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Preface

This volume holds the proceedings of HVC 2009. The Haifa Verification Con-
ference is unique in bringing together research communities from formal and
dynamic verification of hardware and software systems. It thus encourages both
the recognition of common core questions and a healthy exchange of ideas and
methods across domains. The attendees at HVC come from academia, industrial
research labs, and industry, resulting in a broad range of perspectives.

The program for this year was chosen from 23 submissions. While we faced
an unexpected drop in submissions, the resulting program was of a high quality.
The paper by Anna Moss and Boris Gutkovich on “Functional Test Genera-
tion with Distribution Constraints” was chosen for the Best Paper Award. The
HVC Award, given to the most promising contribution in the fields of software
and hardware verification and test in the past five years, was given to Patrice
Godefroid, Nils Klarlund, and Koushik Sen for their work on “DART: Directed
Automated Random Testing.”

The program included an outstanding set of keynote and invited talks. David
Harel from the Weizmann Institute of Science spoke on “Can We Verify an Ele-
phant?”; Mark Harman from CREST centre at King’s College London, spoke on
“The SBSE Approach to Automated Optimization of Verification and Testing;”
and Harry Foster from Mentor Graphics, spoke on “Pain, Possibilities, and Pre-
scriptions Industry Trends in Advanced Functional Verification.” Tutorials were
organized on “Post-Silicon Validation and Debugging,” with Amir Nahir and Al-
lon Adir (IBM), Rand Grey and Shmuel Branski (Intel), and Brad Quinton (Uni-
versity of British Columbia); “Satisfiability Modulo Theories” with Ofer Strich-
man (Technion); and “Constraint Satisfaction” with Eyal Bin (IBM). We would
like to thank the speakers for putting together interesting and informative talks.

The conference was held at IBM’s Research Labs at Haifa. We would like to
thank the many people who were involved; in particular, Vered Aharon, who made
sure that the conference ran smoothly each day. The Program Committee worked
hard to put together the conference program; we thank them for their efforts.
The HVC OrganizingCommittee provided considerable help and perspective. The
HVC Award Committee, which was chaired by Sharad Malik (Princeton) and in-
cluded Holger Hermanns (Saarland), Sarfraz Khurshid (University of Texas,
Austin), Natarajan Shankar (SRI), and Helmut Veith (TU Darmstadt), did a won-
derful job in picking a particularly deserving paper for the award among the many
good candidates. Finally, we would like to thank all those who participated in the
conference and made it an exciting and enjoyable event.

December 2010 Avi Ziv
Kedar Namjoshi

Andreas Zeller
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Can We Verify an Elephant?

David Harel

Weizmann Institute of Science

Abstract. The talk shows the way techniques from computer science
and software engineering can be applied beneficially to research in the
life sciences. We will discuss the idea of comprehensive and realistic mod-
eling of biological systems, where we try to understand and analyze an
entire system in detail, utilizing in the modeling effort all that is known
about it. I will address the motivation for such modeling and the phi-
losophy underlying the techniques for carrying it out, as well as the
crucial ”verification” question of when such models are to be deemed
valid, or complete. The examples I will present will be from among the
biological modeling efforts my group has been involved in: T cell de-
velopment in the thymus, lymph node behavior, organogenesis of the
pancreas, fate determination in the reproductive system of C. elegans,
and a generic cell model. The ultimate long-term ”grand challenge” is
to produce an interactive, dynamic, computerized model of an entire
multi-cellular organism, such as the C. elegans nematode worm, which is
complex, but well-defined in terms of anatomy and genetics. The chal-
lenge is to construct a full, true-to-all-known-facts, 4-dimensional, fully
animated model of the development and behavior of this worm (or of
a comparable multi-cellular animal), which is easily extendable as new
biological facts are discovered.

K. Namjoshi, A. Zeller, and A. Ziv (Eds.): HVC 2009, LNCS 6405, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Pain, Possibilities, and Prescriptions
Industry Trends in Advanced Functional

Verification

Harry Foster

Mentor Graphics

Abstract. Today, many forces at play contribute to the gap between
what we can fabricate (silicon capacity) and what we have time to design.
In addition, there are forces at play that contribute to a gap between
what we can design and what we realistically have time to verify (within
a project’s schedule). Nonetheless, we tape out complex systems all the
time. Hence, the question arises, is the productivity gap real? And if so,
what can we do to minimize its effects? This talk provides a statistical
analysis of today’s industry trends in the adoption of advanced functional
verification (AFV) techniques, and then offers new models for improving
AFV maturity within an organization.

K. Namjoshi, A. Zeller, and A. Ziv (Eds.): HVC 2009, LNCS 6405, p. 2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



The SBSE Approach to Automated
Optimization of Verification and Testing

Mark Harman

CREST Centre at King’s College London

Abstract. The aim of Search Based Software Engineering (SBSE) re-
search is to provide automated optimization for activities right across
the Software Engineering spectrum using a variety of techniques from
the metaheuristic search, operations research and evolutionary compu-
tation paradigms. The SBSE approach has recently generated a great
deal of interest, particularly in the field of Software Testing. There is a
natural translation from test input spaces to the search spaces on which
SBSE operates and from test criteria and goals to the formulation of the
fitness functions with which the search based optimization algorithms are
guided. This makes SBSE compelling and generic; many testing problems
can be formulated as SBSE problems. This talk will give an overview of
SBSE applications to testing, verification and debugging with some re-
cent results and pointers to open problems and challenges.

K. Namjoshi, A. Zeller, and A. Ziv (Eds.): HVC 2009, LNCS 6405, p. 3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



DART: Directed Automated Random Testing

Koushik Sen

UC Berkeley

Abstract. Testing with manually generated test cases is the primary
technique used in industry to improve reliability of software–in fact, such
testing is reported to account for over half of the typical cost of software
development. I will describe directed automated random testing (also
known as concolic testing), an efficient approach which combines random
and symbolic testing. Concolic testing enables automatic and systematic
testing of programs, avoids redundant test cases and does not generate
false warnings. Experiments on real-world software show that concolic
testing can be used to effectively catch generic errors such as assertion
violations, memory leaks, uncaught exceptions, and segmentation faults.
From our initial experience with concolic testing we have learned that
a primary challenge in scaling concolic testing to larger programs is the
combinatorial explosion of the path space. It is likely that sophisticated
strategies for searching this path space are needed to generate inputs
that effectively test large programs (by, e.g., achieving significant branch
coverage). I will present several such heuristic search strategies, including
a novel strategy guided by the control flow graph of the program under
test.

K. Namjoshi, A. Zeller, and A. Ziv (Eds.): HVC 2009, LNCS 6405, p. 4, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Reduction of Interrupt Handler Executions for
Model Checking Embedded Software

Bastian Schlich1, Thomas Noll2, Jörg Brauer1, and Lucas Brutschy1

1 Embedded Software Laboratory, RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

2 Software Modeling and Verification Group, RWTH Aachen University
Ahornstr. 55, 52074 Aachen, Germany

Abstract. Interrupts play an important role in embedded software.
Unfortunately, they aggravate the state-explosion problem that model
checking is suffering from. Therefore, we propose a new abstraction tech-
nique based on partial order reduction that minimizes the number of
locations where interrupt handlers need to be executed during model
checking. This significantly reduces state spaces while the validity of the
verification results is preserved. The paper details the underlying static
analysis which is employed to annotate the programs before verification.
Moreover, it introduces a formal model which is used to prove that the
presented abstraction technique preserves the validity of the branching-
time logic CTL*-X by establishing a stutter bisimulation equivalence
between the abstract and the concrete transition system. Finally, the
effectiveness of this abstraction is demonstrated in a case study.

1 Introduction

Embedded systems frequently occur as part of safety-critical systems. Full test-
ing of these systems is often not possible due to fast time to market, uncertain
environments, and the complexity of the systems. Model checking has been rec-
ognized as a promising tool for the analysis of such systems. A major problem for
the application of model checking is the state explosion. When model checking
embedded-systems software, interrupts are a major challenge. They are impor-
tant as many features of embedded systems are implemented using interrupts,
but they have a considerable impact on the size of the state space. Whenever
they are enabled, they can interact with the main program and influence the
behavior of the overall system.

To make model checking applicable to embedded systems software, we de-
veloped a model checker for microcontroller assembly code called [mc]square
[1]. This model checker works directly on the assembly code of the program and
automatically applies abstraction techniques such as delayed nondeterminism [2]
and delayed nondeterminism for interrupts [3] to tackle the state-explosion prob-
lem. This paper describes a new abstraction technique called interrupt handler
execution reduction (IHER), which is based on the idea of partial order reduc-
tion (POR). It reduces the number of program locations at which the possible

K. Namjoshi, A. Zeller, and A. Ziv (Eds.): HVC 2009, LNCS 6405, pp. 5–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



6 B. Schlich et al.

execution of interrupt handlers (IHs) has to be considered. This can greatly
reduce state spaces built during model checking.

The idea behind IHER is similar to the one behind POR (cf. Sect. 6), but
the algorithms used are different due to the fact that the pseudo parallelism
introduced by IHs significantly differs from concurrent threads in its asymmetry.
Threads can block other threads and control can nondeterministically change
between threads. IHs, however, can only interrupt the main program, but they
cannot be interrupted by the main program. The instructions of the main pro-
gram have to be executed whereas the execution of IHs is usually nondeter-
ministic. Moreover in [mc]square, IHs are required to be executed atomically
because if IHs can mutually be interrupted, a stack collision will eventually occur
as the stack that stores the return addresses is bounded on real microcontrollers.
Hence, we model IHs as atomic actions in IHER. Consequently, as IHs do not
necessarily terminate due to loops or usage of microcontroller features, we can-
not guarantee termination of atomic actions. In contrast, in POR it is assumed
that atomic actions always terminate.

The contribution of this paper is twofold. We have developed a static analy-
sis framework for microcontroller assembly code that forms the basis for IHER.
Furthermore, we have developed a dynamic part that applies IHER during model
checking. The static analysis identifies program locations at which the execution
of IHs can be prevented because they do not influence the (visible) behavior of
the system or software, respectively. During model checking, the execution of IHs
is blocked at these locations. As we will see, this abstraction technique guaran-
tees a stuttering bisimulation equivalence between the concrete and the abstract
transition system. Therefore, it preserves the validity of CTL*-X [4] formulas.

The paper is structured as follows. First, [mc]square is introduced in Sect. 2.
Then, Sect. 3 explains the general idea of our abstraction technique and details
the applied algorithms. Section 4 presents a formal model and gives a sketch of
the proof that the abstraction technique presented in this paper actually pre-
serves a stuttering bisimulation equivalence. The effectiveness of the technique is
demonstrated in the case study described in Sect. 5. Related work, particularly
with respect to POR, is presented in Sect. 6.

2 [mc]square

[mc]square [1] is a model checker for microcontroller assembly code. It can
verify code for five different microcontrollers, namely ATMEL ATmega16 and
ATmega128, Infineon XC167, Intel MCS-51, and Renesas R8C/23. It accepts
programs given in different binary-code file formats such as ELF or Intel Hex
Format and, additionally, it reads the corresponding C code if it is available.
[mc]square processes specifications given in CTL [4], which can include propo-
sitions about general purpose registers, I/O registers, general memory locations,
and the program counter. (Depending on the applied abstraction techniques,
propositions about the program counter may be disallowed.) If debug informa-
tion is available, specifications can also include propositions about C variables.
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[mc]square uses explicit model checking algorithms, but the states are partly
symbolic. That is, they do not represent single concrete states but sets of con-
crete states, and are introduced by abstractions of the microcontroller memory.
In [mc]square, we have modeled different abstractions of the memory that vary
with respect to the degree of abstraction. Beside these memory-oriented meth-
ods, we have also implemented several general purpose abstraction techniques
such as dead variable reduction and path reduction [5]. It is important to notice
that [mc]square always creates an over-approximation of the behavior shown by
the real microcontroller. Depending on the applied abstraction techniques, [mc]-
square preserves the validity of CTL, the universal fragment of CTL (ACTL)
[4], or ACTL-X, which refers to ACTL without the next operator.

Figure 1 shows the model checking process that is applied by [mc]square.
First, the binary code, the C code (if available), and the formula are parsed
and transformed into their internal representations. Then, the static analyzer
is executed and the program is annotated using information from the assembly
code, the debug information, and the CTL formula. These annotations are later
used by the simulator to reduce the state space.

The static analyzer performs several analyses as described by Schlich [1].
A major challenge for the analysis of assembly code are indirect references to
the memory. As most of these are caused by stack-handling operations, a stack
analysis is employed to determine the values of the stack pointer in order to
restrict the memory regions that can be accessed [6]. Other indirect references
are rarely used. To generate an over-approximation, we assume in these cases
that indirect references can access the complete memory of the microcontroller.

[mc]squareProgram 
file

C file

CTL 
formula

Program 
parser

CTL 
parser

Static 
analyzer

Counter-
example 
generator

Model checker

Simulator

State 
space

Fig. 1. Model checking process applied in [mc]square

In the next step, [mc]square performs model checking. Currently, we have
implemented two different algorithms: one for checking invariants, and one on-
the-fly CTL model checking algorithm described by Heljanko [7]. The model
checker requests states from the state space. If successors of a state are not yet
created, the state space uses the simulator to generate them on-the-fly.

The simulator natively handles nondeterminism and creates an over-approxi-
mation of the behavior shown by the real microcontroller. Within the simulator
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component, we have modeled the different microcontrollers. Creation of succes-
sors is done by means of interpretation. A state is loaded into the model of the
microcontroller, and then all its possible successors are generated. A state can
have more than one successor because interrupts can occur while executing the
program and because input can be read from the environment or from devices
with nondeterministic behavior such as timers.

If the model checker refutes the property under consideration, the counterex-
ample generator creates a counterexample, which is also optimized. That is,
loops and other unneeded parts are removed to ease its comprehension. The
counterexample is presented in the assembly code, in the C code (if available),
in the control flow graph of the assembly code, and as a state space graph.

3 Reduction of Interrupt Handler Executions

The execution of IHs has a significant impact on state space sizes when model
checking microcontroller programs. Interrupts introduce pseudo parallelism in
microcontroller programs as they can possibly occur at every program location
where they are enabled (cf. Sect. 1). Thus, state spaces can grow exponentially
with the number of interrupts used. Similarly to the observation that led to the
partial order reduction technique (cf. Sect. 6), we observed that the execution
of IHs does not always influence the behavior of a program. In the following, an
abstraction technique is described that reduces the number of locations where
IHs have to be considered. First, the general idea is presented, then, details of
the applied analysis are given, and in the end, the application of this technique
is demonstrated using an example.

3.1 General Idea

We have developed an abstraction technique called interrupt handler execution
reduction, which reduces the number of IH executions by blocking IHs at program
locations where there is no dependency between certain IHs and the program.
There is a dependency if either one influences the other or the visible behavior of
the program is changed. An IH influences a program location if it, for example,
writes a memory location that is accessed by the program location. Here, an
access refers to both a reading or writing reference to a memory location. On
the other hand, a program location influences an IH if it, for instance, enables or
disables interrupts. The visible behavior of the program is changed by a visible
action if a memory location is written that is used in an atomic proposition
(AP). The same applies for dependencies between IHs.

When using this abstraction technique, propositions about the program coun-
ter are not allowed because the program counter is changed at all program
locations, and therefore, IHs could never be suppressed. In the analysis, the ex-
ecution of IHs is assumed to be atomic, and therefore, IHs are treated as single
instructions. Our idea, however, can easily be extended to the case that IHs are
interruptible by treating each IH the same way as the main process is treated.
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As IHs can possibly contain divergent loops, termination of IHs cannot be guar-
anteed. To preserve the validity of specifications with respect to our abstraction
technique, divergent behavior has to be observable both in the concrete and
the abstract model (see Sect. 4). Hence, IHs have to be executed at least once
between two visible actions.

We additionally require that an interrupt can occur arbitrarily often at a single
program location because at this location it has to mimic all possible behaviors
to create an over-approximation of the real behavior. On the real hardware, for
some microcontrollers such as the ATMEL ATmega16, the execution of an IH is
always followed by the execution of an instruction of the program. Allowing an
arbitrary number of occurrences adds additional behavior and thus leads to an
over-approximation, but it again reduces state spaces.

The IHER technique comprises two parts: a static analysis that annotates the
program, and a dynamic part that uses the annotations during model checking
to suppress the execution of IHs where they do not need to be considered. The
next section details the static analysis and the last section provides an example.

3.2 Static Analysis

As a prerequisite for determining program locations where IHs can be blocked,
[mc]square employs a sequence of different context-sensitive static analyses and
combines their results as detailed by Schlich [1]. First, the control flow graph
(CFG) of the program is built and all program locations are annotated with
the sets of live variables, reaching definitions, and the status of interrupt regis-
ters, that is, the information whether certain interrupts are enabled or disabled.
During these analyses, information about the stack is used to limit the over-
approximation. As their results potentially influence each other, these analyses
are conducted within a loop until a fixed point is reached. Using the information
that was obtained in this way, the analysis for the IHER abstraction technique
is applied. It consists of the following four steps:

1. Detect dependencies between IHs
2. Detect dependencies between program locations and IHs
3. Refine results
4. Label blocking locations

In the following, these four steps are detailed.

Detect Dependencies between IHs. In the first step of the analysis, depen-
dencies between IHs are identified. This is formalized by the relation �� ⊆ IH× IH
where i, j ∈ IH depend on each other, denoted i �� j, if one of the following con-
ditions holds:

– one enables or disables the other,
– one writes a memory location accessed by the other, or
– one writes a memory location used in an AP.
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This relation is obviously symmetric. If one IH enables or disables another IH,
all possible interleavings between both are relevant. Therefore, not only the
enabled/disabled IH has to be executed if the enabling/disabling IH is executed
but also vice versa as otherwise behavior could get lost. This also applies if one
IH writes a memory location that is accessed by another IH. Note that in the
last condition only one IH is mentioned. Thus, if there is one IH that writes a
memory location that is used in an AP, all IHs depend on each other. An IH
that writes an AP is related to all IHs including those that do not write APs
because its execution could be prevented by a non-terminating IH. This includes
the case of two IHs that both write APs: they are related because they both alter
the visible behavior of the program, and thus, all their possible interleavings are
relevant.

The transitive-reflexive closure of �� is denoted by ��∗ and induces a parti-
tioning of IH. This partitioning is used in the following way. Whenever one of the
IHs has to be executed, all other IHs in its equivalence class have to be executed
as well. The algorithm to compute the dependency relation performs a nested
iteration over all IHs based on the conditions described above.

Detect Dependencies between Program and IHs. In the second step of
the analysis, [mc]square determines dependencies between the program and
the IHs and identifies program locations where interrupts have to be executed.
There exists a dependency between a program location and an IH if either one
influences the other or the program behavior is visibly changed. The latter is the
case if an instruction or an IH writes memory locations used in APs.

To detect the dependencies between the program and the IHs, [mc]square
marks specific program locations with the following two labels: execution and
barrier. The label execution implies that there exists a dependency between the
preceding program location and an IH, and thus, this IH needs to be executed
eventually. The label barrier denotes that there exists a dependency between
that program location and an IH, and therefore, this IH needs to be executed
before the instruction at that location is executed. Otherwise, visible behavior
could get lost. In the later refinement step, label execution can be moved until
a label barrier is reached.

Let program location k be a direct predecessor of program location l. Formally,
for each i ∈ IH, l is labeled with executioni if one of the following conditions is
satisfied:

– k enables or disables i,
– k writes a memory location that is accessed by i, or
– k writes a memory location that is used in an AP.

These conditions are similar to the conditions for dependencies between IHs. If
k enables or disables an IH, this IH has to be executed eventually to exhibit
the changed behavior. The same applies if k writes a memory location that is
accessed by an IH. As interrupts are deactivated in the initial program location, a
program location has to enable interrupts before they can influence the program
or change the visible behavior of the program. Note that in the last condition
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only k is mentioned and not a specific IH. If k writes an AP, each IH has to
be executed afterwards because the execution of an IH could either prevent the
execution of another instruction that writes an AP or the IH could itself write
an AP. If l is labeled with executioni , it is also labeled with executionj ∀j ∈ [i]��∗

because all IHs of the same equivalence class have to be executed at the same
location.

For each i ∈ IH, a program location l is labeled with barrieri if one of the
following conditions holds:

– i writes a memory location that is accessed by l,
– l enables or disables i,
– l writes a memory location that is accessed by i, or
– l writes a memory location that is used in an atomic proposition.

The first condition is different from the conditions for label executioni . If i writes
a memory location that is accessed by l, i has to be executed before l is executed
because otherwise a possibly changed behavior could get lost: the execution
of i after the execution of l could no longer influence the execution of l. This
condition shows the asymmetry between the program and the IHs. The remaining
conditions are duals of the conditions for label executioni . They are used to
guarantee that a possibly changed behavior is finally considered. If l is labeled
with barrieri , it is also labeled with barrierj ∀j ∈ [i]��∗ .

Refine Results. In the refinement step, [mc]square tries to reduce state
spaces further by moving executioni labels until their execution is actually re-
quired. This is possible because in the previous step, [mc]square only locally
labeled program locations where IH behavior was changed, but did not check
whether their changed behavior actually influences the program. During refine-
ment, the context is taken into account. An IH and all dependent IHs do not
have to be executed if all behavior relevant to the specification and the program
is created through their execution at another program location. Therefore, it is
sufficient to execute IHs at only one of these locations. In the refinement step,
[mc]square moves labels executioni forward until one of the following conditions
holds:

– a program location labeled with barrieri is reached,
– a loop entry is found, or
– a loop exit is found.

This further reduces state spaces by postponing the execution of IHs until re-
quired. The label executioni cannot be moved over a program location labeled
with barrieri because it either influences the next instruction or the next in-
struction influences its behavior, and it has not yet been executed. Furthermore,
a label executioni is not moved into a loop because this would possibly increase
the size of the state space. Moreover, it is not moved out of a loop because loop
termination cannot be guaranteed and divergent behavior has to be preserved
in the abstract system.
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Label Blocking Locations. In the last step, all program locations are labeled
with IHs that can be blocked at the corresponding program location. An IH
can be blocked at a program location if its execution is not required. Thus, a
program location is labeled with blockingi if it is not labeled with executioni .

3.3 An Example

To illustrate the IHER abstraction technique, we give an example. We apply this
analysis to the program shown in Fig. 2(a) and the IH presented in Fig. 2(b).
In the main program, interrupts are first enabled and then some calculations
are executed on registers r1, r2, and r3. The IH accesses only register r1 and
doubles its value. No atomic propositions are used in this example.

l0 SEI enable interrupts
l1 LD r2,5 r2 ← 5
l2 ADD r1,r2 r1 ← r1 + r2

l3 MOV r2,r1 r2 ← r1

l4 MOV r3,r2 r3 ← r2

l5 CLI disable interrupts
l6 RJMP -1 self loop

(a) Main program

i0 ADD r1,r1 r1 ← r1 + r1

i1 RETI return

(b) Interrupt handler

Fig. 2. Assembly code of the main program and the interrupt handler (excerpt)

In this example, only one IH is used, and therefore, the first step of the
analysis can be omitted. In the second step, we label the program locations with
execution and barrier . Here, we omit the indices for clarity. The resulting labeled
CFG is depicted in Fig. 3(a). White circles represent program locations without
labels, white octagons represent locations labeled with barrier , and grey nodes
represent program locations labeled with execution. Edges are labeled with the
corresponding instruction or IH respectively.

Locations l1, l3, and l6 are labeled with execution because their preceding
instructions influence the IH. Locations l2 and l3 are labeled with barrier as the
IH influences the current instruction. Hence, the IH has to be executed not later
than at these locations. Locations l0 and l5 are labeled with barrier because
interrupts are enabled or disabled by the respective instruction.

In the refinement step, execution labels are moved forward until either a
barrier label or a loop is reached. The result of this step for the program is
shown in Fig. 3(b). Here, only the execution label of l1 is moved to l2 because
l2 is a barrier. The execution label in l6 cannot be moved due to the self loop.

These labels are then translated into blocking locations. In Fig. 4 the dif-
ferences in IH execution with and without IHER are shown. Figure 4(a) shows
that without applying IHER, the IH is executed at five program locations be-
cause interrupts are disabled in l0 and l6. The application of IHER leads to the
execution of the IH at only two locations as depicted in Fig. 4(b).
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(a) Before refinement

(b) After refinement

Fig. 3. CFGs of the code shown in Fig. 2

(a) Without IHER

(b) Using IHER

Fig. 4. Comparison of IH executions for program shown in Fig. 2

4 Formal Model and Correctness Proof

This section introduces the formal model on which the correctness proof of our
abstraction technique is based. It is defined in two steps: (1) The syntactic struc-
ture of the microcontroller program is represented by its CFG, which consists of
the program locations connected by control flow edges. Here, each edge carries
an action label and a Boolean expression. The former represents the execution
of either a single machine instruction or of a complete IH. The latter acts as a
guard controlling the execution of, for instance, conditional branching instruc-
tions or IHs in dependence of the memory state. Note that single instructions of
IHs are not considered as we assume their execution to be atomic. (2) Semantics
is involved by associating with every action a mapping on the data space of the
program, that is, the memory contents. This gives rise to a labeled transition sys-
tem in which each state is given by a program location and a data state, where
the latter represents the contents of general-purpose registers, I/O registers, and



14 B. Schlich et al.

memory locations. Thus, the correctness proof boils down to showing that the
original and the reduced CFG yield equivalent labeled transition systems.

4.1 The Formal Model

Formally, the CFG of the program is given by G = (L, l0, A, B,−→) where

– L is a finite set of program locations,
– l0 ∈ L is the initial location,
– A is a finite set of actions,
– B is a finite set of guards, and
– −→ ⊆ L × A × B × L is the control flow relation (where each entry is

represented as l
a,b−→ l′ with l, l′ ∈ L, a ∈ A, and b ∈ B).

The introduction of guards allows to model, e.g., conditional branching instruc-
tions by two transitions with the same action and different guards, which indicate
the outcome of the evaluation of the condition.

The semantics of a CFG is determined by associating with every action a ∈ A
a mapping �a� : D → 2D, and with every guard b ∈ B a mapping �b� : D → B.
Here, D stands for the data space, that is, the finite set of memory states of the
program. Interpreting �a�(d) as a set of memory states allows us to model the
non-deterministic nature of certain instructions, such as reading operations on
input registers. Each of these sets is required to be non-empty and finite. A set
is a singleton if the respective action is deterministic.

Applying this semantics to the given CFG G yields a labeled transition system
T (G) = (S, s0, A, =⇒, P, λ), which is defined as follows:

– S := L×D is the finite set of states,
– s0 := (l0, d0) ∈ S is the initial state where d0 ∈ D stands for the initial data

state,
– A is the finite set of actions (as before),
– =⇒ ⊆ S × A × S is the transition relation, given by: whenever l

a,b−→ l′

in G and d ∈ D such that �b�(d) = true, then (l, d) a=⇒ (l′, d′) for every
d′ ∈ �a�(d),

– P is a finite set of atomic propositions, and
– λ : S → 2P is the property labeling.

4.2 Correctness of the Abstraction

As explained in Sect. 3, IHER reduces the state space of the system by blocking
IHs at program locations where they are independent of the main program. In
other words, it removes certain transitions from the CFG (but keeps all loca-
tions), leading to a reduced graph G� = (L, l0, A, B,−→�) with −→� ⊆ −→.
According to the previous definition, G� then yields a reduced labeled transition
system T (G�) = (S�, t0, A, =⇒�, P, λ�) with S� ⊆ S, t0 = s0, =⇒� ⊆ =⇒, and
λ� = λ|S�

.
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We will now establish the correctness of our abstraction technique by showing
that the original and the reduced transition system are equivalent. More con-
cretely we will see that T (G) and T (G�) are related by a divergence-sensitive
stutter bisimulation, implying that our abstraction mapping preserves the valid-
ity of formulas in CTL*-X [8].

We begin with the definition of a stutter bisimulation [9], which is a binary
relation ρ ⊆ S × S� such that s0ρt0 and, for all sρt,

– λ(s) = λ�(t),
– if s

a=⇒ s′ with (s′, t) /∈ ρ, then there exists a path t
a0=⇒� u1

a1=⇒� . . .
an−1=⇒�

un
an=⇒� t′ with n ≥ 0, sρui for every i ∈ {0, . . . , n− 1}, and s′ρt′, and

– if t
a=⇒� t′ with (s, t′) /∈ ρ, then there exists a path s

a0=⇒ u1
a1=⇒ . . .

an−1=⇒
un

an=⇒ s′ with n ≥ 0, uiρt for every i ∈ {0, . . . , n− 1}, and s′ρt′.

Thus, a stutter bisimulation requires equivalent states to be equally labeled, and
every outgoing transition in one system must be matched in the other system
by a transition to an equivalent state, but allowing some transitions that are
internal to the equivalence class of the source state. Note that action labels are
not important here.

In our application, a stutter bisimulation ρ ⊆ S×S� between the original and
the reduced system can inductively be defined as follows:

1. s0ρt0,
2. if sρt, a ∈ A, s′ ∈ S, and t′ ∈ S� such that s

a=⇒ s′, t
a=⇒� t′, and λ(s′) =

λ�(t′), then s′ρt′, and
3. if sρt, a ∈ A, and s′ ∈ S such that s

a=⇒ s′ and t has no a=⇒�-successor,
then s′ρt.

This definition handles the following three cases: (1) it relates the initial states,
(2) it relates states that are reachable from stutter-bisimilar states in both sys-
tems via the same machine instruction or via the same (non-blocked) IH, and
(3) it relates a state that is reachable via some IH in the original system with
the state in the reduced system where this IH is blocked.

The following arguments show that ρ is indeed a stutter bisimulation; details
are omitted for lack of space. First, whenever sρt with s = (l, d) ∈ S and
t = (l�, d�) ∈ S�, then l = l� and λ(l, d) = λ�(l�, d�). This is obvious in cases 1
and 2 of the definition of ρ, and also valid in 3 as the blocked IH returns to the
same program location (implying l = l�), and must be invisible with respect to
the atomic propositions (implying λ(l, d) = λ�(l�, d�)).

Second, the remaining requirements of a stutter bisimulation follow from the
observation that, whenever sρt (where s ∈ S and t ∈ S�),

– if s
a=⇒ s′ with (s′, t) /∈ ρ, then case 3 cannot apply as s′ρt otherwise. Hence,

there exists t′ ∈ S� such that t
a=⇒� t′. For at least one of these states, it

must be true that λ(s′) = λ�(t′) (since λ(s) �= λ�(t) otherwise, contradicting
sρt), and hence s′ρt′;
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– if t
a=⇒� t′ with (s, t′) /∈ ρ, then again case 2 must apply with s

a=⇒ s′ and
s′ρt′.

The last step in our correctness proof consists of showing that both the original
and the reduced transition system exhibit the same behavior with respect to
non-terminating computations. Formally, a state s ∈ S in a labeled transition
system (S, s0, A, =⇒, P, λ) is called ρ-divergent with respect to an equivalence
relation ρ ⊆ S × S if there exists an infinite path s

a1=⇒ s1
a2=⇒ s2

a3=⇒ . . . such
that sρsi for all i ≥ 1. The relation ρ is called divergence-sensitive if, for every
s1ρs2, s1 is ρ-divergent iff s2 is ρ-divergent.

Again, it can be shown that the stutter bisimulation ρ ⊆ S × S� as de-
fined above is also divergence-sensitive, the essential arguments being that non-
terminating computations only occur in the form of cycles (as the state space is
finite), and that our abstraction technique never completely blocks the execution
of an IH in a loop, and therefore preserves divergence. This completes the proof
that our abstraction technique is correct with respect to formulas in CTL*-X.

5 Case Study

This section describes a case study conducted with [mc]square using the IHER
technique. We analyzed five programs for the ATMEL ATmega16 to evaluate the
performance of our abstraction method. All programs were written by students
during lab courses or diploma theses and have previously been used to evaluate
the impact of other techniques developed for [mc]square. A more thorough
description of the analyzed programs is given by Schlich [1]. Note that for all
programs, delayed nondeterminism (DND) [2] is used, which affects state space
sizes by delaying the instantiation of nondeterministic values until their concrete
value is required. This way, [mc]square can handle programs of up to 4 billion
(symbolic) states. The larger programs used in this case study could not be
checked without DND.

The differences in state space sizes with and without IHER are presented in
Table 1. It shows the numbers with and without dead variable reduction (DVR)
enabled, which reduces state spaces by removing unused variables. Here, the
formula AG true was checked as it requires the creation of the complete state
space.

Two different versions of a controller for a powered window lift used in a
car were analyzed, one of which containing defects caused by missing protec-
tion of shared variables, and a second one where those errors were fixed. Both
programs consist of 290 lines of assembly code and use two interrupts and one
timer. Depending on the applied static analysis techniques, the state space sizes
are reduced by between 64% and 82%. The second program controls a fictive
chemical plant. It consists of 225 lines of assembly code. One timer and two in-
terrupts are used. The IHER technique reduced the state space by approx. 98%.
The last program implements a four channel speed measurement with a CAN
bus interface. It consists of 384 lines of assembly code. The state spaces were
reduced by approx. 89%.
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Table 1. Number of states stored by [mc]square

Without DVR Default Time [s] IHER Time [s] Reduction
window_lift.elf (error) 316,334 6.25 64,164 7.32 80%
window_lift.elf (fixed) 129,030 2.81 23,852 6.04 82%
plant.elf (error) 123,699,464 3,428 2,161,624 43 98%
plant.elf (fixed) 75,059,765 1,956 1,327,715 25 98%
can.elf 147,259,483 3,917 16,187,483 392 89%
With DVR Default Time [s] IHER Time [s] Reduction
window_lift.elf (error) 111,591 6.73 28,153 8.21 75%
window_lift.elf (fixed) 23,013 5.52 14,919 6.89 64%
plant.elf (error) 123,699,464 3,513 2,161,624 42 98%
plant.elf (fixed) 75,059,765 1,940 1,327,715 25 98%
can.elf 147,259,483 3,954 16,187,483 394 89%

These results show that the IHER abstraction technique greatly reduces state
spaces for a number of different programs. This is still true in the presence of
other abstraction techniques such as DVR, meaning that both can be combined.
The magnitude of improvement depends on various factors such as the number
of interrupts used, dependencies between IHs and instructions, dependencies
between IHs, the overall structure of the program, and the property to be verified.

6 Related Work

In the past, much work has been carried out to limit the state explosion in
model checking resulting from concurrent activities in a system. A prominent
technique is partial order reduction (POR) [10,11,12], which tries to reduce the
number of possible orderings of concurrent actions that need to be analyzed
for model checking. This reduction is based on two important notions, namely,
independence and visibility. Here, the first characterizes the commutativity of
two actions, meaning that the execution of either of them does not disable the
other and that executing both in any order always yields the same result. The
second notion, visibility, refers to the property that the execution of an action
does not affect the (in)validity of the formula to be checked. Together, both
properties allow to reduce a transition system by only exploring a subset (the
ample set) of all transitions enabled in a given state. A general overview of
concepts related to POR is given by Valmari [13].

As pointed out in the introduction, our technique differs from POR in the
following way. POR works in the context of concurrent threads while IHER
works in the context of sequential programs and pseudo-parallelism introduced
by IHs. Threads differ from IHs in that the interleaving between different threads
is nondeterministic. For IHs only their occurrence is nondeterministic, that is,
either they occur at a program location or they do not occur at a program
location. Threads can be interrupted at any location since control can change
nondeterministically between all threads. An IH, however, can interrupt the main
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program, but the main program cannot interrupt an IH. This means that an IH
has to be executed completely until execution of the main program can continue.
The same asymmetry applies in case that IHs can interrupt other IHs. Due to
this asymmetry, we have to account for additional dependencies between the
main program and IHs. In POR, all atomic actions are guaranteed to terminate.
Since we represent IHs as atomic actions which can contain non-terminating
loops, atomic actions are not guaranteed to terminate in our setting.

IHs could be modeled using threads. Techniques for converting interrupt-
driven programs into equivalent programs using threads have been developed by
Regehr and Cooprider [14]. This modeling can be done on source code level, but
it involves some challenges. The peculiarities of interrupts vary between different
microcontrollers. On some microcontrollers, IHs are non-interruptible while IHs
can be interrupted on other microcontrollers. In some architectures interrupts
have no priorities, in other architectures they have fixed or even dynamic priori-
ties. This approach can, however, not be used for microcontroller assembly code
as there is no thread model for microcontroller assembly code.

Kahlon et al. [15] developed an extension for partial order reductions using
sound invariants. In their approach, the product graph of a concurrent system
is iteratively refined, and statically unreachable nodes are removed. In contrast
to our approach, only a context-insensitive static analysis is performed.

The notion of independent actions based on Lipton’s theory of reduction [16]
was introduced by Katz and Peled [17]. Our definition of dependencies between
the main process and IHs can also be seen as an extension of Lipton’s theory
where, in addition to the dependencies that are induced by accesses to shared
variables, also the control dependencies imposed by enabling and disabling in-
terrupts are taken into account.

Recently, Elmas et al. [18] have described a proof calculus for static verification
of concurrent programs using shared memory. In this approach, the concept of
atomicity is used for computation of increased atomic code blocks, which are
then, in contrast to our approach, verified sequentially.

A static analysis based on Petri nets to capture causal flows of facts in con-
current programs was proposed by Farzan and Madhusudan [19], but it only
implements a restricted model of communication and synchronization compared
to our setting. Another approach by Lal and Reps [20] adapts static analyses for
sequential programs and extends them to work in a concurrent setting while our
approach embodies specific analyses for concurrency. Other approaches, such as
the work by Qadeer and Rehof [21] or Lal et al. [22], tackle the state explosion
by imposing an upper bound on the number of context-switches, which is not
possible in our setting.

7 Conclusion and Future Work

In this paper, we have presented a new abstraction technique called interrupt
handler execution reduction, which is based on partial order reduction. It reduces
state spaces by blocking the execution of interrupt handlers at certain program
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locations during model checking. It preserves the validity of CTL*-X and, as
shown in the case study presented in Sect. 5, can significantly reduce state spaces.
Two ingredients are needed for implementing this abstraction technique: a static
analysis and a dynamic part executed during model checking. The static analysis
determines program locations where interrupt handlers can be blocked. The
model checking part then prevents the execution of the corresponding interrupt
handlers at these program locations.

In the future, we want to improve the static analysis that is used for this
abstraction technique. Currently, we rely on a coarse analysis of pointer variables.
In many cases, our analysis has to over-approximate the set of possible address
values. A more precise pointer analysis would improve the results of other static
analyses such as live variable and reaching definitions analysis as well.

Another candidate for improvement is the refinement phase. From our point
of view, there is no optimal static solution to this problem. We think that better
heuristics can be found if termination of certain loops can be determined. Given
this, we could postpone the execution of interrupt handlers beyond these loops.
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Abstract. Partial observation of discrete-event systems features a set-
ting where events split into observable and unobservable ones. In this
context, the diagnosis of a discrete-event system consists in detecting
defects from the (partial) observation of its executions. Diagnosability is
the property that any defect is eventually detected. Not surprisingly, it is
a major issue in practical applications. We investigate diagnosability for
classes of pushdown systems: it is undecidable in general, but we exhibit
reasonably large classes of visibly pushdown systems where the problem
is decidable. For these classes, we furthermore prove the decidability of a
stronger property: the bounded latency, which guarantees the existence
of a uniform bound on the respond delay after the defect has occurred.
We also explore a generalization of the approach to higher-order push-
down systems.

1 Introduction

Absolute knowledge of the actual execution of a computer driven system is,
in most settings, impossible. However, since typical systems emit information
while interacting with their environment, deductions of their internal state can
be performed on the basis of this partial observation.

From a mathematical point of view, a standard approach due to [17] uses a
discrete-event system modeling (see, e.g., [8]), provided with a partition of the
event set into observables and unobservables. In this formal framework, diagnos-
ing a system amounts to deducing, from its actual observation, the set I of its
possible internal states, and to compare I with a distinguished subset of states
P representing some property of the executions (for example the occurrence of
a failure event). Diagnosing thereby brings about three different verdicts: the
negative verdict when I does not meet P , the positive verdict when I lies in P ,
and the inconclusive verdict otherwise. The device which outputs the verdict is
the diagnoser.

Building a diagnoser is not a difficult task, per se: it relies on classical power-
set construction. For finite-state systems, it induces an unavoidable exponential
blow-up [19], even for succinct representations [15]. Therefore on-the-fly compu-
tation of the diagnoser is a key techniques for effective methods. It incidentally
offers an effective solution in infinite-state settings [18,3]. Whatever method is
used for the diagnoser, a central question is whether the diagnoser will eventually
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detect any faulty execution (execution reaching P )? This property is the diag-
nosability, expressing intrinsic features of the system (together with P ). Clearly,
on-the-fly methods cannot apply, since diagnosability requires an exhaustive
analysis of the model. PTIME decision procedures have been developed for
finite-state systems [12,11]; non-diagnosability is NLOGSPACE-complete [15].
Also, SAT-solvers can be used for symbolic systems [9].

Beyond finite-state systems, very little exists in the literature on the diag-
nosis of discrete-event systems: [18] considered a timed systems setting, and
established the equivalence between diagnosability and non-zenoness, yielding
PSPACE-completeness. Petri nets have been studied in [20], where either classi-
cal techniques apply to finite nets (i.e. with a finite-state configuration graph), or
approximation methods yield only semi-algorithms. Finally, [3] considered graph
transformation systems, and developed a general procedure to compute the set of
executions corresponding to a given observation. Notice that this approach does
not provide any algorithm for the diagnosability whose statement universally
quantifies over the set of observations. Surprisingly, diagnosis issues have never
been addressed for pushdown systems, although acknowledged as good abstrac-
tions for the software model-checking of recursive programs [14]. Alternation-free
(branching-time) μ-calculus, hence CTL, properties can be verified in EXPTIME
[21], and fixed linear-time μ-calculus properties can be checked in PTIME [4].
In addition, partial observation of pushdown systems is simple to model since
the class is closed under projection1.

In this paper, we study diagnosability of pushdown systems (of arbitrary or-
der) represented by (higher-order) pushdown automata. Diagnosability is shown
undecidable in general, via a reduction of the emptiness problem for an inter-
section of context-free languages. In fact diagnosability requires concomitant
properties that arbitrary classes of pushdown systems do not possess in general.
Recently, Alur and Madhusudan introduced visibly pushdown automata [1] with
adapted features to handle diagnosability. As we show here, arbitrary classes
of visibly pushdown systems still do not yield decidability of the diagnosability,
and our contribution precisely exhibits a sufficient condition. This condition cor-
relates the observability of the system with its recursive structure: there must
exists a pushdown description of the system, where accesses to the stack are ob-
servable. In this case, we adapt the non-diagnosability algorithm for finite-state
systems developed in [11], yielding a PTIME upper bound; the NLOGSPACE
lower bound for finite-state systems remains valid. The results on decidability
are furthermore generalized to the higher order, by considering the higher-order
visibly pushdown automata of [10]. We develop a k-EXPTIME algorithm for the
class of k-order pushdown systems (k ≥ 2).

As explained further in the paper, diagnosability guarantees, for each exe-
cution reaching P , a finite delay to detect it. However, it does not provide a
uniform bound on these delays. The bounded-latency problem consists in de-
ciding whether such a bound exists, and is fully relevant for practical applica-
tions. In the literature, bounded latency has been mainly investigated in the

1 ε-closure of a pushdown automaton remains a pushdown automaton [2].
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framework of finite-state systems, although it is a direct consequence of diagnos-
ability. [16,22] refer to the bound, and [11] refer to n-diagnosability. Unexpect-
edly, to our knowledge, bounded latency has not been studied for infinite-state
systems, for which diagnosability does not imply bounded latency.

In this paper, we consider the bounded-latency problem for pushdown sys-
tems. We show its decidability for families of first-order pushdown systems where
diagnosability is already decidable (otherwise it does not make sense). For these
families, bounded latency is equivalent to the finiteness of a language accepted
by a pushdown autamaton. The latter problem is in PTIME [2]. Regarding
higher-order pushdown systems, we conjecture undecidability of the bounded-
latency problem. As for first-order pushdown systems, checking bounded latency
amounts to checking finiteness of a higher-order pushdown language. For arbi-
trary higher-order pushdown language, the finiteness problem is still open, to
our knowledge.

The paper is organized as follows. In Section 2 we define the diagnosability
and the bounded-latency problems, and recall the classic results for finite-state
systems. Pushdown systems are considered in Section 3, and handled in the core
Section 4 of the contribution to study their diagnosability and bounded-latency
problems. In Section 5, we consider higher-order pushdown systems.

2 Diagnosability and Bounded Latency

We first introduce some mathematical notations and definitions. Assume a fixed
set E. We denote by 2E its powerset, and by B the complement of a subset
B ⊆ E. For any k ∈ N, we write [k] := {1, 2, 3, . . . , k}. Given an alphabet
(a set of symbols) Σ, we write Σ∗ and Σω for the sets of finite and infinite
words (sequences of symbols) over Σ respectively. We use the standard notation
ε for the empty finite word, and we denote by u, u′, v, . . . the typical elements
of Σ∗, and by w, w1, . . . the typical elements of Σω. For u ∈ Σ∗, |u| denotes the
length of the word u.

