 1 in the Appendix of [8] gives more details to our performance results.

www.iaik.tugraz.at/content/research/design_verification/others/

Automatic Error Localization for Software Using Deductive Verification 97

Version 14 changes MAXDIFF (a preprocessor macro) from 600 to 600+50. Our
tool reports two possible error locations: VerSep > 600+50 in line 167 and
OtherCap == 1 in line 168 of function altSepTest, which is shown below. The
first one pinpoints exactly the problem. Note that altSepTest() is all but trivial.

165 int altSepTest() {
166 bool en, eq, intentNotKnown , needUpRA , needDwnRA;
167 en = HConf && OwnTrAlt <= OLEV && VerSep > MAXDIFF ;
168 eq = OtherCap == TCAS_TA ;
169 intentNotKnown = TwoRepValid && OtherRAC == NO_INT;
170 int altSep = UNRESOLVED;
171 i f (en && ((eq && intentNotKnown) || !eq)) {
172 needUpRA = NonCrossBiasedClimb() && OwnBlTh ();
173 needDwnRA = NonCrossBiasedDescend() && OwnAbTh ();
174 i f (needUpRA && needDwnRA) altSep = UNRESOLVED;
175 else i f (needUpRA) altSep = UPWARD_RA;
176 else i f (needDwnRA) altSep = DOWNWARD_RA;
177 else altSep = UNRESOLVED;
178 }
179 return altSep; }

If verification fails,
tracking down this
bug can be a very
time-consuming and
frustrating task. By
checking only the
reported locations,
we can significantly
reduce the manual
work to fix the bug.
Thus, the reported
error locations are usually both meaningful and helpful.

4 Conclusions

Tracking down a subtle program error in large source code is — like finding a
needle in a haystack — a tedious task. We have extended a widely used deduc-
tive software verification engine so that it can report expressions that may be
responsible for incorrectness. We evaluated our proof-of-concept implementation
on a few examples and conclude that our approach is viable and gives fast and
clear guidance to developers on the location of program defects.

Acknowledgment. We thank Löıc Correnson and the Frama-C team for their
support with our proof-of-concept implementation.

References

1. Bloem, R., Drechsler, R., Fey, G., Finder, A., Hofferek, G., Könighofer, R., Raik,
J., Repinski, U., Sülflow, A.: foREnSiC– an automatic debugging environment for
C programs. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857,
pp. 260–265. Springer, Heidelberg (2013)

2. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C - A software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012)

3. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty
programs. In: ICST 2010. IEEE (2010)

4. Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for C
programs. Electr. Notes Theor. Comput. Sci. 174(4), 95–111 (2007)

5. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: ASE 2005. ACM (2005)

98 R. Könighofer, R. Toegl, and R. Bloem

6. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: PLDI 2011, pp. 437–446. ACM (2011)

7. Könighofer, R., Bloem, R.: Automated error localization and correction for imper-
ative programs. In: FMCAD 2011, IEEE (2011)

8. Könighofer, R., Toegl, R., Bloem, R.: Automatic error localization for software
using deductive verification. CoRR, abs/1409.4637 (2014)

9. Larus, J.R., Ball, T., Das, M., DeLine, R., Fähndrich, M., Pincus, J.D., Rajamani,
S.K., Venkatapathy, R.: Righting software. IEEE Softw. 21(3), 92–100 (2004)

10. Reiter, R.: A theory of diagnosis from first principles. Art. Int. 32(1), 57–95 (1987)
11. Siemens benchmark suite,

http://pleuma.cc.gatech.edu/aristotle/Tools/subjects

http://pleuma.cc.gatech.edu/aristotle/Tools/subjects

Generating JML Specifications
from Alloy Expressions�

Daniel Grunwald, Christoph Gladisch, Tianhai Liu, Mana Taghdiri,
and Shmuel Tyszberowicz

Karlsruhe Institute of Technology, Germany
{christoph.gladisch,tianhai.liu,mana.taghdiri}@kit.edu,tyshbe@tau.ac.il

Abstract. Java Modeling Language (JML) is a specification language
for Java programs, that follows the design by contract paradigm. How-
ever, it is not always easy to use JML, for example when specifying prop-
erties of linked data structures. Alloy, on the other hand, is a relational
specification language with a built-in transitive closure operator, which
makes it particularly suitable for writing concise specifications of linked
data structures. This paper presents Alloy2JML, a tool that generates
JML specifications from Alloy expression, in order to support both Alloy
and JML specifications in the KeY verification engine. This translation
allows Java programs with Alloy specifications to be fully verified for
correctness. Moreover, Alloy2JML lets Alloy specifications be employed
in a variety of tools that accept only JML as their specification language.
Supporting Alloy has the additional advantage that users can validate
the specifications beforehand using the Alloy Analyzer.

Keywords: JML, Alloy, Java, Theorem proving, KeY, Relational logic.

1 Introduction

The ability to write concise and readable specifications highly affects the effi-
ciency of program verification. Providing correct formal specifications can be
as difficult as implementing the code correctly. A suitable formalism for spec-
ifying program properties not only makes the task of providing specifications
easier, but also reduces the likelihood of making mistakes. However, no single
specification language is optimal for specifying all possible properties.

JML [21] is a behavioral interface specification language for Java, that adds
first-order logic constructs to Java expressions. JML integrates seamlessly into
Java and is supported by a wide range of tools for specification type-checking,
runtime debugging, static analysis, and verification [4]. JML provides a rich set of
specification facilities, yet JML specifications tend to be close to the implemen-
tation. Specifying and verifying operations on linked data structures are difficult
in JML. Such operations have been specified in JML, e.g. in [1, 24], but no de-
ductive verification of them has been reported. To enable verification, extensions
of JML have been used [3].
� This work has been partially supported by GIF (grant No. 1131-9.6/2011).

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 99–115, 2014.
c© Springer International Publishing Switzerland 2014

christoph.gladisch, tianhai.liu, mana.taghdiri
@kit.edu, tyshbe@tau.ac.il

100 D. Grunwald et al.

To our knowledge, in [15] we provided the first specification of list operations
in standard JML that was deductively verified. The approach is to use recur-
sively defined queries (also called observer methods) in specifications to express
reachability in linked lists. Consider, for example, a method add that inserts the
data d into a singly linked list starting from the entry this.head. Using the
approach in [15] we would write the following JML formula to specify that every
data x in the resulting list is either d or was already in the original list:

(\forall Data x;
(\exists Entry a, int i; i>0 && hasNext(this.head,i,a) && a.data==x)

<==> (x==d || (\exists Entry b, int j;
j>0 && \old(hasNext(this.head,j,b)) && \old(b.data==x)))) (1)

The query hasNext expresses that an object a can be reached from the object
head in i steps (by traversing the field next). This specification approach has
the following advantages: (a) it uses a basic subset of JML which enables com-
patibility with various tools (e.g., [6,8,22]); (b) it allows automatic construction
of proofs by induction over the integer provided to the query as the second ar-
gument (here i and j); (c) it does not require ghost-states or ghost-fields, thus
makes the specification easier to understand; and (d) the specifications can be
used both for deductive verification and for testing1. The query is similar to the
JML reach clause, yet it provides more flexibility; some tools do not support the
reach clause (e.g. [23, 26]), and those that do support it interpret it differently
(e.g., [8, 22]). However, writing such JML specifications is error-prone as they
contain technical details. For set-based specifications, it would be easier to use
a notation that hides those details and focuses only on the abstract properties.

Alloy [18] is a lightweight declarative specification language for expressing
structure-rich software systems. It is based on first-order relational logic, and has
built-in operators for transitive closure, set cardinality, integer arithmetic, and
set comprehension. Several tools (e.g., [7, 25]) support Alloy as a specification
language for Java programs. The transitive closure operator enables users to
write concise specifications of linked data structures. The relational override
operator allows compact specification of frame conditions. Furthermore, when
appropriate, relational specifications let users easily abstract away from the exact
order and connection of elements in a data structure by viewing it as a set. The
above example can be concisely expressed in Alloy as follows:

this.head’.ˆnext’.data’ = this.head.ˆnext.data + d; (2)

where ˆnext denotes the transitive closure over the field next (i.e., all nodes
reachable by traversing next), + denotes set union, and unprimed and primed
symbols refer to the pre- and post-state of the method, respectively. With this
notation we provide a succinct and intuitive representation of set-based specifi-
cations. This notation is shorter, easier to understand, and less error-prone than
its JML counterpart.

1 When used for testing the quantifiers have to be bound.

Generating JML Specifications from Alloy Expressions 101

Fig. 1. Alloy2JML

JML and Alloy offer complementary views. JML allows to provide detailed
Java-specific annotations and to utilize Java for that. It is also suitable for spec-
ifying arithmetic properties, and certain properties of data structures where the
position of elements is important. Other properties, e.g. those that constrain the
set of all the elements of a linked data structure, are easier to express in Alloy.

This paper describes Alloy2JML, a tool that translates Alloy specifications
of Java programs into JML. The automatic translation is particularly benefi-
cial for properties that are difficult or error-prone to express in JML directly.
It takes programs in which each property is specified in either JML or Alloy,
and translates Alloy specifications to JML to yield uniform JML specifications.
The translation lets Java programs with Alloy specifications be fully verified
for correctness using the KeY verification engine [2]. Alloy2JML’s output con-
forms to the format suggested in [15], thus offers all the advantages listed above.
For example, it generates the JML specification (1) from the Alloy formula (2).
The output is essentially in standard JML—minor differences exist to support
KeY, which can be eliminated by simple syntactic changes. We have proved the
correctness of our translation [16] for a subset of Alloy using Isabelle/HOL [20].

We aim at producing JML formulas that are both usable for verification and
human-readable. Readability is particularly important when using interactive
verification tools such as KeY. It is not only necessary for debugging failed proof
attempts, but also for providing additional lemmas in the proof process. To gen-
erate readable specifications, we use a translation function that tries to minimize
the syntactic scope of quantifiers by delaying the introduction of quantification
guards. A subsequent simplification step eliminates most of the redundant quan-
tifiers.

In [15] we showed only specification examples and did not provide a systematic
way of defining the queries and how to write the specifications. Its applicability
to trees was also an open question. Here, we generalize and extend that work.
The translation provides a systematic way of deriving JML specifications for
arbitrary linked data structures from the more abstract Alloy specifications and
it eliminates the error-prone task of manually defining of queries. The queries
can be applied not only over a single field but also over an arbitrary relation
denoted by an Alloy expression.

As shown in Fig. 1, the input to Alloy2JML is a Java program annotated with
both JML and Alloy specifications, and the output is a Java program annotated
with JML specifications only. Alloy2JML also outputs an Alloy model that de-
clares Alloy signatures for the classes in the input program and Alloy predicates
for methods’ specifications (see [16]). Using this model, the Alloy Analyzer [18]—

102 D. Grunwald et al.

exp ::= id | id’ | freshType
| none | exp + exp| exp & exp
| exp - exp | exp . exp
| exp -> exp | exp ++ exp | ˜exp
| ˆexp | {[id: expr]+ | form}
| number | #exp | (sum id: exp | exp)

form ::= exp in exp | exp = exp
| exp (> | >= | < | <=) exp
| form (and | or | implies | iff) form
| not form | (no | some | lone) exp
| (all | some) [id : exp]+ | form

Fig. 2. Abstract syntax for translated Alloy expressions (exp) and formulas (form)

an automatic tool that checks Alloy models within bounded domains—can be
used to sanity-check the Alloy specifications prior to performing the full (possibly
interactive) verification. For example, it can help detect under-specification and
errors by visualizing instances that satisfy the specifications, and detect over-
specification by showing the unsatisfiable core. This makes Alloy a particularly
attractive specification language compared to other languages that support sets
and relations.

2 Background

2.1 Alloy

Alloy is a specification language based on first-order logic [18]. Every Alloy ex-
pression evaluates to a relation. Unary relations are declared as signatures, and
represent sets of atoms. Relations with higher arities are declared as fields and
represent sets of tuples. The constant none denotes the empty set. Set opera-
tions union, intersection, and difference are denoted by +, &, and -, respectively.
For relations r and s, the relational join and Cartesian product are denoted by
r.s and r->s, respectively. The relational override r++s contains all tuples of
s, and those tuples of r whose first element does not appear as the first ele-
ment of any tuple in s. The expression ˜r denotes the transpose of r, and the
transitive closure ˆr defines the smallest transitive relation that contains r. Set
comprehensions make relations with all tuples for which a certain formula holds.
The Alloy integer type, Int, represents the set of integer atoms. All integers
(including numbers, the result of the set cardinality operator #, and the sum
quantifier) are treated as sets of integer atoms (Alloy 4.2). Arithmetic operators
are defined as functions in the Alloy integer library (add[a,b] and sub[a,b]).
The expression (sum x: S | e) computes the sum of the values that the integer
expression e can take for all distinct bindings of the variable x in S.

Basic formulas are constructed using the operators in (subset), = (equality),
and integer comparators. They are combined using the standard logical opera-
tors. The multiplicity formulas no r, some r, and lone r constrain r to have
zero, at least one, and at most one tuple, respectively. The quantifiers all and
some denote the universal and existential quantifiers. It should be noted that
the Alloy Analyzer supports higher-order quantification when the quantifier can
be eliminated through skolemization. We, however, do not support higher-order
quantifications at all as they cannot be translated to JML.

Generating JML Specifications from Alloy Expressions 103

We let Java programs be annotated with legal Alloy formulas. We provide
special translation rules for the Alloy constructs of Fig. 2, and desugar all others
to this subset. Figure 2 slightly deviates from Alloy by introducing extra iden-
tifiers that have special meanings in our translation: a primed identifier refers
to the post-state of a method, whereas an unprimed one refers to its pre-state.
freshT denotes the set of objects of type T that are allocated in the post-state,
but not in the pre-state2.

2.2 JML

Java Modeling Language (JML) [21] is a first-order, behavioral interface spec-
ification language for Java. Side-effect free Java expressions, standard logical
operators, universal and existential quantifiers are allowed in JML annotations.
JML also supports various clauses and keywords for better specifications. The
ones used by our translation are described below.

The requires clause denotes a method’s precondition, evaluated in the pre-
state of the method call. If a method terminates normally, i.e. without throwing
an exception, then the normal post-condition—given in the ensures clause—
must hold in the post-state. The normal behavior clause specifies that if a
method’s precondition holds, the method must return normally. The invariant
clause denotes an object invariant that must hold at the end of each constructor’s
execution, and at the beginning and end of all non-static methods that are not
marked as helper. The memory locations (represented by a set of fields) that are
listed in the modifies clause are the only pre-state locations that can be modified
by a method. The measured by e clause is used in a termination argument for a
recursive specification, where the integer expression e decreases on each iteration
and evaluates to zero when the method terminates.

Java expressions used in pre- and post-conditions are evaluated in the heap’s
pre-state and the post-state, respectively. To access the initial (pre-state) value
of an expression e in the post-condition, the expression \old(e) is used. The key-
word \result refers to the value returned by a non-void method. The \fresh(o)
operator constrains the object o not to exist in the pre-state and to be non-null
in the post-state. Member fields, formal parameters, and return values are con-
sidered to be non-null by default. The nullable modifier specifies that the null
value is also acceptable. The modifier pure denotes that a method has no side-
effects and thus can be used in the annotations. The model modifier denotes
those fields and methods that can be used only in the annotations.

KeY [2] accepts JML*, a modified version of JML, as the specification language
for Java programs. JML* implements most, but not all, JML features and adds a
few more. Most relevant to our work is a semantic difference in the interpretation
of quantifiers. The range of JML quantifiers extends over all objects of the given
type, including those that are not yet created [21]. In JML*, on the other hand,
the quantifier ranges over only those objects that have been created in the current
2 Fresh objects could be specified by T’ - T, but then the translation could not distin-

guish other set differences from fresh objects (for which it generates \fresh clauses).

104 D. Grunwald et al.

1 class Entry {
2 /*@nullable*/ Entry next;
3 /*@nullable*/ Data data;
4

5 //$ensures this.data’ = d;
6 //$ensures no this.next’;
7 //$modifies this.data,this.next;
8 Entry(/*@nullable*/Data d)
9 { this.data = d; }

10 }
11 class LinkedList {
12 Entry head;
13 int length;
14

15 //$ensures this.head’.ˆnext’.data’
16 //$ = this.head.ˆnext.data + d;
17 //$ensures this.length’=add[this.length,1];
18 //$modifies this.head.next, this.length;
19 void add(Data d) {
20 Entry newEntry = new Entry(d);
21 newEntry.next = head.next;
22 head.next = newEntry;
23 length++;
24 }
25 }
26 class Data { .. }

1 class Entry {
2 /*@nullable*/ Entry next;
3 /*@nullable*/ Data data;
4

5 //@ensures this.data == d;
6 //@ensures this.next == null;
7 //@modifies this.data,this.next;
8 Entry(/*@nullable*/Data d){ .. }
9 }

10 class LinkedList {
11 Entry head;
12 int length;
13

14 //@ensures (\forall Data x;
15 //@ (\exists Entry a, int i;
16 //@ a.data == x && i > 0 &&
17 //@ hasNext(this.head,i,a))
18 //@ <==> (\exists Entry b, int j;
19 //@ \old(b.data == x) && j > 0 &&
20 //@ \old(hasNext(this.head,j,b)))
21 //@ || d == x);
22 //@ensures this.length ==
23 \old(this.length)+1;
24 //@modifies this.head.next, this.length;
25 void add(Data d) { ... }
26 }
27 class Data { .. }

(a) (b)

Fig. 3. Example: (a) original, (b) translated

heap state. It is possible to obtain the JML* quantifier semantics in JML by
introducing predicates that explicitly distinguish between created and uncreated
objects. Furthermore, the JML* construct \infinite union(C o; o.f), where
C is a class and f is a field, gives the set of memory locations o.f for all objects
o of class C. The construct can be replaced using the model type JMLDataGroup
in standard JML (cf. [15]) (not included in JML*).

3 Motivating Example

We assume that the Alloy specifications of Java programs are written at the
concrete representation level of the code, and follow a relational view of the
heap [25]. That is, Java types are viewed as Alloy signatures, fields as binary
relations, and local variables and parameters as singleton sets.

Figure 3 elaborates the example of Section 1, showing our translation of Alloy
to JML. Figure 3(a) gives an implementation of a singly linked list where the
head and the length fields (Lines 12-13) denote the first entry and the number
of entries of the list, respectively. The list’s first entry is dummy; it does not
contain any data, and exists even for an empty list. The length field ensures

Generating JML Specifications from Alloy Expressions 105

that the list is finite, which is necessary for proving termination of methods that
traverse the list. The add method (Lines 19-24) inserts the given data d at the
beginning of the receiver list.

Alloy and JML annotations are marked by //$ and //@ respectively. The
post-conditions of the Entry constructor ensure that the given data d is stored
in the data field of the created entry (Fig. 3(a), Line 5), and that the next field
of this entry is set to null (Line 6). We assume that Alloy specifications model
the Java null object as an empty set. The first post-condition of the add method
specifies that the set of data stored in this list in the post-state equals that set
in the pre-state, augmented with the added data d (Lines 15-16). This example
demonstrates that specifications can be arbitrarily partial. This post-condition,
for example, does not specify that the given data is inserted at the beginning of
the list. The second post-condition (Line 17) specifies that length is updated
properly. The invariants of the LinkedList class are omitted for space reasons.

JML specifications produced by Alloy2JML are shown in Fig. 3(b). To handle
Alloy’s transitive closure operator, we introduce pure Java methods that can be
used in JML annotations. For a field f of type T declared in a class S, we define
a pure Java method hasF(C x, int i, C y) that returns true if x is non-null
and y is reachable from x by i times following the field f, and false otherwise.
The type C is the first common type of S and T in the type hierarchy of the
analyzed method. In addition to simple relational joins which are translated to
field dereferences, the post-condition of add (Fig. 3(a), Lines 15-17) contains set
equality, set union, and transitive closure operators. Set equality is translated
using its definition: any object in the right-hand-side set must be in the left-hand-
side one, and vice versa. Set union is handled using disjunction. An expression
containing the transitive closure some o.ˆnext is translated using (\exists
Entry e, int i; hasNext(o, i, e)), where the integer i can be any positive
number. The resulting JML specification is shown in Lines 14-23 of Fig. 3(b).

As shown by this example, we translate Alloy annotations into a basic variant of
JML. Alloy annotations are particularly concise and readable when specifications
involve reachability and set semantics. More examples can be found in [16].

4 Translation from Alloy to JML

4.1 The Translation Function

We have experimented with several translations and evaluated the applicability
and readability of the resulting JML specifications for verification using KeY. In
the following, we describe two preliminary approaches (Approach 1, Approach 2)
to motivate and explain our solution (Approach 3). For brevity we often use the
term relation to refer to sets and relations.

Approach 1: Since Alloy expressions evaluate to relations, a direct translation of
Alloy to JML requires the notion of relations in JML. Such a translation could
be done using a translation function E(r) → e that maps an Alloy expression r
to a JML expression e of a container (or array) type in Java. The translation of a

106 D. Grunwald et al.

union operation, for instance, would then become E(r + s) = union(E(r),E(s))
where union is a Java method that operates on containers. KeY expands method
invocations to their contracts. Expanding complex expressions, however, leads
to very complex verification conditions which we found impractical.

Approach 2: The explicit representation of sets and relations in Java/JML can be
omitted by expanding relational operators to their semantic definitions during
the translation. For this, we modify the translation function to E(r‖t1, . . . , tn) →
e which now maps an Alloy expression r along with JML expressions t1, ..., tn
to a boolean JML expression e, such that e is true iff <t1, . . . , tn> corresponds
to a tuple in r. The double bars || are a visual aid separating the translated
expression (left-hand side) from the expressions that form the tuple (right-hand
side). For example, the translation of the union operation can be expressed as
E(u+v‖obj) := E(u‖obj)||E(v‖obj), where, for simplicity, u and v are unary rela-
tions denoting program variables. In isolation, this expression cannot be further
resolved to a JML expression as the meta variable obj needs to be instantiated.
However, it can be resolved in the context of the formula in which it is used. For
this, we introduce another translation function, B, which maps Alloy formulas to
boolean JML expressions. Consider, for example, the following translation rules:

B(no r) := !(\exists Object x; E(r‖x))
E(v‖val) := vc == val vc denotes name resolution

E(r + s‖objs) := E(r‖objs) || E(s‖objs)
E(ˆr‖obj1, obj2) := (\exists int i; 0 <= i; hasR(obj1, i, obj2))

Using the first three rules, the expression no u+v will be translated to the JML
expression !(\exists Object x; u==x || v==x) without explicitly using Java
containers. The last rule shows our basic idea for translating transitive closure.
We express the reachability of obj2 from obj1 via the relational expression r,
i.e. (obj1, obj2) ∈ ˆr, using a boolean query method hasR. The integer i stands
for the number of times that r is traversed in order to reach obj2 when starting
from obj1. This is used as the induction variable in induction proofs. However, to
generate hasR from r, the translation function E has to be generalized further.

Approach 3: In [15] we have described how a user can manually write a query
(such as hasR) for a list data structure. Here we describe a general method to au-
tomatically translate the transitive closure of an arbitrary expression r into a re-
cursive definition of the query. Rather than introducing another translation func-
tion for this purpose, we generalize the function E to the form E(r‖p1, . . . , pn)c

where r is the Alloy relational expression to be translated; p1, . . . , pn is a list
of translation predicates applicable to JML expressions; and c is a translation
context capturing various information. The context provides a mapping from
Alloy types, relations, and variables to their corresponding symbols in JML, and
tells whether the expression is evaluated in the pre- or post-state (the latter
generates expressions embedded in \old(...)). The number of predicates (n)
must match the arity of the relation r, and the predicates must be well-formed.
The semantics of the translation function is defined by:
E(r‖p1, .., pn)c evaluates to true ⇐⇒ ∃(t1, .., tn) ∈ r: p1(c(t1))∧..∧pn(c(tn))

Generating JML Specifications from Alloy Expressions 107

Table 1. The translation functions E and B, and simplification rules R29 – R34. v is an
Alloy variable, T is a type signature, member is an Alloy relation for a Java field, n is an
integer literal, r, s are relational Alloy expressions, i, j are integer Alloy expressions,
F, G are Alloy formulas, Ti gives the JML type corresponding to the type of the ith

column of the given relation, the translation contexts ci, c
′, c∗ are extensions of c with

the mappings from the Alloy variables to the JML variables.

R1: E(v‖p1)c := p1(c(v))

R2: E(T‖p1)c := (\exists c(T) obj; p1(obj))

R3: E(member‖p1, p2)c := (\exists T 1[member] obj; p1(obj) && p2(obj.c(member)))

R4: E(none‖p1)c := false

R5: E(n‖p1)c := p1(n)

R6: E(r.s‖p1, ..., pn+m)c := (\exists T 1[s] obj; E(r‖p1, ..., pn, lift(obj))c
&& E(s‖lift(obj), pn+1, ..., pn+m)c)

where n = arity(r) − 1 and m = arity(s) − 1
R7: E(r + s‖p1, ..., pn)c := (E(r‖p1, ..., pn)c || E(s‖p1, ..., pn)c)

R8: E(r & s‖p1, ..., pn)c := (\exists T 1[r&s] o1,..., T n[r&s] on;p1(o1) &&...&& pn(on) &&
&& E(r‖lift(o1), ..., lift(on))c && E(s‖lift(o1), ..., lift(on))c)

R9: E(r - s‖p1, ..., pn)c := (\exists T 1[r-s] o1,..., T n[r-s] on;p1(o1) &&...&& pn(on) &&
E(r‖lift(o1), ..., lift(on))c && !E(s‖lift(o1), ..., lift(on))c)

R10: E(r ++ s‖p1, ..., pn)c := (\exists T 1[r++s] obj; p1(obj) && (E(b‖lift(obj), p2, ..., pn)c||
(E(r‖lift(obj), p2, ..., pn)c && !E(s‖lift(obj),nonnull, ...

︸ ︷︷ ︸

n − 1 times

)c)))

R11: E(r -> s‖p1, ..., pn+m)c := (E(r‖p1, ..., pn)c && E(s‖pn+1, ..., pn+m)c)
where n = arity(r) and m = arity(s)

R12: E(˜r‖p1, ..., pn)c := E(r‖pn, ..., p1)c
R13: E({v1 : r1, ..., vn : rn | F }‖p1, ..., pn)c :=

(\exists T 1[v1] o1, ..., T 1[vn] on; p1(o1) && ... && pn(on)
&& E(r1‖lift(o1))c1 && ... && E(rn‖lift(on))cn && B(F)cn+1)

R14: E(#r‖p1)c := p1(\num of T 1[r] o1, ..., T n[r] on; E(r‖lift(o1), ..., lift(on))c)
R15: E(sum v: r | i‖p1)c := p1(\sum T 1[r] obj; E(r‖lift(obj))c; I(i)c′)

R16: B(F and G)c := (B(F)c && B(G)c) R17: B(F or G)c := (B(F)c || B(G)c)

R18: B(!F)c := (!B(F)c) R19: B(F iff G)c := (B(F)c <==> B(G)c)
R20: B(F implies G)c := (B(F)c ==> B(G)c)
R21: B(i op j)c := (I(i)c op I(j)c) where op ∈ {<, >, <=, >=}

R22: B(r in s)c := (\forall T 1[r+s] o1, ..., T n[r+s] on;
E(r‖lift(o1), ..., lift(on))c ==> E(s‖lift(o1), ..., lift(on))c)

R23: B(r = s)c := (\forall T 1[r+s] o1, ..., T n[r+s] on;
E(r‖lift(o1), ..., lift(on))c <==> E(s‖lift(o1), ..., lift(on))c)

R24: B(no r)c := (!E(r‖ nonnull
︸ ︷︷ ︸

arity(r) times

)c) R25: B(some r)c := E(r‖ nonnull
︸ ︷︷ ︸

arity(r) times

)c

R26: B(lone r)c := (\forall T 1[r] o1, ..., T n[r] on, T 1[r] w1, ..., T n[r] wn;
(E(r‖lift(o1), ..., lift(on))c && E(r‖lift(w1), ..., lift(wn))c)
==> (o1 == w1 && ... && on == wn))

R27: B(all v : r | F)c := (\forall T 1[r] obj; E(r‖lift(obj))c ==> B(F)c∗)

R28: B(some v : r | F)c := (\exists T 1[r] obj; E(r‖lift(obj))c && B(F)c∗)

108 D. Grunwald et al.

Table 1. (Continued)

R29: (\exists T obj; f1 && x==obj && f2(obj)) ↪→ (f1 && x instanceof T && f2((T)x))

R30: (\forall T obj; f1 && x==obj ==> f2(obj)) ↪→ (f1 && x instanceof T ==> f2((T)x))

R31: (\forall T obj; f1 && x==obj <==> f2 && y==obj) ↪→ ((f1 ? x : null) == (f2 ? y : null))

R32: (x instanceof T) ↪→ (x != null) if the type of x is a subtype of T

R33: ((T)x) ↪→ (x) if the type of x is equal to T

R34: (x != null) ↪→ true if x is statically known to be non-null

The predicates are a generalization of the terms t1, ..., tn described in Approach 2.
While a term can represent only one element, a predicate can represent a set of
elements. This generalization allows a concise and unified translation of simple
expressions as well as expressions with transitive closure. It also improves the
readability of the resulting JML expressions, because the predicates are used
as quantification guards and are propagated to subexpressions where they are
needed, thus quantifiers can be introduced locally near the subexpression. The
translation uses the predicates lift(obj), nonnull, headrecr, and tailrecr. The
latter two are used for transitive closure, and are defined recursively over r as
described in Section 4.2. The semantics of the former predicates is defined by:

R35: lift(obj)(e) := e==obj R36: nonnull(e) := e!=null

For relations of arity 1, using the lift(obj) predicate with the E function corresponds
to membership semantics3: E(r‖lift(obj))c ⇐⇒ ∃e ∈ r : lift(obj)(e) ⇐⇒
∃e ∈ r : (e==obj) ⇐⇒ obj ∈ r. The usage of the nonnull predicate with the
E function checks whether an Alloy relation is non-empty: E(r‖nonnull)c ⇐⇒
∃e ∈ r : nonnull(e) ⇐⇒ ∃e ∈ r : (e! = null) ⇐⇒ r 	= ∅. Note that if the
value of a dereferenced field, say o.f, is non-null, then o.f represents a singleton
set containing this value. However, if o.f is null, we treat o.f as the empty set (as
in [25]), rather than a set containing null as an element (as in [27]). Using null as
a marker for empty sets is convenient since it is the only value that can be assigned
to any field of any reference type.

The first two sections of Table 1 define E , for relational expressions, and
B, for formulas. An additional third function I is used for integer expressions.
Due to space issues, some rules are omitted. We have proved the correctness of
the rules with respect to the semantics of the E function as given above using
Isabelle/HOL [20]. These proofs allowed us to discover and fix subtle problems
related to Java heap-states and handling of null references. The complete list of
rules, correctness proofs, and further details can be found in [16].

To illustrate the details of the translation rules, consider the translation of
the expression “no this.next” (using the declarations from Fig. 3).

3 The application of the context c is omitted to improve readability.

Generating JML Specifications from Alloy Expressions 109

B(no this.next)c
R24= (!E(this.next‖nonnull)c)

R6= (!(\exists Entry t; E(this‖lift(t))c && E(next‖lift(t),nonnull)c))
R1,R3= (!(\exists Entry t; lift(t)(this)

&& (\exists Entry obj; lift(t)(obj) && nonnull(obj.next))))
R35,R36= (!(\exists Entry t; this == t

&& (\exists Entry obj; obj == t && obj.next != null)))
Both quantifiers are redundant due to the equalities this==t and obj==t. The
translation is followed by a simplification step. The third section of Table 1
shows a subset of our simplification rules (cf. [16] for complete details). This
step dramatically increases the readability and analyzability of the resulting
JML formulas. Applying the simplifications to the example yields:

B(no this.next)c
R29= (!(\exists Entry t; this == t

&& (t instanceof Entry && ((Entry)t).next != null)))R32,R33= (!(\exists Entry t; this == t

&& (t != null && t.next != null)))
R34= (!(\exists Entry t; this == t && t.next != null))
R29= (!(this instanceof Entry && ((Entry)this).next != null))

R32,R33= !(this != null && this.next != null)
R34= this.next == null

Note that although Java null value is assumed to be represented as empty set
in Alloy specifications, an empty set in Alloy specifications does not always
represent null. E.g., our rules translate the formula “no left & right” to:

(\forall Tree obj; obj.left != null ==> obj.right != obj.left)

where left and right denote the two pointers of a binary tree.

4.2 Transitive Closure

In [15] we have explored how to specify methods of a linked list using a query
(i.e., an observer method) getNext(o,i) that returns the i’th element of the list
starting from o. Here we generalize that approach to arbitrary data structures,
and support the use of complex Alloy expressions with the transitive closure
operator. Given an Alloy relational expression r, we define the query method
hasR such that it evaluates to true iff a given object node is reachable from
object root via the relation r in steps number of steps:4

4 R is always a unique name for r, e.g. left + right gets the name LeftUnionRight.

110 D. Grunwald et al.

/*@ public normal behavior
ensures steps < 0 ==> \result == false;
ensures steps == 0 ==> (\result <==> root==node && root != null);
ensures steps > 0 ==> (\result <==> root!=null && E(r‖lift(root), headrecr)c);
ensures steps > 0 ==> (\result <==> node!=null && E(r‖tailrecr, lift(node))c);
measured by steps;
static model helper pure
boolean hasR(nullable T root, int steps, nullable T node); */

In this definition, T × T is the JML type corresponding to the type of ˆr as
determined by Alloy’s type inference. The translation predicates headrecr and
tailrecr recursively call the method hasR and are defined as:

headrecr(e) := (e instanceof T && hasR((T)e, steps-1, node))
tailrecr(e) := (e instanceof T && hasR(root, steps-1, (T)e))

In the head-recursive ensures clause, the E function is used to produce a JML
expression that evaluates to true if the relation r contains a pair (root, e), i.e. e
is reachable from root in one step, and node is reachable from e in steps-1 steps.
Similarly, the tail-recursive postcondition uses E to produce a JML expression
that evaluates to true if the relation r contains a pair (e, node) and e is reachable
from root in steps-1 steps. For specification, it is sufficient to use either head-
or tail-recursion, but having both sometimes simplifies the verification. Using
the hasR query definition, we can translate the transitive closure as follows:
R37: E(ˆr‖p1, p2)c := (\exists T 1[ˆr] obj1, obj2; p1(obj1) && p2(obj2) &&

(\exists int steps; steps>0; hasR(obj1, steps, obj2)))

The query method, as declared above, does not have access to the variables
in the context of its call. To solve this problem, we pass such variables to the
query method as additional parameters. For example, consider the expression
ˆ(left + right + (a->b)), where left and right are fields of a binary tree,
and a->b denotes an added edge from node a to b (both program variables).
When translated to JML, the parameters list of the query becomes: Tree root,
int steps, Tree node, Tree a, Tree b.

We disallow taking the transitive closure of a relation that accesses both
the pre- and post-state. This is because it is impossible to pass heap states
to a JML model method. If the transitive closure relation accesses only the
pre-state, we use the \old operator around the call to the query (see Fig. 3).
Reflexive transitive closure is translated similarly and is described in [16]. Our
Isabelle/HOL proofs do not cover rule R37 because, unlike the rules of Table 1,
R37 requires a more elaborated formalization of JML and Java in order to express
the semantics of the query method. Such a formalization could not be done as
part of this work. Correctness of this rule has been manually validated instead.

4.3 The Modifies Clause
Each location in a modifies clause is given by the syntax r.member, where r
is an Alloy expression that specifies the set of objects whose member field may

Generating JML Specifications from Alloy Expressions 111

(a) Alloy

1 /*$ensures this.*(left’ + right’).value’ = (this.*(left + right).value) + v;
2 ensures (this.*(left’ + right’) - this.*(left + right)) in freshTree;
3 modifies this.*(left+right).left, this.*(left+right).right; */

(b) JML Translation

1 /*@ensures (\forall int o1;(\exists Tree o2,int i; i>=0 && hasLR(this,i,o2) && o2.value==o1)
2 <==> \old((\exists Tree o3,int j; j>=0 && hasLR(this,j,o3) && o3.value==o1)) || v == o1);
3 ensures (\forall Tree o1; (\exists int i; i>=0 && hasLR(this,i,o1)) &&
4 (\fresh(o1) || (\forall int j; j>=0 ==> !\old(hasLR(this,j,o1)))) ==> \fresh(o1));
5 ensures (\forall Tree o,int i;!\fresh(o)&&(i>=0==>!\old(hasLR(this,i,o)))==>o.left==\old(o.left));
6 ensures (\forall Tree o,int i;!\fresh(o)&&(i>=0==>!\old(hasLR(this,i,o)))==>o.right==\old(o.right));
7 modifies \infinite_union(Tree o;o.left), \infinite_union(Tree o;o.right); */

Fig. 4. Specification of the add method

be modified. Simple expressions (e.g. “this.length”) can be directly translated
into JML. In general, however, the object set cannot be expressed as a JML
expression. In this case, Alloy2JML will generate a less specific JML modifies
clause which allows modification of the member field of all objects rather than the
ones specified by the expression r. In JML*, this is done using \infinite union:

//@ modifies \infinite union(Type obj; obj.member);
Furthermore, the translation generates an Alloy post-condition which specifies
that the member field of any object not included in r remains unchanged:

//$ ensures all v:Type - freshType - r | v.member’=v.member
This post-condition is translated to JML as usual using the B function.

5 Evaluation

As a proof of concept that the generated JML specifications indeed are amend-
able to verification, we have applied Alloy2JML to 6 methods of two Java data
structures: constructor, add, and removeAt of LinkedList and constructor,
contains, and add of BinarySearchTree. We have manually written the Alloy
specifications, then automatically translated them to JML using Alloy2JML,
and proved the resulting JML specifications using the KeY verification en-
gine. The complete experiments are explained in [16] and can be found in
http://asa.iti.kit.edu/402.php.

As an example, Fig. 4 shows the specifications of the add method of the class
BinarySearchTree5. The method adds a node to a tree which is defined using
its left, right, and value fields. BinarySearchTree also includes invariants to
preserve sortedness and acyclicity of the tree. These invariants are omitted here
due to lack of space. Given a value v, add recursively traverses the receiver tree,
and inserts a new tree node containing v to the appropriate place if v is not
already stored in the tree. The Alloy expression this.*(left+right) provides
the set of all nodes reachable from the current node. Alloy’s relational logic
allows us to elegantly express the addition to the set of values in the tree nodes.
In Fig. 4(a), Line 1 specifies that the values of the tree nodes in the post-state are
5 In the interest of space, BinarySearchTree is named Tree in the figure.

http://asa.iti.kit.edu/402.php

112 D. Grunwald et al.

the union of the nodes’ values in the pre-state and the input argument v; Line 2
specifies that the nodes added to the tree are newly allocated objects. These
two lines are translated respectively to Lines 1–2 and 3–4 of Fig. 4(b). Line 3 of
Fig. 4(a) indicates that the memory locations referred to by the left and right
fields (hereafter locs) of any node of the current tree can be changed by the
method. Various translations of this modifies clause are possible. Alloy2JML
translates this to Lines 5–7 of Fig. 4(b), which we found more amenable to
verification. Lines 5–6 specify that the locs of any node that is not in the current
tree stay unchanged. Line 7 specifies that the locs of any tree node can be
changed by the method.

We used an experimental KeY version that has improved support for recur-
sively specified query methods (e.g. hasLR). The query expansion and quantifier
instantiation can be performed automatically in KeY. However, KeY may not
always automatically find proofs. For any incomplete branch of the proof, we
transformed the problem into first-order SMT logic that contains unbounded
integers, uninterpreted functions and quantifiers, and tried to prove it using the
Z3 SMT solver. If neither KeY nor Z3 could find an automatic proof, we manu-
ally performed explicit instantiations or query expansions, and provided several
lemmas to assist KeY. In the case of add, the proof required 75 interactive steps,
around 31000 automatic steps, and 40 subgoals were closed by Z3 invocations.

For the data structures that we analyzed, the Alloy specifications are concise
(e.g. reachability via arbitrary combinations of fields is expressed easily, and
frame conditions are implied elegantly). The generated JML specifications are
readable, which is crucial for providing additional lemmas, and are provable
using KeY.

To our knowledge, this is the first successful deductive verification of the
operations on a tree data structure specified in standard JML. In [3], for example,
a much bigger subset of JML* (including abstract data types and other features)
is used to verify a remove operation of a tree. This subset, however, cannot be
reduced to standard JML.

In order to check the compatibility of our generated JML specifications with
JML tools other than KeY, we translated some of our JML* specifications to
standard JML as explained in Section 2.2. All of our target JML tools, namely
ESC/Java2 [6], JMLForge [8], InspectJ [22], TACO [12], and Krakatoa [10],
accepted the resulting JML specifications.

6 Related Work

Several approaches, e.g. [5,17,19], translate the specification languages contain-
ing relations into JML. B2JML [5] presents a translation from B machines to
JML specifications; in [19] a translation strategy from VDM-SL to JML is pre-
sented; and [17] provides a translation technique between OCL and JML. Unlike
our approach, these approaches translate the relations of the source language to
JML mathematical collections and the relational operators to JML model meth-
ods of those collections. We, on the other hand, translate relations to a basic

Generating JML Specifications from Alloy Expressions 113

variant of JML which can generally be used in other contexts after making the
minor modifications described in Section 2.

JKelloy [14] translates Java programs annotated with Alloy specifications into
the first order logic of KeY by defining a special relational theory in KeY. Sim-
ilar to our approach, it enables full verification of Alloy specifications for Java
programs. Alloy2JML, however, does not require any special background theory
in the underlying verification engine, but provides a translation that can be used
in other contexts as well.

TACO [11] and JMLForge [8] provide fully automated, bounded analysis of
JML-annotated Java programs. These tools perform the reverse translation of
what we do: they translate JML to a variant of Alloy by introducing the con-
cept of method behavior of JML into Alloy. The resulting Alloy formula is then
translated to a SAT problem, and solved using an off-the-shelf SAT solver.

A model transformation from a subset of Alloy to UML class diagrams anno-
tated with OCL is presented in [13]. Their translation and simplifications have
ideas common with ours, but their target domain is very different. In [9], we
proposed a translation of Alloy to an SMT first-order logic by translating Al-
loy relations to membership predicates with set semantics. Here, on the other
hand, we target Alloy expressions used as specifications of Java programs, and
produce well-defined JML expressions (e.g. no null pointer dereferences) that re-
spect the semantics of Java heap. Moreover, specializing the translation enables
us to substantially improve the readability of the resulting JML expressions.

In [15], the JML query method Node getNext(Node o, int n) is manually
specified to verify linked list data structure. The query provides access to the n’th
node of the list starting from node o, following the field next. It complements
the JML reach clause by additionally identifying the position of list nodes. Here
we generalize that work by automatically generating the query method hasR
(Section 4.2), which allows us to reason about arbitrary data structures.

7 Conclusion

JML is a popular specification language. Yet, manually specifying certain prop-
erties, e.g. those of linked data structures, can be complicated and error-prone
when using a basic subset that is supported by most JML tools. On the other
hand, Alloy operators (e.g., relational join, transitive closure, set comprehension,
and set cardinality) let users concisely specify such properties. Hence we have
built Alloy2JML, a tool that translates Alloy specifications to a basic subset
of JML without the use of mathematical sets and containers. In most cases, we
convert relational operators into JML first-order logic by quantifying over the el-
ements of relations. For the transitive closure, we introduce recursively specified
model methods. The outcome of the translation is suitable for verification and
enabled us, among others, to verify methods of a tree class. Using Isabelle/HOL,
we proved that our translation is correct for a subset of Alloy.

Alloy2JML also provides an Alloy model as output, thus the Alloy specifi-
cations of the code can also be validated using the Alloy Analyzer. Moreover,

114 D. Grunwald et al.

translating Alloy specifications into JML enables the use of Alloy specifications
in a larger set of tools that accept only JML specifications.

Alloy2JML allows both Alloy and JML annotations to be used together, thus
enabling to specify each property in the more appropriate language. Each an-
notation, however, must be written completely either in Alloy or in JML. We
plan to design a uniform language that allows Alloy and JML subexpressions
to be mixed in a wellformed manner. Such a combination has the potential to
bring together the best of both paradigms. We also plan to add support for loop
invariants, so that those too can be specified using the Alloy language.

References

1. Becker, K., Leavens, G.T.: Class LinkedList,
http://www.eecs.ucf.edu/ leavens/JML-release/javadocs/java/util/
LinkedList.html

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented
Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Bruns, D., Mostowski, W., Ulbrich, M.: Implementation-level verification of algo-
rithms with KeY. STTT, 1–16 (2013)

4. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, R., Poll,
E.: An overview of JML tools and applications. STTT 7(3), 212–232 (2005)

5. Cataño, N., Wahls, T., Rueda, C., Rivera, V., Yu, D.: Translating B Machines to
JML Specifications. In: 27th ACM Symp. on App. Comp., pp. 1271–1277 (2012)

6. Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting eSC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

7. Dennis, G., Chang, F.S.-H., Jackson, D.: Modular verification of code with SAT.
In: ISSTA, pp. 109–120. ACM (2006)

8. Dennis, G., Yessenov, K., Jackson, D.: Bounded verification of voting software. In:
Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 130–145.
Springer, Heidelberg (2008)

9. El Ghazi, A.A., Taghdiri, M.: Relational reasoning via SMT solving. In: Butler, M.,
Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 133–148. Springer, Heidelberg
(2011)

10. Filliâtre, J.-C., Marché, C.: The why/Krakatoa/Caduceus platform for deduc-
tive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

11. Galeotti, J.P., Rosner, N., Pombo, C.L., Frias, M.: Analysis of invariants for efficient
bounded verification. In: ISSTA, pp. 25–36. ACM (2010)

12. Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: TACO: Efficient SAT-based
bounded verification using symmetry breaking and tight bounds. IEEE Transac-
tions on Software Engineering 39(9), 1283–1307 (2013)

13. Garis, A.G., Cunha, A., Riesco, D.: Translating Alloy specifications to UML class
diagrams annotated with OCL. SoSyM, 1–21 (2013)

14. El Ghazi, A.A., Ulbrich, M., Gladisch, C., Tyszberowicz, S., Taghdiri, M.: JKelloy:
A proof assistant for relational specifications of java programs. In: Badger, J.M.,
Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 173–187. Springer, Heidelberg
(2014)

http://www.eecs.ucf.edu/~leavens/JML-release/javadocs/java/util/LinkedList.html
http://www.eecs.ucf.edu/~leavens/JML-release/javadocs/java/util/LinkedList.html

Generating JML Specifications from Alloy Expressions 115

15. Gladisch, C., Tyszberowicz, S.: Specifying a linked data structure in JML for formal
verification and runtime checking. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013.
LNCS, vol. 8195, pp. 99–114. Springer, Heidelberg (2013)

16. Grunwald, D.: Translating Alloy specifications to JML. Master’s thesis, Karlsruhe
Institute of Technology (December 2013), http://asa.iti.kit.edu/410.php

17. Hanada, K., et al.: Implementation of a prototype bi-directional translation tool
between OCL and JML. J. Informatics Society 5(2), 89–95 (2013)

18. Jackson, D.: Software Abstractions (revised edition). MIT Press (2012)
19. Jin, D., Yang, Z.: Strategies of Modeling from VDM-SL to JML. In: Advanced

Language Processing and Web Information Technology, pp. 320–323 (2008)
20. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual

machine, and compiler. ACM Trans. Program. Lang. Syst, 619–695 (2006)
21. Leavens, G.T., et al.: JML Reference Manual (draft, revision 1.235) (June 2008),

http://www.jmlspecs.org/
22. Liu, T., Nagel, M., Taghdiri, M.: Bounded program verification using an SMT

solver: A case study. In: ICST, pp. 101–110 (April 2012)
23. Marché, C., et al.: The KRAKATOA tool for certification of JAVA/JAVACARD

programs annotated in JML. J. Log. Algebr. Program. 58(1-2), 89–106 (2004)
24. Müller, P., et al.: Modular specification of frame properties in JML. Concurrency

and Computation: Practice and Experience 15(2), 117–154 (2003)
25. Vaziri, M.: Finding Bugs in Software with a Constraint Solver. PhD thesis, Mas-

sachusetts Institute of Technology (2004)
26. Weiß, B.: Deductive Verification of Object-Oriented Software. PhD thesis,

Karlsruhe Institute of Technology (2011)
27. Yessenov, K.T.: A Lightweight Specification Language for Bounded Program

Verification. Master’s thesis, Massachusetts Institute of Technology (2009)

http://asa.iti.kit.edu/410.php
http://www.jmlspecs.org/

Assume-Guarantee Abstraction Refinement

Meets Hybrid Systems

Sergiy Bogomolov1, Goran Frehse2, Marius Greitschus1, Radu Grosu3,
Corina Pasareanu4, Andreas Podelski1, and Thomas Strump1

1 University of Freiburg, Germany
{bogom,greitsch,podelski,strumpt}@informatik.uni-freiburg.de

2 Université Joseph Fourier Grenoble 1 – Verimag, France
goran.frehse@imag.fr

3 Vienna University of Technology, Austria
radu.grosu@tuwien.ac.at

4 NASA Ames Research Center, USA
Corina.S.Pasareanu@nasa.gov

Abstract. Compositional verification techniques in the assume-
guarantee style have been successfully applied to transition systems to
efficiently reduce the search space by leveraging the compositional nature
of the systems under consideration. We adapt these techniques to the
domain of hybrid systems with affine dynamics. To build assumptions
we introduce an abstraction based on location merging. We integrate
the assume-guarantee style analysis with automatic abstraction refine-
ment. We have implemented our approach in the symbolic hybrid model
checker SpaceEx. The evaluation shows its practical potential. To the
best of our knowledge, this is the first work combining assume-guarantee
reasoning with automatic abstraction-refinement in the context of hybrid
automata.

1 Introduction

Assume-guarantee (AG) reasoning [14] is a well-known methodology for the ver-
ification of large systems. The idea behind is to decompose the verification of a
system into the verification of its components, which are smaller and therefore
easier to verify. A typical example of such systems would be a system comprised
of a controller and a plant. In this work, we mainly concentrate on hybrid sys-
tems [1] with stratified controllers, i.e., controllers consisting of multiple strata
(layers), where each of them is responsible for some particular plant parameter.
Assume-guarantee reasoning can be performed using the following rule, ASym,
where P is a safety property and H1 ‖ H2 denotes the parallel composition of
components H1 and H2, where H1 is a plant and H2 is a controller.

1 : H1 ‖ A |= P
2 : H2 |= A
H1 ‖ H2 |= P

Rule ASym

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 116–131, 2014.
c© Springer International Publishing Switzerland 2014

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 117

ẋ = v
T1 ≤ 1000

(a) Plant H1.

	2

v = 2; T2 ≤ 10

	1

v = 1; T2 ≤ 10

	3

v = 3; T2 ≤ 10

T2 := 0

(b) Controller H2 – unmerged.

	#

1 ≤ v ≤ 3; T2 ≤ 10

T2 := 0

(c) Controller H#
2 – merged.

Fig. 1. A motivating example

In this rule, A denotes an assumption about the controller of H1. Premise 1
ensures that when H1 is a part of a system that satisfies A, the system also
guarantees P . Premise 2 ensures that any system that contains H2 satisfies A.
Together the two premises imply the conclusion of the rule. The rule ASym is
applicable if the assumption A is more abstract than H2, but still reflects H2’s
behavior. Additionally, an appropriate assumption for the rule needs to be strong
enough for H1 to satisfy P in premise 1.

The most challenging part of applying assume-guarantee reasoning is to come
up with appropriate assumptions to use in the application of the assume-
guarantee rules. Several learning and abstraction-refinement techniques [5,13]
have been proposed for automating the generation of assumptions for the veri-
fication of transition systems.

In this paper, we focus on the automated generation of assumptions in the
context of hybrid systems. Similar to the work by Bobaru et al. [5] we use
abstraction-refinement techniques to iteratively build the assumptions for the rule
ASym. In our case, H2, i.e., the controller of H1, is abstracted. The use of over-
approximations guarantees that the assumption describes the component cor-
rectly and hence premise 2 holds by construction. However, it is possible that
premise 1 does not hold, in which case a counterexample is provided. The coun-
terexample is analyzed to see if it is spurious, in which case the abstraction ofH2

is refined to eliminate it. If the counterexample is real, then H1 ‖ H2 violates P .
We present a framework which can efficiently handle the class of affine hybrid

systems. Due to the mixed discrete-continuous nature of hybrid systems, we
need to pay special attention on the abstraction of continuous dynamics. We
illustrate the idea of our compositional analysis on a toy example. Fig. 1 shows
a simple hybrid automaton consisting of the plant H1 in Fig. 1a and controller
H2 in Fig. 1b. We observe that the derivative of variable x in plant H1 depends

118 S. Bogomolov et al.

on the value of v governed by the controller H2. Furthermore, we see that the
controller operates in iterations of length 10. The possible controller options are
grouped in a stratum. While analyzing this system, a hybrid model checker will
consider all the three options on every controller iteration which results in 3n

branches for n iterations. By noting that for some properties only the minimal
and maximal values of v are of relevance, we come up with an abstracted version
of the automaton H2 in Fig. 1c. We replace the three alternative options by only
one coarser option. To ensure that the resulting automaton is indeed an over-
approximation of the original system, we use 1 ≤ v ≤ 3 as an invariant of the
merged location
#, i.e., we replace the exact values of v with its bounds. This
abstraction will be especially useful to prove, e.g., that within the first 1000
seconds of system operation the state x = 4000 will still not be reached. In
the abstraction we will reduce an exponential number of branchings to a linear
one. Note that this kind of location-merging abstractions is especially useful for
the class of stratified controllers. The reason is that the controller structure can
be exploited to efficiently generate an initial abstraction by merging locations
belonging to the same stratum. Intuitively, this step allows us to adjust the
precision level at which the system parameters are taken into account. If the
resulting abstraction is too coarse, a finer-grained abstraction is generated in
the refinement step.

The lesson we learn from this example is that merging of locations is a promis-
ing approach to generate abstractions in scope of the assume-guarantee reason-
ing paradigm. To ensure the conservativeness of the resulting abstraction, we
compute the invariants as a convex hull of the original locations. Note that
the computation of minimal and maximal values of v shown above represents a
simple case of a general convex hull computation. Given the continuous, affine
dynamics of the form ẋ(t) = Ax(t)+u(t), the merged locations are computed by
first eliminating the (unprimed) state variables and consequently computing the
convex hull of the resulting polytopes over the derivatives. As outlined above,
sometimes we might end up with spurious counterexamples. To overcome this is-
sue we proceed to the phase of spuriousness checking. If the found path is indeed
spurious, we refine the system by splitting one or multiple locations and continue
with the analysis of this new system. Note that the assume-guarantee reasoning
methodology is a variant of the CEGAR approach [6]. The essential difference
of AGAR compared to CEGAR is the compositional handling of the system. We
develop our approach along these lines by ensuring that the proposed algorithms
work in the compositional fashion, e.g., we only abstract a part of the system
and the refinement algorithm considers a projection of the found counterexam-
ple on the abstracted component. Our implementation in SpaceEx [9] shows the
practical potential.

The remainder of the paper is organized as follows. We introduce the nec-
essary preliminary notions in Sec. 2. In Sec. 3, we introduce our compositional
framework. This is followed by a discussion about related work in Sec. 4. After-
wards, we present our experimental evaluation in Sec. 5. Finally, we conclude
the paper in Sec. 6.

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 119

2 Preliminaries

Hybrid automata [11] provide an expressive formalism suitable for modeling
complex real-world systems.

Definition 1 (Affine Hybrid Automaton). An affine hybrid automaton is a
tuple H = (Loc,Var , Init ,Flow ,Trans , I), where Loc is a finite set of locations,
Var = {x1, . . . , xn} is a set of real-valued variables, Init(
) ⊆ Rn is the convex
set of initial values for x1, . . . , xn for all locations
 ∈ Loc. For each
 ∈ Loc,
Flow (
) is a relation over the variables in Var and their derivatives

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,

where x(t) ∈ Rn, A is a real-valued n × n matrix and U ⊆ Rn is a closed and
bounded convex set. Trans is a set of discrete transitions (
, g, ξ,
′), where

and
′ are the source and the target locations, g is the guard (given as a linear
constraint), and ξ is the update (given by an affine mapping). I (
) ⊆ Rn is the
convex invariant for all locations
 ∈ Loc.

The semantics of hybrid automata is defined as follows. A state of H is a tuple
(
,x) consisting of a location
 ∈ Loc and a point x ∈ Rn. More formally, x is a
valuation of the continuous variables in Var . Let T = [0, Δ] be a time interval
for some Δ ≥ 0. A trajectory of H from state s = (
,x) to state s′ = (
′,x′) is
defined by a tuple ρ = (L,X), where L : T → Loc and X : T → Rn are functions
that define for each time point in T the location and values of the continuous
variables, respectively. The trajectory ρ starts in (
,x), ends in (
′,x′), and obeys
the following constraints:

– The sequence of time points in ρ, where the location is changed (according
to L) increases strictly monotonically, starts with time point 0, and ends
with time point Δ.

– There are no location changes which are not defined by L (i. e., locations are
not changed during the continuous evolution).

– For all t ∈ T , the continuous variable evolution is consistent with the differ-
ential equation and invariant of L(t).

We define traj(H) as a set of all trajectories ρ for Δ ≥ 0. The length of the
trajectory |ρ| is equal to the number of different locations on it. The initial set
of states Sinit(H) of H is defined as

⋃
�(
, Init(
)). We say that s′ is reachable

from s if a trajectory from s to s′ exists. The reachable state space R(H) of H
is defined as the set of states such that a state s is reachable from Sinit(H). In
this paper, we also refer to symbolic states. A symbolic state s = (
, R) is defined
as a tuple, where
 ∈ Loc, and R is a convex set consisting of points x ∈ Rn.
The continuous part R of a symbolic state is also called region. The symbolic
state space of H is called the region space. The convex hull of two regions R1

and R2 is denoted by CH(R1 ∪ R2). The path in the region space is a sequence
of symbolic states π = s0, . . . , sn−1. The length of the path |π| = n is equal to

120 S. Bogomolov et al.

the number of symbolic states on it. We assume without loss of generality that
there is a single bad location
bad with unrestricted invariant and flow. Our goal
is to find a trajectory from Sinit(H) to the bad location. A trajectory that starts
in a state s and leads to a bad location is called an error trajectory ρe(s).

Composition of hybrid automata. A product automaton N = H1|| . . . ||Hm de-
notes a set of interacting hybrid automata. The semantics of N is defined based
on the semantics of a single hybrid automaton, with the following extensions.
Every automaton in N is associated with a finite set of synchronization labels,
including a special label τ in all label sets. The discrete component of a state
s of N is defined as a vector of locations that denotes the current locations of
every component in N . Similarly, in addition to single automata, a trajectory of
N maps time points to vectors of locations of each automaton. For a time point
t, changes in the location vectors in a trajectory can either be caused by a single
transition labeled with τ of one automaton in N (“interleaving transition”), or
there are several automata in N that simultaneously fire transitions with equal
synchronization labels other than τ (“synchronized transition”). We refer to the
work by Donzé et al. [7] for more details.

3 Compositional Framework for Hybrid Systems

In this section, we introduce the main ingredients of our compositional frame-
work: the abstraction of a hybrid system, an algorithm for spuriousness check,
and a refinement algorithm.

3.1 Abstraction Algorithm

We construct our abstraction by partially merging system locations. To formally
define the abstraction, we introduce a location abstraction function α and a
location concretization function α−1 as follows.

Definition 2 (Location Abstraction Function). Location abstraction func-
tion α : Loc → Loc# provides a mapping from every concrete location in Loc
to its abstract counterpart. Furthermore, we require |Loc#| ≤ |Loc|, i.e., the ab-
stract system should have at most the same number of locations as the original
one.

Definition 3 (Location Concretization Function). Location concretization
function α−1 : Loc# → 2Loc provides a mapping from every abstract location in
Loc# to the set of concrete locations which were merged into it.

If
 ∈ α−1(
#), then
 is a corresponding location to the abstract location
#.
Furthermore, we abuse the notation and apply a concretization function not only
to abstract locations, but also to abstract symbolic states and abstract symbolic
paths. We define an abstract hybrid automaton H# induced by the location
abstraction function α and concrete hybrid automaton H as follows:

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 121

Definition 4 (Location-Merging Abstraction). Let H = (Loc,Var , Init ,
Flow ,Trans, I) be a hybrid automaton and α : Loc → Loc′ be a lo-
cation abstraction function. The abstract automaton H# =
(Loc#,Var#, Init#,Flow#,Trans#, I#) induced by the location-merging
abstraction with respect to the location function α is defined as follows:

– Loc# = Loc′, i.e., the location abstraction function provides which locations
of H are to be merged. We assume that α keeps the bad location
bad as a
singleton.

– Var# = Var, i.e., the abstraction preserves the continuous variables of the
original system.

– ∀
∈ Loc# : Init#(
#) = CH(
⋃

�∈α−1(�#) Init(
)), i.e., the regions describ-

ing the initial values in concrete locations are first merged into one (possibly
non-convex) set and afterwards are over-approximated by a convex hull.
Note that if an abstract location is a singleton, the application of the con-
vex hull operator will result in the original set as we consider only hybrid
automata with Init(
) being a convex set (see Def. 1).

– ∀
∈ Loc# :

Flow#(
#)(x, ẋ) =

{
CH(

⋃
�∈α−1(�#) F�), |α−1(
#)| > 1

Flow (α−1(
#))(x, ẋ), |α−1(
#)| = 1

where F� = ∃x : (Flow (
)(x, ẋ) ∧ I (
)(x)).

– Trans# = {(
#, g, ξ,
̂#)|∃
 ∈ α−1(
#),
̂ ∈ α−1(
̂#) s.t. (
, g, ξ,
̂) ∈ Trans},
i.e., an abstract transition between
and
̂# is added when a transition in
the concrete state space connecting the corresponding locations exists.

– ∀
∈ Loc# : I#(
#) = CH(
⋃

�∈α−1(�#) I (
)), i.e., similarly to the initial
regions, the invariants are merged and over-approximated by a convex hull.

In other words, we merge the dynamics of multiple locations in two steps. We
first over-approximate the original dynamics in every concrete location by quan-
tifying away unprimed variables, i.e., we obtain a constraint reasoning only about
derivatives (see Fig. 2). Secondly, we define abstract dynamics by constructing a
convex hull of the constraints computed in the first step. If an abstract location
is a singleton, i.e., |α−1(
#)| = 1, we just keep its original dynamics.

We observe that by construction the set of reachable states of the abstract
automaton H# leads to an over-approximation compared to the states reachable
by the concrete automaton H. Therefore, the following proposition holds:

Proposition 1. Let H# be a location-merging abstraction of the concrete hybrid
automaton H. Then the non-reachability of the bad location
bad in H# implies
its non-reachability also in the concrete automaton H.

3.2 Compositional Analysis

Our compositional analysis is illustrated in Algorithm 1. In order to simplify
the presentation we consider a case of a system consisting of two components

122 S. Bogomolov et al.

Dynamics:
ẋ = 2x+ 3y
ẏ = 4x− 5y

Invariant:
0 ≤ x ≤ 1

∧ 0 ≤ y ≤ 1

F1:
−5ẋ− 3ẏ ≤ 0

∧ −22 + 5ẋ+ 3ẏ ≤ 0
∧ −2ẋ+ ẏ ≤ 0
∧ −11 + 2ẋ− ẏ ≤ 0

(a) Location 	1

Dynamics:
ẋ = −x+ 3y + 5
ẏ = x+ 2y

Invariant:
1 ≤ x ≤ 3

∧ −1 ≤ y ≤ 0.3

F2:
−5 + 2ẋ− 3ẏ ≤ 0

∧ −5− 2ẋ+ 3ẏ ≤ 0
∧ −ẋ− ẏ ≤ 0
∧ −6.5 + ẋ+ ẏ ≤ 0

(b) Location 	2 (c) Convex Hull

Fig. 2. Elimination of unprimed variables before merging of the locations

H1 and H2, where H1 is a plant and H2 is a controller. However, the scheme is
applicable to systems with more than two components [5].

In the following we provide a conceptual description of the algorithm. The
algorithm checks whether the bad state Sbad can be reached by the system
H1||H2.The algorithm starts by computing an abstraction of H2 in the function
ConstructAbstraction (line 1). For more details on the abstraction con-
struction see Sec. 3.1. The algorithm iteratively refines the original abstraction
(lines 2–14). Note that in the worst case we will end up with the original sys-
tem. However, in many cases we will need to refine only a part of the system
(see Sec. 5 for the detailed discussion). In every refinement iteration the algo-

rithm proceeds as follows. First, the state space of the abstract system H1||H#
2

is analyzed in the function Analysis (line 3). This function returns an abstract
bad path or “empty” if no such path has been found. If no abstract bad path
has been found, we can conclude that also the original system is safe as we
consider only over-approximations (line 5). Otherwise, the algorithm proceeds
in the function SpuriousnessAnalysis (line 7) with the spuriousness analysis
of the found abstract bad path π#. The function SpuriousnessAnalysis re-
turns the information on how to refine H#

2 or “empty” if the abstract path π#

can be concretized. In the latter case, we exit with status “System is unsafe”
(line 9). Otherwise, H#

2 is refined in the function Refinement based on the
structure of the abstract bad path gained during the spuriousness analysis.

