
FOG FOR 5G AND IoT

WILEY SERIES ON INFORMATION
AND COMMUNICATION TECHNOLOGY

Series Editors: T. Russell Hsing, Vincent K. N. Lau, and Mung Chiang

A complete list of the titles in this series appears at the end of this volume.

FOG FOR 5G AND IoT

Edited by

Mung Chiang
Arthur LeGrand Doty Professor of Electrical Engineering,
Princeton University, Princeton, NJ, USA

Bharath Balasubramanian
Senior Inventive Scientist, ATT Labs Research, Bedminster,
NJ, USA

Flavio Bonomi
Founder and CEO, Nebbiolo Technologies, Milpitas, CA, USA

This edition first published 2017
© 2017 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law.
Advice on how to obtain permision to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi to be identified as the editorial material in this
work has been asserted in accordance with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at
www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in
standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and author have used their best efforts in preparing this book, they make no representations or
warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the
publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for
damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent
professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research,
equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use
of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in
the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any
changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization
or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the
author or the publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared
between when this work was written and when it is read. No warranty may be created or extended by any promotional
statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Names: Chiang, Mung, editor. | Balasubramanian, Bharath, editor. | Bonomi,
Flavio, editor.

Title: Fog for 5G and IoT / edited by Mung Chiang, Bharath Balasubramanian,
Flavio Bonomi.

Description: Hoboken, NJ, USA : John Wiley & Sons Inc., 2017. | Includes
bibliographical references and index.

Identifiers: LCCN 2016042091| ISBN 9781119187134 (cloth) | ISBN 9781119187172
(epub) | ISBN 9781119187158 (epdf)

Subjects: LCSH: Electronic data processing–Distributed processing. |
Distributed shared memory. | Storage area networks (Computer networks) |
Mobile computing. | Internet of things. | Cloud computing.

Classification: LCC QA76.9.D5 F636 2017 | DDC 004.67/82–dc23
LC record available at https://lccn.loc.gov/2016042091

Cover image: Cultura/Seb Oliver/Gettyimages
Cover design by Wiley

Set in 10/12pt Times by SPi Global, Pondicherry, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

CONTENTS

CONTRIBUTORS xi

Introduction 1
Bharath Balasubramanian, Mung Chiang, and Flavio Bonomi

I.1 Summary of Chapters 5
I.2 Acknowledgments 7

References 8

I COMMUNICATION AND MANAGEMENT OF FOG 11

1 ParaDrop: An Edge Computing Platform in Home Gateways 13
Suman Banerjee, Peng Liu, Ashish Patro, and Dale Willis

1.1 Introduction 13
1.1.1 Enabling Multitenant Wireless Gateways and

Applications through ParaDrop 14
1.1.2 ParaDrop Capabilities 15

1.2 Implementing Services for the ParaDrop Platform 17
1.3 Develop Services for ParaDrop 19

1.3.1 A Security Camera Service Using ParaDrop 19
1.3.2 An Environmental Sensor Service Using ParaDrop 22
References 23

2 Mind Your Own Bandwidth 24
Carlee Joe-Wong, Sangtae Ha, Zhenming Liu, Felix Ming Fai Wong, and
Mung Chiang

2.1 Introduction 24
2.1.1 Leveraging the Fog 25
2.1.2 A Home Solution to a Home Problem 25

2.2 Related Work 28
2.3 Credit Distribution and Optimal Spending 28

2.3.1 Credit Distribution 29
2.3.2 Optimal Credit Spending 31

vi CONTENTS

2.4 An Online Bandwidth Allocation Algorithm 32
2.4.1 Estimating Other Gateways’ Spending 32
2.4.2 Online Spending Decisions and App Prioritization 34

2.5 Design and Implementation 35
2.5.1 Traffic and Device Classification 37
2.5.2 Rate Limiting Engine 37
2.5.3 Traffic Prioritization Engine 38

2.6 Experimental Results 39
2.6.1 Rate Limiting 39
2.6.2 Traffic Prioritization 41

2.7 Gateway Sharing Results 41
2.8 Concluding Remarks 45

Acknowledgments 46
Appendix 2.A 46
2.A.1 Proof of Lemma 2.1 46
2.A.2 Proof of Lemma 2.2 46
2.A.3 Proof of Proposition 2.1 47
2.A.4 Proof of Proposition 2.2 48
2.A.5 Proof of Proposition 2.3 49
2.A.6 Proof of Proposition 2.4 49
References 50

3 Socially-Aware Cooperative D2D and D4D Communications
toward Fog Networking 52
Xu Chen, Junshan Zhang, and Satyajayant Misra

3.1 Introduction 52
3.1.1 From Social Trust and Social Reciprocity to D2D

Cooperation 54
3.1.2 Smart Grid: An IoT Case for Socially-Aware Cooperative

D2D and D4D Communications 55
3.1.3 Summary of Main Results 57

3.2 Related Work 58
3.3 System Model 59

3.3.1 Physical (Communication) Graph Model 60
3.3.2 Social Graph Model 61

3.4 Socially-Aware Cooperative D2D and D4D Communications
toward Fog Networking 62
3.4.1 Social Trust-Based Relay Selection 63
3.4.2 Social Reciprocity-Based Relay Selection 63
3.4.3 Social Trust and Social Reciprocity-Based Relay

Selection 68
3.5 Network Assisted Relay Selection Mechanism 69

3.5.1 Reciprocal Relay Selection Cycle Finding 69
3.5.2 NARS Mechanism 70

CONTENTS vii

3.5.3 Properties of NARS Mechanism 73
3.6 Simulations 75

3.6.1 Erdos–Renyi Social Graph 76
3.6.2 Real Trace Based Social Graph 78

3.7 Conclusion 82
Acknowledgments 82
References 83

4 You Deserve Better Properties (From Your Smart Devices) 86
Steven Y. Ko

4.1 Why We Need to Provide Better Properties 86
4.2 Where We Need to Provide Better Properties 87
4.3 What Properties We Need to Provide and How 88

4.3.1 Transparency 88
4.3.2 Predictable Performance 93
4.3.3 Openness 99

4.4 Conclusions 102
Acknowledgment 102
References 103

II STORAGE AND COMPUTATION IN FOG 107

5 Distributed Caching for Enhancing Communications
Efficiency 109
A. Salman Avestimehr and Andreas F. Molisch

5.1 Introduction 109
5.2 Femtocaching 111

5.2.1 System Model 111
5.2.2 Adaptive Streaming from Helper Stations 114

5.3 User-Caching 115
5.3.1 Cluster-Based Caching and D2D Communications 115
5.3.2 IT LinQ-Based Caching and Communications 118
5.3.3 Coded Multicast 126

5.4 Conclusions and Outlook 130
References 131

6 Wireless Video Fog: Collaborative Live Streaming with Error
Recovery 133
Bo Zhang, Zhi Liu, and S.-H. Gary Chan

6.1 Introduction 133
6.2 Related Work 136
6.3 System Operation and Network Model 138
6.4 Problem Formulation and Complexity 140

viii CONTENTS

6.4.1 NC Packet Selection Optimization 140
6.4.2 Broadcaster Selection Optimization 143
6.4.3 Complexity Analysis 144

6.5 VBCR: A Distributed Heuristic for Live Video with Cooperative
Recovery 144
6.5.1 Initial Information Exchange 145
6.5.2 Cooperative Recovery 145
6.5.3 Updated Information Exchange 147
6.5.4 Video Packet Forwarding 147

6.6 Illustrative Simulation Results 150
6.7 Concluding Remarks 156

References 156

7 Elastic Mobile Device Clouds: Leveraging Mobile Devices
to Provide Cloud Computing Services at the Edge 159
Karim Habak, Cong Shi, Ellen W. Zegura, Khaled A. Harras, and
Mostafa Ammar

7.1 Introduction 159
7.2 Design Space with Examples 161

7.2.1 Mont-Blanc 162
7.2.2 Computing while Charging 163
7.2.3 FemtoCloud 164
7.2.4 Serendipity 166

7.3 FemtoCloud Performance Evaluation 168
7.3.1 Experimental Setup 168
7.3.2 FemtoCloud Simulation Results 169
7.3.3 FemtoCloud Prototype Evaluation 173

7.4 Serendipity Performance Evaluation 175
7.4.1 Experimental Setup 175
7.4.2 Serendipity’s Performance Benefits 176
7.4.3 Impact of Network Environment 179
7.4.4 The Impact of the Job Properties 182

7.5 Challenges 186
References 186

III APPLICATIONS OF FOG 189

8 The Role of Fog Computing in the Future of the Automobile 191
Flavio Bonomi, Stefan Poledna, and Wilfried Steiner

8.1 Introduction 191
8.2 Current Automobile Electronic Architectures 193
8.3 Future Challenges of Automotive E/E Architectures and Solution

Strategies 195

CONTENTS ix

8.4 Future Automobiles as Fog Nodes on Wheels 200
8.5 Deterministic FOG Nodes on Wheels Through Real-Time

Computing and Time-Triggered Technologies 203
8.5.1 Deterministic Fog Node Addressing the Scalability

Challenge through Virtualization 203
8.5.2 Deterministic Fog Node Addressing the Connectivity and

Security Challenges 204
8.5.3 Emerging Use Case of Deterministic Fog Nodes in

Automotive Applications—Vehicle-Wide
Virtualization 206

8.6 Conclusion 209
References 209

9 Geographic Addressing for Field Networks 211
Robert J. Hall

9.1 Introduction 211
9.1.1 Field Networking 211
9.1.2 Challenges of Field Networking 212

9.2 Geographic Addressing 214
9.3 SAGP: Wireless GA in the Field 215

9.3.1 SAGP Processing 216
9.3.2 SAGP Retransmission Heuristics 217
9.3.3 Example of SAGP Packet Propagation 218
9.3.4 Followcast: Efficient SAGP Streaming 219
9.3.5 Meeting the Challenges 220

9.4 Georouting: Extending GA to the Cloud 221
9.5 SGAF: A Multi-Tiered Architecture for Large-Scale GA 222

9.5.1 Bridging Between Tiers 223
9.5.2 Hybrid Security Architecture 225

9.6 The AT&T Labs Geocast System 225
9.7 Two GA Applications 226

9.7.1 PSCommander 226
9.7.2 Geocast Games 230

9.8 Conclusions 232
References 232

10 Distributed Online Learning and Stream Processing
for a Smarter Planet 234
Deepak S. Turaga and Mihaela van der Schaar

10.1 Introduction: Smarter Planet 234
10.2 Illustrative Problem: Transportation 237
10.3 Stream Processing Characteristics 238
10.4 Distributed Stream Processing Systems 239

10.4.1 State of the Art 239

x CONTENTS

10.4.2 Stream Processing Systems 240
10.5 Distributed Online Learning Frameworks 244

10.5.1 State of the Art 244
10.5.2 Systematic Framework for Online Distributed Ensemble

Learning 247
10.5.3 Online Learning of the Aggregation Weights 250
10.5.4 Collision Detection Application 254

10.6 What Lies Ahead 257
Acknowledgment 258
References 258

11 Securing the Internet of Things: Need for a New Paradigm
and Fog Computing 261
Tao Zhang, Yi Zheng, Raymond Zheng, and Helder Antunes

11.1 Introduction 261
11.2 New IoT Security Challenges That Necessitate Fundamental

Changes to the Existing Security Paradigm 263
11.2.1 Many Things Will Have Long Life Spans but Constrained

and Difficult-to-Upgrade Resources 264
11.2.2 Putting All IoT Devices Inside Firewalled Castles Will

Become Infeasible or Impractical 264
11.2.3 Mission-Critical Systems Will Demand Minimal-Impact

Incident Responses 265
11.2.4 The Need to Know the Security Status of a Vast Number of

Devices 266
11.3 A New Security Paradigm for the Internet of Things 268

11.3.1 Help the Less Capable with Fog Computing 269
11.3.2 Scale Security Monitoring to Large Number of Devices

with Crowd Attestation 272
11.3.3 Dynamic Risk–Benefit-Proportional Protection with

Adaptive Immune Security 277
11.4 Summary 281

Acknowledgment 281
References 281

INDEX 285

CONTRIBUTORS

Mostafa Ammar, School of Computer Science, College of Computing, Georgia
Institute of Technology, Atlanta, GA, USA

Helder Antunes, Corporate Strategic Innovations Group, Cisco Systems, Inc.,
San Jose, CA, USA

A. Salman Avestimehr, Department of Electrical Engineering, University of
Southern California, Los Angeles, CA, USA

Bharath Balasubramanian, ATT Labs Research, Bedminster, NJ, USA

Suman Banerjee, Department of Computer Sciences, University of Wisconsin-
Madison, Madison, WI, USA

Flavio Bonomi, Nebbiolo Technologies, Inc., Milpitas, CA, USA

S.-H. Gary Chan, Department of Computer Science and Engineering, The Hong
Kong University of Science and Technology, Clear Water Bay, Hong Kong

Xu Chen, School of ECEE, Arizona State University, Tempe, AZ, USA

Mung Chiang, EDGE Labs; Department of Electrical Engineering, Princeton
University, Princeton, NJ, USA

Sangtae Ha, Department of Computer Science, University of Colorado at
Boulder, Boulder, CO, USA

Karim Habak, School of Computer Science, College of Computing, Georgia
Institute of Technology, Atlanta, GA, USA

Robert J. Hall, AT&T Labs Research, Bedminster, NJ, USA

Khaled A. Harras, Computer Science Department, School of Computer Science,
Carnegie Mellon University, Doha, Qatar

Carlee Joe-Wong, Electrical and Computer Engineering, Carnegie Mellon
University, Silicon Valley, CA, USA

Steven Y. Ko, University at Buffalo, The State University of New York, Buffalo,
NY, USA

Peng Liu, Pennsylvania State University, State College, PA; Department of
Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA

xii CONTRIBUTORS

Zhenming Liu, Department of Computer Science, College of William and Mary,
Williamsburg, VA, USA

Zhi Liu, Global Information and Telecommunication Institute, Waseda University,
Tokyo, Japan

Satyajayant Misra, Department of Computer Science, New Mexico State
University, Las Cruces, NM, USA

Andreas F. Molisch, Department of Electrical Engineering, University of Southern
California, Los Angeles, CA, USA

Ashish Patro, Department of Computer Sciences, University of Wisconsin-
Madison, Madison, WI, USA

Stefan Poledna, TTTech Computertechnik AG, Wien, Austria

Cong Shi, School of Computer Science, College of Computing, Georgia Institute
of Technology, Atlanta, GA, USA; Square, Inc., San Francisco, CA, USA

Wilfried Steiner, TTTech Computertechnik AG, Wien, Austria

Deepak S. Turaga, IBM T. J. Watson Research Center, Yorktown, New York,
NY, USA

Mihaela van der Schaar, Electrical Engineering Department, University of
California at Los Angeles, Los Angeles, CA, USA

Dale Willis, Department of Computer Sciences, University of Wisconsin-
Madison, Madison, WI, USA

Felix Ming Fai Wong, Yelp Inc., San Francisco, CA, USA

Ellen W. Zegura, School of Computer Science, College of Computing, Georgia
Institute of Technology, Atlanta, GA, USA

Bo Zhang, Department of Computer Science and Engineering, The Hong Kong
University of Science and Technology, Clear Water Bay, Hong Kong

Junshan Zhang, School of ECEE, Arizona State University, Tempe, AZ, USA

Tao Zhang, Corporate Strategic Innovation Group, Cisco Systems, Inc., San Jose,
CA, USA

Yi Zheng, Corporate Strategic Innovation Group, Cisco Systems, Inc., San Jose,
CA, USA

Raymond Zheng, Corporate Strategic Innovation Group, Cisco Systems, Inc.,
San Jose, CA, USA

Introduction

BHARATH BALASUBRAMANIAN,1 MUNG CHIANG,2 and
FLAVIO BONOMI3

1 ATT Labs Research, Bedminster, NJ, USA
2 EDGE Labs, Princeton University, Princeton, NJ, USA
3 Nebbiolo Technologies, Inc., Milpitas, CA, USA

The past 15 years have seen the rise of the cloud, along with rapid increase in Internet
backbone traffic and more sophisticated cellular core networks. There are three dif-
ferent types of clouds: (i) data centers, (ii) backbone IP networks, and (iii) cellular
core networks, responsible for computation, storage, communication, and network
management. Now the functions of these three types of clouds are descending to be
among or near the end users, as the “fog.” Empowered by the latest chips, radios, and
sensors, the edge devices today are capable of performing complex functions includ-
ing computation, storage, sensing, and network management. In this book, we explore
the evolving notion of the fog architecture that incorporates networking, computing,
and storage.

Architecture is about the division of labor in modularization: who does what, at
what timescale, and how to glue them back together. The division of labor between
layers, between control plane and data plane, and between cloud and fog [1] in turn
supports various application domains. We take the following as a working definition
of the fog architecture: it is an architecture for the cloud-to-things (C2T) continuum
that uses one or a collaborative multitude of end-user clients or near-user edge devices
to carry out a substantial amount of storage, communication, and control, configu-
ration, measurement, and management. Engineering artifacts that may use the fog
architecture include 5G, home/personal networking, embedded AI, and the Internet
of things (IoT) [2].

In Figure I.1, we highlight that fog can refer to an architecture for computing,
storage, control, or communication network, and that as a network architecture it
may support a variety of applications. We contrast between the fog architecture and
the current practice of the cloud along the following three dimensions:

1. Carry out a substantial amount of storage at or near the end user (rather than
stored primarily in large-scale data centers).

2. Carry out a substantial amount of communication at or near the end user (rather
than all routed through the backbone network).

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

2 INTRODUCTION

Fog as a network architecture

Data plane of

fog network
Control plane

of fog network

5G

applications

IoT

applications

Big data

applications

How Many fogs?

Fog computing

architecture

Fog storage

architecture

Fog

networking

architecture

Fog control

architecture

Figure I.1 Fog architectures and applications. Supported by such architectures.

3. Carry out a substantial amount of computing and management, including net-
work measurement, control, and configuration, at or near the end user (rather
than controlled primarily by gateways such as those in the LTE core).

Why would we be interested in the fog view now? There are four main reasons
summarized as CEAL. Many examples in recent publications, across mobile and
landline, and from physical layer beamforming to application layer edge analytics
have started leveraging these advantages [3–8]:

1. Cognition: Awareness of Client-Centric Objectives. Following the end-to-end
principle, some of the applications can be best enabled by knowing the require-
ments on the clients. This is especially true when privacy and reliability cannot
be trusted in the cloud or when security is enhanced by shortening the extent
over which communication is carried out.

2. Efficiency: Pooling of Local Resources. There are typically hundreds of giga-
bytes sitting idle on tablets, laptops, and set-top boxes in a household every
evening, across a table in a conference room, or among the passengers of a pub-
lic transit system. Similarly, idle processing power, sensing ability, and wireless
connectivity on the edge may be pooled within a fog network.

3. Agility: Rapid Innovation and Affordable Scaling. It is usually much faster
and cheaper to experiment with client and edge devices. Rather than waiting
for vendors of large boxes inside the network to adopt an innovation, in the
fog world a small team may take advantages of smartphone API and SDK,
the proliferation of mobile apps, and offer a networking service through its
own API.

INTRODUCTION 3

4. Latency: Real-Time Processing and Cyber–Physical System Control. Edge data
analytics, as well as the actions it enables through control loops, often have
stringent time requirement and can only be carried out on the edge or the
“things”, here and now. This is particularly essential for Tactile Internet: the
vision of millisecond reaction time on networks that enable virtual–reality-type
interfaces between humans and devices.

We further elaborate on the previous potential advantages of fog. Client and edge
devices have increasing strength and capabilities. For instance, the original iPhone
had a single core 412 MHz ARM processor with 128MB RAM and 8GB storage
space. The iPhone 5S on the other hand carries a dual-core 1.3 GHz Apple A7 pro-
cessor with 1GB RAM, 64 GB storage space, and enhanced GPU capabilities. Intel’s
mobile chip Atom and Nvidia’s Tegra too promise near similar specifications. The
increase in strength and capabilities implies complex functionality such as CPU/GPU
intensive gaming, powerful location/context tracking sensors, and enhanced storage.
Further, as suggested in [9], these interconnected edge devices will play a crucial role
in orchestrating the IoT. Edge devices including mobile phones and wearable devices
use a rich variety of sensors including gyroscopes, accelerometers, and odometers to
monitor the environment around them. This enables the crucial notion of exploiting
context both personal in terms of location and physical/psychological characteristics
and context in the communal sense of how devices are interacting with other devices
around them.

As the need for cloud-based services increases, the amount of data traffic gener-
ated in the core networks is increasing at an alarming rate. Cisco predicts that cloud
traffic will increase almost four to five times over the next 5 years [10]. Further, they
predict that cloud IP traffic will account for nearly two-thirds of all data center traffic
by 2017. Can the fog alleviate some of this by satisfying application needs locally?
For example, can part of cloud storage be moved closer to the user with edge/client
devices acting as micro-data centers? Can videos be cached efficiently at the edge
devices to reduce accesses to the cloud? Or more broadly, can edge devices per-
form an active role in orchestrating both data plane-based cloud services and control
plane-based core network services?

Accesses to the cloud often span geographically distant entities with round-trip
times of nearly 150–200 ms. Access latency is a crucial factor in the end-user expe-
rience with studies showing that a 20% decrease in RTTs results in a 15% decrease
in page load time [11]. A significant way to decrease the RTT for content access is
to place as much of the content physically close to the end user as possible. While
decreasing latency is beneficial to all services, it may be a necessity for many services
in the future. For example, services involving augmented reality applications may not
tolerate latencies of more than 10–20 ms [12]. Hence, any computation/processing
for these kind of services need to be performed locally. Fog services may play a
significant part in addressing this challenge.

The fog R&D will leverage past experience in sensor networks, peer-to-peer sys-
tems, and mobile ad hoc networks while incorporating the latest advances in devices,
systems, and data science to reshape the “balance of power” in the ecosystem between

4 INTRODUCTION

powerful data centers and the edge devices. Toward that end, this book serves as the
first introduction to the evolving fog architecture, compiling work traversing many
different areas that fit into this paradigm.

In this book, we will encounter many use cases and applications that in many ways
are not necessarily new and revolutionary and have been conceived in the context of
distributed computing, networking, and storage systems. Computing resources have
been always distributed in homes, in factories, along roads and highways, in cities,
and in their shopping centers. The field of pervasive or ubiquitous computing has
been active for a long time. Networking has always deployed switches, routers, and
middleboxes at the edge. Caching media and data at the edge has been fundamental
to the evolution of Web services and video delivery.

As is typical of any emergent area of R & D, many of the themes in the fog archi-
tecture are not completely new and instead are evolved versions of accumulated
transformations in the past decade or two:

• Compared with peer-to-peer (P2P) networks in the mid-2000s, fog is not
just about content sharing (or data plane as a whole) but also network mea-
surement, control and configuration, and service definition.

• Compared with mobile ad hoc network (MANET) research a decade ago,
we have much more powerful and diverse off-the-shelf edge devices and
applications now, together with the structure/hierarchy that comes with cel-
lular/broadband networks.

• Compared with generic edge networking in the past, fog networking pro-
vides a new layer of meaning to the end-to-end principle: not only do edge
devices optimize among themselves, but also they collectively measure and
control the rest of the network.

Along with two other network architecture themes, ICN and SDN, each with
a longer history, the fog is revisiting the foundation of how to think about and
engineer networks, that is, how to optimize network functions: who does what
and how to glue them back together:

• Information-Centric Networks. Redefine functions (to operate on digital
objects rather than just bytes)

• Software-Defined Networks. Virtualize functions (through a centralized
control plane)

• Fog Networks. Relocate functions (closer to the end users along the C2T
continuum)

While fog networks do not have to have any virtualization or to be information
centric, one could also imagine an information-centric, software-defined fog net-
work (since these three branches are not orthogonal).

SUMMARY OF CHAPTERS 5

With its adoption of the most modern concepts developed in the IT domain and
at the same time with its need to satisfy the requirements of the operational technol-
ogy (OT) domains, such as time-sensitive and deterministic behaviors in networking,
computing and storage, sensor and actuator support and aggregation, and sometimes
even safety support, the fog is a perfect conduit for the highly promising conver-
gence of IT and OT in many key IoT verticals. In this perspective, the fog not only
builds on and incorporates many of the traditional relevant technologies from sensor
and ad hoc network, ubiquitous computing, distributed storage, etc. but also mani-
fests in a timely manner new and specific characteristics coming from the IT and OT
convergence behind IoT.

As the cloud catalyzed, consolidated, and evolved a range of existing technologies
and approaches, the fog is catalyzing, consolidating, and evolving a range of edge
technologies and approaches in a creative and rich mix, at this special transition time
into IoT. Complementing the swarm of endpoints and the cloud, the fog will enable
the seamless deployment of distributed applications, responding to the needs of crit-
ical use cases in a broad array of verticals. For example, some of the early work on
fog architecture and functionality was driven by specific applications in connected
vehicle and transportation, smart grid, the support of distributed analytics, and the
improvement of Web services and video delivery [9, 13, 14].

I.1 SUMMARY OF CHAPTERS

Following the above paragraphs, the chapters in this edited volume are divided into
three broad sections. In the first four chapters, we describe work that presents tech-
niques to enable communication and management of the devices in a fog network
involving their interaction with the cloud, management of their bandwidth require-
ments, and prescriptions on how the edge devices can often work together to fulfill
their requirements. The next natural step is to understand how to perform the two
fundamental components of many applications on the edge: storage and computa-
tion. We focus on this aspect in the following three chapters. And finally, we focus on
the applications that will be enabled on top of the fog infrastructure and the challenges
in realizing them.

Communication and Management In the first chapter the authors present a unique
edge computing framework, called ParaDrop, that allows developers to leverage one
of the most stable and persistent computing resources in the end customer premises:
the gateway (e.g., the Wi-Fi access point or home set-top box). Based on a platform
that allows the deployment of containers on these edge devices, the authors show
how interesting applications such as security cameras and environment sensors can
be deployed on these devices. While the first chapter focuses on an operating sys-
tem agnostic container-based approach, the second chapter posits that the underlying
operating system on these devices too should evolve to support fog computing and
networking. In a broad analysis, the authors focus on four important aspects: why do
these systems need to provide better properties to support the fog, where do they need

6 INTRODUCTION

to improve, what are the exact properties that need to be provided, and finally how
can they provide these better properties?

To enable rich communication in the fog, bandwidth needs have to be addressed.
Following the philosophy of fog networking, why can’t the power of edge
devices be used to leverage this? In the second chapter, the authors present a
home-user-based bandwidth management solution to cope with the growing
demand for bandwidth, with a novel technique that puts more intelligence in both
the home gateways and the end-user devices. They show that using a two-level
system, one based on the gateways “buying bandwidth” from the ISPs within
a fixed budget driven by incentives and the other based on end-user prioriti-
zation of applications, much better utilization of network bandwidth can be
achieved.

The following chapter addresses this question from the point of view of
peer-to-peer communication among devices. They present a game theory-based
mechanism that end-user devices like tablets and cell phones can use to cooperate
with one another and act as relays for each other’s network traffic, thereby boosting
network capability. An important aspect of fog management and communication is
that of addressing the potentially thousands and maybe even millions of fog–IoT
devices.

In the final chapter, the author contends that traditional IP-based addressing will
not always work for field IoT devices working in a fog environment, interacting with
cloud servers or among themselves. This is primarily due to factors such as device
mobility, spatial density of devices, and gaps in coverage. As an alternative, they
propose a technique of geographic addressing where communication protocols allow
devices to specify the destination devices based on their geographic location rather
than IP address.

Computation and Storage Following the first section of chapters on communication
and management of fog devices, we move on to two important platform functions:
storage and caching for video delivery in fog networks and techniques for fog compu-
tation. The first chapter in this section presents caching schemes for video on demand
(VoD), especially to optimize the last wireless hop in video delivery. While most
CDN-based systems focus on caching at the edge of the network, the authors here
focus on caching in edge devices such as Femto helper nodes (similar to Femto base
stations) and the end-user devices themselves.

The second chapter, on the other hand, shifts the focus from VoD to live
streaming, a use case with very different requirements but similar potential uses
of the fog paradigm. The authors discuss a technique through which the end-user
devices collaborate to deliver live streams to each other, operating as a wireless
fog. They focus on a crucial problem in such systems—that of errors due to lossy
wireless links—and present a store–recover–forward strategy for wireless multihop
fog networks that combines traditional store and forward techniques with network
coding.

In the final chapter of this section, we move from storage to general-purpose com-
putation in fog. Similar to other chapters in this book, the authors posit that mobile

ACKNOWLEDGMENTS 7

devices have now become far more powerful and can hence perform several com-
putations locally, with carefully planned fog architectures. They focus on two such
designs: femto cloud, in which they discuss a general purpose architecture of a com-
putational platform for mobile devices, and Serendipity, in which they consider a
more severe version of the same problem in which devices are highly mobile and
often tasks need to be off-loaded to one another.

Applications Having set the foundation with the previous section on the platform
requirements and innovations, we finally move on to applications built on the fog
architecture. In the first chapter in this section, the authors provide a close look at the
challenges facing the connected car, an IoT use case that is increasingly prominent
these days. In particular, they focus on the electrical architecture that will enable
this application and describe how fog computing with its virtualization techniques,
platform unification of several concerns such as security and management will help
alleviate these challenges.

In the following chapter, the authors provide a detailed analysis of distributed
stream processing systems and online learning frameworks with a view to building
what they term a smarter planet. In their vision of smart planet, they envisage
a world in which users are constantly gathering data from their surroundings,
processing this data, performing meaningful analysis, and taking decisions based
on this analysis. The main challenge however is that given the potentially huge
number of low-power sensors and the mobility of the users, all this data anal-
ysis needs to be heavily distributed through its life cycle. The combination of
potent-distributed learning frameworks and fog computing that will provide the
platform capabilities for such frameworks can bring forth the vision of the smarter
planet.

Finally, we end the book with a chapter on how fog computing can help address the
crucial needs of security in IoT devices. The authors start with the question: what is so
different about IoT security as opposed to standard enterprise security, and what needs
to change? They then go on answering these questions and identify IoT concerns
ranging from the incredibly large number of such devices to the need for keeping them
regularly updated with regard to security information. Crucially, they focus on how
the fog paradigm can help address many of these concerns by providing frameworks
and platforms to alleviate the load on the IoT devices and perform functions such as
endpoint authentication and security updates.

The electronic supplemental content to support use of this book is available online
at https://booksupport.wiley.com

I.2 ACKNOWLEDGMENTS

This book would not have been possible without help from numerous people, and we
wish to sincerely thank all of them.

In particular, Dr. Jiasi Chen, Dr. Michael Wang, Dr. Christopher Brinton,
Dr. Srinivas Narayana, Dr. Zhe Huang, and Dr. Zhenming Liu provided valuable

8 INTRODUCTION

feedback on the individual chapters of the book. The publisher, John Wiley and
Sons, made a thorough effort to get the book curated and published. We are grateful
to the support from funding agencies of National Science Foundation under the fog
research grants. Last but not the least, the book will ultimately stand on its contents,
and we are grateful to all the chapter authors for their technical contributions and
never-ending enthusiasm in writing this book.

REFERENCES

1. Mung Chiang, Steven H. Low, A. Robert Calderbank, and John C. Doyle. Layering as opti-
mization decomposition: A mathematical theory of network architectures. In Proceedings
of the IEEE, volume 95, pages 255–312, January 2007.

2. Mung Chiang and Tuo Zhang, Fog and IoT: an overview of research opportunities. IEEE
Journal of Internet of Things, 3(6), December 2016.

3. Abhijnan Chakraborty, Vishnu Navda, Venkata N. Padmanabhan, and Ramachandran
Ramjee. Coordinating cellular background transfers using load sense. In Proceedings of
the 19th Annual International Conference on Mobile Computing & Networking, MobiCom
’13, pages 63–74, New York, NY, USA, 2013. ACM.

4. Ehsan Aryafar, Alireza Keshavarz-Haddad, Michael Wang, and Mung Chiang. Rat selec-
tion games in hetnets. In INFOCOM, pages 998–1006 April 14–19, 2013. IEEE Turin,
Italy.

5. Luca Canzian and Mihaela van der Schaar. Real-time stream mining: Online knowledge
extraction using classifier networks. IEEE Network, 29(5):10–16, 2015.

6. Jae Yoon Chung, Carlee Joe-Wong, Sangtae Ha, James Won-Ki Hong, and Mung Chiang.
Cyrus: Towards client-defined cloud storage. In Proceedings of the 10th European
Conference on Computer Systems, EuroSys ’15, pages 17:1–17:16, New York, NY, USA,
2015. ACM.

7. Felix Ming Fai Wong, Carlee Joe-Wong, Sangtae Ha, Zhenming Liu, and Mung Chiang.
Mind your own bandwidth: An edge solution to peak-hour broadband congestion. CoRR,
abs/1312.7844, 2013.

8. Yongjiu Du, Ehsan Aryafar, Joseph Camp, and Mung Chiang. iBeam: Intelligent
client-side multi-user beamforming in wireless networks. In 2014 IEEE Conference on
Computer Communications, INFOCOM 2014, pages 817–825, Toronto, Canada, April
27–May 2, 2014. IEEE.

9. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA, 2012. ACM.

10. Cisco Global Cloud Index: Forecast and Methodology. http://www.intercomms.net/issue-
21/pdfs/articles/cisco.pdf (accessed September 12, 2016).

11. Latency: The New Web Performance Bottleneck. https://www.igvita.com/2012/07/19/
latency-the-new-web-performance-bottleneck/ (accessed September 12, 2016).

12. W. Pasman, Arjen Van Der Schaaf, R.L. Lagendijk, and Frederik W. Jansen. Low latency
rendering and positioning for mobile augmented reality. In Proceedings Vision Modeling
and Visualization ’99, pages 309–315, 1999.

REFERENCES 9

13. Flavio Bonomi. Cloud and fog computing: Trade-offs and applications. In EON-2011
Workshop, at the International Symposium on Computer Architecture (ISCA 2011), San
Jose, USA, June 4–8, 2011.

14. Xiaoqing Zhu, Douglas S. Chan, Hao Hu, Mythili S. Prabhu, Elango Ganesan, and
Flavio Bonomi. Improving video performance with edge servers in the fog computing
architecture. Intel Technology Journal 19(1):202–224, 2015.

PART I
Communication and
Management of Fog

1 ParaDrop: An Edge Computing
Platform in Home Gateways

SUMAN BANERJEE,1 PENG LIU,1,2 ASHISH PATRO,1 and
DALE WILLIS1

1Department of Computer Sciences, University of Wisconsin-Madison,
Madison, WI, USA
2Pennsylvania State University, State College, PA, USA

1.1 INTRODUCTION

The last decade has seen a rapid diversification of computing platforms, devices, and
services. For example, desktops used to be the primary computing platform until the
turn of the century. Since then, laptops and more recently handheld devices such as
laptops and tablets have been widely adopted. Wearable devices and the Internet of
things (IoT) are the latest trends in this space. This has also led to widespread adoption
of the “cloud” as a ubiquitous platform for supporting applications and services across
these different devices.

Simultaneously, cloud computing platforms, such as Amazon EC2 and Google
App Engine, have become a popular approach to provide ubiquitous access to ser-
vices across different user devices. Third-party developers have come to rely on cloud
computing platforms to provide high quality services to their end users, since they
are reliable, always on, and robust. Netflix and Dropbox are examples of popular
cloud-based services. Cloud services require developers to host services, applica-
tions, and data on off-site data centers. But, due to application-specific reasons, a
growing number of high quality services restrict computational tasks to be colocated
with the end user. For example, latency-sensitive applications require the backend ser-
vice to be located to a user’s current location. Over the years, a number of research
threads have proposed that a better end-user experience is possible if the computation
is performed close to the end user. This is typically referred to as “edge computing”
and comes in various flavors including: cyber foraging [1], cloudlets [2], and more
recently fog computing [3].

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

14 PARADROP: AN EDGE COMPUTING PLATFORM IN HOME GATEWAYS

This chapter presents a unique edge computing framework, called ParaDrop,
which allows developers to leverage one of the last bastions of persistent computing
resources in the end customer premises: the gateway (e.g., the Wi-Fi access point
(AP) or home set-top box). Using this platform, which has been fully implemented
on commodity gateways, developers can design virtually isolated compute con-
tainers to provide a persistent computational presence in the proximity of the
end user. The compute containers retain user state and also move with the users
as the latter changes their points of attachment. We demonstrate the capabilities
of this platform by demonstrating useful third-party applications, which utilize
the ParaDrop framework. The ParaDrop framework also allows for multitenancy
through virtualization, dynamic installation through the developer API, and tight
resource control through a managed policy design.

1.1.1 Enabling Multitenant Wireless Gateways and Applications
through ParaDrop

A decade or two ago, the desktop computer was the only reliable computing plat-
form within the home where third-party applications could reliably and persistently
run. However diverse mobile devices, such as smartphones and tablets, have depre-
cated the desktop computer since, and today persistent third-party applications are
often run in remote cloud-based servers. While cloud-based third-party services have
many advantages, the rise of edge computing concepts stems from the observation
that many services can benefit from a persistent computing platform, right in the
end-user premises.

With end-user devices going mobile, there is one remaining device that provides all
the capabilities developers require for their services, as well as the proximity expected
from an edge computational framework. The gateway—which could be a home Wi-Fi
AP or a cable set-top box provided by a network operator—is a platform that is con-
tinuously on and due to its pervasiveness is a primary entry point into the end-user
premises for such third-party services.

We want to push computation onto the home gateways (e.g., Wi-Fi APs and cable
set-top boxes) for the following reasons:

• The home gateways can handle it—modern home gateways are much more
powerful than what they need to be for their networking workload. What is
more if you are not running a Web server out of the house, your gateway sits
dormant majority of the time (when no one is home using it).

• Utilizing computational resources in the home gateway gives us a footprint
within the home to devices that are starved for computational resources, namely,
IoT devices. Using ParaDrop, developers can piggyback their IoT devices onto
the AP without the need for cloud services OR a dedicated desktop!

• Every household connected to the Internet by definition must contain an Internet
gateway somewhere in the house. With these devices sitting around, we can use
them to their full potential.

INTRODUCTION 15

• Pervasive Hardware: Our world is quickly moving toward households only hav-
ing mobile devices (tablets and laptops) in the home that are not always on or
always connected. Developers can no longer rely on pushing software into the
home without also developing their own hardware too.

A Developer-Centric Framework. In this chapter, we examine the requirements of
services in order to build an edge computing platform, which enables developers to
provide services to the end user in place of a cloud computing platform. A focus on
edge computation would require developers to think differently about their applica-
tion development process; however we believe there are many benefits to a distributed
platform such as ParaDrop. The developer has remained our focus in the design and
implementation of our platform. Thus, we have implemented ParaDrop to include a
fully featured API for development, with a focus on a centrally managed framework.
Through virtualization, ParaDrop enables each developer access to resources in a way
as to completely isolate all services on the gateway. A tightly controlled resource
policy has been developed, which allows fair performance between all services.

1.1.2 ParaDrop Capabilities

ParaDrop takes advantage of the fact that resources of the gateway are underutilized
most of the time. Thus each service, referred to as a chute (as in parachute), borrows
CPU time, unused memory, and extra disk space from the gateway. This allows ven-
dors an unexplored opportunity to provide added value to their services through the
close proximity footprint of the gateway.

Figure 1.1 shows ParaDrop system running on real hardware, the “Wi-Fi home
gateway,” along with two services to motivate our platform: “security camera” and
“environment sensors.” ParaDrop has been implemented on PC engines ALIX 2D2
single board computer running OpenWrt “Barrier Breaker” on an AMD Geode
500 MHz processor with 256 MB of RAM. This low-end hardware platform was
chosen to showcase ParaDrop’s capabilities with existing gateway hardware.

We have emulated two third-party developers who have migrated their services
to the ParaDrop platform to showcase the potential of ParaDrop. Each of these ser-
vices contains a fully implemented set of applications to capture, process, store, and
visualize the data from their wireless sensors within a virtually isolated environment.
The first service is a wireless environmental sensor designed as part of the Emonix
research platform [4], which we refer to as “EnvSense.” The second service is a wire-
less security camera based on a commercially available D-Link DCS 931L webcam,
which we call “SecCam.” Leveraging the ParaDrop platform, the two developer ser-
vices allow us to motivate the following characteristics of ParaDrop:

• Privacy. Many sensors and even webcams today rely on the cloud as the only
storage mechanism for generated data. Leveraging the ParaDrop platform, the
end user no longer must rely on cloud storage for the data generated by their
private devices and instead can borrow disk space available in the gateway for
such data.

16 PARADROP: AN EDGE COMPUTING PLATFORM IN HOME GATEWAYS

Wi-Fi home
gateway

CPU DISK

ParaDrop

MEM

Security

camera

Environment

sensors

Figure 1.1 The fully implemented ParaDrop platform on the Wi-Fi home gateway, which
shares its resources with two wireless devices including a security camera and environment
sensor.

• Low Latency. Many simple processing tasks required by sensors are performed
in the cloud today. By moving these simple processing tasks onto gateway hard-
ware, one hop away from the sensor itself, a reliable low-latency service can be
implemented by the developer.

• Proprietary Friendly. From a developer’s perspective, the cloud is the best
option to deploy their proprietary software because it is under their complete
control. Using ParaDrop, a developer can package up the same software
binaries and deploy them within the gateway to execute in a virtualized
environment, which is still under their complete control.

• Local Networking Context. In the typical service implemented by a developer,
the data is consumed only by the end user yet stored in the cloud. This requires
data generated by a security camera in the home to travel out to a server some-
where in the Internet and upon the end user’s request travel back from this server
into the end-user device for viewing. Utilizing the ParaDrop platform, a devel-
oper can ensure that only data requested by the end user is transmitted through
Internet paths to the end-user device.

• Internet Disconnectivity. Finally, as services become more heterogeneous, they
will move away from simple “nice to have” features into mission critical, life
saving services. While generally accepted as unlikely, a disconnection from the
Internet makes a cloud-based sensor completely useless and is unacceptable for
services such as health monitoring. In this case, a developer could leverage the
always-on nature of the gateway to process data from these sensors, even when
the Internet seems to be down.

IMPLEMENTING SERVICES FOR THE PARADROP PLATFORM 17

1.2 IMPLEMENTING SERVICES FOR THE PARADROP PLATFORM

The primary component of ParaDrop is the virtual machine called a chute (short for
parachute) because the framework uses it to install services across different APs. Each
developer can deploy many chutes (Figure 1.2) to their AP, thanks to a low-overhead
virtualization technology: Linux containers (LXC). These chutes allow for fully iso-
lated use of computational resources on the AP. As you design and implement ser-
vices on your AP, you can, and should, separate these services into unique chutes.
Figure 1.3 shows an example chute configuration specified in the Chute.struct file.

There are several primary concerns of the ParaDrop platform including installation
procedure, API, and networking configuration.

Dynamic Installation. In order to allow end users to easily add services to their
gateway, each service should have the ability to be dynamically installed. This pro-
cess is possible through the virtualization environment of each chute. When an end
user wishes to add a service to their home, they simply register an account with the
developer. Using the ParaDrop API, the developer links the user’s account with their
gateway. If the service utilizes a wireless device, the gateway can fully integrate with
the device without any interference from the end user.

ParaDrop API. The focus of ParaDrop is to enable third-party developers to provide
high quality services to their users. In order to enable this, a seamless API was devel-
oped, based on a RESTful paradigm, which allows the developer to have complete
control over the configuration of their chutes.

Developers can use the API to query and monitor the status of the Paradrop plat-
form:

• Persistent State: Users (type, permissions, etc.), chutes (description, resource
requirements, etc.), and gateways (configuration, accessories, location, etc.)

• Real-Time State: Running status of chutes and gateway

eth0

eth0

wlan0

eth1

WAN Services
LAN

Host firewall

Figure 1.2 The dashed box shows the block diagram representation of a “chute” installed
on a ParaDrop-enabled access point. Each chute hosts a stand-alone service and has its own
network subnet.

18 PARADROP: AN EDGE COMPUTING PLATFORM IN HOME GATEWAYS

"disk": {
"size": 123456

},
"net": {
"wan": {
"type": "wan",
"intfName": "eth0",
"ipaddr": "10.100.10.1",
"netmask": "255.255.255.0"

},
"wifi": {
"type": "wifi",
"intfName": "eth1",
"ipaddr": "10.100.11.1",
"netmask": "255.255.255.0",
"ssid": "Virtual0",
"encryption": "psk2",
"key": "wifi1234"

}

Figure 1.3 An example Chute.struct file, which is used to specify the key configuration
parameters of a chute that hosts a stand-alone service. Parameters such as CPU, memory, disk
requirements, and network configurations are specified as JSON key–value pairs. ParaDrop
provides chute configuration templates to developers, which can customized based on appli-
cation requirements.

Developers can also use the API to control the system:

• Publish a chute to the store or remove a chute from the store.

• Register/unregister a gateway.

• Install, start, and revoke a chute on one or many gateways.

As services evolve, the API will provide all the capabilities required without the
need for modification to the configuration software. This is possible through the use
of a JSON-based data back end, which allows abstract configuration and control over
each chute.

Network Setup. The networking topology of a dynamic, virtualized environment
controlled by several entities is very complex. In order to maintain control over the
networking aspects of the gateway, we leveraged an SDN paradigm. All configura-
tion related to networking between the chutes and the gateway is handled through a
cloud service, which is interfaced by the developers and network operators. The use
of SDN is what allows developers to transparently redirect the user’s request to their
Web services from within the gateway.

DEVELOP SERVICES FOR PARADROP 19

Resource Policy. The multitenancy aspects of ParaDrop require tight policy control
over the gateway and its limited resources. Currently the major resources controlled
by ParaDrop include CPU, memory, and networking. Using the API, the developer
specifies the type of resources they require depending on the services they implement.
Through the management interface, the network operator can dynamically adjust the
resources provided to each chute. These resources are adjusted first by a request sent
to the chute, and, if not acted upon, then by force through the virtualization framework
tools.

1.3 DEVELOP SERVICES FOR PARADROP

IoT is becoming a huge part of the networking world. Yet many IoT devices rely on
back end services that must traverse the Internet to utilize their full potential. Using
ParaDrop, we can pull that intelligence back into the AP.

1.3.1 A Security Camera Service Using ParaDrop

In this section, we present a walk-through about using a Wi-Fi-based video camera
with a ParaDrop AP to implement a security camera service called SecCam.

The SecCam service is based on a commercially available wireless IP camera,
where we took the role of developer to fully implement the service.

For this service, we require networking interfaces to communicate with the
webcam and the Internet, as well as ample storage for images. To augment storage
resources on ParaDrop gateways, we add a flash card to the gateway device, which
provides GBs of storage.

The applications for SecCam allow for motion detection from the webcam,
user-defined alerts, and visualization of the detected images. The motion detection
component is a Python-based program with user-defined characteristics such as
threshold of motion, time of day, and rate of detection. Visualization of the motion is
implemented as a PHP-based Web page, which is hosted within the SecCam chute.

This example in the section creates a chute for the “SecCam” service with the
following end result:

• Create the SecCam SSID. This SSID provides an isolated Wi-Fi network and
subnet to the security cameras. This is designed so that devices purchased by
end users do not have to be programmed when they arrive at the house (they
can be flashed with a default SSID and password by the company). This subnet
will not have internet access and any network traffic be consumed by the chute.

• Image Capture Service. The service will run a simple Python program to capture
images from an IP camera, calculate differences to detect motion, and store
those images to disk. The images stored to disk will then be visualized using a
Web server, which runs inside the chute.

20 PARADROP: AN EDGE COMPUTING PLATFORM IN HOME GATEWAYS

"disk": {
"size": 123456

},
"net": {
"wan": {
"type": "wan",
"intfName": "eth0",
"ipaddr": "10.100.10.1",
"netmask": "255.255.255.0"

},
"wifi": {
"type": "wifi",
"intfName": "eth1",
"ipaddr": "10.100.11.1",
"netmask": "255.255.255.0",
"ssid": "SecCam",
"encryption": "psk2",
"key": "noOneCanHackThis"

}

Figure 1.4 The primary Chute.struct component for the SecCam chute.

{
"name":"www",
"path":"/srv/www",
"location":"@paradrop.server(seccam/srv.tar.gz)",
"sha1":"526bb8cb52458aad4043c56980cd238551b46b7e",
"todo":"EXTRACT"

}, {
"name":"root",
"path":"/root",
"sha1":"1633ea1d6351929cc2c8717d1611dcb41681b585",
"location":"@paradrop.server(seccam/seccam.py)"

}

Figure 1.5 The Chute.files component lists the files required for the SecCam chute.

1.3.1.1 Defining the SecCam Chute Chute.struct. As discussed earlier, we first
need to define the primary Chute.struct component first for our awesome SecCam
chute (Figure 1.4).

Chute.files. For a chute, the Chute.files component lists any files that must exist on
the chute’s disk in order for it to operate properly. This can include things like bash
scripts, Python programs, PHP code, etc.

The rules in Figure 1.5 show files required for our SecCam application. The
“www” attribute specifies Web server PHP code to download seccam/srv.tar.gz from

DEVELOP SERVICES FOR PARADROP 21

an examples directory on the ParaDrop server to the chute’s root file system (FS).
Similarly the “root” attribute downloads seccam.py to /root. The “sha1” values let
the code running on ParaDrop to verify it properly downloading the code into the
chute before it launches.

Chute.resource. As much as possible, ParaDrop tries to be a lean virtualized plat-
form (hence our use of LXC over more traditional virtualization methods). For this
reason, we explicitly make the developer define and be aware of the resources they
will require for their chute.

These resources are broken down into three categories:

1. CPU. The CPU shares devoted to this chute, in most cases the default value,
will be fine; if you know the chute will not perform CPU intensive tasks or you
want to lower the priority of the tasks it will perform, you can lower the CPU
value, by default it is 1024 (meaning equal sharing between all chutes).

2. Memory. The AP we have implemented for ParaDrop contains 2 GB of DDR3
memory, so compared with a typical AP memory will not be hard to come by.
The default value for memory should typically be fine, but keep in mind: the
memory value is a hard limit; if you define it to be too low, your chute’s kernel
may not even fully boot due to out-of-memory (OOM) issues.

3. Networking. The final resource to be defined for chutes is any network through-
put requirements of the chute. These are specified in kbps for both upload and
download for each interface in the chute. If you are designing a chute with low
priority but its use is primarily a virtual router, rather than lowering the CPU
resources (which will not greatly affect throughput rates), you should lower the
overall throughput provided to the interface instead.

Figure 1.6 shows the Chute.resource component for the SecCam chute. We choose
the default CPU and memory configuration and specify a high-bandwidth limit to
allow high-volume video traffic from the Wi-Fi camera.

Chute.runtime. The Chute.runtime component specifies what operations will be
performed within the chute itself. We refer to these as the runtime rules (Figure 1.7).
The webhosting runtime attribute creates an instance of uhttpd with the arguments
specified. The DHCP server runtime macro sets up a default DHCP server inside the
chute so that future security cameras can connect to it properly.

Chute.traffic. In many situations, the chute you are implementing will need to
interface with devices that for any number of reasons may not be associated to your

"cpu": "@resource.cpu.DEFAULT",
"memory": ’@resource.memory.DEFAULT’,
"wan": {"down": 25000, "up": 10000},
"wifi": {"down": 25000, "up": 10000}

Figure 1.6 The Chute.resource component specifies the resource consumption limits for the
SecCam chute.

22 PARADROP: AN EDGE COMPUTING PLATFORM IN HOME GATEWAYS

{
"name": "webhosting",
"program": "uhttpd",
"args": "-p 80 -i .php=/usr/bin/php-cgi -h /srv/www"

}, {
"name": "DHCP Server",
"program": "@net.runtime.dhcpserver"

}

Figure 1.7 The Chute.runtime component for the SecCam chute.

{
"name": "Web",
"description": "Allows the chute to provide a webserver

on WAN",
"rule": "@net.traffic.redirect(@net.host.lan:*:5000,

wifi:10.100.13.1:80)"
}, {
"name": "HostSSH",
"description": "Allows the host stack access to SSH",
"rule": "@net.traffic.redirect(@net.host.lan:*:5001,

wifi:10.100.13.1:22)"
}

Figure 1.8 The Chute.traffic component allows users to access data within the SecCam chute.

chute’s network directly (via a Wi-Fi interface). In these cases for security purposes,
the ParaDrop platform allows the developer to implement traffic rules. These rules are
implemented in the host networking stack’s firewall rules and allow for things like
a computer on the host LAN network to access a particular port within a deployed
chute (called port forwarding in firewall land).

For the SecCam application, the images are stored within the chute but need to
be accessible to users on the LAN network. The Web rule allows the user connected
on the LAN network to access Web pages hosted by a uhttpd Web server running
inside a chute. The host SSH rule allows the user to SSH into the chute from his
laptop (mainly for debugging) connected to the LAN network by using the default
ParaDrop SSID (Figure 1.8).

1.3.2 An Environmental Sensor Service Using ParaDrop

Since the wireless environmental sensor was fully implemented as a part of the
Emonix research platform, we only need to migrate the service, rather than rewrite
it to fit ParaDrop platform. The original service runs in a cloud server to collect data
from the sensors, process and store the data, and visualize the data. After identifying
the resources required to run the service, we can develop a chute for it so that the

REFERENCES 23

service can run in ParaDrop gateways, which are close to the sensors. As the steps
to develop a chute for it are the same as the SecCam application, we do not discuss
them in detail here.

REFERENCES

1. R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I. Yang. The case for
cyber foraging. In Proceedings of the 10th Workshop on ACM SIGOPS European Workshop,
EW 10, pages 87–92, New York, NY, USA, 2002. ACM.

2. M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based cloudlets
in mobile computing. IEEE Pervasive Computing, 8(4):14–23, 2009.

3. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the inter-
net of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, MCC ’12, pages 13–16, New York, NY, USA, 2012. ACM.

4. N. Klingensmith, D. Willis, and S. Banerjee. A distributed energy monitoring and analytics
platform and its use cases. In Proceedings of the Fifth ACM Workshop on Embedded Systems
For Energy-Efficient Buildings, BuildSys’13, pages 5:1–5:8, New York, NY, USA, 2013.
ACM.

2 Mind Your Own Bandwidth

CARLEE JOE-WONG,1 SANGTAE HA,2 ZHENMING LIU,3

FELIX MING FAI WONG,4 and MUNG CHIANG5

1Electrical and Computer Engineering, Carnegie Mellon University, Silicon Valley,
CA, USA
2Department of Computer Science, University of Colorado at Boulder, Boulder,
CO, USA
3Department of Computer Science, College of William and Mary, Williamsburg,
VA, USA
4Yelp Inc., San Francisco, CA, USA
5Department of Electrical Engineering, Princeton University, Princeton, NJ, USA

2.1 INTRODUCTION

The growing popularity of the Internet, and particularly streaming and cloud ser-
vices like Dropbox and Netflix, has caused a dramatic increase in data usage since
2010 [1]. Internet service providers (ISPs) are thus confronting a difficult question:
how should they cope with this growing demand for data as it threatens to overwhelm
their available network capacity?

An obvious answer to this question would be to simply expand network capac-
ity to meet users’ demands. However, demand for data is growing at such a fast
rate that the necessary capacity increases and would require prohibitive amounts of
investment [2]. Thus, instead of expanding the bandwidth supply, many ISPs have
turned to managing user demand. By limiting bandwidth demand at any given time
to lie below the network capacity threshold, ISPs can prevent their networks from
becoming over-congested. However, demand restriction is not easy. Simple restriction
policies, such as throttling heavy users, can effectively reduce network congestion,
but they can unfairly target heavy users. Moreover, simple throttling does not account
for the fact that different types of applications require different amounts of data. For
instance, throttling streaming videos can significantly degrade users’ quality of expe-
rience (QoE) while throttling a peer-to-peer download merely delays the time until a
user receives a file.

To account for user QoE, ISPs can try to infer users’ QoE by classifying their
data traffic into different applications and provisioning bandwidth accordingly (e.g.,

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

INTRODUCTION 25

streaming media gets more Mbps than file downloads). Yet such targeted bandwidth
restriction can violate users’ privacy, as users may not want their providers to know
what types of applications they use.

To preserve users’ privacy, ISPs could instead introduce distributed, user-based
demand shaping. In these types of systems, users would self-throttle their network
traffic, using only the amount that they need, at times when they need it. Since users
would be in charge of the throttling, they could take their individual QoE into account,
so that users who needed more bandwidth would receive it. However, without suitable
incentives, users will not moderate their demand. And giving users these incentives is
difficult for an ISP; since the ISP does not know exactly which applications the user
needs, it does not know users’ exact valuations for network bandwidth and cannot
tailor the offered incentives accordingly.

In this chapter, we propose a distributed, user-based incentive mechanism and
demonstrate its benefits for both ISPs and users. Users spend virtual “QoE credits”
to purchase higher bandwidth from the ISP; since individual users make their own
spending decisions, these can take into account individual user QoE. At the same
time, the ISP has a degree of control over the total number of credits that users can
spend (i.e., the credit budgets for individual users), in order to ensure that users are
treated fairly. Within each user’s access point, the user can decide how to allocate
his or her purchased bandwidth among the different applications and devices that are
currently connected to the access point.

2.1.1 Leveraging the Fog

Our user-based system is an example of the fog networking paradigm, which shifts
communication and control of networked services to the network edge. A fog-like
architecture can bring many benefits, for example, allowing users to better control the
services they receive while maintaining privacy about their service preferences. Other
advantages include scalability; since much of the network functionality is shifted to
user devices, expanding the service to other users simply requires their devices to
connect to the network. Any entities remaining in the network core will likely scale
more easily than before, as they now provide less complex functionalities.

Fog networking can be applied to a broad range of systems, ranging from dis-
tributed storage and computing to network bandwidth allocation. In this chapter, we
focus on the particular case of broadband cable networks, which have experienced
significant congestion in recent years [3]. Our system pushes congestion manage-
ment to home gateways, that is, combinations of a broadband modem and an in-home
Wi-Fi access point. Though often treated as black boxes by their users, we show that
these gateways can be configured to implement the fine-granular bandwidth control
required by our system.

2.1.2 A Home Solution to a Home Problem

We propose to allocate bandwidth in a two-level hierarchy, as shown in Figure 2.1.
Bandwidth is first allocated among home gateways (Level 1) and then allocated
locally among the users and devices connected to each gateway (Level 2).

26 MIND YOUR OWN BANDWIDTH

Internet

Level 1
home gateways

CMTS

Level 2

apps and devices

Figure 2.1 Hierarchical edge-based bandwidth allocation.

Level 1: Our Level 1 solution distributes QoE credits [4] to the gateways. Each
gateway uses its credits to “purchase” guaranteed bandwidth rates at congested
times, giving it an incentive to moderate network usage due to its limited credit
budget. We limit the total bandwidth demand to the network capacity by fixing the
total number of credits in the system and recirculating credits to gateways as they
are spent.

The ISP divides the day into a series of discrete time periods, for example, each
lasting an hour, and designates some as “congested.” At such times, traffic is divided
into two classes: a first-tier class that gateways must purchase with credits and a
second-tier class that requires no credits but is always of lower priority.1 This scheme
ensures that the network is fully utilized if there is sufficient demand yet still encour-
ages gateways to spend credits at different times.

At the start of the period, each gateway first decides how many of its credits to
spend, that is, how much guaranteed bandwidth to purchase.2 A central server in the
ISP’s network records the total credits spent by each gateway and redistributes the
appropriate number of credits to each gateway in the next time period. Each gateway
updates its budget by deducting the credits spent in the previous time period and

1By spending credits, users essentially sort their first-class traffic into customized classes defined by the
different guaranteed bandwidths purchased.
2In practice, an automated agent acting on behalf of the gateway’s users makes this decision, with possible
manual overrides.

INTRODUCTION 27

adding the number of credits received. In the next time period, each gateway then
knows its updated budget and can again choose how many credits to spend.

In addition to the privacy and scalability advantages of a fog-like architecture, our
specific credit redistribution scheme enables us to realize several additional benefits:

• Fairness Across Gateways. The credits circulated back to each gateway at a
given time depend on other gateways’ behavior. Thus, gateways that spend a lot
of credits in one time period will have fewer to spend later, ensuring that every
gateway will be able to use a fair portion of the bandwidth over time.

• User-Driven QoE Optimization. Each gateway spends credits so as to maximize
its own overall satisfaction or QoE and is free to allocate this purchased band-
width among its apps and devices. Our credit redistribution mechanism ensures
that gateways’ credit spending choices optimize the collective social welfare,
that is, all gateways’ satisfaction, over time.

• Incremental Deployability. Since credit spending decisions are made locally by
each gateway, our system can be easily deployed via modified home gateways
and does not require substantive changes to ISPs’ network architecture. More-
over, the number of total credits is fixed, so we can incrementally deploy the
solution by starting with a small number of credits and introducing more as
more gateways begin to participate.

Level 2: Our Level 2 solution allows gateway users to prioritize different apps
and automatically allocates bandwidth accordingly.3 One user, for instance, might
prioritize streaming music, while another might prioritize file transfers. The gateway
then divides its purchased bandwidth among these apps according to their priorities.
We focus on elephant traffic, which tends to be non-bursty and amenable to bandwidth
throttling. Since the allocation runs locally at each gateway, the user has full control
over these decisions at a session level.

Prioritizing different applications requires both automatically classifying sessions
entering the gateway into different apps and enforcing rate limits for each app. While
standard mechanisms are available for doing so in a router, they generally require
static priority configurations and server-side support when prioritizing downlink
traffic. We thus develop our own classification and rate limiting solutions, which run
locally on each gateway, and prototype them in a modified home gateway router.

We briefly discuss related works in Section 2.2 before introducing our credit redis-
tribution algorithm in Section 2.3. We show that gateways’ total satisfaction is maxi-
mized in equilibrium and that each gateway receives a fair amount of bandwidth over
time. In Section 2.4, we present practical algorithms for each gateway to decide how
many credits to spend and to distribute bandwidth among its apps and devices. We
discuss our prototype implementation on a home gateway router in Section 2.5 and
present simulation and implementation results of an example scenario in Sections 2.6
and 2.7. We conclude in Section 2.8.

3Should explicit prioritization prove too complex for average users, we can introduce default priorities for
different types of apps and devices.

28 MIND YOUR OWN BANDWIDTH

2.2 RELATED WORK

As the need for customized data services has grown, there has been much recent
work on developing smart home gateways with plain Linux/Windows or open-source
router software like OpenWrt. Smart home gateways have been used for network
measurement [5,6], providing intuitive interfaces for home network management [7,
8] and better QoE provisioning [9,10]. One such gateway uses weighted fair queueing
to allocate uplink traffic according to manual QoE feedback [11]. Another uses traffic
classification to sort flows into a fixed set of QoE classes, each of which is given a
different priority at the gateway [12]. However, we are not aware of any work in
coordinating bandwidth usage across households.

Using pricing to manage network congestion is a long-studied research area [2],
and recent work has considered practical user interfaces for responding to data prices
[13, 14]. Our work differs in targeting broadband users on flat-fee service plans,
prompting us to use a credit scheme instead of extra fees for prioritized access. Other
credit-based schemes have been proposed for flow admission control [15] and for
regulating access to higher-quality service [16], but these have remained theoret-
ical proposals, due to users’ reluctance to manually make complex token bidding
decisions. We present a complete solution, from algorithms to implementation, for a
specific problem of peak-hour broadband access. Moreover, our solution leverages
user-specified QoE indicators to optimize traffic according to users’ needs; while
some works have introduced ways for users to give QoE feedback [17, 18], none
of them have used this information to adjust bandwidth allocations.

From an implementation perspective, we develop a new incoming rate limiting
tool, as off-the-shelf tools (e.g., Linux tc) are insufficient for our application. The
congestion manager (CM) project [19] shares similar goals of reducing congestion
at the network edge, but we propose a QoE credit scheme to incentivize users to
reduce usage, while CM provides an API for applications to adapt to varying net-
work conditions and requires sender-side support. Receiver-side rate control is mostly
done through explicitly controlling the receive window [20] or the receive socket
buffer [21], for example, to implement low-priority transfers [22] and prioritize traf-
fic [23,24]. Our solution does not modify client devices or track the number of active
connections and their round trip times (RTTs). It also avoids interfering with Linux’s
buffer autotuning mechanism [25]. Our approach of implicit window control is sim-
ilar to that of Trickle [26], but they serve different goals. Trickle is designed for
non-root users to voluntarily rate limit their applications, while we aim to impose
mandatory rate limits that are transparent to users.

2.3 CREDIT DISTRIBUTION AND OPTIMAL SPENDING

In this section, we describe the bandwidth allocation at the higher level of
Figure 2.1. We first describe our system of credits for purchasing bandwidth
(Section 2.3.1) and show that it satisfies several fairness properties. We then
show that even if each gateway selfishly maximizes its own satisfaction, the total

CREDIT DISTRIBUTION AND OPTIMAL SPENDING 29

satisfaction across all gateways can be maximized (Section 2.3.2). All proofs are in
Appendices 2.A.1–2.A.6.

2.3.1 Credit Distribution

We divide congested times of the day into discrete time periods, for example, of
a half-hour duration, and allow gateways to “purchase” bandwidth in each period.
The spent credits are redistributed at the end of each period. Users’ credit budgets at
the end of each day carry over into the next day, so our model is not affected by these
time gaps in credit spending.

We suppose that a fixed number B = 𝛽C of credits is shared by n different gate-
ways, where C is the network capacity in Gbps and 𝛽 an over-provisioning factor
chosen by the ISP. We consider T + 1 time periods indexed by t = 0, 1,… ,T , for
example, T + 1 periods per week. We use bit to denote the budget, that is, number of
credits owned, of gateway i at time t, and we suppose that the total credits are ini-
tially distributed equally across gateways, that is, bi0 = B∕n for all i. For brevity, in
the remainder of the paper, we use “budget” to mean “credit budget” or the number
of credits available to the gateway at a given time. We use xit to denote the number of
credits used by gateway i in time period t. We then update each gateway i’s budget as

bi,t+1 = bit − xit +
1

n − 1

∑
j≠i

xjt, (2.1)

where we sum over all gateways j except gateway i. Each gateway i is constrained by
0 ≤ xit ≤ bit: it cannot spend negative credits, and the number of credits spent cannot
exceed its budget. This credit redistribution scheme conserves the total number of
credits for all times t:

Lemma 2.1 At any time t, the number of credits distributed among gateways is
fixed, that is,

∑n
i=1 bit = B = 𝛽C.

Since users cannot spend more than their budgets, their total bandwidth purchases
are therefore limited to at most 𝛽C.

Heavy gateways are prevented from hogging the network, as a large xjt (i.e., large
usage by gateway j at time t) simply means that the other gateways i ≠ j will receive
larger budgets in the time interval t + 1. This natural fluctuation in credit budgets
enforces a form of fairness across gateways. In fact, if this redistribution leads back
to a previous budget allocation, all gateways spend the same number of credits:

Lemma 2.2 Suppose that for some times s and t, bis = bit for all gateways i, for
example, s = 0 and bit = B∕n. Then each gateway spends the same number of credits
between times s and t: for all gateways i and j,

∑t−1
𝜏=s xi𝜏 =

∑t−1
𝜏=s xj𝜏 .

Using this result, we can more generally bind the difference in the number of
credits gateways can spend:

30 MIND YOUR OWN BANDWIDTH

Proposition 2.1 At any time t, for any two gateways i and j, |||∑t
s=0 xis −

∑t
s=0 xjs

||| ≤
B(n − 1)∕n. Thus, the time-averaged difference in spending

lim
t→∞

1
t

|||||
t∑

s=0

xis −
t∑

s=0

xjs

||||| ≤ lim
t→∞

B(n − 1)
nt

= 0. (2.2)

Over time, fairness is enforced in the sense that all gateways can spend approximately
the same number of credits.

Though these fairness results limit heavy gateways from hogging the network,
gateways with less usage may conversely “hoard” credits, hurting other gateways’
budgets. To limit hoarding, we cap each gateway’s budget at a maximal value of B,
with B∕n < B ≤ B.4 For instance, the ISP might choose B = B∕(n − m + 1), where
m is the minimum number of gateways on the network at any given time. The n − m
inactive gateways at that time can then hoard at most B(n − m)∕(n − m + 1) credits,
letting active gateways use the remaining B∕(n − m + 1) credits.

To enforce this budget cap, the excess budget
(

bit − xit +
∑

j≠i xjt∕(n − 1)
)
− B

of any gateway i exceeding the cap is evenly distributed among all gateways below
the cap. Should these credits push any gateway over the cap, the resulting excess is
evenly redistributed to the remaining gateways until all budgets are below the cap.
Since B > B∕n and we reallocate to fewer gateways after each iteration, this process
converges after at most n − 1 iterations. We expect that users will rarely reach the
budget cap, as even without the cap, no single gateway can hoard all available credits:

Proposition 2.2 Let 𝛼 = (n − 2)∕(n − 1) and suppose that a given gateway i uses
at least 𝜖 bandwidth every p periods, where B∕n > 𝜖 ≥ 0 and p may denote, for
example, 1 day. Then at any time t, gateway i’s budget is

bit ≤
B
n
𝛼

t+1 + B
(
1 − 𝛼

t+1) − 𝜖

⎛⎜⎜⎝𝛼
p − 𝛼

p
(

1+
⌊

t+1
p

⌋)
1 − 𝛼

p

⎞⎟⎟⎠
→ B − 𝜖𝛼

p

1 − 𝛼
p

(2.3)

as t → ∞. Thus, if 𝜖 > 0, bit < B. Moreover, at any fixed time t, at most one gateway

can have a budget of zero credits.

For instance, if a gateway spends 𝜖 credits at each time, then as t → ∞, bit ≤

B − 𝜖(n − 2); if 𝜖 is relatively large, a gateway hoards fewer credits, since these are
redistributed among others once spent. Conversely, a gateway that spends very little
can asymptotically hoard almost B credits. More broadly, if a number m of gateways
are inactive in a network for a certain number of time periods s, then we can bound
the number of credits these m gateways accumulate:

4If B = B∕n, then we would have bit = B∕n for all gateways i at all times t. We therefore take B > B∕n to

ensure that there is a feasible set of budgets
{

bit

}
with each bit ≤ B.

CREDIT DISTRIBUTION AND OPTIMAL SPENDING 31

Proposition 2.3 Suppose that m gateways are inactive from times 0 to s − 1 (i.e.,
for s periods). Then the number of credits that these gateways can accumulate by time
s is given by

m∑
i=1

bis − bi0 ≤

(
1 −

(n − 2
n − 1

)s
)(

B −
m∑

i=1

bi0

)
(2.4)

where we index the inactive gateways by i = 1, 2,… ,m.

2.3.2 Optimal Credit Spending

Given the previous credit distribution scheme, each gateway must decide how many
credits to spend in each period. To formalize this mathematically, let Uit denote gate-
way i’s utility as a function of the guaranteed bandwidth xit in time interval t. Though
gateways may increase their utilities with second-tier traffic, we do not consider this
traffic in our formulation. Second-tier bandwidth is difficult to predict: gateways
could only obtain historical information on its availability by regularly sending such
traffic, which they are unlikely to do.

We consider a finite time horizon T , for example, 1 week, since the utility functions
cannot be reliably known far into the future. Each gateway i then optimizes its total
utility from the current time s to s + T:

max
xit

s+T∑
t=s

Uit

(
xit

)
, s.t. 0 ≤ xit ≤ bit, ∀t. (2.5)

Here the budgets bit are calculated using the credit redistribution scheme (2.1), with
appropriate adjustments to enforce the budget limit B. For ease of analysis, we do
not model these budget caps here. In practice, the ISP can cap gateways’ budgets for
each time period during the credit redistribution.

We first note that the budget expressions (2.1) can be used to rewrite the inequality
xit ≤ bit as the linear function

t∑
𝜏=s

xi𝜏 −
∑
j≠i

t−1∑
𝜏=s

xj𝜏

n − 1
≤ bi0. (2.6)

Thus, if the Uit are concave functions, then given the amount spent by other gateways,
xj𝜏 , (2.5) is a convex optimization problem with linear constraints.5

Since each gateway chooses its own xit to solve (2.5), these joint optimization
problems may be viewed in a game theoretic sense: each gateway is making a decision
that affects the utilities of other gateways. From this perspective, the game has a Nash
equilibrium at the social optimum:

5The assumption of concavity, that is, U′′
it (xit) < 0, may be justified with the economic principle of dimin-

ishing marginal utility as bandwidth increases.

32 MIND YOUR OWN BANDWIDTH

Proposition 2.4 Consider the global optimization problem

max
xit

n∑
i=1

s+T∑
t=s

Uit

(
xit

)
, s.t. 0 ≤ xit ≤ bit, ∀i, t (2.7)

with the credit redistribution (2.1) and strictly concave Uit. Then an optimal solution{
x∗it
}

to (2.7) is a Nash equilibrium.

While Proposition 2.4’s result is encouraging from a system standpoint, in practice
this Nash equilibrium may never be achieved. Since the gateways do not know each
others’ utility functions, they do not know how many credits will be spent and redis-
tributed at future times, making the future credit budgets unknown parameters in each
gateway’s optimization problem. These must be estimated based on historical obser-
vations, which we discuss in the next section.

2.4 AN ONLINE BANDWIDTH ALLOCATION ALGORITHM

We now consider a gateway’s actions at both levels of bandwidth allocation. We first
give an algorithm to decide credit spending (Level 1) and then show how the pur-
chased bandwidth can be divided at the gateway (Level 2). Using Algorithm 2.1,
each gateway iteratively estimates the future credits redistributed, chooses how many
credits to spend, prioritizes apps, and updates its credit estimates. We assume the
gateway’s automated agent knows its users’ utility functions.

2.4.1 Estimating Other Gateways’ Spending

To be consistent with (2.5)’s finite time horizon, we suppose that gateways employ
a sliding window optimization. At any given time s, gateway i chooses rates for the
next T periods s,… , s + T − 1 so as to maximize its utility for those periods. At time
s + 1, the gateway updates its estimates of future credits redistributed and optimizes
over the next T periods.

We use scenario optimization to estimate the number of credits each gateway will
receive in the future.6 Scenario optimization considers a finite set Si of possible sce-
narios for each gateway i, associating each scenario 𝜎 ∈ Si with a probability 𝜋

𝜎

that
it will take place. Computing the credit redistribution and optimal spending xit for
each 𝜎 then yields a probability distribution of the possible credits spent. In our case,
a “scenario” is a set of utility functions

{
Ujt

}
for the other gateways. We parameterize

these scenarios by noting that gateways’ utilities depend on the application used, for
example, streaming versus downloading files. We consider K different applications
and define uk(x) as the (predetermined) utility from an application of type k (e.g.,
k = 1 corresponds to streaming, k = 2 to file downloads, etc.). We thus take

Ujt = 𝛾jt

K∑
k=1

pk
jtuk (2.8)

6This technique is often used in finance to solve optimization problems with stochastic constraints that are
hard to predict, for example, market dynamics [27].

AN ONLINE BANDWIDTH ALLOCATION ALGORITHM 33

Algorithm 2.1 Gateway Spending Decisions
s ← 1 {s tracks the current time.}
while s > 0 do

if s > 1 then
Update estimate of future amounts redistributed using Algorithm 2.2.

end if
Calculate

∑
j≠i xjt∕(n − 1) for t = s,… , s + T − 1.