Definition 2.1. A discrete-event system (des) is a structure S = 〈Σ, S, s0,
δ, P rop, [[.]]〉, where Σ is an alphabet, S is a set of states and s0 ∈ S is the
initial state, δ : S × Σ → S is a (partial) transition function, and Prop is a
set of propositions and [[.]] : Prop → 2S is an interpretation of the propositions.
An execution of S is a word u = a1a2 . . . an ∈ Σ∗ such that there exists a
sequence of states s0, s1, . . . , sn such that s0 = s0 and δ(si−1, ai) = si for all
1 ≤ i ≤ n. An execution u reaches a subset S′ ⊆ S whenever δ(s0, u) ∈ S′, by
extending δ to S ×Σ∗. We naturally extend these definitions to infinite execu-
tions; in particular, an infinite execution w ∈ Σω reaches S′ if one of its prefixes
reaches S′.

A proposition m marks the (elements of the) set [[m]], and an execution reaches
m if it reaches [[m]].
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We now give an overview on diagnosis. Diagnosis is about synthesis where one
aims at constructing a device, a diagnoser, intended to work on-line together
with the system. While the system executes, the diagnoser collects input data
via sensors and outputs a verdict on the actual execution. In classic diagnosis,
the sensors are not formally described, but instead simulated in a partial obser-
vation framework: the set of events Σ is partitioned into Σo and Σo composed
of observables and unobservables respectively; words θ, θ1, . . . over Σo are obser-
vations. The canonical projection of Σ onto Σo is written πΣo , or π when Σo is
understood; it extends to Σ∗ by erasing unobservables in words. An execution
u matches an observation θ whenever π(u) = θ. Two executions u and u′ are
indistinguishable if they match the same observation.

Observations are the inputs of the diagnoser. Regarding the outputs, faulty
executions of particular interest (as opposed to safe ones) are distinguished a
priori by means of a proposition f ∈ Prop: an execution u is faulty if δ(s0, u) ∈
[[f ]]. Moreover, we require that [[f ]] is a trap: δ([[f ]], a) ⊆ [[f ]], for every a ∈ Σ.
This assumption means that we focus on whether some defect (a particular event
or a particular pattern of events) has occurred in the past or not; we refer to [8]
for a comprehensive exposition.

An instance of a diagnosis problem is a triplet composed of a des, S =
〈Σ, S, s0, δ, P rop, [[.]]〉, an alphabet of observables, Σo, and a proposition, f . For
technical reasons, we need to consider information sets: an information set I is
the set of all states reached by a set of indistinguishable executions in Σ∗Σo.
We write I ⊆ 2S for the set of all information sets. Notice that {s0} ∈ I and
is associated to the empty observation. The associated diagnoser is a structure
D := 〈Σo, I, I0, δ̂, diag〉 whose states are either the initial state I0 :=

{
s0

}
or

the transition function, δ̂ : I × Σo → I, is the extension of δ to sets of states
in a canonical way, and the output function diag is defined as follows. Given a
set I ⊆ S, three cases exist: (a) all states of I are marked by f ; (b) no state is
marked; and otherwise (c) where I is equivocal.

Formally,

diag : I → {(a), (b), (c)}
I �→ (a) if I ⊆ [[f ]], (b) if I ∩ [[f ]] = ∅, and (c) otherwise

By extension, an observation θ is equivocal if δ̂(I0, θ) is equivocal, otherwise θ is
clear ; θ is clearly-faulty if it is clear and δ̂(I0, θ) is in case (a). Since I0 = {s0}
is not equivocal, the empty observation is clear.
D may be infinite-state in general (if S is infinite-state). However, its compu-

tation can be avoided by simulating it on-the-fly, storing the current information
set I, and updating this object on each observable step of the system. While the
synthesis of the diagnoser is not necessary, analyzing its behaviour is crucial: in
particular, because equivocalness (case (c)) precludes the instantaneous detec-
tion of a fault, latencies to react are tolerated.
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Diagnosability is a qualitative property of the diagnoser which ensures a finite
latency for any observation of a faulty execution; it corroborates the complete-
ness of the diagnoser. From a quantitative point of view, the bounded-latency
property ensure a uniform bound on the latencies. We develop these two notions.

In accordance with [17], we use the following definition (where the parameters
Σo and f are understood).

Definition 2.2. A discrete-event system is diagnosable if every infinite obser-
vation of an infinite faulty execution has a clearly-faulty finite prefix.

p q

f

r

f

s

f

a

γ a b

a, b

Safe executions of diagnosable systems may have arbi-
trarily long equivocal observations as illustrated here
with a system whose initial state p, and with the unob-
servable γ which leading to the marked state q. Since
any faulty execution only yields an infinite observation
with the clear prefix anb, the system is diagnosable,
but the infinite observation aω of the the unique safe
execution loops in the equivocal information set {p, q}.

Lemma 2.3 [11]. A des is not diagnosable w.r.t. the set of observables Σo

and the proposition f if, and only if, there exist two indistinguishable infinite
executions w1 and w2 such that w1 reaches f while w2 does not.

Notice that diagnosability considers only infinite executions that do not diverge,
where an infinite executions diverges if it has an unobservable infinite suffix.
In other words, we are only interested in fair behaviours of the system w.r.t.
observability.

We now consider the latency of a diagnosable system as the minimal number
of additional observation steps that is needed to detect a faulty execution.

Definition 2.4. Let S = 〈Σ, S, s0, δ, P rop, [[.]]〉 be a des, Σo be an alphabet of
observables, and f ∈ Prop such that [[f ]] is a trap. The latency of an execution
u is defined by: �(u) := max {|ϑ|, π(u)ϑ is not clearly-faulty} if u reaches f , and
0 otherwise.
S is bounded-latency if there exists N ∈ N such that �(u) ≤ N , for every

execution u; the least such N is the bounded-latency value.

The bounded-latency value of the system above is 1: indeed, fix an observed
execution u that reaches f and whose observation is not clearly-faulty (hence
equivocal). This execution necessarily ends either in state q or in state r. If in
q, the only sequence of observations ϑ such that π(u)ϑ is not clearly-faulty is
ϑ = a; therefore �(u) = 1. If in r, we have �(u) = 0.

Remark that a system is diagnosable if, and only if, �(u) is a finite value, for
every execution u, but not necessarily bounded. Therefore any bounded-latency
system is diagnosable, but the converse does not hold in general.
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�
ι γ

� �

�
ι γ

� �

ι γ

� �
The system depicted here is diagnosable when ι and γ

unobservable and f (black) marking executions that con-
tain the faulty event γ. Indeed, every maximal execution
is finite, and its last event is � if, and only if, γ has oc-
curred. However, the system is not bounded-latency since
arbitrarily many �’s can occur between γ and �.

Since, diagnosability and bounded latency only depend
on the set of executions of the system, one is allowed to
decide these problems over a transformed system as long
as executions are preserved.

For finite-state systems, it is easy to prove that diag-
nosability and bounded-latency properties coincide.

Theorem 2.5 [17,12,15]
For finite-state systems:
(i) Diagnosability is decidable in PTIME.
(ii) Non-diagnosability is NLOGSPACE-complete.

3 Pushdown Systems

We now investigate the case of pushdown systems where the picture is more
involved. We recall that pushdown automata are finite-state machines that use
a stack as an auxiliary data structure (see for example [2]); pushdown systems
are derived as configuration graphs of pushdown automata and are infinite-state
in general.

Definition 3.1. A pushdown automaton (pda) is a structureA = (Σ, Γ,Q, q0, F,
Δ) where Σ and Γ are finite alphabets of respectively input and stack symbols,
Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is a set of final states,
and Δ ⊆ Q× (Γ ∪ {ε})× (Σ ∪ {ε})×Q× Γ ∗ is the set of transitions.

We use p, q, . . . (resp. X, Y, . . ., and U, V, W, . . .) for typical elements of Q (resp.
Γ , and Γ ∗). Without loss of generality, we assume in normal form: (1) pop
transitions of the form (p, X, a, q, ε) pop the top symbol of the stack, (2) push
transitions of the form (p, ε, a, q, X) push a symbol on top of the stack, and (3)
internal transitions of the form (p, ε, a, q, ε) leave the stack unchanged.

The pda A = (Σ, Γ, Q, q0, F, Δ) is deterministic if: (1) ∀(p, X, a) ∈ Q × Γ ×
Σ ∪ {ε}, there is at most one pair (q, V ) such that (p, X, a, q, V ) ∈ Δ, and (2)
∀(p, X) ∈ Q×Γ , if there exists (q, V ) such that (p, X, ε, q, V ) ∈ Δ, then there is
no triple (q′, a, V ′) ∈ Q×Σ × Γ ∗ such that (p, X, a, q′, V ′) ∈ Δ. An automaton
A is real-time if Δ ⊆ Q× (Γ ∪{ε})×Σ×Q×Γ ∗. A configuration of A is a word
qU ∈ QΓ ∗; q is the state of the configuration. The initial configuration is q0ε,
and a configuration qU is final if q ∈ F . Transitions (between configurations)
are elements of QΓ ∗×Σ∪{ε}×QΓ ∗: there is a transition (qU, a, q′U ′) whenever
there exists (q, X, a, q′, V ) ∈ Δ with U = WX and U ′ = WV . A finite run of A
is a finite sequence r = q0U0a1q1U1a2 . . . anqnUn such that U0 = ε is initial, and
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(qiUi, ai, qi+1Ui+1) is a transition, for all 0 ≤ i < n. We say that a1a2 . . . an is
the word of r, or that r is a run on a1a2 . . . an. The run is accepting if qnUn is
final.

The language accepted by A is L(A) ⊆ Σ∗, the set of words u ∈ Σ∗ such that
there is an accepting run on u.

Proposition 3.2 [2]. Any pda is equivalent to a real-time pda. The construc-
tion is effective.

Pda accept context-free languages (cf languages), while deterministic pda yield
the proper subclass of deterministic cf languages, containing all regular lan-
guages. Moreover, cf languages are closed under union, concatenation, and it-
eration, but not under intersection, and their emptiness is decidable.

Proposition 3.3 [2]. The emptiness problem of an intersection of deterministic
cf languages is undecidable.

We finally need to recall the following theorem.

Theorem 3.4 [4]. The emptiness problem of a Büchi pushdown automaton is
in PTIME.

A pushdown system (pd system) S is the configuration graph of a real-time
pda A = (Σ, Γ, Q, q0, F, Δ), which represented S. Notice that the set F of A
is irrelevant for S. However, using standard techniques, the statement that [[f ]]
is a regular set of configurations in S can be transformed into [[f ]] = FΓ ∗ (see
appendix for details).

By Proposition 3.3, pd systems are not closed under product (usual syn-
chronous product), which causes limitations in effective methods for their anal-
ysis, and in particular regarding diagnosis (Sect. 4). We therefore consider more
friendly sub-classes of pda: the visibly pushdown automata [1].

Visibly pushdown automata are pda with restricted transition rules: whether
a transition is push, pop, or internal depends only on its input letter.

Definition 3.5. A visibly pushdown automaton (vpa) is a pushdown automaton
A = (Σ, Γ, Q, q0, F, Δ), where ⊥ ∈ Γ is a special bottom-stack symbol, and
whose input alphabet and transition relation are partitioned into Σ := Σpush ∪
Σpop ∪Σint, where Σint is the internal alphabet, and Δ := Δpush ∪Δpop ∪Δint

respectively, with the constraints that Δpush ⊆ Q×{ε}×Σpush×Q× (Γ \{⊥}),
Δpop ⊆ Q× Γ ×Σpop ×Q× {ε}, and Δint ⊆ Q× {ε} ×Σint ×Q× {ε}.

A [Σint]-vp language is a language accepted by some vpa whose internal
alphabet is Σint.

Theorem 3.6 [1]. (a) Any vpa is equivalent to a deterministic vpa over the
same alphabet. The construction is effective.
(b) Any family of vp languages with a fixed partition Σpush, Σpop, Σint of the
input alphabet is a Boolean algebra. In particular the synchronous product A1 ×
A2 of vpa is well-defined.
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We now turn to the projection operation on languages with respect to a sub-
alphabet as a central operation for partial observation issues; we recall that the
class of cf languages is projection-closed, whereas vp languages are not; more
precisely,

Proposition 3.7
(i) Any cf language is the projection of a [∅]-vp language, and this is effective.
(ii) The projection of a [Σint]-vp language onto Σ′∗, with Σ′ ⊆ Σint, is a [Σint]-
vp language (with Σpush, Σpop fixed). The construction is effective.

4 Diagnosability and Bounded Latency of pd Systems

We show that diagnosability of arbitrary deterministic pd systems is undecid-
able. Next, we focus on vp systems whose diagnosability is also undecidable in
general, unless unobservable transitions leave the stack unchanged.

Theorem 4.1. Diagnosability of deterministic pd systems is undecidable.

This theorem is a corollary of Proposition 3.3 and the following construction
together with Lemma 4.2. Let A1 and A2 be two deterministic pda over Σ1 and
Σ2 respectively, and let Σ = Σ1 ∪ Σ2 ∪ {ι1, ι2, #}, with fresh symbols #, ι1
and ι2.

q0

q0
1 q0

2

ι1 ι2

A#
1 A#

2

For i = 1, 2, let A#
i be a deterministic pda which

accepts L(Ai)#Σ∗, the set of words u#v where u ∈
L(Ai). Let A#

1 ⊕A
#
2 be the pda depicted on the right.

Mark all configurations of A#
1 ⊕A

#
2 whose state is in A#

1

by f ; [[f ]] is a regular set and a trap, by construction.
Notice that A#

1 ⊕A
#
2 is deterministic.

Lemma 4.2. The pd system S represented by A#
1 ⊕A

#
2

is diagnosable w.r.t. Σ \ {ι1, ι2} and f if, and only if,
L(A1) ∩ L(A2) = ∅.

Indeed, consider w1 := ι1u#ω indistinguishable from w2 := ι2u#ω with u ∈
L(A1) ∩ L(A2). Thus w1 reaches f but w2 does not. Apply Lemma 2.3 to con-
clude. Reciprocally, if S is not diagnosable, then by Lemma 2.3, there exist
indistinguishable infinite executions w1 and w2 such that only w1 reaches f ; nec-
essarily, w1 = ι1u#w and w2 = ι2u#w for some u, entailing u ∈ L(A1)∩L(A2),
which concludes the proof. ��

Theorem 4.3. (a) Diagnosability of vp systems is undecidable.
(b) Diagnosability w.r.t. a set of observables Σo and a proposition f is decidable
in PTIME over any class of [Σint]-vp systems whenever Σo ⊆ Σint and f marks
a regular set of configurations.

Proof. Point (a) is an immediate corollary of the undecidability of diagnosabil-
ity for pd systems (Theorem 4.1) and the fact that any cf language is the
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projection of some vp language (Proposition 3.7 Point (i)). For Point (b) of
Theorem 4.3, let S be a vp system represented by a deterministic [Σint]-vpa
A = (Σ, Γ, Q, q0, F, Δ), and consider an alphabet of observables Σo such that
Σo ⊆ Σint, and a proposition f which marks a regular set of configurations of
A. We sketch an algorithm to decide the diagnosability of S w.r.t. Σo and f .
The proposed method extends the solution of [11] for finite-state systems.

Consider the (non-deterministic) [Σint \Σo]-vpa π(A)×π(A) (over the stack
alphabet Γ × Γ ), obtained by Σo-projecting A and by building the standard
product of vpa [1].

Lemma 4.4. The vpa π(A) × π(A) with initial state (q0, q0) and final states
F × F accepts the equivocal observations.

Note that for π(A)×π(A), an infinite run remaining in the set of configurations
(F × F )(Γ × Γ )∗ denotes an infinite observation which has no clear prefix. By
Lemma 2.3, this equivalently rephrases as “the system is not diagnosable”. Now,
the existence of such a run is equivalent to check the non emptiness of the Büchi
automaton whose structure is π(A) × π(A) and whose accepting states are all
elements of (F × F ) (use the fact that [[f ]] is a trap). By Theorem 3.4, this can
be decided in NLOGSPACE. ��

We now establish that for the classes of pd systems that yield effective methods
to answer diagnosability problems, bounded latency is also decidable.

Theorem 4.5. Given a [Σint]-vp system S, an observation alphabet Σo with
Σo ⊆ Σint, and a proposition f which marks a regular set of configurations, it
is decidable in PTIME whether S is bounded latency or not. Furthermore, the
bound can be effectively computed.

Proof. Without loss of generality, we can assume S diagnosable (which is decid-
able by the hypothesis and Theorem 4.3), otherwise it is not bounded-latency.

Let the deterministic [Σint]-vpa A represent S. Derive from the vpa π(A)×
π(A) the (non-deterministic) pda A′ as follows: re-label with ε all transitions
leaving states in F ×F , remove all transitions leaving states in F ×F , let (q0, q0)
be the initial state, and let F × F be the final states. As such, A′ accepts
the words ϑa (a ∈ Σo) where for some execution u that reaches f , π(u)ϑa
is clearly-faulty but π(u)ϑ is not. By Definition 2.4, L(A′) is finite (which is
decidable in PTIME [2]) if, and only if, S is bounded-latency; if finite, the value
is max{|ϑ| |ϑ ∈ L(A′)Σ−1}2. ��

5 Extension to Higher-Order Pushdown Systems

Higher-order pushdown automata [13] extend pda and reach context-sensitive
languages. We only sketch their definition, following [7].

2 We use the standard notation UΣ−1 to denote the set of words v such that v.a ∈ U
for some a ∈ Σ.
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Let Γ be a stack alphabet. For any integer k ≥ 1, k level stacks, or shortly
k-stacks, (over Γ ) are defined by induction: A 1-stack is of the form [U ]1, where
U ∈ Γ ∗, and the empty stack is written []1; 1-stacks coincide with stacks of pda.
For k > 1, a k-stack is a finite sequence of (k − 1)-stacks; the empty k-stack is
written []k. An operation of level k acts on the topmost k-stack of a (k+1)-stack;
operations over stacks (of any level) preserve their level. Operations of level 1
are the classical pushX and popX , for all X ∈ Γ : pushX([U ]1) = [UX ]1 and
popX([UX ]1) = [U ]1. Operations of level k > 1 are copyk and copyk, and act on
(k + 1)-stacks as follows (S1, . . . , Sn are k-stacks).

copyk([S1, . . . , Sn]k+1) := [S1, . . . , Sn, Sn]k+1

copyk([S1, . . . , Sn, Sn]k+1) := [S1, S2, . . . , Sn]k+1

Any operation ρ of level k extends to arbitrary higher level stacks according to:
ρ([S1, . . . , Sn]�) = [S1, . . . , ρ(Sn)]�, for � > k + 1.

A higher-order pushdown automaton (hpda) of order k is a structure A =
(Σ, Γ, Q, q0, F, Δ) like a pda, but where Δ specifies transitions which affect op-
erations on the k-stack of the automaton. We refer to [7] for a comprehensive
contribution on the analysis of hpda; following this contribution, a set of configu-
rations is regular whenever the sequences of operations that are used to reach the
set form a regular language, in the usual sense. Higher-order pushdown systems
(hpds) are configuration graphs of hpda. By Theorem 4.1, their diagnosability
is undecidable. However, similarly to first-order pd systems, higher-order vpa
(hvpa) can be considered [10].

A k-order vpa has (2k + 1) sub-alphabets Σpush, Σpop, Σint, Σcopyr
, and

Σcopyr
, where r ∈ [k], each of which determines the nature (e.g. push, pop,

internal, copyr, copyr) of the transitions on its symbols. Transitions on ele-
ments of Σint leave the stacks of any level unchanged. According to [10], hvpa
are neither closed under concatenation, nor under iteration, and cannot be de-
terminized; they are however closed under intersection.

Proposition 5.1. The projection onto Σ′∗ of a k-order vp language with in-
ternal alphabet Σint is a k-order vp language, provided Σ′ ⊆ Σint.

Proof. The proof of Proposition 3.7 easily adapts here. Let L be a k-order vp
language accepted by the k-order hvpa A = (Σ, Γ, Q, q0, F, Δ). We again write
p ⇒ p′ whenever there exists (p, ε, a, p′, ε) ∈ Δint with a ∈ Σo.

The hvpa π(A) which accepts π(L) is obtained by adding new transitions,
and by letting p ∈ F ′ if p ⇒∗ p′, for some p′ ∈ F . The transitions in Δ′ are
obtained by replacing, in a transition of Δ, the origin state p by the state r,
provided r ⇒ p in A. Notice that Δ ⊆ Δ′.

This construction is correct in the sense that L(π(A)) = π(L). ��

Theorem 5.2. For any class of k-order vp systems with the sub-alphabets Σpush,
Σpop, Σint, Σcopyr

, and Σcopyr
(r ∈ [k]), diagnosability w.r.t. the set of observ-

ables Σo and the proposition f is decidable in k-EXPTIME, whenever Σo ⊆ Σint

(the internal alphabet) and f marks a regular set of configurations.
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Proof. Let S be a k-order vp system represented by A = (Σ, Γ, Q, q0, F, Δ). By
Proposition 5.1, π(A) is a k-order vpa, and Lemma 4.4 for first-order vp system
can be easily adapted.

Lemma 5.3. The non-deterministic k-order vpa π(A)×π(A) with initial state
(q0, q0) and final states F × F accepts the equivocal observations.

Assuming the vpa A is a k-order pushdown automaton, so is the vpa π(A) ×
π(A). As in the proof of Theorem 4.3, checking diagnosability amounts to decide
the non emptiness of the language accepted by the Büchi k-order pushdown
automaton π(A) × π(A) with accepting states in F × F . According to [5], this
is decidable in k-EXPTIME, but the lower bound is still an open question. ��

Regarding the bounded-latency problem, Theorem 4.5 does not easily extend
to hvp systems. Indeed, in the proof of this theorem, deciding the finiteness
of a cf language (namely L(A′) page 29) is a key point, and fortunately this
is decidable: the standard decision procedure makes the assumption that the
automaton to represent the language is real-time, which is always possible for
cf languages using an effective method. If we were able to restrict to real-time
hpda, we would have a similar result since one can show the following.

Theorem 5.4. The finiteness of a real-time hpd language is decidable.

Nevertheless, it is an open question whether arbitrary higher-order pushdown
languages are real-time or not; in fact, [6] conjectures they are not. At the mo-
ment, deciding the finiteness of an arbitrary hpd language is a difficult question,
and so is the bounded-latency property of a higher-order pushdown system, as
resolving the latter problem solves the former.

Proposition 5.5. Let L be a class of higher-order pushdown languages which
is closed under concatenation and union. For each L ∈ L, there exists a des SL

such that SL is bounded latency if, and only if, L is finite.

Proof. Assume L ∈ L with alphabet Σ. The set of events
of SL is Σ∪{ι1, ι2, #, $}, with fresh symbols ι1, ι2, #, and
$. SL has two components L# and L$ (see figure next
page). By construction, the set of executions of SL is in
L. By letting ι1 and ι2 be unobservable, and f mark the
configurations of the L$ component, SL is diagnosable.

Indeed, event # or event $ always eventually occur
along any execution, revealing the actual running compo-
nent of the system. It is easy to verify that SL is bounded-
latency if, and only if, L finite.

q0

q1 q2

ι1 ι2

L# L$

��

As a consequence, Proposition 5.5 considerably lessens hopes to decide the
bounded latency problem for arbitrary hvp systems. We nevertheless exhibit
cases where the problem can sometimes be answered.

Consider a hvp system represented by the hvpa A = (Σ, Γ, Q, q0, F, Δ). By
Lemma 5.3, the real-time hpda π(A)×π(A) (with initial state (q0, q0) and final
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states F × F ) accepts the set Υ of equivocal observations, whose finiteness is
decidable by Theorem 5.4. We consider the possible cases:

If Υ is finite, then the system is bounded-latency and the bound is max{|ϑ| | ∃θ ∈
Υ, θϑ is not clearly-faulty}.

Otherwise, we inspect the set C of configurations reached by Υ , which by [7] is
a regular set (that can be effectively computed). Now, decide whether C is finite
or not.

If C is finite, for each configuration C ∈ C, build the real-time hpda AC

as follows: (1) cut in the automaton π(A) × π(A) every transitions that leaves
F × F , (2) set C as the initial configuration, and (3) F × F as the final states.
Since L(AC) is a real-time hpda its finiteness is decidable. If every L(AC) is
finite (which can be check since C is finite), then the system is bounded-latency
and the bound is max{|ϑ| |ϑ ∈ (∪C∈CL(AC)).Σ−1}.

If C is infinite, nothing can be inferred.
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Abstract. In this paper, we extend the Constraint Programming (CP) based 
functional test generation framework with a novel concept of distribution con-
straints. The proposed extension is motivated by requirements arising in the 
functional validation field, when a validation engineer needs to stress an inter-
esting architectural event following some special knowledge of design under 
test or a specific validation plan. In such cases there arises the need to generate 
a sequence of test instructions or a collection of tests according to user-given 
distribution requirements which specify desired occurrence frequencies for in-
teresting events. The proposed extension raises the expressive power of the CP 
based framework and allows specifying distribution requirements on a collec-
tion of Constraint Satisfaction Problem (CSP) solutions. We formalize the  
notion of distribution requirements by defining the concept of distribution con-
straints. We present two versions of problem definition for CP with distribution 
constraints, both of which arise in the context of functional test generation. The 
paper presents algorithms to solve each of these two problems. One family of 
the proposed algorithms is based on CP, while the other one makes use of both 
CP and the linear programming (LP) technology. All of the proposed  
algorithms can be efficiently parallelized taking advantage of the multi core 
technology. Finally, we present experimental results to demonstrate the effec-
tiveness of proposed algorithms with respect to performance and distribution 
accuracy. 

1   Introduction 

A major step in processor design cycle is design verification on the register transfer 
level (RTL). One of the commonly used approaches to this task is simulation-based 
validation. In this approach, the design under test (DUT) is examined against a large 
amount of functional tests, which exercise numerous execution scenarios in order to 
expose potential bugs. Due to size and complexity of modern designs it is not feasible 
to exercise the DUT on all possible test scenarios. Instead, a common approach is to 
develop a representative sample of possible tests. The latter is obtained by generating 
so called directed random tests, which are driven by constraints to express test inten-
tion yet randomization is applied to unconstrained test components. In this approach, 
a single constraint specification is associated with a huge collection of tests satisfying 
the specified constraints (solution space) and randomization is applied to sample this 
solution space. The work of validation engineers on developing test suites is facili-
tated by the use of automated test generation tools. A powerful means in performing 
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automated functional test generation is the CP technology. In particular, constraint 
modeling provides the capability to declaratively describe the DUT specification 
which defines a valid test as well as to describe a specific test scenario. Moreover, 
advanced CP algorithms can be used by automated test generation tools to produce 
tests that answer the architecture and scenario requirements. The examples of CP 
technology applications to the functional test generation task can be found in [1], [2], 
[3], [4].   

The quality of sampling of the solution space is one of the major factors in judging 
the quality of a test generation tool. A failure to provide a collection of tests giving a 
good representation of the entire solution space and its required subspaces would 
translate to coverage holes in design verification with the possible implication of 
undiscovered bugs. A common requirement related to sampling of the solution space 
is that generated tests should be distributed uniformly at random over the space of all 
tests satisfying the given constraints. Providing such uniform distribution is a difficult 
problem in constraint solving. Some research has been done on this problem in the 
context of SAT [5] as well as in the context of CP [6]. However, the complexity of the 
algorithm proposed in the latter work makes it hard to use in CSP problems arising in 
the functional test generation task. Another approach to address the quality of solution 
sampling is to define diversity measurements, e.g. average Hamming distance, on a 
collection of solutions and generate a collection of solutions maximizing the diversity 
between solutions in the collection [7].   

From the discussion above it follows that CP based functional test generation can 
be seen in particular as the task of generating a collection of multiple CSP solutions. 
Functional validation domain provides use cases where requirements need to be ap-
plied to the collection of generated solutions on the whole rather than to individual 
solutions. The uniformity of solution space sampling and the diversity of solutions in 
the generated collection are examples of such implicit requirements. However, there 
are use cases where explicit user given requirements need to be applied to a collection 
of solutions. For example, a validation engineer might wish some interesting architec-
tural event to occur in some given fraction of test instructions without binding the 
event to a specific subset of instructions in the test. On the other hand, the traditional 
CP based framework allows expressing constraints only on individual CSP solutions 
but not on a collection of solutions. In this paper we propose to extend the CP para-
digm with the notion of distribution constraints that apply to a collection of solutions. 
Such extension raises the expressive power of the CP based framework to answer the 
mentioned above needs of the functional validation. From the aspect of modeling, the 
extended framework should provide a user the capability to formulate distribution 
requirements for desired properties in a collection of multiple solutions. From the 
aspect of search, it should provide efficient algorithms for solution space sampling 
resulting in a collection of solutions satisfying given distribution requirements.  

To the best of our knowledge, very little research has been done in relation to dis-
tribution constraints. Larkin [8] proposed a very general definition of distribution 
requirements, allowing them to be specified as an arbitrary Bayesian network, and 
presented algorithms for sampling satisfying such requirements. However, these algo-
rithms are exponential in the number of CSP variables, which can reach thousands in 
a typical CSP corresponding to functional test generation. This makes the algorithms 
inapplicable to the functional test generation problem. Another work in this direction 
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has been done by one of the authors of this paper [9]. There, a more restrictive defini-
tion of distribution requirements was introduced. We observe that distribution con-
straints paradigm is closely related to another concept in test generation known as 
biasing. Biasing is a (user-given) heuristic for selecting values of variables. For ex-
ample, each possible value could be selected at random with a given probability. In 
certain cases, biasing and its extensions can serve as an approximation to solution 
space sampling subject to given distribution requirements. This approach was taken in 
[9] to provide algorithms for distribution constraint satisfaction. While the perform-
ance of these algorithms is good, they provide no guarantees with respect to the dis-
tribution accuracy, and while giving a reasonable approximation in some cases, may 
have poor accuracy in the others. In addition, the results of these algorithms are 
strongly influenced by algorithm implementation specifics, like variable ordering.  

In this paper, we present a refined formal definition of distribution constraints. The 
proposed definition is less general than that of an arbitrary Bayesian network, how-
ever provides sufficient expressiveness for specifying distribution requirements in the 
functional test generation task. We also define a generalization of the distribution 
constraint concept which we refer to as conditional distribution constraints, to allow 
the capability of expressing another common type of distribution requirements. The 
paper presents two versions of the problem of solution space sampling subject to 
distribution constraints, both of which arise in the context of functional test genera-
tion. For each of these two problems, we propose algorithms for finding a sampling 
satisfying given distribution constraints. These algorithms are both efficient in terms 
of performance, thus improving on results in [8], and on the other hand provide high 
distribution accuracy and eliminate dependency on search algorithm specifics, thus 
overcoming the drawbacks of the results in [9]. The first type of the proposed algo-
rithms is based on the CP search combined with a parallelization scheme, while the 
other type makes use of the LP technology. We provide experimental results to dem-
onstrate efficiency and distribution accuracy of the proposed algorithms. 

The rest of the paper is organized as follows. In section 2 we provide the back-
ground required for presentation of our results. Section 3 presents definitions of distri-
bution constraints as well as conditional distribution constraints. In Section 4 we define 
two problems of sampling solution space subject to distribution constraints. Section 5 
describes algorithms for each of the presented problem definitions. Section 6 demon-
strates experimental results. We conclude in Section 7 with the summary of the pre-
sented results. 

2   Background 

For the sake of completeness, in this section we provide the CP and LP background 
required to facilitate the presentation of the rest of this paper. An in-depth survey of 
the traditional CP can be found in [10] whereas extended CP frameworks are sur-
veyed in [11]. LP related definitions and theory can be found in [12]. 

The CP paradigm comprises the modeling of a problem as a CSP, constraint propa-
gation, search algorithms, and heuristics. A CSP is defined by: 
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• a set of constrained variables. Each variable is associated with a (finite) domain 
defined as a collection of values that the variable is allowed to take; 

• a set of constraints. A constraint is a relation defined on a subset of  
variables which restricts the combinations of values that the variables can take 
simultaneously. 

A solution to a CSP is an assignment of values to variables so that each variable is 
assigned a value from its domain and all the constraints are satisfied.  

The constraints referred to in the classical CSP definition above are also known as 
hard constraints, in the sense that any feasible solution of the CSP must satisfy these 
constraints. A number of extended CP frameworks have been proposed that relax the 
notion of a constraint to better suit some real world problems. One of the proposed 
relaxations of a classical hard constraint is a soft constraint which is allowed to be 
violated if it cannot be satisfied. CP with soft constraints is known as Partial Con-
straint Satisfaction [13]. Different criteria have been proposed to measure the quality 
of solutions for a CSP with soft constraints and many algorithms have been proposed 
for partial constraint satisfaction (see [14] and references therein for some examples). 
Another variation of CSP aimed at relaxing hard constraints is Fuzzy CSP (FCSP) 
[15]. In FCSP, for each constraint, levels of preference between 0 and 1 are assigned 
to each variable assignment tuple. These levels indicate how “well” the assignment 
satisfies the constraint. A solution to FCSP is an assignment to all variables that 
maximizes the preference level of a constraint having the lowest satisfaction value. 
Yet another CP extension that should be mentioned in this context is the Probabilistic 
CSP [16]. In this framework, each constraint has an associated probability of presence 
in a “real” CSP. This framework allows to model the uncertainty regarding the pres-
ence of a constraint in a given problem. A solution to a probabilistic CSP is an as-
signment of values to variables that has the maximal probability to be a solution to the 
real problem. 

A CSP formulation of a problem is processed by a constraint solver, which at-
tempts to find a solution using a search algorithm combined with reductions of vari-
able domains based on constraint information. The latter mechanism is known as 
constraint propagation. 

The search space is the Cartesian product of all the variable domains. Let Z be a 
search space. A solution space S⊆Z is a set of all possible assignments to variables 
that are solutions to the CSP.  

Linear programming is a problem of finding an assignment to real (floating point) 
variables subject to linear constraints such that some linear function of these variables 
is minimized or maximized. Formally, a linear program can be expressed as 

min cx subject to Ax≥b, x≥0 

where A is a matrix, c is a row vector, b is a column vector, and x is a vector of vari-
ables. There exist many additional equivalent forms of formulating an LP problem.  
Many algorithms have been developed for LP solving, e.g. the Simplex method. 
Quadratic programming is an extension of LP where the objective function is quad-
ratic. Solution algorithms have been developed for certain forms of quadratic objec-
tive functions. 
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3   Distribution Constraints  

In this section we formally introduce the notion of a distribution constraint. We ob-
serve that unlike a traditional CSP constraint, a distribution constraint is applicable 
not to a single variable assignment, but rather to a collection of multiple assignment 
tuples. Following the motivation discussed in the introduction, the purpose of this 
new concept is to provide the capability to constrain a collection of CSP solutions by 
specifying desired percentages of solutions with certain properties. 

Definition 3.1: Given a set V of CSP variables, an unconditional distribution con-
straint d is defined by a pair (c,p), where c is a CSP constraint on a subset of V and p 
is a real number such that 0≤p≤1. A non empty collection S of assignments to V is 
said to satisfy an unconditional distribution constraint d(c,p) with precision error ε if 
abs(N(S,c)/|S| − p)/p = ε where N(S,c) denotes the number of assignment tuples in S 
satisfying the constraint c. 

In other words, an unconditional distribution constraint d(c,p) assigns a weight p to a 
subset of variable assignments which is given as a collection of tuples satisfying the 
constraint c. The precision error ε of satisfying d is the absolute difference between 
the actual percentage of assignments satisfying c in the collection S and the required 
percentage p, divided by p to get an error measure relative to the actual value of p.  

For example, consider the following variables with their corresponding domains: 

A[1..5], B[0..6], C[3..10] 

Let an unconditional distribution constraint d be given by a constraint c = A>B and 
p=0.6. Then the collection S of 10 assignment tuples to (A, B, C) shown below satis-
fies d with the precision error 0.1/0.6 = 1/6. 

{ (2,5,3),(4,0,10),(5,0,7),(3,6,9),(3,0,7),(1,4,3),(5,2,6),(2,1,10),(4,3,5),(3,1,4) } 

Indeed, 7 out of 10 tuples in S satisfy A>B, resulting in the actual percentage of 0.7 
compared to the required percentage of 0.6. 

Next, to enhance expressiveness in specifying the distribution requirements, we de-
fine an additional kind of distribution constraints, namely, a conditional distribution 
constraint. In fact, the latter is a generalization of an unconditional distribution con-
straint defined above. A conditional distribution constraint implies a distribution re-
quirement not on all the assignment tuples in a given collection, but only on those 
satisfying a given condition. For example, in the context of functional test generation, 
a validation engineer might wish to test different modes of ADD instruction in inter-
action with other instructions. An example requirement in this case might be that a 
half of generated ADD instructions should have a memory operand and the other half 
should not. This requirement, however, should not affect any instructions whose 
mnemonic is not ADD. The formal definition of a conditional distribution constraint 
follows.    

Definition 3.2: Given a set V of CSP variables, a conditional distribution constraint 
dcond is defined by a 3-tuple (cond,c,p), where cond and c are CSP constraints on a 
subset of  V and p is a real number such that 0≤p≤1. A collection S of assignments to 
V is said to satisfy a conditional distribution constraint dcond(cond,c,p) with precision 
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error ε if abs(N(S,cond∧c)/N(S,cond) − p)/p = ε where N(S,constr) denotes the num-
ber of assignment tuples in S satisfying the constraint constr. We assume that 
N(S,cond)>0, otherwise dcond(cond,c,p) is trivially satisfied. 
 

 

Fig. 1. Search space partition by a conditional distribution constraint 

The partition of the solution space by a conditional distribution constraint is visual-
ized in Fig.1.  Scond denotes a subset of tuples in S that satisfies the condition cond. 
This subset is divided into the subset Scond∧c of tuples that satisfy a constraint c and the 
subset Scond∧¬c containing tuples that do not satisfy c. The conditional distribution 
constraint specifies the percentage p of tuples from Scond∧c within Scond. 

It can be easily seen that an unconditional distribution constraint introduced in 
Definition 3.1 is a special case of a conditional distribution constraint defined above 
with a condition cond equal to the constant true constraint. We will use the term dis-
tribution constraints to denote both conditional and unconditional distribution con-
straints. We will refer to a constraint c in the definition of distribution constraints as a 
property, to emphasize that this constraint specifies a variable assignment property to 
which the distribution requirement is implied. 

We observe that definitions presented above differ from those in CP extension 
frameworks described in Section 2, where constraints are also associated with weights 
or probabilities. The principal difference is that in all of those frameworks weighted 
constraints are applied to a single variable assignment tuple and weights associated 
with constraints or with specific variable assignments are used to determine the best 
single solution. On the other hand, distribution constraints introduced above are ap-
plied to a collection of variable assignment tuples and are used in a problem of find-
ing multiple solutions.  

4   Problem Definition 

We proceed with defining two versions of the problem of CP with distribution con-
straints. Both versions arise in the functional test generation. Formulations of both 
problems require distribution constraint set satisfaction by a collection of variable 
assignment tuples. Satisfaction of a distribution constraint set can be defined in multi-
ple ways. Some of possible definitions are discussed in the sequel of this section.  

The first problem, which we will refer to as Single CSP with Distribution Con-
straints (SCSPD), is to generate multiple solutions to the same CSP problem subject 
to distribution constraints. Formally, SCSPD is given by a variable set V, a superset Ω 
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of constraints over V, a CSP P(V,C⊆Ω), and a set of distribution constraints 
D={(condj,cj,pj)}1≤j≤m where condj∈Ω, cj∈Ω. The objective is to find a collection S of 
assignments to V such that each s∈S satisfies constraints in C and such that the distri-
bution constraints set D is satisfied by S.  

In functional test generation, the SCSPD problem can arise, for example, when it is 
required to generate multiple versions of the same instruction to test different modes 
of its operation. In this case, the CSP part of the problem would include architectural 
constraints implying the validity of the instruction, as well as constraints of the spe-
cific test scenario describing in particular which specific instruction needs to be 
tested. Distribution constraints in this application may require a specific occurrence 
ratio of different modes of the instruction in the sample of CSP solutions. Another 
example is the problem of generating multiple random tests from a single test specifi-
cation, when distribution requirements apply to instructions with the same ordinal 
number in each test. For example, for a given test specification with unconstrained 
mnemonic of the first instruction, one would like to get 0.5 ratio of tests with the first 
instruction having mnemonic ADD, 0.3 ratio of tests with the first instruction SUB 
and 0.2 ratio of tests starting with MULT. 

Next we define the second version of CP with distribution constraints which we 
call Multiple CSP with Distribution Constraints (MCSPD). In this problem a se-
quence of different CSPs sharing common variables is being solved, while distribu-
tion constraints apply to the sequence of these CSP solutions. Formally, MCSPD is 
given by a variable set V, a superset Ω of constraints over V, a sequence of CSP prob-
lems sharing a variable set V, namely, P1(V,C1⊆Ω), P2(V,C2⊆Ω), …, Pn(V,Cn⊆Ω) 
where Ci denotes a constraint set of a problem Pi for 1≤i≤n, and a set of distribution 
constraints D={(condj,cj,pj)}1≤j≤m where condj∈Ω, cj∈Ω. The objective is to find a 
sequence S of assignments to V such that for each 1≤i≤n, si∈S satisfies constraints in 
Ci and such that the distribution constraints set D is satisfied by S. Observe that 
though each variable assignment in the sequence S is a solution to a different CSP 
problem, the variable set is common to all the tuples, which makes distribution con-
straints on these variables applicable to the whole sequence.  We also note that order-
ing the collection S does not affect the definition of distribution constraint satisfaction 
by S. 

An example of MCSPD in functional test generation is the problem of generating a 
stream of (different) test instructions. The problem of generating each instruction in 
the stream is described by an individual CSP with its own constraints, and distribution 
constraints specify the required ratios of instructions with specific properties, e.g. one 
can require that 0.7 ratio of instructions in the stream should be ADD. 

Next we discuss the possible criteria for defining whether a collection S of CSP so-
lutions satisfies a given set D of distribution constraints. In the previous section we 
defined the precision error of satisfying a distribution constraint d by a collection S of 
variable assignments. A fair criterion for satisfying a set of distribution constraints D 
by a given collection S of variable assignments should take into account precision 
errors εd(S) of satisfying each d∈D by S. The strict definition of satisfaction of D by S 
requires εd(S)=0 for each d∈D. However, using this strict definition makes many 
problem instances infeasible. Instead, one can use a relaxed definition of the satisfac-
tion of D by S allowing non zero precision errors yet trying to keep these errors small. 
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There are multiple ways to simultaneously account for the precision errors {εd(S)}d∈D. 
For example, if the distribution precision is of different importance for each distribu-
tion constraint, one can define a vector of upper bounds Bd on εd(S) for each d∈D and 
consider the set D satisfied by S if εd(S)≤ Bd for each d∈D. On the other hand, if pre-
cision is equally important for all constraints one can define a common upper bound B 
on εd(S) and require the precision error of any d∈D not to exceed B. Another approach 
is to integrate all the precision errors εd(S) into a single minimization criterion and 
define that D is satisfied by S if this criterion is minimized. A possible minimization 
criterion in this approach can be εavrg=(∑d∈D εd)/|D|. With this optimization criterion, 
the average precision error over d∈D is minimized. Another possible choice for 
minimization criterion is εmax=maxd∈D εd.  

Another approach to distribution constraint satisfaction is to assume the strict defi-
nition with zero precision errors, but to look for approximate solutions to the problem. 
In this approach, the quality of the approximation can be measured using the same 
optimization criteria discussed above, e.g.  εavrg or εmax. This is the approach we take 
in the rest of this paper, with εavrg used as a measure of the approximation quality of 
the distribution constraint satisfaction.   

Finally, recall that in the task of functional test generation there is an implicit re-
quirement of generating representative solution samples. This requirement remains 
valid in the presence of distribution constraints, when SCSPD or MCSPD are solved 
in the functional test generation context. Therefore, samples created by replication of 
identical solutions in the required proportions could provide a theoretical solution but 
would be of little value in the functional test generation task. 

5   Algorithms for CP with Distribution Constraints 

In this section we present algorithms for solving the SCSPD and MCSPD problems 
defined in the previous section. We start with some preliminary discussion required 
for the presentation of our algorithms. 

5.1   CSP Formulation for SCSPD and MCSPD 

We observe that both SCSPD and MCSPD can be formulated as classical CSP prob-
lems. Without the loss of generality, we shall describe such formulation for  MCSPD. 
SCSPD can be formulated in the same way as an MCSPD with a sequence of identical 
CSP problems. In the formulation below, we use the relaxed definition of distribution 
constraint satisfaction by means of the upper bound B on precision errors. Such re-
laxation will be required in the sequel for presentation of one of our algorithms. For 
the strict definition, one can substitute B=0. 