3.3 Spuriousness Check

In this section, we consider the function SpuriousnessAnalysis (see Algorithm

2) in more detail. Given an abstract bad path π# = s#0 , . . . , s
#
m−1, the function

enumerates concrete paths corresponding to π# and looks for the ones which end
up in a bad state. The enumeration of concrete paths of the composed automaton

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 123

Algorithm 1. Compositional analysis of H1||H2

Input: Hybrid automata H1 and H2

Output: Is the composed system H1||H2 safe?
1: H#

2 := ConstructAbstraction (H2)
2: while true do
3: π# := Analysis (H1||H#

2)
4: if π# is empty then
5: return “System is safe”
6: else
7: SP := SpuriousnessAnalysis (H1,H2,H#

2 , π#)
8: if SP is empty then
9: return “System is unsafe”
10: else
11: H#

2 := Refinement (H#
2 ,SP)

12: end if
13: end if
14: end while

H1||H2 along the abstract path π# is organized in a breadth-first fashion. In
particular, we make use of two lists: Lwaiting and Lpassed . Lwaiting stores symbolic
states which still have to be considered and Lpassed stores symbolic states which
have already been considered and thus do not have to be visited again. The data
structure SP stores information relevant for the refinement step. In particular,
tuples (π#, π), where π is a path in the concrete state space which does not
belong to α−1(π#), are kept in SP . In other words, in the last symbolic state
s|π|−1 of π we cannot take any discrete transition which would lead to some

concrete state represented by an abstract state s#|π|. Therefore, a tuple (π#, π)

essentially provides a possible reason for the spuriousness of π with respect to
π#. We will use this information to refine the abstract component H#

2 (see
Sec. 3.4).

The algorithm starts by pushing the concrete initial states which correspond
to the first abstract symbolic state s#0 in Lwaiting (line 2). It is important to
mention that α−1 concretizes only the part of the symbolic state relevant to
H#

2 . This property also holds for the algorithm described in Sec. 3.4. Note that
we furthermore store the position of the abstract state which corresponds to
the considered concrete symbolic state in the waiting list (we start with s#0 and
thus the position is 0). We will consequently use this information to compute
the discrete symbolic successors of a given symbolic state which correspond to
the analyzed bad path π#. In lines 3–20 the concrete state space is iteratively
explored in a breadth-first manner. Every iteration consists of the following
steps. First, the next tuple (scurr, i) is picked from the waiting list Lwaiting

(line 4), where scurr is a symbolic state and i shows its position with respect to
the abstract path. Afterwards, the continuous successor, i.e., a symbolic state
reflecting the states reachable according to the continuous dynamics, is computed
and added to the passed list Lpassed (lines 5–6). If the end of the abstract path

124 S. Bogomolov et al.

Algorithm 2. Spuriousness analysis

Input: Concrete automaton H1, concrete automaton H2 and its abstract version H#
2

and abstract bad path π# = s#0 , . . . , s#m−1 in the state space of H1||H#
2 .

Output: Information about the possible splitting points store or empty set if the
abstract bad path π# is concretizable

1: SP := ∅
2: Push (Lwaiting , (α

−1(s#0) ∩ Sinit(H1||H2), 0))
3: while Lwaiting 	= ∅ do
4: (scurr, i) := GetNext (Lwaiting)
5: s′curr := ContSuccessors (scurr)
6: Push (Lpassed , s

′
curr)

7: if i = m− 1 then
8: if s′curr is a symbolic error state then
9: return empty set, i.e., concrete bad state found
10: else
11: Store the abstract bad path π# and the corresponding concrete path π

ending in s′curr into SP
12: end if
13: end if
14: S′ := DiscreteSuccessors (s′curr) ∩ α−1(s#i+1)
15: if S′ is empty then
16: Store the abstract bad path π# and the corresponding concrete path π ending

in s′curr into SP
17: else
18: Push (Lwaiting , S

′ \ Lpassed , i+ 1)
19: end if
20: end while
21: return SP

is reached then the intersection with the bad state is checked (lines 8–10). If the
end of the abstract path is reached, but no intersection with the bad state is
detected, we store both the abstract and concrete paths in SP in order to use
this information in the refinement step. If the algorithm is still in the middle of
the abstract bad path, it moves on to the computation of the concrete symbolic
states which correspond to the abstract bad path (line 14). We achieve this by
computing discrete successors and intersecting them with the concrete states
represented by the next symbolic state on the abstract path. Note that the
position i allows the algorithm to easily find the next abstract symbolic state on
the path with respect to the currently considered concrete state.

If the set of discrete successors is empty, we say that a possible splitting point
has been found. In other words, we could refine the abstract location
#i of

s#i = (
#i , R
#
i) by splitting it (see Sec. 3.4). We store the abstract bad path and

the concrete path we have considered up to now into SP (line 16). Otherwise,
we add the discrete state into the waiting list Lwaiting (line 18). After having
analyzed all concrete paths corresponding to π#, the function Spuriousness-

Analysis returns SP . It is only possible to report that the considered abstract

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 125

bad path is not concretizable after having considered all possible concrete paths
corresponding to it. Thus, the algorithm does not stop after discovering a partic-
ular splitting point, but just stores it for the later reuse during the refinement.

While mapping an abstract bad path to a concrete one, Algorithm 2 refers
to the functions ContSuccessors and DiscreteSuccessors which are ap-
plied to concrete symbolic states. Thus, if the function SpuriousnessAnalysis

declares some abstract bad path π# to be genuine by finding its concrete coun-
terpart π, then we can automatically conclude that the standard SpaceEx reach-
ability algorithm would also have reported π to be a bad path. Therefore, our
framework provides the same level of precision as the standard SpaceEx reacha-
bility algorithm. Finally, we note that the full concretization of a symbolic path
is known to be a highly nontrivial problem. Once a concrete symbolic bad path
is found with our approach, further concretization to hybrid automaton trajec-
tories can be achieved using techniques from optimal control such as the one
proposed in the work by Zutshi et al. [17].

3.4 Refinement Algorithm

The refinement algorithm Refinement uses SP in order to appropriately refine
the abstraction H#

2 in a compositional way. The data structure SP contains in-
formation about multiple possible splitting points. For the refinement we choose
a tuple (π#, πmax) ∈ SP which maximizes the length of the concrete path π over
all the elements of SP . Intuitively, by choosing a tuple with this property, we
ensure that πmax cannot be extended for all concrete paths which correspond to
π#. Let the abstract bad path π# = s#0 , . . . , s

#
i , . . . , s

#
n and the concrete path

πmax = s0, . . . , si, . . . , sm (m ≤ n), where si = (
i, Ri) and s#i = (
#i , R
#
i).

Furthermore,
i = (

(1)
i ,

(2)
i), where

(1)
i and

(2)
i are locations of H1 and H2, re-

spectively. The location of the abstracted composed automaton H1||H#
2 is given

by the tuple
#i = (

(1)
i ,

#(2)
i). Depending on the location partitioning of H#

2

the refinement algorithm distinguishes three cases:

1. |α−1(

#(2)
m)| > 1, i.e., the abstract location corresponding to the last concrete

location can be split:

The refinement algorithm proceeds by splitting the abstract location

#(2)
m

of H#
2 into two locations: α−1(

#(2)
m) \
(2)m and

(2)
m , where

(2)
m is a location

of H2 corresponding to the concrete symbolic state sm = ((

(1)
m ,

(2)
m), Rm).

2. |α−1(

#(2)
m)| = 1 and |α−1(

#(2)
m+1)| > 1, i.e., the abstract location ofH#

2 corre-
sponding to the last concrete location cannot be split, whereas the successor
abstract location still comprises multiple locations:

The refinement algorithm splits

#(2)
m+1 into α−1(

#(2)
m+1) \
′ and
′, where
′ =

{
|
 ∈

#(2)
m+1 and
 is a target location of discrete transition from

#(2)
m }. In

other words, we look for locations in

#(2)
m+1 which have incoming transitions

from

#(2)
m and split them apart. Note that in this case we do not look at the

transition guard and any other continuous artifacts.

126 S. Bogomolov et al.

3. |α−1(

#(2)
m)| = 1 and |α−1(

#(2)
m+1)| = 1, i.e., neither the abstract location

corresponding to the last concrete location nor its successor can be split:
The algorithm iterates over the abstract path and looks for a abstract state
in H#

2 with a location which still can be split, i.e., we look for i s.t. i < m∧
|α−1(

#(2)
i)| > 1. The location

#(2)
i is split into locations α−1(

#(2)
i) \
(2)i

and

(2)
i , where

(2)
i is a location of H2 corresponding to si = ((

(1)
i ,

(2)
i), Ri).

Therefore, during the refinement process, we only refer to the locations of the
abstracted component H#

2 , i.e., we consider the projection of the found path to

H#
2 . The refinement algorithm as described above also has a progress property:

Proposition 2 (Progress Property). The size of the location partitioning
increases by one location after every application of the refinement algorithm over
cases 1–3.

Proof. By construction, the number of locations in H#
2 increases by one in cases

1 and 2 after every refinement iteration. In case 3 the refinement can be only done

under the assumption that there exists an index i s.t. i < m ∧ |α−1(

#(2)
i)| > 1

holds. This statement is true as the opposite would mean that the whole ab-
stract bad path π# only consists of concrete states. This in turn would lead to
the fact that π# is already a concrete path to the bad state. The function Re-

finement is, however, called only for abstract bad paths which were found to be
spurious. ��

This proposition lets us conclude that Algorithm 1 terminates after a finite
number of iterations after having considered the original system in the worst
case. By combining this result with Proposition 1 and rule ASym, we can derive
the following soundness and relative completeness results:

Theorem 1 (Soundness). If our compositional framework is able to prove that
H1||A cannot reach the (abstract) error states, then the composition H1||H2 is
safe, that is, it cannot reach the (concrete) error states.

Theorem 2 (Relative Completeness). If our compositional framework is
able to find a symbolic error path in H1||A which is not spurious, then there
exists a concrete symbolic error path in the composition H1||H2, too.

The existence of a symbolic error path does not necessarily imply the existence
of an error trajectory (due to the undecidability of the reachability problem for
affine hybrid automata). This is why we call the above result (for symbolic paths)
relative completeness.

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 127

4 Related Work

The framework developed by Pasareanu et al. [13] enables automated composi-
tional verification using rule ASym. In that work, both assumptions and prop-
erties are expressed as finite state automata. The framework uses the L* [4]
automata-learning algorithm to iteratively compute assumptions in the form
of deterministic finite-state automata. Other learning-based approaches for au-
tomating assumption generation for rule ASym have been suggested as well [3].
All these approaches were done in the context of transition systems, not for
hybrid systems as we do here.

Several ways to compute abstractions of hybrid automata have been proposed.
Alur et al. [2] propose to use a variant of predicate abstraction to construct a
hybrid automaton abstraction. In a slightly different setting, Tiwari [16] suggests
to use Lie derivatives to generate useful predicates. Both mentioned approaches
essentially reduce the analysis of a hybrid automaton to the level of a discrete
transition system. Jha et al. [12] partially eliminate continuous variables in the
system under consideration. Prabhakar et al. [15] propose the use of CEGAR for
initialized rectangular automata (IRA), where the abstractions reduce the com-
plexity of both the continuous and the discrete dynamics. In this paper, we use a
similar idea, but apply it to the more general class of affine hybrid automata, and
even more importantly, we extend it to a compositional verification framework.
Finally, Doyen et al. [8] take an affine automaton, and, through hybridization,
obtain its abstraction in the form of a rectangular automaton with larger dis-
crete space. We do the opposite: we take an affine automaton, and construct a
much smaller linear hybrid automaton.

5 Evaluation

5.1 Benchmarks

For the evaluation of our approach we have extended the switched buffer net-
work benchmark [10]. The system under consideration consists of multiple tanks
connected by channels. The channels are used to transport the liquid stored in
the tanks. There are two special tanks: the liquid enters the network through the
initial tank and is transported towards the sink tank. We consider properties
reasoning about the fill level of the sink tank.

The rate of change of the fill level fT of a tank T , depends on the rates of inflow
vin i and the rates of outflow vout j of the liquid, where vin i is the velocity at which
the liquid flows into the tank of the i-th input channel, and vout j is the velocity at
which the liquid flows out of the tank for the j-th output channel. Therefore, the
evolution of the fill level of the tank T is described by the differential equation
˙fT =

∑
i vin i −

∑
j vout j , where i and j range over incoming and outgoing

channels of T , respectively. Note that due to fine-granular modelling of tanks and
channels this benchmark class exhibits a large number of continuous variables.
In particular, in our benchmark suite the number of continuous variables is in
the range from 17 to 21 for the buffer networks with up to 4 tanks, whereas it is

128 S. Bogomolov et al.

well-known that the analysis complexity of hybrid automata rapidly grows with
the number of variables in the system under consideration.

We extend the switched buffer network [10] by the model of a complex strat-
ified controller. The controller is organized in a number of phases of some given
length, where multiple options (governing the modes of particular channels) are
available in every phase. After having finished the last phase the controller re-
turns to the first one. The controller can open/close channels and adjust the
throughput values at every step. We consider the following modes of controller
operations:

1. Throughput provided by an interval (“No Dynamics”): when the channel is
activated, its throughput v is constrained by the inequality vmin ≤ v ≤ vmax.

2. Throughput evolving at a constant rate (“Constant Dynamics”): the
throughput is defined by the differential equation of the form v̇ = c for
some constant c.

3. Throughput evolving according to affine dynamics v̇ = c(vtarget−v) (“Affine
Dynamics”): the controller provides a target throughput velocity vtarget and
some constant factor c. According to this dynamics the channel opens grad-
ually with the opening speed decaying towards the target velocity.

5.2 Experiments

We have implemented our approach in SpaceEx [9]. The implementation and
the benchmarks are available at http://swt.informatik.uni-freiburg.de/

tool/spaceex/agar. The experiments were conducted on a machine with an
Intel Core i7 3.4 GHz processor and with 16 GB of memory. In the following,
we report the results for our compositional analysis implemented in SpaceEx.
We compare the analysis results of the original concrete system and the com-
positional analysis. For both settings, we compare the number of iterations of
SpaceEx and the whole analysis run-time in seconds (see Table 1). The best
results are highlighted in bold. We analyze 12 structurally different benchmark
instances. For each of them we vary forbidden states and in this way end up with
36 different benchmark settings. We also vary controller dynamics. In particu-
lar, we provide 12 instances for each of the modes “No Dynamics”, “Constant
Dynamics” and “Affine Dynamics”. The number of continuous variables varies
in the considered benchmark instances from 17 to 21 variables. The initial ab-
straction is generated by merging some of the strata in the controller.

We observe that our compositional reasoning algorithm generally boosts the
run time compared to the analysis of the original system. For example, in in-
stance 4 (system is safe) the analysis of the concrete system takes around 609
seconds compared to around 158 seconds with the compositional analysis. The
speed-up is justified by the smaller branching factor due to location merging. In
Fig. 3a and Fig. 3b the fill level of sink tank vs. time for the original system
and the initial abstraction are plotted. Fig. 3b particularly shows that multiple
“thin” flow-pipes are merged into a couple of “thick” ones, i.e., the system stops
differentiating between some options in the controller.

http://swt.informatik.uni-freiburg.de/tool/spaceex/agar
http://swt.informatik.uni-freiburg.de/tool/spaceex/agar

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 129

Table 1. Experimental results for the switched buffer benchmark. Abbreviations: #:
benchmark instance number, Res.: result of the system analysis, i.e., whether the bad
state can be reached, Tanks: number of tanks in the instance, Vars.: number of continuous
variables in the system, Phases: number of phases in the controller and number of options
in every phase, Refs.: number of refinement steps, It. (u): number of SpaceEx iterations
when analyzing the concrete (unmerged) system, It. (m): number of SpaceEx iterations
in scope of the compositional analysis, Time (u): total time in seconds of the analysis of
the concrete system, Time (m): total time in seconds of the compositional analysis.

Res. Tanks Vars. Phases Refs. It. (u) It. (m) Time (u) Time (m)

No Dynamics

1 safe 3 17 2 (5,1) 0 4640 253 779.754 14.692
2 unsafe 3 17 2 (5,1) 0 2555 191 299.437 35.370
3 safe 3 17 2 (5,1) 1 4640 1744 796.218 191.841

4 safe 3 17 4 (6,1,2,1) 0 3242 1115 608.796 157.924
5 unsafe 3 17 4 (6,1,2,1) 0 2410 756 196.461 66.740
6 safe 3 17 4 (6,1,2,1) 2 3242 1648 639.838 254.653

7 safe 4 21 2 (5,1) 0 2345 690 2162.273 621.137
8 unsafe 4 21 2 (5,1) 0 1348 483 1139.365 479.811
9 safe 4 21 2 (5,1) 1 2345 1001 2164.069 937.064

10 safe 4 21 4 (4,1,2,1) 0 1361 394 1327.062 406.592
11 unsafe 4 21 4 (4,1,2,1) 0 1070 316 502.992 303.988
12 safe 4 21 4 (4,1,2,1) 1 1361 684 1174.735 700.072

Constant Dynamics

13 safe 3 17 4 (2,1,5,1) 0 1386 424 90.457 21.484
14 unsafe 3 17 4 (2,1,5,1) 0 461 232 18.773 10.807
15 safe 3 17 4 (2,1,5,1) 2 1386 1261 81.076 77.938

16 safe 3 17 6 (2,1,6,1,2,1) 0 1989 1027 146.726 63.878
17 unsafe 3 17 6 (2,1,6,1,2,1) 0 809 352 32.961 14.279
18 safe 3 17 6 (2,1,6,1,2,1) 2 1989 2041 142.385 250.451

19 safe 4 21 4 (2,1,4,1) 0 1293 787 1350.973 1318.623
20 unsafe 4 21 4 (2,1,4,1) 0 1080 682 1429.120 1298.147
21 safe 4 21 4 (2,1,4,1) 1 1293 814 1579.792 1197.098

22 safe 4 21 6 (2,1,4,1,2,1) 0 903 563 1255.978 1140.114
23 unsafe 4 21 6 (2,1,4,1,2,1) 0 798 510 1230.193 1141.791
24 safe 4 21 6 (2,1,4,1,2,1) 1 903 581 1365.629 1318.049

Affine Dynamics

25 safe 3 17 4 (2,1,5,1) 0 7747 1168 1544.363 86.046
26 unsafe 3 17 4 (2,1,5,1) 0 5103 1042 939.430 100.871
27 safe 3 17 4 (2,1,5,1) 1 7747 6214 1669.268 1240.215

28 safe 3 17 6 (2,1,6,1,2,1) 0 6129 2760 717.462 231.727
29 unsafe 3 17 6 (2,1,6,1,2,1) 0 5382 2397 639.342 203.143
30 safe 3 17 6 (2,1,6,1,2,1) 7 6129 15068 706.960 2158.671

31 safe 4 21 4 (2,1,4,1) 0 1718 1451 3603.238 3125.016
32 unsafe 4 21 4 (2,1,4,1) 0 1692 1392 3776.840 3247.464
33 safe 4 21 4 (2,1,4,1) 1 1718 2559 4372.284 3805.045

34 safe 4 21 6 (2,1,4,1,2,1) 0 983 642 1382.567 1078.893
35 unsafe 4 21 6 (2,1,4,1,2,1) 0 922 611 1206.011 1213.798
36 safe 4 21 6 (2,1,4,1,2,1) 1 983 755 1442.506 1321.658

130 S. Bogomolov et al.

0 20 40 60 80 100
0

5

10

15

20

25

30

(a) Original system

0 20 40 60 80 100
0

5

10

15

20

25

30

(b) Initial abstraction

Fig. 3. Fill level of the sink tank for instance 4 vs. time

Furthermore, we remark that our compositional algorithm shows promising
results also in the falsification setting, i.e., when the bad state is reachable. In
instance 5, our approach reduces the run-time from around 196 seconds for the
concrete system to only 67 seconds in scope of the compositional framework.

The necessity to refine the abstraction, in case a spurious abstract bad path
has been discovered, can generally be handled efficiently by our framework, e.g.,
in instance 6 our approach takes around 254 seconds (including two refinement
steps) compared to 640 seconds for the concrete system. However, due to an
unfortunate choice of the abstract bad path, we might need to refine an excessive
number of times (instance 30) which in turn decreases the overall performance.

6 Conclusion

In this paper, we have adapted the idea of compositional analysis to the domain
of hybrid systems. We have presented an abstraction based on location merging.
The abstract location invariant is computed by taking a convex hull of the con-
crete locations to be merged. The abstract continuous dynamics are computed
by eliminating the state variables and computing a convex hull.

Acknowledgments. This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS, http://www.avacs.org/). We thank Jannik Rebmann and Simon Ganz
for their help with the benchmark suite preparation.

http://www.avacs.org/

Assume-Guarantee Abstraction Refinement Meets Hybrid Systems 131

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicolin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138, 3–34 (1995)

2. Alur, R., Dang, T., Ivančić, F.: Reachability analysis of hybrid systems via pred-
icate abstraction. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS,
vol. 2289, pp. 35–48. Springer, Heidelberg (2002)

3. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 548–562. Springer, Heidelberg (2005)

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

5. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

7. Donzé, A., Frehse, G.: Modular, hierarchical models of control systems in SpaceEx.
In: European Control Conference (ECC) (2013)

8. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of
affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS,
vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

9. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

10. Frehse, G., Maler, O.: Reachability analysis of a switched buffer network. In:
Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416,
pp. 698–701. Springer, Heidelberg (2007)

11. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)
12. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid

automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., But-
tazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg
(2007)

13. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design (FMSD) 32(3), 175–205
(2008)

14. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Logics and Models of Concurrent Systems. NATO ASI Series (1985)

15. Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-
based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J.,
Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48–67. Springer, Heidelberg
(2013)

16. Tiwari, A.: Abstractions for hybrid systems. Formal Methods in System Design
(FMSD) 32(1), 57–83 (2008)

17. Zutshi, A., Sankaranarayanan, S., Deshmukh, J., Kapinski, J.: A trajectory splicing
approach to concretizing counterexamples for hybrid systems. In: Conference on
Decision and Control (CDC), pp. 3918–3925 (2013)

Handling TSO in Mechanized Linearizability

Proofs

Oleg Travkin and Heike Wehrheim

Universität Paderborn, Institut für Informatik,
33098 Paderborn, Germany

{oleg82,wehrheim}@uni-paderborn.de

Abstract. Linearizability is the key correctness criterion for concurrent
data structures. In recent years, numerous verification techniques for lin-
earizability have been developed, ranging from model checking to mecha-
nized proving. Today, these verification techniques are challenged by the
fact that concurrent software is most likely to be run on multi-core pro-
cessors equipped with a weak memory semantics (like total store order,
TSO), making standard techniques unsound. While for model checking
and static analysis techniques, approaches for handling weak memory
in verification have already emerged, this is lacking for theorem-prover
supported, mechanized correctness proofs.

In this paper, we present the very first approaches to handling TSO se-
mantics in mechanized proofs of linearizability. More precisely, we intro-
duce two approaches, one explicitly modelling store buffers and a second
avoiding this modelling by instead reordering program operations. We
exemplify and discuss our approach on two case studies, Burns mutual
exclusion algorithm and a work stealing dequeue of Arora et al., both of
which require additional memory barriers when executed on TSO.

Keywords: Linearizability, weak memory models, verification, TSO,
KIV.

1 Introduction

With the advent of multi-core processors and the consequently rising increase
in concurrent software, high performance concurrent data structures have come
into the focus of algorithm designers. Concurrent data structures allow for a
concurrent access to standard data structures like lists, queues or stacks. High
performance is achieved by (mostly) avoiding locks, and instead relying on very
fine-grained atomicity. Due to the subtlety of lock-free algorithms, their proof of
correctness can be exceptionally complex. The quasi-standard correctness crite-
rion for concurrent data structures is linearizability [18]. Many techniques for the
verification of linearizability emerged in the past, ranging from manual proofs
(usually done by the algorithm designers themselves), to model checking [29]
and theorem proving [25,28].

A large number of existing verification techniques, both for concurrent soft-
ware in general and more specifically for linearizability, assume a sequentially

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 132–147, 2014.
c© Springer International Publishing Switzerland 2014

Handling TSO in Mechanized Linearizability Proofs 133

consistent memory model (SC) [21], i.e., assume statements in a sequential pro-
gram to be executed in program order and concurrent programs to be an in-
terleaving of components. However, multicore processors like x86, SPARC or
POWER provide weaker execution semantics than SC and allow executions to
deviate from program order [2]. The reason behind these out-of-order execution
is (mainly) the use of store buffers attached to processor cores. Store buffers can
delay write instructions while later instructions w.r.t. program order are further
processed. As a consequence, an execution may appear as though out-of-order.
Verification techniques coping with weak memory can so far be classified into
two strands. The first strand aims at reusing verification technique for sequential
consistency. This starts with techniques for detecting non-sequentially consistent
behaviour (monitoring, testing, robustness checking [10,11,8]) which can then be
eliminated by fence insertion (e.g. using techniques of [1,20]), or finding program
structures which guarantee SC behaviour even for relaxed memory models (like
data race freedom or triangular race freedom [22]). The other strand of research
takes weak memory behaviour into account, either by explicitly modelling store
buffers [9] or by rewriting the program in such a way that an SC-based verifica-
tion becomes sound [6,3,14]. None of these approaches have, however, proposed
techniques for handling weak memory within mechanized proofs of linearizabil-
ity. The advantage of a mechanized proof is the establishment of correctness for
arbitrary uses of the data structure, i.e. arbitrary method invocations by an ar-
bitrary number of processes. Compared to model checking or testing approaches,
mechanized proofs are not limited to specific usage scenarios.

In this paper, we propose two approaches for handling weak memory seman-
tics in mechanized correctness proofs of linearizability. The first approach builds
on an explicit modelling of store buffers and delayed writes. Unlike model check-
ing approaches, we need not (but could) assume bounds on the buffer size in our
models. The second approach employs an explicit reordering of program state-
ments as to mimic the behaviour of store buffers. It turns out that the second
approach is more convenient for mechanized proving as it keeps us from hav-
ing to define and reason about invariants on the store buffer contents. In our
definition of linearizability we follow [17,7] in that we compare the implementa-
tions of concurrent data structures run on TSO against sequential specifications
interpreted in an SC way (TSO-to-SC linearizability). Our general proof princi-
ple proceeds by showing a simulation relation to exist between implementation
and specification, and follows established simulation-based proof techniques for
linearizability on SC [15,25].

We discuss and exemplify our approach(es) on two case studies, a variant of
Burns mutual exclusion algorithm [12] and a work-stealing double-ended queue
of Arora et al. [5]. While the first example is rather small and mainly used
for demonstration purposes, the second example realistically reflects the size of
modern concurrent data structures. Both examples are non-linearizable when
executed on a TSO architecture in their original form and need additional mem-
ory barriers for soundness. We were able to prove linearizability of the fenced
versions for both examples, using the theorem prover KIV [24].

134 O. Travkin and H. Wehrheim

2 Background

TSO Architecture. Nowadays, one of the most wide-spread multicore processor
architecture is the x86 [19,4], which provides the TSO memory model. Figure 1
illustrates the architecture of a modern multicore processor providing a TSO
memory model. Each processor has a write buffer to store its writes before they
are (later) flushed to shared memory. Reading of variables either takes place
from the buffer (if there is a pending write of this variable in the store buffer)
or from shared memory. Memory barriers (or fence operations) can be used to
block program execution until the store buffer is completely flushed.

Core 1 Core n

FIFO
Write
Buffer

FIFO
Write
Buffer

Shared Memory

...

Fig. 1. TSO architecture as common
for x86-based multicore processors.

Initially : x = 0 ∧ y = 0

Process 1

write(x , 1);
read(y , r1);

Process 2

write(y , 1);
read(x , r2);

r1 = 0 ∧ r2 = 0

Fig. 2. Test program for detection of
Write → Read reordering, also known as
litmus test

As a consequence of this architecture, TSO exhibits two relaxations of program
order compared to SC. First, writes may appear as if they were executed after
a later read, i.e., the order Write → Read is relaxed. This can happen when
write and read access different memory locations. Figure 2 shows a test program
for detection of this behavior. Initially both shared variables x and y hold the
value 0. The test detects reordering if both registers have values r1 = 0 ∧ r2 = 0
at the end of its execution and hence at least one process must have had its
instructions reordered. Simple interleaving, as in an SC setting, does not allow
this outcome. A second relaxation allows processes to read their own writes
early. If a write buffer contains a pending write to an address requested by a
read, the value from the buffer is read. This behavior is called early-read [2] or
Intra-Process-Forwarding [19], because a reading processor is allowed to see its
own writes before they are committed to the memory and hence before other
processes can see them.

Burns Algorithm. Our objective is to show (a certain form of) correctness of
algorithms executed on weak memory models. The correctness proofs thus will
need to take the unusual non-SC semantics into account. We will exemplify our
approach on the following mutual exclusion algorithm of [12]. Originally, the
algorithm was defined with a loop for each process, in which it tries to enter
and leave a critical section. We modified the algorithm slightly (as to be able

Handling TSO in Mechanized Linearizability Proofs 135

bool ∗flag0 = 0, ∗flag1 = 0;

//process0: //process1:
void acquire0{ void acquire1{

∗flag0 = 1; retry : while (∗flag0 != 0) {
/∗need fence here∗/ /∗wait∗/
while (∗ flag1 != 0) { }

/∗wait∗/ ∗flag1 = 1;
} /∗need fence here∗/

} i f (∗flag0 != 0) {
∗flag1 = 0;

void release0 () { goto retry ;
∗flag0 = 0; }

} }

void release1 () {
∗flag1 = 0;

}

Fig. 3. Mutual exclusion algorithm for two processes (based on [12])

to view it as a concurrent data structure) by explicitly defining two operations
— acquire and release — which can then be repeatedly called (in turn). The
Burns algorithm (see Fig. 3) uses a flag for each process to indicate its intention
of a process to enter the critical section. Both flags are initially 0 and set to 1,
when a process tries to enter. It is an asymmetric algorithm in the sense that
processes are ordered in terms of priority. Process p0 (highest priority) sets its
flag to flag0 = 1 and waits until it observes flag1 = 0. In this case, process p1
is not trying to enter the critical section and will not enter until p0 has left it.
In contrast to p0, p1 checks the flag of p0 before setting its own flag and checks
flag0 again after having set flag1 to 1. If flag0 changes in the meantime, p1
resets its flag to 0 (allowing p0 to enter and finish) and retries. Otherwise, p1
finishes by entering the critical section. Both processes release their ownership
by setting their flag to 0.

In order to determine possible effects of weak memory on the execution of this
algorithm, we first of all need to explicitly see the low-level reads and writes. To
this end, we first compile a C program into an intermediate representation, here
using the LLVM1 compiler framework with intermediate representation LLVM
IR. On this, we can see the atomic reads and writes. Figure 4 shows the compiled
code for the operation acquire0. The code defines a function which is structured
into labeled blocks (entry, cond, body and end). Global variables (here, the two
flags) are prefixed with @. Local registers are prefixed with %. The local variables
%tobool, %conv and %cmp are just used to store values of type conversions (the
first two) and the value of a comparison. We thus will not explicitly model
these later. The br instruction is either a simple jump (e.g., in block entry) or
a conditional jump (e.g., in block cond with variable %cmp being the boolean
condition). Instruction load (resp. store) corresponds to a read (resp. write) of a
global variable. When determining the semantics of this LLVM-IR code on TSO,
we thus need to assign these statements a non-standard semantics.

1 www.llvm.org

www.llvm.org

136 O. Travkin and H. Wehrheim

define void @_Z5acquire0() nounwind {
entry:
store i8 1, i8* @flag0

; ---- need fence here ----
br label %cond

cond:
%0 = load i8* @flag1
%tobool = trunc i8 %0 to i1
%conv = zext i1 %tobool to i32
%cmp = icmp ne i32 %conv, 0
br i1 %cmp, label %cond, label %end

end:
ret void

}

Fig. 4. LLVM IR code for method
acquire0 after compilation

COP1 =̂ ls.pc = A10 ∧ ls′.pc = A20

∧ write((flag0, 1), ls,mem, ls′,mem ′)

COP2 =̂ ls.pc = A20 ∧ ls′.pc = A30

∧ fence(ls,mem, ls′,mem ′)

COP3 =̂ ls.pc = A30 ∧ ls
′
.pc = A40

∧ read((flag1, f 1), ls,mem, ls′,mem ′)

COP4a =̂ ls.pc = A40 ∧ ls.f 1 �= 0 ∧ ls′.pc = A30

COP4b =̂ ls.pc = A40 ∧ ls.f 1 = 0 ∧ ls′.pc = A50

COPflush =̂ flush(ls,mem, ls′,mem ′)

Fig. 5. Encoding of program behav-
ior for method acquire0. Parameters
(mem, ls,mem ′, ls ′) of each COP predicate
were omitted for brevity.

3 TSO model

We are ultimately interested in a mechanized proof of correctness of algorithms.
To this end, we first need a precise formal model of TSO on top of which we can
then define the semantics of programs. We model shared memory as a function
mem : N→ (N ∪ null), where we use N as the memory address space and allow
N or null to be the result of a memory access. The following three axioms de-
fine memory access (written as mem[n]) and modification (mem[n, a] modifying
memory mem at address n to become a):

� mem = mem0 ⇔ ∀n • mem[n] = mem0[n] (1)

� mem[n, a][n] = a (2)

� n �= n0 ⇒ mem[n0, a][n] = mem[n] (3)

(1) defines the identity of two memory functions, (2) states that access to the
address n will yield the last value written to it, and (3) states that modifying
one address will not change the value of another address.

In order to fix the semantics of programs on TSO, we first define an instruction
set for the interaction with the memory and store buffer (similar to [26]). In-
structions affecting store buffer and memory are write, read and fence explicitly
appearing as operations in programs plus flush which is occasionally executed
as to flush the store buffer. We let P be the set of all process identifiers, and
write ls to describe the local state of a process p ∈ P . The local state comprises
the process identifier ls .p ∈ P , the store buffer ls .buf ∈ (N× (N∪null))∗, values
of local registers ls .r from some set of registers Reg and a program counter ls .pc
from some set PC . We use LS to denote the set of local states. The instructions
modify the state as follows (where + is concatenation and primed variables are
used to describe the after state):

Handling TSO in Mechanized Linearizability Proofs 137

write((n, a), ls ,mem, ls ′,mem ′)⇔ ls ′.buf = ls .buf + (n, a)

∧mem ′ = mem (4)

flush(ls ,mem, ls ′,mem ′)⇔ ls .buf = (n, a) + ls ′.buf

∧mem ′ = mem[n, a] (5)

For the definition of a read, we need a helper function latest(n, buf) (not given
here) to determine the latest entry for the requested address in the buffer.

read((n, r), ls ,mem, ls ′,mem ′) ⇔ ls ′.buf = ls .buf ∧ mem ′ = mem ∧
if n ∈ ls .buf then ls ′.r = latest(n, ls .buf)

else ls ′.r = mem[n] (6)

A read either obtains the latest value from the store buffer, if there is one, or
it obtains the value directly from the memory. The buffer and memory remain
unmodified. Finally, fences in the program code block program execution until
the store buffer is emptied. To this end, the fence is only enabled when ls .buf =
〈 〉 and blocks execution otherwise.

fence(ls ,mem, ls ′,mem ′)⇔ ls .buf = 〈 〉 ∧ ls ′.buf = ls .buf ∧mem ′ = mem (7)

It is in the semantics of these instructions (and thus of the load and store in
LLVM) where the difference to SC semantics can be found. For modelling the
behavior of a given program we next proceed as follows. For the Burns algorithm,
we fix the set Reg of registers and assign the register %0 used in acquire0 a name
(here, f 1 because it stores the value of flag1). For the memory, we use the global
variable names flag0 and flag1 as constants 0 and 1 to access mem.

Figure 5 shows the encoding for the method acquire0 in Figure 4. In principle,
we define one operation per program instruction. However, as LLVM-IR contains
a lot of operations which need not be modelled in the theorem prover we use (e.g.,
type conversions), we get more compact operations in our model. All operations
are modelled as predicates. By specifying the change of the program counter,
we define the control flow of the method. After invocation, the program counter
is at A10. The first instruction (store) changes the program counter to A20
and attempts to write value 1 into address flag1. Note that the write does not
modify the memory directly, but enqueues the address value pair to the store
buffer. We ignore the following br instruction since it is just a jump to next
instruction in program order. Operation COP2 is a fence instruction which we
will need further on, but which first of all is not part of the operations. Please
note that local instructions, e.g., the four instructions after the load in Figure 4,
can be composed to a single one, because they are invisible to other processes
and hence, their atomicity is irrelevant for the correctness of the algorithm.
The predicate COPflush models the non-deterministic flushes of the store buffer.
It is not restricted to any particular program location and can be performed
repeatedly.

138 O. Travkin and H. Wehrheim

4 Proving Linearizability

Our main interest is in proving linearizability of concurrent data structures.
Linearizability is a correctness condition for concurrent data structures which
states that — when used concurrently — the data structure acts as though used
sequentially. To prove this, we need to find an ”equivalent” sequential execution
for every concurrent run. An execution, or history, consists of a sequence of
invocations and responses of methods, e.g. of the acquire and release of Burns
algorithm. Every concurrent history, i.e., history in which more than one method
might run at a time, has to have a matching sequential history preserving the
order of operations from the concurrent history. For a formal definition see [18].
Linearizability is often explained in terms of linearization points (LPs) which are
points within methods where the real effect of the methods seems to take place
atomically. The acquire methods of Burns algorithm pass their linearization
point when they observe the flag of the other process to be zero. The release
methods have their LPs, when the write to their flag becomes visible.

There are a number of different ways of formally proving linearizability for a
given data structure. Here, we intend to prove linearizability by showing that
the algorithm’s implementation simulates a sequential specification of the data
structure (following approaches in [15,25]). In the sequential specification all
operations are executed atomically, and thus the sequential specification only has
sequential histories. The proof needs to build up a simulation relation between
our behavior model of the algorithm and another sequential model. We also
call this the concrete and the abstract model. The concrete model has concrete
operations (called COP...), which we have already seen, and the abstract model
has abstract operations. For the Burns algorithm, we have an abstract state
space simply consisting of one variable mtx ∈ ({none} ∪ P) and operations
acquire and release for each process.

AOPacquire0 =̂(mtx = none ∧mtx ′ = 0)

AOPacquire1 =̂(mtx = none ∧mtx ′ = 1)

AOPrelease0 =̂(mtx = 0 ∧mtx ′ = none)

AOPrelease1 =̂(mtx = 1 ∧mtx ′ = none)

Thus, in the abstract model, we have atomic operations corresponding to meth-
ods, and, in the concrete model, these are implemented by lots of concrete oper-
ations, some of which are LPs. Formally, we thus have a non-atomic refinement
between abstract and concrete model which we intend to prove via a forward
simulation. For showing the existence of a forward simulation, we first need to
define an abstraction relation Abs between the state space of the abstract model
(here, variable mtx) and that of the concrete model (here, global variable mem
plus all local states ls of processes). In our case, the abstraction relation will be
a function from concrete to abstract. Second, we need to define the linearization
points of methods2. All concrete steps COP which are not LPs have to be shown

2 In general, simulation proofs can also be done when LPs are not fixed, but for the
algorithms in this paper this is not necessary.

Handling TSO in Mechanized Linearizability Proofs 139

to simulate abstract skip steps (empty operations) while the LP steps have to
simulate the corresponding abstract operation. In case of the method acquire0,
the LP is at COP3, but only if the method observes flag1 = 0. Hence, COP3

observing flag1 = 0 has to simulate AOPacquire0(mtx ,mtx ′). All other acquire0
operations have to simulate skip steps. Our proof technique then proceeds by
locally reasoning about processes.

The main idea behind the local proof obligations (LPO) (see [15]) is to prove
linearizability for two processes, where one process p is explicit and the other
process q a symbolic representation of all other processes. Both processes operate
on the shared global state gs ∈ GS , which in our case studies is the memory
function mem. The local states of both processes p and q are lsp, lsq ∈ LS . In
addition, we need to define and establish an invariant INV on global and local
states. The following is one of a number of proof obligations which need to be
shown for simulation.

∀ gs , gs ′ : GS , lsp, lsq, lsp′ : LS •
INV (gs , lsp) ∧ INV (gs , lsq) ∧ COP(gs , lsp, gs ′, lsp′)
⇒
INV (gs ′, lsp′) ∧ INV (gs ′, lsq) ∧ AOPpq(Abs(gs , lsp, lsq),Abs(gs

′, lsp′, lsq))

This proof obligation states the following condition: if the invariant holds both
for process p and the other process q, and p executes operation COP thereby
changing the global state and its local state, then the invariant still holds for p
and q afterwards and a corresponding abstract operation can be executed on the
corresponding abstract states3. If a particular COP -transition is a linearization
point (LP), then AOPpq must be the corresponding abstract operation, and a
skip step, otherwise. Depending on which process passes its linearization point,
AOPpq can be an abstract operation performed by either process p or q or both.
The latter two cases can occur by process p helping other processes to finish
their operation or by p passing its own linearization point and by doing this
causing the other process to linearize as well.

Next, we apply this technique to our running example. However, the first
observation (found by using the model checking approach [27]) is that the acquire
methods of the Burns algorithm both need a fence (see Fig. 3). Otherwise, the
initial write could be still pending while the flag of the other process is read
within the loop. Hence, both processes would be able to enter the critical section
at the same time by observing the other flag value to be zero while the write to
the own flag is still pending. In particular, the following history of invokes and
returns would be possible:

〈inv0(acquire0), inv1(acquire1), ret0(acquire0), ret1(acquire1)〉

which corresponds to one of the sequences:

AOPacquire0; AOPacquire1 or AOPacquire1; AOPacquire0

3 In principle, Abs is only defined on gs. If information about local states is needed
for the definition of Abs, these have to moved into the global state via auxiliary
variables.

140 O. Travkin and H. Wehrheim

Both sequences violate the corresponding AOP definitions, because both require
mtx = none, but modify its value. Hence, the second AOP must not finish until a
release method linearizes. We place a fence at COP2 in acquire0 in order to ensure
the write is no longer pending during observation of the other flag. Thereby, we
disable executions as the one mentioned above. We modify acquire1 similarly.

Now that we fixed the implementation by ruling out non-linearizable execu-
tions, we can define the invariant, which is defined as properties holding at a
particular program location. In case of the Burns algorithm, we are interested in
the values of the flags. However, the flag values depend on the state of the store
buffer, i.e., whether a write to the flag was flushed or not. Thus, we have to spec-
ify two kinds of properties in our invariant: First, the invariant has to establish
the possible states of the store buffer at particular program locations. Second,
the possible flag values depending on the store buffer state and the program have
to be specified. For the method acquire0 the invariant is defined as:

INV (mem, ls) =̂((ls .pc ∈ {A10,A30,A40,A50} ⇒ ls .buf = 〈 〉)
∧ (ls .pc = A20 ⇒ ls .buf = 〈 〉 ∨ ls .buf = 〈(flag0, 1)〉)
∧ (ls .pc = A10 ⇒ mem[flag0] = 0)

∧ (ls .pc = A20 ∧ ls .buf = 〈 〉 ⇒ mem[flag0] = 1)

∧ (ls .pc = A20 ∧ ls .buf = 〈(flag0, 1)〉 ⇒ mem[flag0] = 0)

∧ ((ls .pc ∈ {A30,A40,A50} ⇒ mem[flag0] = 1)

∧ (ls .pc = A50 ⇒ ls .f 1 = 0)

where program location A20 is the one with a potentially pending write to flag0
and thus having two possible states of the store buffer, which determine the
value of mem[flag0]. Note that the value of mem[flag0] at the other program
locations (A10,A30,A40,A50) can only be stated without referring to the store
buffer state, because we know that the store buffer is empty. Otherwise, a similar
distinction to the one at location A20 would be necessary.

Finally, we provide an abstraction function Abs that maps each concrete state
to an abstract state. Throughout all executions, flag0 = 1 (resp. flag1 = 1)
means that process 0 (resp. 1) is either the owner of the mutex or it tries to
acquire it. We distinguish the two cases by taking the progress of local states into
account. We use the two range predicates observed0(mem[flag1] = 0) in order to
define the range after process 0 observed flag1 = 0 and observed1(mem[flag0] =
0) for process 1, respectively. The abstraction function is then defined as a case
distinction over the three cases:

Abs(lsp, lsq,mem) =̂if mem[flag0] = 1 ∧ observed0(mem[flag1] = 0)

then mtx = 0

else if mem[flag1] = 1 ∧ observed1(mem[flag0] = 0)

then mtx = 1

else mtx = none

Handling TSO in Mechanized Linearizability Proofs 141

Given the above abstraction function and invariant, we were able to show all
proof obligations for the fenced Burns algorithm, thereby establishing lineariz-
ability with respect to the given sequential specification.

5 Avoiding Store Buffers

In the last section, we have seen how to prove linearizability using an explicit
modelling of store buffers to encode the TSO behavior. However, keeping store
buffers as part of the state has a huge drawback. Mechanized proofs reveal many
impossible cases of executions which thus need to be ruled out by the invariant
(unless they are harmless). Hence, the invariant not only has to cover the prop-
erties of potential store buffer states, but also the interconnection between store
buffer states and values of global and local variables. Hence, the simplicity of
specification due to an operational memory model is paid by the complexity of
invariants, which have a major impact on the size of correctness proofs and the
time and effort that is required for the proofs.

In the following, we will therefore present an idea of how to transform our pro-
gram model under TSO into an equivalent program model under SC, for which
store buffers are no longer required. For the proof, we use the proof obligations
from the previous section in combination with the new program model. First of
all, we have to make some restrictions to the class of the programs to which our
transformation applies. We restrict our transformation to programs, which are
(1) in SSA-form [13], (2) do not read early (from store buffer) and (3) loops must
be either non-writing or contain at least one synchronizing instruction (fence,
CAS instruction, etc.) that limits the potential reordering to a finite delay. Al-
though the three conditions seem to be a strong limitation to the applicability
of our approach, they hold surprisingly often to the best of our experience: (1) is
a typical intermediate representation by compilers as in case of the LLVM com-
piler framework, (2) is rarely relevant for concurrent algorithms that are adapted
for weak memory models, because reads to previously written shared variables
do usually have synchronization in between in order to ensure that the write is
flushed before the read is issued. Condition (3) is the actual limitation of the
class of programs, since not all loops will have memory barriers. However, our
transformation still applies to a large class of algorithms, since most concurrent
algorithms rely on some sort of synchronization primitives.

The transformation proceeds in two steps. The starting point of the transfor-
mation are the concrete operations COPi of some method implementation. These
are used to build a symbolic reachability graph in the first step. In this graph,
the nodes are pairs of program location and symbolic store buffer contents. In
a later step, we use this graph as basis for the construction of an equivalent
program with its operations having SC semantics, and thus, without the need
of store buffers.

Definition 1. A symbolic reachability graph G = (N ,E) consists of a set of
nodes N ⊆ PC × (N × (N ∪ Reg))∗ and edges E ⊆ N × Lab × N . The labels of
the edges are memory instructions or are empty.

142 O. Travkin and H. Wehrheim

write(flag0, 1)

fence

read(flag1, f1)

(A1, < >)

(A2, <(flag0, 1)>)

(A3, < >)

flush(flag0, 1)

(A2, < >)

(A4, < >)

(A5, < >)

Fig. 6. Abstract reachability
graph of operation acquire0

COP1asc =̂ ls.pc = (A10, 〈 〉)
∧ ls ′.pc = (A10, 〈(flag0, 1)〉)
∧mem ′ = mem

COP1bsc =̂ ls.pc = A10, 〈(flag0, 1)〉)
∧ ls ′.pc = (A20, 〈 〉)
∧mem ′ = mem[flag0, 1]

COP2sc =̂ ls.pc = (A20, 〈 〉)
∧ ls ′.pc = (A30, 〈 〉)
∧mem ′ = mem

COP3sc =̂ ls.pc = (A30, 〈 〉)
∧ ls ′.pc = (A40, 〈 〉)
∧ ls ′.f 1 = mem[flag1]

COP4asc =̂ ls.pc = (A40, 〈 〉)
∧ ls.f 1 = 0 ∧ ls ′.pc = (A50, 〈 〉)
∧mem ′ = mem

COP4bsc =̂ ls.pc = (A40, 〈 〉)
∧ ls.f 1 	= 0 ∧ ls ′.pc = (A30, 〈 〉)
∧mem ′ = mem

Fig. 7. Encoding of program behavior for
operation acquire0

The symbolic store buffer contents either contain pairs of memory address and
register name or memory address and constant. The graph of an operation im-
plementation is incrementally constructed as follows. The initial node consists
of the initial program location and an empty store buffer. New nodes and edges
are constructed as follows:

(l , buf)
lab−→ (l ′, buf ′) iff ∃COPi such that

– COPi = (ls .pc = l ∧ ls ′.pc = l ′ ∧ write((n, r), ls ,mem, ls ′,mem ′) and

buf ′ = buf � 〈(n, r)〉, lab = write(n, r), (ditto constants)
– COPi = (ls .pc = l ∧ ls ′.pc = l ′ ∧ r∗ := r ∧ write((n, r∗), ls ,mem, ls ′,mem ′)

and buf ′ = buf � 〈(n, r∗)〉, lab = r∗ := r ∧ write(n, r)
– COPi = (ls .pc = l ∧ ls ′.pc = l ′ ∧ read((n, r), ls ,mem, ls ′,mem ′) and

buf ′ = buf , lab = read(n, r),
– COPi = (ls .pc = l ∧ ls ′.pc = l ′ ∧ flush(ls ,mem, ls ′,mem ′) and

∃(n, r) such that buf = 〈(n, r)〉� buf ′, lab = flush,
– COPi = (ls .pc = l ∧ ls ′.pc = l ′ ∧ fence(ls ,mem, ls ′,mem ′)) and

buf = buf ′ = 〈 〉, lab = fence,
– COPi ⇒ (ls .pc = l ∧ ls ′.pc = l ′), COPi is no memory instruction and

buf ′ = buf , lab empty.

Handling TSO in Mechanized Linearizability Proofs 143

Operation predicates with more complex structure can be treated in a similar
way, e.g. by first logically splitting them into one of the forms of above. Thus,
what we are tracking here is just the potential contents of the store buffer, and
this only symbolically in that we store which register (or constant) the value must
come from. This is similar to symbolic execution [23], however, not tracking all
variables. The symbolic reachability graph is finite due to the above mentioned
restrictions, in particular, because we have no loops with write operations but
without fences. Such a graph can be automatically constructed. For operation
acquire0 the graph is given in Figure 6.

Note that in loops, the flush of a write(x , r) can be delayed past the re-
definition of r corresponding to the next loop iteration (i.e., synchronization
between definition and write of r). Thus, the redefinition of register r also mod-
ifies the symbolic store buffer content in our reachability graph. To overcome
this problem, we replace COPs with such writes write(x , r) in the program by
r∗ := r ∧ write(x , r∗) with r∗ representing the value of r while the write is
still pending. Such cases are the only cases in which we need a second variable
instance. However, for both of our case studies this was not necessary.

The second step consists of constructing new concrete operations for the SC
execution. Basically, the new operations operate on the same global and local
variables, however, without ls .buf . Instead, we use the nodes in the symbolic
reachability graph as new program locations and define one new operation for
every edge in the graph according to the following procedure:

1. For edges (l , buf)
lab−→ (l ′, buf ′), the predicate of the operation has to contain

ls .pc = (l , buf) ∧ ls ′.pc = (l ′, buf ′),
2. If lab = write(n, r), we add a predicate mem = mem ′.
3. If lab = r∗ := r ∧ write(n, r∗), we add a predicate r∗ := r ∧mem = mem ′.
4. If lab = read(n, r), we add a predicate ls ′.r = mem[n].

5. If lab = flush and buf = 〈(n, r)〉�buf ′, we add predicate mem ′ = mem[n, r].
6. If lab = fence, we add a predicate mem = mem ′.
7. If the label of the edge is empty, we re-use the part of the old predicate not

refering to program locations.

For the symbolic reachability graph of method acquire0 given in Figure 6, we
thus get the operations as depicted in Figure 7.

These two transformation steps have to be applied to every method of the
algorithm, i.e., to acquire1, release0 and release1 as well. Together, they form
our new concrete SC model which then has to be shown to simulate the (same)
abstract model. So far, we have just shown correctness of this transformation,
i.e. equivalence of old program on TSO to new program on SC, for the concrete
algorithms at hand (Burns and the work-stealing deque). A general correctness
proof will be one of our next steps.

6 Evaluation

We used the Burns mutual exclusion algorithm [12] as a toy example to play with
our transformation idea as described in the previous section and to compare it

144 O. Travkin and H. Wehrheim

against a proof based on an operational encoding of the TSO memory model (see
Section 3). After getting the first promising results, we decided to tackle a more
realistic case study, the work-stealing deque algorithm by Arora et al. [5]. In par-
ticular, we were interested in whether we would be able to prove a more realistic
size of case study and therefore applied the transformation based approach to
it. The algorithm is an array based queue implementation for thread scheduling
and requires fences under weak memory models. The queue implementation is
based on fine-grained concurrency primitives, e.g., CAS operations. The provided
methods require fences in order to prevent elements from being removed twice.
Compared to the 20 LOC of the Burns algorithm, the work stealing deque had
58 LOC in our implementation of it. The C/C++ and LLVM IR code for both
implementations4 and the full linearizability proofs5 are available for download.

We used the theorem prover KIV [24] for the specification and mechanization
of our linearizability proofs. KIV provides a library with the proof obligations
(including fully mechanized soundness and completeness proofs) for proving lin-
earizability that our work is based on. Furthermore, KIV allows for automation
of proofs and provides strong visualization features, e.g., proof trees and specifi-
cation dependencies, which are crucial for the understanding of why a proof fails.
In the following, we provide our key insights about the presented approaches.

Operational vs. Transformed. The operational encoding of the memory model
allows for a straightforward translation of the program code to a program model.
The simplicity stems from having no need to think about the potential contents
of the store buffers during specification. However, as we figured out in our proof
of Burns, the store buffer content becomes crucial anyway. A theorem prover
reveals all the cases that are impossible, but break the property you try to prove.
For instance, the store buffer of process 0 could contain pending writes to flag1,
although process 0 never writes to flag1. Such cases have to be ruled out by the
invariant. Thus, we specified the possible store buffer contents for each program
location in the invariant. Furthermore, we had to specify whether a flag has a
particular value or not as properties depending on the state of store buffer. The
more states a store buffer can have, the more complex the invariant can get.

Although the transformation of the program model seemed to be more ef-
fort in the first place, it actually reduced our proof effort for several reasons.
Since, we had to find out about the possible store buffer states anyway, the
construction of the abstract reachability graph did not really increase our ef-
fort. The presence of the store buffer as part of the state in the operational
encoding basically forced us to reason about a FIFO queue in every step, be-
cause an invariant has to be established over all steps of the program. We got
rid of this burden by removing the store buffer from the local state, although
this was paid by gaining more transitions and program locations in the pro-
gram behavior. However, some of the transitions became empty transitions (e.g.,
COP1asc in Fig. 7) and were removed. A second beneficial side effect of store

4 http://lina-rmm-verification.googlecode.com/svn/trunk/examples
5 http://linearizability.bplaced.de

http://lina-rmm-verification.googlecode.com/svn/trunk/examples
http://linearizability.bplaced.de

Handling TSO in Mechanized Linearizability Proofs 145

buffer removal was a better automation of the proofs. In particular, the Burns
proof based on the operational encoding required 3784 proof steps in KIV of
which 201 were manual. The proof based on the transformed program model re-
quired 1536 steps of which 63 were manual. The generally lower number of proof
steps was also due to the significantly smaller invariant in the transformation
based proofs (approx. half the size of the former invariant). By removing store
buffer properties and the corresponding case distinctions on the flag values, we
got simple properties (e.g. mem[flag0] = 1) in certain program location ranges
(ls .pc ∈ {(A20, 〈 〉)}, (A30, 〈 〉), (A40, 〈 〉), (A50, 〈 〉)). The difference in time effort
was even bigger, but since many specifications could be reused or needed just a
bit of adaption from the operational encoding, a comparison would be unfair.

Work Stealing Deque. We verified the work stealing deque by Arora et al. with
the transformation based approach only, but experienced similar benefits from
the approach. First, we applied the model checking approach [27] to the example
in order to find out, where fences had to be placed in the program and to get
an idea of how the algorithm works on a low level. Although the specification in
KIV took us just a few days, we spent several weeks to find a correct invariant
allowing us to prove the algorithm linearizable. The effort was mainly caused
due to iterations of adding invariant properties, trying to establish them within
the proof, and in case of a failing proof trying to understand why and to adapt
the invariant properties again. We assume that a proof based on the operational
encoding would have required more effort because of the complexity due to store
buffers. The full linearizability proofs for the work stealing deque required 6923
steps of which 1100 were manual.

7 Conclusion

In this paper, we have presented two approaches for the specification of program
behavior under TSO and provided first experimental results on their impact
to the proof effort. Both approaches focus on the mechanization of proofs in a
theorem prover. The operational encoding, a widely used approach, is modular by
keeping a memory model separate from the program specification and therefore
allows for straightforward program specification. Proofs based on this approach
unfold the full behavior during a proof, but require reasoning about store buffer
content, which makes the proof tedious and complex.

The basic principle of employing program transformations to allow for SC-
based proofs afterwards has also been followed in [6], however, using different
transformations. The transformation in [6] uses a bounded number of shared
variable copies in order to simulate store buffer behavior. Our transformation
makes reasoning about store buffer content obsolete, without adding a burden to
reason about store buffer replacements. We were able to show that our approach
reduces the proof effort and complexity (in our experiment by half compared to
the operational approach) and also enables the reuse of SC-based techniques.
The drawback of our transformation is that it is restricted to a particular class
of programs (see Sec. 5).

146 O. Travkin and H. Wehrheim

Since the linearizability theory [15] used in our proofs assumes an SC memory
model, our proofs do not cover the case of delays (of store buffer flushes) past the
return statement of a method. Thus, we implicitly assume fences at invocation
and return of methods in order to be sound. We plan to adapt the linearizability
theory (similar to [16]) as to be able to drop this assumption.

Currently, we are working on proving correctness of the program transforma-
tion, i.e. proving that the TSO model of the original program and the new SC
model of the transformed program give us equivalent (up to weak bisimulation)
transition systems. Furthermore, we aim at generalizing the transformation to a
larger class of programs.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Automatic
Fence Insertion in Integer Programs via Predicate abstraction. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg
(2012)

2. Adve, S.V., Gharachorloo, K.: Shared Memory Consistency Models: A Tutorial.
IEEE Computer 29(12), 66–76 (1996)

3. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) Program-
ming Languages and Systems. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg
(2013)

4. AMD. AMD64 Architecture Programmer’s Manual Volume 2: System Program-
ming (2012),
http://support.amd.com/us/Processor_TechDocs/24593_APM_v2.pdf

5. Arora, N.S., Blumofe, R.D., Greg Plaxton, C.: Thread Scheduling for Multipro-
grammed Multiprocessors. In: Proceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA 1998, pp. 119–129. ACM, New
York (1998)

6. Atig, M.F., Bouajjani, A., Parlato, G.: Getting Rid of Store-Buffers in TSO Anal-
ysis. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
99–115. Springer, Heidelberg (2011)

7. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency.
In: POPL, pp. 235–248 (2013)

8. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and Enforcing Robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) Programming Languages and
Systems. LNCS, vol. 7792, pp. 533–553. Springer, Heidelberg (2013)

9. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Cor-
rectness on the TSO Memory Model. In: Seidl, H. (ed.) Programming Languages
and Systems. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

10. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential
consistency for relaxed memory models. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 11–25. Springer, Heidelberg (2011)

11. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory
models. In: Dwyer, M.B., Tip, F. (eds.) ISSTA, pp. 122–132. ACM (2011)

12. Burns, J., Lynch, N.A.: Mutual Exclusion Using Indivisible Reads and Writes. In:
Proceedings of the 18th Annual Allerton Conference on Communication, Control,
and Computing, pp. 833–842 (1980)

http://support.amd.com/us/Processor_TechDocs/24593_APM_v2.pdf

Handling TSO in Mechanized Linearizability Proofs 147

13. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13, 451–490 (1991)

14. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935,
pp. 84–104. Springer, Heidelberg (2013)

15. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

16. Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures.
In: iFM (to appear, 2014)

17. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: Sequentially consis-
tent specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 31–45. Springer, Heidelberg (2012)

18. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

19. Intel, Santa Clara, CA, USA. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1 (May 2012)

20. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic Inference of Memory Fences.
SIGACT News 43(2), 108–123 (2012)

21. Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Trans. Computers 28(9), 690–691 (1979)

22. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010)

23. Corina, S.: Păsăreanu and Willem Visser. A Survey of New trends in Sym-
bolic Execution for Software Testing and Analysis. Int. J. Softw. Tools Technol.
Transf. 11(4), 339–353 (2009)

24. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured Specifications and
Interactive Proofs with KIV. In: Automated Deduction—A Basis for Applications.
Interactive Theorem Proving, vol. II, ch. 1, pp. 13–39. Kluwer (1998)

25. Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 243–259.
Springer, Heidelberg (2012)

26. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

27. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak
memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244,
pp. 311–326. Springer, Heidelberg (2013)

28. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: Torrellas, J., Chatterjee, S. (eds.) PPOPP,
pp. 129–136 (2006)

29. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 261–278. Springer,
Heidelberg (2009)

Partial Quantifier Elimination

Eugene Goldberg and Panagiotis Manolios

Northeastern University, USA
{eigold,pete}@ccs.neu.edu

Abstract. We consider the problem of Partial Quantifier Elimination
(PQE). Given formula ∃X[F (X,Y) ∧G(X,Y)], where F,G are in con-
junctive normal form, the PQE problem is to find a formula F ∗(Y) such
that F ∗ ∧ ∃X[G] ≡ ∃X[F ∧G]. We solve the PQE problem by generat-
ing and adding to F clauses over the free variables that make the clauses
of F with quantified variables redundant in ∃X[F ∧G]. The traditional
Quantifier Elimination problem (QE) can be viewed as a degenerate case
of PQE where G is empty so all clauses of the input formula with quan-
tified variables need to be made redundant. The importance of PQE is
threefold. First, in non-degenerate cases, PQE can be solved more effi-
ciently than QE. Second, many problems are more naturally formulated
in terms of PQE rather than QE. Third, an efficient PQE-algorithm will
enable new methods of model checking and SAT-solving. We describe a
PQE algorithm based on the machinery of dependency sequents and give
experimental results showing the promise of PQE.

1 Introduction

The elimination of existential quantifiers is an important problem arising in
many practical applications. We will refer to this problem as the Quantifier
Elimination problem, or QE. Given a formula ∃X [G] where G is a propositional
formula, the QE problem is to find a quantifier free formula G∗ such that G∗ ≡
∃X [G]. In this paper, we assume that all propositional formulas are represented
in conjunctive normal form (CNF).

Unfortunately, the efficiency of current QE algorithms still leaves much to be
desired. This is why many successful theorem proving methods such as inter-
polation and IC3 avoid QE and use SAT-based approaches instead. The lack of
efficient QE solvers can be addressed by looking for variations of QE that are
easier to solve. In this paper, we consider such a variation called Partial QE
(PQE). Given formula ∃X [F (X,Y) ∧G(X,Y)], the PQE problem is to find a
quantifier free formula F ∗(Y) such that F ∗ ∧ ∃X [G] ≡ ∃X [F ∧G]. We will say
that F ∗ is obtained by taking F out of the scope of the quantifiers. QE
can be viewed as a degenerate case of PQE where G is empty and so the entire
formula is taken out of the scope of quantifiers. In the following exposition, when
contrasting PQE and QE we mean non-degenerate instances of PQE.

An important advantage of PQE over QE is that the former is “structurally
sound”. A prototypical QE problem is to compute the range of a circuit. Let for-
mula G(X,Y, Z) specify a combinational circuit N where X,Y, Z are sets of

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 148–164, 2014.
c© Springer International Publishing Switzerland 2014

Partial Quantifier Elimination 149

input, internal and output variables respectively. Then a formula G∗(Z) such
that G∗ ≡ ∃W [G] where W = X ∪ Y specifies the range of N . The very def-
inition of QE forces one to build formula G∗ by destroying the structure of G
inherited from circuit N . A prototypical PQE problem [8] is to compute re-
duction of range of N when one excludes the inputs of N falsifying a formula
F (X). Let F ∗(Z) be a formula such that F ∗ ∧ ∃W [G] ≡ ∃W [F ∧G]. One can
view the assignments falsifying F ∗ as the outputs excluded from the range of
N after the inputs falsifying F are removed from consideration. So F ∗ describes
the reduction in the range of N caused by constraining its inputs by F . Note
that computation of formula F ∗ leaves formula G intact. Moreover, an intelligent
PQE-solver will exploit the structure of G to find F ∗ more efficiently.

Besides our interest in PQE as being “structurally sound”, our motivation for
studying PQE is twofold. First, in addition to traditional QE applications, PQE
brings in many new ones. In Subsection 2.1, we show that PQE can be used
to compute states reachable only from a specified set of states, which enables a
new class of model checkers. Subsection 2.3 gives an example of using PQE for
SAT-solving. Second, in some cases, even if the original problem is formulated in
terms of QE, it can sometimes be reduced to PQE. In Subsection 2.2, we show
that this is the case for pre-image computation in backward model checking.

The relation between efficiency of solving PQE and QE can be better under-
stood in terms of clause redundancy [7]. The PQE problem of taking F out of
the scope of quantifiers in ∃X [F ∧G] reduces to finding a set of clauses F ∗ that
makes all X-clauses of F redundant in ∃X [F ∧G]. (An X-clause is a clause
that contains a variable from X .) Then every clause of F can be either dropped
as redundant or removed from the scope of the quantifiers as it contains only
free variables.

One can view the process of building F ∗ as follows. X-clauses of F are made
redundant in ∃X [F ∧G] by adding to F resolvent clauses derived from F ∧ G.
Notice that no clause obtained by resolving only clauses of G needs to be made
redundant. Adding resolvents to F goes on until all X-clauses of the current
formula F are redundant. At this point, the X-clauses of F can be dropped and
the remaining clauses of F form F ∗. If F is much smaller than G, the process
of solving PQE looks like wave propagation where F is the original “perturba-
tion” and G is the “media” where this wave propagates. Such propagation can
be efficient even if G is large. By contrast, when solving the QE problem for
∃X [F ∧G] one needs to make redundant the X-clauses of both F and G and all
resolvent X-clauses including the ones obtained by resolving only clauses of G.