Solve (2.5) with budget constraints (2.9) given
∑

j≠i xjt∕(n − 1).
Choose the application priorities 𝜇k by solving (2.10).
s ← s + 1

end while

for each gateway j, where 𝛾jt is a scaling factor specified by individual gateways. The
variable pk

jt denotes the (estimated) probability that gateway j optimizes its usage with
the utility function uk, for example, if app k is used the most at time t.

With this utility definition, we can define a scenario 𝜎 by the coefficients 𝛾jt(𝜎)
and pk

jt(𝜎) of gateways’ utility functions. Since gateway i cannot distinguish between
other gateways, it need only estimate their behavior in aggregate. These gateways
can be thus viewed as one “gateway” j by adding their utility functions and budget
constraints. Gateway j then maximizes

Ujt =
T∑

t=1

𝛾jt(𝜎)
K∑

k=1

pk
jt(𝜎)uk

subject to the budget constraints 0 ≤ xjt ≤ bjt, where the coefficients 𝛾jt(𝜎)pk
jt(𝜎) rep-

resent the added coefficients for all gateways ≠i. Since gateway i cannot know the
accuracy of its or gateway j’s estimates of future usage, for the purpose of estimation,
we assume that both gateways’ future usage estimates are correct. Thus, following
Proposition 2.4, all gateways choose their usage so as to maximize the collective util-
ity

∑
t

(
Ujt + Uit

)
subject to the budget constraints. This optimization may be solved

to calculate the credits
∑

j≠i xjt(𝜎)∕(n − 1) redistributed to user i at each time t in
scenario 𝜎.

To improve our credit estimates, at each time t we update the scenario probabilities
𝜋
𝜎

by comparing the observed number of credits redistributed at time t − 1, denoted
by

∑
j≠i xj,t−1∕(n − 1), with the estimated amount redistributed

∑
j≠i xj,t−1(𝜎)∕(n − 1)

for each 𝜎 ∈ Si. We suppose that gateways’ behavior is sufficiently periodic (e.g.,
over T = 1 week) for the 𝜋

𝜎

at times t and t + T to be the same.

We use P
(∑

j≠i xj,t−1 =
∑

j≠i xj,t−1(𝜎)
)

to denote the probability that, given∑
j≠i xj,t−1∕(n − 1) at time t, gateways ≠i use scenario 𝜎’s utility function at time t.

We can calculate these probabilities by measuring the L2 discrepancy between the
estimated and observed credits redistributed:

34 MIND YOUR OWN BANDWIDTH

Algorithm 2.2 Estimating Credit Redistribution
s ← 1 {s tracks the current time.}
while s > 0 do

for all gateways i = 1,… , n do {this loop may be run in parallel}
Choose scenarios Si.
for each scenario 𝜎 ∈ S do

Calculate the predicted amount redistributed
∑

j≠i xjt(𝜎)∕(n − 1) for t = s,… , s + T −
1, assuming other gateways know xit for all t.
if s > 1 then

Update probability 𝜋
𝜎

using Bayes’ Rule.
end if

end for
end for

end while

P

(∑
j≠i

xj,t−1 =
∑
j≠i

xj,t−1(𝜎)
)

=

1||Si
|| − 1

⎛⎜⎜⎜⎝1 −

(∑
j≠i xj,t−1 −

∑
j≠i xj,t−1(𝜎)

)2

∑|Si|
l=1

(∑
j≠i xj,t−1 −

∑
j≠i xj,t−1(l)

)2

⎞⎟⎟⎟⎠ .
We then update the scenario probabilities 𝜋

𝜎

using Bayes’ rule and use the new 𝜋
𝜎

in
Algorithm 2.2.

2.4.2 Online Spending Decisions and App Prioritization

Algorithm 2.1 shows how the credits spent in different scenarios are incorporated into
choosing a gateway’s rates xit and application priorities. Each gateway constrains its
spending depending on the estimated redistributed credits: for instance, a conserva-
tive gateway might choose the xit so that the budget constraints 0 ≤ xit ≤ bit hold for
all scenarios. In the discussion that follows, we suppose that gateways constrain the
xit so that (2.6) holds in expectation:

t∑
𝜏=s

xi𝜏 −
∑
𝜎∈Si

𝜋
𝜎

(∑
j≠i

t−1∑
𝜏=s

xj𝜏 (𝜎)
n − 1

)
≤ bi0. (2.9)

We also constrain bit ≤ B, that is, the expected budget at a given time cannot exceed
the budget cap; users would rather spend more credits to remain under the budget cap
than be forced to redistribute excess credits to other gateways.

Each gateway can further improve its own experience with its Level 2 allocation,
dividing the purchased bandwidth among its apps. It does so by assigning priorities
to different devices and applications, so that higher-priority apps receive more band-
width. Since users cannot be expected to manually specify priorities in each time

DESIGN AND IMPLEMENTATION 35

period, we introduce an automated algorithm that leverages the gateway’s known
utility functions (2.8) to optimally set application priorities.

We consider the K application categories in (2.8) and use 𝜇k to represent each
category k’s priority. Since the applications that are active at a given time may change
during a period, for example, if a user starts or stops watching a video, we define
an app’s priority in relative terms: for any apps k1 and k2, 𝜇k1

∕𝜇k2
= yk1

∕yk2
, where

yk is the bandwidth allocated to application k and
∑

k yk = xit, ensuring that all the
purchased bandwidth is used. We normalize the priorities to sum to 1:

∑
k 𝜇k = 1.

Since it is difficult to predict which apps will be active at a given instant of time, we
choose the app priorities 𝜇k according to a “worst-case scenario,” in which all apps
are simultaneously active. In this case, each app k receives yk = 𝜇kxit bandwidth, and
we choose the 𝜇k to maximize total utility:

max
𝜇k

K∑
j=1

uk

(
𝜇kxit

)
, s.t.

m∑
k=1

𝜇k = 1. (2.10)

Since each function uk is assumed to be concave and the constraint is linear in the
𝜇k, (2.10) is a convex optimization problem and may be solved rapidly with standard
methods.

2.5 DESIGN AND IMPLEMENTATION

Figure 2.2 summarizes the architecture of our system. It consists of four modules:
(i) When traffic goes through the gateway for forwarding, it is passed to a device
and application classifier to identify the traffic type and priority. (ii) All traffic is

Apps and

devices

Home
gateway

Usage

monitor

Usage

monitor

Device
classifier

App

classifier

Optimizer (Level 2 allocator)

Credit

redistribution

Users

ISP

Proxy

Rate
limiter

Optimizer (Level 1 allocator)

Credit redistribution

estimator

Spending

decision engine

Figure 2.2 System architecture. Dashed lines represent traffic flow, and solid lines represent
rate and credit information.

36 MIND YOUR OWN BANDWIDTH

(a)

(b)

Figure 2.3 Screenshots of the web interface. (a) Usage tracking and (b) traffic priorities and
device/OS classification.

redirected through a proxy process that forwards traffic between client devices and
the Internet. The data forwarding rate is determined by the optimizer (L2 allocator)
in each gateway by considering app priorities and is enforced by a rate limiter. (iii)
The bandwidth (credit spending) for each gateway is computed by the optimizer (L1
allocator). (iv) A user can access the gateway through a web interface to view its usage
(at aggregate or joint device–app levels) and update its preferences, that is, when to
spend more credits and traffic priorities, so as to adjust the optimizer’s decisions.
Screenshots of the user interface are shown in Figure 2.3a and 2.3b.

We implement our system in a commodity wireless router, a Cisco E2100L with
an Atheros 9130 MIPS-based 400 MHz processor, 64 MB memory, and 8 MB flash
storage. We replaced the factory default firmware with OpenWrt, a Linux distribution

DESIGN AND IMPLEMENTATION 37

commonly used for embedded devices. The implementation poses two significant
challenges:

Traffic and Device Classification. Standard approaches for classifying traffic from
different devices include port-based protocol detection and operating system (OS)
fingerprinting. However, different apps can run on the same protocol, for example,
videos streamed in HTTP, and many device types run on the same OS, for example,
most smartphones run on a variant of Linux. Moreover, home gateways have only
limited computational resources, but both these approaches require significant com-
putational overhead.

Rate Limiting and Prioritization. We can limit a session’s bandwidth rate by
directly setting its TCP-advertised window size [23,24]. However, doing so requires
knowing each connection’s RTT and the number of active connections, both of which
can be difficult to estimate in practice.

2.5.1 Traffic and Device Classification

To build a low-overhead classifier, we integrate a kernel-level netfilter module
that inspects the first several packets of a connection for application matching. If
a match is found, the classifier marks the connection with a mark to be queried at
userspace by our proxy processes through netlink.

Our classifier module performs traffic classification above layer 7, that is, it can
differentiate YouTube and Netflix, through a combination of content matching, byte
tracking, and protocol fingerprinting. We classify devices and OSes by using the same
module to monitor HTTP traffic and inspect user-agent header strings for device infor-
mation. This approach is practically effective due to the prevalence of devices using
HTTP traffic.

2.5.2 Rate Limiting Engine

Our goal is to (i) enforce an aggregate rate limit over multiple connections and (ii)
enforce prioritization, that is, which gets higher bandwidth, among the connections
given the aggregate limit. In this paper we only consider throttling incoming traffic,
because the other direction can be easily and accurately done using standard token
bucket-based traffic shaping tools.

Transparent Proxy. During the establishment of a connection between a client
device and a server, it is intercepted at the gateway and redirected to the proxy pro-
cess running in the gateway. Then the proxy establishes a new connection to the
server on behalf of the client and forwards traffic between the two (proxy-server and
client-proxy) connections. We use the Linux splice() function to achieve zero
copying, that is, all data are handled in kernel space.

Implicit Receive Window Control. TCP’s flow control mechanism allows the
receiver of a connection to advertise a receive window to the sender so that incoming
traffic does not overwhelm the receiver’s buffer. While originally set to match the
available receiver buffer space, the receive window can be artificially set to limit
bandwidth using the relation cwnd = rate × RTT: given a maximum rate and

38 MIND YOUR OWN BANDWIDTH

Q(t) W(t)
F(t) D(t)

Server Client

B

Figure 2.4 Receive buffer model.

measured RTT, the receive window can be set to no greater than rate × RTT. We
opt for an adaptive approach such that the proxy does not need to know the RTT or
compute the exact window size.

To illustrate our approach we consider a one connection case. As data from the
server arrive at the proxy, they are queued at the proxy’s receive buffer until the proxy
issues a recv() on the proxy-server socket to process and clear them (at the same
time the proxy issues a send() on the client–proxy socket to forward the data to
the client). Note that if we modulate the frequency and the size of recv()’s, we
modulate the size of the receive buffer and effectively the sending rate.

More specifically, we consider the model in Figure 2.4: the queue is the proxy’s
receive buffer, B is the receive buffer size,7 and at time t, F(t) is the fill rate (sending
rate, which the proxy cannot directly control), D(t) is the drain rate (how frequent
the proxy issues recv()’s), Q(t) is the queue length, and W(t) = B − Q(t) is the
advertised window size.

Suppose updates happen at intervals of Δt. The window update equation is then

W(t + Δt) = W(t) +
[
D(t) − F(t)

]+Δt (2.11)

and taking a fluid approximation by setting Δt → 0, we have

̇W(t) =
[
D(t) − F(t)

]+
. (2.12)

Our rate limiting goal is equivalent to getting F(t) = R for large enough t through
controlling D(t). By setting D(t) = R at all t, it is not difficult to verify from (2.12)
that at equilibrium8 we have F∗(t) = R and W∗(t) = R × RTT.

2.5.3 Traffic Prioritization Engine

When there are multiple connections, the proxy spawns multiple threads such that
each thread serves one connection, and we aim to limit the aggregate rate R over
all connections. To allocate bandwidth fairly among the connections, we coordinate
socket reads of these threads through a time division multiplexing scheme, using a
thread mutex, we create a virtual time resource such that each socket read is associated
with an exclusively held time slot of length proportional to the number of bytes read.
Although more complicated socket read scheduling mechanisms can be considered,

7The receive buffer size can change with time due to Linux’s buffer autotuning mechanism, but these
changes do not affect our algorithm.
8Note that if we throttle a connection through TCP flow control, a static equilibrium can indeed be achieved
because the rate is now limited by the receive window rather than self-induced congestion, that is, the usual
sawtooth W(t) time evolution no longer occurs.

EXPERIMENTAL RESULTS 39

Algorithm 2.3 Pseudocode of Incoming Rate Control
Input: R, b, 𝛼i,
server_fd: socket of server connection,
client_fd: socket of client connection,
mutex: thread mutex shared by all connections
while connection open do
bytes_read = recv(server_fd,b)
bytes_per_write = 𝛼i × bytes_read
while not all bytes_read written to client do
send(client_fd, bytes_per_write)
lock(mutex)

sleep(bytes_per_write∕R)
unlock(mutex)

end while
end while

for simplicity we leave the scheduling to the OS, and from experiments, we observe
that the time slots are shared fairly.

For traffic prioritization we assign a relative priority parameter 𝛼i ∈ (0, 1] for every
connection i such that for n busy connections, that is, each has a sufficiently large
backlog, we want the sum of their rates Ri to be

∑n
i=1 Ri = R, and Ri∕Rj = 𝛼i∕𝛼j for

i, j = 1,… , n.
We achieve the desired prioritization through truncated reads. When the proxy

issues a socket read, it needs to specify a maximum block size b to read (we set it
as the page size of the processor architecture), and for a busy connection this limit
b is always reached. If connection i is of lower priority with 𝛼i < 1, we truncate this
block limit by setting it to be 𝛼ib. Since each access to a time slot is associated with
a server, socket read (equivalently, a client socket write) of 𝛼ib bytes and time slots
are fairly distributed across connections, the achieved client rate Di (equivalent to Ri)
scales with 𝛼i.

By virtue of statistical multiplexing, our rate allocation mechanism does not
require the number of busy connections n, which is difficult to track in practice; hence
it can readily accommodate new connections. To accommodate bursty connections,
the proxy first queries the receive buffer for the number of pending bytes. If it is
above b, then it does a truncated read as described previously; otherwise it does not.
The pseudocode of a proxy thread is shown in Algorithm 2.3.

2.6 EXPERIMENTAL RESULTS

2.6.1 Rate Limiting

We compare our approach with the standard Linux traffic policing approach using
the tc command with two different choices of the burst parameter. Two experiments
are performed using iperf. In the first one, we fix network RTT to be 100 ms and

40 MIND YOUR OWN BANDWIDTH

vary the rate limit from 1 to 15 Mbps to observe the actual rate achieved. Figure 2.5a
shows that our approach results in more accurate rate limiting (<4% error in each
setting). While it appears that increasing the burst parameter helps in improving rate
limiting accuracy, we note the values chosen are rather large (a typical value is 10k,
while we use 50k and 200k) and may harm network stability. The sensitivity of the
results of tc with respect to the parameters suggests the need for careful parameter
tuning, which is undesirable given the diversity of network environments.

The first experiment hints that traffic policing, or using packet drops to signal the
sender to reduce its rate, is too drastic as a rate control mechanism. Our second exper-
iment confirms this observation. We fix the rate limit at 8 Mbps and burst parameter
at 50k and vary network RTT from 20 to 100 ms. Figures 2.5b and 2.5c shows that
tc results in significantly more packet retransmissions and higher jitter. This result
shows that our approach is indeed more graceful in rate limiting.

Target rate (Mbps)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
c
h
ie

v
e
d
 r

a
te

 (
M

b
p
s
)

2

4

6

8

10

12

14 tc, burst = 200k
tc, burst = 50k
MYOB

(a)

N
u
m

b
e
r

o
f
re

tr
a
n
s
m

is
s
io

n
s

0

50

100

150

200

(b)

RTT (ms)

20 60 80 100

J
it
te

r
(m

s
)

0

2

4

6

8

10

12

14

16

(c)

40

RTT (ms)

20 60 80 10040

Policing
MYOB

Policing
MYOB

Throughput

Retransmission counts Jitter

Figure 2.5 Our rate limiting algorithm is (a) more accurate than tc and (b, c) more grace-
ful than rate limiting. We average all results over 10 runs, 60 seconds each, and show 95%
confidence intervals.

GATEWAY SHARING RESULTS 41

Time (s)

0 10 20 30 40 50 60 70

P
la

y
b
a
c
k
 p

ro
g
re

s
s
 (

s
)

0

10

20

30

40

50

60

,1/, 2= 0.5

,1/, 2= 1

,1/, 2= 2

,1/, 2= 5

,1/, 2= 1

Figure 2.6 YouTube playback performance improves as 𝛼1∕𝛼2 increases and YouTube
receives higher prioritization over wget.

2.6.2 Traffic Prioritization

Consider a scenario with two users, one watching a 720p YouTube video stream and
the other downloading a large file with wget, competing for a limited bandwidth of
2 Mbps. We vary the priorities of the two types of traffic and observe the effect on
video playback.

Let 𝛼1 and 𝛼2 be the priorities of YouTube and wget, respectively. With 𝛼1 fixed,
we vary 𝛼2 and measure the amount of video played over time.9 Note that there are
two base cases: the case 𝛼1∕𝛼2 = ∞ corresponds to YouTube traffic without wget
interference and is the best possible result we can expect and the case 𝛼1∕𝛼2 = 1 is
equivalent to no prioritization. Figure 2.6 shows the results. When 𝛼1∕𝛼2 > 1, that
is, YouTube has higher priority and playback performance (inversely related to the
duration of pauses or flat regions in a curve) and is strictly better than the no pri-
oritization case. Also, performance improves with increasing 𝛼1∕𝛼2 ratio. Not only
is our system able to do fine-grained traffic classification with two types of traffic
running under HTTP, but our traffic prioritization algorithm also produces noticeable
improvement in user experience.

2.7 GATEWAY SHARING RESULTS

To demonstrate our sharing framework’s efficacy, we simulate the behavior of
16 gateways sharing a cable link. We compare our credit-based allocation to
equal sharing, in which the ISP divides its capacity into slots with a minimally

9 We create a video-embedded webpage with a Javascript snippet that periodically queries the YouTube
API for playback progress.

42 MIND YOUR OWN BANDWIDTH

acceptable level of bandwidth, for example, 1 Mbps, and assigns them to gateways
in a round-robin fashion until the network capacity is reached. This approach,
which is similar to current practices in that gateways are all treated equally, risks
inefficiency: gateways may gain little additional utility from the full bandwidth of
their assigned slots, but cannot redistribute any excess bandwidth to gateways that
would benefit more. Our credit-based approach addresses this disadvantage, and
we show in our simulations that it significantly improves gateway utilities while
enforcing a fair rate allocation. We then evaluate our online algorithm for users’
credit spending decisions (Algorithm 2.1). We find that all gateways optimize their
credit spending to achieve fair, near-optimal utilities despite their uncertain future
budgets.

Simulation Setup. We suppose that credit-based sharing is enforced in the
congested hours between 6 pm and midnight, with half-hour time slots. Users at
each gateway are assumed to make their credit spending decisions based on their
probability of using four types of applications: streaming, social networking, file
downloads, and web browsing. We use the utility functions

u1(x) =
2(25x)1−𝛼1

1 − 𝛼1

u2(x) =
(25x)1−𝛼2

1 − 𝛼2

u3(x) =
(

1
𝛼3 − 1

+ (25x + 1)1−𝛼3

1 − 𝛼3

)
u4(x) = 15

(
1

𝛼4 − 1
+ (25x + 1)1−𝛼4

1 − 𝛼4

)
in (2.8) to respectively model the utility received from each application, where(
𝛼1, 𝛼2, 𝛼3, 𝛼4

)
= (0.7, 0.5, 0.2, 3). The probabilities pk

it of using each application
are adapted from a recent measurement study of per app usage over time for iOS,
Android, Windows, and Mac smartphones and computers [28]. Table 2.1 shows the
devices at each gateway. We choose coefficients 𝛾i(t) to be larger in the evening, as
is consistent with observed data usage [28], and add random fluctuations to model
period-to-period variations in each gateway’s behavior.

TABLE 2.1 Number of Devices at Each Gateway

Gateways iPhones Androids Windows Laptops Mac Laptops

1,4,9,13 1 1 1 1

2,6,10,14 2 0 2 1

3,7,11,15 1 1 1 2

4,8,12,16 2 0 1 1

GATEWAY SHARING RESULTS 43

Time (hour of the day)

18 2418 2418 2418 2418 2418 2418 24

J
a
in

’s
 i
n
d
e
x

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(a)

Time (hour of the day)

18 2418 2418 2418 2418 2418 2418 24

B
u
d
g
e
t

(c
re

d
it
s
)

0

5

10

15

20

25

30
GW 1
GW 2
GW 3
GW 4

Day 1 Day 2 Day 3 Day 5 Day 6Day 4

(b)

Instantaneous
Cumulative

Day 1

Day 1 Day 3 Day 54

Day 3

Jain’s Index for gateway rates

Credit budgets for representative gateways

Figure 2.7 With our credit sharing scheme, all gateways (a) achieve comparable cumulative
rates by (b) actively saving and spending credits at different times.

We assume a budget of B = 160 total credits, with each credit representing 1
Mbps.10 The budget bit for each gateway i is capped at 32 credits at any given time.
In addition to the purchased bandwidth, we suppose that gateways send a random
amount of traffic over the second tier, which is capped at the network capacity. We
consider 1 week of credit redistributions and bandwidth allocations.

Globally Optimal Solution. We first compute the globally optimal rates, that is,
those that maximize (2.7). To show that the overall rate allocation is fair, we compute
Jain’s index over the gateways’ rates, including second-tier traffic, at each time in
Figure 2.7a. Jain’s index is relatively low at some times, indicating a large variation

10Though 160 Mbps is a relatively small bottleneck bandwidth, we limit the number of users and link
capacity in order to better illustrate the effect of QoE credit allocation on individual users.

44 MIND YOUR OWN BANDWIDTH

Optimal utility/equal-share utility

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
ro

b
a
b
ili

ty
 C

D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All gateways

GW 1

GW 2

GW 3

GW 4

Figure 2.8 With our credit sharing scheme, users achieve similar utility gains over equal
sharing over 1 week.

in gateways’ rates: some gateways use little bandwidth to save credits, while oth-
ers spend a lot of credits to receive large rates. Yet if we compute the index for all
gateways’ cumulative usage over time, its value quickly converges to 1. The gate-
ways receive comparable cumulative rates, consistent with the fairness property of
Proposition 2.1.

The large variability in gateway allocations at a given time can be seen more clearly
in Figure 2.7b, which shows the budgets of four representative gateways over time.
All four sometimes save credits to spend at other times. This flexibility causes total
achieved utility to increase by 29.7% relative to equal sharing (allocating 10 Mbps to
each gateway at all times). Figure 2.8 shows the cumulative density function (CDF)
of the ratio of gateway utilities under credit allocation and equal sharing at differ-
ent times. We plot the CDF over all gateways and times as well as the CDF over
all times for each gateway shown in Figure 2.7b. All of the CDFs are comparable,
indicating that credit-based allocation benefits all gateways’ utilities. While the gate-
ways reduce their utility nearly half of the time, the utility more than doubles in some
periods.

Online Solution. We next compare the globally optimal utilities with those
obtained when the gateways follow Algorithm 2.1. To perform the credit estimation,
we use four scenarios, in which all other gateways are assumed to use only streaming,
only social networking, and so on. Each gateway assumes (falsely) that the other
gateways’ 𝛾i(t) coefficients are the same, and the probabilities 𝜋

𝜎

of each scenario
are initialized to be uniform. After learning the scenario distribution for only the
simulation’s first 4 days, the algorithm recovers most (84.7%) of the optimal utility
for the remaining 3 days.

As with the optimal solution, at any given time, gateways’ rates can be very dif-
ferent: Jain’s indices in Figure 2.9a for all gateways’ usage at a given time can be
quite low. However, all gateways achieve similar cumulative rates: Jain’s index of the

CONCLUDING REMARKS 45

Time (hour of the day)

18 2418 2418 24 18 24 18 24 18 24 18 24

18 24 18 24 18 24 18 24 18 2418 2418 24

J
a
in

’s
 i
n
d
e
x

0.5

0.6

0.7

0.8

0.9

1

1.1

Instantaneous
Cumulative

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7Day 1

Day 2 Day 3 Day 4 Day 5 Day 6Day 1

(a)

Time (hour of the day)

B
u
d
g
e
t

(c
re

d
it
s
)

0

2

4

6

8

10

12

14

16

18

20
GW 1
GW 2
GW 3
GW 4

(b) Credit budgets for representative gateways

Jain’s Index for gateway rates

Figure 2.9 Despite their uncertain future budgets, with our online algorithm gateways (a)
achieve comparable cumulative rates by (b) saving and spending credits at different times over
1 week.

cumulative rates quickly converges to 1. Indeed, the budgets (and thus spending) of
four representative gateways (Figure 2.9b) vary over time, as with the optimal solu-
tion (Figure 2.7b). Incentivizing gateways to delay some of their usage significantly
improves users’ overall satisfaction and utility.

2.8 CONCLUDING REMARKS

In this paper, we propose to solve peak-hour broadband network congestion problems
by pushing congestion management to the network edge. Our solution uses two levels
of bandwidth allocation: in Level 1, home gateways purchase bandwidth on a shared

46 MIND YOUR OWN BANDWIDTH

link using QoE credits, and in Level 2, they divide the purchased bandwidth among
their apps and devices. We show analytically that our credit distribution scheme yields
a fair bandwidth allocation across gateways and describe our implementation of the
bandwidth purchasing and app prioritization on commodity wireless routers. Our
implementation can successfully enforce app priorities and increase users’ satisfac-
tion. Finally, we show in an example scenario that our algorithm’s ability to adapt to
users’ QoE yields a fair bandwidth allocation that significantly improves user utility
relative to a baseline equal-sharing scheme.

Successfully managing network congestion requires an integrated, end-to-end
solution that allows ISPs to limit user demand while allowing users to optimize their
bandwidth usage for better QoE. Our solution uses a fog-like network architecture to
achieve these objectives, putting users in control of their data usage while allowing
some control from the ISP in the form of bandwidth credits. While we implement
this solution for cable networks, our methodology is applicable to other access
technologies, for example, cellular, that involve shared medium access. Such tech-
nologies, wireless and wired, will increasingly need new congestion management
mechanisms as user demand for bandwidth continues to grow.

ACKNOWLEDGMENTS

An earlier version of this work appeared in IEEE/ACM IWQoS 2015 [29]. This work
was partly supported by NSF grant CNS-1525435.

APPENDIX 2.A

2.A.1 PROOF OF LEMMA 2.1

We proceed by induction: at time t = 0, clearly the sum of gateways’ budgets∑
i bi0 = B from the budget initialization. Supposing that

∑n
i=1 bit = B at time t, we

then calculate

n∑
i=1

bi,t+1 =
n∑

i=1

(
bit − xit +

∑
j≠i

xjt

n − 1

)

= B −
n∑

i=1

xit +
n∑

i=1

(n − 1)xit

n − 1
= B.

2.A.2 PROOF OF LEMMA 2.2

We first note that (2.1) is equivalent to the statement that

bit = bis +
t−1∑
𝜏=s

(
−xi𝜏 +

∑
j≠i

xj𝜏∕(n − 1)

)
.

PROOF OF PROPOSITION 2.1 47

Then if bis = bit for all gateways i, we obtain the system of equations

t−1∑
𝜏=s

xi𝜏 =
t−1∑
𝜏=s

∑
j≠i

xj𝜏

n − 1
. (2.A.1)

It suffices to show that (2.A.1) implies the proposition.
We proceed by induction on n. If n = 2, then clearly (2.A.1) is exactly our desired

result, since n − 1 = 1. We now suppose that the proposition holds for n = m and
show that it holds for n = m + 1. From (2.A.1), we have

t−1∑
𝜏=s

x1𝜏 =
t−1∑
𝜏=s

n∑
j=2

xj𝜏

n − 1
.

Substituting this equality into (2.A.1) for i > 1, we have for all such i,

t−1∑
𝜏=s

xi𝜏 =
t−1∑
𝜏=s

n∑
j=2

xj𝜏

(n − 1)2
+

t−1∑
𝜏=s

∑
j≠i,j>1

xj𝜏

n − 1
.

Thus, we have upon rearranging that

(
1 − 1

(n − 1)2

) t−1∑
𝜏=s

xi𝜏 =
(

1
(n − 1)2

+ 1
n − 1

) t−1∑
𝜏=s

∑
j≠i,j>1

xj𝜏 .

Simplifying, we obtain
t−1∑
𝜏=s

xi𝜏 =
t−1∑
𝜏=s

∑
j≠i,j>1

xj𝜏

n − 2

for all i > 1. By induction, this implies that
∑t−1

𝜏=s xj𝜏 =
∑t−1

𝜏=s xk𝜏 for all j, k > 1, and
the proposition follows upon solving for

∑t−1
𝜏=s x1𝜏 .

2.A.3 PROOF OF PROPOSITION 2.1

We first show that given a distribution of budgets
{

bit

}
at a fixed time t, there exists

a set of gateway spending decisions
{

xit

}
such that bi,t+1 = B∕n for all gateways i.

Suppose that each gateway i spends xit = bit(n − 1)∕n credits at time t. Then Lemma
2.1’s budget conservation allows us to conclude that gateway i’s budget at time t + 1 is

bi,t+1 = bit −
bit(n − 1)

n
+
∑
j≠i

bjt(n − 1)
n(n − 1)

=
n∑

i=1

bit

n
= B

n
.

48 MIND YOUR OWN BANDWIDTH

We now observe that since each bi0 = B∕n, we can apply Lemma 2.2 to conclude that

t+1∑
s=0

xis =
t∑

s=0

xis +
bit(n − 1)

n
=

t∑
s=0

xjs +
bjt(n − 1)

n
=

t+1∑
s=0

xjs

for all gateways i and j. We then rearrange this equation to find the first part of the
proposition: |||||

t∑
s=0

xis −
t∑

s=0

xjs

||||| = |||bjt − bit
||| n − 1

n
≤

B(n − 1)
n

.

The time average follows immediately upon dividing by t and taking limits as st → ∞.

2.A.4 PROOF OF PROPOSITION 2.2

To prove the first part of the proposition, we note that if each xit = 0, then (2.1) yields

bi,t+1 = bit − xit +
∑
j≠i

xjt

n − 1
≤

B
n − 1

+ bit
n − 2
n − 1

− xit,

where the inequality comes from each gateway’s budget constraint
∑

j≠i xjt ≤∑
j≠i bjt = B − bit. Thus, at time t + 1, we have

bi,t+1 =
t∑

𝜏=0

(B
n − 1

− xi𝜏

)(n − 2
n − 1

)
𝜏

+ B
n

(n − 2
n − 1

)t+1

≤
B
n
𝛼

t+1 + B
(
1 − 𝛼

t+1) − 𝜖

⌊
t+1
p

⌋∑
𝜏=1

𝛼

p𝜏

= B
n
𝛼

t+1 + B
(
1 − 𝛼

t+1) − 𝜖

⎛⎜⎜⎝𝛼
p − 𝛼

p
(

1+
⌊

t+1
p

⌋)
1 − 𝛼

p

⎞⎟⎟⎠
as desired, using the fact that

∑s+n
𝜏=s xi𝜏 ≥ 𝜖 at any time s. We obtain (2.3) by taking

t → ∞, substituting for 𝛼 = (n − 2)∕(n − 1), and simplifying.
To prove the second part of the proposition, suppose that gateways i and

k both have zero budgets at time t + 1, that is, bi,t+1 = bk,t+1 = 0, but that
bit > 0. Since each bi0 = B∕n > 0, such a time t must exist. But then from
(2.1), bi,t+1 = bit − xit +

∑
j≠i xjt∕(n − 1) = 0, and since each xjt ≥ 0, we have

xit = bit > 0. But then bk,t+1 = bkt − xkt +
∑

j≠k xjt∕(n − 1), and since xkt ≤ bkt, we
have bk,t+1 > 0, which is a contradiction. Thus, at most one gateway can have zero
budget in any given time period.

PROOF OF PROPOSITION 2.4 49

2.A.5 PROOF OF PROPOSITION 2.3

We first note that at each time t < s,

m∑
i=1

bi,t+1 ≤

m∑
i=1

bit +
∑
j>i

xit

n − 1

≤

m∑
i=1

bit +
B −

∑m
i=1 bit

n − 1

= B
n − 1

+
(n − 2

n − 1

) m∑
i=1

bit.

An inductive argument then shows that

m∑
i=1

bi,s ≤
B

n − 1

(
s−1∑
𝜏=0

(n − 2
n − 1

)s
)

+
(n − 2

n − 1

)s m∑
i=1

bi0.

Expanding the sums and subtracting
∑m

i=1 bi0 then yield the proposition.

2.A.6 PROOF OF PROPOSITION 2.4

Suppose that
{

x∗it
}

solve (2.7), and let 𝜆it denote the corresponding Lagrange multi-
plier for the constraint 0 ≤ xit ≤ bit, with 𝜈it the multiplier for the constraint xit ≥ 0.
Since the Uit are strictly concave, it suffices to show that these multipliers satisfy
the Karush–Kuhn–Tucker (KKT) conditions for (2.5), augmented by all gateways’
constraints:

max
xit

s+T∑
t=s

Uit

(
xit

)
, s.t. 0 ≤ xit ≤ bit, ∀i, t.

Since the budget constraints 0 ≤ xit ≤ bit are identical to those of (2.7), it suffices to
show that

dUit

dxit
−

n∑
j=1

s+T∑
𝜏=t

𝜆i𝜏 +
∑
j≠i

s+T−1∑
𝜏=t

𝜆j𝜏

n − 1
+ 𝜈it = 0, (2.A.2)

where we use (2.6) to sum over the appropriate multipliers 𝜆i𝜏 . However, this equation
is just one of the KKT conditions for (2.7): the only change between (2.7) and (2.5)
is the addition of utility terms Ujt(xjt), which are additively decoupled from gateway
i’s spending decisions xit. Thus, (2.A.2) must be satisfied by the x∗it and multipliers
𝜆it, 𝜈it. Each gateway i is thus optimizing its own utility, given other gateways’ credit
spending decisions x∗jt.

50 MIND YOUR OWN BANDWIDTH

REFERENCES

1. Cisco Systems. Cisco visual networking index: Forecast and methodology, 2014–2019,
August 2015. http://tinyurl.com/VNI2014 (accessed September 20, 2016).

2. Soumya Sen, Carlee Joe-Wong, Sangtae Ha, and Mung Chiang. A survey of smart
data pricing: Past proposals, current plans, and future trends. ACM Computing Surveys,
46(2):15:1–15:37, 2013.

3. Comcast. Learn How Network Congestion Management Affects Your Internet Use, 2016.
https://customer.xfinity.com/help-and-support/internet/network-management-information
(accessed December 20, 2016).

4. Frank P. Kelly, Aman K. Maulloo, and David H. K. Tan. Rate control for communica-
tion networks: Shadow prices, proportional fairness, and stability. Journal of Operational
Research Society, 49:237–252, 1998.

5. Ashish Patro, Srinivas Govindan, and Suman Banerjee. Observing home wireless expe-
rience through WiFi APs. In Proceedings of ACM MobiCom, September 30–October 4,
2013, Miami, FL.

6. Srikanth Sundaresan, Walter de Donato, Nick Feamster, Renata Teixeira, Sam Crawford,
and Antonio Pescapè. Broadband Internet performance: A view from the gateway. In Pro-
ceedings of ACM SIGCOMM, August 15–19, 2011, Toronto, Ontario, Canada.

7. Richard Mortier, Tom Rodden, Peter Tolmie, Tom Lodge, Robert Spencer, Andy Crabtree,
Joe Sventek, and Alexandros Koliousis. Homework: Putting interaction into the infrastruc-
ture. In Proceedings of ACM UIST, October 7–10, 2012, Cambridge, MA.

8. Jeonghwa Yang, W. Keith Edwards, and David Haslem. Eden: Supporting home network
management through interactive visual tools. In Proceedings of ACM UIST, October 3–6,
2010, New York, NY.

9. Christos Gkantsidis, Thomas Karagiannis, Peter Key, Bozidar Radunovi, Elias
Raftopoulos, and D. Manjunath. Traffic management and resource allocation in small
wired/wireless networks. In Proceedings of ACM CoNEXT, December 1–4, 2009, Rome,
Italy.

10. Claudio E. Palazzi, Matteo Brunati, and Marco Roccetti. An OpenWRT solution for future
wireless homes. In Proceedings of IEEE ICME, July 19–23, 2010, Singapore.

11. J. Scott Miller, John R. Lange, and Peter A. Dinda. Emnet: Satisfying the individual user
through empathic home networks. In INFOCOM, 2010 Proceedings IEEE, pages 1–9.
IEEE, March 15–19, 2010, San Diego, CA.

12. Janne Seppanen and Marta Varela. Qoe-driven network management for real-time
over-the-top multimedia services. In Proceedings of IEEE WCNC, pages 1621–1626.
IEEE, April 7–10, 2013, Shanghai, China.

13. Marshini Chetty, Richard Banks, Richard Harper, Tim Regan, Abigail Sellen, Christos
Gkantsidis, Thomas Karagiannis, and Peter Key. Who’s hogging the bandwidth: The con-
sequences of revealing the invisible in the home. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 659–668. ACM, April 10–15, 2010,
Atlanta, GA.

14. Soumya Sen, Carlee Joe-Wong, Sangtae Ha, Jasika Bawa, and Mung Chiang. When the
price is right: Enabling time-dependent pricing of broadband data. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 2477–2486. ACM,
April 27–May 2, 2013, Paris, France.

REFERENCES 51

15. Jeffrey K. MacKie-Mason, Liam Murphy, and John Murphy. Responsive pricing in the
Internet. Internet Economics, The MIT Press, Cambridge, MA, pages 279–303, 1995.

16. Dongmyung Lee, Jeonghoon Mo, Jean Walrand, and Jinwoo Park. A token pricing scheme
for internet services. In Economics of Converged, Internet-Based Networks, pages 26–37.
Springer, 2011.

17. J. Scott Miller, Amit Mondal, Rahul Potharaju, Peter A. Dinda, and Aleksandar
Kuzmanovic. Understanding end-user perception of network problems. In Proceedings of
the First ACM SIGCOMM Workshop on Measurements Up the Stack, pages 43–48. ACM,
August 19, 2011, Toronto, Ontario, Canada.

18. Cheng-Chun Tu, Kuan-Ta Chen, Yu-Chun Chang, and Chin-Laung Lei. Oneclick: A
framework for capturing users network experiences. In Proceedings of ACM SIGCOMM
2008 (poster), August 17–22, 2008, Seattle, WA.

19. Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan Seshan. An integrated congestion
management architecture for Internet hosts. In Proceedings of ACM SIGCOMM, August
31–September 3, 1999, Cambridge, MA.

20. Lampros Kalampoukas, Anujan Varma, and K. K. Ramakrishnan. Explicit window adapta-
tion: A method to enhance TCP performance. In Proceedings of IEEE INFOCOM, March
29–April 2, 1998, San Francisco, CA.

21. Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis. Automatic TCP buffer tuning.
In Proceedings of ACM SIGCOMM, September 2–4, 1998, Vancouver, British Columbia,
Canada.

22. Peter Key, Laurent Massouliè, and Bing Wang. Emulating low-priority transport at the
application layer: A background transfer service. In Proceedings of ACM SIGMET-
RICS/Performance, June 10–14, 2004, New York, NY.

23. Youngbin Im, Carlee Joe-Wong, Sangtae Ha, Soumya Sen, Ted Taekyoung Kwon, and
Mung Chiang. AMUSE: Empowering users for cost-aware offloading with throughput
delay tradeoffs. In Proceedings of IEEE INFOCOM, April 14–19, 2013, Turin, Italy.

24. Neil T. Spring, Maureen Chesire, Mark Berryman, Vivek Sahasranaman, Thomas
Anderson, and Brian Bershad. Receiver based management of low bandwidth access links.
In Proceedings of IEEE INFOCOM, March 26–30, 2000, Tel Aviv, Israel.

25. Mike Fisk and Wu-Chun Feng. Dynamic right-sizing in TCP. In Proceedings of LACSI
Symposium, October 15–18, 2001, Santa Fe, NM.

26. Marius A. Eriksen. Trickle: A userland bandwidth shaper for Unix-like systems. In Pro-
ceedings of USENIX Annual Technical Conference, April 10–15, 2005, Anaheim, CA.

27. Andrea Consiglio, Flavio Cocco, and Stavros A. Zenios. Scenario optimization asset
and liability modelling for individual investors. Annals of Operations Research,
152(1):167–191, 2007.

28. Jae Yoon Chung, Yeongrak Choi, Byungchul Park, and James W.-K. Hong. Measurement
analysis of mobile traffic in enterprise networks. In Proceedings of APNOMS, September
21–23, 2011, Taipei, Taiwan.

29. Felix Ming Fai Wong, Carlee Joe-Wong, Sangtae Ha, Zhenming Liu, and Mung Chiang.
Improving user qoe for residential broadband: Adaptive traffic management at the network
edge. In Proceedings of IEEE/ACM IWQoS, June 15 and 16, 2015, Portland, OR.

3 Socially-Aware Cooperative D2D
and D4D Communications toward
Fog Networking

XU CHEN,1 JUNSHAN ZHANG,1 and SATYAJAYANT MISRA2

1School of ECEE, Arizona State University, Tempe, AZ, USA
2Department of Computer Science, New Mexico State University, Las Cruces,
NM, USA

3.1 INTRODUCTION

The past few years have witnessed the explosive growth of the mobile user population
and the demands for bandwidth-eager multimedia content, which poses a significant
challenge for wireless networks. The Cisco VNI report predicts that the number of
mobile devices will grow from 4 billion in 2014 to 11 billion by 2019, and mobile
data traffic is expected to reach 292 exabytes per month by 2019, up from 30 exabytes
in 2012 [1]. In addition, according to the recent report from Juniper Research, the
number of Internet of things (IoT) connected devices will reach 38.5 billion in 2020,
and these devices will produce 10% of all the data generated worldwide. In short,
large quantities of data will have to be communicated, stored, and analyzed.

One emerging cost-effective approach to address such challenges is fog network-
ing and computing, which leverages a multitude of collaborative end-user clients
or near-user edge devices to carry out a substantial amount of communication and
computation to augment tasks and services in a network [2]. Motivated by the princi-
ple of fog networking, in this chapter we aim at boosting the network bandwidth by
promoting collaborative communications between handheld devices at the network
edge. Such device-to-device (D2D) and device-for-device (D4D) communications
can offer a variety of advantages over traditional cellular communications, such as
higher user throughput, improved spectral efficiency, and extended network cover-
age [3]. For example, a device can share the video content with neighboring devices
who have similar interest, which can help to reduce the data traffic from the network
operator.

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

INTRODUCTION 53

S S
D

R
R

Base station
(a) (b)

Base station

Figure 3.1 An illustration of cooperative D2D and D4D communication for cooperative net-
working. In sub-figure (a), device R serves as the relay for the D2D communication between
devices S and D. In sub-figure (b), device R serves as the relay for the cellular communication
between device S and the base station. In both cases, the D2D communication between devices
S and R is part of cooperative networking.

Cooperative communication is an efficient D2D and D4D communication
paradigm where devices can serve as relays for each other.1 As illustrated in
Figure 3.1, cooperative D2D and D4D communication can help to (i) improve the
quality of D2D communication for direct data offloading between devices and
(ii) enhance the performance of cellular communications between the base station
and the devices as well. Moreover, cooperative D2D and D4D communication can
achieve bandwidth boosting by exploiting different types of spectrum bands to
support D2D communications [4]:

• Inband D2D and D4D Communications. The spectrum band that supports
inband D2D communications is the same with the band for cellular commu-
nications. Therefore, D2D links share the same band with cellular links via
the same air interface. In general, the control and management by the cellular
network is required in order to efficiently use the cellular spectrum for both
D2D and cellular links [5].

• Outband D2D and D4D Communications. The spectrum band that supports
outband D2D communications is different from the band for cellular commu-
nications, which can be 2.4 GHz (e.g., Bluetooth), 5 GHz (e.g., Wi-Fi Direct)
or 38 GHz bands (e.g., Millimeter Wave). Clearly, D2D links and cellular links
can be active at the same time via two independent air interfaces. Outband D2D
communication can be managed by the cellular network (i.e., controlled) or it
can operate on its own (i.e., autonomous) [5].

Hence cooperative D2D and D4D communication can be a critical building block
for efficient cooperative networking for future wireless networks, wherein individual

1There are many approaches for cooperative communications, and for ease of exposition, this study
assumes cooperative relaying.

54 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

users cooperate to substantially boost the network capacity and cost-effectively
provide rich multimedia services and applications, such as video conferencing and
interactive media, anytime, anywhere.

3.1.1 From Social Trust and Social Reciprocity to D2D Cooperation

A key challenge for cooperative D2D and D4D communications-based fog network-
ing is how to stimulate effective cooperation among devices. As different devices are
usually owned by different individuals and they may pursue different interests, there
is no good reason to assume that all devices would cooperate with each other. Since
the handheld devices are carried by human beings, a natural question to ask is that “is
it possible to leverage human social relationship to enhance D2D communications
for cooperative networking?” Indeed, with the explosive growth of online social net-
works such as Facebook and Twitter, more and more people are actively involved
in online social interactions, and social relationships among people are hence exten-
sively broadened and significantly enhanced [4]. This has opened up a new avenue
for cooperative D2D and D4D communication system design—we believe that it has
potential to propel significant advances in mobile social networking.

One primary goal of this study is to establish a new D2D cooperation paradigm by
leveraging two key social phenomena: social trust and social reciprocity. Social trust
can be built up among humans, such as kinship, friendship, colleague relationship,
and altruistic behaviors that are observed in many human activities [6], for example,
when a device user is at home or work, typically family members, neighbors, col-
leagues, or friends are nearby. The device user can then exploit the social trust from
these neighboring users to improve the quality of D2D communication, for example,
by asking the best trustworthy device to serve as the relay. Another key social phe-
nomenon, social reciprocity, is also widely observed in human society [7]. Social
reciprocity is a powerful social paradigm to promote cooperation so that a group of
individuals without social trust can exchange mutually beneficial actions, making all
of them better off. For example, when a device user does not have any trusted friends
in the vicinity, he or she may cooperate with the nearby strangers by providing relay
assistance for each other to improve the quality of D2D communications. There are
several ways to bootstrap this cooperation. One mechanism is through a symbiotic
give-and-take barter relationship. That is, a node helps relay another node’s data if
the other node also relays its data. Another technique could also be based on assess-
ing the number of hops the two nodes are apart in a trusted social network graph,
such as Facebook or Twitter (can be obtained through a Facebook plug-in running
on each node). This can be augmented through an idea similar to the Web of Trust,
where the two nodes can create a trust chain [8]. This will help create a minimal
infrastructure-based trust schema.

As illustrated in Figure 3.2, cooperative D2D communications based on social
trust and social reciprocity can be projected onto two domains: the physical domain
and the social domain. In the physical domain, different devices have different fea-
sible relay selection relationships subject to the physical constraints. In the social
domain, different devices have different assistance relationships based on social trust

INTRODUCTION 55

Physical domain

Social domain

1

2

3

4

5

6

7

Social trust

Feasible relay

2

3

4

5

6

7

1

Figure 3.2 An illustration of the social trust model for cooperative D2D communications.
In the physical domain, different devices have different feasible cooperation relationships sub-
ject to physical constraints. In the social domain, different devices have different assistance
relationships based on social trust among the devices.

among the devices. In this case, each device has two options for relay selection: either
seek relay assistance from another feasible device that has social trust toward him or
her; or participate in a group formed based on social reciprocity by exchanging mutu-
ally beneficial relay assistance. The main thrust of this study is devoted to tackling two
key challenges for the social trust- and social reciprocity-based approach. The first
is which option a device should adopt for relay selection: social trust or social reci-
procity. The second is how to efficiently form groups among the devices that adopt the
social reciprocity-based relay selection. We will develop a coalitional game theoretic
framework to address these challenges.

3.1.2 Smart Grid: An IoT Case for Socially-Aware Cooperative D2D
and D4D Communications

The smart grid will be a fertile area for the implementation of the IoT technology
and hence will leverage a significant amount of D2D and D4D communications. The
smart devices, such as smartmeters, in-home smart devices, synchrophasors, substa-
tion sensors, and electric vehicles, will perform two-way communications in the grid,
essentially forming a fog network. Further, the availability of an energy marketplace
will allow energy consumers, producers, and prosumers (both consumer and pro-
ducer of energy) to actively buy/sell energy among each other (as in the case of a
microgrid [9]) and also transact with the grid. The way the smart grid networking
and communication architecture is shaping, most of the communication will be of a
distributed nature and leverage several communication technologies, such as wireless,
wired, power line, and fiber [10, 11].

The proposed networking and communication paradigm for the smart grid will
contain several cooperative D2D and D4D communication scenarios. For instance,

56 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

grid monitoring and protection devices (e.g., synchrophasors, circuit monitors, and
power quality monitors) will actively interact with each other at real time to iden-
tify and localize faults and reduce power quality variations [10,12]. Smartmeters (or
the consumer’s smartphone) would be actively involved in energy transactions with
smartmeters (or smartphones) representing other homes. Devices in a smart home will
communicate with each other to identify optimal loads, schedules, and energy usage.
A large proportion of these D2D and D4D communications will be done between
independent agents that are not direct neighbors in the network.

For example, a PMU is connected to a local substation communicating with a
PMU in another substation. Or, a smartmeter in a home negotiates an energy trans-
action with another smartmeter several homes away. All such communication would
require the help of a cooperative intermediate relay(s). In turn, a relay incurs com-
munication cost in receiving and forwarding the messages (in terms of bandwidth,
interference, delay of its own communication, wireless transmission power, etc.),
which will require incentives for cooperation. In all such D2D and D4D communi-
cations, social trust could be bootstrapped by the end users (neighbors trusting each
other), or the trust could be built based on devices being part of a common trust
framework. For example, all devices belonging to a particular grid entity, who can
verify each other’s credentials through certificates, trust each other. A trust broker
can be created to verify credentials of nodes and give them tokens that they can use
to bootstrap mutual trust.

The same way as users connected via their smartphones may have a social con-
nection with each other (either based on social trust or social reciprocity), the smart
grid IoT devices (operating under general qualitative guidelines) can be modeled
as autonomous agents that operate based on trust and reciprocity. For example,
the smartmeter of your house can “trust” the smartmeter of your neighbor to relay
information, because you know your neighbor and you are best friends. The trust
relationship may also be bootstrapped by trust brokers that form part of the grid and
are maintained by the utilities. Your smartmeter may forward the data transmissions
of another neighbor’s smartmeter because that smartmeter helped deliver several
messages in the past (reciprocity). The agents may also create trust relationships
based on past interactions (e.g., two smartmeter agents were part of a prosumer bar-
gaining cooperative; two PMUs have interacted with each other to report past faults
correctly).

The IoT devices of the smart grid will be small embedded devices similar
to the Raspberry Pis (smartmeters and synchrophasors) and low-power and
low-computation-capable devices (smarthome power-outlet devices). The devices
will be equipped with multiple communication interfaces with wired and wireless
being the predominant ones. These devices will form a heterogeneous network
with different unique characteristics and can cooperate with each other over several
interfaces leveraging different communication technologies. We are using such
devices in local testbed settings as shown in Figure 3.3. The figure shows a plug-in
outlet (created in collaboration with power engineers) to which a load can be
plugged in. The outlet has the capability to measure the characteristics of the electric
signal (voltage, current, phase angle), and it interfaces with an ARM Cortex-based
Texas Instrument board, which packetizes and transmits the information with an

INTRODUCTION 57

(a)

(b)

Figure 3.3 Illustrative smart grid IoT devices. (a) Our outlet device with a Texas Instrument
Microcontroller Board and XBee radio module; (b) Raspberry Pi to emulate a smartmeter or
controller device.

off-the-shelf XBee radio module. This information is received by a Raspberry Pi,
which acts as the smartmeter. We are building intelligence for the Raspberry Pi to
issue commands to the outlet to reduce current and voltage to meet demand response
needs, which it identifies through its interactions with the grid.

3.1.3 Summary of Main Results

The main contributions of this chapter are as follows:

• We propose a novel social trust- and social reciprocity-based framework to
promote efficient cooperation among devices for cooperative D2D and D4D

58 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

communications-based fog networking. By projecting D2D communications in
a mobile social network onto both physical and social domains, we introduce
the physical–social graphs to model the interplay therein while capturing the
physical constraints for feasible D2D cooperation and the social relationships
among devices for effective cooperation.

• We formulate the relay selection problem for social trust and social
reciprocity-based cooperative D2D communications as a coalitional game.
We show that the coalitional game admits the top-coalition property based
on which we devise a core relay selection algorithm for computing the core
solution to the game.

• We develop a network-assisted mechanism to implement the coalitional
game-based solution. We show that the mechanism is immune to group
deviations and individually rational, truthful, and computationally efficient.
We further evaluate the performance of the mechanism by the real social data
trace. Simulation results show that the proposed mechanism can achieve up to
122% performance gain over the case without D2D cooperation.

A primary goal of this chapter is to build a theoretically sound and practically rel-
evant framework to understand social trust- and social reciprocity-based cooperative
D2D and D4D communications. This framework highlights the interplay between
potential physical network performance gain through efficient D2D cooperation and
the exploitation of social relationships among device users to stimulate effective
cooperation. Besides the cooperative D2D communication scenario where devices
serve as relays for each other, the proposed social trust- and social reciprocity-based
framework can also be applied to many other D2D cooperation scenarios, such as
cooperative MIMO communications and mobile cloud computing. We believe that
these initial steps presented here open a new avenue for mobile social networking
and have great potential to enhance network capacity in future wireless networks.

3.2 RELATED WORK

D2D communications have recently drawn great attention from the wireless research
community. Most existing literature has focused on the interference coordination
issue between D2D communications and cellular communications. Authors in Refs.
[13, 14] studied the power control problem for restricting cochannel interference
from D2D communications to cellular communications. Janis et al. [15] utilized
MIMO transmission schemes to mitigate interference from cellular downlink to
D2D receivers sharing the same spectrum resources. Zulhasnine et al. [16] proposed
to lessen interference to cellular communications by properly pairing the cellular
and D2D users. Currently, more and more research efforts are devoted to cooperative
D2D communications, which can significantly enhance the performance of D2D
communications. Raghothaman et al. [17] proposed a system architecture that
enables D2D communications with cooperative mobile relays. Ma et al. [18] devel-
oped a distributed relay selection algorithm for cooperative D2D communications.

SYSTEM MODEL 59

Lee et al. [19] studied the multi-hop decode-and-forward (DF) relaying assisted
cooperative D2D communications. The common assumption of these previous
studies for cooperative D2D communications is that all the device users are coop-
erative and they are willing to help any other users. However, since each handheld
device has limited battery and providing relaying assistance for cooperative D2D
communications would incur significant energy consumption, there is no good
reason to assume that all device users would cooperate with each other.

Much effort has been made in the literature to stimulate, via incentive mech-
anisms, cooperation in wireless networks. Payment-based mechanisms have been
widely considered to incentivize cooperation for wireless ad hoc networks [20–22].
Another widely adopted approach for cooperation stimulation is reputation-based
mechanisms, where a centralized authority or the whole user population collectively
keeps records of the cooperative behaviors and punishes non-cooperating users [23–
25]. However, it is yet clear whether these incentive mechanisms are feasible in
practice since they require central authorities to monitor and regulate user behav-
iors and resolve disputes, which require extensive signaling overhead between users
and central authorities, and can easily diminish the capacity gain of cooperative D2D
communication. Moreover, incentive mechanisms typically assume that all users are
fully rational and they act in a selfish manner. Such an assumption is not appropri-
ate for D2D communications as handheld devices are carried by human beings and
people typically act with bounded rationality and involve social interactions [26].

The social aspect is now becoming a new and important dimension for commu-
nication system design [4, 27]. As the development of online and mobile social net-
works such as Facebook and Twitter, more and more real-world data and traces of
human social interactions are being generated. This enables researchers and engi-
neers to observe, analyze, and incorporate the social factors into engineering system
design in a way never previously possible [28]. Authors in Refs. [29, 30] exploited
social structures such as social community to design efficient data forwarding and
routing algorithms in delay tolerant networks. Chen et al. [31, 32] proposed a novel
framework of social group utility maximization (SGUM) for cooperative networking
design. Hui et al. [33] used the social betweenness and centrality as the forwarding
metric. Costa et al. [34] proposed predictions based on metrics of social interaction to
identify the best information carriers for content publish–subscribe. Authors in Refs.
[35, 36] utilized the social influence phenomenon to devise efficient data dissemina-
tion mechanisms for mobile networks. The common assumption among these works,
however, is that all users are always willing to help others, for example, for data
forwarding and relaying. In this chapter we propose a novel framework to stimulate
cooperation among device users while also taking the social aspect into account.

3.3 SYSTEM MODEL

In this section we present the system model of cooperative D2D and D4D communi-
cations based on social trust and social reciprocity—a new mobile social networking
paradigm. As illustrated in Figure 3.2, cooperative D2D and D4D communications

60 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

can be projected onto two domains: the physical domain and the social domain. In
the physical domain, different devices have different feasible cooperation relation-
ships for cooperative D2D communications subject to the physical constraints. In the
social domain, different device users have different assistance relationships based on
social relationships among them. We next discuss both physical and social domains
in detail.

3.3.1 Physical (Communication) Graph Model

We consider a set of nodes = {1, 2, ...,N} where N is the total number of nodes.
Each node n ∈ is a wireless device that would like to conduct D2D communication
to transmit data packets to its corresponding destination dn. Notice that a destination
dn may also be a transmit node in the set of another D2D communication link, and
hence a D2D traffic flow may traverse one hop or multiple hops among the devices.
Similar to many previous studies in D2D communications [13–19], to enable tractable
analysis, we consider a scenario where the locations of the nodes remain unchanged
during a D2D communication scheduling period (e.g., several hundred milliseconds),
while these may change across different periods due to users’ mobility.2

The D2D communication is underlaid beneath a cellular infrastructure wherein
there exists a base station controlling the uplink/downlink communications of the
cellular devices. To avoid generating severe interference to the incumbent cellular
devices, each node n ∈ will first send a D2D communication establishment
request message to the base station. The base station then computes the allowable
transmission power level pn for the D2D communication of node n based on the
system parameters and the protection requirement of the neighboring cellular
devices. For example, the proper transmission power pn of the D2D communication
can be computed according to the power control algorithms proposed in Refs.
[13,14]. Moreover, with the assistance by the base station, each node can detect a set
of neighboring nodes, which can be potential relay candidates for cooperative D2D
communications [3].

We consider a time division multiple access (TDMA) mechanism in which the
transmission time is slotted and one node n ∈ is scheduled to carry out its D2D
communication in a time slot.3 At the allotted time slot, node n can choose either to
transmit to the destination node dn directly or to use cooperative communication by
asking another node m in its vicinity to serve as a relay.

Due to physical constraints such as signal attenuation, only a subset of nodes that
are close enough (e.g., with a detectable signal strength) can be feasible relay can-
didates for the node n. To take such physical constraints into account, we introduce
the physical graph4 P ≜ { , P} where the set of nodes is the vertex set and

2This assumption is valid for our case, since the proposed mechanism in Section 3.5 has a very low com-
putational complexity, and hence the D2D communication scheduling can be carried out in a smaller time
scale than that of users’ mobility.
3Our methods are also applicable to other multiple access schemes.
4The graphs (e.g., physical graph and social graph) in this chapter can be directed.

SYSTEM MODEL 61

P ≜ {(n,m)∶ eP
nm = 1,∀n,m ∈ } is the edge set where eP

nm = 1 if and only if node
m is a feasible relay for node n. An illustration of the physical graph is given in Figure
3.2. We also denote the set of nodes that can serve as a feasible relay of node n as
 P

n ≜ {m ∈ ∶ eP
nm = 1}. A recent work [37] shows that it is sufficient for a source

node to choose the best relay node among multiple candidates to achieve full diver-
sity. Specifically, an optimal power allocation procedure based on user’s channel side
information (CSI) is carried out prior to the relay selection. For ease of exposition, we
hence consider the single relay selection scheme such that each node n selects at most
one neighboring node m ∈ P

n as the relay. Moreover, since multiple relay selec-
tion scheme typically requires the synchronization among the relays, the single relay
selection scheme demands less signaling overhead and is easier to be implemented
in practice.

For ease of exposition, we consider the full duplex DF relaying scheme [38] for
the cooperative D2D communication. Let rn ∈ P

n denote the relay node chosen by
node n ∈ for cooperative communication. The data rate achieved by node n is then
given as [38]

ZDF
n,rn

= W
N

min{log(1 + 𝜇nrn
), log(1 + 𝜇ndn

+ 𝜇rndn
)},

where W denotes the channel bandwidth and 𝜇ij denotes the signal-to-noise ratio
(SNR) at device j when device i transmits a signal to device j. As an alternative, the
node n can also choose to transmit directly without any relay assistance and achieve
a data rate of

ZDir
n = W

N
log(1 + 𝜇ndn

).

For simplicity, we define the data rate function of node n as Rn ∶ P
n ∪ {n} → ℝ+,

which is given by

Rn(rn) =

{
ZDF

n,rn
, if rn ≠ n,

ZDir
n , if rn = n.

(3.1)

We will use the terminology that node n chooses itself as the relay for the situation
in which node n transmits directly to its destination dn.

3.3.2 Social Graph Model

We next introduce the social trust model for cooperative D2D communications. The
underlying rationale of using social trust is that the handheld devices are carried by
human beings and the knowledge of human social ties can be utilized to achieve
effective and trustworthy relay assistance for cooperative D2D communications.

More specifically, we introduce the social graph S = { , S} to model the social
trust among the nodes. Here the vertex set is the same as the node set , and the
edge set is given as S = {(n,m)∶eS

nm = 1,∀n,m ∈ } where eS
nm = 1 if and only

if nodes n and m have social trust toward each other, which can be kinship, friend-

62 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

ship, or colleague relationship between two nodes. We denote the set of nodes that
have social trust toward node n as S

n = {m∶ eS
nm = 1,∀m ∈ }, and we assume

that the nodes in S
n are willing to serve as the relay of node n for cooperative

communication.
One critical task here is to identify the social relationships among device users.

To this end, we can adopt a network-assisted approach such that two device users
carry out the identification process through the cellular communications. Two device
users can detect their social relationship by carrying out the “matching” process to
identify the common social features among them. For example, two users can match
their mobile phones’ contact books. If they have the phone numbers of each other
or many of their phone numbers are the same, then it is very likely that they know
each other. As another example, two device users can match their home and work-
ing addresses and identify whether they are neighbors or colleagues. Furthermore,
two device users can detect the social relationship among them by accessing to the
online social networks such as Facebook and Twitter. For example, Facebook has
exposed access to their social graph including the objects of friends, events, groups,
profile information, and photos. Any authenticated Facebook user can have access to
these information through the Open Graph API [39]. To preserve the privacy of the
device users, the private set intersection technique in Refs. [40–44] can be adopted to
design a privacy-preserving social relationship identification mechanism such that the
intersection of private social information of two device users can be obtained with-
out leaking any additional private information. Interested readers can refer to Refs.
[40–44] for the detailed discussion of the privacy-preserving social relationship iden-
tification mechanism design. To further protect device user’s personal information
such as identity and visited locations, we can adopt the privacy-preserving scheme in
Ref. [45].

Based on the physical graph P and social graph S earlier, each node n ∈ can
classify the set of feasible relay nodes in P

n into two types: nodes with social trust
and nodes without social trust. A node n then has two options for relay selection. On
the one hand, the node n can choose to seek relay assistance from another feasible
device that has social trust toward him or her. On the other hand, the node n can choose
to participate in a group formed based on social reciprocity by exchanging mutually
beneficial relay assistance. In the following, we will study (i) how to choose between
social trust- and social reciprocity-based relay selections for each node and (ii) how
to efficiently form reciprocal groups among the nodes without social trust.

3.4 SOCIALLY-AWARE COOPERATIVE D2D AND D4D
COMMUNICATIONS TOWARD FOG NETWORKING

In this section, we study the cooperative D2D communications based on social trust
and social reciprocity. As mentioned, each node n ∈ has two options for relay
selection: social trust and social reciprocity. We next address the issues of choosing
between social trust- and social reciprocity-based relay selections for each node and
the reciprocal group forming among the nodes without social trust.

SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS 63

3.4.1 Social Trust-Based Relay Selection

We first consider social trust-based relay selection for D2D cooperation. The key
motivation for using social trust is to utilize the knowledge of human social ties to
achieve effective and trustworthy relay assistance among the devices for coopera-
tive D2D communications. For example, when a device user is at home or working
place, he or she typically has family members, neighbors, colleagues, or friends in
the vicinity. The device user can then exploit the social trust from neighboring users
to improve the quality of D2D communication by asking the best trustworthy device
to serve as the relay.

To take both the physical and social constraints into account, we define the
physical–social graph PS ≜ { , PS} where the vertex set is the node set and
the edge set PS = {(n,m) ∶ ePS

nm ≜ eP
nm ⋅ eS

nm = 1,∀n,m ∈ } where ePS
nm = 1 if and

only if node m is a feasible relay (i.e., eP
nm = 1) and has social trust toward node n

(i.e., eS
nm = 1). An illustration of the physical–social graph is given in Figure 3.4. We

also denote the set of nodes that have social trust toward node n and are also feasible
relay candidates for node n as PS

n = {m ∶ ePS
nm = 1,∀m ∈ }.

For cooperative D2D communications based on social trust, each node n ∈ can
choose the best relay rS

n = arg maxrn∈ PS
n ∪{n} Rn(rn) to maximize its data rate subject

to both physical and social constraints.

3.4.2 Social Reciprocity-Based Relay Selection

Next, we study the social reciprocity-based relay selection. Different from D2D coop-
eration based on social trust that requires strong social ties among device users,
social reciprocity is a powerful mechanism for promoting mutual beneficial cooper-
ation among the nodes in the absence of social trust. For example, when a device
user does not have any friends in the vicinity, he or she may cooperate with the
nearby strangers by providing relay assistance for each other to improve the qual-
ity of D2D communications. In general, there are two types of social reciprocity:
direct reciprocity and indirect reciprocity5 (see Figure 3.5 for an illustration). Direct
reciprocity is captured in the principle of “you help me, and I will help you.” That is,

Physical–social graph

1

2 5

6
4

3

7

Figure 3.4 The physical–social graph based on the physical graph and social graph in
Figure 3.2. For example, there exists an edge between nodes 1 and 3 in the physical–social
graph since they can serve as the feasible relay for each other and also have social trust toward
each other.

5Reciprocity in this study refers to social reciprocity.

64 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

Direct reciprocity

Node 1 helps Node 2

Node 2 helps Node 1

1

1

2

Node 3 helps Node 1

N
od

e
1

he
lp

s
N

od
e

2 N
ode 2 helps N

ode 3

Indirect reciprocity

2

3

Figure 3.5 An illustration of direct and indirect reciprocity.

two individuals exchange altruistic actions so that both obtain a net benefit. Indirect
reciprocity is essentially the concept of “I help you, and someone else will help me.”
That is, a group of individuals exchange altruistic actions so that all of them can be
better off.

Note that in this chapter, we consider that the objective of each device user is to
increase the throughput of its D2D communication, and hence a user is willing to
participate in a reciprocal group if its communication performance can be improved.
Our result can be extended to the case when the cost (e.g., energy consumption) of
serving as a relay for other users is taken into account. In this case, each user will
make the decision of participating a reciprocal group based on its net utility (i.e., the
achieved throughput of getting relaying assistance minus the cost of serving as a relay
for others). If the cost of a user is too high, then the user would not join any reciprocal
relay groups and choose the direct communication without any relay.

To better describe the possible cooperation relationships among the set of nodes
without social trust, we introduce the physical-coalitional graph PC = { , PC}.
Here the vertex set is the node set and the edge set PC = {(n,m) ∶ ePC

nm ≜ eP
nm ⋅

(1 − eS
nm) = 1,∀n,m ∈ } where ePC

nm = 1 if and only if node m is a feasible relay
(i.e., eP

nm = 1) and has no social trust toward node n (i.e., eS
nm = 0). An illustration

of physical-coalitional graph is given in Figure 3.6. We also denote the set of nodes
that have no social trust toward user n but are feasible relay candidates of node n as
 PC

n ≜ {m ∶ ePC
nm = 1,∀m ∈ }. For social reciprocity-based relay selection, a key

challenge is how to efficiently divide the nodes into multiple groups such that the
nodes can significantly improve their data rates by the reciprocal cooperation within
the groups. We will propose a coalitional game framework to address this challenge.

3.4.2.1 Introduction to Coalitional Game For the sake of completeness, we first
give a brief introduction to the coalitional game [46]. Formally, a coalitional game
consists of a tuple Ω = (, ,V , (≻n)n∈), where:

• is a finite set of players.

• is the space of feasible cooperation strategies of all players.

SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS 65

Physical-coalitional graph

1

2

3

4

5

6

7

Figure 3.6 The physical-coalitional graph based on the physical graph and social graph in
Figure 3.7. For example, there exists an edge between nodes 1 and 2 in the physical-coalitional
graph since they can serve as the feasible relay for each other and have no social trust toward
each other.

• V is a characteristic function that maps from every nonempty subset of players
 ⊆ (a coalition) to a subset of feasible cooperation strategies V() ⊆ .
This represents the possible cooperation strategies among the players in the
coalition given that other players out of the coalition do not participate in
any cooperation.

• ≻n is a preference order (reflexive, complete, and transitive binary relation) on
 for each player n ∈ . This captures the idea that different players may
have different preferences over different cooperation strategies.

In the same spirit as Nash equilibrium in a non-cooperative game, the “core” plays
a critical role in the coalitional game.

Definition 3.1 The core is the set of x ∈ V() for which there does not exist a
coalition and y ∈ V() such that y ≻n x for all n ∈ .

Intuitively, the core is a set of cooperation strategies such that no coalition can
deviate and improve for all its members by cooperation within the coalition [46].

3.4.2.2 Coalitional Game Formulation We then cast the social reciprocity-based
relay selection problem as a coalitional game Ω = (, ,V , (≻n)n∈) as follows:

• The set of players is the set of nodes.

• The set of cooperation strategies = {(rn)n∈ ∶ rn ∈ PC
n ∪ {n},∀n ∈

 }, which describes the set of possible relay selections for all nodes based on
the physical-coalitional graph PC.

• The characteristic function V() = {(rn)n∈ ∈ ∶ {rn}n∈ = {n}n∈ and
rm = m,∀m ∈ ∖} for each coalition ⊆ . Here the condition
“{rn}n∈ = {n}n∈” represents the possible relay assistance exchange
among the nodes in the coalition . The condition “rm = m,∀m ∈ ∖”
states that the nodes out of the coalition will not participate in any coopera-
tion and choose to transmit directly. For example, in Figure 3.5, the coalition

66 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

 = {1, 2} in the direct reciprocity case adopts the cooperation strategy r1 = 2
and r2 = 1, and the coalition = {1, 2, 3} in the indirect reciprocity case
adopts the cooperation strategy r1 = 3, r2 = 1 and r3 = 2.

• The preference order ≻n is defined as (rm)m∈ ≻n (r′m)m∈ if and only if rn ≻n
r
′
n. That is, node n prefers the relay selection (rm)m∈ to another selection
(r′m)m∈ if and only if its assigned relay rn in the former selection (rm)m∈
is better than the assigned relay r

′
n in the latter selection (r′m)m∈ . In the fol-

lowing, we define that rn ≻n r
′
n when Rn(rn) > Rn(r

′
n), and if Rn(rn) = Rn(r

′
n),

then ties are broken arbitrarily.

The core of this coalitional game is a set of (r∗n)n∈ ∈ V() for which there does not
exist a coalition and (rn)n∈ ∈ V() such that (rn)n∈ ≻n (r∗n)n∈ for all n ∈ .
In other words, no coalition of nodes can deviate and improve their relay selection
by cooperation in the coalition. We will refer the solution (r∗n)n∈ as the core relay
selection in the sequel.

3.4.2.3 Core Relay Selection We now study the existence of the core relay selec-
tion. To proceed, we first introduce the following key concepts of coalitional game.

Definition 3.2 Given a coalitional game Ω = (, ,V , (≻n)n∈), we call a
coalitional game Φ = (,,V , (≻m)m∈) a coalitional sub-game of the game Ω
if and only if ⊆ and ≠ ∅.

In other words, a coalitional sub-game Φ is a coalitional game defined on a subset
of the players of the original coalitional game Ω.

Definition 3.3 Given a coalitional sub-game Φ = (,,V , (≻m)m∈), a
non-empty subset ⊆ is a top-coalition of the game Φ if and only if there
exists a cooperation strategy (r̃m)m∈ ∈ V() such that for any ⊆ and any
cooperation strategy (rm)m∈ ∈ V() satisfying r̃m ≠ rm for any m ∈ , we have
r̃m ≻m rm for any m ∈ .

That is, by adopting the cooperation strategy (r̃m)m∈ , the coalition is a group
that is mutually best for all its members [47].

Definition 3.4 A coalitional game Ω = (, ,V , (≻n)n∈) satisfies the
top-coalition property if and only if there exists a top-coalition for any of its
coalitional sub-game Φ.

We then show that the proposed coalitional game for social reciprocity-based
relay selection satisfies the top-coalition property. For simplicity, we first denote
̃ PC

n ≜ PC
n ∪ {n}. For a coalitional sub-game Φ = (,,V , (≻m)m∈), we

denote the mapping 𝛾(n,) as the most preferable relay of node n ∈ in the set of
nodes ∩ ̃ PC

n , that is, 𝛾(n,) ≻n i for any i ≠ 𝛾(n,) and i ∈ ∩ ̃ P
n . Based

on the mapping 𝛾 , we can define the concept of reciprocal relay selection cycle as
follows.

SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS 67

Definition 3.5 Given a coalitional sub-game Φ = (,,V , (≻m)m∈), a node
sequence (n1, ..., nL) is called a reciprocal relay selection cycle of length L if and only
if 𝛾(nl,) = nl+1 for l = 1, ...,L − 1 and 𝛾(nL,) = n1.

Notice that when L = 1 (i.e., 𝛾(n,) = n), the most preferable choice of node n is
to choose to transmit directly; when L = 2, this corresponds to the direct reciprocity
case; when L ≥ 3, this corresponds to the indirect reciprocity case. Since the num-
ber of nodes (i.e., ||) is finite, there hence must exist at least one reciprocal relay
selection cycle for the coalitional sub-game Φ. This leads to the following result.

Lemma 3.1 Given a coalitional sub-game Φ, there exists at least one reciprocal
relay selection cycle. Any reciprocal relay selection cycle is a top-coalition of the
coalitional sub-game Φ.

Proof: For the first part of the lemma, we can choose any node n ∈ as the start-
ing node n1. Then we can find the second node n2 = 𝛾(n1,) and continue in this
manner. If no cycle exists, the node sequence (n1, n2,) can grow infinitely long,
and any two nodes in the sequence are different. This obviously contradicts with the
fact that the set of nodes is finite.

For the second part of the lemma, given a reciprocal relay selection cycle
(n1, ..., nL), we denote the set of nodes in the cycle as . We can then adopt the
cooperation strategy for the nodes in the cycle as r̃nl

= nl+1 for l = 1, ...,L = 1 and
r̃nL

= n1. According to Definition 3.5, each node n ∈ is allocated with its most
preferable relay in the coalitional sub-game Φ. Thus for any other relays rn ≠ r̃n, we
have that r̃n ≻n rn for any n ∈ . ◾

According to Lemma 3.1, we have the following result.