Suppose we are given an instance of MCSPD  defined by a variable set V, a super-
set of constraints Ω, a sequence of CSP problems P1(V,C1),P2(V,C2),…,Pn(V,Cn), a set 
of distribution constraints D={(cond1,c1,p1),(cond2,c2,p2),…,(condm,cm,pm)}, and an 
upper bound B on the precision errors of distribution constraint satisfaction. We de-
note the CSP corresponding to the MCSPD problem by PM(VM,CM), and define it as 
follows:  



42 A. Moss and B. Gutkovich 

 

• VM
1 = V1∪V2∪…∪Vn where Vi is a replica of V, for 1≤i≤n;  

• CM
1 = C1,1∪ C2,2∪…∪ Cn,n where Ci,i is a replica of Ci defined over the 

variables in the replica Vi;  
• VM

2 = {bi,j}1≤i≤n,1≤j≤m where bi,j is an integer variable with domain {0,1};  
• CM

2 = {bi,j=1 iff condij}1≤i≤n,1≤j≤m where condij denotes a replica of the dis-
tribution constraint condition condj defined over Vi; that is, a variable bi,j 
equals 1 if and only if the condition condj of the distribution constraint 
(condj,ci,pi) holds over the replica Vi of variables; 

• VM
3 = {qi,j}1≤i≤n,1≤j≤m where qi,j is an integer variable with domain {0,1};  

• CM
3 = {qi,j=1 iff condij∧cij}1≤i≤n,1≤j≤m where condij denotes a replica of the 

distribution constraint condition condj and cij denotes a replica of the dis-
tribution constraint property cj defined over Vi; that is, a variable qi,j 
equals 1 if and only if the condition condj and the property cj of the distri-
bution constraint (condj,ci,pi) holds over the replica Vi of variables; 

• CM
4 = {abs(∑1≤i≤n qi,j − pj ∑1≤i≤n bi,j)  ≤  B⋅pj ∑1≤i≤n bi,j }1≤j≤m; these con-

straints require the precision error for each distribution constraint not to 
exceed B; 

• VM = VM
1∪ VM

2∪ VM
3  

• CM = CM
1∪ CM

2∪ CM
3∪ CM

4 

We observe that since PM(VM,CM) is formulated as a single problem of finding n solu-
tions to P1(V,C1),P2(V,C2),…,Pn(V,Cn), the variable set V is replicated n times and the 
constraint Ci of each problem  Pi are formulated on its corresponding replica of V. We 
apply the counting principle to express the number of solutions that satisfy the condi-
tion condj, for each of the given distribution constraints (condj,cj,pj), as well as the 
number of the solutions satisfying condj that also satisfy the property cj. The former is 
expressed by ∑1≤i≤n bi,j, while the latter is expressed by ∑1≤i≤n qi,j. Finally, by defini-
tion, precision error ε for a distribution constraint (condj,cj,pj) is expressed by 
abs(N(S,cond∧c)/N(S,cond)−p)/p, and the constraints CM

4 guarantee that the precision 
error of any distribution constraint does not exceed the bound B. Randomization of 
solutions required in the context of functional test generation can be achieved, for 
example, by randomizing the value selection for variables by a CP search algorithm. 

Observe that a solution of the CSP above with B=0 achieves an optimal solution to 
MCSPD in terms of the distribution precision error. However, for large CSP instances 
and large sequence lengths n (which is typically the case when one wishes to measure 
distribution) in the MCSPD definition, the resulting CSP problem PM can be very 
large, and the CP search algorithm on such instance can require impractically high 
computational effort. Our experiments show that while CP search can be tuned to 
substantially improve performance on specific instances, this tuning is not universal 
but depends on the structure of a particular instance. Therefore, while the pure CP 
based approach provides high quality solutions on small instances, it suffers from the 
scalability problem and cannot be readily applied to large instances. 

In Section 5.3 we show how the CP based approach can be used within a paralleli-
zation scheme to resolve the scalability problem while maintaining good precision 
quality. However, the latter approach is applicable only to the SCSPD version of the 
problem.  
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Before we can proceed to the presentation of the rest of the algorithms described 
further in this section, we need to introduce the concept of feasible property subsets 
with respect to a given set D of distribution constraints. 

5.2   Feasible Property Subsets 

For the clarity of presentation we start the introduction of the property subset concept 
for the unconditional distribution constraints, and then generalize it to encompass 
conditional distribution constraints. We observe that with respect to a distribution 
constraint d(c,p), the solution space of a CSP can be divided into tuples that satisfy 
the property c and those that do not. Generally, with respect to a distribution con-
straint set D={d1(c1,p1),d2(c2,p2),…,dm(cm,pm)}, a variable assignment s can be associ-
ated with a property subset λ⊆{c1,c2,…,cm} so that ci∈λ if and only if s satisfies ci, for 
1≤j≤m. The set D of distribution constraints partitions the solution space into sub-
spaces of tuples associated with the same property subsets. In each subspace, all the 
tuples of the subspace satisfy exactly the same subset of properties {c1,c2,…,cm} and 
tuples from different subspaces satisfy different subsets of properties.  

Consider the following example. Let P(V,C) be a CSP instance with V containing 
two integer variables, A[0..2] and B[1..2], and C={A≠2}. Let D be a set of two distri-
bution constraints over V, d1(A=1, 0.3) and d2(A≥B, 0.5). The partition of the solution 
space induced by these distribution constraints is shown in Fig. 2. 

 
Fig. 2. Solution space partition by the unconditional distribution constraint set 

Observe that in the example above the solution space contains the following as-
signment tuples to (A,B): {(0,1), (0,2), (1,1), (1,2)}. The distribution constraint set 
{d1,d2} partitions this solution space into the following regions: S1={(1,1)}, 
S2={(1,2)}, S3=∅ and S4={(0,1),(0,2)}. Generally, some property subsets are feasible, 
meaning that the corresponding subspace of tuples satisfying the property subset is 
non-empty, and the other property subsets are infeasible, meaning that there are no 
tuples satisfying them.  

Formally, given a CSP instance P(V,C) and a set D={d1(c1,p1),d2(c2,p2),…,dm(cm,pm)} 
of distribution constraints, we call a subset of properties λ⊆{c1,c2,…,cm} feasible if there 
exists a variable assignment that satisfies constraints in C and properties in λ and does 
not satisfy properties in {c1,c2,…,cm}−λ. 

        S1  
A=1∧ A≥B 
 λ1={A=1,A≥B} 

        S2  
  A=1∧ ¬(A≥B) 
    λ2={A=1} 

       S4 
 ¬(A=1) ∧ ¬(A≥B) 
       λ4=∅ 

        S3  
  ¬(A=1)∧ A≥B 
   λ3={A≥B} 
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The definition of the solution space partition by a set of unconditional distribution 
constraints given above can be extended to accommodate conditional distribution con-
straints. The distinction of a conditional distribution constraint is in the fact that it 
divides the solution space into three regions and not into two regions like an uncondi-
tional distribution constraint. Specifically, a conditional distribution constraint 
d(cond,c,p) partitions the solution space into tuples satisfying cond∧c, tuples satisfying 
cond∧¬c and tuples satisfying ¬cond, as shown in Fig. 1. Given a set of conditional 
distribution constraints D={d1(cond1,c1,p1), d2(cond2,c2,p2), …, dm(condm,cm,pm)}, the 
regions of the solution space partition can be described as subsets of the extended 
property set including also conditions as its elements. If such subset λ contains both 
condi and ci then the corresponding tuples satisfy condi∧ci, if λ contains condi but not 
ci, then the corresponding tuples satisfy condi∧¬ci, and if  λ  does not contain neither 
condi nor ci, then the corresponding tuples satisfy ¬condi. Since a region that does not 
satisfy condi is not subdivided with respect to ci there are no subsets containing ci but 
not containing condi. For example, for a set of two conditional distribution constraints 
D={d1(cond1,c1,p1), d2(cond2,c2,p2)}, the partition of the solution space by D can be 
described by the following property subsets (each property subset is followed by a 
constraint describing the corresponding region in the partition):  

 
∅ ⇒ ¬cond1∧¬cond2 
{cond1} ⇒ cond1∧¬c1∧¬cond2 
{cond1,c1} ⇒ cond1∧c1∧¬cond2 
{cond2} ⇒ cond2∧¬c2∧¬cond1 
{cond2,c2} ⇒ cond2∧c2∧¬cond1 
{cond1,cond2} ⇒ cond1∧¬c1∧cond2∧¬c2 
{cond1,c1,cond2} ⇒ cond1∧c1∧cond2∧¬c2 
{cond1,cond2,c2} ⇒ cond1∧¬c1∧cond2∧c2 
{cond1,c1,cond2,c2} ⇒ cond1∧c1∧cond2∧c2 

 
The approach taken in the algorithms presented further in this section is to generate 
the required number of solution samples from different subspaces in the partition 
described above. To guarantee that a CSP solution will belong to the subspace of the 
required property subset, properties from this subset are added to the CSP model 
along with the negations of properties that do not belong to the subset. The proportion 
of generated samples from each subspace should be chosen in a way satisfying the 
given distribution constraints. 

In the approach described above, one needs to resolve two problems. The first one 
is to determine which property subsets are feasible, since adding model constraints 
corresponding to an infeasible property subset will result in an infeasible CSP in-
stance. Another problem is to determine fractions of samples to generate for each 
feasible property subset so that distribution constraints are satisfied.  The algorithms 
described in the rest of this section propose different ways of resolving these two 
problems. 
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5.3   CP Search Based Algorithm with Parallelization Scheme for SCSPD 

In this subsection we apply the CP based approach described in Section 5.1 to deter-
mine both the feasible property subsets and the fractions of samples to be generated 
for each of these subsets. At the same time the proposed algorithm avoids scalability 
problems of the pure CP based approach by solving CSP on a small sequence. 

We proceed with a formal presentation of the algorithm. The input of the algorithm 
is an instance of SCSPD, composed of a CSP instance P(V,C), a set of distribution 
constraints D={(cond1,c1,p1),(cond2,c2,p2),…,(condm,cm,pm)} and a number n of the 
required solution tuples. The algorithm proceeds as follows. At first, a CP based ap-
proach described in Section 5.1 is applied to build a small number k of samples, for 
some parameter k<<n. That is, a new CSP for obtaining a collection of k solutions of 
P subject to distribution constraints D is formulated as described in Section 5.1 and 
solved using a CP search algorithm. If the problem has no solution for B=0, a binary 
search on values of B can be applied to determine the smallest value of B for which 
the problem has a solution. Alternatively, the CSP described in Section 5.1 can be 
reformulated as an optimization problem for εmax. When a collection of k solutions 
S={s1,s2,…,sk} is obtained, it is processed as follows. A partition of S with respect to 
property subsets is performed as described in Section 5.2. Clearly, all the property 
subsets that got a non empty representation in the partition are feasible, though there 
may also exist additional feasible property subsets that got an empty representation in 
the partition. Let λ1,λ2,…,λt be all the feasible property subsets that got non empty 
representation in the partition of S, and let ηi>0 be the number of samples in S corre-
sponding to the property subset λi, for 1≤i≤t. We observe that the actual ratio of sam-
ples satisfying a property or a condition c in S is given by (∑{i|c∈λi}ηi)/k, for 1≤j≤m. 
We propose to use the same ratio ηi/k for each property subset λi in a solution collec-
tion of the full size n. From the expression above it follows that the ratio of samples 
satisfying cj in a solution set of size n will be the same as that in the solution set S of 
size k, for 1≤j≤m. Following the definition of precision error of distribution constraint 
satisfaction, this means that the precision error on the large solution collection will be 
equal to the precision error of the small collection. 

Specifically, in the second phase of the algorithm, our objective is to build a collec-
tion of solutions to P of size n. Let n’ be the smallest number such that n’≥n and n’ is 
a multiple of k. We generate n’ solutions from the solution subspaces corresponding 
to λ1,λ2,…,λt in the same proportions as in the “small” solution sample S of size k. To 
obtain a solution corresponding to λi, we add properties in λi and negations of proper-
ties not in λi as model constraints, as described in Section 5.2, and solve the resulting 
CSP using a randomized search algorithm to ensure diversity of solutions within the 
subspace corresponding to λi. The quantity of samples generated for the property 
subset λi is given by (ηi/k)·n’. If the size of the solution sample must equal n exactly, 
we can discard n’−n<k of the generated solutions at random. Provided k<<n, this will 
introduce only a small distortion to the existing distribution. 

We observe that the algorithm presented above resolves the scalability problem of 
the pure CP approach described in Section 5.1 since the CP search is performed on a 
smaller CSP problem. Moreover, the new algorithm can be effectively parallelized 
since the generation of solutions at the second phase of the algorithm can be divided 
into independent tasks. Specifically, a parallel thread can be assigned for each feasible 
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property subset λi. A thread assigned for λi is responsible for generating all solutions 
corresponding to the property subset λi in the quantity of (ηi/k)·n’. Since a thread 
calculates a number of solutions to exactly the same CSP problem, the search can be 
made more efficient relative to the search for a number of solutions to different CSP 
problems. 

On the other hand, the precision error of distribution constraint satisfaction in the 
algorithm proposed above may be high in certain cases. Precision error occurs due to 
two factors. First, there might not exist appropriate k<<n dividing the required sam-
ple size n without remainder. Then some solutions will be discarded at the final step 
of the algorithm distorting the distribution. Moreover, even if n is a multiple of k, the 
resulting precision error ε of satisfying D is optimal for a solution set of cardinality k, 
but not necessarily optimal for a solution set of cardinality n as the optimum precision 
error for a larger set can be less than that for a smaller set. 

The algorithms described further in this section follow a completely different ap-
proach to finding feasible property subsets and calculating fractions of solutions to be 
generated for each feasible property subset. The description of these algorithms fol-
lows in the next two subsections. 

5.4   Probabilistic LP Based Algorithm for SCSPD 

The algorithm described in Section 5.3 assumed a deterministic approach to satisfying 
distribution constraints in the sense that ratios of solutions satisfying each property 
were determined by the algorithm deterministically. The next two algorithms we 
present assume probabilistic approach, and actual percentages of solutions satisfying 
each property are random numbers which are analyzed with respect to their expected 
values. Both algorithms are hybrid methods applying both CP and LP technology. 

In this subsection we present a probabilistic algorithm for the SCSPD problem.  
Let an instance of SCSPD be composed of a CSP instance P(V,C), a set of distribution 
constraints D={(cond1,c1,p1),(cond2,c2,p2),…,(condm,cm,pm)}  and a number n of re-
quired solution samples. We start with finding the feasible property subsets. The 
straightforward approach is to enumerate all the possible property subsets. For each 
property subset λ, corresponding constraints are added to the constraints in C, and the 
resulting CSP is solved by a CP search algorithm. If a solution was found, the corre-
sponding property subset is marked feasible. The proposed approach is exponential in 
the number of distribution constraints m. However, in typical applications arising in 
the functional test generation, the number of simultaneous distribution requirements is 
small and the proposed method is practical. To improve the complexity of finding 
feasible property subsets by reducing the number of CP search invocations, a dynamic 
programming method can be applied. Specifically, let Ψ={ϕ1,ϕ2,…,ϕ2m} be an ex-
tended property set composed of the conditions {cond1,cond2,…,condm} and the prop-
erties {c1,c1,…,cm}. The improved algorithm for calculating the set of feasible subsets 
of Ψ  proceeds in iterations so that at each iteration k a set Φk of all feasible subsets of 
properties {ϕ1,ϕ2,…,ϕk} is calculated, for 0≤k≤2m. Clearly, for k=0, Φ0=∅. Given Φk, 
Φk+1 can be computed by examining for each λ∈Φk two subsets of {ϕ1,ϕ2,…,ϕk, ϕk+1}, 
namely, λ and λ∪{ϕk+1}. For each of these two subsets, corresponding constraints are 
added to P and the resulting CSP problem is solved to determine the feasibility of the 
subset. If the subset proves feasible, it is added to Φk+1. Observe that if ϕk+1 is a  
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property and its corresponding condition does not belong to λ, then λ∪{ϕk+1} needs 
not be added to Φk+1. In the iterative approach described above, the number of CP 
search invocations is the order of the number of the feasible property subsets, com-
pared to the number of all the property subsets in the straightforward enumeration. 

Another way to speed up the calculation of feasible property subsets is to use paral-
lel CSP solvers to check feasibility of each property subset instead of applying the 
dynamic programming scheme. 

After the set of feasible property subsets is calculated, the algorithm proceeds to its 
second phase where it calculates the probabilities for generating a solution satisfying 
a feasible property subset λ, for each λ∈Φ2m. The objective is to calculate these prob-
abilities in such a way that the expected precision error of satisfying each distribution 
constraint will be zero. This will be achieved if for each distribution constraint 
(condi,ci,pi), for 1≤i≤m,  the probability of generating a solution satisfying condi∧ci 
equals pi multiplied by the probability of generating a solution satisfying condi. To 
calculate probabilities satisfying the required properties, we formulate and solve a 
linear program corresponding to the described problem. The linear program below is 
formulated as a set of linear constraints CL over real variables VL subject to linear 
minimization function OL. We observe that such formulation can be transformed into 
an equivalent LP program in the form min cx subject to Ax≥b, x≥0. The linear pro-
gram L(VL,CL,OL) is defined as follows. 

• VL={ρ1, ρ2, …,ρt} where t= |Φ2m|, 0≤ρj≤1 for 1≤j≤t. Each variable ρj 
represents the probability of generating a solution satisfying the feasible 
property subset λj∈Φ2m 

• CL
1={∑1≤j≤t ρj = 1}. This constraint follows from the fact that Φ2m defines 

a partition of the solution space 

• { }
micondk kiccondj jL

kijiji
pC

≤≤∈∈∧∈ ∑∑ =−=
1}|{}|{

2 0
λλλ

ρρ  

• CL= CL
1∪ CL

2 
• OL=const 

Note that the definition above does not require optimization of feasible solutions. 
However, to improve the diversity of generated solutions for SCSPD, one can apply a 
quadratic minimization objective ∑1≤j≤t (ρj−ρavrg)

2 where ρavrg stands for the average 
probability (∑1≤j≤tρj)/t. The effect of such optimization criterion would be a more 
equal distribution of probability weights between different feasible property subsets. 

After the probabilities for each feasible property subset are calculated, the algo-
rithm generates solutions to P(V,C) so that a solution satisfies a property subset λj 
with probability ρj, for 1≤j≤t. This is done by random selection of a subset λj out of 
Φ2m with probability ρj and adding the constraints corresponding to λj (as described in 
Section 5.2) to the CSP model of P. The augmented model is then solved by a ran-
domized CP search algorithm to produce a random solution satisfying λj. 

It is easy to see that the proposed algorithm is an optimal probabilistic algorithm 
for SCSPD as it achieves a zero expected distribution precision error. It also has an 
advantage in terms of diversity over the algorithm presented in Section 5.3 since it 
allows sampling of diverse regions of solution space partition with respect to property 
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subsets. A disadvantage of the probabilistic approach is that on small sample sizes 
there can be a substantial deviation from the expected precision error value. 

5.5   Probabilistic LP Based Algorithm for MCSPD 

The idea of LP based algorithm for MCSPD is similar to that presented in the previ-
ous subsection. However, while the previous algorithm calculated probabilities for 
feasible property subsets once and used them in creating all the solution samples, the 
same method cannot be used for MCSPD, where feasible property subsets can change 
for each CSP problem in MCSPD sequence. To overcome this problem, we calculate 
feasible property subsets for each CSP in the sequence and solve a large LP program 
that calculates the probability for each feasible property subset in each CSP instance 
in the sequence. The formal presentation of the algorithm follows below. 

Let an instance of MCSPD  be given by a sequence of CSP  
problems P1(V,C1),P2(V,C2),…,Pn(V,Cn) and a set of distribution constraints 
D={(cond1,c1,p1),(cond2,c2,p2),…,(condm,cm,pm)} over V. The algorithm starts with 
calculating the sets of feasible property subsets for each of P1,P2,…,Pn. Let 
Φ1,Φ2,…,Φn denote the resulting sets, and let ti=|Φi| for 1≤i≤n. To reduce the number 
of CP search invocations in the calculation of these sets, we first calculate a set Φ of 
feasible property subsets in the absence of any model constraints and then obtain Φi 
from Φ by discarding those property subsets that become infeasible in the presence of 
constraints Ci, for 1≤i≤n.  

Once the sets of feasible property subsets are found, the algorithm calculates the 
probabilities ρij of generating a solution satisfying a feasible property subset λij∈Φi 
for the CSP problem Pi in the sequence, for 1≤i≤n, 1≤j≤ti. These probabilities are 
calculated by formulating and solving the following linear program L(VL,CL,OL): 

• VL={ρij} for 1≤i≤n, 1≤j≤ti. Each variable ρij represents the probability of 
generating a solution to Pi satisfying the feasible property subset λij∈Φi. 

• { }
ni11

1 1
≤≤≤≤

== ∑
itj ijLC ρ . These constraints follow from the fact that 

Φi defines a partition of the solution space of Pi. 

• { }
micondjink ijiccondjink ijL

kjikjikji
pC

≤≤∈≤≤∈∧∈≤≤ ∑∑ =−=
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2 0
λλλ

ρρ  

• CL= CL
1∪ CL

2 
• OL=const 

After the probabilities ρij are calculated, the algorithm generates a solution to each Pi, 
for 1≤i≤n, by randomly selecting a feasible property subset λij∈Φi with probability ρij, 
and adding the corresponding constraints to the CSP model of Pi to find a solution 
satisfying the property subset λij. 

We observe that like the algorithm for SCSPD described in the previous subsec-
tion, the algorithm described above also achieves zero expected precision error in 
distribution constraint set satisfaction. 

An additional advantage of LP based algorithms for SCSPD and MCSPD is that 
they can be parallelized in their last stage of solution generation, since the generation 
of each solution in both algorithms is done independently.  
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Finally, we note that the usage of LP programming provides a powerful capability 
of solution failure explanations. In many unsolvable cases LP algorithms can provide 
information on minimal changes that can be done to bounds in linear constraints in 
order to make the problem instance feasible. This information is a valuable hint for a 
user in case of infeasible distribution constraints on how the distribution requirements 
could be modified in order to obtain a solution, as well as a debug aid in case of incor-
rect distribution constraint formulation. 

6   Experimental Results  

We have tested the algorithms described in Section 5 for different solution sample 
sizes. The goal of the experiments was to demonstrate and compare performance and 
distribution precision quality of the proposed algorithms. Tables 1 and 2 below sum-
marize the results of our experiments. The experiments were performed on two  
generic CSP instances. The first instance included 10 distribution constraints with 
multiple conflicts within the superset of model constraints, distribution conditions and 
distribution properties providing a hard to satisfy test case. The second instance con-
tained 4 distribution constraints with less conflicts; this instance was much easier to 
satisfy than the first one. For MCSPD, the sequence of different CSP problems was 
obtained by augmenting the CSP instances described above with some additional 
model constraints varying for each problem in the sequence. In our experiments we 
used ILOG CP as a CP engine and ILOG CPLEX as an LP engine [17]. For each 
algorithm, solution samples of sizes 100, 500 and 1000 were generated on 10 different 
random seeds. Entries of Table 1 show the average running time in seconds of the 
algorithms along with the average precision error εavrg of satisfying the given distribu-
tion constraint set. We performed the evaluation on Pentium M 2.5 GHz processor 
with 2.96 GB of RAM. 

The results of our experiments confirm the previously mentioned theoretical con-
clusions regarding strengths and weaknesses of the proposed algorithms. Specifically, 
the results show that the CP based algorithm suffers from less accurate distribution 
precision, following from the fact that the frequencies of property subset occurrence 
are calculated on small size solution samples. On the other hand, this algorithm 
achieves better performance on computationally simple problem instances. The LP 
based algorithm for SCSPD achieves the best tradeoff between the running time and 
the distribution precision error. Its precision is less accurate on small solution samples 
where the deviation from the expected zero precision value is large, but the precision 
improves as the sample size is increased. Finally, as can be seen experimentally, the 
LP based algorithm for MCSPD achieves almost zero precision error. This is due to 
the fact that the LP algorithm tends to find an almost integral solution for probabilities 
of feasible property subsets. Clearly, a fully integral solution is an exact and therefore 
the best possible solution to the problem of finding solution with zero precision error. 
However, as the experiments show, this algorithm requires a larger running time. We 
also observe that this algorithm is the only one of the three proposed algorithms that 
can solve the MCSPD version of CP with distribution constraints. In addition, an 
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important advantage of the LP based algorithms is that their performance is less sensi-
tive to the complexity of the problem instance, as the counting is done not in a CSP, 
like in the CP based algorithm, but by means of LP, eliminating the need for a com-
plicated CP search tuning. 

Table 1. Experimental results for the sparsely and densely constrained test cases 

 100 solutions 500 solutions 1000 solutions 
Test case Sparse Dense Sparse Dense Sparse Dense 
CP based algorithm 
for SCSPD 

0.001s 
0.150 

1.38s 
0.200 

0.015s 
0.150 

1.41s 
0.200 

0.016s 
0.150 

1.48s 
0.200 

LP based algorithm 
for SCSPD 

0.027s 
0.087 

0.14s 
0.150 

0.091s 
0.039 

0.26s 
0.083 

0.15s 
0.024 

0.44sec 
0.058 

LP based algorithm 
for MCSPD 

0.228s 
0.015 

1.39s 
0.008 

1.08s 
0 

6.80s 
0.006 

2.19s 
0.001 

13.40s 
0 

7   Conclusion 

In this paper we addressed the novel concept of CP with distribution constraints moti-
vated by CP applications arising in the functional test generation field. We presented 
the formal framework for this concept, including definitions of a distribution con-
straint and of two different versions of the problem of CP with distribution con-
straints, refining the previous attempts to formalize this problem. The new framework 
provides a well defined measure for the quality of distribution constraint satisfaction, 
providing a sound basis for comparison of different algorithms for this problem. We 
presented several algorithms to solve each of the problem versions, applying both 
deterministic and probabilistic approaches to distribution constraint satisfaction. The 
algorithms applying the deterministic approach provide a controllable tradeoff  
between the quality of distribution and the running time, ranging from an optimal 
distribution quality algorithm with high running time to a good approximation of the 
required distribution with a better running time. The algorithms applying the probabil-
istic approach achieve the optimal expected value of distribution quality measure. The 
proposed framework and solution methods extend the capabilities of automated func-
tional test generation tools and address important requirements in the validation  
domain. 
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Abstract. Constraints have become a central feature of advanced
simulation-based verification. Effective debugging of constraints is an
ongoing challenge. In this paper we present GenDebugger - an innova-
tive GUI-based tool for debugging constraints. GenDebugger shows how
a set of constraints is solved in a step by step flow, allowing the user
to easily pick out steps that are key to the buggy behavior. It is unique
in that it is designed for dealing with various types of constraint-related
problems, not only constraint-conflicts or performance issues. GenDe-
bugger utilizes principles from the explanation-based debug paradigm
[1], in that it displays information justifying each step of the solution. A
unique contribution is that it enables the user to easily combine separate
explanations of individual steps into a comprehensive full explanation
of the constraint-solver’s behavior. GenDebugger was lately released for
full production, after an extensive process of evaluation with early ac-
cess users. Our own experience and our users feedback indicate that
GenDebugger provides highly valuable help in resolving problems found
in constraints.

Keywords: Constrained-Random Verification, Constraint Debugging.

1 Introduction

Constrained Random generation of stimuli is a technique widely used in advanced
simulation-based verification. To verify a Device Under Test (DUT) test scenar-
ios are generated randomly but nevertheless must comply with constraints set
by the verification engineer. This technique is supported by various verification-
oriented languages such as e and System Verilog. Coding errors in constraints
are revealed in several forms, such as unexpected values assigned to variables,
unexpected distribution of values across a set of simulations, or failure to find a
solution due to conflicting constraints. Bad runtime and memory consumption
of constraint solving activity is also a common problem.

Debugging of constraints poses a considerable challenge (see [3], for example)
because constraints reflect complex relationships between variables, and might
depend on complicated conditions. What is more, regular debugging tools such
as source-line debuggers, with which most software engineers are familiar, are
ill-suited for debugging constraints. The reason is that source-line debuggers are
normally sequential, showing and controlling the line-by-line imperative flow of
user code. Constraints, in contrast, are declarative entities, analyzed and solved
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by a constraint solver built within the verification software. Because of this
the processes governing constraint-solving are not visible to the user and this
renders basic concepts of the common debugger paradigm, such as breakpoints
and single-stepping, useless.

One approach to constraint debugging is to remove or add constraints until
the generated stimuli is satisfactory. This is not necessarily a viable solution,
given that it doesn’t explain the problem with the original, preferred set of
constraints. A second approach is to have the solver print the constraints directly
involved in a constraint conflict, but this isn’t appropriate for other types of
problems. Even for constraint conflicts, it provides very limited help when a
complex set of constraints is involved. The human mind can only deal with a
limited amount of information at once. Another common debugging method is
to trace the constraint solver’s activity [2] to a file or the screen, but again -
the multitude of static information a user must deal with makes this a very
limited solution. A relatively new and promising direction is explanation-based
debugging, where a debugger displays information justifying decisions of the
constraint solver [1].

2 GenDebugger - Explanation-Based Debugging

In this paper we describe GenDebugger, the generation debugger of IntelliGen,
the new generation engine of the testbench automation tool Specman. GenDe-
bugger depicts the constraint-solving process as a sequence of steps, each reduc-
ing the domain of one or more variables, until each variable has a single value
that complies with the constraints. Several types of steps are shown, including
domain reductions based on constraints, value assignments, backtracking, input
sampling, and more.

GenDebugger shows each step in a detailed, interactive view. The variables
and constraints involved in the step are displayed, so that it can be clearly
seen which variables were reduced and which constraints were involved. Because
solving steps typically reduce the domains of variables, the post-step domains are
displayed together with the pre-step domains, so that the nature of the change
in a variable’s domain is evident.

GenDebugger is interactive in that any variable or constraint can be selected
and queried. A dedicated panel shows various pieces of information such as the
type, path, or source of a selected variable, or the source and declaring class of
a selected constraint. A specially important piece of information for a variable
is its list of steps (see section 2.2).

2.1 GenDebugger and Explanations

GenDebugger explains solving-steps. That is, it displays information justifying
the step, usually a subset of constraints and the domains of related variables.
For example, a reduction of the domains of the unsigned integers x and y to
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Fig. 1. Explaining a Reduction

[1..9] and [0..8] respectively, is justified by the constraints x<10 and y<x. After
assigning 5 to y, a later step further reducing x’s domain to [6..9] is explained
by the constraint y<x together with the value assigned to y.

Naturally, a solving step is easier to explain when it involves only a few bits
of information. Because of this, when showing a solution to a large set of con-
straints, GenDebugger breaks the solution into several smaller steps, each much
more explainable than the entire process as a whole. See figure 1 to see how
GenDebugger explains a single reduction.

2.2 Full Explanations

It is common that some of the elements of a step’s explanation are themselves
solving steps, performed earlier in the solving process. For example, a reduction
on z to [0..4], explained by the constraint z<x-1 coupled with x’s domain: [6..9],
raises the question: why was the domain of x [6..9] in the first place? The expla-
nation is not complete without understanding the earlier reduction on x setting
it’s domain to [6..9].

GenDebugger is designed to enable the user to easily get a full explanation for
a step. It does this by providing easy access to other, potentially relevant, steps.
When any variable involved in the current step is selected, all steps affecting this
variable are listed (see figure 2). A simple double-click displays the explanation
for this second step. In this way the user combines explanations of several related
steps into a full and comprehensive explanation. To continue our example, when
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viewing the reduction on z, selecting x lists all steps performed on x, including the
reduction to [6..9]. Double-clicking on this earlier reduction, causes GenDebugger
to display its explanation. The combination of these two explanations together
form the full explanation for the reduction of z to [0..4].

Fig. 2. All Steps on Variable a

3 Debugging Various Constraint-Related Problems

3.1 Understanding a Constraint Conflict

A constraint conflict is depicted by GenDebugger as a failed attempt to reduce
variable domains due to contradicting constraints. When faced with a constraint
conflict, the user sets a breakpoint telling GenDebugger to open when the conflict
occurs (e.g., break on gen error). Then, when opened, GenDebugger automat-
ically displays the failing step’s explanation. The explanation can be explored
further to form a full explanation, as described above in 2.2.

3.2 Understanding Value Assignments

Sometimes a variable is assigned a value that seems to the user unreasonable. In
this case the user can set a second type of breakpoint telling GenDebugger to
open when this variable’s value is generated (e.g. break on gen field packet.data).
It then opens to show how the variable is generated. Selecting the assignment-
step from the list of steps on the variable, the user gets the required explanation.
This can be continued to other, related steps until a full explanation of the
unexpected assignment is formed.

Another way to have GenDebugger display the assignment to a variable, after
it occurred, is via a simple command (e.g. show gen x). If information on the
generation of the variable is accessible at that time, GenDebugger opens and
automatically displays the explanation for the assignment.
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3.3 Understanding Distribution

Distribution issues arise when, across many tests, the entire range of values
generated for a variable, or the probability of certain values, is unexpected.
To debug this type of issue, the user can utilize the methods described in the
previous section 3.2. The user explores what determined the value assigned to
the variable in a specific test. This exploration should reveal the constraints
blocking, or restricting the probability of, some values from being assigned.

3.4 Understanding Performance

When the system seems stuck on a constraint-solving process, the user can break
the test and open GenDebugger. GenDebugger opens on the solving step cur-
rently performed by the solver, and the user can also easily see all the steps
preceding it. This is likely to reveal what is requiring so much solving activity,
and why.

A common reason for performance issues is numerous backtracking. When this
occurs, GenDebugger shows many backtrack steps in its list of solving steps. The
explanation of a backtrack step is a bit different. It is made of the entire sequence
of steps that were cancelled by the backtrack, and that terminated in a failure.
GenDebugger shows the cancelled track of steps, allowing the user to understand
why it ended at a dead end.

4 GenDebugger Experience

GenDebugger is the culmination of more than 10 years of experience in de-
bugging constraint-solving issues. It was designed based on user feedback, with
various types of verification needs. GenDebugger was lately released for full
production after an extensive process of evaluation and validation with early
access customers. The overall reaction to GenDebugger is no less than enthu-
siastic. According to our users, there is no comparison between GenDebugger
and the earlier constraint-debugging solutions. We feel this is a promising av-
enue for significantly reducing the effort of creating constraint-based verification
environments.
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Abstract. In this paper we present a technique for comparing multiple tests and 
workloads. We show how to automatically determine what each test does 
uniquely and how to present the information as succinctly as possible. This 
technology has a number of uses, including in understanding the contribution of 
tests in regression buckets, especially of legacy systems, and in evaluating what 
is missing in tests compared to customer usage. We also show that the technol-
ogy used in the analysis is superior to previous technology in that it can auto-
matically find holes that were previously only found manually.  

Keywords: functional coverage, testing, regression. 

1   Introduction 

In software testing code coverage is a commonly known software testing technique 
[5].  Code coverage records the locations in the code that have been traversed during 
test execution.  Many coverage tools can be used to guide the test effort [12] as well 
as to select tests [7] and prioritize them [6].  Code coverage, by its nature, is syntactic 
as it requires no specific understanding of the application.  This is one of its strengths, 
as it is simple to apply and its feedback is easy to understand.  

Functional coverage [8] [11] is a coverage methodology for evaluating the com-
pleteness of testing against application-specific coverage models. Once it became 
evident [8] that application-specific models still have many processes that can be 
automated, a number of functional coverage tools were created to handle all the 
common requirements. These tools include Meteor [9], Specman Elite [14], and Fo-
CuS [15].  While functional coverage is in use in many companies [4] [13] and pro-
jects, it is traditionally more common to the world of hardware verification than to 
software testing.  

From the outset, functional coverage tool development has concentrated on explor-
ing data in a variety of ways [4], including the ability to view projections of subsets of 
the attributes or values. Another useful view is hole analysis, which automatically 
discovers large sets of uncovered tasks that have something in common [9]. 

The ability to explore data easily in a variety of ways is the main reason functional 
coverage tools are preferred to model-specific tools.  It is very easy to conceive of a 
way to view the data and then write a script that processes and presents the data in this 
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specific way.  However, when you collect the data, you do not know exactly how you 
will want to look at it. Furthermore, the process of exploring the data is interactive in 
nature.  We estimate that during half an hour of exploring the data, we may examine 
more than ten different views.  If we had to write a script for each view, the cost 
would quickly become prohibitive. 

In Evaluating Workloads Using Comparative Functional Coverage [1] we showed 
how to enhance the exploration capability of functional coverage tools to evaluate the 
difference between workloads used to emulate customer activity and actual workloads 
collected from the customer.  We started the exploration by working concurrently on 
two equivalent models with two separate sets of input data: one each from the cus-
tomer and the client.  While it is easy to manipulate each set of data, comparing them 
is not trivial.  For example, it is easy to see how many tests for each model have been 
executed by the customer or in test, but it is not easy to see which of them comprises a 
larger portion of the relevant workload. For this reason we enhanced FoCuS, a func-
tional coverage tool with the ability to look simultaneously at multiple data sets.  
Once this capability was in place we found many additional applications for the view.  
For example, presenting the code coverage of a test as one workload and changes 
from the version control as the second workload, and then sorting  this view such that 
the tasks with the most changes compared to coverage are on top enables one to see 
code that was changed but is untested. Such untested code is at high risk of containing 
errors. 

In this paper we show how to expand the technique to compare multiple coverage 
sources to one.   In the comparison we utilize a new code coverage view for large 
applications called substring hole analysis [2], [3].  For code coverage the view is 
used for improving coverage and to define new tests cases. Substring hole analysis 
capitalizes on the fact that functions are given meaningful names; for example, 
"OpenDwarfSlowWithoutException".   A substring hole is a string that is common to 
many functions, most of which have not been covered.  For example, in [3] we show 
analysis of an application with more then one hundred thousand functions.  One of the 
substring holes is marked as Dwarf 315 315, meaning that there are 315 functions 
containing the substring "Dwarf", none of which have been covered. 

In this paper we show how comparing multiple coverage sources is useful for a 
number of applications.  We explain first what it means to compare a number of cov-
erage sources and how it is done and then show its usefulness on a number of applica-
tions.  We also examine complicated cases where the straightforward approach fails, 
explaining how to deal with them.  Our assumption is that, like the work on compara-
tive functional coverage, once this view becomes available, additional uses will be 
found for it. 

2   Algorithms and Tooling 

This section presents the algorithms, tools, and methodology. Some of the issues we 
discuss are: 

• Methods for comparing many traces  
• An automatic normalization algorithm for traces that contain data from tests 

with different running times 
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• A method for naming the distinguishing features of each trace 
• Different comparison modes, including grouping the traces 

2.1   Fundamentals and Definitions 

Applying coverage usually entails choosing a coverage model, collecting traces, and 
comparing the traces with the model.  The coverage model is composed of a list of 
tasks, where each task is a binary function on a test that is true if the task has been 
performed by the test (for example, a line was executed). A task list is maintained, 
indicating for each task how many times it has been covered. Figure 1 shows an ex-
ample of a coverage report.  In this report, each task has five attributes: APIname, 
ServiceName, Duration, NumOther, and SameSrvcOnSystem.  In the table, the high-
lighted line represents a task with a value of ATRCMIT for the APIname attribute, 
Commit_UR for the ServiceName attribute, medium for the Duration attribute, low 
for NumOther attribute, and 1 for the SameSrvcOnSystem attribute, which was cov-
ered 17228 times.  This report was produced using the FoCuS tool. 

 

Fig. 1. Coverage results for a single data source 

2.2   Comparing Raw Data from Multiple Data Sources 

When comparing multiple data sources (collecting traces) as shown in Figure 2 (in 
this case, six data sources are used), the coverage tasks list has measurements from 
each source. The coverage of trace [n] data is under the [n] column. In the view 
shown in the figure, we sort the data so that tasks with large changes between the 
sources are on top.  Line 73 shows a task covered by only one data source. The figure 
is part of a prototype program that implements the multi-trace compare feature, which 
will soon be added to the FoCuS tool. The results from the data sources are sorted by 
ratio between one data source against all the others.  Line 73 shows a task whose trace 
#2 has better coverage than all the other traces. The task is represented by a string in 
the right column.  The string was constructed by concatenating the values of the five 
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model attributes. Line 72 shows the task in which Trace #1 has the best coverage, 
while lines 73 to 78 show six tasks for which Trace #2 has better coverage than other 
traces. 

 

Fig. 2. Ratio comparison between six traces on a functional coverage model 

Sorting the tasks using the "changed on top" view first displays tasks with a high 
absolute value of change between the sources. This sorting capability enables the user 
to find out where one workload focuses and another lacks focus. An example of this 
view, which is useful in the exploration stage, is shown in Figure 3.  One can see that 
the task in Line 72, which is taken from trace #5, has the highest absolute value 
change compared to all other tasks. 

 

Fig. 3. Changed On Top comparison on a functional coverage model 

In each of the above figures the trace having the best coverage for a particular task 
is marked with “-“ characters around the count.  When deciding which trace is the 
strongest for a task, we use a hidden parameter that defines how much the coverage 
count of a trace needs to be larger than the other traces (in this case, the value of the 
hidden parameter was chosen to be 4x which means that the ratio between highest 
count value against the next highest value in each row should be greater then 4), tak-
ing the normalization into account, for it to be considered a strong area.  For example, 
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the tuple "0 0 0 2055 746 101" has no strong value because 2055, which is the high-
est value, is not larger by the factor (less then 4x) we chose when compared to the 
next highest value of 746. 

2.3   Single and Grouping Comparison 

The traces to compare can be collected from various sources such as testing systems, 
loads that try to emulate customers, or real customers.  Traces from different sources 
often tend to have very different coverage.  Conversely, multiple traces originating 
from the same system often tend to have similar coverage.  As our naming technique 
(for details, see 2.3.1.2   Naming Report section) looks for areas in which the trace 
has better coverage than all others, comparing between similar traces can result with 
no named area for the trace. For example, if we take the same trace twice, then the 
two copies, while they may be stronger than the rest of the traces in many places, will 
be unique in none.  To alleviate the problem arising from multiple traces from the 
same source, we introduce a grouping comparison method. 

Our tool has two multi-compare comparison methods: Single or Grouping. 

2.3.1   Single Comparison 
In a single comparison, all traces are compared, task by task.  The raw data compari-
son report discussed above in 2.2   Comparing raw data from multiple data sources is 
common to both single and group reports. However, the Summary and Naming Re-
port sections are different for each report type. The following sections describe their 
contents in the single comparison mode. 

2.3.1.1   Summary Sections. Figure 4 shows the single comparison report's summary 
sections, which contain statistics and other high-level useful information. First, the 
total coverage and coverage percentage is displayed.  Then, information about each 
trace is displayed.  For each trace, the following details are reported: 

• Trace number and name; for example, the first trace's name is 
IMSA_PMR02978. 

• Normalization divisor, used for normalizing the coverage count of all 
tasks belonging to the trace.  We need to normalize due to the different 
running times of each trace. The normalization divisor is automatically 
calculated from the coverage counts of all traces.  For example, the com-
pared tasks' count values for IMSA_PMR02978 trace in the report are the 
original values divided by 5.44 which means that running time of that 
trace was estimated to be 5.44 times larger then trace #6.  Determining a 
normalization algorithm that will result in good naming for the traces is 
difficult.  One can think of good reasons to have no normalization factor, 
or to use the time as the normalization factor, amongst other options.  
Having experimented with many options we chose the one that is com-
puted by the method described in 2.4 Naming algorithm.  

• Total and percentage coverage that are measured for the trace.  For exam-
ple, the measured coverage for IMSA_PMR02978 trace is 7 and the per-
centage value is 0.01. 
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• Strength count is the number of tasks in a particular trace that have better 
coverage than all the other traces.  For example, the trace named 
IMSA_PMR02978 has one task for which its coverage is higher while 
IMSA_PMR02996 has six tasks with higher coverage values. 

• Uniqueness count is a special case of strength count.  It counts the number 
of tasks for which the test is the only test that covers this task.  For exam-
ple, the task "0 0 0 0 0- 5 - ATREND-End_Transaction-short-0-0"   is 
a unique tuple. Its coverage value of the sixth trace is 5 while none of the 
other traces cover this task.  

• #Strength-areas counts areas of tasks in a trace that have better coverage 
than other traces and have something in common.  Names are given to 
those areas as be seen in the next section. 

 

Fig. 4. Single report comparison summay 

2.3.1.2   Naming Report Section. Figure 5 shows an example of our naming method. It 
displays the names of the strong areas of each trace. In Figure 4 we can see that 
IMSA_PMR02978 has zero strength areas, IMSA_PMR02996 has one, etc. We use 
those strength areas for naming the traces.  These names represent strong 
characteristics of the traces. For example, IMSB_PMR02996 has one name: 
"Log_Name-long-0-0 (2) (U2,S0)”, while IMSA_PMR02978 has no names and  
IMSB_PMR02997 has seven. A name has three parts: a string which is the common 
substring of the strong tasks, a number between round parentheses that is the number 
of strong tasks in this area, and another set of round parentheses that contains the 'U' 
character, the number of unique tasks, the character 'S', and the number of stronger 
tasks in this name. A stronger task is a task with a particular trace that has better 
coverage than all the other traces, and at least one of its other trace’s coverage is not 0.  

Although not shown below it is possible to ask for a detailed report that displays 
the tasks that contribute to each name. 
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Fig. 5. Strength comparison report – naming traces 

2.3.2   Group Comparison 
In section 2.2  Comparing raw data from multiple data sources we described the role of 
the hidden parameter that defines how much the coverage count of a trace needs to be 
larger than the other traces. In a group comparison, the traces are allocated into groups 
and then the each trace is compared to its group's traces without using the above hidden 
parameter and to other traces by using it. The Summary and Naming Report sections 
are different for each report type. The following two sections describe their contents in 
the group comparison mode. The six traces from previous sections were grouped  
into two groups; the tests IMSA_PMR02978(1), IMSA_PMR02996(2), and 
IMSA_PMR02997(3) were allocated to the first group, and IMSB_PMR02978(4), 
IMSB_PMR02996(5), and IMSB_PMR02997(6) to the second. 

2.3.2.1   Summary Sections. Figure 6 shows the group comparison report's summary 
sections, which contain statistics and other high-level useful information.  First, the 
total coverage and coverage percentage is displayed.  Then, information about each 
group is displayed.  For each group, the following details are reported: 

• Group number and name. The group's name is automatically built from 
the test names that are part of it. For example the first group's name is 
IMSA_PMR02978(1),IMSA_PMR02996(2),IMSA_PMR02997(3). 

• Total and percentage coverage that were measured for the group.  The 
group's coverage equals the union of all its trace tasks.  For example, the 
measured coverage for the first group is 15 and the percentage value is 
0.03. 

• Strength count is the number of tasks in a particular group that have better 
coverage than all the other groups.  For example, the first group has 13 
tasks and the second group has 50 tasks with higher coverage values. 