In this paper, we describe a PQE-algorithm called DS-PQE that is based on
the machinery of D-Sequents [6, 7]. One needs this machinery for PQE for the
same reason as for QE [6]. Every clause of F ∗(Y) can be obtained by resolving
clauses of F ∧G. However, the number of clauses that are implied by F ∧G and
depend only on Y is, in general, exponential in |Y |. So it is crucial to identify
the moment when the set of clauses derived so far that depend only on Y is
sufficient to make the X-clauses of F redundant in ∃X [F ∧G]. The machinery
of D-sequents is used by DS-PQE to perform such identification.

150 E. Goldberg and P. Manolios

The following exposition is structured as follows. In Section 2, we discuss
some problems that can benefit from an efficient PQE-algorithm. A run of DS-
PQE on a simple formula is described in Section 3. Sections 4 and 5 give basic
definitions and recall the notion of D-Sequents. In Section 6, algorithm DS-
PQE is described. Some background is given in Section 7. In Section 8, we
experimentally compare DS-PQE with our QE algorithm from [7] in the context
of model checking. We make conclusions in Section 9.

2 Some Applications of PQE

In this section, we describe some applications where using an efficient PQE
solver can be very beneficial. More applications of PQE can be found in [8–10].
Section 2.1 shows that PQE can be used to compute the set of states reachable
only from a specified set of states, which enables a new type of model checkers [8].
In Subsection 2.2, we describe application of PQE to the traditional method of
backward model checking. Application of PQE to SAT-solving is presented in
Subsection 2.3.

2.1 Enabling a New Type of Model Checkers

The basic operation of forward model checking is to compute the set of states
reachable from another set of states or to find its over-approximation. In this
subsection, we show that one can use PQE to compute the set of states reachable
only from a specified set of states. This enables a new type of model checkers [8]
that iteratively eliminate traces of reachable states. This elimination goes on
until a counterexample is found or the set of possible behaviors is reduced to
one trace consisting of good states. These new model checkers have a great
potential in verification of sequential circuits e.g. they can be used to find very
deep bugs.

Let T (S, S′) be a transition relation where S and S′ specify the current and
next state variables respectively. We will refer to complete assignments s and s′

to variables S and S′ as present and next states respectively. LetCs be the longest
clause of variables of S that is falsified by s. The set of states reachable from s in
one transition is specified by formula Rs(S′) logically equivalent to ∃S[Cs ∧ T].
That is for every state s′ satisfying Rs there is a transition from state s.

Let formula H(S) specify a set of states. Let s be one of states specified by H
i.e. H(s) = 1. Now we show how to compute the subset of states specified by Rs

that consists of states reachable in one transition only from s. More precisely, we
want to exclude from Rs every state that is reachable in one transition from a
state r satisfyingH and different from s. Let Qs(S′) be a CNF formula such that
Qs ∧ ∃S[H ∧ T] ≡ ∃S[Cs ∧H ∧ T]. It is not hard to show that Qs(s′) = 0 iff a)
s′ is reachable in one transition only from state s or b) s′ is not reachable from a
state specified by H in one transition. The states of item b) are just “noise” i.e.
Qs remains a solution to the PQE problem above even if it is not falsified by any
of such states. So, complete assignments falsifying Qs specify the states reachable

Partial Quantifier Elimination 151

only from s modulo some noise. The set of states reachable only from s can be
very small even when the set of states reachable from s is huge. This important
fact is what enables the new type of model checkers mentioned above.

2.2 Computing Pre-image in Backward Model Checking

Let formula F (S′) specify a set of next-states and H(S) specify the pre-image of
F (S′). That is, a present state s satisfies H iff there exists a next state s′ such
that F (s′) ∧ T (s, s′) = 1. Here T is a transition relation.

FindingH comes down to building a formula logically equivalent to ∃S′[F ∧ T]
i.e. reduces to QE. However, one can construct the pre-image of F by PQE as
follows. Let F ∗ be a formula such that F ∗ ∧ ∃S′[T] ≡ ∃S′[F ∧ T] i.e., F ∗ is a
solution to the PQE problem. Notice that ∃S′[T] ≡ 1 and hence can be dropped.
Indeed, for every present state s there always exists some next state s′ such that
T (s, s′) = 1. So F ∗ ≡ ∃S′[F ∧ T] and therefore F ∗ specifies the pre-image of F .
In other words, here QE reduces to PQE.

2.3 SAT-Solving by PQE

In this subsection, we give a method of using PQE for SAT-solving. Other meth-
ods of applying PQE to SAT-solving can be found in [9, 10].

Testing the satisfiability of a CNF formula G(X) is equivalent to checking if
formula ∃X [G] is true. The latter problem can be viewed as a special instance
of QE where all variables are quantified. In this case, every non-empty clause of
G is an X-clause and needs to be proved redundant to solve the QE problem. If
the clauses of G are proved redundant in ∃X [G] without derivation of an empty
clause, then G is satisfiable. Otherwise, it is unsatisfiable.

Let x be a complete assignment to variables of X that falsifies G. Let F be
the set of clauses of G that are falsified by x. Formula ∃X [G] can be represented
as ∃X [F ∧G′] where G′ = G \ F . Let us consider the PQE problem of finding
formula F ∗ such that F ∗ ∧ ∃X [G′] ≡ ∃X [F ∧G′]. Since ∃X [F ∧G′] has no free
variables, F ∗ is a constant. If F ∗ ≡ 1, then the clauses of F are redundant in
∃X [F ∧G′]. In other words, G is satisfiable iff G′ is. Since x satisfies G′, the
original formula G is satisfiable as well. If F ∗ ≡ 0, then, to take F out of the
scope of quantifiers, one needs to derive an empty clause from F ∧ G′ i.e. from
G. In this case, G is obviously unsatisfiable. So, to check the satisfiability of
G, PQE needs to prove only redundancy of clauses of F as opposed to proving
redundancy of all clauses of G in QE.

The PQE algorithm we present in this paper is not powerful enough to com-
pete with SAT-solvers yet. (One of the problems here is that D-sequents are not
re-used. A brief discussion of this topic is given in Section 8). However, this may
change soon.

3 Example

In this section, we describe a run of a PQE algorithm called DS-PQE that is de-
scribed in Section 6. DS-PQE is based on the machinery of Dependency sequents.

152 E. Goldberg and P. Manolios

The latter will be formally defined in Section 5. Recall that anX-clause is a clause
that contains at least one variable from a set X of Boolean variables.

Let F = C1∧C2 where C1 = y∨x1, C2 = y∨x3 LetG = C3∧C4∧C5∧C6 where
C3 = x1 ∨ x2, C4 = x1 ∨ x2, C5 = x3 ∨ x4, C6 = y ∨ x4. Let X = {x1, x2, x3, x4}
be the set of variables quantified in formula ∃X [F ∧G]. So y is the only free
variable of ∃X [F ∧G].

Problem formulation. Suppose one needs to solve the PQE problem of taking
F out of the scope of the quantifiers in ∃X [F ∧G]. That is one needs to find
F ∗(y) such that F ∗ ∧ ∃X [G] ≡ ∃X [F ∧G]. Below, we describe a run of DS-
PQE when solving this problem.

Fig. 1. The search tree built
by DS-PQE

Search tree. DS-PQE is a branching algorithm.
It first proves redundancy of X-clauses of F in
subspaces and then merges results of different
branches. When DS-PQE returns to the root of
the search tree, all the X-clauses of F are proved
redundant in ∃X [F ∧G]. The search tree built by
DS-PQE is given in Figure 1. It also shows the
nodes where new clauses C7 and C8 were derived.
DS-PQE assigns free variables before quantified.
So, variable y is assigned first. At every node of
the search tree specified by assignment q, DS-
PQE maintains a set of clauses denoted as PR(q).
Here PR stands for “clauses to Prove Redundant”.
We will refer to a clause of PR(q) as a PR-clause.

Adding a clause to PR(q) is an obligation to prove redundancy of this clause
in subspace q. PR(q) includes all X-clauses of F plus some X-clauses of G.
The latter are proved redundant to make proving redundancy of X-clauses of F
easier. Sets PR(q) are shown in Figure 3. For every non-leaf node of the search
tree, two sets of PR-clauses are shown. The set on the left side (respectively right
side) of node q gives PR(q) when visiting node q for the first time (respectively
when backtracking to the right branch of node q).

Fig. 2. Derived D-sequents

Using D-sequents.The main concern ofDS-PQE is
to prove redundancy of PR-clauses. Branching is used
to reach subspaces where proving redundancy is easy.
The redundancy of a PR-clause C is expressed by a
Dependency Sequent (D-sequent). In short notation,
a D-sequent is a record s → {C} saying that clause
C is redundant in formula ∃X [F ∧G] in any sub-
space where assignment s is made. We will refer to
s as the conditional part of the D-sequent. The D-
sequents S1, . . . , S7 derived by DS-PQE are shown in
Figure 2. They are numbered in the order they were
generated. So-called atomic D-sequents record triv-
ial cases of redundancy. More complex D-sequents
are derived by a resolution-like operation called join.

Partial Quantifier Elimination 153

When DS-PQE returns to the root, it derives D-sequents stating the uncondi-
tional redundancy of the X-clauses of F .

Merging results of different branches. Let v be the current branching variable
and v = 0 be the first branch explored by DS-PQE. After completing this branch,
DS-PQE proves redundancy of all clauses that currently have the PR-status.
(The only exception is the case when a PR-clause gets falsified in branch v =
0. We discuss this exception below.) Then DS-PQE explores branch v = 1
and derives D-sequents stating redundancy of clauses in this branch. Before
backtracking from node v, DS-PQE uses operation join to produce D-sequents
whose conditional part does not depend on v. For example, in branch y = 0,
D-sequent S1 equal to (y = 0)→ {C2} was derived. In branch y = 1, D-sequent
S5 equal to (y = 1) → {C2} was derived. By joining S1 and S5 at variable y,
D-sequent S7 equal to ∅ → {C2} was produced where the conditional part did
not depend on y.

Derivation of new clauses. Proving redundancy of PR-clauses in subspace
y = 0 required derivation of clauses C7 = x1 and C8 = y. For instance, clause C7

was generated at node (y = 0, x1 = 1) by resolving C3 and C4. Clause C7 was
temporarily added to F to make PR-clauses C3 and C4 redundant at the node
above. However, C7 was removed from formula F after derivation of clause C8

because the former is subsumed by the latter in subspace y = 0. This is similar
to conflict clause generation in SAT-solvers where the intermediate resolvents
are discarded.

Fig. 3. Dynamics of the
PR(q) set

Derivation of atomic D-sequents. S1, . . . , S5 are
the atomic D-sequents derived by DS-PQE. They
record trivial cases of redundancy. (Due to the sim-
plicity of this example, the conditional part of all
atomic D-sequents has only assignment to y i.e.,
the free variable. In general, however, the condi-
tional part of a D-sequent also contains assignments
to quantified variables.) There are three kinds of
atomic D-sequents. D-sequents of the first kind
state redundancy of clauses satisfied in a subspace.
For instance, D-sequent S1 states redundancy of
clause C2 satisfied by assignment y = 0. D-sequents

of the second kind record the fact that a clause is redundant because some other
clause is falsified in the current subspace. For instance, D-sequent S2 states that
C1 is redundant because clause C8 = y is falsified in subspace y = 0. D-sequents
of the third kind record the fact that a clause is redundant in a subspace because
it is blocked [15] at a variable v. That is this clause cannot be resolved on v.
For example, D-sequent S4 states redundancy of C5 that cannot be resolved on
x4 in subspace (y = 1, x3 = 1). Clause C5 is resolvable on x4 only with C6 but
C6 is satisfied by assignment y = 1. Atomic D-sequents are further discussed in
Subsection 6.3.

Computation of the set of PR-clauses. The original set of PR-clauses is equal
to the the initial set of X-clauses of F . Denote this set as PRinit . In our example,

154 E. Goldberg and P. Manolios

PRinit = {C1, C2}. There are two situations where PR(q) is extended. The first
situation occurs when a parent clause of a new resolvent is in PR(q) and this
resolvent is an X-clause. Then this resolvent is added to PR(q). An example of
that is clause C7 = x1 obtained by resolving PR-clauses C3 and C4.

The second situation occurs when a PR-clause becomes unit. Suppose a PR-
clause C is unit at node q and v is the unassigned variable of C where v ∈ X .
DS-PQE first makes the assignment falsifying C. Suppose that this is assignment
v = 0. Note that all PR-clauses but C itself are obviously redundant at node
q ∪ (v = 0). DS-PQE backtracks and explores the branch v = 1 where clause
C is satisfied. At this point DS-PQE extends the set PR(q ∪ (v = 1)) by adding
every clause of F ∧ G that a) has literal v; b) is not satisfied; c) is not already
in PR(q). The extension of the set of PR-clauses in the second situation is done
to guarantee that clause C will be proved redundant when backtracking off the
node q. Depending on whether formula F ∧ G is satisfiable or unsatisfiable in
branch v = 1, the second situation splits into two cases considered below.

The first case is that formula F ∧ G is unsatisfiable in branch v = 1. Then
extension of the set of PR-clauses above guarantees that a clause falsified by
q ∪ (v = 1) will be derived to make the new PR-clauses redundant. Most
importantly, this clause will be resolved with C on v to produce a clause ren-
dering C redundant in subspace q. In our example, the first case occurs at node
y = 0 where PR-clause C1 becomes unit. DS-PQE falsifies C1 in branch x1 = 0,
backtracks and explores branch x1 = 1. In this branch, clauses C3, C4 of G are
made PR-clauses. This branch is unsatisfiable. Making C3,C4 PR-clauses forces
DS-PQE to derive C7 = x1 that makes C3, C4 redundant. But the real goal of
obtaining C7 is to resolve it with C1 to produce clause C8 = y that makes C1

redundant.
The second case is that formula F ∧G is satisfiable in branch v = 1. Making

the clauses with literal v PR-clauses forces DS-PQE to prove their redundancy.
So when backtracking to node q, clause C will be blocked at variable v and
hence redundant. In our example, the second case occurs at node y = 1 where
clause C2 becomes unit. Clause C2 gets falsified in branch x3 = 0. Then DS-
PQE backtracks and explores branch x3 = 1. In this branch, C5 of G becomes
a new PR-clause as containing literal x3. This branch is satisfiable and C5 is
proved redundant without adding new clauses. Due to redundancy of C5, clause
C2 gets blocked at node y = 1 and hence redundant.

Importantly, the extension of the set PR(q) in the first and second situations
above is temporary. Suppose that a clause C is added to PR(q) as a result of
the first situation. That is at least one of the parents of C is a PR-clause. Then
C preserves its PR-status as long as its parents (see Subsection 6.7 for more
details). In the second situation, the clauses that became PR-clauses at node q
lose their PR-status when DS-PQE backtracks off this node.

Forming a solution to the PQE problem. The D-sequents derived by DS-
PQE at a node of the search tree are composable. This means that the clauses
that are redundant individually are also redundant together. For example, on re-
turning to the root node, D-sequents S6 and S7 equal to ∅ → {C1} and ∅ → {C2}

Partial Quantifier Elimination 155

respectively are derived. The composability of S6 and S7 means that D-sequent
∅ → {C1, C2} holds as well. The only new clause added to F is C8 = y (clause C7

was added temporarily). After dropping the X-clauses C1, C2 from F as proved
redundant one concludes that y ∧ ∃X [G] ≡ ∃X [F ∧G] and F ∗ = y is a solution
to the PQE problem.

4 Basic Definitions

In this section, we give relevant definitions.

Definition 1. An ∃CNF formula is a formula of the form ∃X [F] where F
is a Boolean CNF formula, and X is a set of Boolean variables. Let q be an
assignment, F be a CNF formula, and C be a clause. Vars(q) denotes the vari-
ables assigned in q; Vars(F) denotes the set of variables of F ; Vars(C) denotes
the variables of C; and Vars(∃X [F]) = Vars(F) \X.

We consider true and false as a special kind of clauses.

Definition 2. Let C be a clause, H be a CNF formula, and q be an assignment
such that Vars(q) ⊆ Vars(H). Denote by Cq the clause equal to true if C is
satisfied by q; otherwise Cq is the clause obtained from C by removing all literals
falsified by q. Hq denotes the formula obtained from H by replacing every clause
C of H with Cq. In this paper, we assume that clause Cq equal to true remains
in Hq. We treat such a clause as redundant in Hq.

Let ∃X [H] be an ∃CNF and y be an assignment to Vars(H) \X . Note that
in this case, (∃X [H])y = ∃X [Hy].

Definition 3. Let S,Q be ∃CNF formulas. We say that S,Q are equivalent,
written S ≡ Q, if for all assignments, y, such that Vars(y) ⊇ (Vars(S) ∪
Vars(Q)), we have Sy = Qy. Notice that Sy and Qy have no free variables,
so by Sy = Qy we mean semantic equivalence.

Definition 4. The Quantifier Elimination (QE) problem for ∃CNF for-
mula ∃X [H] is to find a CNF formula H∗ such that H∗ ≡ ∃X [H]. The Partial
QE (PQE) problem for ∃CNF formula ∃X [F ∧G] is to find a CNF formula
F ∗ such that F ∗ ∧ ∃X [G] ≡ ∃X [F ∧G].

Definition 5. Let X be a set of Boolean variables, H be a CNF formula and R
be a subset of X-clauses of H. The clauses of R are redundant in CNF formula
H if H ≡ (H \ R). The clauses of R are redundant in ∃CNF formula ∃X [H]
if ∃X [H] ≡ ∃X [H \R]. Note that H ≡ (H \R) implies ∃X [H] ≡ ∃X [H \R] but
the opposite is not true.

The notion of clause redundancy in a quantified formula is very powerful.
For example, if formula H(X) is satisfiable, every clause of H is redundant in
∃X [H].

156 E. Goldberg and P. Manolios

5 Dependency Sequents

In this section, we recall clause Dependency sequents (D-sequents) introduced
in [7], operation join and the notion of composability. Informally, the join oper-
ation extends resolution-like reasoning to subspaces where formula is satisfiable.
For example, in Definition 7, formula H can be satisfiable in subspaces s′ and
s′′. In this paper, we will refer to clause D-sequents of [7] as just D-sequents.

Definition 6. Let ∃X [H] be an ∃CNF formula. Let s be an assignment to
Vars(H) and R be a subset of X-clauses of H. A dependency sequent (D-
sequent) has the form (∃X [H], s) → R. It states that the clauses of Rs are
redundant in ∃X [Hs]. Alternatively, we will say that the clauses of R are redun-
dant in ∃X [H] in subspace s (and in any other subspace q such that s ⊆ q).

We will say that a D-sequent (∃X [H], s) → R holds, to tell apart a correct D-
sequent where clauses of R are indeed redundant in ∃X [H] in subspace s from a
record (∃X [H], s) → R relating an arbitrary s with some set R of X-clauses.

Definition 7. Let ∃X [H] be an ∃CNF formula. Let D-sequents (∃X [H], s′) → R
and (∃X [H], s′′) → R hold. We will refer to them as parent D-sequents. Let s′, s′′

have precisely one variable v ∈ Vars(s′) ∩Vars(s′′) that is assigned differently in
s′ and s′′. Let s be the assignment equal to s′∪s′′ minus assignments to variable v.
We will say that D-sequent (∃X [H], s) → R is obtained by joining the parent D-
sequents at v. The fact that the parent D-sequents hold implies that the D-sequent
obtained by joining them at v holds too [7].

Definition 8. Let (∃X [H], s′) → R′ and (∃X [H], s′′) → R′′ be two D-sequents
such that every assignment to variables of Vars(s′)∩Vars(s′′) is the same in s′

and s′′. We will call these D-sequents composable if the D-sequent
(∃X [H], s′ ∪ s′′) → R′ ∪R′′ holds.

6 Algorithm

In this section, we describe a PQE algorithm called DS-PQE where DS stands
for Dependency Sequents. DS-PQE algorithm is the result of a substantial mod-
ification of our QE algorithm DCDS described in [7]. The new features of DS-
PQE are summarized in Subsection 6.7.

DS-PQE derives D-sequents (∃X [F ∧G], s) → {C} stating the redundancy
of PR-clause C in any subspace q such that s ⊆ q. From now on, we will use a
short notation of D-sequents writing s → {C} instead of (∃X [F ∧G], s) → {C}.
We will assume that the parameter ∃X [F ∧G] missing in s → {C} is the cur-
rent ∃CNF formula (with all resolvents added to F). One can omit ∃X [F ∧G]
from D-sequents because (∃X [F ∧G], s) → {C} holds no matter how many re-
solvent clauses are added to F [7]. We will call D-sequent s → {C} active in
subspace q if s ⊆ q. The fact that s → {C} is active in subspace q means that
C is redundant in ∃X [F ∧G] in subspace q.

Partial Quantifier Elimination 157

6.1 Input and Output of DS-PQE

Recall that a PR-clause is an X-clause of F ∧G whose redundancy needs to be
proved in subspace q (see Section 3). DS-PQE shown in Figure 4 accepts an
∃CNF formula ∃X [F ∧G] (denoted as Φ), an assignment q to Vars(F), the set
of PR-clauses (denoted as W) and a set Ω of D-sequents active in subspace q
stating redundancy of some PR-clauses in ∃X [F ∧G] in subspace q.

// q is an assignment to Vars(F ∧G)
// Ω is a set of active D-sequents
// Φ denotes ∃X[F ∧G]
// W denotes PR(q)
// If ds pqe returns nil (or a clause),
// (F ∧G)q is sat. (respect. unsat.)

ds pqe(Φ,W ,q,Ω){
1 if (∃C ∈ F ∪G is falsif. by q) {
2 Ω := atomic Dseqs1 (Ω, q, C);
3 return(Φ,Ω,C);}
4 Ω := atomic Dseqs2 (Φ, q, Ω);
5* if (every PR clause redund(W,Ω))
6* return(Φ,Ω,nil);

- - - - - - - - - - - -
7 v := pick variable(F ∧G, q, Ω);
8 qb := q ∪ {(v = b)};
9* (Φ,Ω,Cb) :=ds pqe(Φ,W, qb,Ω);
10 Ω− := InactiveDseqs(F,Ω, v);
11 if (Ω− = ∅) return(Φ,Ω,Cb);
12 Ω := Ω \Ω−;

13* if (impl assgn(v, b))

14* W ′ := newPRclauses(W,F∧G, b);
15* else W ′ := ∅;
16 qb := q ∪ {(v=b)}; W ′′ := W ∪W ′;
17* (Φ,Ω,Cb) := ds pqe(Φ,W ′′,qb,Ω);

- - - - - - - - - - - - -
18 if ((Cb 	= nil) and (Cb 	= nil)){
19 C := resolve clauses(Cb, Cb, v);
20 F := F ∧ C;
21 Ω := atomic Dseqs1 (Ω, q, C);
22* if ((Cb ∈ W) or (Cb ∈ W))
23* if (X clause(C))
24* W := W ∪ {C};
25 return(Φ,Ω,C);}
26 Ω := merge(Φ, q, v, Ω−, Ω,Cb, Cb);
27 return(Φ,Ω,nil);}

Fig. 4. DS-PQE procedure

Similarly to Section 3, we will as-
sume that the resolvent clauses are
added to formula F while formula G
remains unchanged. DS-PQE returns a
formula ∃X [F ∧G] modified by resol-
vent clauses added to F (if any), a set
Ω of D-sequents active in subspace q
that state redundancy of all PR-clauses
in ∃X [F ∧G] in subspace q and a clause
C or nil . If (F ∧G)q is unsatisfiable, C
is a clause of F ∧G falsified by q. Other-
wise, DS-PQE returns nil meaning that
no clause implied by F ∧ G is falsified
by q.

The active D-sequents derived by
DS-PQE are composable. That is if
s1 → {C1},. . ., sk → {Ck} are the ac-
tive D-sequents of subspace q, then
the D-sequent s∗ → {C1, . . . , Ck} holds
where s∗ = s1 ∪ . . . ∪ sk and s∗ ⊆ q.
Like DCDS , DS-PQE achieves compos-
ability of D-sequents by proving redun-
dancy of PR-clauses in a particular or-
der (that can be different for different
paths). This guarantees that no circular
reasoning is possible and hence the D-
sequents derived at a node of the search
tree are composable.

A solution to the PQE problem in
subspace q is obtained by discarding the
PR-clauses of subspace q (specified by
W) from the CNF formula F returned
by DS-PQE. To solve the original prob-
lem of taking F out of the scope of the
quantifiers in ∃X [F ∧G], one needs to
call DS-PQE with q = ∅, Ω = ∅,W =
PRinit . Recall that PRinit is the set of
X-clauses of the original formula F .

158 E. Goldberg and P. Manolios

6.2 The Big Picture

DS-PQE consists of three parts separated in Figure 4 by the dotted lines. In
the first part (lines 1-6), DS-PQE builds atomic D-sequents recording trivial
cases of redundancy of PR-clauses. If all the PR-clauses are proved redundant
in ∃X [F ∧G] in subspace q, DS-PQE terminates at node q.

If some PR-clauses are not proved redundant yet, DS-PQE enters the second
part of the code (lines 7-17). First, DS-PQE picks a branching variable v (line 7).
Then it recursively calls itself (line 9) starting the left branch of v by adding to q
assignment v = b, b ∈ {0, 1}. Once the left branch is finished, DS-PQE explores
the right branch v = b (line 17).

In the third part, DS-PQE merges the left and right branches (lines 18-27).
This merging results in proving all PR-clauses redundant in ∃X [F ∧G] in sub-
space q. For every PR-clause C proved redundant in subspace q, the set Ω con-
tains precisely one active D-sequent s → {C} where s ⊆ q. As soon as C is
proved redundant, it is marked and ignored until DS-PQE enters a subspace
q′ where s �⊆ q′ i.e., a subspace where D-sequent s → {C} becomes inactive.
Then clause C gets unmarked signaling that DS-PQE does not have a proof of
redundancy of C in subspace q′ yet.

6.3 Building Atomic D-Sequents

Procedures atomic Dseqs1 and atomic Dseqs2 are called by DS-PQE to compute
D-sequents for trivial cases of clause redundancy listed in Section 3. We refer
to such D-sequents as atomic. Procedure atomic Dseqs1 is called when a clause
C of F ∧ G is falsified by q. For every PR-clause C′

q of Fq that has no active
D-sequent yet, atomic Dseq1 generates a D-sequent s → {C′}. Here s is the
shortest assignment falsifying C.

If no clause of F ∧ G is falsified by q, procedure atomic Dseqs2 is called. It
builds D-sequents for PR-clauses that became satisfied or blocked in Fq. Let C be
a clause satisfied by q. Then D-sequent s → {C} is generated where s = (w=b),
b ∈ {0, 1} is the assignment to a variable w satisfying C.

Let clause C be blocked [15] in Fq at variable w ∈ X . Let K be the set
of clauses of F ∧ G that can be resolved with C on w. The fact that C is
blocked in Fq means that every clause of K is either satisfied by q or is proved
redundant in subspace q. In this case, atomic Dseqs2 generates a D-sequent
s → {C} where s is constructed as follows. If C′ ∈ K is satisfied by q, then s
contains the assignment to a variable of Vars(q) that satisfies C′. If C′ ∈ K is
proved redundant in subspace q and r → {C′} is the active D-sequent for C′,
then s contains r.

6.4 Selection of a Branching Variable

Let q be the assignment DS-PQE is called with. Let Y = Vars(F) \ X . DS-
PQE branches on unassigned variables of X and Y . Importantly, an unassigned

Partial Quantifier Elimination 159

variable x ∈ X \Vars(q) is picked for branching only if a PR-clause contains x
and is not proved redundant yet.

Although Boolean Constraint Propagation (BCP) is not shown explicitly in
Figure 4, it is included into the pick variable procedure as follows: a) preference
is given to branching on variables of unit clauses of Fq (if any); b) if v is a
variable of a unit clause Cq of Fq and v is picked for branching, then the value
falsifying Cq is assigned first to cause immediate termination of this branch.

To simplify merging results of the left and right branches, DS-PQE first as-
signs values to variables of Y (see Subsection 6.6). This means that pick variable
never selects a variable x ∈ X for branching, if there is an unassigned variable
of Y . In particular, BCP does not assign values to variables of X if a variable of
Y is still unassigned.

6.5 Switching from Left to Right Branch

Let s→ {C} be a D-sequent of the setΩ computed byDS-PQE in the left branch
v = b (line 9 of Figure 4). We will call this D-sequent symmetric in v, if v is not
assigned in s. Otherwise, this D-sequent is called asymmetric in v. Notice that
if s is symmetric in v, then D-sequent s→ {C} is active in the right branch v = b
and so C is redundant in ∃X [F ∧G] in subspace q ∪ {(v = b)}. Denote by Ω−

the subset of active D-sequents that are asymmetric in v. It is computed in line
10. Before exploring the right branch (line 17), the PR-clauses of F ∧ G whose
redundancy is stated by D-sequents of Ω− become non-redundant again.

6.6 Branch Merging

Let qb = q ∪ {(v = b)} and qb = q ∪ {(v = b)}. The goal of branch merging is to
use solutions of the PQE problem in subspaces qb and qb to produce a solution
to the PQE problem in subspace q. If both Fqb and Fq

b
are unsatisfiable, this

is done as described in lines 19-25 of Figure 4. Let Cb, Cb be clauses returned
in the left and right branches respectively. Then, the empty clauses (Cb)qb and
(Cb)qb

are solutions to the PQE in subspaces qb and qb. The empty clause Cq

where C is the resolvent of Cb and Cb added to F (line 20) is a solution to the
PQE problem in subspace q. After C is added, atomic Dseqs1 completes Ω by
generation of atomic D-sequents built due to presence of a clause falsified by q.

Suppose that Fqb and/or Fq
b
is satisfiable. In this case, to finish solving the

QE problem in subspace q, one needs to make sure that every PR-clause is
proved redundant in Fq . This means that every PR-clause should have a D-
sequent active in subspace q and hence symmetric in the branching variable v.
This work is done by procedure merge (line 26) that consists of three steps.

In the first step, merge takes care of D-sequents of “old” PR-clauses that is
the clauses that were present in F at the time the value of v was flipped from b
to b. For every such PR-clause, a D-sequent was derived in the left branch v = b.
Let Sb be a D-sequent from Ω− (that is asymmetric in v) that states redundancy
of clause C in the left branch. Let Sb be the D-sequent stating redundancy of C

160 E. Goldberg and P. Manolios

in the right branch. These D-sequents are joined at variable v to produce a new
D-sequent stating redundancy of C in subspace q.

In the second step, merge processes new PR-clauses that is PR-clauses gen-
erated in the right branch v = b. No D-sequents were derived for such clauses
in the branch v = b. Let S be a D-sequent s → {C} derived in the right branch
v = b where clause C was generated. If S is symmetric in v, it simply remains in
Ω untouched. Otherwise, S is updated by removing the assignment to v from s.

In the third step, if, say, clause Cb mentioned above is not equal to nil, a
D-sequent is generated for Cb if it is a PR-clause. It can be shown [7] that due
the fact that free variables are assigned before quantified (see Subsection 6.4),
clause Cb is always blocked at the branching variable v. So, an atomic D-sequent
is built for Cb as described in Subsection 6.3.

6.7 New Features of DS-PQE with Respect to DCDS

In this subsection, we focus on the part of DS-PQE that is different from DCDS.
The lines of this part are marked with an asterisk inf Figure 4.

The main difference between DS-PQE and DCDS is that at every node q of
the search tree, DS-PQE maintains a set PR(q) of PR-clauses. PR(q) contains
all the X-clauses of F and some X-clauses of G (if any). DS-PQE terminates
its work at node q when all the current PR-clauses are proved redundant (lines
5-6). In contrast to DS-PQE, DCDS terminates at node q, when all X-clauses
are proved redundant. Line 9 is marked because DS-PQE uses an additional
parameter W when recursively calling itself to start the left branch of node q.
Here W specifies the set of PR-clauses to prove redundant in the left branch.

Lines 13-15 show how PR(q) is extended. As we discussed in Section 3, this
extension takes place when assignment v = b satisfies a unit PR-clause C. In
this case, the set W ′ of new PR-clauses is computed. It consists of all the X-
clauses that a) contain the literal of v falsified by assignment v = b; b) are not
PR-clauses and c) are not satisfied. As we explained in Section 3, this is done
to facilitate proving redundancy of clause C at node q. The set W ′ is added to
W before the right branch is explored (lines 16-17). Notice that the clauses of
W ′ have PR-status only in the subtree rooted at node q. Upon return to node
q from the right branch, the clauses of W ′ lose their PR-status.

As we mentioned in Section 3, one more source of new PR-clauses are resol-
vents (lines 22-24). Let v = b and v = b be unsatisfiable branches and Cb and Cb

be the clauses returned by DS-PQE . If Cb or Cb is currently a PR-clause, and
the resolvent C is an X-clause, then C becomes a new PR-clause. One can think
of a PR-clause as supplied with a tag indicating the level up to which this clause
preserves its PR-status. If only one of the clauses Cb and Cb is a PR-clause,
then C inherits the tag of this clause. If both parents have the PR-status, the
resolvent inherits the tag of the parent clause that preserves its PR-status longer.

Partial Quantifier Elimination 161

6.8 Correctness of DS-PQE

The correctness of DS-PQE is proved similarly to that of DCDS [7]. DS-PQE is
complete because it examines a finite search tree. Here is an informal explana-
tion of why DS-PQE is sound. First, the clauses added to F are produced by
resolution and so are correct in the sense they are implied by F ∧ G. Second,
the atomic D-sequents built by DS-PQE are correct. Third, new D-sequents pro-
duced by operation join are correct. Fourth, the D-sequents of individual clauses
are composable.

So when DS-PQE returns to the root node of the search tree, it derives the
correct D-sequent (∃X [F ∧G], ∅) → FX . Here FX denotes the set of all X-
clauses of F . By removing the X-clauses from F one obtains formula F ∗ such
that ∃X [F ∗ ∧G] ≡ ∃X [F ∧G]. Since F ∗ does not depend on variables of X it
can be taken out of the scope of quantifiers.

7 Background

QE has been studied by many researchers, due to its important role in verification
e.g., in model checking. QE methods are typically based on BDDs [2, 3] or
SAT [16, 11, 17, 13, 5, 12, 14]. At the same time, we do not know of research where
the PQE problem was solved or even formulated. Of course, identification and
removal of redundant clauses is often used in preprocessing procedures of QBF-
algorithms and SAT-solvers [4, 1]. However, these procedures typically exploit
only situations where clause redundancies are obvious.

One of the most important differences of PQE from QE is that a PQE-
algorithm has to have a significant degree of “structure-awareness”. This is
because PQE is essentially based on the notion of redundancy of a subset of
clauses in a quantified formula. So it is not clear, for example, if a BDD-based
algorithm would benefit from replacing QE with PQE. This also applies to many
SAT-based algorithms of QE. For instance, in [6] we presented a QE algorithm
called DDS that was arguably more structure aware than its SAT-based prede-
cessors. DDS is based on the notion of D-sequents defined in terms of redundancy
of variables rather than clauses. DDS makes quantified variables redundant in
subspaces and merges the results of different branches. Despite its structure-
awareness, it is hard to adjust DDS to solving PQE: in PQE, one, in general,
does not eliminate quantified variables (only some clauses with quantified vari-
ables are eliminated).

Interestingly, there is no trivial algorithm for solving PQE like solving QE
by resolving out quantified variables one by one. For example, one cannot solve
PQE by simply resolving out X-clauses of formula F in ∃X [F ∧G] because this
can lead to looping [9].

162 E. Goldberg and P. Manolios

8 Experimental Results

Fig. 5. Performance of model checkers on
282 examples solved by MC-QE or MC-
PQE

Since we are not aware of another tool
performing PQE, in the experiments we
focused on contrasting PQE and QE.
Namely, we compared DS-PQE with
our QE algorithm called DCDS [7]. The
fact that DS-PQE and DCDS are close
in terms of implementation techniques
is beneficial: any difference in perfor-
mance should be attributed to differ-
ence in algorithms rather than imple-
mentations.

In the experiments, we used DS-
PQE and DCDS for backward model
checking. It is important to emphasize
that, in the long run, we plan to use
PQE in new types of model checkers like
the ones mentioned in Section 2. How-

ever, since these model checkers are not available yet we experimented with
DS-PQE in the context of a traditional model checker. We will refer to the two
algorithms for backward model checking based on DS-PQE and DCDS as MC-
PQE and MC-QE respectively. The difference between MC-PQE and MC-QE is
as follows. Let F (S′) and T (S, S′) specify a set of next-states and transition re-
lation respectively. The basic operation here is to find the pre-image H(S) of F
where H ≡ ∃S′[F ∧ T]. So H is a solution to the QE problem. As we showed
in Subsection 2.2, one can also find H just by taking F out of the scope of the
quantifiers in formula ∃S′[F ∧ T]. MC-QE computes H by making redundant
all S′-clauses of F ∧ T while MC-PQE finds H by making redundant only the
S′-clauses of F .

The current implementations of DCDS and DS-PQE lack D-sequent re-using:
the parent D-sequents are discarded after a join operation. We believe that re-
using D-sequents should boost performance like clause recording in SAT-solving.
However, when working on a new version of DCDS we found out that re-using
D-sequents indiscriminately may lead to circular reasoning. We have solved this
problem theoretically and resumed our work on the new version of DCDS. How-
ever, here we report the results of implementations that do not re-use D-sequents.

We compared MC-PQE and MC-QE on the 758 benchmarks of HWMCC-10
competition [18]. With the time limit of 2,000s, MC-QE and MC-PQE solved
258 and 279 benchmarks respectively. On the set of 253 benchmarks solved by
both model checkers,MC-PQE was about 2 times faster (the total time is 4,652s
versus 8,528s). However, on the set of 282 benchmarks solved by at least one
model checker MC-PQE was about 6 times faster (10,652s versus 60,528s). Here
we charged 2,000s, i.e., the time limit, for every unsolved benchmark.

Partial Quantifier Elimination 163

Table 1. Model checking results on some con-
crete examples

benchmark #lat- #gates #ite- bug MC- MC-

ches rati- QE PQE

ons (s.) (s.)
bj08amba3g62 32 9,825 4 no 241 38
kenflashp03 51 3,738 2 no 33 104
pdtvishuffman2 55 831 6 yes >2,000 296
pdtvisvsar05 82 2,097 4 no 1,368 7.7
pdtvisvsa16a01 188 6,162 2 no >2,000 17
texaspimainp12 239 7,987 4 no 807 580
texasparsesysp1 312 11,860 10 yes 39 25
pj2002 1,175 15,384 3 no 254 47
mentorbm1and 4,344 31,684 2 no 1.4 1.7

Figure 5 gives the performance
of MC-QE and MC-PQE on the
282 benchmarks solved by at least
one model checker in terms of the
number of problems finished in
a given amount of time. Model
checking results on some concrete
benchmarks are given in Table 1.
The column iterations show the
number of backward images com-
puted by the algorithms before
finding a bug or reaching a fixed
point.

In [7], we compared MC-
QE with a BDD-based model checker (MC-BDD). This comparison showed that
although MC-BDD solved more benchmarks than MC-QE, there were 65 bench-
marks solved by MC-QE that MC-BDD failed to solve. In addition to these 65
benchmarks, MC-PQE solved 7 more benchmarks that MC-BDD failed to solve
(and that were not solved by MC-QE either).

Acknowledgment. This research was supported in part by DARPA under
AFRL Cooperative Agreement No. FA8750-10-2-0233 and by NSF grants CCF-
1117184 and CCF-1319580.

9 Conclusion

We introduced the Partial Quantifier Elimination problem (PQE), a generaliza-
tion of the Quantifier Elimination problem (QE). We presented a PQE-algorithm
based on the machinery of D-sequents and gave experimental results showing
that PQE can be more efficient than QE. An efficient PQE-solver will enable
new methods of solving old problems like model checking and SAT. In addition,
many verification problems can be formulated and solved in terms of PQE rather
than QE, a topic ripe for further exploration.

References

1. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

2. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

3. Chauhan, P., Clarke, E., Jha, S., Kukula, J., Veith, H., Wang, D.: Using combinato-
rial optimization methods for quantification scheduling. In: Margaria, T., Melham,
T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 293–309. Springer, Heidelberg
(2001)

164 E. Goldberg and P. Manolios

4. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

5. Goldberg, E., Manolios, P.: SAT-solving based on boundary point elimination. In:
Barner, S., Harris, I., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504,
pp. 93–111. Springer, Heidelberg (2010)

6. Goldberg, E., Manolios, P.: Quantifier elimination by dependency sequents. In:
FMCAD 2012, pp. 34–44 (2012)

7. Goldberg, E., Manolios, P.: Quantifier elimination via clause redundancy. In: FM-
CAD 2013, pp. 85–92 (2013)

8. Goldberg, E., Manolios, P.: Bug hunting by computing range reduction. Technical
Report arXiv:1408.7039 [cs.LO] (2014)

9. Goldberg, E., Manolios, P.: Partial quantifier elimination. Technical Report
arXiv:1407.4835 [cs.LO] (2014)

10. Goldberg, E., Manolios, P.: Software for quantifier elimination in propositional
logic. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 291–294.
Springer, Heidelberg (2014)

11. Jin, H., Somenzi, F.: Prime clauses for fast enumeration of satisfying assignments
to boolean circuits. In: DAC 2005, pp. 750–753 (2005)

12. Brauer, J., King, A., Kriener, J.: Existential quantification as incremental SAT. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207.
Springer, Heidelberg (2011)

13. Jiang, J.-H.R.: Quantifier elimination via functional composition. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 383–397. Springer, Heidelberg
(2009)

14. Klieber, W., Janota, M., Marques-Silva, J., Clarke, E.: Solving QBF with free
variables. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 415–431. Springer,
Heidelberg (2013)

15. Kullmann, O.: New methods for 3-sat decision and worst-case analysis. Theor.
Comput. Sci. 223(1-2), 1–72 (1999)

16. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264.
Springer, Heidelberg (2002)

17. Ganai, M.K., Gupta, A., Ashar, P.: Efficient sat-based unbounded symbolic model
checking using circuit cofactoring. In: ICCAD 2004, pp. 510–517 (2004)

18. HWMCC-2010 benchmarks, http://fmv.jku.at/hwmcc10/benchmarks.html

http://fmv.jku.at/hwmcc10/benchmarks.html

Formal Verification of 800 Genetically

Constructed Automata Programs: A Case Study

Mikhail Lukin, Maxim Buzdalov, and Anatoly Shalyto

ITMO University
49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101
{lukinma,mbuzdalov}@gmail.com, shalyto@mail.ifmo.ru

Abstract. Engineering of mission critical software requires a program
to be verified that it satisfies a number of properties. This is often done
using model checking. However, construction of a program model to be
verified and analyzing counterexamples is not an easy task. This can be
made easier with the automata-based programming paradigm.

There exist some cases when there are many programs to verify and
it is impossible to construct a precise enough finite-state model of the
environment. We present an approach for automata program verifica-
tion under such conditions. Our case study is based on 800 automata
programs which solve a simple path-planning problem. As a result, we
verified that at least 231 of them are provably correct.

Keywords: automata-based programming, formal verification, model
checking.

1 Introduction

Engineering of mission critical software requires a program to be verified that
it satisfies a number of properties. This is often done using the model check-
ing approach [7]. However, construction of a program model to be verified and
analysing counterexamples is not an easy task.

Automata-based programming [3, 8, 9] is a programming paradigm which
proposes to design and implement software systems as systems of interacting
automated controlled objects. Each automated controlled object consists of a
controlling extended finite-state machine (EFSM) and a controlled object. One
of the main advantages of automata-based programming is that automata pro-
grams can be effectively verified using the model checking approach. Automata
programs are isomorphic to their own models, which automates many steps
needed to verify an automata program [5, 10]. This makes automata-based pro-
gramming a good tool in industry, a notable example of which is a new standard
for distributed control and automation IEC 61499 [11].

In some cases, synthesis of automata programs is possible using search-based
software engineering methods, such as genetic algorithms [1, 2, 10]. This may
lead to existence of many programs to check, and their underlying logic can be

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 165–170, 2014.
c© Springer International Publishing Switzerland 2014

166 M. Lukin, M. Buzdalov, and A. Shalyto

cumbersome. What is more, it is sometimes impossible to construct a finite-state
model of the environment that is enough to verify the necessary properties.

In this paper, an approach for automata program verification, which can cope
with such conditions, is presented. We illustrate this approach on a case study,
which is based on 800 automata programs constructed by a genetic algorithm.
We verified that 231 of them are provably correct.

2 Problem Formulation

In the paper [1] solutions to the path-planning problem were constructed in the
form of finite state machines using a genetic algorithm. More precisely, the path
planning problem with incomplete information was addressed: an agent with
O(1) memory and only contact sensors has to find a target in an unknown area
with finite obstacles. In the paper [6] some algorithms (the most known are
BUG-1 and BUG-2) are given which find the target or determine that the target
is unreachable in finite number of steps.

The paper [1] considered a discretized version of this problem, which is more
suitable to experiments with automata program synthesis. The field is an infinite
square grid. Each grid cell is either free or contains an obstacle. Each eight-
connected group of cells with obstacles has a finite size. One of the cells without
an obstacle is declared to be a target. An agent occupies an entire cell. The
position of the agent is determined by its Cartesian coordinates and direction
(N, W, S or E). The next cell in this direction is said to be the adjacent cell.
The agent has O(1) additional memory which is used to store a single position
of the agent. The agent’s logic is encoded as an EFSM.

The agent has access to the following data: (Xt, Yt) – the target location, (Xa,
Ya, Da) – the agent’s coordinates and direction, (Xs, Ys, Ds) – saved coordinates
and direction, (Xj , Yj) – coordinates of the adjacent cell (which is a function
of Xa, Ya, Da), O – is there an obstacle in the adjacent cell. These data are
converted to the Boolean variables which the agent directly accesses:

– “can move forward”: x1 = not O;
– “is move forward cool”: x2 = dist(Xj , Yj , Xt, Yt) < dist(Xa, Ya, Xt, Yt);
– “is at finish”: x3 = Xa = Xt and Ya = Yt;
– “is at saved”: x4 = Xa = Xs and Ya = Ys and Da = Ds;
– “is better than saved”: x5 = dist(Xa, Ya, Xt, Yt) < dist(Xs, Ys, Xt, Yt);

where dist(X1, Y1, X2, Y2) = |X1 −X2|+ |Y1 − Y2|. The possible actions are:

– “move forward”: move forward to the adjacent cell;
– “rotate positive”: rotate 90 degrees clockwise;
– “rotate negative”: rotate 90 degrees counter-clockwise;
– “report reached”: terminate and say it has reached the target;
– “report unreachable”: terminate and say the target is unreachable;
– “save position”: save current coordinates and direction to memory;
– “do nothing”: do nothing.

Formal Verification of 800 Genetically Constructed Automata Programs 167

The agent may end up in one of the following ways:

1. It moves to a cell which contains an obstacle (“crashes”).
2. It enters a loop in the state space.
3. It moves apart from the target forever.
4. It performs the “report reached” action and is not located at the target.
5. It performs the “report reached” action and is located at the target.
6. It performs the “report unreachable” action, the target is not unreachable.
7. It performs the “report unreachable” action, the target is unreachable and

the agent has not visited all cells that are surrounding the eight-connected
obstacle component which contains the target inside.

8. It performs the “report unreachable” action, the target is unreachable and
the agent has visited all cells mentioned in the previous case.

From these ways, only the cases 5 and 8 refer to the correct termination.
In the paper [1], it was reported that 800 EFSMs were evolved using genetic

programming and some rudimentary coevolution with tests. They were exten-
sively tested and have never failed. However, a formal proof for their correctness
is missing in [1].

3 Proposed Verification Approach

The correctness of an agent can follow from two statements only: “for any field
with a reachable target, the agent will eventually reach the target and perform
the “report reached” action” and “for any field with an unreachable target, the
agent will eventually perform the “report unreachable” action”. If a field were
fixed, checking these statements would be possible by a partial breadth-first
traversal of a graph, whose vertices are possible program states. However, the
fields are not fixed, which makes the statements inexpressible in terms of states
or paths in the agent’s EFSM.

We suggest the following workflow:

1. Construct a hypothesis of how a series of EFSMs work.
2. Construct a (probably lossy and non-deterministic) finite-state model of an

agent and the environment, and a set of LTL formulae that together can be
used by a model checker to prove that a given EFSM satisfies the hypothesis.

3. Prove formally that any EFSM that satisfies the hypothesis is correct.
4. Run a model checker on available EFSMs using the model and formulae from

step 2. All EFSMs that are successfully verified are correct.

In Section 4 we apply this workflow, step by step, to verification of 800 finite-
state machines solving the path planning problem described in Section 2.

4 Application to the Path Planning Problem

After preliminary experiments with several agents we hypothesized that they
follow the BUG-2 scheme scheme [6]. Such agents move towards the target while

168 M. Lukin, M. Buzdalov, and A. Shalyto

it is possible. When an obstacle is approached, there are two possibilities. First,
if an agent can turn in such a way that it can continue moving towards the
target, it may do so. Otherwise, it switches into the obstacle detour mode: it
traverses the obstacle clockwise or counter-clockwise until it reaches a condition
when it is possible to continue moving towards the target without hitting an
obstacle, or to change the obstacle being detoured. During the detour process, it
tracks the cell that is the closest so far to the target. If it is impossible to move
towards the target from the closest possible cell, then the target is unreachable,
and the agent performs the corresponding action.

4.1 The Model

The first component of the model is a finite description of the part of the field
that directly influence the next move of the agent. It consists of:

– information for each of the neighboring cells if it is occupied by an obstacle;
– direction of the agent (north, south, east or west);
– the direction of the target related to the agent;
– information on how the current agent location compares to saved cell in terms

of Manhattan distance to the target (closer, farther, at the same distance,
cells and directions coincide, only cells coincide).

The first three parts are grouped in a structure called profile. The fourth part
is stored in the global variable. The part of the model described so far is enough
to determine the next move of an agent if the EFSM of the agent is given. All
the actions except for “move forward” change the model deterministically. For
the “move forward” action, the following components have to be updated non-
deterministically: information about obstacles in some of the neighboring cells,
the direction to the target and the relation of the saved cell to the current agent
location. To reduce the number of false failures, the current profile is saved at
the “save position” action, and the last two variants of the latter property can
be chosen only if the current and the saved profiles match.

In addition to that, a global bit detourWall is used to track whether the agent
is detouring an obstacle. We set or clear this bit using heuristic conditions.

The model is implemented in Promela and is verified by Spin [4]. The common
part of the model is coded by hand. The part of the model which depends on
the actual agent’s EFSM is generated by a tool called Stater.1

4.2 Weaknesses of the Model

Due to the fact that the model of the agent and the field is finite-state and
partially non-deterministic, it can happen that some situations may be produced
by the verifier which cannot happen while running the agent on a real field. These
situations include:

1 Available for download at https://yadi.sk/d/clWWtMrIYhQZJ.

https://yadi.sk/d/clWWtMrIYhQZJ

Formal Verification of 800 Genetically Constructed Automata Programs 169

– mutable field – the visited parts of the field may effectively change;
– infinitely large obstacles;
– infinitely distant target;
– wandering target – the target may change its location;
– wandering saved cell – the location of the saved cell can change in time;
– target in a cell with an obstacle.

These situations cannot happen when evaluating an agent on a real field, so
the agent may process them seemingly incorrectly (which does not imply that
the agent is incorrect). In out LTL formulae we allow certain forms of incorrect
behavior, but ensure it can happen only under impossible conditions.

4.3 LTL Formulae and Theorems

We think there are two possibilities for each agent under verification: it can de-
tour each obstacle either clockwise or counter-clockwise. Technically, it should be
possible to construct an agent that can perform both kinds of detours; however,
it requires a larger number of states. Accordingly to this idea, we prepared two
sets of formulae: the first one is for the clockwise detour, and the second one is
for the counter-clockwise one.

The formulae f0–f30 for the clockwise detour, augmented with their explana-
tion, are available at GitHub.2 The counter-clockwise versions can be obtained
by performing simple “reflective” transformations.

One lemma and four theorems were proven, from which it follows that every
EFSM which satisfies the specification (the LTL formulae f0–f30) also solves
the problem. The theorems and proofs are available at GitHub3 for the sake of
brevity.

4.4 Verification Results

The archive with all necessary Spin models and scripts is available for download4

for experiment reproduction.
We constructed 1600models for verification, namely 800models for each EFSM

from [1] using the “clockwise” LTL formula set and 800 modes for the “counter-
clockwise” formula set. Verification of all these models took us approximately two
days on a 32-core server with AMD OpteronTM 6272 processors.

There were 231 EFSMs which satisfy either clockwise or counter-clockwise LTL
formula set. No EFSM satisfied both formula sets, which was expected because
any EFSM which satisfies both formula sets traverses every obstacle both clock-
wise and counter-clockwise.All other 569EFSMs satisfied none of the formula sets.
This does not mean that they are incorrect – they seem to implement a different
algorithm (for example, one of them implements BUG-1).

2 https://github.com/mbuzdalov/papers/blob/master/2014-hvc-bugs/

formulae.ltl
3 https://github.com/mbuzdalov/papers/blob/master/2014-hvc-bugs/proofs.txt
4 https://yadi.sk/d/-orvfVKnYhRFc

https://github.com/mbuzdalov/papers/blob/master/2014-hvc-bugs/formulae.ltl
https://github.com/mbuzdalov/papers/blob/master/2014-hvc-bugs/formulae.ltl
https://github.com/mbuzdalov/papers/blob/master/2014-hvc-bugs/proofs.txt
https://yadi.sk/d/-orvfVKnYhRFc

170 M. Lukin, M. Buzdalov, and A. Shalyto

5 Conclusion

We presented an approach that can be used to verify programs in the absence of a
finite-state model of the program environment that is precise enough to verify the
necessary properties. This approach involves creating a hypothesis about how the
verified programworks, an intermediate finite-state model and temporal formulae
which capture this hypothesis, and finally proving that anyprogramwhich satisfies
the hypothesis performs as expected.

This approach is illustrated on a sample path-planning problem, where con-
structing a proper counterexample involves creating large unbounded structures.
From a previous work [1] we inherited 800 programs in a form of extended finite-
statemachineswhich supposedly solve the problem.Wewere able to prove that 231
of these programs are correct. For other programs proving their correctness should
be possible by constructing another hypothesis.

Acknowledgments. This work was financially supported by the Government of
Russian Federation, Grant 074-U01.

References

1. Buzdalov, M., Sokolov, A.: Evolving EFSMs Solving a Path-Planning Problem by
Genetic Programming. In: Proceedings of GECCO Companion, pp. 591–594 (2012)

2. Chivilikhin, D., Ulyantsev, V.: MuACOsm: A New Mutation-Based Ant Colony
Optimization Algorithm for Learning Finite-State Machines. In: Proceedings of
GECCO, pp. 511–518 (2013)

3. Gurov, V., Mazin, M., Narvsky, A., Shalyto, A.: Tools for support of automata-based
programming. Programming and Computer Software 33(6), 343–355 (2007)

4. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

5. Kuzmin, E.V., Sokolov, V.A.: Modeling, specification, and verification of automaton
programs. Programming and Computer Software 34(1), 27–43 (2008)

6. Lumelsky, V., Stepanov, A.: Path planning strategies for a point mobile automaton
moving amidst unknownobstacles of arbitraty shape.Algorithmica 2, 403–430 (1987)

7. Pingree, P.J., Mikk, E., Holzmann, G.J., Smith, M.H., Dams, D.: Validation of
mission critical software design and implementation using model checking (2002),
http://spinroot.com/gerard/pdf/02-1911.pdf

8. Polikarpova, N., Shalyto, A.: Automata-based Programming, 2nd edn. Piter (2011)
(in Russian)

9. Shalyto, A.: Logic control and reactive systems: Algorithmization and programming.
Automation and Remote Control 62(1), 1–29 (2001)

10. Tsarev, F., Egorov, K.: Finite State Machine Induction Using Genetic Algorithm
Based on Testing and Model Checking. In: Proceedings of GECCO Companion, pp.
759–762 (2011)

11. Yang, C.H., Vyatkin, V., Pang, C.: Model-driven development of control soft-
ware for distributed automation: a survey and an approach. IEEE Transactions on
Systems, Man and Cybernetics 44(3), 292–305 (2014)

http://spinroot.com/gerard/pdf/02-1911.pdf

A Framework to Synergize Partial Order
Reduction with State Interpolation

Duc-Hiep Chu and Joxan Jaffar

National University of Singapore
{hiepcd,joxan}@comp.nus.edu.sg

Abstract. We address the problem of reasoning about interleavings in
safety verification of concurrent programs. In the literature, there are two
prominent techniques for pruning the search space. First, there are well-
investigated trace-based methods, collectively known as “Partial Order
Reduction (POR)”, which operate by weakening the concept of a trace by
abstracting the total order of its transitions into a partial order. Second,
there is state-based interpolation where a collection of formulas can be
generalized by taking into account the property to be verified. Our main
contribution is a framework that synergistically combines POR with state
interpolation so that the sum is more than its parts.

1 Introduction

We consider the state explosion problem in safety verification of concurrent pro-
grams. This is caused by the interleavings of transitions from different processes.
In explicit-state model checking, a general approach to counter this explosion is
Partial Order Reduction (POR) (e.g., [22,19,11]). This exploits the equivalence
of interleavings of “independent” transitions: two transitions are independent if
their consecutive occurrences in a trace can be swapped without changing the
final state. In other words, POR-related methods prune away redundant process
interleavings in a sense that, for each Mazurkiewicz [17]1 trace equivalence class
of interleavings, if a representative has been checked, the remaining ones are
regarded as redundant.

On the other hand, symbolic execution [16] is another method for program
reasoning which recently has made increasing impact on software engineering
research [4]. The main challenge for symbolic execution is the exponential num-
ber of symbolic paths. The works [14,18] tackle successfully this fundamental
problem by eliminating from the concrete model, on-the-fly, those facts which
are irrelevant or too-specific for proving the unreachability of the error nodes.
This learning phase consists of computing state-based interpolants in a similar
spirit to that of conflict clause learning in SAT solvers.

Now symbolic execution with state interpolation (SI) has been shown to be
effective for verifying sequential programs. In SI [14,18], a node at program point

1 We remark that the concept of POR goes beyond the preservation of Mazurkiewicz
traces, e.g., [22]. However, from a practical perspective, it is safe to consider such
form of pruning as a representative example of POR.

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 171–187, 2014.
c© Springer International Publishing Switzerland 2014

172 D.-H. Chu and J. Jaffar

 in the reachability tree can be pruned, if its context is subsumed by the inter-
polant computed earlier for the same program point
. Therefore, even in the
best case scenario, the number of states explored by an SI method must still be
at least the number of all distinct program points2. However, in the setting of
concurrent programs, exploring each distinct global program point3 once might
already be considered prohibitive. In short, symbolic execution with SI alone is
not efficient enough for the verification of concurrent programs.

Recent work (e.g., [27]) has shown the usefulness of going stateful in im-
plementing a POR method. It directly follows that SI can help to yield even
better performance. In order to implement an efficient stateful algorithm, we are
required to come up with an abstraction for each (concrete or symbolic) state.
Unsurprisingly, SI often offers us good abstractions.

The above suggests that POR and SI can be very much complementary to each
other. In this paper, we propose a general framework employing symbolic execu-
tion in the exploration of the state space, while both POR and SI are exploited
for pruning. SI and POR are combined synergistically as the concept of interpo-
lation. Interpolation is essentially a form of learning where the completed search
of a safe subtree is then formulated as a recipe, ideally a succinct formula, for
future pruning. The key distinction of our interpolation framework is that each
recipe discovered by a node is forced to be conveyed back to its ancestors, which
gives rise to pruning of larger subtrees.

In summary, we address the challenge: “combining classic POR methods with
symbolic technique has proven to be difficult” [15], especially in the context
of software verification. More specifically, we propose an algorithm schema to
combine synergistically POR with state interpolation so that the sum is more
than its parts. However, we first need to formalize POR wrt. a symbolic search
framework with abstraction in such a way that: (1) POR can be property driven
and (2) POR, or more precisely, the concept of persistent set, can be applicable
for a set of states (rather than an individual state). While the main contribution
is a theoretical framework, our experimental results also indicate a potential for
the development of advanced implementations.

2 Related Work

Partial Order Reduction (POR) is a well-investigated technique in model checking
of concurrent systems. Some notable early works are [22,19,11]. Later refinements
of POR, Dynamic [10] and Cartesian [13] POR (DPOR and CPOR respectively)
improve traditional POR techniques by detecting collisions on-the-fly. Recently,
[1] has proposed the novel concept of source sets, optimizing the implementation

2 Whereas POR-related methods do not suffer from this. Here we assume that the
input concurrent program has already been preprocessed (e.g., by static slicing to
remove irrelevant transitions, or by static block encodings) to reduce the size of the
transition system for each process.

3 The number of global points is the product of the numbers of local program points
in all processes.

A Framework to Synergize Partial Order Reduction with State Interpolation 173

for DPOR. These methods, in general, often achieve better reduction than tradi-
tional techniques, due to the more accurate detection of independent transitions.

Traditional POR techniques [22,19,11] distinguish between liveness and safety
properties. POR has also been extended for symbolic model checking [2] where a
symbolic state can represent a number of concrete states. These methods, how-
ever, are not applicable to safety verification of modern concurrent programs
(written in mainstream APIs such as POSIX). One important weakness of tra-
ditional POR is that it is not sensitive wrt. different target safety properties. In
contrast, recent works have shown that property-aware reduction can be achieved
by symbolic methods using a general-purpose SAT/SMT solver [26,15,24,7]. Ver-
ification is often encoded as a formula which is satisfiable iff there exists an
interleaving execution of the programs that violates the property. Reductions
happen inside the SAT solver through the addition of learned clauses derived by
conflict analysis [20]. This type of reduction is somewhat similar to what we call
state interpolation.

An important related work is [15], which is the first to consider enhancing
POR with property driven pruning, via the use of an SMT solver. Subsequently,
there is a follow-up work [24]. In [15], they begin with an SMT encoding of the
underlying transition system, and then enhance this encoding with a concept of
“monotonicity”. The effect of this is that traces can be grouped into equivalence
classes, and in each class, all traces which are not monotonic will be considered
as unsatisfiable by the SMT solver. The idea of course is that such traces are
in fact redundant. This work has demonstrated some promising results as most
concurrency bugs in real applications have been found to be shallow. We note
that [15] incidentally enjoyed some (weak) form of SI pruning, due to the sim-
ilarity between conflict clause learning and state interpolation. However, there
the synergy between POR and SMT is unclear. We later demonstrate in Sec. 7
that such synergy in [15] is indeed relatively poor.

There is a fundamental problem with scalability in [15], as mentioned in the
follow-up work [24], that “It will not scale to the entire concurrent program”
if we encode the whole search space as a single formula and submit it to an
SMT solver.

Let us first compare [15] with our work. Essentially, the difference is twofold.
First, in this paper, the theory for partial order reduction is property driven. In
contrast, the monotonicity reduction of [15] is not. In other words, though prop-
erty driven pruning is observed in [15], it is contributed mainly by the conflict
clauses learned, not from the monotonicity relation. We specifically exemplify the
power of property driven POR in the later sections. Second, the encoding in [15]
is processed by a black-box SMT solver. Thus important algorithmic refinements
are not possible. Some examples:

• There are different options in implementing SI. Specifically in this paper, we
employ “precondition” computations. Using a black-box solver, one has to rely
on its fixed interpolation methods.

174 D.-H. Chu and J. Jaffar

• Our approach is lazy in a sense that our solver is only required to consider
one symbolic path at a time; in [15] it is not the case. This matters most when
the program is unsafe and finding counter-examples is relatively easy (there are
many traces which violate the safety property).

• In having a (forward) symbolic execution framework, one can direct the search
process. This is useful since the order in which state interpolants are generated
does give rise to different reductions. Of course, such manipulation of the search
process is hard, if not impossible, when using a black-box solver.

In order to remedy the scalability issue of [15], the work [24] adapted it to
the setting of program testing. In particular, [24] proposed a concurrent trace
program (CTP) framework which employs both concrete execution and symbolic
solving to strike a balance between efficiency and scalability of an SMT-based
method. However, when the input program is safe, i.e., absence of bugs, [24] in
general suffers from the same scalability issue as in [15].

We remark that, the new direction of [24], in avoiding the blow-up of the
SMT solver, is in fact preceded by the work on under-approximation widening
(UW) [12]. As with CTP, UW models a subset, which will be incrementally
enlarged, of all the possible interleavings as an SMT formula and submits it to
an SMT solver. In UW the scheduling decisions are also encoded as constraints,
so that the unsatisfiable core returned by the solver can then be used to further
the search in probably a useful direction. This is the major contribution of UW.
However, an important point is that this furthering of the search is a repeated
call to the solver, this time with a weaker formula; which means that the problem
at hand is now larger, having more traces to consider. On this repeated call, the
work done for the original call is thus duplicated.

At first glance, it seems attractive and simple to encode the problem com-
pactly as a set of constraints and delegate the search process to a general-purpose
SMT solver. However, there are some fundamental disadvantages, and these arise
mainly because it is hard to exploit the semantics of the program to direct the
search inside the solver. This is in fact evidenced in the works mentioned above.

We believe, however, the foremost disadvantage of using a general-purpose
solver lies in the encoding of process interleavings. For instance, even when a
concurrent program has only one feasible execution trace, the encoding formula
being fed to the solver is still of enormous size and can easily choke up the solver.
More importantly, different from safety verification of sequential programs, the
encoding of interleavings (e.g., [15] uses the variable sel to model which pro-
cess is selected for executing) often hampers the normal derivations of succinct
conflict clauses by means of resolution in modern SMT solvers. We empirically
demonstrate the inefficiency of such approach in Sec. 7.