Lemma 3.2 The coalitional game Ω for cooperative D2D communications satis-
fies the top-coalition property.

Similar to the top trading cycle scheme for the housing market [48], based on
the top-coalition property [47], we can then construct the core relay selection in an
iterative manner. Let t denote the set of nodes of the coalitional sub-game Φt =
(t,t

,V , (≻m)m∈t
) in the t-th iteration. Based on the mapping 𝛾 and the given

set of nodes t, we can then find all the reciprocal relay selection cycles as t
1, ...,

t
Zt

where each cycle t
z = (nt

1, ..., n
t|t

z|) is a node sequence and Zt denotes the number of

cycles at the t-th iteration. Abusing notation, we will also use t
z to denote the set of

nodes in the cycle t
z. We can then construct the core relay selection as follows. For

the first iteration t = 1, we set 1 = and find the reciprocal relay selection cycles
as 1

1 , ...,
1
Z1

based on the set of nodes 1. For the second iteration t = 2, we can

then set that 2 = 1∖ ∪
Z1
i=1

1
i (i.e., remove the nodes in the cycles in the previous

iteration) and find the new reciprocal relay selection cycles as 2
1 , ...,

2
Z2

based on
the set of nodes 2. This procedure repeats until the set of nodes t = ∅ (i.e., no
operation can be further carried out). We summarize the aforementioned procedure
for constructing the core relay selection in Algorithm 3.1

68 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

Algorithm 3.1 Core Relay Selection Algorithm
1: initialization:
2: set initial set of nodes 1 = .
3: set iteration index t = 1.
4: end initialization

5: loop until t = ∅:
6: find all the reciprocal relay selection cycles t

1, ...,
t
Zt

.
7: remove the set of nodes in the cycles from the current set of nodes t, i.e.,

t+1 = t∖ ∪
Zt
i=1

t
i .

8: set t = t + 1.
9: end loop

Suppose that the algorithm takes T iterations to converge. We can obtain the set
of reciprocal relay selection cycles in all T iterations as { t

i ∶ ∀i = 1, ...,Zt and t =
1, ...,T}. Since the mapping 𝛾(n,t) is unique for each node n ∈ t, we must
have that ∪t=1,...,T

i=1,...,Zt
 t

i = (i.e., all the nodes are in the cycles) and t
i ∩ t′

j = ∅
for any i ≠ j and t, t′ = 1, ...,T (i.e., there do not exist any intersecting cycles). For
each cycle t

i = (nt
1, ..., n

t|t
i
|), we can then define the relay selection as r∗

nt
l
= nt

l+1 for

any l = 1, 2..., | t
i | − 1 and r∗

nt|t
i
| = nt

1. We show that (r∗n)n∈ is a core relay selection

of the coalitional game Ω for the social reciprocity-based relay selection.

Theorem 3.1 The relay selection (r∗n)n∈ is a core solution to the coalitional game
Ω for the social reciprocity-based relay selection.

Proof: We prove the result by contradiction. We assume that there exists a
nonempty coalition ⊆ with another relay selection (rm)m∈ ∈ V() satisfying
(rm)m∈ ≻n (r∗m)m∈ for any n ∈ . Let t = ∪Zt

i=1
t
i be the set of nodes in the

reciprocal relay selection cycles obtained in the t-th iteration. According to Lemma
3.1, we know that each cycle 1

i is a top-coalition given the set of nodes 1 = .
By the definition of top-coalition, we must have that ∩ 1 = ∅. In this case, we
have that ⊆ 2 ≜ 1∖1. Similarly, each cycle 2

i is a top-coalition given the
set of nodes 2. We thus also have that ∩ 2 = ∅. Repeating this argument, we
can find that ∩ t = ∅ for any t = 1, ...,T . Since = ∪T

t=1
t, we must have that

 ∩ = ∅, which contradicts with the hypothesis that ⊆ and ≠ ∅. This
completes the proof. ◾

3.4.3 Social Trust and Social Reciprocity-Based Relay Selection

According to the principles of social trust and social reciprocity earlier, each node
n ∈ has two options for relay selection. The first option is that node n can choose
the best relay rS

n = arg maxrn∈ PS
n ∪{n} Rn(rn) from the set of nodes with social trust

NETWORK ASSISTED RELAY SELECTION MECHANISM 69

 PS
n . Alternatively, node n can choose a relay rn ∈ PC

n from the set of nodes
without social trust by participating in a directly or indirectly reciprocal cooperation
group.

We next address the issue of choosing between social trust and social
reciprocity-based relay selections for each node, by generalizing the core relay
selection (r∗n)n∈ in Section 3.4.2.3. The key idea is to adopt the social trust-based
relay selection rS

n as the benchmark for participating in the social reciprocity-based
relay selection. That is, a node n prefers social reciprocity-based relay selection
to social trust-based relay selection if the social reciprocity-based relay selection
offers better performance. More specifically, we define that rn ≻n n if and only if
rn ≻n rS

n , and the selection “rn = n” represents that node n will select the relay rS
n

based on social trust. Based on this, we can then compute the core relay selection
(r∗n)n∈ according to Algorithm 3.1. In this case, if we have r∗m = m in the core relay
selection (r∗n)n∈ , then node m will select the relay rS

n based on social trust. If we
have r∗m ≠ m in the core relay selection (r∗n)n∈ , then node m will select the relay
based on social reciprocity.

In a nutshell, we have studied the cooperative D2D communications based on
social trust and social reciprocity. We have developed a coalitional game approach
for efficiently forming the reciprocal groups among the nodes and also addressed the
issue of choosing between social trust and social reciprocity-based relay selections
for each node.

3.5 NETWORK ASSISTED RELAY SELECTION MECHANISM

In this section, we turn our attention to the implementation of the core relay selection
for social trust- and social reciprocity-based cooperative D2D communications. A
key challenge here is how to find the reciprocal relay selection cycles in the proposed
core relay selection algorithm (see Algorithm 3.1). In the following, we will first
propose a reciprocal relay selection cycle-finding algorithm to address this issue and
then develop a network-assisted mechanism to implement the core relay selection
solution in practical D2D communication systems.

3.5.1 Reciprocal Relay Selection Cycle Finding

We first consider the issue of reciprocal relay selection cycle finding in the core
relay selection algorithm. We introduce a graphical approach to address this issue.
More specifically, given the set of nodes t and the mapping 𝛾 , we can construct a
graph t = {t,

t}. Here the set of vertices is t and the set of edges t =
{(nm) ∶ et

nm = 1,∀n,m ∈ t}where there is an edge directed from node n to m (i.e.,
et

nm = 1) if and only if 𝛾(n,t) = m. For the graph t , we have the following key
observations.

Lemma 3.3 The out-degree of each node in the graph t is one.

This is due to the fact that the node m generated by the mapping 𝛾(n,t) is unique.

70 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

We next introduce the concept of path in graph theory. A path of length I on a
graph is a sequence of nodes (n1, n2, ..., nI) where there is an edge directed from node
ni to ni+1 on the graph for any i = 1, ..., I − 1. A cycle of the graph is a path in which
the first and last nodes are identical. A reciprocal relay selection cycle of the coali-
tional game then corresponds to a cycle of the graph t . When 𝛾(n,t) = n, the
cycle degenerates to a self-loop of node n. In the following section, we say a path
(n1, n2, ..., nI) induces a cycle if there exists a path beginning from node nI that is a
cycle. If two cycles are a cyclic permutation of each other, we will regard them as
one cycle.

Lemma 3.4 Any sufficiently long path beginning from any node on the graph t

induces one and only one cycle.

Proof: We first show that a path beginning from a node n1 induces a cycle. Since
each node has an out-degree of one, this implies we can construct a path (n1, n2, ...)
of an infinitely large length if the path does not induce a cycle. This contradicts with
the fact that the number of nodes on the graph is finite.

On the other hand, if the path induces multiple distinct cycles, there must exist a
node with more than one outward directed edge. This contradicts Lemma 3.3. ◾

Based on Lemmas 3.3 and 3.4, we propose an algorithm to find the reciprocal
relay selection cycles in Algorithm 3.2. The key idea of the algorithm is to explore
the paths beginning from each node. More specifically, if a path beginning from a
node induces an unfound cycle, then we find a new cycle. We will set the nodes in
both the path and cycle as visited nodes since any path beginning from these nodes
would induce the same cycle. If a path beginning from a node leads to a visited node,
the path would induce a cycle that has already been found if we continue to construct
the path on the visited nodes. We will also set the nodes in the path as visited nodes.
Since each node will be visited once in the algorithm, the computational complexity
of the reciprocal relay selection cycles finding algorithm is (|t|).
3.5.2 NARS Mechanism

We now propose a network-assisted relay selection (NARS) mechanism to implement
the core relay selection, which works as follows:

• Each node n ∈ first determines its preference list P
n for the set of feasible

relay selections ̃ P
n ≜ P

n ∪ {n} based on the physical graph P. Here n =
(r1

n, ..., r
| ̃ P

n |
n) is a permutation of all the feasible relays in ̃ P

n satisfying that
ri

n ≻n ri+1
n for any i = 1, ..., | ̃ P

n | − 1. This step can be done through the channel
probing procedure to measure the achieved data rate resulting from choosing
with different relays.

• Each node n ∈ then computes the best social trust-based relay selection
rSn = arg maxrn∈ PS

n ∪{n} Rn(rn) based on the physical–social graph PS and the

preference list P
n .

NETWORK ASSISTED RELAY SELECTION MECHANISM 71

Algorithm 3.2 Reciprocal Relay Selection Cycle Finding Algorithm
1: initialization:
2: construct the graph t based on the set of nodes t and the mappings

{𝛾(n,t)}n∈t
.

3: set the set of visited nodes = ∅ and the set of unvisited nodes = t∖ .
4: set the set of identified cycles △ = ∅.
5: end initialization

6: loop until = ∅:
7: select one node na ∈ randomly.
8: set the set of visited nodes in the current path = {na}.
9: set the flag F = 0.

10: loop until F = 1:
11: generate the next node nb = 𝛾(na,t).
12: if nb ∈ then
13: set = ∪ and = t∖ .
14: set F = 1.
15: else if nb ∈ then
16: set the identified cycle as = (n1 = nb, ..., ni = 𝛾(ni−1,t), ...,

nI = na).
17: set the set of identified cycles △ = △ ∪ {}.
18: set = ∪ and = t∖ .
19: set F = 1.
20: else
21: set = ∪ {nb}.
22: set na = nb.
23: end if
24: end loop
25: end loop

• Each node n ∈ next determines its preference list PC
n for the set of relay

selections PC
n ∪ {n} based on the physical-coalitional graph PC. Notice that

we have that rn ≻n n in the preference list PC
n if and only if rn ≻n rSn in the

preference list P
n .

• Each node n ∈ then reports its preference list PC
n to the base station.

• Based on the preference listsPC
n of all nodes, the base station computes the core

relay selection (r∗n)n∈ according to Algorithms 3.1 and 3.2 and broadcasts the
relay selection (r∗n)n∈ to all nodes.

As mentioned in Section 3.4.3, if r∗m = m in the core relay selection (r∗n)n∈ , then
node m will select the relay rSn based on social trust. If r∗m ≠ m in the core relay selec-
tion (r∗n)n∈ , then node m will select the relay based on social reciprocity.

72 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

TABLE 3.1 The Preference Lists of N = 7 Nodes Based on the
Physical Graph 𝐏 and Social Graph 𝐒 in Figure 3.2

Node n Preference List P
n Relay rSn Preference List PC

n

1 (1,2,3,4) 1 (1,2)
2 (1,3,2,4,5) 2 (1,3,2,4)
3 (2,3,4,1) 3 (2,3,4)
4 (2,1,4,3,5,6) 1 (2,4,3,5,6)
5 (4,6,7,5,2) 5 (4,6,7,5)
6 (7,5,4,6) 6 (7,5,4,6)
7 (5,6,7) 7 (5,6,7)

We now use an example to illustrate how the NARS mechanism works. We con-
sider the network of N = 7 nodes based on the physical graph P and the social
graph S in Figure 3.2. According to NARS mechanism, each node n first deter-
mines its preference list n for the set of feasible relay selections P

n ∪ {n}. We
will use the preference lists P

n in Table 3.1. For example, in the table the feasible
relays for node 7 on the physical graph P are {5, 6, 7}. The preference list (5, 6, 7)
represents that 5 ≻7 6 ≻7 ≻ 7, that is, node 7 prefers choosing node 5 as the relay to
choosing node 6, and transmitting directly offers the worst performance. Then based
on the physical–social graph PS in Figure 3.4 and the preference list P

n , each node
n computes the best social trust-based relay selection rSn , for example, node 4’s best
social trust-based relay selection rSn = 1 (i.e., node 1). Each node n next determines
the preference list PC

n based on the physical–social graph PS in Figure 3.6.
All the nodes then report the preference lists PC

n to the base station. Based on
the preference lists, the base station will compute the core relay selection (r∗n)n∈
according to the core relay selection algorithm in Algorithm 3.1. We illustrate the
iterative procedure of the core relay selection algorithm in Figure 3.7 by adopting
the graphical representation t introduced in Section 3.5.1. Recall that there is an
edge directed from node n to node m on graph t if node m is the most preferable
relay of node n given the set of nodes t. At iteration t = 1, given that 1 = ,

the base station identifies one cycle, that is, a self-loop formed by node 1. At iteration
t = 2, given that 2 = 1∖{1}, the base station then identifies one cycle formed by
nodes 2 and 3. Notice that graph 2 can be derived from graph 1 by removing
node 1 and any edges directed to node 1. For each node (e.g., node 2) from which
there is a removed edge directed to node 1, we add a new edge directed from the
node to its most preferable node among the set of nodes 2 (e.g., the edge 2 → 3).
We continue in this manner until all the nodes have been removed from the graph.
Figure 3.8 shows all the reciprocal relay selection cycles identified by the core relay
selection algorithm in Figure 3.7. In this case, the core relay selection is as follows:
(i) since rS

1 = 1, node 1 transmits directly; (ii) nodes 2 and 3 serve as the relay of
each other (i.e., direct reciprocity-based relay selection); (iii) since rS

4 = 1, node 4
seeks relay assistance from node 1 (i.e., social trust-based relay selection); (iv) node
5 serves as the relay of node 7, which in turn serves as the relay of node 6; and node
6 in turn is the relay of node 5 (i.e., indirect reciprocity-based relay selection).

NETWORK ASSISTED RELAY SELECTION MECHANISM 73

(a)

1

2

3

4

5

6

7

(b)
2

3

4

5

6

7

(c) (d)

4

5

6

7

5

6

7

Figure 3.7 An illustration of the resulting graphs t at each iteration t of the core relay
selection algorithm. (a) 𝑡 = 1, (b) 𝑡 = 2, (c) 𝑡 = 3, and 𝑡 = 4.

1

2

3

4

5

6

7

Figure 3.8 The reciprocal relay selection cycles identified by the core relay selection algo-
rithm in Figure 3.7.

3.5.3 Properties of NARS Mechanism

We next study the properties of the proposed NARS mechanism. First of all, according
to the definition of the core solution of coalitional game, we know the following.

Lemma 3.5 The core relay selection (r∗n)n∈ by NARS mechanism is immune to
group deviations, that is, no group of nodes can deviate and improve by cooperation
within the group.

We can then show that the mechanism guarantees individual rationality, which
means that each participating node will not achieve a lower data rate than that when
the node does not participate (i.e., in this case the node will transmit directly).

Lemma 3.6 The core relay selection (r∗n)n∈ by NARS mechanism is individually
rational, that is, each node n ∈ will be assigned a relay r∗n which satisfies either
r∗n ≻n n or r∗n = n.

74 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

Proof: If the assigned relay r∗n ≺n n for some node n ∈ , then the node n can
deviate from the current coalition and improve its data rate by transmitting directly
(i.e., r∗n = n). This contradicts with the fact that (r∗n)n∈ is a core relay selection. ◾

We next explore the truthfulness of NARS mechanism. A mechanism is truthful if
no node can improve by reporting a preference list different from its true preference
list, given that other nodes report truthfully.

Lemma 3.7 NARS mechanism is individually truthful.

Proof: Let t be the set of nodes in the reciprocal relay selection cycles obtained in
the t-th iteration of core relay selection algorithm. Suppose that the node m reports
another preference list that is different from its true preference list. Let 𝜏 be the index
such that m ∈ 𝜏 . Given that the nodes in the set ∪𝜏−1

t=1
t truthfully report, they will be

assigned the relays in the core relay selection regardless of what the nodes out of the
set ∪𝜏−1

t=1
t report. In this case, given the set of remaining nodes

𝜏

= ∖ ∪𝜏−1
t=1 t,

the most preferable relay of node m is the relay r∗m in the core relay selection. This
is exactly what the node m achieves by reporting truthfully. Thus, the node m cannot
improve by reporting another preference list. ◾

We further show a stronger result of collective truthfulness. A mechanism is col-
lectively truthful if no group of nodes can improve by joint reporting their preference
lists different from their true preference lists, given that other nodes report truthfully.

Lemma 3.8 NARS mechanism is collectively truthful.

Proof: Suppose that a group of nodes report other preference lists that are different
from their true preference lists. Let 𝜏 be the smallest index such that ∩ 𝜏 ≠ ∅.
Given that the nodes in the set∪𝜏−1

t=1
t truthfully report, they will be assigned the relays

in the core relay selection regardless of what the nodes out of the set ∪𝜏−1
t=1

t report.
Furthermore, given that nodes in the set ∖ report truthfully, for any node m ∈ ∩
𝜏 , the most preferable relay of node m among the remaining nodes

𝜏

= ∖ ∪𝜏−1
t=1

 t is the relay r∗m in the core relay selection. This is exactly what the node m achieves
by reporting truthfully. Thus, a node m ∈ ∩ 𝜏 cannot improve by reporting another
preference list. Similarly, we can show that for a node m in the set ∩ 𝜏+1, the most
preferable relay of node m among the remaining nodes

𝜏+1 = ∖ ∪𝜏

t=1
t is the

relay r∗m in the core relay selection. We can repeat the same augment for k times until
that ∩ 𝜏+k = ∅, which completes the proof. ◾

We finally consider the computational complexity of NARS mechanism. We say
the mechanism is computationally efficient if the solution can be computed in poly-
nomial time.

Lemma 3.9 NARS mechanism is computationally efficient.

SIMULATIONS 75

Proof: Recall that the reciprocal relay selection cycle finding algorithm
in Algorithm 3.2 has a complexity of (|t|). Since the reciprocal relay
selection cycle finding algorithm is the dominating step in each iteration, the
core relay selection algorithm hence has a complexity of (

∑T
t=1 |t|). As∑T

t=1 |t| = N +
∑T

t=2(N −
∑t−1

𝜏=1 |𝜏 |) and
∑T

t=1 |𝜏 | = N, by setting |𝜏 | = 1 for

𝜏 = 1, ...,T , we have the worst case that
∑T

t=1 |t| = ∑N
i=1 i = N(N+1)

2
. Thus, the

mechanism has a complexity of at most (N2). ◾

The aforementioned five Lemmas together prove the following theorem.

Theorem 3.2 NARS mechanism is immune to group deviations and individually
rational, individually and collectively truthful, and computationally efficient.

To summarize, in this section we have developed a graphical-based algorithm for
finding the reciprocal relay selection cycles and have further devised an efficient
NARS mechanism with nice property guarantee for implementing the social trust-
and social reciprocity-based relay selection solution in practical D2D communication
systems.

3.6 SIMULATIONS

In this section we evaluate the performance of the proposed social trust- and social
reciprocity-based relay selection for cooperative D2D communications through simu-
lations. For the purpose of illustration, here we use the outband D2D communications
as a study case. Nevertheless our mechanisms can be also implemented in the sce-
nario of inband D2D communications given the spectrum sharing among D2D and
cellular links is controlled by the base station.

We consider that multiple nodes are randomly scattered across a square area with
a side length of 1000 m. Two nodes within a distance of 250 m are randomly matched
into a source–destination D2D communication link. The motivation of randomly
matching source–destination pairs is as follows: (i) due to the mobility, a user may
have opportunities to conduct D2D communications with different users at different
time periods and different locations; (ii) a user may have diverse interest to carry out
D2D communications with different users for sharing different content. We compute
the SNR value 𝜇ij according to the physical interference model, that is, 𝜇ij =

pi

𝜔0⋅||i, j||𝛼
with the transmission power pi = 1 W, the background noise 𝜔0 = 10−10 W, and the
path loss factor 𝛼 = 4 [49]. Based on the SNR 𝜇ij, we set the bandwidth W = 10
MHz and then compute the data rate achieved by using different relays according to
Equation (3.1). We construct the physical graph P by setting ePnm = 1 (i.e., node m
can be a relay candidate of node n) if and only if the distance between nodes n and
m is not greater than a threshold 𝛿 = 500 m (i.e., ||n,m|| ≤ 𝛿). We set a relatively
large distance threshold due to the fact that in the D2D communication, the detec-
tion of neighboring relay nodes can be significantly enhanced with the assistance by

76 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

the base–station [3]. For the social trust model, we will consider two types of social
graphs: Erdos–Renyi (ER) social graph and real data trace-based social graph.

3.6.1 Erdos–Renyi Social Graph

We first consider N = 100 nodes with the social graph S represented by the ER graph
model [50] where a social link exists between any two nodes with a probability of PL.
To evaluate the impact of social link density of the social graph, we implement the
simulations with different social link probabilities PL = 0, 0.05, 0.1, ..., 1.0, respec-
tively. For each given PL, we average over 1000 runs. As the benchmark, we also
implement the solution that each node transmits directly and selects the relay based on
social trust only (i.e., rn = rSn) and on social reciprocity only by assuming that there is
no social trust among the nodes. Furthermore, we also compute the throughput upper
bound by letting each node select the best relay rn = arg maxrn∈ P

n ∪{n} Rn(rn) among
all its feasible relays. Notice that the throughput upper bound can only be achieved
when all the nodes are willing to help each other (i.e., all the nodes are cooperative).

We show the average system throughput in Figure 3.9. We see that the perfor-
mance of the social trust and social reciprocity-based relay selection dominates that
of social trust-only-based relay selection and social reciprocity-only-based relay
selection. When the social link probability PL is small, the social trust and social
reciprocity-based relay selection achieves up to 64.5% performance gain over the
social trust-only-based relay selection. When the social link probability PL is large,
the social trust- and social reciprocity-based relay selection achieves up to 24%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

15

Social link probability PL

A
ve

ra
g
e
 s

ys
te

m
 t
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Direct communication

Social trust and social reciprocity based relay selection

Throughput upper bound

Social trust-based relay selection

Social reciprocity-based relay selection

Figure 3.9 System throughput with the number of nodes N = 100 and different social net-
work density.

SIMULATIONS 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

Social link probability PL

A
ve

ra
g
e
 s

iz
e
 o

f
re

c
ip

ro
c
a
l
c
y
c
le

s

Figure 3.10 Average size of the reciprocal relay selection cycles in the social trust and social
reciprocity-based relay selection with N = 100 and different social network density.

performance gain over the social reciprocity-only-based relay selection. We also
observe that the social trust- and social reciprocity-based relay selection achieves
up to 100.4% performance gain over the case that all the nodes transmit directly.
Compared with the throughput upper bound, the performance loss of the social
trust- and social reciprocity-based relay selection is at most 24%. As the social link
probability PL increases, the social trust- and social reciprocity-based relay selection
improves and approaches the throughput upper bound. This is due to the fact that
when the social link probability PL is large, each node will have a high probability of
having social trust from any other node, and hence each node is likely to have social
trust from its best relay node. This can be illustrated by Figure 3.10, which shows
the average size of the reciprocal relay selection cycles in the social trust- and social
reciprocity-based relay selection. We observe that as the social link probability PL
increases, the average size of the reciprocal relay selection cycles decreases. This
is because as the social link probability PL increases, more nodes are able to select
their best relay nodes based on social trust. As a result, less nodes would select relay
nodes based on social reciprocity, and hence the average size of the reciprocal relay
selection cycles decreases.

To investigate the impact of the distance threshold 𝛿 for relay detection, we
implement the simulations with the number of nodes N = 100, the social link
probability PL = 0.2, and the distance threshold 𝛿 = 50, 100, ..., 600 m, respectively.
We see from Figure 3.11 that initially the system performance of social trust-
and social reciprocity-based relay selection improves as the distance threshold 𝛿

increases. When the distance threshold 𝛿 is large, however, the performance of social

78 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

50 100 150 200 250 300 350 400 450 500 550 600
4

5

6

7

8

9

10

11

12

13

14

15

Distance threshold δ

A
ve

ra
g
e
 s

y
s
te

m
 t
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Social trust and social reciprocity

based relay selection

Direct communication

Figure 3.11 System throughput of nodes N = 100 and different distance threshold 𝛿 for relay
detection.

trust- and social reciprocity-based relay selection levels off. This is because initially
as the distance threshold 𝛿 increases, more and more good relay nodes are available.
Once the distance threshold 𝛿 is large enough, only those nodes that are within a
relatively short distance can be good relays for cooperative D2D communications.
For those nodes that have a long distance, they will not be chosen as relays since
they would offer worse performance than that of the direct communication case.

3.6.2 Real Trace Based Social Graph

We then evaluate the proposed social trust- and social reciprocity-based relay selec-
tion using the real data trace Brightkite [51]. Brightkite is a data trace collected from
a location-based social networking service platform where users share their location
check-ins. Brightkite contains an explicit friendship network among the users. Dif-
ferent from the ER social graph, the friendship network of Brightkite is scale-free
such that the node degree distribution follows a power law [52]. We implement sim-
ulations as the number of nodes N = 250, 500, ..., 1500, respectively. We randomly
select N nodes from Brightkite and construct the social graph based on the friend-
ship relationship among these N nodes in the friendship network of Brightkite. For
each given N, we average over 1000 runs. Figure 3.12 shows the average number of
social links among these nodes of the social graphs when using the real data trace
Brightkite.

SIMULATIONS 79

250 500 750 1000 1250 1500
0

0.5

1

1.5

2

2.5
×104

Number of nodes

N
u

m
b

e
r

o
f

s
o

c
ia

l
lin

k
s

Figure 3.12 The number of social links of the social graphs based on real trace Brightkite.

250 500 750 1000 1250 1500

0

5

10

15

20

Number of nodes

A
v
e

ra
g

e
 s

y
s
te

m
 t

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Direct communication

Social trust and social reciprocity based relay selection

Social trust-based relay selection

Throughput upper bound

Social reciprocity-based relay selection

Figure 3.13 Average system throughput with different number of nodes.

We show the average system throughput in Figure 3.13. We see that the system
throughput of the social trust- and social reciprocity-based relay selection increases
as the number of users N increases. This is because more cooperation opportuni-
ties among the nodes are present when the number of users N increases. Moreover,
the social trust- and social reciprocity-based relay selection achieves up to 122%

80 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

250 500 750 1000 1250 1500

1.0

1.1

1.2

1.3

Number of nodes

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 e

ff
ic

ie
n

c
y

Direct communication

Social reciprocity-based relay selection

Social trust-based relay selection

Social trust and social reciprocity based relay selection

Figure 3.14 Normalized energy efficiency with different number of nodes.

performance gain over the solution that all users transmit directly. Compared with
the throughput upper bound, the performance loss by the social trust- and social
reciprocity-based relay selection is at most 21%.

We then evaluate the energy efficiency of the proposed NARS mechanism. We
adopt the common practice in literature [53] and compute the energy efficiency as
the ratio between the system-wide throughput and the system-wide energy consump-
tion. Figure 3.14 shows the normalized energy efficiency of different relay selec-
tion schemes with respect to that of direct communication. It demonstrates that the
proposed social trust- and social reciprocity-based relay selection scheme is energy
efficient and achieves the highest energy efficiency among all the schemes.

We next show the computational complexity of the NARS mechanism for
computing the social trust- and social reciprocity-based relay selection solution in
Figure 3.15. We see that the average number of iterations of the mechanism grows
linearly as the number of nodes N increases. We also measure the running time of
the NARS mechanism on a 64-bit Windows PC with 2.5GHz quad-core CPU and
16GB memory in Figure 3.16. We observe that the running time of the mechanism
increases linearly as the number of nodes N increases and the running time is less
than 1 second in all cases. Notice that when the NARS mechanism is implemented in
practical D2D systems, the base station typically has a much stronger computational
capability than a PC, and the running time of the NARS mechanism can be further
significantly reduced. This demonstrates that the proposed NARS mechanism is
computationally efficient.

SIMULATIONS 81

250 500 750 1000 1250 1500
0

5000

10 000

15 000

Number of nodes

A
ve

ra
g
e
 i
te

ra
ti
o
n
s

Figure 3.15 Average number of iterations of the NARS mechanism.

250 500 750 1000 1250 1500
0

200

400

600

800

1000

1200

Number of nodes

A
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 (
m

s
)

Figure 3.16 Average running time of the NARS mechanism.

82 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

3.7 CONCLUSION

In this chapter, we studied socially aware cooperative D2D- and D4D-based fog net-
working for bandwidth boosting. We introduced the physical–social graphs to capture
the physical constraints for feasible D2D cooperation and the social relationships
among devices for effective cooperation. We proposed a coalitional game theoretic
approach to find the efficient D2D cooperation strategy and developed a NARS mech-
anism for implementing the coalitional game solution. We showed that the devised
mechanism is immune to group deviations and individually rational, truthful, and
computationally efficient. We further evaluated the performance of the mechanism
based on ER social graphs and real data trace-based social graphs. Simulation results
show that the proposed mechanism can achieve up to 122% performance gain over
the case without D2D cooperation.

We focused on the case where the cooperative D2D communications between the
relay node and the destination node use in-band communication (i.e., using cellu-
lar spectrum). To achieve better network connectivity and enhance the communica-
tion performance, both the in-band and out-band (i.e., using Wi-Fi spectrum) D2D
communications can be utilized. For instance, two users can adopt the Wi-Fi Direct
to conduct out-band D2D communication; alternatively, the users can conduct the
in-band D2D communication by using the cellular spectrum. To this end, we have
built a prototype system on cooperative D2D communications using out-band (Wi-Fi
Direct) communications.

We are currently developing a framework for socially aware cooperative D2D- and
D4D-based fog networking and computing. A key observation is that mobile devices
and IoT devices have become next of kin (NOK), in the sense that there is a human
being associated with each of such devices and these connected devices have kinship.
Since these devices are connected (e.g., via D2D and D4D) and they have capabilities
(bandwidth, storage, computing, sharing) that are often unused (idle most of the time),
a natural question is that “Why cannot these devices in the kinship help each other
just like families, relatives, and friends do?” Clearly the answer is yes—this leads to
our vision of “Internet of NOK” where these connected devices form a fog network
on the fly to help each other. Our study on the theoretic foundation and prototyping
for “Internet of NOK” is underway.

ACKNOWLEDGMENTS

Junshan Zhang would like to thank Kaushik Pillalamarri and Mung Chiang for stim-
ulating discussions on the concept of “Internet of NOK.” This research was sup-
ported in part by the US National Science Foundation under Grants CNS-1218484,
CNS-1422277, CNS-1248109, and HRD-1345232 and in part by the Defense Threat
Reduction Agency under Grant HDTRA1-13-1-0029 and the US Army Research
Office W911NF-15-1-0393.

REFERENCES 83

REFERENCES

1. Cisco (2012) Global mobile data traffic data forecast update, 2011–2016, Cisco white
paper.

2. Cisco (2014) Cisco delivers vision of fog computing to accelerate value from billions of
connected devices, Cisco Tech. Rep. 1334100.

3. Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Miklós, G., and Turányi, Z.
(2012) Design aspects of network-assisted device-to-device communications. IEEE Com-
munications Magazine, 50 (3), 170–177.

4. Kayastha, N., Niyato, D., Wang, P., and Hossain, E. (2011) Applications, architectures,
and protocol design issues for mobile social networks: A survey. Proceedings of the IEEE,
99 (12), 2130–2158.

5. Asadi, A., Wang, Q., and Mancuso, V. (2014) A survey on device-to-device communica-
tion in cellular networks. IEEE Communications Surveys & Tutorials, 16 (4), 1801–1819.

6. Govier, T. (1997) Social trust and human communities, McGill-Queen’s University Press
Montreal.

7. Gintis, H. (2000) Strong reciprocity and human sociality. Journal of Theoretical Biology,
206 (2), 169–179.

8. Schneier, B. and Ferguson, N. (2003) Practical cryptography, Wiley, New York, 1st edn.
9. Lasseter, R. and Paigi, P. (2004) Microgrid: A conceptual solution, in IEEE Power Elec-

tronics Specialists Conference, vol. 6, June 20–26, Aachen, Germany, pp. 4285–4290.
10. Fang, X., Misra, S., Xue, G., and Yang, D. (2012) Smart grid–the new and improved power

grid: A survey. IEEE Communications Surveys and Tutorials (CST), 14 (4), 944–980.
11. Fang, X., Misra, S., Xue, G., and Yang, D. (2012) Managing smart grid information in the

cloud: Opportunities, model, and applications. IEEE Network, 26 (4), 32–38.
12. Fang, X., Misra, S., Xue, G., and Yang, D. (2013) How smart devices, online

social networks and the cloud will affect the smart grid’s evolution. IEEE Smart
Grid Newsletter URL http://smartgrid.ieee.org/newsletters/january-2013/how-smart-
devices-online-social-networks-and-the-cloud-will-affect-the-smart-grid-s-evolution?
(accessed on October 26, 2016).

13. Yu, C.H., Tirkkonen, O., Doppler, K., and Ribeiro, C. (2009) On the performance of
device-to-device underlay communication with simple power control, in IEEE 69th Vehic-
ular Technology Conference (VTC Spring), IEEE, pp. 1–5.

14. Yu, C.H., Tirkkonen, O., Doppler, K., and Ribeiro, C. (2009) Power optimization of
device-to-device communication underlaying cellular communication, in IEEE Interna-
tional Conference on Communications (ICC), IEEE, pp. 1–5.

15. Janis, P., Koivunen, V., Ribeiro, C.B., Doppler, K., and Hugl, K. (2009)
Interference-avoiding mimo schemes for device-to-device radio underlaying cellu-
lar networks, in IEEE 20th International Symposium on Personal, Indoor and Mobile
Radio Communications, IEEE, pp. 2385–2389.

16. Zulhasnine, M., Huang, C., and Srinivasan, A. (2010) Efficient resource allocation for
device-to-device communication underlaying LTE network, in IEEE Sixth International
Conference on Wireless and Mobile Computing, Networking and Communications, IEEE,
pp. 368–375.

17. Raghothaman, B., Sternberg, G., Kaur, S., Pragada, R., Deng, T., and Vanganuru, K. (2011)
System architecture for a cellular network with cooperative mobile relay, in IEEE Vehic-
ular Technology Conference (VTC Fall), IEEE, pp. 1–5.

84 SOCIALLY-AWARE COOPERATIVE D2D AND D4D COMMUNICATIONS

18. Ma, X., Yin, R., Yu, G., and Zhang, Z. (2012) A distributed relay selection method
for relay-assisted device-to-device communication system, in IEEE 23rd International
Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), IEEE,
pp. 1020–1024.

19. Lee, D., Kim, S.I., Lee, J., and Heo, J. (2012) Performance of multihop
decode-and-forward relaying-assisted device-to-device communication underlaying
cellular networks, in 2012 International Symposium on Information Theory and Its
Applications (ISITA), IEEE, pp. 455–459.

20. Zhong, S., Chen, J., and Yang, Y. (2003) Sprite: A simple, cheat-proof, credit-based system
for mobile ad-hoc networks, in IEEE INFOCOM March 2003, San Francisco, CA, pp.
1987–1997.

21. Marbach, P. and Qiu, Y. (2005) Cooperation in wireless ad hoc networks: A market-based
approach. IEEE/ACM ToN, 13 (6), 1325–1338.

22. Neely, M. (2009) Optimal pricing in a free market wireless network. Wireless Networks,
15 (7), 901–915.

23. Molva, R. and Michiardi, P. (2001) Core: A collaborative reputation mechanism to
enforce node cooperation in mobile ad hoc networks. Institute Eurecom Research Report
RR-02-062 EURECOM, Biot.

24. Gao, Y., Chen, Y., and Liu, K. (2011) Cooperation stimulation in cooperative communica-
tions: An indirect reciprocity game, in IEEE International Conference on Communications
(ICC), Ottawa June 2012, pp. 5163–5167.

25. Milan, F., Jaramillo, J., and Srikant, R. (2006) Achieving cooperation in multihop wireless
networks of selfish nodes, in GameNets, p. 3.

26. Maddux, J.E. and Snyder, C. (1997) Social cognitive psychology: History and current
domains, Springer New York.

27. Chen, X. and Huang, J. (2015) Imitation-based social spectrum sharing. IEEE Transac-
tions on Mobile Computing, 14 (6), 1189–1202.

28. Kleinberg, J. (2008) The convergence of social and technological networks. Communica-
tions of the ACM, 51 (11), 66–72.

29. Gao, W., Li, Q., Zhao, B., and Cao, G. (2009) Multicasting in delay tolerant networks: A
social network perspective, in Proceedings of the 10th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, ACM, New York, pp. 299–308.

30. Cabaniss, R., Madria, S., Rush, G., Trotta, A., and Vulli, S. (2010) Dynamic social group-
ing based routing in a mobile ad-hoc network, in IEEE International Conference on High
Performance Computing, New Orleans, LA, December 2010, pp. 1–8.

31. Chen, X., Gong, X., Yang, L., and Zhang, J. (2014) A social group utility maximization
framework with applications in database assisted spectrum access, in Proceedings of IEEE
INFOCOM, IEEE, pp. 1959–1967.

32. Chen, X., Gong, X., Yang, L., and Zhang, J. (2016) Exploiting social tie structure for coop-
erative wireless networking: A social group utility maximization framework. ACM/IEEE
Transactions on Networking, DOI: 10.1109/TNET.2016.2530070.

33. Hui, P., Crowcroft, J., and Yoneki, E. (2011) Bubble rap: Social-based forwarding in
delay-tolerant networks. IEEE TMC, 10 (11), 1576–1589.

34. Costa, P., Mascolo, C., Musolesi, M., and Picco, G. (2008) Socially-aware routing for
publish-subscribe in delay-tolerant mobile ad hoc networks. IEEE JSAC, 26 (5), 748–760.

REFERENCES 85

35. Boldrini, C., Conti, M., and Passarella, A. (2008) Contentplace: Social-aware data dissem-
ination in opportunistic networks, in ACM MSWiM Pisa, Italy, October 2008, pp. 203–210.

36. Han, B., Hui, P., Kumar, V., Marathe, M., Shao, J., and Srinivasan, A. (2012) Mobile data
offloading through opportunistic communications and social participation. IEEE TMC,
11 (5), 821–834.

37. Zhao, Y., Adve, R., and Lim, T. (2006) Improving amplify-and-forward relay net-
works: Optimal power allocation versus selection, in IEEE ISIT Seattle, WA, July 2006,
pp. 1234–1238.

38. Host-Madsen, A. and Zhang, J. (2005) Capacity bounds and power allocation for wireless
relay channels. IEEE TIT, 51 (6), 2020–2040.

39. Ko, M.N., Cheek, G.P., Shehab, M., and Sandhu, R. (2010) Social-networks connect ser-
vices. Computer, 43 (8), 37–43.

40. Kissner, L. and Song, D. (2005) Privacy-preserving set operations, in Advances in
cryptology–CRYPTO 2005, Springer, Berlin, pp. 241–257.

41. Zhang, R., Zhang, Y., Sun, J., and Yan, G. (2012) Fine-grained private matching for
proximity-based mobile social networking, in IEEE INFOCOM, IEEE, pp. 1969–1977.

42. Von Arb, M., Bader, M., Kuhn, M., and Wattenhofer, R. (2008) Veneta: Serverless
friend-of-friend detection in mobile social networking, in IEEE International Confer-
ence on Wireless and Mobile Computing, Networking and Communications, IEEE, pp.
184–189.

43. Li, M., Cao, N., Yu, S., and Lou, W. (2011) Findu: Privacy-preserving personal profile
matching in mobile social networks, in International Conference on Computer Communi-
cations (INFOCOM), IEEE, pp. 2435–2443.

44. Zhang, R., Zhang, J., Zhang, Y., Sun, J., and Yan, G. (2013) Privacy-preserving profile
matching for proximity-based mobile social networking. IEEE Journal on Selected Areas
in Communications, 31 (9), 656–668.

45. Liang, X., Li, X., Luan, T.H., Lu, R., Lin, X., and Shen, X. (2012) Morality-driven data
forwarding with privacy preservation in mobile social networks. IEEE Transactions on
Vehicular Technology, 61 (7), 3209–3222.

46. Myerson, R. (1997) Game theory: Analysis of conflict, Harvard University Press
Cambridge, MA.

47. Banerjee, S., Konishi, H., and Sönmez, T. (2001) Core in a simple coalition formation
game. Social Choice and Welfare, 18 (1), 135–153.

48. Shapley, L. and Scarf, H. (1974) On cores and indivisibility. Journal of Mathematical
Economics, 1 (1), 23–37.

49. Rappaport, T.S. (1996) Wireless communications: Principles and practice, vol. 2, Prentice
Hall PTR, NJ.

50. Newman, M., Watts, D., and Strogatz, S. (2002) Random graph models of social networks.
PANS, 99 (1), 2566–2572.

51. Leskovec, J. (2012) Brightkite dataset. URL http://snap.stanford.edu/data (accessed
September 12, 2016), Stanford University.

52. Kunegis, J. (2013) Network analysis of brightkite, in KONECT - The Koblenz Network
Collection. URL http://konect.uni-koblenz.de (accessed September 12, 2016).

53. Li, G.Y., Xu, Z., Xiong, C., Yang, C., Zhang, S., Chen, Y., and Xu, S. (2011)
Energy-efficient wireless communications: Tutorial, survey, and open issues. Wireless
Communications, IEEE, 18 (6), 28–35.

4 You Deserve Better Properties
(From Your Smart Devices)

STEVEN Y. KO

University at Buffalo, The State University of New York, Buffalo, NY, USA

This chapter offers a viewpoint for operating systems in fog networking. The central
claim is the following—we need to provide better properties for the operating sys-
tems in fog networking. This means that the current operating systems do not provide
necessary properties for fog networking, and the needs for new and better proper-
ties are arising. To support this claim in a comprehensive manner, we answer four
questions. The first is why—why we need to provide better properties. The answer
to this question gives us the motivation for further research. The second question is
where—where we need to provide better properties. Here we make a case that we
should examine existing operating systems first. The third question is what—what
new or better properties we need to provide. To answer this question, we use three
case studies drawn from our own research to demonstrate what kinds of properties we
need to provide. The fourth question is how—how we can provide better properties.
The answer to this question gives us the realizations of better properties.

In answering these four questions, we put more weight on the last two questions.
The reason is that we do not necessarily raise new points in our answers to the first
two questions; we mostly include the discussions for the sake of completeness. Nev-
ertheless, we hope that examining these four questions of why, where, what, and how
gives a comprehensive view of our claim.

4.1 WHY WE NEED TO PROVIDE BETTER PROPERTIES

The short answer to our first why question is that new contexts are emerging for oper-
ating systems in fog networking, and those new contexts call for better properties
that operating systems should provide. Such new contexts include existing mobile

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

WHERE WE NEED TO PROVIDE BETTER PROPERTIES 87

devices used in ways that we did not anticipate before (e.g., using Android for medical
devices), as well as brand new contexts such as Internet of things (IoT), unmanned
aerial vehicles (UAVs), etc. Operating systems used in these contexts need to support
new types of applications, which have their own requirements and challenges to deal
with. For example, if Android had run on a medical device, it would need to support
applications such as a patient health monitoring that has tight timing requirements.
Naturally, the need arises for operating systems to provide better properties for the
applications they run.

This is by no means new reasoning; in the past few decades, many new contexts
have appeared for operating systems, and every time a new context arose, the need for
better properties arose as well. Mobile computing is perhaps one of the most recent
examples—laptops, smartphones, and tablets arose as a new context for operating
systems, and it called for better properties, for example, efficient energy management.
But now, we are moving past the traditional mobile computing, and new application
contexts in fog networking are emerging such as IoT and UAVs as mentioned earlier.
Thus, it is important to examine these new contexts and what better properties we
need to provide in operating systems for fog networking.

4.2 WHERE WE NEED TO PROVIDE BETTER PROPERTIES

The next question we want to answer is where we need to provide better proper-
ties, and we argue that a reasonable starting point is an existing operating system.
As with the first question, we are not making a new point here. It has been a general
trend—once an operating system is developed, it is leveraged in many different con-
texts, and adjustments are made along the way. Android is perhaps one of the most
recent examples—it adapted an existing operating system (Linux) for smartphones
in the beginning, but it evolved as new contexts arose, for example, tablets, smart-
watches, in-car infotainment systems, etc. Every time a new context arose, Android
added new properties (e.g., better energy management) and adapted to the new con-
text. iOS has had similar adaptations, which adapted OS X first for smartphones and
then evolved to work in other contexts.

The likely reason behind this trend is cost—writing a brand new operating sys-
tem from scratch is a costly undertaking. Reusing and adapting an existing operating
system in a new context is a reasonable cost-saving strategy. In addition, one might
argue that it is even better to adapt an existing operating system since it has been tried
and tested. For example, Linux has withstood years of field usage and proven itself
to be a robust working system. By adapting Linux (as Android did), one can gain the
proven robustness for the components already implemented in Linux.

Following the same line of reasoning, we anticipate that this trend of adapting
an existing operating system will continue in the near future. Thus, we think that
new properties that arise in fog networking contexts should also be tested in existing
operating systems first.

One thing to note is that providing a new property in an existing operating sys-
tem does not simply mean that one uses the operating system as an implementation

88 YOU DESERVE BETTER PROPERTIES (FROM YOUR SMART DEVICES)

platform. Reasoning about a new property and implementing it within an operat-
ing system requires deep understanding of the operating system’s internals. It also
requires careful evaluation of the operating system with a keen eye on how to pro-
vide the new property. As a result, it is often the case that innovation takes place;
one needs to adapt existing techniques in novel ways or come up with brand new
techniques. We discuss a few examples of this kind in the rest of the chapter.

4.3 WHAT PROPERTIES WE NEED TO PROVIDE AND HOW

The remaining questions are what and how, that is, what better properties we need
to provide and how. Since we recognize that there can be vastly many properties
that need to be provided, we highlight three properties that deserve more attention.
The first property is transparency; it is the ability for an operating system to tell its
users why it is doing what it is doing. The second is predictable performance; it is
the ability for an operating system to provide consistent, predictable performance for
important applications no matter what the system load is. The third is openness; it is
the ability for an operating system to allow innovation from third parties to be easily
incorporated and deployed. The rest of the section describes in more detail what these
properties are and why we need them, as well as our previous and current efforts to
make progress on these fronts.

4.3.1 Transparency

We define transparency as the ability for a system to tell its users why it is doing
what it is doing, and the need for this property is uprising in recent years. The pri-
mary motivator is the ubiquitous popularity of personal devices such as smartphones
and tablets. These personal devices enable users to browse the Web, to send e-mails,
to take pictures, etc. anywhere they go with high-bandwidth connectivity to the Inter-
net. Due to this convenience, the penetration of personal devices has shown a startling
growth; it has been reported that the global shipments of smartphones have already
surpassed the shipments of PCs in 2011 [1]. Facebook, the most popular social net-
working service, reports that 90% of their daily active users access it via mobile [2],
and it is the main target of growth in 2012 [3].

However, this popularity of personal devices not only provided convenience but
also brought many why questions from users. These why questions are not just tradi-
tional questions that researchers have asked before such as “why is this device so
slow?” or “why does this device cannot connect to the Internet?” but rather new
questions more pertinent to personal devices such as “is this application sending a
personal phone number to some Internet server?” “is it tracking locations?” or “why
is this device not lasting even a day?” Many survey results recognize these ques-
tions, and the news media has numerous suggestions and advice to deal with these
questions [4–7].

The underlying issue of answering these why questions is transparency. If a system
is transparent, that is, if a system provides detailed information that reveals its inner

WHAT PROPERTIES WE NEED TO PROVIDE AND HOW 89

working, then we can start answering the why questions. For example, if an application
or a platform reveals how the application behaves in regard to all the data read from
contacts, we should be able to answer “is this application sending a personal phone
number to some Internet server?” Traditionally, this issue of transparency has been
more relevant to researchers and developers as they need to understand how a sys-
tem behaves for various purposes such as debugging and performance improvement.
Accordingly, a large number of tools have been developed to assist researchers and
developers, for example, Kprobes [8] and SystemTap [9] among many others. But
now, it is relevant to end users as well, and we need to develop tools and techniques
to provide transparency not only for researchers and developers but also for users.

Although such tools and techniques could be developed in any layer of a system,
it would be particularly useful if they were provided by the operating system layer,
either as a platform tool or as a system-level service. This is because those tools and
techniques could benefit the entire set of applications running on top of an operating
system if they were implemented within the operating system. In the case of a popular
operating system, it would also seamlessly benefit a large number of users at the
same time.

However, transparency—as we define it—is a broad issue that has many aspects,
for example, performance, energy efficiency, privacy, etc. Thus, it is difficult to tackle
all transparency issues at once. Thus, in our own research we are taking some ini-
tial steps to develop tools and techniques that pertains to one aspect of transparency,
which we call information flow transparency.

BlueSeal [10, 11] is our first effort toward providing information flow trans-
parency. This transparency reveals answers to questions on how an application uses
the data of its user, for example, “is this application sending a personal phone number
to some Internet server?” The reason why we call it information flow transparency
is because this type of question can be answered by a technique called information
flow tracking [12–18], which analyzes how information gets propagated in a system
from an information source to an information sink. For example, by tracking how
the information from a file that contains personal phone numbers gets propagated
within an application, we can check if a phone number gets sent over the network
by the application. In this example, the information source is the phone number
file, and the information sink is the network. BlueSeal analyzes how various types
of information get propagated between many different sources (such as storage,
GPS, contacts, camera, etc.) and sinks (such as network, log, storage, inter-process
communication channels, etc.) and reveals them to end users.

Revealing an information flow is a first step toward enforcing a flow or preventing
a flow from happening. For example, an operating system might want to analyze an
application first to make sure that at runtime there is no other information flow occur-
ring. Also, an operating system might want to prevent an application from executing
at all if there is a potentially malicious information flow.

However, revealing an information flow is also useful in and of itself, especially
to users. If presented at installation time, for example, a user could decide whether
the user wants to install an application or not. This is particularly useful when there
are many alternatives for an application. For example, there are many file browser

90 YOU DESERVE BETTER PROPERTIES (FROM YOUR SMART DEVICES)

Figure 4.1 BlueSeal information flow permission screenshot.

applications for a smartphone, and a user might want to choose a file browser
application with the least number of information flows.

In light of this, the uniqueness of our tool, BlueSeal, is twofold. First, BlueSeal
statically analyzes an application and displays all potential information flows to end
users at installation time. This means that we analyze the binary of an application to
detect information flows that exist within the application; this is opposed to dynamic
information flow tracking, where the tracking happens at runtime. The reason for our
static analysis is to give a user a chance to examine the behavior of an application
before installing it so that the user can make a more informed decision on which
applications to install. We do this in the form of permissions; we display at installa-
tion time what potential information flows exist in an application for various sources
and sinks, and a user needs to approve that the user is still willing to install the appli-
cation. Two most popular mobile operating systems, iOS and Android, both have
such a permission mechanism, and we have chosen Android1 as the implementation
platform. Figure 4.1 shows a screenshot of how BlueSeal displays information flows.

1We have chosen Android for its popularity (Android is the most popular mobile OS) and openness
(Android is open source, and we can examine the internals).

WHAT PROPERTIES WE NEED TO PROVIDE AND HOW 91

The second uniqueness of BlueSeal is that it addresses the challenges of adapt-
ing existing static information flow analysis techniques to a specific platform. This
is due to the fact that there are many practical issues to consider for a specific plat-
form, which general static information flow analysis techniques do not address. This
is why we mention in Section 4.2 that providing a new property in an existing oper-
ating system does not simply mean that one uses it as an implementation platform.
Often times, there are platform-specific issues to address, and it leads to interesting
research problems.

In the case of BlueSeal, there are two categories of practical issues we needed to
consider for Android when adapting existing static analysis techniques. The first cat-
egory is the issues caused by the programming model of Android. The fundamental
reason is that Android’s programming model is highly event driven; an application
implements numerous entry points that react to outside events. In other words, an
Android application does not have any single entry point where all the logic starts
from; an Android application is a collection of handlers that processes events, for
example, a button click. This type of programming models is popular for GUI-based
frameworks, and Android is no exception. The problem with this programming model
for static information flow analysis is that traditional techniques assume that a pro-
gram has a single call graph starting from main(). They do not work if a program
is a set of handlers with no single entry point.

Not only that, Android introduced many new constructs such as new thread
types, message handlers, and IPC mechanisms. The issue with these new constructs
is that their execution is implicit, that is, they are executed not by direct method
calls within application code but by the underlying Android platform with some
predefined rules. This is the second category of issues we needed to deal with in
BlueSeal.

To illustrate this point, we use AsyncTask, a popular construct for threading
on Android, as an example. AsyncTask is a new threading class introduced in
Android. It provides a simple way to write a thread that communicates with the UI
thread in an asynchronous fashion. An AsyncTask can implement five methods—on-
PreExecute(), doInBackground(), onProgressUpdate(), onPost-
Execute(), and onCancelled(). The interesting aspect about this construct is
that there is a predefined order of execution and that there is no explicit method calls
that can be found in application code for any of the five methods. Figures 4.2 and 4.3
illustrate this point. Figure 4.2 shows a code snippet written in Java, and Figure 4.3
shows the corresponding order of execution.

As shown in Figure 4.2, a developer can implement a new thread by extending
AsyncTask and providing the implementation for the five methods previously
mentioned. In Figure 4.2, the developer-implemented class is Task, and it is started
in onCreate() by calling Task.execute(). Now, as the execution flow
shows, the call to Task.execute() triggers the execution of Task.onPre-
Execute(), and there is no explicit call to that method in the application code—the
execution is triggered by the underlying Android platform. Similarly, other methods
(e.g., doInBackground()) are called at later times but without any explicit call.
AsyncTask is just one example; many other constructs in Android have similar

92 YOU DESERVE BETTER PROPERTIES (FROM YOUR SMART DEVICES)

public class MainActivity extends Activity {
protected void onCreate(Bundle savedInstanceState) {

 ...
new Task().execute("http://www...");

 ...
 }
 ...

private class Task extends AsyncTask<String, String, Integer> {
 ...

protected void onPreExecute() {
 ...
 }

protected Integer doInBackground(String... strs) {
 ...
 publishProgress("intermediate result");
 ...

return intObj;
 }

protected void onProgressUpdate(String...strings) {
 ...
 }

protected void onPostExecute(Integer intObj) {
 ...
 }
 }
}

Figure 4.2 AsyncTask code snippet.

MainActivity.onCreate()

...

...

Task.onPreExecute()

...

Task.doInBackground()

...

...

return val;

Task.onProgressUpdate()

...

Task.onPostExecute()

...

UI thread

Task. execute(...);

publishProgress(...);

Implicit thread

Figure 4.3 AsyncTask flow.

WHAT PROPERTIES WE NEED TO PROVIDE AND HOW 93

characteristics. The problem of these constructs for static information flow analysis
then is how to handle indirect call relationships in various pieces of code.

In order to handle the two categories of issues described so far, BlueSeal
implements a mechanism to understand many entry points that exist in an Android
application as well as implicit calls introduced by new constructs of Android. In
a nutshell, BlueSeal builds a call graph, where all implicit calls are converted to
explicit calls, and augments traditional static information flow analysis techniques to
handle multiple entry points. Using BlueSeal, we have analyzed 1800 applications
(600 top-rated free applications and 1200 malicious applications identified by
MalGenomeproject [19]) and found that all but 79 applications take less than 2
minutes to analyze. This shows that if the analysis is done off-line using a server (e.g.,
an application store server), it is practical to use BlueSeal to provide information
flow transparency at installation time.

Our previously published paper [11] reports the full set of results, and here we
summarize some of our findings. First, we have observed that malicious applications
are heavily interested in unique phone identifiers such as the device ID. Moreover,
when normal applications use unique phone identifiers, they just use them internally
without sending it to a server or storing it somewhere. In contrast, malicious applica-
tions almost always send the identifiers out of the applications themselves either to
a server or to a device storage. Second, we have observed that normal applications
access the phones’ location data more frequently than malicious applications, that
is, there is less interest among malicious applications about users’ locations. Third,
both normal and malicious applications read system content providers often. The
most commonly accessed content provider in both normal and malicious applica-
tions is the contacts. Thus, reading contacts is probably not a reliable indicator of a
malicious activity.

At the time of our publication, the most closely related work to ours was
CHEX [20]. It provides a tool for detecting highjack-enabling flows within an
Android application. It uses a brute-force permutation approach to tackle the
analysis of Android’s constructs such as async tasks and handlers, making it
susceptible to incorrect disambiguation. Thus, our call graph restructuring technique
can refine CHEX’s approach since we identify implicit calls in Android’s constructs
whenever possible. More recently, FlowDroid [21] has proposed more sophisticated
techniques to analyze Android applications. It performs context-sensitive analysis
that specifically handles Android’s constructs.

4.3.2 Predictable Performance

The second property that deserves more attention is what we call predictable perfor-
mance, which we define as the ability for an operating system to provide consistent,
predictable performance to important applications. This is coming from the tradi-
tional real-time systems domain, where an application consists of multiple tasks with
different priorities. An aircraft control system is a well-known case of a real-time sys-
tem; there are many tasks an aircraft control system needs to carry out, for example,
radar control, navigation, flight control, etc., and these tasks have different priorities

94 YOU DESERVE BETTER PROPERTIES (FROM YOUR SMART DEVICES)

in terms of their relative importance. In addition, these tasks should perform in a
predictable fashion. This means that for each task, there has to be a guarantee about
exactly when it starts and exactly when it finishes. For example, if the radar of an
aircraft senses a foreign object, the sensed data should be delivered to its data pro-
cessing unit in a predictable way with a reasonable bound on latency. If there is no
such guarantee, then the aircraft will not be able to react to sensed objects in a timely
manner. This guarantee should be provided even when there are multiple tasks that
compete for shared resources such as CPU, memory, and I/O.

This property of predictable performance has become more important recently,
as there are many more types of newer devices that operate in real-time contexts.
For example, many new medical IoT devices are appearing, and they perform criti-
cal tasks such as patient monitoring. These critical medical tasks typically require
predictable performance; otherwise, there will be no guarantee about whether or
not the critical tasks can be performed in a timely manner for a patient. Similarly,
small UAVs are becoming popular, and they also require predictable performance;
otherwise, they will not be able to fly reliably. Thus, the property of predictable per-
formance is becoming more important now.

In our own research, we are investigating how to provide the property of pre-
dictable performance in Android. The system we are developing is a variation of
Android called RTDroid [22–24]. Our goal for RTDroid is to add real-time sup-
port to Android as a whole system so that one can run real-time applications and
non-real-time applications on a single system. Having such a system enables sce-
narios previously not possible. For example, a hospital inpatient can potentially use a
tablet to play games, while the table is also being used as a central hub for controlling
all medical devices that the patient needs. Or, a smartphone can potentially become an
onboard satellite controller as the United Kingdom envisions [25]. Before RTDroid,
there were a few discussions on how to add real-time support to Android [26–28], but
RTDroid is the first system that explores the question of how to add real-time support
to Android as a whole system, to the best of our knowledge.

With RTDroid, we have explored several research questions related to adding
real-time support to Android. The questions are (i) whether or not the current Android
provides real-time guarantees, (ii) if not, what kinds of techniques we need, (iii) what
changes we need to make in Android to implement the techniques identified by the
previous question, and (iv) how effective the implemented techniques are. It turns out
that Android does not provide adequate real-time guarantees, and while we can reuse
existing techniques to add real-time support to Android, namely, priority awareness,
implementing these techniques in Android as a whole system requires careful exami-
nation and strategies. This presents a significant challenge due to the complexities of
Android, especially when considering the entire system. In the succeeding text, we
elaborate these findings further, starting with the answer for the first question.

To answer the first question, we began by analyzing Android for its real-time
capability. To explain our findings, Figure 4.4 shows a simplified view of
Android’s internal components. As shown, there are three main layers that
support Android applications—the Android kernel, the Android runtime (ART), and
the application framework. The Android kernel is basically a Linux kernel with some

WHAT PROPERTIES WE NEED TO PROVIDE AND HOW 95

Applications

Application framework

Android runtime

Android kernel

Android virtual
machine

Constructs and APIs System services

System libraries

Figure 4.4 Simplified Android architecture.

Android-specific customizations. The ART contains Android’s Java virtual machine
(previously Dalvik, now ART) as well as system libraries (Java and C libraries,
similar to the ones that a typical Linux distribution has). Android applications are
mainly written in Java, so this runtime layer is directly responsible for running an
application. The last layer—the application framework—has system services and
provides APIs to access them as well as convenient constructs.

In order to analyze Android’s real-time capabilities as a whole system, we need
to examine each layer and see if every layer is capable of supporting real-time appli-
cations. We start by examining the bottommost layer, which is the Android kernel.
As mentioned earlier, the Android kernel is essentially a Linux kernel with some
Android-specific customizations; and it is well known that the Linux kernel does not
have real-time capabilities.2 Instead, there is a patch that one can apply to transform
a Linux kernel into a real-time kernel. This patch is called RT-Preempt.3 There also
exist other real-time kernels such as RTEMS [29]. Thus, we can conclude that the
current Android kernel does not have any real-time capability, although there are
potential alternatives.

The layer above the kernel is the ART that contains Android’s Java virtual machine
and system libraries. Similar to the Linux kernel case, it is well known that Android’s
Java virtual machine does not have any real-time capability. In fact, designing a
real-time Java virtual machine is a research area of its own, and there has been active

2Android-specific customizations do not concern with real-time applications either.
3https://rt.wiki.kernel.org/index.php/Main_Page (accessed September 15, 2016).

96 YOU DESERVE BETTER PROPERTIES (FROM YOUR SMART DEVICES)

research in the past few years [30–32]. In order to design a real-time Java virtual
machine, specific mechanisms need to be implemented, for example, a real-time
garbage collector, but Android’s virtual machine does not implement such mecha-
nisms. Thus, we can also conclude that the current runtime of Android does not have
any real-time capability.

For our research, these bottom two layers—the Android kernel and the
runtime—did not require much examination for us to see that they did not have any
real-time capability. It was and still is a known and well-documented fact that a
kernel layer as well as a Java runtime layer need additional support to make real-time
applications work correctly. However, the application framework layer required
more thorough understanding and analysis, since it was not known in the literature
if that layer provides any real-time capability. After a closer look at the application
framework layer, we concluded that the framework layer also needed much work
to add real-time capabilities. We first explain the application framework layer and
discuss our findings.

As mentioned earlier, the application framework layer consists of two categories
of components. The first category is system services, and the second category is
constructs and APIs. It is depicted in Figure 4.4. System services are the operating
system services of Android that applications can leverage. Some examples include
a sensor service that manages sensor input delivery; an alarm service that provides
timers (e.g., one-time timers, periodic timers, etc.); a media service that manages
on-device cameras, microphones, and speakers; and a location service that manages
GPS and location data delivery. The APIs in the second category allow easy access
to these system services. The APIs also provide access to standard programming
constructs and facilities such as data structures (e.g., HashMap) and OS facilities
(e.g., Socket). In addition, there are extra programming constructs that Android
provides to its application developers. We categorize them as “constructs.” Some
examples include Looper, Handler, AsyncTask (which we showed earlier in
Section 4.3.1), etc. Looper and Handler provide a convenient way for message
passing between different components. AsyncTask, as explained earlier, provides
a convenient way to create and use a thread.

By examining these constructs, APIs, and system services, we have found out that
the application framework layer has limitations for real-time applications, as it is not
designed with real-time support in mind. This is true for many constructs and system
services such as Looper, Handler, the sensor service, the alarm service, etc. This
is understandable, since Android was designed for smartphones initially that do not
require any real-time capability.

To illusrate one such design limitation, Figure 4.5 depicts the overall sensor archi-
tecture of Android. It shows two sensors, an accelerometer and a gyroscope, and how
their data is passed to applications. It crosses the hardware-kernel boundary as well
as the kernel-user boundary. As shown, there are separate data delivery paths for dif-
ferent sensors up to the kernel, and then the data is processed and passed through over
one path with the sensor service and the sensor manager. The sensor service and the
sensor manager basically pull all sensor data out of the kernel, queue them up, and
deliver them in the FIFO order to different applications.

WHAT PROPERTIES WE NEED TO PROVIDE AND HOW 97

Applications

GyroscopeAccelerometer

/dev/input/event6 /dev/input/event1

Hardware

Kernel

User space

Sensor manager

Sensor service

Figure 4.5 Android sensor architecture.

This single path design is a problem for real-time applications if they need to pri-
oritize the delivery of different types of sensor data. For example, suppose a scenario
where a real-time application needs accelerometer data for a high-priority critical
task, but it also needs gyroscope data for a low-priority task. Since a gyroscope can
produce data at a much higher rate than an accelerometer, if there is one path that
delivers both types of data in the FIFO order as Android does, the gyroscope data
will block and delay the delivery of accelerometer data. For real-time applications,
there has to be a mechanism to differentiate important tasks and data from less impor-
tant tasks and data. The underlying system then needs to guarantee that less important
ones do not interfere with more important ones.

Thus, our findings on the real-time capabilities of Android is that in all layers,
appropriate support is necessary to make Android real time, and RTDroid is our
solution for that. Figure 4.6 shows a quick look at our overall architecture. At the bot-
tommost layer, we replace the Android kernel with a real-time kernel; we currently
use Linux with RT-Preempt and RTEMS as our kernel options. We then replace the
ART with a real-time Java runtime; we currently use FijiVM [32] as our option and
add real-time support for the system C library for Android called Bionic. These com-
ponents provide essential real-time mechanisms such as priority-aware scheduling,
real-time interrupt handling, full preemption, real-time garbage collection, etc. They
are mostly off the shelf and require some engineering effort to use on Android.

While these components provide basic real-time building blocks, they do not solve
the problems in the application layer design. Thus, we redesign and implement the
application framework layer, so that it supports real-time applications. The key princi-
ple in our design is to make Android’s internal constructs, components, and message
delivery mechanisms priority aware, that is, if there are more important tasks to run

98 YOU DESERVE BETTER PROPERTIES (FROM YOUR SMART DEVICES)

Applications

Application framework

Runtime (RT)

RTOS Kernel

Fiji virtual machine

RT AlarmManager

RT SensorManager

Native fiji runtime interface

Libraries

Bionic lib with
RT extension

RT handler

RT looper

Figure 4.6 RTDroid architecture.

or messages to deliver, the whole system should be able to prioritize them over other
tasks or message. Although this is a well-known concept, implementing it in Android
requires much careful examination of the whole system and its design, which is a sig-
nificant challenge. So far, we have redesigned a few constructs and system services
to demonstrate the feasibility of our approach. We have redesigned Looper, Han-
dler, the alarm service, and the sensor service. As an example, Figure 4.7 shows
our redesigned sensor architecture. For brevity, we have simplified the figure and do
not show the full design.

As mentioned earlier, Android’s sensor architecture uses a single path to deliver
all sensor events in the FIFO order. This poses a problem for real-time applications,
since they cannot prioritize the delivery of important sensor data over less important
data. Thus, in our design, we create separate, prioritized paths for different sensors.
In Figure 4.7, this is shown with the accelerometer service/manager and the gyro-
scope service/manager to illustrate how we support the two sensors. Our architecture
has the advantage of being able to prioritize the data delivery from one sensor over
another. This can be done by assigning different task priorities for different sensor
managers (where task priorities are supported by the underlying runtime and the
kernel). For example, if we assign a higher priority to the accelerometer manager
than the gyroscope manager, the accelerometer manager will have a higher prior-
ity for its execution, resulting in the prioritized delivery of accelerometer data over
gyroscope data.

Figure 4.8 shows the performance comparison between our sensor architecture
and Android’s architecture. It shows the result from one set of experiments we

WHAT PROPERTIES WE NEED TO PROVIDE AND HOW 99

Applications

GyroscopeAccelerometer

/dev/input/event6 /dev/input/event1

Hardware

Kernel

User space

Accelerometer

service/manager

Sensor pulling thread

Gyroscope

service/manager

Figure 4.7 RTDroid sensor architecture.

conducted with Google Nexus S smartphone. The workload we ran consists of
two parts. The first part is our main workload, and it is a real-time fall detection
application. It runs on a phone and implements a fall detection algorithm that alerts
a sudden change of height of the phone. It can be used to detect a fall of a soldier, an
elderly, etc. The second part is our background workload intended to create much
background noise to disrupt our main workload. What we used for the figure is 100
memory-intensive background threads, each of which allocates a 2.5 MB integer
array. This creates much memory pressure and stresses the whole system. Since the
fall detection application requires accelerometer sensor data, it tests our redesign of
the sensor architecture.

Figuire 4.8 illustrates the observed latency of the sensor event delivery for the fall
detection application. The x-axis indicates all sensor events, and the y-axis indicates
the delivery latency for each sensor event. As shown, RTDroid provides the upper
bound of around 30 ms; however, Android does not provide such tight latency bound,
and latency varies greatly across different events. This means that the possibility of
missing some of the fall events exists on Android. This result demonstrates that our
redesign is effective in providing predictable performance for real-time applications.

4.3.3 Openness

The last property that deserves more attention is openness, which we define as the
ability for an operating system to easily incorporate and deploy innovation from
third parties. Traditionally many areas in computer science have benefited from such
openness. Perhaps the most recent example is software-defined networking (SDN) (in
which Feamster et al. [33] provide a good summary for), which essentially provides

100 YOU DESERVE BETTER PROPERTIES (FROM YOUR SMART DEVICES)

0

30 000

60 000

90 000

120 000

0 5e
+
06

1e
+
07

1.5e
+
07

2e
+
07

2.5e
+
07

3e
+
07

3.5e
+
07

4e
+
07

M
ic

ro
s
e
c
o
n
d
s

Event sequence time stamp

0

30 000

60 000

90 000

120 000

0 5e
+
06

1e
+
07

1.5e
+
07

2e
+
07

2.5e
+
07

3e
+
07

3.5e+07

4e
+
07

M
ic

ro
s
e
c
o
n
d
s

Event sequence time stamp

RTDroid

Android

Figure 4.8 Performance comparison between RTDroid and Android.

openness in networking—they open routers and switches so that third-party develop-
ers can write software to control them. This openness enabled by SDN has sparked
much interest in the networking community, and now there are many innovative solu-
tions being proposed for different problems in networking. There are other popular
examples we can find, such as NetFilter4 and FUSE.5 NetFilter is a Linux facility
for network packet filtering, where a third-party developer can write an extension for
packet analysis and transformation. FUSE is also a Linux facility for user-space file
system extensions. It allows third-party developers to implement a fully functional file

4http://www.netfilter.org/ (accessed September 15, 2016).
5http://fuse.sourceforge.net/ (accessed September 15, 2016).

WHAT PROPERTIES WE NEED TO PROVIDE AND HOW 101

system as a user-space program. These kernel facilities have enabled the development
of countless research prototypes.

We believe that such openness is necessary for the operating systems used in fog
networking devices such as smartphones and IoT devices. This will enable unob-
structed innovation, not only from the vendors of the operating systems but also from
third parties. In the current state, even the most open platform—Android—is in fact
mostly closed. It is open in the sense that its source code is open. If we want to
examine the source, we can simply clone the source repositories and take a look at
the source. If we want to contribute to the source, it is also possible; we can review
the current list of bugs and submit patches. A patch has a chance to be incorporated
in the main distribution. However, it is still closed in the sense that it is not easy to
deploy any innovation in the Android operating system, unless one has access to the
official Android update channels, which is controlled by Google and other vendors.
For example, if a researcher develops an innovative technique for an OS subsystem
such as networking or storage, there is no easy way to deploy it and test it with a large
number of real users since it requires an operating system update.

Recognizing such a problem, we are taking initial steps in our research. One such
effort is a system called BlueMountain [34], which aims to enable open innovation
in mobile data management. Though the full development of BlueMountain is in
progress, we discuss the system here briefly to give an idea on what kinds of openness
might be possible in operating systems for fog networking devices.

The basic idea of BlueMountain is a technique called storage API virtualization. It
allows a third-party developer to write extensions for storage operations and inject it
into existing mobile applications using binary instrumentation. An extension provides
a new implementation for storage APIs such as open(), read(), and write()
so that, when an application calls those APIs for storage, the extension can intercept
the calls and modify the behavior of the calls. In addition, an extension is injected to
an application using binary instrumentation. This provides the benefit of deployabil-
ity; by injecting a storage extension to an application, there is no need to update an
operating system—an extension can be distributed as part of an application.

Figure 4.9 illustrates this idea with an extension example. It shows that there
is a storage API virtualization layer injected into an existing application, and this
API virtualization layer can execute code from an extension; and this extension can

Platform

App

Original app code

File

system

Key-

value

store
Database

Content

providers

Cloud storage serviceStorage API virtualization

Figure 4.9 Storage API virtualization and its example extension.

102 YOU DESERVE BETTER PROPERTIES (FROM YOUR SMART DEVICES)

modify the behavior of storage API calls, for example, seamlessly intercepting and
sending all data written with write() API to a cloud storage service for automated
backup. There can be many other possibilities for a mobile storage extension; for
example, we could automatically enable proximity-based peer-to-peer storage where
a user takes a picture with friends and calls write() that transparently sends the
picture to all friends’ devices.

There are several challenges to overcome in order to realize storage API virtual-
ization, some of which are described in our workshop paper on BlueMountain [34].
We encourage interested readers to refer to the paper for further information.

4.4 CONCLUSIONS

This chapter has argued that we need to provide better properties in the operating
systems in fog networking. In order to comprehensively support the argument, we
have explored four questions—why we need to provide better properties, where we
need to provide better properties, what properties we need to provide, and how we can
provide those properties.

We can summarize the answers to the four questions as follows. First, the reason
why we need to provide better properties is that new application contexts are arising in
fog networking, and existing operating systems do not provide necessary properties
for the new and emerging contexts. Second, when providing those new properties,
we need to explore how to provide those properties in existing operating systems,
since it is highly likely that existing operating systems will be adapted and leveraged
in new contexts. Third, some of the properties we need to provide are transparency,
predictable performance, and openness. Transparency allows users, developers, and
researchers to understand why a system is doing what it is doing at any point of time.
One such example we have discussed is information flow transparency, which reveals
how an application uses the data of its user. Predictable performance guarantees that
important applications can perform consistently and predictably well, even if there are
other applications competing for resources. We has discussed how we could provide
such a property in Android. Openness allows innovation from third parties, which
has been a successful model for innovation in many areas of computer science. We
have briefly discussed our own work in progress that aims to provide such openness
for mobile data management.

As new application contexts emerge and new devices appear, operating systems
will also need to adapt new technologies and evolve. Thus, we believe that the pro-
cess of exploring what better properties we need to provide and how we provide
them should be a continuous one. For this reason, our own research will continue to
examine new contexts and new properties.

ACKNOWLEDGMENT

The research described in this chapter has been supported in part by an NSF CAREER
award, CNS-1350883.