• Uniqueness count is a special case of strength count.  It counts the number 
of tasks for which this is the only group that covers this task.  For example, 
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       the following task: " - 529 -  415  254  0  0  0    ATRCMIT- Com-
mit_UR-medium-0-0" is a unique tuple, because the first three counts are 
for group 1 and the last three counts are for group1. The coverage value of 
the first group is 520 while none of the other groups cover this task.  

• #Strength-areas counts areas of tasks in a group that have better coverage 
than other groups and have something in common.  Names are given to 
those areas as be seen in the next section. 

 

Fig. 6. Group report comparison summary 

2.3.2.2   Naming Report Section. Figure 7 displays the names of the strong areas of 
each group. Figure 6 show that the first group has two strength areas, while the 
second group has six. We use these strength areas for naming the groups.  The names 
represent strong characteristics of the groups.  The naming method and the meaning 
of each part of the name are similar to the single report naming, as described in 
2.3.1.2 Naming Report section.  

It is possible to ask for a detailed report displaying the tasks that contribute to each 
name. 

 

Fig. 7. Strength comparison report – naming of groups 
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2.4   Naming Algorithm 

The naming algorithm is an automatic approach that gives meaningful names to each 
test or the customer for whom the name is special.  For each test’s strength area, Hole 
Analysis [9] finds descriptive names.  The naming algorithm enables us to depict the 
tests' strength using only a few names, even when we have a huge amount of coverage 
data to process. 

The naming algorithm has five major stages: 

1. Builds tasks from all the traces. Each task contains a name and a tuple with 
normalized coverage values of each trace. For each trace there is a normaliza-
tion factor which is a function of its total coverage and number of tasks that 
have coverage. The normalized coverage value is a result of original coverage 
value divided by the normalization factor. In case that running times of input 
traces are known, the normalization factor is computed as the ratio between 
lowest running time and each other running times.  

2. Compares the normalized coverage values of each trace against all the other 
traces. 

3. Creates, for each trace, a list of all the tasks for which it is strong. 
4. Creates a new set of  traces (one trace for each original trace) with new cover-

age counts, as follows: 
a. Sets the coverage values of all strong tasks to 0, which means non-

covered value for the substring hole in step 5. 
b. Sets the coverage values of all the other tasks to 1, which means covered 

value for the substring hole in step 5. 
5. Analyses substring holes [3] on the new traces.  The analysis results identify 

areas of strength of the selected trace, compared to all other traces.  It is possi-
ble to use other holes generating algorithms [4] when the model is a functional 
coverage model. 

 
The result for each trace is a set of hole names that represent the areas in which this 
trace is better than the others.  This is useful when trying to understand if this trace 
should be used. 

3   Initial Experiences 

Our first example uses sample data from Evaluating Workloads Using Comparative 
Functional Coverage [1].  A model was constructed to instrument the module calls in 
a data base access software component of the z/OS operating system.  Upon detecting 
a module entry, the attributes for the model measure whether the entered module is 
already running on the same thread or another thread in the system, and whether any 
other modules are already running on the same thread or other threads. 

Two test runs were compared, one from the customer and one from the test.  The 
original analysis observed that the customer ran with significantly lower levels of 
concurrency than Systest.  This is illustrated in Figure 8 below, taken from the earlier 
paper. For few tasks, a high count for no other module running on other thread 
(OtherOnSystem = 0) correlates to low concurrency. 
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Fig. 8. Two-trace comparison showing concurrency 

In contrast Figure 9 demonstrates a part of the multi-comparative functional analy-
sis for the same two workloads.  A similar conclusion regarding concurrency is identi-
fied in the highlighted line “-0-1-0-0 (25)”, meaning that MeOnSystem=0, 
OtherOnThread=1, OtherOnSystem=0, MeNextOnThread=0 was observed 25 times.  
Of these values OtherOnSystem=0 is an indicator of low concurrency in the 
SingleModuleCustomer trace. Interestingly, the new analysis technique identified this 
automatically, without the need for user-generated model restrictions. 

 

 

Fig. 9. Multi-trace comparison showing concurrency 

We reach an additional conclusion in the “-RRDS- (4)” line.  For clarity, the report 
information for this strength area is expanded in Figure 10. It identifies two modules 
that are used with more frequency by the customer workload than by the test workload. 
 

 Tests by Strings strength  
  
   1-SingleModulelTest_____   
        -0-1-0-1-0 (4)  
        IDAVRBFM-23-Buffer-Manager-0-1 (3)  
        IDAVRBFM-23-Buffer-Manager-1-1 (2)  
   2-SingleModuleCustomer   
        -0-1-0-0 (25)  
        -path-0-0- (6)  
        IDAVRRU0-42-path-upgrade-0-0- (4)  
        -RRDS- (4)  
        IDAVRPS1-68-PC_SS_Common_Rtn-0 (3)  
        IDAVRTX1-19-Term-Exit-0-0-0-1- (2)  
        0-41-path-access-0-0-0-0- (2)  
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A closer inspection of the entries for these modules reveals that they are used by the 
customer 15 to 30 times more frequently than the test.  This significant conclusion was 
not previously identified when using simple comparative function coverage. 

 

 

Fig. 10. Detail of "-RRDS-" strength 

The second example compares several test runs from SysTest systems.  In the 
traces resource manager transactions originated on the frontend system and were 
processed by the backend system.  Traces were collected in matching sets, one from 
each system. Thus, both sides of any transactions were recorded in each set of match-
ing traces. Three such sets of traces were collected for a total of six individual traces. 

If each of the three measured runs was of the same workload, we would expect to 
see no strength areas identified because the tool would find that all the traces match for 
the frontend systems. Likewise, all the traces for the backend systems would match. 
However, the Summary section for the analysis in Figure 11 shows that several 
strength areas were identified. In particular, SYSA_TRACE2 and SYSB_TRACE3 
indicate something unusual occurred in these runs, as evidenced by the high strength 
and uniqueness counts for each. 

 

 

Fig. 11. Six-trace compare summary 

Summary  
Total tasks  52560   Coverage=     65   Percentage= 0.12  
 
 Sets  
  1-SYSA_TRACE1   
    Normaliztion-Divisor=5.44 Coverage=   7 Percentage=0.01  
    Strength-count=   1  Uniqueness-count=   0  #Strength-areas=   0 
  2-SYSA_TRACE2   
    Normaliztion-Divisor=1.72 Coverage=  14 Percentage=0.03  
    Strength-count=   6  Uniqueness-count=   6  #Strength-areas=   1 
  3-SYSA_TRACE3   
    Normaliztion-Divisor=4.32 Coverage=   7 Percentage=0.01  
    Strength-count=   0  Uniqueness-count=   0  #Strength-areas=   0 
  4-SYSB_TRACE1   
    Normaliztion-Divisor=1.53 Coverage=  29 Percentage=0.06  
    Strength-count=   1  Uniqueness-count=   1  #Strength-areas=   0 
  5-SYSB_TRACE2   
   Normaliztion-Divisor=1.27 Coverage=  30 Percentage=0.06  
    Strength-count=   3  Uniqueness-count=   2  #Strength-areas=   1 
  6-SYSB_TRACE3   
    Normaliztion-Divisor=1.00 Coverage=  47 Percentage=0.09  

     Strength-count=  24  Uniqueness-count=  19  #Strength-areas=   7 

  -RRDS- (4)  
       IDAVRRQ0-55-RRDS-Put/Erase/IDALKADD-0-0-1-0-0  
       IDAVRRQ0-55-RRDS-Put/Erase/IDALKADD-0-0-1-1-0  
       IDAVRRR0-54-RRDS-processing-0-0-0-0-0  
       IDAVRRR0-54-RRDS-processing-0-0-0-1-0
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The Tests by Strings strength section in Figure 12 from the same report gives more 
detail about the strengths.  Both SYSA_TRACE2 and SYSB_TRACE2 call out func-
tions that contain “Log_Name” in the function name.  An inspection of the matching 
detailed report (not shown) does, in fact, show these two traces are the only ones that 
invoke the Retrieve_Log_Name and Set_Log_Name functions. However, Figure 12 
also shows a difference between the calls on these two systems. The calls on SYSA 
always run while other resource manager calls are in progress, but SYSB seems to run 
them when no other resource manager activity is occurring. 

We also see that SYSB_TRACE3 contains several strength areas that indicate 
something very different occurred on that system. A review of the associated problem 
report revealed that a resource manager restart occurred on that run that did not hap-
pen on the others.  This drove several functions related to that restart. 

 

 

Fig. 12. Six-trace strengths detail 

Grouping the same set of traces by the originating systems and the processing sys-
tems gives us a different perspective of the data. Assuming different sets of resource 
manager functions are used by the originating and processing systems, we would 
expect to see corresponding strengths on each group. Figure 13 bears this out. The 
ATRCMIT-Commit_UR function is used primarily on the frontend system. Likewise, 
ATREND-End_Transaction and ATRPDUE-Post_Deferred_UR_Exit functions are 
used primarily on the backend system. 

In addition to identifying functions used by one group or another, the report also 
makes some interesting observations.  Out of the 13 strength areas in group 1, six of 
them contain “-long-low-”.  This indicates that even though there are a low number of 
concurrent requests being processed, the request takes a “long” time to complete.  In 
group 2, “-high–” is observed in 23 of 50 strength areas, indicating a high number of 
concurrent requests. 

 

Tests by Strings strength  
  
   1-SYSA_TRACE1   
   2-SYSA_TRACE2   
        _Log_Name-long-low- (4) (U4,S0) 
   3-SYSA_TRACE3   
   4-SYSB_TRACE1   
   5-SYSB_TRACE2   
        _Log_Name-long-0-0 (2) (U2,S0) 
   6-SYSB_TRACE3   
        -medium-medium- (5) (U4,S1) 
        ATRSUSI*1 (5) (U3,S2) 
        ATREND-End_Transaction-medium- (4) (U3,S1) 
        -Express_UR_Interest-medium- (4) (U4,S0) 
        -Post_Deferred_UR_Exit-medium- (3) (U2,S1) 
        -short-low-1 (2) (U2,S0) 
        -long-high-0 (2) (U2,S0) 
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Fig. 13. Grouped comparison 

4   Conclusions 

Coverage is usually done on an aggregation of tests.  The most common use of cover-
age is to look at what is missing from the testing so far.  In previous work [1] we 
showed that comparative functional coverage is very useful.  The work then was in 
the context of comparing test to customer but the same technology was later applied 
to other contexts such as comparing what was covered by tests to what changed in the 
code. 

This paper extends the work to compare multiple sources.  We had two separate 
initial motivations. The first was to understand regression buckets, a set of tests to be 
executed after every code change to see if bugs creep in.  The problem is with the list 
of collected tests that need to be run when the code is modified, in that we no longer 
know why each test is there.  We would like an automated process that looks at all the 
tests and tells us, in a meaningful manner, what is special about each. The second 
motivation was to look at workloads collected from customers and tests, and to be 
able to tell where the tests need to be improved.  The problem is complicated by the 
fact that customer and test each have a number of workloads.  The initial algorithm 
can no longer be used as we need to divide the workloads into groups to learn how 
each group is special.  Looking at each workload by itself and aggregating the results 
will not work, as we explained. 

An interesting side effect is that the analysis used in the paper for aggregating in-
formation can automatically find things that previously required manual intervention.  

Summary  
Total tasks  52560   Coverage=     65   Percentage= 0.12  
 
 Groups  
 
1-[ SYSA_TRACE1(1),SYSA_TRACE2(2),SYSA_TRACE3(3)]   
  Coverage=15 Percentage=0.03 Strength-count=13  

  Uniqueness-count=11 #Strength-areas=2 
 
2-[ SYSB_TRACE1(4),SYSB_TRACE2(5),SYSB_TRACE3(6)]   
  Coverage=54 Percentage=0.10 Strength-count=50  

  Uniqueness-count=50 #Strength-areas=6 
 
 Groups by Strings strength  
  
   1-[ SYSA_TRACE1(1),SYSA_TRACE2(2),SYSA_TRACE3(3)]   
        -long-low- (6) (U6,S0) 
        ATRCMIT-Commit_UR- (5) (U5,S0) 
   2-[ SYSB_TRACE1(4),SYSB_TRACE2(5),SYSB_TRACE3(6)]   
        -high- (23) (U23,S0) 
        ATREND-End_Transaction- (13) (U13,S0) 
        ATRPDUE-Post_Deferred_UR_Exit- (10) (U10,S0) 
        -short-medium- (9) (U9,S0) 
        -medium-medium- (5) (U5,S0) 
        _Log_Name-long-0-0 (2) (U2,S0) 
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This was done by combining new code coverage techniques [2] [3] with functional 
coverage comparison techniques [1]. 

We have seen that the new reporting mechanisms are being used in ways we did 
not envision. For example,  recently, we have seen it used when comparing coverage 
results between multiple regression tests. It will be interesting to see what new appli-
cations will emerge that use the multi-source comparison report. 
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Abstract. A switched system is composed of components. The components do
not interact with one another. Rather, they all interact with the same environment,
which switches one of them on at each moment in time. In standard concurrency, a
component restricts the environment of the other components, thus the concurrent
system has fewer behaviors than its components. On the other hand, in a switched
system, a component suggests an alternative to the other components, thus the
switched system has richer behaviors than its components.

We study finite-state switched systems, where each of the underlying com-
ponents is a finite-state transducer. While the main challenge, namely compo-
sitionality, is similar in standard concurrent systems and in switched systems,
the problems and solutions are different. In the verification front, we suggest and
study an assume-guarantee paradigm for switched systems, and study formalisms
in which satisfaction of a specification in all components imply its satisfaction
in the switched system. In the synthesis front, we show that while composi-
tional synthesis and design are undecidable, the problem of synthesizing a switch-
ing rule with which a given switched system satisfies an LTL specification is
decidable.

1 Introduction

Concurrent systems are composed of components. Traditional concurrency theory con-
siders two types of concurrent composition operators: synchronous parallel compo-
sition and asynchronous parallel composition (a.k.a. interleaving). In the former the
components proceed simultaneously and in the latter their behaviors are interleaved. In
both, the components not only interact with the environment but also with one another.
There are, however, many natural settings in which components do not interact with one
another. Rather, at each moment in time one of the components determines the behavior
of the system, while the other components are ignored. Such a “switching semantics”
has been well-studied in the engineering community [12,13]. In this paper, we study it
for finite-state systems.

Given finite-state transducers T1, T2, . . . , Tn, all interacting with the same environ-
ment, we define the switched system T1 ⊕ T2 ⊕ · · · ⊕ Tn as a transducer that proceeds,
in each moment in time, according to one of the underlying transducers.1 There are two
natural definitions for the ⊕ operator. In a dormant composition, components that are
suspended are not active. That is, when a component is switched on again, it proceeds

� The work of this author was done as part of the Valazzi-Pikovsky Fellowship Fund.
1 A transducer is an input/output finite state machine, formally defined in Section 2. We use

transducers to model concurrent systems.
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from the state it has reached before its suspension. In an active setting, components that
are suspended continue their dynamics and have full observability of the environment,
but their output is ignored.2

As an example to a dormant composition, consider a window system; at each moment
in time, several windows are open and the location of the mouse determines which
window is active. The other windows are inactive. We would like the window system to
have the property that if a keyboard input occurs while the active window is in an “insert
password” subroutine, then the char * is displayed; and if the pressed key is “enter”, then
the last typed chars are matched against the correct password. Note that this property
should hold even if the window system switches among different window while the
user types. This example shows that, even in the dormant setting, the configuration of
components that are switched off should be maintained.

As an example for a switched system with an active composition, consider a network
of security cameras. The cameras are located in several locations, and each camera is
equipped with a software analyzing the picture. If a suspicious behavior is detected by
the software, the picture is frozen until another suspicious behavior is detected. At each
moment in time the output of one of the cameras is displayed at the guard’s control
screen. We would like to reason about the switched system and the various possible
switching rules for it. For example, under an arbitrary switching rule, the system does
not satisfy the property “all suspicious behaviors are detected,” and it does satisfy the
property “if suspicious behaviors are detected simultaneously in all locations, then at
least one of them is displayed on the control screen”. Also, under certain assumptions,
like the configuration of the building and the location of the cameras, it is possible to
synthesize a switching rule with which at least one frozen picture of a sequence of
suspicious behaviors is displayed. As another example to the active composition, con-
sider a channel TV. Obviously, broadcasting continues (but is ignored) for channels that
are switched off. Using the setting of switched systems, we can reason about proper-
ties of the entire system. For example, if we are an advertising agency, we would like
to synthesize an advertisement scheduling so that a viewer may not be able to avoid
advertisement no matter what his switching rule is.

Finite-state switched systems, as defined above, may also serve as an abstraction
of other, not necessarily finite-state, switched systems. Examples to switched systems
include software systems (c.f., internet communication protocols [7,22]), mechanical
systems (engines with gear transmission [8]), electrical circuits (power converters [6]),
biological systems (gene regulating networks [3]), and embedded systems combining
the above [2]. There has been extensive research in the control engineering community
on analysis of continuous switched systems whose evolution is described by means of
differential equations [12,13]. The study there focuses on properties such as stability.

2 Dormant switched systems may seem similar to co-routines. A co-routine specifies several
points in the code, referred to as yield points. When the scheduler is invoked, it passes control
to one of the co-routines that are at their yield point. Thus, as in dormant switched systems,
when a component is reinvoked it continues from the state it has reached when last invoked
(rather than from the initial state as in ordinary routines). Unlike switched systems, however,
the components do have control on when the scheduler is invoked. Anyway, the theoretical
aspects of co-routers have not been investigated.
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The theory of verification considers other type of properties, those expressible in tempo-
ral logic. Thus, considering abstraction of continuous systems enables reasoning about
other aspects of systems. For example, consider a cell phone that may move among dif-
ferent receiving zones. This is a popular example for continuous switched systems [14],
yet many properties of the system can be specified in temporal logic. For example, we
would like to check that whenever a network available signal appears, it stays valid as
long as the cell phone does not change its location, and that if a call was issued, then
eventually either the network is no longer available or the call gets to the target phone.
These properties should hold even if the cell phone changes its location. Such a setting
corresponds to the dormant composition – the operation of the cell phone in a particular
zone is a component (note that the cell phone operates differently in different zones),
and transiting among the zones correspond to switching.

The above examples highlight the Gestalt principle, which is accepted in the study
of continuous switched systems. According to this principle “the sum of the whole is
greater than its parts”. For example, a continuous switched system may be stable even
though its underlying components are not stable, and vice versa, a continuous switched
system may be unstable even though its underlying components are stable [13]. This is
in contrast with standard concurrency, where the concurrent system has fewer behav-
iors than its components. The fact that the composed system has fewer behavior than
its components has played a central role in compositional reasoning. As shown in [1],
both synchronous and asynchronous parallel compositions can be seen as intersection
of the enhanced language of its components. Further classes of parallel compositions
have been studied in [1]. They all, however, convey a notion of intersection between
languages. As we shall show, our dormant and active compositions convey a notion
of union rather than intersection. Thus, general ideas and patterns that are applica-
ble in the study of standard concurrency cannot be applied in the setting of switched
systems.3

As in standard concurrency, composing finite-state transducers via active or dormant
compositions involves an exponential blowup. Thus, the main challenge in reasoning
about finite-state switched systems is compositional reasoning, i.e., reducing reason-
ing about a concurrent system to reasoning about its individual components. While the
main challenge, namely compositionality, is similar in switched systems and standard
concurrent systems, the problems and solutions are different. We start by studying the
compositional model-checking problem for switched systems. As noted above, an algo-
rithm that constructs the switched system explicitly is possible. We show that the space
complexity of LTL model checking is polynomial in the size of the underlying compo-
nents, thus the exponential blow-up that the construction of an explicit switched system
involves cannot in general be avoided.

3 By letting the variables of the different components be disjoint, it is possible to model the
dormant and active compositions using known synchronous and asynchronous composition
operators. Such a modeling, however, is less clean, and hides the switching mechanism. In [15],
Mayer and Stockmeyer studied regular expressions extended with a shuffle operator on words,
which interleaves its operands. As we show later, the shuffle operator corresponds to a dormant
composition between closed systems. Our setting here is richer, as it considers open systems.
We also study different problems than those studied in [15].
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Note that since a component may be switched on forever, a required condition for a
switched system to satisfy a property is that all the underlying components satisfy it.
For some properties, this is also a sufficient condition, giving rise to a simple compo-
sitional model-checking procedure for them that avoids this blow-up. We characterize
such properties for the dormant composition by means of regular counting properties,
and conclude that, unfortunately, most interesting properties cannot enjoy this simple
procedure. We then describe an assume-guarantee paradigm for switched systems [16],
which enables us to reason about a switched system (with respect to all LTL specifi-
cations) by reasoning about its components, and often avoid this blow up. Formally, a
transducer T satisfies the assume-guarantee specification 〈ϕ, ψ〉, for LTL specifications
ϕ and ψ, and a composition operator ⊕, if for all transducers T ′, if T ⊕ T ′ satisfies
ϕ, then T ⊕ T ′ also satisfies ψ. We study the problem of checking assume-guarantee
specifications and show that it is PSPACE-complete. Unlike traditional concurrency,
the problem cannot be reduced to checking whether T satisfies ϕ → ψ [16]. Indeed,
the latter reduction depends on the fact that compositions that have T as a component
have fewer behaviors than T , which does not hold for switched systems. We show that
for switched systems checking whether T satisfies the assume-guarantee specification
〈ϕ, ψ〉 has the flavor of checking validity of ϕ → ψ. This is due to monotonicity that
does hold for switched systems as well.

The model-checking problem checks whether a given switched system satisfies a
specification under arbitrary switching. A more ambitious goal is synthesis – the auto-
matic construction of systems from specifications. In the switched setting, given LTL
specifications ϕ1, ϕ2, . . . , ϕn, and ψ, and a composition operator⊕, the compositional-
realizability problem is to decide whether there are transducers T1, T2, . . . , Tn such that
Ti satisfies ϕi for all 1 ≤ i ≤ n, and T1 ⊕ T2 ⊕ · · · ⊕ Tn satisfies ψ. On the nega-
tive side, we show that, as with standard concurrency [18] compositional-realizability
is undecidable. Sometimes, the details of the switching mechanism are known and may
be controlled. On the positive side, we study the problem of synthesizing a switching
rule according to which the switching system satisfies a specification. We show that the
problem has the same flavor as the standard LTL control problem, and is 2EXPTIME-
complete [17]. The solution to the problem, however, is different, as the synthesized
switched rule does not disable transitions, as is the case in usual control. Rather, it
chooses the component that is switched on.

2 Transducers and Switched Systems

Let I and O be finite sets of input and output signals. Let ΣI and ΣO denote the sets
2I and 2O, respectively. Let ΣIO denote the set ΣI ×ΣO. A transducer is an automaton
on finite words over the alphabet ΣI in which each state is associated with a letter in
the alphabet ΣO. A transducer does not have an acceptance condition. The intuition is
that the transducer models an open system that interacts with its environment. In each
moment in time the system reads a set i ∈ ΣI of input signals that are valid in this
moment, changes its state according to i, and outputs a set o ∈ ΣO of output signals
that are valid in the new state.
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Formally, a transducer is a tuple T = 〈ΣI, ΣO, S, θ, η, L〉, where S is a set of states,
θ : ΣI → S is an initialization function mapping the first input letter to an initial state,
η : S×ΣI → S is a transition function, and L : S → ΣO is a labeling function. The run
of T on an input sequence i0 · i1 · i2 · · · ∈ ΣI

ω is the sequence s0, s1, s2, . . . of states
for which s0 = θ(i0) and sj+1 = η(sj , ij+1) for all j ≥ 0. A computation w ∈ ΣIO

ω is
generated by T if w = (i0, o0) ·(i1, o1) ·(i2, o2) · · · is such that the run s0, s1, s2, . . . of
T on i0 · i1 · i2 · · · satisfies oj = L(sj) for all j ≥ 0. We refer to the set of computations
generated by T as the language of T and denote it L(T ). Note that T is responsive and
deterministic (that is, it suggests exactly one successor state for each input letter), and
thus T has a single run, generating a single computation, on each input sequence.

A switched system is composed of several components. Each component is an open
system that interacts with the environment. The components do not interact with each
other. Rather, they all interact with the environment, but only one component, cho-
sen by the environment, is switched on at a given moment. The other components are
suspended. We define two types of compositions between transducers. In a dormant
composition, components that are suspended are not active. That is, when a compo-
nent is switched on again, it proceeds from the state it has reached in the last time it
was switched on. In an active setting, components that are suspended continue their
dynamics and have full observability of the environment, but their output is ignored.

We formalize the two types of compositions below. For simplicity we assume sys-
tems with two components. The generalization to any finite number of components is
straightforward. Let T1 = 〈ΣI, ΣO, S1, θ1, η1, L1〉 and T2 = 〈ΣI, ΣO, S2, θ2, η2, L2〉 be
two transducers. We define the dormant and active switched systems with components
T1 and T2, denoted T1�� T2, and T1�� T2, respectively, as the transducer 〈ΣI’ , ΣO, S, θ,
η, L〉, defined as follows.

– ΣI’ = ΣI × {1, 2}. The {1, 2} component of an input letter indicates which com-
ponent will be switched on in the next cycle. We use 〈i,who〉 to refer to a letter in
ΣI’ where i ∈ ΣI and who ∈ {1, 2}. We can think of who as a fresh input signal
defined over the domain {1, 2}.

– S = S1 × S2 × {1, 2}. That is, a state in the switched system is composed of the
states of T1 and T2, and a flag indicating the component that is currently switched
on. This component generates the current output.

In the dormant composition, it is technically convenient to add to S1 and S2 a
special state sinit, for components that have never been activated.

– The initialization function θ is defined as follows.
�� In the dormant composition, the component that has never been switched on

waits in the special state sinit until it is switched on for the first time. Accord-
ingly, θ(〈i, 1〉) = 〈θ1(i), sinit, 1〉 and θ(〈i, 2〉) = 〈sinit, θ2(i), 2〉.

�� In an active composition, the component that is not switched on proceeds as if
it was active. Thus, θ(〈i,who〉) = 〈θ1(i), θ2(i),who〉.

– The transition function η is defined according to the type of composition as follows.
Consider a state 〈s1, s2, k〉 ∈ S and an input letter 〈i,who〉 ∈ ΣI’ .�� In a dormant composition, the component that is suspended stays in its current

state until it is switched on again. Thus,
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η(〈s1, s2, k〉, 〈i,who〉) =
[
〈η1(s1, i), s2,who〉 if who = 1
〈s1, η2(s2, i),who〉 if who = 2

In addition, for who ∈ {1, 2}, we have ηwho(sinit, i) = θwho(i).

�� In an active composition, the component that is suspended proceeds as if it was
active. Thus,

η(〈s1, s2, k〉, 〈i,who〉) = 〈η1(s1, i), η2(s2, i),who〉.

– For all states 〈s1, s2, k〉 ∈ S, we have L(〈s1, s2, k〉) = Lk(sk). That is, the output
of the current state is determined by the component that is switched on.

Note that the underlying transducers T1 and T2 do not have who in their set of input
signals. Thus, a component does not know whether it is switched on or not, and its
behavior does not depend on this information.

A specification to the switched-system is over the set I ∪ O of signals. By allow-
ing specifications to refer also to the signal who, we can easily restrict attention to
compositions in which assumptions on the switching can be made. Formally, since our
specification formalism is linear, we can replace a specification ψ over I ∪ O by the
specification ψfair → ψ, where ψfair is a formula over who describing assumptions
on the switching. We will elaborate on the extended setting for problems studied in the
following sections.

2.1 The Input-Output Language of a Switched System

Recall that the language L(T ) of a transducer T is defined over the alphabet ΣIO . Ac-
cordingly, L(T1 ⊕ T2) refers also to the input signal who , which we often want to
abstract. For a switched system, we also define the IO-language of T1 ⊕ T2, denoted
LIO(T1 ⊕ T2), which is obtained by projecting L(T1 ⊕ T2) on ΣIO (that is, ignoring the
{1, 2} component).

In Lemma 1 below we show that natural properties of the interleaving operator used
in standard concurrent composition apply also to switched systems. On the other hand,
it is not hard to see that unlike the case of interleaving, it is not necessarily the case that
LIO(T1 ⊕ T2) ⊆ L(T1) or LIO(T1 ⊕ T2) ⊆ L(T2).

Lemma 1. Let ⊕ ∈ {�� , �� } be a composition operator. For all transducers T1, T2,
and T3, the following hold.

– Commutativity: L(T1 ⊕ T2) = L(T2 ⊕ T1).
– Associativity: LIO((T1 ⊕ T2)⊕ T3) = LIO(T1 ⊕ (T2 ⊕ T3)).
– Monotonicity: If L(T1)⊆L(T2) then LIO(T1 ⊕ T3)⊆LIO(T2 ⊕ T3) for all T3.

It is not hard to see that, when restricted to their IO-languages, the dormant and active
compositions corresponds to the shuffle and merge of languages. For two words u, v ∈
Σω, let

– u�� v = {u1v1u2v2u3v3 · · · |ui, vi ∈ Σ∗, u = u1u2u3 · · · and v = v1v2v3 · · ·}
– u�� v = {u1v2u3v4 · · · |ui, vi ∈ Σ∗, |ui| = |vi|, u = u1u2u3 · · · and v = v1v2v3 · · ·}
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Thus, u�� v shuffles the letters of u and v by interleaving subwords of u and v, whereas
u�� v merges u and v by locating in each position i the i-th letter of either u or v. Note
that since the subwords vi and ui may be empty, we have that u and v are members of
u�� v, and similarly for u�� v. The standard concurrency operator, a.k.a interleaving, is
often confused with shuffle, though its operation is different. Indeed, as shown in [1],
since interleaving is applied to components that own variables, it corresponds to con-
junction of the enhanced language of its components [1]. This is not valid for the shuffle
operation. The shuffle and merge operators naturally extends to languages. In Figure 1,
we demonstrate the application of the shuffle and merge operators on some languages.

L1 L2 L1��L2 L1�� L2

0ω 1ω (0 + 1)ω (0 + 1)ω

0ω + 1ω 0ω + 1ω (0 + 1)ω (0 + 1)ω

(01)ω (10)ω ((01) + (10))ω (0 + 1)ω

(01)ω (01)ω 0((01) + (10))ω (01)ω

0ω 0∗10ω 0ω + 0∗10ω 0ω + 0∗10ω

0∗10ω 0∗10ω 0∗10ω + 0∗10∗10ω 0ω + 0∗10ω + 0∗10∗10ω

0∗1(0 + 1)ω 0∗1(0 + 1)ω 0∗1(0 + 1)ω (0 + 1)ω

0+1(0 + 1)ω 0+1(0 + 1)ω 0+1(0 + 1)ω 0(0 + 1)ω

(0 + 1)∗0ω (0 + 1)∗0ω (0 + 1)∗0ω (0 + 1)∗0ω

(0∗1)ω (0∗1)ω (0∗1)ω (0 + 1)ω

Fig. 1. Shuffle and merge of languages

The definition of the dormant and active composition immediately implies their cor-
respondence to the shuffle and merge operators. Formally, we have the following.

Lemma 2. Let T1 and T2 be two transducers. Then, LIO(T1�� T2) = LIO(T1)��LIO(T2)
and LIO(T1��T2) = LIO(T1)��LIO(T2).

In [15] it was shown that the shuffle operator provides succinctness in the sense that
there exist languages that can be described exponentially more succinctly by using
shuffle.4 We show that the results extends for dormant composition and holds for active
composition as well.

Theorem 1. Let n ∈ N. There are transducers T1, . . . , Tn such that the size of Ti

is O(1), and there is no transducer T with less than 2n−1 states such that L(T ) =
LIO(T1 ⊕ T2 ⊕ · · · ⊕ Tn).

The idea of the proof is to show that for any n ∈ N the set of all words over the alphabet
Γn = {1, . . . , n, #} in which each letter from {1, 2, . . . , n} appears at most once can be
expressed as an active or dormant compositions of n transducers. By [15], this language
cannot be generated by a transducer with less than 2n−1 states. The full proof is given
in the full version of the paper.

4 [15] refers to shuffle also as interleaving. Their definition, however, corresponds to shuffle as
defined above.
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3 Compositional Model Checking

The model-checking problem for a switched system is to decide, given transducers
T1, . . . , Tn, a composition operator ⊕ ∈ {�� , �� }, and an LTL formula ψ, whether
the switched system T1 ⊕ · · · ⊕ Tn satisfies ψ. Note that the formulation of the prob-
lem has an implicit universal quantification and the switched system has to satisfy the
specification under arbitrary switching. As with the interleaving operator, it is possi-
ble to construct T1 ⊕ · · · ⊕ Tn and model check it. As shown in Theorem 1, however,
such a construction may involve an exponential blow up. Assume-guarantee reasoning
avoids the blowup by inferring satisfaction of specifications in the composed system
from satisfaction of specifications in the underlying components [16].

Note that since a component may be switched on forever, a required condition for a
switched system to satisfy a property is that all the underlying components satisfy it. For
some properties, this is also a sufficient condition, giving rise to a simple compositional
model-checking procedure for them. In Section 5, we characterize such properties for
the active composition. Since most interesting properties do not satisfy the characteriza-
tion, we describe, in this section, an assume-guarantee paradigm for switched systems
for arbitrary properties. We first show that, as with interleaving, the blow-up that the
construction of T1 ⊕ · · · ⊕ Tn involves cannot be avoided. We do so by analyzing the
system-complexity of the model-checking problem, namely the complexity of the sys-
tem in terms of the size of the underlying components, assuming the specification is
fixed.

Theorem 2. The system complexity of the LTL model-checking problem of switched
systems is PSPACE-complete.

Remark 1. The key to the PSPACE-hardness result is the fact that even though the com-
ponents interact with the environment one at a time, they resume their interaction from
a state that has to be maintained (either the state they have reached in the last time they
were switched on, in a dormant composition, or the state they have reached in their silent
interaction, in an active composition). A substantially different type of composition is
one in which interaction is resumed from a fixed state. Then, it is possible to define
the state space of the switched systems as a union of the underlying state spaces, and
the system complexity of the LTL model-checking problem is NLOGSPACE complete.
Fixing a state from which dynamics is resumed is even more crucial in the infinite-state
setting. For example, reachability in o-minimal hybrid systems is decidable only when
each discrete control state has a single initial value for the continues elements [11].
Obviously, however, resuming the interaction from a fixed state is a much weaker com-
position mechanism.

Remark 2. In [15], Mayer and Stockmeyer studied the complexity of membership and
inequality for regular expressions extended with the shuffle operator, which as we dis-
cussed previously provides the dormant composition operator in the setting of closed
system. They showed that membership is NP-complete and inequality is EXPSPACE-
complete. Since equivalence is two-sided inclusion and since model checking amounts
to inclusion (the language of the system should be contained in the language of the
formula), their results imply that model checking of closed system restricted to finite
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words can be done in EXPSPACE. As Theorem 2 shows, the special case of the A ⊆ B
problem in which only B uses shuffle is easier, and is in PSPACE, even for the case of
open systems and infinite words. Indeed, the lower bound proof in [15] uses shuffle in
both sides.

We are now ready to describe an assume-guarantee paradigm for switched systems.

Definition 1. Let T be a transducer. Let ϕ1 and ϕ2 be temporal logic formulas. Let
⊕ ∈ {�� , �� } be a composition operator. We say that 〈ϕ1〉T ⊕〈ϕ2〉 if for every T ′, we
have that T ⊕ T ′ |= ϕ1 implies T ⊕ T ′ |= ϕ2. When ⊕ is clear from the context, we
simply write 〈ϕ1〉T 〈ϕ2〉.

Let T1 and T2 be two transducers, and let ϕ1, ϕ2, and ϕ3 be LTL formulas. Below are
two typical assume-guarantee rules, for a composition operator ⊕ ∈ {�� , �� } (as with
the known composition semantics, many more rules exist [16]).

〈ϕ1〉T1〈ϕ2〉
〈ϕ2〉T2〈ϕ3〉

〈ϕ1〉T1 ⊕ T2〈ϕ3〉

〈true〉T1〈ϕ1〉
〈true〉T2〈ϕ2〉

〈true〉T1 ⊕ T2〈ϕ1 ∧ ϕ2〉

Consider for example the left rule. To see that this rule is sound, note that, by definition,
for every T ′ we have (1) if T1 ⊕T ′ |= ϕ1 then T1 ⊕T ′ |= ϕ2 and (2) if T2 ⊕T ′ |= ϕ2

then T2 ⊕ T ′ |= ϕ3. In particular, for every T ′′ we have that (1) holds when T ′ is
T2⊕T ′′ and (2) holds when T ′ is T1⊕T ′′. Hence, for every T ′′, if T1⊕T2⊕T ′′ |= ϕ1

then T1 ⊕T2 ⊕T ′′ |= ϕ2 and if T1 ⊕T2 ⊕T ′′ |= ϕ2 then T1 ⊕T2 ⊕T ′′ |= ϕ3. Hence,
〈ϕ1〉T1 ⊕ T2〈ϕ3〉. Thus, the rule is sound. Similar reasoning applies for the right rule.

For the standard concurrent composition operator, interleaving, we have that
〈ϕ1〉T 〈ϕ2〉 iff T |= ϕ1 → ϕ2. Thus, it is possible to reduce checking of an assume-
guarantee specification to LTL model checking. This simple reduction relies on the fact
that the language of a concurrent system is contained in the languages of its underlying
components. This fact is not valid for switched systems. Instead, we should check the
ϕ1 → ϕ2 implication in a richer context:

Lemma 3. Let ϕ and ψ be LTL formulas, ⊕ ∈ {�� , �� }, and T a transducer. Then,
〈ϕ1〉T ⊕〈ϕ2〉 iff for every transducer T ′, we have T ⊕ T ′ |= ϕ1 → ϕ2.

In Lemma 1, we have shown that the operators �� and �� are monotone. Thus, check-
ing T ⊕ T ′ |= ϕ1 → ϕ2 for every T ′, can be reduced to checking ϕ1 → ϕ2 in
the composition of T with the most challenging T ′, namely one whose language is
ΣIO

ω. Note that the monotonicity property also implies that if L(T ′
1 ) = L(T ′

2 ), then
LIO(T ′

1 ⊕ T ) = LIO(T ′
2 ⊕ T ). Thus, any transducer whose language is ΣIO

ω will
do. Since a deterministic transducer generates a single computation for each input se-
quence, a transducer whose language is ΣIO

ω has to be nondeterministic. Let U be the
nondeterministic transducer that has |ΣO| states, all of them are initial, and for which
each state has transitions, on all input letter in ΣI , to all other states. It is easy to see
that L(U) = ΣIO

ω, and that the definitions of the composition operators in Section 2
extends to a composition with a nondeterministic transducer in a straightforward way.
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Lemma 4. Let ϕ be an LTL formula, ⊕ ∈ {�� , �� }, T be a transducer, and U a trans-
ducer such that L(U) = ΣIO

ω. Then T ⊕ U |= ϕ iff for every T ′ we have T ⊕ T ′ |= ϕ.

Corollary 1. Let ϕ, ψ be LTL formulas, ⊕ ∈ {�� , �� }, T be a transducer, and U a
transducer such that L(U) = ΣIO

ω. Then 〈ϕ〉T ⊕〈ψ〉 iff T ⊕ U |= ϕ→ ψ.

Theorem 3. Model checking assume-guarantee specifications of switched systems is
PSPACE-complete.

Proof. As discussed above, for every transducer T , LTL formulas ϕ1 and ϕ2, and a
composition operator⊕, we have that 〈ϕ1〉T 〈ϕ2〉 iff T ⊕ U |= ϕ1 → ϕ2. Membership
in PSPACE then follows from the fact that checking the latter requires space that is
polynomial in ϕ1 and ϕ2 and logarithmic in |T | · |ΣO|. The lower bound follows from
the PSPACE hardness of the validity problem for LTL. Indeed, ϕ is valid iff 〈true〉U〈ϕ〉.
Note that validity of LTL is PSPACE-hard already for a fixed number of propositions,
thus we can consider U to be of a fixed size, and by classifying all the propositions as
input signals, U is also deterministic. Thus, PSPACE-hardness holds already for deter-
ministic transducers. ��

For an arbitrary switching rule, the IO-language of the composition T ⊕ U is ΣIO , thus
T ⊕U |= ϕ1 → ϕ2 iff the implication ϕ1 → ϕ2 is valid. Things become more interest-
ing when assumptions on the switching are made. If, for example, T |= GFgrant1 →
GFgrant2, then 〈GFgrant1〉T 〈GFgrant2〉 in a fair switching in which all components
are switched on infinitely often even though GFgrant1 → GFgrant2 may not be valid.
As discussed in Section 2, such assumptions are easy to make by augmenting the spec-
ification by a precondition over who .

4 Synthesis of a Switching Rule

In this section we show how to synthesize a switching rule with which the composi-
tion of a given transducers satisfies a desired LTL property. Before we do so, we show
that the harder problems of compositional realizability and compositional design are
undecidable.

4.1 Undecidable Problems

Given LTL specifications ϕ1, ϕ2, . . . , ϕn, and ψ, and a composition operator ⊕, the
compositional-realizability problem is to decide whether there are transducers T1, T2,
. . . , Tn such that Ti satisfies ϕi for all 1 ≤ i ≤ n, and T1 ⊕ T2 ⊕ · · · ⊕ Tn satisfies
ψ. In [18] it was shown that compositional realizability is undecidable where ⊕ is the
synchronous parallel composition. It was further shown that if, however, the processes
admit a piplelined architecture the problem is decidable. In this section we show that
for switched systems, though the architecture is extremely simple, compositional real-
izability is undecidable for both dormant and active compositions.

The compositional-design problem is to decide whether every switched system T1⊕
T2 ⊕ · · · ⊕ Tn such that Ti satisfies ϕi for all 1 ≤ i ≤ n, also satisfies ψ. The problems
of compositional-realizability and compositional design are strongly connected. Indeed,
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in a setting in which the formulas ϕi are realizable, the answer to the compositional-
realizability problem with input ϕ1, . . . , ϕn, ψ is ‘yes’ iff there exist transducers T1, T2,
. . . , Tn such that Ti satisfies ϕi for all 1 ≤ i ≤ n, and T1 ⊕ T2 ⊕ · · · ⊕ Tn satis-
fies ψ. The latter holds iff the answer to the compositional-design problem with input
ϕ1, . . . , ϕn,¬ψ is ‘no’.

Theorem 4. The compositional realizability and design problems are undecidable.

By the above, it suffices to show that compositional-realizability problem is undecid-
able. The problem of compositional-realizability for standard concurrency was shown
to be undecidable by Pnueli and Rosner in [18]. The key to their undecidability proof is
an architecture of two processes that do not communicate with one another. Such lack
of communication exists also in our setting, and enables an adoption of their proof with
some minor adjustments.

4.2 Synthesis of a Switching Rule

Recall that the model-checking problem checks whether a switched system satisfies a
specification under arbitrary switching or a switching that satisfies some assumption.
Sometimes the details of the switching mechanism are known and may be controlled.
In this section we study the problem of deciding, given transducers T1, . . . , Tn and
a specification ϕ, whether there is a switching rule according to which the switched
system T1 ⊕ · · · ⊕ Tn satisfies ϕ, and the problem of synthesizing such a rule in case
the answer is positive.5

We model a switching rule by a transducer S with input alphabet ΣI and output al-
phabet {1, 2}. Consider transducers T1, T2, . . . , Tn, a composition operator
⊕ ∈ {�� , �� }, and a switching rule S. The switched system T1 ⊕ T2 ⊕ · · · ⊕ Tn

with switching rule S has input in ΣI (rather than in ΣI × {1, 2}) and the compo-
nent that is switched on after reading an input sequence w ∈ ΣI

∗ is determined by the
output of the state of S after reading w. Formally, let T1 = 〈ΣI, ΣO, S1, θ1, η1, L1〉,
T2 = 〈ΣI, ΣO, S2, θ2, η2, L2〉, and S = 〈ΣI, {1, 2}, S, θ, η, L〉. Then, the switched sys-
tem with components T1 and T2, and switching rule S, is the transducer 〈ΣI, ΣO, S′,
θ′, η′, L′〉, defined as follows:

– S′ = S1 × S2 × {1, 2} × S. Intuitively, the switched system is identical to the
one without the switching rule, only that the who element is determined by the
switching rule rather than by the environment.

– θ′(i) = 〈θ1(i), θ2(i), L(θ(i)), θ(i)〉. That is, the initialization function maps each
state component according to the respective initialization function, and determines
the next state to be the output of the switching rule on the first input.

– The transition function η is defined according to the type of composition as follows.
Consider a state 〈s1, s2, k, s〉 ∈ S′ and a letter i ∈ ΣI .

5 A recent work [24] advocates the use of ω-regular languages over the alphabet of subcompo-
nents identifiers for describing switching constraints even for continuous switched systems.
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�� η(〈s1, s2, k, s〉, i) =
[
〈η1(s1, i), s2, L(s), η(s, i)〉 if L(s) = 1
〈s1, η2(s2, i), L(s), η(s, i)〉 if L(s) = 2.

�� η(〈s1, s2, k, s〉, i) = 〈η1(s1, i), η2(s2, i), L(s), η(s, i)〉.
– For all 〈s1, s2, k, s〉 ∈ S′, we have L(〈s1, s2, k, s〉) = Lk(sk).

The solution to the switching-rule synthesis problem involves automata on infinite trees
(see [17] or the full version of the paper).

When we synthesize a switching rule, we are given the transducers T1 and T2, and
the transducer we are after only has to generate an infinite sequence over {1, 2}. The
setting is then similar to the control problem for LTL [17]. Unlike the solution there,
however, here the controller does not disable transitions. Rather, it determines which
component should be active at each moment in time.