Another important related work is [23], developed independently4 but follows
a similar direction as in the current paper: combining POR with a standard state
interpolation algorithm, which is often referred to as the IMPACT algorithm [18].

4 Our work has been publicly available since 2012 in forms of a draft paper and a
Ph.D. thesis.

A Framework to Synergize Partial Order Reduction with State Interpolation 175

Nevertheless, it is important to note that the theoretical framework presented
in this paper subsumes [23]. While this paper proposes the novel concept of
Property Driven POR before combining it with the state interpolation algorithm,
[23] exploits directly the concept of “monotonicity” as in [15], thus their POR

part does not give rise to property driven pruning.

3 Background

We consider a concurrent system composed of a finite number of threads or
processes performing atomic operations on shared variables. Let Pi (1 ≤ i ≤ n)
be a process with the set transi of transitions. For simplicity, assume that transi
contains no cycles.

We also assume all processes have disjoint sets of transitions. Let T =
∪ni=1transi be the set of all transitions. Let Vi be the set of local variables
of process Pi, and Vshared the set of shared variables of the given concurrent
program. Let pci ∈ Vi be a special variable representing the process program
counter, and the tuple 〈pc1, pc2 · · · , pcn〉 represent the global program point.
Let SymStates be the set of all global symbolic states of the given program
where s0 ∈ SymStates is the initial state. A state s ∈ SymStates comprises two
parts: its global program point
, also denoted by pc(s), which is a tuple of local
program counters, and its symbolic constraints �s� over the program variables.
In other words, we denote a state s by 〈pc(s), �s�〉.

We consider the transitions of states induced by the program. Following [11],
we only pay attention to visible transitions. A (visible) transition t{i} pertains
to some process Pi. It transfers process Pi from control location
1 to
2. In
general, the application of t{i} is guarded by some condition cond (cond might
be just true). At some state s ∈ SymStates , when the ith component of pc(s),
namely pc(s)[i], equals
1, we say that t{i} is schedulable5 at s. And when s
satisfies the guard cond, denoted by s |= cond, we say that t{i} is enabled at
s. For each state s, let Schedulable(s) and Enabled(s) denote the set of transi-
tions which respectively are schedulable at s and enabled at s. A state s, where
Schedulable(s) = ∅, is called a terminal state.

Let s
t→ s′ denote transition step from s to s′ via transition t. This step

is possible only if t is schedulable at s. We assume that the effect of applying
an enabled transition t on a state s to arrive at state s′ is well-understood.
In our symbolic execution framework, executing a schedulable but not enabled
transition results in an infeasible state. A state s is called infeasible if �s� is
unsatisfiable. For technical reasons needed below, we shall allow schedulable
transitions emanating from an infeasible state; it follows that the destination
state must also be infeasible.

For a sequence of transitions w (i.e., w ∈ T ∗), Rng(w) denotes the set of
transitions that appear in w. Also let T
 denote the set of all transitions which
are schedulable somewhere after global program point
. We note here that the

5 This concept is not standard in traditional POR, we need it here since we are dealing
with symbolic search.

176 D.-H. Chu and J. Jaffar

schedulability of a transition at some state s only depends on the program point
component of s, namely pc(s). It does not depend on the constraint component
of s, namely �s�. Given t1, t2 ∈ T we say t1 can de-schedule t2 iff there exists a
state s such that both t1, t2 are schedulable at s but t2 is not schedulable after
the execution of t1 from s.

Following the above, s1
t1···tm=⇒ sm+1 denotes a sequence of state transitions, and

we say that sm+1 is reachable from s1. We call s1
t1→ s2

t2→ · · · tm→ sm+1 a feasible
derivation from state s1, iff ∀ 1 ≤ i ≤ m • ti is enabled at si. As mentioned
earlier, an infeasible derivation results in an infeasible state (an infeasible state
is still aware of its global program point). An infeasible state satisfies any safety
property.

We define a complete execution trace, or simply trace, ρ as a sequence of transi-

tions such that it is a derivation from s0 and s0
ρ

=⇒ sf and sf is a terminal state.
A trace is infeasible if it is an infeasible derivation from s0. If a trace is infeasible,
then at some point, it takes a transition which is schedulable but is not enabled.
From thereon, the subsequent states are infeasible states.

We say a given concurrent program is safe wrt. a safety property ψ if ∀s ∈
SymStates • if s is reachable from the initial state s0 then s is safe, that is,
s |= ψ. A trace ρ is safe wrt. ψ, denoted as ρ |= ψ, if all its states satisfy ψ.

Partial Order Reduction (POR) vs. State-Based Interpolation (SI)

We assume the readers are familiar with the traditional concept of POR. Re-
garding state-based interpolation, we follow the approach of [14,18]. Here our
symbolic execution is depicted as a tree rooted at the initial state s0 and for
each state si therein, the descendants are just the states obtainable by extend-
ing si with a feasible transition.

Definition 1 (Safe Root). Given a transition system and an initial state s0,
let s be a feasible state reachable from s0. We say s is a safe root wrt. a safety
property ψ, denoted

�
ψ(s), iff all states s′ reachable from s are safe wrt. ψ.

Definition 2 (State Coverage). Given a transition system and an initial state
s0 and si and sj which are two symbolic states such that (1) si and sj are
reachable from s0 and (2) si and sj share the same program point
, we say si
covers sj wrt. a safety property ψ, denoted by si �ψ sj, iff

�
ψ(si) implies�

ψ(sj).

The impact of state coverage relation is that if (1) si covers sj , and (2) the
subtree rooted at si has been traversed and proved to be safe, then the traversal
of subtree rooted at sj can be avoided. In other words, we gain performance by
pruning the subtree at sj . Obviously, if si naturally subsumes sj , i.e., �sj� |= �si�
or simply sj |= si, then state coverage is trivially achieved. In practice, however,
this scenario does not happen often enough.

Definition 3 (Sound State Interpolant). Given a transition system and an
initial state s0, given a safety property ψ and program point
, we say a formula Ψ

A Framework to Synergize Partial Order Reduction with State Interpolation 177

is a sound (state) interpolant for
, denoted by SI(
, ψ), if for all states s ≡ 〈
, ·〉
reachable from s0, s |= Ψ implies that s is a safe root.

What we want now is to generate a formula Ψ (called interpolant), which
still preserves the safety of all states reachable from si, but is weaker (more
general) than the original formula associated to the state si. In other words,
we should have si |= SI(
, ψ). We assume that this condition is always ensured
by any implementation of state-based interpolation. The main purpose of using
Ψ rather than the original formula associated to the symbolic state si is to
increase the likelihood of subsumption. That is, the likelihood of having sj |= Ψ
is expected to be much higher than the likelihood of having sj |= si.

In fact, the perfect interpolant should be the weakest precondition [9] com-
puted for program point
 wrt. the transition system and the safety prop-
erty ψ. We denote this weakest precondition as wp(
, ψ). Any subsequent state
sj ≡ 〈
, ·〉 which has sj stronger than this weakest precondition can be pruned.
However, in general, the weakest precondition is too computationally demand-
ing. An interpolant for the state si is indeed a formula which approximates
the weakest precondition at program point
 wrt. the transition system, i.e.,
Ψ ≡ SI(
, ψ) ≡ Intp(si,wp(
, ψ)). A good interpolant is one which closely ap-
proximates the weakest precondition and can be computed efficiently.

The symbolic execution of a program can be augmented by annotating each
program point with its corresponding interpolants such that the interpolants
represent the sufficient conditions to preserve the unreachability of any unsafe
state. Then, the basic notion of pruning with state interpolant can be defined as
follows.

Definition 4 (Pruning with Interpolant). Given a symbolic state s ≡ 〈
, ·〉
such that
 is annotated with some interpolant Ψ , we say that s is pruned by the
interpolant Ψ if s implies Ψ (i.e., s |= Ψ).

Now let us discuss the the effectiveness of POR and SI in pruning the search
space with an example. For simplicity, we purposely make the example concrete,
i.e., states are indeed concrete states.

EXAMPLE 1 (Closely coupled processes): See Fig. 1. Program points are shown in
angle brackets. Fig. 1(a) shows the control flow graphs of two processes. Process
1 increments x twice whereas process 2 doubles x twice. The transitions associ-
ated with such actions and the safety property are depicted in the figure. POR

requires a full search tree while Fig. 1(b) shows the search space explored by SI.
Interpolants are in curly brackets. Bold circles denote pruned/subsumed states.

Let us first attempt this example using POR. It is clear that t
{1}
1 is dependent

with both t
{2}
1 and t

{2}
2 . Also t

{1}
2 is dependent with both t

{2}
1 and t

{2}
2 . Indeed,

each of all the 6 execution traces in the search tree ends at a different concrete
state. As classic POR methods use the concept of trace equivalence for pruning,
no interleaving is avoided: those methods will enumerate the full search tree of
19 states (for space reasons, we omit it here).

178 D.-H. Chu and J. Jaffar

t
{2}
1 : x = x ∗ 2

Process 2

〈0〉

〈1〉

〈2〉

t
{2}
2 : x = x ∗ 2

〈0〉

〈1〉

t
{1}
1 : x ++

Process 1

〈2〉

t
{1}
2 : x ++

Shared variables: x

Initially: x = 0

Safety: ψ ≡ x ≤ 8

(a) Two Closely Coupled Processes

t
{1}
1 t

{2}
1

t
{1}
2 t

{2}
1 t

{1}
1 t

{2}
2

t
{2}
1 t

{1}
2 t

{2}
2 t

{1}
2

t
{2}
2 t

{1}
2

〈0, 0〉

〈1, 0〉 〈0, 1〉

〈2, 0〉 〈1, 1〉 〈1, 1〉 〈0, 2〉

〈2, 1〉

〈2, 2〉 〈2, 2〉

〈1, 2〉〈2, 1〉 〈1, 2〉

x=0{x ≤ 0}

x=1 x=0{x ≤ 1} {x ≤ 2}

{x ≤ 2}

x=2

x=2{x ≤ 3}
x=0

{x ≤ 6}

{x ≤ 4} x=3 x=4
{x ≤ 7} x=1

{x ≤ 8}
x=5

x=4

x=8

x=1

(b) Search Space by SI

Fig. 1. Application of SI on 2 Closely Coupled Processes

Revisit the example using SI, where we use the weakest preconditions [9] as
the state interpolants: the interpolant for a state is computed as the weakest
precondition to ensure that the state itself as well as all of its descendants are
safe (see Fig. 1(b)). We in fact achieve the best case scenario with it: whenever we
come to a program point which has been examined before, subsumption happens.
The number of non-subsumed states is still of order O(k2) (where k = 3 in this
particular example), assuming that we generalize the number of local program
points for each process to O(k). Fig. 1(b) shows 9 non-subsumed states and 4
subsumed states.

In summary, the above example shows that SI might outperform POR when
the component processes are closely coupled. However, one can easily devise an
example where the component processes do not interfere with each other at all.
Under such condition POR will require only one trace to prove safety, while SI is
still (lower) bounded by the total number of global program points. In this paper,
we contribute by proposing a framework to combine POR and SI synergistically.

4 Property Driven POR (PDPOR)

“Combining classic POR methods with symbolic algorithms has been proven to
be difficult” [15]. One fundamental reason is that the concepts of (Mazurkiewicz)
equivalence and transition independence, which drive most practical POR imple-
mentations, rely on the equivalence of two concrete states. However, in symbolic
traversal, we rarely encounter two equivalent symbolic states.

We now make the following definition which is crucial for the concept of
pruning and will be used throughout this paper.

Definition 5 (Trace Coverage). Let ρ1, ρ2 be two traces of a concurrent pro-
gram. We say ρ1 covers ρ2 wrt. a safety property ψ, denoted as ρ1 �ψ ρ2, iff
ρ1 |= ψ → ρ2 |= ψ.

A Framework to Synergize Partial Order Reduction with State Interpolation 179

Instead of using the concept of trace equivalence, from now on, we only make
use of the concept of trace coverage. The concept of trace coverage is definitely
weaker than the concept of Mazurkiewicz equivalence. In fact, if ρ1 and ρ2 are
(Mazurkiewicz) equivalent then ∀ψ • ρ1 �ψ ρ2 ∧ ρ2 �ψ ρ1. Now we will define
a new and weaker concept which therefore generalizes the concept of transition
independence.

Definition 6 (Semi-commutative after a State). For a given concurrent

program, a safety property ψ, and a derivation s0
θ

=⇒ s, for all t1, t2 ∈ T
which cannot de-schedule each other, we say t1 semi-commutes with t2 after
state s wrt. �ψ, denoted by 〈s, t1 ↑ t2, ψ〉, iff for all w1, w2 ∈ T ∗ such that
θw1t1t2w2 and θw1t2t1w2 are execution traces of the program, then we have
θw1t1t2w2 �ψ θw1t2t1w2.

From the definition, Rng(θ), Rng(w1), and Rng(w2) are pairwise disjoint.
Importantly, if s is at program point
, we haveRng(w1)∪Rng(w2) ⊆ T
\{t1, t2}.
We observe that wrt. some ψ, if all important events, those have to do with
the safety of the system, have already happened in the prefix θ, the “semi-
commutative” relation is trivially satisfied. On the other hand, the remaining
transitions might still interfere with each other (but not the safety), and do not
satisfy the independent relation.

The concept of “semi-commutative” is obviously weaker than the concept of
independence. If t1 and t2 are independent, it follows that ∀ψ ∀s•〈s, t1 ↑ t2, ψ〉∧
〈s, t2 ↑ t1, ψ〉. Also note that, in contrast to the relation of transition indepen-
dence, the “semi-commutative” relation is not symmetric.

We now introduce a new definition for persistent set.

Definition 7 (Persistent Set of a State). A set T ⊆ T of transitions schedu-
lable in a state s ∈ SymStates is persistent in s wrt. a property ψ iff, for all

derivations s
t1→ s1

t2→ s2 . . .
tm−1→ sm−1

tm→ sm including only transitions ti ∈ T
and ti �∈ T, 1 ≤ i ≤ m, each transition in T semi-commutes with ti after s wrt.
�ψ.

Safety property ψ and current state s
〈1〉 T := ∅
〈2〉 Add an enabled transition t into T
〈3〉 foreach remaining schedulable transition ti
〈4〉 if ¬(∀ tpj ∈ T • 〈s, tpj ↑ ti, ψ〉)
〈5〉 Add ti into T

Fig. 2. Computing a Persistent Set of a State

For each state, computing a
persistent set from the “semi-
commutative” relation is similar
to computing the classical per-
sistent set under the transition
independence relation. The algo-
rithms for this task can be easily
adapted from the algorithms pre-
sented in [11]. For convenience, we show one of such possibilities in Fig. 2.

We note here that the computation of the persistent set assumes that the semi-
commutative relation is given. As in traditional algorithms, the quality (i.e. the
size) of the returned persistent set is highly dependent on the first transition t
to be added and the order in which the remaining transitions ti are considered.
This is, however, not the topic of the current paper.

180 D.-H. Chu and J. Jaffar

With the new definition of persistent set, we now can proceed with the nor-
mal selective search as described in classic POR techniques. In the algorithm
presented in Fig. 3, we perform depth first search (DFS), and only accommo-
date safety verification (invariant property ψ).

Theorem 1. The selective search algorithm in Fig. 3 is sound6. ��

Safety property ψ and initial state s0
〈1〉 Initially : Explore(s0)
function Explore(s)
〈2〉 if s 	|= ψ Report Error and TERMINATE
〈3〉 T := Persistent Set(s)
〈4〉 foreach enabled transition t in T do

〈5〉 s
t−−→ s′ /* Execute t */

〈6〉 Explore(s′)
end function

Fig. 3. New Selective Search Algorithm

In preparing for POR and SI to
work together, we now further mod-
ify the concept of persistent set so
that it applies for a set of states
sharing the same program point. We
remark that the previous definitions
apply only for a specific state. The
key intuition is to attach a pre-
condition φ to the program point
of interest, indicating when semi-
commutativity happens.

Definition 8 (Semi-commutative after a Program Point). For a given
concurrent program, a safety property ψ, and t1, t2 ∈ T , we say t1 semi-commutes
with t2 after program point
 wrt. �ψ and φ, denoted as 〈
, φ, t1 ↑ t2, ψ〉, iff
for all state s ≡ 〈
, ·〉 reachable from the initial state s0, if s |= φ then t1 semi-
commutes with t2 after state s wrt. �ψ.

Definition 9 (Persistent Set of a Program Point). A set T ⊆ T of transi-
tions schedulable at program point
 is persistent at
 under a trace interpolant
Ψ wrt. a property ψ iff, for all state s ≡ 〈
, ·〉 reachable from the initial state s0,

if s |= Ψ then for all derivations s
t1→ s1

t2→ s2 . . .
tm−1→ sm−1

tm→ sm including only
transitions ti ∈ T and ti �∈ T, 1 ≤ i ≤ m, each transition in T semi-commutes
with ti after state s wrt. �ψ.

Assume that T = {tp1, tp2, · · · tpk}. The trace interpolant Ψ can now be com-
puted as Ψ =

∧
φji for 1 ≤ j ≤ k, 1 ≤ i ≤ m such that 〈
, φji, tpj ↑ ti, ψ〉.

For each program point, it is possible to have different persistent sets asso-
ciated with different interpolants. In general, a state which satisfies a stronger
interpolant will have a smaller persistent set, therefore, it enjoys more pruning.

5 Synergy of PDPOR and SI

We now show our combined framework. We assume for each program point,
a persistent set and its associated interpolant are computed statically, i.e., by
separate analyses. In other words, when we are at a program point, we can right
away make use of the information about its persistent set.

The algorithm is in Fig. 4. The function Explore has input s and assumes the
safety property at hand is ψ. It naturally performs a depth first search of the
state space.

6 Proof outline is in [6].

A Framework to Synergize Partial Order Reduction with State Interpolation 181

Assume safety property ψ and initial state s0
〈1〉 Initially : Explore(s0)

function Explore(s)
Let s be 〈	, ·〉

〈2〉 if (memoed(s, Ψ)) return Ψ
〈3〉 if (s 	|= ψ) Report Error and TERMINATE

〈4〉 Ψ := ψ
〈5〉 〈T, Ψ trace〉 := Persistent Set()
〈6〉 if (s |= Ψ trace)
〈7〉 Ts := T
〈8〉 Ψ := Ψ ∧ Ψ trace

〈9〉 else Ts := Schedulable(s)
〈10〉 foreach t in (Ts \ Enabled(s)) do
〈11〉 Ψ := Ψ ∧ pre(t, false)
〈12〉 foreach t in (Ts ∩ Enabled(s)) do

〈13〉 s
t−−→ s′ /* Execute t */

〈14〉 Ψ
′
:= Explore(s′)

〈15〉 Ψ := Ψ ∧ pre(t, Ψ
′
)

〈16〉 memo and return (Ψ)
end function

Fig. 4. A Framework for POR and SI (DFS)

Two Base Cases. The function
Explore handles two base cases.
One is when the current state
is subsumed by some computed
(and memoed) interpolant Ψ . No
further exploration is needed, and
Ψ is returned as the interpolant
(line 2). The second base case is
when the current state is found to
be unsafe (line 3).

Combining Interpolants. We
make use of the (static) persistent
set T computed for the current
program point. We comment fur-
ther on this in the next section.

The set of transitions to be con-
sidered is denoted by Ts. When
the current state implies the trace
interpolant Ψ trace associated with
T , we need to consider only those
transitions in T . Otherwise, we
need to consider all the schedulable transitions. Note that when the persistent
set T is employed, the interpolant Ψ trace must contribute to the combined in-
terpolant of the current state (line 8). Disabled transitions at the current state
will strengthen the interpolant as in line 11. Finally, we recursively follow those
transitions which are enabled at the current state. The interpolant of each child
state contributes to the interpolant of the current state as in line 15. In our
framework, interpolants are propagated back using the precondition operation
pre, where pre(t, φ) denotes a safe approximation of the weakest precondition
wrt. the transition t and the postcondition φ [9].

Theorem 2. The algorithm in Fig. 4 is sound7. ��

6 Implementation of PDPOR

We now elaborate on the remaining task: how to estimate the semi-commutative
relation, thus deriving the (static) persistent set at a program point. Similar to
the formalism of traditional POR, our formalism is of paramount importance
for the semantic use as well as to construct the formal proof of correctness. In
practice, however, we have to come up with sufficient conditions to efficiently im-
plement the concepts. In this paper, we estimate the semi-commutative relation
in two steps:

1. We first employ any traditional POR method and first estimate the “semi-
commutative” relation as the traditional independence relation (then the

7 Proof outline is in [6].

182 D.-H. Chu and J. Jaffar

corresponding condition φ is just true). This is possible because the pro-
posed concepts are strictly weaker than the corresponding concepts used in
traditional POR methods.

2. We then identify and exploit a number of patterns under which we can stat-
ically derive and prove the semi-commutative relation between transitions.
In fact, these simple patterns suffice to deal with a number of important
real-life applications.

In the rest of this section, we outline three common classes of problems, from
which the semi-commutative relation between transitions can be easily identified
and proved, i.e., our step 2 becomes applicable.

Resource Usage of Concurrent Programs. Programs make use of limited
resource (such as time, memory, bandwidth). Validation of resource usage in
sequential setting is already a hard problem. It is obviously more challenging in
the setting of concurrent programs due to process interleavings.

Here we model this class of problems by using a resource variable r. Initially,
r is zero. Each process can increment or decrement variable r by some concrete
value (e.g., memory allocation or deallocation respectively). A process can also
double the value r (e.g., the whole memory is duplicated). However, the resource
variable r cannot be used in the guard condition of any transition, i.e., we cannot
model the behavior of a typical garbage collector. The property to be verified is
that, “at all times, r is (upper-) bounded by some constant”.

Proposition 1. Let r be a resource variable of a concurrent program, and as-
sume the safety property at hand is ψ ≡ r ≤ C, where C is a constant. For all
transitions (assignment operations only) t1 : r = r+c1, t2 : r = r∗2, t3 : r = r−c2
where c1, c2 > 0, we have for all program points
:
〈
, true, t1 ↑ t2, ψ〉 ∧ 〈
, true, t1 ↑ t3, ψ〉 ∧ 〈
, true, t2 ↑ t3, ψ〉 ��

Informally, other than common mathematical facts such as additions can com-
mute and so do multiplications and subtractions, we also deduce that additions
can semi-commute with both multiplications and subtractions while multiplica-
tions can semi-commute with subtractions. This Proposition can be proved by
using basic laws of algebra.

EXAMPLE 2 : Let us refer back to the example of two closely coupled processes
introduced in Sec. 3, but now under the assumption that x is the resource variable
of interest. Using the semi-commutative relation derived from Proposition 1, we
need to explore only one complete trace to prove this safety.

We recall that, in contrast, POR (and DPOR)-only methods will enumerate the
full execution tree which contains 19 states and 6 complete execution traces. Any
technique which employs only the notion of Mazurkiewicz trace equivalence for
pruning will have to consider all 6 complete traces (due to 6 different terminal
states). SI alone can reduce the search space in this example, and requires to
explore only 9 states and 4 subsumed states (as in Sec. 3).

Detection of Race Conditions. [25] proposed a property driven pruning al-
gorithm to detect race conditions in multithreaded programs. This work has
achieved more reduction in comparison with DPOR. The key observation is that,

A Framework to Synergize Partial Order Reduction with State Interpolation 183

at a certain location (program point)
, if their conservative “lockset analysis”
shows that a search subspace is race-free, the subspace can be pruned away. As we
know, DPOR relies solely on the independence relation to prune redundant inter-
leavings (if t1, t2 are independent, there is no need to flip their execution order).
In [25], however, even when t1, t2 are dependent, we may skip the corresponding
search space if flipping the order of t1, t2 does not affect the reachability of any
race condition. In other words, [25] is indeed a (conservative) realization of our
PDPOR, specifically targeted for detection of race conditions. Their mechanism
to capture such scenarios is by introducing a trace-based lockset analysis.

Ensuring Optimistic Concurrency. In the implementations of many concur-
rent protocols, optimistic concurrency [21], i.e., at least one process commits,
is usually desirable. This can be modeled by introducing a flag variable which
will be set when some process commits. The flag variable once set can not be
unset. It is then easy to see that for all program point
 and transitions t1, t2,
we have 〈
, flag = 1, t1 ↑ t2, ψ〉. Though simple, this observation will bring us
more reduction compared to traditional POR methods.

7 Experiments

This section conveys two key messages. First, when trace-based and state-based
methods are not effective individually, our combined framework still offers sig-
nificant reduction. Second, property driven POR can be very effective, and appli-
cable not only to academic programs, but also to programs used as benchmarks
in the state-of-the-art.

We use a 3.2 GHz Intel processor and 2GB memory running Linux. Timeout
is set at 10 minutes. In the tables, cells with ‘-’ indicate timeout. We compare the
performance of Partial Order Reduction alone (POR), State Interpolation alone
(SI), the synergy of Partial Order Reduction and State Interpolation (POR+SI),
i.e., the semi-commutative relation is estimated using only step 1 presented in
Sec. 6, and when applicable, the synergy of Property Driven Partial Order Re-
duction and State Interpolation (PDPOR+SI), i.e., the semi-commutative relation
is estimated using both steps presented in Sec. 6. For the POR component, we
use the implementation from [3].

Table 1 starts with parameterized versions of the producer/consumer example
because its basic structure is extremely common. There are 2 ∗N producers and
1 consumer. Each producer will do its own non-interfered computation first,
modeled by a transition which does not interfere with other processes. Then
these producers will modify the shared variable x as follows: each of the first N
producers increments x, while the other N producers double the value of x. On
the other hand, the consumer consumes the value of x. The safety property is
that the consumed value is no more than N ∗ 2N .

Table 1 clearly demonstrates the synergy benefits of POR and SI. POR+SI

significantly outperforms both POR and SI. Note that this example can easily
be translated to the resource usage problem, where our PDPOR requires only a
single trace (and less than 0.01 second) in order to prove safety.

184 D.-H. Chu and J. Jaffar

Table 1. Synergy of POR and SI

POR SI POR+SI
Problem States T(s) States T(s) States T(s)
p/c-2 449 0.03 514 0.17 85 0.03
p/c-3 18745 2.73 6562 2.43 455 0.19
p/c-4 986418 586.00 76546 37.53 2313 1.07
p/c-5 − − − − 11275 5.76
p/c-6 − − − − 53261 34.50
p/c-7 − − − − 245775 315.42

din-2a 22 0.01 21 0.01 21 0.01
din-3a 646 0.05 153 0.03 125 0.02
din-4a 155037 19.48 1001 0.17 647 0.09
din-5a − − 6113 1.01 4313 0.54
din-6a − − 35713 22.54 24201 4.16
din-7a − − 202369 215.63 133161 59.69

bak-2 48 0.03 38 0.03 31 0.02
bak-3 1003 1.85 264 0.42 227 0.35
bak-4 27582 145.78 1924 5.88 1678 4.95
bak-5 − − 14235 73.69 12722 63.60

We next use the parame-
terized version of the dining
philosophers. We chose this
for two reasons. First, this is
a classic example often used
in concurrent algorithm de-
sign to illustrate synchro-
nization issues and tech-
niques for resolving them.
Second, previous work [15]
has used this to demon-
strate benefits from combin-
ing POR and SMT.

The first safety property
used in [15], “it is not that
all philosophers can eat si-
multaneously”, is somewhat
trivial. Therefore, here we
verify a tight property, which is (a): “no more than half the philosophers can
eat simultaneously”. To demonstrate the power of symbolic execution, we verify
this property without knowing the initial configurations of all the forks. Table 1,
again, demonstrates the significant improvements of POR+SI over POR alone and
SI alone. We note that the performance of our POR+SI algorithm is about 3 times
faster than [15]8.

We additionally considered a second safety property as in [15], namely (b): “it
is possible to reach a state in which all philosophers have eaten at least once”.
Our symbolic execution framework requires only a single trace (and less than
0.01 second) to prove this property in all instances, whereas [15] requires even
more time compared to proving property (a). This illustrates the scalability issue
of [15], which is representative for other techniques employing general-purpose
SMT solver for symbolic pruning.

We also perform experiments on the “Bakery” algorithm. Due to existence
of infinite domain variables, model checking hardly can handle this case. Here
we remark that in symbolic methods, loop handling is often considered as an
orthogonal issue. Programs with statically bounded loops can be easily unrolled
into equivalent loop-free programs. For unbounded loops, either loop invariants
are provided or the employment of some invariant discovery routines, e.g., as in
[5], is necessary. In order for our algorithm to work here, we make use of the
standard loop invariant for this example.

To further demonstrate the power our synergy framework over [15] as well
as the power of our property driven POR, we experiment next on the Sum-
of-ids program. Here, each process (of N processes) has one unique id and will

8 [15] is not publicly available. Therefore, it is not possible for us to make more com-
prehensive comparisons.

A Framework to Synergize Partial Order Reduction with State Interpolation 185

increment a shared variable sum by this id. We prove that in the end this variable
will be incremented by the sum of all the ids.

Table 2. Comparison with [15]

[15] w. Z3 POR+SI PDPOR+SI
T(s) #C #D T(s) States T(s) States T(s)

sum-6 1608 1795 0.08 193 0.05 7 0.01
sum-8 54512 59267 10.88 1025 0.27 9 0.01
sum-10 − − − 5121 1.52 11 0.01
sum-12 − − − 24577 8.80 13 0.01
sum-14 − − − 114689 67.7 15 0.01

See Table 2, where we
experiment with Z3 [8] (ver-
sion 4.1.2) using the encod-
ings presented in [15]. #C
denotes the number of con-
flicts while #D denotes the
number of decisions made by
Z3. We can see that our syn-
ergy framework scale much
better than [15] with Z3. Also, this example can also be translated to resource
usage problem, our use of property-driven POR again requires one single trace
to prove safety.

Table 3. Experiments on [7]’s Programs

[7] SI PDPOR+SI
Problem C T(s) States T(s) States T(s)
micro 2 17 1095 20201 10.88 201 0.04
stack 12 225 529 0.26 529 0.26
circular buffer ∞ 477 29 0.03 29 0.03
stateful20 10 95 1681 1.13 41 0.01

Finally, to benchmark our
framework with SMT-based
methods, we select four safe pro-
grams from [7] where the experi-
mented methods did not perform
well. Those programs are micro 2,
stack, circular buffer, and state-
ful20. We note that safe programs
allow fairer comparison between different approaches since to verify them we
have to cover the whole search space. Table 3 shows the running time of SI alone
and of the combined framework. For convenience, we also tabulate the best run-
ning time reported in [7] and C is the context switch bound used. We assume no
context switch bound, hence the corresponding value in our framework is ∞.

We can see that even our SI alone significantly outperforms the techniques
in [7]. We believe it is due to the inefficient encoding of process interleavings
(mentioned in Sec. 2) as well as the following reasons. First, our method is lazy,
which means that only a path is considered at a time: [7] itself demonstrates
partially the usefulness of this. Second, but importantly, we are eager in discov-
ering infeasible paths. The program circular buffer, which has only one feasible
complete execution trace, can be efficiently handled by our framework, but not
SMT. This is one important advantage of our symbolic execution framework over
SMT-based methods, as discussed in [18].

It is important to note that, PDPOR significantly improves the performance
of SI wrt. programs micro 2 and stateful20. This further demonstrates the appli-
cability of our proposed framework.

8 Conclusion

We present a verification framework which synergistically combines trace-based
reduction techniques with the recently established notion of state interpolant.
One key contribution is the new concept of property-driven POR which serves to
reduce more interleavings than previously possible.

186 D.-H. Chu and J. Jaffar

References

1. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal Dynamic Partial Order
Reduction. In: POPL (2014)

2. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-
Order Reduction in Symbolic State Space Exploration. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997)

3. Bokor, P., Kinder, J., Serafini, M., Suri, N.: Supporting Domain-specific State
Space Reductions through Local Partial-Order Reduction. In: ASE (2011)

4. Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C.S., Sen, K., Tillmann, N.,
Visser, W.: Symbolic Execution for Software Testing in Practice: Preliminary As-
sessment. In: ICSE (2011)

5. Chu, D.-H., Jaffar, J.: A Complete Method for Symmetry Reduction in Safety
Verification. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 616–633. Springer, Heidelberg (2012)

6. Chu, D.H., Jaffar, J.: A Framework to Synergize Partial Order Reduction with
State Interpolation. Technical Report (2014)

7. Cordeiro, L., Fischer, B.: Verifying Multi-threaded Software Using SMT-based
Context-Bounded Model Checking. In: ICSE (2011)

8. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation of
Programs. Commun. ACM (1975)

10. Flanagan, C., Godefroid, P.: Dynamic Partial-Order Reduction for Model Checking
Software. In: POPL (2005)

11. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag New York, Inc.
(1996)

12. Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided
Underapproximation-widening for Multi-process Systems. In: POPL (2005)

13. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction.
In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112.
Springer, Heidelberg (2007)

14. Jaffar, J., Santosa, A.E., Voicu, R.: An interpolation method for CLP traversal.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 454–469. Springer, Heidelberg
(2009)

15. Kahlon, V., Wang, C., Gupta, A.: Monotonic Partial Order Reduction: An Optimal
Symbolic Partial Order Reduction Technique. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 398–413. Springer, Heidelberg (2009)

16. King, J.C.: Symbolic Execution and Program Testing. Com. ACM (1976)
17. Mazurkiewicz, A.W.: Trace Theory. In: Brauer, W., Reisig, W., Rozenberg, G.

(eds.) Advances in Petri Nets. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg
(1986)

18. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer,
Heidelberg (2010)

19. Peled, D.: All from One, One for All: On Model Checking Using Representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Hei-
delberg (1993)

20. Silva, J.P.M., Sakallah, K.A.: GRASP–A New Search Algorithm for Satisfiability.
In: ICCAD (1996)

21. Sulzmann, M., Chu, D.H.: A Rule-based Specification of Software Transactional
Memory. In: LOPSTR pre-proceedings (2008)

A Framework to Synergize Partial Order Reduction with State Interpolation 187

22. Valmari, A.: Stubborn Sets for Reduced State Space Generation. In: Rozenberg,
G. (ed.) APN 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

23. Wachter, B., Kroening, D., Ouaknine, J.: Verifying Multi-threaded Software with
IMPACT. In: FMCAD (2013)

24. Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolic Pruning of Concurrent
Program Executions. In: ESEC/FSE (2009)

25. Wang, C., Yang, Y., Gupta, A., Gopalakrishnan, G.C.: Dynamic Model Checking
with Property Driven Pruning to Detect Race Condition. In: Cha, S(S.), Choi,
J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp.
126–140. Springer, Heidelberg (2008)

26. Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382–396.
Springer, Heidelberg (2008)

27. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Efficient Stateful Dynamic
Partial Order Reduction. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS,
vol. 5156, pp. 288–305. Springer, Heidelberg (2008)

Reduction of Resolution Refutations

and Interpolants via Subsumption

Roderick Bloem1,	, Sharad Malik2,		, Matthias Schlaipfer3,	,
and Georg Weissenbacher3,	 	 	

1 Graz University of Technology, Austria
2 Princeton University, NJ, USA

3 Vienna University of Technology, Austria

Abstract. Propositional resolution proofs and interpolants derived from
them are widely used in automated verification and circuit synthesis.
There is a broad consensus that “small is beautiful”— small proofs and in-
terpolants lead to concise abstractions in verification and compact
designs in synthesis. Contemporary proof reduction techniques eithermin-
imise the proof during construction, or perform a post-hoc transforma-
tion of a given resolution proof. We focus on the latter class and present a
subsumption-based proof reduction algorithm that extends existing single-
pass analyses and relies on ameet-over-all-paths analysis to identify redun-
dant resolution steps and clauses. We show that smaller refutations do not
necessarily entail smaller interpolants, and use labelled interpolation sys-
tems to generalise our reduction approach to interpolants. Experimental
results support the theoretical claims.

1 Introduction

Resolution proofs and interpolants are an integral part of many verification-
related techniques such as abstraction [24] and model checking [17], vacuity
detection [29], synthesis [18,20], and patch generation [32]. These techniques
take advantage of the fact that refutations and interpolants direct the focus
to the core of the problem instance (literally and metaphorically). In practice,
small refutations provide concise abstractions in model checking [24], and small
interpolants enable precise refinement and compact designs in synthesis [20].

Consequently, proof reduction as well as the minimisation of unsatisfiable cores
has received ample attention.We roughly group the resulting reduction approaches
into two categories: techniques that minimise the proof during construction, and
techniques that rely on a post-hoc proof transformation.Algorithms for the extrac-
tion of minimal unsatisfiable subsets (such as [25,4]) typically fall into the former

� Supported by the Austrian Science Fund (FWF) through grants S11403-N23
(National Research Network RiSE) andW1255-N23 (LogiCS doctoral programme).

�� Funded by C-FAR, one of six centers supported by the STARnet phase of the
Focus Center Research Program (FCRP), a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

� � � Funded by grant VRG11-005 of the Vienna Science and Technology Fund (WWTF).

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 188–203, 2014.
c© Springer International Publishing Switzerland 2014

Reduction of Resolution Refutations and Interpolants via Subsumption 189

category and rely on iterative calls to a SAT solver. Representatives of the latter
class reduce the proof size by identifying and eliminating redundancies
(e.g. [3,16,28,7]). The focus of these reduction algorithms is not on minimality but
scalability, which is why they avoid additional SAT calls. Naturally, there are also
hybrid approaches: Gershman et al. [14], for instance, rely on a solver to detect
redundancies in a given proof.

The focus of our work is on post-hoc proof transformations. The motivation
for this decision is two-fold. Firstly, while small proofs and interpolants are de-
sirable, minimality is often not necessary and comes at the cost of scalability [3].
Secondly, it is possible to harvest information from a complete proof that is
not available during proof construction. This idea is very explicit in [16], where
a meet-over-all-paths analysis identifies redundant literals and resolution steps
(discussed in §3.1). Other authors [3,28] deploy a richer set of transformation
rules (including pivot and unit recycling), but fail to exploit the information read-
ily available in the proof. In §3, we cast pivot and unit recycling [3,16,13,28] more
generally as subsumption and generalise them in a single concise transformation
rule (Theorem 1). Subsumption has been successfully deployed during proof con-
struction (in [33], for instance). We use subsumption as a post-processing step
and carry forward the idea of [16] to use proof analysis to identify redundancies
that were not eliminated during proof construction. proof construction (in [33],
for instance, and implicitly in [15]). We use subsumption as a post-processing
step and carry forward the idea of [16] to use proof analysis to identify redun-
dancies not eliminated during proof construction.

Interpolation is often an after-thought to proof reduction. It is common prac-
tice to extract interpolants from a reduced proof [27] and to subsequently com-
pact the result by removing structural redundancy [8]. We show in §4 that pivot
and unit recycling can actually increase the number of variables in an inter-
polant. In §4, we lift the results from §3 to labelled clauses in the framework of
labelled interpolation systems [12], thus avoiding transformations that introduce
nonessential [10] (or peripheral [29]) variables.

Contributions. In §3, we present a single concise transformation rule (Theorem 1)
which, based on subsumption, generalises existing proof reduction techniques
[3,13,16]. We show in §4 that careless transformations may increase interpolant
size, and lift the results from §3 to labelled clauses [12] to rule out detrimental re-
ductions (Theorem2). §5 covers our implementation and provides an experimental
evaluation that demonstrates a small but consistent improvement over [13,16].

2 Notation and Preliminaries

This section introduces our notation and restates some prior results on proof
restructuring [11] in §2.1, and labelled interpolation systems [12,10] in §2.2.

2.1 Formulae, Proofs, and Transformations

Propositional Formulae. We work in the standard setting of propositional logic.
Formulas are defined over a setX of propositional variables, the logical constants

190 R. Bloem et al.

T and F (denoting true and false, respectively), and the standard logical connec-
tives∧,∨,⇒, and¬ (denoting conjunction, disjunction, implication, and negation,
respectively).

LitX = {x, x |x ∈ X} is the set of literals over X , where x is short for ¬x.
We write var(t) for the variable occurring in the literal t ∈ LitX , and Var(F)
to denote the variables occurring in a formula F . A clause C is a set of literals
interpreted as a disjunction. A clause C subsumes a clause D if C ⊆ D. The
empty clause � contains no literals and is interpreted as F. The disjunction of
two clauses C and D is their union, denoted C∨D, which is further simplified to
C ∨ t if D is the singleton {t}. A propositional formula in Conjunctive Normal
Form (CNF) is a conjunction of clauses, also represented as a set of clauses.

Resolution Proofs. The resolution rule is an inference rule deriving a new clause
from two clauses containing complementary literals. The clauses C∨x and D∨x
are the antecedents, x is the pivot, and C ∨ D is the resolvent. Res(C,D, x)
denotes the resolvent of C and D with the pivot x.

Definition 1 (Resolution Proof, Refutation). A resolution proof R is a
directed acyclic graph (VR, ER, pivR,
R, sR), where VR is a set of vertices, ER

is a set of edges, pivR is a function mapping vertices to pivot variables,
R
is a function mapping vertices to formulae, and sR ∈ VR is a designated sink
vertex. An initial vertex has in-degree 0. All other vertices are internal and
have in-degree 2. The sink sR has out-degree 0. For every internal vertex v with
(v1, v), (v2, v) ∈ ER, we have
R(v) = Res(
R(v1),
R(v2), pivR(v)). A resolution
proof R is a resolution refutation if
R(sR) = �.

The subscripts above are dropped if clear from the context. A vertex vi ∈ R
is a parent of vj if (vi, vj) ∈ ER. Let v+ and v− be the parents of v such that
piv (v) ∈
(v+) and ¬piv (v) ∈
(v−). A vertex vi is an ancestor of vj if there is
a path from vi to vj . A vertex vi dominates vj if all paths from vj to sR visit
vi. The substitution R[v1 ← v2] replaces the sub-proof rooted at v1 with the
sub-proof rooted at v2:

Definition 2. Let R = (VR, ER, pivR,
R, sR), and let v1, v2 ∈ VR (v1 �= v2)
such that v1 is not an ancestor of v2. The substitution of v1 with v2 in R, denoted
by R[v1 ← v2], is the directed acyclic graph G = (VG, EG, pivG,
G, sG), where
VG = VR \ {v1}, EG = (ER \ {(u, v)|u = v1 ∨ v = v1}) ∪ {(v2, v)|(v1, v) ∈ ER},

G(v) =
R(v) and pivG(v) = pivR(v) for all v �= v1, and sG is sR if v1 �= sR
and v2 otherwise.

The transformation R[v1 ← v2] does not necessarily yield a valid resolution
proof. The transformation RestoreRes(G, v) as defined below restores the validity
of the single resolution step at vertex v.

Definition 3. Let G be the directed acyclic graph (VG, EG, pivG,
G, sG). The
transformation RestoreRes(G, v) yields G if v is an initial vertex of G. For an
internal vertex v ∈ VG,

Reduction of Resolution Refutations and Interpolants via Subsumption 191

proc ReconstructProof (R, v)
if v 	∈ visited then

visited ← visited ∪ {v}
foreach (u, v) ∈ ER

ReconstructProof (R, u)
R ← RestoreRes (R, v)

(a) ReconstructProof

�

x1

x1 x2 x2

x1 x2 x3 x1 x3

x2 x1 x2 x3 x1 x2

x1

�→

�

x1

x2 x1 x2

x1

(b) Reducing proof size

Fig. 1. Reconstructing proofs

– if ∃(v+, v), (v−, v) ∈ EG with pivG(v) ∈
G(v
+) ∧ piv (v) ∈
G(v

−) then

RestoreRes(G, v) = (VG, EG, pivG,
, sG)

with
(u)
def
=

{
Res(
G(v

+),
G(v
−), piv (v)) if u = v

G(u) otherwise

– otherwise, let u and w be the parents of v, and RestoreRes(G, v) = G[v ← u],
where u is chosen such that

(piv (v) ∈
(u)⇒ piv (v) ∈
(w)) ∧ (piv (v) ∈
(u)⇒ piv (v) ∈
(w)).

The second case in Definition 3 affords us a choice for u if neither parent
contains the pivot or both parents contain the pivot literal in the same phase.
The latter situation can arise in proofs that contain tautological clauses.

The algorithm ReconstructProof in Figure 1(a) (introduced in [3]) per-
forms a linear time post-order (parents first) traversal of the graph, applying
RestoreRes to re-establish ∀(v1, v), (v2, v) ∈ E .
(v) = Res(
(v1),
(v2), piv (v)).

The following lemma is an adaptation of Lemma 2 from [11] to our setting.

Lemma 1. Let R be a resolution proof, and let π = {v1 !→ u1, . . . , vk !→ uk} be a
mapping such that vi is not an ancestor of uj for 1 ≤ i, j ≤ k. If
R(ui) ⊆
R(vi)
for 1 ≤ i ≤ k, then the proof P obtained by applying ReconstructProof to
R[v1 ← u1] . . .[vk ← uk] has sink sP with
P (sP) ⊆
R(sR).

Proof: By induction on the number of ancestors of sR (cf. the more general
proof of Theorem 1 on page 194).

Example 1. Consider the left proof in Figure 1(b), in which the mapping π from
Lemma 1 is indicated by !→. The refutation on the right of Figure 1(b) shows
the result of ReconstructProof after substituting x1x2 for x1x2x3. �

192 R. Bloem et al.

2.2 Interpolation Systems and Labelling Functions

The following variant of Craig interpolants [9] has been introduced by McMil-
lan [22] and is commonly used in the context of verification.

Definition 4 (Propositional Interpolant). An interpolant for a pair of propo-
sitional formulae (A,B), where A ∧ B is unsatisfiable, is a formula I such that
A⇒ I, B ⇒ ¬I, and Var(I) ⊆ Var(A) ∩ Var(B) holds.

Let A and B be formulae in CNF. A refutation R is an (A,B)-refutation of
an unsatisfiable formula A∧B if
R(v) is a clause in A or a clause in B for each
initial vertex v ∈ VR.

An interpolation system Itp is a function that given an (A,B)-refutation R
yields a function, denoted Itp(R,A,B), from vertices in R to formulae over
Var(A)∩Var(B). An interpolation system is correct if for every (A,B)-refutation
R with sink s, it holds that Itp(R,A,B)(s) is an interpolant for (A,B). We
write Itp(R) for Itp(R,A,B)(s) when A and B are clear. Let v be a vertex in an
(A,B)-refutation R. The pair (
(v), Itp(R,A,B)(v)) is an annotated clause and
is written
(v) [Itp(R,A,B)(v)] in accordance with [23].

In the following, we review the labelled interpolation systems introduced
in [12], which generalise the propositional interpolation algorithms presented
by Huang [19], Kraj́ıček [21] and Pudlák [26], and McMillan [22]. A distinguish-
ing feature of a labelled interpolation system is that it assigns an individual label
c ∈ {⊥, a, b, ab} to each literal in the resolution refutation.

Definition 5 (Labelling Function). Let (S,#,�,�) be the lattice below, where
S = {⊥, a, b, ab} is a set of symbols and#,� and� are defined by theHasse diagram
to the right. A labelling function LR : VR × Lit→ S for a refutation R over a set
of literals Lit satisfies that for all v ∈ VR and t ∈ Lit:

1. LR(v, t) = ⊥ iff t /∈
R(v)
2. LR(v, t) = LR(v

+, t) � LR(v
−, t) for an internal vertex

v, its parents v+ and v−, and literal t ∈
R(v). ⊥
a b

ab

Definition 6 (Locality). A literal t is A-local if var(t) ∈ Var(A) \ Var(B).
Conversely, t is B-local if var(t) ∈ Var(B)\Var(A). All other literals are shared.
A labelling function L is locality preserving if for any initial vertex v ∈ VR and
t ∈
(v), L(v, t) = a if t is A-local and L(v, t) = b if t is B-local.

Shared literals may be labelled a, b, or ab. Given a labelling function L, the

downward projection of a clause at a vertex v with respect to c ∈ S is
(v)�c,L def
=

{t ∈
(v) |L(v, t) # c}. The subscript L is omitted if clear from the context.

Definition 7 (Labelled Interpolation System for Resolution). Let L be
a locality preserving labelling function for an (A,B)-refutation R. The labelled
interpolation system Itp(L) maps vertices in R to partial interpolants as defined
in Figure 2.

Reduction of Resolution Refutations and Interpolants via Subsumption 193

For an initial vertex v with 	(v) = C

(A-clause)
C [C�b]

if C ∈ A (B-clause)
C [¬(C�a)]

if C ∈ B

For an internal vertex v with piv(v) = x, 	(v+) = C1 ∨ x and 	(v−) = C2 ∨ x

C1 ∨ x [I1] C2 ∨ x [I2]

C1 ∨ C2 [I3]

(A-Res) if L(v+, x) � L(v−, x) = a, I3
def
= I1 ∨ I2

(AB-Res) if L(v+, x) � L(v−, x) = ab, I3
def
= (x ∨ I1) ∧ (x ∨ I2)

(B-Res) if L(v+, x) � L(v−, x) = b, I3
def
= I1 ∧ I2

Fig. 2. Labelled interpolation systems

Itp yields interpolants of a highly redundant propositional structure. The
structural redundancy is typically reduced in a subsequent step [8]. Therefore,
we resort to the number of variables as a measure of interpolant size. Labelled
interpolation systems support the elimination of nonessential (or peripheral [29])
variables from interpolants [10], as stated by the following lemma.

Lemma 2. Let L and L′ be locality preserving labelling functions for an (A,B)-
refutation R, where L(v, t) = a if
R(v) ∈ A and L(v, t) = b if
R(v) ∈ B for all
initial vertices of R. Then Var(Itp(L)(v)) ⊆ Var(Itp(L′)(v)) for all v ∈ VR.

Example 2. Assume that the left refutation in Figure 1(b) is an (A,B)-refutation
with (x1 x2 x3), (x1 x2 x3), (x1) ∈ A and (x2), (x1 x2) ∈ B, and let L be the
labelling function from Lemma 2. Itp(L,R)(v) = F for all initial vertices v in A
and Itp(L,R)(v) = T for all remaining initial vertices. The internal vertices are
annotated as follows:

x1 x3 [(x2 ∨ T) ∧ (x2 ∨ F)︸ ︷︷ ︸
x2

], x1 x2 [x2 ∨ F], x2 [(x1 ∨ F) ∧ (x1 ∨ T)︸ ︷︷ ︸
x1

]

x1 [(x2 ∨ x2) ∧ (x2 ∨ x1)︸ ︷︷ ︸
x1∨x2

], � [(x1 ∨ x2) ∨ F]

Accordingly, Itp(L,R)(sR) = x1∨x2. For the same partition (A,B) and the right
refutation P in Figure 1(b) we obtain Itp(L, P)(sP) = x1. �

According to Lemma 2, the set Var(Itp(L,R)(v)) in Example 2 cannot be
reduced any further by mutating L. The proof transformation in Figure 1(b),
however, results in an interpolant with fewer variables.

We present a proof transformation technique aimed at reducing proof size in
§3. In §4, we show that smaller proofs do not always yield interpolants with
fewer variables, and specialise our reduction technique to eliminate variables
(and Boolean connectives) from interpolants.

194 R. Bloem et al.

3 Proof Reduction via Subsumption

Example 1 in §2.1 demonstrates that the size of proofs can be reduced by means
of clause subsumption. In general, let R be a resolution proof with vertices
ui, vi ∈ VR such that
R(ui) ⊆
R(vi) for 1 ≤ i ≤ k. Then the sub-proofs of R
rooted at vi can be pruned by means of substitution (see Def. 2) if no vi is an
ancestor of a uj for 1 ≤ i, j ≤ k (cf. Lemma 1). The following example shows
that the requirement
R(ui) ⊆
R(vi) is sufficient but not necessary.

Example 3. Let R be a refutation resembling the proof on the left of Figure 1(b)
except that we replace the clause x1 x2 x3 with x2 x3. In this setting, Lemma 1
does not justify the substitution proposed in Example 1 anymore, since x1 x2 �⊆
x2 x3. The substitution of x2 x3 with x1 x2 followed by ReconstructProof,
however, still results in the proof on the right of Figure 1(b). The substitution
is still valid because x1 is eliminated along all paths from x1 x2 to � in the
resulting graph. Intuitively, this situation arises since x1 is a merge-literal [2] of
the resolution Res(x1 x2 x3, x1 x3, x3) in the original proof in Example 1. �

The set of literals eliminated along all paths from v ∈ VR to sR can be defined
as the meet-over-all-paths in the terminology of data-flow analysis:

rlit(v, w) = t s.t. t ∈
(v), var(t) = piv (w), ∃u �= w . (u,w) ∈ E ∧ rlit(u,w) = t

σ(v) =

{
∅ if v = sR⋂

(v,w)∈E (σ(w) ∪ {rlit(v, w)}) otherwise
(1)

A solution to the data-flow equation 1 can be computed in linear time since
the graph R is acyclic. Our definition of σ resembles the safe literals [13] and
expansion set [16]. Unlike Gupta in [16] we do not rule out literals of opposing
phase in σ(v).

Given a resolution proof R and a solution of σR of Equation 1 for R, we call

R(v)∪σR(v) the augmented clause of v ∈ VR. The following theorem generalises
Lemma 1 to use subsumption of augmented clauses.

Theorem 1. Let R be a resolution proof, let σR be a solution of Equation 1
for R, and let π = {v1 !→ u1, . . . , vk !→ uk} be a mapping such that for all
1 ≤ i ≤ j ≤ k it holds that a) no vertex vi is an ancestor of uj, and b) if vj is an
ancestor of ui then σR(ui) ⊆ σR(vi). If
R(ui) ⊆ (
R(vi) ∪ σR(vi)) for 1 ≤ i ≤ k,
then applying ReconstructProof to R[v1 ← u1] . . .[vk ← uk] yields a proof
P with sink sP such that
P (sP) ⊆
R(sR).

The proof is led by nested structural induction on the number of substitutions
and the number of ancestors of sR. The core insight is that for every sub-proof
of R rooted at sR, ReconstructProof yields a proof P with sink sP such
that
P (sP) ⊆ (
R(sR) ∪ σR(sR)).

The restrictions on the substitutions π in Theorem 1 are much weaker than in
Lemma 1 (which corresponds to [11, Lemma 2]). Theorem 1 as well as Lemma 1
allow overlapping proofs in the range of π. In addition, Theorem 1 allows the sub-
stitution of vertices that are ancestors of preceding substitutions, and introduces

Reduction of Resolution Refutations and Interpolants via Subsumption 195

�

p p

p x2 x2 x1px1

p x2p x2 x1p p x1

x0p x0x2 p x0x1

(a) A redundant proof

�

p p

p x2 p x2 x1pp x1

p x2p x2 x1 p p x1

x0p x0x2 p x0x1

(b) After substitution

Fig. 3. Subsumption for elimination of redundant resolution steps

a more general notion of subsumption by considering augmented clauses. In the
following section, we show that Theorem 1 justifies the redundancy elimination
algorithms presented in [3,13,16].

3.1 Eliminating Redundant Resolution Steps

In the published version of his 1966 talk at a Leningrad seminar, Grigory Tseitin
introduced the notion of regular proofs [30]. A resolution proof R is regular if,
along any path from an initial vertex to the sink sR, every pivot occurs at most
once. If proofs are represented as trees rather than directed acyclic graphs, then
refutations of minimal size are always regular [31, Lemma 5.1]. Consequently,
pivots that repeatedly occur along a path in tree-shaped proofs are redundant.
Bar-Ilan et al. [3] introduce an algorithm (RmPivots) which eliminates such
redundant resolution steps in the tree-shaped parts of a proof.

Fontaine et al. [13] generalise this algorithm to directed acyclic graphs con-
sidering all paths from a given vertex to the sink.1 To this end, they introduce
the notion of a safe literals, which resembles our definition of σ in Equation 1.
The following example illustrates the algorithm from [13] on a redundant proof
and shows that the resulting reduction is justified by Theorem 1.

Example 4. Consider the proof in Figure 3(a). Let v1 and v2 be the vertex for
which
(v1) = x1 and
(v2) = x2, respectively. Then σ(v1) = {p, x1} and σ(v2) =
{p, x2}, and the algorithm from [13] prunes the sub-proofs for x1 p and p x2.

Now let v3 and v4 be the vertices such that
(v3) = p x1 and
(v4) = p x2.
Since σ(v1) = {p, x1} and σ(v2) = {p, x2}, we may perform the transformation
R[v1 ← v3][v2 ← v4] by Theorem 1. This transformation corresponds to pruning
the sub-proofs as described above. Figure 3(b) shows the corresponding proof
returned by ReconstructProof. �
1 The resulting proofs are not necessarily regular. This is not a shortcoming of the
algorithm, as minimal refutations are in general not regular [1].

196 R. Bloem et al.

proc RmPivots (R, v)
if v 	∈ visited and

{u | (v, u) ∈ E} ⊆ visited
then

visited ← visited ∪ {v}
V± ← {v+, v−}
R ← SubsumeRes (R, v)
foreach u ∈ (V± ∩ VR)

RmPivots (R, u)

(a) RmPivots

proc RmPivots� (R, v)
if v 	∈ visited and {u | (v, u) ∈ E} ⊆ visited then

visited ← visited ∪ {v}
σ(v) =

⋂
(v,w)∈E (σ(w) ∪ {rlit(v, w)})

V± ← {v+, v−}
R ← SubsumeRes (R, v)
if v 	∈ VR then σ(v) ← �
foreach u ∈ V±

RmPivots� (R, u)

(b) Optimised variant of RmPivots

Fig. 4. Removing redundant resolutions

In the following, we provide a subsumption-based formalisation of the redun-
dancy elimination algorithm RmPivots which relies on σ to identify redundant
resolution steps.

Proposition 1. If piv (v) ∈ σ(v) then
(v+) ⊆ (
(v) ∪ σ(v)). If piv (v) ∈ σ(v)
then
(v−) ⊆ (
(v) ∪ σ(v)).

Based on Proposition 1, the following proof transformation eliminates redun-
dant resolution steps.

Definition 8. Let R be the resolution proof (VR, ER, pivR,
R, sR), and let σR

be a solution of Equation 1 for R. We define the following transformation:

SubsumeRes(R, v)
def
=

{
R[v ← v+] if piv (v) ∈ σR(v)

R[v ← v−] if piv (v) ∈ σR(v)

The procedure RmPivots in Figure 4(a) performs a pre-order traversal of
the proof (starting at the root), which guarantees that the order of substitu-
tions performed by SubsumeRes(R, sR) satisfies condition a) in Theorem 1. The
fact that σ(v+) = σ(v) ∪ {piv(v)} and σ(v−) = σ(v) ∪ {piv (v)} in combina-
tion with the conditions of SubsumeRes in Definition 8 (piv (v) ∈ σ(v) and
piv (v) ∈ σ(v), respectively) establishes condition b). Proposition 1 guarantees
that
(ui) ⊆ (
(vi) ∪ σ(vi)). Therefore, applying RmPivots followed by Recon-

structProof yields a valid refutation.

Optimisations. The definition of σ is unnecessarily restrictive in the context of
RmPivots. Observe that σ(v) is propagated even if RmPivots prunes the node
v. The constraints propagated along pruned paths may result in the unnecessary
exclusion of literals from ancestors of v. We amend this by setting σ(v) to the
top element $ of the power set lattice if a vertex v is pruned. Figure 4(b) shows

Reduction of Resolution Refutations and Interpolants via Subsumption 197

the optimised version of RmPivots, which intertwines the computation of σ and
RmPivots.

3.2 Limiting the Number of Candidates for Subsumption

RmPivots (as introduced in §3.1) only considers a subset of all feasible sub-
sumptions. For the proof in Example 1 in §2.1, for instance, RmPivots substi-
tutes x2 for x1x3 (resulting in a different proof than the substitution suggested
in Example 1). The algorithm RecycleUnits [3], on the other hand, only con-
siders unit clauses and would substitute x2 for x1x2x3. However, RmPivots and
RecycleUnits may miss valid subsumptions.

Example 5. Consider the refutation to the
right. Note that no pivots are eliminated
more than once along any of the paths, and
none of the unit clauses are valid candidates
for substitutions, since their vertices violate
the ancestor requirement of Definition 2. Let
v be the vertex with
(v) = x1x3. Since
σ(v) = {x1, x2, x3, x4}, v is subsumed by
x1x2 (as indicated by !→ in the figure). � �

x4

x3 x3x4

x2 x3 x2x4

x4

x2

x2x1 x1x3 x1x4x1x2!→

The computational cost for checking all pairs of clauses satisfying the ancestor
requirement in Definition 2 for subsumption is substantial. In the following, we
derive a lemma that allows us to reduce the number of subsumption checks.

Proposition 2. If vi dominates vj then the following subset relations hold:

a) (
(vj) \
(vi)) ⊆ σ(vj) and b) σ(vi) ⊆ σ(vj)

Corollary 1. If R is a refutation, then
(v) ⊆ σ(v) for all v ∈ VR that are
ancestors of sR.

Corollary 2. Let R be a resolution refutation, and let ui, vi ∈ VR be such that

(ui) ⊆ (
(vi) ∪ σ(vi)). Then
(ui) ⊆ σ(vj) for any vj ∈ VR dominated by vi.

This is a simple consequence of Proposition 2b and Corollary 1. The following
lemma allows us to exclude vertices that dominate a path segment of vertices
with out-degree one from our search for subsumed vertices.

Lemma 3. Let vj → vj+1 → . . . → vk be a path in a refutation R such that
all vertices vi have out-degree 1 and rlit(vi, vi+1) �∈ σ(vk) (where j ≤ i < k).
Further, let uk be such that
(uk) ⊆ (
(vk) ∪ σ(vk)) and vj is not an ancestor
of uk. Then applying ReconstructProof to R[vk ← ui] or R[vj ← ui] yields
the same refutation.

Proof: We consider only the case that vk is an ancestor of sR, since vj and
vk are otherwise not visited by ReconstructProof. Since R is a refutation,

198 R. Bloem et al.

if σ(v) 	= �∧ (V± = ∅ ∨ ∃u ∈ V± . |{w|(u, w) ∈ E}| > 1) then
pick u ∈ {w | 	(w) ⊆ σ(v) ∧ v �→ w satisfies Theorem 1}
R ← R[v ← u]

Fig. 5. Subsumption-based substitution of vertices

(uk) ⊆ σ(vk) (Corollary 1), and therefore
(uk) ⊆ σ(vj) (Corollary 2). Since
rlit(vi−1, vi) �∈ σ(vk) for j < i ≤ k and
(uk) ⊆ σ(vk), we have rlit(vi−1, vi) �∈

(uk) and rlit(w, vi) ∈
(w) for w �= vi−1 and (w, vi) ∈ E. Therefore, RestoreRes
propagates vertex uk until vk is reached (cf. Definition 3).

We claim that the restriction in Lemma 3 that vj may not be an ancestor of
uk does not exclude viable candidates for subsumption: Every
(vi) (j ≤ i < k)
contains a literal rlit(vi, vi+1) �∈ σ(vk) and therefore
(vi) �⊆ σ(vk).

RmPivots establishes the condition rlit(vi, vi+1) �∈ σ(vk) (j ≤ i < k) on
paths as defined in Lemma 3. Consequently, we only need to search for clauses
subsuming vertices with either no parent or a parent with out-degree greater than
one (i.e., meets for σ in Equation 1). The corresponding pseudo-code is shown
in Figure 5 and can be incorporated into RmPivots� (Figure 4(b)) before the
recursive call. We present an efficient technique to detect clauses subsuming
σ(vj) (i.e., the second line in Figure 5) in §5.

Lemma 3 reduces the computational burden, not least because contemporary
SAT solvers such as PicoSAT [5] construct resolution chains whose intermediate
vertices have out-degree one.

Finally, we point out that vertices v with {x, x} ⊆ (
(v)∪σ(v)) can be replaced
with a fresh vertex u �∈ VR with
(u) = (xx). However, RmPivots already
guarantees that {x, x} ⊆ (
(v) ∪ σ(v)) only occurs on pruned traces.

4 Interpolant Reduction via Subsumption

It is tempting to apply the techniques of §3 with the intention to reduce inter-
polant size. The following example demonstrates that this approach may in fact
have the opposite effect.

Example 6. Consider the (A,B)-refutation R with (x0), (x0 x1), (x1 x2) ∈ A and
(x1 x2), (x1) ∈ B on the left of Figure 6. We use a labelled interpolation system
(Definition 7) with the labelling L (Definition 5) from Lemma 2. Each vertex is
annotated with
(v) [Itp(L,R)(v)] as described in §2.2, and the label L(t) of each
literal t ∈
(v) is indicated using a superscript. The shared variable x1 does not

occur in Itp(L,R)(s), since the literals
a
x1 and

a
x1 are peripheral.2

2 Intuitively, since resolution corresponds to existential quantification and x1 is elim-
inated within the A partition ((∃x1 . (x0 ∨ x1) ∧ (x1 ∨ x2)) ⇒ (x0 ∨ x2)), the pivot
can be “renamed” and treated as a local variable. As a side-effect, fewer logical
connectives are introduced (prior to structural reduction), since the rule (AB-Res)
introduces two more connectives than (A-Res) or (B-Res) (see Definition 7).

Reduction of Resolution Refutations and Interpolants via Subsumption 199

� [x2]

a

x0 [F]
a
x0 [x2]

a
x0

b
x1 [x2]

b

x1 [T]

a
x0

a
x2 [F] b

x1

b

x2 [T]

a
x0

a

x1 [F]
a
x1

a
x2 [F]

�

a
x0 [F] � [x1∨x2]

ab
x1 [x2]

b
x1 [T]

a
x1

a
x2 [F] b

x1

b
x2 [T]

a
x0

a
x1 [F]

a
x1

a
x2 [F]

before reduction after RmPivots

Fig. 6. Reduced proof size may increase number of variables in interpolant

We obtain the proof P on the right of Figure 6 by applying RmPivots and
ReconstructProof to R. P is smaller than R, but the substitution has elim-
inated a peripheral resolution step and Itp(L, P) is forced to introduce x1 when

we resolve on
ab
x1 and

b
x1.