REFERENCES 103

REFERENCES

1. The Verge. IDC Forecasts 1.16 Billion Smartphones Shipped Annually by 2016. http://
www.theverge.com/2012/3/29/2910399/idc-smartphone-computer-tablet-sales-2011
(accessed October 23, 2016).

2. Napier Lopez. 90% of Facebook’s Daily Active Users Access it via Mobile. http://
thenextweb.com/facebook/2016/01/27/90-of-facebooks-daily-and-monthly-active-users-
access-it-via-mobile/ (accessed October 23, 2016).

3. Bloomberg. Facebooks Zuckerberg Targets Mobile Users For Growth. http://www
.bloomberg.com/news/2012-05-11/facebook-s-zuckerberg-addresses-questions-over-
mobile-strategy.html (accessed October 23, 2016).

4. PR Newswire. J.D. Power and Associates Reports: Smartphone Battery Life has Become
a Significant Drain on Customer Satisfaction and Loyalty. http://goo.gl/ENUOE (accessed
October 23, 2016).

5. Rachel Metz. Mobile Summit 2013: Camera Tweaks Should Boost Gadget Bat-
tery Life. http://www.technologyreview.com/news/515951/camera-tweaks-should-boost-
smartphone-battery-life/ (accessed October 23, 2016).

6. Phila Siu. Privacy Watchdog Warns Smartphone Owners over Personal Data.
http://www.scmp.com/news/hong-kong/article/1087787/privacy-watchdog-warns-
smartphone-owners-over-personal-data (accessed October 23, 2016).

7. Privacy Rights Clearinghouse. Privacy in the Age of the Smartphone. https://www
.privacyrights.org/consumer-guides/privacy-age-smartphone (accessed October 23,
2016).

8. Jim Keniston, Prasanna S. Panchamukhi, and Masami Hiramatsu. Kernel Probes
(Kprobes). https://www.kernel.org/doc/Documentation/kprobes.txt (accessed October 23,
2016).

9. SystemTap. http://sourceware.org/systemtap/ (accessed October 23, 2016).

10. Shashank. Holavanalli, Don Manuel, Vishwas Nanjundaswamy, Brian Rosenberg, Feng
Shen, Steven Y. Ko, and L. Ziarek. Flow Permissions for Android. In Proceedings of the
IEEE/ACM 28th International Conference on Automated Software Engineering, ASE ’13,
pages 652–657, Palo Alto, CA, USA, November 2013.

11. Feng Shen, Namita Vishnubhotla, Chirag Todarka, Mohit Arora, Babu Dhandapani, Eric
John Lehner, Steven Y. Ko, and Lukasz Ziarek. Information Flows As a Permission Mech-
anism. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 515–526, New York, NY, USA, 2014. ACM.

12. Andrew C. Myers and Barbara Liskov. A Decentralized Model for Information Flow Con-
trol. In Proceedings of the 16th ACM Symposium on Operating Systems Principles, SOSP
’97, pages 129–142, New York, NY, USA, 1997. ACM.

13. Andrew C. Myers and Barbara Liskov. Complete, Safe Information Flow with Decentral-
ized Labels. In Proceedings of the 1998 IEEE Symposium on Security and Privacy, pages
186–197, May 1998.

14. Andrew C. Myers. JFlow: Practical Mostly-static Information Flow Control. In Proceed-
ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’99, pages 228–241, New York, NY, USA, 1999. ACM.

15. Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler,
Eddie Kohler, David Mazieres, Frans Kaashoek, and Robert Morris. Labels and Event

104 YOU DESERVE BETTER PROPERTIES (FROM YOUR SMART DEVICES)

Processes in the Asbestos Operating System. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles, SOSP ’05, pages 17–30, New York, NY, USA, 2005.
ACM.

16. Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie
Kohler, and Robert Morris. Information Flow Control for Standard OS Abstractions. In
Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 321–334, New York, NY, USA, 2007. ACM.

17. Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
Information Flow Explicit in HiStar. In Proceedings of the Seventh Symposium on Operat-
ing Systems Design and Implementation, OSDI ’06, pages 263–278, Berkeley, CA, USA,
2006. USENIX Association.

18. William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. TaintDroid: An Information-flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In Proceedings of the Ninth USENIX Con-
ference on Operating Systems Design and Implementation, OSDI ’10, pages 393–407,
Berkeley, CA, USA, 2010. USENIX Association.

19. Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization and Evolu-
tion. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages
95–109, Washington, DC, USA, 2012. IEEE Computer Society.

20. Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. CHEX: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages 229–240, New
York, NY, USA, 2012. ACM.

21. Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid: Precise Con-
text, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, pages 259–269, New York, NY, USA, 2014. ACM.

22. Yin Yan, Sree Harsha Konduri, Amit Kulkarni, Varun Anand, Steven Y. Ko, and Lukasz
Ziarek. RTDroid: A Design for Real-time Android. In Proceedings of the 11th Interna-
tional Workshop on Java Technologies for Real-time and Embedded Systems, JTRES ’13,
pages 98–107, New York, NY, USA, 2013. ACM.

23. Yin Yan, Shaun Cosgrove, Varun Anand, Amit Kulkarni, Sree Harsha Konduri, Steven
Y. Ko, and Lukasz Ziarek. Real-time Android with RTDroid. In Proceedings of the 12th
Annual International Conference on Mobile Systems, Applications, and Services, MobiSys
’14, pages 273–286, New York, NY, USA, 2014. ACM.

24. Yin Yan, Shaun Cosgrove, Ethan Blanton, Steven Y. Ko, and Lukasz Ziarek. Real-Time
Sensing on Android. In Proceedings of the 12th International Workshop on Java Technolo-
gies for Real-time and Embedded Systems, JTRES ’14, pages 67:67–67:75, New York, NY,
USA, 2014. ACM.

25. Alexis Santos. Strand-1 Satellite Launches Google Nexus One Smartphone into Orbit.
https://www.engadget.com/2013/02/26/google-nexus-one-launched-into-space-cubesat-
phonesat-strand-1/ (accessed October 23, 2016).

26. Cláudio Maia, Lúıs Nogueira, and Luis Miguel Pinho. Evaluating Android OS for Embed-
ded Real-time Systems. In Proceedings of the Sixth International Workshop on Operating
Systems Platforms for Embedded Real-time Applications, Brussels, Belgium, OSPERT
’10, pages 63–70, 2010.

REFERENCES 105

27. Igor Kalkov, Dominik Franke, John F. Schommer, and Stefan Kowalewski. A Real-Time
Extension to the Android Platform. In Proceedings of the 10th International Workshop
on Java Technologies for Real-time and Embedded Systems, JTRES ’12, pages 105–114,
New York, NY, USA, 2012. ACM.

28. Thomas Gerlitz, Igor Kalkov, John F. Schommer, Dominik Franke, and Stefan
Kowalewski. Non-blocking Garbage Collection for Real-time Android. In Proceedings
of the 11th International Workshop on Java Technologies for Real-time and Embedded
Systems, JTRES ’13, pages 108–117, New York, NY, USA, 2013. ACM.

29. RTEMS. http://www.rtems.org/ (accessed October 23, 2016).

30. Filip Pizlo, Lukasz Ziarek, and Jan Vitek. Toward Java on Bare Metal with the Fiji VM.
In Proceedings of the Java Technologies for Real-time and Embedded Systems (JTRES),
2009.

31. Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking, Ethan Blanton, and Jan Vitek.
Schism: Fragmentation-tolerant Real-time Garbage Collection. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’10, pages 146–159, New York, NY, USA, 2010. ACM.

32. Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj, and Jan Vitek. High-level Program-
ming of Embedded Hard Real-time Devices. In Proceedings of the Fifth European Con-
ference on Computer Systems, EuroSys ’10, pages 69–82, New York, NY, USA, 2010.
ACM.

33. Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to SDN: An Intellectual
History of Programmable Networks. SIGCOMM Comput. Commun. Rev., 44(2):87–98,
April 2014.

34. Sharath Chandrashekhara, Kyle Marcus, Rakesh G. M. Subramanya, Hrishikesh S. Karve,
Karthik Dantu, and Steven Y. Ko. Enabling Automated, Rich, and Versatile Data Manage-
ment for Android Apps with BlueMountain. In Proceedings of the Seventh USENIX Con-
ference on Hot Topics in Storage and File Systems, HotStorage ’15, pages 1–5, Berkeley,
CA, USA, 2015. USENIX Association.

PART II
Storage and Computation in Fog

5 Distributed Caching for Enhancing
Communications Efficiency

A. SALMAN AVESTIMEHR and ANDREAS F. MOLISCH

Department of Electrical Engineering, University of Southern California,
Los Angeles, CA, USA

5.1 INTRODUCTION

Wireless data traffic is expected to increase by almost 10 000% over the next 5 years
[1]. The implications of these trends for future wireless networks are significant.
While continued evolution in spectral efficiency is to be expected, the maturity of
air interfaces of current systems (LTE Advanced and IEEE 802.11ac/WAVE 2) means
that no major improvements of spectral efficiency can be anticipated from this aspect.
Additional measures like the brute force expansion of wireless infrastructure (number
of cells) and the licensing of more spectrum, while clearly addressing the problem of
network capacity, may be prohibitively expensive, require significant time to imple-
ment, or be infeasible due to prior spectrum allocations. Thus, additional innovative
solutions are required.

A major driver of the spectrum crunch is wireless video on demand, accounting
for the majority (∼70%) of the predicted traffic demand increase [1]. This type of data
traffic has interesting properties: (i) the user activity is highly asynchronous, as users
wish to access content when and where they wish (unlike live streaming and digital
TV) and (ii) high content reuse, in the sense that the users’ demands concentrate on
a small set of very popular files [2].

In this chapter, we investigate a fog network architecture that is able to exploit the
aforementioned features in order to provide unprecedented bandwidth spatial reuse
gains. This architecture starts from the observation that caching has been used suc-
cessfully in content distribution networks (CDNs) to solve the scalability problem
[3], but the current technology is confined in the core network and does not solve
the wireless spectrum crunch problem. On the other hand, storage memory is the
fastest growing and cheapest network resource and can be made widely available in

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

110 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

small dedicated “helper” nodes [4] as well as in the user devices [5]. This enables
caching directly at the wireless edge (in contrast with today’s CDNs), such that the
asynchronous content reuse can be turned into spectrum spatial reuse.

The architecture that we discuss consists of the following two caching methods.
In the first approach, termed femtocaching, small dedicated “helper nodes” can
cache popular files and serve requests from wireless users by enabling localized
wireless communication. Such helper nodes are similar to femto-BSs but critically
do not need a high-speed backhaul connection. Additionally, an even higher density
of caching can be achieved by using devices themselves as video caches; memory
has become cheap enough so that it can be made available also in the user devices.
The devices “pool” their caching resources so that different devices cache different
files and then exchange them, when the occasion arises, through short-range, highly
spectrally efficient, device-to-device (D2D) communications. We will term this
approach user-caching.

In contrast with today’s CDNs, where caching only occurs in the Internet cloud
(i.e., the wired part of the network), the aforementioned two architectures for caching
at the wireless edge provide two significant advantages. First, femtocaching pro-
vides significant opportunities for increasing spectral efficiency by localizing content
delivery. By properly caching content at the edge of the network, we can increase
the probability that the users find their desired content in the caches at the helper
stations, which can be delivered efficiently via short-range wireless links. Second,
user-caching enables the users to “pool” their caching resources so that different
devices cache different files and then exchange them through short-range, highly
spectrally efficient, local D2D communications, which results in further gains in spec-
tral efficiency.

We will focus on the femtocaching architecture in Section 5.2. We will first discuss
the optimal caching mechanism for such architecture, such that the average delay for
delivering content to each user in the deliver phase is minimized. We will consider
both uncoded and coded content placement in the caching phase. We will then discuss
the delivery phase of this architecture, concentrating on the case that the video files
are streamed, that is, replay at the receiver starts before the complete file has been
transmitted. The problem thus becomes which user should get a video “chunk,” at
what quality, and from which helper station.

We will next discuss the user-caching architecture in Section 5.3. We will start
by considering a “cluster-based” approach for D2D content delivery, in which the
network is divided into smaller (disjoint) groups of users called “clusters” and
only nodes that are part of the same cluster can communicate with each other.
We will discuss the optimal design of system parameters in this architecture so
as to maximize total network throughput and maximize the offload of traffic to
D2D communication. We will also discuss the scaling laws for this architecture,
that is, how the capacity scales up as more and more users are introduced into the
network (for a fixed area). We will next consider a detailed model for the underlying
physical layer, and develop D2D communication algorithms that take advantage
of caching for optimal delivery of content to users. In particular, we will focus
on a recently proposed information-theoretic approach for D2D communication,

FEMTOCACHING 111

named information-theoretic link scheduling (ITLinQ) [6], and discuss how to
optimally utilize caching at the users in order to maximize the spectral reuse of
ITLinQ. Finally, we will turn our attention to optimal caching at the users to enable
multicasting opportunities, in order to convert different demands of the users into a
single coded multicast transmission, which can be delivered very efficiently over the
shared wireless medium.

5.2 FEMTOCACHING

5.2.1 System Model

We first describe the network model that we use for the analysis of femtocaching. As
outlined in the introduction, the regular base stations (BS) are helped by a number
of helper nodes that have popular video caches stored but have a (wired or wireless)
backhaul connection that is so slow that the cache can be refreshed only on a timescale
that is much larger than the duration of a video. Specifically, we consider a network
with one BS m helper nodes (denoted by the set) and n users (denoted by the set
) requesting the content. We assume the contents are selected from a library of| | distinct files, each helper node has a cache of size M files, and each user has a
cache of size K files (for the current section, we set K = 0 but will consider finite K
in the subsequent sections). Without loss of generality, we normalize the size of all
files to be 1, noting that larger files can always be broken to subfiles). For later use,
we assume that the network area can be partitioned into C clusters. The file requests
follow a popularity distribution, and Pr(f) denotes the probability that the file with
index f is requested. The predictions for the library () and distributions (Pr(f)’s) are
assumed to be obtained from suitable prediction algorithms (accurate prediction of
spatiotemporal demand distribution is a topic of active research). An example of this
system model is illustrated in Figure 5.1.

In such a scenario, given (, ,) and the Pr(f)’s, the goal is to design the
optimal caching mechanism that will maximize the spectral efficiency in the delivery
phase, averaged over the spatiotemporal demand distributions.1

In general, every helper i ∈ has a subset (h) of files of the library in its cache.
The femtocaching network is thus represented by the bipartite graph = (, ,),
where the set of edges denotes which helper is connected to which user and the
edge weight 𝜔i,j is the inverse rate between the helper station and the user; “helper”
0 is the BS that has all files available (but typically a smaller transmission rate). Let
furthermore xf ,h = 1 if file f is cached in helper h and 0 otherwise.

1This means that the network topology is assumed to be fixed and known; in reality it is typically time
varying with dynamics comparable or faster than the file transmission; therefore reconfiguring the caches
at this timescale is definitely not practical. However, additional simulations have also shown that the cache
distribution obtained when the mobile stations are in “typical” distances from the helpers also provides
good performance for various other realizations of random placement of nodes.

112 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

Figure 5.1 System model for femtocaching.

We distinguish between uncoded and coded content placement. In the uncoded
case, video files are cached directly, with possible replication.2 Then the average
delay per information bit for user u can be written as

Du =
|(u)|−1∑

j=1

𝜔(j)u,u

| |∑
f=1

[
j−1∏
i=1

(1 − xf ,(i)u)

]
xf ,(j)u Pr(f)

+ 𝜔0,u

| |∑
f=1

[|(u)|−1∏
i=1

(1 − xf ,(i)u)

]
Pr(f).

(5.1)

where Pr(t) is the request probability distribution and (j)u indicates the helper index
in (u) with the j-th smallest delay to user u. The minimization of the sum (over the
users) average per bit downloading delay can be expressed as the integer program-
ming problem:

Maximize
∑
u∈

(
𝜔0,u − Du

)
Subject to

∑
f∈

xf ,h ≤ M, ∀h,

𝐗 ∈ {0, 1}| |×||
.

(5.2)

2All these nodes are encoded with video codes, such as MPEG or H.264, but no intra-session coding is
used.

FEMTOCACHING 113

This problem is NP-complete but can be formulated as the maximization of a mono-
tone submodular function over matroid constraints, for which a simple greedy strat-
egy achieves at least one-half of the optimum value [7].

We can simplify the caching problem by using intra-session coding, for example,
using the scheme in Ref. [8], such that a file is entirely retrieved when a fraction
larger than or equal to 1 of parity bits is downloaded. In particular, let 𝝆 = [𝜌f ,h],
where 𝜌f ,h denotes the fraction of parity bits of file f contained in the cache of helper
h. Assuming that user u can download files from its best j helpers, the average delay
per information bit necessary for user u to download file f is given by

D
f ,j
u =

j−1∑
i=1

𝜌f ,(i)u𝜔(i)u,u +

(
1 −

j−1∑
i=1

𝜌f ,(i)u

)
𝜔(j)u,u

= 𝜔(j)u,u −
j−1∑
i=1

𝜌f ,(i)u (𝜔(j)u,u − 𝜔(i)u,u).

(5.3)

Notice that file f can be downloaded by user u from its best j helpers only if∑j
i=1 𝜌f ,(i)u ≥ 1. Since the cellular BS contains all files, we always have 𝜌f ,0 = 1 for

all f ∈ .

The delay D
f
u incurred by user u because of downloading file f is a

piecewise-defined affine function of the elements of the placement matrix 𝝆,
given by

D
f
u =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D
f ,1
u if 𝜌f ,(1)u ≥ 1

⋮ ⋮

D
f ,j
u if

∑j−1
i=1 𝜌f ,(i)u < 1,∑j
i=1 𝜌f ,(i)u ≥ 1

⋮ ⋮

D
f ,|(u)|
u if

∑|(u)|−1
i=1 𝜌f ,(i)u < 1

(5.4)

We can show that D
f
u is a convex function of 𝝆. The average delay of user u is

given by Du =
∑| |

f=1 Pr(f)D
f
u. With some further manipulations, the coded placement

optimization problem takes on the form:

Minimize
U∑

u=1

| |∑
f=1

Pr(f) max
j∈{1,2,…,|(u)|}

{
D

f ,j
u

}
Subject to

| |∑
f=1

𝜌f ,h ≤ M, ∀h

𝝆 ∈ [0, 1]| |×||
,

(5.5)

114 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

where the optimization is with respect to 𝝆. This coded formulation not only is sim-
pler but also gives better performance than the uncoded approach, since the coded
optimization is a convex relaxation of the uncoded problem. This is obtained at the
price of the complexity of coding/decoding with the MDS codes, and the overhead
incurred when the MDS codes are not ideal.

5.2.2 Adaptive Streaming from Helper Stations

We now turn to the delivery phase, concentrating on the case that the video files are
streamed, that is, the replay at the receiver starts before the complete file has been
transmitted. Such streaming is widely used for standard video-on-demand systems,
using protocols such as Microsoft Smooth Streaming (Silverlight), Apple HTTP Live
Streaming, and 3GPP Dynamic Adaptive Streaming over HTTP (DASH). The prob-
lem thus becomes “which user should get a video ‘chunk,’ at what quality and from
which helper station.”

Each user u ∈ requests a video file fu ∈ , formed by a sequence of chunks,
which are independently decodable stand-alone units [9]. Chunks have a fixed dura-
tion Tchunk and must be reproduced sequentially at the user end. The streaming process
consists of transferring N chunks from the helpers to the requesting users.

Video can be encoded with different quality levels [10], and the quality may vary
from chunk to chunk—Df (m, t) and Bf (m, t) denote the video quality measure and the
number of bits for chunk t of file f at quality level m m ∈ {1,… ,Nf }, respectively.
rhu(t) denotes the source coding rate (bit per chunk) of chunk t requested by user u to
helper h. Hence, the streaming scheduler must satisfy∑

h∈(u)
rhu(t) = Bfu

(mu(t), t), ∀ u ∈ . (5.6)

Represent the underlying wireless network physical layer through a long-term
average rate region (t). A network utility maximization (NUM) formulation can
be used to design an adaptive dynamic streaming scheduler in such a network. Each
helper h has a transmission queue pointing at its served users (h), which evolves as

Qhu(t + 1) = max{Qhu(t) − WTchunkRhu(t), 0} + rhu(t) (5.7)

where W is the system bandwidth. The input to queue Qhu(t) is formed by the newly
requested rhu(t) video-encoded bits. Then, for large files formed by many chunks, the
NUM problem becomes

Maximize 𝜙(Du ∶ u ∈) (5.8)

Subject to lim
t→∞

1
t

t−1∑
𝜏=0

E
[
Qhu (𝜏)

]
< ∞ ∀ (h, u) ∈ (5.9)

𝛼(t) ∈ A
𝜔(t) ∀ t, (5.10)

USER-CACHING 115

where constraint (5.9) corresponds to the queues’ strong stability; 𝛼(t) is the
decision policy, including the video coding rate requests {rhu(t)}, the feasible
channel coding rate allocation {Rhu(t)} ∈ (t), and the video quality selection
decisions {mu(t)}; and A

𝜔(t) is the set of feasible policies for network state{
ghu(t),Dfu

(⋅, t),Bfu
(⋅, t)∶ ∀ (h, u) ∈

}
. This problem can be solved via a dynamic

policy based on the Lyapunov drift plus penalty (DPP) approach [11]. The resulting
policy is decentralized and consists of a distributed multiuser version of a DASH-like
protocol, where users make adaptive decisions on which helper to request from and
at which quality level each chunk should be requested.

Instead of such a “push” strategy, one can also consider a “pull” approach where
each user maintains a single virtual request queue Qu(t) and dynamically requests
only the chunk at the head of the line [12]. A scheme based on this approach was
implemented on a testbed formed by Android smartphones and tablets, using standard
Wi-Fi MAC/PHY [13].

5.3 USER-CACHING

5.3.1 Cluster-Based Caching and D2D Communications

We now turn to D2D networks, that is, architectures where the devices themselves
act as caches. In other words, we let the number of files cached at each user and K be
finite but do not assume any helper stations. If a device cannot obtain a file through
D2D communications, it can obtain it from a macrocellular BS through conventional
cellular transmission.

For ease of analysis, we consider a network with square-shaped macrocells; the
dimensions of each cell are normalized to unity. Intercell interference is neglected, a
situation that can be approximated through appropriate cell/frequency planning [14].
Each cell/BS serves n users. The BS is assumed to have full knowledge of the neigh-
borhood graph and channel state information between the users; see Ref. [15] for a
discussion of algorithms that can achieve this.

The cell is further subdivided into smaller (disjoint) groups of users called “clus-
ters.” Only nodes that are part of the same cluster can communicate with each other.
To avoid interference within a cluster, only one D2D link can be active per cluster (we
discount here the possibility of FDD or TDD to accommodate more users per clus-
ter). Interference between clusters is minimized through a frequency reuse strategy
as shown in Figure 5.2b. Communication is possible over a radius r, and interference
is created over a distance (1 + Δ)r, and the grey squares represent clusters that are
active on a particular frequency. We assume that nodes within a cluster can commu-
nicate with each other at a fixed rate, and nodes that are in clusters within the “reuse
distance” cannot communicate at all due to interference (highlighted disk),3 while
nodes/clusters outside the reuse distance are not interfered at all. This model is, of

3This implies we can pick a frequency reuse factor K =
(⌈√

2(1 + Δ)
⌉
+ 1

)2
.

116 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

(a) (b)

r

(1+Δ)r

s

Figure 5.2 (a) Grid network with n = 49 nodes (black circles) with minimum separation
s = 1∕

√
n. (b) An example of single-cell layout and the interference avoidance TDMA scheme.

In this figure, each square represents a cluster. The grey squares represent the concurrent trans-
mitting clusters. The highlighted circular area is the disk where the protocol model allows no
other concurrent transmission. r is the worst-case transmission range and Δ is the interfer-
ence parameter. We assume a common r for all the transmitter–receiver pairs. In this particular
example, the TDMA parameter is K = 9, which means that each cluster can be activated every
nine transmission scheduling slot durations.

course, a major simplification whose assumptions do not hold exactly in practice.
Yet, it provides a first approximation to the exact solutions. A more detailed discus-
sion of alternative scheduling and power control strategies will be given in the next
subsection.

We can optimize two parameters: the caching probabilities, and the cluster size.
For the decision of which files to cache, we consider two strategies:

• Deterministic caching, where the BS instructs the devices to cache the most
popular files in a disjoint manner, that is, no file should be cached twice in
devices belonging the same cluster. This approach can only be realized if the
device stays in the same locations for many hours; the approach also serves as
a useful upper bound.

• Random caching, where each device randomly and independently caches a set
of files according to a common probability mass function. Ji et al. [16] found
that the optimal caching distribution P∗

c that maximizes the probability that any
user finds its requested file inside its own cluster is given (for a node arrange-
ment on a rectangular grid as described earlier) by

P∗
c (f) =

[
1 − 𝜈

zf

]+
, f = 1,… ,m, (5.11)

USER-CACHING 117

where 𝜈 = (m∗ − 1)∕
∑m∗

f=1
1
zf

, gc is the cluster size, zf = Pr(f)1∕(M(gc−1)−1), m∗ =

Θ
(

min
{

M
𝛾r

gc,m
})

, and [Λ]+ = max[Λ, 0].

For the cluster size, we can intuitively judge that there is a trade-off: increasing
the cluster size increases the probability that a user will find the file it wants within
the cluster (since every device stores at least some files that are different from its
neighbors)—in this case we call a cluster “good,” and if actual transmission (which
is subject to the interference constraints) occurs, the cluster is “active.” On the other
hand larger clusters reduce the frequency reuse. We can thus anticipate that there will
be an optimum cluster size and that it will depend on the video request statistics—the
more “concentrated” (i.e., redundant) the requests are, the smaller the optimum clus-
ter size will be. Maximizing the number of active clusters leads to the maximum
throughput of the network, though it does not necessarily lead to the maximum offload
of traffic from the BS: for that latter goal, we instead wish to maximize the sum of
active clusters plus the number of devices that find the file they desire in their own
cache.

There are a number of different criteria for optimizing the system parameters. One
obvious candidate is the total network throughput. It is maximized by maximizing the
number of active clusters. Golrezaei et al. [17] showed that for deterministic caching,
the expected throughput can be computed as

E{T} = 1
r2

n∑
k=0

(
1 −

k∏
i=1

(1 − (PCVC(k) − Pr(fi)))

)
× Pr[K = k].

(5.12)

where PCVC(k) is the probability that the requested file is in the common virtual cache
(the union of all caches in the cluster), that is, among the k most popular files. Pr[K =
k], the probability that there are k users in a cluster, is deterministic for the rectangular
grid arrangement, and

Pr[K = k] =
(

n
k

)
(r2)k(1 − r2)n−k

, (5.13)

for random node placement.
We next consider scaling laws, that is, how the capacity scales up as more and more

users are introduced into the network (for a fixed area). We consider here a random
caching strategy. A system admission control scheme decides whether to serve poten-
tial links or ignore them. The served potential links in the same cluster are scheduled
with equal probability (or, equivalently, in round-robin), such that all admitted user
requests have the same average throughput. Golrezaei et al. [18] established lower
and upper bounds for the throughput of D2D communications concluding that for
highly concentrated demand distribution, 𝛾r > 1, the throughput scales linearly with
the number of users, or equivalently the per user throughput remains constant as the

118 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

user density increases. For heavy-tailed demand distributions, the throughput of the
system increases only sublinearly, as the clusters have to become larger (in terms of
number of nodes in the cluster) to be able to find requested files within the caches of
the cluster members.

Ji et al. [19] extends the bounds to the case of throughput—outage trade-off. Qual-
itatively a user is in outage if the user cannot be served via a D2D connection. This
can be caused by the following: (i) the file requested by the user cannot be found
in the user’s own cluster and (ii) the system admission control decides to ignore the
request. The outage probability po is the average fraction of users in outage.

Consider the case that that limn→∞ m𝛼∕n = 0, where 𝛼 = (1 − 𝛾r)∕(2 − 𝛾r) and
𝛾r ∈ (0, 1) (so that 𝛼 < 1∕2). Any scaling of m versus n slower than n1∕𝛼 is captured
by the following result (though the most practically interesting case is where m is
sublinear with respect to n) [19].

Theorem 5.1 Assume limn→∞ m𝛼∕n = 0. Then, the throughput–outage trade-off
achievable by one-hop D2D network with random caching and clustering behaves
as

T∗(p) ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Cr

K
M
𝜌1m

+ 𝛿1(m), p = (1 − 𝛾r)e𝛾r−𝜌1
,

CrA

K
M

m(1−p)
1

1−𝛾r

+ 𝛿2(m), p = 1 − 𝛾r
𝛾r

(
Mgc

m

)1−𝛾r
,

CrB

K
m−𝛼 + 𝛿3(m), 1 − 𝛾r

𝛾r M1−𝛾r
𝜌

1−𝛾r
2 m−𝛼

≤ p ≤ 1 − a(𝛾r)m−𝛼
,

CrD

K
m−𝛼 + 𝛿4(m), p ≥ 1 − a(𝛾r)m−𝛼

,

(5.14)

where a(𝛾r), A,B, and D are constants depending on 𝛾r and M, which can be found
in Ref. [19], and where 𝜌1 and 𝜌2 are positive parameters satisfying 𝜌1 ≥ 𝛾r and

𝜌2 ≥

(
1−𝛾r

𝛾

𝛾r
r M1−𝛾r

) 1
2−𝛾r . The cluster size gc is any function of m satisfying gc = 𝜔 (m𝛼)

and gc ≤ 𝛾rm∕M. The functions 𝛿i(m), i = 1, 2, 3, 4 are vanishing for m → ∞ with

the following orders 𝛿1(m) = o(M∕m), 𝛿2(m) = o

(
M

m(1−p)
1

1−𝛾r

)
, 𝛿3(m), and 𝛿4(m) =

o (m−𝛼). ◾

The dominant term in (5.14) can accurately capture the system performance even
in the finite-dimensional case shown by simulations in Figure 5.3.

5.3.2 IT LinQ-Based Caching and Communications

We have so far considered a simple, cluster-based physical layer model for the D2D
network, in which the area at which users are located is partitioned into clusters, and
it is assumed that nodes within a cluster can communicate with each other at a fixed

USER-CACHING 119

0.5

0
0.3 0.4 0.5 0.6

p
0.7 0.8 0.9

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t
p
e
r

u
s
e
r

×10–3

Figure 5.3 Comparison between the normalized theoretical result (solid lines) and
normalized simulated result (dashed lines) in terms of the minimum throughput per user ver-
sus outage probability. The throughput is normalized by Cr so that it is independent of the link
rate. We assume m = 1000, n = 10 000, and M = 1 and reuse factor K = 4. The parameter 𝛾r

for the Zipf distribution varies from 0.1 to 0.6, which are shown from the rightmost curves
to the leftmost curves. The theoretical curves show the plots of the dominating term in (5.14)
divided by Cr.

rate and nodes that are in clusters within the “reuse distance” cannot communicate at
all due to interference, while nodes/clusters outside the reuse distance are not inter-
fered at all. In this section, we consider a detailed model for the underlying physical
layer and develop D2D communication algorithms that take advantage of caching for
optimal delivery of content to users.

We consider a D2D network consisting of n devices located uniformly and ran-
domly over a circle of radius R. From the set of nodes, , at any given time n𝛼 are
users requesting distinct files from other nodes, with 𝛼 < 1. Each of these users may
be served by any node that has the desired file. The remaining n − n𝛼 non-user nodes
in the network are referred to as sources.

We consider a library of n𝛼 distinct files, each of which is cached at multiple source
nodes in the network. Specifically, each file is assumed to be cached at n𝛽 source
nodes, selected uniformly from the total of n − n𝛼 source nodes and independently
for each file. If a source has cached the file fu desired by user u, then it may potentially
act as the source for user u. We emphasize that although files desired by users are
assumed to be distinct, sources may (are likely to) cache multiple files desired by
multiple users.

In order to receive its desired file, each user must be associated with a source that
has its file, and then the file must be communicated from the associated source to the

120 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

user. Multiple users may be associated with the same source. We denote the set of
all possible associations of sources to users by Ω. Once a specific association, 𝜔 ∈
Ω, has been chosen, sources communicate files to their users over a shared wireless
medium. Due to the broadcast nature of wireless, interference between concurrent
transmissions may occur, and therefore the signal received by each user, u, at each
time t is given by

yu[t] =
∑
s∈

husxs[t] + zu[t], (5.15)

where denotes the set of source nodes, hus denotes the channel gain between source
s and destination u, xs[t] denotes the transmit signal of source s at time t (subject to a
power constraint of 𝔼[|xs[t]|2] ≤ P), and zu[t] is the additive white Gaussian noise at
user u and time t, which is distributed according to a complex Gaussian distribution
with zero mean and unit variance.

For the sake of analysis, we assume that the channel attenuation between any two
nodes is governed by a path loss model:

hus =
√

h0dus
−𝜅
, (5.16)

where dus is the distance between two nodes u and s, h0 is a constant, and 𝜅 is the
pathloss exponent.

After the association between the sources and the users has been set, the problem
will become one of scheduling the file deliveries between sources and users. For this
part, we will utilize our recently proposed information-theoretic link scheduling (in
short, ITLinQ) scheme [6,20,21] in order to manage the interference and deliver the
content to the users. The joint usage of caching and ITLinQ is what we will refer to as
cached ITLinQ in the rest of this section, and the main question that we will address
is how to optimally associate the source and destinations in the network, in order to
maximize the spectral reuse of cached ITLinQ, as a function of cache redundancy.

We will start by giving a brief overview of ITLinQ. Consider a wireless network
consisting of k source nodes {Si}k

i=1 and k destination nodes {Di}k
i=1 where each

source Si intends to communicate to its corresponding destination Di. Since all the
links (i.e., source–destination pairs) share the same wireless spectrum, all the trans-
missions interfere at all the destinations.

We assume that each source node sends its signal under a power constraint of P,
and all the destination nodes, suffering from both interference and additive white
Gaussian noise, treat all their incoming interference as noise. In general, treating
interference as noise (TIN) is known to be suboptimal for the general interference
networks and numerous more sophisticated physical layer coding schemes have
been proposed in order to improve it. However, the recent result in Ref. [22] proves
that under a general condition in a network consisting of k source–destination pairs,
treating interference as noise (in short, TIN) is information-theoretically optimal (to
within a constant gap). If SNRi denotes the signal-to-noise ratio of user i, and for
two distinct users i and j, INRij denotes the interference-to-noise ratio of source j at

USER-CACHING 121

destination i, then the condition for the optimality of TIN is that for each user i in
the network

SNRi ≥ max
j≠i

INRij.max
k≠i

INRki. (5.17)

In words, condition (5.17) can be described as follows:

• If for each user, the desired channel strength is at least the sum of the
strengths of the strongest interference from this user and the strongest inter-
ference to this user (all values in dB scale), then TIN can achieve the whole
information-theoretic capacity region of the network to within a constant gap.

We further illustrate this condition in light of the deterministic model proposed in
Ref. [23] in Figure 5.4. In this figure, the parallel horizontal lines between Si and Di
correspond to the quantization of available signal levels in granularity of 1 dB, hence
there are a total of SNRi (dB) of available signal levels for communication between
source i and destination i. Also, the dashed lines correspond to the outgoing/incoming
interference signal levels from/to user i. Moreover, the highlighted ovals on the left
and right correspond to all the most significant signal levels of Si causing interference
at other users and all the least significant signal levels of Di receiving interference
from other users, respectively. Therefore, the aforementioned condition for the opti-
mality of treating interference as noise can be translated to the condition that the
highlighted ovals in Figure 5.4 are decoupled and do not overlap. In other words,
condition (5.17) implies that as long as these signal levels in an interference network
are decoupled, there is no substantial capacity gain from more complicated physical

Signal levels of Di
receiving interference

from other users

Signal levels of Si
causing interference at

other users

SNRi (dB)Si Di

Figure 5.4 A deterministic view of the optimality condition for treating interference as noise.

122 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

layer coding schemes for interference management, such as message splitting and
successive interference cancellation, and interference alignment.

This is in fact the principle that we use in order to define an information-theoretic
independent set (ITIS). To be precise:

• If the aforementioned sufficient condition for the optimality of TIN is satisfied
within a subset of users in a wireless network, those users form an ITIS.

The aforementioned definition of ITIS leads to the spectrum sharing scheme of
ITLinQ.

• The ITLinQ scheme is a spectrum-sharing mechanism, which, at each time,
schedules the sources in an ITIS to transmit simultaneously. Moreover, all the
destinations will treat their incoming interference as noise.

We now turn our attention to the main problem of optimal D2D scheduling in
cache networks. As mentioned before, for the described problem setting, there is
a set Ω of associations of sources to users. Given a specific association 𝜔 ∈ Ω,
we will have an interference network, and we can therefore identify the set of all
ITIS in the resulting network, which we denote by

𝜔

. Then we have the following
definition.

Definition 5.1 The spectral reuse of cached ITLinQ, denoted by 𝜌, is the asymptotic
maximum fraction of the users in the network that can be served simultaneously as
an ITIS. More formally,

𝜌 = lim
n→∞

max
𝜔∈Ω

max
S∈

𝜔

|S|
n𝛼

.

Having the aforementioned definition, we can now state our main problems as

• Problem 1: optimal association 𝜔

∗ ∈ Ω of sources to users in order to maximize
the spectral efficiency of ITLinQ.

• Problem 2: characterizing the spectral reuse of cached ITLinQ, 𝜌, in order
to determine the fundamental impact of caching on spectral efficiency of
ITLinQ.

These two problems are quite challenging, and in fact they are still open prob-
lems. However, in Ref. [24], we have been able to make progress by developing a
general lower bound on the spectral efficiency of cached ITLinQ, which is stated as
follows.

USER-CACHING 123

Theorem 5.2 The spectral reuse of cached ITLinQ as a function of the caching
redundancy is almost surely lower bounded as

𝜌 ≥
2𝜋R2√

3𝛾2

1

n𝛼(1−
𝛽

2
)
,

where 𝛾 = 2𝜅
√

P
N

h0R𝜅 is a constant independent of n.

The association policy for which cached ITLinQ can achieve the lower bound
mentioned in Theorem 5.2 is a greedy algorithm in which each user is associated
with the closest available source, resulting in a specific type of interference network
known as the interference channel. For more details, the reader is referred to the proof
of the theorem.

Using the result of Theorem 5.2, we can now compare the maximum fraction of
users that can be served by the conventional approach of interference avoidance (i.e.,
the cluster-based scheduling approach), which is a constant number independent of
the value of n, with that of cached ITLinQ. We observe the gain that caching can
provide in such a scenario, which is a factor of 1 − (𝛽∕2) in the exponent. Figure 5.5
also shows the spectral reuse gain of cached ITLinQ scheme over the cluster-based
interference avoidance scheme (in which we assume that the fraction of users that

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

β

S
p
e
c
tr

a
l
re

u
s
e

Cached ITLinQ

Interference avoidance

Figure 5.5 Comparison of the achievable spectral reuse of cached ITLinQ and interference
avoidance for the case of n = 105 and 𝛼 = 0.4.

124 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

can be served at the same time is at the same level as time sharing: i.e., 1∕n𝛼). In this
figure, n is fixed at 105 and 𝛼 is taken to be 0.4.4 We observe that for higher values of
𝛽, each user has a more diverse choice of sources to pick from, which allows cached
ITLinQ to enjoy an order of magnitude gain in spectral reuse over the conventional
scheme of interference avoidance.

We end this section by considering a practical network setting and providing a
numerical analysis of the actual throughput gain that the proposed cached ITLinQ
approach is able to provide, over the cluster-based approach in the previous section.

To that end, we consider a square area of side length 2 km inside where n wireless
nodes (which can act both as a transmitter and as a receiver) are dropped uniformly at
random. We assume there is a library of m distinct files, and each user independently
requests a single file out of this library according to a Zipf distribution with parameter
0 < 𝛾r < 1. In particular, the probability that each user requests file f (f ∈ {1, ...,m})
equals f−𝛾r∕

∑m
i=1 i−𝛾r . Moreover, we assume that each user also caches a single file

according to the optimal caching distribution mentioned in Theorem 4 of Ref. [25].
Finally, the channel gins in the network are assumed to follow the ITU-1411 LoS
model.

Figure 5.6 illustrates the comparison of the cumulative distribution function of
the user rates between the cluster-based and the cached ITLinQ delivery schemes in
the small library regime. The number of users, n, is taken to be 1000 and the library
size, m, is taken to be 50. As it is clear, the ITLinQ delivery scheme demonstrates
a significant improvement in the user throughput distribution over the cluster-based
delivery scheme. For example, the probability that the user rate is at most 0.1 bps/Hz
is around 55% for cached ITLinQ, while it is over 95% for the cluster-based delivery
scheme.

Figure 5.7 compares the distribution of the user rates between the cluster-based and
cached ITLinQ delivery schemes for the case of large library size. Here, n is taken to
be 100 and m is taken to be 500. Interestingly, ITLinQ shows a considerable through-
put gain over the cluster-based delivery scheme in this case as well. A noteworthy
point in this plot is the comparison of the fraction of users that cannot be served at
all. We observe that while ITLinQ is able to serve all the users, more than 55% of the
users are not served in the cluster-based delivery scheme. The main reason for this
issue is that in the latter scheme, each user can only look for its desired file within its
own cluster (which might be unsuccessful due to the large number of files), whereas
in the former scheme, a user can be served by any other user inside the whole area,
and the smart scheduling criteria used in ITLinQ is the key to mitigate the interference
among the concurrent transmissions.

Finally, we can make use of the rate distribution data in Figures 5.6 and 5.7 to
estimate the average user throughput achieved by the two aforementioned delivery
mechanisms. In fact, since the throughput values are always non-negative, we can use

4The other parameters of the network are chosen such that the constant factor in Theorem 5.2 disappears;

that is, 2𝜋R2∕
√

3𝛾2 = 1.

USER-CACHING 125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User rates (bps/Hz)

P
ro

b
a

b
ili

ty

Cluster−based

ITLinQ

Figure 5.6 Comparison of CDF of the achievable rates of users under the cluster-based and
ITLinQ schemes in the small library regime.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

User rates (bps/Hz)

P
ro

b
a
b
ili

ty

Cluster−based

ITLinQ

Figure 5.7 Comparison of CDF of the achievable rates of users under the cluster-based and
ITLinQ schemes in the large library regime.

126 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

TABLE 5.1 The Average User Throughput Comparison Between the
Cluster-Based and ITLinQ Delivery Schemes

Library Size Cluster-Based (bps/Hz) ITLinQ (bps/Hz) Gain (%)

Small library 0.0232 0.1367 488
Large library 0.0262 0.0958 265

the following identity to numerically evaluate the average user rates: for any random
variable R that only takes non-negative values, we have

𝔼[R] =
∫

∞

0
(1 − FR(r)) dr,

where FR(r) is the cumulative distribution function of R. The results for the average
user throughput are reflected in Table 5.1. Interestingly, the average user through-
put achieved by cached ITLinQ shows a significant improvement over that of the
cluster-based delivery scheme. In particular, the gains for the small and large library
sizes are 488 and 265%, respectively.

5.3.3 Coded Multicast

5.3.3.1 An Overiew of Coded Multicast Opportunities Provided by Caching We
now turn our attention to optimal caching at the users to enable multicasting opportu-
nities. A conventional approach for caching at users is to store the content that is most
likely to be requested so that when a user requests a content, it would be likely that
it is already stored in its cache and no delivery would be needed. However, caching
at users provides a unique opportunity to turn different demands of the users into a
single coded multicast transmission, which can be delivered very efficiently over the
shared wireless medium (see, e.g., Refs. [26–28]). We now illustrate this phenomenon
through a simple example.

Let there be two users in the network requesting their content from a BS (or helper
node). Assume that there are only two files/videos (A and B) that can be requested by
users (each file has a 50% chance to be requested) and each user has memory to store
only one file. Under the conventional caching approach, each user stores the most
popular file, which in this case (equally popular), we choose arbitrarily to be file A.
Let us now consider all requests that can happen in the delivery phase:

1. Both users requesting A: Both find A in their cache and no wireless delivery is
needed.

2. One user requesting A and the other requesting B: B should be delivered to the
user that requests it over the wireless channel.

3. Both users requesting B: B should be broadcasted to both users over the wireless
channel and we have a multicast opportunity.

USER-CACHING 127

The probability of the aforementioned cases are respectively 25, 50, and 25%. There-
fore, the average wireless delivery required for the aforementioned scheme would be
25% × 0 + 50% × 1 + 25% × 1 = 0.75 fraction of a file.

We now illustrate a more efficient caching scheme that was proposed in Ref. [27].
We first break each file into two parts of the same size, denoted by A1, A2, B1, and
B2. Then, we let user 1 to cache A1 and B1, while user 2 caches A2 and B2. Note that
the memory required for this caching is the same as before. Let us again consider all
requests that can happen in the delivery phase:

1. Both users requesting A: In this case user 1 already has A1 and needs A2, and
user 2 already has A2 and needs A1. Note that in this case if the BS broad-
casts A1 ⊕ A2 to both users, they can recover the entire file. Therefore, both
requests can be satisfied with a “coded multicast transmission” of A1 ⊕ A2.
Note that the case in which both users request B can be solved in the same way,
by transmitting B1 ⊕ B2 to both users.

2. User 1 requesting A and user 2 requesting B: In this case user 1 already has A1
and needs A2, and user 2 already has B2 and needs B1. Note that in this case
if the BS broadcasts A2 ⊕ B1 to both users, they can recover the entire file.
Therefore, both requests can be satisfied with a “coded multicast transmission”
of A2 ⊕ B1. Note also that in the same way, when user 1 requests B and user
2 requests A, we can send A1 ⊕ B2 to both users, and both can recover the
entire file.

Therefore, with this caching mechanism, all possible requests can be satisfied with a
coded multicast transmission of size 0.5 fraction of a file, as opposed to 0.75 fraction
of a file average delivery required for the conventional approach.

In a more general case with n users, a library of N files, and cache size of M files
at each user, the authors in Ref. [27] have shown that it is possible to design a caching
mechanism that provides multicasting opportunities with a multiplicative spectral
efficiency gain of (1 + nM∕N) over the conventional uncoded delivery scheme. Note
that for fixed library size (i.e., N), the overall gain is proportional to nM, which rep-
resents the cumulative amount of memory in the network. Therefore, the spectral
efficiency gains that caching provides can grow with the global amount of memory
in the network.

While this scaling-law gain is almost the same as what can be achieved with D2D
communications, we note that in realistic simulations, D2D outperforms coded mul-
ticasting considerably; see Figure 5.8.

We note that in the setting of caching for multicasting described earlier, the BS
needs to know which files, or parts of files, are cached at each user. This knowledge
is required at the BS in order to send a coded bit from which each user could cancel
its cached part and infer its requested file. However, since there are many possibilities
for what each user can store at a particular time, tracking the exact cache content at
the users can be very challenging. Therefore, we considered in a recent work the set-
ting in which the BS only tracks the “amount” of cache at each user and not its exact

128 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

107

106

105

104

103

102

101

100

10–6 10–5 10–4 10–3 10–2 10–1 100

T
h

ro
u

g
h

p
u

t
p

e
r

u
s
e

r
(b

p
s
)

Outage probability

D2D in 2.4 GHz

Coded multicasting

Conventional

unicasting

Harmonic

broadcasting

Figure 5.8 Simulation results for the throughput–outage trade-off for different schemes
under the realistic indoor/outdoor propagation environment (for details, see Ref. [29]). For
harmonic broadcasting with only the m′ most popular files, solid line: m′ = 300; dash–dot
line: m′ = 280; dash line: m′ = 250. We have n = 10 000, m = 300, M = 20, and 𝛾r = 0.4.

“content.” We call this setting “blind index coding.” Note that while blind index cod-
ing simplifies the implementation of caching protocols, it does not necessarily benefit
from the full spectral efficiency gain promised earlier. An important question then is
to what extent can caching increase the spectral efficiency, when the BS is only aware
of the amount of data in the caches and not its content. Kao et al. [30,31] proposed an
efficient technique for blind index coding and derived an upper bound on the potential
spectral gain when the coding is performed in a single BS. Furthermore, for several
important caching cases in the setting of three users, the gain of the proposed coding
technique is shown to match the derived upper bound and is thus optimal (Figure 5.9).
As a final note, we would like to also point out that “coded multicast” opportunities
can also arise in “edge-distributed computing” in order to facilitate data shuffling
required for distributed computing. The reader is referred to Refs. [32, 33] for more
discussions on this topic.

5.3.3.2 Coded Multicast with D2D At this point, a natural question to ask
is whether coded multicasting for D2D transmissions can provide an additional
gain or whether the coding gain and the spatial reuse gain can accumulate. This
was answered positively in Ref. [16] by designing a subpacketized caching and a

USER-CACHING 129

Random linear coding

Required delivery

by server

Blind index coding

Non-blind index coding

[27]

nk

nk
M

Figure 5.9 Potential spectral gain of blind index coding.

network-coded delivery scheme for the D2D caching networks. We illustrate this via
the example shown in Figure 5.10, where we assume no spatial reuse can be used or
only one transmission per time–frequency slot is allowed, but the transmission range
can cover the whole network. This scheme can be generalized to any n,m, and M.
The main insights, as outlined in Ref. [16], are:

1. If each node in the network can reach in a single hop all other nodes in the
network, the proposed scheme achieves almost the same throughput of Ref.
[27], without the need of a central BS. In other words, for no spatial reuse,
every user can successfully decode m∕M (1 − (M∕m)).

2. If the transmission range of each node is limited, such that concurrent
short-range transmissions can coexist in a spatial reuse scheme, then the
throughput has the same scaling law (with possibly different leading term
constants) of the reuse-only case [25, 34] or the coded-only case [27]. This
result holds even if one optimizes the transmission range and therefore the
spatial reuse of the system. Counterintuitively, this means that it is not possible
to cumulate the spatial reuse gain and the coded multicasting gain and that
these two albeit different type of gains are equivalent as far as the throughput
scaling law is concerned. This can be explained by the fact that if spatial reuse
is not allowed, a complicated caching scheme can be designed such that one
transmission can be useful for as many users as possible. While if we reduce
transmission range and perform our scheme in one cluster as shown in Figure
5.2, then the number of users benefitted by one transmission is reduced, but
the D2D transmissions can operate simultaneously at a higher rate.

3. The complexity of caching subpacketization and coding can be reduced in
coded multicast with D2D, compared to BS-centric coded multicast.

130 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

A3, A4, A5, A6,

A5

B3, B4, B5, B6,

B3

A6 B4

C1 C2

C3, C4, C5, C6,

A1, A2, A5, A6,

B1, B2, B5, B6,

C1, C2, C5, C6,

A1, A2, A3, A4,

B1, B2, B3, B4,

C1, C2, C3, C4,

User 1

User 3

User 2

Achievable schemeWants A

Wants C

Wants B

Figure 5.10 Illustration of the example of three users, three files, and M = 2, achieving 1∕2
transmissions in term of file. We divide each file into six packets (e.g., A is divided into
A1,… ,A6). User 1 requests A, user 2 requests B, and user 3 requests C. The cached packets are
shown in the rectangles under each user. For the delivery phase, user 1 transmits B3 ⊕ C1, user
2 transmits A5 ⊕ C2, and user 3 transmits A6 ⊕ B4. The normalized number of transmissions
is 3 ⋅ 1

6
= 1

2
, which is also information theoretically optimal for this network [16].

4. In order to find the best combination of reuse and coded multicasting gains,
trading off the rate achieved on each local link (decreasing function of distance)
with the number of users that can be reached by a coded multicast message
(increasing function of distance) must be sought. This optimization has to be
done for the actual throughput and not just the scaling law.

5.4 CONCLUSIONS AND OUTLOOK

In this chapter, we discussed a new architecture for caching content at the edge of
the network that consisted of two caching methods. In the first method, termed fem-
tocaching, small dedicated “helper nodes” were used to cache popular files and serve
requests from wireless users by enabling localized wireless communication, hence
increasing the spectral efficiency. We discussed the optimal uncoded and coded con-
tent placement, as well as the optimal content delivery in such systems. In the second
method, termed user-caching, the devices pooled their caching resources so that dif-
ferent devices cache different files and then exchange them, when the occasion arises,
through short-range, highly spectrally efficient, D2D communications. We discussed
the optimal physical layer delivery mechanisms in such systems, in order to maxi-
mize the spectral reuse. We also discussed “coded multicast” opportunities that can
arise in such systems, in order to further increase the spectral efficiency.

REFERENCES 131

REFERENCES

1. White Paper: Cisco Visual Networking Index: Global Mobile Data Traffic Fore-
cast Update, 2010–2015. http://www.scribd.com/doc/63529506/Cisco-White-Paper-c11-
520862 (accessed September 19, 2016), February 2011.

2. M. Zink, K. Suh, Y. Gu, and J. Kurose. Watch global, cache local: Youtube network traffic
at a campus network: Measurements and implications. In Electronic Imaging 2008, pages
681805–681805. International Society for Optics and Photonics, 2008.

3. E. Nygren, R.K. Sitaraman, and J. Sun. The akamai network: A platform for high-
performance internet applications. ACM SIGOPS Operating Systems Review, 44(3):2–19,
2010.

4. N. Golrezaei, K. Shanmugam, A.G. Dimakis, A.F. Molisch, and G. Caire. Femtocaching:
Wireless video content delivery through distributed caching helpers. In INFOCOM, 2012
Proceedings IEEE, pages 1107–1115, 2012.

5. N. Golrezaei, A.G. Dimakis, and A.F. Molisch. Wireless device-to-device communications
with distributed caching. In 2012 IEEE International Symposium on Information Theory
Proceedings (ISIT), pages 2781–2785. IEEE, 2012.

6. N. Naderializadeh and A.S. Avestimehr. ITLinQ: A new approach for spectrum sharing in
device-to-device communication systems. IEEE Journal of Selected Areas in Communi-
cations, Special Issue on 5G Wireless Systems, 32(6):1139–1151, 2014.

7. K. Shanmugam, N. Golrezaei, A.G. Dimakis, A.F. Molisch, and G. Caire. Femtocaching:
Wireless content delivery through distributed caching helpers. IEEE Transactions on Infor-
mation Theory, 59(12):8402–8413, 2013.

8. S. Pawar, N. Noorshams, S. El Rouayheb, and K. Ramchandran. Dress codes for the stor-
age cloud: Simple randomized constructions. In 2011 IEEE International Symposium on
Information Theory Proceedings (ISIT), pages 2338–2342. IEEE, 2011.

9. Y. Sánchez de la Fuente, T. Schierl, C. Hellge, T. Wiegand, D. Hong,
D. De Vleeschauwer, W. Van Leekwijck, and Y. Le Louédec. idash: Improved dynamic
adaptive streaming over http using scalable video coding. In Proceedings of the Second
Annual ACM Conference on Multimedia Systems, pages 257–264. ACM, 2011.

10. P. Pancha and M. El Zarki. Mpeg coding for variable bit rate video transmission. IEEE
Communications Magazine, 32(5):54–66, 1994.

11. M.J. Neely. Stochastic network optimization with application to communication and
queueing systems. Synthesis Lectures on Communication Networks, 3(1):1–211, 2010.

12. D. Bethanabhotla, G. Caire, and M.J. Neely. Adaptive video streaming in MU-MIMO
networks. ISIT 2014, 2014.

13. J. Kim, F. Meng, P. Chen, H.E. Egilmez, D. Bethanabhotla, A.F. Molisch, M.J. Neely, G.
Caire, and A. Ortega. Adaptive video streaming for device-to-device mobile platforms. In
Proceedings of the 19th Annual International Conference on Mobile Computing & Net-
working, pages 127–130. ACM, 2013.

14. A.F. Molisch. Wireless Communications, 2nd edition. IEEE-Press - Wiley, Chichester,
2011.

15. A.F. Molisch, M. Ji, J. Kim, A. Tehrani, and D. Burghal. Device-to-device communica-
tions. 2015.

16. M. Ji, G. Caire, and A.F. Molisch. Fundamental limits of distributed caching in D2D wire-
less networks. In Information Theory Workshop (ITW), 2013 IEEE, pages 1–5, 2013.

132 DISTRIBUTED CACHING FOR ENHANCING COMMUNICATIONS EFFICIENCY

17. N. Golrezaei, A.F. Molisch, and A.G. Dimakis. Base-station assisted device-to-device
communications for high-throughput wireless video networks. In 2012 IEEE International
Conference on Communications (ICC), pages 7077–7081. IEEE, 2012.

18. N. Golrezaei, A.G. Dimakis, and A.F. Molisch. Scaling behavior for device-to-device
communications with distributed caching. IEEE Transactions on Information Theory,
60(7):4286–4298, 2014.

19. M. Ji, G. Caire, and A.F. Molisch. The throughput-outage trade-off of wireless one-hop
caching networks. arXiv preprint arXiv:1312.2637, 2013.

20. N. Naderializadeh and A.S. Avestimehr. Itlinq: A new approach for spectrum sharing. In
IEEE International Symposium on Dynamic Spectrum Access Networks (DySpan), pages
327–333, April 2014.

21. N. Naderializadeh and A.S. Avestimehr. Itlinq: A new approach for spectrum sharing in
device-to-device communication systems. In IEEE International Symposium on Informa-
tion Theory, pages 1573–1577, July 2014.

22. C. Geng, N. Naderializadeh, A.S. Avestimehr, and S.A. Jafar. On the optimality of treating
interference as noise. IEEE Transactions on Information Theory, 61(4):1753–1767, 2015.

23. S. Avestimehr, S. Diggavi, and D. Tse. Wireless network information flow: A determinis-
tic approach. IEEE Transactions on Information Theory, 57(4):1872–1905, April 2011.

24. N. Naderializadeh, D. Kao, and A.S. Avestimehr. How to utilize caching to improve
spectral efficiency in device-to-device wireless networks. In Allerton Conference on Com-
munication, Control, and Computing, October 2014.

25. M. Ji, G. Caire, and A.F. Molisch. Optimal throughput-outage trade-off in wireless
one-hop caching networks. In 2013 IEEE International Symposium on Information Theory
Proceedings (ISIT), pages 1461–1465, 2013.

26. M. Ji, A.M. Tulino, J. Llorca, and G. Caire. Caching and coded multicasting: Multiple
groupcast index coding. In 2014 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), pages 881–885, December 2014.

27. M.A. Maddah-Ali and U. Niesen. Fundamental limits of caching. IEEE Transactions on
Information Theory, 60(5):2856–2867, 2014.

28. K. Poularakis, V. Sourlas, P. Flegkas, and L. Tassiulas. On exploiting network coding in
cache-capable small-cell networks. In 2014 IEEE Symposium on Computers and Commu-
nication (ISCC), volume Workshops, pages 1–5, June 2014.

29. M. Ji, G. Caire, and A.F. Molisch. Wireless device-to-device caching networks: Basic
principles and system performance. IEEE Journal on Selected Areas in Communications,
34(1):176–189, 2016.

30. D. Kao, M.A. Maddah-Ali, and A.S. Avestimehr. Blind index coding. submitted to IEEE
Transactions on Information Theory, 2015, arxiv.org/abs/1504.06018.

31. D. Kao, M.A. Maddah-Ali, and A.S. Avestimehr. Blind index coding. In IEEE
International Symposium on Information Theory, pages 2371–2375, June 2015.

32. S. Li, M.A. Maddah-Ali, and A.S. Avestimehr. Coded MapReduce. In 53rd Annual Aller-
ton Conference on Communication, Control, and Computing, September 2015.

33. S. Li, M.A. Maddah-Ali, and A.S. Avestimehr. Fundamental tradeoff between computation
and communication in distributed computing. submitted to IEEE International Symposium
on Information Theory, 2016.

34. M. Ji, G. Caire, and A.F. Molisch. The throughput-outage trade-off of wireless one-hop
caching networks. arXiv preprint arXiv:1302.2168, 2013.

6 Wireless Video Fog: Collaborative
Live Streaming with Error
Recovery

BO ZHANG,1 ZHI LIU,2 and S.-H. GARY CHAN1

1 Department of Computer Science and Engineering, The Hong Kong University of
Science and Technology, Clear Water Bay, Hong Kong
2 Global Information and Telecommunication Institute, Waseda University, Tokyo,
Japan

6.1 INTRODUCTION

With technological advances in multimedia processing and wireless networking,
live video content can now be streamed to wireless devices over the Internet. To serve
geographically distributed clients,1 the stream is distributed using a cloud, with
the wireless clients independently pulling the stream via an access point (AP) or
base station. This model suffers from last-hop scalability problem—as the number
of clients served by the AP increases, its wireless bandwidth becomes a bottleneck
(wireless broadcasting standard is not yet widely used nowadays). To overcome such
limitation and scale up the last-hop user capacity, the wireless devices may form a
wireless fog, where they collaboratively share the live stream they pulled from the
AP with their neighbors in a multihop manner via a secondary channel (such as
Bluetooth, Wi-Fi, etc.). In a wireless fog for live video, devices hence donate their
resources (computing power, storage, and communication bandwidth) to scale up
the system in a cost-effective manner.

We illustrate in Figure 6.1 a typical live streaming network. The streaming cloud
distributes the live stream over the Internet. The cloud is integrated with a wireless
fog. In the fog, a source node first pulls the stream from a nearby cloud server through
an AP or base station. It then distributes its stream to nearby clients. By cooperatively
relaying (rebroadcasting) their received packets, nodes can efficiently distribute the
live stream within the fog. In this chapter, “broadcasting” means delivering a packet
to all the one-hop neighbors of the “broadcaster” by sending just one packet (the
so-called broadcast packet).

1In this chapter, we use “client”, “user”, “device”, “peer,” and “node” interchangeably.

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

134 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

Streaming cloud

Wireless

fog

Source node

Figure 6.1 Illustration of wireless fog. The source node pulls the video stream from the
streaming cloud and broadcasts the stream to other clients within the fog in a multihop manner.

In a wireless fog, conventionally the live stream is distributed using the
“store-and-forward” approach, where selected broadcasters simply forward their
received packets to their neighbors. As packet loss is inevitable in packet broadcast-
ing, this approach suffers from loss propagation, resulting in high loss toward the
leaves of the broadcasting tree. In order to achieve good video playback quality, the
loss needs to be mitigated through efficient recovery strategies.

Losses in network transmissions are traditionally recovered by feedback-based
source retransmission. This is not scalable to a large pool of clients due to the band-
width limitation of the wireless channel and at the source. Random linear network
coding (RLNC) lets the video source perform network coding (NC) on every k source
packets and broadcast n(n > k) coded packets to clients. This approach requires the
knowledge of network loss condition and is often designed for certain worst-case
loss (i.e., (n − k)∕n). In diverse loss conditions, RLNC therefore often leads to high
redundancy for low-loss receivers but “starves” high-loss receivers with insufficient
number of packets. In contrast, cooperative loss recovery between neighboring nodes
can adapt recovery packets to local loss conditions. One may use source packet shar-
ing, but it limits the recovery efficiency. With the broadcast nature of wireless trans-
missions, NC can be applied over a selected subset of source packets according to
neighbors’ loss status to further improve the efficiency and flexibility of cooperative
recovery.

In this chapter, we propose a “store–recover–forward” approach for effective video
live streaming over wireless multihop networks. A node repeatedly goes through the
following steps:

INTRODUCTION 135

A

Source

Shortest hop
distance to source0 1 2

B

C

D

E

NC-based recovery

Video packet forward

Figure 6.2 A representation of a wireless streaming mesh, with nodes arranged according to
their shortest distance to the source node.

1. Store: Buffer Some Video Packets for Recovery. A node first buffers received
video packets, with the packet availability indicated as a bitmap. As packets
may be lost, there may be holes in the bitmap.

2. Recover: Cooperative Recovery Using NC. The node shares its bitmap to its
neighbors by broadcasting. It also receives the bitmaps from its neighbors.
Based on the received bitmaps, the node selects some of its received packets,
applies NC to them, and broadcasts the NC packets to its neighbors. Generating
NC packets based on packet subset can lead to more flexible recovery.

After such broadcasting, the node also receives some NC packets from its
neighbors. It uses these NC packets to recover some, if not all, of its lost pack-
ets in the bitmap. Neighboring nodes hence work together to selectively and
effectively recover their losses.

3. Forward: Video Packets Forwarding. After the aforementioned NC-based
cooperative recovery, the node then exchanges its updated bitmap with
neighbors. Based on that, the node decides which packets to forward to its
neighbors.

We show in Figure 6.2 an example of wireless live video streaming mesh. Nodes
are arranged according to their shortest hop distances to the source. Nodes A, B, and
C each first receives some video packets from the Source. B then shares its bitmap
with A and C. After receiving its neighbors’ bitmaps, a node generates NC packets for
neighbors with the same hop distance from the source and shares these NC packets.
Nodes further away from the source, that is, Nodes D and E, can buffer the NC packets
for their later use. Among Nodes A, B, and C, broadcasters are then selected for each
packet. In this example, B forwards its video packets to Nodes D and E. D and E then
perform the same process to cooperatively recover their losses using NC.

In a wireless fog, bandwidth and device energy are scarce resources. Our objective
is, therefore, to reduce the total packets broadcasted given a (possibly heterogeneous)
target residual loss rate at each node. There are two important decision problems:

136 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

• NC Packet Selection (NCPS). In order to maximize error recovery, a node
generates NC packets based on selected subsets of its packets. The NCPS
problem is hence to determine at each node which video packet set should be
used for NC coding and how many NC packets to generate, based on neighbor
information, so as to achieve the target residual loss rate at each neighbor, with
minimum NC recovery traffic.

• Broadcaster Selection (BS). This problem determines which packet each node
should forward, based on updated neighbor information, in order to achieve the
target residual loss rate at each node, with minimum video packet forwarding
traffic. This is the so-called broadcaster selection problem.

For high-quality video distribution in a wireless fog, we therefore address the
following issues in this chapter:

• Problem Formulation and Complexity Analysis. We aim at reducing the total
network traffic, which includes both NC recovery traffic and video forwarding
traffic, with NCPS and BS as the two subproblems. We show that both NCPS
and BS problems are NP-hard.

• Video Broadcasting with Cooperative Recovery (VBCR), Distributed Live Video
Distribution with NC-Based Cooperative Recovery. In a wireless fog, network
condition is often highly dynamic and unpredictable. It is hence impossible
to deploy a central controller to collect network-wide information, compute
optimal solution, and distribute the solution in a timely manner. We therefore
propose an effective distributed algorithm termed VBCR to tackle the prob-
lems. Each node in VBCR independently determines the NC packets to code
and which video packets to forward, given a certain target residual loss rate at
its neighboring nodes. VBCR is fully distributed, with decisions based on only
neighbor information and hence is scalable to a large group.

• Simulation Study. We have conducted extensive simulation studies on VBCR.
Our results show that VBCR is efficient compared to other schemes in terms of
total network traffic generated.

The remainder of the chapter is organized as follows. We introduce the wireless
cooperative live streaming network in Section 6.3. We formulate the problems in
study and analyze their hardness in Section 6.4. We describe our distributed algo-
rithm VBCR in detail in Section 6.5. We present illustrative simulation results in
Section 6.6 and conclude in Section 6.7.

6.2 RELATED WORK

We next briefly review related work. Peer-cooperative wireless video streaming has
been mentioned in many papers [1–4]. There are two main angles: one is to use peers
as relays and the other is to use the local neighbors for cooperative loss recovery.

RELATED WORK 137

The work in Ref. [3] is a typical work of the first class, where the device-to-device
communication is applied to help improve the received video quality. In both
Refs. [1, 2], a source server streams video to users directly, while the packet loss that
happened over the primary channel (server-to-user channel) are recovered by local
neighbors’ help via the secondary channel (user-to-user channel) instead of server
retransmission. The work in Ref. [4] proposes cooperative video chunk pulling to
reduce redundancy and to reduce chunk loss. However link loss is not considered
in the work. A video coding scheme for wireless cooperative video broadcasting is
proposed in Ref. [5]. Our work does not depend on the coding scheme optimization;
instead we try to optimize application level transmissions. In this chapter we
study live video distribution in a wireless cooperative fog video streaming, and the
approach is a co-design of the relay node selection and cooperative loss recovery,
which distinguishes our work from these schemes.

A large body of research focuses on delay minimization in point-to-point
transmission [6–9]. We instead target at bandwidth and energy conservation in
broadcast scenario. Schemes in Refs. [10, 11] try to minimize energy cost in an
error-free environment by tuning node transmission ranges according to nodes’
geographic information. In contrast, we do not require geographic information.
We also take link loss and loss recovery into consideration. Le and Liu Tan et al.
proposed Minimum Steiner Tree with Opportunistic Routing (MSTOR) to construct
a minimum Steiner tree based on unicast opportunistic routing [12]. With the
utilization of one-hop broadcast and the optimization of BS and NC packets, VBCR
enjoys high throughput, low network traffic, and high robustness.

Maximizing data throughput per unit of energy is studied in Ref. [13] by selecting
links with better channel conditions. Source packets are retransmitted for loss recov-
ery. A multihop cooperative relay scheme for point-to-point transmission is proposed
in Ref. [14], where data retransmission based on incremental redundancy with ARQ
is employed in relay nodes. One-hop broadcast nature is however only utilized for the
purpose of implicit ACK in Ref. [14]. Others have studied employing NC for coop-
erative repair in video broadcasting [15, 16]. Most of them assume WWAN as the
primary channel so that neighboring nodes naturally enjoy low loss correlation, which
is convenient for cooperative recovery. These schemes are not directly applicable to
our problem as losses are often propagated and correlated in multihop broadcasting
scenarios.

For loss resilience, conventional coding approaches perform all the coding at the
source, for instance, LT codes [17] or RLNC, with intermediate nodes performing
simple “store-and-forward” operations. Such code is often designed for certain
worst-case loss rate. Though effective, such codes are too aggressive due to their
“all-or-nothing” nature and therefore do not perform well in networks with diverse
regional loss conditions, which is often the case in wireless multihop transmissions.
These source coding schemes further require a reliable feedback channel from every
node to the source, which is hardly practical in wireless multihop scenarios. In
VBCR we allow intermediate nodes to perform NC over a subset of source packets
based on local loss conditions, thus achieving high recovery efficiency with low
recovery traffic.

138 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

MicroCast [18] is a work that tries to achieve goals similar to VBCR but with
different approaches. The network considered in MicroCast is a small-scale fully
connected graph so that each node can reach every other node in one-hop, which elim-
inates loss propagation effect. It is also a centralized approach in that a single node is
responsible to assign downloading tasks to every other “requester.” Through careful
task assignment, on-demand retransmission, and the conventional RLNC for sharing,
MicroCast significantly reduces network overhead and redundancy in recovering all
losses in low-loss network. However such scheme may overwhelm the network with
control and retransmission overhead as well as NC redundancy when loss rate is even
slightly higher. VBCR on the other hand is designed as a fully distributed algorithm
working in a larger-scale multihop network, with only periodical beacon exchange as
the control overhead.

6.3 SYSTEM OPERATION AND NETWORK MODEL

We model the network in study as a connected graph (V ,E), where V is the set of the
nodes and E is the set of the links corresponding to the neighbor relationship between
node pairs. Link (i, j) ∈ E if, for example, the signal-to-noise ratio (SNR) measured
at node j regarding node i’s signal is higher than a predefined threshold. There is a
single source node in the network that needs to broadcast its video stream to all other
clients.

For a live video stream, each video packet has a playback deadline D (seconds),
that is, the maximum tolerable playback delay after the packet is sent by the source.
We assume in our network that D is slotted into ⌊D∕(T0 + T1)⌋ slots with a fixed
slot duration (T0 + T1). The nodes in the network are synchronized in terms of slots.2

Operations between different slots are therefore independent of each other. Opera-
tions of each node in each slot are over the newly received packet set at the beginning
of the slot.

We focus on an arbitrary video packet set W and the decisions made within a time
slot by the nodes that newly received video packets of this set. We then have two
decisions to make: what NC packets should each node code and share and which
nodes should forward each of their received/recovered video packets in W.

We show in Figure 6.3 a slot-based live streaming timeline in the system. We intro-
duce the operations in a slot in the following. At the beginning of a slot (i.e., at t0),
a node may receive some packets of a new W from upstream nodes (i.e., nodes that
are one hop closer to the source). The node then performs the following operations
for its newly received video packets:

• Initial Information Exchange (IIX). The node sends a beacon to its one-hop
neighbors. A beacon message includes the bitmap indicating each locally avail-
able video packet of W. If the node has received and buffered some NC packets
(from upstream nodes’ Recovery operation) in previous time slot, information

2Time synchronization between clients and the server can be achieved by various protocols such as network
time protocol (NTP) or precision time protocol (PTP).

SYSTEM OPERATION AND NETWORK MODEL 139

D

T0 T1

t2t1t0

IIX Recovery UIX Forward

Video pkts

received

NC pkts

decoded
Solve

NCPS

Solve

BS

Time

Figure 6.3 Slot-based operations. “pkt” stands for “packet”.

0 1 3 4 5 7 8 9 10 11 13 14 15 17 18 19 20 21 23 24 25 27 28 29 30

Sender_ID W_ID Timestamp R

Beacon_Seq 0 1 0 ··· 0
Video pkt
availability

#_NC_pkts #_Neighbor_Nodes

NC_ID 1 0 1 ··· 0

NC_ID 0 1 1 ··· 1

···

Buffered
NC pkt Info

Neighbor_Node_ID Neighbor_Node_ID

···

IDs of
neighbor nodes

2 12 16 22 26 316

Figure 6.4 An example beacon packet format for the case that |W| = 16. The beacon con-
tains one bitmap for video packet availability and a bitmap for each buffered NC packet. IDs
of any downstream nodes are also appended in UIX beacon exchange. For different |W| sizes,
bitmap lengths can be adjusted accordingly. R is a reserved 1-bit field.

of the NC packets, such as which video packets are carried by each NC packet,
is also included in beacon. Figure 6.4 shows an example beacon format. W_ID
is the unique ID of video packet set W.3 NC_ID is used to identify NC packets
the beacon sender buffered and only needs to be unique within the beacon mes-
sage. IDs of neighbor nodes are learned through last beacon exchange and are
appended in the beacon. The node can then compute the effectiveness of its NC
sharing.

3In this example format, W_ID monotonically increases within range [0, 216−1], and Src_timestamp is used
for wrap-around handling.

140 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

• Recovery. The node checks received beacons and determines the NC packets
to code and share by solving NCPS problem. To prevent a node from trying to
recover packets for downstream nodes (i.e., nodes that are one hop further from
the source) with excessive NC traffic, the node only considers beacons with
same W_ID while treating others as upstream/downstream nodes, who should
either be processing a newer packet set or be dealt with by later operations. Note
that this does not prevent downstream nodes from receiving NC packets trans-
mitted. The NC packets are then broadcasted. At the end of Recovery operation,
the node can then try to decode received NC packets to recover its loss.

• Updated Information Exchange (UIX). After NC recovery, the node then shares
another beacon with updated bitmap, as well as information of any buffered NC
packet, to its neighbors. The IDs of neighboring nodes learned from IIX are also
appended. This beacon exchange facilitates the next operation.

• Forward. The node determines for each of its received/recovered video packets
in W, whether it should be a broadcaster by solving BS problem. NC recovery
introduces packet heterogeneity at neighboring nodes; BS is hence per packet
based instead of for the set W. All beacons with smaller W_ID (i.e., downstream
nodes) are included for decision making. If the node is selected as a broadcaster
of a packet, it then forwards this video packet to its neighbors.