Theorem 5. The switching-rule synthesis problem for LTL is 2EXPTIME-complete.

Proof. Consider an LTL formula ψ. Let Aψ = 〈ΣO, Q, q0, δ, α〉 be a deterministic par-
ity word automaton (DPW) recognizing ψ. We define a deterministic parity tree automa-
ton (DPT)AT1,T2

∀ψ that accepts switching rules with which T1⊕T2 satisfies ψ. Formally,

AT1,T2
∀ψ = 〈{1, 2}, ΣI, S1 × S2 × {1, 2} ×Q, s0, δ

′, S1 × S2 × {1, 2} × α〉, where s0

is a new state and for who ∈ {1, 2}we have δ(s0,who) = 〈θ1(who), θ2(who),who, q0〉
and for all 〈s1, s2, k, q〉 ∈ S1 × S2 × {1, 2} ×Q we have

�� δ′(〈s1, s2, k, q〉,who) =
[∧

i∈ΣI
(i, 〈η1(s1, i), s2,who, δ(q, 〈i, Lk(sk)〉)〉) if L(q) = 1∧

i∈ΣI
(i, 〈s1, η2(s2, i),who, δ(q, 〈i, Lk(sk)〉)〉) if L(q) = 2

�� δ′(〈s1, s2, k, q〉,who) =
∧

i∈ΣI
(i, 〈η1(s1, i), η2(s2, i),who, δ(q, 〈i, Lk(sk)〉)〉).

Intuitively, a state 〈s1, s2, k, q〉 stands for the transducer T1 being in s1, the transducer
T2 being in s2, the transducer that is switched on is Tk, and the automaton Aψ is in
state q. In the dormant composition, only Tk changes its state. In both compositions, the
O-element of the letter thatAψ reads in q is the output of Tk. It is not hard to prove that
AT1,T2

∀ψ accepts a full tree with directions from ΣI generated by a transducer S iff the
composition of T1 and T2 according to S satisfies ψ.

We reduced the switching-rule synthesis problem to the nonemptiness problem for
AT1,T2

∀ψ . The number of states of the DPW Aψ is doubly-exponential in |ψ|, and its

index is exponential in |ψ| [20,23]. Therefore, the number of states of the DPT AT1,T2
∀ψ

is linear in |T1| and |T2| and doubly-exponential in |ψ|, and its index is exponential in
|ψ|. Since the nonemptiness problem for DPT can be solved in time polynomial in the
state space and exponential in the index [5], the upper bound follows. Note that the
doubly-exponential complexity is only in terms of |ψ|, and the algorithm is polynomial
in |T1| and |T2|.

For the lower bound, note that the synthesis problem for LTL is 2EXPTIME-hard
already for a formula ψ with O = {p}. Let T1 and T2 be single-state transducers
that satisfy p and ¬p, respectively. A switching rule for T1 and T2 then corresponds
to a transducer with O = {p}, and the synthesis problem for ψ can be reduced to the
switching-rule synthesis problem for T1, T2, and ψ. ��



Reasoning about Finite-State Switched Systems 83

Note that since the switching rule S reads the inputs to all components, nothing prevents
it from naively recomputing the output of the components. The essence of a switching
rule, however, is to avoid this computation. For example, in the security-camera network
discussed in Section 1, a scheduler that implements the software that detects suspicious
behaviors is not of much interest. One way to prevent the switching rule from recomput-
ing the output of the components is to restrict its input. In practice, however, optimizing
the switching rule obtained in the construction in Theorem 5 would project out the parts
that are not essential for the switching rule.

Assumptions on the switching, and hence restrictions on the synthesized switching
rule, can be made by replacing ψ by ψfair → ψ. The automaton AT1,T2

∀ψ then contin-
ues to read the I-component of the alphabet from the directions of the tree, the O-
component from the active transducer, and reads who from the input tree.

5 Language Characterization

Recall that a component may be switched on forever. Thus, a required condition for a
switched system to satisfy a property is that all the underlying components satisfy it. For
some properties, this is also a sufficient condition, giving rise to a simple compositional
model-checking procedure for them. In this section we seek a characterization of such
properties. We solve the problem for the active composition and leave it open for the
dormant composition.

In Section 2.1 we showed that the dormant and active compositions correspond to
shuffle and merge of languages. Let ⊕ ∈ {�� , �� } be a composition operator. We say
that a language L is closed under⊕ iff L⊕L ⊆ L. That is, for every u, v ∈ L, we have
that u ⊕ v ∈ L. For example (recall the table in Figure 1), the language (0 + 1)∗0ω is
closed under both �� and �� , the language (01)ω is closed under �� but not under �� ,
the language (0∗1)ω is closed under �� but not under �� , and the language 0∗10ω is
closed under neither �� nor �� .

As the examples above demonstrate, a language that is closed under shuffle or merge
need not be a safety or a co-safety language. It turns out that an exact characterization
of the languages that are closed under shuffle or merge is a challenging combinatorial
problem. As described below, we have succeeded to obtain an exact characterization for
merge. The problem of an exact characterization for shuffle remains open.

Recall that a language L is closed under merge if for every two words u, v ∈ L, all
words obtained by locating in position i the i-th letter in either u or v are in L. This
means that each of the requirements imposed by L refers to a precise location (e.g., the
4-th letter is 0), or is an eventuality, in which case the requirement in the scope of the
eventuality is a safety property (e.g., eventually always 0). Formally, we characterize
closure under merge by means of regular counting, defined below.

Definition 2. A language L is regular counting if there are n, k ∈ N and functions f0 :
{0, . . . , n−1} �→ 2Σ and f1, f2 : {0, . . . , k−1} �→ 2Σ such that for all 0 ≤ j ≤ k−1,
we have f2(j) ⊆ f1(j) and w ∈ L iff for all 0 ≤ j ≤ n− 1 we have w[j] ∈ f0(j) and
there is i ≥ n such that for all j ≥ n, if j < i, then w[j] ∈ f1(j mod k), and if j ≥ i,
then w[j] ∈ f2(j mod k).
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Intuitively, the function f0 describes how the prefix of length n of all the words in L
behaves – each location j in this prefix can take letters from the subset f0(j) of Σ.
After the prefix of length n the words in L behaves in some cyclic manner, for a cycle
of length k. For some bounded number of locations, this cyclic behavior is described
by f1 – each location j in this infix can take letters from the subset f1(j mod k) of Σ.
Eventually, however, the cyclic behavior is described by f2, which is more restricted
than f1. It is not hard to see that a language L is safety iff it is regular counting with
f1 = f2.

To understand the notion of regular counting better, we now describe an automata-
theoretic characterization of it.
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Definition 3. An automaton A = 〈Σ, Q, q0, δ, α〉 is
a counting automaton if A is a deterministic co-
Büchi automaton (DCW) and Q can be partitioned
into three disjoints sets P = {p0, . . . , pn−1}, S =
{s0, . . . , sk−1}, and S′ = {s′0, . . . , s′k−1} such that:

1. For every 0 ≤ i ≤ n− 1, there is ∅ �= Ωi ⊆ Σ
such that for all σ ∈ Ωi, we have δ(pi, σ) = pi+1

(with pn standing for s0) and for all σ /∈ Ωi, we
have δ(pi, σ) = ∅.

2. For every 0 ≤ i < k − 1, there are Ωi, Ω
′
i ⊆ Σ

such that Ωi ∩Ω′
i = ∅ and Ω′

i �= ∅, such that
− for all σ ∈ Ωi, we have δ(si, σ) = δ(s′i, σ) =
si+1,
− for all σ ∈ Ω′

i, we have δ(si, σ) = δ(s′i, σ) =
s′i+1,
− and for all σ ∈ Σ \ (Ωi ∪ Ω′

i), we have
δ(si, σ) = δ(s′i, σ) = ∅.

3. α = S.

Example 1. The automaton described in the above figure is a counting automaton ac-
cepting the language a0a1((b0 ∨ c0)(b1 ∨ c1)(b2 ∨ c2)(b3 ∨ c3))∗(c0c1c2c3)ω.

Proposition 1. Let L ⊆ Σω. There exists a counting automatonA such thatL(A) = L
if and only if L is regular counting.

We are now ready to state our main theorem for this section.

Theorem 6. L ⊆ Σω is regular and preserved under merge iff L is regular counting.

The difficult direction is proving that if L is regular and preserved under merge, then
L is regular counting. As detailed in the full version, we do this by first proving that
if L ⊆ Σω is preserved under merge and is regular, then L is accepted by a deter-
ministic co-Büchi automaton. Essentially, in [10], Landweber proves that a determinis-
tic Rabin automaton has an equivalent deterministic Büchi automaton iff its accepting
strongly connected components are upward closed (that is, if S is accepting, so are all
components S′ ⊇ S). We prove that the rejecting strongly connected components of
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a deterministic Streett automaton for a language L that is preserved under merge are
downward closed, and conclude that L can be accepted by a deterministic co-Büchi
automaton. We then prove that the states of the deterministic co-Büchi automaton can
be partitioned as required in the definition of a counting automaton.
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Abstract. In this work, data and control flow analysis is used to detect
aspects that are guaranteed to maintain some classes of linear temporal
logic properties. This is, when the aspects are added to a system that
satisfied the desired properties, these properties will remain true. Cate-
gories of advices (code segments) and introduced methods of aspects are
defined. These categories are shown to be effective, in that they both
provide real aid in verification of properties, and are automatically de-
tectable using data and control flow. An implemented automatic data
and control flow tool is described to detect the category of each advice
and introduced method of an aspect. The results of applying the tool to
aspect systems are summarized.

1 Introduction

Aspect-oriented programming (AOP) is designed to aid in separating cross-
cutting concerns. The main idea of AOP is to add functionality to an existing
(underlying) program without modifying its code. Treatment of such concerns
without aspects either involves scattering code throughout many parts of a sys-
tem, or tangling code for the relevant concern with code dealing with separate
concerns.

The AspectJ language [8] is an aspect-oriented extension for Java that allows
defining separate modules called aspects. An aspect defines a set of pointcuts
(predicates describing points during execution - usually method calls) and ad-
vices (code segments) for execution at those pointcuts. There are several kinds
of advices, which specify where the code of the advice executes relative to the
event defined by a pointcut (before, after, or around it). Before and after ad-
vices are executed before or after the defined event, respectively. Around advice
is executed instead of the event, and uses a proceed statement to call the orig-
inal functionality. The aspect can also introduce new methods and fields. An
aspect weaving binds the aspect with an underlying system (the system without
aspects) to produce an augmented (or woven) system.

Aspects may assign values to the program variables, terminate program exe-
cution, and so on. This means that aspects can change the underlying program
flow and results. In general, even if the underlying program was already verified,
the woven program should be verified from the beginning to prove the woven
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program correct. Of course, aspects can add new properties to the system, often
in the form of new invariants or post-conditions that connect variables of the
underlying system to new variables of the aspect. However, there are also many
desirable properties of a system that should be maintained when aspects are ap-
plied. That is, if such a property held in the underlying system, it will continue
to hold in the woven system.

In this paper, we describe an effective automatic dataflow detection tool for
categories of aspects in AspectJ with implications for verification, and in particu-
lar for categories that guarantee maintaining desirable properties. Thus, dataflow
techniques usually applied for compiler optimizations, or possibly program slic-
ing, are used to reduce the need for expensive verification of some properties.
Families of temporal logic properties, such as safety or liveness, are proven once-
and-for-all to be maintained if an advice in the woven system belongs to a certain
category.

In addition to automatically detecting some known categories, we define two
new ones: Public-Call-Correcting aspects that only perform adjustments that
could have been performed by users of the system, and Control-Safe aspects that
do not influence the control of the underlying system after the advice is executed.
Public-Call-Correcting aspects could correct the parameters of external method
calls, or, as will be described, introduce a new mode of treatment during system
setup. We also consider the categories of new provided services introduced by
an aspect and, for the first time, which variables are not affected by an advice
or an introduced method and their usage. This allows the output of our analysis
to be significantly more informative than previous approaches.

In the following section, some related work is discussed. Then, in Section 3
the categories we consider are defined, and, in Section 4, for each its influence
on properties is given (with proof outlines for the new categories). In Section 5
the design and information gathering is described for the dataflow tool yielding
category detection, where Subsection 5.4 summarizes applications of the tool. In
Section 6 the implications of this approach are briefly considered.

2 Related Work

In the article [7] several categories of aspects are defined according to their
semantic characteristics. Some general algorithms for detection of some of the
categories are described, but are not implemented. In the article [3], the cate-
gories are extended, and their characteristics are described in terms of formal
operational semantics, again without any tool for detection.

Data-flow for analysis of aspect systems was first used for standard optimiza-
tion in compilers [13]. Traditional slicing tools for aspects can be seen in [17]
and [19]. In the works [12], [16] and [18] dataflow tools for analysis of aspects are
suggested. The classifications are different from those we use, and in particular,
the implications for correctness or maintenance of properties are not considered.
They basically investigate possibilities of reading/writing to common fields by
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a single method and aspect advice, or whether the method identified by the
pointcut will be executed after the advice. In [16] potential interference among
aspects is detected.

3 Categories and Their Implications

3.1 Advice Categories

In this paper an aspect is considered as a set of advices and methods. We thus
determine the category of each method and advice separately, as opposed to
e.g., [7], where the category of an entire aspect is defined as being spectative,
regulative, weakly-invasive, or invasive. Adapting the definitions from [7], we
have:

Spectative advice does not modify the underlying program’s state or control-
flow (it only gathers information in local variables of the aspect).

Regulative advice does not modify the underlying program’s state, but its
control flow may be terminated (returning to a home ”rest” state) or delayed.

Weakly-Invasive advice may modify states and control-flow of the underlying
program. However, the execution of the underlying program code in the the
woven program must involve only states which are reachable by the unwoven
program.

Strongly-Invasive advice - all other advices.

We will detect the first category above, and special cases of the second, third,
and forth. In addition, we define the new categories:

Public-Call-Correcting advice has a pointcut describing public methods
that are called outside the underlying program (an environment call), and
can only modify variables of the underlying program or parameters of the
pointcut method by using public methods or by changing public variables.

Control-Safe advice may modify states of the underlying program, but does
not modify its control-flow. More precisely, the advice can change the values
of a subset of variables V of the underlying program, but the variables in V
have no influence on the control flow of the underlying program.

One application of the Public-Call-Correcting category is to change the mode
of operation of a program according to some external conditions. For example,
consider a program that works with a data base. In general, this program will
connect to a remote data base, but for debug mode the programmer may want it
to use a local simulation. For this purpose an aspect can be defined that assigns
to the data base variable the relevant value (local or remote data base) before the
underlying program execution. The program then can work in different modes
depending on which, if any, weaving is performed.

The Control-Safe category is very difficult for manual detection since the
analyses of all variables that are influenced by the advice weaving is required.
But detection of special cases of this category is useful, since its maintained
properties (e.g., termination or responsiveness) are very important and difficult
to formally check.
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3.2 Provided Services of Introduced Methods

An aspect can change the original program by defining an advice, but it also can
provide additional services that extend the underlying program, by supplying an
introduced method - a public method that is defined in the aspect. The method
can be defined as a part of the aspect or as an extension to a class of the
underlying program.

The introduced method itself does not have direct influence on a program exe-
cution unless it is called. Of course, when an aspect with such a method is woven,
the advice of that aspect, an external user, or any other aspect could possibly
call this method, but there is no obligation to do so. Effectively, the interface of
the underlying program is extended by the introduced method. Clearly, private
methods of an aspect do not provide additional services to the system, because
they can be used only in the aspect itself and they should not be considered as
provided services.

An interesting question is the influence of such introduced methods on the
underlying program, when and if the call is performed. In this work the aspect
categorization includes the investigation of its provided services.

The classification of introduced methods is performed in a similar way to the
classification of advices, although there are differences. A spectative introduced
method is the same as a spectative advice, but the regulative category is ir-
relevant. This is because a method does not have a pointcut, and whether the
underlying code will execute is determined in an advice using the introduced
method, and not in the method itself. Moreover, the invasive category is di-
vided into Potentially and Guaranteed subcategories. In the potentially invasive
category, the introduced method changes its parameters, but whether these pa-
rameters are part of the state of the underlying program can only be determined
by considering the actual parameters of each activation. In the guaranteed in-
vasive category, the introduced method is guaranteed to change the state of the
underlying system.

4 Maintained Properties of Advice Categories

The purpose of effective aspect categorization is to facilitate verification of
woven programs, where here we concentrate on maintained properties. For each
category identified by the tool, classes of linear temporal logic properties are
identified that are maintained.

In order to justify which properties are maintained by advice in a given cat-
egory, a semantic definition of weaving and of the category is needed. In [7]
weaving is defined as a transformation on state machine graphs, and the cat-
egories are defined as restrictions on the graphs and allowed transformations.
In [3], a structured operational semantics is used to define the allowed actions.
Other semantic definitions of aspects, such as [6,15] can also be used. Below, the
results from previous work are briefly restated, and for new categories, the proofs
informally show the relation between traces of the system augmented with an
aspect of the category and traces of the underlying system that is assumed to
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have a relevant linear temporal logic property (where we consider the usual fu-
ture fragment, without past modalities). The common modal operators G(from
now on), F (eventually), and U (until) can be used, but the next-state operator
X should not appear in the properties we wish to maintain. Realtime properties
depend on external time variable, and also are not in our framework.

4.1 Strongly Invasive Advice

For strongly invasive advices there is no definite group of properties which are
maintained after weaving. But we can consider properties that use variables
which are not affected by the advice (neither by data nor by control flow modi-
fication).

Definitions for Lemma 1
For the advice a and the property p we will define:
V is a set of all variables in the underlying program.
Va is a set of variables which are modified by a
DVa is a set of variables which are dependant on variables in Va (transitive
closure is considered, and DVa includes Va)
Up is a set of variables which are used in p

Lemma 1. For an advice a and a property p that does not relate to realtime
or next-state properties if DVa ∩Up = ∅ and p holds in the underlying program,
then in the woven program the property p also holds (this means the property
p is maintained).

Proof. Consider the projection of the system states on V −DVa (the variables
not dependant on variables in Va). For each trace of the woven program, this
projection is identical to a trace of the unwoven program, except for repetition
of the states. Notice that V − DVa is not affected by the advice. This means
that even if a different branch is chosen on some conditional statement, the
original values of the variables in V −DVa and the order of the states cannot be
interrupted.

The same state can be repeated more than in the original trace as a result of
transitions of the advice. And the same state can be repeated less or more than
in the original trace if in the woven trace a different branch was chosen on some
condition statement.

According to a lemma of Lamport [9], if two traces differ only in the number
of repetitions of states, then all non-next state safety and liveness properties
are the same in the two traces. Up ⊆ V , since it is a property of the under-
lying system. One of the conditions of the lemma is DVa ∩ Up = ∅, therefore
Up ⊆ V −DVa and this means that p is maintained. �

Conclusion. For the advice a and a property p that does not relate to realtime
or next-state properties, if DVa ∩ Up = ∅ and p does not hold in the underlying
program, then in the woven program the property p also does not hold.
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Proof. The proof is the same as in Lemma 1, when the projection of a trace
that contradicts the property p is considered. �

4.2 Spectative Advice

Spectative advice does not change the underlying program execution, so the pro-
jection of the woven system on the state variables of the underlying system has
the same traces, except for repetitions of states that represent the execution of
the advice. Such advice therefore maintains all linear temporal logic properties of
the underlying program which do not relate to realtime or next-state properties
(see [7]).

A spectative advice can also add properties to the augmented program which
connect variables of the underlying program and variables of the aspect. But a
spectative advice cannot add properties which are related only to variables of
the underlying program.

4.3 Regulative Advice

A regulative advice can only delay or terminate program execution. Semantically
some transitions are disallowed, but the state variables of the underlying program
are not affected. As is shown in [7], if an advice is regulative it maintains all safety
properties which a spectative aspect maintains.

4.4 Public-Call-Correcting Advice

A Public-Call-Correcting advice just changes parameters of the method that is
described by the pointcut, or changes the underlying program state of public
variables before/after the call. A necessary condition is that an external user
can perform all operations which are performed by the aspect (i.e., there is no
usage of private variables or methods in the advice) and the pointcut describes
only the external calls of the method.

Lemma 2. If an advice is Public-Call-Correcting, all safety and liveness prop-
erties which were true the underlying system without limiting external public
calls, and that do not involve assertions about parameters of the actual call
of the user, or realtime or next-state properties, will not be influenced by the
advice, and will also hold in the augmented system.

Proof. Only the case of an around advice will be discussed here, since before and
after advices are special cases of an around advice where there are no statements
before/after a proceed statement. Assume that a Public-Call-Correcting advice
that should be woven around method f is given.

According to the definition of Public-Call-Correcting advice the advice acti-
vation (an occurrence of the pointcut) will be performed only around a public
method that is called from outside the underlying system. Consider two traces:
t1 of the woven system with the aspect, and t2 of the original underlying system.
In t1, a call of f occurs with some actual parameters, but before f is executed
the advice begins, in which some public variables are changed, or public methods
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are activated, and the parameters of f may be changed. Then f is activated,
and afterwards some public variables may again be changed. In t2 there is no
weaving, but the user performs the same operations as in the advice (this can
be done because the advice is allowed to perform only actions that an external
user could also do) and calls the method with the same parameters as the advice
did. After completing f , the user does the corresponding actions done in the
advice. In both traces the state of the system and parameters of the call are the
same before the first statement in the method f . This means that the program
execution till the last statement of f will be exactly the same.

The only difference between the two traces is that t2 does not have a ”point-
cut” state where f is called with actual parameters different from those actually
used when the advice executes f . Notice that the program cannot make as-
sumptions about the values of its public variables before the user call, thus any
property (a linear temporal logic assertion) that does not relate to the actual
parameters in the pointcut activation of f (that can be different from those that
the advice substitutes) has exactly the same projection onto the state variables
that appear in the assertion. Therefore, by reasoning as previously, the property
must be maintained. �

Lemma 3. A Public-Call-Correcting advice can add new properties to the un-
derlying system. The added properties can only represent next-state or realtime
properties, or be dependent on the variables which are modified by the advice
(i.e., DVa ∩ Up �= ∅, using the notation from Lemma 1).

(Proof is omitted for reasons of space.)

4.5 Control-Safe Advice

A Control-Safe advice maintains the control-flow of the underlying program.
So the maintained properties are temporal properties which do not relate to
the program state (values of the variables), but to the performed operations
and their order. In particular, important properties such as termination will be
maintained for the program with a woven Control-Safe advice.

Lemma 4. If an advice is control safe, all assertions about performed operations
and their order in traces of the underlying system will also hold in the augmented
system.

Proof. According to the definition of Control-Safe advice, the advice does not
change variables which can influence control flow of the underlying program.
Consider the first control statement in the execution of the underlying system
that checks a variable v and chooses between continuing with path A or path
B. In the unwoven program, say path A is executed. In the augmented program
variable v will be exactly as in the unwoven one, since the aspect cannot change
v or variables that v depends on, and it is the first control statement, so it will
be executed. Because of this in the augmented program the path A will be ex-
ecuted as well. This means that all operations in path A that were performed
in the underlying program also will be performed in the woven program till the



94 Y. Alperin-Tsimerman and S. Katz

next control statement. By induction we will receive that all operations of the
underlying program will be performed on the augmented one, although their
result can be different from the original. �

4.6 Relations

Now that the maintained properties for each category are investigated, the rela-
tion ”is a sub-category” can be defined. A is a sub-category of B means that A
maintains at least all properties that B maintains (of course the opposite is not
necessarily true). Using results from [7], along with the new lemmas in this pa-
per, the hierarchy seen in Figure 1 can be defined. The lower categories maintain
wider classes of linear temporal logic formulas.

 

WI 

SI 

PC 

R 

S 

CS 

A → B - A is a subcategory of B
S - Spectative advice
R - Regulative advice
PC - Public-Call-Correcting advice
WI - Weakly-Invasive advice
SI - Strongly-Invasive advice
CS - Control-Safe advice

Fig. 1. The hierarchy of subcategories for advices

A similar relation can be defined for the categories of introduced methods:
the Spectative category is a sub-category of the Potential-Invasive category and
the Potential-Invasive category is a sub-category of the Guaranteed-Invasive
category.

5 Detection of the Defined Categories

The categorization tool is built as as extension to the AspectBench Compiler
(abc) [2]. It is a complete compiler for the AspectJ language that is built on
two extensible frameworks, Polyglot and Soot. The Polyglot [10] framework is
a compiler front-end for the Java programming language, that generates an ab-
stract syntax tree (AST) from the program code while performing the necessary
syntax checks. Soot [4] is used by abc as a back-end. It is a bytecode analysis
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and transformation framework for Java. Soot provides different features which
are used for our tool for advices categorization like: Jimple, a typed 3-address
intermediate representation that is much easier to analyze than the Java byte-
code; several control flow graphs (CFG) and services for their construction (e.g.,
building a CFG for a given method body); different implementations of data-flow
analyses (i.e, Forward Flow Analysis); a points-to analysis and so on [4].

The combination of several different analyses for the categorization of the
advices allows detecting the category of an advice or introduced method (see
Table 1). The categorization is performed on Jimple and it occurs in two phases
- before and after the weaving. In practice it is impossible to detect all cases of
the defined categories by static analysis. As usual in data flow, the analysis is
conservative in that, when an advice is not determined to be in a category, this
just means that the advice may not be of that category, while positive detection
is certain.

The first step is to check whether there are variables of the underlying pro-
gram which are modified by an advice (the details of this check are shown in
Section 5.1). If there are such variables, then the first conclusion is that the advice
is not spectative or regulative. Now a set of variables of the underlying program
which are influenced by the advice can be built by slicing (see Section 5.3). If
there is no variable used in control flow that is affected by the advice, then the
advice is Control-Safe.

If an advice is of the around type, then the proceed call should be analyzed.
AspectJ does not limit the number of proceed calls in an advice. Therefore, we
need to check whether all paths in the data flow of an advice have exactly one
proceed (see Section 5.2). Another check that should be performed for a proceed
call is whether it is an exact proceed (receives the same argument values as found
in the join point and the value returned by proceed must be returned by the
advice without modification [18]).

Important cases of regulative advices are detected by a check for synchroniza-
tion (e.g., a synchronize statement appears in the advice) or program termination
(e.g., a System.exit() statement). If an advice throws an exception or contains
an infinite loop it can be also considered as a regulative behavior. However, un-
caught exception throwing and infinite loops in advices are ignored during the
analysis, since such behavior can be considered as a bug in the program, and the
program’s maintained properties are meaningless in this case.

A check of the pointcut is used to identify Public-Call-Correcting or regulative
advices (e.g., if it describes a public method and is external to the system).

The categorization of introduced methods does not require a special analysis,
different from the above. All categories can be detected by analysis of variables
which are modified in the data-flow of the method.

In this work we have concentrated on the categorization of a single advice or
introduced method. But, since we consider all methods and advices of the system
at once, interference between advices from different aspects is also treated for
one special case: if there is an assignment to a varia ble of aspect B in an advice
of aspect A. In this case the category of A is detected relatively to the underlying
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Table 1. Checked properties for the categorized advices

Category
Modifies variables

of the system
Synchronization
or system exit

Exactly one proceed
in each path

Exact
proceed

Public
pointcut

S
Only local for

the aspect
Not allowed Yes Yes Not necessary

R1
Only local for

the aspect Allowed Yes Yes Not necessary

R2
Only local for

the aspect Allowed
There is path

with no proceed Yes Yes

PC
Only public
variables Allowed Not necessary Not necessary Yes

CS

Variables which
do not affect

program control
flow

Not Allowed Not necessary Not necessary Not necessary

S - Spectative advice
R1 - Regulative advice, when the advice contains synchronization or program exit.
R2 - Regulative advice, when the advice cancels execution of the pointcut method.
PC - Public-Call-Correcting advice
CS - Control-Safe advice

public class Rational { 
 
   private int numerator = 0; 
   private int denominator = 1; 
 
   public Rational(int n, int d) { 
      setNumerator(n); 
      setDenominator(d); 
   } 
 
   public void setNumerator(int n) {  
      this.numerator = n;  
   } 
 
   public void setDenominator(int d) { 
      if (d == 0) throw  
        new InvalidParameterException(); 
  
      this.denominator = d; 
   } 
 
   // standard getters … 
} 

public aspect Reduction { 
 
   Rational around (int x, int y):   
      (args(x,y) &&   
       call(Rational.new(..))) { 
    Rational f = proceed(x,y); 
    reduce(f); 
    return f; 
 } 
  
   public void reduce(Rational fr) { 
      int n = fr.getNumerator(); 
      int d = fr.getDenominator(); 
      int tmp = gcd(n, d); 
      fr.setNumerator(n/tmp); 
      fr.setDenominator(d/tmp); 
   } 
  
   public int gcd(int a, int b) { 
      return (b == 0) ? a : gcd(b, a % b); 
   }  
} 
 

 

Fig. 2. Rational Example: class Rational and aspect Reduction

system woven with B and not relatively to the original base system, since the
aspect A cannot be added to the underlying program till aspect B is woven and
the properties of the pure base system are not relevant already to be maintained.

We will illustrate the analysis steps on a small example (see Figure 2), with
a class Rational that describes a fraction, and aspect Reduction that reduces a
created fraction just after its construction.
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5.1 Summaries

Corresponding to information needed for the columns of Table 1 several data flow
analysis should be executed. For each method (or advice) a modified set (a set
of non-local variables which are modified), flags for existence of synchronization,
termination and exception throwing operations in the code and a set of variables
which are used in the control flow should be detected.

Initially, for the modified variables detection a bottom-up summary-based
algorithm was built. The goal of the algorithm is to build a context-insensitive
summary for each method in the augmented program. For this purpose a CFG
is built for the underlying system and aspects. Forward Flow Analysis of Soot
is used to traverse the graph from the bottom to the top where for each Jimple
statement the modified variables are checked. Summaries for each method/advice
are combined for the aspect categorization. This architecture is adapted from
the work of [16].

In general, a method (or advice) can access its own parameters1and local
variables, or visible static variables of the system. For each of the above, their
instance and static fields must also be considered (recursively). Although all
modified variables are checked, we are interested only in changes that can influ-
ence the underlying program. So the changes of local variables and their instance
fields are ignored in the analysis. The rest of the variable types we will call dan-
gerous variables.

The modified set of the current method (or advice) is built by considering
assignments and method invocations. For an assignment statement, only if the
assigned variable is dangerous is it added to the modified set of the current
method (or advice). For a method invocation, the dangerous variables in the
modified set of the called method are added to the modified set of the current
method (or advice).

To avoid the execution of a full data-flow analysis each time different data need
to be gathered, a registration mechanism was defined in the tool. An algorithm
for modified variable detection is replaced with a general in-out function that
is propagated in the data-flow analysis. For each kind of data that needs to be
propagated in the data-flow analysis, actions for a gathering of this data should
be added to the in-out general function in a special format.

In the Rational example there are four methods with a nonempty modified set.
These are the constructor and setters in the Rational class and the reduce method
in the Reduction aspect. The bottom-up analysis finds the modified set of the
Rational class functions. setNumerator and setDenominator change the ’this’
object. This means that for the analysis of the reduce method the invocation
object of setNumerator and setDenominator - fr - will be modified. fr is a
parameter to the function; this means that it is dangerous and will be added to
the modified set of the reduce method. The last element analyzed is the advice
at the beginning of the Reduction aspect. It invokes the reduce method with a
local variable as parameter, so the modified set of the advice is empty. During
the same analysis we can see that there are no synchronization or termination
1 ’this’ is also considered as a parameter.
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operations in the advice data-flow. Therefore, this advice seems to be a serious
candidate for the Spectative category. The further analyses will show if it is
indeed Spectative and will determine the categories of other elements such as
the reduce introduced method.

5.2 Exact-Proceed Analysis

The CFG for an advice is built using features of Soot. A DFS algorithm is run
on this graph and reports: if there is a path where two or more proceed calls
are performed; if there is a path where an exit node was reached, and there was
no proceed call, or the standard case where there is exactly one proceed call in
each path.

If there is exactly one proceed call in the advice, then we check if it is an exact
proceed. For this purpose we need to check that the proceed receives the same
arguments as the pointcut method and these variables were not modified in the
data flow of the advice from the beginning and until the proceed call. A separate
check is made that the advice’s returned value (if any) is exactly the same as
the one the proceed invocation returns and this value was not modified from the
proceed call until the return statement. Each stage is implemented as a DFS on
a call graph where each node (statement) is checked for modifying the relevant
variables. For the invoked methods their modified set that was calculated by
data-flow analysis is checked.

In the Rational example there is one around advice with one path that calls
proceed. The arguments to the proceed are the same as the arguments to the
advice and they are not modified till the proceed call. But there is a problem
with the return value. The variable f stores the value returned by the proceed,
but it is modified after the proceed call. The tool can reveal this by checking the
modified set of the reduce method, which includes its parameter. This means
that the proceed of the around advice is not an exact-proceed and the advice
has invasive behavior.

The joinpoint of the around advice is the constructor of the Rational class. The
constructor is public and is not called in the program itself. The advice itself only
modifies public variables, including use of a public method. This means that the
advice is Public-Call-Correcting. When an external user calls the constructor,
the advice ”fixes” the input by replacing the parameters by reduced ones.

5.3 Slicing

General slicing algorithms can be run on the woven system to find the variables
that are dependent on the modified set of the advice - a modified dependent set.
We are interested in both data dependent variables and control dependent vari-
ables. Even if the advice is strongly-invasive this information allows identifying
the properties that should be verified in the woven system with fuller analyses or
testing, since only properties which use variables from the modified dependent
set must be rechecked (Lemma 1).
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Our intention was to use the slicing algorithms that were developed in Indus
[11] on the woven program, although [19] also could be used. The general ap-
proach can be optimized by considering only relevant parts of the woven system:
the paths where the relevant advice can be applied. Unfortunately, the Indus
slicer is difficult to integrate and use as part of a tool chain. Thus, applying a
Java bytecode or Jimple formal slicer is left for future work, and is not included
in the current tool.

5.4 Experience

Since there is an inclusion relation among the categories, accurate detection
means identifying the lowest possible (most specific) category to which it belongs
in the hierarchy. In that case, the largest classes of properties are maintained.

For the initial testing of the tool several aspects were defined. For exam-
ple SpectativeAdvices contains spectative advices including cases of callback
methods usage, assignments to the fields of the aspect or local advice variables
and so on. InvasiveAdvices contains strongly-invasive advices including cases
of static variables changes, changes of underlying program variables which are
visible for the advice, proceed with new (not original) arguments and so on.
Separate aspects were defined for introduced methods of different types. JUnit
tests were built for consistent checks during development.

 

Fig. 3. The output for the example in Figure 2

As a benchmark we took a version of the HealthWatcher system that has been
used in previous studies [5]. That system has 20 aspects with approximately 45
advices and 30 introduced methods. The benchmark was analyzed manually (by
an independent colleague familiar with the definitions) and the category for each
advice and introduced method was listed. The tool was run, and the output was
compared to the manual results.

Since the tool is under development, only partial matching takes place for
the categories. The reasons for this are the presently incomplete treatment of
exception handling and aliasing analysis, as well as the treatment of external
libraries, that has problematic issues. Overall, for the HealthWatcher system:
there was accurate detection for 15 of 16 spectative advices, 25 of 26 strongly-
invasive advices and 3 of 3 regulative advices.

The tool has GUI output where the list of advices is given and pressing on an
advice will lead to the table of introduced methods and advices with appropriate
categories (see Figure 3).
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A full list of benchmarks including AspectJ benchmarks [1] and AJHotDraw
[14], and the results of applying the dataflow tool can be found by clicking on
the name of this paper at:
http://ssdl-linux.cs.technion.ac.il/wiki/index.php/Thesis

6 Conclusions

In this work we have concentrated on automatically detectable categories of
aspects that are useful to show properties are maintained. Therefore there are
categories that are not treated here, because their implications for correctness
are unclear or nonexistent.

We believe that the tight linking of program properties, proofs of correctness,
and static data-flow analysis, as seen in this paper, has significant potential to
increase the reliability of systems. The suggested automatic data-flow tool used
for identifying categories can increase the understanding of systems with aspects,
and more than that it can alleviate part of the need for, e.g., model checking,
allowing formal techniques to be applied more selectively. A fuller understanding
of the categories of aspects and their implications for correctness can also lead to
methodological changes in aspect-oriented software development. For example,
aspects in problematic categories should be used sparingly, and be subjected to
especially thorough verification.
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Abstract. Boolean equation systems (BESs) have been used to encode
several complex verification problems, including model checking and
equivalence checking. We introduce the concepts of strong bisimulation
and idempotence-identifying bisimulation for BESs, and we prove that
these can be used for minimising BESs prior to solving these. Our results
show that large reductions of the BESs may be obtained efficiently. Min-
imisation is rewarding for BESs with non-trivial alternations: the time
required for solving the original BES mostly exceeds the time required
for quotienting plus the time for solving the quotient. Furthermore, we
provide a verification example that demonstrates that bisimulation min-
imisation of a process prior to encoding the verification problem on that
process as a BES can be arbitrarily less effective than minimising the
BES that encodes the verification problem.

1 Introduction

Model checking suffers from the state space explosion problem. Minimising the
state space prior to model checking is a well-known strategy for combating this
explosion problem, but it is not always obvious that it actually pays to do so
in practice. Based on complexity arguments, one can expect that bisimulation
minimisation speeds-up model checking for the modal μ-calculus, as in general,
the latter requires time exponential in the alternation depth with the size of the
state space as root of the exponent (note that some fragments of the μ-calculus
can be decided in polynomial time).

The weakest minimisation that is uniformly permitted in the setting of μ-
calculus model checking is a minimisation with respect to strong bisimulation,
as the logic can distinguish states up-to bisimilarity. On a case-by-case basis, one
can, of course, employ weaker process equivalence relations such as trace equiv-
alence, but judging whether this is the case can require a deep understanding
of the system, the formula and process theory. In any case, among all process
equivalence relations, bisimulation has the most appealing theoretical time com-
plexity (O(m log n) with m the size of the transition relation and n the number
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of states); in practice, it is rivalled only by some weaker bisimulation relations
such as branching bisimulation, with time complexity O(mn).

The downside of using strong bisimulation for minimising a state space prior
to verification is that the minimising capabilities of strong bisimulations are of-
ten disappointing. One can improve on this by applying abstractions to the state
space prior to applying a bisimulation minimisation, but this suffers from the
problems that it (1) requires human intellect, and (2) requires different abstrac-
tions each time new properties are verified.

We tackle problems 1 and 2 by employing an intermediate framework, viz.,
Boolean equation systems (BESs). This framework allows one to encode a variety
of verification problems, including the modal μ-calculus model checking problem
(see, e.g., [9]). Note that the encoded verification problem can subsequently be
answered by computing the solution to the resulting equation system. Solving
Boolean equation systems again requires time exponential in the alternation
depth of the equation system, with the size of the equation system as root of this
exponent (the size of the equation system is polynomial in the size of the state
space); efficient algorithms for solving equation systems are based on algorithms
for solving Parity Games, a framework closely related to BESs.

Instead of performing minimisation of the state space before encoding the veri-
fication problem as a Boolean equation system, we apply minimisation techniques
on the equation system itself. For these minimisation techniques, we take inspira-
tion from the notion of bisimulation for state spaces. More concretely, we define
two notions of bisimulation for Boolean equation systems, viz., strong bisimula-
tion and idempotence-identifying bisimulation; the latter is tailored specifically
to Boolean equation systems and, as far as we are aware, appears to have no nat-
ural counterpart in other settings. Both notions are equivalence relations and can
be used for quotienting; both are computable in time O(m log n), with m the size
of all right-hand sides of the equations and n the number of equations. Moreover,
strong bisimulation is strictly finer than idempotence-identifying bisimulation,
which again is strictly finer than solution equivalence (the latter basically is an
equivalence relation based on the local solution of Boolean equation systems,
which is typically sufficient for verification). We illustrate that state space min-
imisation prior to encoding a model checking problem into a Boolean equation
system can be arbitrarily less effective than minimising the Boolean equation
system that is the result of the encoding.

The advantage of minimisation within the framework of Boolean equation
systems is that it does not require human intellect for applying abstractions
in order to work. This is because abstraction is taken care of by the encoding
to Boolean equation systems. As both bisimulation minimisations respect the
solution equivalence, applying minimisations to the Boolean equation system
cannot adversely affect the validity of the verification effort, so the approach is
fail-safe.

Our bisimulation minimisation techniques provide essential contributions to
the framework of parameterised Boolean equation systems (PBESs) [5]. The lat-
ter are basically high-level, symbolic descriptions of Boolean equation systems,
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Specification PBES BES

Process Manipulations

Translation

PBES Manipulations
PBES Solving

Enumeration

BES Manipulations
BES Solving

Fig. 1. Verification approach using parameterised Boolean equation systems

which are obtained automatically through encodings of (a variety of) verifica-
tion problems using symbolic system descriptions as input, see Fig. 1. Various
solution strategies for PBESs have been described, among which one finds re-
ductions of PBESs to BESs (see e.g. [10], indicated by the arrow linking PBES
and BES in Fig. 1). Efficiently minimising the size of the resulting BESs, prior
to solving them, is desirable. Observe that the PBES approach to verification
avoids generating state spaces altogether; consequently, state space minimisation
is not an option in the first place.

We demonstrate the practical value of our approach using a series of exper-
iments that are set in the PBES framework. We rely on state-of-the-art algo-
rithms for solving BESs. The results of these experiments show that indeed, the
minimisation of the Boolean equation systems prior to solving is highly reward-
ing in general: the time required for minimisation is mostly significantly smaller
than the time required for solving the unreduced system. The experiments show
that in most cases, strong bisimulation and idempotence-identifying bisimulation
do not yield significant differences in minimisation capabilities, but, given the
more pleasing characteristics of idempotence-identifying bisimulation, the latter
is favoured.

Related work. The use of minimisation techniques in combination with verifica-
tion has been studied in various settings, with mixed results. For LTL verification,
Fisler and Vardi [2] show that the total time spent on minimising and verifying
exceeds the verification time of the original state space. This can be explained
in part, because of the on-the-fly nature of LTL model checking, which does not
always require a full construction of a state space. In contrast, in a probabilis-
tic setting, Katoen et al. [7] demonstrate that, like in our setting, minimisation
mostly pays. Minimisation techniques for Boolean equation systems have re-
ceived little, if any, attention. In the setting of Parity Games, one finds at least
the notion of strong bisimulation and several weaker simulation variants, see [4],
but no comparable notion such as idempotence-identifying bisimulation. To the
best of our knowledge, in the latter setting, no practical experiments have been
conducted using such equivalence relations.

Structure. Section 2 introduces the framework of equation systems, and in
Section 3, we define the notions of strong bisimulation and idempotence-identifying
bisimulation. In Section 4, we describe a selection of the experiments we conducted
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using our minimisation methods. The contributions of this paper, and future work
are summarised in Section 5. Full proofs, additional lemmata and a report on our
>300 experiments can be found in [8].

2 Preliminaries

Boolean equation systems are basically finite sequences of least and greatest
fixed point equations, where each right-hand side of an equation is a proposition
in positive form. For an excellent treatment of the associated theory, we refer
to [9]; in the remainder of this section, we focus on the theory required for
understanding the results obtained in this paper.

Definition 1. A Boolean equation system (BES) E is defined by the following
grammar:

E ::= ε | (σX = f) E
f, g ::= c | X | f ∨ g | f ∧ g

where ε is the empty BES, σ∈{μ, ν} is a fixed point symbol, X is a proposition
variable taken from some set X , f and g are proposition formulae and c ∈
{true, false}.
For any equation system E , the set of bound proposition variables, bnd(E), is the
set of variables occurring at the left-hand side of some equation in E . The set
of occurring proposition variables, occ(E), is the set of variables occurring at the
right-hand side of some equation in E ; for a specific equation we write rhs(X) to
indicate the set of proposition variables occurring in X ’s equation.

bnd(ε) Δ= ∅ bnd((σX = f) E) Δ= bnd(E) ∪ {X}

occ(ε) Δ= ∅ occ((σX = f) E) Δ= occ(E) ∪ occ(f)

where occ(f) is defined inductively as follows:

occ(c) Δ= ∅ occ(X) Δ= {X}

occ(f ∨ g) Δ= occ(f) ∪ occ(g) occ(f ∧ g) Δ= occ(f) ∪ occ(g)

For an equation σX = f , we set rhs(X) Δ= occ(f). As usual, for reasons of
consistency, we consider only equation systems E in which every proposition
variable occurs at the left-hand side of at most one equation of E . We define
an ordering � on bound variables of an equation system E , where X � X ′

indicates that the equation for X precedes the equation for X ′. We say an
equation system E is closed whenever occ(E) ⊆ bnd(E). Throughout this paper,
we are only concerned with closed equation systems.

Proposition formulae are interpreted in a context of an environment η:X → B.
For an arbitrary environment η, we write η[X := b] for the environment η in
which the proposition variable X has Boolean value b (note that, for brevity, we
do not formally distinguish between a semantic Boolean value and its represen-
tation by true and false; likewise, for the operands ∧ and ∨).
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Definition 2. Let η:X → B be an environment. The interpretation [[f ]]η maps
a proposition formula f to true or false:

[[c]]η Δ= c [[X ]]η Δ= η(X)

[[f ∨ g]]η Δ= [[f ]]η ∨ [[g]]η [[f ∧ g]]η Δ= [[f ]]η ∧ [[g]]η

The solution of a BES, given an environment η, is inductively defined as follows:

[[ε]]η Δ= η

[[(σX = f) E ]]η Δ=
{

[[E ]](η[X := [[f ]]([[E ]]η[X := false])]) if σ = μ

[[E ]](η[X := [[f ]]([[E ]]η[X := true])]) if σ = ν

We refer to computing [[E ]]η as solving E . Closed equation systems enjoy the prop-
erty that the solution to the equation system is independent of the environment
in which it is defined, i.e., for all environments η, η′, we have [[E ]]η(X) = [[E ]]η′(X)
for all X ∈ bnd(E). For this reason, we henceforth omit the environment in our
considerations and we write [[E ]], and [[E ]](X) instead.