Using a different interpolation technique (such as Pudlák’s [26] or McMillan’s
[22]) or changing L does not resolve this problem. Labelled interpolation systems
generalise Pudlák’s and McMillan’s interpolation systems [12], and according to
Lemma 2, any labelling L would require Itp(L, P) to introduce x1 at some point
in P [10]. �

The elimination of the redundant vertex in Example 6 introduces a merge
literal x1 at the node v with
(v) = x1 with L(v, x1) = ab. In order to rule out
substitutions that change the label of peripheral pivots from a or b to ab, we
strengthen the subsumption requirement in Theorem 1 to include labels. Given
a refutation R, we compute a mapping ς : VR × Lit→ S in lockstep with σ:

litlab(u, v, t) =

{
L(v+, var(t)) � L(v−, var(t)) if t = rlit(u, v)
ς(v, t) otherwise

ς(v, t) =

{
⊥ if v = sR�

(v,w)∈E litlab(v, w, t) otherwise

(2)

In analogy to Corollary 1, we observe the following relationship between the
labelling L and ς :

Lemma 4. Let R be an (A,B)-refutation, L be a locality preserving labelling
function for R, and ςR,L be a solution of Equation 2. Then L(v, t) # ςR,L(v, t)
for all v ∈ VR and t ∈ Lit.

Proof: By structural induction. The claim holds trivially for sR. Let (v, w) ∈
E and L(v, t) �= ⊥. If t �= rlit(v, w) then t ∈
(w) and L(v, t) # L(w, t) by

200 R. Bloem et al.

Definition 5, and L(v, t) # ς(w, t) by the induction hypothesis. If t = rlit(v, w)
then L(v, t) # litlab(v, w, t). Therefore, L(v, t) #

�
(v,w)∈E litlab(v, w, t).

Abusing our notation, we use # to denote the order on S (Definition 5)
extended point-wise to the literals Lit. In the following, we lift Theorem 1 to
labelled sets of literals using the product order % for the Cartesian product of
the power set of Lit and (Lit→ S), defined as follows:

〈
(u), L(u)〉 % 〈σ(v), ς(v)〉 def
= (
(u) ⊆ σ(v)) ∧ (L(u) # ς(v))

Based on the definition of ς (Equation 2) and the order%, Theorem 2 disallows
substitutions that may introduce additional variables in an interpolant:

Theorem 2. Let R be an (A,B)-refutation and let σR, ςR be solutions of the
Equations 1 and 2 for R. Let π = {v1 !→ u1, . . . , vk !→ uk} be a mapping such
that for all 1 ≤ i ≤ j ≤ k it holds that a) no vertex vi is an ancestor of uj,
and b) if vj is an ancestor of ui then 〈σR(ui), ςR(ui)〉 % 〈σR(vi), ςR(vi)〉. If
〈
R(ui), L(ui)〉 % 〈σR(vi), ςR(vi)〉 for 1 ≤ i ≤ k, then applying Reconstruct-

Proof to R[v1 ← u1] . . .[vk ← uk] yields a proof P such that Var(Itp(L, P)) ⊆
Var(Itp(L,R)).

The proof is an extension of the proof of Theorem 1 to labelled clauses. For
the labelling L that maps all shared literals to ab, L(v) # ς(u) is always satisfied,
allowing us to relax the labelling constraint.

In the setting of Example 6, let v be the vertex with
(v) = x0 x2 and let u be
the vertex with
(u) = x1 x2. We obtain ς(v, x1) = b. Accordingly, the condition
L(u) # ς(v) in Theorem 2 rules out the substitution R[v ← u]. The following
example, however, demonstrates that this restriction is not always beneficial.

Example 7. We continue working in the setting of Example 2. Let v1, v2 be the
vertices such that
(v1) = (x0x2x3) and
(v2) = x1, and u1, u2 be the vertices
with
(u1) = x1x2 and
(u2) = x2. Recall that the substitution R[v1 ← u1]
reduced the interpolant from x1 ∨ x2 to x1. Theorem 2 disallows v1 !→ u1, since
ς(v1, x1) = a and ς(u1, x1) = b. Detecting that it is safe to introduce x1 at v2
(where ς(v2, x1) = a) since x1 ∈ Var(Itp(R)(u2)) would require a computation-
ally more expensive analysis. The substitution R[v1 ← u2] is valid, however,
since ς(v1, x2) = ab and ς(u2, x2) = b. The corresponding interpolant is x1. �
The conservative restrictions of Theorem 2, which enforce
Var(Itp(P)(v)) ⊆ Var(Itp(R)(v)) for all v ∈ VP , may prevent
ReconstructProof from eliminating variables by pruning.
One strategy to relax this restriction is to replace the meet in
Equation 2 with the operation to the right. This modification

a b ab
a a ⊥ ab
b ⊥ b ab
ab ab ab ab

effectively enables the introduction of a variable at vertex v if it is already
introduced along one path from v to sR. In general, the detection of variables
already introduced in other parts requires a more sophisticated analysis.

Reduction of Resolution Refutations and Interpolants via Subsumption 201

Table 1. We provide results for the benchmarks from synthesis and the HWMCC. We
use a locality-preserving labelling function. For synthesis benchmarks, the partitions are
acquired from the synthesis tool. For HWMCC benchmarks we use a random partition
(A,B). We compare all-RmPivots [16] to RmPivots� without (t0) and with (t20)
a search for subsumed clauses (limited to at most 20 minutes). We chose to implement
all-RmPivots rather than the algorithm from [13] because it is not clear how pruned
edges are treated. In each comparison we use the intersection of solved benchmarks
(no time- or mem-out in any configuration). Max size is the size of the largest solved
proof measured in vertices. Size (%) is the average reduction in proof vertices. Vars (%)
is the average reduction in variables in the final interpolant (analogous to interpolant
size, cf. Footnote 2). Time (s) is the average run time (without proof creation). Mem
(GB) is the average memory usage after proof creation.

synthesis [16] vs. t0 vs. t20 [16] vs. t0

solved 92/133 126/133
max size 367044 1150888

size (%) 17.35 22.89 25.23 18.74 24.57
vars (%) 0.62 0.68 0.68 0.65 0.69
time (s) 5 5 207 18 15
mem (GB) 1.2 1.2 2.5 2.2 2.3

HWMCC [16] vs. t0 vs. t20 [16] vs. t0

solved 38/131 111/131
max size 311151 1710588

size (%) 11.49 14.12 16.61 20.60 25.66
vars (%) 1.61 1.99 1.99 1.87 2.47
time (s) 3 3 218 30 23
mem (GB) 0.8 0.8 2.5 3.4 3.4

5 Implementation and Experiments

We implemented (in Scala) the algorithms of §3.1 and §3.2 generalised to labelled
clauses as described in §4. The performance of the algorithm in §3.1 and §3.2
hinges on an efficient check for the conditions of Theorems 1 and 2 (line 2 in
Figure 5):

– Subsumption check. To identify clauses that subsume σ(v), we maintain a
single watch literal for each clause in R. By incrementally assigning the
literals in σ(v) to F, the watch literal enables us to identify clauses
(u) that
are inconsistent with ¬σ(v). We may terminate before all subsuming clauses
are found, in which case the algorithm favours shorter clauses. By prioritising
literals in
(v) ⊆ σ(v), we also avoid the unnecessary introduction of merge
literals. The compatibility of L(v) and ς(u) is checked separately.

– Ancestor check. Our algorithm performs a pre-order traversal starting from
sR. To detect cycles, we maintain ancestor information that is restricted to
initial vertices and vertices with out-degree larger than one (see Lemma 3).
If a substitution vi !→ ui is performed, we remove the successors of vi from
the list of watched clauses up to the point where all literals in
(ui) \
(vi)
have been merged or eliminated (to avoid invalid substitutions), and mark
all ancestors of ui as tainted. We currently disallow any vj to be an ancestor
of ui (j ≥ i) in our subsumption check.

We present an experimental evaluation of our algorithms in Table 1. We use
benchmarks from reactive synthesis [6] obtained via [20] and single safety prop-
erty examples from the 2013 HardwareModel Checking Competition (HWMCC).
We use PicoSAT [5] 957 (synthesis) and 959 (HWMCC) to obtain resolution

202 R. Bloem et al.

proofs in TraceCheck format (-t option). We limited synthesis benchmarks to
a TraceCheck file size between 100kB and 10MB (resulting in 133 benchmarks).
We obtained the HWMCC proofs by unrolling until the file size grew beyond
10MB and pick the last file smaller than 10MB (resulting in 131 benchmarks).
The experiments were run on an Intel Xeon E5645 2.40GHz with a 16GB JVM
memory limit and a timeout of 30 minutes.

RmPivots� provides small but consistent improvements over Gupta’s al-
gorithm [16], for proof as well as interpolant reduction. Subsumption beyond
SubsumeRes yields additional proof reduction, but is significantly more expen-
sive (in consistence with the results in [3]). Since we currently choose the first
(and smallest) subsuming clause found, we believe that there is still room for
improvement by adding heuristics for selecting better candidates.

6 Conclusion

We present a framework for the reduction of refutations and interpolants, gen-
eralising the proof analysis introduced in [16] to subsumption. We point out
potential conflicts between the reduction of proofs and interpolants and intro-
duce conservative criteria that prevent subsumptions that are detrimental to
interpolant size. As future work, we intend to explore more sophisticated proof
analyses enabling a more aggressive reduction of interpolant size.

References

1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separa-
tion between regular and general resolution. In: STOC. ACM (2002)

2. Andrews, P.B.: Resolution with merging. J. ACM 15(3), 367–381 (1968)
3. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Reducing the

size of resolution proofs in linear time. STTT 13(3), 263–272 (2011)
4. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient mus extraction. AI Com-

munications 25(2), 97–116 (2012)
5. Biere, A.: PicoSAT essentials. JSAT 4(2-4), 75–97 (2008)
6. Bloem, R., Könighofer, R., Seidl, M.: Sat-based synthesis methods for safety specs.

In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014)

7. Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs
by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX
2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)

8. Cabodi, G., Loiacono, C., Vendraminetto, D.: Optimization techniques for craig
interpolant compaction in unbounded model checking. In: Design, Automation and
Test in Europe, pp. 1417–1422. ACM (2013)

9. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symbolic Logic 22(3), 250–268 (1957)

10. D’Silva, V.: Propositional interpolation and abstract interpretation. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 185–204. Springer, Heidelberg (2010)

11. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Restructuring reso-
lution refutations for interpolation. Technical report, Oxford (October 2008)

12. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944,
pp. 129–145. Springer, Heidelberg (2010)

Reduction of Resolution Refutations and Interpolants via Subsumption 203

13. Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional reso-
lution proofs via partial regularization. In: Bjørner, N., Sofronie-Stokkermans, V.
(eds.) CADE 2011. LNCS, vol. 6803, pp. 237–251. Springer, Heidelberg (2011)

14. Gershman, R., Koifman, M., Strichman, O.: Deriving small unsatisfiable cores with
dominators. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 109–
122. Springer, Heidelberg (2006)

15. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: Design, Automation and Test in Europe, pp. 886–891. IEEE (2003)

16. Gupta, A.: Improved single pass algorithms for resolution proof reduction. In:
Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 107–121.
Springer, Heidelberg (2012)

17. McMillan, K.L.: Applications of Craig Interpolants in Model Checking. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer,
Heidelberg (2005)

18. Hofferek, G., Gupta, A., Könighofer, B., Jiang, J.-H.R., Bloem, R.: Synthesizing
multiple boolean functions using interpolation on a single proof. In: Formal Meth-
ods in Computer-Aided Design, pp. 77–84. IEEE (2013)

19. Huang, G.: Constructing Craig interpolation formulas. In: Li, M., Du, D.-Z. (eds.)
COCOON 1995. LNCS, vol. 959, pp. 181–190. Springer, Heidelberg (1995)

20. Jiang, J.-H.R., Lin, H.-P., Hung, W.-L.: Interpolating functions from large Boolean
relations. In: ICCAD, pp. 779–784. ACM (2009)

21. Kraj́ıček, J.: Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic. J. Symbolic Logic 62(2), 457–486 (1997)

22. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

23. McMillan, K.L.: An interpolating theorem prover. Theoretical Comput. Sci. 345(1),
101–121 (2005)

24. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In:
Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer,
Heidelberg (2003)

25. Nadel, A., Ryvchin, V., Strichman, O.: Efficient MUS extraction with resolution.
In: Formal Methods in Computer-Aided Design, pp. 197–200. IEEE (2013)

26. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic 62(3), 981–998 (1997)

27. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
A framework for producing effective interpolants in SAT-based software verifica-
tion. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS,
vol. 8312, pp. 683–693. Springer, Heidelberg (2013)

28. Rollini, S.F., Bruttomesso, R., Sharygina, N., Tsitovich, A.: Resolution proof trans-
formation for compression and interpolation. The Computing Research Repository,
abs/1307.2028 (2013)

29. Simmonds, J., Davies, J., Gurfinkel, A., Chechik, M.: Exploiting resolution proofs
to speed up LTL vacuity detection for BMC. STTT 12(5), 319–335 (2010)

30. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in
Mathematics and Mathematical Logic, Part II (1970)

31. Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic
Logic 1(4), 425–467 (1995)

32. Wu, B.-H., Yang, C.-J., Huang, C.-Y., Jiang, J.-H.: A robust functional ECO engine
by SAT proof minimization and interpolation techniques. In: ICCAD (2010)

33. Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer,
Heidelberg (2005)

Read, Write and Copy Dependencies

for Symbolic Model Checking

Jeroen Meijer, Gijs Kant, Stefan Blom, and Jaco van de Pol

Formal Methods and Tools, University of Twente, The Netherlands
{j.j.g.meijer,g.kant,s.c.c.blom,j.c.vandepol}@utwente.nl

Abstract. This paper aims at improving symbolic model checking for
explicit state modeling languages, e.g., Promela, Dve and mcrl2. The
modular Pins architecture of LTSmin supports a notion of event local-
ity, by merely indicating for each event on which variables it depends.
However, one could distinguish four separate dependencies: read, may-
write, must-write and copy. In this paper, we introduce these notions in
a language-independent manner. In particular, models with arrays need
to distinguish overwriting and copying of values.

We also adapt the symbolic model checking algorithms to exploit the
refined dependency information. We have implemented refined depen-
dency matrices for Promela, Dve and mcrl2, in order to compare our
new algorithms to the original version of LTSmin. The results show that
the amount of successor computations and memory footprint are greatly
reduced. Finally, the optimal variable ordering is also affected by the
refined dependencies: We determined experimentally that variables with
a read dependency should occur at a higher BDD level than variables
with a write dependency.

1 Introduction

Model checking [11] is a technique to verify the correctness of systems. Often
these systems are made up of several processes running in parallel. Examining all
possible execution paths of the system is hard, because of the well known state
space explosion problem: because of the interleaving of the processes, the possible
number of states is exponential in the number of processes. Symbolic model
checking [6, 13] has proven to be very effective in dealing with that problem.
Symbolic here means storing sets of vectors and relations between vectors as
decision diagrams, such as Binary Decision Diagrams (BDDs) or Multi-Value
Decision Diagrams (MDDs). A well known symbolic model checker is nusmv [9],
where systems are specified in the SMV language, directly describing transition
relations.

We use the LTSmin toolset [4], which also provides a symbolic model checker,
but is different from nusmv in several ways. LTSmin provides a language inde-
pendent interface, called Pins, to communicate states and transitions, and learns
the partitioned transition relation on-the-fly, as in, e.g., [2,7]. New transitions are
learned through an explicit Next-state function, which is the language specific

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 204–219, 2014.
© Springer International Publishing Switzerland 2014

Read, Write and Copy Dependencies for Symbolic Model Checking 205

Specification
Languages

Pins2Pins
Wrappers

Reachability
Tools

mcrl2 Promela Dve Uppaal

front-end

back-end

Transition
Caching

Variable Reordering,
Transition Grouping

Partial Order
Reduction

Distributed Multi-core Symbolic

Fig. 1. Modular Pins architecture of LTSmin

part of LTSmin. Currently the languages that have been implemented on top of
Pins include Promela [1], divine, mcrl2, and Uppaal. In [2] and [3], the Pins
interface and underlying symbolic core algorithms of LTSmin are described. An
overview of the architecture is in Figure 1.

In Pins, states are represented as fixed-length vectors of values. Transitions
are distinguished in separate disjunctive transition groups. A generalized defi-
nition of systems that is compatible with Pins is given in Section 2. Between
slots of the state vector and the transition groups there can be dependencies,
i.e., a transition group can be dependent on the value of a state variable for a
condition to be true, or a transition may change the value of a state variable.
The dependencies between transition groups and state slots are captured in a
dependency matrix, which can be determined by static analysis of the model.
Often it is the case that a transition group depends on a limited number of
slots, which is known as event locality. This is the basis of many optimisations in
symbolic model checking, as presented in, e.g., [5,8,10]. For symbolic state space
generation it is best when the dependency matrix is sparse, i.e., when transition
groups have a relatively local footprint, for the following reasons. First, a sparse
matrix means that the transition relations for the transition groups depend on
few variables and can be quite small. Also, because of the on-the-fly nature of
LTSmin, there will be fewer redundant calls to Next-state.

To further benefit from dependencies in the input models, in this paper we
refine the notion of dependency and distinguish three types of dependencies: read
dependence and two types of write dependence, must-write and may-write. To
illustrate read and write dependence, we use a simple system with three variables
〈x, y, z〉 and two transitions:

1 : x = 1 ∨ z = 0 → y := 1, x := 0

2 : y = 1 → z := 0, x := 1

a. Transitions

[x y z

1 1 1 1

2 1 1 1

]

b. Dep. matrix

[x y z

1 1 0 1

2 0 1 0

]

c. Read matrix

[x y z

1 1 1 0

2 1 0 1

]

d. Write matrix

In b), the dependency matrix indicates no event locality, but if read and write
dependencies are considered separately, as in c) and d), then we see the transition
groups depend on most variables only for reading or only for writing. Separating
reads and writes helps in reducing the number of Next-state calls, the size of

206 J. Meijer et al.

the transition relation, and the size of its symbolic representation. For instance,
when a transition group is not read dependent on variable y, then the previous
value of y can be discarded in computing the successors of a state.

However, it is not trivial to statically determine whether a transition group
writes to a state slot. In the case of dynamic addressing of variables, e.g., writing
a position in an array, it may be needed to mark an entire array as write de-
pendent, even if only one position is changed. This problem is resolved by using
two types of write dependence: may-write, which allows copying of values, and
must-write, which does not.

In [8], a similar distinction is made between types of dependence. The main
difference with this work is that we deal with dynamic variable addressing, both
in the definitions of dependency and in the symbolic algorithms, where we use a
special symbol in transition relations to mark that a variable should be copied.

The dependencies and the associated matrices are described in detail in
Section 3. There also the row subsumption in dependency matrices and vari-
able reordering are discussed. These two techniques improve the effect of the
read-write distinction. In Section 4, we provide an adapted symbolic reachabil-
ity algorithm that exploits the read and write dependencies.

We have benchmarked our work with the whole Beem database and many
Promela and mcrl2 models. There are many models that benefit from the
distinction between read and write dependencies, but also several that do not.
In Section 5, we highlight the results for six models. For mcrl2, performance
is improved, because many calls to Next-state can be avoided. The Next-

state function for mcrl2 is relatively slow, due to the term rewriter that was
introduced to provide very expressive datatypes. For Beem and Promela mod-
els, we find an improvement when a good variable ordering (a good reordering
strategy) is chosen.

This work is based on Meijer’s MSc thesis [14] and extends it with an extension
to the transition relation to support copying values, and an analysis of the effect
of variable ordering in the context of distinct read and write dependencies.

2 The Partioned Next-State Interface (Pins)

The starting point of our approach is a generalised model of systems, called
Partioned Next-State Interface (Pins), which allows supporting several modeling
languages within a single framework, without exposing language details to the
underlying algorithms.

In Pins, states are vectors of N values. We write 〈x1, . . . , xN 〉, or simply
x, for vector variables. Each slot of the vector has a unique identifier, which
is used in the language front ends to specify conditions and updates. Every
language module, furthermore, has a Next-state function, which computes the
successor of a state. This function is partitioned in K transition groups, such
that Next-state(x) =

⋃
1≤i≤K Next-statei(x). A model, available through

Pins, gives rise to a partitioned transition system, defined as follows.

Definition 1. A Partitioned Transition System (PTS) [3] is a structure P =
〈〈S1, . . . , SN 〉, 〈→1, . . . ,→K〉, 〈s01, . . . , s0N 〉〉. The tuple 〈S1, . . . , SN 〉 defines the

Read, Write and Copy Dependencies for Symbolic Model Checking 207

set of states SP = S1 × . . . × SN , i.e., we assume that the set of states is
a Cartesian product. The transition groups →i⊆ SP × SP (for 1 ≤ i ≤ K)

define the transition relation →P=
⋃K

i=1 →i. The initial state is s0 = 〈s01, . . . ,
s0N 〉 ∈ SP . We write s→i t when (s, t) ∈→i for some 1 ≤ i ≤ K. Also we write
s→P t when (s, t) ∈→P .

The partitioning of the state vector into slots and of the transition relations
into transition groups, enables to specify the dependencies between the two, i.e.,
which transition groups touch which slots of the vector. The definition of these
dependencies will be given in Section 3. Here we give an abstract description
of how the variables in the state vector are read from and written to by the
transition groups.

For every language module this is different, but there is a common pattern.
In all of the supported languages, the specification of a transition is in the shape
Next-statei(x) = cond i→ actioni . updatei(x) .

The expression cond i is the condition that guards an action and may read
variables from x. The symbol ‘actioni’ specifies the name of the action that
is performed, i.e., the transition label. The expression updatei(x) defines the
state after the action. The update is a parallel assignment to the variables in
the vector. However, these variables may be defined dynamically, e.g., they may
be references to a location in an array.

Example 1. Given a state vector with variables 〈c, a0, a1, i〉, valid assignments
would be, e.g., c := c+ 1, ai := a1−i and i := c.

We define the state updates more formally, abstracting away from the specific
input languages of LTSmin.

Definition 2 (State Update Specification). The syntax of a state update
of transition group i is as follows: σi ::= ci→ ai . 〈vi,1 := ti,1, . . . , vi,Li

:= ti,Li〉,
where Li ≤ N and ci, vi,j, and ti,j are expressions over x1, . . . , xN . The condi-
tions ci are Boolean expressions and the left hand sides vi,j evaluate to variables
in {x1, . . . , xN}. The semantics of this state update is defined as the successor
states after applying the update:

s→i t ⇐⇒ �ci�s ∧ t = s[�vi,1�s := �ti,1�s, . . . , �vi,Li�s := �ti,Li�s] .

A State Update Specification (SUS) is a triple U =
〈
〈x1, . . . , xN 〉 , {σ1, . . . , σK} ,

s0
〉
, containing a vector of state variables xj for 1 ≤ j ≤ N , a set of state up-

dates σi with 1 ≤ i ≤ K, and an initial state s0.

Example 2 (1-safe Petri net). An example model is the Petri net in Figure 2,
of which a specification is given in Listing 1.1. The behavior of this 1-safe Petri
net is as follows. Initially, there is only one token in p0. If transition t0 fires
then the token is moved from place p0 to both p1 and p3. Transitions t1..4
move the tokens between places p1..4 independently. If the token is in both p2
and p4 then transition t5 can fire to move the token to p0. There are 5 reach-
able states for this Petri net. With booleans represented as 0, 1, the states are:
{〈1, 0, 0, 0, 0〉 , 〈0, 1, 0, 1, 0〉 , 〈0, 0, 1, 1, 0〉 , 〈0, 1, 0, 0, 1〉 , 〈0, 0, 1, 0, 1〉}.

208 J. Meijer et al.

p0

p1 p3

p2 p4

t0

t2t1 t3 t4

t5

Fig. 2. Example 1-safe Petri net

Listing 1.1. State Update Specification

(sus) for a 1-safe Petri net

1 init 〈true, false, false, false, false〉
2 sus 〈p0, p1, p2, p3, p4 ∈ B〉 =

〈
3 p0 →
4 t0. 〈p0 := false, p1 := true, p3 := true〉,
5 p1 →
6 t1. 〈p1 := false, p2 := true〉,
7 p2 →
8 t2. 〈p1 := true, p2 := false〉,
9 p3 →

10 t3. 〈p3 := false, p4 := true〉,
11 p4 →
12 t4. 〈p3 := true, p4 := false〉,
13 (p2 ∧ p4) →
14 t5. 〈p0 := true, p2 := false, p4 := false〉

〉

3 State Slot Dependencies

We exploit the notion of event locality by statically (a priori, before exploring any
states) approximating dependencies between transition groups and state slots.
We distinguish three types of dependencies: read dependence (whether the value
of a state slot influences transitions),must-write dependence (whether a state slot
is written to), andmay-write dependence (whether a state slot may be written to,
depending on the value of some other state slot). We provide formal definitions
for the dependencies and dependency matrices for state update specifications.

Definition 3 (Read Independence). Given a Partitioned Transition System
(pts) P =

〈
SP ,→P , s

0
〉
, transition group i is read independent on state slot

j if: for all s, t ∈ SP : whenever 〈s1, . . . , sj , . . . , sN 〉 →i 〈t1, . . . , tj , . . . , tN〉, it
holds that

– either always (sj = tj)∧∀rj ∈ Sj : 〈s1, . . . , rj , . . . , sN 〉 →i 〈t1, . . . , rj , . . . , tN 〉;
– or ∀rj ∈ Sj : 〈s1, . . . , rj , . . . , sN 〉 →i 〈t1, . . . , tj , . . . , tN 〉,

i.e., the values tk for k �= j do not depend on the value of slot j and either the value
of state slot j is always copied, or always the value tj is written, regardless of the
value of sj. In both cases the specific value of sj is not relevant in transition group i.

Definition 4 (Read Dependency Matrix). For a pts P, the Read Depen-

dency Matrix (RDM) is a K × N matrix RDM (P) = RMP
K×N ∈ {0, 1}

K×N

such that (RM i,j = 0)⇒ transition group i is read independent on state slot j.
For a State Update Specification (sus) U , the read dependency matrix RDM (U)
is defined as RM U

K×N with:

RM U
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (xj occurs in ci); or

if ∃1≤k≤Li : (xj occurs in ti,k) ∧ (vi,k �= xj ∨ ti,j �= xj); or

if ∃1≤k≤Li : (xj occurs in vi,k) ∧ (vi,k �= xj);

0 otherwise.

(a)

(b)

(c)

(d)

Read, Write and Copy Dependencies for Symbolic Model Checking 209

In case (a), the condition ci depends on xj . In case (b), the right hand side of
the update depends on xj , but the assignment is not merely a copy. In case (c),
variable xj is used to dynamically determine a state slot for an assignment, but
xj is not directly used as left hand side, as in, e.g., the assignment axj := 1. In
that case, xj is marked as read dependent, because it influences how the state
vector is updated. In all other cases, xj is read independent.

We say that a transition group is must-write dependent for variable x, if it
modifies x definitely, i.e. by a static assignment. For instance, the assignment
x := 2y is must-write dependent for variable x, because the right-hand side does
not depend on x. The assignment x := 2x is must-write dependent on variable
x because, independent of any other variables, it can modify the value of x.
However, the assignment xi := 3 is not must-write dependent on variable x0,
because for i = 1, the value of x0 is never modified.

Definition 5 (Must-Write Dependency Matrix). For a pts P, the Must-
write Dependency Matrix (WDM) is a K ×N matrix WDM (P) = WMP

K×N ∈
{0, 1}K×N

such that (WM i,j = 1)⇒ transition group i is must-write dependent
on state slot j.
For a sus U , the must-write dependency matrix WDM (U) is defined as WM U

K×N

with:

WM U
i,j =

{
1 if ∃1≤k≤Li : (vi,k = xj) ∧ (vi,k �= ti,k)

0 otherwise.

(a)

(b)

In case (a), xj is the left hand side of an assignment vi,k := ti,k. If the right
hand side ti,k is the same, there is no must-write dependency, but instead the
value is copied. If they are different, xj is marked as must-write dependent. E.g.,
the assignment x := x + 1, x is marked both as must-write dependent and as
read dependent.

Consider the case of an array assignment ai := c. Then a0 cannot be marked
as must-write dependent. Still, we know that a0 is either copied, or replaced by
a constant. To exploit this knowledge for dynamic assignments, we introduce a
third notion of independence.

3.1 The May-Write Dependency

In the case of assignment to a dynamically defined variable, using only read and
must-write dependencies is not optimal, as is explained in the following example.

Example 3. Suppose we extend the specification of the 1-safe Petri net specifica-
tion in Listing 1.1 by adding some data. We extend the state vector with variables
b0, b1 ∈ B, i ∈ {0, 1}. The initial state is extended with the values 〈false, false, 0〉.
We add two state updates: “p1→w . 〈i := 1〉” and “true→W . 〈bi := true〉”. For
the second assignment it cannot be statically determined if b0 or b1 is written to.
This depends on the value of i. Therefore, b0 and b1 are marked as must-write
independent. However, one of both may be changed, so our definition is not
sufficient in this case. Changing it in a way that marks both b0 and b1 is safe,

210 J. Meijer et al.

but requires that both are also marked as read dependent: one of the variables
is copied and requires a read, but it cannot a priori be determined which one.
Ideally, both variables are marked as write dependent, while allowing to indicate
which variables are copied. Then they do not need to be read dependent.

To address the problem of dynamic resolution of variables, we introduce a
weaker notion of write dependence: may-write independence.

Definition 6 (May-Write Independence). Given a pts P =
〈
SP ,→P , s

0
〉
,

transition group i is may-write independent on state slot j if: ∀s, t ∈ SP ,
〈s1, . . . , sj , . . . , sN 〉 →i 〈t1, . . . , tj, . . . , tN 〉 ⇒ (sj = tj), i.e., state slot j is never
modified in transition group i.

Thus, if transition group i is may-write-dependent on state slot j, then there
are some states s, t and a transition s →i t, where the value in state slot j is
changed: sj �= tj .

Definition 7 (May-Write Dependency Matrix). For a pts P, the May-
write Dependency Matrix (MDM) is a K ×N matrix MDM (P) = MMP

K×N ∈
{0, 1}K×N

such that (MM i,j = 0)⇒ transition group i is may-write independent
on state slot j.
For a sus U , the may-write dependency matrix MDM (U) is defined as MM U

K×N

with:

MM U
i,j =

{
0 if ∀1 ≤ k ≤ Li : ∀s : (�vi,k�s = xj)⇒ (vi,k = ti,k)

1 otherwise.

(a)

(b)

In case (a), if vi,k evaluates to xj for some state s, i.e., an assignment to xj is
possible, then the assignment is a direct copy, i.e., the left hand side and right
hand side are syntactically the same: vi,k = ti,k. This is determined statically by
the language front-end before generation.

Example 4. In the extended Petri net example (Example 3), transition W is
may-write dependent on both variables b0 and b1, because there exists both a
state in which i = 0 and a state in which i = 1. Hence, both variables can be
written to by the assignment bi := true.

Definition 8 (Combined Dependency Matrix). For a pts P, the depen-

dency matrix (DM) is a K×N matrix DMP
K×N ∈ {0, 1}

K×N
with the elements

DMP
i,j as specified in Table 1. Note that WM i,j ⇒MM i,j.

Example 5. The combined dependency matrix for the extended 1-safe Petri net
(Example 3) is shown in Table 2.

Note that here we say a transition group has a may-write dependency on
a state slot if it is not must-write dependent. This differs from the definition
of may-write independence. The definition of must-write dependence may seem
superfluous, but it is necessary for language front-ends and symbolic back-ends
which do not support copying values. So we have to take must-write depen-
dence into account when applying transformations on the combined dependency
matrix.

Read, Write and Copy Dependencies for Symbolic Model Checking 211

Table 1. Combined dm DMP

DMP
i,j RMP

i,j WMP
i,j MMP

i,j

− (copy) 0 0 0

r (read) 1 0 0

W (may-write) 0 0 1

w (must-write) 0 1 1

+ (read/write) 1 {0, 1} 1

Table 2. dm for the Petri net

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 p1 p2 p3 p4 i b0 b1

t0 + w − w − − − −
t1 − + w − − − − −
t2 − w + − − − − −
t3 − − − + w − − −
t4 − − − w + − − −
w − r − − − w − −
W − − − − − r W W

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2 Optimisation Operations on the Dependency Matrix

Combining transition groups and reordering variables are two techniques to en-
hance symbolic state space exploration. We adapted these techniques to benefit
from read and write dependencies.

Definition 9 (Row Subsumption). For matrix rows m,m′ ∈ MN of length
N , the row subsumption operator # : MN ×MN → B is defined as follows:

m #m′ ⇐⇒ ∀1≤j≤N : mj ≤ m′
j .

+

r W

w−
Fig. 3. Partial order on
dependencies ≤

If a row mi is subsumed by row mk, (mi #
mk), the corresponding transition groups i and k can
be merged and the combined matrix row becomes
the larger one, mk. In general, any two rows could
be merged by taking their pointwise least upperbound.
The result is that there are fewer transition groups
and less applications of a transition relation, but the
transition relations will be larger. For this to work, we
need a correct definition of ≤, i.e., a partial order on dependencies, which is given
in Figure 3. Note that may-write dependency (W) may subsume a copy depen-
dency (−), but must-write dependency (w) does not, because only W supports
copying values.

Variable reordering is widely used to reduce the size of decision diagrams
[16]. When using separate read and write dependencies, the order of read and
write variables needs to be taken into account. In general it is a good idea to
move variables that are read before variables that are written. Algorithm 1 uses
the heuristic that every read which occurs after a write is increasingly expensive.
Algorithm 2 shows a naive way to compute the cost of every column permutation
of the Dependency Matrix (dm). The algorithm will choose the matrix with the
lowest cost. Naturally, trying every permutation is exponentially expensive in
terms of number of columns. LTSmin implements more advanced column swap
algorithms, for instance based on simulated annealing from [17]).

The dependency matrices have been implemented for the mcrl2, Dve and
Promela input languages. For mcrl2, may-write dependencies are not needed,

212 J. Meijer et al.

Algorithm 1. cost
Input: DM

1 cost ← 0;
2 for 0 ≤ i < K do
3 writes ← 0;
4 for 0 ≤ j < N do
5 if DMi,j ∈ {W, w} then

writes ← writes + 1;
6 if DMi,j = r then

cost ← cost + writes;

7 end

8 end
9 return cost;

Algorithm 2. dm-optimize
Input: DM

1 best ← DM;
2 for 0 ≤ i < N do
3 for i < j < N do
4 test ← swap-columns(DM, i, j);
5 if cost(test) < cost(best) then

best ← test;

6 end

7 end
8 return best;

because assignment to dynamic variables is not supported in the language. Still,
may-write dependencies can arise by row subsumption.

4 Symbolic Reachability Analysis

To allow symbolic reachability analysis with read, write and copy dependencies
we provide three definitions. The first contains projections on dependency matri-
ces. Secondly, we provide a definition of the restrictedNext-state function from
read-projected states to their write-projected successors according to transition
group→i, as it is used in Pins for on-the-fly reachability analysis. This technique
is language independent, but depends essentially on the Pins-architecture, based
on state vectors, disjunctive transition partitioning and read and write depen-
dency matrices. Lastly, we provide a symbolic definition of Next that formalizes
the transition relation and the application of the transition relation on a set of
states.

Notation. For convenience, we introduce the function ind , the column indices of
the cells that contain a ‘1’ in row Mi: ind(Mi) = {j | 1 ≤ j ≤ |Mi| ∧Mi,j = 1}.
Given a vector s and a set of indices I, the notation (sj)j∈I is used to represent
the subvector (sĪ1 , . . . , sĪ�) of length
 = |I|, where Ī is the sorted list of elements
from I.

Definition 10 (Projections). For any vector set S =
∏

1≤j≤N Sj, transition

group 1 ≤ i ≤ K and K × N matrix M , we define the projection πM
i : S →∏

j∈ind(Mi)
Sj as πM

i (x) = (xj)j∈ind(Mi), i.e., the subvector of x that contains

the elements at indices in ind(Mi), the indices that are marked in row i of matrix
M . The projection function is extended to apply to sets in a straightforward way:
πM
i (S) =

{
πM
i (x) | x ∈ S

}
. We also write πr

i for πRM
i and πW

i for πMM
i .

Using these read and write projections, we can define how the read and write
dependency matrices can be used to compute the successor states for a transition
group, using only the dependent variables. We define the function Next-state

p
i

that takes as input a read projected vector, and computes for transition group i

Read, Write and Copy Dependencies for Symbolic Model Checking 213

the set of may-write projected successor vectors. The input read projected vector
may match a set of input states, and each of the output projected successor
vectors may represent a set of successor states. In the case a variable is may-
write dependent, but not changed, the symbol � is used to mark that the variable
should be copied from the input vector. This can occur, e.g., in the case an entire
array a1..10 is marked may-write dependent, because of an assignment az := e.
If z = 5, the position a5 is written to and all positions aj with j �= 5 are marked
with �. We use S�

j for Sj ∪ {�} and S�
P for the set S�

1 × · · · × S�
N .

Definition 11 (Partitioned Next-State Function). Next-state
p
i : π

r
i (SP)

→ ℘(πW
i (S

�
P)). Given a read projected state (sj)j∈ind(RM i),

Next-state
p
i ((sj)j∈ind(RM i)) =

{
πW
i (t) |

∃s′, t′, t ∈ SP : πr
i (s

′) = (sj)j∈ind(RM i) ∧ s′ →i t
′ ∧

∀1≤j≤N : tj =

⎧⎨⎩� if (j /∈ ind(MM i) ∨ sj = tj),

t′j otherwise

}
.

The result vectors (tj)j∈ind(MM i), combined with the input vectors (sj)j∈ind(RM i)

are stored in a symbolic transition relation ↪→p
i .

Definition 12 (Next). Wedefine the functionNext : ℘(SP)×(πr(SP)×πW(S�
P)

→ B) ×MN ×MN → ℘(SP), which applies a partial transition relation to a set
of states, as follows. Given a set S, a partial transition relation ↪→p, a read matrix
row r and a may-write matrix row w,

Next(S, ↪→p, r,w) =
{

y ∈ SP | ∃x ∈ S, z ∈ S�
P : ↪→p(πr(x), πw(z)) ∧

∧
j∈ind(w)

(
yj =

⎧⎨⎩xj if zj = �,
zj otherwise

)
∧

∧
j /∈ind(w)

(yj = zj)
}

.

The symbolic reachability algorithm that uses the functions Next-state and
Next is in Algorithm 3. The algorithm is an extension of the symbolic reacha-
bility algorithm in [2, Table 6].

Variable R maintains the set of reachable states so far, while L stores the
current level. After initialisation (lines 1–6), the next level N will be continu-
ously computed and added, until the current level is empty (lines 7–15). In each
iteration, first the new transitions must be learned (Algorithm 4). The next level
is computed by calling Next for each transition group (line 11).

Our extension includes three subtle modifications compared to [2, Table 6],
when growing the transition relations on-the-fly (Algorithm 4). First, the state
is read-projected in line 2. The benefit being that fewer calls to Next-state

are needed. Secondly, the tuples added to the partial transition relation in line 4
may contain the special value �. This allows dynamic assignments to be resolved

214 J. Meijer et al.

Algorithm 3. Reach-BFS-Prev

Input : s0 ∈ SP ,K ∈ N,RM ,MM
Output: The set of reachable states R

1 R ← {s0};
2 L ← R;
3 for 1 ≤ i ≤ K do
4 Rp

i ← ∅;
5 ↪→p

i ← ∅;

6 end
7 while L �= ∅ do
8 Learn-Trans();

9 N ← ∅;

10 for 1 ≤ i ≤ K do
11 N ← N ∪ Next(L, ↪→p

i ,RM i,MM i);
12 end
13 L ← N \ R;

14 R ← R ∪ N
15 end
16 return R

Algorithm 4. Learn-Trans

Output: Extends ↪→p
i with new

transitions on-the-fly
1 for 1 ≤ i ≤ K do
2 Lp ← πr

i (L);
3 for sp ∈ Lp \ Rp

i do
4 ↪→p

i ← ↪→p
i ∪ {〈sp, dp〉 |

5 dp ∈ Next-statei(s
p)};

6 end
7 Rp

i ← Rp
i ∪ Lp;

8 end

0 1

0 1 0

0
1 0

1 0

p0

p1

p3

0 1

p0

πt0(S) πr
t0(S)

Fig. 4. Projection without and
with read-separation for Ex. 2

efficiently at a lower (symbolic) level. Thirdly,
the transition relation is applied using both
the read and the may-write dependency ma-
trices (line 11). That way, fewer levels of the
underlying decision diagrams are affected.

Figure 4 clearly shows the difference be-
tween using the previously used projections
(to the left) and using read-projections (to
the right). Both can be used to compute successors for the states in Example 2,
but when using read-projections, the function →i is applied to only one of the
four states with p0 = 0, instead of to all.

4.1 Implementation

To investigate the effects of separating dependencies, we have implemented the
transition relation and its application from Definition 12 in LTSmin’s native
List Decision Diagram (ldd) library. An ldd is a form of Multi-way Decision
Diagram mdd which was initially described in [2, Sect. 5]. The definition is as
follows.

Definition 13 (List Decision Diagram). A List Decision Diagram (LDD) is
a Directed A-cyclic Graph (DAG) with three types of nodes:

– {ε}, which encodes true and has no successors,
– ∅, which encodes false and has no successors,
– 〈v, down , right〉, a tuple with label v and two successors: down and right .

The semantics �s� of an ldd node s is a set of vectors, as follows:

�{ε}� = {ε} , �∅� = ∅, �〈v, down , right〉� = {vw | w ∈ �down�} ∪ �right�.

Read, Write and Copy Dependencies for Symbolic Model Checking 215

Algorithm 5. LDD-Next

Input: ldd nodes s, ↪→p, r,w and level l ∈ N

1 if s = ∅ ∨ ↪→p = ∅ then return ∅ ;
2 if |r| = 0 ∧ |w| = 0 then return s ;
3 if s = {ε} ∨ ↪→p = {ε} then error ;
4 if r0 = l ∧ w0 = l then // Read and write dependent
5 if ↪→p

v < sv then return LDD-Next(s, ↪→p
r , r,w, l) ;

6 else if ↪→p
v > sv then return LDD-Next(sr, ↪→p, r,w, l) ;

7 else return LDD-Write(s, ↪→p
d, rd,w, l) ∪ LDD-Next(sr, ↪→p

r , r,w, l) ;

8 else if r0 = l then // Only read dependent
9 if ↪→p

v < sv then return LDD-Next(s, ↪→p
r , r,w, l) ;

10 else if ↪→p
v > sv then return LDD-Next(sr, ↪→p, r,w, l) ;

11 else return
〈
sv,LDD-Next(sd, ↪→p

d
, rd,w, l + 1),LDD-Next(sr, ↪→p

r , r,w, l)
〉
;

12 else if w0 = l then // Must-write or may-write dependent
13 if ↪→p

v = � then return LDD-Copy(s, ↪→p
d, r,wd, l) ∪ LDD-Write(s, ↪→p

r , r,w, l) ;

14 else return LDD-Write(s, ↪→p, r,w, l) ∪ LDD-Write(sr, ↪→p, r,w, l) ;

15 else return LDD-Copy(s, ↪→p, r,w, l) ; // Copy

Algorithm 6. LDD-Write

Input: ldd nodes s, ↪→p, r,w and l ∈ N

1 if ↪→p = ∅ then return ∅ ;

2 return
〈
↪→p

v,

LDD-Next(sd, ↪→p
d, r,wd, l + 1),∅

〉
∪ LDD-Write(s, ↪→p

r , r,w, l)

Algorithm 7. LDD-Copy

Input: ldd nodes s, ↪→p, r,w and l ∈ N

1 if s = ∅ then return ∅ ;

2 return
〈
sv,

LDD-Next(sd, ↪→p, r,w, l + 1),
LDD-Copy(sr, ↪→p, r,w, l)

〉

For some node n = 〈v, down , right〉, we use nv, nd and nr to denote its elements
v, down and right , respectively.

We assume (and enforce) in the implementation that the sequence of values in a
level is ordered from small to large. E.g., 〈0, . . . , 〈1, . . . ,∅〉〉 is a valid node, but
〈1, . . . , 〈0, . . . ,∅〉〉 is not. We define � to always be smallest.

x0 :

x1 :

0

0

{ε}

1

1

∅

Fig. 5. {〈0, 0〉 , 〈0, 1〉 , 〈1, 0〉 ,
〈1, 1〉} as ldd

A single vector x = 〈x1, . . . , xN 〉 (or singleton
set {x}) can be represented as an ldd node as
〈x1, 〈x2, . . . ,∅〉,∅〉. Note that for vector x, en-
coded as ldd node x, the ldd node of the sub-
vector x1<j≤|x|, i.e., the vector x with the first
element removed, equals xd. An example ldd

is given in Figure 5. This ldd encodes the set
{〈0, 0〉 , 〈0, 1〉 , 〈1, 0〉 , 〈1, 1〉} (= {0, 1}×{0, 1}) with
two variables x0 and x1.

In the implemention of the application of the
transition relation Next in Def. 12, we use ldd’s
to encode the set SP , the relation ↪→p and the ma-
trix rows r and w. Here, SP is encoded as an ldd of depth N and ↪→p as an
ldd of depth |r| + |w|. The rows r and w are actually encoded as ldd repre-
sentations of the sorted vectors with the indices of dependent variables ind(r)
and ind(w), respectively. The algorithm using ldd’s, given in Algorithm 5, re-
cursively traverses the ldd’s level by level, maintaining a counter l to keep track
of the current level, initially 0.

216 J. Meijer et al.

Lines 1–3 handle a few base cases. In the case the current level l (variable xl)
is both read and may-write dependent (lines 4–7), first a (read) value is matched
(sv and ↪→p

v) and then each value from the next level of the relation is written
using LDD-Write. The resulting node is united with all other values we may
need to write. If the level is read dependent only (lines 8–11), then we first find a
matching value and then create a new node with two recursive elements: down-
ward matching the other levels, and, to the right, other nodes on the current level
that may match the relation. If the level is must-write or may-write dependent
only (lines 12–14), then for each value in the set we create a new node, where we
either copy the value sv or write the value from the relation. If the level has no
read or write dependency (line 15), then a new node is created with the down
and right nodes computed recursively with LDD-Copy. LDD-Write writes
all values from the relation reachable on the current level. However, it needs to
unite all the nodes with these values because they may occur in the wrong order.
The unions are computed in the standard way for decision diagrams.

5 Results

To evaluate our work we have benchmarked with 266 Dve models from the
Beem database [15], 38 mcrl2 models, mostly from mcrl2’s distribution, and
60 Promela models from different sources1. To compare our results to both the
current version of LTSmin and the effect of variable orderings we implemented
the options w2W and W2+. These two options over-approximatemust-write to may-
write, and may-write to read and write, thus simulating the situation without
read-write separation. Every experiment is run three times in both setups to
determine the effect of our work. The machine we used has an Intel Xeon E5520
CPU, with 24 GB of memory. We have restricted the runtime of each experiment
to 30 minutes.

Overall, we see that the mcrl2 models benefit from read-write separation,
because of the reduced amount of Next-state calls. This is due to the fact
that a Next-state call for mcrl2 is rather time consuming because of the
term rewriting involved. The Dve and Promela front-ends run optimized C
code. For these languages, the overhead of many unnecessary Next-state calls
in the current version of LTSmin is less noticeable. We see however that the
runtime of Dve models is improved when we use a good variable ordering, which
reduces the number of symbolic operations. We have highlighted six interesting
experiments with relevant information in Table 4, of which a legend can be found
in Table 3. Of all experiments which have a run time longer than one second,
101 out of 167 are faster. With optimized dependency matrices, 125 out of 160
experiments are faster.

With Dve models we see speedups mainly when the amount of symbolic
(LDD) operations is reduced, such as in telephony.7. We were less successful
in this for anderson.6. However, the runtime for blocks.3 is greatly reduced.

1 Instructions to reproduce or obtain a copy of all models/results can be found at
http://pm.jmeijer.nl/32ae74f74e

http://pm.jmeijer.nl/32ae74f74e

Read, Write and Copy Dependencies for Symbolic Model Checking 217

Table 3. Symbols used in Table 4

model name of the model
dm dependency matrix operations
rt average reachability time in seconds
mem average peak memory usage in kilo-

bytes
#NS number of Next-state calls
#LDD number of calls to LDD-Next (Alg. 5)
|R| number of nodes of the set of reachable

states
|π(R)| approx. number of nodes in the projec-

tions
|↪→| approx. number of nodes of the whole

transition relation

cs Column Sort, sorts columns
such that writes are put on a
diagonal

rs Row Sort, sorts rows such
that writes are put on a di-
agonal

cw Column sWap, minimizes
distance between columns
and puts reads before writes
heuristically (Algs. 1 and 2)

The anderson.6model has 18,206,917 states, 36 groups and 19 state slots. In this
model we see no speedup, because it is hard to find a good variable ordering.
The bad ordering results in more recursive LDD-Next calls which slows down
the reachability analysis. blocks.3 is a model where we obtained very good
results. The state space of this contains 695,418 states, there are 26 groups and
18 state slots. Because blocks.3 contains many may-write dependencies we are
able to greatly reduce the amount of Next-state calls. Furthermore the amount
of nodes in the node table is reduced significantly. Telephony.7.dve is a model
with 21,960,308 states, 24 state slots and 120 groups. Similar to anderson.6

we see a slow down when we use separated dependencies. This slow down is
the result of many more symbolic operations. However, opposed to anderson.6

we are able to slightly speed up the reachability analysis by transforming the
dependency matrix. We can reduce the amount of Next-state calls while only
slightly increasing the amount of recursive LDD-Next calls.

In the first two mcrl2 models (1394-fin and lift3-final) we can see that
the amount of reduced Next-state calls corresponds closely to the speedup
attained. The model 1394-fin has 188,596 states, 34 state slots and 1,069 tran-
sition groups. The second, lift3-final, has 4,312 states, 30 state slots and
60 transition groups. We obtained the most interesting result with the vasy

model, a 1-safe Petri net submitted to the Petri net mailing list in 2003 [12] by
Hubert Garavel. The model has 9.79 × 1021 states, 776 transition groups and
485 state slots. With our work we have managed to make reachability analysis
for this model tractable for LTSmin. Special about this model is the first transi-
tion, which removes the token from the initial place to several other places (like
in Figure 2). Without read-write separations, this required exponentially many
Next-state calls for this transition: ≤ 261 calls, because there are 61 dependent
state slots of boolean type. With our improvements it is identified that only one
state slot is read, resulting in only 21 Next-state calls.

218 J. Meijer et al.

Table 4. Highlighted experiment results

model dm rt mem #NS #LDD |R| |π(R)| |↪→|

anderson.6.dve 25.4 439,076 7,464 64,034,383 50,120 2,442 2,064

anderson.6.dve 34.6 439,076 4,080 127,725,604 50,120 1,470 1,386

anderson.6.dve cs;rs;cw;rs 27.6 144,216 7,464 84,028,747 41,079 2,568 1,884

anderson.6.dve cs;rs;cw;rs 29.9 144,216 4,080 109,711,771 41,079 1,533 1,386

blocks.3.dve 31.0 239,293 6,559,927 69,695,086 39,522 375,603 269,996

blocks.3.dve 10.9 144,064 262,543 62,467,909 39,522 12,314 1,604

blocks.3.dve cs;rs;cw;rs 25.7 280,344 6,559,927 25,021,658 49,685 464,916 325,763

blocks.3.dve cs;rs;cw;rs 4.6 144,196 262,543 12,281,723 49,685 12,076 1,478

telephony.7.dve 107.6 1,111,840 918,817 231,808,995 284,449 36,951 6,038

telephony.7.dve 123.7 696,188 730,841 393,099,843 284,449 31,473 5,337

telephony.7.dve cs;rs;cw;rs 26.8 144,656 918,817 62,889,960 18,479 39,410 6,263

telephony.7.dve cs;rs;cw;rs 25.4 144,656 730,841 63,110,689 18,479 33,144 5,478

1394-fin.mcrl2 22.6 208,084 3,372,554 1,995,202 7,384 870,142 12,505

1394-fin.mcrl2 3.4 188,944 443,813 1,800,912 7,384 229,251 8,399

lift3-final.mcrl2 5.3 184,624 190,347 313,868 5,452 162,956 7,023

lift3-final.mcrl2 2.5 181,372 79,941 378,179 5,452 54,249 5,496

vasy.mcrl2 - - - - - - -

vasy.mcrl2 152.6 1,149,592 2,694 241,432,226 9,387 4,340 5,444

6 Conclusion

Separating dependencies into read and write dependencies can speed-up symbolic
model checking considerably. To do so, we had to solve two key problems. The
first problem is that a copy dependency can in general not be over-approximated
to a must-write dependency. Therefore we introduced the definition of may-write
independence. This notion is used when it can not be statically determined
whether a value needs to be written or copied. Separating dependencies intro-
duced a second problem. Reachability algorithms that exploit our notions for
read and write dependencies only work well with a good variable ordering. We
have provided heuristics that try to put read dependencies before write depen-
dencies.

Models for the Promela and Dve language front-ends for Pins are both
highly optimized C programs. Thus a Next-state call is relatively fast com-
pared to symbolic operations of the back-end. On the contrary, computing the
state space of mcrl2 models involves the term rewriter of mcrl2. The increased
expressiveness has a prize: term rewriting is a lot slower than the optimized C
programs for Promela and Dve. So symbolic operations are relatively fast
compared to a Next-state call to the mcrl2 language front-end.

Overall, we conclude that separating dependencies in the transition relation
by default in LTSmin is a good idea. We have observed only a few cases with
a slow-down, and this slow-down was minimal. The observed speed-ups on the
other hand were considerable, and in some cases necessary to make problems
tractable for LTSmin, e.g., for the vasy model.

Read, Write and Copy Dependencies for Symbolic Model Checking 219

Future work will split conditions into single guards, and consider their depen-
dencies separately. Also, the distinction between read and write variables can be
included in more advanced heuristics for static variable ordering strategies in the
dependency matrix. We also recommend to implement our new definitions and al-
gorithms for othermodeling languages and connect themtoLTSmin throughPins.

References

1. van der Berg, F.I., Laarman, A.W.: SpinS: Extending LTSmin with Promela
through SpinJa. ENTCS 296(2012), 95–105 (2013); pASM/PDMC 2012

2. Blom, S., van de Pol, J.: Symbolic Reachability for Process Algebras with Recursive
Data Types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC
2008. LNCS, vol. 5160, pp. 81–95. Springer, Heidelberg (2008)

3. Blom, S., van de Pol, J., Weber, M.: Bridging the Gap between Enumerative and
Symbolic Model Checkers. Technical Report CTIT, University of Twente, Enschede
(2009), http://eprints.eemcs.utwente.nl/15703/

4. Blom, S., van de Pol, J., Weber, M.: LTSmin: Distributed and Symbolic Reach-
ability. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 354–359. Springer, Heidelberg (2010)

5. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned
transition relations. In: VLSI 1991 (1991)

6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS 1990. IEEE (1990)

7. Ciardo, G., Marmorstein, R., Siminiceanu, R.I.: Saturation unbound. In: Gar-
avel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer,
Heidelberg (2003)

8. Ciardo, G., Yu, A.J.: Saturation-Based Symbolic Reachability Analysis Using Con-
junctive and Disjunctive Partitioning. In: Borrione, D., Paul, W. (eds.) CHARME
2005. LNCS, vol. 3725, pp. 146–161. Springer, Heidelberg (2005)

9. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

10. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
checker. STTT 2(4) (2000)

11. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008)

12. Kordon, F., Linard, A., Beccuti, M., Buchs, D., Fronc, L., Hillah, L.M., Hulin-
Hubard, F., Legond-Aubry, F., Lohmann, N., Marechal, A.: et al.: Model
Checking Contest @ Petri Nets, Report on the 2013 edition (2013), ArXiv:
http://arxiv.org/abs/1309.2485v1

13. McMillan, K.L.: Symbolic model checking. Kluwer (1993)
14. Meijer, J.J.G.: Improving Reachability Analysis in LTSmin. Master’s thesis, Uni-

versity of Twente (2014)
15. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D.,

Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

16. Rudell, R.: Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In:
ICCAD 1993. IEEE (1993)

17. Skiena, S.S.: The Algorithm Design Manual. Springer (2008)

http://eprints.eemcs.utwente.nl/15703/
http://arxiv.org/abs/1309.2485v1

Efficient Combinatorial Test Generation

Based on Multivalued Decision Diagrams

Angelo Gargantini and Paolo Vavassori

Dip. di Ingegneria, Università di Bergamo, Italy
{angelo.gargantini,paolo.vavassori}@unibg.it

Abstract. Combinatorial interaction testing (CIT) is an emerging test-
ing technique that has proved to be effective in finding faults due to
the interaction among inputs. Efficient test generation for CIT is still an
open problem especially when applied to real models having meaningful
size and containing many constraints among inputs. In this paper we
present a novel technique for the automatic generation of compact test
suites starting from models containing constraints given in general form.
It is based on the use of Multivalued Decision Diagrams (MDDs) which
prove to be suitable to efficiently support CIT. We devise and experiment
several optimizations including a novel variation of the classical greedy
policy normally used in similar algorithms. The results of a thorough
comparison with other similar techniques are presented and show that
our approach can provide several advantages in terms of applicability,
test suite size, generation time, and cost.

1 Introduction

Combinatorial Interaction Testing (CIT) helps tester to find defects due to the
interaction of components or inputs. It is based on the assumption that faults are
generally caused by interactions among parameters. CIT tests the interaction
in a systematic way. For instance, pairwise testing requires that every pair of
parameter value be tested at least once. It can be generalized by the t-way
testing. CIT has been proved to be very effective in finding faults [20].

A major problem in CIT is the generation of compact test suites, especially
when the cost of executing each test case is high. Suitable tools can produce
very compact test suites. For instance [20], a manufacturing automation system
that has 20 controls, each with 10 possible settings –a total of 1020 combinations
– can be tested by a test suite for the pairwise testing with only 180 tests in
it. Applying CIT to highly configurable software systems is complicated by the
fact that, in many such systems, the parameters are rarely independent from
each other. There exist constraints that model dependencies among parameters
that render certain combinations invalid or some combinations mandatory [12].
The presence of constraints increases the complexity of the test generation task:
if constraints on the input domain are to be taken into account, even finding a
single test or configuration that satisfies the constraints is NP-complete [5], since
it can be reduced in the most general case to a satisfiability problem. Several

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 220–235, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Combinatorial Test Generation Based on MDDs 221

works, like this, target explicitly the test generation for CIT in the presence of
constraints, CCIT in brief. In this paper we focus on reaching a good trade-off
between the size of the generated test-suite and its time of generation.

Our algorithm is a classical greedy algorithm which produces a test at the
time [7]. When building a single test, it chooses an optimal parameter and assigns
an optimal value to it until a test is complete. However, we advance with respect
to the state of the art by adopting the following original approaches:

– We employ a data structure, called Multivalued Decision Diagram (MDD),
which is particularly suitable to combinatorial problems in order to represent
inputs, their domains, and constraints over those inputs; MDDs offer several
advantages w.r.t. the classical Binary Decision Diagrams.

– We soften the classical greedy algorithm by reducing the importance of the
number of tuples covered by the test currently built, by weighting parameters
and tuples depending on the constraints in order to reduce the test suite size;

The paper is organized as follows. In Sect. 2 we present some introductory ma-
terial about constrained combinatorial interaction testing, about the framework
called CitLab, and about MDDs. Sect. 3 shows how MDDs are suitable to effi-
ciently represent several aspects of CIT (models, tuples, tests, and constraints).
In Sect. 4 we present our algorithm and several optimizations. Experiments are
reported in Sect. 5. Section 6 presents relevant related work. Future works are
discussed in Sect. 7, which concludes the paper.

2 Background

2.1 Combinatorial Interaction Testing

Combinatorial Interaction Testing (CIT) systematically explores t-way feature
interactions inside a given system, by effectively combining all t-tuples of param-
eter assignments in the smallest possible number of test cases. This allows to
budget-constraint the costs of testing while still having a testing process driven
by an effective coverage metric [19]. The most commonly applied combinatorial
testing technique is pairwise testing, which consists in applying a test suite cov-
ering all pairs of input values (each pair in at least one test case). Many CIT tools
(see [24] for an up to date listing) and techniques have already been developed
[16,19] and are currently applied in practice [4,18].

Combinatorial testing can be applied to a wide variety of problems: highly
configurable software systems, software product lines which define a family of
software, hardware systems, and so on. As an example, Listing 1 reports the input
domain model of a simple smart-phone product line using the CitLab [10]. The
model contains three parameters: the display can have 16 or 8 million colors or be
in black and white (BW), the frontCamera can have 1 or 2 megapixels (1MP and
2MP) or not be present (NOC). The phone can also have an emailViewer. We will
use this simple example throughout the paper to explain our approach. While
testing of all the possible configurations for the phone would require 3 ·3 ·2 = 18
tests, pairwise coverage can be obtained by a test suite containing only 9 tests.

222 A. Gargantini and P. Vavassori

Listing 1. A mobile phone example

Model phone
Parameters:

Enumerative display { 16MC 8MC BW };
Enumerative frontCamera { 2MP 1MP NOC };
Boolean emailViewer;

end
Constraints: # emailViever => display != BW # end

In most configurable systems, constraints or dependencies exist between pa-
rameters. Constraints were first described as being important to combinatorial
testing in [11] and were introduced in the AETG system. In our approach, tests
that do not satisfy the constraints are considered invalid and do not need to be
produced. However, the generation of tests considering constraints is more chal-
lenging than the generation without them, and several test generation techniques
still do not support constraints, at least not in a direct manner.

In CitLab testers are allowed to specify constraints in a general form. For
instance, the constraint that a phone with an email viewer cannot have a black
and white display can be modeled as shown in Listing 1.

2.2 Multivalued Decision Diagram

A decision diagram is a graph that represents a function f : D → B where
D = D1× . . .× . . .Dn and B is the Boolean domain, i.e., B = {F,T}. A decision
diagram is used to evaluate the truth value of f when applied to the variables
x1, . . . , xn. If all the domains Di are binary, then we use Binary Decision Dia-
grams (BDDs) to represent Boolean functions. BDDs are widely used within the
domain of system design verification. Multi-Valued Decision Diagrams (MDD)
extend BDDs by allowing every variable to have a different domain with differ-
ent size. A MDD is a directed acyclic graph used to encode a function f . The
graph has only two terminal nodes each labeled F or T. Every non-terminal
node is labeled by an input variable xi and has |Di| outgoing labeled edges; one
corresponding to each value. The diagram is ordered if the variables adhere to a
single ordering on every path in the graph, and no variable appears more than
once on any path from the root to a terminal node. An MDD can represent the
values in D that are selected by f : if the values x1, . . . , xn for the variables in D
are selected by f , then f(x1, . . . , xn) = T, otherwise f(x1, . . . , xn) = F.

Typical operations among MDDs include unary operations like complement
and cardinality, and binary operations like union, intersection, and difference.

MDD operations can be mapped to logic operation between the Boolean func-
tions represented by an MDD. Given an MDD m with function f , its complement
m� represents the function ¬f . The union between two MDDsm1�m2 represents
the function f1 ∨ f2. The intersection between two MDDs m1 �m2 represents
the function f1 ∧ f2. Given the MDD m, its cardinality |m| is the number of

Efficient Combinatorial Test Generation Based on MDDs 223

dis eV fC T

16MC,8MC,
BW

2MP,1MP,
NOCtrue,false

Fig. 1. MDD for the combinatorial problem of Listing 1

all the possible paths to the terminal node T. The cardinality can be used to
check consistency among Boolean functions: if f1 and f2 are inconsistent, i.e.
f1(x) �= f2(x) for any x, the intersection between their MDDs is empty.

MDDs can represent Boolean logic functions using less memory and shorter
path then BDDs. From a theoretical point of view, Nagayama [22] demonstrated
that the amount of memory used by mapping Boolean function with Boolean
variables to heterogeneous MDD is lesser than using OBDD directly. This seems
to suggest that MDDs are the preferred data structure when the domains are
not simple Boolean values.

In order to achieve this performance improvement over BDDs, it is very impor-
tant the use of techniques that can reduce the size of MDDs. To our knowledge,
Meddly [3] is the only opensource C/C++ library that natively supports these
DDs. According to our opinion, Meddly native support for MDDs and their vari-
ants, along with its performance makes it a good candidate for applications in
areas where these DDs make sense.

3 Using MDD for CCIT

If one ignores the constraints, a combinatorial model with n parameters each with
cardinality pi can be very easily represented by an MDD that has n non-terminal
nodes labeled by the name of every parameter and each node for parameter Pi

has pi outgoing labeled edges to the node for Pi+1 for i < n and to the T
terminal node for Pn. We call this MDD MTS . For instance, the MDD in Fig. 1
represents the MTS for the phone given in Listing 1. In the following figures,
edges sharing the same starting and final node are shown with a unique arch
and the list of labels. Every path from root to the terminal T is a syntactically
correct configuration. TheMTS represents all the tests, i.e., all the possible paths
from the start to the terminal node. The cardinality of MTS is equal to

∏n
i=1 pi

which is equal to the total number of possible tests.
The equality formula that associates parameter Pi to one of its values v, i.e.,

the assignment Pi = v can be easily represented by the following function.

f(p1, . . . , pn) =

{
T if Pi = v

F if Pi �= v

Such function can be represented by an MDD in which all the paths, traversing
the edge outgoing the node Pi with label v, terminate to the terminal T while
all the other ones terminate in F. For instance, the equality eV = true is shown
in Fig. 2a. A similar MDD representation can be given for a tuple assigning

224 A. Gargantini and P. Vavassori

dis eV fC

fC

T

F

16MC,8MC,
BW true

false

2MP,1MP,
NOC

2MP,1MP,
NOC

(a) Single value equality (eV = true)

dis eV fC

fC

T

F

16MC,8MC,
BW true

false

2MP

1MP,NOC

2MP,1MP,
NOC

(b) Tuple (eV = true, fC = 2MP)

Fig. 2. Representation by MDDs of assignments and tuples

values to a list of parameters. A path terminates to the node T if and only if
it contains an assignment contained also in the tuple. For instance, the tuple
(eV = true, fC = 2MP) is shown in Fig. 2b.