The previous operations are repeated until T expires. Locally available video pack-
ets are then used for video playback. In this slot-based system, network losses (due
to signal fading, interference, etc.) and topology dynamics (due to node mobility,
join/leave, etc.) can be timely reflected by the neighbor beacon exchange during both
IIX and UIX periods of each slot.

6.4 PROBLEM FORMULATION AND COMPLEXITY

We summarize major terms used in Table 6.1. There are two operations, Recovery
and Forward in the slot-based system, corresponding to the two problems NCPS and
BS, respectively. We discuss the two optimization problems in the following.

6.4.1 NC Packet Selection Optimization

We try to minimize total NC recovery traffic for video packet set W while achieving
the required residual loss rate. Let Bi be the number of NC recovery packets shared
by node i to its neighbors. We therefore try to minimize∑

i∈V

Bi. (6.1)

For collision avoidance, we require that for each node i, only one of its neighbors
should broadcast its NC packets, that is,

|{Bj|j ∈ Ni,Bj > 0}| ≤ 1, ∀i ∈ V . (6.2)

PROBLEM FORMULATION AND COMPLEXITY 141

TABLE 6.1 Symbols Used in the Paper

Symbol Description

E The set of links in the network
V The set of nodes in the network
Ni The set of neighbor nodes of node i
W The video packet set in consideration

Wi(t) The set of video packets available at node i at time t. Wi(t) ⊆ W
1𝑤

i (t) The binary indicator 1𝑤

i (t) = 1 if video packet 𝑤∈W is available at node i at
time t and 1𝑤

i (t) = 0 otherwise
Wi The subset of video packets that i uses for NC coding. 𝑤i ⊆ Wi(t0)
̂Bi The max number NC packets can be generated at i.

Bi Bi ∈ ℤ, 0 ≤ Bi ≤
̂B is the number of NC packets node i shares

Si The set of NC packets received by i
lij The loss rate of the link (i, j)
I𝑤i Binary indicator, equals to 1 if node i forwards video packet 𝑤 and 0 if

otherwise
T Playback deadline for video packets in W
Q The target residual loss rate

T0, T1 Durations of NC recovery phase and video packet forwarding phase,
respectively

t0, t1, t2 The three time points corresponding to beginning of slot, end of IIX, and end
of UIX, respectively

Next we evaluate loss recovery outcome at a node, from its neighbors’ NC packet
sharing.

First of all, due to limited Recovery duration, there is an upper bound ̂Bi to the
total number of NC packets node i can send. We therefore have

Bi ≤
̂Bi, ∀i ∈ V . (6.3)

Let 𝑤 be the index of a single packet in W, that is, 𝑤∈W. We denote t0 as the
time when IIX begins. Let 1𝑤i (t0) be the indicator function of 𝑤’s availability at node
i at time t0, that is,

1𝑤i (t0) ≜

{
1, if i has 𝑤 at t0;
0, otherwise.

(6.4)

So the bitmap of node i at t0 is the set {1𝑤i (t0)|𝑤∈W}. The set of video packets that
are available at i at t0, denoted as Wi(t0), is

Wi(t0) ≜ {𝑤|1𝑤i (t0) = 1}. (6.5)

The set of video packets used for NC coding at node i, denoted Wi, must be the
subset of video packets available to i at time t0. We hence have

Wi ⊆ Wi(t0). (6.6)

142 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

At the end of Recovery operation, node i tries to decode some received NC packets
sent by neighbor nodes. Note that due to loss, i may only receive a subset of these NC
packets. Denote the link loss rate from i to j ∈ Ni as lij. Denote Sj as the NC packet
set received by node j. According to Constraint (6.2), Sj is sent by a single neighbor
of j. Suppose Sj is sent by node i, that is, Bi > 0. Due to loss, we have

|Sj| = (1 − lij)Bi, (6.7)

Video packet set carried in Sj sent from i, namely Wi, is only useful if Sj can be
decoded by j. Sj is decodable only if the total number of video packets it carried and
are missing at j is no greater than the number of NC packets. Denote 1Sj (T0) as the
decodability of Sj at the end of Recovery operation, we hence have

1Sj (T0) ≜
{

1, if |Wi − Wj(t0)| ≤ |Sj|;
0, otherwise.

(6.8)

So the set of available video packets at node j after Recovery, in the case of i
sending Bi NC packets carrying Wi, can be written as

WWi,Bi
j (T0) =

{
Wj(t0)

⋃
Wi, if 1Sj (T0) = 1;

Wj(t0), otherwise.
(6.9)

We can then evaluate the residual loss rate qj(T0) at node j at the end of T0 in this
case, as

qBi
j (T0) = 1 −

|WWi,Bi
j (T0)||W| . (6.10)

We want the residual loss rate at every node i ∈ V after i’s NC decoding, denoted
as qi(T0), to meet the target residual loss rate Q if possible. That is, for all i ∈ V , we
want

qi(T0) ≤ Q. (6.11)

In case that the loss rate at node i cannot be reduced below Q, we then try to minimize
qi(T0).

Also we have the integer constraint

Bi, |Wi| ∈ ℤ∗
, ∀i ∈ V , (6.12)

where ℤ∗ is the set of all nonnegative integers.
The NCPS optimization problem can then be stated as jointly determine

Wi and Bi,∀i ∈ V , such that the Objective (6.1) is minimized, subject to Con-
straints (6.2–6.12).

PROBLEM FORMULATION AND COMPLEXITY 143

6.4.2 Broadcaster Selection Optimization

After Recovery operation, nodes exchange their updated beacon with their neighbors
in UIX period. Next we need to determine which node should relay each video packet
in Forward operation (denote its starting time point as t2). Our objective is to minimize
total video packet forwarding traffic for W. Denote I𝑤i = 1 if node i forwards packet
𝑤 and I𝑤i = 0 if otherwise. The total forwarding traffic can be defined as∑

i∈V

∑
𝑤∈Wi(t2)

I𝑤i . (6.13)

where Wi(t2) ⊆ W is the set of available video packets at i at t2.
For collision avoidance, we require that∑

j∈Ni

Ii ≤ 1, ∀i ∈ V . (6.14)

Suppose node i forwards 𝑤. Node j ∈ Ni may not receive it due to loss. The prob-
ability that node j receives video packet 𝑤 from i is

P𝑤

ij = 1 −
(
I𝑤i

(
1𝑤i (t2)lij + (1 − 1𝑤i (t2))

)
+ (1 − I𝑤i)

)
(6.15)

Denote the available video packets at node j right after receiving neighbors’ for-
warding as W′

j (T1). The expected number of video packets available at node i is

E[|W′
j (T1)|] = |Wj(t2)| + ∑

i∈Nj

∑
𝑤∈Wi(t2)

P𝑤

ij (1 − 1𝑤j (t2)). (6.16)

Apart from received video packets, node j also tries to use these packets to decode
any buffered NC packet. Recall that node j receives and buffers NC packet set Sk sent
from upstream neighbor k, with video packet set Wk carried in it, given that Bk > 0.
According to Equation (6.7), |Sk| = (1 − lkj)Bk. We now evaluate the probability that
j can decode Sk. This probability can be written as

P(Sk) = P(|Wk − W′
j (T1)| ≤ |Sk|). (6.17)

Then after such decoding, the expected number of available video packets at node
j can be written as

E[|Wj(T1)|] = |W′
j (T1) ∪ Wk|P(Sk) + |W′

j (T1)|(1 − P(Sk)). (6.18)

We now evaluate the expected residual loss rate at node j as

E[qj(T1)] = 1 −
E[|Wj(T1)|]|W| . (6.19)

144 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

We again aim at achieving the target residual loss rate Q at every node by the end
of T1 if possible, that is,

qi(T1) ≤ Q, ∀i ∈ V . (6.20)

In case that the target cannot be met, we then try to minimize qi(T1).
Also we have the integer constraint

I𝑤i ∈ {0, 1}, ∀i ∈ V , 𝑤∈W. (6.21)

Our BS optimization problem is therefore to minimize Objective (6.13), subject
to Constraints (6.14–6.21), via the assignment of I𝑤i for every node i ∈ V and every
packet 𝑤∈W.

6.4.3 Complexity Analysis

We now show that both NCPS problem and BS problem are NP-hard. We consider a
simplified scenario for this analysis.

In the simplified case, packet delivery is always successful, and there is only one
video packet to distribute. We hence simplify I𝑤i to Ii in this case. Our BS problem
hence becomes finding min

∑
i∈V Ii, such that Constraint (6.20) holds. Note that in

this “lossless” network, the residual loss rate at any node is either 100% if it is not
covered by any broadcaster or 0% if otherwise. We therefore require 0% loss at all
nodes, which means every node must be covered by at least one broadcaster. Such
constraint is effectively equivalent to∑

j∈Ni

Ij ≥ 1, ∀i ∈ V . (6.22)

This is effectively the maximum leaf spanning tree (MLST) problem, which has
been shown to be NP-hard [19]. Hence the previously simplified case is NP-hard. So
our BS problem in general cases is also NP-hard.

The NCPS problem in the same simplified case effectively becomes BS problem.
Following the previous proof, NCPS for the simplified case is also NP-hard. So the
NCPS problem in general is also NP-hard.

6.5 VBCR: A DISTRIBUTED HEURISTIC FOR LIVE VIDEO WITH
COOPERATIVE RECOVERY

We now present VBCR in detail. The key idea is to let the nodes whose NC/video
packet broadcast lead to the highest transmission efficiency to perform the corre-
sponding broadcasting and suppress their neighbors from doing so.

A DISTRIBUTED HEURISTIC FOR LIVE VIDEO WITH COOPERATIVE RECOVERY 145

6.5.1 Initial Information Exchange

During IIX operation, each node broadcasts a beacon to its neighbor nodes informa-
tion about packets in W received at the beginning of this slot. An example beacon
packet format has been shown in Figure 6.4. With such information, a node then
knows the loss condition of W at each of its neighbors.

6.5.2 Cooperative Recovery

During NC operation, node i makes decisions on which NC packets to code and share,
based on beacons received in IIX. There are two decisions to make: which subset of
video packets to use for NC coding and how many NC packets to code. In other words,
i needs to determine Wi and Bi.

Node i first filters received beacons and only considers neighbors that fulfill all the
following three rules:

1. Video packet bitmap in the beacon is not all zeros. The sender of an empty
bitmap is still expecting the first packet set. Such neighbors will be treated as
downstream nodes and will be dealt with by later operations.

2. W_ID in the beacon is equal to that of W. A larger W_ID indicates an upstream
node, which should now be processing a new packet set. Similarly a smaller
W_ID indicates a downstream node.

3. Current loss rate is greater than Q. There is no need to consider neighbors with
loss rates already lower than Q.

Denote N′
i ⊆ Ni as the subset of i’s neighbors with eligible beacons. Node i then tries

to reduce the loss rate of each neighbor. Our NC Recovery algorithm, as shown in
Figure 6.5, operates in the following procedures:

Case 1. N′
i = Φ: Then there is no need to broadcast any NC packet. Node i ends

the algorithm.

Case 2. N′
i ≠ Φ: Node i then computes Wi and Bi.

To evaluate NC packets, we define a utility function U(Wi,Bi) as

U(Wi,Bi) ≜
∑
j∈N′

i

((
1 −

|Wj(t0)||W|
)
− max

(
qBi

j (T0),Q
))

, (6.23)

where qBi
j (T0) is a function of Wi and Bi and is defined by Equation (6.10). This

utility computes the total loss rate reduction at the neighbors, given Wi and Bi.
We only concern residual loss rate down to Q. Node i therefore prefers a high
utility. In case of a tie, a smaller Bi is preferred.

Node i aggressively solves it through iterations. In each iteration, i adds
video packet 𝑤 into Wi and evaluates the utility. More specifically, i initializes

146 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

Find neighbors’

lost packets

Receive neighbors’ NC

Delay

expired?

All neighbors

covered?

Suppress NC

forwarding

Forward

NC packets

Sort packets by

loss reduction

Add top one to

packet set

Update best solution

so far

No

No

No

Yes

Yes

Yes

Code NC packets;

calculate delay

All packets

checked?

Figure 6.5 Flowchart of NC-based cooperative recovery.

Wi =Φ,Bi = 0 and finds all its packets that are lost by any neighbor in N′
i ,

denoted W′
i , by

W′
i ≜ Wi(t0) −

⋃
j∈N′

i

Wj(t0). (6.24)

The following steps are then performed by i:

Step 2.1. Sorts W′
i : For each video packet 𝑤∈W′

i , node i tries to add 𝑤 into Wi
and calculates the maximum achievable utility by varying Bi. Note that for any
Wi, there is a logical upper bound of Bi, denoted Bi, as

Bi =
|Wi|

1 − max j∈N′
i

Wi−Wj(t0)≠Φ
lij
, (6.25)

which is the number of NC packet needed for any neighbor wanting some
packets in Wi to decode. Therefore for each 𝑤∈W′

i , different values of Bi ∈
[1,min(Bi,

̂Bi)] are tried for Wi +𝑤 to achieve a maximal utility. The packets
in W′

i is then sorted by maximum achievable utility if added to Wi.

A DISTRIBUTED HEURISTIC FOR LIVE VIDEO WITH COOPERATIVE RECOVERY 147

Step 2.2. Picks top 𝑤 and update record: The top packet 𝑤 in W′
i is added to Wi

and removed from W′
i . If a new high utility is observed, or same as recorded

highest but with a smaller Bi, the corresponding Wi and Bi are recorded as the
potential solution.

Step 2.3. Checks termination condition: The iteration terminates if W′
i =Φ.

Otherwise node i begins the next iteration of Steps 2.1–2.3, with one packet
less in W′

i .

Step 2.4. Schedules NC packet broadcasting: When the aforementioned iteration
terminates, node i has the value of the maximal utility, as well as the correspond-
ing Wi and Bi. Node i next schedules its NC packet broadcasting. We prefer
nodes with high utility and small Bi to share their NC packets. We define unit
gain as the loss rate reduction achieved per NC packet, that is, U(Wi,Bi)∕Bi. So
i will postpone its NC broadcasting with a random delay t inversely proportional
to the unit gain, for example,

t = rand

(
Tmax

U(Wi,Bi)
Bi

)
, (6.26)

where Tmax is the system parameter of maximum delay. Function rand(x) gen-
erates a random number with mean x and a small variance.4 During such delay,
if node i receives NC packets sent by its neighbors who collectively cover N′

i ,
i suppresses its own NC broadcasting.

The pseudo-code of the aforementioned NC Recovery algorithm is shown in
Algorithm 6.1.

6.5.3 Updated Information Exchange

After NC exchange and decoding at each node, a second beacon is shared by each
node. This beacon reflects the updated video packet availability and any buffered NC
packet at the sender. A beacon sender can conclude if it has only one upstream node
from previous IIX beacon exchange, by counting the number of beacons received in
IIX that has a larger W_ID, and sets the bit of field R in this updated beacon to be 1 if
there is only one beacon with larger W_ID. The ID of any downstream node identified
in IIX is also appended in the beacon.

With such information, node i can then determine whether it should broadcast its
video packets in Forward operation.

6.5.4 Video Packet Forwarding

Node i then makes forwarding decision regarding each video packet 𝑤∈Wi(t2). i
filters received beacons in UIX to consider only the neighbors fulfilling the following
two rules:

4Other delay functions may also be used, as long as it is inversely proportional to the unit gain.

148 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

Algorithm 6.1

NC Recovery {
Find N′

i; Wi ← 𝜙; Bi ← 0;
if N′

i ≠ 𝜙 { ∖∖ Case 2: high-loss neighbor exists
Find W′

i by Equation (6.24);
max_util ← 0; W′ ← Φ;
while W′

i ≠ Φ {
∖∖ Step 2.1: sort W′

i
for each 𝑤∈W′

i {
Wtemp ← Wf +𝑤;

compute Btemp by Equation (6.25);

for each Btemp ∈ [1,min(Btemp,
̂Bi)] {

compute U(Wtemp,Btemp) by Equation (6.23);
}
record max U(Wtemp,Btemp);

}
sort W′

i by maximal utility achieved by each 𝑤∈W′
i ;

∖∖ Step 2.2: Add the top 𝑤

𝑤 ← head(W′
i);

record Btemp for 𝑤;
W′ ← W′ +𝑤;
if (U(W′

,Btemp) > max_util) OR (U(W′
,Btemp) == max_util AND Btemp < Bi)

{
max_util ← U(Wf

,Btemp); Wi ← W′; Bi ← Btemp; }
} ∖∖ Step 2.3: Loop terminates when all packets evaluated
∖∖ Step 2.4: schedule NC broadcasting
Schedule random delay t by Equation (6.26);
while t not expired {

Ntemp ← N′
i; Wtemp ← Wi;

if received an NC packet from neighbor j {
Ntemp ← Ntemp − N′

j; Wtemp ← Wtemp − Wj;
if Ntemp = Φ AND Wtemp = Φ {Suppress NC packet broadcasting;}

}
}
Code NC packets using Wi and Bi; Broadcast NC packets;

} ∖∖ Case 1: Loss rates of all neighbors are below Q
}

1. W_ID in the beacon is smaller than that of W. Only downstream neighbors are
considered, as those with equal or greater W_ID should be expecting newer
video packet sets to arrive.

2. Current loss rate is greater than Q. Neighbors with loss rate no greater than Q
have already met our target.

We again call the resulting eligible neighbor set N′
i . Among these neighbors, node

i further analyzes neighbors according to the following cases and performs corre-
sponding actions as shown in Figure 6.6:

A DISTRIBUTED HEURISTIC FOR LIVE VIDEO WITH COOPERATIVE RECOVERY 149

Find a packet w
as well as any neighbor

who has lost it

Only parent of
any neighbor?

Yes

Yes

Yes

Delay
expired?

Suppress
forwarding of w

All neighbors
covered?

Forward w

No

No

No

Calculate delay by
gain of forwarding w

Listen to neighbors’
forwarding of w

Figure 6.6 Flowchart of video packet forwarding.

Case 1. N′
i =Φ: This means there is no need for node i to broadcast 𝑤. So i sets

Ii = 0 and terminates its Forward operation.

Case 2. N′
i ≠ Φ: In this case, node i needs to consider broadcasting 𝑤 to help

neighbors in N′
i .

Step 2.1. Helps neighbors that solely rely on i: Node i checks if received beacon
from j has R field set to 1, meaning i is probably the only upstream node of j.
Denote the set of such neighbors as N′′

i . If N′′
i ≠ Φ, further if 𝑤 ∈ (Wi(t2) −

∪j∈N′′
i

Wj(t2)), then i should broadcast 𝑤 irrespective of neighboring nodes’
decisions. So i sets I𝑤i = 1 and a short random delay t = rand(𝜖) in this case
and skips the next step.

Step 2.2. Helps the rest to approach Q: If N′′
i =Φ, node i then checks if any

neighbor in N′
i has lost 𝑤. Node i calculates the gain of 𝑤, that is, the

expected number of innovative packets that can be brought to its neigh-
bors.5 Such calculation also considers NC packets buffered by neighbors,
since sending 𝑤 to neighbor j may enable the decoding of some of j’s NC
packets. Denote such gain as g(I𝑤i). If g(I𝑤i)> 0, then i considers a possible
broadcast, by setting I𝑤i = 1 and a random delay t inversely proportional to
g(I𝑤i), for example,

5We call a packet 𝑤 “innovative” to node j if j has not received 𝑤 before.

150 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

Algorithm 6.2

Video Packet Forwarding for 𝑤 {
Find N′

i;
if N′

i ≠ 𝜙 { ∖∖ Case 2: has downstream node to help
Find N′′

i ;
if N′′

i ≠ Φ AND 𝑤 ∈ (Wi(t2) − ∪j∈N′′
i

Wj(t2)) {
∖∖ Step 2.1: has sole-parent nodes, must forward 𝑤

I𝑤i ← 1; t ← rand(𝜖);
} else if 𝑤 ∈ (Wi(t2) − ∪j∈N′

i
Wj(t2)) {

∖∖ Step 2.2: help others
Calculate g(I𝑤i);

if g(I𝑤i) > 0 {
Calculate t by Equation (6.27);

}
while t not expired { ∖∖ Step 2.3: schedule forwarding for 𝑤

Ntemp ← N′
i;

if received 𝑤 from neighbor j {
Ntemp ← Ntemp − N′

j;
if Ntemp = Φ {Terminate algorithm;}

}
}
Broadcast 𝑤;

} ∖∖ Case 1
}

t = rand

(
Tmax

g(I𝑤i)

)
. (6.27)

Step 2.3. Schedules broadcasting of 𝑤: After all the neighbors in N′
i have been

checked, if I𝑤i = 1, then node i waits delay t before broadcasting its video
packet 𝑤. During such delay, if a neighbor j broadcasts packet 𝑤, i excludes
all the downstream nodes that j covers. Node i suppresses its broadcasting
of packet 𝑤 if all its downstream nodes wanting 𝑤 have been covered.

The pseudo-code of the previous Video Packet Forwarding algorithm is shown in
Algorithm 6.2.

6.6 ILLUSTRATIVE SIMULATION RESULTS

In this section, we describe the simulation setup used to evaluate VBCR. Peers are
randomly placed in a 500 m × 500 m area with transmission range of 140 m.6 Each
link has an i.i.d. random packet loss with mean loss rate 5%.7 We consider both node

6Although we consider random placement of the nodes, any degree of offline planning and preemptive
bandwidth calculation will only improve the performance of VBCR.
7Link loss rate is selected to be reasonably practical and for illustrative purposes. VBCR can easily adapt
to other reasonable loss rates.

ILLUSTRATIVE SIMULATION RESULTS 151

TABLE 6.2 Baseline
Parameters of the Simulation

Parameter Value

Area (m) 500 × 500
Tx range (m) 140
Network size 35
Link loss 5% i.i.d.
Q 2%
̂B 3|W| 10

position and link condition to be stable within a slot. Unless stated otherwise, we
use the value of parameters summarized in Table 6.2 as our baseline. We’ve tested
with different sets of parameters and obtained qualitatively same results. We consider
single source node in our simulation, while VBCR can easily adapt to multisource
cases by connecting all source nodes to a virtual super-source with links of infinite
bandwidth and zero loss.

We compare VBCR with the following two algorithms:

• Global Tree, in which a maximum leaf broadcast tree is built by a central-
ized algorithm. The source node codes and sends RLNC packets according to
the maximum source-to-end loss rate. Each non-leaf node relays each received
RLNC packet once.

• Unstructured Mesh, a scheme similar to that in Ref. [20] but is modified for
single-stream video instead of multiple descriptions coded (MDC) video.
Each node makes one-time source packet forwarding decision for each newly
received video packet. A node first sums the number of innovative source
packets its broadcast could bring to each neighbor with loss rate greater than Q
and waits for a delay inversely proportional to this sum. A node’s transmission
is suppressed if a neighbor’s broadcast is overheard during waiting. Comparing
to VBCR, the major difference of Unstructured Mesh is its lack of cooperative
recovery before forwarding. Sole-upstream-parent case is also not considered,
leading to edge nodes likely to be “starved.”

We consider the following performance metrics in our study:

• Network Traffic. This is to evaluate function∑
𝑤∈W

∑
i∈V

I𝑤i +
∑
i∈V

Bi.

We measure the number of source packet broadcasts in the network, plus the
number of NC packet broadcasts. So this metric evaluates the total number of
transmissions in the network.

152 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

0

1

2

3

4

5

6

R
e
s
id

u
a
l
lo

s
s
 (

%
)

Unstructured mesh
VBCR
Global tree

20 25 30 35 40 45 50

Network size

Figure 6.7 Loss rate versus network size.

• Number of Source Packet Broadcast Parents for Each Node. We evaluate the
number of parents for each node. We show by this metric that the average
amount of traffic at each node is low enough for contention avoidance schedul-
ing used in common MAC protocols.

We evaluate residual loss of these algorithms for different network sizes in
Figure 6.7. Note that although we set the target loss rate Q = 2%, it is not necessary
for the schemes to able to reach this target. RLNC, with the knowledge of link loss
rates across the network, produces sufficient redundant packets that every node can
successfully decode, leading to full packet delivery. This however comes with the
assumption of global knowledge, also at the cost of highly redundant traffic. The
residual losses in both Unstructured Mesh and VBCR drop as the network becomes
dense, due to the effectiveness of one-hop broadcasting. In Unstructured Mesh,
many necessary source packet broadcasts are suppressed, leading to a high residual
loss. VBCR achieves lowest residual loss among all the three algorithms because
of the effectiveness of the NC cooperative recovery and the consideration of nodes
with a single upstream parent.

Figure 6.8 plots the total network traffic generated under different network sizes.
As the network size increases within a fixed size area, the network density increases
correspondingly. The first thing we notice is the high amount of network traffic of
RLNC. The “all-or-nothing” nature of RLNC requires a full delivery at every node to
meet the target loss rate. Among the paths from source to each node, a source node
needs to produce and send enough packets to cope with the highest loss path, lead-
ing to a high volume of redundancy along other paths. Unstructured Mesh achieves
the least amount of network traffic, but with high residual loss shown in Figure 6.7.

ILLUSTRATIVE SIMULATION RESULTS 153

20 25 30 35 40 45 50
3

4

5

6

7

8

9

Network size

N
e

tw
o

rk
 t
ra

ff
ic

Global tree

Unstructured mesh

VBCR

Figure 6.8 Network traffic versus network size.

20 25 30 35 40 45 50
10

15

20

25

30

35

Network size

P
S

N
R

 (
d

B
)

Global tree

VBCR
Unstructured mesh

Figure 6.9 Video PSNR versus network size.

VBCR not only uses a fraction more than that of Unstructured Mesh but also leads
to much lower residual loss rate.

Figure 6.9 demonstrates the corresponding video quality in terms of PSNR.
Unstructured Mesh, with high residual loss shown in Figure 6.7, experiences very
low playback quality. VBCR clearly achieves much higher video quality. RLNC is

154 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

0 2 4 6 8 10
2

4

6

8

10

12

14

16

Link loss rate (%)

N
e
tw

o
rk

 t
ra

ff
ic

Global tree

Unstructured mesh
VBCR

Figure 6.10 Network traffic vs. link loss rate.

able to achieve optimal video quality by 100% delivery ratio, with the expense of
high network traffic redundancy shown later.

The total network traffic generated by different algorithms, under different link
loss rates, is shown in Figure 6.10. Global Tree generates large traffic that grows
very fast as the link loss rate rises. Unstructured Mesh with better sharing leads to
the least network traffic, as well as high residual loss and low video quality com-
pared to other two algorithms. The carefully chosen broadcasters as well as the high
efficiency of NC recovery in VBCR lead to a network traffic much lower compared
to RLNC and only slightly higher than that of Unstructured Mesh while achieving
lower-than-target residual loss. This can be further explained by the traffic compo-
sition as shown in Figure 6.11. The high efficiency of NC recovery makes a small
amount of NC recovery traffic sufficient to recover most losses after video packet
forwarding.

Next we evaluate the number of parents for each node. From Figure 6.12, we can
see that Global Tree algorithm, due to its optimized one-parent broadcast tree, leads
to the least number of relay parents (note that one-hop broadcast is enabled in all
cases). However the traffic going through each non-leaf node is very high. Unstruc-
tured Mesh results in more relay nodes as each node make individual decisions on
whether to relay or not without coordination. VBCR leads to most number of parents
for each node, due to the consideration of sole-parent nodes, which are not considered
in Unstructured Mesh. Figure 6.13 shows the distribution of the number of parents in
VBCR. We can see that the number of upstream nodes is well in control, with most
nodes received from 2 to 3 upstream nodes. Today’s mobile video streaming rates are
normally magnitudes below wireless bandwidth. Thus channel holding time for each
packet is quite short, leading to a low interference/collision probability.

ILLUSTRATIVE SIMULATION RESULTS 155

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Link loss rate (%)

N
e
tw

o
rk

 t
ra

ff
ic

Traffic for recovery
Traffic for forward
Total traffic

Figure 6.11 VBCR network traffic composition.

25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

Network size

N
u

m
b

e
r

o
f

p
a

re
n

ts
 p

e
r

n
o

d
e

VBCR
Unstructured mesh
Global tree

Figure 6.12 Number of parents for each node.

156 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

1 2 3 4 5
0

10

20

30

40

50

Number of relay parents

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s
 (

%
)

Figure 6.13 Histogram of the number of parents in VBCR.

6.7 CONCLUDING REMARKS

In this chapter we study live video streaming to clients in a wireless fog. In order
to save device energy and bandwidth, we need to reduce network traffic during a
video streaming session while trying to meet a target residual loss rate to maintain
playback quality. The straightforward “store-and-forward” based on video packets
approach often fails to reach the target loss rate due to losses and loss propagation.
The approach based on source-initiated RLNC, due to its “all-or-nothing” character-
istic, is often too aggressive in network with diverse loss conditions. We therefore
propose the “store–recover–forward” approach, allowing cooperative recovery that
utilizes peer-initiated NC over a subset of received source packets. In our proposed
distributed algorithm VBCR, neighboring nodes first performs cooperative NC recov-
ery to recover some of their lost packets, before making source packet forwarding
decisions distributedly and independently.

Under such system, nodes′ decisions on (i) which subset of received source packets
to code and (ii) which of its video packets to forward directly affect the loss recov-
ery efficiency and hence the total traffic generated. In VBCR, nodes distributedly and
independently make the previous decisions based on updated neighbor information.
Our simulation results show that VBCR with NC-based cooperative recovery at inter-
mediate nodes significantly outperforms other schemes in that VBCR uses reasonably
low network traffic to achieve a low residual loss rate.

REFERENCES

1. Zhi Liu, Gene Cheung, Vladan Velisavljević, Erhan Ekmekcioglu, and Yusheng Ji.
Joint source/channel coding for WWAN multiview video multicast with cooperative
peer-to-peer repair. In IEEE International Packet Video Workshop (PV), pages 110–117,
Hong Kong, December 2010.

REFERENCES 157

2. Zhi Liu, Gene Cheung, and Yusheng Ji. Distributed source coding for WWAN multiview
video multicast with cooperative peer-to-peer repair. In IEEE International Conference on
Communications (ICC), pages 1–6, Kyoto, Japan, June 2011.

3. Yichao Shen, Wenwen Zhou, Peizhi Wu, Laura Toni, Pamela C. Cosman, and
Laurence B. Milstein. Device-to-device assisted video transmission. In 20th IEEE
International Packet Video Workshop (PV), pages 1–8, San Jose, CA, USA, 2013. URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6691441&isnumber=6691435
(accessed on October 27, 2016).

4. Kenta Mori, Sho Hatakeyama, and Hiroshi Shigeno. Dcla: Distributed chunk loss avoid-
ance method for cooperative mobile live streaming. In 29th IEEE International Conference
on Advanced Information Networking and Applications (AINA), pages 837–843, Gwangju,
Korea, March 25–27, 2015.

5. Mengyao Sun, Yumei Wang, Yu Hao, and Yu Liu. Distributed cooperative video coding
for wireless video broadcast system. In IEEE International Conference on Multimedia and
Expo (ICME), pages 1–6, Turin, Italy, June 29–July 3, 2015.

6. S.V.M.G. Bavithiraja and Rathinavel Radhakrishnan. A new reliable broadcasting in
mobile ad hoc networks. Computer Science & Network Security (IJCSNS), 9(4):340–348,
2009.

7. Hermann S. Lichte, Hannes Frey, and Holger Karl. Fading-resistant low-latency
broadcasts in wireless multihop networks: The probabilistic cooperation diversity
approach. In Proceedings of the Eleventh ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc), pages 101–110, Chicago, IL, USA,
September 2010.

8. Xianlong Jiao, Wei Lou, Junchao Ma, Jiannong Cao, Xiaodong Wang, and Xingming
Zhou. Minimum latency broadcast scheduling in duty-cycled multihop wireless networks.
IEEE Transactions on Parallel and Distributed Systems, 23(1):110–117, 2012.

9. Xinyu Zhang and Kang G. Shin. Delay-optimal broadcast for multi-hop wireless networks
using self-interference cancellation. IEEE Transactions on Mobile Computing, 12(1):
7–20, 2013.

10. Dimitrios Koutsonikolas, Saumitra Das, Y. Charlie Hu, and Ivan Stojmenovic. Hierar-
chical geographic multicast routing for wireless sensor networks. Wireless Networks,
16:449–466, 2010.

11. Yean-Fu Wen and Wanjiun Liao. Minimum power multicast algorithms for wireless net-
works with a lagrangian relaxation approach. Wireless Networks, 17:1401–1421, 2011.

12. Tan Le and Yong Liu. Opportunistic overlay multicast in wireless networks. In IEEE
Global Telecommunications Conference (GLOBECOM), pages 1–5, Miami, FL, USA
December 2010.

13. Qiang Xue, Anna Pantelidou, and Matti Latva-aho. Energy-efficient scheduling and power
control for multicast data. In IEEE Wireless Communications and Networking Conference
(WCNC), pages 144–149, Cancun, Mexico March 2011.

14. Ashish James, A.S. Madhukumar, and Fumiyuki Adachi. Spectrally efficient error free
relay forwarding in cooperative multihop networks. In IEEE International Symposium
on Personal Indoor and Mobile Radio Communications (PIMRC), pages 2255–2259,
September 2013.

15. Gene Cheung, Danjue Li, and Chen-Nee Chuah. On the complexity of coop-
erative peer-to-peer repair for wireless broadcast. IEEE Communications Letters,
10(11):742–744, November 2006.

158 WIRELESS VIDEO FOG: COLLABORATIVE LIVE STREAMING

16. Xin Liu, Gene Cheung, and Chen-Nee Chuah. Deterministic structured network coding
for WWAN video broadcast with cooperative peer-to-peer repair. In IEEE International
Conference on Image Processing (ICIP), pages 4473–4476, Hong Kong, China, September
2010.

17. Michael Luby. Lt codes. In Proceedings of the Annual IEEE 43rd Symposium on
Foundations of Computer Science (FOCS), page 271, Vancouver, British Columbia,
Canada November 16–19, 2002.

18. Lorenzo Keller, Anh Le, Blerim Cici, Hulya Seferoglu, Christina Fragouli, and Athina
Markopoulou. Microcast: Cooperative video streaming on smartphones. In Proceedings
of the 10th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’12, pages 57–70, New York, NY, USA, 2012. ACM.

19. Hyojun Lim and Chongkwon Kim. Flooding in wireless ad hoc networks. Computer
Communications, 24(3–4):353–363, 2001.

20. Man-Fung Leung and Shueng-Han Gary Chan. Broadcast-based peer-to-peer collaborative
video streaming among mobiles. IEEE Transactions on Broadcasting Special Issue on
Mobile Multimedia Broadcasting, 53(1):350–361, 2007.

7 Elastic Mobile Device Clouds:
Leveraging Mobile Devices to
Provide Cloud Computing
Services at the Edge

KARIM HABAK,1 CONG SHI,1,2 ELLEN W. ZEGURA,1

KHALED A. HARRAS,3 and MOSTAFA AMMAR1

1 School of Computer Science, College of Computing, Georgia Institute of
Technology, Atlanta, GA, USA
2 Current affiliation: Square, Inc., San Francisco, CA, USA
3 Computer Science Department, School of Computer Science, Carnegie Mellon
University, Doha, Qatar

7.1 INTRODUCTION

Throughout the last decade, mobile devices have become an indispensable part of
every aspect of human life. They are increasingly relied on for various services that
go beyond simple connectivity and spread across the usage spectrum from gaming
and entertainment applications (e.g., video games) [1] to critical health care applica-
tions (e.g., health monitoring) [2]. Although these devices are becoming increasingly
capable, a large group of these applications still requires resources that exceed the
capabilities of a single mobile device. Therefore, Balan et al. made a case for mobile
devices to cyber forage by finding surrogate (i.e., helper) servers in the environ-
ment [3]. Since then, the research community has explored various forms of inter-
action between mobile devices and fixed, higher capacity infrastructure, including
the cloud. The motivation for this exploration has been and remains as articulated
by Satyanarayanan [4], namely, that mobile devices are resource constrained in com-
parison with servers and that users desire high performance applications regardless
of the device used to experience the application. By offloading some computation to
more powerful servers, mobile devices can offer a user experience beyond what local

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

160 ELASTIC MOBILE DEVICE CLOUDS

capabilities can support. Further, offloading may allow mobile devices to save power
and extend time between charges.

In addition to questions of performance speedup, energy savings, and cost, the
key questions for an offloading system design are where is the higher performance
capacity, who provides it and how does it fit into a larger computing ecosystem? In tra-
ditional cloud computing, the higher performance capacity is located in data centers
reached via the Internet and provided by companies that charge for transient server
use. Traditional cloud computing can offer essentially unlimited compute capacity
but at the price of latency and bandwidth limitations between the mobile device and
the servers in large data centers [5, 6]. In response to these limitations, the cloudlet
system moves computation closer to mobile devices, creating a two-tier architecture
where a mobile device can offload to a nearby, less capable server, at low latency and
high bandwidth rather than (or as a complement to) offloading to the cloud [7]. In
the cloudlet vision, these nearby servers would be located in public and commercial
spaces where people congregate, such as coffee shops and airport waiting areas [7].

We push further on the vision of edge-based clouds by making two observations.
First, while the gap remains between truly mobile devices (handhelds, wearable) and
high capacity servers [8], mobile devices have grown increasingly powerful, espe-
cially when laptops are included. Second, from an architectural perspective, it is
possible to refactor the cloudlet into a controller, responsible for receiving tasks,
scheduling their computation, and returning results, and a compute cluster, respon-
sible for performing the computation. When control and computation are decoupled
and mobile devices are recognized as capable to serve as surrogates in the right cir-
cumstances, we arrive at the notion of elastic mobile-device clouds. We define an
elastic mobile-device cloud as a collection of mobile devices configured to provide
a computation service. In this chapter we scope the design space for mobile-device
clouds and highlight instances of systems that fit in the space.

A key dimension of the design space turns out to be the stability (or elasticity)
of the mobile devices used to construct the cloud, as reflected in device churn and
computation cycles available for cloud computation. In settings of lower stability, the
compute cloud is more elastic, and constructing a computation service is extremely
challenging; in settings of higher stability, the compute cloud is less elastic, and con-
structing a computation service is more straightforward. We illustrate this spectrum in
Figure 7.1. At one end are extremely stable and deliberately configured clusters such
as proposed in the Mont-Blanc project (www.montblanc-project.eu) where, moti-
vated by energy considerations, a large number of mobile CPUs are configured in
a single chassis. At the other end are highly mobile and unpredictable devices that
are used opportunistically as they are encountered over time [9–11]. Our recent work
addresses the middle of the spectrum (coffee shops, public transit, theater/classrooms)
where the cluster has some stability based on semantics of the setting [12].

The remainder of this chapter is organized as follows. In the next section we fur-
ther develop the design space for elastic mobile-device clouds. We sketch a general
system architecture that captures functionality common across the design space. We
give examples of specific mobile-device cloud systems and review how they achieve
system functionality. We then turn in Sections 7.3 and 7.4 to a deeper dive into two

DESIGN SPACE WITH EXAMPLES 161

Serendipity FemtoCloud

Public transit

Streets

Increased cluster stability

Semi-stable clusters
Relatively

stable
clusters

Extremely
stable

clusters

Processors in
a chassis

Mont-Blanc
project

Computing while
charging

Non-clustered
highly mobile

devices

Coffee shops Classrooms

Internet con.
devices

Figure 7.1 Mobile cluster stability spectrum.

Network management

E
la

s
tic

 c
lo

u
d

 c
o

m
p

u
tin

g

c
o

re
 fu

n
c
tio

n
a

litie
s

Task/cloud

interface

Execution prediction

module
Task assignment and

scheduling module

Execution prediction

module

Initiator

Results

Arriving tasks

Figure 7.2 Elastic mobile-device clouds architecture.

example systems, FemtoCloud [12] and Serendipity [9], highlighting the evaluation
of their performance. We conclude with open challenges in the area of realizing elastic
mobile-device clouds.

7.2 DESIGN SPACE WITH EXAMPLES

To scope the design space of elastic mobile-device clouds, we first consider function-
ality that all such systems must have, regardless of where they reside in the stability
space. All systems receive tasks from task initiators and return results to initiators,
depicted in Figure 7.2 as the task/cloud interface. To do an effective job assigning

162 ELASTIC MOBILE DEVICE CLOUDS

TABLE 7.1 A Summary of Different System Assumptions

System Stability Task Origin Tasks Network

Mont-Blanc Extremely stable Outside Generic Ethernet/Myrinet
CWG Relatively stable Inside/outside File processing Internet
FemtoCloud Semi-stable Outside Generic Wi-Fi
Serendipity Unstable Inside PNP Intermittent

tasks to devices for processing, all systems benefit from some knowledge of the task
processing requirements. This information may be provided by the task initiator, but
more generally, systems will have an execution prediction module responsible for
estimating the resources required. All systems keep track of the mobile devices avail-
able in the cloud, via a device management function. This function may also conduct
ongoing estimation of the current capability of the devices to take on tasks. Given
tasks, resource requirements, and a set of mobile devices with capabilities, the task
assignment and scheduling module is responsible for assigning tasks to devices and
scheduling those tasks to execute. Finally, all systems use a network to move tasks
and results around and hence have a network management function to keep track of
the current connectivity.

We now turn to four examples of systems that fall into this design space. We sum-
marize characteristics of the examples in Table 7.1.

7.2.1 Mont-Blanc

The Mont-Blanc project aims to develop an energy- and cost-efficient exascale
high performance computing (HPC) architecture. To achieve this goal, it utilizes
energy-efficient mobile device processors (e.g., ARM processors) and assembles
a set of these processors in the same chassis. We consider it a special case of an
elastic mobile-device cloud with the highest level of stability. Arguably it isn’t
particularly elastic or mobile, but it serves as a useful endpoint for our stability
spectrum discussion.

The main goals in the Mont-Blanc project are (i) maximizing the performance of
every single processor and (ii) efficiently clustering multiple processors. To maximize
the performance gains from each processor, the authors address a set of hardware
challenges such as the lack of cooling infrastructure as well as software challenges
such as using soft-float calling conventions even if hardware floating point operations
are supported. The authors also quantify the performance of these processors in both
single- and multi-core scenarios. To maximize the performance gains from the whole
cluster, the work focuses on providing fast and reliable communication architecture
between different cluster nodes and across clusters using Myrinet Express message
passing stack on top of Ethernet links.

Unlike the other system examples in this section, Mont-Blanc provides paral-
lel processing abstractions that are used by developers to write parallel-processing
friendly code and provide the correct annotations to the compiler. Therefore, the need

DESIGN SPACE WITH EXAMPLES 163

for task/cloud interface is eliminated, unless implemented as a service on top of this
architecture. In addition, fine granularity task scheduling is possible, which avoids the
need for estimating task characteristics and requirements. Furthermore, the usage of
identical processors and having full control on what they execute enables Mont-Blanc
to efficiently manage the existing processors. Full access to the network that connects
different cluster nodes, as well as using Myrinet Express over Ethernet links, eases
the network management challenges.

7.2.2 Computing while Charging

Computing while charging (CWC) is a distributed computing infrastructure that uses
smartphones as the main computing nodes [13]. A CWC system consists of (i) a data
center that has tasks to execute and (ii) mobile devices with idle capacities that are
charging their batteries and connected to the data center via the Internet, as may be
owned by employees of the data center who have gone home for the evening. The
CWC architecture is designed to enable a data center to utilize idle capacity in mobile
devices to enhance its performance and/or reduce data center energy consumption.

The CWC cluster environment is stable. The mobile devices are connected to
power sources, which means they do not move and they have good energy availabil-
ity. CWC also assumes that these devices are connected to the data center via cellular
or Wi-Fi networks that contribute to the stability of the environment. In this archi-
tecture the data center controls, these devices and offloads tasks to them. The system
estimates the task execution times at various devices and estimates the available band-
width and latency. The CWC task scheduling mechanism takes these estimates into
account to maximize the computational throughput of system. With respect to the
generic architecture, CWC realizes the following:

Task/Cloud Interface. CWC relies on the controlling data center to implement the
appropriate interface between the computing nodes and the task originators (which
can be an entity outside the data center or a process inside the data center).

Execution Prediction. CWC assumes file processing tasks where the execution
load introduced by a task is a function of the size of its assigned input file. Therefore,
CWC utilizes knowledge of the input file size to determine the computational load
introduced by the task.

Device Management. CWC requires knowing the processing capacity of the
device and its available storage in order to take them into account while assigning
tasks. To avoid profiling all the devices to determine their computational capacity,
CWC profiles only the device with the minimum CPU clock speed and use the
relative difference in the clock speeds to derive the capacity of faster devices. CWC
relies on each device to acquire its available storage information and report it to the
controlling data center.

Network Management. To determine the available bandwidth and communication
latency between the data center and each mobile devices, CWC uses active probing
to estimate available bandwidth and latency. Note that this measurement phase can
happen once the device becomes connected to the data center and regardless of the

164 ELASTIC MOBILE DEVICE CLOUDS

status of other devices because there is generally no network contention from different
devices to the data center.

Task Assignment and Scheduling Module. Given certain load, CWC maximizes
the cloud’s computational throughput by minimizing the time needed by the last
mobile device to complete its tasks. Without network bandwidth contention, this
problem can be efficiently solved by solving the associated bin packing problem.
In this problem, the objective is to pack items in at most P bins with capacity C such
that the maximum bin height is minimized, where P is the number of devices, C is
the device capacity, and each task has height representing usage of device capacity.
Unlike Mont-Blanc, which uses dedicated devices, CWC must deal with the pos-
sibility that users need their devices while CWC would otherwise use them. CWC
handles this by (i) stopping the CWC task execution on the device once its user uses
it and (ii) controlling the CPU utilization in order not to increase the residual battery
charging time.

7.2.3 FemtoCloud

FemtoCloud [12] is a system designed and implemented to leverage mobile devices
to provide mobile computing services at the edge. It is designed to cluster colo-
cated mobile devices in environments where mobile device presence times can be
estimated. These environments include coffee shops, public transit, theater, and class-
rooms where people carry mobile devices. We situate these environments in the mid-
dle of the stability spectrum, not nearly as stable as Mont-Blanc and CWC systems
but still with some predictability in device presence time. FemtoCloud’s architecture
consists of a control device and a set of executing mobile devices. In this architec-
ture, the control device is responsible for managing the Femtocloud, distributing tasks
across different devices, gathering their results, and interfacing with task originators.
On the other hand, the rest of the mobile devices are responsible for executing tasks
and assisting the control device in acquiring the needed environmental information.
The FemtoCloud architecture predicts task characteristics, estimates device capaci-
ties and presence times, and uses the acquired information to distribute tasks across
different executing devices, as follows:

Task/Cloud Interface. In order to increase its usability, FemtoCloud relies on
the control device, which is relatively stable compared to the rest of devices in a
FemtoCloud to provide a stable and discoverable interface between the femtocloud
and its potential users. This control device is deployed in the environment and is
responsible for hiding the femtocloud’s internal dynamics from their users (task ini-
tiators). We highlight that, in some scenarios, this control device could be selected
from the femtocloud devices based on their stability, battery level, and available
Internet connectivity.

Execution Prediction. FemtoCloud relies on a generic task model where a task is
characterized by (i) its input size, (ii) its output size, and (iii) its introduced compu-
tational load. Since the task input size is known at the offloading time, FemtoCloud
only needs to predict/estimate its output size and its introduced computational load.
To acquire this information, FemtoCloud relies on the task originator to send the

DESIGN SPACE WITH EXAMPLES 165

task with an estimate for its computational load coupled with the its anticipated out-
put size. These estimates can be determined using Mantis system [14], which utilizes
application’s pre-generated models coupled with runtime execution information (e.g.,
variable values) to predict the application performance.

Device Management. Managing the devices in Femtocloud and estimating their
characteristics is one of the most important functionalities implemented. It is divided
into three subtasks implemented by the control device and the computing mobile
devices.

Discovery and Registration—To efficiently utilize the available compute
resources, it is critical to quickly discover their existence once they arrive. Therefore,
FemtoCloud implements discovery and registration mechanisms that can be tuned
based on the environment where FemtoCloud is deployed and used. In the discovery
protocol, the control device broadcasts beacons to announce its existence and enable
neighboring devices to discover it. The beaconing time and frequency is a function
of the environment contextual information. When a mobile device receives a beacon,
it starts the registration process if it is ready to join the Femtocloud and willing to
share its resources. In the registration process, the mobile device sends a registration
packet to this control device to join the femtocloud. This registration packet includes
some initial estimates of the device characteristics and a user profile shared in a
privacy preserving manner. Furthermore, mobile devices send periodic heartbeats
to maintain their status with the control device and provide it with real-time update
information.

Estimating the Device Capacity—FemtoCloud relies on mobile devices to estimate
their shared processing capacity and share these estimates with the control device
using the registration and heartbeat messages. Typically, mobile devices use syn-
thetic benchmarks and preassigned tasks to measure their execution speeds. These
measurements are coupled with users’ willingness to share their resources and power
saving status to get a more accurate capacity estimate.

Estimating the Device Presence Time—Accurately predicting the mobile device
presence time and intelligently utilizing this information leads to making better
resource management decisions. It also can significantly increase the utilization
of the existing resources. For instance, device churns can be proactively handled
before they actually occur. Devices with higher presence time can be better utilized
by assigning more tasks to them. Furthermore, tasks with high computational
requirement can be assigned only to devices that can finish them before their
departure times.

To predict the device presence times, FemtoCloud relies on a control device that
is responsible for gathering environment-specific data to build a generic user pro-
file based on the collective behaviors of the users. This profile is used to estimate
the presence times for new users and update these estimates over time. FemtoCloud
also combines these estimates with user-specific information (e.g., profile, schedule,
social information), acquired in a user privacy-preserving manner, to increase the
accuracy of such predictions.

Network Management. Since FemtoCloud utilizes the shared wireless spectrum
to send tasks to their executing devices and gather their results, it is critical to estimate

166 ELASTIC MOBILE DEVICE CLOUDS

the capacity of the spectrum and regulate its access from different devices. Femto-
Cloud uses the wireless signal strength to derive an estimate for the communication
bandwidth between a mobile device and the control device. This estimate is then
updated using active probing.

To control spectrum access, FemtoCloud relies on the controller and its scheduling
mechanism to determine when to offload a task to a certain mobile device or gather
results from others. The FemtoCloud scheduler ensures that only one device is uti-
lizing the spectrum at any point in time to minimize the collisions and maximize the
efficiency.

Task Assignment and Scheduling Module. The main goal of the FemtoCloud
scheduler and task assignment mechanism is to maximize the computational goodput
(“useful computations”) inside the femtocloud given task loads, device characteris-
tics, and network parameters. To increase the efficiency, the FemtoCloud scheduler
assigns tasks to devices that can complete them and returns their results to the control
device before their departure.

FemtoCloud relies on two main heuristics to assign tasks to their executing nodes
and gather their results. The first heuristic is to prioritize tasks with higher compu-
tation requirement per unit data transfer (inputs and outputs). Tasks are assigned to
the device that will first complete them and return their results. The second heuris-
tic is to switch from task-assigning mode to results-gathering mode if (i) the sys-
tem is unable to assign more tasks to devices while maintaining the feasibility of
gathering their results on or before their device’s departure time, or (ii) a device
with available results is predicted to leave soon. Section 7.3 illustrates performance
results for the FemtoCloud system under a variety of simulated and experimental
conditions.

7.2.4 Serendipity

Serendipity [9] is a system that enables mobile devices to construct a collabora-
tive community where mobile devices share their computational capacity with one
another. It is designed to deal with scenarios where device mobility is relatively
high. This mobility leads to frequent connections and disconnections between mobile
devices. Serendipity deals with the available contact periods as opportunities to either
offload tasks from one device to another or gather the results of completed tasks. The
offloading objective in this scenario is enhancing the computational performance of
task-initiating mobile devices. In this section, we discuss the main challenges that
Serendipity addresses:

Task/Cloud Interface. Due to the dynamic nature of the environment, Serendip-
ity does not offer a cloud service to outsiders. Instead it enables mobile devices to
directly communicate with one another to exchange tasks and results. In this scenario,
a mobile device can act as a task initiator and/or an executing node.

Execution Prediction. Serendipity assumes a job model where a job consists of a
pre-process program, N parallel tasks, and a post-process program. Serendipity’s task
initiator is responsible for (i) executing the pre-process and the post-process programs

DESIGN SPACE WITH EXAMPLES 167

and (ii) executing or offloading each parallel task. Serendipity requires having a com-
plete profile for each job. This profile includes (i) a complete directed acyclic graph
(DAG) that describes the job flow and (ii) the expected input, output, and execution
load for each task. To determine this information, Serendipity relies on offline train-
ing techniques used by MAUI [6] and CloneCloud [15]. In this case, job profiles are
generated using offline code analysis and execution under different circumstances.

Device Management. Managing devices in Serendipity’s scenarios is a distributed
process where each device discovers its peers and maintains needed information to
make good offloading decisions. The device management process is divided into three
main subtasks.

Discovery—Device discovery is one of the most important management tasks that
Serendipity’s devices must handle. In some scenarios, Serendipity uses a control
channel to let devices predict their future connectivity and avoid using explicit dis-
covery mechanism. In other scenarios, an explicit discovery mechanism is used. For
instance, mobile devices can broadcast periodic messages to enable other mobile
devices to discover it when it comes in their vicinity.

Estimating the Device Capacity—Serendipity relies on each mobile device to esti-
mate its processing capacity and share it with its peers. Generally, a mobile device
uses synthetic benchmarks to measure its execution speed and capacity.

Estimating the Device Energy Profile—Since most of the mobile devices are bat-
tery operated, it is important for Serendipity to take the energy consumption into
account while making task assignment decisions. Serendipity relies on PowerBooter
[16] to generate a model for device energy consumption. This model is then combined
with task parameters to predict their power consumption.

Network Management. Serendipity deals with scenarios where connectivity is
intermittent. Therefore, predicting connectivity is one of the most important network
management tasks. Serendipity relies on a control channel to predict future connec-
tions. If this control channel is not available, predicting the future connectivity is
possible via maintaining the historical contacts and mining them [17].

Task Assignment and Scheduling Module. Since tasks are generated at one of
the mobile devices, the task assignment mechanism is developed to minimize the job
execution time and enhance the job performance on this device. Whenever a mobile
device has a task to execute (either received it from an initiator or decided to execute
it locally), it starts executing the task and keeps executing until it comes in contact
with another device that will be able to complete the task and delivers its results to
the task originator faster. In this case, it offloads the task to this device that repeats
the whole process till the task is finished and delivered to its originator. Section 7.4
illustrates performance results for the Serendipity system under a variety of simulated
conditions.

In the remainder of this chapter, we take a deeper dive into the performance
achieved by two of the example systems described thus far, FemtoCloud and
Serendipity. Understanding the potential and limitations of performance, especially
for systems at the middle and low end of the stability spectrum, is critical for
determining how and when mobile-device edge clouds provide value.

168 ELASTIC MOBILE DEVICE CLOUDS

7.3 FEMTOCLOUD PERFORMANCE EVALUATION

The FemtoCloud system falls in the middle range of the stability spectrum. In this
section we present selected results from FemtoCloud’s simulation-based performance
evaluation. The reader is referred to [12] for additional results.

7.3.1 Experimental Setup

To have a realistic performance evaluation, we start by identifying the available capac-
ity in real mobile devices and the compute requirements of real applications. Table 7.2
summarizes the results of a measurement study that identifies the average capacity
of a background thread running in an Android OS. In this study, a matrix multiplica-
tion application is executed with different preset computational load (MFLOPs) on a
diverse set of devices. Table 7.3 summarizes another measurement study that deter-
mines the resource usage of various applications. These applications are (i) a chess
game in high difficulty mode, (ii) a video game called Angry Birds Space, and (iii) an
application for object recognition in a video feed (video processing). The results of
these studies and a synthetic compute intensive application are used in FemtoCloud
experiments to evaluate the system’s performance. Table 7.4 provides the parameter
values used in the simulations, with the defaults underlined. For the chess applica-
tion, we experiment with different input sizes. Throughout the evaluation, we use a
Poisson arrival process to model the arrival of new users as well as the arrival of new
tasks.

TABLE 7.2 FemtoCloud Experimental
Device’s Characteristics

Computation Capacity
Devices (MFLOPS)

Galaxy S5 3.3
Nexus 7 [2012] 7.1
Nexus 7 [2013] 8.5
Nexus 10 [2013] 10.7

TABLE 7.3 FemtoCloud Experiment Tasks Characteristics and Evaluation
Parameters

Computation Output Arrival Rate
Task Type Input (MB) (MFLOPs) (MB) (task/s)

Chess 2 10 0.2 1
Video game 0.2 30 2 2
Video processing 3.125 60 1 1
Compute intensive 8 100 0.5 0.5

FEMTOCLOUD PERFORMANCE EVALUATION 169

TABLE 7.4 FemtoCloud Experiment Parameters

Parameter Values

Chess input size (MB) [0.5, 2, 16]
Average user arrival rate (user/min) [2, 8]
Average user presence time (min) [0.25, 2, 5]
Average device’s available bandwidth (Mbps) 20
Average presence error ratio (%) [−50, 0.0, 50]

The underlined values are the defaults.

We use the following performance metrics:

• Compute Resource Utilization. This is the average utilization of the compute
resources in our cluster. To calculate this utilization, we only consider useful
computations, which belong to tasks completed by the femtocloud.

• Network Utilization. This is the average busy time of the network for sending
tasks or receiving results.

• Computational Throughput. This is the average amount of useful computations
finished by the femtocloud per second (MFLOPS).

We conduct two different sets of experiments. The first set of experiments
(Section 7.3.2) aims for understanding the effect of different environmental
parameters on the performance of FemtoCloud. The second set of experiments
(Section 7.3.3) sheds light on the performance of our developed prototype.

7.3.2 FemtoCloud Simulation Results

In this section, we study the impact of changing different environmental parameters
on the performance of FemtoCloud. We start by studying the impact of user arrival
rate and presence time followed by the true effect of stability in the system. We also
study the impact of changing task characteristics and robustness to estimation errors.
In a subset of these experiments, we compare FemtoCloud to a presence time oblivi-
ous scheduler (PreOb). Such scheduler uses the same task assignment heuristic used
by FemtoCloud but without taking the presence time of a device into account. Due
to its unawareness of the presence time, it requests the results from the device once
they become available.

Impact of Changing User Arrival Rate and Presence Time. Figure 7.3 shows the
effect of changing the average user presence time and the average user arrival rate on
the performance of FemtoCloud. Figure 7.3a shows that the increase in the presence
time or the user arrival rate significantly enhances the performance and increases the
femtocloud’s computational throughput. This increased computational throughput
saturates for large values of the arrival rate or the presence time. To explain the reason
behind this saturation, we refer to Figure 7.3b, which clearly shows that the network
utilization increases as more tasks get assigned to our devices until it becomes highly
utilized and unable to support more task assignments.

1

0

10

C
o

m
p

u
ta

ti
o

n
 t

h
ro

u
g

h
p

u
t

(M
F

L
O

P
S

)

20

30

40

50

(a)

2 3

Presence time (min)

Rate = 2 devices/min
Rate = 4 devices/min
Rate = 6 devices/min

Rate = 8 devices/min

4 5

1

0

20

N
e

tw
o

rk
 u

ti
liz

a
ti
o

n
 (

%
)

40

60

80

100

(b)

2 3

Presence time (min)

Rate = 2 devices/min
Rate = 4 devices/min
Rate = 6 devices/min
Rate = 8 devices/min

4 5

1

0

20

C
o
m

p
u
ti
n
g
 p

o
w

e
r

u
ti
liz

a
ti
o
n
 (

%
)

40

60

80

100

(c)

2 3

Presence time (min)

Rate = 2 devices/min
Rate = 4 devices/min
Rate = 6 devices/min
Rate = 8 devices/min

4 5

Figure 7.3 Impact of device arrival rate and presence time. (a) Computational throughput,
(b) network utilization, and (c) computational resource utilization.

FEMTOCLOUD PERFORMANCE EVALUATION 171

Figure 7.3c shows that the devices’ utilization decreases with the increase of the
presence time or the arrival rate. This decrease is due to having a lot of available
devices in the system, which enables distributing the load on them and minimizing
their utilization and overhead.

Stability Impact. Guided by the observations we draw from Figure 7.3c, it is crit-
ical to understand the true impact of the increased user presence on the system inde-
pendent of the changes to the available compute resources. Therefore we construct
an experiment in which we fix all the parameters in the system except the presence
time of the devices. In this experiment we have three devices (a Nexus 10 and 2
Nexus 7 devices), and we change the average user presence time from 15 seconds
to 1 hour. To isolate the effect of presence time, once a device leaves our cluster,
an identical copy arrives and joins the cluster. Figure 7.4 shows the results of these
experiments and compares FemtoCloud to the PreOb. Figure 7.4a and 7.4c show
that with the increase of the presence time, both algorithms utilize the stability to
gain more performance. FemtoCloud’s awareness of the presence time enabled it to
achieve higher performance than PreOb for low presence time values. Figure 7.4b
shows that the FemtoCloud’s increased performance comes with lower network uti-
lization. The main reason is that without the knowledge of the presence time, PreOb
assigns tasks to devices that may not be able to execute them, and, thus, it may have to
reassign them again to another device. This behavior keeps the network unnecessar-
ily busy. Figure 7.4b also shows that with the increase of presence time, FemtoCloud
becomes able to execute tasks that require high compute resource and low network
usage. Therefore, the more stable the devices in the femtocloud are, the less it con-
sumes from the network resources.

Task Characteristics Impact. To study the impact of changing the task charac-
teristics, we conduct an experiment that has only a single task type (chess). While
maintaining the average computational requirements and average output size as con-
stants, we vary the input size from 0.5 to 16 MB. Figure 7.5 shows the impact of
increasing the task input size on the performance of FemtoCloud. It is clear that
with the increase of the input size, the task characteristics moves from being CPU
bounded, which enables increasing the compute resource utilization to be fully net-
work bounded. Therefore the compute resource utilization decreases and the network
utilization increases.

Robustness to Estimation Errors. To measure the impact of errors in estimating
the presence time of the user on the system, we conduct an experiment in which
we introduce a Gaussian error and change the mean from −50% of the presence
time to +50% of the presence time. Figure 7.6 shows that when the error mean is 0,
FemtoCloud is able to achieve the highest utilization of the available devices. When
the error is negative, we have a conservative estimate about the presence time that lim-
its FemtoCloud usage of a device, which leads to decreasing the compute and network
utilization. When the error is positive, the computational utilization degrades because
FemtoCloud fails to gather all the executed task results. Note that our early gathering
heuristic is responsible for minimizing this effect. Figure 7.6b shows that the network
utilization keeps increasing because FemtoCloud keeps assigning more tasks while
moving from a conservative estimate to a less conservative one. Furthermore,

0.5 1.0 2.0 5.0 10.0

FemtoCloud
PreOb

FemtoCloud
PreOb

FemtoCloud
PreOb

50.0

0.5 1.0 2.0 5.0 10.0 50.0

0.5 1.0 2.0 5.0 10.0 50.0

C
o

m
p

u
ta

ti
o

n
 t
h

ro
u

g
h

p
u

t
(M

F
L
O

P
S

) 30

25

20

15

10

5

0

(a)

(b)

(c)

N
e

tw
o

rk
 u

ti
liz

a
ti
o

n
 (

%
)

100

90

80

70

60

50

100

90

80

70

60

50

C
o

m
p

u
ti
n

g
 p

o
w

e
r

u
ti
liz

a
ti
o

n
 (

%
)

Presence time (min)

Presence time (min)

Presence time (min)

Figure 7.4 Impact of cluster stability. (a) Computational throughput, (b) network utilization,
and (c) computational resource utilization.

FEMTOCLOUD PERFORMANCE EVALUATION 173

(a)

(b)

0

0.5 1.0 2.0 5.0 10.0

20

40

60

80

100

50

60

70

80

90

100

Input size (MBytes)

0.5 1.0 2.0 5.0 10.0

Input size (MBytes)

FemtoCloud

PreOb

FemtoCloud

PreOb

N
e

tw
o

rk
 u

ti
liz

a
ti
o

n
 (

%
)

C
o

m
p

u
ti
n

g
 p

o
w

e
r

u
ti
liz

a
ti
o

n
 (

%
)

Figure 7.5 Impact of task characteristics. (a) Computational resource utilization and
(b) network utilization.

when the error becomes positive, the network utilization will further increase due to
reassigning tasks after a device leaves without sending their results.

7.3.3 FemtoCloud Prototype Evaluation

In this section, we discuss the results we gathered while using our prototype. In our
experiment, we use three devices, a Galaxy S5 running Android 4.4.4 in addition to
a Nexus 10 [2013] and Nexus 7 [2013] tablets running Android 5.0.2. In this experi-
ment, we compare the performance of FemtoCloud to an oracle that assumes accurate
knowledge of all connectivity and execution time for every task on every device. Since
this oracle is impossible, we gather measurements from all the devices and use after
the fact analysis get the results.

174 ELASTIC MOBILE DEVICE CLOUDS

–40

40

50

60

70

80

90

100

(b)

C
o
m

p
u
ti
n
g
 p

o
w

e
r

u
ti
liz

a
ti
o
n
 (

%
)

–20

Error mean percentage (%)

FemtoCloud

PreOb

0 20 40

N
e
tw

o
rk

 u
ti
liz

a
ti
o
n
 (

%
)

40

50

60

70

80

90

100

(a)

FemtoCloud

PreOb

–40 –20

Error mean percentage (%)

0 20 40

Figure 7.6 Robustness to estimation errors. (a) Computational resource utilization and
(b) network utilization.

In our experiment, we compare the achieved compute throughput by the oracle
and FemtoCloud under two scenarios: (i) full presence scenario and (ii) emulated
arrival/departure scenario. In the first scenario, we assume that the three devices
existed during the whole period of experiment (1 hour). The main goal of this sce-
nario is comparing the maximum achievable performance of FemtoCloud to the one

SERENDIPITY PERFORMANCE EVALUATION 175

TABLE 7.5 Prototype Performance Measurements

Scenario Oracle (MFLOPS) FemtoCloud (MFLOPS)

Full presence 16.54 14.23
Emulated arrival/departure 10.31 8.86

achieved by the oracle. In the second scenario, we emulate average presence time of
two minutes for each device. We emulated the arrival of new devices by returning
the device to the cluster after average of 1 minute from its last departure. Table 7.5
summarizes these experiment results and shows that FemtoCloud achieved more than
85% of what the oracle achieved in both scenarios.

7.4 SERENDIPITY PERFORMANCE EVALUATION

To complement the performance results from FemtoClouds, we provide a selected
set of performance results for Serendipity. The reader is referred to [9] for additional
results. In evaluating Serendipity, we assess the performance of three different algo-
rithms for task assignment and scheduling. WaterFilling (WF) represents an ideal
case where all future contacts are known and a low bandwidth control channel allows
a central algorithm to schedule computation across all devices. Using a greedy task
assignment, WF attempts to minimize the completion time of all tasks.

Computing-on-Dissemination with predictable contacts (pCoD) and Computing-
on-Dissemination with unpredictable contacts (upCoD) both assume that there is no
control channel and hence no centralized opportunity to create a schedule. Instead,
when two devices encounter one another, they exchange task lists and make a deci-
sion on whether to pass any tasks to the other device. Predictable contacts assumes
it is possible to know when the result could be returned in the future; unpredictable
contacts makes no such assumption.

7.4.1 Experimental Setup

To evaluate Serendipity in various network settings, we have built a testbed on Emu-
lab [18] to easily configure the experiment settings including the number of nodes,
the node properties, etc. In our testbed, a Serendipity node running on an Emulab
node has an emulation module to emulate the intermittent connectivity among nodes.
Before an experiment starts, all nodes load the contact traces into their emulation
modules. During the experiments, the emulation module will control the communi-
cation between its node and all other nodes according to the contact traces.

To emulate various contact scenarios, we use both real-world contact traces and
synthetic traces. First, we use two real-world contact traces, a 9-node trace collected
in the Haggle project [19] and the RollerNet trace [20]. In the RollerNet trace, we
select a subset of 11 friends (identified in the metadata of the trace) among the 62
nodes so that the number of nodes is comparable to the Haggle trace. The Haggle

176 ELASTIC MOBILE DEVICE CLOUDS

trace represents the user contacts in a laboratory during a typical day, while RollerNet
represents the contacts among a group of friends during the outdoor activity. These
two traces demonstrate quite different contact properties. RollerNet has shorter con-
tact intervals, while Haggle has longer contact durations. Second, we synthesize a set
of contact traces to analyze the impact of different mobility factors on Serendipity.
To synthesize our traces, we rely on three mobility models, namely, the Levy walk
model [21], the random waypoint (RWP) model [22], and the time-variant commu-
nity mobility model (TVCM) [23].

In our testbed, we are running a speech-to-text application, which we implement
based on the Sphinx library [24] that translates audio to text. We implement it as a
single PNP-block job where the pre-process program divides a large audio file into
multiple 2 Mb pieces, each of which is the task input. The post-process program col-
lects and combines the results.

To demonstrate how Serendipity can help the mobile computation initiator to
speed up computing and conserve energy, we primarily compare the performance
of executing applications on Serendipity with that of executing them locally on the
initiator’s mobile device. Previous remote-computing platforms (e.g., MAUI [6],
CloneCloud [15]) don’t work with intermittent connectivity and, thus, cannot be
directly compared with Serendipity.

In all the following experiments, every machine has a 600 MHz Pentium III pro-
cessor and 256 MB memory, which is less powerful than mainstream PCs but closer
to that of smart mobile devices. Every experiment is repeated 10 times with different
seeds. The results reported correspond to the average values.

7.4.2 Serendipity’s Performance Benefits

We begin the experiments with the speech-to-text application using three workloads
in each of the three task allocation algorithms on both RollerNet and Haggle traces.
The sizes of the audio files are 20, 200, and 600 Mb. The baseline wireless bandwidth
is set to 24 Mbps. We also assume that all nodes have enough energy and want to
reduce the job completion time.

Figure 7.7 demonstrates how Serendipity improves the performance compared to
executing locally. We make the following observations. First, with the increase of
the workload, Serendipity achieves greater benefits in improving application perfor-
mance. When the audio file is 600 Mb, Serendipity can achieve as large as 6.6 and
5.8 time speedup. Considering the number of nodes (11 for RollerNet and 9 for Hag-
gle), the system utilization is more than 60%. Moreover, the ratio of the confidence
intervals to the average values also decreases with the workload, indicating that all
nodes can obtain similar performance benefits. Second, in all the experiments WF
consistently performs better than pCoD, which is better than upCoD. In the Haggle
trace of Figure 7.7c, WF achieves 5.8 time speedup while upCoD achieves 4.2 time
speedup. The results indicate that with more information Serendipity can perform
better. Third, although Serendipity achieves similar average job completion times on
both Haggle and RollerNet, the confidence intervals on Haggle are larger than those
on RollerNet. This is because the Haggle trace has long contact interval and duration,
resulting in the diversity of node density over the time.

SERENDIPITY PERFORMANCE EVALUATION 177

(a)

(b)

(c)

0

20

40

60

80

100

120

140

160
J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
)

RollerNet

Haggle

1.8×1.8×
1.7× 1.7× 1.6×

1.5×

0

200

400

600

800

1000

1200

1400

1600

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
)

4.5× 4.1×
3.6×

4.1× 3.8×

3.0×

0

1000

2000

3000

4000

5000

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
)

5.8×
6.6×

5.1×
5.9× 5.6×

4.2×

RollerNet

Haggle

RollerNet

Haggle

Executing locally Serendipity (WF) Serendipity (pCoD) Serendipity (upCoD)

Executing locally Serendipity (WF) Serendipity (pCoD) Serendipity (upCoD)

Executing locally Serendipity (WF) Serendipity (pCoD) Serendipity (upCoD)

Figure 7.7 A comparison of Serendipity’s performance benefits. The average job completion
times with their 95% confidence intervals are plotted. We use two data traces, Haggle and
RollerNet, to emulate the node contacts and three input sizes for each. (a) 10 tasks, (b) 100
tasks, and (c) 300 tasks.

178 ELASTIC MOBILE DEVICE CLOUDS

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Task numbers

C
D

F

(a)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Task numbers

C
D

F

Serendipity (WF)

Serendipity (pCoD)

Serendipity (upCoD)

(b)

Serendipity (WF)

Serendipity (pCoD)

Serendipity (upCoD)

Figure 7.8 The load distribution of Serendipity nodes when there are 100 tasks total, each of
which takes 2 Mb input data. (a) RollerNet and (b) Haggle.

To further analyze the performance diversity, we plot the workload distribution on
the Serendipity nodes of Figure 7.7b in Figure 7.8. In the RollerNet trace, all three
task allocation algorithms have similar load distribution, that is, about 25% nodes
are allocated 0 tasks while about 10% of the nodes are allocated more than 20 tasks.
In the Haggle trace, WF and pCoD have similar load distribution, while upCoD’s
distribution is quite different from them. The long contact intervals of the Haggle trace
makes the blind task dissemination of upCoD less efficient. In such an environment,
the contact knowledge will be very useful to improve the Serendipity performance.

SERENDIPITY PERFORMANCE EVALUATION 179

7.4.3 Impact of Network Environment

Next, we analyze the impact of the network environment on the performance of the
three task allocation algorithms by changing the network settings from the base case:
Wireless Bandwidth. We first consider the effect of wireless bandwidth on the perfor-
mance of Serendipity. The wireless bandwidth is set to be 1, 5.5, 11, 24, and 54 Mbps,
which are typical values for wireless links. The audio file is 200 Mb, split into 100
tasks. We plot the job completion times of Serendipity with three task allocation algo-
rithms in Figure 7.9.

We observe the following phenomena. First, in RollerNet, all three task allocation
algorithms achieve similar performance. Because these nodes have frequent contacts
with each other, using the locality heuristic (upCoD) is good enough to make use of
the nearby computation resource for remote computing. Second, when the bandwidth
reduces from 11 to 1 Mbps, the job completion time experiences a large increase. This
is because RollerNet has many short contacts that cannot be used to disseminate tasks
when the bandwidth is too small. Third, in the Haggle trace, the job completion time
of upCoD increases from 545.0 to 647.6 seconds when the bandwidth reduces from
24 to 11 Mbps. Meanwhile WF achieves consistently good performance in all the
experiments. This is because in the Haggle laboratory, environment users are rela-
tively stable and have longer contact durations. Thus, the primary factor affecting the
Serendipity performance is the contact interval. On the other hand, since the contact
distribution is more biased, only using locality is hard to find the global optimal task
allocation.

Node Mobility. The aforementioned experiments demonstrate that contact traces
impact the performance of Serendipity. To further analyze such impact, we use mobil-
ity models to generate the contact traces for 10 nodes. Specifically, we use the Levy
Walk model [21], RWP [22], and TVCM [23]. These models represent a wide range
of mobility patterns. RWP is the simplest model and assumes unrestricted node move-
ment. Levy Walk describes the human walk pattern verified by collected mobility
traces. TVCM depicts human behavior in the presence of communities. The basic
settings assume a 1 km by 1 km square activity area in which each node has a 100 m
diameter circular communication range.

In this set of experiments, we focus on the two most important aspects of node
mobility, that is, the mobility model and the node speed. The wireless bandwidth is
set to 11 Mbps.