The disjunctions and conjunctions in a proposition formula satisfy the stan-
dard rules of logic. For instance, both are semantically idempotent, commutative
and associative. This observation justifies the use of a a slightly different gram-
mar for our proposition formulae, introduced next.

Definition 3. Let E be an equation system. We say that E is in standard re-
cursive form (SRF) if the right-hand sides f of every one of its equations can be
written using the following grammar:

f ::= X |
∨

F |
∧

F, where F ⊆ X , with |F | > 0.

where the interpretation is given by the following rules:

[[X ]]η Δ= η(X) [[
∨

F ]]η Δ=
∨
{η(X) | X ∈ F} [[

∧
F ]]η Δ=

∧
{η(X) | X ∈ F}

The function op(X) for a given equation (σX = f) in SRF, returns whether f
is conjunctive (∧), disjunctive (∨) or neither (⊥).

Let B denote the set of all closed equation systems in SRF; in this paper, we
are only concerned with equation systems in B. Note that every closed equation
system E can be rewritten to an equation system Ẽ ∈ B such that [[E ]](X) =
[[Ẽ ]](X) for all X ∈ bnd(E), i.e., the transformation to SRF preserves the solution
of bound variables. This transformation leads to a polynomial blow-up of the
original equation system. In [12], the theory outlined in this paper is generalised
to arbitrary closed equation systems. An important observation there is that
restricting to equation systems in SRF is actually beneficial to the minimisation
techniques discussed in this paper.
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The alternation hierarchy of an equation system, and the derived notion of the
rank of an equation, can be thought of as the number of syntactic alternations
of fixed point signs occurring in the equation system. Note that the alternation
hierarchy is not the same as the alternation depth: the latter is a measure for the
complexity of an equation system, measuring the degree of mutual alternating
dependencies, and can be smaller than the alternation hierarchy; it is, however,
harder to define and compute.

Definition 4. Let E be an arbitrary equation system. The rank of some X ∈
bnd(E), denoted rank(X), is defined as rank(X) = rankν,X(E), where rankν,X(E)
is defined inductively as follows:

rankσ,X(ε) = 0

rankσ,X((σ′Y = f)E) =

⎧⎨⎩
0 if σ = σ′ and X = Y

rankσ,X(E) if σ = σ′ and X �= Y

1 + rankσ′,X((σ′Y = f)E) if σ �= σ′

The alternation hierarchy ah(E) is the difference between the maximum and the
minimum of the ranks of the equations of E. Observe that rank(X) is odd iff X
is defined in a least fixed-point equation.

A visual representation of an equation system E ∈ B is its dependency graph
GE . This is basically a directed graph with decorated states. Dependency graphs
can be used to give a more operational viewpoint of the concept of solution for
equation systems, facilitating many of the proofs for theorems appearing in this
paper, see [8].

Definition 5. A dependency graph GE of an equation system E in SRF is a
structure 〈V,→, r, l〉, where:
– V = bnd(E) is the set of states;
– →⊆ V × V is the transition relation, defined as X → Y iff Y ∈ rhs(X);
– r:V → N is the rank function, defined as r(X) = rank(X);
– l:V → {∧,∨,⊥} is the logic function, defined as l(X) = op(X).

3 Equivalences

The alternation hierarchy, the number of equations and the complexity of the
right-hand sides of these equations account for the computational complexity
of the solution for an equation system. Efficient techniques for reducing one or
more of these is of the utmost importance. An important step in this direction is
to consider equivalence relations for equation systems. An obvious equivalence
relation on equation systems is based on the concept of solution for an equation
system.

Definition 6. Let E , E ′ ∈ B. We say equations for X and Y are solution equiv-
alent, denoted X ≡ Y , if [[E ]](X) = [[E ′]](Y ); we say E and E ′ are solution
equivalent, denoted E ≡ E ′, if their first equations are solution equivalent.
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In a possible lattice of equivalence relations on equation systems,≡ is the coarsest
equivalence relation of interest. Deciding ≡ is in NP∩co-NP. Let E be an equation
system. We abbreviate ah(E) by d, the number of equations in E by n, the
cumulative size of the right-hand sides in E by m and the size of E is m + n.
Algorithms for computing the solution (and thereby deciding ≡) are, e.g., Small
Progress Measures [6] which runs in O(dm(n

d )�d/2�), bigstep [14] which runs in
O(mn

1
3d), and Gauß Elimination [9] which runs in O(2m+n).

In the remainder of this section, we define and study two finer equivalences,
viz., strong bisimilarity and idempotence-identifying bisimilarity, the latter being
a subtle adaptation of bisimilarity for equation systems which has, to the best
of our knowledge, no natural counterpart in other domains.

3.1 Strong Bisimilarity

Strong bisimilarity (hereafter referred to as bisimilarity) for equation systems
is inspired by the corresponding notion in domains such as process theory and
modal logic. While bisimilarity has never been defined for equation systems, it
is somehow known in the related framework of Parity Games, see [4].

Definition 7. Let E , E ′ ∈ B. A relation R ⊆ bnd(E) × bnd(E ′) is said to be a
bisimulation if, whenever X R Y , then:
– rank(X) = rank(Y );
– op(X) = op(Y );
– for all U ∈ occ(X), there is a V ∈ occ(Y ), such that U R V ;
– for all V ∈ occ(Y ), there is a U ∈ occ(X), such that U R V .

We say equations for X and Y are bisimilar, denoted X ∼ Y , if there exists a
bisimulation relation R such that X R Y ; we say E and E ′ are bisimilar, denoted
E ∼ E ′, if their first equations are bisimilar.

Proposition 1. Bisimilarity is an equivalence relation over B.

Let rhs(X)/R = {[X ′]/R | X ′ ∈ rhs(X)} denote the set of classes [X ′]/R in the
right hand side of X with respect to a relation R. Note that bisimilarity ∼ is the
union of all bisimulation relations, and, as such, is again a bisimulation relation.
Bisimilarity can be used to minimise an equation system via quotienting. This
is achieved by constructing an equation for each equivalence class, using both
the rank and the logical operand of the equivalence class as building blocks.
Observe that each pair of bisimilar equations σX = f and σ′X ′ = f ′ satisfies
rank(X) = rank(X ′) and op(f) = op(f ′).

Definition 8. Let E ∈ B. The quotient of E, denoted E/∼ is an equation system
consisting of equations σiCi = fi, for i ∈ [1..n], where:
– Ci ∈ bnd(E)/∼, i.e., each Ci ⊆ bnd(E) is exactly one equivalence class of E;

– Let X ∈ Ci and set F
Δ= rhs(X)/∼.
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• In case op(X) =
∧

, set fi
Δ=

∧
F ;

• In case op(X) =
∨

, set fi
Δ=

∨
F ;

• In case op(X) = ⊥, set fi
Δ= Cj, where Cj ∈ F ;

– Order equations such that Ci � Cj iff there is some X ∈ Ci such that for
all X ′ ∈ Cj, rank(X) � rank(X ′) and X � X ′ in E.

Note that the above construction satisfies that E ∼ E/∼ for arbitrary E ∈ B.

Theorem 1. The relation ∼ is strictly finer than ≡.

Note that strictness follows from the fact that (νX = Y ) (μY = X) ≡ (νX ′ =
Y ′) (νY ′ = X ′), but not (νX = Y ) (μY = X) ∼ (νX ′ = Y ′) (νY ′ = X ′). As an
illustration of our minimisation techniques, consider the following example.

Example 1. Consider the Labelled Transition System given below:

s0

s1

s2

s3

s4

s5

s6

a

a

b

b

a

a

b

b

a

a

The equation system encoding s0 |= νX.[a]μY.〈b〉(Y ∨X), and its dependency
graph are as follows (see, e.g., [9] for the encoding of the modal μ-calculus model
checking problem into BES).

(νXs0 = Ys1 ∧ Ys2)

(νXs3 = Ys4 ∧ Ys5)

(νXs6 = Ys4 ∧ Ys5)

(μYs1 = Ys3 ∨ Xs3)

(μYs2 = Ys3 ∨ Xs3)

(μYs3 = Ys3 )

(μYs4 = Ys6 ∨ Xs6)

(μYs5 = Ys6 ∨ Xs6)

(μYs6 = Ys6 )

Xs0
0, ∧

Ys1
1, ∨

Ys2
1, ∨

Ys3
1, ⊥

Xs3
0, ∧

Ys4
1, ∨

Ys5
1, ∨

Ys6
1, ⊥

Xs6
0, ∧

Minimising the equation system module strong bisimulation leads to the follow-
ing equation system; its associated dependency graph is depicted next to it.

(νXs0 = Ys1 ∧ Ys1)

(μYs1 = Xs0 ∨ Ys3)

(μYs3 = Ys3)

Xs0
0, ∧

Ys1
1, ∨

Ys3
1, ⊥

Compared to the original equation system, the minimised equation system is
roughly 65% smaller. Observe that in both the original equation system and the
reduced equation system, the solution to Xs0 is the same, which follows from
the fact that both are bisimilar. ��
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3.2 Idempotence-Identifying Bisimulation

The definition of a quotient for bisimilarity is rather awkward, as equations of
the form σX = X ′∧X ′′, or σX = X ′∨X ′′, with X ′ ∼ X ′′ cannot be minimised
further to σX = X ′ (see also the example in the previous section); doing so
nevertheless would change the operand of the equation, leading to a violation
of E ∼ E/∼. From a logical viewpoint, it does not make sense to discriminate
between these equations. We observe that a logical operand of an equation is only
of importance when it is applied to proposition variables from distinguishable
classes; in any other case, the bisimulation relation should be oblivious to the
logical operands. These considerations lead us to consider a weaker definition
of bisimilarity, called idempotence-identifying bisimilarity, which appears to be
more natural in the setting of equation systems.

Definition 9. Let E , E ′ ∈ B. A relation R ⊆ bnd(E) × bnd(E ′) is said to be an
idempotence-identifying bisimulation if, whenever X R Y , then:
– rank(X) = rank(Y );
– if op(X) �= op(Y ) then for all U ∈ occ(X) and V ∈ occ(Y ): U R V ;
– for each U ∈ occ(X) there is a V ∈ occ(Y ) such that U R V ;
– for each V ∈ occ(Y ) there is a U ∈ occ(X) such that U R V .

We say equations for X and Y are idempotence-identifying bisimilar, denoted
X ∼ii Y , if there is an idempotence-identifying bisimulation relation R such that
X R Y ; we say E and E ′ are idempotence-identifying bisimilar, denoted E ∼ii E ′,
if their first equations are idempotence-identifying bisimilar.

Proposition 2. Idempotence-identifying bisimilarity is an equivalence relation
over B.

Quotienting, based on idempotence-identifying bisimulation, requires a subtle
modification of the quotienting for bisimulation. In case we are constructing an
equation σiCi = fi, where Ci is again the equivalence class of a set of bisimilar
equations, fi is defined as Cj in case rhs(Xi)/∼ii

= {Cj} for all Xi ∈ Ci. In
particular, this avoids introducing awkward equations such as σiCi =

∧
{Cj}.

All other cases are in full agreement with Def. 8. Note that E ∼ii E/∼ii
.

Theorem 2. We have:
1. the relation ∼ is strictly finer than ∼ii;
2. the relation ∼ii is strictly finer than ≡.

The following proposition demonstrates that idempotence-identifying bisimilar-
ity and solution equivalence sometimes coincide.

Proposition 3. Let E ∈ B be of the form E0E1E2, with E1 ∈ B. Suppose for all
X, X ′ ∈ bnd(E1), we have rank(X)=rank(X ′). Then E1/∼ii

= E1/≡.

In words, closed sub-equation systems consisting of equations all of the same
rank, can be reduced to a single equation. A special case is when E0 = E2 = ε, in
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which case the closed equation system E1 reduces to a single equation. Note that
the above result does not hold in the bisimulation setting. In particular, the above
result shows that idempotence-identifying bisimilarity can yield a substantially
greater reduction, by an arbitrarily large factor, than bisimilarity. The following
example illustrates that the same holds when comparing bisimilarity at a process
level to idempotence-identifying bisimilarity.

Example 2. Let N be an arbitrary positive number. Consider the process de-
scribed by the following set of recursive processes (using process algebra style
notation):

{S =
∑
{a ·X(n) | n � N}, X(0) = a.X(0)+ b.X(0), X(n+1) = b.a.X(n)}

A visualisation of S for N = 3 is depicted at the right; S consists of 2(N + 1)
states, which cannot be minimised further using strong bisimilarity. Define
the following μ-calculus formula φ

Δ= νY.〈a〉([a]false ∧
νZ.〈b〉〈a〉Z). The equation system E , encoding S |= φ has
N +1 equations. E is closed and each of its equations has
rank 0. Following Proposition 3, quotienting of E yields
the equation system νX = X , for arbitrary N . Note that
one could reduce the labelled transition system (LTS) un-
derlying S with respect to trace equivalence, yielding an
LTS of size 2, which, however, no longer satisfies φ. This

0

s 1

2

3

a

a

a

a

a, b

b

a

b

ab

a

is, of course, in general the case, as no process equivalence weaker than strong
bisimilarity preserves the full modal μ-calculus. ��

3.3 Decidability

We can use variations of the well known partition refinement algorithm by Paige
and Tarjan [11] for deciding both strong bisimilarity and idempotence-identifying
bisimilarity, running in O(m log n) time. This algorithm iteratively refines the
partitioning given a splitting criterion, where a block is split iff there are two
equations that are not equivalent. Equivalence of two equations σX = f , σ′X ′ =
f ′ given a current partitioning P is decided by the predicate Eq∼(P, X, X′) for
strong bisimulation and Eq∼ii(P, X, X′) for idempotence-identifying bisimulation,
where Eq is defined as follows.

Eq∼(P, X, X′) Δ= rank(X) = rank(X ′) ∧ rhs(X)/P = rhs(X ′)/P

∧ op(f) = op(f ′)

Eq∼ii(P, X, X′) Δ= rank(X) = rank(X ′) ∧ rhs(X)/P = rhs(X ′)/P

∧ (|rhs(X)/P | = 1 ∨ op(f) = op(f ′))

That is, in the case of strong bisimulation two equations are equivalent if their
ranks and Boolean operators match, and their right-hand sides contain the same
classes, whereas for idempotence-identifying bisimulation the requirement for
having the same Boolean operators is lifted in case both equations have only one
equivalence class in their right-hand sides.
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4 Experiments

To test the effectiveness of the two minimisations introduced in the previous sec-
tion, intended mainly to increase efficiency of solving equation systems resulting
from typical verification problems, we ran a large set of verification experiments
consisting of model checking and process equivalence checking problems. We
present a representative selection of the experiments that we have carried out;
an exhaustive listing of our results can be found in [8].

Setup. All experiments were run on a workstation consisting of 8 Dual Core1

AMD Opteron(tm) Processors running at 2.6Ghz, with 128Gb of shared main
memory, running a 64-bit Linux distribution using kernel version 2.6.24. We
adapted an off-the-shelf, competitive C implementation by Blom and Orzan [13]
for computing the bisimulation minimisations for LTSs, such that bisimulation
and idempotence-identifying bisimulation for BESs can be computed efficiently.

The BESs were solved using a development version of PGSolver tool [3].2 The
timings we report have been obtained using the bigstep [14] algorithm, enhanced
with a set of heuristics for speeding-up the algorithm, as well as without these
enhancements. Note that bigstep outperformed the Small Progress Measures
algorithm in all our experiments; both are state-of-the-art algorithms for Parity
Games. All BESs were generated from parameterised Boolean equation systems
using the mCRL2 tool suite3, without generating state spaces first.

4.1 Process Equivalence Experiments

We consider the problem of deciding branching bisimilarity between two pro-
cesses, encoded as PBES [1]. As input to the equivalence checking problems, we
used four descriptions of well-studied communications protocols, viz., the one-
place buffer (OPB), two variations of the Alternating Bit Protocol (ABP) and the
Concurrent Alternating Bit Protocol (CABP). For each protocol, we varied the
size of the set of messages M that could be exchanged from |M | = 1, 2, 4, 8, 16, 32.
Table 1 shows (1) the size of the original BESs in SRF, and (2) the size after
reduction using ∼ and ∼ii. Note that both reductions are capable of eliminating
the dependency on |M |. The speedups in solving the BESs that we observed are
comparable to the results of Section 4.2, and omitted for brevity.

4.2 Model Checking Experiments

A second batch of experiments is conducted using problems stemming from the
μ-calculus model checking problem. We report on our experiments using two
complex communications protocols, viz., the Onebit Protocol (OP) and a Slid-
ing Window Protocol with window size 2 (SWP2). We check for the validity

1 Note that none of our experiments employ dual-core features.
2 Obtained from Oliver Friedmann through private communication.
3 See http://www.mcrl2.org, revision 6175 (release branch).

http://www.mcrl2.org
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Table 1. Sizes of BESs encoding the branching bisimulation verification problem,
before and after applying bisimulation minimisations

BES Size Statistics

BES Size before reduction for |M| = 1, 2, 4, 8, 16, 32 Size after reduction

1 2 4 8 16 32 ∼ ∼ii

ABP1 - ABP2 12,193 24,711 50,755 106,875 235,243 556,491 1,462 1,460

ABP1 - CABP 109,706 238,418 553,394 1,413,554 4,054,706 13,020,338 21,329 21,311

ABP1 - OPB 366 840 2,136 6,120 19,656 69,000 75 74

ABP2 - CABP 148,082 320,378 738,410 1,868,234 5,302,922 16,872,458 21,329 21,311

ABP2 - OPB 482 1,115 2,867 8,315 26,987 95,435 75 74

CABP - OPB 4,922 12,018 33,266 103,986 358,322 1,318,578 1,253 1,253

of five modal formulae of increasing complexity. Solving times for OP are sum-
marised in Figure 2, for SWP2 in Figure 3. For all protocols, we verified absence
of (I) deadlock and (II) livelock, and the possibility to infinitely often (III) re-
ceive a certain message, (IV) receive all messages and (V) receive some message
if it is infinitely often enabled. Statistics about the reductions in size modulo
strong bisimulation and idempotence-identifying bisimulation are summarised
in Table 2.

Table 2. Sizes of BESs encoding the model checking problems, before and after ap-
plying bisimulation minimisations

BES Size Statistics

Model Property Size before reduction for |M| = 2, 3, 4, 5 Size after reduction

2 3 4 5 ∼ ∼ii

OP I 578,050 2,083,394 5,417,986 - 5 2

II 1,100,802 3,933,506 10,172,418 - 8 7

III 619,010 2,179,826 5,603,586 - 26,171 26,171

IV 1,238,023 6,539,482 22,414,349 - 26,174 26,173

V 3,358,981 17,664,522 60,344,071 - 71,206 71,205

SWP2 I 71,090 269,282 728,386 1,614,602 5 2

II 139,698 525,026 1,413,954 3,125,802 2,268 7

III 80,146 291,842 773,890 1,695,082 9,097 9,097

IV 160,295 875,530 3,095,565 8,475,416 9,100 9,099

V 456,037 2,520,258 8,957,959 24,599,908 25,354 25,353

4.3 Discussion

Both strong bisimulation and idempotence-identifying bisimulation minimisa-
tion show a significant reduction in the size of the BESs. In all cases minimising
the BES modulo either of the equivalences and solving the reduced BES outper-
forms solving the original BES. In addition, reducing modulo strong bisimulation
is slightly faster than reducing modulo idempotence-identifying bisimulation in
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our prototype. This is expected to be a consequence of the additional checks
that need to be carried out in an implementation of idempotence-identifying
bisimulation, combined with the small difference in size between the systems
reduced modulo strong bisimulation and idempotence-identifying bisimulation.
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Fig. 2. Timing results for OP; time-out is set to 300 seconds

The graphs of Figures 2 and 3 clearly demonstrate the effect of using bisimu-
lation minimisation prior to solving a BES. They also show the effect of enabling
optimisations in the PGSolver, although the effect is in much less dramatic than
the effect of our minimisations. Based on our experiments we believe that in
practice a bisimulation reduction should be performed prior to solving the BES.
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Fig. 3. Timing results for SWP with buffer size 2; time-out is set to 300 seconds

5 Conclusions

In this paper, we have defined two equivalence relations for BESs, viz., strong
bisimilarity and idempotence-identifying bisimilarity. The former takes inspira-
tion from the definition of bisimilarity in settings such as process theory and
logic. The latter is a modification of strong bisimilarity, leading to an equiva-
lence that is more natural in the setting of equation systems.

Experiments using a prototype implementation for minimising with respect
to our two types of bisimulation indeed confirm that enormous reductions are
quite commonplace. Moreover, our measurements show that it pays to minimise
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before solving: the time required for minimising is more than made up for by
the time gained in solving the minimised equation system.

Several topics remain to be investigated. Among these is the investigation of
weaker equivalence relations for equation systems. Here, stuttering equivalence
serves as a source of inspiration, both because of its attractive computational
complexity, and because of its capability of achieving far greater minimisations
than strong bisimilarity. A related topic that we are currently pursuing is the de-
velopment of proof theory for parameterised Boolean equation systems [5] based
on bisimilarity. We are convinced this will lead to more concise proofs in this
setting.
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Abstract. In recent papers [13,14,15], we demonstrated a methodology
for developing correct-by-design programs from temporal logic specifica-
tion using genetic programming. Model checking the temporal specifi-
cation is used to calculate the fitness function for candidate solutions,
which directs the search from initial randomly generated programs to-
wards correct solutions. This method was successfully demonstrated by
constructing solutions for the mutual exclusion problem; later, we also
imposed some realistic constraints on access to variables. While the
results were encouraging for using the genetic synthesis method, the mu-
tual exclusion example includes some limitations that fit well with the
constraints of model checking: the goal was finding a fixed finite state
program, and its state space was moderately small. Here, in a more real-
istic setting, we challenge the problem of synthesizing a solution for the
well known “leader election” problem; under this problem, a circular,
unidirectional network with message passing is seeking the identity of
a process with a maximal value. This identity, once found, can be used
for synchronization, breaking symmetry and other network applications.
The problem is challenging since it is parametric, and the state space of
the solutions grows up exponentially with the number of processes.

1 Introduction

Automatic synthesis of correct software is a very difficult problem. Pnueli and
Rosner [28] showed that the construction of a distributed implementation from
linear temporal logic specification is, in general, undecidable; with some
constraints on the architecture, the problem becomes highly intractable: nonele-
mentary for a pipeline architecture or one directional ring. Genetic programming
(GP) is a directed search in the space of syntactically fitting programs for a cor-
rect instance in an attempt to synthesizing correct code. Rather than being a
completely comprehensive search, it allows progressing from one version of the
code to another by means of small changes (mutations). It employs some ran-
dom process and the ability to combine portions of code from different versions
together (crossover). It does not commit to a certain path of search for a long
time by abandoning the current search and restarting, and by searching simul-
taneously from different points.
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In [13,14,15] we presented an approach for the genetic construction of pro-
grams given an LTL specification and some structural constraints on the pro-
grams (the allowed constructs, the set of variables and their intended use, the
concurrent architecture). This method was exercised to generate existing and
new solutions for the mutual exclusion problem. This was done by developing a
tool based on our ideas of combining model checking and GP. The tool was fed
with the LTL specification for mutual exclusion and with some structural restric-
tions (e.g., the set of variables that can be used), and automatically generated
programs satisfying those properties.

This classical synchronization problem is a good example of a complicated
task that programmers may find difficult to deal with. Mutual exclusion with
two processes is also a problem that fits well with the natural restrictions of
model checking: it is a finite state problem, with a fixed number of processes,
and the state space of the solutions is rather small. Still, a comprehensive search
for correct solutions takes considerable amount of time [2].

In this paper we want to tackle a more challenging problem, that of finding a
solution to the leader election in a circular (i.e., ring) unidirectional network of
message passing. Under this problem, the processes in the network are collabo-
rating to find the process with the maximal id value. This will allow assigning
that process a special role in future network interactions (e.g., initializing pro-
tocols, breaking ties in votes). This protocol poses several challenges, stretching
the boundaries of using model checking as a method for directing the genetic
process.

Parametric solution. The problem of leader election is parametric, and should
work for any number of processes in a ring. Parametric model checking was stud-
ied extensively. In general, this is shown to be an undecidable problem [1]. Model
checking solutions often include the use of an induction on the number of pro-
cesses [19,32], and involve a manual step of applying the induction. Our solution
involves iterating the model checking on an increased number of processes, de-
pending on the fitness of the solution. This means that for processes that obtain
a higher fitness value, showing a better potential for being in a proximity of
the desired solution, we perform the model checking with a higher number of
processes. This does not guarantee that a given solution works with any number
of processes, and a manual check is still useful after the synthesis is completed.
However, the solution is at least guaranteed to work with up to a large num-
ber of checked processes, hence, being a good candidate for being a parametric
solution.

Exponential blowup of the state space. Performing model checking on the
known solutions for the leader election problem, e.g., as it is done in the stan-
dard examples of SPIN [10], reveals, not surprisingly, that there is an exponential
explosion of the state space with the number of processes. Partial order reduc-
tion [11] can be a big help in taming this explosion. We provide a theoretical
a-priori analysis of the leader election problem, and show that it belongs to a fam-
ily of problems that utilizes a considerable amount of partial order reduction. We
use this observation in our synthesis. On the other hand, there is another source
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of state space explosion; the leader election also belongs to a family of problems
where the executions highly depends on the initial data, i.e., the unique ids of
the processes (we refer here only to leader election algorithms that are based
on comparisons between the ids of the processes). A similar difficulty with the
complexity of model checking, being related to the many cases of values initially
distributed among processes, appears for example in model checking of sorting
algorithms.

Quantitative preference. One of the important criteria for accepting a solu-
tion of the leader election problem is based on the number of messages sent. It
was for many years an open problem whether it is possible to find a solution
where the number of messages sent is in the worst case O(n log n) rather than
O(n2), where n is the number of processes. Since the solution is parametric, we
compare message growth with the number of processes as part of the fitness of
the solution. Moreover, there is a known lower bound of Ω(n log n) messages (see
[26]). These measures are used not only to direct the search towards an efficient
solution, but also to prevent it from solutions that are specific to some particular
sizes of ring.

The rest of the paper is organized as follows. Section 2 gives background on
the leader election problem, and on our previously used combination of model
checking and genetic programming. Section 3 describers the new ideas and en-
hancements that we use for the leader election problem. In Section 4, the exper-
imental results are shown, and Section 5 concludes the paper.

2 Preliminaries

2.1 The Leader Election Problem

The problem of leader election appeared originally in token ring protocols. It is
needed, e.g., when a token circulates in a unidirectional ring of processes with
asynchronous message passing, allowing its owner to initiate various protocols.
However, sometimes the token is lost, requiring the participating processes to
perform some algorithm for obtaining exactly one leader that will finally have
the token. In the leader election algorithms, each process initially owns a unique
id (normally, a small integer). By sending messages, the processes along the
ring decide on one of the processes to be the leader, commonly the process that
initially has the maximal id. We assume that there are no failures in delivering
messages, and that no processes permanently fail during the algorithm.

A solution with O(n2) messages was given by Le Lann [21], and optimized by
Chang and Roberts [3]. A solution with O(n log n) messages in the worst case
was given by Dolev, Klawe and Rodeh [5], as well as by Peterson [26].

2.2 Model Checking Based Genetic Programming

Genetic Programming [18] is a method for the automatic synthesis of computer
programs by an evolutionary process. It searches through the state space of well
formed programs, syntactically restricted by the problem statement (e.g., having
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a certain number of variables or communication patterns). The search starts
with some randomly generated programs, and progresses, guided by calculating
a fitness value for the generated candidates. The fitness value is used for selecting
candidates that will be mutated or merged between one step of the search and
the next one. The fitness function is usually calculated based on some given
scenarios or test cases.

The programs we generate are represented using syntactic trees, where each
node represents a syntactic object, i.e., a segment of the program, a constant or
a variable. This allows performing the different mutations on the nodes: Dele-
tion, Insertion, Replacement and Reduction [13]. These mutations may require
completing the code into a syntactically correct program. For example, when a
node representing a loop is created, a subtree that includes the loop condition
and the loop body must also be generated.

The crossover operation allows picking up sections from several candidates and
gluing them together, again maintaining the syntactic correctness. In our system,
we currently do not use the crossover operation. While being a powerful operator,
it is sometimes debatable in the GP community, and some works indicate that
good results can be achieved even when using only the mutation operation [4].

The GP algorithm we use in this work progresses through the following steps.
We first create an initial population of candidate solutions. Then we randomly
choose a subset of μ candidates. We create new λ candidates by applying muta-
tion (and, optionally, crossover) on the above μ candidates. The fitness function
for each of these candidates is calculated, and only μ candidates from the com-
bined set of the λ new candidate and the original μ candidates are selected
proportionally to their fitness. The selected candidates then replace the μ can-
didates originally selected. This is repeated until a perfect candidate is found,
or until the maximal permitted number of iterations is reached.

Johnson [12] suggested the use of temporal logic for calculating the fitness,
based on the number of properties that hold for the candidate solution. We
suggested the use of fine-grained model checking analysis [13,14,15], which does
not only allow checking whether temporal properties hold or fail, but provide
some intermediate possibilities.

The temporal properties are specified using Linear Temporal Logic (LTL) [27].
The syntax of LTL is defined over a finite set of propositions P , with typical
element p ∈ P , as follows:

ϕ ::= true|p | ϕ ∨ ϕ | ¬ϕ |Xϕ | ϕ U ϕ (1)

Let M be a finite structure (S, s0, E,P , L) with states S, an initial state s0 ∈ S,
edges E ⊆ S × S, a set of propositions P , and a labeling function L : S �→ 2P .
For simplicity, we assume that each state in S has a successor. This can be forced
by adding to each state without successors a self loop, marked with a special
symbol ε. A path in S is a finite or infinite sequence 〈g0g1g2 . . .〉, where g0 ∈ S
and for each i ≥ 0, giEgi+1. An execution is an infinite path, starting with
g0 = s0. Sometimes executions are further restricted to satisfy various fairness
assumptions.
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We denote the ith state of a path π by πi, and the suffix of π from the ith
state by πi. The LTL semantics is defined for a suffix of an execution π of M as
follows:
π |= true.
π |= p if p ∈ L(π0).
π |= ϕ1 ∨ ϕ2 if either π |= ϕ1 or π |= ϕ2.
π |= ¬ϕ if it is not the case that π |= ϕ.
π |= Xϕ if π1 |= ϕ.
π |= ϕUη if there exists some i such that πi |= η and for each 0 ≤ j < i, πj |= ϕ.

We say that a structure M (or the corresponding program that is modeled
as M) satisfies ϕ if for each execution π of M , π |= ϕ. We use the logical
connections to define additional temporal operators, e.g., ϕ1 → ϕ2 = (¬ϕ1)∨ϕ2,
ϕ1 ∧ ϕ2 = ¬((¬ϕ1) ∨ (¬ϕ2)), �ϕ = trueUϕ, �ϕ = ¬�¬ϕ, etc.

The fitness calculation is based on the following ideas. According to LTL, a
property ϕ has a universal flavor: a program satisfies a property if all of its exe-
cutions satisfy it. Traditional LTL model checking [22,31] translates the negation
of the specification property, ¬ϕ, into a Büchi automaton or a similar structure.
The intersection of this automaton and one that represents the state space can
be searched (e.g. with a variant of Depth First Search [9]) to look for a path rep-
resenting an execution of the program satisfying ¬ϕ. If the intersection is empty,
the property ϕ is satisfied by the candidate program. This gives the highest fit-
ness level with respect to ϕ (denoted level 3). If this does not hold, it is possible
to check whether none of the executions, or some of them, do satisfy ϕ. This is
done by translating ϕ into an automaton and checking the intersection as above.
Then the program is assigned lower fitness levels 0 or 1 respectively.

Another intermediate level of satisfaction (level 2) is considered. Accordingly,
although there are some executions that do not satisfy the given property, each
prefix of such an execution can be completed into an execution of the candidate
program that does satisfy the property. In [13], a dedicated algorithm for this
level of satisfaction was used. In [23], a formalism that takes an LTL specification
and use it for quantifying over paths was presented. This can, in particular,
capture all the levels of satisfactions described here. A generic model checking
algorithm for this formalism was given. The intuition behind that algorithm
is that one may need to know at various points in the execution whether the
execution so far can be extended into one which satisfies, from its beginning,
the property ϕ or ¬ϕ. To do that, one needs to record at each point of the
execution the various states of the Büchi automaton representing the checked
property ϕ that are currently possible. If this automaton is nondeterministic,
there can be more than one such state. This makes the analysis exponentially
more difficult than simple model checking, in the size of the checked property,
and the complexity grows from PSPACE to EXSPACE. Fortunately, this growth
is only in the size of the LTL specification, which is typically rather small, and
not in the size of the checked system.
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In addition to the correctness criteria required by the programming problem,
there can be some quality criteria. This can involve the size of the program, and
limitations on the number of access to variables (e.g., number of accesses before
entering a critical section), or messages sent, as will be demonstrated later.

The requirements from the program are not only restricted to linear temporal
logic formulas. In fact, there are also some important structural restrictions. This
includes, for example, the number of variables per each process, and their use
(shared read or write by other processes), and the communication structure.

3 Generating Parametric Programs

In previous papers, we described the basic method of combining genetic program-
ming and model checking, and used the problem of mutual exclusion between
two processes as a case study. After rediscovering the classical known solutions
[13], we added some more practical structural requirements on the use of vari-
ables, and discovered small improvement to current, non-trivial solutions [14].
Using two-process mutual exclusion as a target for code synthesis enjoys several
advantages. It is a well defined problem, with a standard specification. The state
space of this problem is not very large. This is important for our method and
tool, since model checking is performed on many (thousands or more) candi-
dates, not just one program. Finally, the constructed program is a finite state
program. This is the case where model checking is decidable, and, combined
with the small state space, even efficient. The deeper model checking analysis
has a higher complexity than standard model checking in terms of the checked
property, but since we use rather small specification, this is still manageable.

Encouraged by the results of our experiments, we were motivated to apply
our method to some more challenging synthesis problems, e.g., parametric ones.
Then the finite state assumption needs to be abandoned. Although one may
sometimes view a computer as a finite state system, this is not the standard way
to think about algorithms. Numerical algorithms may perform on a computer
with a bounded word size, but they are designed to work also on computers
with any word size. Moreover, this finite state assumption does not hold when
considering algorithms that work on constantly changing network architecture
(such as the Internet), or algorithms that work on arrays of various sizes, such as
sorting. For these cases, the finite state view can help verify just an instance of
the problem, certainly not the complete algorithm. The problem of verification
of infinite state space is in general undecidable. So is the problem of verifying
parametric systems, as shown by Apt and Kozen [1] for cyclic parametric net-
works, and for the unidirectional cycle by Suzuki [30]. There are a lot of model
checking techniques for infinite state systems. But only very few of them pro-
vide a complete automatic decision procedure for some well defined cases; these
includes, most notably, a model checking decision procedure for pushdown au-
tomata and for Presburger arithmetic [24]. Other analytical methods, such as
abstraction and induction can be quite effective in many cases, but often require
human intervention.
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For the case of unidirectional rings, Emerson and Namjoshi [7] showed how, for
properties that are symmetric in a fixed number of processes, the parametrized
model checking problem can be reduced to that of checking only a small number
of symmetric processes. Emerson and Kahlon [6] suggested a useful framework
for parametrized model checking of rings with tokens passing, allowing changes
to the tokens values. They proved that when some limitations are imposed on
the tokens and possible transitions, the problem can be reduced to the verifica-
tion of a small number of processes. The framework was used for verifying the
Le Lann Leader election protocol [21], but the limitations rule out the verifica-
tion of more advanced leader election algorithms, such as Chang and Roberts’
improvement [3] or Peterson’s algorithm [26].

The challenge we took is to synthesize solutions for the problem of leader
election in a ring topology. This is a parametric problem: the number of processes
is not fixed. Moreover, the state space of this problem grows exponentially with
the number of processes involved. In addition to the state space explosion due to
concurrency, there is an additional complication of a state space explosion due
to the data. Even if the given values that the processors posses are restricted to
be between 1 and n, the number of processes, there are still (n− 1)! possibilities
to allocate them in a ring. The structure of this problem is thus related to other
problems that are parametric in nature, such as concurrent sorting.

3.1 State Space Reduction

State space explosion is a central problem for model checking. There are a
large number of suggested solutions. However, the problem of model checking is
PSPACE-complete in both the size of the LTL specification and the size of the
code [29]. Many model checking algorithms that attempt to combat the state
space explosion work well in practice in many cases, but do not guarantee to
work efficiently for every case. The problem of leader election may give rise to
an exponential growth of the state space in the number of processes. The state
space explosion is even more problematic for our goal of using model checking
as a procedure for genetic programming; model checking is then performed on
tens of thousands of candidate solutions.

Model checking of the solution to the leader election in [5] can be done with
SPIN [10]. One example is included with the standard distribution of the tool.
SPIN performs this algorithm quite efficiently with its built-in partial order
reduction, described in [11]. The growth in space is linear in this case. Without
partial order reduction, the state space grows exponentially with the number of
processes. SPIN distribution includes other two examples that share the same
behavior: the Sieve of Eratosthenes, for calculating concurrently prime numbers
and concurrent sorting.

The reason for this optimal behavior of the partial order reduction is that
these problems have a special structure. The processes run in a distributed way,
without shared variables, but with message passing. In addition, the only non-
determinism is resulted from concurrency. The communication structure is fixed
as a pipeline, and messages progress in one direction, without the possibility of
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overtaking messages. The idea behind the partial order reduction is that many
executions are equivalent up to commuting the order of independent (concurrent)
transitions; when the specification cannot distinguish between such executions,
it is sufficient to check representatives for all the equivalence classes. Under
the above restrictions for a given distribution of ids, there is, in fact, only one
equivalence class per initial state.

In our model, there are only transitions local to a process and asynchronous
(buffered) communication between adjacent processes of the ring in one direc-
tion. Specifically, a local transition can be commuted with any other transition
of other processes. Two communication transitions that do not involve the same
process, can also be commuted. Perhaps less obviously, but as in the theory of
conditional independence [16], and as used in partial order reduction [11,8], a
send and a receive involving the same queue can also be commuted. When both
a send and a receive of the same queue are enabled (when the message queue
is neither empty, nor full), we will prefer to execute the receive first, resulting
in smaller buffers. The scheduling we will use for model checking will thus give
priority to executing the local transitions until there is only a communication
transition enabled.

Based on this analysis, we implemented in our tool a technique that is related
to the partial order reduction algorithms by Overman [25] and Lamport [20]. In
generating the state space for the leader election problem, a communication is
followed by a maximal finite sequence of enabled transitions together as a large
atomic action, and preferring a receive action on a send from the same buffer.

The above analysis is done for a particular set of initial distribution of ids
to the different processes, or, equivalently, different initial states. Note that the
SPIN example for leader election actually runs with only one initial assignment
of values. In practice, there is an exponential number of ways to distribute n
numbers into n processes on a ring (in fact, exactly (n− 1)! ways). We can use
one representative execution sequence per each initial distribution. However, the
partial order reduction does not assist in reducing the complexity due to the
initial distribution of values. The same observation applies to the concurrent
sorting example, which is checked for a particular arrangement of values.

There are several subtle points that need to be mentioned. The syntactic
restriction of the generated candidates is a part of our methodology. Synthe-
sizing code for the mutual exclusion problem, which we performed in [13,14],
was restricted to programs with shared variables, and in fact to a particular set
of variables. In the leader election case, the coordination between processes is
through message passing. The fact that it is enough to check only one represen-
tative execution sequence per initial distribution of ids, and that either, all such
equivalent executions satisfy the specification, or all of them do not satisfy it,
also means that one of the fitness levels that we use for ranking the candidate
solutions (level 2 described above) is redundant: there are no prefixes of a bad
execution that branch into a good execution. This is a bit unfortunate, since the
finer analysis was shown to be useful for the convergence of the genetic process.
On the other hand, level 2 was the reason that the model checking analysis was
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in EXPSPACE in the size of the LTL specification [23], rather than PSPACE,
as in classical model checking [29]. Thus, when removing this level, we make the
model checking more efficient.

3.2 Convergence for Parametric Problems

Perhaps the main problem in model checking based genetic programming is to
make the process converge into an acceptable solution. The genetic programming
process is probabilistic; it involves generating some random instances, and also
the possibility of abandoning the solution and starting from scratch. However,
if this process is repeated many times without convergence, we are seeking to
change the parameters of the fitness function that directs the search. At this
point of the research, we are interested in fine tuning the search through changing
various parameters. This includes adding specification properties; even if they
are implied by already existing specification. This can help in generating more
intermediate levels of fitness and help towards convergence. Another possibility
is changing the distribution of the fitness levels between properties and levels of
satisfaction (when the property is satisfied by some executions but not all).

In the leader election problem, the convergence was experienced to be more
difficult than in our previous experiments with synthesizing mutual exclusion
protocols. The problem is, by definition, parametric. We do not have any com-
pletely automatic procedure to check for correctness with respect to any number
of processes. The model checking of a specific configuration (i.e., number of
processes, and the order of their ids), uses a specification with only a few prop-
erties. In fact, since our syntax allows processes to announce leadership, but not
to retract it, the following single LTL property will suffice:

��(NumberOfLeaders = 1)

While this may be desirable from the verification point of view, it poses a major
difficulty for a gradual progressing process such as genetic programming. There-
fore, our first task was adding more properties, even if they can be implied by
the above single property. An example for that, is splitting the property into
two properties - a safety property asserting that the number of leaders never
exceeds one, and a liveness property assuring a leader will eventually be elected
(see Table 1). This can guide the search into programs satisfying only one of the
properties at a first stage, and then progressing into a solution satisfying both.

One of the methods for achieving gradual improvement that we have used in
[13,14] was the ranking of properties by different levels of fitness. As shown in the
previous section, our leader election programs are treated as having only a single
execution per each initial distribution of ids, which turns the above analysis to be
irrelevant, and hence removes the useful fitness level 2, which we used in previous
work. However, another source for multiple executions in our case stems from the
initial possible distributions of ids between the processes. Even when restricting
ourselves to a fixed number of n processes, a complete verification must check all
of the (n−1)! possible permutations of initial ids. Machine Learning techniques,
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and GP usually cope with such parametric problems by selecting (explicitly, or
randomly) a set of configurations which are used as test cases. The main risk
with this strategy is over-fitting, i.e., a convergence into solutions that perfectly
satisfy all of the test cases, but are not general, and therefore, do not satisfy other
unchecked cases. Our experiments for the leader election problem indeed showed
that when checking only several permutations of ids, the search has frequently
led into specific, non-general solutions. This was true even when more than a
half of the permutations were checked.

Therefore, we check all of the possible permutations for a fixed number of
processes. Due to the fast model checking technique used (only one execution
path is checked for each nodes permutation), this could be easily done even for
six processes, where the number of permutations is (6 − 1)! = 120. Yet, this
does not mean that programs at early stages of the search must satisfy all of the
permutations at once. One common technique is to use the number of satisfied
permutations as a part of the fitness score. However, we chose to use a more
qualitative measure by considering only three cases:

– None of the permutations satisfies the property,
– Some of the permutations satisfy the property, but others do not,
– The property is satisfied by all of the permutations.

These fitness levels are in some sense identical to three out of the four fitness
levels we have used in [13] although in our case, the source for various execu-
tions is the initial configuration, rather than the nondeterminism of processes
scheduling.

Even though this technique increased the rate of convergence into good solu-
tions, there were still cases of generated algorithms which behaved perfectly on
configurations with up to n processes, but failed on configurations with a larger
number of processes. In order to overcome that, we used additional special prop-
erties. These properties are not directly implied from the standard leader election
properties, but they hold for any parametric solution. Followed are the properties
we used:

1. A process cannot declare a leadership without first considering the values of
all other processes. It does not mean that the process itself has to make all of
the comparisons by itself; it can rely on the information gathered by processes
preceding it in the ring. However, the chain of decisions must include all of
the processes. Otherwise, it necessarily means that the process ignored at
least one process while making its decision. Therefore, if the ignored process
has the maximal id, the algorithm was wrong.

In order to verify this property, we add a history local variable to each
process, which stores the number of preceding processes in the ring, whose
values the process could consider so far. This variable is initially set to zero
for each process. When sending a message, the sender attaches its local vari-
able to the sent message, and the receiving process sets its history variable
to min(msg.history + 1, n), where msg.history is the variable attached to
the received message, and n is the number of processes in the ring. Since
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information can only flow unidirectionally through a set of successive pro-
cesses, the value of history can only be monotonically increased. For our
needs, its maximal value can be bounded to n. This variable is a function
of the history of the computation, and is not a part of the resulted code. In
particular, there are no decisions in the program that depend on the value
of this variable. It is merely used for the purpose of verification. Then, if a
processes p announces itself as a leader, the following proposition must hold:
p.history = n.

2. The lower bound for the number of messages a leader election algorithm
must send in the worst case is Ω(n log n) (see [26]). While this bound is
asymptotic and hence difficult to check explicitly, we can conclude that at
least one process must send a non-constant number of messages; otherwise,
the total number of message is at most O(n). Since the algorithm has to
deal with any number of processes, we deduce that it must contain a loop
that contains an instruction for sending a message (if not, the number of
sent messages is bounded by the program length).