In most configurable systems, constraints or dependencies exist between
parameters. Since we assume that the constraints corresponding to a CIT prob-
lem can be described by propositional logic with equality, we can describe ev-
ery model constraint ci using a Boolean general formula containing operators
¬,∨,∧ over equalities among parameters and their values. Every constraint can
be represented by an MDD modeling its truth function: it can be built using the
representation of equality formulas proposed above and the operations between
MDDs presented in Sect. 2.2.

In order to include the constraints in the MDD MTS representing the uncon-
strained model, we can use the operations between MDDs. LetMTS be the MDD
representing the model and the whole test set from all the possible combinations.
The conjunction of MTS with all the constraints ci restricts the set of satisfying
interpretations of the function associated to MTS such that it contains exactly
those interpretations that correspond to valid test cases. Let mci be the MDD
for the constraint ci, and the MDD MVS be defined by the following formula:
MVS =

�n
i=1 mci �MTS.

Integrating the constraints ci into the MDD MTS in order to obtain the MDD
MVS , changes theMTS original topology by making one or more paths from valid
to not-valid. In the original MDD there are n levels and n not-terminal nodes,
where n is the number of parameter. In order to model not-valid paths it is
necessary to duplicate some nodes. The MDD MVS preserves the number n of
levels but has some more not-terminal nodes. The MVS represents all the valid
tests, i.e. all the possible paths from the start to the terminal T node.

An example of the MDD MVS representing the model and the constraints for
the phone problem is shown in Fig. 3a. MVS can be used to identify valid tests.
For instance, the combination (dis = BW, eV = true) is not valid, regardless of
the value of fC, as expected, since the requirements prohibit a BW display with
the emailViewer. On the contrary, the test (dis = 16MP, eV = true, fC = 2MP)
is a valid test, as shown by the corresponding path leading to the terminal T
node in the MDD. An MDD with cardinality 1, i.e. with only one path to the T

Efficient Combinatorial Test Generation Based on MDDs 225

dis eV

eV

eV

fC

fC

fC

T

F

16MC true,false
2MP,1MP,

NOC

8MC

true,false

1MP,NOC

2MP
BW

false

true

2MP,1MP,
NOC

(a) MVS for the phone with
the constraints

dis eV

eV

fC

fC

T

F

16MC

8MC,BW

true

true, false

true, false

2MP

1MP,NOC

2MP,1MP,
NOC

(b) An MDD representing a single test case

Fig. 3. Representation by MDDs of models with constraints and test cases

terminal node, represents one valid test. The example shown in Fig. 3b identifies
the test (dis = 16MP, eV = true, fC = 2MP).

4 An MDD-Based Algorithm for CCIT

We have devised an automatic algorithm for the generation of combinatorial test
suites based on the use of MDDs. The algorithm takes as input the MDD MVS

representing the intersection between the model domain and the constraints, and
produces as output the desired test suite R. It builds one test at the time until all
the testing requirements are achieved. When building a single test, it proceeds in
a greedy manner: it chooses one optimal parameter, which is not already set in
the test, and its optimal value, according to our weighting criteria, and it adds
this assignment to the test to be built. In the following we explain in details the
algorithm that is reported in Alg. 1.

Firstly, we populate a list of tuples TTC including all the combinations to cover
based on a given coverage criterion C, usually t-wise coverage. We plan to use
MDDs also to represent set of tuples like in [26]. Some tuples may be infeasible
because of the constraints. In order to filter all the valid tuples, we use MDDs as
well: the function feasibleTuples returns all the tuples required by the criterion
C that have a non-empty intersection with the MDD MVS .

We then start the iteration part where we generate, for each iteration, a test
case Mnc represented by an MDD with final cardinality equal to 1. At the end
of each iteration, we update TTC removing the tuples covered by the generated
Mnc until TTC is empty.

In the single iteration we initialize Mnc to the valid set MVS , we then sort
all the parameters (sortParamList) by simply counting for every parameter p
the number of tuples in TTC that contain p. We then start assigning every Pi

to the best value for it, by taking the value producing an assignment that is
compatible with Mnc and that maximizes the coverage of tuples in TTC .

This basic algorithm is a classical greedy algorithm that generates a test at the
time and tries to cover as many uncovered tuples as possible. It can be improved
in several directions, as explained in the following sections.

226 A. Gargantini and P. Vavassori

Algorithm 1. Generation of the test suite R

Input: MVS : MDD for the model with the constraints
Output: R: set of MDDs representing the test set

TTC ← feasibleTuples(MVS)
R ← ∅
while TTC 	= ∅ do � Build single test Mnc

Mnc ← MVS

P ← sortParamList(TTC)
for all Pi ∈ P do � Fix every parameter in P

value ← chooseBest(Pi,Mnc, TTC)
Mnc ← Mnc � Pi = value
if |Mnc| = 1 then break end if

end for
TTC ← removeCoveredTuples(Mnc)
R ← R ∪Mnc

end while

4.1 Optimization: Weighting Compatibility

Although most greedy algorithms consider only the number of remaining tuples
that will be covered in order to determine the best choice [7], it is well known
that such greedy policy can lead to bigger test suites, even for unconstrained
models1. In the presence of constraints, this greedy policy can be even more
inefficient since it tends to leave at the end all the tuples that are “difficult” to
cover, because the constraints limit the number of valid test cases that can cover
them. In this way, the last generated tests cover only a few tuples not covered
yet, leading to bigger test suites.

We propose to weight every tuple depending on its compatibility with respect
to the other tuples not covered yet considering also the constraints. Heavy tuples
are more difficult to cover and they should be fixed sooner than light tuples. To
weight tuples, we introduce a dynamic function weigth that measures the weight
of every tuple and we modify the Alg. 1 by calling the function in Alg. 2 that
assigns the weights before ordering the parameters. We modify the functions
sortParamList and chooseBest accordingly in order to consider tuple weights.

The function assignWeight increases the weight (initially set to 0) for all
the tuple pairs (Ti, TJ) with Ti and Tj in TTC that are mutually exclusive by
considering also the constraints. Checking if two tuples are compatible can be
performed by using the usual intersection operator among MDDs. For instance
the tuples (dis = BW, fC = 2MP) and (fC = 2MP, eV = true) would have their
weight increased because they are incompatible due to the constraints and this
can be easily computed using the MDD of Fig. 3a.

Although we can rely on the efficiency of MDDs for the computation of
weights, Alg. 2 has complexity N2/2 where N is the number of remaining tuples

1 Bryce and Colbourn report in [6] the example in which a simple greedy algorithm
provides a solution of 1,222 tests. Relaxing the greedy behavior or other algorithms
can provide much smaller test suites till 910 tests.

Efficient Combinatorial Test Generation Based on MDDs 227

Algorithm 2. Computation of weights

function assignWeight(TTC,MVS)
for all T ∈ TTC do weight(T) ← 0 end for
for all (Ti, Tj) ∈ TTC × TTC with i < j do

if MVS � Ti � Tj = ∅ then
weight(Ti) ← weight(Ti) + 1
weight(Tj) ← weight(Tj) + 1

end if
end for

end function

Algorithm 3. Approximate and faster computation of weights

function assignWeightFromParams(TTC)
for all T ∈ TTC do weight(T) ← 0 end for
for all Pi and Ti ∈ TTC with Pi ∈ Ti do

weight(Pi) ← weight(Pi) + 1
end for
for all Ti ∈ TTC and Pi ∈ Ti do

weight(Ti) ← weight(Ti) + weight(Pi)
end for

end function

to cover (TTC) and this can increase the computation time. For this reason, we
define a simplified algorithm (Alg. 3) that is less precise but it is much faster
than Alg. 2. This algorithm 3 first assigns a weight to every parameter depending
on the number of remaining tuples to cover (TTC) that contain it. Then, every
tuple gets a weight that is the sum of the weights of the parameters in it. It does
not consider the model and its constraints (MVS), it does not need to perform
any operation among MDDs, and for this reason is much faster.

We devised the following policy. If the number of tuples to be covered (|TTC |)
is greater than a threshold, Alg. 3 performs the weighting otherwise, the more
precise Alg. 2 is used.

4.2 Optimization: Repetitions

Our algorithm produces non deterministic results, since when ordering the pa-
rameters and when identifying the best value for the chosen parameter, it may
occur that two or more choices are equally valid. In this case the algorithm
randomly chooses one possibility. The choice may affect the behavior of the test
generation only much later (typically only in the last steps). One possibility is to
repeat with a different random seed the entire algorithm (except the evaluation
of tuple feasibility) in order to see if by chance a better solution is found. We call
this optimization repetition, as defined in [7]. We manage the repetition policy
by setting the following three parameters repeatmin, repeatmax, and repeatbetter.
When repetition is activated, the algorithm generates at least repeatmin times a

228 A. Gargantini and P. Vavassori

Table 1. Characteristics of the CCIT benchmarks

#Variable #Constraints Domain size #Valid configurations Ratio3

Minimum 3.00 0 8.00 1.00 2.44×10−29

Maximum 259.00 388 9.26×10+77 2.44×10+62 1.00

Mean 44.85 27.46 1.16×10+76 5.89×10+60 0.25

Median 15.00 15 8.35×10+04 2.60×10+04 7.86×10−02

new test suite. It keeps generating new test suites unless for repeatbetter the test
suite is not smaller than the best found so far. In any case no more than repeatmax

generation runs will be executed. The smallest test suite found is returned.

5 Experiments

We have implemented the algorithm presented in the previous section in a pro-
totype tool called medici (MultivaluEd Decision diagrams for Combinatorial
Interaction testing). We have integrated medici in CitLab, an extensible frame-
work for combinatorial testing [10]. medici is written in C++ and is based on
Meddly [3] for the MDDs. It has been embedded in CitLab and it is freely avail-
able2. CitLab simply exports the necessary input file for medici and executes
it. Note that medici accepts constraints in general form and thanks to the fact
that it uses MDDs, it avoids the time-consuming conversion to CNF .

As benchmarks for CCIT problems we have gathered 117 models with con-
straints taken from the literature (Casa [13,15,12], FoCuS [26], ACTS [1], and
IPO-S [9]) and from SPLOT SPLs repository, and used (in subsets) also by many
other papers. The benchmarks can be found on the CitLab web site and can be
used for further comparisons. For the sake of brevity, we show, in Tab. 1, only
some useful statistical summary about the models. We run the experiments on
a PC with two Intel(R) Xeon(R) CPU E5-2630 @ 2.30GHz and 64 GByte of
RAM. We exploit the multi-core architecture by running 20 threads in parallel
and we run all the experiments with the pairwise coverage and 50 runs.

Let sizem be the average of the test suite size for model m over all the runs
and timem be the average of the time for model m, we introduce size and time
defined as: size = Σsizem which is the sum of the averages of the test suite sizes
and time = Σtimem which is the sum of the averages of the executions times
(in seconds). We will use size and time as performance indexes.

Optimal Threshold Value. We perform an experiment in order to discover
the impact of the threshold introduced in Sect. 4.1 over the test generation size

2 CitLab and its medici plugin can be found at
http://code.google.com/a/eclipselabs.org/p/citlab/

3 Ratio=(#Valid configurations / Domain Size).

http://code.google.com/a/eclipselabs.org/p/citlab/

Efficient Combinatorial Test Generation Based on MDDs 229

Fig. 4. Test suite size and time depending on the threshold

and time (with 1 repetition). Fig. 4 reports how the test suite size and time
changes depending on the value of the threshold4. As the graph shows, the test
suite size has a minimum for a threshold around 500, while it becomes sensibly
greater with thresholds smaller than 250. The time becomes significantly greater
for threshold greater than 250. From now on, we chose as optimal threshold the
default value of 250.

Using Compatibility. We experiment the efficacy of the use of the compati-
bility and weights in order to choose the optimal parameter and value w.r.t. the
classical greedy algorithm as explained in Sect. 4.1 by performing a comparison
with a version of medici that avoids this optimization and uses a greedy algo-
rithm over the number of covered combinations. The results are shown in the
chart of Fig. 5a.

We observe that using the compatibility leads to smaller test suites (size is
around 4% smaller on average) with an increase of the time (time) of around
15%. Using the proposed technique slows the rate in which uncovered tuples
are covered but reduces the final test suite size. For instance, Fig. 5b reports
the size of still uncovered tuples (y-axis) while generating tests for one model
(the number of tests already generated is on the x-axis). By maximizing the
coverage of tuples (dotted line), the test generation covers more tuples at the
beginning but at the end it needs new tests to cover the residual uncovered
tuples. By using compatibility and by weighting the tuples (continuous line), the
algorithm covers fewer tuples at the beginning but at the end all the residual
tuples are easily covered with few tests. The figure shows that the problem of
finding minimal test suites is not easily solvable by using pure greedy algorithms,
since only near the end our proposed approach outperforms the classical greedy
approach.

Number of Repetitions. Regarding the number of repetitions (options
repeatmin, repeatmax, repeatbetter introduced Sect. 4.2), the situation is more
clear, since the use of these options is purely incremental and increasing the

4 Threshold values are in the set {0,10,50,100,250,500,1000,2000}.

230 A. Gargantini and P. Vavassori

(a) Greedy vs Compatibility comparison
with optimization of Sect. 4.1

(b) Tuple coverage rate for b 12 with op-
timization of Sect. 4.1

Fig. 5. Greedy vs Compatibility comparison

Fig. 6. Test suite size and time depending on the repetitions settings (repeatmin

repeatmax repeatbetter)

number of tries will always increase the time and decrease (or keep equal) the
number of tests. The choice of the optimal values for these options, is how-
ever a typical multi-objective optimization, in which we try to optimize the two
conflicting objectives of a small test suite size and a small generation time.

We test for the repeat options the values {1, 5, 10, 15, 20, 30, 50} which give
rise to 27 valid configurations. The data for the execution of all the configu-
rations is shown in Fig. 6 (and later in Tab. 2). The graph confirms that the
two objectives of minimizing both size and time are conflicting: it is possible to
obtain smaller test suite but at the expense of the test generation time. Our tech-
nique allows the tester to decide of spending more time in order to have smaller
test suites. From all the configurations, we select one with (repeatmin, repeatmax,
repeatbetter) equal to (10,30,5) which represents a good compromise between
time and speed and it can be considered as a good candidate for a default use
of medici. From now on, we will use this version for further comparison.

Comparison with Other Tools in CitLab. We perform a comparison of
medici with the other external tools supported by CitLab, namely ACTS [1,21]
and CASA [13,15]. ACTS is a tool developed by the NIST and implements several

Efficient Combinatorial Test Generation Based on MDDs 231

Table 2. Comparison with
ACTS and CASA

size ΣσS time ΣσT

ACTS 3387.5 0.5 73.7 2.4

CASA 3185.4 4391.2 14781.2 14305.9

medici 3214.4 6633.5 7871 965.4

Fig. 7. Number of models that present the mini-
mum cost for each generator for timetest from 0.01
to 5000 secs

variants of the In Parameter Order (IPO) strategy. CASA is a tool developed at
the University of Nebraska and it is based on simulated annealing, a well-studied
meta-heuristic algorithm. Both support constraints, are freely available, have a
large user base, and are very often used in comparison studies. Using CitLab

allows us to perform all the experiments in a very controlled environment on the
same computer and using exactly the same examples.

Due to the high number of models and experiments, we can give only some
cumulative results. Table 2 reports the results of the comparison: we have com-
puted the mean, and the standard deviation (σ) of the size and time (in secs)
among all the 115 runs for every model. Besides the sum of averages (size and
time), the table displays the sum of the standard deviations.

Table 2 shows that ACTS is the fastest but it produces also the biggest test
suites. ACTS has a deterministic algorithmand hence the standard deviation of its
sizes is null.medici is always slower than ACTS but it produces smaller test suites.
medici is around 200 times slower than ACTS, but it produces a test suite on the
average 5.4% smaller than ACTS. On the other hand, CASA is the slowest of all,
but it produces rather small test suites. CASA has a very high standard deviation
both in time and in size (running CASA only oncemay not lead to the best solution
of its).medici is faster than CASA and it has a smaller standard deviation. CASA
produces a test suite on the average 1% smaller than medici, but its generation
time is, on average, double that of medici.

Overall, we can say that medici performances are between CASA and ACTS.
To better guide the user in the choice of the best test generator tool, we can
roughly estimate the cost of testing (cost) as the total time for test generation
(timegen) plus test execution, which depends on the size of the test suite (size)
and time necessary to execute every single test (timetest): cost = timetotal =
timegen + size × timetest . Using the data previously computed, we have also
calculated the cost for each model and for each generator selecting a meaningful
set of timetest . Fig. 7 shows the number of models that present the minimum
average cost for each generator varying the timetest . ACTS outperforms both
CASA and medici if each test takes on average less than 10 seconds. This is in
line with what was found by Garvin et al. [14]. If the time for executing a single

232 A. Gargantini and P. Vavassori

test increases, CASA and medici cost less than ACTS in most models. Even
for very costly test execution (e.g. tests that require some human intervention),
medici can still compete with CASA in a meaningful number of models.

5.1 Threats to Validity

We have identified some threats to validity of the proposed study and we present
some countermeasures we have employed. First, the benchmark data may be
not representative. We have tried to collect models from many sources: to the
best of our knowledge this is one of the biggest benchmark set of constrained
combinatorial models used for test generation. The models represent a wide
heterogeneous range of real life and academic models. Second, we are aware that
our tool, medici, may produce incomplete and incorrect test-suites that allow
it to perform better than the other tools. To avoid this, besides performing unit
testing we have used CitLab “validator” [2] that checks that the resulting test
suite actually cover all the required tuples (except those infeasible). We use this
program for debugging medici. In order to have confidence of the data obtained
in the experiments, we have executed 50 runs for every configuration. Using
multi-threads allows us to reduce the experimental time, but it may alter the
running time, since an ordinary user will generally launch only one execution at
the time. However, we believe that the comparison is still fair because we have
treated all the generators in the same way.

6 Related Work

Combinatorial interaction testing has been an active area of research for many
years. In a recent survey [23] Nie and Leung count more than 12 research groups
that actively work on CIT area and many other groups and tools are missing
in the count. In a previous survey, Grindal et al. [16] presented 16 different
combination strategies, covering more than 40 papers. There are several web
sites listing tools and approaches (like [24]), and publishing benchmarks and
evaluations of tools and algorithms. The most studied area in CIT is the test
suite generation, where several research groups continuously challenge existing
algorithms and tools in order to provide better approaches in terms of execution
times, supported features, and minimality of the produced test suites. Finding
an algorithm that improves over the current state of the art has become a hard
research task.

There are several families of CIT test generation tools, including bio-inspired,
algebraic, logic-based [8], and greedy. In [7], Bryce et al. presented a general
framework of greedy construction algorithms, in order to study the impact of
each type of decision on the effectiveness of the resulting heuristic construction
process. To this aim, they designed the framework as a nested structure of four
decision layers, regarding respectively: (1) the number of instances of the process
to be run, (2) the size of the pool of candidate rows from which select each new
row, (3) the factor ordering selection criteria and (4) the level ordering selection

Efficient Combinatorial Test Generation Based on MDDs 233

criteria. The approach presented in this work fits exactly in the greedy category
of algorithms modeled by that framework, and it is structured in order to be
parametric with respect to the desired number of repetitions and the factor and
level ordering strategies. Note that their study concluded that factor ordering is
predominant on the resulting test suite size, and that density-based level ordering
selection criteria was the best performing one out of those tested. In the present
work, we explored original ways of redefining the density concept. In fact, while
Bryce et al. compute it as the expected number of uncovered pairs, we weight
tuple compatibility and we order parameters accordingly.

Comparison with BDD-based tools. Regarding the data structure we use, a com-
parison can be done with works using for CCIT binary decision diagrams (BDDs)
which are similar to MDDs. Salecker et al. [25] developed a test set calculation
algorithm which uses BDDs as efficient data structure to represent the combina-
torial interaction testing problem with constraints. Both their and our approach
are based on the modeling of the combinatorial interaction test problem with
constraints as a single propositional logic formula. MDDs are a more efficient
data structure for CCIT than BDDs: while modeling CCIT using BDDs requires
a logic subformula corresponding to all possible alternatives for selecting val-
ues from each parameter Pi, MDDs permit to avoid the representation of these
subformulas for single parameters; the benefit produced by this technique is the
absence of the implicit constraints introduced to represent value selection. Un-
fortunately the tool presented in [25] is not available and a fair comparison is
difficult. For sanity check, we found that on the same models presented in [25],
medici without repetitions was able to produce a smaller test suite (486.2 vs
547) and the time required in [25] was 2.3 times the time for medici (687 vs
1606 secs), although our PC is only 1.8 times faster (considering the SPECint
of around 42.6 vs 23.5).

Segall et al. [26] developed FoCuS, another BDD-based CCIT tool. In their
approach each parameter is represented by one or more binary variables in the
BDD. In order to build the BDD of valid tests, they first built for each constraint
(called restriction) the BDD representing the set of tests allowed by it. A test is
valid if and only if it is valid according to all restrictions, therefore the set of valid
tests is exactly the intersection of the sets of tests allowed by the restrictions.
This is computed by the conjunction of the BDDs representing these sets. Their
approach is therefore very similar to ours in terms of problem representation,
and we believe that also their approach would benefit from the use of MDDs
instead of BDDs. Unfortunately FoCuS is not publicly available. However, again
for sanity check, we found that on the same models presented in [26] medici
produced smaller test suites (923.5 vs 934) while published data for FoCuS do
not include generation time.

7 Future Work and Conclusions

We plan to work in several directions in order to improve our approach and the
tool. medici (as most other test generation tools, with the notable exception of

234 A. Gargantini and P. Vavassori

ACTS) does not support constraints containing arithmetic expressions. CitLab

already adopts the language of propositional logic with equality and arithmetic
to express constraints. To be more precise, it uses propositional calculus, en-
riched by the arithmetic over the integers and enumerative symbols. Although
arithmetic expressions are quite rare in models published in the literature, we
plan to extend medici in order to deal with the arithmetic constraints expressed
in CitLab, since we believe that industrial studies often use them.

Moreover,we have experimented only pairwise coverage, even if medici, ACTS,
and CASA support n-wise coverage. Initial experiments shows that medici per-
forms well also with n-wise coverage, but further experiments are needed.

Overall, we believe that the technique presented in this paper and imple-
mented in a prototype tool is a viable alternative to other commonly used tools
for tests generation of combinatorial tests in the presence of constraints. Our
techniques exploits an efficient data structure (MDDs) that proved to be suit-
able to represent and solve constrained combinatorial models and promise to
scale better than BDDs [17]. We have also devised several optimizations, like
weighting, that combined with a classic greedy approach allow us to obtain very
good results, as demonstrated by our experiments. The use of the framework
CitLab has allowed us to define a wide body of benchmarks and to perform the
comparison with other tools in a simple and fair way.

Acknowledgments. We thank Dario Corna for his valuable work on the im-
plementation of medici.

References

1. Advanced Combinatorial Testing System (ACTS),
http://csrc.nist.gov/groups/SNS/acts/

2. Arcaini, P., Gargantini, A., Vavassori, P.: Validation of models and tests for con-
strained combinatorial interaction testing. In: The 3rd International Workshop on
Combinatorial Testing (IWCT 2014) In conjunction with International Conference
on Software Testing ICSTW, pp. 98–107. IEEE (2014)

3. Babar, J., Miner, A.: Meddly: Multi-terminal and edge-valued decision diagram li-
brary. In: 7th International Conference on the Quantitative Evaluation of Systems.
IEEE (2010)

4. Brownlie, R., Prowse, J., Phadke, M.: Robust testing of AT&T PMX/starMAIL
using OATS. AT&T Technical Journal 71(3), 41–47 (1992)

5. Bryce, R.C., Colbourn, C.J.: Prioritized interaction testing for pair-wise coverage
with seeding and constraints. Information & Software Technology 48(10), 960–970
(2006)

6. Bryce, R.C., Colbourn, C.J.: One-test-at-a-time heuristic search for interaction test
suites. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2007, pp. 1082–1089. ACM, New York (2007)

7. Bryce, R.C., Colbourn, C.J., Cohen, M.B.: A framework of greedy methods for
constructing interaction test suites. In: ICSE 2005: Proc. of the 27th Int. Conf. on
Software Engineering, pp. 146–155. ACM, New York (2005)

http://csrc.nist.gov/groups/SNS/acts/

Efficient Combinatorial Test Generation Based on MDDs 235

8. Calvagna, A., Gargantini, A.: A formal logic approach to constrained combinatorial
testing. Journal of Automated Reasoning 45(4), 331–358 (2010)

9. Calvagna, A., Gargantini, A.: T-wise combinatorial interaction test suites con-
struction based on coverage inheritance. Software Testing, Verification and Relia-
bility 22(7), 507–526 (2012)

10. Calvagna, A., Gargantini, A., Vavassori, P.: Combinatorial interaction testing with
CitLab. In: Sixth IEEE International Conference on Software Testing, Verification
and Validation - Testing Tool Track (2013)

11. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: An
approach to testing based on combinatorial design. IEEE Transactions On Software
Engineering 23(7), 437–444 (1997)

12. Cohen, M., Dwyer, M., Shi, J.: Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy approach. IEEE
Trans. on Software Engineering 34(5), 633–650 (2008)

13. Covering Arrays by Simulated Annealing,
http://cse.unl.edu/citportal/tools/casa/

14. Garvin, B.J., Cohen, M.B., Dwyer, M.B.: An improved meta-heuristic search for
constrained interaction testing. In: Proceedings of the 2009 1st International Sym-
posium on Search Based Software Engineering, SSBSE 2009, pp. 13–22. IEEE
Computer Society, Washington, DC (2009)

15. Garvin, B.J., Cohen, M.B., Dwyer, M.B.: Evaluating improvements to a meta-
heuristic search for constrained interaction testing. Empirical Software Engineer-
ing 16(1), 61–102 (2011)

16. Grindal, M., Offutt, J., Andler, S.F.: Combination testing strategies: a survey.
Softw. Test, Verif. Reliab. 15(3), 167–199 (2005)

17. Hadzic, T., Hansen, E.R.: On automata, MDDs and BDDs in constraint satisfac-
tion. In: Proceedings of the ECAI 2008 Workshop on Inference Methods based on
Graphical Structures of Knowledge (2008)

18. Kuhn, D.R., Reilly, M.J.: An investigation of the applicability of design of exper-
iments to software testing. In: Society, I. (ed.) 27th NASA/IEEE Software Engi-
neering Workshop, pp. 91–95 (2002)

19. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Trans. Software Eng. 30(6), 418–421 (2004)

20. Kuhn, R., Kacker, R., Lei, Y., Hunter, J.: Combinatorial software testing. Com-
puter 42(8), 94–96 (2009)

21. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG/IPOG-D: efficient
test generation for multi-way combinatorial testing. Software Testing, Verification
and Reliability 18(3), 125–148 (2008)

22. Nagayama, S., Sasao, T.: Compact representations of logic functions using het-
erogeneous MDDs. In: Proceedings of 33rd International Symposium on Multiple-
Valued Logic, pp. 247–252 (2003)

23. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
11 (2011)

24. Pairwise web site, http://www.pairwise.org/
25. Salecker, E., Reicherdt, R., Glesner, S.: Calculating prioritized interaction test sets

with constraints using binary decision diagrams. In: Proceedings of IEEE Fourth
International Conference on Software Testing, Verification and Validation Work-
shops, pp. 278–285. IEEE Computer Society (2011)

26. Segall, I., Tzoref-Brill, R., Farchi, E.: Using binary decision diagrams for combina-
torial test design. In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis, ISSTA 2011, pp. 254–264. ACM, New York (2011)

http://cse.unl.edu/citportal/tools/casa/
http://www.pairwise.org/

Formal Verification of Secure User Mode
Device Execution with DMA

Oliver Schwarz1,2 and Mads Dam2

1 SICS Swedish ICT, Kista, Sweden
2 KTH Royal Institute of Technology, Stockholm, Sweden

{oschwarz,mfd}@kth.se

Abstract. Separation between processes on top of an operating system
or between guests in a virtualized environment is essential for establish-
ing security on modern platforms. A key requirement of the underlying
hardware is the ability to support multiple partitions executing on the
shared hardware without undue interference. For modern processor archi-
tectures - with hardware support for memory management, several modes
of operation and I/O interfaces - this is a delicate issue requiring deep
analysis at both instruction set and processor implementation level. In a
first attempt to rigorously answer this type of questions we introduced
in previous work an information flow analysis of user program execution
on an ARMv7 platform with hardware supported memory protection,
but without I/O. The analysis was performed as a semi-automatic proof
search procedure on top of an ARMv7 ISA model implemented in the
Cambridge HOL4 theorem prover by Fox et al. The restricted platform
functionality, however, makes the analysis of limited practical value. In
this paper we add support for devices, including DMA, to the analy-
sis. To this end, we propose an approach to device modeling based on
the idea of executing devices nondeterministically in parallel with the
(single-core) deterministic processor, covering a fine granularity of inter-
actions between the model components. Based on this model and tak-
ing the ARMv7 ISA as an example, we provide HOL4 proofs of several
noninterference-oriented isolation properties for a partition executing in
the presence of devices which potentially use DMA or interrupts.

Keywords: Peripheral devices, DMA, separation, isolation, user mode
execution, ARM, formal hardware/software co-verification, theorem prov-
ing, HOL4.

1 Introduction

Modern computing platforms usually execute multiple kinds of services together.
Entertainment software runs next to online-banking applications. Personal com-
munication services run next to business software. For security, there is a strong
need to execute processes in isolation from each other, such that mutual influ-
ence is minimized and their integrity and confidentiality fully protected. Some

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 236–251, 2014.
c© Springer International Publishing Switzerland 2014

Formal Verification of Secure User Mode Device Execution with DMA 237

approaches attempt to achieve this level of isolation within the commodity op-
erating system, while others base upon separation kernels, micro kernels or vir-
tualization. In all cases, the hardware platform is required to allow for strong
compartmentalization of process execution. Untrusted processes should neither
be able to influence processes at higher trust levels nor to learn anything about
their state of execution. Basic protection is enabled by several privilege rings of
operation and memory protection/management units (MPU/MMU), controlled
by control registers, coprocessors and configurations in memory. Information can
potentially flow via multiple system components and operations, such as memory
accesses by the CPU, directly accessible registers, side effects of control registers,
coprocessors, timing channels, device ports, device accesses to memory, or inter-
rupts, to just name a few. Therefore it is crucial to understand and document the
information flows that are possible on a complex platform. These flows are not al-
ways obvious. For example, on some x86 processors it is possible for low-privilege
code to overwrite higher privilege code by writing to an address that usually
refers to the video card [5]. To enable this attack, it suffices to flip a configu-
ration bit usually accessible from the low privilege level. On ARM, comparison
instructions change flags in the current program status register (CPSR). When
switching processes, those flags therefore need to be cleared or reloaded from
the register bank of the invoked process. Peripheral devices further increase a
system’s complexity. Assigning them to only one process per device is sometimes
insufficient to prevent information flow between processes. If a device has the
capability of performing direct memory access (DMA), it can be programmed to
circumvent the access policy of the MMU unless advanced hardware support for
virtualization is provided and this support is soundly configured, which is by no
means self-evident. Even if the configuration of DMA controllers is monitored to
prevent copying between partitions, undesired information flows can still occur.
For example, a device can fire an interrupt depending on the content of mem-
ory controlled by a user process, allowing for side channel communication based
on the delays introduced by such interrupts. Given the complexity of modern
hardware, it is not trivial to avoid misconfiguration. In previous work [10] we
introduced a formal information flow analysis of ARMv7 user mode execution on
instruction set architecture (ISA) level, however, not yet covering devices. With
devices, the system’s state increases and so does the set of possible information
flows. CPU and multiple DMA devices with unknown behaviour can execute in
parallel, possibly accessing the same memory, with an unknown interleaving.

This paper presents the following contributions. First, we extend the Cam-
bridge HOL4 model of the ARM architecture [7] by a general device framework.
To the best of our knowledge, this is the first theorem prover model for de-
vices capable of reasoning on DMA. It is sufficiently detailed to capture possible
information flows on modern systems. The adaptation to other processor ar-
chitectures can be done with a minor effort. Second, we identify several secure
device configurations. Since the focus is on platform information flow security
rather than functionality, we do not restrict verification to concrete device spec-
ifications, but provide a suitable abstraction. For the verification of a system’s

238 O. Schwarz and M. Dam

separation properties, it is then sufficient to show that the configuration of the
system devices complies with the identified abstract requirements. Finally, based
on the proposed configurations and the device framework, we prove the following
partitioning-related properties of the ARMv7 architecture with devices:

1. Non-infiltration states that the user mode execution of an ARMv7 processor
is independent of devices that neither write to the memory accessed by the
active process nor fire interrupts.

2. The integrity property of extended non-exfiltration states in turn that user
mode processes are unable to influence devices that do not read from CPU-
modifiable memory. Moreover, other protected resources1, such as memory
of neighboring processes, can not be modified by the process. That is true
even if dedicated peripheral devices do access these resources in parallel.
More specifically, the transformation of these resources depends only on such
dedicated and inaccessible devices.

3. The third property, filtered device non-infiltration, states that devices which
operate on disjunct resources can not influence each other without the in-
teraction of the CPU.

One of the added challenges in the formulation and verification of the prop-
erties compared to [10] is that - with CPU and devices operating in parallel
- different principles can cause different effects on the shared state. Covering
separation during user mode execution, the results can be applied in the verifi-
cation of hypervisors, separation kernels and operating systems. To the best of
our knowledge, this is the first work on non-interference like platform properties
for autonomous device execution.

2 Related Work

Hillebrand et al. [9] describe a pen and paper model, later formalized in Is-
abelle/HOL [1], for a memory-mapped hard disk integrated with a RISC archi-
tecture. The model includes side effects on device port reads/writes, interrupts
and an external environment. The latter is also used to realize non-determinism,
especially in timing matters. Direct memory access is not covered. Furthermore,
unlike ARM, the processor model does not perform multiple memory operations
per instruction (instruction fetches are assumed to not refer to device ports),
which allows for executing processor and device steps in an interleaved way after
one another, without considering device progress within a single processor step.
In [1] they describe the exploitation of an oracle that enables the sequentializa-
tion of the concurrent execution of devices and CPU. While the concrete order
of events in a system is hard to predict, this oracle allows for the quantification
over all execution orders and external inputs. These results were applied in the
functional correctness verification of a microkernel [2]. The system architecture
includes concurrent devices; besides a hard disk used for page fault handling also
1 See Section 6.3 for the complete list of protected resources.

Formal Verification of Secure User Mode Device Execution with DMA 239

devices accessible by user processes are considered. Using refinement techniques,
the authors were able to establish a simulation relation between an abstract
microkernel programming framework and the instruction level. On the abstract
levels devices are represented as ghost data structures.

Duan and Regehr [4] describe a general device model framework integrated
with the HOL4 model for ARM6 by Anthony Fox [6] in a lock-step manner. They
provide a proof of concept for a UART device and its driver, presenting state-
ments on functionality, (memory) safety and timing. Similar to [9] and [1], they
model side effects of memory mapped accesses to device ports and exploit input
streams. Again, DMA is not supported. The authors prove that the integration of
new devices to the system does not cause new undefined behaviour and preserves
already established system predicates. This allows to verify driver correctness for
one device at a time, but clearly would not hold for DMA devices. In his PhD
thesis [3], Duan integrates his model into the Cambridge model of ARMv7 and
adds reasoning about interrupts. Since ARMv7 has instructions that perform
multiple memory accesses, device port reads/writes have been integrated into
the primitives for memory accesses. Also autonomous device transitions are in-
tegrated into the execution cycle, however, they occur only once per instruction.
In a DMA setting this is not sufficient since physical memory can be changed
by devices between two memory accesses from the CPU side. In order to reason
about DMA with a finer granularity and to allow for non-deterministic device
progress, we propose a different model in Section 5.

Monniaux modelled a USB controller in C and used an extended version
of the Astrée static analyzer to verify that neither controller nor its driver will
transfer data incorrectly [11]. He includes asynchronous DMA into his reasoning.
By modelling the controller’s behaviour with non-deterministic choices, an over-
approximation is achieved. Isolation from untrusted software is not discussed.

XMHF [12] is a hypervisor framework for x86 exploiting virtualization sup-
port, in particular the DMA protection of Intel Vt-d and AMD’s device exclusion
vectors. The framework allows unmodified guests direct device access. System
devices are included in the attacker model. Exploiting the model checker CBMC,
mainly memory integrity is verified. As for direct memory access, CBMC verifies
that the control register value written to the DMA protection hardware register
has the bit set which enables DMA protection. The DMA table is manually au-
dited. However, it seems that the actual effects of devices or the DMA protection
unit are not part of the model. In the present paper we focus on systems without
hardware support for virtualization.

The properties shown in this paper are inspired by Heitmeyer et al. [8], who
formulated non-infiltration and non-exfiltration for a separation kernel. We adapt
those properties to a platform with DMA devices and a CPU in user mode.

3 The HOL4 ARM Model

We base our work on Fox et al’s monadic HOL4 ISA model [7] of ARMv7 plat-
forms without hardware extensions such as TrustZone or virtualization support.

240 O. Schwarz and M. Dam

arm_state = < | psrs : PSRName → ARMpsr;
regs : RName → word32;
memory : word32 → word8;
coproc : coprocessors;
accesses : memory_accesslist;
misc : Monitors # ARMinfo # bool # bool | >;

Fig. 1. The ARM state in HOL4

Figure 1 shows a simplified definition of the processor state in this model. The
function psrs returns the value of a processor state register (of type ARMpsr).
The processor state registers include the current program status register, CPSR,
in addition to the banked psrs SPSR_m for each privileged mode m, except for sys-
tem mode. The ARMv7 core provides seven processor modes: one non-privileged
user mode usr, and six privileged modes, activated when an exception (such as
an interrupt) is invoked. The function regs takes a register name and returns its
value. The ARM registers include sixteen general purpose registers (r0− r15)
that are available from all modes in addition to the banked registers of each priv-
ileged mode that are available only in that mode. The function memory maps an
address (word32) to a byte (word8). Caches are not represented in the model. The
field coproc represents the set of coprocessor registers in CP14 and CP15 implic-
itly influencing execution, to a large extent even user-mode/exception execution.
The field misc represents exclusive monitors for synchronization purposes, gen-
eral information about the state, e.g. the architecture version, if the system is
waiting for an interrupt etc, and accesses records the accesses to the memory.

A computation in the monadic HOL4 ARM model is a term of the type

α M = arm_state �→ (α, arm_state) error_option

where error_option is a datatype defined as:

(α, β) error_option = ValueState of α ⇒ β | Error of string

Computations act on a state (arm_state) and return either ValueState a s, a
new state s along with a return value a of type α, or an error e (if the computation
is underspecified by the ARM specification). The monad unit constT injects a
value into a computation, i.e. constT a s = ValueState a s, while binding is a
sequential composition operation

f1 �=e f2 = λs.case f1 s of Error c → Error c

| ValueState a s′ → if e s′ then f2 a s′ else f1 s.

That is, if e holds in the final state of f1, the return value of f1 is passed to f2 as
the input parameter, otherwise f2 is not executed. In addition to unit and bind-
ing, the ARM monadic specification uses standard constructs for lambda, full
conditional, let, and case, as well as the monad operations parallel composition,
positive conditional (condT e f = if e then f else constT ()), error (errorT a =
Error a), and an iterator. Values of state components can be obtained and set by
readT f = λy.(ValueState (f y) y) and writeT f = λy.(ValueState () (f y)).

Formal Verification of Secure User Mode Device Execution with DMA 241

4 Memory Management

The Memory Management Unit (MMU) enforces memory access policies and
is therefore crucial for isolation. MMU configurations consist of page tables in
memory and dedicated registers of CP15. Specific to ARM is the possibility of
partitioning pages into collections of memory regions (domains), each represent-
ing one security role. The coprocessor registers involved are SCTLR, TTBR0 and
DACR. The SCTLR register determines whether the MMU is enabled, TTBR0 con-
tains the base address of the page table, and DACR manages the ARM domains.

In [10] we extended the ARM model with MMU functionality. The extended
model defines two key functions, permitted, to account for access permissions,
and mmu_setup, to reflect a “good configuration” property. The permission eval-
uation function permitted a bw (vs, vt, vd) bp m takes as parameters an address
a, a flag bw indicating whether reading or writing access is to be evaluated, the
values of SCTLR, TTBR0 and DACR, a flag bp indicating whether permissions are to
be checked against a privileged mode, and the memory m containing the page
tables. The pair of booleans returned by permitted states whether the access
permission on the specified location is defined in the given configuration, and
the outcome of that decision (true if access is granted). Here, we apply a basic
version of permitted, supporting one-level page tables with an identity address
translation, but including the interpretation of ARM domains. It is shown that
permitted is defined for all addresses in all reachable states.

The history of memory accesses is tracked in the accesses ghost field of the
machine state, allowing to compute the set of memory locations accessed by
an instruction. To stop computation after the first access violation, '=nav has
been chosen as standard binding operator. The property nav s holds if there
is no access violation recorded in state s. Formally, this is the case if there is
no entry in the access list of machine state s that causes permitted to return
a negative answer in the current configuration of s. The recording of an access
always happens before the access itself.

We finally need to formulate a suitable well-formedness condition for the MMU
configuration. Let accessible i a express that address a is readable and writable
by user process i. Other, more refined, static user level access policies can be
supported with minor effort. The predicate mmu_setup i s holds if (i) the MMU
configuration ((d, p) = permitted a bw (mmu_registers s) ⊥ s.memory) for any
address a and access type bw is defined (i.e., d is true), (ii) the state s implements
the desired access policy for process i (i.e., p = accessible i a), and (iii) none of
the active page tables in s (represented by the address set page_table_adds s)
is accessible according to the policy.

mmu_setup i s :=
∀a,w, d, p. ((d, p) = permitted a bw (mmu_registers s) ⊥ s.memory)
⇒ d ∧ (p = accessible i a) ∧ (a ∈ (page_table_adds s) ⇒ ¬accessible i a)

For the properties shown in Section 6 we furthermore prohibit user space pro-
cesses to access device ports by assuming that the (state-independent) set of
device addresses and accessible addresses are disjoint for every user process.

242 O. Schwarz and M. Dam

5 Device Model Framework

We present a general device model framework, capable of reasoning on DMA
devices and with the ambition to cover all possible executions of a platform
where the single-core processor and multiple devices run in parallel. In practice,
changes to shared resources such as memory happen asynchronously and in a
practically unpredictable order. We apply a non-deterministic approach that
takes into account all possible interleavings and - to be conservative on timing
behaviour - all possible durations of device and CPU actions, without restrictions
on deadlines. Naturally, this does not allow to reason on whether an operation
will be finished before a certain event or not. A timing accurate model would need
to take CPU and system implementation specific details into account, including
caches, MMU implementation specifics (such as the translation lookaside buffer),
pipeline architecture and bus contention protocols. Models at this level of detail
are surely interesting, but likely to be vastly more complex. The main challenge
when integrating DMA into a device model is that memory can potentially
change at any time, for example, between reading two words belonging to a
multiple load instruction. Also inter-device communication can occur in any
order and granularity. This precludes models that synchronize CPU and devices
only between different CPU instructions. To address this challenge and allow for
asynchronous device execution, we augment the CPU model with an abstract
scheduler as suggested in [1], an oracle of the type

oracle : num → (dev_name # word32 option) option

The oracle provides a non-deterministic sequence of activity entries where the
n-th activity entry oracle n is either NONE (then the CPU is progressed rather
than a device) or a tuple SOME (d, eiopt), indicating the device with identi-
fier (dev_name) d to progress one step, possibly in the context of the op-
tional external 32-bit input eiopt. We assume processor liveness: ∀n. ∃m. (m ≥
n) ∧ (oracle m = NONE). Liveness of devices can be optionally included, but is
not required for the properties we show in this paper. To include devices into
the machine state, arm_state is extended by the following components:

devices : dev_rec;
ext_out : dev_name → word32 list;
int_fired : bool;
counter : num

The record devices subsumes the states of all devices 2. The external output is
represented by a finite stream of 32-bit words for each device, accessible via the
map ext_out, mapping each device identifier to the list of outputs produced
so far for that device. Whether an interrupt has been fired during the current
execution cycle is stored in int_fired. Fast interrupts or advanced interrupt
controllers are not part of the model. Finally, counter points to the current po-
sition in the oracle index and is incremented every time the oracle is invoked.
Devices can progress in one of four ways:

2 We notate devices.d for the state of the device with identifier d in the record
devices.

Formal Verification of Secure User Mode Device Execution with DMA 243

– Autonomously: A device may make processor-independent progress, either by
entirely internal actions or by receiving external inputs, accessing memory,
raising interrupts, or producing external outputs. The function

progress : device �→ (word32 option)
�→ (mem_req option # bool # word32 option # device) option

takes as arguments a device state D and a possible external input eiopt.
It returns either an "error" (NONE) representing undefined behaviour or a
tuple (ropt, bint, eoopt, D

′) with an optional read/write access request ropt to
the system’s memory bus (including an address and the access type), a flag
bint indicating a possible interrupt, an optional external output eoopt and the
updated device state D′. This function is used to progress devices with a non-
deterministic frequency after every executed CPU instruction and between
memory accesses made by the CPU or other devices.

– Upon reception of a pending reply to a memory bus read : As a result of an
autonomous step, a device can send a read request to the bus, in order to
read from the system memory or from the port of another device. The result
is communicated to the device by invoking the receive operation:

receive : device �→ mem_req �→ mem_answer �→ device option

For a given device state D and request r being answered, receive D r v
passes the read value v (as either byte or word) to D and returns either
an error (NONE) or the updated device D′. Write operations requested by
devices do not have an answer and thus change only the memory, but not
the device. We assume that reads are atomic operations and the memory
bus will always complete an issued read before handling new operations. In
other words, we exclude scenarios where a device notices that one of its ports
is being read and already starts side effect computations affecting memory
or other system components without first returning the requested value.
That is no limitation for the properties we show in this paper, since we do
not consider port accesses in them. As for reads from physical memory, for
any race condition outcome there is always one initiation of the oracle that
represents this outcome within the model.

– As side effect on port reads : The CPU or another device may read from an
address that is mapped to a device. This address can belong to a device
register, but in general it is not required that such a register is physically
existing, for example when the address is associated with a side effect. We
therefore use the general term port rather than register. We assume atomic
32-bit accesses to device ports and that port accesses are not cached. The
function

d_read : device �→ word32 �→ (word32 # device) option

takes as arguments a device state D and the port number indicating which
port of the device is to be read. A special data structure of the model maps
any virtual address to either physical memory or a device identifier together
with a port number. The result of d_read is either NONE or the read 32-bit
value together with a possibly updated device state D′.

244 O. Schwarz and M. Dam

advance_single f n := readT (λs. s.devices) �=T

(λD̂. (case oracle n of NONE ⇒ constT ()
|SOME (d, eiopt) ⇒
condT (f d)

(case progress D̂.d eiopt of NONE ⇒ errorT ε
|SOME (ropt, bint, eoopt, D

′) ⇒
update_device d D′ �=T

(λu. update_output d eoopt �=T

(λu. condT bint

(writeT (λs. s with int_fired := T)) �=T

(λu. case ropt of NONE ⇒ constT ()
|SOME r ⇒ mem_acc_by_dev r d))))) �=T

(λu. increment_counter))

Fig. 2. The advance_single computation

– As side effect on port writes : the function

d_write : device �→ word32 �→ word32 �→ device option

takes as arguments a device state D, the port number indicating which port
of the device is to be written to and the 32-bit value to be written. It returns
either an error (NONE) or the updated device state D′.

Different types of devices will have different behaviour. That is, the concrete
functionalities of the device functions depend on the addressed device. While
d_write and d_read are integrated into the existing memory access primitives
of the ARM model (similar to [3]), progress and receive are used to realize
autonomous progress of devices. Figure 2 defines advance_single f n that uses
the oracle at position n to determine the next device to progress autonomously
and that updates the state with the effect of this progress accordingly. Subse-
quently, resulting memory requests are realized (including possible side effects
when directed to other devices) and finally counter is increased. A filtering pred-
icate f can be used to apply those steps only to devices d for which f d holds.
Here, update_device and update_output update the devices and ext_out

components of the current state, respectively, and mem_acc_by_dev r d real-
izes the memory access request r on behalf of device d. Our model does not
include any IOMMU. The repeated execution of advance_single is realized
by advance, where for n > 0, advance f n traverses the oracle with filtering
predicate f up to oracle position n and advance f 0 traverses the oracle until a
NONE as activity entry indicates that execution will continue on the CPU side.
The advance computation will synchronize devices and CPU before each mem-
ory bus access (for memory mapped ports and physical memory) of the CPU3

3 Consequently, accesses to the shared state, in particular the memory bus, determine
the granularity of the system.

Formal Verification of Secure User Mode Device Execution with DMA 245

next := (clear_alist �=
(λu. readT (λs. s.int_fired ∧ ¬s.psrs(0, CPSR).I) �=
(λb. if (¬b) then

waiting_for_interrupt �=
(λw. condT (¬w)

(fetch_instruction �=T

(λ(o, i). is_viol �=T (λa. clear_alist �=
(λu. if a then prefetch_abort

else (execute i �=T (λu. is_viol �=T

(λa. condT a
(clear_alist �=
(λu. data_abort)))))))))) �=T

(λu. advance all 0)
else take_irq_exception �= (λu. clear_interrupts))))

Fig. 3. The next computation

and additionally between two execution cycles. The model supports instruction
fetching from device addresses, but we assume that page table walks are not
performed on device ports. In the properties shown in this paper we assume
an MMU setting that prohibits both, by choosing device addresses, page table
addresses and user space accessible memory to be disjoint.

Incorporating the MMU and device extension, the instruction execution func-
tion next (Fig. 3) involves the following functionality: if an interrupt is pending
and not masked, an interrupt exception is taken. Otherwise, the CPU may (if re-
quested so by the previous instruction) wait for an interrupt or fetch and execute
the next instruction pointed to by the program counter. If an access violation
is recorded during instruction fetching or execution, a prefetch or data abort
exception is initiated. The access list is cleared between the single steps and
unconditional binding '=T is used occasionally, preventing the execution from
halting and instead allowing the initiation of exceptions and the detection of pos-
sible further violations. In addition to the synchronization phases before any of
the CPU’s memory operations, possible autonomous device steps are considered
after each instruction execution, in order to account for interrupt initiations.

As discussed earlier, our model is not clock accurate. While this is common
with related work, usually a fixed duration is assumed for all instructions [3].
In our model, durations are non-deterministic, controlled by the oracle. How-
ever, given a specific oracle sequence, memory extensive instructions generally
consume more oracle entries (i.e, time). For the properties of this paper and the
targeted abstraction level, concrete instruction time is not relevant.

6 Security Properties

We next turn to formalizing several partitioning properties in terms of non-
infiltration and non-exfiltration (cf. [8]), adapted to our setting, i.e., arbitrary

246 O. Schwarz and M. Dam

and unknown user mode code executing on an ARMv7 CPU and in parallel
with DMA devices. The isolation does not rely on an IOMMU. Together with a
proper separation kernel (configuring devices, mediating user registers etc.) the
discussed properties allow for establishing full process isolation within a system.

6.1 Suitable Device Configurations

Since isolation between CPU and DMA devices requires controlled device be-
haviour, we first describe possible device configurations that we consider secure.
They allow the devices to change their internal state in an arbitrary way, but
impose restrictions on DMA and interrupts. Kernels are responsible for realiz-
ing such a device configuration, in order to guarantee that process isolation is
maintained when yielding to user mode. We expect those configurations to stay
preserved throughout the whole user mode execution (while access to device
ports is forbidden to both CPU and other devices). Formally, a configuration
C is called invariant if it is preserved over autonomous steps, including the
reception of replies to autonomously issued read requests:

invariant C := ∀D. C D ⇒
(∀eiopt, ropt, bint, eoopt, D′.
(progress D eiopt = SOME (ropt, bint, eoopt, D

′)) ⇒ C D′)
∧ (∀r, v, D′. (receive D r v = SOME D′) ⇒ C D′)

A property P holds on a device D in a stable way if it is established by an
invariant configuration C:

stable P D := ∃C. invariant C ∧ C D ∧ (∀D′. C D′ ⇒ P D′)

The stable properties we are interested in guarantee that devices are configured
in a way that prevents them from communicating with other devices, running
into an undefined state, accessing memory out of well-defined boundaries or firing
interrupts in dependency on DMA operations. We believe that many devices
(e.g., timers or DMA controllers) can be configured to respect those restrictions.
The restricted_dma predicate holds if a device is configured to restrict its
DMA requests to a set A of memory addresses.

restricted_dma A D := ∀eiopt, r, bint, eoopt, D′.
(progress D eiopt = SOME (SOME r, bint, eoopt, D

′)) ⇒ (access_request_map r ⊆ A)

Here, access_request_map maps a memory request to the set of byte ad-
dresses it involves. A device is called silent if A does not include device ports.
Devices not firing interrupts are called interrupt_free. We say that a device is
errorfree, if progress and receive do not return NONE for any inputs. Based
on those properties, we distinguish three specific device configurations: devices
involving DMA operations on the memory of the active process, devices involv-
ing DMA operations on the memory of other processes, and devices that are
allowed to fire an interrupt.

own_devices i D := stable (restricted_dma (own_add i)) D
∧ stable interrupt_free D

foreign_devices i D := stable (restricted_dma (foreign_add i)) D
∧ stable interrupt_free D

interrupt_devices D := stable (restricted_dma empty_set) D

Formal Verification of Secure User Mode Device Execution with DMA 247

Fig. 4. a.) non-infiltration, b.) extended non-exfiltration, c.) filtered device non-
infiltration

Here, own_add i is the set of addresses belonging to process or partition i, while
foreign_add i spans exactly over the other user partitions. We do not allow
a device to do both, accessing memory and firing interrupts. This is to prevent
information flow from a user process’ memory to another process’ perception of
execution time. 4 For a given user process i we assign each device d to one of three
classes, OWN i d, FOREIGN i d or INTERRUPT d, that correspond to the configura-
tions own_devices i D, foreign_devices i D and interrupt_devicesD, re-
spectively. While configurations refer to a concrete device state D, device classes
are state-independent. We require that each device is in at least one of the three
classes. The system properties discussed in the following subsections have a cor-
rect configuration of the devices as a prerequisite. The configuration of each
device in the current state is supposed to follow the specification of the given
class. Moreover, devices are not allowed to communicate with other devices or
to run into an underspecified state.

device_setup i s := ∀d.
(OWN i d ⇒ own_devices i s.devices.d)

∧ (FOREIGN i d ⇒ foreign_devices i s.devices.d)
∧ (INTERRUPT d ⇒ interrupt_devices s.devices.d)
∧ stable errorfree s.devices.d ∧ stable silent s.devices.d

6.2 Non-infiltration

Confidentiality of the kernel and neighboring user processes (including their
devices) and the integrity of the active user process is guaranteed by non-
infiltration, a noninterference-like property at the user mode single instruction
level. Consider two machine states in user mode that are low equivalent in the
sense that the two states agree on the resources (devices, registers and mem-
ory) that are permitted to influence user mode execution, but do not necessarily

4 Alternative configurations could allow DMA devices to fire interrupts, as long as
those interrupts are masked while foreign processes are executing. However, this
requires a very careful and more complex design at kernel level to avoid timing
channels when interrupts occur close to context switches.

248 O. Schwarz and M. Dam

agree on other resources. Non-infiltration (Fig. 4.a) holds if the poststates, after
execution of one instruction, remain low equivalent (or produce the same error).

Theorem 1. Non-infiltration

∀s1, s2, i. (mode s1 = mode s2 = usr) ∧ mmu_setup i s1 ∧ mmu_setup i s2
∧ device_setup i s1 ∧ device_setup i s2 ∧ bisim i s1 s2

⇒ (∃t1, t2. (next s1 = ValueState () t1) ∧ (next s2 = ValueState () t2)
∧ bisim i t1 t2) ∨ (∃e. (next s1 = Error e) ∧ (next s2 = Error e))

The relation bisim is the low equivalence relation. User mode processes are al-
lowed to be influenced by the user mode registers, the memory assigned to them,
devices with access to that memory, interrupt devices, the CPSR, the coproces-
sors, pending access violations and the misc state component. Formally:
bisim i s1 s2 :=

(s1.counter = s2.counter) ∧ (s1.int_fired = s2.int_fired)
∧ equal_user_regs s1 s2 ∧ (∀a. accessible i a ⇒ (s1.memory a = s2.memory a))
∧ (∀d. OWN i d ∨ INTERRUPT d

⇒ (s1.devices.d = s2.devices.d) ∧ (s1.ext_out d = s2.ext_out d))
∧ (s1.psrs(CPSR) = s2.psrs(CPSR)) ∧ (s1.coproc.state = s2.coproc.state)
∧ (nav s1 = nav s2) ∧ (s1.misc = s2.misc)

Non-infiltration guarantees that system components outside the bisim relation
can not give rise to information flow. In particular, privileged registers, memory
foreign to the current process and devices that operate on such memory can not
influence the execution on the CPU. External output has no impact on other
components either. However, it was included into the relation to obtain guaran-
tees on that information from the kernel and neighboring processes can not be
leaked through the system’s output, as long as the configuration of the devices
producing that output prevents them from accessing confidential memory.

6.3 Extended Non-exfiltration

Non-exfiltration guarantees the integrity of resources foreign to the active user
process. Given a valid configuration for user process i active, the execution of
a single instruction in user mode will not modify any other resources but those
considered to be modifiable by i. In [10] this was expressed by the equality
of protected components in pre- and poststate. However, when some of those
protected components are modified by devices executing in parallel, this equality
can not be proven. Therefore, we extend non-exfiltration to a triangle shaped
property (compare Fig. 4.b), in which the poststate t of a system-wide progress
is compared to both, the prestate s and a third state of comparison r that is the
result of applying only the effects of the device operations to the prestate.

Theorem 2. Extended Non-exfiltration
∀s, t, r, i. (mode s = usr) ∧ mmu_setup i s ∧ device_setup i s
∧ (next s = ValueState () t) ∧ (advance all t.counter s = ValueState () r)
⇒ intact i s t r

Formal Verification of Secure User Mode Device Execution with DMA 249

For synchronization, advance is applied up to the oracle counter state in post-
state t. The intact relation between the prestate s with active process i, the
poststate t and the comparison state r guarantees that coprocessors and memory
not belonging to any user process remain unchanged. The memory of neighbor-
ing user processes, new interrupts, and devices that do not access memory of
i, are determined by the device operations only. In particular, they can not be
influenced by writing to the memory of i. The only modifiable registers are the
CPSR, user mode registers, and the PSR and the link register of the mode in t.

intact i s t r :=
(t.coproc = s.coproc) ∧ (∀a.(∀j.¬accessible j a) ⇒ (t.memory a = s.memory a))

∧ (∀a, j. (i 	= j) ∧ accessible j a ⇒ (t.memory a = r.memory a))
∧ (t.int_fired = r.int_fired)
∧ (∀d. FOREIGN i d ∨ INTERRUPT d

⇒ (t.devices.d = r.devices.d) ∧ (t.ext_out d = r.ext_out d))
∧ (∀q. q /∈ accessible_regs (mode t) ⇒ (t.regs(q) = s.regs(q)))
∧ (∀p. p /∈ {CPSR, spsr_(mode t)} ⇒ (t.psrs(p) = s.psrs(p)))

6.4 Filtered Device Non-infiltration

In addition to the non-infiltration property of the overall system, we provide one
for device activities only. It can be combined with extended non-exfiltration to
guarantee that devices not accessing the active partition form their own group
of resources which executes independently from the CPU. Formally, filtered de-
vice non-infiltration (Fig. 4.c) states that devices configured to not access more
than the memory of active process i (devices d for which OWN i d holds) cannot
influence devices not operating on that memory. Consequently, when comparing
two systems and their executions, removing the activities of devices in the OWN

class from one of the executions (through the filtering predicate of advance) will
not change the effects that the other devices can observe.

Theorem 3. Filtered Device Non-Infiltration

f2 = (λd. f1 d ∧ ¬OWN i d) ∧ devsim i s1 s2
∧ device_setup i s1 ∧ (advance f1 n s = ValueState () t1)
∧ device_setup i s2 ∧ (advance f2 n s = ValueState () t2)
⇒ devsim i t1 t2

The devsim equivalence relation describes the resources visible to interrupt de-
vices and to devices that operate on memory of non-active user processes.

devsim i s1 s2 :=
(s1.counter = s2.counter) ∧ (s1.int_fired = s2.int_fired)

∧ (∀a, j. (i 	= j) ∧ accessible j a ⇒ (s1.memory a = s2.memory a))
∧ (∀d. ¬OWN i d ⇒ (s1.devices.d = s2.devices.d) ∧ (s1.ext_out d = s2.ext_out d))

250 O. Schwarz and M. Dam

7 Implementation

We proved the theorems of Section 6 for the ARMv7 platform inside HOL4. This
work extends the proof presented in [10], in which we showed non-infiltration,
non-exfiltration and mode switching properties for ARMv7 user mode execution
on ISA level without devices. Given the complexity of the ARM model and
the instruction set, we exploited automation based on a sound, but incomplete
inference system. For example, for two computations f and g that both preserve
non-infiltration, the inference rule for sequential composition derives that also
f 'nav g preserves non-infiltration. We have proven further rules for parallel
composition, loops, alternatives, lambda abstraction and other constructors of
the operational semantics. They enabled us to develop a proof tool for relational
and invariant reasoning that - after being provided with the desired properties for
primitive operations - was able to discharge large parts of the proof obligations
(but not all) automatically. Details are discussed in [10].

In the present extended work, the separation properties had to be proven man-
ually for advance, mainly because they would not hold for intermediate compu-
tations in isolation. Due to the complexity, this was one of the main challenges.
We followed a bottom-up approach. Basic properties on mem_acc_by_dev, a
rather extensive case analysis and automatic simplification allowed for the veri-
fication of properties on advance_single. This step often required to split the
analysis into the effects on the device currently progressed by advance_single

and the effects on all other devices. Finally, properties for advance were proven
by induction. In order to allow for the continued application of the proof tool to
the existing parts, we had to verify the transitivity of advance. Subsequently, the
vast majority of the automatic proofs could be repeated without any interrup-
tions, which gives confidence that our proof framework scales well for extensions
of the platform model. The Cambridge model of ARM is 9 kLOC. In addition to
the ARM model, we rely mainly on the relatively small inference kernel of the
HOL4 theorem prover, our MMU extension (about 180 lines of definitions), the
device framework (about 350 lines) and the formulation of the discussed prop-
erties (about 380 lines). The entire proof script has a length of about 20 kLOC
and needs roughly two and a half hours to run on an Intel(R) Xeon(R) X3470
core at 2.9 GHz. We invested about five person months of effort into this work.

8 Conclusion and Future Work

We extended the Cambridge HOL4 ISA model for ARM by a general device frame-
work for DMA devices. Based on the extended model we identified secure device
configurations and proved several isolation properties for platforms where DMA
devices execute in parallel with a CPU in user mode. The results can be used in
separation proofs, be it in a hypervisor, separation kernel or operating system set-
ting. Model, properties and verification approach can be adapted to other archi-
tectures. We gained confidence that our proof framework scales well for extensions
of the model. The model allows for further interesting angles, which we plan to ex-
plore in futurework: It is rather commonthatdevices communicatewith eachother.

Formal Verification of Secure User Mode Device Execution with DMA 251

So far, we can only support such constellations by merging communicating devices
into one block, so that the model understands the block as a single device. Remov-
ing this restriction comes with the challenge of ensuring that device configurations
still remain secure when devices are allowed towrite to ports of other devices. Prob-
ably easier to achieve is the augmentation of the set of device classes by devices that
neither use DMA nor interrupts, but that can be accessed by user space processes.
A UART interface managed by a single process is one such example. From a secu-
rity perspective, such a device is similar to physical memory assigned to a process,
in spite of the self-modifying nature and external influence that such components
have. Even if devices (like a timer) are shared between different user processes, user
modeaccess to theirports canstill preserve isolation, for example, if thataccess is al-
ways reading. Further potential futurework includes the investigation of connected
external input/output channels or the enhancement of the model by an IOMMU.

Acknowledgments. Work supported by framework grant "IT 2010" from the
Swedish Foundation for Strategic Research.