The results of this comparison are shown in Figure 7.10. Figure 7.10a shows that
Serendipity has larger job completion time with all the mobility models than it had
on Haggle and RollerNet traces. This is because their node densities are much sparser
than Haggle and RollerNet traces. Thus it’s harder for the job initiator to use other
nodes’ computation resources. We also observe that Serendipity achieves the best
performance when the RWP model is used. This is because RWP is the most diffu-
sive [21] and, thus, results in more contact opportunities among nodes.

Node speed affects the contact frequencies and durations, which are critical to
Serendipity. We vary the node speed from 1 m/s, that is, human walking speed, to
20 m/s, that is, vehicle speed. As shown in Figure 7.10b, when the speed increases

180 ELASTIC MOBILE DEVICE CLOUDS

0 10 20 30 40 50 60
0

200

400

600

800

1000

Bandwidth (Mbps)

0 10 20 30 40 50 60

Bandwidth (Mbps)

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
)

(a)

0

200

400

600

800

1000

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
)

(b)

Serendipity (WF)

Serendipity (pCoD)

Serendipity (upCoD)

Serendipity (WF)

Serendipity (pCoD)

Serendipity (upCoD)

Figure 7.9 The impact of wireless bandwidth on the performance of Serendipity. The average
job completion times are plotted when the bandwidth is 1, 5.5, 11, 24, and 54 Mb/s, respec-
tively. (a) RollerNet and (b) Haggle.

SERENDIPITY PERFORMANCE EVALUATION 181

0 5 10 15 20
0

200

400

600

800

1000

1200

(a)

(b)

1400

1600

Node speed (m/s)

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

0

200

400

600

800

1000

1200

1400

1600

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

Levy Walk RWP TVCM

2.2×

1.6×

2.8×

2.4×
2.2×

1.8×
1.8×

1.9×

1.7×

Serendipity (WF)

Serendipity (pCoD)

Serendipity (upCoD)

Serendipity (WF)

Serendipity (pCoD)

Serendipity (upCoD)

Figure 7.10 The impact of node mobility on Serendipity. We generate the contact traces for
10 nodes in a 1 km × 1 km area. In (a) we set the node speed to be 5 m/s, while in (b) we use
Levy Walk as the mobility model.

182 ELASTIC MOBILE DEVICE CLOUDS

from 1 to 10 m/s, the job completion times drastically decline, for example, from
1077.1 to 621.6 seconds for WF. This is because the increase of node speed signif-
icantly increases the contact opportunities and accelerates the task dissemination.
When the speed further increases to 20 m/s, the job completion time is slightly
reduced to 526.4 seconds for WF.

Number of Nodes. We finally examine how the quantity of available computation
resources impacts Serendipity. To separate the effect of node density and resource
quantity, we conduct two sets of experiments. In the first set, the active area is fixed,
while in the second one, the active area changes proportionally with the number of
nodes using the initial setting of 20 nodes in 1 km × 1 km square area. Figure 7.11
shows the results where nodes follows RWP mobility model with wireless bandwidth
at 2 Mbps.

As shown in Figure 7.11a, with the increase in the number of nodes in a fixed
area, the job completion times of the three task allocation algorithms are reduced
by more than 50%, from 550.0, 647.0, and 748.7 seconds to 273.0, 311.7, and
325.0 seconds for WF, pCoD, and upCoD, respectively. Meanwhile, in Figure 7.11b,
the job completion times are almost constant despite the increase in node
quantity.

7.4.4 The Impact of the Job Properties

Next we evaluate how the job properties affect the performance of Serendipity:
Multiple Jobs. A more practical scenario involves nodes submitting multiple jobs

simultaneously into Serendipity. These jobs will affect the performance of each other
when their execution duration overlaps. In this set of experiments, nodes will ran-
domly submit 100 task jobs into Serendipity. The arrival time of these jobs follows a
Poisson distribution. We change the arrival rate 𝜆 from 0.0013 (its system utilization
is less than 20%) to 0.0056 (its system utilization is larger than 90%) jobs per second.
Figure 7.12 shows the results on the RollerNet and Haggle traces.

As expected, the job completion time increases with the job arrival rate. In
both sets of experiments, the job completion time gradually increases with the job
arrival rate until 0.005 jobs per second and, then, drastically increases when the job
arrival rate increase to 0.0056 jobs per second. According to queueing theory, with
the system utilization approaching 1, the queueing delay is approaching infinity.
However, even when the system utilization is larger than 90% (i.e., 𝜆 = 0.0056),
the job completion times of Serendipity with various task allocation algorithms
are still less than 54% of executing locally, showing the advantage of distributed
computation.

DAG Jobs. The previous experiments show that Serendipity performs well for
single PNP-block jobs, since DAG jobs are executed iteratively for all dependent
PNP-blocks while parallel for all independent PNP-blocks. The previous experiment
results also apply to DAG jobs. In this set of experiments, we will evaluate how
PNP-block scheduling algorithm further improves the performance of Serendipity.

We use the job structure shown in Figure 7.13, where the processing of one
image impacts the processing of another. We use the PNP-blocks of speech-to-text

SERENDIPITY PERFORMANCE EVALUATION 183

10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

(a)
1600

Number of nodes

10 15 20 25 30 35 40

Number of nodes

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

0

200

400

600

800

1000

1200

1400

(b)
1600

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

Serendipity (WF)

Serendipity (pCoD

Serendipity (upCoD)

Serendipity (WF)

Serendipity (pCoD

Serendipity (upCoD)

Figure 7.11 The impact of node numbers on the performance of Serendipity. We analyze
the impact of both node number and node density by fixing the activity area and setting
it proportional to the node numbers, respectively. (a) Fixed active area and (b) fixed node
density.

184 ELASTIC MOBILE DEVICE CLOUDS

0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

1000

(a)

Job arrival rate (×10–2)

0.1 0.2 0.3 0.4 0.5 0.6

Job arrival rate (×10–2)

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
)

0

200

400

600

800

1000

(b)

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Serendipity (WF)

Serendipity (pCoD)

Serendipity (upCoD)

Serendipity (WF)

Serendipity (pCoD)

Serendipity (upCoD)

Figure 7.12 Serendipity’s performance with multiple jobs executed simultaneously. The
job arrival time follows a Poisson distribution with varying arrival rates. (a) RollerNet and
(b) Haggle.

application as the basic building blocks. PNP-block A has 0 tasks; B has 200 tasks;
C has 50 tasks; D has 100 tasks; E has 100 tasks; F has 0 tasks. The performance
difference between our algorithm and assigning equal priority to the PNP-blocks is
shown in Figure 7.14.

SERENDIPITY PERFORMANCE EVALUATION 185

A

C D

B

E

F

Node 1 Node 2 Node 3 Node k...

b

c

c

b

b

b

c

c

b

b

c

b

c

b

Figure 7.13 A job example where both PNP-block B and C are disseminated to Serendipity
nodes after A completes. Their task positions in the nodes’ task lists are shown blow the DAG.

Executing locally
0

1000

2000

3000

4000

5000

6000

7000

8000

J
o
b
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Priority

No priority

Serendipity (WF) Serendipity (pCoD)Serendipity (upCoD)

Figure 7.14 The importance of assigning priorities to PNP-blocks.

Our priority assignment algorithm achieves the job completion time of 1155.8,
1315.8, and 1383.2 seconds for WF, pCoD, and upCoD, consistently outperforming
that of 1369.2, 1573.4, and 1654.4 seconds when all PNP-blocks have the same pri-
ority. These experiments demonstrate the usefulness of priority assigning. Further
evaluation of our algorithm on diverse type of jobs will be part of our future work.

186 ELASTIC MOBILE DEVICE CLOUDS

7.5 CHALLENGES

There are a number of challenges that need to be addressed to ultimately utilize
mobile devices to provide elastic clouds at the edge. These challenges include:

User Incentives. To have a large-scale deployment of elastic cloud computing
systems, incentives are needed to encourage users to share their idle devices’ com-
putational capacity, especially in situations where these devices are not plugged in.
Incentive models in such cases need to be revisited depending on the context and
applications for which such systems are used. Possibilities include user-to-user ad
hoc offloading that may require variations of reputation or credit-based systems, to
corporate-to-user offloading applications requiring a negotiated pricing and payment
system.

Security and Privacy. Depending on the scale of deployment and the nature of
the applications running or being offloaded, along with potential incentive system
solutions that would involve some form of payment, security and privacy are major
concerns. Running unknown code, sharing data with other entities, and routing con-
tent and code through unknown entities certainly opens the door for various malicious
challenges that need to be addressed accordingly.

Context Awareness and Fault Tolerance. Better knowledge about the context in
which an elastic cloud computing systems is deployed, about application usage pro-
file or about the stability of other devices within proximity, would all lead to better
decisions that would significantly enhance performance. Thus, dynamic adaptation to
changes in the system context and failures is one of the key aspects for any large-scale
deployed system.

Portability. The ability to run computations on various mobile platforms will
be hindered by the same portability challenges faced earlier by the grid computing
community. Finding mobile-specific solutions through the creation of virtual
machine-like platforms or developing web-browser-based sandboxed-like solutions,
along with the classical need to write code modular enough to be easily offloaded,
are challenges that will need to be addressed.

REFERENCES

1. Ha, I., Yoon, Y., and Choi, M. (2007) Determinants of adoption of mobile games under
mobile broadband wireless access environment. Information & Management, 44 (3),
276–286.

2. Chib, A., van Velthoven, M.H., and Car, J. (2015) mHealth adoption in low-resource envi-
ronments: A review of the use of mobile healthcare in developing countries. Journal of
Health Communication, 20 (1), 4–34.

3. Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., and Yang, H.I. (2002) The
case for cyber foraging, in Proceedings of the 10th Workshop on ACM SIGOPS European
Workshop, ACM, pp. 87–92.

REFERENCES 187

4. Satyanarayanan, M. (2015) A brief history of cloud offload: A personal journey from
odyssey through cyber foraging to cloudlets. SIGMOBILE Mobile Computing and Com-
munications Review, 18 (4), 19–23, doi:10.1145/2721914.2721921. URL http://doi.acm
.org.prx.library.gatech.edu/10.1145/2721914.2721921.

5. Shi, C., Habak, K., Pandurangan, P., Ammar, M., Zegura, E., and Naik, M. (2014) Cosmos:
Computation offloading as a service for mobile devices, in ACM MobiHoc.

6. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra, R., and
Bahl, P. (2010) MAUI: Making smartphones last longer with code offload, in Proceedings
of the Eighth International Conference on Mobile Systems, Applications, and Services,
ACM, pp. 49–62.

7. Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009) The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Computing 8 (4), 14–23.

8. Flinn, J. (2012) Cyber foraging: Bridging mobile and cloud computing, in Synthesis Lec-
tures on Mobile and Pervasive Computing, Morgan and Claypool Publishers, San Rafael,
CA, pp. 1–103.

9. Shi, C., Lakafosis, V., Ammar, M.H., and Zegura, E.W. (2012) Serendipity: Enabling
remote computing among intermittently connected mobile devices, in Proceedings of the
13th ACM international Symposium on Mobile Ad Hoc Networking and Computing, ACM,
pp. 145–154.

10. Teo, C.L.V. (2012) Hyrax: Crowdsourcing Mobile Devices to Develop Proximity-based
Mobile Clouds. Master’s thesis, Carnegie Mellon University, Pittsburgh, PA.

11. Mtibaa, A., Harras, K., and Fahim, A. (2013) Towards computational offloading in mobile
device clouds, in IEEE Fifth International Conference on Cloud Computing Technology
and Science (CloudCom), IEEE, pp. 331–338.

12. Habak, K., Ammar, M., Harras, K.A., and Zegura, E. (2015) Femtoclouds: Leveraging
mobile devices to provide cloud service at the edge, in IEEE International Conference on
Cloud Computing (IEEE CLOUD).

13. Arslan, M.Y., Singh, I., Singh, S., Madhyastha, H.V., Sundaresan, K., and Krishnamurthy,
S.V. (2012) Computing while charging: Building a distributed computing infrastructure
using smartphones, in Proceedings of the Eighth International Conference on Emerging
Networking Experiments and Technologies, ACM, pp. 193–204.

14. Kwon, Y., Lee, S., Yi, H., Kwon, D., Yang, S., Chun, B.G., Huang, L., Maniatis, P., Naik,
M., and Paek, Y. (2013) Mantis: Automatic performance prediction for smartphone appli-
cations, in Proceedings of the 2013 USENIX conference on Annual Technical Conference,
USENIX Association, pp. 297–308.

15. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., and Patti, A. (2011) Clonecloud: Elastic
execution between mobile device and cloud, in Proceedings of the Sixth Conference on
Computer Systems, ACM, pp. 301–314.

16. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., and Yang, L. (2010)
Accurate online power estimation and automatic battery behavior based power model
generation for smartphones, in Proceedings of the Eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, ACM, pp. 105–114.

17. Burgess, J., Gallagher, B., Jensen, D., and Levine, B.N. (2006) MaxProp: Routing for
vehicle-based disruption-tolerant networks, in Proceedings of the IEEE International Con-
ference on Computer Communications (INFOCOM), pp. 1–11.

188 ELASTIC MOBILE DEVICE CLOUDS

18. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M.,
Barb, C., and Joglekar, A. (2002) An integrated experimental environment for distributed
systems and networks, in Proceedings of the Fifth Symposium on Operating Systems
Design and implementation, USENIX Association, Berkeley, CA, USA, pp. 255–270.

19. Scott, J., Crowcroft, J., Hui, P., and Diot, C. (2006) Haggle: A networking architecture
designed around mobile users, in WONS 2006, Third Annual Conference on Wireless
On-demand Network Systems and Services, pp. 78–86.

20. Tournoux, P.U., Leguay, J., Benbadis, F., Conan, V., de Amorim, M.D., and Whitbeck,
J. (2009) The accordion phenomenon: Analysis, characterization, and impact on DTN
routing, in IEEE International Conference on Computer Communications (INFOCOM),
pp. 1116–1124.

21. Rhee, I., Shin, M., Hong, S., Lee, K., and Chong, S. (2008) On the levy-walk nature of
human mobility, in IEEE INFOCOM 2008. 27th Conference on Computer Communica-
tions.

22. Saha, A.K. and Johnson, D.B. (2004) Modeling mobility for vehicular ad-hoc networks,
in Proceedings of the First ACM International Workshop on Vehicular Ad Hoc Networks,
ACM, pp. 91–92.

23. Hsu, W.-J., Spyropoulos, T., Psounis, K., and Helmy, A. (2007) Modeling time-variant user
mobility in wireless mobile networks, in IEEE INFOCOM 2007, 26th IEEE International
Conference on Computer Communications, IEEE, pp. 758–766.

24. Lee, K.F., Hon, H.W., and Reddy, R. (1990) An overview of the SPHINX speech recogni-
tion system. IEEE Transaction on Acoustics, Speech and Signal Processing 38 (1), 35–45.

PART III
Applications of Fog

8 The Role of Fog Computing in the
Future of the Automobile

FLAVIO BONOMI,1 STEFAN POLEDNA,2 and
WILFRIED STEINER2

1 Nebbiolo Technologies, Inc., Milpitas, CA, USA
2 TTTech Computertechnik AG, Wien, Austria

8.1 INTRODUCTION

The modern automobile is a computing-rich electronic system on wheels, with
more than 100 computers per vehicle, and it will become much more powerful
in the not too distant future. This trend is motivated by a number of converging
requirements and developments, including the need for connectivity of automobiles
to sources of travel information and entertainment, the need for vehicle-to-vehicle
and vehicle-to-infrastructure exchanges for accident prevention, the move toward
more dynamic and modern vehicle maintenance, the need to rationalize the electronic
vehicle control architecture by reducing control system weight and cost of software
development, the evolution toward electric vehicles, and, most importantly, the need
to assist or even replace drivers.

Indeed, our life today strongly depends on the automobile, a finely engineered
element in today’s critical infrastructures. While the primary function of the car
is obvious, engineers and scientists have aimed since the automobile’s origins
to improve various important factors (we will refer to them as the “four factors”
in this chapter): economic efficiency, environmental sustainability, safety, and
passenger comfort. Over the last decades, the advancements in computer technology
have enabled breakthrough improvements to all four factors. Most remarkable at
this moment, the automobile industry is about to radically transform the driving
experience—autonomous cars will step by step transfer the driver’s responsibilities
to the car. Indeed, the first fully functional prototypes of autonomous systems are
available by established automotive OEMs as well as by their rising competitors
originating from the information industry. These prototypes have successfully

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

192 THE ROLE OF FOG COMPUTING IN THE FUTURE OF THE AUTOMOBILE

Deterministic Ethernet

network and consolidated,

virtualized electronic

control unit or “fog node”

Sensors and

actuators

Fog node
on wheels

Figure 8.1 The future automobile as fog computing on wheels.

validated the autonomous system functionality. However, there are still various
technical challenges to master on the way toward making autonomous systems
available to the general public, because the evolution of automotive technologies is
bringing together the most advanced academic and industrial knowledge in the fields
of communications, computing, systems control, artificial intelligence, security and
safety, and energy storage and management.

The evolution of thought at the origin of fog computing was in many ways
motivated by the critical requirements foreseen in the automotive and intelligent
transportation sectors, which have contributed to crystallize fog computing at the
convergence of the most advanced embedded system virtualization and of modern
real-time, deterministic, and safety-aware computing and networking.

We can now safely claim that future automobiles will look like powerful, compact,
scalable data centers on wheels, or fog computing nodes on wheels, as illustrated in
Figure 8.1, traveling within highways and cities equipped with powerful fog comput-
ing capabilities at their intersections and along their pathways.

In this chapter we focus on challenges in a key technological area of the car—the
electrical/electronic (E/E) architecture—and discuss the role of fog computing in
addressing these challenges. Note that, in this chapter, we will use the broad defi-
nition of fog computing introduced in Ref. [1], which is closely related, even if not
identical, to other fog concepts discussed in this book.

In Section 8.2, we will describe the current automobile electronic architecture,
while in Section 8.3 we will discuss the challenges of such electronic architecture as
it faces near future requirements. In the same section, we will introduce key technolo-
gies that will be fundamental in the car electronics evolution. Section 8.4 motivates
the vision for a scalable, more centralized computing architecture for the car of the
future, while Section 8.5 motivates the roles of deterministic networking and virtual-
ization in the future car control architecture. Section 8.6 hosts our conclusions.

CURRENT AUTOMOBILE ELECTRONIC ARCHITECTURES 193

8.2 CURRENT AUTOMOBILE ELECTRONIC ARCHITECTURES

Besides infotainment systems, the automotive industry almost exclusively uses spe-
cialized automotive technology. Thus, the automotive industry uses dedicated chips,
operating systems (OS) and software, and specialized network technologies.

Automotive chipsets, for example, greatly differ from typical consumer electron-
ics, such as the chips in cell phones or other embedded devices. Automotive chips are
able to operate in a temperature range of about −40 to +125∘C (sometimes +170∘C
and higher), while consumer electronics target a temperature range of about 0 to
+85∘C. Frequently automotive chips implement more safety functions that monitor
the behavior of the chip and will disable the chip as a whole or in parts in the event
that the monitor detects a failure.

Automotive chips also implement interfaces to automotive-specific networks, like
CAN, LIN, FlexRay, and MOST. These automotive networks have been developed to
enable robust communication in harsh environments at reasonably low cost. Further-
more, some of these protocols provide guaranteed real-time transmission latencies,
which are highly relevant for control applications. For years Ethernet was not able to
compete with the automotive networks, but recent advancements in the physical layer
as well as protocol extensions for real-time communication make Ethernet a viable
technology for future in-vehicle use. Indeed, at the time of this writing, there are the
first automobiles in series production that use Ethernet.

Automotive OS and software development in general are quite distinct from typ-
ical consumer products. Automotive open system architecture (AUTOSAR) [2] has
evolved as a common software architecture and OS for the automotive market. While
in the past it has been difficult to migrate software modules from one system to
another, AUTOSAR now enables a straightforward transferability as well as scalabil-
ity to different vehicles and platform variants. AUTOSAR executes typical OS tasks,
like scheduling and inter-task communication. However, as opposed to consumer OS,
AUTOSAR pre-allocates exact resources to the computations and communication in
advance (at design time) to minimize dynamic decisions during runtime. Sometimes,
quite typical for embedded systems, applications need to execute on “bare metal”
meaning that there is no OS in use at all.

Since the automobile is a safety-critical vehicle that must guarantee passenger
safety, rigorous development processes are applied in the development of the
automotive software and hardware (including networking equipment). The ISO
26262 standard (“Road vehicles—functional safety”), in particular, has been
developed for this purpose. For example, the ISO 26262 specifies a risk-based
approach to determine the integrity levels of automotive applications. These
integrity levels are called automotive safety integrity levels (ASIL) and range from
ASIL A, representing the least stringent level, to ASIL D, representing the most
stringent level. Based on the calculated ASIL level, ISO 26262 defines functional
safety requirements for each application as well as validation and verification
procedures.

An example of a current E/E architecture is sketched in Figure 8.2. A clear dis-
tinction can be seen between the control systems of the car (on the left) and the

CAN

LIN

CAN

CAN

ECU

Powertrain

Chassis/
safety

Central gateway

Bridge

Body/control

OBD connecter

CAN

Instrument cluster WiFi/cell/DSRC

BT

Video cam

Infotainment
system

GPS Sat
Tethered

smartphone

Figure 8.2 Traditional E/E automobile architecture.

FUTURE CHALLENGES OF AUTOMOTIVE E/E ARCHITECTURES 195

infotainment systems (on the right). The control systems are grouped into domains
as, for example, powertrain, chassis/safety, and body control.

A central gateway can be used for information transfer between the domains and
the infotainment systems. A strict separation of the control systems from the info-
tainment systems is of upmost importance. For example, as demonstrated by a recent
real-world experiment [3], scientists were able to utilize a vulnerability inside the
head unit (being part of the infotainment system) to infiltrate the car’s control sys-
tems. Furthermore, Figure 8.2 shows an onboard diagnostic (OBD) connection to the
central gateway. OBD is mandated by law and provides a unified diagnostic access
to the car’s E/E systems.

8.3 FUTURE CHALLENGES OF AUTOMOTIVE E/E ARCHITECTURES
AND SOLUTION STRATEGIES

While today’s cars manage to balance well the four factors (economic efficiency,
environmental sustainability, safety, and passenger comfort), automotive electronics
face various challenges in the future. First, there is an issue of scalability: with
the enormous pace of innovation in the automotive E/E area, both functionality
and the number of electronic control units (ECUs) are growing rapidly. (Figure 8.3
shows an example of ECU.) Recently, a German OEM announced that one of their
top-of-the-line vehicles includes 130 ECUs in total. This growing number of ECUs
adds weight and power, consumes precious space, and ultimately adds considerable
cost. Therefore, for efficiency reasons, novel architectural approaches are necessary
to slow down and ideally reverse this trend. Fog computing can enable higher
integration of functions per ECU, through virtualization, resource sharing, and
multiplexing, and, therefore, helps to mitigate the scalability challenge.

Secondly, upcoming applications will require higher levels of connectivity inside
the car between the various ECUs as well as outside the car to infrastructure and/or to
other cars (car-2-x communication). For example, inside the car, the communication
requirements may be driven by real-time video applications that need to communicate

Figure 8.3 Example of an automotive ECU, the TTA drive platform from TTTech (inner
structure and with automotive-grade housing).

196 THE ROLE OF FOG COMPUTING IN THE FUTURE OF THE AUTOMOBILE

uncompressed video streams to ECUs hosting image recognition processes. Car-2-x
communication is not only a valuable instrument for maintenance actions such as
software updates but also a fast path to receive emergency signals from outside the
car used, for example, for accident prevention [4]. A fog node can act as a local
coordinating entity for the car-internal communication and function allocation as well
as a proxy for the communication to and from the outside of the car.

Thirdly, security and privacy topics become more and more critical. This is partly
a consequence not only of the increasing connectivity to the car but also by the car
operating in smarter environments. Again, a fog node element can be equipped with
security and privacy mechanisms.

Finally, as we strive to achieve the autonomous drive goal, it is clear that more
computing and storage are needed to fuse and analyze in real time the growing amount
of information collected by advanced sensors. A flexible and scalable fog node is the
natural architectural element satisfying the evolving requirements leading to fully
autonomous vehicles.

These four challenges, (i) higher density of functions per ECU, (ii) improved
communication inside the car as well as outside, (iii) security and privacy, and (iv)
advanced processing needs for autonomous vehicles, are quite complex.

The response to these four challenges, shaping the future of the automobile, is
articulated around two main themes:

1. Fog Computing, as an ideal bridge between modern information technologies
(IT) and operational technologies (OT)

2. Time-Triggered Technologies, based on precise time distribution, time-sensitive
networking and computing resource allocation making up a collection of
design patterns, have been applied in critical computer-based systems such as
space vehicles, airplanes, and new energy production systems. The combined
use of these technologies forms the time-triggered architecture (TTA). Note
that fog computing, in its full expression, needs to embrace and manifest
a TTA.

In addressing the four challenges listed previously, we can heavily leverage modern
IT technologies. There are existing solutions in IT on which the automotive industry
could build matching solutions. IT encompasses, for example, advanced networking
technologies, like Ethernet, TCP/IP, and higher layered networks, software-defined
networking (SDN), big data technologies, and virtualization technologies, as well as
proven security solutions.

In the meantime, the embedded OT domain has in many ways remained separate
and even isolated, developing its own networking protocols, which are often spe-
cific for each vertical (CAN, MODBUS, Profibus). OT is slowly adopting Ethernet
but with nonstandard modifications (Ethernet IP, Profinet) and has not adopted stan-
dard wireless technologies (frequently using proprietary radio protocols). The OT
world has enjoyed some of the progress in computing but often uses older genera-
tion products due to their more restrictive environmental and lifecycle requirements.
Existing OT systems limit their connectivity to each other and to the broader Internet

FUTURE CHALLENGES OF AUTOMOTIVE E/E ARCHITECTURES 197

infrastructure by using older generation operating systems, by using no open-source
software (with some good justification), and by assigning a computer (an ECU or
a PLC, or an industrial computer) to solve a limited task, justified by real time and
reliability requirements. Virtualization is only now making its baby steps in the OT
arena, and lifecycle management of software is often based on older practices (e.g.,
local and complex, often by manual software updates).

Security is a strong concern for the OT domain and has in many ways deterred
the agile adoption of technologies and practices, which have produced fast progress
in the IT domain. In particular, the security issue, as driven by safety concerns and
requirements, has maintained a strong separation between the IT domain and the OT
domain in the industrial and transportation verticals, as examples.

The cultures in IT and OT are radically different, and communication across the
two domains is challenging. Also, the electronic upgrade cycles are naturally very dif-
ferent between the two domains, with very fast refresh cycles in IT and much slower
cycles in OT. On the other hand, the potential behind a more organic integration of
the worlds of IT and OT is immense, particularly for the future of the automobile,
and there is an accelerating trend throughout various industries toward this IT/OT
convergence and integration.

Some of the “general” implications of the IT and OT convergence powerfully
affecting the future of most vertical industries in the Internet of Things (IoT), includ-
ing automotive and transportation, are the following:

• Introduction of standard networking technologies, such as Ethernet, Wi-Fi, and
Bluetooth

• Adoption of modern security approaches typical of IT

• Exposure in OT to advanced models of computation and resource virtualization
(GPUs, virtualization, etc.)

• Exposure in OT to advanced models of application development and deploy-
ment

• Exposure in OT to advanced methods of software system automation, manage-
ment, distribution, and update

• OT closed systems can now leverage a large pool of computing resources and
information to improve their operations

• Modern analytics approaches may be adopted, even close to the edge in OT
systems

• Exposure in OT to the most advanced smartphone advances

• Sharing of economy of scale in OT typical of IT environments

• Pressure to accelerate rate of refresh in OT electronic systems

• Real-time, reliability, security, safety and system acceptance requirements typ-
ical of critical OT systems are now imposed to technologies coming from the
IT world. In particular, these new requirements have brought about important
advances in real-time computing and deterministic networking.

198 THE ROLE OF FOG COMPUTING IN THE FUTURE OF THE AUTOMOBILE

Instrumented
machines

Industrial
data systems

Big data
analytics

Decisions
and

controls

Remote and
centralized

data
visualization

Meaningful
data

graphically
expressed

Figure 8.4 The IoT virtuous information cycle.

The overall implication of this convergence is well described by Figure 8.4, which
depicts the IoT virtuous information cycle, from extraction to analysis to visualiza-
tion to control, as inspired by General Electric [5]. This cycle definitely not only
applies to the automotive vertical and manifests in a number of fast cycles within a
vehicle, but also on broader, slower optimization cycles involving powerful analytics
in the cloud.

Fog computing is a key enabler of IT and OT convergence, based on its posi-
tion, technologies, and features. In fact, fog computing is built on some of the same
technologies characterizing cloud computing applied to more compact, embedded
computing systems, such as virtualization of all resources, resource management
automation, and application lifecycle management, and will lend itself to the appli-
cation of software-defined networking approaches.

On the other hand, fog computing, with its “edge of the network” positioning
and more constrained resources, extends cloud computing in a nontrivial way by
introducing:

• Hard real-time and more deterministic behavior in its networking, computing,
and storage

• Focus on the direct support of a much wider set of networking technologies,
including wireless and sensor networking and legacy-wired networking typical
of OT deployments

• Relevance of mobility

• Focus on the interoperability with nonhomogeneous data sources, creating a
data mediation functionality enabling applications to have more agile and flex-
ible access to a wide variety of data sources

FUTURE CHALLENGES OF AUTOMOTIVE E/E ARCHITECTURES 199

• Support of compact, streaming, and real-time capable data analytics

• Extended system, networking, and physical security and safety

• Renewed interest in hardware support of functionality, motivated by energy,
space, and real-time requirements

Fog computing naturally mediates between the IT and the OT domains, since it
inherits elements from both domains. Fog computing provides sufficient resources to
achieve this mediation at the various levels of the stack, from low level networking
to security, data, and the application levels.

In a later section we will describe more specifically how the same convergence
of IT and how OT is manifesting in the automotive space and will drive the future
automotive architecture.

Although IT for OT use has a high potential to become a cornerstone of future
automotive E/E architectures, there are also new aspects in the four challenges that
are not adequately addressed by IT solutions so far. The most distinctive characteristic
of an automobile E/E architecture in contrast to a typical IT application is safety. The
car, after all, is a powerful machine that can kill if not handled with care. Therefore,
automotive software and hardware solutions typically need to be developed according
to rigorous development processes as discussed in the previous section. Furthermore,
the implementation according to well-defined design patterns prevents design errors
of automotive E/E architectures. The TTA [6] is such a collection of design patterns
and has been applied in critical computer-based systems such as space vehicles, air-
planes, and new energy production systems. In its core, the TTA’s design patterns
focus to guarantee real-time behavior of subsystems and the system as a whole and
inference-free composition of subsystems, two aspects not addressed by typical IT
products. On the contrary, “never touch a running system” is a frequent motto in
IT and, at least partly, comes from the typically incomplete knowledge of an inherent
IT system’s structure and composition.

The TTA enforces the system structure and composition by use of synchronized
time. In its purest form, all subsystems are synchronized to each other and execute a
pre-configured schedule that defines the points in time when subsystems use shared
resources, such as computation or communication resources, and interact with each
other. An example application of the TTA is an automotive network as depicted in
Figure 8.5. Here, three sensors and four actuators connect to four switches. For sim-
plicity we assume that switches 1 and 2 also incorporate processing elements like
CPUs or GPUs and, in fact, could be defined as fog nodes. In real automotive net-
works switches, end points, sensors, and actuators will be partially integrated in single
ECUs. Thus, the network in Figure 8.6 should be seen as simplified example only.

In such a network data delivery can be guaranteed while preserving real-time com-
munication by implementing the TTA as depicted in Figure 8.6. Here, the devices,
that is, switches and end points that incorporate the sensors and actuators, synchronize
their local clocks to establish a system-wide synchronized time. The communication
in the network then follows a communication schedule that is defined at system design
time and is locally pre-configured in the devices.

200 THE ROLE OF FOG COMPUTING IN THE FUTURE OF THE AUTOMOBILE

Sensor
1

Sensor
2

Sensor
3

Actuator
3

Actuator
2

Actuator
4

Switch 1

Switch 4

Switch 3

Switch 2

Actuator
1

Figure 8.5 Example of automotive network.

TT1

TT2

TT1

Message period

TT2

Sen1

t.1 t.8

t.2

t.3 Real time

Sensor 1

Switch1

Switch 4

Actuator 4

Sw1

Sw4

TT4 TT5 TT6 TT7

t.4 t.5 t.6 t.7

Sw1

Sw4

Act4

Figure 8.6 Example of communication schedule in time-triggered communication.

The example shows that the transmission of message TT1 from sensor 1 to the
switch 1 is scheduled at the point in time t.1. The switch may then compute a com-
mand based on this input and generate a new message, TT2, for actuator 4. Switch 1
sends this TT2 at t.2 to switch 4, which in turn forwards TT2 to the receiving actu-
ator 4 at t.3. As depicted, communication links can be tightly scheduled, like the
link from switch 1 to switch 4, with messages TT4–TT7 being forwarded at t.4–t.7.
Finally, the complete communication repeats at t.8 and continues in a cyclic fashion.
Since all devices use the synchronized time to execute the communication schedule,
messages do not have to compete for transmission on the links and queueing delays
are therefore avoided.

8.4 FUTURE AUTOMOBILES AS FOG NODES ON WHEELS

As we suggested in the previous section, the future automobile architecture will be
consistent with and, in some ways, will inspire the general trends characterizing the
evolution of IoT and the digitization of many fundamental industrial verticals, such
as industrial automation.

FUTURE AUTOMOBILES AS FOG NODES ON WHEELS 201

IT technologies will reach deep into the traditionally OT automotive world in new
and significant ways. More sensors, connected via wires or, in higher numbers, wire-
lessly, will collect and report more sophisticated information. Video, laser, and radar
technologies will be keys in the support of assisted drive. More microphones will help
in preventive maintenance, voice activated control, and sound management. Driver
health sensors will monitor key vital parameters.

Communications with other vehicles and the infrastructure will see the full
adoption of Wi-Fi DSRC [4] with its use for both collision avoidance and general
meshed vehicular communications. Multiple cellular connections, including new
long-range and low-power connections, will be pervasive. The vehicle cabin will
become an entertainment and information center, as well as a mobile office, served
by Wi-Fi, Bluetooth, NFC, low-power sensor networks, with high bandwidth
available for video, voice, and data over IP. A rich computing and storage capability
will be required to support high quality experiences in music, video, and gaming.
Networking will move more in the direction of IPv6.

In-vehicle storage requirements will continue to grow. More data, even “Big Data,”
will be collected on both the vehicle health and on the passengers’ health and expe-
rience. Some of this data will need to be processed, compressed, or analyzed in real
time on the vehicle, and some will need to be uploaded toward data centers and clouds.
Large amounts of navigation, entertainment, control data, and software will be down-
loaded into the vehicle.

Naturally, driven by the evolution of smartphones, the automobile will need to
become a platform for the delivery of applications and become more open to the
judicious use of open-source software.

All the trends above point in the natural direction toward fog computing.
Fog computing, in its full manifestation, with its scalable computing and stor-

age architecture, rich wired and wireless connectivity support, virtualization for both
non-real-time and real-time services, sophisticated data management and analytics
support, secure computing and networking, and modern management and application
deployment features, will enable:

• The convergence of key functions, today hosted in different, poorly communi-
cating subsystems and ECUs, into virtual functions hosted in virtual machines
(VM) or virtual containers (VC), running on server class, but low-power CPUs
and GPUs, and potentially supported by accelerators (e.g., FPGAs), all support-
ing hardware-level virtualization functionality

• Secure software management, with non-service impacting upgrades

• Secure hosting of open-source software and modern application management,
with multiple OS

• Centralization of networking and security functions, through SDN approaches.
Centralization of the security function (e.g., encryption, IDS, IPS, Firewall) is
particularly important, since it would be unmanageable, costly, and even unfea-
sible to allocate them to them to distributed ECUs

• Natural interplay between cloud and fog on the vehicle activities, particularly
in the navigation, entertainment, and data management and analytics areas.

SatGPS

CAN

Powertrain

Chassis/
safety

Body control

Tethered smartphone/
owner connectivity

Instrument cluster

IVI/headunit

USB/ WiFi/ BT

OBD connector

Rear
video cams

Ethernet

TSN Ethernet

TSN Ethernet

Chassis/
safety

Powertrain

Body control

Body control

Front
video cams

Telemetry module
WiFi//BT/Cell/GPS/
DSRC

Rear view mirror

ADAS sensors: laser, radar, cameras, etc.

A fog node

Real-time capable
Highly virtualized and secure
Scalable computing, storage

GPU support

Figure 8.7 Future automotive E/E architecture.

DETERMINISTIC FOG NODES ON WHEELS 203

Figure 8.7 illustrates the E/E architecture of future automobiles. Note that the full
enjoyment of the rich features of the future highly connected and IT-rich automobiles
can only be achieved once such automobiles can truly be autonomous. The evolution
toward this goal is the topic of the next section.

8.5 DETERMINISTIC FOG NODES ON WHEELS THROUGH
REAL-TIME COMPUTING AND TIME-TRIGGERED TECHNOLOGIES

As discussed in the previous sections, opportunities arise from more tightly coupling
the IT and automotive-specific computer technologies. Inventions in the IT domain
then can be leveraged by the automotive industry much faster and more efficiently,
and they can help to solve the challenges of future automotive E/E architectures. The
fog node provides capabilities of utmost importance to address the four challenges
outlined before (scalability in the number of ECUs, connectivity within the car and to
the outside, security, rich analytics for autonomous drive). Two of the most important
capabilities of the fog node are virtualization of resources and managing/participating
in deterministic communication.

In the following two subsections, we discuss virtualization on the ECU-level
and deterministic communication on the in-vehicle network in more detail. Toward
the end of this section, we address an emerging use case of fog computing in
the car—vehicle-wide virtualization (VWV)—that combines virtualization on the
ECU-level and deterministic communication. This use case provides a relevant step
toward the ultimate vehicle E/E architecture.

8.5.1 Deterministic Fog Node Addressing the Scalability Challenge through
Virtualization

Virtualization is a well-known concept in the general-purpose computing industry
for more than a decade. It introduces an abstraction layer, such that applications
(and indeed complete OSs) execute on VMs or VC, instead of their direct execution
on the underlying hardware (as depicted in Figure 8.8). VWV is an attempt toward
general-purpose and automotive-specific technology coupling by introducing virtual-
ization holistically to the automobile. VWV simplifies the integration of innovations
onto a single physical platform while guaranteeing freedom of unintended interfer-
ence with other systems. Therefore, it allows to significantly cut back the turnaround
time from invention to prototyping and even to series-production readiness.

There are plenty of benefits of virtualization in general-purpose computing and
many translate easily to benefits also in embedded systems [7]. For example, (i) virtu-
alization supports multiple OSs. Thus, rich OS like Linux can coexist with real-time
OS on the same hardware platform. Furthermore, (ii) services that used to run on
dedicated hardware can be consolidated into a single hardware platform. Indeed, this
transition from federated to integrated architectures has been leveraged by other
industries like the avionics industry for many years. In the automotive domain,
AUTOSAR is one approach in this direction. Also, (iii) virtualization is a means

204 THE ROLE OF FOG COMPUTING IN THE FUTURE OF THE AUTOMOBILE

Hardware Hardware

Operating system

App. 1 App. 2

Hypervisor

Guest OS 1 Guest OS 2

App. 1 App. 2 App. 3 App. 4

System without virtualization System with virtualization

Figure 8.8 Classical system architecture versus virtualization.

to maintain security properties—a security breach in one VM remains isolated and
does not affect applications executing in other VMs.

Virtualization techniques allow a single ECU hardware to run multiple so-called
VMs in parallel. For example, it is possible to run AUTOSAR (and even multi-
ple instances thereof) in parallel with rich OS like embedded Linux. The hypervi-
sor, as the core element of virtualization, guarantees bounded interference or even
interference freedom from one VM to the respective others. Provided the right sys-
tem architecture is in place, it can be argued that safety-related applications can
be even colocated with other noncritical or lesser critical applications on the same
ECU and furthermore connected via a deterministic Ethernet to even more ECUs.
While virtualization of computing nodes is a well-adopted technique (at least in the
general-purpose computer industry), the virtualization of the network is primarily
associated with virtual LANs (VLANs). Only recently, the development of network
virtualization with the aim of minimizing interference has gained momentum. Such
a highly integrated ECU equipped with superior communication technologies, like
deterministic Ethernet, is, indeed, a fog computer.

8.5.2 Deterministic Fog Node Addressing the Connectivity and
Security Challenges

The fog node for automotive use needs to interact and manage deterministic net-
works to guarantee upper bounds on transmission latencies. Furthermore, there is
a need for the network itself to be used for applications with varying time- and
safety-critical requirements. Thus, the underlying network will be virtualized such
that the same physical network can support a multitude of applications while min-
imizing the interference of different messages on each other as well as precisely
characterizing such interference. Recently, automotive Ethernet has evolved as the

DETERMINISTIC FOG NODES ON WHEELS 205

Preamble SOF
MAC

destination
MAC

source
802.1Q

“VLAN” tag
Ethertype/

length
Payload FCS IFG

7B 1B 6B 6B 4B 2B 42B – 1500B 4B 12B

Tag protocol
identifier

Priority code
point

Drop eligible
indicator

VLAN
identifier

16 bits 3 bits 1 bit 12 bits

Figure 8.9 Ethernet frame format.

most promising candidate for such a network-level virtualization because of two main
developments. First, automotive Ethernet physical layers are available, for example,
Broad-R-Reach®, IEEE 100BASE-T1, and IEEE 1000BASE-T1. Second, the IEEE
802.1 audio/video task group has extended relevant Ethernet standards toward its use
for real-time applications. Furthermore, the IEEE 802.1 Time-Sensitive Networking
(TSN) task group continues standardization of robustness and fault-tolerant func-
tionality in Ethernet-based networks as well as improved real-time communication.
Deterministic Ethernet [8], TTTech’s automotive Ethernet solution, implements IEEE
AVB standards and IEEE TSN pre-standards as well as the SAE AS6802 standard,
which provides fault-tolerant clock synchronization for safety-relevant applications.
We continue with the discussion of some key features of Ethernet, IEEE AVB, IEEE
TSN, and SAE AS6802 next.

Ethernet is standardized by the IEEE 802 standardization body. In particular the
802.3 working group defines the Ethernet media access control (MAC) layer and
physical (PHY) layer, while the 802.1 working group defines Ethernet switch behav-
ior (note: while switch is the well-known terminus technicus in industry, the standards
use the term “bridge”).

Ethernet messages are also called frames, and the format of an Ethernet frame
is depicted in Figure 8.9. Traditionally, the IEEE enhanced the real-time properties
of messages by using a priority field in the VLAN tag. Based on this priority, a
switch can decide which one of the many messages to be transmitted next in case
there are several messages waiting for forwarding. However, many use cases have
been found in which the simple priority mechanism is insufficient. Thus, the IEEE
802.1 audio/video bridging (AVB) task group has developed real-time extensions to
Ethernet that have been implemented in core IEEE standards in 2011 and include
techniques such as bandwidth reservation, credit-based shaping, and a synchroniza-
tion protocol, 802.1AS.

Although, AVB has enhanced Ethernet toward real-time capabilities (the goal is
2 ms latency over a network path of seven hops), the industrial and automotive indus-
tries have been pushing for better real-time performance as well as fault-tolerant
features. Thus, the AVB task group has been renamed to the TSN task group and

206 THE ROLE OF FOG COMPUTING IN THE FUTURE OF THE AUTOMOBILE

continues the standardization process. At the time of this writing, TSN is working
on eight standardization projects (i.e., either defining a new standard document or
modifying an existing standard). These projects address various areas, for example,
time-triggered communication, improved synchronization, redundant communica-
tion, message preemption, and traffic policing and filtering. The first TSN standards
are currently under finalization, most notably a basic form of time-triggered commu-
nication, called time-aware shaping.

A simple network and the operation IEEE 802.1Qbv time-aware shaper are
depicted in Figure 8.10. Here, ECUs A and B send messages synchronized accord-
ing a configured communication schedule (A1-2, B1-2), while ECUs C and D
send messages unsynchronized (C1-3, D1-3). As depicted, switch 1 integrates the
synchronized messages with the unsynchronized ones by selectively activating and
deactivating outgoing queues of the switch: at those points in time when scheduled
messages are arriving, the switch activates queue Q1 and deactivates queue Q2. If
no synchronized messages are scheduled, then the switch activates queue Q2 and,
thus, forwards the unsynchronized messages. Consequently, synchronized messages
are transmitted through the network with minimal contention (possibly none) while
unsynchronized messages may significantly queue up in the network.

The AVB and TSN shaping can be used to fine-tune the level of acceptable interfer-
ence of messages belonging to different applications on each other. In case a medium
level of interference is acceptable, then the messages can be sent as AVB traffic (i.e.,
being shaped by the credit-based shaper). On the other hand, if no interference (or
only minimal interference) is acceptable, then the message transmissions should be
scheduled. From a network virtualization point of view, the level of interference
equals the quality level of the virtualization being in place—the less interference,
the less the operational distinction of an application between running on a physi-
cally separated network from running on a virtualized network. Thus, synchronized
communication (in the extreme, time-triggered communication, in which message
transmissions are scheduled at each ECU and at each switch) allows a maximum of
network virtualization quality.

The broader adoption of the IEEE Ethernet standards, with its layer 2 security
features, resource prioritization and separation (e.g., VLANs), brings about important
improvements in terms of security, with respect to the current automotive protocols,
such as CAN Bus (e.g., no source address specified in the messages).

8.5.3 Emerging Use Case of Deterministic Fog Nodes in Automotive
Applications—Vehicle-Wide Virtualization

Figure 8.11 depicts an example of VWV. In this simple example, we depict eight
ECUs connected to each other by means of an automotive Ethernet network. In par-
ticular, ECUs 1–4 connect to a front switch, while ECUs 5–8 connect to a rear switch.
The front and the back switches are connected to each other by means of an Ethernet
link and together the switches and the link act as a backbone network that is shared
for communication by all ECUs. The figure depicts ECU 1 and the backbone link

Switch1

A

B

C

D

E

F

G

Switch 2

Talker

Listener
M

M

M

M
M

M

M

M

SS

S

S

S

S

S

S

[ECU C, Sw 1]

A1

C1

[ECU A, Sw 1]

C2 C3

A2

B1[ECU B, Sw 1] B2

[Sw 1, Sw 2] C1

C2

C3

[ECU D, Sw 1] D1 D2 D3

D1 A1 A2 B1 B2

D2

D3

C2

S
w

itc
h

1
 in

te
rn

al

Q2 Aktiv
Q2 Inaktiv

Q1 Aktiv
Q1 Inaktiv

Q2

(a) (b)

Figure 8.10 (a) Example of network and (b) communication scenario of the IEEE 802.1Qbv “time-aware shaper.”

ECU3

ECU4

Actuator

ECU1

ECU2

Actuator

Actuator

Actuator

ECU7ECU5

ECU6

Actuator

Actuator

ECU 1 Network (backbone link)

Task Task Task

Guest OS GuestOS

Hypervisor

Hardware/network IO

ECU 2

ECU 8

Task

OS

Hardware/network IO

TaskTask

ECU8

Figure 8.11 Example of vehicle-wide virtualization (VWV).

REFERENCES 209

in more detail as well as the non-virtualized ECU 8. ECU 1 implements ECU vir-
tualization in which a hypervisor allows the implementation of several (two in this
example) guest OS. ECU 1 could actually be an automotive fog node. Applications
run on top to the OS and consist of a number of tasks. As ECU 1 is connected to
the shared Ethernet network, in particular to the front switch, the hypervisor needs
to serialize the input from and output to the network. The network is then in charge
to coordinate and serialize the messages from different ECUs on the Ethernet back-
bone link. In this example the network integrates the messages from ECU 1 with
messages from ECU 2. Figure 8.11 furthermore depicts a simple ECU, ECU 8, as a
consumer of the data produced by ECU 1 and transported by the network backbone
link. We emphasize that VWV does not demand to construct all ECUs as virtualized
devices. The concept rather suggests virtualization of ECUs as needed but allows the
seamless interconnection also with non-virtualized ECUs.

This simple example illustrates the various scheduling decisions that can (but do
not need to) be aligned within the distributed computer system. These scheduling
decisions are (i) application-specific scheduler, (ii) task scheduler in the operating
system, (iii) the hypervisor scheduler that controls the access of the virtual cores to
shared hardware (e.g., to the network interface), and (iv) the network scheduler. It is
easy to see that the better the individual scheduling routines are harmonized to each
other, the more efficient the overall system may operate.

8.6 CONCLUSION

In this chapter, we discussed the challenges facing the current electronic automotive
design and concluded that fog computing, in its most complete interpretation, pro-
vides an ideal infrastructure architecture responding to the fundamental challenges
facing automotive electronic design. While this architecture makes software applica-
tion design much more efficient and agile, the next challenge is exactly there.

More time-sensitive, secure, and functionally critical software will be needed to
support future autonomous, electrically powered cars, based on a software engineer-
ing which needs to make important progress and is a topic for future discussion.

REFERENCES

1. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet
of things,” in Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, MCC ’12 (New York, NY, USA), pp. 13–16, ACM, 2012.

2. AUTOSAR, AUTOSAR Webpage, http://www.autosar.org/ (Accessed January 29, 2016;
online).

3. Wired.com, http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/ (Acces-
sed January 29, 2016; online).

4. T. Zhang and L. Del Grossi, “Vehicle Safety Communications: Protocols, Security, and
Privacy”, John Wiley & Sons, Inc., Hoboken, NJ, October 2012.

210 THE ROLE OF FOG COMPUTING IN THE FUTURE OF THE AUTOMOBILE

5. P.C. Evans and M. Annunziata, “Industrial Internet: Pushing the Boundary of Minds
and Machines,” 2012, http://www.ge.com/docs/chapters/Industrial_Internet.pdf (Accessed
September 10, 2016).

6. H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of the IEEE,
vol. 91, no. 1 (2003): 112–126.

7. G. Heiser, “The role of virtualization in embedded systems,” in Proceedings of
the First Workshop on Isolation and Integration in Embedded Systems, EuroSys
2008 Affiliated Workshop, Glasgow, Scotland, UK, pp. 11–16, ACM, April 1, 2008.
http://ess.cs.uni-dortmund.de/workshops/iies/2008/ (Accessed October 27, 2016).

8. TTTech, https://www.tttech.com/technologies/deterministic-ethernet/ (Accessed January
29, 2016; online).

9 Geographic Addressing for
Field Networks

ROBERT J. HALL

AT&T Labs Research, Bedminster, NJ, USA

9.1 INTRODUCTION

Scenario. A team of firefighters is fighting a wildfire in a large wilderness area. They
track each other on maps displayed on smartphone class devices to make sure they
don’t leave gaps in their lines through which the fire could move to get behind them.
They monitor each other’s biosensors in case someone is overtaken by smoke or heat
or otherwise gets into trouble. An overflying drone helps by sending real-time images
of the fire down to them. They collaborate by exchanging messages and map annota-
tions with each other in real time to share intelligence about terrain, the fire, weather,
or other exigent conditions. Oh, by the way, cell coverage is spotty at best and nonex-
istent in many parts of the wilderness.

Scenario. A group of young people is playing a large-scale game of iTron [1]
in an area near their local high school. This is a new type of game involving both
real-world athletic activity and virtual-world elements that add fun and imaginative
content. Their person-worn devices (smartphones) maintain the state of the game,
display a map with locations of both human and virtual elements, record scoring, and
determine the outcomes of interactions. The cell coverage in this area is notoriously
time dependent; rush hour on the nearby freeway can strongly impact or negate net-
work availability and responsiveness unpredictably. There is no infrastructure Wi-Fi
coverage.

9.1.1 Field Networking

Both of these scenarios, and many more, require field networking: data communica-
tions networks that enable devices in large-scale physical environments to commu-
nicate in order to support real-world tasks. In addition to emergency response and

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

212 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

games, other applications of field networking (“field applications”) include geosens-
ing and data collection, process control, drone airspace awareness and control, mili-
tary operations and force protection, military training, and connected and autonomous
vehicles.

Field networking scenarios almost invariably involve fog networking subscenar-
ios as well. The firefighters mentioned earlier need maps that come from servers in
the cloud and may upload logged sensor data to the cloud to support after action
reviews; the game players need maps as well, but they also store game results and
records, such as high scores or league results which are computed in the field, in an
Internet-accessible cloud service; geosensing applications, while often doing some
local processing close to where the data collection occurs, still need to report the
results up to cloud services for further processing and delivery to customers. Thus,
field networking will necessarily need to support and interoperate with fog style net-
working applications. Also, since fog networking applications fundamentally involve
some communications in the field, they need field networking support as well.

Field networks can be constructed using various wireless systems, including Wi-Fi
(802.11), ad hoc Wi-Fi, and cellular data (e.g., 4G/LTE). These can be supplemented
by wired networks, such as the Internet, when this is accessible. However, coverage
by infrastructure networks, that is, those implemented using installed towers, relays,
base stations, or access points, is not always available in the field. The military, for
example, often operates in remote areas far from cell coverage or Wi-Fi hots pots.
First responders often find themselves in areas where either there is no coverage at
all or else the infrastructure network is not functioning either due to damage from
the emergency situation or else simply from being overloaded with people calling
and messaging the affected area. Thus, field networking must not be totally defeated
by the (temporary or permanent) unavailability of infrastructure networks; rather, it
should be able to continue operating among devices present and operating in the field,
even if such operation is limited in some ways.

9.1.2 Challenges of Field Networking

Field networking brings many challenges that are not well met by traditional net-
working approaches based on Internet Protocol (IP) routing over infrastructure-based
installations.

• Device Mobility. Field networking fundamentally involves movement of
devices, whether such devices are smartphones or embedded devices. Even
in nonmoving applications, such as sensor networks, the nodes simulate
movement through temporal topology changes in the sense that from one
moment to another, some devices may be sleeping to save power, and hence
unavailable to participate in networking, or even failed due to running out of
power. Movement (and other temporal topology changes) causes neighbor rela-
tionships (“links”) among devices to change, and so viable routes through the
network can change from moment to moment. The rate of change of topology
is affected by factors including speed of movement, radio range of devices, and

INTRODUCTION 213

terrain complexity. Traditional IP networking relies on determining its routing
tables by sending topology packets between devices and then caching the
discovered information; each time links change, this information is degraded
and will lead to lost packets and, worse, useless protocol retries. Thus, field
networking is not well served by routing tables and routing based on cached
next-hop information (“proactive” routing protocols). By contrast, the GA
protocol discussed in Section 9.3 does not rely on topology information and
discovers routes on the fly.

• Spatial Density. In some field applications, it is common to find large num-
bers of wireless devices near each other. This means that their packets must
take turns using the common frequency. In such cases, it is easy for inefficient
protocols to use up this common resource, leading to delays and failures. For
example, consider distributing a video feed to all the devices in an area. If this
must be done by sending a copy of the feed individually to each device, it doesn’t
take many devices to exhaust the available resource. A more scalable method
takes advantage of the fact that one-to-many broadcast packets, as is possible
in 802.11 Wi-Fi, naturally go to all in an area, so it is possible to send the feed
as a sequence of broadcasts, without having to send a copy of each packet to
each device. This symbiosis of broadcast and geographic addressing (GA) can
be exploited (see Section 9.3) to gain algorithmic improvements [1, 2].

• Gaps in Coverage. When operating in field conditions, it is common for devices
to move out of range of cell towers. This severely limits the usefulness of appli-
cations implemented in a way that requires full-time access to a server in the
cloud, because they stop working entirely when out of cell coverage. Instead,
field applications should be able to continue operating, perhaps with reduced
capability, even when out of range of infrastructure. For example, the firefight-
ers should be able to continue tracking each other in the field even as they
move into canyons or other areas not covered by cell data service. During those
times, of course, they will not have access to cloud-based services (e.g., a map
server or contact with central command) or even to tracking people who are
far away from them, but they can still track and message each other locally,
as long as the network can support peer-to-peer operations. The scalable geo-
graphic addressing framework (SGAF) multi-tier architecture [3] discussed in
Section 9.5 integrates peer-to-peer wireless tiers with cloud-enabled long-range
tiers in a way that (i) the two complement each other and provided redundancy
when both are present and (ii) the system can seamlessly continue operating
even if one of the tiers becomes unavailable.

This chapter overviews an approach to field networking, the SGAF, that meets
these challenges better than traditional networking approaches. It is based on the
observation that GA is both a natural way to think about the communications under-
lying many field applications as well as an addressing paradigm that admits effi-
cient and robust implementations under the stringent conditions experienced in the
field. The SGAF is demonstrated in a prototype known as the AT&T Labs Geocast

214 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

System (ALGS) [3]. ALGS supports prototype smartphone applications, described in
Section 9.7, in the areas of athletic style games and field situational awareness and
messaging, similar to the scenarios described mentioned earlier.

9.2 GEOGRAPHIC ADDRESSING

GA refers to communication protocols that allow a sender to specify the intended
recipients of a message by where they are located in physical space. This is to be
contrasted with traditional addressing schemes, such as IP addressing—where device
addresses are specified by an integer that locates them within the Internet’s hierarchi-
cal system of subnetworks—or even phone number addressing, which in olden times
did actually indicate something about the location of the addressee but nowadays
means little because most phones are mobile. Note that GA does not refer to a par-
ticular device or set of devices that is fixed for all time; typically, the sending device
does not know in advance which, if any, devices lie in the area. The address refers
exactly to the set of devices that are in the area at the time the message is transferred,
a set whose extension changes rapidly with time. In the ALGS prototype, geographic
addresses are specified as circles on the surface of the Earth, with a pair of integers
specifying latitude and longitude in microdegrees and an integer representing the
radius of the circle in meters. We will refer to the geographic address of a message
as its geocast region.

One reason that GA is well suited to field applications is that their stereotypical
communication patterns are often geographic. For example, a field situational aware-
ness application allows devices to track the locations and sensor data of others in an
area where the team is working. I will refer to this as awareness messaging. This nat-
urally requires messages (e.g., queries and responses) flowing from one device to all
others in the area. If the team is being monitored from a distant command center, once
again messages flow between command and the area of operation. In the game appli-
cations, in addition to awareness messaging whereby the devices keep each other
updated on location, score, health status, etc., there can be virtual weapon interac-
tions, whereby a “shooter” can fire a simulated round by sending a message to all
devices in the area that could be affected by the simulated round. A simulated sens-
ing drone that virtually flies overhead to help search for opponents can send query
messages to devices within its simulated area of sensing. Finally, in geosensing and
data collection, a collection device (e.g., mounted in a drone overhead) can query the
sensors that are currently awake within a particular field of interest to retrieve their
stored data.

To handle extended transactions, involving more than one packet exchanged
between nodes as they move around, a number of approaches are available. If GA is
implemented over a normal IP network, then once awareness messaging discovers
the identity of a desired transaction partner, a standard TCP/IP connection can be
made. This will persist as long as IP connectivity persists. However, in networks
either where the IP layer is not robust or even not present at all, a transaction can
be retained by a technique known as reverse path forwarding: the initial GA packet

SAGP: WIRELESS GA IN THE FIELD 215

discovers a route consisting of the sequence of relay nodes it passes through, and
then replies and replies to replies can be source routed to follow the discovered path
(or its reverse). In a highly dynamic network, it is necessary to periodically send a
new GA message to rediscover the latest route, which may have changed.

In all the previously mentioned messaging patterns, a system based on traditional
addressing schemes would first have to query some “geo-server” that was keeping
track of all device locations and then formulate individual messages to send to
each within the queried region. Moreover, as devices moved around, they must
send updates to the geo-server with their new locations. This would be functionally
equivalent to GA but forcing each application to maintain the service, at significant
overhead, by itself. In a setting where many devices run many field applications
(visualize a busy city at lunch hour), doing this over and over at the application
level could easily swamp the available wireless network resources with overhead
messages.

In some situations, there are even deeper problems. For example, when field appli-
cations must operate without coverage of infrastructure communications networks,
such as cell data networks, it is not obvious where an application could locate its
geo-server that would enable devices to continue functioning if some of them enter
gaps in coverage. Instead, by building in the GA primitive into the core of the net-
work, subsets of devices connected together by peer-to-peer networking can continue
to function even when not in coverage.

Of course, there may still be applications, even wireless applications, that are better
suited to traditional IP networking, such as watching a video from the Internet while
in a local restaurant. GA is a tool well suited to many field applications, but it is not
claimed to be the best tool for all wireless applications.

Outline. The rest of this chapter will overview an architecture, SGAF, for imple-
menting GA within a large-scale heterogenous network environment. It will explain
some of the scalability and other advantages, as well as some of the applications
possible using GA. SGAF is composed of multiple network tiers that work together
to implement end-to-end GA; each tier is characterized by how it implements GA.
So the rest of the chapter is structured as follows. Section 9.3 describes scalable ad
hoc geocast protocol (SAGP), a protocol for GA in peer-to-peer wireless networks.
Section 9.4 describes a georouting approach to GA appropriate for tiers using wide
area networking like the Internet. Section 9.5 describes how these are put together
using bridging rules into a multi-tier large-scale GA service. Two final sections
describe the ALGS prototype and some representative implemented and trialed
applications, respectively.

Note that the full details of many of these building blocks are available in support-
ing papers, as cited; the purpose of this chapter is merely an overview.

9.3 SAGP: WIRELESS GA IN THE FIELD

This section gives a brief overview of the SAGP protocol; the reader is referred to
Ref. [4] as the primary source for more details.

216 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

To meet the challenges of geographic density and operation in the absence of
infrastructure networks, our first network tier is implemented over ad hoc Wi-Fi
(802.11 in IBSS mode [5]). This is a peer-to-peer wireless network, sometimes known
as a mobile ad hoc network (MANET) [6], where the individual end devices both
source and maintain the network synchronization without the central coordination of
a base station. Once attached to a given ad hoc SSID, a device will either maintain
its synchronization when hearing other devices beaconing the same SSID or, when
not hearing anyone else beacon it for a given interval, will transmit its own beacon
to maintain the network (in case other devices are around). In this way, devices can
communicate directly with each other even when there is no nearby base station con-
trolling things. This mode is part of the 802.11 standards, and most commercial chip
sets and devices are capable of participating, even though these days many smart-
phone operating system providers choose to disallow the creation or user selection of
ad hoc SSIDs.

A key motivation for using 802.11 as basis for GA is that it allows devices to
transmit broadcasts that can be heard and processed by any devices within range.
This means that a single transmission can move information from a sender to every-
one in the area covered by the radio range of the device. By relaying packets, that is,
rebroadcasting received packets, in this way a GA packet can be routed to all recipi-
ents in the geocast region. I term this relaying of GA packets by repeated broadcasts
a geographic broadcast or geocast. There are other ways to implement GA packet
transmission that do not use this technique, so while all geocast protocols are GA
implementations, not all GA implementations are geocast protocols.

9.3.1 SAGP Processing

The SAGP [4] is a GA protocol that can be implemented within any network that
supports one-to-many broadcasts, such as ad hoc 802.11. It operates as follows. The
originator formats a geocast packet that includes the geocast region in the form of
three integers: latitude and longitude, in microdegrees, of center of circle, and radius
in meters. The originator broadcasts the packet. This broadcast is heard by all devices
within radio range.

For intuition, a smartphone held about four feet above ground seems to have about
a 100–150 m range to another such smartphone in a clear flat terrain. This is strongly
affected by terrain complexity, the model of phone, what is holding the phone, and
how the phone is oriented.

Whenever an SAGP device receives a broadcast geocast packet, it carries out sev-
eral operations concurrently:

• It determines whether it is within the packet’s geocast region. If so, it delivers
the packet to any higher layer components or applications that are waiting for
geocast packets.

• Whether or not it is within the geocast region, it enqueues the packet for possible
retransmission.

SAGP: WIRELESS GA IN THE FIELD 217

• For each copy of each geocast packet received, it records statistics about the
geocast. The geocast—as opposed to the copies of the geocast—is identified by
the originator device ID and its origination time recorded in the packet header.
All copies of a geocast will have these two field values. The statistics include
the nearest location of any transmitter of the geocast, the minimum distance of
a transmitter of the geocast from the center of geocast region (CGR), and the
total number of transmissions (copies) of the geocast heard.

• It processes the head of the transmission queue. In particular, it dequeues
the head packet and decides, based on the geocast retransmission heuristics
described in the following text, whether to retransmit (i.e., rebroadcast) a new
copy of the geocast.

9.3.2 SAGP Retransmission Heuristics

The heuristic decision is best thought of as a logical predicate P structured as

P ≡ F ∧ (M ∨ T ∨ CD)

where

• F is true iff the device is located within the forwarding zone defined by the
packet’s originator’s location and geocast region. The forwarding zone is a con-
figurable parameter of SAGP, but in the ALGS, the default for the SAGP tier is
to use the union of a circle of radius one radio range surrounding the origina-
tor and a circle surrounding the CGR of radius one radio range larger than the
radius of the geocast region.

• M is true iff the number of copies of the geocast heard by the device is less than
the configurable parameter m. In the ALGS, it is typical to use m = 2 or m = 3
or 4 in complex terrain. The intuition is to ensure a minimum redundancy by
transmitting at least m copies in any region containing a device.

• T is true iff the minimum distance of the transmitters of all copies heard so
far has been at least t meters distant. The intuition here is that if the device is
sufficiently far from all others it has heard, then there is a good chance someone
even farther may benefit from hearing it transmit.

• CD is true iff the device is closer to the CGR than the transmitter of any previous
copy. The intuition here is hill climbing: a device will decide to transmit if it
appears to move closer to the CGR than other transmissions.

Figure 9.1 shows schematically the layout of sender, geocast region, and forward-
ing zone. The forwarding zone is the union of the two-dashed circles in the ALGS
short-range tier.

218 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

Sender

r1
r2

CGR

GR

Figure 9.1 Sender, geocast region, and forwarding zone.

Sender

1

A

B

C

2

40 m

60 m

D

E

3

Geocast region

Figure 9.2 Example of a geocast propagated via SAGP.

9.3.3 Example of SAGP Packet Propagation

To illustrate how SAGP transfers a geocast packet, consider the diagram in Figure 9.2.
Devices A, …, E are operating the SAGP protocol. A, the originator, transmits first
(transmission 1). This is heard by B and C. C’s M heuristic is satisfied, so it retransmits
a copy of the geocast. B hears this, and since it is no closer to CGR than C, it has heard
m = 2 copies, and since it is within the T heuristic’s threshold distance (t = 40m)
from C, it suppresses retransmission. Both D and E receive transmission 2 from C,
which is their first copy, since the radio obstacle blocked transmission 1 from them. E,
being closer to CGR than C was, retransmits based on the CD heuristic. (In this case,
both T and M heuristics are also true.) D suppresses retransmission, because none
of its heuristics are satisfied. Note that whether B or C decides to retransmit first is
nondeterministic and based on low level factors. In fact, the ALGS implementation
of SAGP uses a pseudorandom backoff delay, determined in part by node ID number,
that helps avoid collisions between retransmissions.

Note that this scheme is significantly more efficient (measured in terms of fewer
copies transmitted) than simple flooding. In simple flooding, every device who heard
it would have retransmitted, leading to a total of five instead of the three resulting

SAGP: WIRELESS GA IN THE FIELD 219

Sender CGR

1 2 3 4

Figure 9.3 Pictorial proof idea showing why SAGP only uses O(lg n) transmissions per geo-
cast in dense scenarios. The originator is somewhere to the left of the diagram; the intuition
is that, on average, successive transmissions will occur at devices approximately half way
to the CGR.

from SAGP. In general, the difference between simple flooding and SAGP can be
large, scaling as n∕lg n with number n of participating devices.

For example, a critical class of situation is the case where all n devices are within
radio range of each other without obstructions. In that case, each packet would be
transmitted n times by simple flooding. SAGP, by contrast, would on the average
only transmit O(lg n) copies of each. The proof is illustrated pictorially in Figure 9.3.
Essentially, due to the CD heuristic, on the average, each successive transmission will
take place approximately halfway closer to the CGR than all previous. In this dense
scenario class, the T and M heuristics only increase the transmissions by constant
amounts.

9.3.4 Followcast: Efficient SAGP Streaming

As has been observed by others, fully reactive routing, where each packet discov-
ers its own routing path as in SAGP, can be inefficient in scenarios where neighbor
relationships remain stable for times long compared with the inter-packet intervals.

A common case of sending many packets in a row to the same geocast region arises
in streaming applications. In the firefighter example in Section 9.1, the drone could
be streaming video down to team members; in that case many packets in succession
would need to follow essentially the same route, since they would be sent much more
quickly than humans walking will change neighbor relationships.

The key insight that allows optimizing this case is that we really only need to
rediscover a geocast path on a timescale related to the changing device relationships,
not as fast as packets are sent. The followcast extension to SAGP [2] has means for
the network devices to remember paths taken by recent geocast and record whether
they were useful relays. A relay was useful iff it was the transmission first received by
some other device. When a followcast packet is sent following an earlier full geocast
packet (which packet a followcast is following is indicated in the header), a device
retransmits it if and only if its earlier transmission is recorded as useful.

Figure 9.4 illustrates how this works. The original geocast is originated by A, and
its transmissions are shown as numbered dashed circles. The range of each trans-
mission is indicated by the “RR” lines; the radius of the dashed circles is not the
radio range here. The gray rectangle is an obstacle that blocks signals. Following the
sequence, the transmissions indicated by arrows are the only ones that were useful:
transmissions 3 and 5 were heard only by devices that had already heard at least one

220 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

RR

RR

t

1

A

O

2

B

3

C

D 4

5

F

E

Figure 9.4 Example SAGP geocast propagation, with arrows showing the useful relays.

of the useful set {1, 2, 4}. The useful set is recorded in the geocast packet records at
each device. They are retained as long as the packet records are retained, which in the
ALGS implementation is 10 seconds. So followcast streaming sends a geocast once
every refresh interval, which is chosen to be a bit less than 10 seconds, which is the
lifetime of packet records. It then followcasts packets in between such geocasts. This
typically results in large savings [2].

Note that followcast can be used both within streaming applications, where packet
loss is tolerable within bounds, such as transmitting video or audio, or it can be used
in reliable transfer, as long as retries (similar to those of TCP) are built into the higher
level protocol that uses followcast as a stream primitive. Hall [2] describes these two
types of application.

9.3.5 Meeting the Challenges

It is worth observing how SAGP meets the challenges of field networking discussed
in Section 9.1.2.

Each geocast discovers (via the heuristics) a fresh path from sender to geocast
region. Since this is done at the time the packet is sent, it is not relying on cached,
possibly stale, routing tables. This minimizes packet losses due to mobility, since if
a path exists at the time, SAGP will likely discover it, even if the discovered path
has only very recently come into being. A second point relating to mobility is that
traditional routing strategies rely on routers, which are distinguished nodes of the

GEOROUTING: EXTENDING GA TO THE CLOUD 221

network that make decisions on transferring packets. SAGP can continue to operate
even under arbitrary network partitioning resulting from mobility changes. If a path
exists within the partition containing the source and destination devices, the SAGP
can likely find it; however, if a device is partitioned from the routers in a traditional
system, it cannot participate. Thus, SAGP meets the device mobility challenge better
than traditional proactive routing strategies.

As discussed earlier, in a highly spatially dense scenario, SAGP typically uses
about O(lg n) transmissions per geocast. This is fundamentally lower than the Ω(n)
transmissions used either by simple flooding or by a traditional routed unicast-based
approach. Even a traditional multicast group that sends packets over a spanning tree
will use the sameΩ(n) transmissions. So SAGP by exploiting one-to-many broadcasts
can significantly reduce spectrum use in spatially dense scenarios.

Finally, since SAGP uses peer-to-peer ad hoc networking, it can operate (or con-
tinue to operate) when some or all of the devices move into coverage gaps of infras-
tructure networks, whether these be cellular data or Wi-Fi base stations. As long as
the devices are within range and a chain of relays exist between sender and geocast
region, SAGP continues to operate. In this sense, SAGP provides a way to extend the
reach of wireless networking beyond the “edges” of infrastructure cloud networks.

9.4 GEOROUTING: EXTENDING GA TO THE CLOUD

Wireless ad hoc networks cannot support all requirements of field networking. In
particular, remote servers accessible via the Internet may provide necessary services
to users in the field. A good example is a map server holding a database of maps
or satellite images that can be used as backgrounds to display tracking information
or annotations on devices in the field. A long-range network connection can also
allow remote users to communicate, monitor, or otherwise interact with team mem-
bers operating in an area.

A second critical need is for covering long-range gaps between field users. For this
purpose, wide area wireless networks such as cellular data (e.g., 4G/LTE) can reach
much farther and can bridge gaps between devices too far for connectivity through a
wireless ad hoc tier.

Of course, if devices do not have connections to long-range networks, then they
only have access to the ad hoc tier. However, smartphone class devices typically have
two radios, one for Wi-Fi that can be used for the ad hoc tier and one for a cel-
lular data connection that can be used to connect to the Internet.1 The long-range
extension (LRE) tier of the SGAF architecture can provide GA that moves packets
through the long-range tier seamlessly. It is “seamless” in the sense that devices still
just address packets using a circle (center and radius) and the GA subsystem transfers

1Actually, most smartphones have a third communication medium as well: Bluetooth. It is typically used
for short-range (a few meters) communications. There are cases where it may be useful to extend GA to
this ultra-local tier, and the SGAF architecture can support this.

222 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

Georouter
server GRDB

UDP/IP network

P

Client Client Client Client

Figure 9.5 Packet transmission in the georouter tier.

the packet through whichever tiers are accessible as guided by transmission heuristics
and bridging rules.

In SGAF and the ALGS, the LRE tier is implemented as a georouter tier. A
georouter is a server in the network that is in contact with devices in the field and is
capable of inferring which ones are in or near the geocast region of a packet and of
transmitting a copy to some or all of them.

Figure 9.5 illustrates the process of transferring a GA packet using a georouter.
The packet P is sent first via UDP/IP to the georouter server. The server access its
georouting database (GRDB) that lets it map from a geocast region to a set of IP
address and port pairs representing devices known to be in or near (how near is a
configurable parameter) the geocast region.

The most obvious method would simply forward to all devices in or near the
geocast region; however, in dense scenarios this could be inefficiently redundant. In
SGAF, we allow different policies to be plugged in, on a per device basis if desired,
depending on the capabilities of the devices and their characteristic speeds of move-
ment. By limiting the number of devices each packet is sent to, we can let the scal-
ability of the ad hoc tier transfer it from the few representatives chosen to all within
the geocast region. In ALGS, when it is known that all devices have ad hoc tier capa-
bility, the georouter by default chooses four devices among all candidates to which
to send copies of the packet; bridging rules then retransmit the packet across the ad
hoc tier. See next section for more discussion of bridging.

Hall et al. [3] and Hall and Auzins [7] discuss the concept of multi-tiered geocast
and the LRE, including georouting and bridging, in detail. It should be noted that
the general idea of georouting is an old concept; however, the SGAF and ALGS add
some new techniques for scalability and bridging with other tiers.