This property is somewhat nonstandard. We cannot directly capture this
with a particular LTL property. To capture it, we recorded during the model
checking search each occurrence of a “Send” transition with its executing
process and location counter of that process, ignoring all other state vari-
ables. If such a transition is repeated, then at least one process executes a
loop with messages sending. Note that this test is a necessary, but not a
sufficient condition, since it only verifies that the loop is executed at least
twice.

Another classical way of encouraging general solutions is to define a secondary
measure that increases the program’s score as its size decreases. This measure
was successfully used in all of our works, and in many others as well ([17], for
instance).

A more advanced measure regards the message complexity. Historically, the
worst and average case message complexities of the published leader election
algorithms were improved from O(n2) [21] to match the known lower bound,
achieving complexity of O(n log n) [5,26], and then further improvements were
made to the constants in the complexity formulas. The worst case message com-
plexity of our algorithms was calculated by summing the “Send” transitions
during the execution path of each permutation, and choosing the biggest sum
among them. However, the asymptotically faster algorithms may be actually
slower when running on small number of processes. For instance, Peterson’s basic
algorithm [26] requires 2n � log n�+n messages in the worst case, which overtakes
Chang and Roberts’ algorithm [3] of n(n+1)

2 messages only for n ≥ 14 processes.
In order to focus on the general behavior of the algorithms, we calculated the
complexity for several successive n′s, and then used the difference between the
results as a measure; this is because the rate of growth of the asymptotically
better complexity is smaller (which provides a better fitness value) even for a
small value of n. This allows to prefer O(n log n) over O(n2) algorithms.
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4 Experimental Results

We extended our previously developed tool [13,14] in order to support the new
features described throughout this article. Table 1 depicts the properties and
measure that were checked. The following building blocks were available for the
generated programs:

– UID - a constant with a different value for each process.
– R,S,T - three local variables for each process.
– Assignment instructions.
– Boolean conditions based on comparisons between variables and constants,

the True and False literals, and the Or and And operators.
– If conditions, and While loops.
– Send(val) - sending the value val to the next process in the ring.
– Receive(T) - receiving a value from the previous process in the ring into

the variable T.
– AnnounceLeader(val) - allows a process to announce a leadership with the

maximal value on the parameter val. The process then enters an infinite
loop. The announcement increases by one the value of the global variable
NumberOfLeaders.

Table 1. Leader Election Specification

No. Definition Remarks
1 �¬ (NumberOfLeaders > 1) Safety
2 �� (NumberOfLeaders > 0) Liveness
3 Leader.value = n Leader holds max value
4 Leader.history = n Leader’s decision may be sound
5 For i = 1..n, ��(Pi.buffer is empty) All message buffers are finally empty
6 Minimize program’s size Secondary measure
7 Minimize worst case complexity Secondary measure

The tests were run on a PC with an Intel 3GHz processor. At each run, a
population size of 100 programs was randomly generated, and evolved until either
a perfect solution was found, or a large number of iterations was executed without
a fitness improvement. Most of the runs started by finding an idle program that
trivially satisfies the safety property 1, or the one-lined program

AnnounceLeader(UID)

which satisfies property 2. On many runs, the following program was discovered
next:

Send(UID)
Receive(R)
if (R < UID)

AnnounceLeader(UID)
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This is the simplest program during the genetic process, that has discovered the
idea of electing a leader by some message passing and comparison. For all per-
mutations, at least one leader is elected (thus fully satisfying property 2), and for
most permutations, even more than one. However, since there is a permutation
for which exactly one leader is elected (the one where the values of processes are
descendingly ordered), the program also partially satisfies property 1.

Many runs successfully converged into perfect solutions. The following solu-
tion sends n2 message in the worst case, as in Le Lann’s algorithm [21]. However,
this algorithm discovered a technique used by more advanced algorithms, that
allows a process to become a relay process by just passing messages.

While (True)
Send(UID)
Receive(R)
if (R >= UID)

While (R != UID)
Receive(R)
Send(R)

AnnounceLeader(UID)

Another algorithm was found which is identical to the one of Chang and
Roberts [3], and sends n(n+1)

2 messages in the worst case:

Send(UID)
While (S != UID)

Receive(S)
if (S > UID)

Send(S)
AnnounceLeader(UID)

At this point in our experiments, the genetic process has not yet discovered any
efficient solution of message complexity O(n log n).

5 Conclusions

Synthesizing correct-by-design algorithms is a challenging task. The combination
of model checking and genetic programming presented in [13,14,15] was shown
successful for synthesizing solutions for a problem that is both a classical finite
state problem, and of typically small state space. Handling programming prob-
lems with a large or infinite state space is difficult for model checking, and even
more so for a method that uses model checking as a subroutine that is called
thousands of times. Still, from a practical point of view, we wanted to tackle a
nontrivial problem that is both parametric and, by being highly concurrent, of
state space that is growing exponentially. The classical problem of leader election
was chosen to demonstrate our ideas.
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We did not find any of the many solutions for model checking of infinite state
space sufficiently general to be used as a building block for our tool. Thus, our
solution was to apply model checking of instances of the leader election in an
incremental way, for a number of processes that grows with the fitness level of the
candidate solution. This does not guarantee correctness for an unbounded ring
size, but provides a large confidence, when the instance size grows considerably.
The state space explosion was handled here using a method that is related to
partial order reduction. These solutions are not as generic as we would have liked
for the synthesis of large or infinite state space. We consider them as practical
building blocks that demonstrate the power of the model checking based genetic
programming approach.

For the problem of leader election, we found the problem of converging the
genetic search highly challenging. Since the problem is parametric and because of
the approach of enlarging the number of processes that we check with the fitness
level, we quickly learned that the algorithms constructed tend to be specific for
some ring sizes. To generate a solution for unbounded rings, we had to use not
only linear temporal logic properties, but additional structural checks based on
lower bounds on the number of messages passed by the algorithm.

Experimentally, our tool was able to find some solutions and building blocks
for the leader election, in particular, those with O(n2) messages.
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Abstract. Points-to analysis for Java infers heap objects that a refer-
ence variable can point to. Existing practiced context-sensitive points-to
analyses are cloning-based, with an inherent limit to handle recursive
procedure calls and being hard to scale under deep cloning. This paper
presents a stacking-based context-sensitive points-to analysis for Java, by
deriving the analysis as weighted pushdown model checking problems. To
generate a tractable model for model checking, instead of passing global
variables as parameters along procedure calls and returns, we model the
heap memory with a global data structure that stores and loads global
references with synchronized points-to information on-demand. To ac-
celerate the analysis, we propose a two-staged iterative procedure that
combines local exploration for lightening most of iterations and global
update for guaranteeing soundness. In particular, summary transition
rules that carry cached data flows are carefully introduced to trigger
each local exploration, which boosts the convergence with retaining the
precision. Empirical studies show that, our analysis scales well to Java
benchmarks of significant size, and achieved in average 2.5X speedup in
the two-staged analysis framework.

1 Introduction

The notion of context-sensitivity bears a similarity to inline expansion, as if
method calls are replaced with bodies of the callees. As such, the typical cloning-
based program analysis [17] creates a separate copy of a method call within a
bounded call depth or with collapsing recursive procedure calls. The cloning-
based approach has an inherit limit to handle (recursive) procedure calls. An
alternative to obtaining context-sensitivity in terms of valid call paths is to model
the program’s call stack with the pushdown stack. Since the stack can grow
unboundedly, no restriction is placed on the call depth and recursions. By valid,
it means a procedure call always returns to the most recent call site.

Points-to analysis (PTA) infers the set of heap objects that a reference vari-
able may point to. PTA for Java is featured for being interdependent of call
graph construction, due to dynamic language features like late binding. The long-
standing challenge is to design a scalable yet precise PTA. Context-sensitivity is
shown to be crucial to the precision of PTA for Java. To the best of our knowl-
edge, existing practiced PTA for Java are all cloning-based [17,13]. However,
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empirical study recently shows that, more than one thousand of methods are
typically contained within recursive procedure calls in practice [18], and approx-
imating recursions potentially threatens the analysis precision [6].

This paper presents a stacking-based context-sensitive PTA for Java, by en-
coding the analysis as model checking problems on WPDSs [11]. Our analysis
is context-sensitive, field-sensitive, and flow-insensitive, with the call graph con-
structed on-the-fly. In contrast to the cloning-based approach, there is a single
copy for each procedure in the analysis, while calling contexts are entirely char-
acterized as (regular) configurations over the pushdown stack. Our first step to
scalability is that, instead of passing global variables explicitly as parameters
along procedure calls and returns (that is hopeless to scale from our empirical
study) [10], we model the heap memory with a global data structure during the
analysis, which loads intermediate points-to information of global references, and
stores cached values to global references on-demand when they are referred to
inside procedures. This encoding dramatically reduces the number of pushdown
transitions and generates a tractable model for model checking.

To further accelerate the analysis, we propose a two-staged iterative proce-
dure, denoted by (LE ◦ GU)∗ as opposed to the traditional iterative procedure
denoted by GU∗, which combines local exploration (LE) for lightening most of
iterative cycles and global update (GU) for guaranteeing the completeness. Our
insight is, to localize most of iterative cycles on the partial program models in
LEs, and perform GUs on the entire program model as few times as possible. In
particular, summary transition rules that carry previously computed data flows
are introduced to effectively trigger each LE and boost the convergence. In ef-
fect, the computation of data flows to some program point in the partial program
model is divided into independent phases via frontiers : the computation of data
flows from the program entry to frontiers and the computation of data flows
from frontiers to the concerned program point. By carefully adding summary
transition rules to frontiers, the analysis by (LE◦GU)∗ retains the same precision
as the analysis by GU∗. Empirical studies show that, a substantial speedup in
practice can be achieved by the two-staged analysis.

This paper primarily makes the following contributions.

– We present a scalable stacking-based context-sensitive PTA for Java by
model checking WPDSs, with no restriction on (recursive) procedure calls.

– We propose a two-staged iteration procedure, supported by carefully intro-
ducing summary transition rules, to effectively accelerate the analysis.

– We implemented the analysis algorithms as a tool named Japot. Empirical
study shows that Japot scales well to Java benchmarks of significant size.

The rest of the paper is organized as follows. Section 2 briefly reviews weighted
pushdown model checking. Section 3 presents Java semantics and abstractions.
Detection of points-to information by model checking is in Section 4. Section
5 presents a two-staged iteration procedure. Section 6 gives experiments and
Section 7 discusses related work. Section 8 concludes the paper.
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2 Weighted Pushdown Model Checking

Definition 1. Define a pushdown system P = (Q, Γ, Δ, q0, ω0), where Q is
a finite set of states called control locations, Γ is a finite stack alphabet, and
Δ ⊆ Q × Γ × Q × Γ ∗ is a finite set of transition rules. q0 ∈ Q and ω0 ∈ Γ ∗

are the initial control location and stack contents respectively. A transition rule
(p, γ, q, ω) ∈ Δ is denoted by 〈p, γ〉 ↪→ 〈q, ω〉. A configuration of P is a pair
〈q, ω〉 for q ∈ Q and ω ∈ Γ ∗. Δ defines a transition relation ⇒ on configurations
such that 〈p, γω′〉 ⇒ 〈q, ωω′〉for each ω′ ∈ Γ ∗ if 〈p, γ〉 ↪→ 〈q, ω〉.

Definition 2. S = (D,⊕,⊗,0,1) with 0,1 ∈ D is a bounded idempotent
semiring if

1. (D,⊕) is a commutative monoid with 0 as its unit element, and ⊕ is idem-
potent, i.e., a⊕ a = a for a ∈ D;

2. (D,⊗) is a monoid with 1 as the unit element;
3. ⊗ distributes over ⊕;
4. ∀a ∈ D, a⊗ 0 = 0⊗ a = 0;
5. The partial ordering � is defined on D such that ∀a, b ∈ D, a � b iff a⊕b = a.

There are no infinite descending chains in D.

Definition 3. Define a weighted pushdown system (WPDS) W = (P,S, f),
where P = (Q, Γ, Δ, q0, ω0) is a pushdown system, S = (D,⊕,⊗,0,1) is a
bounded idempotent semiring, and f : Δ→ D is a weight assignment function.

When encoding the program as a WPDS, the bounded idempotent semiring
models program data flows. A weight element encodes traditional program trans-
formers; f ⊕ g combines data flows at the meet of control flows; f ⊗ g composes
sequential control flows; 1 is identity function, and 0 implies program errors.

Definition 4. Given a weighted pushdown system W = (P,S, f), where P =
(Q, Γ, Δ, q0, w0). Assume σ = [r0, ..., rk] for ri ∈ Δ(0 ≤ i ≤ k) to be a sequence
of pushdown transition rules, and v(σ) = f(r0)⊗ ...⊗f(rk). Let path(c,c′) be the
set of all transition sequences that transform configurations from c into c′. Given
sets of regular configurations C, C′ ⊆ Q×Γ ∗, for each configuration c ∈ Q×Γ ∗,

– the Generalized Pushdown Successor (GPS) problem is to find gps(c) =⊕
{v(σ) | σ ∈ path(c′, c), c′ ∈ C}.

– the Generalized Pushdown Predecessor (GPP) problem is to find gpp(c) =⊕
{v(σ) | σ ∈ path(c, c′), c′ ∈ C′}.

– The Meet-Over-All-Valid-Path (MOVP) problem is to find MOVP(C, C′,W ) =⊕
{v(σ) | σ ∈ path(c, c′), c ∈ C, c′ ∈ C′}.

Given p ∈ Q, γ ∈ Γ and c ∈ Q × Γ ∗, and let conf(p, γ) = {〈p, γω〉 | ω ∈ Γ ∗},
further define M̂OVP(c, 〈p, γ〉, W ) = MOVP({c}, conf(p, γ), W ).
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Efficient algorithms for solving the GPS and GPP problems are proposed based
on the fact that a regular set of configurations is closed under forward and
backward reachability [11]. Then, MOVP is solved based on the results of either
GPS or GPP. There are two off-the-shelf implementations of weighted pushdown
model checking, Weighted PDS Library1 and WPDS++ [3,4]. We exploit the
former as the back-end analysis engine.

Example 1. As shown in Table 1, a context-sensitive PTA is able to distinguish
that, x1 and x2 points to objects created at line 2 and 3, respectively. In contrast,
an imprecise analysis may mix them.

Table 1. A Java Code Snippet

0. public class Main {
1. public static void main(String[] args){ 8. public static Object f1(Object a){
2. Object y1 = new String(); 9. return f2(a);
3. Object y2 = new Object(); 10. }
4. Object x1 = f1(y1); 11. public static Object f2(Object b){
5. Object x2 = f1(y2); 12. return b;
6. System.out.println(x1.equals(x2)); 13. }
7. } 14. }

3 Semantics and Abstraction

3.1 Java Semantics on the Heap and Call Stack

Definition 5. A method signature consists of method name, parameter types,
and return type. We denote by C the set of classes, and denote by Ψ the set of
method signatures. A method is identified by a pair of its enclosing class C ∈ C
and its method signature ψ ∈ Ψ , denoted by C.ψ. The set of method identifiers
is denoted by C.Ψ ⊆ C ×Ψ . We denote by Θ the class environment, including all
classes, type representations of classes, and the type hierarchy.

In Java, a heap object is a dynamically created instance of either a class or
an array. Reference variables are typically local variables, method parameters,
array references, and static or instance fields that hold reference types. Fields
and array references can be regarded as global variables. A local variable v from
its enclosing method C.ψ is denoted by indexing with the scope as vC.ψ. If C.ψ
is clear from the context, we often simply write v.

Definition 6. The set of references is denote by V, and the set of heap objects
is denoted by O. An abstract heap environment henv is a mapping, denoted
by �→, from V to O. The set of abstract heap environments is denoted by Λ,
on which the update operation  is defined such that for r, r′ ∈ V, o ∈ O,
(henv [r �→ o])r′ = o if r = r′ and (henv [r �→ o])r′ = henv(r′) otherwise.
1 http://www.fmi.uni-stuttgart.de/szs/tools/wpds/

http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
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Definition 7. We denote by L the set of program line numbers and denote by S
the set of program statements. Let Stmt : L → S be the function that returns the
statement at a given line number. Sε ⊆ S denotes the set of statements that do
not contain explicit method invocations and operate on the heap memory, and by
SI ⊆ S denotes the set of statements that contains explicit method invocations.

Definition 8. Let Elem = L × (O ∪ {∗}) × C.Ψ . Let Π = Elem∗.{⊥} be the
set of calling histories over the call stack. Define push(stack, e) = e.stack for
stack ∈ Π; and pop(e.stack) = stack, top(e.stack) = e for e ∈ Elem and
stack ∈ Π; and pop(⊥) = top(⊥) = ⊥.

A call stack symbol 〈l, o, C.ψ〉 ∈ Elem denotes the program execution point at
line l of the instance method C.ψ that is invoked on the object o, and 〈l, ∗, C.ψ〉 ∈
Elem represents an execution point inside a static method C.ψ.

Table 2. Transition Rules on the Heap and Call Stack

stmt(l) from C.ψ henv’ stack’
x = new T henv� [x �→ ν(henv)]
x = y henv� [x �→ henv(y)] push(s, e) where
x := (T)y henv� [x �→ henv(y)] s = pop(stack)
x := @this : T henv� [x �→ henv(this)] e = 〈next(l), o, C.ψ〉
x := @parameterk : T henv� [x �→ henv(argk)] o =′ ∗′ if C.ψ is static
x = y[i] henv� [x �→ henv(y)[i]] o ∈ henv(thisC.ψ) o.w.
y[i] = x henv� [henv(y)[i] �→ henv(x)]
x = y.f henv� [x �→ henv(henv(y).f)]
y.f = x henv� [henv(y).f �→ henv(x)]
return y henv� [ret �→ henv(y)] pop(stack)
z = r0.m(r1, ..., rn) henv� [thisC′.ψ′ �→ henv(r0)] push(s′, e′) where

� [argC′.ψ′
1 �→ henv(r1)]� · · · s′ = push(s, e)

� [argC′.ψ′
n �→ henv(rn)] s = pop(stack)

� [z �→ retC′.ψ′
] e = 〈next(l), o, C.ψ〉

where ψ′ ∈ Ψ is the method signature of m, e′ = 〈lC′.ψ′
0 , o′, C′.ψ′〉

and C′.ψ′ = resolve(TypeOf(o′), ψ′, Θ)
for o′ = henv(r0).

z = C′.m(r1, ..., rn) henv� [argC′.ψ′
1 �→ henv(r1)]� · · · push(s, e′) where

� [argC′.ψ′
1 �→ henv(r1)] s = push(pop(stack), e)

� [z �→ retC′.ψ′
] e = 〈next(l), o, C.ψ〉

where ψ′ ∈ Ψ is the method signature of m, e′ = 〈lC′.ψ′
0 , ∗, C′.ψ′〉

and C′.ψ′ = resolve(C′, ψ′, Θ).

We use a transition system (states, sinit,→) to represent the operational
Java semantics on the heap and call stack, where states ⊆ L × Θ × Λ ×Π is
the set of program states, each of which is a tuple of program locations, class
environment, heap environments and calling histories, and sinit ∈ states is the
initial state; →⊆ states× states is the set of transition rules.
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As far as single-threaded Java programs are concerned, the next program loca-
tion after each execution step at l (∈ L) is uniquely determined, and is denoted
by next(l). As given in Table 2, for the program execution of the statement
stmt(l) at l ∈ L from the method C.ψ, the transition rule is 〈l, Θ, henv, stack〉
→ 〈next(l), Θ, henv′, stack′〉. Here, ν is a function that generates a fresh heap
object. this, argk and ret are fresh variables to denote the this reference of a
class instance, the kth method argument, and the return variable, respectively.
TypeOf : O → C is the function that returns the runtime type of a heap object.
resolve : C × Ψ × Θ → C.Ψ is the function implements how JVM resolves and
the method to be invoked at runtime according to its method signature and
possible enclosing class. lC

′.ψ′
0 refers to the entry point of the method C′.ψ′.

3.2 Abstraction

We apply the following abstractions to abstract away various sources of infinities.

– A unique abstract heap object models concrete heap objects created at the
same allocation site (a.k.a., the context-insensitive heap abstraction). Thus,
the number of abstract heap objects are syntactically bounded to be finite.
An abstract heap object is a pair of its allocation site and runtime type.

– The indices of arrays are ignored, such that members of an array are not
distinguished. We denote by [[o]] the unique representative for all members
of the array instance o (∈ O). After abstracting the set of heap objects to be
finite, the nesting of array and field reference become finite correspondingly.

Definition 9. The set of abstract heap objects is Obj = (L ∪ { }) × C, where
is a fresh symbol for indicating nowhere. Let TypeOf : Obj → C be the function
returns the second projection of an abstract heap object.

Definition 10. Let RetPoint ⊆ L× C.Ψ be the set of return points for method
invocations. Define abstractions αt : Elem→ { } × C.Ψ , αr : Elem→ RetPoint,
and αo : Elem→ Obj× C.Ψ such that, for 〈l, o, C.ψ〉 ∈ Elem,

– αt(〈l, o, C.ψ〉) = ( , C.ψ),
– αr(〈l, o, C.ψ〉) = (l, C.ψ), and
– αo(〈l, o, C.ψ〉) = (o, C.ψ).

αr and αo are extended to the call stack in an element-wise manner.

Definition 11. Let C = ({ } × (C.Ψ)).RetPoint∗ be the set of abstract calling
contexts. Define a calling context abstraction α : Π → C such that α(⊥) = ε and
α(e.stack) = αt(e).αr(stack) for e ∈ Elem, and stack ∈ Π.

By Def. 10, αt abstracts the topmost stack symbol for flow-insensitivity. αr ab-
stracts the return points of method invocations, which results in calling contexts
in terms of call site strings. Our choice of αr indicates, method invocations to
the same method from different places of the same caller is still distinguished.
An alternative of αr is αo, which abstracts calling contexts as sequences of heap
objects on which methods are invoked, also known as object-sensitivity [9].
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Definition 12. We denote by Ref the set of abstract reference variables, and
by cc(v) all possible abstract calling contexts for a reference variable v ∈ Ref.

Note that, cc(v) are exactly all possible calling contexts for the method which v
belongs to, and cc(v) is automatically computed as the set of reachable regular
configurations during model checking (Section 4).

Definition 13. Let R : Ref×C → P(Obj) be the function that stores the points-
to relation, where P denotes the powerset operator. R ↓V : V × C → P(Obj) is
the restriction of R to V ⊆ Ref. Define � : R × R → R, such that for any
r ∈ Ref and cc ∈ C, (R1 � R2)(r, cc) = R1(r, cc) \R2(r, cc).

4 Detecting Points-to Information by Model Checking

This section presents, given points-to information and a call graph, how to detect
new points-to information and enlarge a call graph in a context/field-sensitive
and flow-insensitive way.

Definition 14. G = (M,E) is a call graph of a program if M ⊆ C.Ψ and E ⊆
M × L×M . An element in E is called a call edge.

We call P ⊆ C.Ψ a program coverage, and denote the program coverage consist-
ing of enclosing methods of program entries by P0.

Definition 15. Let Henv, sp be fresh symbols. Define a weighted pointer assign-
ment graph (WPAG) G = (N, L, �, n0), where N ⊆ (Ref ∪ {Henv}) × (C.Ψ ∪
RetPoint) is the set of nodes, L ⊆ {λx.{o} | o ∈ Obj} ∪ {λx.x} is the set of
labels, �⊆ N × L×N is the set of edges, and n0 = (Henv, sp) ∈ N is the root.

A WPAG G is a directed labeled graph to represent data flow of heap objects.
Henv and sp indicate the program environment that provides new abstract heap
objects and program inputs, and the dummy program entry, respectively. The
first projection of N represents abstract references, and the second projection
represents their program scopes. Edges of G are classified into inter-edges (�i,
defined in Table 3) and intra-edges (�c, �r, �t, defined in Table 4). An edge
(v, m) � (v′, m′) is denoted by{

�i if m = m′ ∈ C.Ψ
�c if m �= m′ and m, m′ ∈ C.Ψ

{
�r if m′ ∈ RetPoint

�t if m ∈ RetPoint

The procedure of finding new points-to information consists of the following
steps. Step 1 builds intra-edges of a WPAG G given R. Step 2 builds inter-edges
of G given E. During Step 2, the set of return points associated with each method
invocation is recorded as a mapping M :�c→ P(RetPoint). Initially, M is the
constant function to the empty set. Step 3 encodes G as a WPDS W and detects
new points-to information, denoted by R̂, by model checking.
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Table 3. A[[ ]] : Sε → P(�i)

A[[x = new T]] = {(Henv, C.ψ)
λx.{(l,T)}�i (x,C.ψ)}

A[[x = y]] = {(y, C.ψ) �i (x, C.ψ)}
A[[x := (T)y]] = {(y, C.ψ) �i (x,C.ψ)}
A[[x := @this : T]] = {(this, C.ψ) �i (x, C.ψ)} ∪ Ae

where Ae = {(Henv, C.ψ)
λx.{( ,T)}�i (this, C.ψ)} if C.ψ ∈ P0 and Ae = ∅ otherwise

A[[x := @parameterk : T]] = {(argk, C.ψ) �i (x,C.ψ)} ∪ Ap

where Ap = {(Henv, C.ψ)
λx.{( ,T)}�i (argk, C.ψ)} if C.ψ ∈ P0 and Ap = ∅ otherwise

A[[return x]] = {(x, C.ψ) �i (ret, C.ψ)}
A[[x = y[i]]] = {([[o]], C.ψ) �i (x,C.ψ) | o ∈ R(y,cc(y))} ∪Ag

A[[y[i] = x]] = {(x, C.ψ) �i ([[o]], C.ψ) | o ∈ R(y,cc(y))} ∪Ag

where Ag = {(Henv, C.ψ) λx.s�i ([[o]], C.ψ) | o ∈ R(y,cc(y)), s = R([[o]], cc([[o]]))}
A[[x = y.f ]] = {(o.f, C.ψ) �i (x, C.ψ) | o ∈ R(y,cc(y))} ∪Af

A[[y.f = x]] = {(x, C.ψ) �i (o.f, C.ψ) | o ∈ R(y,cc(y))} ∪Af

where Af = {(Henv, C.ψ) λx.s�i (o.f, C.ψ) | o ∈ R(y, cc(y)), s = R(o.f, cc(o.f))}

Step 1: Building Intra-Procedural Data Flows

Table 3 gives rules that translate statements from Sε at line l(∈ L) of the method
C.ψ to intra-edges of G, denoted by A[[ ]] : Sε → P(�i). For simplicity, we omit
a weight associated to � if it is λx.x. Our modeling is featured as follows.

– In contrast to cloning-based approach, there is the unique abstract reference
of each local reference variable. Global references are cloned only for methods
inside which they are referred.

– Instead of passing global variables explicitly as parameters along procedure
calls and returns, the heap memory is modelled with the global data structure
R and provides global references with cached data flows (i.e., Ag, Af ) when
they are locally referred (only necessary for field read).

Step 2: Building Inter-Procedural Data Flows

Table 4 gives rules that translate statements from SI that contains explicit
method invocations to inter-edges of G, denoted by A[[ ]] : SI →�c ∪�r ∪�t,
where Ac denotes call edges, Ar denotes return edges, and At denotes data flows
from return points to the calling procedure. Note that, Henv as the program
environment is explicitly passed as a parameter among calls and returns. Dur-
ing generation of inter edges, the mapping M is updated with newly produced
return points. The translation rules for static method invocations can be defined
similarly. Finally, new edges {n0 � (Henv, C.ψ) | n0 = (Henv, sp), C.ψ ∈ P0}
are added to G that lead from the dummy root node n0 to the program entries.

Step 3: Building the WPDS W from G and Model Checking

Definition 16. Let D1 = {λx.s | s ∈ P(Obj)} and D2 = {λx.x ∪ s | s
∈ P(Obj)}. Define a bounded idempotent semiring S = (D,⊕,⊗,0,1), such that
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Table 4. A[[ ]] : SI →�c ∪�r ∪�t

A[[z = r0.f(r1, ..., rn)]] = Ac ∪Ar ∪At

where Ac = {(r0, C.ψ) �c (thisC′.ψ′
, C′.ψ′)} ∪ {(Henv, C.ψ) �c (Henv, C′.ψ′)}

∪ ⋃
ri∈Ref{(ri, C.ψ) �c (argi

C′.ψ′
, C′.ψ′)}

Ar = {(retC′.ψ′
, C′.ψ′) �r (retC′.ψ′

, rp)} ∪ {(Henv, C′.ψ′) �r (Henv, rp)}
At = {(retC′.ψ′

, rp) �t (z, C.ψ)} ∪ {(Henv, rp) �t (Henv, C.ψ)}
ψ′ is the method signature of the method f , and
(C.ψ, l, C′.ψ′) ∈ E, and rp = (l, C.ψ), and
for all r ∈ Ac, M(r) = M(r) ∪ {rp}

– The weighted domain D = D1 ∪D2 ∪ {0}, and 1 = λx.x;
– d1 ⊗ d2 = d1 ⊕ d2 = λx. d1(x) ∪ d2(x) for d1, d2 ∈ D \ {0}
– d⊗ 0 = 0⊗ d = 0 for d ∈ D;

It is easy to see that both the distributivity of ⊗ over ⊕ and the associativity
of ⊗ hold. D1 consists of constant functions, and λx.s ∈ D1 is that a reference
points to the set of abstract heap objects s; and λx.x∪s ∈ D2 is that a reference
may keep unchanged along a path and be updated to point to s along another.

Given a WPAG G from Definition 15, a WPDS W = (P,S, f) with P =
(Q, Γ, Δ, q0, w0) is encoded G as follows,

– The set of control locations Q is the first projection of N , i.e., Ref∪{Henv};
– The stack alphabet Γ is the second projection of N , i.e., C.Ψ ∪ RetPoint;
– S is from Definition 16;
– q0 = Henv and w0 = sp;

– For each edge r represented as (v1, m1)
l� (v2, m2) such that f(r) = l and

• 〈v1, m1〉 ↪→ 〈v2, m2〉 if r ∈�i or �t;
• 〈v1, m1〉 ↪→ 〈v2, m2mr〉 for each mr ∈ M(�c) if r ∈�c;
• 〈v1, m1〉 ↪→ 〈v2, ε〉 if r ∈�r.

Definition 17. Let W = (P,S, f) be a weighted pushdown system with P =
(Q, Γ, Δ, q0, γ0). For any reference v ∈ Ref from the method C.ψ, R̂(v, cc(v)) =
M̂OVP(c, 〈v, C.ψ〉, W ) (Hinit(v)), where c = 〈q0, γ0〉 and Hinit denotes the initial
abstract heap environment such that Hinit(v) = ∅ for any v ∈ Ref.

To solve MOVP(Cs, Ct, W ), we (i) first compute gps(c) for each c ∈ Ct given Cs,
and then (ii) read out and combine the value of all paths between Cs and Ct. We
denote by H = 2|Obj| the length of the longest descending chain of the weighted
domain, and by T the time to perform either ⊗ or ⊕. In our case, the time
required to perform step (ii) can be ignored, and the worst case time complexity
of performing step (i) is O(|Q|2 |Δ| |Γ | H T ).
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5 Acceleration by Lightening Iterative Cycles

5.1 A Traditional Iterative Procedure Scheme

Algo. OnTheFlyPTA in Fig. 1 sketches a procedure scheme for on-the-fly Java
PTA. It starts with analyzing the program entry points P0, and computes the
call graph E and points-to relation R until convergence. For each iterative cycle,

– FindPointsTo : P × E × R → R (line 3) detects points-to information R̂
on the partial program P, according to updated information in the previous
iteration. The updated points-to information ΔR is derived at line 4.

– FindCallEdges : P×R×Θ → E (line 5) resolves call relation Ê according
to R̂, obeying to the standard JVM semantics. The updated call relation
ΔE is derived at line 6.

– TakeReachables : E → P (line 8) returns the set of methods (reachable
from program entries) to be analyzed in the next iteration. It can be defined
as the union of the first and third projection of E.

Algorithm OnTheFlyPTA

Input: the program entry points P0 and the class environment Θ
Output: G = (M,E) and R
0. E := ∅; R := ∅; P := P0

1. do

2. R̂ = FindPointsTo(P,E,R)
3. ΔR := R̂ � R
4. R := R �ΔR

5. Ê := FindCallEdges(P,R, Θ)
6. ΔE := Ê \ E
7. E := E ∪ΔE
8. P := TakeReachables(E)
9. while ΔE 
= ∅ or ΔR 
= ∅

Fig. 1. A Procedure for On-the-fly Java Points-to Analysis

Theorem 1. The algorithm OnTheFlyPTA terminates if (i) the domain of P, E
and R are finite, and (ii) each of these functions FindPointsTo, FindCallEdges
and TakeReachables is monotonic wrt the set inclusion on P, E and the element-
wise extension on R of the set inclusion.

FindPointsTo is the core procedure of PTA for Java. For most cloning-based al-
gorithms, FindPointsTo corresponds to the propagation of points-to sets, which
is typically reduced to constraint solving problems. In contrast, we derive the
analysis algorithm as model checking problems on WPDSs (Section 4). Since
the abstraction given in Section 3.2 is an over approximation, soundness of our
analysis is straightforward.
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5.2 A Two-Staged Iterative Procedure Scheme

For an on-the-fly points-to analysis, the program coverage is enlarged when
points-to analysis proceeds. However, we found that only part of the whole pro-
gram would effectively contribute to the enlargement of the program coverage.
To boost on-the-fly PTA, we propose a two-staged iterative procedure, denoted
by (LE◦GU)∗, which combines two phases of LE (local exploration) and GU (global
update). Generally, an LE iteration localizes the analysis on small parts of the
program, which is more likely to enlarge the program coverage, and GU is per-
formed on-demand for guaranteeing completeness. Line 9 switches LE and GU
when conditions defined by SwitchCond are satisfied. Otherwise, a GU iteration
will be triggered to check sound convergence.

Algorithm TwoStaged OnTheFlyPTA

Input: the program entry points P0 and the class environment Θ
Output: G = (M,E) and R
0. E := ∅; R := ∅; P := P0; NotDone = NotDone’ := true
1. do
2. NotDone := NotDone’
3. R̂ = FindPointsTo(P,E,R)
4. ΔR := R̂�R
5. R := R �ΔR

6. Ê := FindCallEdges(P,R, Θ)
7. ΔE := Ê \ E
8. E := E ∪ΔE
9. if SwitchCond(ΔE, ΔR) = true then
10. P := TakeCoverage(E, ΔE, ΔR)
11. NotDone’ := true
12. else
13. P := TakeReachables(E)
14. NotDone’ := false
15. while ΔE 
= ∅ or ΔR 
= ∅ or NotDone = true

Fig. 2. A Two-Staged Procedure for On-the-fly Java Points-to Analysis

Definition 18. SwitchCond(ΔE, ΔR) = (ΔE �= ∅) ∨ (ΔR ↓Reff
�= ∅), where

Reff ⊆ Ref is the set of base references of instance fields.

Def. 18 means that, an LE is triggered when either new call edges are detected
or new global references are found. Both indicates that the underlying model for
model checking is extended with new pushdown transitions.

Definition 19. TakeCoverage(E, ΔE, ΔR) = M1 ∪M2 ∪M3 ∪TakeReachables(ΔE),

M1 =
{

m′′ | ∃m,m′ ∈ C.Ψ ∃l, l′ ∈ L. (m, l, m′) ∈ ΔE, (m, l′, m′′) ∈ E,
and the return type of m′′ is a reference type

}
M2 = {C.ψ | vC.ψ ∈ Reff and ΔR(vC.ψ, cc(vC.ψ)) 
= ∅}
M3 = {m, C.ψ | ΔR(retC.ψ, cc(retC.ψ)) 
= ∅ and ∃l ∈ L.(m, l, C.ψ) /∈ E}
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A partial model is taken in the ways defined in TakeCoverage, where M1 says
that, if a new call relation found from m to m′, other callees of m that returns
values of reference type are collected. M2 says that, if the points-to information
of base variables of instance fields are updated, their enclosing methods are
collected. M3 says that, if the points-to information of return variables of C.ψ
is updated, C.ψ and methods that call C.ψ and are not included in the previous
LE are collected. Note that, our choice of TakeCoverage is inspired and decided
by empirical studies on practiced Java benchmarks regarding efficiency.

Theorem 2. The algorithm TwoStaged OnTheFlyPTA terminates if (i) the do-
main of P, E and R are finite, and (ii) each of these functions FindPointsTo,
FindCallEdges, TakeCoverage and TakeReachables is monotonic on all argu-
ments from their domains, and (iii) SwitchCond(∅, ∅) = false.

5.3 Adding Summary Transition Rules in LE

As given in Table 5 that extends translation rules Table 5, to make the two-staged
iterative procedure work effectively, summary transition rules (i.e., Ac) that
carry cached data flows to PE (Def. 20) are introduced, when building a WPAG
in an LE iteration. Translation rules leading from the dummy root node n0 to the
program entries are lifted to {n0 � (Henv, C.ψ) | n0 = (Henv, sp), C.ψ ∈ PE}.

Definition 20. Given a program coverage P and the call relation E, PE =
{m ∈ P | m′ /∈ P if (m′, m) ∈ E}.

Table 5. B[[ ]] : Sε → P(�i)

B[[x := @this : T]] = A[[x := @this : T]] ∪ Ac

where Ac = {(Henv, C.ψ) λx.s� i (this, C.ψ) | s = R(this, cc(this))}
if C.ψ ∈ PE and Ac = ∅ otherwise
B[[x := @parameterk : T]] = A[[x := @parameterk : T]] ∪ Ac

where Ac = {(Henv, C.ψ) λx.s� i (argk, C.ψ) | s = R(argk, cc(this))}
if C.ψ ∈ PE and Ac = ∅ otherwise

In sequel, we show that adding summary transitions to arguments (i.e., argi,
this) of methods from PE will not cause any loss of precision.

Definition 21. For a pushdown system P = (Q, Γ, Δ, q0, ω0), define � ⊆ Q ×
Γ ×Q× Γ , such that 〈p, γ〉� 〈p′, γ′〉 if there exists 〈p, γ〉 ⇒∗ 〈p′, γ′ω′〉 for some
ω′ ∈ Γ ∗. Define �s ⊆ � such that 〈p, γ〉 �s 〈p′, γ′〉 if (i) 〈p, γ〉 � 〈p′, γ′〉 and
(ii) for each ω ∈ Γ ∗ and all transition sequence of σ : 〈p, γω〉 ⇒∗ 〈p′, γ′ω′ω〉 for
some ω′ ∈ Γ ∗, and any 〈p′′, ω′′〉 appearing in σ satisfies |w′′| > |w|. 〈p, γ〉 is a
dominator of 〈p′, γ′〉 if 〈p, γ〉�s 〈p′, γ′〉.
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Definition 22. Let W = (P,S, f) be a WPDS with P = (Q, Γ, Δ, q0, γ0). For
p ∈ Q, γ ∈ Γ , {〈pi, γi〉 | 0 ≤ i ≤ k} is a dominator set of 〈p, γ〉 if (1), for
each i with 0 ≤ i ≤ k, 〈pi, γi〉 �s 〈p, γ〉, and (2), for each transition sequence
σ : 〈q0, γ0〉 ⇒∗ 〈p, γw〉 with w ∈ Γ ∗, there uniquely exists 〈pj , γj〉 such that
〈pj , γjw

′〉 for some w′ ∈ Γ ∗ appears in σ.

Lemma 1. Given a WPDS W = (P,S, f) where P = (Q, Γ, Δ, q0, γ0). For p ∈
Q, γ ∈ Γ , let H be a dominator set of 〈p, γ〉 and let c = 〈q0, γ0〉, we have
M̂OVP(c, 〈p, γ〉, W ) =

⊕
〈pi,γi〉∈H

M̂OVP(c, 〈pi, γi〉, W ) ⊗ M̂OVP(〈pi, γi〉, 〈p, γ〉, W ).

Proof. Straightforward by definitions of frontiers and MOVP problems.

By Lemma 1, the computation of MOVP problems can be soundly divided into
two independent phases via dominators.

Definition 23. Given a WPDS W = (P,S, f) with P = (Q, Γ, Δ, q0, γ0). For
p ∈ Q \ {q0}, γ ∈ Γ \ {γ0}, 〈p, γ〉 is a frontier of W if either 〈p, γ〉�s 〈p′, γ′〉 or
〈p, γ〉 � 〈p′, γ′〉 for any p′ ∈ Q, γ′ ∈ Γ . A frontier set of W , denoted by FW , is
a set of frontiers and 〈p, γ〉 ∈ FW implies 〈p′, γ′〉 /∈ FW if 〈p, γ〉�s 〈p′, γ′〉.

Theorem 3. Given a WPDS W = (P,S, f) with P = (Q, Γ, Δ, q0, γ0). Let W′ =
(P′,S, f′) with P′ = (Q′, Γ ′, Δ′ ∪ δ, q0, γ0), where Q′ ⊆ Q, Γ ′ ⊆ Γ , Δ′ ⊆ Δ, and
δ = {r = 〈q0, γ0〉 ↪→ 〈pi, γi〉, f ′(r) = M̂OVP(c, 〈pi, γi〉, W )⊕ f(r) | 〈pi, γi〉 ∈ FW ′}.
For p ∈ Q′, γ ∈ Γ ′, let c = 〈q0, γ0〉, M̂OVP(c, 〈p, γ〉, W ′) # M̂OVP(c, 〈p, γ〉, W ).

Proof. By Definition 23, given p ∈ Q, γ ∈ Γ , any frontier set FW ′ of W ′ can
be decomposed into disjoint union FW ′ = F1 $ F2, where F1 is some collection
of dominators of 〈p, γ〉 and F2 ⊆ {〈p′, γ′〉 | M̂OVP(〈p′, γ′〉, 〈p, γ〉, W ′) = 0}. The
proof is done according to Lemma 1 and the fact that F1 may not contain a
dominator set of 〈p, γ〉.

By Theorem 3, the analysis of LEs with introducing summary transition rules
will never cause any loss of precision, but can be not complete. The completeness
is guaranteed by analysis of GUs.

Note that, the set of arguments CE = {(argk, C.ψ), (this, C.ψ) | C.ψ ∈ PE}
from PE is a witness of the frontier set FW ′ , where W ′ is the WPDS encoded
from methods of P augmented with cached transition rules. Recall the example
in Table 1, assume the partial model P taken in an LE consists of methods f1

and f2. We know PE consists of f1 only by definition. A loss of precision would
be incurred, if summary transition rules Ac are introduced to arguments in f2.

6 Empirical Studies

We developed our analysis algorithms as a tool named Japot2, which exploits
Soot2.3.0 [16] for preprocessing from Java programs to Jimple codes, and the
2 As an approximation, return variables from any native methods and reflection calls

can point to objects whose type allows, and a throw exception can be handled by
any exception handler whose declared type allows as an over-approximation.



146 X. Li and M. Ogawa

Weighted PDS Library as the model checking engine. We perform experiments
on Java applications from the Ashes benchmark suite [15] and the influential Da-
Capo benchmark suite [2] (Table 6). These applications are de facto benchmarks
when investigating Java points-to analysis. We target on the newest version of
DaCapo benchmark which requires JDK 1.5 or above, and stable Ashes bench-
marks for which JDK 1.3 suffices. In sequel, the performance of Japot is measured
by call graph generation in terms of the number of reachable methods, which
is given in the “# Reachable Methods” column and these numbers take into
account libraries used by each benchmark. Benchmarks on which the back-end
model checker runs out of memory are not shown. All experiments were per-
formed on a Mac OS X v.10.5.2 with a Xeon 2×2.66 GHz Dual-Core processor,
and 4GB RAM. Only one processor is used in the following experiments.

Table 6. Benchmark Statistics and Call Graph Generation

Benchmark # Reachable Methods # Statements # Suite # JDK
CHA Japot Prec.↑ Japot

soot-c 5460 5079 7% 83936
sablecc-j 13,055 9004 31% 143140 Ashes JDK 1.3.1 01
antlr 10,728 ×
bloat 12,928 11090 14% 194063
chart 30,831 ×
jython 14,603 ×
pmd 12,485 × Dacapo JDK 1.5.0 13
hsqldb 9983 8394 16% 142629
xalan 9977 8392 16% 141405
luindex 10,596 8961 15% 152592
lusearch 11,190 9580 14% 163958
eclipse 12,703 ×

Table 7. An Acceleration on Efficiency

Benchmark # (LE ◦ GU)∗ (sec.) # GU∗ (sec.) # Acceleration

soot-c 656 1591 59%
sablecc-j 1547 2785 44%
bloat 12339 41434 70%
hsqldb 1205 2910 59%
xalan 1321 2926 55%
luindex 1514 3880 61%
lusearch 1757 4057 57%

The sub-column titled CHA gives the number of reachable methods by the
CHA (Class Hierarchy Analysis) of Spark in soot-2.3.0. The sub-column titled
Japot gives results computed by our context-sensitive PTA and the “# State-
ments” column gives the number of Jimple statements that Japot analyzed. The
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“Prec.↑” sub-column shows how much improvement on precision can be obtained
by Japot over CHA. Our proposals regarding program modelling alone does not
yield high scalability. Applying type filtering on-the-fly as usual and ignoring
differences of string constants are also essential to the scalability.