References
1. Alkassar, E., Hillebrand, M.A.: Formal functional verification of device drivers. In:

Shankar, N., Woodcock, J. (eds.) VSTTE 2008. LNCS, vol. 5295, pp. 225–239.
Springer, Heidelberg (2008)

2. Alkassar, E., Paul, W.J., Starostin, A., Tsyban, A.: Pervasive verification of an OS
microkernel. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010.
LNCS, vol. 6217, pp. 71–85. Springer, Heidelberg (2010)

3. Duan, J.: Formal verification of device drivers in embedded systems. PhD thesis,
the University of Utah (2013)

4. Duan, J., Regehr, J.: Correctness proofs for device drivers in embedded systems. In:
Proceedings of the 5th International Conference on Systems Software Verification,
SSV 2010. USENIX Association, Berkeley (2010)

5. Duflot, L., Etiemble, D., Grumelard, O.: Using CPU system management mode to
circumvent operating system security functions. In: Proc. CanSecWest (2006)

6. Fox, A.: Formal specification and verification of ARM6. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 25–40. Springer, Heidelberg (2003)

7. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-
struction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

8. Heitmeyer, C., Archer, M., Leonard, E., McLean, J.: Applying formal methods to
a certifiably secure software system. IEEE Trans. Softw. Eng. 34(1), 82–98 (2008)

9. Hillebrand, M.A., In der Rieden, T., Paul, W.J.: Dealing with I/O devices in the
context of pervasive system verification. In: International Conference on Computer
Design (ICCD): VLSI in Computers and Processors, pp. 309–316 (2005)

10. Khakpour, N., Schwarz, O., Dam, M.: Machine assisted proof of ARMv7 instruction
level isolation properties. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS,
vol. 8307, pp. 276–291. Springer, Heidelberg (2013)

11. Monniaux, D.: Verification of device drivers and intelligent controllers: a case study.
In: Embedded Software (2007)

12. Vasudevan, A., Chaki, S., Jia, L., McCune, J., Newsome, J., Datta, A.: Design,
implementation and verification of an eXtensible and Modular Hypervisor Frame-
work. In: Security and Privacy (2013)

Supervisory Control of Discrete-Event

Systems via IC3

Mohammad Reza Shoaei1,	, Laura Kovács2,		, and Bengt Lennartson1

1 Department of Signals and Systems
2 Department of Computer Science and Engineering

Chalmers University of Technology, Gothenburg, Sweden
{shoaei,laura.kovacs,bengt.lennartson}@chalmers.se

Abstract. The IC3 algorithm has proven to be an effective SAT-based
safety model checker. It has been generalized to other frameworks such
as SMT and applied very successfully to hardware and software model
checking. In this paper, we present a novel technique for the supervi-
sory control of discrete-event systems with infinite state space via IC3.
We introduce an algorithm for synthesizing maximally permissive con-
trollers using a generalized IC3 to find (if any exists) a weakest inductive
invariant predicate which holds in the initial state, is maintained as the
system evolves, and implies safety and control properties. To this end,
we use a variation of IC3, called Tree-IC3, as a bug finder to solve the
supervisory predicate control problem by iteratively reporting all feasible
counterexample traces using a tree-like search, while controlling the sys-
tem to avoid them. The maximally permissiveness is achieved by finding
the weakest of such controllers that is invariant under safety and control
properties. Experimental results demonstrate the great potential of using
IC3 technique for the purpose of the supervisory control problems.

Keywords: Discrete-event systems, Supervisory control theory, Incre-
mental inductive verification, IC3.

1 Introduction

Supervisory Control Theory (SCT), established by Ramadge and Wonham
[4,26,25], is a formal framework for modeling and control of discrete-event sys-
tems (DES). Problems that SCT can address include dynamic allocation of re-
sources, the prevention of system blocking, etc. and, within these constraints,
maximally permissive system behavior. Traditionally, there are a certain num-
ber of modeling formalisms that can be used for investigating feedback con-
trol of DES, such as state machines (SMs), automata, and extended finite-state

� This work was supported by the Wingquist Laboratory VINN Excellence Center
within the Area of Advance – Production at Chalmers University of Technology,
and the Swedish Governmental Agency for Innovation Systems (VINNOVA).

�� This research was supported in part by the Swedish VR grant D0497701, the Austrian
FWF RiSE grant S11410-N23, and the WWTF PROSEED grant ICT C-050.

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 252–266, 2014.
c© Springer International Publishing Switzerland 2014

Supervisory Control of Discrete-Event Systems via IC3 253

machines (EFSMs), which are state machines with variables, see e.g. [28,5,30].
The control requirements on DES are expressed by specifications in terms of
regular languages, in the case of DES modeled by SMs or automata, or in terms
of constraints on the states (expressed by formula), in the case of DES modeled
by EFSMs. The focus of this theory is on systematical synthesis of provably safe
and nonblocking controllers for a given uncontrolled system, called plant.

Nevertheless, the industrial acceptance of SCT is still scarce due to the follow-
ing two drawbacks: the computational complexity of synthesizing a controller and
state-space explosion, owing to limited amount of memory when working with
large state-space. Researchers in the DES community are therefore seeking effec-
tive synthesis techniques to avoid these pitfalls. For example, for systems with
finite behavior, [21,10] propose an efficient synthesis technique using BDDs, in
[23] an algorithm is presented that iteratively strengthens the formula on transi-
tions so that forbidden or blocking states become unreachable, and in [7] a SAT-
based approach is presented. Furthermore, for systems with infinite behavior,
[16,24] propose approaches for synthesis of DES using predicates and predicate
transformers. However, the approach in [16] works only with systems modeled
by equations over an arithmetic domain and with very few uncontrollable events.

On the other hand, several researchers in the formal methods community
have investigated safety of programs using verification techniques such as BMC
[2], interpolation [18], k-induction [27], and recently IC3 [3]. The IC3 algorithm
has proven to be an effective SAT-based safety model checker [29]. It has been
generalized to other frameworks such as SMT and applied very successfully to
hardware and software model checking [6,13]. Recently, Morgenstern et al. [22]
proposed a property directed synthesis method for game solving, which is also
inspired by IC3. However, [22] only checks whether a system is controllable, by
computing an overapproximation for the winning states, but does not construct
(synthesize) a winning strategy.

In this paper, we present a novel technique for supervisory control of DES
with infinite state space via IC3. To this end, we use a generalized form of IC3
as reported in [6], called Tree-IC3, to find (if any exists) a weakest inductive
invariant predicate which holds in the initial state, is maintained as the system
evolves, and implies safety and control properties. In particular, for a DES mod-
eled by EFSMs and a safety property expressed by a set of “legal” locations,
we use Tree-IC3 to find violation of safety property by searching over abstract
paths of the system. Whenever a violation is found, corresponding transitions
of the system are strengthened by a controller to avoid violation of the safety
properties. An evaluation of the proposed IC3-based technique on standard SCT
benchmarks shows a radical improvement for systems with large domains com-
pared to BDD-based and SAT-based approaches. It should be noted that, to the
best of our knowledge, this work is the first attempt to use incremental, inductive
techniques, such as IC3, for solving supervisory control problems, which opens
new venues of research in supervisory control theory.

The remainder of the paper is organized as follows. Section 2 briefly describes
the background. In Section 3, we introduce the incremental, inductive super-

254 M.R. Shoaei, L. Kovács, and B. Lennartson

visory control (IISC) algorithm and in Section 4 we discuss our experimental
results. Finally, we draw some conclusions and directions for future work in
Section 5.

2 Background

In this paper, we use standard notion of first-order logic (FOL) and assume
quantifier-free formulas. We denote formulas with φ, ψ, I, T, P , variables with
x, y, and sets of variables with X,Y . A literal is an atom or its negation. A
clause is a disjunction of literals, whereas a cube is a conjunction of literals. A
formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
and in disjunctive normal form (DNF) if it is a disjunction of cubes. With abuse
of notation, we might sometimes denote formulas in CNF φ1 ∧ · · · ∧ φn as sets
of clauses {φ1, . . . , φn}, and vice versa. A subclause p ⊆ c is a clause p whose
literals are a subset of literals in c.

We write φ(X1, . . . , Xn) to indicate that all variables occurring in φ are
elements of

⋃
iXi. For every variable x, we assume the existence of a unique

variable x′ representing the next value of x. Given a formula φ, we use φ〈n〉 to
denote the addition of n primes to every variable in φ, representing the value of
variables in φ at n time units in the future. Similarly, for any set X of variables,
we let X ′ := {x′ | x ∈ X} and X〈n〉 := {x〈n〉 | x ∈ X}.

Throughout the paper, we use the standard notion of theory, satisfiability,
validity, and logical consequences. Given a theory T , φ |=T ψ (or simply φ|=ψ)
denotes that the formula ψ is a logical consequence of φ in the theory T . Fur-
thermore, given a modelM = (I,D), where D is the domain of elements and I
(over D) is the interpretation function, we write (d1, . . . , dn) |=Mφ(X1, . . . , Xn)
for some di ∈ DXi (i > 0), or simply d |=φ, to denote (d1, . . . , dn) ∈ (φ)I .

2.1 Modeling Discrete-Event Systems

State Machine. The behavior of a discrete-event system to be controlled,
called the plant, is modeled as a state machine (SM) [15]. Let the tuple G =
〈Q,Σ, δ,Qi〉 denote an SM, representing a plant, where Q denotes the state
set, Σ denotes the finite set of events (alphabet), δ ⊆ Q × Σ × Q denotes the
transition relation, and Qi ⊆ Q denotes the subset of initial states. We say that
a state q ∈ Q is reachable in G if there is a sequence of transitions from an initial
state q0 to q, i.e., (q0, σ0, q1)(q1, σ1, q2) · · · (qn−1, σn−1, qn) in G where q0 ∈ Qi

and qn = q. Let C : Q → 2Σ be a function. For any σ ∈ Σ and q ∈ Q, we say
that σ is enabled by C in state q if σ ∈ C(q). The restriction of G to C, denoted
G|C , is described by the state machine GC = 〈Q,Σ, δC , Q

i〉, where δC is defined
according to: (q, σ, r) ∈ δC if and only if (q, σ, r) ∈ δ and σ ∈ C(q).

Extended Finite State Machine. In practice, plants are often used for mod-
eling programs or industrial systems with data dependency. In order to model

Supervisory Control of Discrete-Event Systems via IC3 255

such systems, in a compact and efficient way, we extend SMs with variables, in
which FOL formulas are used to represent data flow in the system.

Let X denote the set of system variables. An extended finite state machine
(EFSM) over X is a tuple A = 〈L,Σ,Δ, li, lf , Θ〉, where L is the set of finite
locations, Σ is the alphabet, Δ is the set of transitions, li ∈ L is the initial
location, lf ∈ L is a special location called error location (or forbidden location),
and Θ(X) is a formula that describes the initial values of variables. A transition
in Δ is a tuple (l, a,m), where l,m ∈ L are respectively the entry and exit
locations of the transition and a = (σ, ϕ) is the action of the transition, where
σ ∈ Σ is the event of the transition and ϕ(X∪X ′) is the formula of the transition.
When no confusion is possible, we often write σ :ϕ instead of (σ, ϕ).

A path in A is a sequence of transitions of the form (l0, σ0 : ϕ0, l1)(l1, σ1 :
ϕ1, l2) · · · (ln−1, σn−1 : ϕn−1, ln). We say that the path (i) is an error path if

l0 = li and ln = lf ; (ii) is feasible iff the formula
∧

i ϕ
〈i〉
i is satisfiable; and (iii)

is spurious if it not feasible. A plant is safe when all the paths leading to lf are
not feasible.

To simplify the presentation of the algorithms, it is assumed that every lo-
cation has at least one outgoing transition. This can be done, say for location
l ∈ L, by adding a self-loop (l, ε : $, l) to Δ, where ε /∈ Σ is an empty event.

State Machine Representation: Fix a model M = (I,D). Then A can be de-
scribed by SM GA = 〈QA, Σ, δA, Q

i
A〉, where QA = L × D is the (possibly

infinite) set of states, each of which is a pair of location and variables valua-
tion, Qi

A = {〈li, d〉 ∈ QA | d |=Θ} is the set of initial states, and δA is defined
according to: (〈l, d〉, σ, 〈m, d′〉) ∈ δA iff (l, σ :ϕ,m) ∈ Δ and (d, d′) |=ϕ.

Symbolic Representation: The EFSM A can also be described symbolically by
a symbolic transition system (STS) SA = 〈X̂, T (X̂ ∪ X̂ ′), I(X̂)〉, where X̂ is
the extension of variables set X by adding two special elements xL and xΣ ,
with domain L and Σ respectively, I(X̂) = (xL = li) ∧ Θ, and T (X̂ ∪ X̂ ′) =∨

(l,σ:ϕ,m)∈Δ(xL = l)∧ (xΣ = σ) ∧ ϕ∧ (x′
L = m). In what follows, we shall drop

the hat on X̂, as context will determine the intended meaning. Given SA, the
safety of EFSM A can be shown by proving that all the reachable states of SA are
a subset of the states symbolically described by the formula P := ¬(xL = lf),
namely, SA satisfies the invariant property P .

Note that, for any EFSM A, SA and GA (which both represent low level
behavior of A) are related in a way that SA also symbolically represents the
state machine GA. Thus, any property that holds on SA holds on GA as well. In
the sequel, to simplify the mathematical representation of the problem, we shall
freely switch between these two low level descriptions of A and use the one that
offers the simplest representation.

Abstract Reachability Tree. Given an EFSM A = 〈L,Σ,Δ, li, lf , Θ〉 over
X , we further define an abstract reachability tree (ART) A = 〈V,E〉 for A as
follows: (i) V is a set of quadruples (l, φ, σ, k), where l ∈ L is a location, φ(X) is a

256 M.R. Shoaei, L. Kovács, and B. Lennartson

formula, σ ∈ Σ is an event, and k ∈ N is a unique identifier; (ii) vε := (li, Θ, ε, 1)
is the root of A, where ε /∈ Σ is an empty event; (iii) for every non-leaf node
v := (l, φ, σ, k) ∈ V , for every transition (l, β :ϕ(X ∪X ′),m) ∈ Δ, v has a child
node w := (m,ψ, β, h) such that φ ∧ ϕ |= ψ′ and k < h; and we call ϕ the edge
formula of w. In the sequel, we shall use the following notations for any ART A:

– For any node v := (l, φ, σ, k) in A, φ and σ are called the abstract state
formula and event of node v, respectively. If l = lf , v is called an error node.

– A node v := (l, φ, σ, k) is said to be covered in A if either: (i) there exists an
uncovered node w := (l, ψ, β, h) in A such that h < k and φ |= ψ; or (ii) v
has a proper ancestor for which (i) holds.

– li � lj denotes a path in A from a node (li, ψ, β, h) to a descendant node
(lj , φ, σ, k) with h < k.

– For any path π := (l0, φ0, σ0, .) � · · · � (ln, φn, σn, .) in A, with (ab)use of
notations, we let ΣA(π) and ΔA(π) denote the sets of [σ0, . . . , σn] events and
[ϕ0, . . . , ϕn−1] edge formulas of π, respectively. In the sequel, we sometimes
view π as a subset of nodes π ⊆ V .

We say that A is complete if all its leaves are covered or their abstract state
formula is equivalent to ⊥; A is safe iff it is complete and for all error nodes
(lf , φ, σ, k) in A, we have that φ |=⊥. If an EFSM A has a safe ART, then A is
said to be safe [12,19]1.

2.2 Supervisory Control

This section recalls the supervisory (predicate) control framework of [25,16].
Let A = 〈L,Σ,Δ, li, lf , Θ〉 be an EFSM and let S be the STS over symbolic
state space X (i.e. X̂). The alphabet Σ is classically partitioned into the two
disjoint subsets, the controllable events Σc, whose occurrence can be inhibited by
the controller (also called supervisor) and the uncontrollable events Σu, which
can never, or need not, be disabled. Let P (X) := ¬(xL = lf) be the safety
property that represents a set of good states. The control task is to design
a static controller C : X → 2Σ for S that guarantees safety property P by
restricting the conduct of S, i.e., as the system (restricted to C) evolves (unrolls),
it visits only the states where P holds. Note that, since a controller cannot
restrict uncontrollable events, we also have that for each (symbolic) state s ∈ X ,
Σu(s) ⊆ C(s), where Σu(s) is the set of uncontrollable events defined at s.

In order to present formally the control task, we need the following notations.
Given S, for any predicate R(X) and for any σ ∈ Σ, let

Fσ(R)(X) := ∃X0 . R(X0) ∧ T (X0, X) ∧ (xΣ = σ)

1 In fact, e.g. in [19], this property is shown for systems modeled by program graphs.
However, any EFSM can be transformed to the equivalent program graph by simply
dropping their event set Σ and conjuncting Θ with formula of all outgoing transition
of their initial location.

Supervisory Control of Discrete-Event Systems via IC3 257

be the strongest post-condition predicate transformer for S w.r.t. σ, i.e., Fσ

holds on the set of states of S that are reached by the transition with event σ
from a state where R holds. We write F , Fu, and F∗ for respectively

∨
σ∈Σ Fσ,∨

σ∈Σu
Fσ, and

∨
n≥0 Fn, where F0 is defined to be the identity predicate trans-

former. For given predicate R, F∗(R) holds in those states which are reachable
from a state where R holds in zero or more number of transitions. Thus, F∗

is useful in characterizing the reachability set of STS S. Furthermore, the re-
striction of F to R, denoted F|R, is a new predicate transformer defined by:
F|R(W) = F(R ∧W) ∧R for any predicate W (X).

Problem 1 (Supervisory Predicate Control Problem). The control task is to con-
struct a static controller C : X → 2Σ for S such that F∗

S|C (I) |=P .

That is, Problem 1 requires that the state trajectories in the controlled system
S|C , starting from the initial states I, remain confined to the set of states where
the safety predicate P holds, and visit only the states where P holds. Thus, the
controlled system guarantees safety.

Given any predicate R(X), we say that R is a controllable and safe invariant
predicate (C-SIP) for S if:

1) R |=(F|R)∗(I),
2) Fu(R) |=R, and
3) R |=P .

That is, 1) R is a fixed-point of the predicate transformer F|R starting from the
initial states I, 2) if S starts in a state where R holds, then under the execution
of any transition with uncontrollable event it remains in a state where R holds,
and 3) R implies the safety property.

The solution to the Problem 1 exists if and only if there exists a predicate R
that is C-SIP for S2. Indeed,⊥ is always a possible solution. Therefore, the notion
of permissiveness has been introduced in SCT framework to compare the quality
of different (predicate) controllers for given plant. For any two predicates R1 and
R2, we say that R1 is more permissive (less restrictive) than R2 if R1 ≡ R1∨R2.
Now, for a family of C-SIPs for S, we let R↑ :=

∨
{R | R is a C-SIP for S}

denotes the maximally permissive C-SIP for S. The real challenge is to find R↑

for given S.

Discussion. In SCT framework, in addition to safety and control properties, it
is desired for the controlled system to be nonblocking. This property guarantees
that at least one marked state (which is also referred to as accepting state or
final state) is reachable from any state in the controlled system. The nonblocking
property is known to be a “global” behavior, as opposed to the “local” behavior
of error (forbidden) states, so the condition that a state is nonblocking can-
not be expressed as a property of the state alone, without considering possible
progress from the state. However, deadlocks, unmarked states with no outgoing

2 We refer the interested reader to [16] for proof of the above claim.

258 M.R. Shoaei, L. Kovács, and B. Lennartson

transitions, can be expressed (locally) as a property of each state. Thus, we con-
sider deadlocks as a special form of error states. In this paper, however, we do
not discuss the full supervisory control problem but instead we will focus on an
important subclass of problems, i.e., safety and controllability problems.

2.3 Incremental, Inductive Verification

The term incremental, inductive verification has been used to describe algo-
rithms that use induction to construct lemmas in response to property-driven
hypotheses, e.g., the IICTL [11] and IC3 [3] algorithms. In this section, we briefly
recall the original IC3 algorithm, as formulated in [9], and its extension to SMT,
as described in [6].

IC3 Algorithm. Given a STS S = 〈X,T (X ∪X ′), I(X)〉, let P (X) describes
a set of good states. The IC3 algorithm tries to prove that S satisfies P by
maintaining formulas F := F0(X), . . . , Fk(X), where F is called a trace and
Fi (i ≥ 0) are called frames, such that:

– F0 = I;
– for all i > 0, Fi is a set of clauses;
– Fi+1 ⊆ Fi (thus, Fi |=Fi+1);
– Fi(X) ∧ T (X ∪X ′) |=Fi+1(X

′);
– for all i < k, Fi |=P .

For i > 0, Fi represents an over-approximation of the states of S reachable in i
transition steps or less. Initially, F0 is set to the initial states I. The algorithm
proceeds incrementally, by alternating two phases:
(i) Blocking phase: The trace is analyzed to prove that Fk and ¬P do not
intersect, thus Fk |= P . More specifically, IC3 maintains a set of pairs (s, i),
where s is a cube representing a set of states that can lead to a bad state and
i > 0 is a position in the trace. New clauses are added to (some of) the frames
in the trace by (recursively) proving that a set s of a pair (s, i) is unreachable
starting from Fi−1. This is done by checking the satisfiability of the formula

Fi−1 ∧ ¬s ∧ T ∧ s′ (1)

If it is unsatisfiable, i.e. Fi−1 blocks ¬s, and s does not intersect with I, then
IC3 strengthens Fi by adding ¬s to it. If, instead, it is satisfiable, i.e. Fi−1 is not
strong enough to block s, then IC3 computes a (generalized) cube p representing
a subset of the states in Fi−1∧¬s such that all the states in p lead to a state in s′

in one transition step. Afterwards, IC3 tries to block the pair (p, i− 1) (namely,
it tries to show that p is not reachable in one step from Fi−2). This procedure
continues recursively, possibly generating other pairs to block at earlier points
in the trace, until either IC3 generates a pair (q, 0), meaning that the system
does not satisfy the property and a counterexample is constructed, or the trace
is eventually strengthened so that the original pair (s, i) can be blocked.

Supervisory Control of Discrete-Event Systems via IC3 259

(ii) Propagation phase: The trace is extended (if Fi |= P) with a new formula
Fi+1, moving forward the clauses from Fi. If, during this process, two consecutive
frames become identical, i.e. Fi = Fi+1, then a fixed-point is reached, and IC3
can terminate with Fi being an inductive invariant proving the property. For
more elaboration on IC3 algorithm we refer to [3,9].

IC3 Extension to SMT. For proving safety property (and later for construct-
ing R↑) of plants modeled by EFSMs, it is more convenient to work at a higher
level of abstraction, using SAT modulo theories (SMT). To this end, as described
in [6], we replace the underlying SAT engine with an SMT solver3. With the new
solver, if the formula (1) is satisfiable, then a new pair (p, i − 1) will be gener-
ated such that p is a cube in the preimage of s w.r.t. T . That is, to existentially
quantify the variables X ′ in (1), eliminate the quantifiers, and then convert the
result in DNF. This will generate a set of cubes {pj}j which in turn generate a
set of pairs {(pj , i− 1)}j to be blocked at i− 1. In what follows, we shall assume
that the SMT solver has a procedure PREIMAGE for computing the preimage.

3 Incremental, Inductive Supervisory Control via IC3

We now present the incremental, inductive supervisory (predicate) control (IISC)
algorithm via IC3.

Outline. In high-level description, the algorithm constructs a controller (if any
exists) for given plant by alternating between two phases:
(i) Error-Finding, which the algorithm searches for error location in the plant
by unwinding it into an abstract reachability tree (ART). Whenever an error lo-
cation is found, it tries to refute the abstract path to that location by applying
a procedure that mimics the blocking phase of IC3. In case of failure to refute
the error path, it returns a counterexample trace;
(ii) Supervision, which the algorithm tries to control the current counterex-
ample trace from reaching the error location by strengthening the clauses at-
tached to the controllable nodes (i.e. nodes with controllable event) in the path.
Thus, the path is blocked from reaching the error location. In order to fulfill the
maximally permissiveness criteria, the process strengthens only the nearest con-
trollable node from the error location. This guarantees that the controller does
not restrict the plant more than what is necessary to refute the error location.
However, when there are no controllable nodes to be controlled (strengthen),
the safety property is violated. Thus, the algorithm returns the counterexam-
ple trace. Otherwise, if the blocking process is successful, the counterexample is
refuted and the algorithm continues the search.

3 There are, however, some crucial steps which must be made before switching from
SAT to SMT solver, for which we refer to [6].

260 M.R. Shoaei, L. Kovács, and B. Lennartson

procedure IISC(EFSM A = 〈L,Σ,Δ, li, lf , Θ〉):
global: The EFSM A and an ART A = 〈V,E〉
let vε := (li, Θ, ε, 1) be the root of A
while there exists an uncovered leaf v ∈ V :

if v := (lf , φ, σ, k) and φ 	|=⊥ :

(F, status) = IC3-BLOCK-PATH(π := vε � v)

switch status :

case CTX

/* in case π is a feasible error path */

if SUPERVISE(F, π) = false :

/* error path π cannot be controlled */

return the counterexample trace F

case Blocked

/* in case π is refuted */

for i = 0 to size of π :

UPDATE-INV(F [i], π[i])

else:

STRENGTHENING(v) /* as in [6] */

COVERING(v) /* as in [6] */

UNWINDING(v) /* as in [6] */

return /* the plant A is successfully supervised */

Fig. 1. Incremental Inductive Supervisory Control Algorithm

IISC Algorithm. Fig. 1 illustrates the IISC algorithm. The algorithm is built
upon the Tree-IC3 technique in [6] as it arrives to finding and refuting abstract
paths to the error location. The search proceeds in an “explicit-symbolic” fash-
ion, i.e., the given plant is unwound into an ART, following a DFS strategy.

The algorithm starts by selecting an uncovered leaf, v := (l, φ, σ, k). If v is an
error node (namely, l = lf) then the algorithm tries to refute the abstract path
to this node (i.e., πf := vε � v) by calling the IC3-BLOCK-PATH procedure, see
Fig. 2. Note that, in order to construct a correct ART, when IC3-BLOCK-PATH

checks whether a cube c is blocked by a set of clauses Fi−1, the inductiveness
check (1) is replaced with a weaker check

Fi−1 ∧ Ti−1 |=¬c′ (2)

However, because of this replacement, the requirement that Fi+1 ⊆ Fi is not en-
forced anymore. With this adaptation, the procedure tries to produce the clauses
necessary to refute the abstract path and terminates successfully whenever an
empty clause is generated. In case of failure to refute the path, the property is

Supervisory Control of Discrete-Event Systems via IC3 261

procedure IC3-BLOCK-PATH(π :=(li , Θ, ε, 1) � · · · (li, φi, σi, .) · · · � (lf , φn, σn, .)):

let T := [ϕ0, . . . , ϕn−1] = ΔA(π) /* ϕi are the edge formulas */

let F := [Θ, . . . , φi, . . . , φn−1] /* φi are the clauses of the nodes */

while not exists 0 < j < n s.t. F [j] ∧ T [j] |=⊥ :

let stack = ∅
foreach bad in PREIMAGE(φn−1 ∧ T [n− 1]) :

/* bad is a cube in the preimage of T [n− 1] */

stack.push((bad, n− 1))

while stack is not empty :

c, j = stack.top()

if j = 0 : /* π is a feasible error trace */

let B = [c0, . . . , cn−1] be the counterexample trace

return (B,CTX)

if F [j − 1] ∧ T [j − 1] |= ¬c′ :
stack.pop() /* cube c is blocked */

/* ¬c can be generalized before adding to F [j] */

F [j] = F [j] ∧ ¬c
else:

foreach p in PREIMAGE(F [j − 1] ∧ T [j − 1] ∧ c′) :

stack.push((p, j − 1))

return (F,Blocked) /* path π is blocked */

Fig. 2. IC3 blocking path procedure

violated and a counterexample trace is returned4. If IC3-BLOCK-PATH returns
a counterexample trace, then the algorithm tries to control the path πf from
reaching the error location by calling the SUPERVISE procedure, see Fig. 3. In the
supervision phase, the nearest controllable ancestor of v, say vi := (li, φi, σi, h)
s.t. σi ∈ Σc, is controlled by strengthening (conjuncting) its incoming edge for-
mula Ti−1, with negation of (bad) cube c, i.e. Ti−1 = Ti−1∧¬c′. Thus, the check
(2) becomes satisfiable which implies that the cube c is blocked at vi.

In case that the leaf node v is not an error node, the following procedures are
applied to v: STRENGTHENING in which v is strengthened by forward propagating
the clauses of its ancestor; COVERING in which v is covered thus can be closed,
whenever the set of states of v is contained in the states of some previously
generated node w having the same location; and UNWINDING, which expands the

4 Note that, our formulation of the IC3-BLOCK-PATH procedure is slightly different
from the original one in [6]. In particular, we set F0 to denote initial formula Θ
instead of �. We also note that ¬c can be generalized before being added to Fi.
Although this is quite important in practice for effectiveness of IC3, here for brevity
we shall not discuss this.

262 M.R. Shoaei, L. Kovács, and B. Lennartson

procedure SUPERVISE(B, π):

if ΣA(π) ⊆ Σu : return false

T := [ϕ0, . . . , ϕn−1] = ΔA(π)

let i be the size of π

while i > 0 :

let vi := (li, φi, σi, .) = π[i]

UPDATE-INV(vi ,¬B[i])

if σi /∈ Σu ∪ {ε} :

/* strenghening edge formula */

T [i− 1] = T [i− 1] ∧ ¬(B[i])′

break
i = i− 1

return true

procedure UPDATE-INV(vi , ψ):

/* vi :=(li, φi, σi, .) */

foreach cj ∈ψ s.t. φi 	|=cj :

add cj to φi,

uncover all nodes

covered by vi.

Fig. 3. Auxiliary procedures for the IISC algorithm

ART by generating the successors of v. Note that, for brevity, we have to omit
several important details in each procedure, for which we refer to [6].

Finally, the IISC algorithm terminates when either the given plant couldn’t
be controlled or there are no uncovered leafs left, indicating that the plant A is
controlled, by strengthening its transition formulas, thus guarantees the safety
property. In the former case, a counterexample trace to the error location is
returned. We also note that the termination of IISC algorithm is guaranteed
whenever the given plant A is defined over a finite domain, see [6,3,9].

Theorem 1. A maximally permissive C-SIP R↑ exists for a plant A if IISC(A)
terminates without a counterexample trace.

Proof. We sketch the proof as follows. Let A↑ := IISC(A) denote the EFSM
obtained from A by applying IISC algorithm in Fig. 1, and let RA↑ denote the
transition formula of STS SA↑ . Let F be the strongest post-condition predi-
cate transformer defined over SA. Since the IISC terminates without a coun-
terexample we immediately see that RA↑ |= (F|R

A↑)
∗(I) and RA↑ |= P , where

P := ¬(xL = lf). Also, because IISC only controls the transitions with con-
trollable events, clearly Fu(RA↑) |= RA↑ . Hence, RA↑ is a C-SIP for SA (see
definition of C-SIP in Section 2.2). Furthermore, the maximally permissiveness
of RA↑ comes from the fact that A is controlled only when a feasible error path
exists, and only the nearest controllable transition to the error location is con-
trolled (strengthened). Thus, we conclude that RA↑ is a maximally permissive
C-SIP for SA↑ .

Corollary 1. The solution to the Problem 1 exists if IISC algorithm terminates
without a counterexample trace.

Supervisory Control of Discrete-Event Systems via IC3 263

Table 1. Performance statistics on benchmark examples

Model IISC (s) SC-BDD (s)
SC-SAT (s)

[only verification]

CMT (1,5) 0.127 0.066 0.083

CMT (3,3) 0.430 1.639 2.128

CMT (5,5) 0.733 108 8.84

CMT (7,7) 0.975 T.O. T.O.

EDP (5,10) 0.98 0.168 14.36

EDP (5,50) 0.124 0.374 T.O.

EDP (5,200) 0.124 1.382 T.O.

EDP (5,10E3) 0.124 16.746 T.O.

EDP (5,10E5) 0.124 T.O. T.O.

PME 2.3 11.595 85.30

4 Experiments

The IISC algorithm has been integrated in the DES tool Supremica [1], in which
we embedded Z3 [8] as our SMT solver. We use the theory of Linear Real Arith-
metic for modeling formulas on transitions, which is well supported by Z3. To
compute the exact preimage of a cube c and a transition formula ϕ(X ∪ X ′),
we first convert the formula ϕ ∧ c′ to a DNF

∨
i pi and then use the quantifier

elimination function in Z3 to project each cube pi over current-state variables
X :

∨
i ∃X ′ . (pi). The under-approximate preimage of c w.r.t. ϕ can then be

constructed simply by picking only a subset of their exact preimage. In fact,
similar to [6], we also under-approximate by simply stopping after the first cube.

Furthermore, as in work [6,19], we applied the following improvements to
the implementation: A new instance of a program variable is used only when
that variable is modified. This eliminates many constraints of the form x〈i+1〉 =
x〈i〉 that occur when a variable is unmodified by a transition formula. Also,
instead of always using an under-approximate preimage procedure as in [6], a
threshold on the size of the clauses is introduced for deciding whether to use
under-approximate or exact preimage procedure. In our industrial examples,
however, this decision does not yield any substantial performance reduction.
Moreover, in practice, before processing a node we first check if the node is
covered. This often substantially reduces the overall run time of the algorithm.

For our evaluation, we compared the IISC algorithm with the Symbolic Su-
pervisory Control using BDD (SC-BDD) algorithm in [21,10] and SAT-based
Supervisory Control (SC-SAT) algorithm in [7], where we used the SC-SAT
algorithm for the safety and controllability verification only and not for the syn-
thesis. To this end, we used the following set of standard benchmarks in SCT:
the parallel manufacturing example (PME) [17], cat and mouse tower (CMT),
and extended Dinning Philosophers (EDP) [20].

264 M.R. Shoaei, L. Kovács, and B. Lennartson

Table 1 summarized the run time performance of the algorithms5. In this table,
CMT(n, k) denote the CMT problem with a tower composed by n identical levels,
k cats, and k mice; EDP(i, j) denote the EDP problem with i philosophers and
j intermediate states of each philosopher, and T.O. indicates time out (5 min).
As the table shows, for those examples with smaller domain, the SC-BDD is
slightly better than the IISC algorithm. The performance difference might be
because of the fact that once the BDD data structure is constructed, computing
a controller can be done very efficiently. Although, SC-SAT only reports if the
system is safe and/or it can be controlled, it performs poorly or time out in
most of the examples. One possible reason is that the SC-SAT algorithm needs
to enumerate all possible solutions (within the domain) using its underlying SAT
solver.

As the systems become larger (namely, domain of variables become larger),
the IISC approach obviously outperforms the SC-BDD and SC-SAT. With no
surprise, this owes to the fact that the BDD-based approaches suffer from expo-
nential space blow up of BDD nodes while representing a large state space, and
SAT-based approaches have the disadvantage of search for a single, often com-
plex, queries, which can in practice overwhelm the SAT solver. In contrast, the
performance of our approach (and in general, IC3-based approaches) depends on
the number of variables and transition formals rather than the actual number
of explicit states and transitions.

5 Conclusions and Future Work

In this paper we have presented a novel technique to synthesizing controllers for
discrete-event systems via IC3. More precisely, given a plant model and a safety
property, we used a variation of Abstract Reachability Trees to keep track of
both the invariants of reachable states and of permissible controller actions. The
reachability tree is constructed iteratively using an adaptation of the Tree-IC3
algorithm. Whenever a feasible error trace is encountered, the algorithm at-
tempts to strengthen the controller to rule out the error trace. If an error trace
cannot be removed by strengthening the controller, the system is uncontrollable;
if no more error traces can be found, the plant is successfully controlled. By the
properties of the construction, the controller is maximally permissive. Our exper-
iments demonstrate the potential of IC3-based techniques in supervisory control
of discrete-event systems compared to BDD-based and SAT-based approaches.

There are some promising directions of future research. IISC can be extended
to cover nonblocking control problem, in which IICTL technique [11] can be
exploited. Moreover, abstraction and optimization techniques can be used to
improve the overall performance of the controller synthesis. We also consider the
possibility of parallel implementation and using a hybrid approach that combines
IISC with interpolant-based approaches, such as [19,14], in order to get the
benefits of both techniques.

5 Benchmarks were performed on a workstation with a 2.67GHz Intel Core2 Quad
processor and 2GB of available memory.

Supervisory Control of Discrete-Event Systems via IC3 265

References

1. Åkesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica - An integrated envi-
ronment for verification, synthesis and simulation of discrete event systems. In: 8th
Int. Work. Discret. Event Syst., pp. 384–385. Ann Arbor, MI (2006)

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

3. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011)

4. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn.
Springer US, Boston (2008)

5. Chen, Y.L., Lin, F.: Modeling of discrete event systems using finite state machines
with parameters. In: IEEE Int. Conf. Control Appl. Conf. Proc., pp. 941–946 (2000)

6. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012)

7. Claessen, K., Een, N., Sheeran, M., Sörensson, N., Voronov, A., Åkesson, K.: SAT-
Solving in Practice, with a Tutorial Example from Supervisory Control. Discret.
Event Dyn. Syst. 19(4), 495–524 (2009)

8. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property di-
rected reachability. In: Form. Methods Comput. Des., pp. 125–134 (2011)

10. Fei, Z., Miremadi, S., Åkesson, K., Lennartson, B.: A symbolic approach to large-
scale discrete event systems modeled as finite automata with variables. In: 2012
IEEE Int. Conf. Autom. Sci. Eng., pp. 502–507. IEEE (2012)

11. Hassan, Z., Bradley, A.R., Somenzi, F.: Incremental, Inductive CTL Model
Checking. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 532–547. Springer, Heidelberg (2012)

12. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. ACM SIG-
PLAN Not., 58–70 (2002)

13. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012)

14. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and symbol elimination in vam-
pire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 188–195.
Springer, Heidelberg (2010)

15. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edn. Series in Computer Science,Education. Pearson
Education India (2007)

16. Kumar, R., Garg, V., Marcus, S.: Predicates and predicate transformers for su-
pervisory control of discrete event dynamical systems. IEEE Trans. Automat.
Contr. 38(2), 232–247 (1993)

17. Leduc, R., Lawford, M., Wonham, W.M.: Hierarchical interface-based supervisory
control-part II: parallel case. IEEE Trans. Automat. Contr. 50(9), 1336–1348 (2005)

18. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

266 M.R. Shoaei, L. Kovács, and B. Lennartson

19. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

20. Miremadi, S., Åkesson, K., Fabian, M., Vahidi, A.: Solving two supervisory control
benchmark problems using Supremica. In: 9th Int. Work. Discret. Event Syst.,
pp. 131–136 (2008)

21. Miremadi, S., Lennartson, B., Åkesson, K.: A BDD-Based Approach for Modeling
Plant and Supervisor by Extended Finite Automata. IEEE Trans. Control Syst.
Technol. 20(6), 1421–1435 (2012)

22. Morgenstern, A., Gesell, M., Schneider, K.: Solving games using incremental induc-
tion. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 177–191.
Springer, Heidelberg (2013)

23. Ouedraogo, L., Kumar, R., Malik, R., Åkesson, K.: Nonblocking and Safe Control
of Discrete-Event Systems Modeled as Extended Finite Automata. IEEE Trans.
Autom. Sci. Eng. 8(3), 560–569 (2011)

24. Ramadge, P.J., Wonham, W.M.: Modular Feedback Logic for Discrete Event Sys-
tems. SIAM J. Control Optim. 25(5), 1202–1218 (1987)

25. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 635–650 (1987)

26. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proc. IEEE,
Spec. Issue Discret. Event Dyn. Syst. 77(1), 81–98 (1989)

27. Sheeran, M., Singh, S., St̊almarck, G.: Checking Safety Properties Using Induction
and a SAT-Solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

28. Skoldstam, M., Åkesson, K., Fabian, M.: Modeling of discrete event systems using
finite automata with variables. In: 46th IEEE Conf. Decis. Control, pp. 3387–3392
(2007)

29. Somenzi, F., Bradley, A.R.: IC3: where monolithic and incremental meet. In: Form.
Methods Comput. Des., pp. 3–8 (2011)

30. Yang, Y., Gohari, P.: Embedded supervisory control of discrete-event systems. In:
Int. Conf. Autom. Sci. Eng., pp. 410–415 (2005)

Partial-Order Reduction

for Multi-core LTL Model Checking

Alfons Laarman1,2 and Anton Wijs3

1 Vienna University of Technology, Vienna, Austria�
2 University of Twente, Enschede, The Netherlands

3 RWTH Aachen University, Aachen, Germany
alfons@laarman.com, awijs@cs.rwth-aachen.de

Abstract. Partial-Order Reduction (POR) is a well-known, successful
technique for on-the-fly state space reduction in model checking, as ev-
idenced by the prestigious CAV 2014 award for its pioneers. The com-
bination of POR with LTL model checking is long known to cause the
so-called ignoring problem, i.e. relevant behavior is continuously ignored
and never selected for exploration. This problem has been solved with
increasing sophistication over the years, using various ignoring provisos,
which include all necessary actions along cycles in the state space.

However, parallel model checking algorithms still suffer from a lack
of an efficient solution; the best known ones causing severe decrease in
reductions. We present a new parallel ignoring proviso for POR, which
solves this issue by exploiting parallel DFS-based algorithms. Its similar-
ity to the sequential solutions allows the combination with sophisticated
earlier methods solving the ignoring problem. We prove correctness of
the new proviso and empirically show that it maintains good reductions,
runtime performance and parallel scalability.

1 Introduction

In explicit-state model checking, the correctness of a concurrent system descrip-
tion M is verified with respect to a property ϕ. This is done by exhaustively
exploring M ′s potential behavior in the form of a state-space graph. Explicit-
state model checking is still an indispensable technique for formal verification of
software systems. However, full verification is severely limited by the need to ex-
plore and store the entire state space, which is often exponential in the size ofM .

For many years, Moore’s law [25] guaranteed exponential advances in com-
putation capabilities, which for model checking meant that larger state spaces
– hence more complicated systems – could be analyzed. However, since a few
years, due to physical limitations, CPUs no longer deliver sequential speedups
with each new generation. Instead, now, the number of cores on CPUs grows

� Supported by the Austrian National Research Network S11403-N23 (RiSE) of the
Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund
(WWTF) through grant VRG11-005.

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 267–283, 2014.
c© Springer International Publishing Switzerland 2014

268 A. Laarman and A. Wijs

exponentially. Only by exploiting this parallelism can one regain the previous
growth trends, but parallelizing model checking algorithms is far from trivial.

Recently, it has been shown that original (sequential) verification algorithms
based on depth-first search (DFS) can be parallelized efficiently for shared-
memory multi-core machines [8,18,15]. These solutions do not attempt to par-
allelize DFS, but instead choose the optimistic approach to run several local
DFS-based threads (workers) and lazily communicate sub-results. By random-
ized traversal, the workers are expected to explore different parts of the state
space and communicate little. Results are typically shared in the DFS backtrack,
which might not scale in theory, but in practice the algorithms have shown good
speedups [8]. First, [19] demonstrated how to perform parallel LTL model check-
ing based on the classic Nested Depth-First Search (NDFS) algorithm [7]. Since
then, this technique has been improved in various forms of multi-core NDFS
algorithms [8,18,20], and also employed for detecting Strongly Connected Com-
ponents [24,23]. In the current paper, we focus on the currently best performing
version of multi-core NDFS [8,18], which is referred to as a Combination of MC-
NDFSs (CNDFS), because it is the state-of-the-art solution for multi-core LTL
model checking (see Section 2).

Besides exploiting parallelism, another approach to handle larger state spaces
is by partial-order reduction (POR), which prunes those concurrent interleavings
of M ′ behavior that are irrelevant w.r.t. ϕ. For each reachable state of M , POR
selects a subset of the locally executable transitions, based on a static analysis
of the dependency relations in M ′ behavior. It can yield exponential reduc-
tions [31, Section 3]. Since the discovery and subsequent solving of the ignoring
problem [29], POR can also preserve LTL properties [1]. The ignoring problem
occurs when POR indefinitely postpones ϕ-relevant behavior by selecting similar
subsets of transitions at the states along infinite execution traces of M (captured
as cycles in its finite state-space graph). This problem can be solved by adding
an ignoring proviso, i.e. a strengthening condition that limits the possible tran-
sition subsets allowed by POR. For LTL, practical ignoring provisos depend on
cycles. Due to their heuristic nature and the difficulty of identifying cycles in a
graph (see Section 2), efficient provisos have been studied for many years [9].

The combination of multi-core (LTL) model checking and POR benefits from
both approaches. The ignoring problem however complicates matters, as its so-
lution depends on detecting cycles in the state space, which are hard to detect
in parallel algorithms. Not surprisingly, some existing parallel approaches either
increase POR’s time complexity and/or reduce reduction capability [3] (c.f. [15]).

In the current paper, we show how the ignoring problem can be handled
efficiently using CNDFS and the novel parallel cycle proviso. We both mitigate
the loss of reductions witnessed in previous parallel POR-enabled model checking
algorithms, but also enable the use of several optimizations from [9].

The structure of the paper is as follows: in Section 2, preliminary notions are
introduced, and CNDFS and POR are presented. In Section 3, we lift POR to the
multi-threaded setting of CNDFS. Section 4 contains our experimental results,
and Section 5 discusses related work. Finally, Section 6 draws conclusions.

Partial-Order Reduction for Multi-core LTL Model Checking 269

2 Preliminaries

We choose an action-based representation of state spaces. The state-space graph
G consists of a (finite) set of vertices or states S, with an initial state s0 ∈ S, and
a set of edges, the transitions T ⊆ S×Σ×S, whereΣ represents a set of actions in
the system M , e.g. a statement for an imperative-language specification. We call
s′ a successor of s iff ∃α : (s, α, s′) ∈ T , denoted as s α−→ s′, or s → s′, in case
α is not relevant. Furthermore, we write s →+ s′ for (s, s′) ∈ T + (transitive
closure), and s →∗ s′ for (s, s′) ∈ T ∗ (reflexive, transitive closure). A path
through the state space between states s, s′ is denoted by s V

=⇒ s′, with V ∈ Σ∗

a sequence of actions α0, . . . , αn (n ∈ N and Σ∗ the set of all finite sequences
made up of actions in Σ) such that there exist states s0, . . . , sn+1 with s0 = s,
sn+1 = s′, and si

αi−→ si+1 for 0 ≤ i ≤ n. We define the set of reachable states
as: R ≡ {s ∈ S | s0 →∗ s}, i.e. a subset of S, or all syntactically-allowed
variable valuations in M .

To reflect the fact that the state space is generated on-the-fly, hence not
known a-priori, we sometimes use a next-state function en : S → 2S instead of
T directly. On-the-fly checking procedures iteratively query all successors of all
visited states, starting from the initial state.

To reason about correctness of reactive systems, ϕ may refer to infinite paths.
We consider properties that are already incorporated in the state space of M .
Well-known techniques exist to construct such so-called cross-products while still
allowing on-the-fly verification [1, Ch.4]). Such state spaces are (finite) Büchi
automata B = (G,F), where F ⊆ S is a set of accepting states. B accepts ω-
regular words VWω with V,W ∈ Σ∗ and Wω the infinite repetition of W . A
word VWω is accepted by B iff there exists an infinite path labeled VWω that
reaches an infinite number of accepting states. Since B is finite-state, this means
that there must exist a path s0

V
=⇒ s W

=⇒ s and for some XY = W , s X
=⇒ s′, we

have s′ ∈ F . Since s′ is an accepting state, we call s X
=⇒ s an accepting cycle. So,

finite Büchi automata accept all traces that end in an accepting cycle, i.e. are
lasso-formed. An accepted trace represents a counter-example in M to ϕ, hence
the verification problem is reduced to finding accepting cycles that are reachable
from the initial state, which can be done in time linear to the size of the state
space using, for example, the well-known sequential algorithm NDFS [7].

Multi-core LTL checking. CNDFS [8] is a parallel LTL model checking algorithm,
based on NDFS [7]. In NDFS, a DFS is run from s0 to find reachable accepting
states, and from each accepting state s ∈ F , a nested DFS is launched to find a
cycle containing s. Because of the order in which states are visited, NDFS runs
in time linear to the state space size. For clarity, in the following, we refer to the
outer DFS finding accepting states as the blue search, and to the nested DFS as
the red search. These colors relate to how the searches affect the global state of
the algorithm. Initially, all states are white. The blue search colors states cyan
when it puts states on its stack, and blue when the state is fully explored and
popped again from the stack (backtracked). The red search colors states pink
when placed on its stack, and red when backtracking.

270 A. Laarman and A. Wijs

Algorithm 1.. CNDFS with parallel cycle proviso (in boxed lines)

Require: ∀s ∈ S : s.prov = ?
1: procedure cndfs(s0, P)
2: dfsBlue1(s0) || . . . || dfsBlueP (s0)
3: report no-cycle

4: procedure dfsRedp(s)
5: s.pink [p] := true
6: Rp := Rp ∪ {s}
7: stack selp(s) := por(s)
8: for all s′ ∈ mixp(selp(s)) do
9: if s′.cyan [p] then
10: report accepting cycle

11: if s′ 	∈ Rp ∧ ¬s′.red then
12: dfsRedp(s

′)

13: if selp(s)=por(s)∧por(s)⊂en(s) then
14: new := ∃x ∈ por(s) : x.pink [p]
15: cas(s.prov , ?,new)
16: if s.prov = true then
17: selp(s) := en(s)
18: goto l.8

19: s.pink [p] := false

20: procedure dfsBluep(s)
21: s.cyan [p] := true
22: stack selp(s) := por(s)
23: for all s′ ∈ mixp(selp(s)) do
24: if ¬s′.cyan [p] ∧ ¬s′.blue then
25: dfsBluep(s

′)

26: if selp(s)=por(s)∧por(s)⊂en(s) then
27: new := ∃x ∈ por(s) : x.cyan[p]
28: cas(s.prov , ?,new)
29: if s.prov = true then
30: selp(s) := en(s)
31: goto l.23

32: s.blue := true
33: if s ∈ F then
34: Rp := ∅
35: dfsRedp(s)
36: await ∀s′ ∈ Rp ∩ F \ {s} : s′.red
37: forall s′ ∈ Rp do s′.red := true

38: s.cyan [p] := false

In CNDFS, several workers explore the state space mostly independently by
each running a randomized NDFS; it is randomized w.r.t. the order in which the
successors of each state are visited. Algorithm 1 without the boxed code (lines
13-18 and 26-31), and with selp(s) = en(s) at l.7 and l.22, shows CNDFS. The
algorithm is called for a given number of workers P . Each worker p starts by
executing dfsBluep(s0), which starts the blue search. A local set of successor
states selp(s) is initialized to en(s) at l.22. For clarity, we use a notation that
distinguishes such sets for different p and s, but in practice, a stack-local vari-
able is sufficient, i.e. the full definition of a function selp does not need to be
maintained throughout the search. This is indicated with the stack keyword.
Randomization of visiting successors of s is achieved through the function mix p.
If a state s is accepting, a red search is launched from it (l.35), to try to find a
cycle containing s. In the red search, again local state sets are used to inspect
successors (l.7). A cycle containing s is detected once a cyan state is reached
(l.9). Since a cyan state is on the stack of the blue search, and accepting state s
from which the red search has been launched is at the top of this stack, reaching
any cyan state means that a complete cycle exists containing s.

CNDFS scales particularly well because some information is shared between
workers. The blue color is shared between blue searches, hence when one worker
has colored a state blue, other workers will not explore it anymore (l.24) (of
course, local cyan states are also not added to the stack). In principle, one
would also like to share the red color between red searches. It has been shown [8],
however, that this cannot be done in a similar fashion. For correctness, one can

Partial-Order Reduction for Multi-core LTL Model Checking 271

only share this information once a red search has completely terminated. For
this reason, we use a worker-local red set Rp, consisting of the states that have
been explored by the red search of worker p, which is constructed as a red search
continues, and only made globally red (l.37) once the worker knows that all
out-of-order red searches in the same search region have terminated (l.36).

CNDFS’s complexity can be linear in the size of the graph, and its scalability
is good (although for some graphs, its performance reduces to that of sequen-
tial NDFS). CNDFS has been shown to perform better than the fixpoint-based
owcty algorithm [2] – for many years the best known algorithm for parallel
LTL model checking – which has a worst-case quadratic complexity.

Partial-order reduction. POR prunes interleavings by constraining the next-
state function en. This selection should preserve the property at hand (safety or
liveness), and can be performed with the state-local information combined with
some static analysis ofM (mainly involving the commutativity of its operations).

A (state-local) POR function prunes G on-the-fly during exploration by select-
ing in each state s a subset of the enabled transitions, the reduced set por(s) ⊆
en(s). POR definitions often allow multiple valid reduced sets, including trivially
por(s) = en(s). Smaller reduced sets often lead to smaller state spaces, but this
is not necessarily the case [31]. Therefore, POR is heuristic in nature.

Over the years, several techniques have been developed to select sufficient
subsets of enabled transitions, such as the stubborn set technique [30]. Since the
selection of subsets of enabled transitions is orthogonal to our proposed CNDFS
algorithm with POR, we consider the subset selection algorithm as a given,
implemented with a function por : S → 2S . For a detailed explanation of the
implementation of a POR subset selection algorithm, see [21].

The ignoring problem. Valmari identified the incompleteness of POR with re-
spect to the preservation of liveness properties [29]. As liveness properties reason
over infinite paths in B, (state-local) POR may exhibit ignoring, i.e. continuously
exclude actions leading to counter examples from the reduced set. The introduc-
tion of the ignoring proviso solved this, by forcing the involvement of all relevant
transitions when constructing reduced sets. Because these ignoring provisos de-
pend on global properties of B, i.e. cycles in its G, we first define a dynamic
function sel which relaxes the por function such that por(s) ⊆ sel(s) ⊆ en(s)..

The exact dynamic definition of sel will be part of the on-the-fly exploration
algorithms presented in the subsequent section. The definition of the proviso
now depends on the reduced state-space graph induced by sel a posteriori (after
the termination of the exploration algorithm). We denote this reduced graph
G = (s0, T ,S), with T ⊆ T such that each (s, α, s′) ∈ T is also in T iff s′ ∈ sel(s).
Transitions in this graph are denoted s→s′, and we define R ≡ {s ∈ S | s0→∗s}.
We define B as (G,F), so that any mention of G and R generalizes to B.

The ignoring proviso can now be defined on the reduced state space. (Ignoring
provisos weaker than the follwoing exist, see e.g. [32], but their refinements are
orthogonal to the cycle detection problem that we aim to solve here.)

Cycle. Along each cycle in G, at least one state s is fully explored (sel (s)=en(s)).

272 A. Laarman and A. Wijs

An implementation of the Cycle ignoring proviso thus needs to identify cycles
on-the-fly and include all transitions of at least one state on each cycle. However,
selecting the smallest set of states covering all (possibly overlapping) cycles is
an NP-complete problem, known as the vertex feedback set in graph theory [13].
Therefore, in practice, this proviso is implemented using DFS, which guaran-
tees full exploration of at least one state on each cycle, and can be performed
efficiently [9]. In this (stronger) form, the proviso is as follows:

Stack. When running a depth-first search (DFS) over G, each state s ∈ R that
has a successor s′ ∈ por(s) on the stack, should be fully explored.

The Stack proviso overestimates the amount of states to explore fully, but has
been improved over the years to yield excellent reductions [9].

In the next section, we present how to detect cycles in parallel, enabling POR
in that setting. The preciseness that is achieved by this method is expected to be
better than in related parallel solutions (see Section 4 for experimental results).

3 Multi-core Partial-Order Reduction

In the current section, we present a parallel cycle proviso for both safety and
liveness properties, for use in parallel DFS-based algorithms. The presented algo-
rithms indirectly implement the sel function on which the reduced state spaceR
was defined in the previous section. While we are mainly interested in a com-
plete solution for LTL model checking, we commence with a solution for safety
properties, in order to introduce the approach in a stepwise fashion.

3.1 Partial-Order Reduction for Safety Properties

Checking safety properties can be done through reachability analysis. To show
how the ignoring problem can be solved for safety properties, we introduce a
parallel algorithm that launches multiple DFS workers. We refer to this approach
as parallel DFS. While it is not the most efficient approach to do reachability
analysis – for a better approach see [16] – parallel DFS provides a nice first step
towards combining POR with CNDFS.

Safety properties are preserved by a weaker version of the ignoring proviso.
One such version concerns bottom Strongly Connected Components (SCCs), i.e.
SCCs without outgoing transitions:

BottomSCC. For all states s ∈ R of G, there exists a fully explored state s′

(sel(s′) = en(s′)) such that s→∗s′. (this boils down to having one fully
explored state in each bottom SCC of G, c.f. [32]).

Our parallel DFS with POR should detect at least one state in all bottom
SCCs in G. Valmari’s SCC method is optimal [29] for this purpose. However, we
use the stronger Stack’ condition, which serves our introductory purpose better
as it resembles the ignoring proviso required to preserve LTL (see the Stack
proviso in the previous section):

Partial-Order Reduction for Multi-core LTL Model Checking 273

Algorithm 2.. Parallel DFS with POR

Require: ∀s ∈ S : s.blue = false
Require: ∀s ∈ S , p : s.cyan[p] = false
1: procedure pardfs(s0, P)
2: dfs1(s0) || . . . || dfsP (s0)
3: report no-cycle

A: cas(s.prov , ?,∀x ∈ por(s) : x.cyan[p])
B: if s.prov = true then
C: selp(s) := en(s)
D: goto l.7

4: procedure dfsp(s)
5: s.cyan[p] := true
6: stack selp(s) := por(s)
7: for all s′ ∈ mixp(selp(s)) do
8: if ¬s′.cyan[p] ∧ ¬s′.blue then
9: dfsp(s

′)

10: if selp(s)=por(s)∧por(s)⊂en(s) then
11: if ∀x ∈ por(s) : x.cyan [p] then
12: selp(s) := en(s)
13: goto l.7

14: s.blue := true
15: s.cyan[p] := false

Stack’. When running a DFS exploration over G, each state s ∈ R for which
all successors in por(s) are on the stack, should be fully explored.

Consider Algorithm 2 without the boxed lines (lines 10–13 and A–D) and with
selp(s) = en(s) at l.6. (We use a local selp to explain how workers communicate
successor sets, the global sel is defined later.) It starts P parallel DFS workers at
l.2, which initially each independently traverse the state space (see the local cyan
color at l.5 and l.15, indicating that a state is currently on the DFS stack). When
backtracking, the workers communicate by marking states globally as visited at
l.14 (with the color blue). Clearly, this algorithm explores all reachable states,
and hence terminates on finite state spaces, since a state s is only colored globally
blue once all states reachable from s have either been explored (are colored blue)
or are going to be explored in the future (are colored cyan).

To introduce POR for safety properties, the ignoring proviso BottomSCC
needs to be satisfied. We show that this is done by adopting the Stack’ proviso
in parallel DFS as a parallel Stack’ proviso at l.10-13. The resulting algorithm
will find at least one state on each cycle, and this state will be fully explored by
at least one worker. At l.6, selp(s) is now actually set to por(s), and l.10 checks
whether this is still true. This ensures that the proviso check is performed at
most once for each state s on the stack. When all successors of s are on the
stack (∀x ∈ por (s) : x.cyan [p]) (l.11), the premise of the Stack’ proviso holds,
and all successors are selected for visiting at l.12 (to satisfy the conclusion of
the proviso), before restarting the for loop at l.13. (The redundant reselection
of por(s) ⊂ en(s) can be avoided, but is used here to simplify our proofs.) The
second time that l.10 is reached, selp(s) is no longer set to por (s), so the check is
not performed a second time. To handle the special case that por (s) = en(s), we
require at l.10 that selp(s) ⊂ en(s). Otherwise, an infinite goto loop would occur.

In the following proofs, we assume that each line of the code is executed
atomically. The global state of the algorithm is the coloring ofR and the program
counter of each worker. We use the following notations: The sets Cp and B
contain all the states colored cyan by worker p, and globally blue, respectively.

274 A. Laarman and A. Wijs

For example, s.cyan [p] = true is expressed as s ∈ Cp. To reason on the a
posteriori explored graph, we define sel(s) = en(s) iff ∃p ∈ {1 . . . P} : selp(s) =
en(s), and sel(s) = por(s) otherwise (notice that selp(s) only grows). Finally,
we use the modal operator s ∈ �X to reason about the successors of s in G, i.e.
∀s′ ∈ sel(s) : s′ ∈ X , and for local successors: s ∈ �pX ⇒ ∀s′ ∈ selp(s) : s

′ ∈ X .
We write Fp(s)@L to indicate that thread p is about to execute l.L of function F).

The first lemma shows colorings of local successors of backtracked states, while
the second relates backtracked states to the coloring of global successors:

Lemma 1. When worker p marks a state s blue, its local successors are blue or
cyan local to worker p: dfsp(s)@14⇒ s ∈ �p(B ∪Cp).

Proof. At l.14, each local successor s′ has either been skipped at l.8 (so s′ ∈
B∪Cp), or dfsp(s

′) had been called at l.9 leading to t ∈ B. So s′ ∈ (B∪Cp). ��
Lemma 2. Global successors of blue states that are not cyan, are blue or cyan:⋃

p(B \ Cp) ⊆ �
⋃

p(B ∪ Cp).

Proof. Initially,
⋃

p(B \ Cp) is empty and the lemma holds. A state s is added
to this set when the last worker p reaches dfsp(s)@l.15. Locally, we have s ∈
�p(B ∪ Cp) by Lemma 1, but since all workers backtracked s ∈

⋃
p �(B ∪ Cp)

holds as well. Finally, states are never removed from B ∪ Cp. ��
To reason about states for which the proviso’s conclusion holds, we consider

all states s with sel(s) = en(s), i.e. inviolable states, as belonging to a set I, and
all others with sel(s) ⊂ en(s) as belonging to a set N (violable states).

Lemma 3. In Algorithm 2, each blue state s can reach an inviolable state s′:
∀s ∈ B : (∃s′ ∈ I : s→∗s′).

Proof. B is only modified at l.14. I and N are ‘modified’ right before l.14.
Initially, B is empty, so the lemma holds. By Lemma 1, when the first state

s is marked blue, it will have blue and cyan successors. Since at that point,
there are no blue states yet, all successors of s must be cyan. But then, s must
be inviolable at l.14, so s ∈ I (if por(s) = ∅, then en(s) = ∅, since POR does not
introduce deadlocks). All subsequent states marked blue either are identified as
inviolable, satisfying the lemma with s ≡ s′, or have at least one blue successor
s′ �≡ s, for which the theorem already holds. ��

Finally, by showing that from each state reached by parallel DFS, an inviolable
state is reachable, we clearly show that BottomSCC is satisfied.

Theorem 1. Algorithm 2 explores all s ∈ R, and satisfies BottomSCC:
∀s ∈ R : (∃s′ ∈ I : s→∗s′).

Proof. Due to l.10 and l.12, the goto can only be executed once per state. And
since the set B ∪

⋃
p Cp grows monotonically in Algorithm 2, eventually the

algorithm terminates for finite input graphs (see Section 8). By the obvious
post-condition of DFS-based algorithms, we have s0 ∈ B at that moment. By
Lemma 2, and the fact that

⋃
p Cp = ∅ (the stacks are empty), we have B ⊆ �B.

Hence, R = B, and it follows from Lemma 3 that BottomSCC is satisfied. ��

Partial-Order Reduction for Multi-core LTL Model Checking 275

Algorithm 2 has the downside that it could identify more inviolable states
than strictly necessary, as the following example shows.

Example 1. The cycle in the graph on the right has
multiple entrypoints. When different workers (with
different search orders) enter the cycle differently,
they determine a different inviolable state: a worker
A entering via a will choose d (as it finds a to be
cyan after traversing the cycle), while a worker B
entering via d chooses c.

a b

cd

s0

A coherent view of the state space. The problem that Algorithm 2 still exhibits,
is that different workers obtain a different view of the state space, as they identify
different inviolable states. As these are fully explored, the reduction can be lim-
ited. Therefore, we introduce synchronization between threads on their decision
whether a state is inviolable or not. To realize this, we add a 3-valued variable
per state called prov , initially set to unknown (‘?’). This variable is global, hence
workers can communicate with each other through the prov variables.

The boxed code at lines A–D should replace the parallel proviso check of lines
11–13. Upon backtracking, threads use the well-known atomic compare-and-swap
(cas) operation to communicate their decision on a first-come-first-serve basis.
The cas operation is defined as follows: cas(x, v1, v2) atomically checks if variable
x has value v1, and if so, sets x to v2. This solution does not completely prevent
redundant inviolable states (w.r.t. to the Stack’ proviso), but it can prevent
some. For instance, in Example 1, c can be prevented from becoming inviolable,
if worker A backtracks over c before worker B, marking c as violable.

Correctness of the modified algorithm follows from Lemma 4. It reasons on
the states whose violability status has been determined (s.prov �= ?) or is known
upfront (por (s) = en(s)), captured by the final set: F = {s ∈ R | s.prov �= ? ∨
por(s) = en(s)}. The lemma shows that when a state s is determined to be
violable (s ∈ F ∩N), then s has a blue successor (for which Lemma 3 holds).

Lemma 4. At least one global successor of a permanently violable state is blue:
F ∩N ∩�B �= ∅.

Proof. A state s is added to F ∩N after l.A sets s.prov to false. By Lemma 1
and the fact that ∀x ∈ por (s) : x.cyan [p] evaluated to false, we know there must
be one blue successor (again if por(s) = ∅, then en(s) = ∅ and s /∈ N). ��

3.2 Partial-Order Reduction for Liveness Properties

For liveness properties, the Cycle proviso needs to hold (Section 2), which is met
in finite state-space graphs if along all cycles at least one state is fully explored.
In addition to this, CNDFS should search for accepting cycles, which constitute
counter-examples (instead of G, the algorithms now work on B). In the current
subsection, we show that CNDFS with POR and a novel parallel cycle proviso,
similar to Stack, fulfills Cycle. First, we discuss how we solve a related problem.

276 A. Laarman and A. Wijs

Traditional (sequential) NDFS detects accepting cycles by launching a nested
(red) DFS search from each accepting state found in the outer (blue) DFS search
(see Section 2). Combining NDFS with POR and the Stack proviso yields a so-
called revisiting problem [12]; in order for NDFS with POR to be complete, it is
crucial that for every state s, the selection of sel(s) is deterministic. This means
that two constraints must be satisfied: (1) if a state is deemed inviolable, then
all searches reaching it must be aware of this and select all successors, and (2) if
a state is violable, the same subset must always be selected by the por function.

For the NDFS algorithm in [28], the revisiting problem can solved straightfor-
wardly, by only selecting blue and cyan successors in the red search [28, Sec. 6].
This enforces that each state reached in a red search is explored in the same way
as previously done in the blue search. However, in CNDFS, this approach does
not apply because different searches run out of order executions; in particular,
red searches may sometimes visit white states (see the proof of [8, Prop. 3]).