9.5 SGAF: A MULTI-TIERED ARCHITECTURE FOR
LARGE-SCALE GA

The SGAF is an architecture framework that provides general techniques for com-
bining different GA tiers to achieve an overall GA service that can cross multiple

SGAF: A MULTI-TIERED ARCHITECTURE FOR LARGE-SCALE GA 223

A

B C D

E F U1

GL1 L2

J2J1

Figure 9.6 A notional example of a large-scale GA system built by bridging together many
individual GA tiers. Rectangles represent georouter tiers, while dashed ovals represent geocast
tiers.

heterogeneous networks. A tier is a set of devices that use a common communications
medium to implement a GA service. A geocast tier is a tier that uses a geocast proto-
col (i.e., one based on wireless one-to-many broadcasts), such as SAGP, to implement
GA. A georouter tier is a tier that does not use a geocast protocol; instead, it typically
uses one or more georouters to implement GA.

Figure 9.6 shows a notional example of a large-scale GA system that is within
the power of SGAF to express. It is composed hierarchically from multiple tiers.
The rectangles represent georouter tiers, while the dashed ovals represent geocast
tiers. Whenever a tree node contains multiple connections, it is connected by one or
more bridge devices to the connected tier. As shown in the figure, there is no restric-
tion on the types of connected tiers. A short-range geocast tier could be bridged to a
longer-range geocast tier operating over longer-range radios, for example. Similarly,
georouter tiers can be federated together so that different local georouter tiers could
manage particular areas and a global georouter could connect them together.

9.5.1 Bridging Between Tiers

The SGAF is a parameterized framework that allows combining any number of tiers,
of diverse types, together to implement a single overall GA service. Two tiers are
connected by bridging, which occurs at bridge devices. A bridge device is one having
multiple network interfaces, one to each tier in which it participates. The bridging
behavior implemented at each bridging device is define by SGAF’s bridging rules,

224 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

which can be set differently for each tier interface type or even on a per bridge device
level, if desired. Formally, bridging is governed by bridge functions:

BridgeFnD ∶ (GAPkt P,TierID T ,Location L) → Bool

where D is a bridge device and D transmits a received packet P on the tier T iff
BridgeFnD returns true for P, T , at the D’s current location L.

The simplest bridging function is identically true; that is, whenever a packet is
received from one of its tiers, it always transmits it on its other tiers. Since a device
will not reprocess a packet it has already processed, this cannot lead to infinite routing
loops. However, it may be inefficient.

A different bridging rule, implemented in ALGS, acts as follows. Any field
device having a long-range tier interface (e.g., LTE radio) will send the packet on
the long-range tier iff the packet has not previously been sent on the long-range tier.
The geocast header has a field recording this information that is updated each time
the packet is retransmitted.

Figure 9.7 illustrates a multi-tier GA packet propagation. Device A transmits first,
and then bridging device B transmits on both short-range and long-range tiers. The
long-range tier transmission is sent to the georouter, which forwards it to bridging
device C that happens to be located near the geocast region. C then transmits on the
short-range tier, and D also retransmits, thereby enabling all the devices in the geocast
region to receive it.

Tiered geocast: schematic illustration

Georouter

2b

Short-range tier
SR FZ: two circles

Geocast region: effect circle
4 D, E, F

3

C

2a

B A

1

Long-range tier

Figure 9.7 An example propagation across multiple tiers using bridging. Starting at A, the
packet first traverses the geocast tier around A, then up through the georouter tier, and then
back “down” into the georouter tier near the geocast region. Finally, it traverses that tier to
reach the GR.

THE AT&T LABS GEOCAST SYSTEM 225

9.5.2 Hybrid Security Architecture

Network security is, of course, a major concern in large-scale networks. SGAF
accommodates different approaches to security for each tier, because not all security
techniques work in all tiers. For example, security in the long-range tier can be
constructed using, for example, virtual private network (VPN) connections between
devices and georouter servers. However, this style will not work in geocast tiers, due
to the fact that packet propagation is fundamentally one to many. The one-to-one
security relationships underlying VPNs scale quadratically in this context; that is,
there would have to be a tunnel for every pair of devices. Not only is this too large
a number to be manageable in large scenarios, the fact that devices move into and
out of connectivity with each other rapidly means these tunnels would be difficult to
maintain.

One way to secure a smaller-scale geocast tier is to use shared session keys man-
aged centrally by a security administrator. That is, all devices in the group (e.g.,
responder team or game players) are issued the same session key, distributed from
the administrator using individual key exchange keys. In this way, all geocast packets
can be encrypted in the session key and read by all authorized devices for the purposes
of secure and authentic packet transfer, while no outsiders can interfere or eavesdrop.

SGAF assumes that each bridging device is authorized for each tier in which it
participates. Packets coming in securely through one tier interface are then resecured
prior to bridging onto other tiers. This allows global-scale packet transfer across
multiple heterogeneous security domains while still allowing localization of secu-
rity administration per tier, effectively forming a web of trust for the purposes of GA
packet transfer.

9.6 THE AT&T LABS GEOCAST SYSTEM

The ALGS is shown schematically in Figure 9.8. The name is a slight misnomer (in
that it is not entirely a geocast tier) that has persisted for historical reasons. ALGS is
actually a two-tier instance of the SGAF, with one ad hoc Wi-Fi (short-range geocast)
tier and one LRE (georouter) tier. Some devices are Wi-Fi only and so connect only
to the short-range tier. Examples of these include Wi-Fi-only sensor boards or tablets
not having cellular service. Other devices are only long-range capable; for example,
a cloud-resident information service that is accessible via GA only has an interface to
the Internet. Still others, like smartphones, have both types of interfaces and take part
in both tiers. Note that the cellular data system (GSM or 4G/LTE) is used to connect
devices to the Internet as a key step in implementing the LRE.

Cloud-based services reside in the cloud on servers. These servers are given
virtual–physical locations and report in to the georouting system exactly as if they
were really located there. Thus, the programming abstraction is for GA-based
applications to access cloud services by sending GA packets addressed to the area
where the servers virtually reside. By convention, this location is in the Central
Kalahari Game Reserve in Botswana. For example, the ALGS contains a map server

226 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

Virtual Botswana
server

Long-range extension servers

Georouter
server

GRDB

GSM
(3G/4G)

Smartphone
Smartphone Smartphone

802.11 ad hoc Wi-Fi

SAGP geocast

Wi-Fi device

GSM
(3G/4G)

GSM
(3G/4G)

Internet

Bot

Bot

Bot

Figure 9.8 Schematic diagram of the AT&T Labs Geocast System.

resident in Botswana, and it is accessed via geotext messages, by which a device
can request a new map by name. A requested map is transferred to the device using
geocast file transfer (GFT) [2, 8], a reliable file transfer protocol built using GA
and followcast as a primitive. In fact, the map can be transferred efficiently to all
devices in an area in one GFT session, thereby avoiding the inefficiency of redundant
individual file transfers. Other cloud-resident services include a game records server
supporting the geocast games (see next section) and several bots, simulated entities
used in gaming, demonstrations, and training.

The ALGS has been deployed and used for testing, trials, demonstrations, and
other purposes for over 4 years. It supports both research and evaluations of new GA
concepts and applications, as well as the applications described in the next section.

9.7 TWO GA APPLICATIONS

This section describes two field applications that are implemented and have been
running in test/trial form for a few years now.

9.7.1 PSCommander

PSCommander is a smartphone application designed to support field operations
teams. It provides a real-time map display showing positions, position histories,

TWO GA APPLICATIONS 227

Figure 9.9 Screen capture of the PSCommander smartphone application.

and other data relating to other devices running PSCommander. An example screen
display is shown in Figure 9.9.

PSCommander provides the following capabilities:

• Live Location Tracking. The user specifies one or more maps or satellite images
of areas of interest. Figure 9.9 shows a sat image of part of Botswana. The sys-
tem uses the GA-based field common operating picture (FCOP) algorithm [1]
(see in the following text) to obtain location, location history (“tails”), and other
data (in the figure: velocity information) from all devices in the areas covered
by the maps. It draws the information using a color coding to indicate recency:
green is the most recent, yellow is next most recent, etc. This is a critical aspect,
because in field applications devices can drop in and out of contact, so in a safety
support function, one needs to know how recent and reliable a report is in order
to take actions.

228 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

• Shared Map Annotations (“Zones”). Any user can create a rectangular zone
on a map and attach a criticality level (indicated by color as green/yellow/red)
and a text message. A different instance of the FCOP algorithm then propagates
these zone definitions to all other devices in the area. When devices move into a
zone, they get a displayed message and possibly an audible alarm, depending on
criticality level. In the figure, the red rectangle is an alarm-level zone annotation
with a message indicating operators should avoid entering. The green rectangle
is an informational zone showing where virtual resources like the map server
are located.

• Geographic Message and File Transfer. A geotext message is a text message
addressed to a geocast region, and PSCommander supports these. However, it is
useful also to be able to transfer larger files reliably, such as images. A user can,
for example, use the smartphone’s camera to take a picture, and then the GFT
protocol [8] transfers it reliably to all operators in the designated geocast region.
In the figure, light blue progress bars show incoming and outgoing transfers.

PSCommander has been trialed several times, and many scaling and other studies
have been carried out, including a test involving attaching an SAGP-enabled smart-
phone to the side of radio-controlled airplane to measure relaying range and demon-
strate feasibility of greatly improving connectivity among ground devices.

FCOP algorithm. The field monitoring problem is illustrated in Figure 9.10a.
A device m wishes to request and then receive information from each of n devices

m

m

MR

MR

d1

d1

d2

d2

d5

d5

d4

d4

d3

d3

(Once per P seconds)

(a)

m0

m0

m5

m5

m4

m4

m3

m3

m2

m2

m1

m1

MR

MR

(Once per P seconds)

(b)

Figure 9.10 The FCOP problem illustrated. (a) The general monitoring problem and (b) the
common operating picture special case.

TWO GA APPLICATIONS 229

400

350

300

250

200

150

100

50

0
0 2 4 6 8 10 12 14 16 18 20

(Bytes/s)/(n lg n)

Figure 9.11 Graph of bytes per second used by the FCOP algorithm in a dense scenario,
divided by n lg n versus number of devices n.

in a monitored region (MR). In the FCOP problem, Figure 9.10b, every device in
the MR wishes to monitor MR. This results in n(n − 1) logical information flows, as
shown in the lower diagram, because each device must report its information to each
other. It only takes a few devices in the MR to swamp the available bandwidth.

However, using SAGP, we can do better. Using geocast queries and responses
allows us in dense scenarios to use only lg n transmissions for each query and each
response. The one-to-many property means that the response to a device’s query can
be received by other devices nearby. Thus, if a device has recently replied to a query
from a device that is within the geocast region of a more recent query, it need not
send another copy of the response, assuming that all devices record all responses
they receive. The FCOP algorithm [1] is a distributed algorithm that sends two mes-
sages (one small query and one larger response) per device per interval of time, each
using O(lg n) transmissions, so in total it gets its job done using only O(n lg n) trans-
missions, a significant savings for larger n over traditional approaches based on either
simple flooding or unicast IP, which require Ω(n2).

Figure 9.11 graphs FCOP bytes per second transmitted divided by n lg n versus
number of devices. These measurements were taken of iPhones running PSCom-
mander, with all n devices placed within radio range of each other in a clean 802.11
environment. The graph converges around 154, so the implemented FCOP algorithm
transmits approximately 154n lg n bytes per second. (The deviation for low values of
n is due to lower order terms in SAGP’s performance being significant for small n.)

The FCOP algorithm can be customized in various ways. In particular, the queries
and responses can carry different information loads.

230 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

9.7.2 Geocast Games

Geocast games is another class of field application, whose members are games
combining strenuous athletic activity with interesting virtual elements that augment
the reality of the game. In the games implemented so far, the virtual elements and
effects are displayed (visually or audially) using smartphones, which are carried or
worn by the players. Figure 9.12 shows a simple game in progress, showing both the
real-world view and the corresponding virtual view.

The prototype system offers three different geocast games:

• The iTron Family. In iTron, an arbitrary number of players move around in phys-
ical space, and where they move they leave a trail consisting of a virtual wall.
This is similar to the classic snake video game but with real-world participants.
The object is to be the last player who has not crossed any walls, either one’s
own, those of other players, or the edges of the bounding “arena.” Figure 9.13
shows the final state of an iTron championship game I ran during a P.E. class at
a local high school as the culmination of a multi-week teaching unit on iTron.
The players used terrain features strategically and were forced to run at times to
gain territory advantages. The networking was able to continue working even
though this area has poor cellular network coverage, because the devices trans-
ferred messages over the peer-to-peer network.

There are many variants of this game, including those with non-player vir-
tual elements like pits and swamps, and noncompetitive artistic team-oriented
variants. See Ref. [9] for a full description. Games can take place in arbitrarily
interesting terrain, with game communications implemented using the GA sys-
tem. The pattern is a variant of the FCOP algorithm but with scoring data in
addition to location and trail information included in the messages.

• iTESS. The basis of iTESS [10] is hide and seek. However, each player is trying
to locate all other players and tag them with virtual weapon fire. Each player’s

Figure 9.12 Typical iTron game, showing both real-world and virtual-world views.

TWO GA APPLICATIONS 231

Figure 9.13 Final screenshot of the championship iTron match played at the culmination of
a multi-week iTron teaching unit in a NJ high school Physical Education class. It was played
at a larger scale, and players exploited different terrain types.

smartphone displays a map of the play area(s). Rather than simply displaying
all positions of all players, however, the player commands a virtual “drone” that
has a limited viewing area, so the player must direct it to search systematically.
Of course, the player can also seek by looking as well, as the on-screen location
matches the real-world location. In addition to this drone, players command an
artillery weapon to drop on a circular target on the map; however, players are
warned when they are within the target area of an incoming shell to give them
time to react and run out of the way. There is also a point-and-shoot weapon
[11] with similar properties.

iTESS’s messaging patterns are for the most part direct geographically
addressed messages to simulate the various elements. The drone simulation
sends a GA message to the circle it can see; the weapon sends a GA message to
the immediate vicinity of where it is targeted. Only game awareness messages
(scoring, game state, and scoreboard information) are sent via an FCOP variant.

iTESS supports multiple play areas concurrently, allowing a player to
switch views. This results in monitoring all the areas concurrently for game

232 GEOGRAPHIC ADDRESSING FOR FIELD NETWORKS

purposes. iTESS can be played over long distance, with games having been
played between coasts of the United States, as long as all play areas have
players with long-range capable devices within coverage of the cell network.

There are other geocast game families as well, such as Butterflies [10] and Human
Pong. So far, after trials by hundreds of users of virtually all ages, there seems to
be great interest in the potential of outdoor movement-style games that incorporate
virtual elements. The current work has barely scratched the surface of this field net-
working application domain. GA has proven a valuable and scalable basis for game
communications in outdoor venues.

9.8 CONCLUSIONS

Field applications have networking needs that are not well suited to traditional, cen-
tralized one-to-one style data communications. On the other hand, GA admits effi-
cient and scalable implementations in wireless networks and meets the challenges
brought by mobility, density, and operation out of coverage of infrastructure. GA is
arguably a more natural building block for the communications patterns that arise
in many field applications than in IP addressing. For example, the GA-based FCOP
algorithm efficiently implements the awareness communication pattern that solves
the FCOP and (more generally) field monitoring problems. Many field applications
are built entirely or at least in critical part on an awareness component.

This chapter has introduced GA for field applications, described an implemented
scalable GA platform that uses the concepts, and has briefly described some rep-
resentative field applications that can use it to good advantage. While promising,
the present work has only begun to achieve the great potential for benefits to soci-
ety that can come from high quality field applications built on GA. I intend that
follow-on work will continue to improve both the supporting technologies, like new
high capacity wireless communications technologies supporting GA, and novel and
exciting field applications that can help save lives and improve natural resource use,
as well as to carry forward the vision of healthy and active outdoor field activities
fundamentally augmented by engaging and useful elements from the virtual world.

REFERENCES

1. Hall, R.J., “A geocast based algorithm for a field common operating picture,” in Proceed-
ings of 2012 IEEE Military Communications Conference IEEE, 2012.

2. Hall, R.J., “An efficient protocol for geographically addressed streaming,” in Proceedings
of 2014 IEEE Military Communications Conference IEEE, 2014.

3. Hall, R.J., Auzins, J., Chapin, J., and Fell, B., “Scaling up a geographic addressing frame-
work,” in Proceedings of 2013 IEEE Military Communications Conference IEEE, 2013.

4. Hall, R.J., “An improved geocast for mobile ad hoc networks,” IEEE Transactions on
Mobile Computing, 10(2):254–266, 2011.

REFERENCES 233

5. Gast, M., 802.11 Wireless Networks: The Definitive Guide, O’Reilly, Sebastopol, 2002.

6. Murthy, C.S.R., and Manoj, B.S., Ad hoc Wireless Networks: Architectures and Protocols,
Prentice Hall Upper Saddle River, 2004.

7. Hall, R.J., and Auzins, J., “A tiered geocast protocol for long range mobile ad hoc network-
ing,” in Proceedings of 2006 IEEE Military Communications Conference IEEE, 2006.

8. Hall, R.J., “A Geocast File Transfer Protocol,” in Proceedings of 2013 IEEE Military
Communications Conference IEEE, 2013.

9. Hall, R.J., “The iTron family of geocast games,” IEEE Transactions on Consumer
Electronics, 58(2):171–177, 2012.

10. Hall, R.J., “Software engineering challenges of multi-player outdoor smartphone games,”
Chapter 8 in Computer Games and Software Engineering, Cooper, K.M.L., and Scacchi,
W., eds., CRC Press, Boca Raton, 2015.

11. Hall, R.J., “A point-and-shoot weapon design for outdoor multiplayer smartphone games,”
in Proceedings of 2011 International Conference on the Foundations of Digital Games.
ACM, 2011.

10 Distributed Online Learning
and Stream Processing for a
Smarter Planet

DEEPAK S. TURAGA1 and MIHAELA VAN DER SCHAAR2

1 IBM T. J. Watson Research Center, Yorktown, New York, NY, USA
2 Electrical Engineering Department, University of California at Los Angeles,
Los Angeles, CA, USA

10.1 INTRODUCTION: SMARTER PLANET

With the world becoming ever more instrumented and connected, we are at the cusp
of realizing a Smarter Planet [1], where insights drawn from data sources are used
to adapt our environment and how we interact with it and with each other. This will
enable a range of new services that make it easier for us to work, travel, consume,
collaborate, communicate, play, entertain, and even be provided with care.

Consider the pervasiveness of the mobile phone. It is rapidly emerging as the
primary digital device of our times—with over 6 (out of the 7) billion people
in the world having access to a mobile phone [2]. We are witnessing the rapid
emergence of services that use these phones (especially smartphones) as sensors
of the environment and interfaces to people. For instance, it is now common
with several map services (e.g., Google Maps) to be provided a live view of the
traffic across a road network. This aggregate view is computed by processing and
analyzing in real time the spatiotemporal properties of data collected from several
millions of mobile phones. Applications such as Waze include adding crowd-sourced
information to such data, where individual people use mobile phones to report traffic
congestion, accidents, etc., and these are then transmitted to other users to inform
and potentially alter their travel. While several of these applications are focused on
aggregate information processing and dissemination, it is natural to expect more
personalized applications, including personal trip advisors, that can provide dynamic
routing as well as potentially combine multimodal transport options (e.g., car, train,
walk, bus).

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

INTRODUCTION: SMARTER PLANET 235

Cities, which are responsible for providing several transportation related services,
can use information from mobile phones, augmented with their own road sensors
(loop sensors, cameras, etc.) and transport sensors (GPS on buses, trains, etc.), to
optimize their transport grid in real time, provide emergency services (e.g., evacua-
tions and dynamic closures) and real-time toll, modify public transport (e.g., allow for
dynamic connections between bus/train routes based on current demand), and even
control their traffic light systems. This ecosystem, including individual consumers
and city infrastructure, is shown in Figure 10.1.

These types of applications have several unique characteristics driven by the
distributed sources (often at large scale, i.e., with several thousands of sensors) of
streaming data with limited communication and compute capabilities and the need
for real-time low-latency analysis. This requires the computation to be distributed
end to end, all the way from the data sources through the cloud—requiring the fog
computing paradigm. Additionally, the streaming nature of the data necessitates
the distributed computation to include streaming and online ways of preprocess-
ing, cleaning, analyzing, and mining of the data, continuous adaptation to the
time-varying properties of the data, and dynamic availability of resources. There
need to be several advances in sensing and communication technology coupled with
development of new analytic algorithms and platforms for these individual-centric
and city-wide applications to become real and deliver value.1 In this chapter, we
introduce the emerging paradigm of stream processing and analysis, including
novel platforms and algorithms, that support the requirements of these kinds of
applications. We introduce distributed SPSs and propose a novel distributed online
learning framework that can be deployed on such systems to provide a solution
to an illustrative Smarter Planet problem. We believe that the recent arrival of
new freely available systems for distributed stream processing such as InfoSphere
Streams [3], Storm [4], and Spark [5] enables several new directions for advancing
the state of the art in large-scale, real-time analysis applications and provide the
academic and industrial research community the tools to devise end-to-end solutions
to these types of problems and overcome issues with proprietary or piecemeal
solutions.

This chapter is organized as follows. We start by defining a specific real-world
transportation inspired problem that requires large-scale online learning, in
Section 10.2. We then formalize the characteristics of such problems and their asso-
ciated challenges in Section 10.3. We discuss distributed systems in Section 10.4
and how the emergence of SPSs allows us to build and deploy appropriate solutions
to these problems. Following this, in Section 10.5, we propose a new framework
for distributed, online ensemble learning that can naturally be deployed on a SPS
to realize such applications, and we describe how to apply such a framework to
a collision detection application. We conclude with a discussion on the several
directions for future research enabled by this combination, in Section 10.6.

1While our description has been focused on transportation applications, there are several applications of
these types in different domains ranging from healthcare, financial services, physical and cybersecurity,
telecommunications, energy and utility, and environmental monitoring.

Public
transport

Traffic grid

Emergency
services

Stream processing

C
o

n
tr

o
l

Real-time assimilation, mediation
cleaning, aggregation, analysis,

control, and dissemination

Geographically distributed compute infrastructure
Personal trip

advisor

Location-based
services

Information

T
o

ll-
b

o
o

th
s
e

n
s
o

rs
G

P
S

,
m

o
b

ile
p

h
o

n
e

 s
e

n
s
o

rs

Loop
sensors

Remote
compute
node

Remote
compute
node

Remote
compute
node

Figure 10.1 Smarter transportation: individuals and city.

ILLUSTRATIVE PROBLEM: TRANSPORTATION 237

10.2 ILLUSTRATIVE PROBLEM: TRANSPORTATION

In this section we define a concrete illustrative problem related to our transportation
application domain that requires a joint algorithm–system design for online learning
and adaptation. Consider a scenario where a city wants to modify its digital signage
based on real-time predictions (e.g., 10 minutes in advance) of congestion in a par-
ticular zone. A visual depiction of this example is included in Figure 10.2, where
the white spot—at the intersection of major road links—is the point of interest for
congestion prediction.

Data for this real-time prediction can be gathered from many different types of
sensors. In this example we consider cell phone location information from different
points of interest and local weather information. This data is naturally distributed and
may not be available at one central location, due to either geographical diversity or
different cell phone providers owning different subsets of the data (i.e., their cus-
tomers). In this simple example we consider geographic distribution of the data. The
congestion prediction problem then requires deploying multiple distributed predic-
tors that collect data from local regions and generate local predictions that are then
merged to generate a more reliable final prediction. The local prediction can be about
network conditions within a specific local region—for instance congestion within a
particular part of the road network. The final prediction on the other hand is computed
by combining these local predictions into a composite prediction about the state of
the entire network.

An example with two distributed predictor applications—each depicted as a flow
graph—is shown in Figure 10.2. The two different flowgraphs in this example look at
different subsets of the data and implement appropriate operations for preprocessing
(cleaning, denoising, merging, alignment, spatiotemporal processing, etc.), followed
by operations for learning and adaptation to compute the local prediction. These are
shown as the subgraphs labeled Pre-proc and Learner, respectively. In the most gen-
eral case, a collection of different models (e.g., neural networks, decision trees, etc.),
trained on appropriate training data, can be used by each predictor application.

The learners receive delayed feedback about their prediction correctness after a
certain amount of time (e.g., if the prediction is for 10 minutes in advance, the label is

30 20 10 –5

Weather

Phone

Pre-proc
Pre-proc

Learner 1 Learner 2

C
o
n
tro

l

C
o
n
tro

l

Learner information exchange

Delayed feedback Delayed feedback

Phone

Figure 10.2 Distributed learning needed for real-time signage update.

238 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

available after 10 minutes) and can use it to modify their individual models and local
aggregation. Additionally, these learners also need to exchange information about
their predictions across distributed locations so that they can get a more global view
of the state of the network and can improve their predictions. Prediction exchange
between the learners is shown on the figure using dashed lines. Finally, the predictions
from the learners can be used to update digital signage in real time and potentially
alert or divert traffic as necessary.

We formalize the characteristics of this online data stream processing application
(SPA) in the next section and discuss how developing it requires the design of online,
distributed ensemble learning frameworks, while deploying it requires being able to
instantiate these frameworks on a distributed system. In the following two sections,
we show how we can leverage characteristics of modern SPSs in order to build and
deploy general learning frameworks that solve distributed learning problems of this
type. Our intent is to showcase how this enables a whole new way of thinking about
such problems and opens up several avenues for future research.

10.3 STREAM PROCESSING CHARACTERISTICS

There is a unique combination of multiple features that distinguishes SPAs from tra-
ditional data analysis paradigms, which are often batch and offline. These features
can be summarized as follows:

Streaming and In-Motion Analysis (SIMA). SPAs need to process streaming data
on the fly, as it continues to flow, in order to support real-time, low-latency anal-
ysis and to match the computation to the naturally streaming properties of the
data. This limits the amount of prior data that can be accessed and necessitates
one-pass, online2 algorithms [6–8]. Several streaming algorithms are described
in [9, 10].

Distributed Data and Analysis (DDA). SPAs analyze data streams that are often
distributed, and their large rates make it impossible to adopt centralized solu-
tions. Hence, the applications themselves need to be distributed.

High Performance and Scalable Analysis (HPSA). SPAs require high-throughput,
low-latency, and dynamic scalability. This means that SPAs should be struc-
tured to exploit distributed computation infrastructures and different forms of
parallelism (e.g., pipelined data and tasks). This also means that they often
require joint application and system optimization [11, 12].

Multimodal Analysis (MMA). SPAs need to process streaming information
across heterogeneous data sources, including structured (e.g., transactions),

2Online algorithms are incremental in nature—processing data items as they arrive, without waiting for
all the data to be available. In some cases a window of data can be processed together where the algorithm
can keep a collection of items in memory and can make multiple passes over these items while they are in
memory for analysis. A special class of online algorithms are one pass, where the algorithms make use of
each data item exactly once.

DISTRIBUTED STREAM PROCESSING SYSTEMS 239

unstructured (e.g., audio, video, text, image), and semi-structured data. In our
transportation example this includes sensor readings, user-contributed text and
images, traffic cameras, etc.

Loss-Tolerant Analysis (LTA). SPAs need to analyze lossy data with different noise
levels, statistical and temporal properties, mismatched sampling rates, etc., and
hence they often need appropriate processing to transform, clean, filter, and
convert data and results. This also implies the need to match data rates, handle
lossy data, synchronize across different data streams, and handle various proto-
cols [7]. SPAs need to account for these issues and provide graceful degradation
of results to loss in the data.

Adaptive and Time-Varying Analysis (ATA). SPAs are often long running and need
to adapt over time to changes in the data and problem characteristics. Hence,
SPAs need to support dynamic reconfiguration based on feedback, current con-
text, and results of the analysis [6–8].

Systems and algorithms for SPAs need to provide capabilities that address these
features and their combinations effectively.

10.4 DISTRIBUTED STREAM PROCESSING SYSTEMS

The signal processing and research community has so far focused on the theoretical
and algorithmic issues for the design of SPAs but has had limited success in taking
such applications into real-world deployments. This is primarily due to the multi-
ple practical considerations involved in building an end-to-end deployment and the
lack of a comprehensive system and tools that provide them the requisite support.
In this section, we summarize efforts at building systems to support SPAs and their
shortcomings and then describe how current SPSs can help realize such deployments.

10.4.1 State of the Art

Several systems, combining principles from data management and distributed pro-
cessing, have been developed over time to support different subsets of requirements
that are now central to SPAs. These systems include traditional databases and data
warehouses, parallel processing frameworks, active databases, continuous query
systems, publish–subscribe (pub-sub) systems, complex event processing (CEP)
systems, and more recently the Map-Reduce frameworks. A quick summary of the
capabilities of these systems with respect to the streaming application characteristics
defined in Section 10.3 is included in Table 10.1.

More details on the individual systems and their examples can be obtained from
Ref. [9]. However, as is clear, none of these systems were truly designed to handle all
requirements of SPAs. Even the recent MapReduce paradigm does not support SIMA
and ATA—critical to the needs of these types of applications. As a consequence, there
is an urgent need to develop more sophisticated SPSs.

240 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

TABLE 10.1 Data Management Systems and Their Support for SPA Requirements

System SIMA DDA HPSA MMA LTA ATA

Databases No Yes Partly No Yes No
(DB2, Oracle, MySQL)
Parallel processing No Yes Yes Yes Yes No
(PVM, MPI, OpenMP)
Active databases Partly Partly No No Yes Yes
(Ode, HiPac, Samos)
Continuous query systems Partly Partly No No Yes Yes
(NiagaraCQ, OpenCQ)
Pub–sub systems Yes Yes No No Yes Partly
(Gryphon, Siena, Padres)
CEP systems Yes Partly Partly No Yes Partly
(WBE, Tibco BE, Oracle CEP)
MapReduce (Hadoop) No Yes Yes Yes Yes No

SIMA, Streaming and In-Motion Analysis; DDA, Distributed Data and Analysis; HPSA,
High-Performance and Scalable Analysis; MMA, Multimodal Analysis; LTA, Loss-Tolerant Analysis;
and ATA, Adaptive and Time-Varying Analysis.

10.4.2 Stream Processing Systems

While SPSs were developed by incorporating ideas from these preceding tech-
nologies, they required several advancements to the state of the art in algorithmic,
analytic, and systems concepts. These advances include sophisticated and extensible
programming models, allowing continuous, incremental, and adaptive algorithms
and distributed, fault-tolerant, and enterprise-ready infrastructures or runtimes.
These systems are designed to allow end-to-end distribution of real-time analysis,
as needed in a fog computing world. Examples of early SPSs include TelegraphCQ,
STREAM, Aurora–Borealis, Gigascope, and Streambase [9]. Currently available and
widely used SPSs include IBM InfoSphere Streams [3] (streams) and open-source
Storm [4] and Spark [5] platforms. These platforms are freely available for experi-
mentation and usage in commercial, academic, and research settings. These systems
have been extensively deployed in multiple domains for telecommunication call
detail record analysis, patient monitoring in ICUs, social media monitoring for
real-time sentiment extraction, monitoring of large manufacturing systems (e.g.,
semiconductor, oil, and gas) for process control, financial services for online trading
and fraud detection, environmental and natural systems monitoring, etc. Descriptions
of some of these real-world applications can be found in Ref. [9]. These systems
have also been shown to scale rates of millions of data items per second, deployed
across tens of thousands of processors in a distributed cluster, provide latencies of
microseconds or lower, and connect with millions of distributed sensors.

While we omit a detailed description of stream processing platforms, we illustrate
some of their core capabilities and constructs to support the needs of SPAs by outlin-
ing an implementation of the transportation application described in Section 10.2 in

DISTRIBUTED STREAM PROCESSING SYSTEMS 241

a stream programming language (SPL). In Figure 10.2, the application is shown as a
flowgraph, which captures logical flow of data from one processing stage to another.
Representing an application as a flowgraph allows for modular design and construc-
tion of the implementation, and as we discuss later, it allows SPSs to optimize the
deployment of the application onto distributed computational infrastructures.

Each node on the processing flowgraphs in Figure 10.2 that consumes and/or pro-
duces a stream of data is labeled an operator. Individual streams carry data items or
tuples that can contain structured numeric values, unstructured text, semi-structured
content such as XML, and binary blobs. In Table 10.2 we present an outline imple-
mentation in SPL [3]. Note that this flowgraph actually implements the distributed
learning framework that will be discussed in more detail in Section 10.5.

In this code, logical composition is indicated by an operator instance stream
<type> S3 = MyOp(S1;S2), where operator MyOp consumes streams S1 and
S2 to produce stream S3, where type represents the type of tuples on the stream.
Note that these streams may be produced and consumed on different computational
resources—but that is transparent to the application developer. Systems like Streams
also include multiple operators/tools that are required to build such an application.
Examples include operators for:

• Data Sources and Connectors, for example, FileSource, TCPSource,
ODBCSource

• Relational Processing, for example, Join, Aggregate, Functor, Sort

• Time Series Analysis, for example, Resample, Normalize, FFT, ARIMA,
GMM

• Custom Extensions, for example, user-created operators in C++/Java or wrap-
ping for MATLAB, Python, and R code

These constructs allow for the implementation of distributed and ensemble learning
techniques, such as those introduced in the learning framework, within specialized
operators. We discuss this more in Section 10.5. Stream processing platforms also
include special tools for geo-spatial processing (e.g., for distance computation, map
matching, speed and direction estimation, bounding box calculations) and standard
mathematical processing. A more exhaustive list is available from Ref. [3].

Finally, programming constructs like the Export operator allows applications (in
our case the congestion prediction application) to publish their output stream such that
other applications, for example, other learners, can dynamically connect to receive
these results. This construct allows for dynamic connections to be established and
torn down as other learners are instantiated or choose to communicate. This is an
important requirement for the learning framework in Section 10.5.

These constructs allow application developers to focus on the core algorithm
design and logical flowgraph construction, while the system provides support for
communication of tuples across operators, conversion of the flowgraph into a set
of processes or processing elements (PEs), distribution and placement of these PEs
across a distributed computation infrastructure, and finally necessary optimizations

242 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

TABLE 10.2 Example of Streams Programming to Realize Congestion Prediction
Application Flowgraph

composite Learner1 {
graph
stream <TPhone> PhoneStream = TCPSource()

{param role: server; port: 12345u;}
stream <TWeather> WeatherStream = InetSource()

{param URIList: ["http://noaa.org/xx"];}
stream <TPhone> CleanPhoneStream = Custom(PhoneStream){...}
stream <TWeather> CleanWeatherStream =

Custom(WeatherStream){...}
stream <TFeature> FeatureStream = Join(CleanWeatherStream;

CleanPhoneStream){...}
stream <TPrediction> P1 = MySVM(FeatureStream){...}
stream <TPrediction> P2 = MyNN(FeatureStream){...}
stream <TPrediction> Learner1Pred = MyAggregation(P1;

P2;Feedback;Learner2Pred){...}
() as Sink2 = Export(Learner1Pred)

{param properties: {name = "Learner1"}}
stream <TPrediction> Learner2Pred = Import()

{param properties: {name = "Learner2"}}
stream <TFeedback> Feedback = Import()

{param properties: {name = "Feedback"}}
}

for scaling and adapting the deployed applications. We present an illustration of
the process used by such systems to convert a logical flowgraph to a physical
deployment in Figure 10.3.

Among the biggest strengths of using a stream processing platform is the
natural scalability and efficiency provided by these systems and their support for
extensibility in terms of optimization techniques for topology construction, operator
fusion, operator placement, and adaptation [9]. These systems allow users to
formulate and provide additional algorithms to optimize their applications based
on the application, data, and resource-specific requirements. This opens up several
new research problems related to the joint optimization of algorithms and systems.
For instance, consider a simple example application with two operators. Using the
Streams composition language, these operators—shown as black and white boxes
in Figure 10.4—can be arranged into a parallel (task parallel) or a serial (pipelined
parallel) topology to perform the same task,3 as shown in Figure 10.4. This topology
can also be distributed across computational resources (shown as different sized
CPUs in Figure 10.4). The right choice of topology and placement depends on the

3Note that with a stream processing platform, other forms of parallelism such as data parallel process-
ing and hybrid forms of parallelism with arbitrary combinations of data-, task-, and pipelined–parallel
processing are possible.

DISTRIBUTED STREAM PROCESSING SYSTEMS 243

Computational

node 1
Computational

node 2

Application
PE1

PE2 PE3

PE4

PE5
PE6

Compile

D
e
p
lo

y

Logical layout

Physical layout

Stream processing middleware

Deployment of the job on the

infrastructure managed by the

stream processing platform

Figure 10.3 From logical operator flowgraphs to deployment.

CPU1 CPU2
Placement on one CPU Placement on two CPUs

Parallel topology

(task parallel)

Serial topology

(pipelined parallel)

T
ra

d
e

-o
ffs

 p
o

s
s
ib

e
l

Figure 10.4 Possible trade-offs with parallelism and placement.

resource constraints and data characteristics and needs to be dynamically adapted
over time. This requires solving a joint resource optimization problem whose
solution can be realized using the controls provided by SPSs. In practice, there are
several such novel optimization problems that can be formulated and solved—in this
joint application–system research space. For instance, Refs. [11] and [13] discuss
topology construction and optimization for non trivial compositions of operators for
multi-class classification. Additionally, these systems provide support for design
of novel meta-learning and planning-based approaches to dynamically construct,
optimize, and compose topologies of operators on these systems [14].

This combination of systems and algorithms enables several other open research
problems in this space of joint application–system research, especially in an online,

244 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

distributed, large-scale setting. In the next section we propose a solution to build a
large-scale online distributed ensemble learning framework that leverages the capa-
bilities provided by SPSs (and is implemented by the code in Table 10.2) to provide
solutions to the illustrative problem defined in Section 10.2.

10.5 DISTRIBUTED ONLINE LEARNING FRAMEWORKS

We now formalize the problem described in Section 10.2 and propose a novel dis-
tributed learning framework to solve it. We first review the state of the art in such
research and illustrate its shortcomings. Then we describe a systematic framework
for online, distributed ensemble learning well suited for SPAs. Finally, as an illustra-
tive example, we describe how such framework can be applied to a collision detection
application.

10.5.1 State of the Art

As mentioned in Section 10.3, it is important for stream processing algorithms to
be online, one pass, adaptive, and distributed to operate effectively under budget con-
straints and to support combinations (or ensembles) of multiple techniques. Recently,
there has been research that uses the aforementioned techniques for analysis, and
we include a summary of some of these approaches next. We partition our review
into Ensemble methods, Diffusion adaptation, and finally frameworks for distributed
learning.

10.5.1.1 Ensemble Methods Ensemble techniques [15] build and combine a col-
lection of base algorithms (e.g., classifiers) into a joint unique algorithm (classifier).
Traditional ensemble schemes for data analysis are focused on analyzing stored or
completely available datasets; examples of these techniques include bagging [16]
and boosting [17]. In the past decade much work has been done to develop online
versions of such ensemble techniques. An online version of AdaBoost is described in
Refs. [18], and similar proposals are made in Refs. [19] and [20]. Minku and Xin [21]
propose a scheme based on two online ensembles, one used for system predictions,
and the other one used to learn the new concept after a drift is detected. Weighted
majority [22] is an ensemble technique that maintains a collection of given learners,
predicts using a weighted majority rule, and decreases in a multiplicative manner the
weights of the learners in the pool that disagree with the label whenever the ensemble
makes a mistakes. In Ref. [23] the weights of the learners that agree with the label
when the ensemble makes a mistakes are increased, and the weights of the learners
that disagree with the label are decreased also when the ensemble predicts correctly.
To prevent the weights of the learners that performed poorly in the past from becom-
ing too small with respect to the other learners, Herbster and Warmuth [24] propose a
modified version of weighted majority adding a phase, after the multiplicative weight
update, in which each learner shares a portion of its weight with the other learners.

DISTRIBUTED ONLINE LEARNING FRAMEWORKS 245

While many of the ensemble learning techniques have been developed assuming
no a priori knowledge about the statistical properties of the data—as is required in
most of the SPAs—these techniques are often designed for a centralized scenario.
In fact, the base classifiers in these approaches are not distributed entities; they all
observe the same data streams, and the focus of ensemble construction is on the statis-
tical advantages of learning with an ensemble, with little study of learning under com-
munication constraints. It is possible to cast these techniques within the framework of
distributed learning, but as is they would suffer from many drawbacks. For example,
Refs. [18–21] would require an entity that collects and stores all the data recently
observed by the learners and that tells the learners how to adapt their local classi-
fiers, which are clearly impractical in SPAs that need to process real-time streams
characterized by high data rates.

10.5.1.2 Diffusion Adaptation Methods Diffusion adaptation literature [25–32]
consists of learning agents that are linked together through a network topology in a
distributed setting. The agents must estimate some parameters based on their local
observations and on the continuous sharing and diffusion of information across the
network, and there is a focus on learning in distributed environments under com-
munication constraints. In fact, Ref. [32] shows that a classification problem can
be cast within the diffusion adaptation framework. However, there are some major
constraints that are posed on the learners. First, in Refs. [25–32] all the learners are
required to estimate the same set of parameters (i.e., they pursue a common goal)
and combine their local estimates to converge toward a unique and optimal solution.
This is a strong assumption for SPAs, as the learners might have different objectives
and may use different information depending on what they observe and on their spa-
tiotemporal position in the network. Hence, the optimal aggregation function may
need to be specific to each learner.

10.5.1.3 Frameworks for Distributed Learning There has been a large amount of
recent work on building frameworks for distributed online learning with dynamic data
streams, limited communication, delayed labels and feedback, and self-interested and
cooperative learners [7, 33–35]. We discuss this briefly next.

To mine the correlated, high-dimensional, and dynamic data instances captured by
one or multiple heterogeneous data sources, extract actionable intelligence from these
instances, and make decisions in real time as discussed previously, a few important
questions need to be answered: which processing/prediction/decision rule should a
local learner (LL) select? How should the LLs adapt and learn their rules to max-
imize their performance? How should the processing/predictions/decisions of the
LLs be combined/fused by a meta-learner to maximize the overall performance?
Most literature treats the LLs as black box algorithms and proposes various fusion
algorithms for the ensemble learner with the goal of issuing predictions that are at
least as good as the best LL in terms of prediction accuracy, and the performance
bounds proved for the ensemble in these works depend on the performance of the
LLs. In Ref. [34] the authors go one step further and study the joint design of learning

246 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

algorithms for both the LLs and the ensemble. They present a novel systematic learn-
ing method (Hedge Bandits), which continuously learns and adapts the parameters of
both the LLs and the ensemble, after each data instance, and provide both long-run
(asymptotic) and short-run (rate of learning) performance guarantees. Hedge Bandits
consists of a novel contextual bandit algorithm for the LLs and Hedge algorithm for
the ensemble and is able to exploit the adversarial regret guarantees of Hedge and
the data-dependent regret guarantees of the contextual bandit algorithm to derive a
data-dependent regret bound for the ensemble.

In Ref. [7], the ensemble learning consists of multiple-distributed LLs, which ana-
lyze different streams of data correlated to a common classification event, and local
predictions are collected and combined using a weighted majority rule. A novel online
ensemble learning algorithm is then proposed to update the aggregation rule in order
to adapt to the underlying data dynamics. This overcomes several limitations of prior
work by allowing for (i) different correlated data streams with statistical dependency
among the label and the observation being different across learners, (ii) data being
processed incrementally, once on arrival leading to improved scalability, (iii) support
for different types of local classifiers including support vector machine, decision tree,
neural networks, offline/online classifiers, etc., and (iv) asynchronous delays between
the label arrival across the different learners. A modified version of this framework
was applied to the problem of collision detection by networked sensors similarly to
the one that we discussed on Section 10.2 of this chapter. For details, please refer to
Ref. [36].

A more general framework, where the rule for making decisions and predictions
is general and depends on the costs and accuracy (specialization) of the autonomous
learners, was proposed in Ref. [33]. This cooperative online learning scheme con-
siders (i) whether the learners can improve their detection accuracy by exchanging
and aggregating information, (ii) whether the learners improve the timeliness of their
detections by forming clusters, that is, by collecting information only from surround-
ing learners, and (iii) whether, given a specific trade-off between detection accuracy
and detection delay, it is desirable to aggregate a large amount of information or it is
better to focus on the most recent and relevant information.

In Ref. [37], these techniques are considered in a setting with a number of speed
sensors that are spatially distributed along a street and can communicate via an exoge-
nously determined network, and the problem of detecting in real-time collisions that
occur within a certain distance from each sensor is studied.

In Ref. [35], a novel framework for decentralized, online learning by many
self-interested learners is considered. In this framework, learners are modeled as
cooperative contextual bandits, and each learner seeks to maximize the expected
reward from its arrivals, which involves trading off the reward received from its
own actions, the information learned from its own actions, the reward received
from the actions requested of others, and the cost paid for these actions—taking
into account what it has learned about the value of assistance from each other
learner. A distributed online learning algorithm is provided, and analytic bounds to
compare the efficiency of these algorithms with the complete knowledge (oracle)

DISTRIBUTED ONLINE LEARNING FRAMEWORKS 247

benchmark (in which the expected reward of every action in every context is known
by every learner) are established: regret—the loss incurred by the algorithm—is
sublinear in time. These methods have been adapted in Ref. [38] to provide expertise
discovery in medical environments. Here, an expert selection system is developed
that learns online who is the best expert to treat a patient having a specific condition
or characteristic.

In Section 10.5.2 we describe one such framework for online, distributed ensem-
ble learning that addresses some of the challenges discussed in Section 10.3 and is
well suited for the transportation problem described in Section 10.2. The presented
methodology does not require a priori knowledge of the statistical properties of the
data. This means that it can be applied both when a priori information is available
and when a priori information is not available. However, if the statistical properties
of the data are available beforehand, it may be convenient to apply schemes that are
specifically designed to take into account the known statistical properties of the data.
Moreover, the presented methodology does not require any specific assumption on
the form of the loss or objective function. This means that any loss or objective func-
tion can be adopted. However, notice that the final performance of scheme depends
on the selected function. For illustrative purposes, in Section 10.5.3 we consider a
specific loss function, and we derive an adaptive algorithm based on this loss func-
tion, and in Section 10.5.4 we describe how the proposed framework can be adopted
for a collision detection application.

10.5.2 Systematic Framework for Online Distributed Ensemble Learning

We now proceed to formalize the problem of large-scale distributed learning from
heterogeneous and dynamic data streams using the problem defined in Section 10.2.
Formally, we consider a set = {1,… ,K} of learners that are geographically dis-
tributed and connected via links among pairs of learners. We say that there is a link
(i, j) between learners i and j if they can communicate directly with each other. In the
case of our congestion application, each learner observes part of the transportation
network by consuming geographically local readings from sensors and phones within
a region and is linked to other learner streams via interfaces like the export–import
interface described in Section 10.4.

Each learner is an ensemble of local classifiers that observes a specific set of
data sources and relies on them to make local classifications, that is, partition data
items into multiple classes of interest.4 In our application scenario, this maps to a
binary classification task—predicting presence of congestion at a certain location
within a certain time window. Each local classifier may be an arbitrary function (e.g.,
implemented using well-known techniques such as neural networks, decision trees,
etc.) that performs classification for the classes of interest. In Table 10.2 we show
an implementation of this in an SPL with two local classifiers, MySVM and MyNN
operators, and an aggregate MyAggregation operator. In order to simplify the

4We present the ensemble learning in a classification setting, but the discussion is also applicable in a
regression setting.

248 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

discussion, we assume that each learner exploits a single local classifier, and we focus
on binary classification problems, but it is possible to generalize the approach to the
multi-classifier and multi-class cases. Each learner is also characterized by a local
aggregation rule, which is adaptive.

Raw data items in our application can include sensor readings from the transporta-
tion network and user phones, as well as information about the weather. These data
items are cleaned, preprocessed, and merged, and features are extracted from them
(e.g., see Table 10.2), which are then sent to the geographically appropriate learner.
We assume a synchronous processing model with discrete time slots. At each time
slot, each learner observes a feature vector. It first exploits the local classifier to make
a local prediction for that slot, and then it sends its local prediction to other learners
in its neighborhood and receives local predictions from the other learners, before it
finally exploits the aggregation rule to combine its local predictions and the predic-
tions from its neighbors into a final classification.

Consider a discrete time model in which time is divided into slots, but an exten-
sion to a continuous time model is possible. At the beginning of the n-th time slot,
K multidimensional instances 𝐱n

i ∈ i, i = 1…K, and K labels yn
i ∈ {−1,+1}, i =

1…K, are drawn from an underlying and unknown joint probability distribution.
Each learner i observes the instance 𝐱n

i , and its task is to predict the label yn
i (see

Figure 10.6). We shall assume that a label yn
j is correlated with all the instances

𝐱n
i , i = 1…K. In this way, learner i’s observation can contain information about

the label that learner j has to predict. We remark that this correlation is not known
beforehand.

Each learner i is equipped with a local classifier f n
i ∶i → {−1,+1} that generates

the local prediction sn
i ≜ f n

i

(
𝐱n

i

)
based on the observed instance 𝐱n

i at time slot n. Our
framework can accommodate both static pre-trained classifiers and adaptive classi-
fiers that learn online the parameters and configurations to adopt [39]. However, the
focus of this section will not be on classifier design, for which many solutions already
exist (e.g., support vector machines, decision trees, neural networks, etc.); instead,
we will focus on how the learners exchange and learn how to aggregate the local
predictions generated by the classifiers.

We allow the distributed learners to exchange and aggregate their local predic-
tions through multihop communications; however, within one time slot a learner
can send only a single transmission to each of its neighbors. We denote by sn

ij
learner j’s local prediction possessed by learner i before the aggregation at time
instant n. The information is disseminated in the network as follows. First, each
learner i observes 𝐱n

i and updates sn
ii = sn

i = f n
i (𝐱

n
i). Next, learner i transmits to each

neighbor j the local prediction sn
i and the local predictions sn−1

ik , for each learner
k ≠ i such that the link (i, j) belongs to the shortest path between k and j. Hence, if
transmissions are always correctly received, we have sn

ii = sn
i and sn

ij = s
n−dij+1

j ,
i ≠ j, where dij is the distance in number of hops between i and j. For instance,
Figure 10.5 represents the flow of information toward learner 1 for a binary tree
network assuming that transmissions are always correctly received. More generally,
if transmissions can be affected by communication errors, we have sn

ij = sm
j , for some

m ≤ n − dij + 1.

DISTRIBUTED ONLINE LEARNING FRAMEWORKS 249

sn
8 sn

9
sn

10 sn
11

sn
12 sn

13
sn

14 sn
15

[s2
n,s4

n − 1,s5
n − 1,s8

n − 2,s9
n − 2,s10

 ,s11]
n − 2 n − 2

[s4
n,s8

n − 1,s9
n − 1]

1

2

4 5 6

3

7

[s3 ,s6 ,s7
 ,s12 ,s13

 ,s14
 ,s15]

n − 2n − 1 n − 1 n − 2 n − 2 n − 2n

[s5 ,s10 ,s11
]n − 1 n − 1n [s6 ,s12 ,s13

]n − 1 n − 1n [s7 ,s14 ,s15
]n − 1 n − 1n

8 9 10 11 12 13 14 15

Figure 10.5 Flow of information toward learner 1 at time slot n for a binary tree network.

Each learner i employs a weighted majority aggregation rule to fuse the data it
possesses and generates a final prediction ŷn

i as follows:

ŷn
i ≜ sgn

(∑
j∈

𝑤

n
ijs

n
ij

)
≜

{
+1, if argument of sgn is ≥ 0
−1, otherwise

(10.1)

where sgn(⋅) is the sign function. In the example earlier, we use a threshold of 0
on the value of the argument to separate the two classes. In practice this threshold
can be arbitrary; however this does not affect the discussion next, as the threshold
corresponds to a constant shift in the argument.

In the earlier construction, learner i first aggregates all possessed predictions {sn
ij}

using the weights {𝑤n
ij} and then uses the sign of the fused information to output its

final classification, ŷn
i . While weighted majority aggregation rules have been consid-

ered before in the ensemble learning literature [17–20], there is an important distinc-
tion in Equation (10.1) that is particularly relevant to the online distributed stream
mining context: since we are limiting the learners to exchange information only via
links, learners receive information from other learners with delay (i.e., in general
sn

ij ≠ sn
j), as a consequence different learners have different information to exploit

(i.e., in general sn
ij ≠ sn

kj).
Each learner i maintains a total of K weights and K local predictions, which we

collect into vectors:

𝐰n
i ≜

(
𝑤

n
i1,… , 𝑤

n
iK

)
; 𝐬n

i ≜
(
sn

i1,… , sn
iK

)
. (10.2)

Given the weight vector 𝐰n
i , the decision rule (10.1) allows for a geometric inter-

pretation: the homogeneous hyperplane in ℜK that is orthogonal to 𝐰n
i separates the

positive prediction (i.e., ŷn
i = +1) from the negative predictions (i.e., ŷn

i = −1).
We consider an online learning setting in which the true label yn

i is eventually
observed by learner i. Learner i can then compare both ŷn

i and yn
i and use this infor-

mation to update the weights it assigns to the other learners. Indeed, since we do not

250 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

y1
m

yK
m

xK
n

Local

classifier

Aggregation

rule

Learner 1

Local

classifier
Aggregation

rule

Learner K

Feature vector

at time slot n

Delayed feedback

from time slot m
(m < n)

Data

source 1

x1
n

D
e

la
y

D
e

la
y

Update

Update

–

–

Data

source K

Data

source i

Network

topology

y1
my1

n

yK
n

yK
m

Figure 10.6 System model described in Section 10.5.2.

assume any a priori information about the statistical properties of the processes that
generate the data observed by the various learners, we can only exploit the available
observations and the history of past data to guide the design of the adaptation process
over the network.

In summary, the sequence of events that takes place in a generic time slot n,
represented in Figure 10.6, involves five phases:

1. Observation. Each learner i observes an instance 𝐱n
i at time n.

2. Information Dissemination. Learners send the local predictions they possess to
their neighbors.

3. Final Prediction. Each learner i computes and outputs its final prediction ŷn
i .

4. Feedback. Learners can observe the true label ym
i that refers to a time slot m ≤ n.

5. Adaptation. If ym
i is observed, learner i updates its aggregation vector from 𝐰n

i
to 𝐰n+1

i .

In the context of the discussed framework, it is fundamental to develop strategies
for adapting the aggregation weights {𝑤n

ji} over time, in response to how well the
learners perform. A possible approach is discussed next.

10.5.3 Online Learning of the Aggregation Weights

A possible approach to update the aggregation weights is to associate with each
learner i an instantaneous loss function 𝓁n

i (𝐰i) and minimize, with respect to the
weight vector 𝐰i, the cumulative loss given all observations up to time slot n. In the

DISTRIBUTED ONLINE LEARNING FRAMEWORKS 251

following we consider this approach, adopting an instantaneous hinge loss function
[40]:

For each time instant n, we consider the one-shot loss function

𝓁n
i (𝐰i) ≜

⎧⎪⎨⎪⎩
−𝛼MD𝐰i ⋅ 𝐬n

i if ŷn
i = −1 and yn

i = 1
𝛼

FA𝐰i ⋅ 𝐬n
i if ŷn

i = 1 and yn
i = −1

0 if ŷn
i = yn

i

(10.3)

where the parameters 𝛼

MD
> 0 and 𝛼

FA
> 0 are the mis-detection and false alarm

unit costs and 𝐰i ⋅ 𝐬n
i ≜

∑
j∈ 𝑤ijs

n
ij denotes the scalar product between 𝐰i and 𝐬n

i . The
hinge loss function is equal to 0 if the weight vector 𝐰i allows to predict correctly the
label yn

i ; otherwise the value of the loss function is proportional to the distance of 𝐬n
i

from the separating hyperplane defined by 𝐰i, multiplied by 𝛼

MD if the prediction is
−1 but the label is 1, we refer to this type of error as a mis-detection, or multiplied by
𝛼

FA if the prediction is 1 but the label is −1, we refer to this type of error as a false
alarm.

The hinge loss function gives higher importance to errors that are more difficult to
correct with the current weight vector. A related albeit different approach is adopted
in AdaBoost [17], in which the importance of the errors increases exponentially in the
distance of the local prediction vector from the separating hyperplane. Here, however,
the formulation is more general and allows for the diffusion of information across
neighborhoods simultaneously, as opposed to assuming each learner has access to
information from across the entire set of learners in the network.

We can then formulate a global objective for the distributed stream mining problem
as that of determining the optimal weights by minimizing the cumulative loss given
all observations up to time slot n:

{
𝐰n+1

i

}K

i=1
= argmin

{𝐰i}K
i=1

K∑
i=1

n∑
m=1

𝓁
m

i (10.4)

where 𝓁
m

i ≜ 𝓁m
i if ym

i has been observed by time instant n, otherwise 𝓁
m

i ≜ 0.
To solve (10.4) learner i must store all previous labels and all previous local pre-

dictions of all the learners in the system, which is impractical in SPAs, where the
volume of the incoming data is high and the number of learners is large. Hence, we
adopt the stochastic gradient descent algorithm to incrementally approach the solu-
tion of (10.4) using only the most recently observed label. If label ym

i is observed at
the end of time instant n, we obtain the following update rule for 𝐰n

i :

𝐰n+1
i =

⎧⎪⎨⎪⎩
𝐰n

i + 𝛼

MD𝐬n
i if ỹm

i = −1 and ym
i = 1

𝐰n
i − 𝛼

FA𝐬n
i if ỹm

i = 1 and ym
i = −1

𝐰n
i if ỹn

i = yn
i

(10.5)

where ỹm
i is the prediction that learner i would have made at time instant m with

the current weight vector 𝐰n
i . This construction allows a meaningful interpretation.

252 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

It shows that learner i should maintain its level of confidence in its data when its
decision agrees with the observed label. If disagreement occurs, then learner i needs
to assess which local predictions lead to the misclassification: the weight 𝑤n

ij that
learner i adopts to scale the local predictions it receives from learner j is increased
(by either 𝛼MD or 𝛼FA units, depending on the type of error) if the local prediction
sent by j agreed with the label, otherwise 𝑤

n
ij is decreased.

[?] and [8] derive worst-case upper bounds for the misclassification probability of a
learner adopting the update rule 10.5. Such bounds are expressed in terms of the mis-
classification probabilities of two benchmarks: (i) the misclassification probability of
the best local classifiers and (ii) the misclassification probability of the best linear
aggregator. We remark that the best local classifiers and the best linear aggregator are
not known and cannot be computed beforehand; in fact, this would require to know
in advance the realization of the process that generates the instances and the labels.

The optimization problem (10.4) can also be solved within the diffusion adapta-
tion framework, as proposed in Ref. [32]. In this framework the learners combine
information with their neighbors, for example, in the combine-then-adapt (CTA) dif-
fusion scheme, they first combine their weights and then adopt the stochastic gradient
descent [32]. Figure 10.7 illustrates the difference between our approach and the CTA
scheme.

We remark that the framework described so far requires each learner to maintain
a weight (i.e., an integer value) and a local prediction (i.e., a Boolean value) for each
other learner in the network. This means that the memory and computational require-
ments scale linearly in the number of learners K. However, notice that the aggregation
rule 10.1 and the update rule 10.5 only require basic operations such as add, multi-
ply, and compare. Moreover, if the learners have a common goals, that is, they must
predict a common class label yn, it is possible to develop a scheme in which each
learner keeps track only of its own local prediction and of the weight used to scale
its local prediction and is responsible to update such a weight. In this scheme the
learners exchange the weighted local predictions instead of the local predictions and
the memory and computational requirements scale as a constant in the number of
learners K. For additional details, we refer the reviewer to Ref. [8].

The framework discussed in this subsection naturally maps onto a deployment
using an SPS. Each of the learners shown in Figure 10.6 maps onto the subgraph
labeled learner in Figure 10.2, with the local classifiers mapping onto the shown par-
allel topology and the aggregation rule mapping to the fan-in on that subgraph. As
mentioned earlier, the base classifiers may be implemented using the toolkits provided
by systems like Streams that include wrappers for R and MATLAB. The feedback
yn

i corresponds to the delayed feedback in Figure 10.2, and the input feature vector
𝐱n

i is computed by the Pre-proc part of the subgraph in Figure 10.2 and can include
different types of spatiotemporal processing and feature extraction. Finally, the com-
munication between the learners in Figure 10.6 is enabled by the learner information
exchange connections in Figure 10.2. In summary, this online, distributed ensemble
learning framework can naturally be implemented on a stream processing platform.
This combination is very powerful, as it now allows the design, development, and
deployment of such large-scale complex applications much more feasible, and it also

w1= (w1+ w2)/2
w3= (w2+ w3)/2

DiffusionOur model

2

sn sn−1
2 3 sn sn−1

2 1

sn
1 sn

3

1 2 331

w2 s
n sn−1

Update: Update:

Learner 3

Learner 1

Combine:

Learner 3

Combine:

Predict:

Learner 3

Predict:

Update:

Predict:Predict:

Update:

if yn≠ yn then

w1= w1+ ynsn

ˆ1 1

1 1

2 3 w2 s
n sn−1
2 1

w1 sn
1 w3 sn

3

if yn≠ yn thenˆ

w1= w1+ ynsn
1

1 1

1
–

if yn≠ yn then

w3= w3+ ynsn
33

3 3

ˆ

–

sn= (sn, sn, sn−1)
–

yn= sgn (w · sn)ˆ

1 1 2 3

111
–

sn= (sn, sn, sn−1)

yn= sgn (w1 · sn)ˆ

1

1

1 2 3
–

sn= (sn−1, sn, sn)

yn= sgn (w · sn)ˆ
3

3 3 3

1 2 3
–

–

sn= (sn–1, sn, sn)

yn= sgn (w3 · sn)

1

1 3

1 2 3

ˆ

–
–

–

if yn≠ yn then

w3= w3+ ynsn
3

3 3

3
–

ˆ
–

Figure 10.7 A comparison between the proposed algorithm and the combine-then-adapt (CTA) scheme in terms of information dissemination and
weight update rule. Unlike diffusion, in the proposed approach the weight vectors do not need to be disseminated.

254 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

Algorithm 10.1

Initialization: 𝑤

n
ij = 0, ∀ i, j ∈

For each learner i and time instant n
Observe 𝐱n

i and update sn
ii ← f n

i (𝐱
n
i)

Send sn
ij to all neighbors k where i is on path between j and k, ∀ j

Update sn
ij ← sn

kj for each k and j such that sn
kj is correctly received

Predict ŷn
i ← sgn

(∑
j∈ 𝑤

n
ijs

n
ij

)
For each time instant m such that ym

i is observed

If sgn
(∑

j∈ 𝑤

n
ijs

m
ij

)
≠ ym

i

If ym
i = 1 do 𝐰n

i ← 𝐰n
i + 𝛼

MD𝐬n
i

Else do 𝐰n
i ← 𝐰n

i − 𝛼

FA𝐬n
i

enables a range of novel signal processing, optimization, and scheduling research.
We discuss some of these open problems in Section 10.6.

10.5.4 Collision Detection Application

In this subsection we apply the framework described in Sections 10.5.2 and 10.5.3
to a collision detection application in which a set of speed sensors—which are spa-
tially distributed along a street—must detect in real-time collisions that occur within
a certain distance from them.

We consider a set = {1,… ,K} of K speed sensors that are distributed along
both travel directions of a street (see the left side of Figure 10.8). We focus on a
generic sensor i that must detect the occurrence of collision events within z miles
from its location along the corresponding travel direction, where z is a predetermined
parameter. A collision event e𝓁 is characterized by an unknown starting time t𝓁,start ,
when the collision occurs, and an unknown ending time t𝓁,end, when the collision is
cleared. The goal of sensor i is to detect the collision e𝓁 by the time t𝓁,det = t𝓁,start +
Tmax, where Tmax can be interpreted as the maximum time after the occurrence of the
collision such that the information about the collision occurrence can be exploited to
take better informed actions (e.g., the average time after which a collision is reported
by other sources).

We divide the time into slots of length T . We write yn
i = +1 if a collision occurs at

or before time instant n and is not cleared by time instant n, whereas we write yn
i = −1

to represent the absence of a collision. Figure 10.9 illustrates these notations.
At the beginning of the n-th time slot, each speed sensor j observes a speed value

xn
j ∈ ℜ, which represents the average speed value of the cars that have passed through

sensor j from the beginning of the (n − 1)-th time slot until the beginning of the n-th
time slot. We consider a threshold-based classifier:

sn
j = f n

j (x
n
j) ≜

{
−1 if xn

j > 𝛽j𝑣
n
j

+1 if xn
j ≤ 𝛽j𝑣

n
j

(10.6)

DISTRIBUTED ONLINE LEARNING FRAMEWORKS 255

i

i + 1

i + 2

k

k + 2

Gi

i

k + 1

WARNING

There may

be a

collision 4

miles ahead

South North

Figure 10.8 A generic speed sensor i must detect collisions in real time and inform the drivers
(left). To achieve this goal sensor i receives the observations from the other sensors, and the
flow of information is represented by a directed graph i (right).

–1

+1

Label (yi
n)

Tmax

Zℓ

The event must be
detected within this

time interval

time (n)Feedback ℓ-th evevnt
(collision reported)

tℓ, start
(collision occurence)

tℓ, det tℓ, end
(collision cleared)

Figure 10.9 Illustration of the considered notations.

where 𝑣

n
j is the average speed observed by sensor j during that day of the week and

time of the day, and 𝛽j ∈ [0, 1] is a threshold parameter.
If sensor j is close to sensor i, the speed value xn

j and the local prediction sn
j are cor-

related to the occurrence or absence of the collision events that sensor i must detect.
For this reason, to detect collisions in an accurate and timely manner, the sensors must
exchange their local predictions. Specifically, we denote the sensors such that sensor
i precedes sensor i + 1 in the direction of travel. In order to detect whether a collision
has occurred within z miles from its location, sensor i requires the observations of

256 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

the subsequent sensors in the direction of travel (e.g., sensors i + 1, i + 2, etc.) up to
the sensor that is far from sensor i more than z miles. Hence, the information flows
in the opposite direction with respect to the direction of travel. Such a scenario is
represented by the right side of Figure 10.8. Notice that sensor i + 1 is responsible to
collect the observation from sensor i + 2 and to send to sensor i both its observation
and the observation of i + 2.

Figure 10.8 shows also the flow of information provided by one side of the street
to the other side of the street (i.e., from sensor k to sensor i). Indeed, the fact that the
observations on one side of the street are not influenced by a collision on the other
side of the street can be extremely useful to assess the traffic situation and distinguish
between collisions and other types of incidents. For example, the sudden decrease
of the speed observed by some sensors in the considered travel direction may be a
collision warning sign; however, if at the same time instants the speed observed by
the sensors in the opposite travel direction decreases as well, then an incident that
affect both travel directions may have occurred (e.g., it started to rain) instead of a
collision.

We can formally define the flow of information represented by the right side of
Figure 10.8 with a directed graph i ≜

(
i,i

)
,5 where i ⊂ is the subset of sen-

sors that send their local predictions to sensor i (included i itself) and i ⊂ i ×i
is the set of links among pairs of sensors.

Now both the local classifiers and the flow of information are defined, learner i
can adopt the framework described in Sections 10.5.2 and 10.5.3 to detect the occur-
rence of collisions within z miles from its location. Specifically, learner i maintains in
memory Ki weights (Ki is the cardinality of i) that are collected in the weight vec-
tor 𝐰n

i ; it predicts adopting 10.1 and it updates the weights adopting 10.5 whenever
a feedback is received. The feedback about the occurrence of the collision event e𝓁
can be provided, for example, by a driver or by a police officer, and it is in general
received with delay. In Figure 10.8 such a delay is denoted by Z𝓁 .

We have evaluated the proposed framework over real-word datasets. Specifically,
we have exploited a dataset containing the speed readings of the loop sensors that are
distributed along a 50 mile segment of the freeway 405 that passes through Los Ange-
les County and a collision dataset containing the reported collisions that occurred
along the freeway 405 during the months of September, October, and November 2013.
For a more detailed description of the datasets, we refer the reader to Ref. [41]. Our
illustrative results show that the considered framework is able to detect more than half
of the collisions occurring within a distance of 4 miles from a specific sensors while
generating false alarms in the order of one false alarm every 100 predictions. The
results show also that by setting the ratio 𝛼

MD∕𝛼FA, mis-detections and false alarms
can be traded off.

5We remark that we focus on a particular sensor i to keep the discussion and the notations simple. However,
all the sensors may be required to detect collisions that are within z miles from their location. Hence,
each sensor applies the same scheme we propose in this chapter for a generic sensor i. This means that
there are many directed graphs (e.g., 1, 2, etc.) representing how information flows among different
sensors.

WHAT LIES AHEAD 257

10.6 WHAT LIES AHEAD

There are several open research problems at this application–algorithm systems
interface—needed for fog computing—that are worth investigating. First, there is
currently no principled approach to decompose an online distributed large-scale
learning problem into a topology/flowgraph of streaming operators and functions.
While standard engineering principles of modularity, reuse, atomicity, etc. apply,
there is no formalism that supports such a decomposition.

Second, there are several optimization problems related to mapping a given
processing topology onto physical processes that can be instantiated on a dis-
tributed computation platform. This requires a multi-objective optimization where
communication costs need to be traded off with memory and computational
costs while ensuring efficient utilization of resources. Also, given that resource
requirements and data characteristics change over time, these optimization problems
may need to be solved incrementally or periodically. The interaction between
these optimizations and the core learning problem needs to be also formally
investigated.

Third, there are several interesting topology configuration and adaptation prob-
lems that can be considered: learners can be dynamically switched on or off to
reduce system resource usage or improve system performance; the topology through
which they are connected can adapt to increase parallelism; the selectivity operating
points of individual classifiers can be modified to reduce workloads on downstream
operators; past data and observations can be dynamically dropped to free memory
resources; etc. The impact of each individual adaptation and of the interaction among
different levels of adaptation is unclear and needs to be investigated. Some examples
of exploiting these trade-offs have been considered in Ref. [11], but this is a fertile
space for future research.

Another important extension is the use of active learning approaches [42] to gather
feedback in cases where it is sparse, hard, or costly to acquire.

Fourth, there is need to extend the meta-learning aggregation rule from a linear
form to other forms (e.g., decision trees) to exploit the decision space more effec-
tively. Additionally, meta-learners may themselves be hierarchically layered into mul-
tiple levels—with different implications for learning, computational complexity, and
convergence.

Fifth, in the presence of multiple learners, potentially belonging to different enti-
ties, these ensemble approaches need to handle noncooperative and in some cases
even malicious entities. In Ref. [43], a few steps have been taken in this direction. This
work studies distributed online recommender systems, in which multiple learners,
which are self-interested and represent different companies/products, are competing
and cooperating to jointly recommend products to users based on their search query as
well as their specific background including history of bought items, gender, and age.

Finally, while we have posed the problem of distributed learning in a supervised
setting (i.e., the labels are eventually observed), there is also a need to build
large-scale online algorithms for knowledge discovery in semi-supervised and
unsupervised settings. Constructing online ensemble methods for clustering, outlier

258 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

detection, and frequent pattern mining are interesting directions. A few steps in these
directions have been taken in Refs. [44] and [45], where context-based unsupervised
ensemble learning was proposed and clustering, respectively.

More discussion of such complex applications built on a stream processing plat-
form, open research problems, and a more detailed literature survey may be obtained
from Ref. [9]. Overall, we believe that the space of distributed, online, large-scale
ensemble learning using stream processing middleware is an extremely fertile space
for novel research and construction of real-world deployments that have the potential
to accelerate our effective use of streaming Big Data to realize a Smarter Planet.

ACKNOWLEDGMENT

The authors would like to acknowledge the Air Force DDAS Program for support.

REFERENCES

1. “IBM Smarter Planet,” http://www.ibm.com/smarterplanet (accessed September 24,
2016), retrieved October 2012.

2. “ITU Report: Measuring the Information Society,” http://www.itu.int/dms_pub/itu-d/
opb/ind/D-IND-ICTOI-2012-SUM-PDF-E.pdf (accessed September 24, 2016), 2012.

3. “IBM InfoSphere Streams,” www.ibm.com/software/products/en/infosphere-streams/
(accessed September 24, 2016), retrieved March 2011.

4. “Storm Project,” http://storm-project.net/ (accessed September 24, 2016), retrieved Octo-
ber 2012.

5. “Apache Spark,” http://spark.apache.org/ (accessed September 24, 2016), retrieved
September 2015.

6. Y. Zhang, D. Sow, D. S. Turaga, and M. van der Schaar, “A fast online learning algorithm
for distributed mining of big data,” in The Big Data Analytics Workshop at SIGMETRICS,
Pittsburgh, PA, USA, June 2013.

7. L. Canzian, Y. Zhang, and M. van der Schaar, “Ensemble of distributed learners for online
classification of dynamic data streams,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 1, no. 3, pp. 180–194, 2015.

8. J. Xu, C. Tekin, and M. van der Schaar, “Distributed multi-agent online learning based on
global feedback,” IEEE Transactions on Signal Processing, vol. 63, no. 9, pp. 2225–2238,
2015.

9. H. Andrade, B. Gedik, and D. Turaga, Fundamentals of Stream Processing: Application
Design, Systems, and Analytics. Cambridge University Press, Cambridge, 2014.

10. C. Aggarwal, Ed., Data Streams: Models and Algorithms. Kluwer Academic Publishers,
Norwell, 2007.

11. R. Ducasse, D. S. Turaga, and M. van der Schaar, “Adaptive topologic optimization for
large-scale stream mining,” IEEE Journal of Selected Topics in Signal Processing, vol. 4,
no. 3, pp. 620–636, 2010.

REFERENCES 259

12. S. Ren and M. van der Schaar, “Efficient resource provisioning and rate selection for
stream mining in a community cloud,” IEEE Transactions on Multimedia, vol. 15, no. 4,
pp. 723–734, 2013.

13. F. Fu, D. S. Turaga, O. Verscheure, M. van der Schaar, and L. Amini, “Configuring com-
peting classifier chains in distributed stream mining systems,” IEEE Journal of Selected
Areas in Communications, vol. 1, no. 4, pp. 548–563, 2007.

14. A. Beygelzimer, A. Riabov, D. Sow, D. S. Turaga, and O. Udrea, “Big data exploration
via automated orchestration of analytic workflows,” in USENIX International Conference
on Automated Computing, June 26–28, 2013, San Jose, CA, 2013.

15. Z. Haipeng, S. R. Kulkarni, and H. V. Poor, “Attribute-distributed learning: Models, limits,
and algorithms,” IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 386–398,
2011.

16. L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.

17. Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and
an application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1,
pp. 119–139, 1997.

18. W. Fan, S. J. Stolfo, and J. Zhang, “The application of AdaBoost for distributed, scalable
and on-line learning,” in Proceedings of ACM SIGKDD, San Diego, CA, USA, August
1999, pp. 362–366.

19. H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data streams using
ensemble classifiers,” in Proceedings of ACM SIGKDD, Washington DC, USA, August
2003, pp. 226–235.

20. M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, “Integrating novel class
detection with classification for concept-drifting data streams,” in Proceedings of ECML
PKDD, Bled, Slovenia, September 2009, pp. 79–94.

21. L. L. Minku and Y. Xin, “DDD: A new ensemble approach for dealing with concept drift,”
IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 4, pp. 619–633,
2012.

22. N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Information and
Computation, vol. 108, no. 2, pp. 212–261, 1994.

23. A. Blum, “Empirical support for winnow and weighted-majority algorithms: Results on a
calendar scheduling domain,” Machine Learning, vol. 26, no. 1, pp. 5–23, 1997.