We studied the efficiency improvement of (LE◦GU)∗ over GU∗, and initial results
are given in Table 73. The “# (LE ◦ GU)∗” column and the “# GU∗” column
gives the time in seconds of performing these iterative schemes respectively.
The “# Acceleration” column shows an acceleration in terms of |GU∗|−|(LE◦GU)∗|

|GU∗| ,
which shows that (LE ◦ GU)∗ is 2.5X faster in average than GU∗. We expect novel
strategies of taking LEs can improve the practical efficiency even more.

7 Related Work

One of the pioneer work is Andersen’s PTA for C [1]. It is a subset-based, flow-
insensitive analysis encoded as constraint solving problems, such that object
allocations and pointer assignments are described by subset constraints, e.g.
x = y induces pta(y) ⊆ pta(x). The scalability of Andersen’s analysis has been
greatly improved by more efficient constraint solvers. Andersen’s analysis was
introduced to Java by using annotated constraints [12].

The first scalable cloning-based context-sensitive Java PTA is presented in
[17], in which programs and analysis problems are encoded as rules in logic
program Datalog. Calling contexts are cloned after merging loops as equivalent
classes. The BDD (Binary Decision Diagram) based implementation, as well as
approximation by collapsing recursions, enable the analysis to scale. As discussed
in [6], there are usually rich and large loops within the call graph, and the loss
of precision is potentially incurred after approximating recursions.

Reps, et al. present a general framework for program analysis based on CFL-
reachability [10], in which a PTA for C is shown by formulating pointer assign-
ments as productions of context-free grammars. Inspired by this work, Sridha-
ran, et al. formulated Andersen’s analysis for Java [14] as balanced-parentheses
problems regarding field read and write. A novel refinement-based analysis [13]
is based on context-insensitive analysis and recovers the precision on-demand
by removing imprecise propagation of points-to sets as violating a grammar for
balanced parentheses, regarding both heap access and method calls. It shows
good precision and scalability with respect to downcast safety analysis.

Spark[5] is a widely-used test-bed for experimenting with Java PTA. It sup-
ports both equality and subset-based analysis, provides various algorithms for
call graph construction, such as CHA, RTA(Rapid Type Analysis), and on-the-fly
algorithms, as well as variations on field-sensitivity. The BDD-based implemen-
tation of the subset-based algorithms further improves the efficiency.

3 Note that,data structures and program states cannot be shared between soot (in
Java) and the back-end model checker (in C). These numbers include DISK IO time
for exchanging information between these two parts via files.
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One stream of research examines calling contexts in terms of sequences of
objects on which methods are invoked, called object-sensitivity [9]. Similar to
call-site strings based approach, the sequence of receiver objects can be un-
bounded and demands proper approximations, like k-CFA. [6] indicates that
object-sensitivity excels at precision and is more likely to scale. Last but not
the least, existing practiced Java PTA as discussed above, are cloning-based for
context-sensitivity and have restrictions on handling recursive procedure calls.

In contrast to points-to analysis with call graph constructed on-the-fly, an
ahead-of-time points-to analysis is proposed as one run of weighted pushdown
model checking [7]. The notion of valid paths are enriched with further obeying
to the Java semantics on dynamic dispatch. In particular, invalid control flows
that violate Java semantics on dynamic dispatch are detected as those carrying
conflicted data flows. The analysis enjoys context-sensitivities regarding both
call graph construction and valid paths.

Last but not least, WPDSs are extended to conditional weighted pushdown
systems (CWPDSs), by further associating each transition rule with a regu-
lar language that specifies conditions under which the transition rule can be
applied [8]. There are wider applications of CWPDs when analyzing programs
with objected-oriented features, for which WPDSs are not precise enough un-
der a direct application. It is also shown that, the model checking problem on
CWPDSs can be reduced to model checking problems on WPDSs.

8 Conclusions

We presented a scalable stacking-based context-sensitive points-to analysis for
Java. The algorithm is derived as model checking problems on WPDSs, and
no restriction is placed on (recursive) procedure calls. A two-staged iterative
procedure is further proposed to effectively accelerate the analysis, supported
by introducing summary transition rules. Our new iteration schemes shows the
potential of an incremental points-to analysis, and we are extending the current
setting with performing local explorations only.
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Abstract. We present a proof-generating decision procedure for the
quantifier-free fragment of first-order logic with the relations =, 
=, ≥,
and > and argue that this logic, augmented with a set of theory-specific
rewriting rules, is adequate for bit-level accurate verification. We describe
our decision procedure from an algorithmic point of view and explain how
it is possible to efficiently generate Craig interpolants for this logic.

Furthermore, we discuss the relevance of the logical fragment in soft-
ware model checking and provide a preliminary evaluation of its appli-
cability using an interpolation-based program analyser.

1 Introduction

Interpolants play an ever more important role in software and hardware verifica-
tion [1]. Since interpolants are typically constructed from proofs of inconsistency,
interpolation-based verification techniques depend on efficient, proof-generating
decision procedures. Interpolating decision procedures have been available for
over a decade [2,3], but the field is still advancing rapidly.

McMillan’s landmark paper [3] gives an axiomatic description of his interpo-
lating theorem prover FOCI. Recently, more algorithmic descriptions of similar
interpolating decision procedures have been published [4,5], indicating that pub-
lications that make the material in [3] more accessible are well appreciated.

We present a graph-based interpolating decision procedure for a subset of
quantifier free first-order logic with a fixed set of relations, an extension of the
logic covered by [4]. We support equality (=), disequality (�=), and strong and
weak inequality (> and ≥, respectively). Furthermore, we provide limited sup-
port for interpreted functions such as bit-vector operations. Our presentation
emphasises the algorithmic point of view.

Our work is motivated by the discrepancy between the bit-vector interpre-
tation underlying most programming languages and the domains � or � used
by many interpolating decision procedures. The decision procedure we present
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is sound for bit-level formulæ, i.e., if a formula is satisfiable in the bit-vector
interpretation, then our algorithm will not conclude that it is unsatisfiable.

Our contribution is a self-contained, algorithmic description of a bit-level ac-
curate decision procedure integrating rewriting rules for theory-specific axioms.
We provide a preliminary evaluation of the suitability of our first-order logic frag-
ment for software verification using a re-implementation of the model checking
algorithm in [6].

2 Preliminaries

In the following, we define L, a quantifier-free, conjunctive fragment of first-order
logic. We restrict the predicates of this language to equality (=), disequality (�=),
and strong and weak inequality (> and ≥, respectively).

Syntax. We fix an enumerable set of variables, function symbols, and constant
symbols. Well-formed elements of L are generated by the following set of rules:

– A term t is a constant, a variable, or an application f(t1, . . . tn) of an n-ary
function symbol f to terms t1, . . . , tn.

– An atom t1�t2 is a binary relation � ∈ {=,≥, >, �=} applied to two terms t1
and t2. We do not allow any predicates other than the relations listed above.

– A formula F is a conjunction of atoms.

Note that the set of atoms is closed under negation, i.e., the negation ¬(t1�t2) of
an atom can be expressed in terms of an atom. Conjunction (∧) is the only logical
connective we allow in L. This is a common restriction for (interpolating) decision
procedures for specialised theories, since arbitrary propositional connectives can
be handled using the orthogonal approach presented in [3,7].

Interpretations. We use the standard interpretation of the relation symbols =
and �=. The relation ≥ is a partial order over the (interpreted) domain D, and
ti > tj denotes (ti ≥ tj)∧ (ti �= tj) . An interpreted n-ary function symbol f has
a well-defined function fM : Dn → D associated to it, whereas an uninterpreted
function symbol has no other property than its name and arity.

We use F |= G to state that the formula F entails G.

Craig interpolation. Since L is a fragment of first-order logic, there exists a
Craig interpolant (a first-order logic formula) for every inconsistent pair of L-
formulæ F and G:

Definition 1 (Craig interpolant for L). Given an unsatisfiable L-formula
F ∧G, a Craig interpolant is a first-order logic formula I such that

1. F |= I,
2. G |= ¬I, and
3. the variables and function symbols I refers to are common to F and G.
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f(x) f(y)

x y=

(a) Congruence edge
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≥

≥
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(b) Derived edge

Fig. 1. Congruence edges and derived edges

Remark 1. Note that I is not necessarily a L-formula (and may not even be
expressible in L). An example is the pair of formulæ f(x0) �= f(x5)∧ x0 = x1 ∧
x2 = x3∧x4 = x5 and x1 = x2∧x3 = x4 and their interpolant x1 �= x2∨x3 �= x4.

Graph representation of L formulæ. The fact that an L-formula F is a conjunc-
tion of atoms of the form ti � tj enables us to represent F using a graph [8].

Definition 2 (L-graph). Given a formula F , let GF (V, E) be a directed graph,
where each term ti in F corresponds to a node vi in V , and each atom ti � tj

corresponds to a �-labelled edge (vi
�→ vj) ∈ E, � ∈ {=,≥, >, �=}. Atoms ti � tj

with a symmetric relation � ∈ {=, �=} additionally contribute an edge (vj
�→ vi).

For convenience, we use undirected edges to depict equalities and disequalities.
In accordance to [3], we write vi & vj if and only if i = j.

Due to the presence of functions in L-terms, the congruence relation may give rise
to additional equality edges in the graph: The congruence relation satisfies, in
addition to the properties of the equality relation, the monotonicity axioms, i.e.,
for all n-ary functions f , it holds that f(s1, . . . , sn) = f(t1, . . . , tn) whenever
si = ti holds for all i in {1, .., n}. We use congruence edges to depict such
equalities (see Fig. 1a). The dashed arrows indicate that f(x) = f(y) is derived
from the equality of the sub-terms x = y.

Definition 3 (Contradictory and equality-entailing cycles). A contradic-
tory cycle [8] in an L-graph is a cyclic path consisting of either

a) edges labelled with = and a single edge labelled with �=, or
b) edges labelled with either = or ≥ and at least one edge labelled with >.

An equality-entailing cycle in an L-graph is a cyclic path consisting of edges
labelled with either = or ≥. For any two terms ti and tj corresponding to nodes
in an equality-entailing cycle, it holds that ti ≥ tj and tj ≥ ti, and thus ti = tj.

We depict derived edges using a graphical representation similar to congruence
edges (see Fig. 1b). In this example, the equality x = y is derived from the

equality-entailing cycle x
≥→ y

≥→ v
≥→ u

≥→ x.
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3 A Graph-Based Decision Procedure

We begin this section with a brief outline of our decision procedure for L-
formulæ followed by a detailed description of the proof-generating algorithm.
Let G(V, E) be the L-graph for a given formula F . The decision procedure is
subdivided into two phases:

1. In the first phase, the algorithm searches for contradictory or equality-
entailing cycles with edges labelled =, ≥, and > (Def. 3a) in the graph

G(V, E�), where E� denotes E \ {(vi
�=→ vj) ∈ E}. If a contradictory cycle

exists, the algorithm terminates. Otherwise, the procedure adds to E the
edges vi

=→ vj and vj
=→ vi for all nodes vi, vj adjacent in an equality-

entailing cycle.
2. In the second phase, additional equalities are inferred by means of constant

propagation and congruence closure and searches for contradictory cycles
with edges labelled = or > (Def. 3b) in the graph G(V, E �=), where E �= =
{(vi � vj) ∈ E |� ∈ {=, �=}}.

The phases are iterated until no new equalities can be inferred. Both phases
use well-known and efficient graph algorithms such as Tarjan’s algorithm for the
computation of strongly connected components (SCCs) and a graph-based union-
find data structure. In a pre-processing step, we form two (possibly non-disjoint)
sets of the atoms in F , one of which contains the inequalities and equalities, and
one which contains equalities and disequalities.

Phase I: Inequalities. Let G(V, E�) be the L-graph corresponding to the equal-
ity and inequality atoms of F . Using Tarjan’s algorithm, we compute all strongly
connected components in G(V, E�) and classify them as contradictory or equality-
entailing cycles, respectively:

≥≥

≥

≥≥

≥

>

>

>

A B

(a) SCCs in L-graphs

f(x) f(y)

≥≥

≥

≥≥

≥

≥

≥

�

(b) Congruences and SCCs

Fig. 2. Strongly connected components (SCCs) in L-graphs

1. A SCC is contradictory if it contains at least one edge vi
>→ vj (see compo-

nent B in Fig. 2a). Then, any path from vj to vi forms a contradictory cycle
with vi

>→ vj . If our algorithm finds a contradictory SCC, we compute the
shortest such path and report it as a proof of inconsistency.
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2. A SCC is equality-entailing if it contains no edge labelled with > (see com-
ponent A in Fig. 2a or the SCCs in Fig. 2b). In this case, we conclude that
for any edge vi

�→ vj in the SCC ti = tj holds for the corresponding terms.
The derived equalities are passed on to the second phase.

Phase II: Equalities and Disequalities. The second phase starts with computing
the equivalence closure of the equality atoms (and the equalities derived in the
first phase). For this purpose, we use a proof-generating union-find data structure
that incrementally constructs an L-graph G(V, E=), where E= denotes a set of
edges labelled with =. In the following, we present the modifications necessary to
generate a proof of inconsistency. In a union-find data structure, each equivalence
class corresponds to a sub-graph of G(V, E=) identified by its representative,
and each node which is not a representative holds a reference to its parent node
(indicated by an directed edge in our illustrations). The data structure supports
two operations:

1. Find(vi) returns the representative of the node vi.
2. Union(vi, vj) adds an (undirected) equality edge to the graph G(V, E=) and

merges the two equivalence classes containing vi and vj , respectively.

s

u

v
rep(s, u, v)

2

1

(a) Path compression

1

3

2

s

rep(s) rep(t)

t
(b) Triangulation

assert v1 
� v2 ∧ r1 
� r2

if v1 � r1 then
if v2 
� r2 then

E= := E= ∪ {r2
〈v2〉→ r1}

end if
else

if v2 
� r1 then

E= := E= ∪ {v2
〈v1〉→ r1}

end if
if v2 
� r2 then

E= := E= ∪ {r2
〈v2〉→ r1}

end if
end if

(c) Implementation of 3b

Fig. 3. An illustration of union-find operations

The Find(vi) operation performs path compression in order to reduce the
computational effort in case of repeated queries for vi. During this process, it
adds new derived edges to E=, which connect vi directly with its representative.
This is illustrated by the example in Fig. 3a. Find follows the parent nodes
until it reaches the representative. In Fig. 3a, the call to Find(v1) results in
two recursive calls Find(v2) and Find(v3). The latter call returns v4 as the

representative for v3. We add v2
〈v3〉→ v4 to E= (step 1 in Fig. 3a) and replace the

parent v3 with v4. Here, the label 〈v3〉 is used to memorise the fact that v2
=→ v3
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derives from v2
=→ v3

=→ v4 (visualised by the dashed arrow). Finally, Find(v2)

yields v4 and we add v1
〈v3〉→ v4 to E= and replace the parent v2 with v4. Thus,

Find(v1) returns v4.
The Union(v1, v2) operation merges two equivalence classes with the repre-

sentatives r1, r2 (obtained using Find). We assume that redundant unions are
ignored, i.e., v1 �& v2 and r1 �& r2. Consider the example in Fig. 3b. We add
the edge v1

=→ v2 (step 1) and conclude that the terms corresponding to r1 are
r2 equivalent. The algorithm chooses a new representative (r1 in our example),

favouring nodes with a higher in-degree. The resulting edge v2
〈v1〉→ r1 is labelled

accordingly in step 2, in order to memorise its derivation. Finally, we connect r2

and r1; the corresponding edge derives from r2
=→ v2

=→ r1.
Observe that Union triangulates the sub-graph spanning V = {v1, v2, r1, r2}.

Fig. 3c shows the general algorithm for this triangulation (where r1 is the rep-
resentative node with the higher in-degree), which is a constant time operation.

Using Union, we compute the equivalence closure for F by adding all equiv-
alence atoms and derived equalities to G(V, E=). We can now efficiently query
whether a disequality ti �= tj contradicts the equality relations stored in G(V, E=)
by checking whether Find(vi) &Find(vj). If this is the case, we obtain a con-

tradictory cycle vi
�=→ vj

=→ r
=→ vi. From this cycle, we obtain a proof for the

inconsistency by repeatedly expanding derived edges vi
〈vj〉→ vk to vi

=→ vj
=→ vk.

Edges derived in Phase I are justified by their respective equality-entailing cycles.

Congruence closure. The decision procedure described above lacks a provision
for deriving congruence edges (Fig. 1a) and is therefore not sufficient to support
uninterpreted functions. An equality relation ti = tj in the congruence graph
G(V, E=) gives rise to a congruence edge representing f(ti) = f(tj), which, in
return, may entail additional equality relations in G(V, E=). Therefore, we use an
incremental congruence closure algorithm (following the ideas presented in [9])
that is closely intertwined with the construction of the L-graph for equalities.

The algorithm uses the union-find data-structure representing G(V, E=). It
indexes each representative in G(V, E=) with a term tc. Thus, all terms in an
equivalence class of G(V, E=) are associated with the same term tc. If the equiv-
alence class contains an interpreted constant (e.g., a numeral), we choose it as
the index term,1 otherwise, we use the term corresponding to the representative
of the equivalence class as index. In this setting, an equivalence class containing
terms with function symbols represents a set of congruence relations. Consider
two terms f(ti) and f(tj), where ti and tj have the same representative indexed
with tc. Then f(ti) and f(tj) belong to the same equivalence class.

In addition, we maintain a function Lookup(f(tc)) which maps f(tc) to a term
f(ti) such that ti belongs to an equivalence class indexed with tc, or ⊥ if there
is no such term in G(V, E=).

1 Note this constant is unique, since an equivalence class that contains two constants
with a different interpretation contains a contradictory cycle.
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Fig. 4. A 3-step example illustrating the congruence closure algorithm

The Union operation potentially changes the representatives of the equiv-
alence classes in G(V, E=). Therefore, the algorithm maintains for each index
term tc a list UseList(tc) of terms that contain a sub-term indexed with tc. This
list is updated whenever Union merges two equivalence classes. W.l.o.g., assume
that Union merges an equivalence class indexed with tc with an equivalence
class indexed with t′c, choosing the latter term as the new index. Then, for each
f(ti) ∈ UseList(tc), where tc is the index term associated with ti, the algorithm
proceeds as follows:

– If Lookup(f(t′c)) returns f(tj), it uses Union to add a the congruence edge
for f(ti) = f(tj) to G(V, E=) and memorises that the edge is derived from
ti = tj . Furthermore, f(ti) is moved from UseList(tc) to UseList(t′c).

– If Lookup(f(t′c)) returns ⊥, it sets Lookup(f(t′c)) to f(ti) and moves f(ti) to
UseList(t′c).

Example 1. Consider a union-find data structure with four equivalence classes
{f(x), f(y)}, {f(z)}, {x}, and {z} (see Fig. 4, on the left). UseList [z] contains
f(z), since z is a sub-term of f(z). Adding x = z yields a new equivalence class
{x}∪{z}. Assume that the representative of the resulting equivalence class {x, z}
is x and that Lookup(f(x)) = f(y). Then the algorithm infers f(z) = f(y). �
The extension to n-ary functions is straight-forward. An efficient implementation
based on currifying is presented in [9].

Bit-vector theory axioms, constant propagation, and interpreted functions. Our
decision procedure provides limited support for the theory of bit-vectors by inte-
grating a small set of bit-vector axioms and rewriting rules. Furthermore, when-
ever possible, it uses interpreted functions and constants in order to simplify
terms. This is achieved by the following mechanisms:

1. We order all interpreted constants c1, . . . , cn processed in Phase I and add
n−1 inequality relations of the form ci < ci+1, 1 ≤ i < n to G(V, E�) before
computing the SCCs.

2. In Phase II, if Union is applied to two terms indexed with different inter-
preted constants c1 and c2, we introduce the disequality c1 �= c2.

3. Let T be the set of terms corresponding to the nodes in G(V, E=). For each
f(ti) ∈ T such that f is an interpreted function symbol in a given theory T
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(t2 + c) 
= t2 if c 
= 0mod 2m

(t2 + c) = t2 if c = 0mod 2m
(t << c) = (t + t) if c = 1
(t << c) = (2c · t) if 1 < c < m

Fig. 5. Two examples for rewriting rules for m-bit variables

t1 = t2 & t3
t1 ≤ t2 t1 ≤ t3

t1 = t2 | t3
t1 ≥ t2 t1 ≥ t3

t1 + t2 = t1
t2 = 0

Fig. 6. Examples of axioms for bit-vector operations

and ti is a term indexed with an interpreted constant c, we check whether
f(c) can be simplified to a term tj not containing any variables or function
symbols that do not occur in f(c). If this is the case, and tj ∈ T or tj is an
interpreted constant, we add the equivalence relations f(ti) = f(c) (derived
from ti = c) and f(c) = tj (a tautology in T ) to G(V, E=). This technique
allows us to perform bit-level-accurate simplifications of terms.

4. We apply a fixed set of rewriting rules of the form t� t′ to all terms t, where
t′ is the term obtained by applying the rule to t. All rules have the property
that they do not introduce variables. Examples of such rules are listed in
Fig. 5. If t and t′ correspond to nodes in G(V, E=), we add the relation t� t′.

5. Axioms of the form (t1 �1 t2) ' (t3 �2 t4) may be applied if t3 and t4 refer
to a subset of the non-logical symbols in t1 and t2. Examples of such axioms
are provided in Fig. 6.2

Combining both phases. As explained above, equality relations derived from
equality-entailing cycles in Phase I are passed on to Phase II. Now consider the
L-graph in Fig. 2b. Adding the congruence edge corresponding to f(x) = f(y)
results in a new SCC, which, depending on the label � in Fig. 2b, is either
contradictory or equality-entailing. Therefore, the congruence edges generated
in Phase II must be added to G(V, E�), necessitating an additional iteration
of Phase I. The two phases need to be iterated until no more new congruence
edges are generated. Since both phases are exchanging equalities exclusively, our
implementation is essentially a Nelson-Oppen-style decision procedure.

Complexity. Tarjan’s algorithm applied in Phase I has a run-time linear in the
number n of edges of the graph. The computation of the equivalence closure in
the second phase takes O(n ·α(n)) time, where α is the inverse of the Ackermann
function A(n, n). The congruence closure is of complexity O(n · log n) [9]. Thus,
a single iteration of Phase I and Phase II takes O(n · log n) time.

It remains to determine how often the phases need to be iterated. Since the
algorithm never adds redundant congruence edges, the congruence closure adds
at most O(n) equalities (see [9]). Due to the restrictions on the application of

2 The näıve application of such axioms increases the complexity of the algorithm
significantly. Therefore, we apply each axiom only once in an initial rewriting phase.
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rules and axioms, rewriting interpreted functions increases the number of sub-
terms by at most a constant factor. Altogether, we face a run-time complexity
of O(n2 · log n) for our decision procedure.

Finally, the extraction of an explanation from a contradictory cycle can be
performed in O(n · log n) time, since the derived edges form a tree.

Proofs of inconsistency. We review the artefacts generated by our decision pro-
cedure. A proof of inconsistency of an L-formula F is a contradictory cycle
comprising

– edges directly corresponding to relations in F ,
– edges derived from equality-entailing cycles, and
– congruence edges, derived from a number of equality relations.

In the next section we explain how a Craig interpolant can be constructed from
such a proof of inconsistency.

4 Extracting Interpolants from Contradictory Cycles

This section introduces the concept of coloured L-graphs and explains how inter-
polants can be constructed from contradictory cycles in such a coloured graph.

Colouring L-graphs. Given an L-formula F ∧ G, we say that a node vi of the
corresponding graph G(V, E) is F -colourable if the corresponding term ti refers
only to variables and function symbols in F ; similarly for G. We use VF and
VG to refer to the set of F -colourable and G-colourable nodes, respectively. This
definition splits V = VF ∪ VG into two non-disjoint sets of vertices. It leaves us
a choice for a subset VS

def
= (VF ∩ VG) of V . We refer to VS as shared vertices.

An edge vi
�→ vj is F -colourable if and only if {vi, vj} ⊆ VF ; analogously

for G. We use EF (EG) to refer to the F -colourable (G-colourable, respectively)
edges in E. An edge is colourable if it is either F -colourable or G-colourable. The
edges of the initial L-graph G(V, E), in which each edge corresponds to an atom
in F ∧ G, are always colourable. This is not necessarily the case for the graph
that we obtain by computing the congruence closure (in Phase II). Consider the
nodes labelled f(x) and f(y) in the L-graph in Fig. 2b. Assume that the variable
x occurs only in F and y occurs only in G. If we deduce f(x) = f(y) from x = y,
then the corresponding edge is not colourable.

It is, however, possible to transform a congruence-closed L-graph into a
colourable graph [4,10]. We provide a constructive proof based on structural
induction over an L-graph with congruence edges:

1. Base case. Colour the equality edges of the L-graph according to their re-
spective atoms in the formula F ∧G.

2. Induction step. The argument is split into two cases:
(a) Derived edges. For each edge vi

=→ vj derived from an equality-entailing
cycle, there exists an edge vi

�→ vj (� ∈ {≥, =}) in that cycle, which is,
by the induction hypothesis, colourable. Let vi

=→ vj take the colour of
that edge.
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Table 1. Rules for labelling contracted edges

= 
= ≥ >

= = 
= ≥ >
≥ ≥ ⊥ ≥ >
> > ⊥ > >

In order to label facts, the labels of the edges on a path are
merged according to the rules to the left. By construction,
the decision procedure described in Section 3 guarantees that
no fact in a proof of inconsistency has an undefined (⊥) label.

(b) Congruence edges. Pick any non-colourable congruence edge with nodes
vf(x) and vf(y) labelled f(x) and f(y), respectively. By the induction
hypothesis, all edges in the path vx → . . . → vy entailing x = y can be
coloured. Since vx and vy are of different colour, there is a path prefix
vx → . . . → vz such that all nodes in the prefix are of the same colour
and vz ∈ VS . Let z be the term that corresponds to vz. Then, the term
f(z) refers only to non-logical symbols common to F and G. Introduce a
new node vf(z) representing f(z) and add an equality edge vf(x) → vf(z)

justified by vx → . . . → vz , and a new congruence edge vf(z) → vf(y)

justified by vz → . . .→ vy . All these new elements are colourable.

This proof translates into an algorithm of complexity O(n · log n). The trans-
formation yields a graph representing a formula equisatisfiable with F ∧G, i.e.,
the modified graph contains a contradictory cycle if and only if the original
congruence-closed graph G(V, E) contains one.

It is straight-forward to extend this argument to the edges introduced by the
term rewriting rules and axioms in Section 3. Consider, w.l.o.g., an F -coloured
node vi corresponding to a term t, and a node vj corresponding to the rewritten
term t′. Due to the restriction that the rewriting rule t � t′ must not introduce
new non-logical symbols,3 the edge vi → vj can be coloured with ‘F ’. A similar
argument holds for axioms, which do not change the colour of the affected edge.

This line of reasoning leads to the following observation:

Lemma 1. A proof of inconsistency, which is a sub-graph of the congruence-
closed L-graph G(V, E) obtained using the algorithm in Section 3, can be trans-
formed into a colourable graph.

Furthermore, given that an L-graph G(V, E) represents a formula F ∧G, which
is a conjunction of atoms, the formula represented by a sub-graph is implied by
F ∧G. Thus, the proof of inconsistency is implied by the original formula F ∧G.

Interpolants from coloured inconsistency proofs. Given a coloured proof of in-
consistency, it is now possible to factorise this graph according to the colour of
its edges. Accordingly, a factor of a path in this graph is a maximal sub-path
consisting of edges of equal colour. If we contract a factor v1

�1→ . . .
�n−1→ vn,

we obtain a fact v1
�→ vn. The label � of this fact is determined by iteratively

merging the labels along the path according to the rules in Table 1.

3 Interpreted function symbols and constants are considered logical symbols.
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Facts over the shared vocabulary VS are the basic building blocks of inter-
polants for L-graphs. In general, however, it is not possible to represent an inter-
polant for F ∧G as an L-graph or as an L-formula (see Remark 1 in Section 2).
Intuitively, the reason is that the proof of inconsistency is a result of a mutual
interplay4 of facts derived from F -coloured as well as from G-coloured edges.
An F -coloured congruence edge may be derived from a path that contains edges
corresponding to atoms in G. This prevents us from extracting a contradictory
sub-graph of the proof that is derived exclusively from F .

We account for the interrelation between F -coloured and G-coloured facts by
introducing conditions and premises for facts in L-graphs.

Definition 4 (Conditions for facts, edges). Let E = EF ·∪EG and V =
VF ∪ VG be a colouring of the edges and vertices of a proof of inconsistency for
F ∧ G. A condition for a fact (or edge) vi

=→ vj is a (possibly empty) set C of
facts obtained from factorised and contracted paths in E such that one of the
following conditions holds:

– C = ∅ and vi
=→ vj is a contraction of edges corresponding to atoms in F ∧G.

– vi
=→ vj can be derived from the L-graph G(V, C) by means of equality and

congruence closure and equality-entailing cycles.

We refer to the subset of F -coloured (G-coloured) facts in C as F -condition
(G-condition, respectively).

The facts in a proof of inconsistency as constructed by the decision procedure
in Section 3 comprise congruence edges, edges derived from equality-entailing
cycles, and “basic” edges corresponding to atoms in the original formula F ∧G.
The conditions for basic edges and facts comprising only basic edges are defined
to be C = ∅ in Def. 4. For the remaining artefacts, we construct a set of conditions
C as follows:

1. Congruence edges. For a congruence edge, C is the set of facts obtained by
factorising and contracting the path the congruence edge is derived from.

2. Edges derived from equality-entailing cycles. For an edge derived from an
equality-entailing cycle, C is the set of facts obtained by factorising and
contracting that cycle.

3. Facts. The condition for a fact v1 → vn obtained by contracting the path
v1 → . . .→ vn is

⋃
i∈{1..n−1} Ci, where Ci is a condition for vi → vi+1.

The correctness of this construction follows immediately from Def. 4 and the
definition of congruence edges and derived edges.

A premise denotes a recursively closed set of conditions, in which the derived
facts are in turn justified by their respective conditions:

4 This process can also be formalised as a cooperative two-player game [4].
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Definition 5 (Premises for facts). The F -premise for a fact vi
=→ vj of

colour G is the set F -premise(vi
=→ vj) of F -coloured facts defined as

F -premise (vi
=→ vj)

def=

(F -condition for vi
=→ vj) ∪⋃

{F -premise (vn → vm) | vn → vm ∈ (G-condition for vi
=→ vj)} .

The definition of the G-premise for F -coloured facts is symmetric.

Premises can be seen as a form of rely-guarantee reasoning. F -premises take
the role of ρ in McMillan’s interpolations [3], and G-premises correspond to
justifications in [4].

Lemma 2. Let C be the F -condition of a G-coloured fact (or edge) vi
=→ vj in a

coloured proof of inconsistency G(E, V ), where E = EF ·∪EG and V = VF ∪ VG.
For all (vn → vm) ∈ C it holds that vn, vm ∈ VS .

It follows immediately that F -premises and G-premises refer only to the shared
vertices of a proof of inconsistency (cf. Lemma 2(iii) in [4]).

Definition 6 (L-graph-based interpolant). Let G(V, E) be a proof of incon-
sistency for F ∧G and let E = EF ·∪EG and V = VF ∪ VG, VS = VF ∩ VG be a
colouring of its edges and vertices. A L-graph-based interpolant is a pair 〈I,J 〉
of sets such that the following mutual conditions hold:

1. J is a set of pairs 〈P, vi → vj〉, and for each 〈P, vi → vj〉 ∈ J it holds that
(a) P ⊆ I is the F -premise for the G-coloured fact vi → vj, and
(b) for all vn → vm ∈ I, the G-premise for vn → vm is a subset of

{vk → vl | 〈P, vk → vl〉 ∈ J } .

2. I is a set of F -coloured facts obtained by contracting edges in EF , and the
graph

G (VS , I ∪ {vi → vj | 〈P, vi → vj〉 ∈ J }) (1)

contains a contradictory cycle.
3. For all vn

�→ vm in I ∪ {vi
�→ vj | 〈P, vi

�→ vj〉 ∈ J } it holds that either
(a) vn, vm ∈ VS , or
(b) vn & vm and � ∈ {>, �=}.

Fig. 7 shows an algorithm that extracts a pair 〈I,J 〉 from a proof of inconsis-
tency. We argue that 〈I,J 〉 is an L-graph-based interpolant:

1. Since the factorisation and contraction preserves the structure of the graph,
the graph G(VF ∪ VG, EF ·∪EG) contains a contradictory cycle of facts (pos-
sibly degenerate, i.e., vi

�→ vi, � ∈ {>, �=}). Therefore, EC exists.
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1: let G(VF ∩ VG, EF ·∪EG) be the factorised and contracted proof
2: let EC be the facts in the contradictory cycle of G(VF ∪ VG, EF ·∪EG)
3: W := EC , I := ∅, J := ∅
4: while (W 
= ∅) do
5: remove vi → vj from W
6: if vi → vj is G-coloured then
7: P := F -premise (vi → vj)
8: J := J ∪ {〈P, vi → vj〉}
9: else

10: P := G-premise (vi → vj)
11: I := I ∪ {vi → vj}
12: end if
13: W :=W ∪ P
14: end while

Fig. 7. Computing an L-graph-based interpolant

2. Observe that the algorithm maintains the following invariants:

(a) For each 〈P, vi → vj〉 ∈ J , P is an F -premise of vi → vj and a subset of
W ∪ I (established in line 3 and maintained by lines 7, 8, and 13).

(b) For each vi → vj ∈ I, the G-premise of vi → vj ∈ I is a subset of
W ∪ {vn → vm | 〈P, vn → vm〉 ∈ J }. This is established in line 3 and
maintained by the statements in lines 10, 11, and 13.

(c) G(VS ,W ∪ I ∪ {vi → vj | 〈P, vi → vj〉 ∈ J }) contains a contradictory
cycle. This invariant is established in line 3.

Upon termination of the algorithm, W = ∅ holds. Together with W = ∅,
the invariant (2a) implies condition (1a) and the invariant (2b) implies con-
dition (1b) in Def. 6. Furthermore, it follows from the invariant (2c) that
condition (2) in Def. 6 is fulfilled.

3. Due to the tree-structured derivations in the proof, the algorithm terminates.
4. The sets I and J contain only

(a) edges vi → vj from the factorised and contracted contradictory cycle EC

of the proof of inconsistency (lines 2 and 3), and
(b) G-premises (F -premises) for F -coloured (G-coloured) facts.

According to Lemma 2, all facts in the premises (4b) are edges with endpoints
vi, vj ∈ VS . If EC contains F -coloured as well as G-coloured facts, then the
facts (4a) must be edges connecting vertices in VS . Otherwise, EC contains
a single degenerate edge vi

�→ vi, where vi is not necessarily an element of
VS . Therefore, condition 3 in Def. 6 holds.

The interpolant I for an L-formula F ∧ G may not be expressible in L (see
Remark 1). We can, however, translate the L-graph-based interpolant into an
L-formula with disjunctions:
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= �=
v

f(x) f(g(y))

x g(y)
u g(z)

z
yw

(a) A proof of inconsistency

f(g(y)) = v ∧ w = y ∨
f(g(y)) = v ∨
(x 
= u) ∨
(w = y) ∧ g(z) 
= g(y)

(b) Interpolant for Fig. 8a

Fig. 8. An example of an interpolant for an inconsistency proof

I
def=

∧
vi

�→vj∈I

(ti � tj)

︸ ︷︷ ︸
(a)

∨
∨

〈P,vn
�→vm〉∈J

⎛⎜⎝ ∧
(vi

�P→ vj)∈P

(ti �P tj)

⎞⎟⎠ ∧ ¬(tn � tm)

︸ ︷︷ ︸
(b)

(2)

We simplify all terms of the form ti � ti to false if � ∈ {>, �=} and to true if
� ∈ {≥, =}.

Example 2. Consider the proof of inconsistency shown in in Fig. 8a. Contracting
the inconsistent cycle yields f(g(y)) �= v (G-coloured) and f(g(y)) = v (F -
coloured) under the condition that u = g(z) (F -coloured), and g(z) = g(y)
(G-coloured) hold. The condition for g(z) = g(y), in turn, is that z = w and
w = y holds, where the latter fact is F -coloured. The resulting interpolant is
shown in Fig. 8b. �
Finally, we claim that I as defined in (2) is indeed an interpolant for F ∧G.

Theorem 1. Given an L-graph-based interpolant 〈I,J 〉 for an L-formula F∧G,
the formula (2) is an interpolant for F ∧G.

Let us provide an intuitive explanation of Formula (2) before we proceed to
the proof of Theorem 1. The formula is split into two sub-formulæ (a) and (b):
Condition (1b) in Def. 6 guarantees that (2a) holds if∧

〈P,vn
�→vm〉∈J

(tn � tm) (3)

and F (i.e., the F -coloured atoms in F ∧G) hold.
Formula (2b) takes the rôle of the interface in rely-guarantee reasoning and

challenges G to contradict one of the atoms in Formula (3). The F -premises of
these G-coloured atoms are a subset of I, and therefore implied by (2a) due to
condition (1a) in Def. 6. The G-premises of the facts in I are in turn implied
by Formula (3). The tree-structured derivations of congruence edges and derived
edges (generated by algorithm in Fig. 7) prevent circular reasoning. The resulting
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tree-structure of these premises is illustrated in Fig. 9: The G-coloured facts
e1, . . . , e5 derived from the F -premises at the leaves in turn form the G-premise
at an inner node of the tree, and so on. We show that this structure prevents G
from contradicting Formula (3).

P6

e6

P4 P5

e4 e5

P1 P2 P3

e1 e2 e3

Fig. 9. Tree-structure of the premises in an interpolant

We are now in a position to show the correctness of Theorem 1.
Proof: We review the conditions of Def. 1 in Section 2:

1. F |= I. Consider that the G-premises (3) for the F -facts in (2a) hold.
W.l.o.g., pick an edge vi

�→ vj from I. Since (3) holds, the G-premise for
vi

�→ vj holds. We show that the F -condition (Def. 4) for vi
�→ vj is implied

by F and (3) by means of induction.
– Base case. The height of the tree-shaped derivation of vi

�→ vj is one;
Thus, the F -condition of vi

�→ vj is a subset of the atoms in F .
– Hypothesis. The F -condition of vi

�→ vj is implied by F and (3) if the
height of the tree-shaped derivation is n− 1 or less.

– Induction step. The height of the derivation of vi
�→ vj is n. W.l.o.g.,

pick a fact vn → vm from the F -condition of vi
�→ vj . The height of

the tree-shaped derivation of this fact is n− 1 or less. The G-condition
for vn → vm holds because of Def. 5, condition (1b) in Def. 6, and the
assumption that (3) holds. The F -condition of vn → vm holds by our
induction hypothesis, and therefore vn → vm and the F -condition of
vi

�→ vj must hold.
Therefore, F and (3) imply (2a). Otherwise, at least one atom ti � tj in (3)
is false. W.l.o.g., we can choose a fact vi

�→ vj (e.g., e6 in Fig. 9) such that
the following conditions hold:
– vi

�→ vj corresponds to an atom ti � tj in (3) which is false.
– The G-premises of the F -premise of vi

�→ vj comprise only of facts
corresponding to atoms in (3) that are true.

Then, using the same induction argument as above, we can show that the
F -premise P for the G-coloured fact vi

�→ vj holds. Therefore, the conjunct
corresponding to 〈P, vi

�→ vj〉 is true.
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2. G ∧ I |= ⊥. Assume that the formulæ (2a) and (3) hold, i.e., G does not
contradict (3). Since (2a) corresponds to I and (3) to

{vi → vj |〈C, vi → vj〉 ∈ J } ,

G ∧ I must be contradictory (condition 2 in Def. 6).
Otherwise, in order for G to contradict (3), at least one of the atoms in
{tn � tm | 〈P, vn

�→ vm〉 ∈ J } must be false. Using induction, we show that
the condition of vn

�→ vm holds, contradicting the assumption that ¬(tn�tm)
holds. Thanks to condition (1b) in Def. 6, the F -premise of vn

�→ vm is a
subset of I. It remains to show that the G-condition of vn

�→ vm holds.
– Base case. The height of the tree-shaped derivation of vi

�→ vj is one;
Thus the G-condition of vi

�→ vj is a subset of the atoms in G.
– Hypothesis. The G-condition of vi

�→ vj is implied by G and Formula
(2a) if the height of the tree-shaped derivation is n− 1 or less.

– Induction step. The height of the derivation of vi
�→ vj is n. W.l.o.g.,

pick a fact vn → vm from the G-condition of vi
�→ vj . The height of

the tree-shaped derivation of this fact is n − 1 or less. The F -condition
for vn → vm holds because of Def. 5, condition (1a) in Def. 6, and the
assumption that Formula (2a) holds. The G-condition of vn → vm holds
by our induction hypothesis, and therefore vn → vm and the G-condition
of vi

�→ vj must hold.
3. Condition 3 in Def. 6 and the fact that we simplify terms ti � ti to true or

false guarantee that I refers only to shared variables and function symbols.

The next section discusses applications of our interpolating decision procedure
and provides an evaluation of its adequacy for verifying systems software.

5 Application and Evaluation

The two most prominent interpolation-based software model checking techniques
are predicate abstraction [11] and interpolation-based abstraction [6]. Both tech-
niques construct an abstract reachability tree by unwinding the (abstract) tran-
sition relation. The nodes in this tree are labelled with interpolants derived
from infeasible counterexamples (i.e., unsatisfiable conjunctions of relations),
thus over-approximating the set of safely reachable program states. The verifi-
cation process terminates if a fixed-point of this set is reached.

The transition function of programs is typically represented using first or-
der logic formulæ. The primitive data-types of a vast majority of programming
languages have bounded domains. In order to be able to apply interpolation-
based techniques in a sound manner, the decision procedure must not conclude
that a formula is unsatisfiable if it is satisfiable in its bit-vector interpretation.
This is not guaranteed if we use linear arithmetic over � or �: The operator +
in infinite interpretations is addition on an infinite set, while it corresponds to
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addition mod m (for some m) in the case of bit-vectors. Consider the formula
a > b + 2 ∧ a ≤ b over the 2-bit variables a and b. This formula has the sat-
isfying assignment {a �→ 2, b �→ 2} in its bit-vector interpretation, while it is
unsatisfiable in the theory of linear arithmetic over the reals or the integers.

While the ability of our algorithm to handle arithmetic operations is very
limited (our rewriting rules can simplify terms involving addition in only cer-
tain special cases), it does not falsely conclude unsatisfiablity for the bit-vector
interpretation. However, we may fail to prove unsatisfiability in certain cases
(for instance, a chain of 2n disequalities over 2n + 1 distinct n-bit variables).
The reason underlying this problem is that the Nelson-Oppen method requires
theories to be stably infinite, which is not the case for the theory of bit-vectors.
This may lead to spurious counterexamples, which can be caught by falling back
to a bit-level accurate decision procedure (such as bit-flattening [12]).

Finally, we have to ask whether our logic is sufficient to represent the transi-
tion relation of realistic programs. Whether the relations and interpreted func-
tions provided by L are sufficient depends largely on the application domain.
A common benchmark for software model checking tools is the set of Windows
device drivers used in [6]. In order to evaluate the usefulness of our logic L, we
have integrated the decision procedure into our prototypical interpolation-based
model checker Wolverine. Wolverine is an implementation of the algorithm
presented in [6]. It generates conjunctive formulæ by unwinding the program
and labelling the edges in the reachability graph with transition relations. In
this setting, formulæ corresponding to infeasible paths are unsatisfiable. We ran
Wolverine on the kbfiltr.i, floppy.i, and mouclass.i drivers presented
in [13,6]. Our decision procedure was able to provide interpolants for all unsat-
isfiable formulæ encountered during the verification process.5 We attribute this
to the fact that device drivers make little use of arithmetic. The loops typically
iterate over initialised induction variables, which can be handled by constant
propagation (resulting in ground terms that can be rewritten).

6 Related Work

The related work in the area of decision procedures is vast. We focus on recent
interpolating decision procedures. The first implementation of an interpolat-
ing decision procedure widely used in verification is McMillan’s FOCI [3]. This
tool supports linear arithmetic over � and equality with uninterpreted func-
tions (EUF), and introduces the semantic discrepancy discussed in Section 5
when used for program verification. Based on the ideas in [3], Fuchs presents a
graph-based approach for EUF [4]. The interpolants in CNF generated by this
technique are reported to be (syntactically) smaller than the results of FOCI.
In comparison, we support a strict super-set of EUF and generate interpolants
in DNF. Fuchs’ work has recently been extended to combined theories [5], and
our algorithm can be seen as an instance of that framework. An interpolating
5 We do not present results on the run-time, as the performance of Wolverine is not

yet competitive due to a lack of optimisation of the model checking algorithm.
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decision procedure for the theory of unit-to-variable-per-inequality (UT VPI�),
a logic with atoms of the form (0 ≤ ax1 + bx2 + k) over �, is presented in [14].
Jain et al. present an interpolating decision procedure for linear modular equa-
tions [15], but does not support uninterpreted functions. We plan to integrate
this algorithm into our implementation.

Our algorithm can also be implemented in a Nelson-Oppen or SMT frame-
work, and interpolants can be generated using the mechanisms presented in [10]
or [5,16]. It can also be integrated in a proof-lifting decision procedure, which
constructs word-level proofs from propositional resolution proofs [12].

7 Conclusion and Future Work

We present a decision procedure for a first-order logic fragment with the rela-
tions =, �=, ≥, and > and argue that this logic is an efficiently decidable subset
of first order logic. Furthermore, the logic is sound with respect to reasoning
about software with bounded integers. We intend to perform an evaluation of a
larger scale than presented in this paper. Furthermore, we plan to integrate ac-
celeration techniques similar to [17] into our interpolation-based model checker
Wolverine.

Acknowledgements. We thank Philipp Rümmer and May Chan for their detailed
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