However, the revisiting problem of CNDFS with POR can be solved as follows.
First of all, it is crucial that the subset selection mechanism is deterministic. This
can be achieved efficiently, e.g. via guard-based POR [21]. Second of all, the
decisions regarding proviso status of states is made global via synchronization
methods similar to those used in the previous subsection, now also indicated by
the boxed code in Algorithm 1. It implements the Stack proviso in both the blue
and the red DFS. In the blue DFS, we check for the existence of at least one cyan
successor (l.27), and in the red DFS for the existence of a pink successor (l.14).
The mechanism to store the results using cas and s.prov is exactly as presented
earlier for parallel DFS. This implements our parallel cycle proviso.

In the following correctness proofs, we refer with Pp to the pink states of
worker p and with Red to the (globally) red states. We also construct a set of
states backtracked in a red search: R ≡

⋃
p(Rp \ Pp) ∪ Red (all states that are

either in some local Rp but not on the pink stack, or globally marked red).
Now that we have selp(s) = sel(s) at l.32, we can relate blue states to their

(global) successor colorings (the proof is similar to that of Lemma 1):

Lemma 5. Successors of blue states are blue or cyan: B ⊆ �
⋃

p(B ∪ Cp).

The next lemma expresses that for backtracked states, a decision has been
made concerning their violability status.

Lemma 6. Blue states and states backtracked in a red search have been consid-
ered for violability: B ∪R ⊆ F .

Proof. A state s is colored blue at l.32. If por (s) = en(s), then s ∈ F . If por (s) ⊂
en(s), then l.28 has been executed, hence s ∈ F . A state s is colored red at l.37.
There, we have s ∈ Rp∧s /∈ Pp, hence already s ∈ R. Also, at l.19, a state s is in
R, since s �∈ Pp. But then, either por (s) = en(s), and s ∈ F , or por(s) ⊂ en(s),
and l.15 has been executed, so s ∈ F . ��

The following lemmas help to prove Theorem 2, expressing that Algorithm 1
satisfies the Stack proviso, which implies that Cycle is satisfied.

Partial-Order Reduction for Multi-core LTL Model Checking 277

Lemma 7. Successors of states backtracked in the red search have also been
backtracked in the red search or are pink: R ⊆ �

⋃
p(R ∪ Pp).

Proof. Since R ≡
⋃

p(Rp \ Pp) ∪ Red , we have
⋃

p(R ∪ Pp) ≡
⋃

p((Rp \ Pp) ∪
Pp) ∪ Red , so we need to prove that R ⊆ �

⋃
p(Rp ∪ Red). A state s is added

to R when it is removed from Pp at l.19, since at that point s ∈ Rp. At l.34,
if Rp is non-empty, states are removed from Rp, but those were added to Red
at l.37 after the previous dfsRedp(s) terminated. Once added to Red (and R),
states are never removed again. At l.19, all successors t have been considered at
l.9–12. If t �∈ Rp ∪ Red , then dfsRedp(t) is executed adding t to Rp. So at l.19,
we have s ∈ �(Rp ∪ Red). ��
Lemma 8. Successors of permanently violable states are blue or backtracked in
a red search: F ∩N ⊆ �(B ∪R).

Proof. A state s is permanently marked violable before l.19 and l.32. Because
the conditions at l.14, resp. l.27, do not hold there, no successor s′ of s can be
pink, resp. cyan. By Lemma 7 (resp. Lemma 5), all s′ are in R (resp. B). ��
Theorem 2. Algorithm 1 explores all states in R of B, and fully explores one
state on each cycle in B.

Proof. The termination proof is analogous to that in Theorem 1.
We prove that the proviso holds by contradiction. Assume Algorithm 1 ran

to completion, and as a result some cycle C = s1 → · · · → sn → s1 contains no
inviolable state: ∀i ∈ {1 . . . n} : si ∈ N . Take the last time that a state sx with
x ∈ {1 . . . n} on C was permanently added to N (sx.prov is set to false at that
moment). At this time, some worker p must be executing either l.15 or l.28. The
immediate predecessor sy of sx on the cycle must have been in F ∩ N before
sx is marked, since sx was the last state to be permanently marked violable.
Therefore, by Lemma 8, sx ∈ B ∪R. But then, by Lemma 6, sx ∈ F . The latter
contradicts our assumption that sx is last marked permanently violable, which
can only happen if its proviso flag is still set to ‘?’, i.e. sx �∈ F or sx ∈ I. ��

4 Experimental Evaluation

Experimental Setup. We implemented Algorithm 1 in the LTSmin toolset. This
toolset [17] is a language-independent model checker and supports POR since
version 1.6. To this end, LTSmin’s Pins interface was extended with new fun-
tions in order to export the necessary static information [21]. We experimented
with DVE models from the BEEM database [27] and Promela models [11];
both are supported by LTSmin via different language modules [4,17]. The se-
lected models and properties are presented in Table 1, and include industrial case
studies in Promela as well as representable instances from the large BEEM

database. We focus on instances where the properties hold, because on-the-fly
bug-hunting is not a bottleneck in our experience [8]. We performed experi-
ments with version 2.1 of LTSmin.1 All experiments were repeated 10 times on
a quadruple AMD Opteron 6376 CPU with 64 cores and 512GB RAM memory.

1 http://fmt.cs.utwente.nl/tools/ltsmin/ (see [8] for command lines)

http://fmt.cs.utwente.nl/tools/ltsmin/

278 A. Laarman and A. Wijs

Table 1. DVE/Promela models and LTL properties used (all correct)

Model (DVE) Property

leader filters.7 ♦(#elected 	= 0)
elevator.3 �(in ⇒ (♦out))
leader election.* ♦(#leaders 	= 0)
anderson.6 �(req ⇒ ♦CS)

Model (Promela) Property

garp �♦progress
iprotocol-2 �♦progress
pacemaker distibuted �(p ∧ (q ⇒ r))
pacemaker concurrent �((p ⇒ q) ∧ (r ⇒ s))

The results presented here focus primarily on the efficiency of the reduction of
the parallel cycle proviso in LTL model checking. The main question that is an-
swered is whether the parallel cycle proviso introduces too many inviolable states
with respect to the sequential cycle proviso. We also did some analysis on the
obtained scalability of CNDFS with POR, mainly to confirm that scalability is
not lost; in the past, CNDFS has shown to scale well and often better than other
parallel LTL model checking algorithms [4,8]. The complete set of experimental
results are available at http://fmt.cs.utwente.nl/tools/ltsmin/hvc-2014.

We would have preferred to compare the parallel cycle proviso with the topo-
logical sort proviso [3] in DiVinE (see Section 5), the most sophisticated solu-
tion thus far, but the POR algorithm in DiVinE delivers less reductions than
LTSmin’s stubborn set implementation making a tool-by-tool comparison sense-
less. We did not reimplement the topological sort proviso because it seems impos-
sible to combine it with CNDFS. Instead, we compare our conclusions with [3].

Reduction Performance. Sequentially, the CNDFS algorithm is equal to the
NDFS algorithm modulo the fact that states are not instantly colored red, but
only after the nested search [8]. Similarly, the parallel cycle proviso should be
equal to the stack proviso when run with one thread. With increasing paral-
lelism, the algorithm has the potential to select more states as inviolable as
explained in Example 1. We are interested in determining these relative differ-
ences in reductions (between the stack proviso and the parallel cycle proviso). As

Table 2. POR reductions (percentages) without ignoring proviso, with stack proviso
and with parallel cycle proviso (with multiple threads) averaged over 10 runs

Parallel cycle proviso (threads)
Model |R| None Stack 1 4 8 16 32 64

leader filters.7 26,302,351 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.35
elevator.3 495,463 92.46 92.86 94.20 94.49 94.64 94.77 94.85 94.96
leader election.4 746,051 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02
leader election.6 35,773,430 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69
anderson.6 29,315,027 15.80 33.11 48.43 52.28 52.83 52.93 52.34 51.71
garp 67,108,837 6.25 18.68 18.69 20.23 20.85 20.69 20.64 20.79
peterson4 67,108,842 14.19 15.82 15.52 15.60 15.64 15.63 15.67 15.67
iprotocol-2 18,998,110 30.95 32.24 34.80 36.31 36.71 37.10 37.46 37.91
pacemaker distributed 67,108,832 31.13 47.89 47.81 47.86 47.94 47.98 48.16 48.26
pacemaker concurrent 18,092,815 42.06 46.05 45.90 45.88 45.92 45.92 45.96 46.00

http://fmt.cs.utwente.nl/tools/ltsmin/hvc-2014

Partial-Order Reduction for Multi-core LTL Model Checking 279

Table 3. CNDFS runtimes (sec.) without POR (Full), without ignoring (None), with
stack proviso (Stack), and with parallel cycle proviso averaged over 10 runs

Parallel cycle proviso (threads)
Model Full None Stack 1 4 8 16 32 64

leader filters.7 85.32 5.59 5.42 5.60 1.46 0.82 0.45 0.26 0.19
elevator.3 1.83 196.17 185.24 228.41 78.14 47.54 29.50 19.12 14.75
leader election.4 5.68 6.33 6.16 6.51 2.28 1.93 1.23 1.23 1.93
leader election.6 399.94 0.88 0.84 0.90 0.23 0.13 0.07 0.04 0.04
anderson.6 168.10 29.55 64.42 121.74 63.57 43.90 29.55 19.53 14.87
garp 426.06 15.66 52.09 62.52 28.54 18.75 12.03 7.69 5.94
peterson4 287.62 30.30 35.93 39.67 11.83 6.56 3.85 2.19 1.49
iprotocol-2 68.90 84.39 85.31 115.31 40.07 23.70 14.47 8.69 6.28
pacemaker distributed 211.65 99.56 156.25 167.62 43.88 23.66 13.25 7.33 4.86
pacemaker concurrent 55.16 256.92 332.50 342.65 88.68 46.01 24.72 12.88 7.97

a measurement, we choose the total number of states stored in the hash table.
Although the relation between reduced state space size and number of invio-
lable states is only heuristic (exploring a different, but larger subset of states
fully could yield a smaller reduced state space [10]), we are unaware of a better
measurement.

Table 2 shows the size of the reduced state spaces relative to the original
state space. For completeness, we also included the results without any ignoring
proviso (which might miss counter-examples). All models show similar paral-
lel reductions to the stack proviso, except anderson.6. We suspect that this is
caused by a slightly more efficient implementation of the stack proviso, in par-
ticular concerning the revisiting problem, in the sequential nested search which
does not work in a parallel setting (see [28] and discussion in Section 3.2).

A slight decrease in reductions when the number of threads is increased can
be observed, the effect is however minimal and often sublinear with the most
increase caused by 4 threads already. Hence we can conclude that CNDFS with
POR does not cause too many redundant full explorations. This is a surpris-
ing result, as the parallel benchmarks in [3] seem to show a steep decrease in
reduction performance.

We cannot explain precisely why the reductions sometimes improve with more
parallelism, e.g. anderson.6 (recall that we present averages over 10 experi-
ments). The behavior might be caused by different thread schedulings.

Runtime Performance. Table 3 shows that the runtimes of CNDFS with POR
are similar to those of NDFS with stack proviso (discounting the state space
difference for anderson.6). The overhead of the proviso bits is thus minimal.

Scalability. Figure 1 shows that CNDFS with POR exhibits good speedups for
larger models (see Table 3). Comparing these speedups to those obtained earlier
without POR [8], we see that they are largely unaffected. It is not surprising
that the smaller (reduced) leader-election model with only a few thousand
states exhibits sublinear speedup.

280 A. Laarman and A. Wijs

Fig. 1. Plot of parallel scalability (speedup) of CNDFS with POR

5 Related Work

Applying POR when model checking liveness properties involves an ignoring
proviso which may cause orders of magnitude loss in reductions (c.f. [15,9]). In a
sequential setting, the use of DFS-based algorithms could mitigate these losses
almost completely in the past (c.f. [15,9,29]). However, those techniques cannot
be used in parallel, i.e. multi-threaded, shared memory, model checking.

In related work, several other attempts have been made to implement the
ignoring proviso for similar parallel settings.

1. The topological sort proviso [3] uses the distributed Kahn algorithm for topo-
logical sort. When the sort is incomplete due to cycles, these nodes are re-
moved (fully explored) and the algorithm is restarted up to fixpoint.

2. The two-phase proviso [26] skips new states with singleton reduced sets,
trivially avoiding cycles by fully exploring other states.

3. A distributed version of Spin [22], implements the Stack’ proviso for safety
properties, while conservatively assuming that successorsmaintained by other
workers are on their respective stacks.

4. A stronger alternative for the Stack proviso is one tailored for BFS, where
all states reaching queued states are fully explored [5,6].

5. Static POR identifies cycles already in the system specification [14].

All of the above methods have either shown to offer significantly less reduction
than the Stack proviso (4 and 5), only work for safety properties (3), or have
shown a degrading performance when the amount of parallelism is increased,
often already noticable with 4–8 workers (1 and 2).

Partial-Order Reduction for Multi-core LTL Model Checking 281

Finally, Evangelista and Pajault [9] further optimized the Stack proviso to
avoid unnecessary full explorations on overlapping cycles and on cycles that al-
ready contain fully explored states. We are the first to adopt these optimizations
in a parallel setting.

6 Conclusions

In this paper, we proposed how POR can be integrated in parallel DFS-based
search algorithms, in particular in both a parallel DFS reachability algorithm,
and CNDFS for on-the-fly LTL model checking. The used parallelization tech-
nique is very promising, since very good speedups occur in practice.

To integrate POR, the main challenge was to ensure that when confronted
with cycles, the parallel threads explore beyond them, i.e. they do not contin-
uously ignore actions that may lead to new reachable states. This is known as
the ignoring problem. Furthermore, for completeness, the two DFS searches in
NDFS need to agree on which transitions are explored from each state, and for
CNDFS, earlier solutions for this revisiting problem are not correct. We pro-
posed solutions for both these problems. Experimental results indicate that our
solution for CNDFS does not harm the scalability of it, while reductions are
achieved that are comparable when applying POR in a sequential NDFS.

For future work, the ideas from the color proviso [9] could be incorporated
in the parallel cycle proviso, since both are based on a stack check. We expect
similar improvements as witnessed in [9].

Acknowledgements. We thank Tom van Dijk for providing access to the 64-
core machine at the FMT department of the University Twente.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
2. Barnat, J., Brim, L., Ročkai, P.: A Time-Optimal On-the-Fly Parallel Algorithm

for Model Checking of Weak LTL Properties. In: Breitman, K., Cavalcanti, A.
(eds.) ICFEM 2009. LNCS, vol. 5885, pp. 407–425. Springer, Heidelberg (2009)

3. Barnat, J., Brim, L., Ročkai, P.: Parallel Partial Order Reduction with Topological
Sort Proviso. In: SEFM 2010, pp. 222–231. IEEE Computer Society (2010)

4. van der Berg, F., Laarman, A.: SpinS: Extending LTSmin with Promela through
SpinJa. ENTCS 296, 95–105 (2013)

5. Bošnački, D., Holzmann, G.J.: Improving Spin’s Partial-Order Reduction for
Breadth-First Search. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
pp. 91–105. Springer, Heidelberg (2005)

6. Bošnački, D., Leue, S., Lluch-Lafuente, A.: Partial-Order Reduction for General
State Exploring Algorithms. STTT 11(1), 39–51 (2009)

7. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory Efficient Algo-
rithms for the Verification of Temporal Properties. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991)

282 A. Laarman and A. Wijs

8. Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved Multi-Core
Nested Depth-First Search. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012.
LNCS, vol. 7561, pp. 269–283. Springer, Heidelberg (2012)

9. Evangelista, S., Pajault, C.: Solving the Ignoring Problem for Partial Order Re-
duction. STTT 12, 155–170 (2010)

10. Geldenhuys, J., Hansen, H., Valmari, A.: Exploring the Scope for Partial Order
Reduction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 39–53.
Springer, Heidelberg (2009)

11. Holzmann, G.: The model checker SPIN. IEEE TSE 23, 279–295 (1997)

12. Holzmann, G., Peled, D., Yannakakis, M.: On Nested Depth First Search. In: SPIN
1996, pp. 23–32. American Mathematical Society (1996)

13. Karp, R.M.: Reducibility among Combinatorial Problems. In: Complexity of Com-
puter Computations. IBM Research Symposia Series, pp. 85–103. Springer (1972)

14. Kurshan, R., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static Partial Order Re-
duction. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 345–357. Springer,
Heidelberg (1998)

15. Laarman, A., Faragó, D.: Improved On-The-Fly Livelock Detection. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 32–47. Springer,
Heidelberg (2013)

16. Laarman, A., van de Pol, J., Weber, M.: Boosting Multi-Core Reachability Perfor-
mance with Shared Hash Tables. In: FMCAD 2010, pp. 247–255. IEEE-CS (2010)

17. Laarman, A., van de Pol, J., Weber, M.: Multi-Core LTSmin: Marrying Modularity
and Scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 506–511. Springer, Heidelberg (2011)

18. Laarman, A.: Scalable Multi-Core Model Checking. Ph.D. thesis, University of
Twente (2014)

19. Laarman, A., Langerak, R., van de Pol, J., Weber, M., Wijs, A.: Multi-core
Nested Depth-First Search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 321–335. Springer, Heidelberg (2011)

20. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core emptiness checking of timed büchi automata using inclusion abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968–983. Springer,
Heidelberg (2013)

21. Laarman, A., Pater, E., van de Pol, J., Weber, M.: Guard-Based Partial-Order Re-
duction. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976,
pp. 227–245. Springer, Heidelberg (2013)

22. Lerda, F., Sisto, R.: Distributed-Memory Model Checking with SPIN. In: Dams,
D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, pp.
22–39. Springer, Heidelberg (1999)

23. Liu, Y., Sun, J., Dong, J.: Scalable multi-core model checking fairness enhanced
systems. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 426–445. Springer, Heidelberg (2009)

24. Lowe, G.: Concurrent Depth-First Search Algorithms. In: Ábrahám, E., Havelund,
K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 202–216. Springer, Heidel-
berg (2014)

25. Moore, G.E.: Cramming more Components onto Integrated Circuits. Electron-
ics 38(10), 114–117 (1965)

26. Nalumasu, R., Gopalakrishnan, G.: An Efficient Partial Order Reduction Algo-
rithm with an Alternative Proviso Implementation. FMSD 20(3), 231–247 (2002)

Partial-Order Reduction for Multi-core LTL Model Checking 283

27. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

28. Schwoon, S., Esparza, J.: A Note on On-the-Fly Verification Algorithms. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer,
Heidelberg (2005)

29. Valmari, A.: A Stubborn Attack On State Explosion. In: Larsen, K.G., Skou, A.
(eds.) CAV 1991. LNCS, vol. 575, pp. 156–165. Springer, Heidelberg (1992)

30. Valmari, A.: Stubborn Sets for Reduced State Space Generation. In: Rozenberg,
G. (ed.) APN 1990. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991)

31. Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)

32. Valmari, A.: Stubborn Set Methods for Process Algebras. In: POMIV 1996,
pp. 213–231. AMS Press, Inc. (1997)

A Comparative Study of Incremental Constraint

Solving Approaches in Symbolic Execution

Tianhai Liu1, Mateus Araújo2, Marcelo d’Amorim2, and Mana Taghdiri1

1 Karlsruhe Institute of Technology, Germany
2 Federal University of Pernambuco, Brazil

Abstract. Constraint solving is a major source of cost in Symbolic Ex-
ecution (SE). This paper presents a study to assess the importance of
some sensible options for solving constraints in SE. The main observa-
tion is that stack-based approaches to incremental solving is often much
faster compared to cache-based approaches, which are more popular.
Considering all 96 C programs from the KLEE benchmark that we ana-
lyzed, the median speedup obtained with a (non-optimized) stack-based
approach was of 5x. Results suggest that tools should take advantage of
incremental solving support from modern SMT solvers and researchers
should look for ways to combine stack- and cache-based approaches to
reduce execution cost even further. Instructions to reproduce results are
available online: http://asa.iti.kit.edu/130_392.php

1 Introduction

Symbolic Execution (SE) [14,18,19,22,27] is a technique for systematic test-input
generation that has gained significant momentum in recent years. Unfortunately,
SE is expensive. It needs to explore many program paths and the execution of
each path is more expensive compared to a non-symbolic (i.e., concrete) execu-
tion. Improving both aspects – space and time – is therefore important and a
significant amount of research has been done in this direction recently [17]. The
focus of this paper is on time reduction.

SE tools heavily use constraint solvers to avoid the exploration of infeasible
paths and to generate test inputs; it comes with no surprise that constraint
solving is often reported as the execution time sink of the technique [13,16,33,35].

Incremental solving is an important feature to address this high cost; it lever-
ages the similarity across similar constraints to reduce overall solving cost. Intu-
itively, when using such feature, solving a set of similar constraints can be faster
compared to solving each constraint in the set separately. Considering the fact
that constraints that SE generates are similar by construction, existing SE tools
employ some form of incremental solving to speedup execution.

1.1 Incremental Constraint Solving Approaches

One simple alternative to incremental solving is to only solve the “changed
parts” of the constraint. For example, consider that SE produces the constraint

E. Yahav (Ed.): HVC 2014, LNCS 8855, pp. 284–299, 2014.
c© Springer International Publishing Switzerland 2014

http://asa.iti.kit.edu/130_392.php

A Comparative Study of Incremental Constraint Solving Approaches in SE 285

pc1 : a>b ∧ x<y for which the solver outputs the following solu-
tion [a=2,b=1,x=3,y=4]. To compute the solution to the next constraint
pc2 : a>b ∧ x≥ y this approach proceeds as follows: it invokes the solver to
solve only the changed part of the constraint, namely x≥ y, which is a simpler
problem, and combines the new solution [x=4,y=3] with the already-computed
solution [a=2,b=1]. The combined solution clearly satisfies pc2 . This idea works
under the assumption that SE explores similar paths in order (e.g., using depth-
first search) and that not all variables in a constraint are dependent (e.g., x and
y are mutually-dependent but do not depend on a and b).

The second alternative builds on the observation that the approach discussed
above could be generalized to build on the solutions of all previously visited
path constraints as opposed to only the last one visited. It caches solutions of
every independent expression observed in every path constraint: two expressions
are independent if they do not share any symbolic variables. Considering the
previous example, a global cache stores solutions to the expressions a>b, x<y,
and x≥ y which appeared independently in the two individual path constraints
pc1 and pc2. Despite the overhead in memory and time consumption related to
caching (to store, lookup, and combine solutions), it has been observed that this
optimization is beneficial. Popular symbolic execution tools, such as CREST [15],
KLEE [16], PEX [32] and SPF [26], use similar features.

Another alternative to incremental solving makes use of built-in SMT solver
support to solve similar constraints. It builds on the observation that as the
paths that a SE explores gets longer chances of merging independent expres-
sions increase since the number of input variables is limited. Unfortunately, the
approaches to incremental solving presented above cannot help in this scenario.
For example, the cached solution [x=3,y=2] to the constraint x>y will not help
to solve the constraint x>y ∧ x>3. In contrast, modern incremental SMT solvers,
such as CVC4 [4], MathSAT5 [6], Yices [9], and Z3 [10] can help in this case:
during constraint solving these tools learn lemmas, which can be later (re)used
to solve similar but not identical constraints. To the best of our knowledge no
existing SE tool uses such alternative for constraint solving.

1.2 Contribution

This paper reports the results of a study we conducted to assess how cache-
based approaches compare with stack-based approaches to solve constraints in-
crementally. We considered various options of incremental solving and a large
set of programs; both real (96 C programs from the KLEE [16] benchmark) and
artificially-generated (300 randomly-generated programs of various sizes: 5, 10,
and 20K). Overall, results indicate that stack-based approaches provide supe-
rior results. The median speedup obtained when using the support of a modern
incremental SMT solver is of ∼5x (min.:∼1x, avg.:∼4.8x, max.: ∼9x).

In the light of these results, we investigated how to further improve stack-
based approaches. We noticed that sharing of common expressions can facilitate
the search for solution in SMT solvers [12]. We investigated the alternative of
eliminating all common sub-expression from the constraint instead of of relying

286 T. Liu et al.

on the built-in heuristics from the solver. Results indicate that the speedup
obtained with this alternative was of ∼1.11x over the benefits obtained with the
basic stack-based incremental approach.

2 Background

Symbolic Execution is comprised of two parts: constraint generation and con-
straint solving. We briefly explain each part below. More details can be found
elsewhere [17, 25, 28].

2.1 Constraint Generation

When symbolic execution evaluates a branch instruction, it needs to decide which
branch of the control flow to select. In a regular concrete execution, the evalua-
tion of a boolean expression is either true or false. Thus only one branch of the
conditional can be taken. In contrast, in symbolic execution, the evaluation of a
boolean expression is a symbolic value, so both branches can be taken resulting
in different paths to be explored in the program. Symbolic execution character-
izes each path it explores with a path-condition over the input variables −→x . This
condition is defined with a conjunction of boolean expressions pc(−→x) =

∧
bi.

Each boolean expression bi denotes a branching decision made during the execu-
tion of a distinct path in the program under test. Symbolic execution terminates
when it explores all such paths corresponding to the different combinations of
decisions. Programs with loops and recursion may result in an infinite number
of paths; in those cases, one needs to define a bound on the number of paths
that symbolic execution can explore.

2.2 Constraint Solving

Symbolic execution uses constraint solving (i) to check path feasibility and (ii)
to generate test inputs. In the first case, symbolic execution checks if the current
path is feasible by checking if the current (partial) path-condition is satisfiable.
Exploration of a path is interrupted as soon as the path-condition becomes un-
satisfiable. In the second case, symbolic execution uses a constraint solver to
solve constraints associated with complete paths. The solutions to these con-
straints correspond to test inputs. SMT-LIB1 is a popular format for describing
constraints in SMT solvers [2, 4, 8, 10]. The SMT-LIB syntax [29] uses a prefix
notation for expressions. For example, the user writes (assert F) to declare
that a logical formulas F must hold. One can combine multiple formulas with
logical operators. Symbolic names can be introduced as uninterpreted functions
without arguments. Incremental SMT solvers [4,6,10] provide an assertion stack
to solving similar constraints. The assertion stack is equipped with push and
pop operations to enable one to keep contextual information. Each stack frame

1See http://smtlib.cs.uiowa.edu

http://smtlib.cs.uiowa.edu

A Comparative Study of Incremental Constraint Solving Approaches in SE 287

int step(int a,int b){

if (a < 0) b = a + b;

if (b < 1) b = 2; else b = 3;

return a+b;}

(a) Original

int stepOpt(int a,int b){

if (a < 0) b1 = a+b; else b1 = b;

if (b1 < 1) b2 = 2; else b2 = 3;

return a+b2;}

(b) Transformed (for illustration)

Fig. 1. Sample code

stores an assertion set, which includes locally-scoped declarations of functions,
sorts, and logical formulas. The command (check-sat) holds if the conjunction
of all assertion sets in the stack is satisfiable.

3 Techniques

We considered 5 techniques to evaluate effectiveness of cache-based and stack-
based approaches to incremental solving. All techniques have been implemented
in the same framework. We briefly describe them below.

– Baseline is the approach that does not use incremental solving. This ap-
proach conjoins all decisions reached along one path in a single constraint.
That is, each constraint generated with SE results in a different potentially-
long query to the solver.

– Caching refers to the technique that uses independent clauses optimization
to simplify constraints before querying the solver (see Section 1.1). It incurs
in overhead to partition constraints, lookup, and update the cache.

– CachingOpt optimizes caching by partitioning constraints incrementally.
It keeps in memory the set of partitions and corresponding variables for the
previously explored constraint. When reaching a control decision, it obtains
new partitions by merging all partitions that have variables in common,
considering the new variables involved in the decision. It incurs in additional
overhead to merge partitions.

– Stack refers to the technique that creates a new frame on the assertion stack
of an SMT solver when reaching a new control decision.

– StackOpt is as stack but builds constraints with new symbolic names so to
facilitate identification of expression sharing.

3.1 Illustrative Example

This section illustrates the techniques. Figure 1 shows the code of function step;
function stepOpt is obtained from code transformations on step. This function
helps to illustrate the effect of common-subexpression elimination; new variables
are introduced and each variable is defined only once. It is important to note
that similar effect can be obtained without applying this transformation, e.g.,
by hash consing over assignment statements.

288 T. Liu et al.

Figure 2 shows the SMT-LIB scripts produced by different techniques. In this
example, each query terminates with the sequence of commands check-sat and
get-value which indicate that the constraint was satisfiable and a solution could
be retrieved. The solver context, that maintains the lemmas learned in previous
computations, is destroyed with the command exit.

Figure 2(a) illustrates Caching. In this technique, each query starts with the
construction of variables and terminates with the destruction of the solver con-
text. For each query, only dependent constraints reach the solver; solutions are
cached to avoid redundant queries. We show in comments the state of the cache
and cache hit events. Figure 2(b) illustrates Stack . In this technique, the solver
context evolves as new assertions are added to the stack; the context survives
across the symbolic execution of different paths. To note that learned lemmas
created on a stack frame are destroyed upon a pop of that frame.

3.2 Common Sub-expression Elimination: StackOpt

It is well known that sharing of structurally equal expressions can reduce space
and time requirements in constraint solving, especially when dealing with large
constraints. Modern SMT solvers identify those sharings automatically but there
is cost associated with it and the mechanism to identify sharings is non-optimal.

Aware of that, we additionally evaluated the impact of translating the con-
straints to a representation that facilitates the identification of these sharings.
In short, we eliminate common-subexpressions from input constraints. We want
to evaluate how this feature works in conjunction with incremental SMT solv-
ing, which to the best of our knowledge is not used in these tools. We call the
technique that uses this optimization StackOpt .

Consider, for example, the code fragment if(.) a=x+y; if (a+z>10) {.}.
With traditional symbolic execution, the path corresponding to the traversal
of the true branches is denoted by the constraint ... x + y + z > 10. StackOpt ,
however, translates this constraint to ... a1 = x0+y0∧a1+z0 > 10 as it identifies
that the expression denoted by a1 can be reused in other contexts. The use of
such representation increases space requirements, i.e., it increases the number
of variables and conjuncts in the constraint. On the other hand, it helps the
constraint solver by letting it associate information with newly defined symbols
(in this case, a1).

Figure 2 shows side-by-side the scripts produced with this optimization dis-
abled (Stack) and enabled (StackOpt). In contrast to stack and caching, that
generate fresh constraints on decision points, stackOpt reuses expressions. For
example, in Figure 2(c), stackOpt renames variable b1 in query 1 to refer to a+b,
and uses it in queries 2 and 3. We evaluate in this paper how such transformation
can speedup stack-based constraint solving.

4 Evaluation

Our goal is to understand the extent to which constraint solving can be optimized
for symbolic execution. We focused our attention to incremental solving, which

A Comparative Study of Incremental Constraint Solving Approaches in SE 289

(a) Caching(Opt)
; query 1
(declare-fun a () Int)
(assert (< a 0))
(check-sat) ; sat
(get-value (a)) ; [a]:=[-1]
(exit)
; query 2
(declare-fun a () Int)
(declare-fun b () Int)
(assert (< a 0))
(assert (< (+ a b) 1))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 0]
(exit)
; query 3
(declare-fun a () Int)
(declare-fun b () Int)
(assert (< a 0))
(assert (not(<(+ a b) 1)))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 2]
(exit)
; query 4
(declare-fun a () Int)
(assert (not (< a 0)))
(check-sat) ; sat
(get-value (a)) ; [a]:=[0]
(exit)
; query 5
(declare-fun b () Int)
(assert (< b 1))
(check-sat) ; sat
(get-value (b)) ; [b]:=[0]
; cache hit : [!(a<0)]
; query 6
(declare-fun b () Int)
(assert (not (< b 1)))
(check-sat) ; sat
(get-value (b)) ; [b]:=[1]
; cache hit : [!(a<0)]
; cache: [a<0:[SAT,a:=-1],
; a+b<1:[SAT,a:=-1,b:=0],
; !(a+b<1):[SAT,a:=0,b:=2],
; !(a<0):[SAT,a:=0],
; b<1):[SAT,b:=0]]

(b) Stack
(declare-fun a () Int)
(declare-fun b () Int)
; query 1
(push)
(assert (< a 0))
(check-sat) ; sat
; query 2
(push)
(assert (< (+ a b) 1))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 0]
(pop)
; query 3
(push)
(assert(not(<(+ a b) 1)))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 2]
(pop)
(pop)
; query 4
(push)
(assert (not (< a 0)))
(check-sat) ; sat
;query 5
(push)
(assert (< b 1))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [0, 0]
(pop)
;query 6
(push)
(assert (not (< b 1)))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [0, 1]
(pop)
(pop)
(exit)

(c) StackOpt
(declare-fun a () Int)
(declare-fun b () Int)
; query 1
(push)
(assert (< a 0))
(check-sat) ; sat
(define-fun b1 () Int (+ a b))
; query 2
(push)
(assert (< b1 1))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 0]
(pop)
; query 3
(push)
(assert (not (< b1 1)))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [-1, 2]
(pop)
(pop)
; query 4
(push)
(assert (not (< a 0)))
(check-sat) ; sat
(define-fun b1 () Int b)
;query 5
(push)
(assert (< b1 1))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [0, 0]
(pop)
;query 6
(push)
(assert (not (< b1 1)))
(check-sat) ; sat
(get-value (a b))
; [a, b] := [0, 1]
(pop)
(pop)
(exit)

Fig. 2. SMT-LIB scripts produced with various techniques. Comments indicate what
happens during exploration.

is the basic principle to solve large sets of similar constraints. We describe in the
following the experiment we conducted to evaluate the techniques from Section 3.

4.1 Research Questions

We pose the following research questions.

RQ1. How cache-based and stack-based approaches compare?
RQ2. What is the benefit of using common sub-expressions elimination?
RQ3. Where each technique spends most time?

290 T. Liu et al.

4.2 Objects of Analysis

We used two sets of programs in our evaluation. The first set includes programs
automatically generated with RUGRAT [7]. The second set includes programs
collected from the benchmark of KLEE [5], an open-source symbolic execution
tool for C programs.

RUGRAT is a grammar-based program generator that has been proposed
to support empirical evaluation of testing and analysis techniques. It produces
programs based on weights associated to grammar production rules. A prac-
tical challenge for these kinds of generators is to construct realistic programs.
However, an empirical study indicates that it is statistically impossible for a pro-
gram analysis technique to differentiate a program written by a human from one
that the tool generates [20]. The study compared real and generated programs
with 78 existing software metrics. We considered three options of program size:
programs of 5, 10, and 20 KLOC. We generated a total of 300 programs, 100
programs for each program size and only considered programs whose symbolic
execution produces integer linear constraints.

The KLEE Coreutils benchmark [16] contains 96 Unix core programs
(4.5 KLOC together). As the tool handles C programs we could not use our
infrastructure (see Section 4.7). Instead, we ran KLEE, collected constraints
produced by the tool, and analyzed them in order, i.e., consecutive constraints
in the list reflect exploration order and are similar. For this reason we could not
evaluate the combination stackOpt on this program set.

4.3 Experimental Variables

The independent variables of our experiment are the exploration time, size of
the program, and exploration bounds. The control variables (i.e., constants) of
our experiment are the choice of constraint solver and the exploration order.
We used Microsoft’s Z3 [10] for solving constraints and bounded depth first
search for exploring paths. Even though results are deterministic we ran our
scripts multiple times to confirm environmental changes did not introduce noise
in our measurements. We used an Intel Xeon E5-2670 CPU with 2.60GHz clock
running on a 64-bit openSUSE, and set 8GB as the max heap size for a symbolic
execution.

4.4 RQ1. How Cache-Based and Stack-Based Approaches
Compare?

To answer this research question we compared the effectiveness of techniques
on the RUGRAT and KLEE benchmarks. We only considered variants without
applying common sub-expression elimination in this experiment.

The RUGRAT Benchmark. Figures 3 and 4 show results of various tech-
niques for program generated with RUGRAT. We fixed the time budget for
exploring paths in bounded depth-first order to 10 minutes.

A Comparative Study of Incremental Constraint Solving Approaches in SE 291

5K 10K 20K
Solving Time (ms) per constraint
baseline 8.100 16.750 25.565
caching 35.123 89.537 96.983
cachingOpt 17.547 45.624 47.630
stack 0.321 0.843 1.401
stackOpt 0.309 0.752 1.258

5K 10K 20K
Number of queries answered

baseline 29,154 9,115 5,856
caching 34,870 4,875 3,416
cachingOpt 58,988 10,097 5,047
stack 441,353 185,236 101,408
stackOpt 1177,907 448,545 256,345

Fig. 3. Cost metrics

5K 10K

2 4 6 8 10

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

Time (min)

N
u
m

b
e
r

o
f
P

a
th

s
 E

x
p
lo

re
d

● ● ● ● ● ● ● ● ● ●

● baseline

caching

cachingOpt

stack

stackOpt

2 4 6 8 10

0
5

0
0

1
0

0
0

1
5

0
0

Time (min)

N
u
m

b
e
r

o
f
P

a
th

s
 E

x
p
lo

re
d

● ● ● ● ● ● ● ● ● ●

● baseline

caching

cachingOpt

stack

stackOpt

20K

2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0

Time (min)

N
u
m

b
e
r

o
f
P

a
th

s
 E

x
p
lo

re
d

● ● ● ● ● ● ● ● ● ●

● baseline

caching

cachingOpt

stack

stackOpt

Fig. 4. Average number of complete paths explored (i.e., tests generated) using Z3.
Time budget set to 10 minutes.

292 T. Liu et al.

Figure 3 shows the average cost for solving a constraint for each technique and
the total number of queries answered. The average cost of solving one constraint
is the total constraint solving time divided by the number of queries issued to
the solver within a 10m time slot.

Each datapoint in the plots from Figure 4 indicates the number of explored
complete paths (/tests generated) for a pair of technique and point in time.
These plots show progress of different solving approaches. All plots indicate
that the use of incremental SMT solving is beneficial. Note from the y-axis that
as the size of programs grows the number of explored complete paths decreases.
However, note that the speedups remain relatively similar. We observed that as
size of programs grow constraint solving also become much more expensive; this
justifies the decrease in number of complete paths explored on longer programs.
Note from Figure 3 that the number of queries answered by the constraint solver
in fact increase for longer programs compared to other techniques.

All plots from Figure 4 show a linear x-y relationship, indicating that the cost
of exploring one path remains nearly the same during state-space exploration.
Note that results are averaged across several programs. This linear behavior was
a surprise. In principle, it would be justified only when feasible complete paths
are uniformly distributed across the exploration tree and the cost of exploring one
path is constant. A close inspection on results revealed that this indeed occurs
many times although not always. However, as many subjects are considered a
linear behavior emerged in the averaged plots.

The KLEE Benchmark. We compared the techniques also using the bench-
mark of the SE tool KLEE [5, 16]. We analyzed the constraints it generates for
96 programs from KLEE’s own benchmark. We set the time budget for SE to
30 seconds and used the default configuration for running KLEE. We confirmed
as expected that KLEE spends most of its time budget (90%=∼27s/30s) in
constraint solving2

Figure 5 shows the speedup that the best technique, stack , obtains compared
to the second best technique, cachingOpt . The table in the right-top corner shows
the time cost of solving each constraint. We did not evaluate stackOpt in this
experiment as that would require post-processing KLEE-generated constraints.
Considering the 96 programs analyzed the median speedup of stackOpt over
cachingOpt was ∼5x. In absolute terms stack analyzed all constraint in 0.14s
in the best case and 72.36s in the worst case, with a median cost of 6.3s and
an average cost of 7.53s. For 91 of the 96 programs stackOpt was solved all
constraints under 10s. 2 programs were solved under 30s and for only 2 programs
it required more time: 54.9s and 72.36s.

It should be noted that the constraints from the KLEE benchmark build on
the theory of bit-vectors whereas the constraints from the RUGRAT benchmark
build on the theory of integers. We compared the techniques using different the-
ories and obtained some evidence that the techniques we presented are effective
for two relevant theories.

2http://klee.github.io/klee/klee-tools.html#klee-stats

A Comparative Study of Incremental Constraint Solving Approaches in SE 293

shred
pathchk

tsort
cat

arch
join
test

runcon
echo
split
shuf
seq

nl
false

sha224sum
stat

paste
sha256sum

chown
dirname

tac
sha512sum

fmt
cut

sum
vdir

comm
[

readlink
ln

od
who
fold
su

mktemp
users

groups
tail

base64
pwd

cp
sync

expand
chgrp
chroot

basename
rmdir
head

dircolors
mkfifo
factor

sha1sum
touch

uptime
link
kill
tr

dd
mkdir

setuidgid
uname

nice
md5sum

sleep
unlink

du
pr

pinky
tee

sha384sum
hostid
chcon

yes
whoami

df
printf
date

mknod
mv

logname
nohup

rm
sort

ginstall
stty
true
env

chmod
id

hostname
printenv

tty
expr
split
uniq

cksum

Speedup (x times quicker than best other)
C

 p
ro

g
ra

m
s
 (

K
L

E
E

 b
e

n
c
h

m
a

rk
)

0 2 4 6 8 10

<1x mark (slowdown) median

Solving Time (ms) per constraint

baseline 34.559
caching 26.231
cachingOpt 25.860
stack 7.260

Fig. 5. Speedup of stack-based incremental SMT solving over best alternative solving
approach using Z3 (KLEE benchmark). The table in the right-top shows the solving
time per constraint in various approaches.

4.5 RQ2. What is the Benefit of Using Common Sub-expression
Elimination?

Figure 4 shows that the stackOpt performs remarkably well. In contrast to stack
this approach does not appear to degrade performance as the size of programs
and constraints increase. The reason for the gain is justified: 1) On reaching
each branch decision, stackOpt reuses the constraints constructed before path
exploration while stack constructs new constraints when the variables involved
in the branch condition were updated in the path leading to this branch. This is
evidenced in Figure 4, in which stack has a notable overhead in path exploration.
2) To save search space and time, most modern SMT solvers (e.g., [1,2,4,6,9,10])
map structure-equal expressions to a singleton to construct a compact problem.

294 T. Liu et al.

Exploration Expression Construction

●●●●
●●●●●●●●
●●
●
●●●●●
●●
●

●●
●●
●●
●
●●●●
●●●●
●●
●●

●●
●
●●●●●●
●●
●●

●
●
●
●
●
●
●

●●
●●
●

●●
●
●
●●
●
●
●

●●
●●
●●

●●
●

●●●

●●●●●●●
●
●●
●●●●●

●●●●●●●●●●●●●●
●●
●●●●●●●

●●●●●●●●
●
●●
●●

●●●
●
●●

●●●●●●●●●● ●●● ●
0

100

200

300

400

5K 10K 20K
SIZE

T
IM

E

TECH

baseline

caching

cachingOpt

stack

stackOpt

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●
●
●●
●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●●●
●
●
●
●
●
●
●
●

●
●●
●

●
●
●
●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●
●

●
●
●
●

●●●●

●

●
●

●●

●

●

●

●

●●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●
●

●

●
●
●
●
●
●

0

200

400

600

5K 10K 20K
SIZE

T
IM

E

TECH

baseline

caching

cachingOpt

stack

stackOpt

Constraint Solving Rest

●

●

0

200

400

600

5K 10K 20K
SIZE

T
IM

E

TECH

baseline

caching

cachingOpt

stack

stackOpt

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●
●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

5

10

15

20

25

5K 10K 20K
SIZE

T
IM

E

TECH

baseline

caching

cachingOpt

stack

stackOpt

Fig. 6. Average time breakdown of different techniques using Z3 in 10 minutes

While modern solvers detect shared expressions at the syntactical level, stackOpt
introduces intermediate variables as macros to shared expressions at the semantic
level.

4.6 RQ3. Where Techniques Spend Most Time?

Figure 6 shows the time breakdown of the techniques considering 4 sources of
runtime cost: path exploration, expression construction, constraint solving, and
rest. Path exploration time includes the cost of exploring paths (e.g., storing and
restoring states), expression construction time includes the cost of creating Z3
expressions (we used Z3’s programmatic interface for that), constraint solving

A Comparative Study of Incremental Constraint Solving Approaches in SE 295

time includes solving and and caching time, and rest includes the remaining
parts, for example, the time of performing code transforms.

We make the following observations:

– Baseline spends more time in expression construction compared to other
techniques. This happens because baseline needs reconstruct all Z3 expres-
sions for a new query, while caching reduces the amount of constraints issued
to the solver and consequently also reduces this cost.

– Stack spends more time in path exploration compared to other techniques.
This happens because stack needs to update states on assignment statements
and load states on decision points to generate fresh constraints, while stack-
Opt has constraints constructed before path exploration. That is even worse
for those paths traversed multiple times; stack will reload the states and re-
compute the constraints for each traversing, while stackOpt has constraints
constructed prior to the path exploration.

– All caching techniques and stackOpt spent most time on solving constraints
and at least 70% of the time is spent in constraint solving.

– stack spent less time in constraint solving compared to other techniques,
while it can solve more constraints than any other technique except stackOpt .

– stackOpt spent more time in rest than other techniques. This happens is
because stackOpt has a code transformation to rename variables.

4.7 Infrastructure

We developed a SE tool prototype to support our experiments. The motivation
was to evaluate the influence of SSA. The infrastructure has been implemented
in Java in ∼19.7KLOC, being∼1.5KLOC from InspectJ [24]. We computed non-
blank non-comment lines of source code with the CLOC tool [3]. We used the
Soot optimization framework [30] to process Java bytecodes, the Jung graph
framework [21] to construct and explore decision graphs, and InspectJ to unroll
loops and inline methods. The infrastructure generates constraints in SMTLIB
v2 so it can interface with any compliant solver. For example, Z3 [10] is called
directly through its programmatic interface to create corresponding Z3 expres-
sions.The infrastructure supports both integers and bit-vectors to assess the
impact of various options of incremental solving to speedup symbolic execution.
The infrastructure reuses the created objects to reduce the cost of time and
memory allocation in constraint generation.

Static Transformations. We implemented a sequence of static code trans-
formations before the construction of decision graph. For example, unroll loops
according to the configurations, model the program in Static Single Assignment
(SSA) representation and inline methods on each call site. Finally, we obtained
a directed acyclic graph with unique variable names. We evaluated how costly
code transformation can be relative to the other costs. We observed that the lin-
earization (i.e., inlining methods and unrolling loops) procedure is significantly

296 T. Liu et al.

5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4

Bound of Loop Unrolling

C
o
s
t
o
f
S

S
A

 (
%

 o
f
3
0
m

)

● ●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

5K

10K

20K

5 10 15 20

0
2

4
6

Bound of Loop Unrolling

C
o
s
t
o
f
L
in

e
a
ri

z
a
ti
o
n
 (

%
 o

f
3
0
m

)

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5K

10K

20K

Fig. 7. Average percentage of static cost. For example, the average cost of lineariza-
tion for a 20K program configured to unroll loops at most 3 times is approximately
34s(=(1.9/100)*30*60s).

more expensive compared to SSA, which is applied within each procedure prior
to linearizing the code. But still linearization is relatively low cost. Figure 7
shows how each of these operations scale with program size and bound of loop
unrollings. 60 subjects have been checked with a timeout 30m. The scale of the
y-axis is the percentage of a 30m time budget. Results are averaged across all
subjects considered for that size. In the worst case, linearization on 20K pro-
grams with 20 loop unrollings takes roughly 2m24s (=144s=8% of 30m).

4.8 Threats to Validity

As usual it is possible that results do not generalize much beyond our subject
set. To mitigate this threat we used a set of 300 automatically-generated Java
programs and a set of 96 real C programs from the GNU operating system.

Another threat to validity is the possibility of errors in our implementation.
We carefully inspected our code and the consistency of our results. In summary,
additional experiments are necessary to assess generality of our results.

5 Related Work

Symbolic Execution (SE) is expensive in time and space. We discuss below most-
related recent work to reduce the high cost in constraint solving during SE.

5.1 Caching Schemes

Cadar et al. [16] proposed several optimizations to simplify constraints prior
to calling the solver during SE. The SE tool KLEE implements caching as we

A Comparative Study of Incremental Constraint Solving Approaches in SE 297

described. In addition, KLEE implements constraint checking with a potential
solution. It is based on the assumption that a solution of subset often satisfy
extra constraints. We remain to investigate how this additional optimization
compares with those we considered.

Visser et al. [34] proposed GREEN, an infrastructure to share results of sym-
bolic executions across different environments. GREEN proposes canonical rep-
resentations of path conditions to enable caching across different programs. The
intuition is that after partitioning constraints w.r.t. dependent clauses the chance
of finding structurally equal symbolic constraints increases. For example, solu-
tions to constraints produced in the symbolic execution of one program could
be used to solve constraints produced from SE for another program. Results of
GREEN are encouraging. Although the goal of GREEN is the same (to speedup
constraint solving), our contributions are complementary.

5.2 Incremental SMT Solving

Incremental SMT solving is an active field of research with the goal of optimizing
problems that can be characterized by many similar sub-problems. For example,
detecting the program execution trace which maximizes execution cost [23], solv-
ing scheduling problems [31]. As a basic decision procedure, incremental SMT
solving searches for a satisfying assignment by performing various operations
(e.g. unit propagation). When internal conflicts occur incremental SMT solvers
extract and store conflict clause to prune exploration search space. More specif-
ically, incremental solvers store learned and conflicting clauses in the assertion
stack so that they can be reused upon backtracking. Recently, Wieringa et al. [11]
proposed a technique to strengthen the clauses learned by the solver by extend-
ing an incremental SMT solver to execute in multiple threads. We observed that
this development can directly improve symbolic execution.

6 Conclusions

This paper reports on a study to assess the impact of various options of in-
cremental solving to speedup Symbolic Execution (SE). Results suggest that
incremental solving is very important and that stack-based approaches provide
superior results when compared to cache-based approaches for the benchmarks
used in our experiments. Note that results are restricted to the use bounded
depth-first search. More research is needed to find ways to combine caching- and
stack-based approaches to improve results even further.

Acknowledgments. This work is partially funded by DFG grant TA764/1-1.
Mateus is supported by the FACEPE fellowship # IBPG-0668-1.03/12. DFG
is the German Research Foundation and FACEPE is the state of Pernambuco,
Brazil, Research Foundation.

298 T. Liu et al.

References

1. Alt-Ergo webpage, http://alt-ergo.lri.fr/

2. Boolector webpage, http://fmv.jku.at/boolector/

3. CLOC webpage, http://cloc.sourceforge.net/

4. CVC4 webpage, http://cvc4.cs.nyu.edu/web/

5. KLEE webpage, http://klee.github.io/klee/

6. MathSAT5 webpage, http://mathsat.fbk.eu/

7. RUGRAT webpage, http://www.rugrat.ws/

8. STP webpage, https://sites.google.com/site/stpfastprover/

9. Yices webpage, http://yices.csl.sri.com/

10. Z3 webpage, http://z3.codeplex.com/

11. Audemard, G., Lagniez, J.-M., Simon, L.: Improving Glucose for Incremental SAT
Solving with Assumptions: Application to MUS Extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013)

12. Bankovic, M.: Argosmtexpression: an smt-lib 2.0 compliant expression library. In:
Workshop of the SAT (June 2012)

13. Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S., Visser, W.: Composi-
tional solution space quantification for probabilistic software analysis. In: PLDI,
pp. 123–132 (2014)

14. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT - A Formal System for Testing
and Debugging Programs by Symbolic Execution. In: International Conference on
Reliable Software, pp. 234–245 (1975)

15. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: ASE 2008,
pp. 443–446 (2008)

16. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: OSDI, pp. 209–224 (2008)

17. Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, C.S., Sen, K., Tillmann, N.,
Visser, W.: Symbolic execution for software testing in practice: preliminary assess-
ment. In: ICSE, pp. 1066–1071 (2011)

18. Clarke, L.A.: A Program Testing System. In: ACM Annual Conference, pp. 488–491
(1976)

19. Howden, W.E.: Symbolic Testing and the DISSECT Symbolic Evaluation System.
IEEE TSE 3(4), 266–278 (1977)

20. Hussain, I., Csallner, C., Grechanik, M., Fu, C., Xie, Q., Park, S., Taneja, K.,
Hossain, B.M.M.: Evaluating program analysis and testing tools with the RUGRAT
random benchmark application generator. In: WODA, pp. 1–6 (2012)

21. Jung webpage, http://jung.sourceforge.net/

22. King, J.C.: Symbolic execution and program testing. Communications of
ACM 19(7), 385–394 (1976)

23. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with smt solvers. SIGPLAN Not. 49(1), 607–618 (2014)

24. Liu, T., Nagel, M., Taghdiri, M.: Bounded program verification using an smt solver:
A case study. In: ICST, pp. 101–110 (2012)

25. Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. STTT 11(4), 339–353 (2009)

26. Păsăreanu, C.S., Rungta, N.: Symbolic PathFinder: symbolic execution of Java
bytecode. In: ASE, pp. 179–180 (2010)

http://alt-ergo.lri.fr/
http://fmv.jku.at/boolector/
http://cloc.sourceforge.net/
http://cvc4.cs.nyu.edu/web/
http://klee.github.io/klee/
http://mathsat.fbk.eu/
http://www.rugrat.ws/
https://sites.google.com/site/stpfastprover/
http://yices.csl.sri.com/
http://z3.codeplex.com/
http://jung.sourceforge.net/

A Comparative Study of Incremental Constraint Solving Approaches in SE 299

27. Ramamoorthy, C., Ho, S., Chert, W.: On the automated generation of program
test data. IEEE TSE 2(4), 293–300 (1976)

28. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: SP, pp. 317–331 (2010)

29. SMT-LIB webpage, http://www.smtlib.org/
30. Soot webpage, http://www.sable.mcgill.ca/soot/
31. Steiner, W.: An evaluation of smt-based schedule synthesis for time-triggered multi-

hop networks. In: RTSS, pp. 375–384 (2010)
32. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert,

B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

33. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: Reducing, reusing and recycling
constraints in program analysis. In: FSE, pp. 1–11 (2012)

34. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: Reducing, reusing and recycling
constraints in program analysis. In: Proceedings of the ACM SIGSOFT 20th In-
ternational Symposium on the Foundations of Software Engineering, FSE 2012,
pp. 58:1–58:11. ACM, New York (2012)

35. Yang, G., Khurshid, S., Pasareanu, C.S.: Memoise: A tool for memoized symbolic
execution. In: ICSE, pp. 1343–1346 (May 2013)

http://www.smtlib.org/
http://www.sable.mcgill.ca/soot/

Author Index

Aleksandrowicz, Gadi 54
Alur, Rajeev 75
Araújo, Mateus 284

Becker, Bernd 30
Bloem, Roderick 92, 188
Blom, Stefan 204
Bogomolov, Sergiy 116
Buzdalov, Maxim 165

Chu, Duc-Hiep 171

Dam, Mads 236
d’Amorim, Marcelo 284
Derrick, John 1
Dongol, Brijesh 1

Fraser, Gordon 48
Frehse, Goran 116
Furia, Carlo A. 48

Galeotti, Juan Pablo 48
Gargantini, Angelo 220
Gladisch, Christoph 99
Goldberg, Eugene 148
Greitschus, Marius 116
Grosu, Radu 116
Groves, Lindsay 1
Grunwald, Daniel 99
Gupta, Ashutosh 68

Hofferek, Georg 68

Ivrii, Alexander 54

Jaffar, Joxan 171

Kant, Gijs 204
Katz, Yoav 17
Könighofer, Robert 92
Kovács, Laura 252

Laarman, Alfons 267
Lennartson, Bengt 252

Liu, Tianhai 99, 284
Lukin, Mikhail 165

Malik, Sharad 188
Manolios, Panagiotis 148
Marcus, Eitan 17
Margalit, Oded 54
Martin, Milo 75
May, Eva 48
Meijer, Jeroen 204
Miller, Christian 30
Morbé, Georges 30

Pasareanu, Corina 116
Podelski, Andreas 116

Raghothaman, Mukund 75
Rasin, Dan 54

Schlaipfer, Matthias 188
Scholl, Christoph 30
Schwarz, Oliver 236
Shalyto, Anatoly 165
Shoaei, Mohammad Reza 252
Smith, Graeme 1
Stergiou, Christos 75
Strump, Thomas 116

Taghdiri, Mana 99, 284
Toegl, Ronald 92
Travkin, Oleg 132
Tripakis, Stavros 75
Tyszberowicz, Shmuel 99

Udupa, Abhishek 75

van de Pol, Jaco 204
Vavassori, Paolo 220

Wehrheim, Heike 132
Weissenbacher, Georg 188
Wijs, Anton 267

Zeller, Andreas 48
Ziv, Avi 17

	Preface
	Organization
	SAT Counting and Sampling - From Theory to Practice

	Statistical Program Analysis and Synthesis
	Navigating the Perfect Storm: New Trends in Functional Verification

	Table of Contents
	Using Coarse-Grained Abstractions to Verify Linearizability on TSO Architectures
	1 Introduction
	2 The TSO Memory Model
	2.1 Example – Spinlock

	3 Coarse-Grained Abstraction
	3.1 Defining the Coarse-Grained Abstraction

	4 Linearizability: From Concrete to Intermediate Specification
	5 Transforming the Intermediate Specification to an Abstract One
	6 Gluing it Together: From Concrete to Abstract Specification
	6.1 TSO-Linearizability
	6.2 Soundness

	7 Conclusions
	References

	Enhancing Scenario Quality Using Quasi-Events
	1 Introduction
	2 Simple Scenario Example
	3 Scenario Mutations
	4 Speculation Mutations
	4.1 Handling Ordered Instructions
	4.2 Eliminating Speculation Candidates
	4.3 Selecting Speculative Instructions

	5 Experimental Results
	6 Conclusions
	References

	Combined Bounded and Symbolic Model
Checking for Incomplete Timed Systems

	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Incomplete Networks of Timed Automata
	2.3 Bounded Model Checking of Incomplete Networks of Timed Automata
	2.4 Symbolic Backward Model Checking Based on FSMTs

	3 Hybrid Verification of Incomplete Real-Time Systems
	3.1 Overall Algorithm
	3.2 Enlarged Target Inclusion Check and Conflict Clause Generation

	3.3 Pre-Urgent Inclusion Check and Conflict Constraint Generation

	4 Experiments
	5 Conclusion
	References

	DynaMate: Dynamically Inferring Loop Invariants for Automatic Full Functional Verification
	1 The Challenge of Automating Program Verification
	2 Using
DYNAMATE
	3 Empirical Evaluation
	4 Conclusions
	References

	Generating Modulo-2 Linear Invariants
for Hardware Model Checking

	1 Introduction
	2 Toy Verification Example
	3 Algorithms
	3.1 Preliminaries
	3.2 Overview
	3.3 Computing Displacements and Invariants
	3.4 Computing the Smallest Inductive Subspace
	3.5 Implementation Details and Optimizations
	3.6 Extension to General Initial States
	3.7 State Variables Reduction

	4 Experimental Evaluation
	4.1 Effect on Reduction Size
	4.2 Effect on IC3 Resources

	5 Related and Future Work
	6 Conclusion
	References

	Suraq — A Controller Synthesis Tool
Using Uninterpreted Functions

	1 Introduction
	2 Synthesis Method
	2.1 Using Suraq

	3 Experimental Results
	4 Conclusion
	References

	Synthesizing Finite-State Protocols
from Scenarios and Requirements

	1 Introduction
	2 Methodology
	3 The Automata Completion Problem
	3.1 Finite-State Input-Output Automata
	3.2 Composition
	3.3 From Scenarios to Incomplete Automata
	3.4 Automata Completion

	4 Solving Automata Completion
	4.1 Complexity
	4.2 Synthesis Algorithm

	5 Evaluation
	5.1 Benchmarks
	5.2 State Coverage
	5.3 Generalization and Inference of Unspecified Behaviors
	5.4 Scalability
	5.5 Scenarios and Requirements

	6 Conclusions
	References

	Automatic Error Localization for Software
Using Deductive Verification

	1 Introduction
	2 Automatic Error Localization
	2.1 Fault Models
	2.2 Basic Idea for Error Localization
	2.3 Realization with Deductive Verification
	2.4 Implementation in Frama-C

	3 First Experimental Results
	3.1 Performance Evaluation
	3.2 Examples

	4 Conclusions
	References

	Generating JML Specifications
from Alloy Expressions
	1 Introduction
	2 Background
	2.1 Alloy
	2.2 JML

	3 Motivating Example
	4 Translation from Alloy to JML
	4.1 The Translation Function
	4.2 Transitive Closure
	4.3 The Modifies Clause

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Assume-Guarantee Abstraction Refinement
Meets Hybrid Systems

	1 Introduction
	2 Preliminaries
	3 Compositional Framework for Hybrid Systems
	3.1 Abstraction Algorithm
	3.2 Compositional Analysis
	3.3 Spuriousness Check
	3.4 Refinement Algorithm

	4 Related Work
	5 Evaluation
	5.1 Benchmarks
	5.2 Experiments

	6 Conclusion
	References

	Handling TSO in Mechanized Linearizability
Proofs

	1 Introduction
	2 Background
	3 TSO model
	4 Proving Linearizability
	5 Avoiding Store Buffers
	6 Evaluation
	7 Conclusion
	References

	Partial Quantifier Elimination
	1 Introduction
	2 Some Applications of PQE
	2.1 Enabling a New Type of Model Checkers
	2.2 Computing Pre-image in Backward Model Checking
	2.3 SAT-Solving by PQE

	3 Example
	4 Basic Definitions
	5 Dependency Sequents
	6 Algorithm
	6.1 Input and Output of DS-PQE

	6.2 The Big Picture
	6.3 Building Atomic D-Sequents
	6.4 Selection of a Branching Variable
	6.5 Switching from Left to Right Branch
	6.6 Branch Merging
	6.7 New Features of DS-PQE with Respect to DCDS

	6.8 Correctness of DS-PQE

	7 Background
	8 Experimental Results
	9 Conclusion
	References

	Formal Verification of 800 Genetically
Constructed Automata Programs: A Case Study

	1 Introduction
	2 Problem Formulation
	3 Proposed Verification Approach
	4 Application to the Path Planning Problem
	4.1 The Model
	4.2 Weaknesses of the Model
	4.3 LTL Formulae and Theorems
	4.4 Verification Results

	5 Conclusion
	References

	A Framework to Synergize Partial Order Reduction with State Interpolation
	1 Introduction
	2 Related Work
	3 Background
	4 Property Driven POR (PDPOR)
	5 Synergy of PDPOR and SI
	6 Implementation of PDPOR
	7 Experiments
	8 Conclusion
	References

	Reduction of Resolution Refutations
and Interpolants via Subsumption

	1 Introduction
	2 Notation and Preliminaries
	2.1 Formulae, Proofs, and Transformations
	2.2 Interpolation Systems and Labelling Functions

	3 Proof Reduction via Subsumption
	3.1 Eliminating Redundant Resolution Steps
	3.2 Limiting the Number of Candidates for Subsumption

	4 Interpolant Reduction via Subsumption
	5 Implementation and Experiments
	6 Conclusion
	References

	Read, Write and Copy Dependencies
for Symbolic Model Checking

	1 Introduction
	2 The Partioned Next-State Interface (Pins)
	3 State Slot Dependencies
	3.1 The May-Write Dependency
	3.2 Optimisation Operations on the Dependency Matrix

	4 Symbolic Reachability Analysis
	4.1 Implementation

	5 Results
	6 Conclusion
	References

	Efficient Combinatorial Test Generation
Based on Multivalued Decision Diagrams

	1 Introduction
	2 Background
	2.1 Combinatorial Interaction Testing
	2.2 Multivalued Decision Diagram

	3 Using MDD for CCIT
	4 An MDD-Based Algorithm for CCIT
	4.1 Optimization: Weighting Compatibility
	4.2 Optimization: Repetitions

	5 Experiments
	5.1 Threats to Validity

	6 Related Work
	7 Future Work and Conclusions
	References

	Formal Verification of Secure User Mode Device Execution with DMA
	1 Introduction
	2 Related Work
	3 TheHOL4ARM
Model
	4 Memory Management
	5 Device Model Framework
	6 Security Properties
	6.1 Suitable Device Configurations
	6.2 Non-infiltration
	6.3 Extended Non-exfiltration
	6.4 Filtered Device Non-infiltration

	7 Implementation
	8 Conclusion and Future Work
	References

	Supervisory Control of Discrete-Event
Systems via IC3

	1 Introduction
	2 Background
	2.1 Modeling Discrete-Event Systems
	2.2 Supervisory Control
	2.3 Incremental, Inductive Verification

	3 Incremental, Inductive Supervisory Control via IC3
	4 Experiments
	5 Conclusions and Future Work
	References

	Partial-Order Reduction
for Multi-core LTL Model Checking

	1 Introduction
	2 Preliminaries
	3 Multi-core Partial-Order Reduction
	3.1 Partial-Order Reduction for Safety Properties
	3.2 Partial-Order Reduction for Liveness Properties

	4 Experimental Evaluation
	5 Related Work
	6 Conclusions
	References

	A Comparative Study of Incremental Constraint
Solving Approaches in Symbolic Execution

	1 Introduction
	1.1 Incremental Constraint Solving Approaches
	1.2 Contribution

	2 Background
	2.1 Constraint Generation
	2.2 Constraint Solving

	3 Techniques
	3.1 Illustrative Example
	3.2 Common Sub-expression Elimination:

	4 Evaluation
	4.1 Research Questions
	4.2 Objects of Analysis
	4.3 Experimental Variables
	4.4 RQ1. How Cache-Based and Stack-Based Approaches Compare?

	4.5 RQ2. What is the Benefit of Using Common Sub-expression Elimination?

	4.6 RQ3. Where Techniques Spend Most Time?
	4.7 Infrastructure
	4.8 Threats to Validity

	5 Related Work
	5.1 Caching Schemes
	5.2 Incremental SMT Solving

	6 Conclusions
	References

	Author Index