24. M. Herbster and M. K. Warmuth, “Tracking the best expert,” Machine Learning, vol. 32,
no. 2, pp. 151–178, 1998.

25. A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed estimation for wire-
less sensor networks-part I: Gaussian case,” IEEE Transactions on Signal Processing,
vol. 54, no. 3, pp. 1131–1143, 2006.

26. A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed estimation for wire-
less sensor networks-part II: Unknown probability density function,” IEEE Transactions
on Signal Processing, vol. 54, no. 7, pp. 2784–2796, 2006.

27. J.-J. Xiao, A. Ribeiro, Z.-Q. Luo, and G. B. Giannakis, “Distributed compression estima-
tion using wireless sensor networks,” IEEE Signal Processing Magazine, vol. 23, no. 4,
pp. 27–41, 2006.

28. J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning for decentralized infer-
ence in wireless sensor networks,” IEEE Transactions on Signal Processing, vol. 23, no. 4,
pp. 56–69, 2006.

260 DISTRIBUTED ONLINE LEARNING AND STREAM PROCESSING

29. H. Zhang, J. Moura, and B. Krogh, “Dynamic field estimation using wireless sensor net-
works: Tradeoffs between estimation error and communication cost,” IEEE Transactions
on Signal Processing, vol. 57, no. 6, pp. 2383–2395, 2009.

30. S. Barbarossa and G. Scutari, “Decentralized maximum-likelihood estimation for sensor
networks composed of nonlinearly coupled dynamical systems,” IEEE Transactions on
Signal Processing, vol. 55, no. 7, pp. 3456–3470, 2007.

31. A. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. Towfic, “Diffusion strategies for adaptation
and learning over networks: An examination of distributed strategies and network behav-
ior,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 155–171, 2013.

32. Z. J. Towfic, J. Chen, and A. H. Sayed, “On distributed online classification in the midst
of concept drifts,” Neurocomputing, vol. 112, pp. 139–152, 2013.

33. L. Canzian and M. van der Schaar, “Timely event detection by networked learners,” IEEE
Transactions on Signal Processing, vol. 63, no. 5, pp. 1282–1296, 2015.

34. C. Tekin and M. van der Schaar, “Active learning in context-driven stream mining with an
application to image mining,” IEEE Transactions on Image Processing, vol. 24, no. 11,
pp. 3666–3679, 2015.

35. C. Tekin and M. van der Schaar, “Distributed online learning via cooperative contextual
bandits,” IEEE Transactions on Signal Processing, vol. 63, no. 14, pp. 3700–3714, 2015.

36. L. Canzian, U. Demiryurek, and M. van der Schaar, “Collision detection by networked
sensors,” IEEE Transactions on Signal and Information Processing over Networks, vol. 2,
no. 1, pp. 1–15, 2016.

37. J. Xu, D. Deng, U. Demiryurek, C. Shahabi, and M. van der Schaar, “Mining the situation:
Spatiotemporal traffic prediction with big data,” IEEE Journal on Selected Topics in Signal
Processing, vol. 9, no. 4, pp. 702–715, 2015.

38. C. Tekin, O. Atan, and M. van der Schaar, “Discover the expert: Context-adaptive expert
selection for medical diagnosis,” IEEE Transactions on Emerging Topics in Computing,
vol. 3, no. 2, pp. 220–234, 2015.

39. D. Shutin, S. R. Kulkarni, and H. V. Poor, “Incremental reformulated automatic relevance
determination,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4977–4981,
2012.

40. L. Rosasco, E. D. Vito, A. Caponnetto, M. Piana, and A. Verri, “Are loss functions all the
same?” Neural Computation, vol. 16, no. 5, pp. 1063–1076, 2004.

41. B. Pan, U. Demiryurek, C. Gupta, and C. Shahabi, “Forecasting spatiotemporal impact of
traffic incidents on road networks,” in IEEE ICDM, Dallas, TX, USA, December 2013.

42. M.-F. Balcan, S. Hanneke, and J. W. Vaughan, “The true sample complexity of active
learning,” Machine Learning, vol. 80, no. 2–3, pp. 111–139, 2010.

43. C. Tekin, S. Zhang, and M. van der Schaar, “Distributed online learning in social recom-
mender systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 4,
pp. 638–652, 2014.

44. E. Soltanmohammadi, M. Naraghi-Pour, and M. van der Schaar, “Context-based unsuper-
vised data fusion for decision making,” in International Conference on Machine Learning
(ICML), Lille, France, July 2015.

45. D. Katselis, C. Beck, and M. van der Schaar, “Ensemble online clustering through decen-
tralized observations,” in CDC, Los Angeles, CA, USA, December 2014.

11 Securing the Internet of Things:
Need for a New Paradigm and
Fog Computing

TAO ZHANG, YI ZHENG, RAYMOND ZHENG, and
HELDER ANTUNES

Corporate Strategic Innovation Group, Cisco Systems, Inc., San Jose,
CA, USA

11.1 INTRODUCTION

The emerging Internet of things (IoT) will interconnect a significantly larger num-
ber and broader range of things (devices) than today’s Internet. These additional
devices will range from simple sensors to wearable devices on humans and animals;
to consumer goods such as clothes and parcels; to complex endpoints such as automo-
biles, trains, bicycles, drones, smart appliances, and commercial and consumer robots
that will each contain multiple-networked subsystems; to sophisticated systems such
as industrial control systems, connected transportation systems, smart buildings and
cities, oil and gas systems, and smart energy grids (smart grids).

Industries and academia have been devoting tremendous efforts to building
market consensus and developing enabling technologies and standards. The IEEE
P2413 (Draft Standard for an Architectural Framework for the Internet of Things
Working Group) is developing an IoT architectural framework [1]. The International
Telecommunication Union (ITU) Study Group 20 is developing IoT standardization
requirements focusing initially on smart city applications [2]. The Object Manage-
ment Group (OMG) is developing standards for modeling and managing data and
devices in the IoT [3]. The oneM2M consortium is defining standards for a common
machine-to-machine (M2M) service layer to connect devices with M2M application
servers, targeting business domains, such as connected transportation, healthcare,
and utilities, and industrial automation [4]. The Industrial Internet Consortium
(IIC) is working to accelerate IoT development and adoption in the industrial
sectors to interconnect machines, business flows, intelligent analytics, and people

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

262 SECURING THE INTERNET OF THINGS

at work [5]. The Open Interconnect Consortium (OIC) is defining connectivity and
interoperability requirements for connecting billions of devices [6]. The OpenFog
Consortium is developing an open fog computing architecture for distributing
computing services and resources close to users and endpoints to meet growing
demands for local computing in IoT [7].

The benefits of the IoT rely critically on its ability to provide adequate security.
Securing the IoT brings a vast range of new challenges, which have attracted wide
attention over the past few years. The National Institute of Standards and Technol-
ogy (NIST) released a framework for improving critical infrastructure cybersecurity
[8]. Major industries have been studying their specific IoT security issues, such as
security challenges in connected transportation [9–11], industrial control systems
[12], and smart grids [13]. Significant efforts have also been devoted to addressing
IoT security issues that apply across different industries, such as how to secure bil-
lions of heterogeneous devices [14, 15], how IP-based security protocols may apply
to resource-constrained devices [16], how to secure multimedia traffic in the IoT [17],
how to secure cyber–physical systems that are becoming increasingly abundant in the
IoT [18], and how cloud-based services can help address security issues in the IoT
[10, 11, 19].

However, there has been far from adequate clarity on two fundamental questions:
(i) what IoT security challenges are unique compared to protecting conventional
enterprise networks and consumer electronics in today’s Internet and why the existing
security paradigm cannot adequately address these challenges, and (ii) what funda-
mental changes to the existing security paradigm will be needed to address these new
challenges.

While the answers to these questions will differ from industry to industry, many
fundamental challenges that will cause significant changes to the future security
paradigm apply across multiple industries. For example, IoT devices will vary
widely in their abilities to support security operations; many will have long life
spans but highly constrained resources that are impractical to upgrade. Systems
in many industry verticals will be distributed and have to operate in physically
unprotected environments. In the growing number of cyber–physical systems that
perform mission-critical tasks, such as industrial control systems, equipment uptime
will take highest priority. Once installed, these devices are expected to operate
nonstop in the field with minimal human intervention. These IoT characteristics
make the conventional security technologies, which rely predominately on perimeter
prevention to prevent security threats from penetrating the system, impractical
and incomplete. Furthermore, conventional incident response mechanisms depend
heavily on disruptive human interventions to remediate security compromises, which
is often unacceptable in mission-critical cyber–physical systems.

Therefore, this chapter will first examine several categories of unique new IoT
security challenges including those mentioned previously and discuss required fun-
damental changes to the existing security paradigm to address these new challenges.
Our goal is not to enumerate all potential security challenges in IoT for every industry
vertical but to focus on several major challenges that apply across multiple industry
verticals and show how they will change the future security paradigm.

NEW IOT SECURITY CHALLENGES THAT NECESSITATE FUNDAMENTAL CHANGES 263

This chapter will then describe a new security paradigm to address these unique
challenges. We will focus on the following key pillars for enabling this new
security paradigm: (i) How to assess in trustworthy ways whether a very large
number of devices are operating securely? (ii) How to secure a wide range of
resource-constrained devices? (iii) How to dynamically adapt responses to security
compromises based on the requirements of the system and the risk levels of the
compromises?

Fog computing plays an essential role in this new security paradigm. Being phys-
ically and logically close to the endpoints, a fog system is best positioned to provide
security services to the vast range of IoT devices, especially resource-constrained
devices, to, for example, help enable scalable and trustworthy monitoring of a large
number of devices and perform time-critical and resource-intensive security tasks on
behalf of the endpoints.

11.2 NEW IOT SECURITY CHALLENGES THAT NECESSITATE
FUNDAMENTAL CHANGES TO THE EXISTING
SECURITY PARADIGM

Cyber security solutions for today’s Internet, designed primarily for protecting enter-
prise networks, data centers, and consumer electronics, have focused on providing
perimeter-based protections. Systems under protection are placed behind firewalls,
which work with intrusion detection systems and intrusion prevention systems to
prevent security threats from reaching the protected systems. Perimeter-based pro-
tection has been further extended onto individual hosts. Such host-based protection
calls for sophisticated and typically resource-intensive security functions, such as
threat detection, to be implemented on each individual host to prevent security threats
from breaking into the host. More recently, cloud-based security services have been
developed to off-load resource-intensive security protection capabilities from hosts
onto resource-rich clouds [20]. Existing cloud-based security services continue to
focus on providing perimeter-based protection. Examples of such services include
redirecting e-mail and Web traffic to the clouds for threat detection and redirecting
access control requests to the clouds for authentication and authorization processing.
Cloud-based security services can introduce intolerable delays for many systems and
applications and require impractically high long-haul communication bandwidth.

Should threats penetrate these protections; a system or host under protection will
typically have limited and primitive capabilities to fight against the compromises. For
example, when malware infects a device or system, the common practices have been
for human operators to take the system offline, clean up or replace compromised files
and devices, and then put the system back online. After an attack, forensic analysis,
which often requires intensive human involvement, will be carried out to understand
what has happened. Results from such analysis will be used to harden existing pro-
tection mechanisms and develop future remediation measures [21].

This existing security paradigm will no longer be adequate for protecting the
diverse range of IoT devices, systems, and applications. To illustrate why, we will next

264 SECURING THE INTERNET OF THINGS

discuss four categories of unique IoT security challenges that the existing security
paradigm cannot adequately address without fundamental changes.

11.2.1 Many Things Will Have Long Life Spans but Constrained
and Difficult-to-Upgrade Resources

Many things in the IoT will have highly constrained resources and will be incapable
of supporting processing-intensive host-based threat protection mechanisms, such as
malware signature scanning and complex intrusion detection and protection mecha-
nisms. Even when the devices have sufficient resources, implementing sophisticated
security capabilities on a large number of devices can be cost prohibitive. Keeping
security installations on these devices up to date over time can become overly com-
plex and difficult to manage, especially when the devices are distributed over large
geographical areas.

Further complicating the matter is the fact that the hardware or software on many
devices will be infeasible or impractical to upgrade, and yet, the devices must be
secure over their very long life spans. For example, replacing any hardware on cars,
which have already been sold to consumers, can create significant inconvenience to
vehicle owners and result in heavy costs and reputation damages to carmakers. How-
ever, over a car’s long life span that averages over 11 years [22], security threats
will become significantly more advanced, and the amounts of resources required to
combat the fast evolving threats will increase accordingly.

In many industrial control systems, hardware and software updates are also diffi-
cult because these systems must operate continuously for long periods of time. Taking
a system offline for any reason can cause significant business loss and disruptions and
therefore must be planned days, weeks, and often months in advance [23]. A nuclear
reactor, for example, typically runs on 18-month cycles, and any downtime can cause
tens of thousands of dollars [24]. Due to the high costs of industrial control and man-
ufacturing systems, employing redundant systems to ensure production continuity
can also be impractical in some cases. Therefore, unlike the routers, switches, laptop
computers, and smartphones in today’s Internet, the security hardware and software
in an industrial manufacturing or control system often cannot be upgraded timely
every time security vulnerabilities are discovered and patches are required.

Therefore, the existing security paradigm that relies heavily on each individual
endpoint or network device to use its built-in security mechanisms to defend itself will
be impractical in many IoT environments. Instead, many devices in the IoT will need
external or off-board security services to help protect them, allowing the hardware
and software on the devices to be simple and require no or rare updates.

11.2.2 Putting All IoT Devices Inside Firewalled Castles Will Become
Infeasible or Impractical

While the existing security paradigm relies extensively on firewalled castles, many
things in the IoT cannot be easily placed inside firewalled castles and yet have to
operate in physically unprotected or highly vulnerable environments. Examples of
such things include connected cars, drones, bicycles, sensors, wearable devices, smart

NEW IOT SECURITY CHALLENGES THAT NECESSITATE FUNDAMENTAL CHANGES 265

appliances, and communication devices deployed along roadsides and at traffic inter-
sections to support smart cities. These devices can often be accessed by anyone with
relative ease physically or via wired or wireless local network connections.

For example, a modern car consists of tens of microcomputers or electronic con-
trol units (ECUs) interconnected by multiple types of in-vehicle networks. Anyone
can physically attach tools to these onboard networks via many attach points to eaves-
drop on in-vehicle communications and inject false data into the onboard networks.
Furthermore, today’s vehicles provide a standardized onboard diagnostics (OBD)
interface, with standard communications protocol, to allow complete access into each
vehicle’s internal networks for vehicle diagnosis, repair, and ECU firmware and soft-
ware update. The right-to-repair laws in the United States and similar laws in many
other countries require that automakers provide the same information to all indepen-
dent repair shops as they do to automaker-authorized car dealerships to create a fair
vehicle repair marketplace. As a result, anyone can use low-cost and readily available
tools to access a vehicle’s internal networks through the OBD ports, which makes it
essentially impossible to put all ECUs inside a firewalled castle. To make matters
worse, OBD ports with built-in wireless access are becoming increasingly common
for supporting a wide range of applications from over-the-air firmware updates to
remote data collection and to telematics applications. Aftermarket wireless dongles
that can be attached to the OBD ports to enable remote access are also widely avail-
able now. Placing sophisticated firewalls, intrusion detection, and prevention mecha-
nisms on every individual ECU is not a plausible solution either because it can result
in prohibitively high costs and unmanageable complexity for managing and updating
these firewalls, besides the fact that many ECUs are highly resource-constrained and
incapable of supporting sophisticated firewalls or advanced encryption technologies.

In a smart grid, power usage meters in residential homes, commercial buildings,
and other power consumption sites can often be physically accessed with relative
ease [25]. The many data collectors used to collect data from these smart meters are
also deployed in highly vulnerable environments, typically close to the meters, and
can be readily accessed by many people. It will be impractical to put all these devices
behind firewalls. Firewalling each individual meter and data collector will not be more
feasible either. The hardware or software of these meters and data collectors could
be tampered with. They could also be replaced with fake devices. Adversaries could
also introduce additional bogus meters or data collectors that pretend to be legitimate
devices. Furthermore, adversaries could compromise the data transmitted over the air
between the meters and the data collectors.

Therefore, today’s perimeter-based security paradigm alone will no longer be ade-
quate for securing the diverse range of IoT devices and systems and their operating
environments.

11.2.3 Mission-Critical Systems Will Demand Minimal-Impact Incident
Responses

Today’s incident response solutions rely predominately on brute-force mechanisms
such as shutting down a potentially compromised system, reinstalling and rebooting
its software, or replacing its components and subsystems. Such maximal responses,

266 SECURING THE INTERNET OF THINGS

which largely disregard how severe the compromises actually are, can cause intol-
erable disruptions to mission-critical systems. However, maintaining uninterrupted
and safe operation, even when the system is compromised, is often a top priority
for mission-critical systems such as industrial manufacturing and control systems,
connected vehicles, drones, and smart grids. For example:

• An electric power generator may be infected by a malware that merely seeks
to steal power for unauthorized use. Shutting down the power generator could
cause severe disruptions to the smart grid and excessive power outages.

• Industrial control systems often have little tolerance for downtime. Manufac-
turing operations can also have critical safety implications. As a result, manu-
facturers usually value uninterrupted operation and safety over system integrity.
This means that hardware and software updates can only be installed during a
system’s scheduled downtimes, which have to be short and far between, rather
than every time any security compromise is detected.

• A connected car can be infected by malware that can become active while the
car is in motion. While the malware can do a range of damages to the vehicle
and can put the driver and passengers in harm’s way, abruptly shutting down the
engine each time any malware is detected could be an even quicker and surer
way to cause deadly traffic accidents.

• If a drone flying midair is abruptly turned off just because a security compromise
is detected, it can crash from the sky onto people, houses, and other properties to
cause serious damages. Instead, safe landing or safe return-home mechanisms
will be essential for responding to such security threats that can compromise a
drone’s flight.

• A server in a data center may be infected by a spyware that seeks to steal
commercial secrets. While allowing such a compromised server to continue
to operate could give the attacker access to some sensitive data, it may not
directly impact the data center’s mission-critical services. If we shut down the
server, or halt the execution of the malware-infected files to wait for the malware
to be removed, the system downtime could cause significantly more damage,
including causing vast economic losses to the data center operator, business
disruptions to those who count on the data centers to operate their businesses,
and inconvenience to other users of the data center.

Therefore, today’s highly disruptive incidence response paradigm will no longer be
adequate for securing the many mission-critical systems in the emerging IoT.

11.2.4 The Need to Know the Security Status of a Vast Number of Devices

IoT will support a vast number of heterogeneous devices and distributed systems.
A manufacturer, for example, may need to network many manufacturing plants. A
smart city will consist of many smart buildings and devices deployed along the roads
to control traffic signals and communicate with vehicles. An oil and gas company

NEW IOT SECURITY CHALLENGES THAT NECESSITATE FUNDAMENTAL CHANGES 267

often has hundreds of remote sites (such as oil rigs, exploration sites, refineries, and
pipelines) that need to be connected to its corporate networks. A smart grid will con-
sist of networked subsystems for metering, data collection, data aggregation, energy
distribution, and demand response in multiple geographical areas. A large carmaker
will need to ensure the security of tens of millions of cars on the road in a large
country such as the United States.

Therefore, a fundamental issue is how security administrators get to know, in a
trustworthy way, whether the many devices and systems, many of which will be
operating in widely distributed and highly vulnerable environments, are functioning
securely.

Today’s security health monitoring systems can collect historical, real-time, or
event-triggered security status reports and log data from individual devices. However,
many devices in the IoT, especially those operating in vulnerable environments, can
be compromised and used to send false information [10, 11]. A wide range of solu-
tions have been developed for filtering out abnormal data from multiple data sources.
These solutions typically rely on the majority of the data sources to be honest, that
is, uncompromised and not malfunctioning. In many IoT scenarios, however, adver-
saries can easily cause the compromised devices to form local majorities to fool the
detection system. Consider, for example, vehicles using vehicle-to-vehicle communi-
cations to inform each other of their current locations to support collision avoidance
applications. Vehicles can be compromised to send false information to other vehicles
to cause traffic disasters. To detect such malicious vehicles, vehicles can be required
to report suspicious messages, or suspected malicious vehicles, to a central security
system that can analyze the information from multiple vehicles to detect malicious
vehicles. A very small group of hackers can modify their own vehicles, then drive
these compromised vehicles to easily form a local majority against an innocent vehi-
cle on the road, and then report to the central security system that the innocent vehicle
is sending malicious messages.

Consider smart grids as another example, where smart meters and data collectors
are often deployed in highly vulnerable environments and can be physically accessed
by hackers with relative ease [25]. Hackers can compromise these meters and data
collectors, replace them with fake ones, add additional fake meters, or hack the com-
munication links from the meters and data collectors to the rest of the system to send
false energy usage data to the electricity distribution and demand response systems to
disrupt energy distribution or cause excessive amount of power to be distributed to the
wrong cites. These compromised or fake meters and data collectors can easily dom-
inate an area so that the messages from them will appear to represent the “normal”
power usage in the area, making the compromises difficult to detect using today’s
anomaly detection mechanisms.

Many IoT devices and systems, such as cars, manufacturing machines, and smart
grids, will rely heavily on sensory input. Adversaries can also compromise sensory
and other input data to a device to cause the device to send false information using
its valid security credentials, making the false messages even more difficult to detect
[9–11]. Furthermore, adversaries can implement advanced evasive technology to hide
their malicious behaviors.

268 SECURING THE INTERNET OF THINGS

As a result, existing approaches for collecting security status reports or log data
from remote devices or systems will become inadequate.

Remote attestation mechanisms have been developed to allow a device to prove
its trustworthiness to a remote verifier [26,27]. A device makes a claim about certain
properties of its hardware, software, or runtime environment to the verifier and uses its
security credentials (e.g., a hardware-based root of trust and public key certificates) to
vouch for these properties. The verifier then cryptographically verifies these claims.

However, existing remote attestation methods have focused on enabling an individ-
ual device to attest to its own trustworthiness. A wide range of resource-constrained
devices in the IoT will not be able to support the often processing-intensive remote
attestation algorithms and protocols. Furthermore, requesting a large number of
devices to perform remote attestation can result in prohibitively high cost and
management complexity.

Therefore, we need new ways to determine, in a trustworthy manner, whether a
large number of distributed and diverse devices or systems are operating securely.

11.3 A NEW SECURITY PARADIGM FOR THE INTERNET OF THINGS

Addressing the unique challenges described in Section 11.2 will necessitate funda-
mental changes to the existing security paradigm. Such changes will include:

1. Providing External Help to the Less Capable Devices. Rather than implement-
ing comprehensive security capabilities on every individual device, we need
ways to reduce the security complexity and costs on individual devices and
compensate the devices’ constrained security capabilities with off-board secu-
rity services. These external security services must be provided in highly scal-
able, timely, resource-efficient, and easy-to-manage manners.

2. Trustworthy Ways to Monitor a Large Number of Diverse Devices and Systems.
We can no longer expect to know the security status of a large number of het-
erogeneous and distributed devices and systems by relying solely on retrieving
security log data from every device or forcing all devices to perform remote
attestation. Instead, we will need significantly more scalable and trustworthy
ways to monitor the security status of large distributed systems, many of which
have to operate in highly vulnerable environments.

3. Dynamic Risk-and-Benefit Proportional Protection. Instead of human-intensive
and highly disruptive incident responses, we need to provide dynamic and
adaptive protection that can respond to security compromises based on their
risk levels to enable uninterrupted and safe operation of a system even when the
system is compromised. Such adaptive protection represents a new thinking:
rather than focusing primarily on preventing threats from entering a system,
we will treat security compromises as a normal way of life and provide ways
for a system to fight against the compromises automatically while achieving a
proper balance between the benefits of continuous safe system operation and
potential risks of the security compromises.

A NEW SECURITY PARADIGM FOR THE INTERNET OF THINGS 269

These capabilities will form the key pillars for the new security paradigm required
to protect the emerging IoT. In the rest of this section, we will discuss each of these
three pillars in greater detail.

11.3.1 Help the Less Capable with Fog Computing

In IoT, many applications will demand computing, data processing, and smart net-
working services to be moved from the clouds closer to the endpoints. Such local
intelligence will be necessary to meet stringent latency requirements, reduce process-
ing load and conserve battery power on the endpoints, overcome bandwidth and cost
constraints for long-haul communications, and support local communication needs.
Fog computing [28] can meet such demands by distributing computing, data process-
ing, and advanced networking services close to or sometimes onto the endpoints and
anywhere along the continuum from the clouds to the endpoints.

As illustrated in Figure 11.1, fog nodes—functional nodes used to provide fog
services—can be deployed between endpoints and the cloud. One of the key tenets
of fog nodes and fog systems is that they work together with the cloud to form an
end-to-end system to serve the end users. Fog nodes and systems can also operate
autonomously or collaborate with each other to ensure non-interrupted services to
the end users even when they lose contact with the cloud.

With these properties, fog computing is in an ideal position to provide a wide range
of new security services to help protect resource-constrained endpoints and network
devices. The following are some examples of such fog-based security services:

Update of Security Credentials and Software for Endpoints. Fog systems can
assist endpoints, and resource-constrained network edge devices, in acquiring and
updating their security credentials (e.g., security keying materials and public key
certificates), security software, and security configurations. Keeping the security

Cloud Cloud Cloud Cloud Cloud

Fog computing
Distributes computing, storage, and networking closer to users

and anywhere along the cloud-to-endpoint continuumFog

Fog

Fog

Fog

Fog

FogFog

FogFog

Fog

Figure 11.1 Fog computing and fog-based security services to help protect
resource-constrained devices and systems.

270 SECURING THE INTERNET OF THINGS

credentials and software on a large number of devices up to date is a growing chal-
lenge. Today’s approach of requiring every endpoint to update its security credentials
and software from centralized remote servers often proves impractical. Consider
a car as an example again. Many of the ECUs on a car are highly constrained in
processing and networking capabilities. Forcing every ECU to directly communicate
with an off-board authority for security credential and software updates will be
excessively complex and costly and hence impractical.

A fog node or system can serve as a proxy for the endpoints to retrieve the security
credentials and software updates from remote sources. It can then use lighter-weight
protocols and procedures to distribute the updates to the endpoints locally. In the
example of the car, the fog node can be a security gateway or software client running
on the car or a device deployed along the roadside that communicates with the car.
The fog node may, for example, use the Let’s Encrypt framework [29] to automati-
cally acquire public key certificates from remote certificate authorities on behalf of
the endpoints and then distribute the certificates to the endpoints locally. As a result,
the many resource-constrained endpoints will no longer need to run complex proce-
dures and protocols to acquire security credentials and software updates directly from
remote servers.

Authentication of Endpoints. Adequate authentication of endpoints and other net-
work devices is an essential requirement to ensure system security and safe opera-
tions. Consider a car again; ECU authentication will be an important step to help
prevent compromised, rogue, and other authorized ECUs from being installed onto
vehicles. However, having every ECU on a car to directly authenticate with remote
servers can be overly complex and impractical. Similarly, requiring every sensor in
a smart grid or on each oil rig to directly authenticate with remote security systems
will also be impractical.

A fog system can perform local authentication of the endpoints so that each indi-
vidual endpoint no longer needs to authenticate directly with remote security servers.
Where required, a fog node may maintain sufficient knowledge to locally authenti-
cate endpoints without relying on help from remote authentication servers. This will
enable local authentication when the endpoints and the fog systems lose connectivity
to remote authentication servers—for example, when a car breaks down and has to
be repaired in an area where there is no wireless network coverage.

Monitor and Report Security Status of Endpoints. Fog systems, being close to
user endpoints, can prove to be more effective and efficient means than clouds in
monitoring the security status of the endpoints. It is usually unnecessary, and in some
cases impractical, to send all status data to remote servers. A fog system can monitor
the security status of local devices and systems, perform local data processing, and
report only the necessary information to remote security management centers.

Help Establishing Trusted Transient Local Connections. In IoT, there will be
increasing needs for devices to establish transient or temporary connections with
other nearby devices. For example, technicians on factory floors may need to connect
to manufacturing robots to perform on-site repairs and maintenance. In an emergency
response situation, medical personnel may need to connect to patients’ imbedded
pacemakers for timely diagnosis and treatment. In such transient situations, it is

A NEW SECURITY PARADIGM FOR THE INTERNET OF THINGS 271

often impractical to pre-configure universally interoperable security credentials
on all these devices. Fog systems, being close to the endpoints, can assist the
endpoints in establishing trusted local transient connections. For the first example
previously mentioned, a fog system can authenticate a technician’s device that
wishes to connect to a manufacturing robot and then provide it with the necessary
temporary security keys for communicating with the robot. For the second example
previously mentioned, a fog system deployed along roadside, on police vehicles,
or on emergency response vehicles can help authenticate and authorize devices
and establish the required temporary security keys needed to connect emergency
responders’ devices to a patient’s pacemaker in a traffic accident scene.

Protection of Endpoints. Due to their close proximity to the endpoints, fog
systems are often the most or the only logical choices to implement conventional
perimeter-based protections, such as firewalls, to defend endpoints against threats
that come from outside of the security perimeters. More importantly, however,
many security functions that are traditionally implemented on endpoints in today’s
Internet can be moved to fog systems. For example, comprehensive malware
detection and protection mechanisms can be moved out of the endpoints and onto
fog systems. Endpoints only need to detect suspicious files, which may come from
local or remote communication channels, and forward these files to a fog system
for malware detection. Mechanisms for detecting whether a file is suspicious are
usually significantly simpler and need to be updated much less frequently than the
mechanisms for determining whether the file contains malware.

Often the fog system may have already seen some of the suspicious files. These
could be the case, for example, when a file has been previously reported by some
endpoints or has been indicated by a more powerful cloud-based security system to
be compromised. This means that an endpoint may often just need to send a short
representation, such as a hash value, of a suspicious file to the fog system.

A group of fog nodes can collectively carry out security defense functions for
the endpoints in a distributed and collaborative manner. For example, all or a subset
of the fog nodes can form a dynamic or pre-configured defense cluster to carry out
malware defense on behalf of the endpoints. With the fog nodes’ collective defense
capabilities, each individual fog node within the cluster does not have to implement
the entire spectrum of malware defense capabilities. Instead, the malware defense
capabilities will be distributed across multiple fog nodes within the cluster where
each fog node can have the same or complementary threat defense capabilities. Such
a fog-based distributed defense system can not only make efficient use of shared
resources but also improve overall security by making it more difficult for attackers to
disrupt the security operations. Some sample ways of fog-based distributed malware
examination include:

• Some fog nodes can support signature-based malware scanning, while other fog
nodes support heuristic-based malware detection mechanisms.

• Some fog nodes can be responsible for detecting malware targeted to Windows
operating systems, while other fog nodes can handle malware targeted to Linux
operating systems.

272 SECURING THE INTERNET OF THINGS

• Some fog nodes can maintain more comprehensive malware signature databases
because of their higher storage capacities and abilities to communicate with
the centralized cloud services more frequently, while other fog nodes that have
limited storage may have only subsets of the signature database pertaining to
only the latest updates.

• Multiple fog nodes can offer the same protection capability with other fog nodes
for reasons of load balancing and/or backup.

Using the aforementioned approach, each endpoint only needs to detect files that are
suspicious, which can be significantly simpler than detecting whether a file contains
malware. For example, when an endpoint starts with a known set of authorized files
or a “golden image,” any file that deviates from the authorized files will be consid-
ered suspicious. Examples of suspicious files include files that have changed in size
and new files that have not been digitally signed by authorized parties. To detect such
suspicious files, a thin software client can reside in a device with the specific purpose
to detect new and changed files, which may enter the endpoint through any interface,
local or remote, wired or wireless. Upon detecting suspicious files, the thin client
will send either the metadata or copies of the files to the fog node cluster for further
analysis and assessment for malware. The fog nods in the cluster will then work col-
laboratively and collectively to detect whether the file is infected by malware. A more
advanced approach may also include cleaning up or discarding the infected files and
sending clean files back to the endpoint.

11.3.2 Scale Security Monitoring to Large Number of Devices
with Crowd Attestation

To address the need to verify the trustworthiness of large number of devices and sys-
tems, we propose a new approach that enables a system to attest to its trustworthiness
without requiring every individual device to attest to its own trustworthiness. We refer
to this approach as crowd attestation. With crowd attestation, rather than requiring
every individual device to vouch for its own trustworthiness, a subset of the devices
in a system will act as attesters. Each attester will not only attest to its own trustwor-
thiness but will also monitor, evaluate, and vouch for the trustworthiness of selected
other devices. The set of attesters collectively will cover all the devices in the system.
In other words, every device, including every attester, will be monitored and attested
to by at least one attester. Verifiers, which can be cloud-based or fog-based security
management servers, will collect the attestation reports from the attesters and use
these reports to evaluate the trustworthiness of the overall system.

Crowd attestation can be provided as a service by a fog system. That is, the attesters
can be fog nodes, and the crowd attestation functions can be a subset of the fog ser-
vices provided by these fog nodes.

The following key technologies will be essential for enabling crowd attestation:

• Methods for assessing the trustworthiness of other devices (monitored devices)

• Methods for ensuring trustworthy attestation

• Methods for scaling the solution to monitor very large and distributed systems

A NEW SECURITY PARADIGM FOR THE INTERNET OF THINGS 273

11.3.2.1 Assess the Trustworthiness of Monitored Devices A key to enabling
crowd attestation is the technology for an attester to tell how trustworthy a monitored
device is. An attester may use different metrics, in the cyber and the physical
domains, to assess the trustworthiness of other devices. These metrics can range
from externally observable behaviors (e.g., network traffic patterns, application
layer behaviors, device locations and movements, devices’ external temperatures)
to intrinsic properties that require more intrusive methods to collect (e.g., the
device’s file system status, currently running processes, memory access patterns,
and electrical current draws). Different attesters may attest to different properties of
a device. The set of devices and their properties an attester should attest to can be
determined based on security policies and the capabilities of the attesters. The set of
attesters will collectively provide a holistic view of the entire system.

Table 11.1 shows three possible categories of approaches for assessing the trust-
worthiness of a monitored device.

The first category of approaches, which we refer to as “black-box” monitoring,
analyzes the monitored device’s external behaviors and characteristics in the cyber
domain (e.g., patterns of network traffic to and from the device), in the physical
domain (e.g., physical movement patterns of the device), or in both the cyber and
the physical domains. The main advantage of black-box monitoring is that there is

TABLE 11.1 Ways to Determine the Trustworthiness of Another Device

Category of
Monitoring
Methods Description

Black-box The attester is assumed to have no knowledge about the internal
characteristics of the monitored device and cannot rely on the
monitored device to assist in the monitoring. The attester will rely on
the monitored device’s externally observable behaviors and
characteristics to detect any anomaly and will need to understand
what externally observable behaviors and parameters are normal

Clear-box The attester is assumed to be able to obtain trustworthy measurements
of some internal characteristics of the monitored device. Examples of
such characteristics may include profiles of authorized program files,
device temperature change patterns, electric current patterns,
memory access and usage patterns, and radio-frequency signal
patterns. The attester can use its knowledge on these characteristics
to identify anomalies caused by compromises such as malware

Gray-box Compromised devices could fake their externally observable
behaviors and send false measurements of their internal
characteristics to an attester. Gray-box monitoring is a new way of
thinking about detecting compromises of a monitored device. It
operates on the assumption that the attester can take actions to
provoke or cause a monitored device to react in ways that will reveal
potential compromises to the device, such as if a malware is running
on it

274 SECURING THE INTERNET OF THINGS

no need to implement any special software or hardware on the monitored devices just
for the purpose of monitoring. However, a compromised device can fake its external
behaviors to evade detection while causing damage to the device. Such compromises
are especially dangerous in the many cyber–physical systems, where computer tech-
nologies are used to control physical equipment and processes, such as vehicles,
trains, road traffic control systems, and industrial control systems such as manufac-
turing systems, smart grids, and smart building control systems. In a cyber–physical
system, a cyber-domain compromise can be used to damage the physical processes
while keeping the system’s cyber behavior appear to be normal. For example, the
famous Stuxnet attack on the Iranian nuclear facility was masqueraded with normal
status sent back to the system administers, while the attack was carried out to spin
a nuclear reactor out of control [30]. As another example, an adversary could com-
promise a manufacturing robot and have it do random actions while maintaining a
normal communication pattern with external entities so the network monitoring sys-
tem cannot detect the compromise. Malware on a drone, which is flying out of its
controller’s line of sight, can cause the drone to veer off its planned path while telling
its controller that it is still flying as planned.

The second category of approaches is “clear-box” monitoring. Clear-box monitor-
ing goes beyond observing only the external behaviors to monitor selected internal
parameters of a monitored device. Examples of such internal parameters may include
profiles of authorized program files, device temperature change patterns, electric cur-
rent patterns, memory access and usage patterns, and radio-frequency signal patterns.
Clear-box monitoring will typically require the monitored device to report the values
of the selected internal parameters to the attester. For example, an agent inside a
monitored device can measure the internal parameters and report the results to the
attester. Compared with black-box monitoring, clear-box monitoring makes it harder
for adversaries to circumvent the monitoring. However, a compromised device could
still falsify measurement reports, by falsifying the input to the agent or compromising
the agent itself.

The third category of approaches, gray-box monitoring, assumes that the attester
cannot fully trust the external behaviors of the monitored device nor the data reported
by the monitored device. Instead, an attester will challenge a monitored device to
force it to react in ways that will reveal potential compromises. Several mechanisms
for enabling such gray-box monitoring have been developed [31]. However, to sup-
port the broad spectrum of IoT devices, significantly more scalable and effective
gray-box attestation mechanisms, which require minimal help from the monitored
devices, will be necessary.

11.3.2.2 Ensure Trustworthy Attestation The collection of the attesters for a sys-
tem must be able to report the security status of the system in ways that cannot be
substantially tampered by adversaries. To achieve this goal, the first step is to ensure
that all or a critical mass of the attesters have not been tampered with. Therefore, all
or a carefully selected subset of the attesters should attest to its own trustworthiness
in different situations: when the attester powers up, when any new software is loaded
up to run, when any change to the attester’s own device is detected (e.g., a change to

A NEW SECURITY PARADIGM FOR THE INTERNET OF THINGS 275

the file system), or when requested by a verifier. Attestation to other devices’ trust-
worthiness can be performed periodically, upon requests from a verifier, and upon
detecting any significant changes to the behaviors or properties of the other devices.

Even when an attester is not tampered with, an adversary could still cause it to
send false attestation reports by compromising the input data that the attester relies
on for generating its attestation reports. For instance, an adversary could falsify speed
and location sensory inputs to the communication module on a car to cause it to
send erroneous speed and location information to neighboring cars [9–11]. Such
false information can disrupt vehicle collision avoidance applications, which rely on
vehicle-to-vehicle communications, and cause fatal accidents. In many other indus-
tries such as smart grids, sensors use automatic power-off cycles to conserve battery
power. During a sensor’s powered-off cycle, an attacker could physically replace
the sensor with a rogue one to send false information to an attester, which may
not be able to detect the changes by only monitoring the communications with the
sensor.

Therefore, a second step to ensure trustworthy attestation is that each attester
should be covered by at least one other attester. When the majority of the attesters can
be trusted, the verifier can use the attestation reports from all the attesters to detect
false attestation claims using voting mechanisms. In scenarios where voting mecha-
nisms are inapplicable or ineffective (e.g., when there is only a single attester), the
system must provide additional means (e.g., hardware-based root of trust) to ensure
the attesters’ own trustworthiness.

To further increase the trustworthiness and accuracy of crowd attestation, multi-
ple attesters can collaborate with each other to jointly assess the security status of
a monitored device by correlating their observations on the same or different sets
of parameters regarding the monitored device. For example, the external behaviors
observed by some attesters can be correlated with the results of clear-box or gray-box
monitoring by other attesters to piece together a more comprehensive picture of the
security status of a monitored device or system.

Select attesters. The selection of attesters must meet several important require-
ments. First, there should be as few attesters as possible to reduce system complexity
and costs. Second, the attesters collectively must cover all the devices, including all
attesters, in the system. Each attester should be covered by at least one other attester
because attesters can be compromised and used to send erroneous attestation reports.

This attester selection problem can be formulated as a connected vertex cover
problem: finding a minimal subset A of nodes in a graph that represents the system
to be monitored, so that (i) nodes in subset A form a connected graph and (ii) any
node outside subset A is connected to at least one node inside A. Polynomial time
algorithms are available for this problem [32].

Additional practical considerations should also be factored into attester selection.
For example, it will be desirable to select the attesters in a way that ensures that even
when a given number of the attesters are compromised, the entire set of attesters can
still collectively produce trustworthy attestations to the security status of the system.
Furthermore, attesters, which have higher levels of trustworthiness, better visibility
into the behaviors of the overall system, and more interactions with other devices, can

276 SECURING THE INTERNET OF THINGS

be preferred attesters. Such preferred attesters may include local gateways, routers,
and servers. Methods to select attesters that can meet these practical requirements are
yet to be developed.

Attestation graph and trustworthiness scores. A crowd attestation graph shows
who attests to whose behaviors. Each node in the graph represents a device in the
real-life system. Each node will have a native trustworthiness value. If a device is
capable of performing remote attestation, its trustworthiness value will be based on
its attestation to its own hardware, software, and runtime behavior. For a device that
is incapable of performing remote attestation, its trustworthiness value will be deter-
mined based on the last known and trusted status about the device.

A trustworthiness score is then calculated by the verifiers for each node based on
the node’s native trustworthiness value and other attesters’ attestation reports.

11.3.2.3 Scale to Support Very Large Systems with Hierarchical Crowd
Attestation To scale crowd attestation up to support large and distributed systems,
attesters can be arranged in a hierarchy as illustrated in Figure 11.2. Layer-1 attesters,
those at the bottom layer of a crowd attestation hierarchy, can each attest to the
security status of a subset of the devices in a system. Higher-layer attesters can then
use the attestation reports from Layer-1 attesters to assess the security status of the
overall system.

Remote Systems

Layer 1 attester

Remote systems

(verifiers)

Layer 1 attester

Device
1

Device
2

Device
n-1

Device
n

Layer 2 attester

Vouch for the

behaviors and properties

of selected devices

Vouch for the behaviors and properties

of a layer 2 attester’s domain

Layer 2 attester’s domain

Figure 11.2 Hierarchical crowd attestation.

A NEW SECURITY PARADIGM FOR THE INTERNET OF THINGS 277

Layer-1 attesters may often need to be deployed close to the devices they monitor,
for example, on the same local networks as the monitored devices, in order to collect
the necessary information required to evaluate the monitored devices’ security status.
This means that a large number of Layer-1 attesters may still be needed for monitoring
a large number of geographically distributed systems, even though crowd attestation
already reduced the total number of devices required to perform attestation. In such
scenarios, cost considerations may cause the Layer-1 attesters to be constrained in
computing resources.

Therefore, resource-constraint Layer-1 attesters can just vouch for the raw data
they have observed without judging whether the data represents malicious activities.
Higher-layer attesters can then assess the security status of the system based on the
raw data from the Layer-1 Attesters.

More generally, each attester at any layer of a crowd attestation hierarchy can attest
to the raw observations it collects from the monitored other devices and the attestation
reports it has received from lower-layer attesters, without having to judge whether the
data reveals any compromises to the system. With this approach, a rich set of data can
be made available to the verifiers to assess the security status of a system. However,
reporting the raw observations of all devices in a large system can require the attesters
to send an excessively large amount of data to the verifiers.

Therefore, all or selected attesters at each layer of the crowd attestation hierarchy
may analyze its own observations and the information contained in the attestation
reports it has received from lower-layer attesters to draw conclusions on the security
status of the devices it covers and then attest to its conclusions. This can significantly
reduce the amount of data that has to be sent to the verifiers. When a verifier needs
further information, it can request the attesters to submit the detailed observations
they have collected.

A properly designed hierarchical attestation approach can greatly increase the scal-
ability of a crowd attestation implementation.

11.3.3 Dynamic Risk–Benefit-Proportional Protection
with Adaptive Immune Security

Some existing computerized systems already implement rudimentary adaptive inci-
dent response mechanisms, which allow the systems to revert to a safe mode of
operation to run only a subset of its functions when parts of the system malfunction
for any reason. For example, when subsystems on some modern cars malfunction, the
cars can automatically restrict their speeds while allowing the vehicles to continue to
run to allow time for the drivers to bring the vehicles to a safe stop [33]. Such tech-
niques, however, will not be sufficient to address the needs of the broad spectrum of
mission-critical systems in the IoT.

Protecting computer systems against security threats is analogous to the ways our
human bodies respond to diseases such as virus infections. The conventional security
paradigm is similar to having only the innate human immune system that seeks to pre-
vent viruses from entering human bodies. Conventional incident response approaches
are analogous to having doctors apply maximal intrusive treatments every time a sign

278 SECURING THE INTERNET OF THINGS

of illness is detected, regardless how serious the illness is. Specifically, upon detect-
ing any suspected compromise of any severity, system administrators, as doctors for
our computer systems, will put the patient (computer system) in general anesthesia
(shutting the system down) and then surgically remove the suspicious body masses
or parts (suspicious files or devices).

Humans have a much more elegant and effective way to defend against diseases.
There is no need to involve doctors every time a person gets sick. Instead, the human
body has an adaptive immune system that can self-defend against and self-heal from
viruses that have entered the body without relying on external intervention. This
adaptive immune system tracks the disease, learns its nature and behavior, and acti-
vates counter measures that are dynamically adjusted in proportion to the severity of
the disease. In the process, the human body cultivates immunity to the disease and
will be able to respond to and heal from similar attacks much faster in the future.
External intervention is necessary only when the adaptive immune capabilities are
overwhelmed by a disease.

Addressing the new security challenges in IoT will demand a new security
paradigm similar to the human immune system. This new paradigm will add a
crucial missing component—the adaptive immune security—to today’s security
paradigm. When a compromise is detected, the security system will, in real
time, diagnose the threats, evaluate the risks, garner available resources at its
disposal, and activate counter measures proportional to the risks to fight the
threats. A compromised file (or device) may be allowed to continue to run if the
risk–benefit analysis results indicate that deleting, quarantining, or denying the file’s
execution will cause significantly more harm. Meanwhile, the system’s adaptive
immune process will monitor the execution and movement of the compromised
files, continue risk–benefit analysis based on newly available information, and
adjust counter measures accordingly. The system may automatically reduce its
functionalities and modify its behaviors in the cyber domain (e.g., limiting the
network traffic destinations to contain the spread of the malware-infected files)
and in the physical domain (e.g., constraining a machine’s movement speeds).
Once the threat is removed, the system will resume its normal operations. By
monitoring in real time the firsthand behaviors of the running files, devices, and
communications in a real environment (as compared with emulated environment)
and making conscious decisions on how to respond to an attack, the system develops
a more accurate visibility to how the attack unfolds. This knowledge can then
be fed back into the system’s self-diagnosing and self-healing functions to train
and improve its immune capabilities, making the system more resilient after each
compromise.

Applying human adaptive immune principles to computer system security has
been studied before [34–36]. However, prior studies have focused on using artificial
immune techniques to detect compromises [35], and there have not been sufficient
efforts on applying adaptive immune mechanisms to respond to compromises.

Next, we discuss the main steps of an adaptive immune security system, using
malware infection as an example of compromise. Here, we will focus on how
to respond to a compromise rather than how to detect a compromise. The main

A NEW SECURITY PARADIGM FOR THE INTERNET OF THINGS 279

steps for responding to a compromise include self-monitoring, self-diagnosing,
self-defending, self-healing, and self-learning:

Self-monitoring. The devices in a system will collaborate to track, in real time, the
activities of a compromise such as a malware. Examples of such compromise-related
activities include:

• The behaviors of the malware-infected programs and devices (e.g., communica-
tion patterns, functions performed, and even physical behaviors such as device
movement patterns)

• The movement of the malware from one file to another file

• The movement of each malware-infected file from one device to another or from
one part of a device to another part of the same device

• The movement of data generated by malware-infected programs and devices
(e.g., is the data sent to unauthorized locations?)

Self-diagnosing. As the compromises (e.g., malware and the malware-infected
files and devices) are tracked, the compromised devices and the devices that
interact with the compromised devices will conduct risk–benefit trade-off evalu-
ations. These devices can perform the analysis locally and can also send selected
compromise-related information to resource-rich fog systems or cloud-based servers
that can carry out deeper and more comprehensive analysis on behalf of the devices.

The risk–benefit evaluation should take into consideration factors such as:

• The types and functions of the compromised devices. For example, shutting
down a mission-critical function or device can result in higher risks and costs
than shutting down a less mission-critical function or device.

• The nature of the compromise. Different types of compromises, such as differ-
ent types of malware, can cause vastly different degrees of damage to a system.

• The behaviors of the compromised devices (or compromised applications on a
device). Compromises to a device can often cause the device’s behaviors in the
cyber domain or in the physical domain to change. Examples of cyber-domain
behaviors include the patterns of data to and from the device and memory usage
patterns. Examples of physical-domain behaviors include a device’s physical
movements and the amount of electrical current a device draws.

• The paths along which the compromises have been progressing through the
system. For example, if a malware can only spread inside a non-mission-critical
portion of a system, then the risks of allowing the malware in the system will be
lower than when the malware can spread to mission-critical portions of system.

Self-defending. When the benefits outweigh the risks, a compromised application or
device can be allowed to operate. Whether to allow a compromised application or
device to run also depends on how well the compromised application or device can be
controlled. For example, we may only allow a compromised application to continue
to run if we can shut it down when necessary.

280 SECURING THE INTERNET OF THINGS

When a compromised application or device is allowed to continue to operate,
counter measures matching the levels of the risks should be activated on the com-
promised devices and on other devices that have high risks of being compromised by
this known ongoing compromise. Examples of the counter measures include:

• Limit devices’ functions (e.g., only perform a minimum set of mission-critical
functions).

• Constrain devices’ operating ranges (e.g., maximum engine rotations, temper-
ature range, and the amount of electricity draws).

• Restrain or quarantine compromised devices’ communications (e.g., capping
the maximum amount traffic it can send and receive and limiting the set of
devices it can communicate with).

• Identify vulnerable files and devices and verify their integrity. For example, a
malware may likely spread among files of the same type. Therefore when a file
is detected to be infected by malware on one device, files of the same type on
other devices can be reexamined for malware.

• Challenge a compromised device to attest to the set of the programs running on
the device.

• Track the movements of the compromises (e.g., malware, malware-infected
files, and malware-infected devices) through the system and activate counter
measures along the paths.

• Notify system operators so they can take proper actions.

Different devices can take different counter measures, depending on factors such as
how mission-critical a device is, what security protections are required for a device,
what capabilities a device has, and how vulnerable a device is.

At any time, if the risks of letting a compromised file or device to operate exceed
the risks of preventing the file or device from running, the compromised file or device
will not be allowed to execute. This can be done on an individual case-by-case basis:
a compromised program can be removed from one device but still allowed to execute
on a different device, depending on the specific benefits and risks of running the
compromised file on each specific device.

The risk–benefit trade-off, the decision on whether to allow a compromised file
or device to continue to operate, and the counter measures will be based on the
system requirements and the system’s operational environment and context. An adap-
tive immune security system seeks to detect the presence of compromises, automate
the decision-making to select proper forms of response to a compromise, carry out
the selected incident responses automatically, and bring human into the loop when
necessary.

Self-healing and Self-learning. As a compromise runs through its course in a sys-
tem, the self-healing procedure tracks what counter measures have been activated and
can later stop the counter measures and restore the system back to trusted states when
the compromises are removed.

REFERENCES 281

As the attack’s kill chain is revealed and the vulnerabilities of the system uncov-
ered, such threat intelligence information can be fed back to the self-monitoring and
self-diagnosing processes and converted into proper self-defense and remediation
actions for the future. For example, counter measures that have been found effec-
tive can be distributed to other devices that may need similar defense capabilities
(i.e., to vaccinate similar systems), and patches for newly discovered vulnerabilities
can be developed and sent to the relevant devices.

It is important to point out that not all network nodes or endpoints need to imple-
ment all the adaptive immune security capabilities described previously. Such capa-
bilities are typically required only on devices that must maintain continuous safe
operation in the face of security compromises. These devices are effectively behav-
ing as fog nodes, where the adaptive immune security functions are subsets of the fog
services deployed on the nodes.

11.4 SUMMARY

Securing the emerging IoT imposes a range of unique challenges, which the existing
cyber security paradigm cannot adequately address without fundamental changes.
The large-scale, highly distributed, and adaptive real-time defense requirements for
IoT systems demand a new security paradigm. This chapter discussed several cat-
egories of such new challenges and outlined a new security paradigm for address-
ing them. This new paradigm calls for off-board security services to help secure
resource-constrained endpoints, scalable and trustworthy ways to assess whether a
large number of distributed devices and systems are operating securely, and dynamic
risk-and-benefit-proportional real-time responses to security compromises to min-
imize disruptions. This chapter further identified key technologies that need to be
developed to enable this new paradigm. Fog computing, which distributes comput-
ing, storage, and smart networking closer to end users, is a key enabler for this new
security paradigm.

ACKNOWLEDGMENT

The authors would like to thank Jack Cham and Anoop Nannra for the insightful
discussions on topics covered in this chapter.

REFERENCES

1. https://standards.ieee.org/develop/project/2413.html (Accessed February 18, 2016).

2. http://www.itu.int/en/ITU-T/studygroups/2013-2016/20/Pages/default.aspx (Accessed
February 18, 2016).

3. http://www.omg.org (Accessed February 18, 2016).

4. http://www.onem2m.org (Accessed February 18, 2016).

282 SECURING THE INTERNET OF THINGS

5. http://www.iiconsortium.org (Accessed February 18, 2016).

6. http://openinterconnect.org (Accessed February 18, 2016).

7. http://www.openfogconsortium.org (Accessed February 18, 2016).

8. National Institute of Standards and Technology (NIST) version 1.0, “Frame-
work for Improving Critical Infrastructure Cybersecurity,” February 12, 2014,
https://www.cisecurity.org/images/frame.pdf (Accessed September 10, 2016).

9. Luca Delgrossi and Tao Zhang, “Vehicle Safety Communications: Protocols, Security, and
Privacy,” John Wiley & Sons, Inc., Hoboken, NJ, 2012.

10. Tao Zhang, Helder Antunes, and Siddhartha Aggarwal, “Defending Connected Vehicles
against Malware: Challenges and a Solution Framework,” IEEE Internet of Things Journal,
Vol. 1, Issue 1, February 2014.

11. Tao Zhang, Helder Antunes, and Siddhartha Aggarwal, “Securing Connected Vehicles End
to End,” SAE 2014 World Congress and Exhibition, Detroit, MI, USA, April 8–10, 2014.

12. National Institute of Standards and Technology (NIST) Special Publication 800-82,
Revision 2, “Guide to Industrial Control Systems (ICSs) Security,” May 2015;
http://csrc.nist.gov/publications/drafts/800-82r2/sp800_82_r2_second_draft.pdf
(Accessed October 26, 2016).

13. Ye Yan, Yi Qian, Hamid Sharif, and David Tipper, “A Survey on Cyber Security for Smart
Grid Communications,” IEEE Communications Surveys & Tutorials, Vol. 14, Issue 4,
January 30, 2012.

14. Gang Gan, Zeyong Lu, and Jun Jiang, “Internet of Things Security Analysis,” 2011 Inter-
national Conference on Internet Technology and Applications (iTAP), Wuhan, China,
August 16–18, 2011.

15. Rodrigo Roman, Jianying Zhou, and Javier Lopez, “On the Features and Challenges of
Security and Privacy in Distributed Internet of Things,” Computer Networks, Vol. 57, Issue
10, pp. 2266–2279, July 5, 2013.

16. Tobias Heer, Oscar Garcia-Morchon, René Hummen, Sye Loong Keoh, Sandeep S. Kumar,
and Klaus Wehrle, “Security Challenges in the IP-based Internet of Things,” Wireless
Personal Communications, Vol. 61, Issue 3, pp. 527–542, December 2011.

17. Liang Zhou and Han-Chieh Chao, “Multimedia Traffic Security Architecture for the Inter-
net of Things,” IEEE Networks, Vol. 25, Issue 3, May 2011.

18. Huansheng Ning and Hong Liu, “Cyber-Physical-Social Based Security Architec-
ture for Future Internet of Things,” Advances in Internet of Things, Vol. 2,
pp. 1–7, 2012, http://dx.doi.org/10.4236/ait.2012.21001 (Published online January 2012;
http://www.SciRP.org/journal/ait (Accessed September 10, 2016).

19. Ibbad Hafeez, Aaron Yi Ding, Lauri Suomalainen, Seppo Hätönen, Valtteri Niemi, and
Sasu Tarkoma, “Demo: Cloud-based Security as a Service for Smart IoT Environments,”
2015 Workshop on Wireless of the Students, by the Students, and for the Students, New
York, NY, September 11, 2015.

20. Jayant Shukla, US Patent Application US 20100031361 A1, “Fixing Computer Files
Infected by Virus and Other Malware,” priority date: July 21, 2008.

21. https://support.symantec.com/en_US/article.TECH122466.html# (Accessed February 26,
2016).

22. Polk (Online), “Polk Finds Average Age of Light Vehicles Continues to Rise,” August
2013, https://www.polk.com/company/news/polk_finds_average_age_of_light_vehicles_
continues_to_rise (Accessed October 29, 2013).

REFERENCES 283

23. National Institute of Standards and Technology (NIST), U.S. Department of Com-
merce, Special Publication 800-82, “Guide to Industrial Control Systems (ICS)
Security,” June 2011. http://webcache.googleusercontent.com/search?q=cache:x_
Y5pLdaBEAJ:http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf%2B
Guide+to+Industrial+Control+Systems+(ICS)+Security&safe=strict&hl=en-IN&gbv=2
&ct=clnk (Accessed October 26, 2016).

24. Warwick Ashford, “Industrial Control Systems: What Are the Security Challenges?,”
October 15, 2014, http://www.computerweekly.com/news/2240232680/Industrial-
control-systems-What-are-the-security-challenges (Accessed January 28, 2016).

25. Kris Ardis, “7 Serious Smart Meter Security Threats That Do Not Involve Hack-
ing the Network,” July 28, 2014, http://www.smartgridnews.com/story/7-serious-
smart-meter-security-threats-do-not-involve-hacking-network/2014-07-28 (Accessed
January 28, 2016).

26. Ruizhong Chen, Lihao Wei, Hong Zou, and Meijie Zhai, “A TCM-Based Remote Anony-
mous Attestation Protocol for Power Information System,” The International Power, Elec-
tronics and Materials Engineering Conference 2015 (IPEMEC 2015), May 16–17, 2015,
Dalian, China.

27. Aurelien Francillon, Quan Nguyen, Kasper B. Rasmussen, and Gene Tsudik, “A Mini-
malist Approach to Remote Attestation,” Conference on Design, Automation & Test in
Europe (DATE), Dresden, Germany, March 24–28, 2014.

28. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli, “Fog Computing and
Its Role in the Internet of Things,” The First Edition of the MCC Workshop on Mobile
Cloud Computing, 2012, New York, NY.

29. https://github.com/letsencrypt/acme-spec (Accessed January 23, 2016).
30. Nicolas Falliere, Liam O. Murchu, and Eric Chien, “W32.Stuxnet Dossier,” Symantec

Security Response, Version 1.4, February 2011, https://www.symantec.com/content/en/
us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf (Accessed
September 10, 2016).

31. Raghunathan Srinivasan, Partha Dasgupta, and Tushar Gohad, “Software Based Remote
Attestation for OS Kernel and User Applications,” IEEE International Conference on
Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Com-
puting, Boston, MA, October 2011.

32. Bruno Escoffier, Laurent Gourves, and Jerome Monnot, “Complexity and Approxima-
tion Results for the Connected Vertex Cover Problem in Graphs and Hypergraphs,” LNCS
(Lecture Notes in Computer Science), Vol. 4769, pp. 202–213, Springer, Heidelberg, 2007.

33. Clutch & Transmission Technicians, “Transmission ‘Limp Mode’ or ‘Fail Safe’ Mode,”
June 6, 2014, http://ctttransmissions.com/techtalk/transmission-limp-mode-or-fail-safe-
mode/ (Accessed October 12, 2015).

34. Anil Somayaji, Steven Hofmeyr, and Stephanie Forrest, “Principles of a Computer
Immune System,” 1997 Workshop on New Security Paradigms (NSPW’97), pp. 75–82,
ACM, New York, NY, USA, 1997.

35. P.K. Harmer, P.D. Williams, G.H. Gunsch, and G.B. Lamont, “An Artificial Immune Sys-
tem Architecture for Computer Security Applications,” IEEE Transactions on Evolution-
ary Computation, Vol. 6, Issue 3, pp. 252–280, June 2002.

36. Jungwon Kim, Peter J. Bentley, Uwe Aickelin, Julie Greensmith, Gianni Tedesco, and
Jamie Twycross, “Immune System Approaches to Intrusion Detection—A Review,” Nat-
ural Computing, Vol. 6, Issue 4, pp. 413–466, December 2007 (First online January 12,
2007).

INDEX

ACK, 137
adaptive and time-varying analysis (ATA), 239
adaptive immune security, 277, 278, 280, 281
adaptive incident response, 277
aggregation weights

diffusion adaptation vs. CTA diffusion, 252, 253
distributed stream mining problem, 251
loss function, 250–251
misclassification probability, 252
mis-detection error, 251
stochastic gradient descent algorithm, 251

App prioritization, 34–35
attest, 268, 272, 273, 276, 277, 280
attestation, 262, 272–278
attester, 272–277
AT&T Labs Geocast System (ALGS), 213–214,

217–218, 220, 222, 224–226
Automotive open system architecture

(AUTOSAR), 193
automotive safety integrity levels (ASIL), 193

bandwidth allocation
credit distribution, 29–31
design and implementation

implementation challenges, 37
modules, 35–36
rate limiting engine, 37–40
system architecture, 35
traffic and device classification, 37
traffic prioritization engine, 38–39, 41
user interface screenshots, 36

fog networking, 25
gateways sharing, 41–45

equal sharing, 41, 44, 46
globally optimal solution, 43–44

Fog for 5G and IoT, First Edition. Edited by Mung Chiang, Bharath Balasubramanian, and Flavio Bonomi.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

online solution, 44–45
simulation setup, 42–43

online algorithm, 32–35
optimal credit spending, 31–32
two-level hierarchy allocation, 25–27

beacon, 138–140, 143, 145, 147–149
bitmap, 135, 138–141, 145
black box, 273
BlueMountain, 101, 102
BlueSeal, 89–91, 93

handling Android constructs, 91
handling Android programming model, 91
revealing information flows, 89

bridging, 223–224
broadcast, 133–135, 137–138, 140, 144–145,

147–152, 154

clear box, 273, 274
cloud, 133–134
cloud-based security, 263
cloud computing. see elastic mobile device clouds
cloud-to-things (C2T) continuum, 1, 4
Cognition, Efficiency, Agility, Latency (CEAL),

2–3
combine-then-adapt (CTA) diffusion scheme, 252,

253
complexity, 136, 140, 144
Computing-on-Dissemination with predictable

contacts (pCoD), 175
Computing-on-Dissemination with unpredictable

contacts (upCoD), 175
computing while charging (CWC), 163–164
congestion manager (CM) project, 28
connected car, 264, 266
content distribution networks (CDNs), 109, 110
context awareness, 186

286 INDEX

core relay selection, 66–68
coverage (and gaps therein), 211–213, 215, 221,

230, 232
credit redistribution, 33–34
crowd attestation, 272, 273, 275–277
cumulative distribution function (CDF), 124, 125
cyber-physical system, 262, 274
cyber security, 263, 281

D2D communications
and cluster-based caching

conventional cellular transmission, 115
deterministic caching, 116
grid network, 115, 116
interference minimization, 115, 116
random caching, 116–118
scaling laws, 117
square-shaped macrocells, 115
total network throughput, 117–118

coded multicast, 128–130
decodability, 142
decodable, 142
decode, 140, 142–143, 146, 152
desktop computer, 14
developer-centric framework, 15
device management, 163

FemtoCloud, 165
Serendipity, 167

diffusion adaptation methods, 245
distributed data and analysis (DDA), 238
distributed learning, 237
distributed online learning

aggregation weights, 250–254
collision detection, 254–256
decision making, 246
diffusion adaptation methods, 245
ensemble methods, 244, 245
expert selection system, 247
local learner (LL), 245–246
systematic framework, 247–250

downstream, 139–140, 145, 147–148, 150

edge computing framework. see ParaDrop
elastic mobile device clouds

architecture, 161
challenges, 186
cluster computing, 160
CWC, 163–164
different system characteristics, 162
FemtoCloud

architecture, 164
computational throughput, 169
device management, 165

execution prediction, 164–165
experimental device characteristics, 168
experimental tasks characteristics and

evaluation parameters, 168
experiment parameters, 168, 169
impact of device arrival rate and presence

time, 169–171
network management, 165–166
network utilization, 169
prototype evaluation, 173–175
resource utilization, 169
robustness to estimation errors, 171, 173, 174
stability impact, 170–172
task assignment and scheduling module, 166
task characteristics impact, 171, 173
task/cloud interface, 164

mobile cluster stability spectrum, 160, 161
Mont-Blanc project, 162–163
Serendipity

device management, 167
execution prediction, 166–167
experimental setup, 175–176
Haggle and RollerNet trace, 176, 178
impact of job properties, 182, 184–185
impact of network environment, 179–182
network management, 167
performance improvement vs. local

execution, 176, 177
task assignment and scheduling module, 167
task/cloud interface, 166
workload distribution, 178

electronic control units (ECUs), 195, 265, 270
emergency response, 211
endpoint, 271
ensemble methods, 244, 245
Erdos-Renyi (ER) social graph

average size, reciprocal relay selection cycles,
77

social link probabilities, 76
system performance, 77–78
system throughput, 76–77

fairness across gateways, 27
fault tolerance, 186
femtocaching

adaptive streaming, 114–115
average delay per information bit, 112
base station network, 111
bipartite graph, 111
code complexity, 114
intra-session coding, 113
localizing content delivery, 110
NP-complete problem, 112–113
piecewise-defined affine function, 113

INDEX 287

system model, 111, 112
uncoded vs. coded content placement, 112

field common operating picture algorithm
(FCOP), 227–230

field networking, 211–214, 220, 224, 228, 230
firefighter, 211–212, 219
firewall, 263–265, 271
fog, 133–138, 140, 142, 144, 146, 148, 150, 152,

154–156, 281
fog-based security management, 272
fog-based security service, 269
fog computing, 261–263, 269, 281

automobile electronic architectures
ASIL, 193
automotive chipsets, 193
AUTOSAR, 193
central gateway, 195
traditional E/E automobile architecture, 193,

194
automotive E/E architectures and solution

strategies
car-internal communication, 195–196
ECU, 195
embedded OT domain, 196–197
flexible and scalable fog node, 196
IoT, 197–198
IT application, 199
message transmission, 200
security and privacy, 196
TTA, 196, 199, 200

autonomous system functionality, 191
deterministic communication

connectivity and security challenges,
204–207

scalability, virtualization, 203–204
VWV, 206, 208, 209

evolution of thought, 192
future automobile architecture, 192, 200–203

fog network architecture, 1–2
bandwidth spatial reuse gain, 109
CDNs, 109, 110
coded multicast

blind index coding, 127–128
content storage, 126
D2D, 128–130
delivery phase, 126–127
edge-distributed computing, 128
spectral efficiency, 127
throughput-outage trade-off, 127, 128

femtocaching
adaptive streaming, 114–115
average delay per information bit, 112
base station network, 111
bipartite graph, 111

code complexity, 114
intra-session coding, 113
localizing content delivery, 110
NP-complete problem, 112–113
piecewise-defined affine function, 113
system model, 111, 112
uncoded vs. coded content placement, 112

user-caching
cluster-based caching and D2D

communications, 115–118
IT LinQ-based caching communications,

118–126
fog networking, 1, 4

cellular communications, 58
cooperative D2D and D4D communication, 53
D2D cooperation, 54–55
distributed relay selection algorithm, 58
incentive mechanisms, 59
mobile social networking, 58
multi-hop decode-and-forward (DF) relay, 59
network-assisted mechanism

NARS mechanism, 70–75
reciprocal relay selection cycle finding,

69–71
SGUM, cooperative networking, 59
simulation

Erdos-Renyi social graph, 76–78
matching source-destination pairs, 75
real trace social graph, 78–81
SNR, 75

smart grid
grid monitoring and protection devices, 56
IoT devices, 56, 57
smartmeters, 56
two-way communications, grid, 55

social reciprocity-based relay selection
coalitional game, 64–66
communication performance, 64
core relay selection, 66–68
direct and indirect reciprocity, 63, 64
mutual beneficial cooperation, 63
physical-coalitional graph, 64, 65
physical-social graph, 63

social trust and social reciprocity-based relay
selection, 68–69

social trust-based relay selection, 63
spectrum band, 53
system model

physical (communication) graph model,
60–61

social graph model, 61–62
fog node, 269–272, 281
fog service, 272
fog system, 270–272, 279

288 INDEX

followcast, 219–220, 226
formulate/formulation, 136, 140
forwarding, 135–136, 141, 143, 146–147,

149–151, 154, 156
framework, 96
future security paradigm, 262

game (geocast game), 211–212, 214, 225–226,
230–232

gateway spending decisions, 32–34
geocast, 216–221, 223–226, 228–230
geographic addressing (GA), 214–215
georouting, 221–226
gray box, 273–275

Haggle trace, 175–176
hardware, 264
hierarchical edge-based bandwidth allocation,

25–27
high performance and scalable analysis (HPSA),

238
home gateways, 14–15

immune security, 277, 280, 281
immune system, 277, 278
impact of network environment

node mobility, 179, 181, 182
number of nodes, 182, 183
wireless bandwidth, 179, 180

implicit receive window control, 37
incident response, 262, 265, 268,

277, 280
incoming rate control, pseudocode of, 39
incremental deployability, 27
industrial control system, 261, 262, 264, 266, 274
information-centric networks (ICN), 4
information-theoretic independent set (ITIS), 122
Internet of Things (IoT), 197–198, 261, 263, 264,

266–270, 274, 277, 278, 281
security, 262–264

Internet service providers (ISPs), 24–25
iTESS, 230–231
IT LinQ-based caching communications

association policy, 123
average user throughput, 126
CDF vs. user rate, 124, 125
channel attenuation, 120
definition, 122
deterministic model, 121
ITIS, 122
numerical analysis, 124
optimal content delivery, 119
source file communication, 119–120
source network, 119

spectral reuse, 120, 122, 123
TIN, 120–121

iTron, 211, 230–231

kernel, 95

leave, 134, 140
Let’s Encrypt framework, 270
Levy Walk model, 179
life span, 262, 264
local, 134, 136–137
loss-tolerant analysis (LTA), 239

malware, 263, 264, 266, 271–274, 278, 279
mesh, 135, 151–155
mission critical, 265
mobile ad hoc network (MANET), 4
mobility (of devices), 212
multimodal analysis (MMA), 238–239

need for better properties, 86
how, 86, 88
what, 86, 88
where, 86–88
why, 86–87

neighbor, 133–151, 156
neighboring, 134–137, 140, 149, 156
network-assisted relay selection (NARS)

mechanism
core relay selection, 70–71
iterative procedure, core relay selection

algorithm, 72, 73
preference lists, social and physical group, 72
properties, 73–75
reciprocal relay selection cycles, 72, 73

network congestion problems. see bandwidth
allocation

network management, 163–164
FemtoCloud, 165–166
Serendipity, 167

network utility maximization (NUM) formulation,
114

new security paradigm, 268–281

onboard diagnosis (OBD), 265
online bandwidth allocation algorithm

application priorities, 34–35
credit spending, 32–34

online learning setting, 249–250
OpenFog Consortium, 262
openness, 99–102
optimal credit spending, 31–32
overhead, 138

INDEX 289

ParaDrop
chute, 15
EnvSense, 15
Internet disconnectivity, 16
local networking context, 16
low-end hardware platform, 15
low latency, 16
multitenant wireless gateways, 14–15
privacy, 15
proprietary software, 16
SecCam, 15
service

API, 17–18
Chute.struct file, 17, 18
chute, virtual machine, 17
development, 19–23
dynamic installation, 17
network setup, 18
resource policy, 19

Wi-Fi home gateway, 15, 16
parallel-processing, 162–163
parent, 149–152, 154–156
path, 152
peer, 133, 136, 150, 156
peer-to-peer (P2P) networks, 4
perimeter-based protection, 263
phase, 141
playback, 134, 138, 140–141, 153, 156
PNP-block, 182, 184–185
predictable performance, 93
PSCommander, 226–227

quality of experience (QoE) credits, 24–25, 28

rate limiting algorithm, 37–40
real trace social graph

average running time, NARS mechanism, 80, 81
average system throughput, 79–80
Brightkite, 78, 79
computational complexity, NARS mechanism,

80–81
normalized energy efficiency, 80

rebroadcasting, 133
receive buffer model, 38
resource-constrained devices, 262, 263, 265,

268–270, 281
retransmission heuristics, 217–219
risk-and-benefit proportional protection, 268,

277–281
RollerNet trace, 175–176
routing, 137
RTDroid, 94, 97–100
runtime, 95

scalable ad hoc geocast protocol (SAGP),
216–221

scalable geographic addressing framework
(SGAF), 213, 215, 221–223, 225

security, 262–281
credential, 267–271
and privacy, 186
status, 266–268

self-defend, 278, 279, 281
self-diagnosing, 278, 279, 281
self-heal, 278–280
self-learn, 279, 280
self-monitor, 279, 281
service development, ParaDrop

environmental sensor service, 22–23
security camera service

Chute.files component, 20–21
Chute.resource component, 21
Chute.runtime component, 21, 22
Chute.traffic component, 21–22
image capture, 19
primary Chute.struct component, 20
SeeCam, 19
SSID, 19

slot, 138–141, 145, 151
smarter planet

context-based unsupervised ensemble learning,
257–258

distributed online learning
aggregation weights, 250–254
collision detection, 254–256
decision making, 246
diffusion adaptation methods, 245
ensemble methods, 244, 245
expert selection system, 247
local learner (LL), 245–246
systematic framework, 247–250

distributed sources, 235
distributed stream processing

SPS, 240–244
state of the art, 239, 240

individual and city, 234, 235
meta-learning aggregation rule, 257
mobile phone, 234
optimization problems, 257
problem decomposition, 257
stream processing characteristics,

238–239
topology configuration and adaptation

problems, 257
transportation, 237–238

smart grid, 261, 262, 265–267, 270,
274, 275

social group utility maximization (SGUM), 59

290 INDEX

social reciprocity-based relay selection
coalitional game, 64–66
communication performance, 64
core relay selection, 66–68
direct and indirect reciprocity, 63, 64
mutual beneficial cooperation, 63
physical-coalitional graph, 64, 65
physical-social graph, 63

software, 264
software-defined networks (SDN), 4
source, 133–135, 137–138, 140, 151–152, 156

coding, 114
spatial density, 213
stream, 133–134, 137–138, 151
streaming, 133–138, 154–155, 219
streaming and in-motion analysis (SIMA), 238
stream processing system (SPS)

congestion prediction application flowgraph,
241, 242

core capabilities, 240
distributed and ensemble learning, 241
end-to-end distribution, 240
logical composition, 241
logical flowgraph, 241–243
multiple domains, telecommunication, 240
natural scalability and efficiency, 242
open research problems, 243–244
possible trade-offs, parallelism and placement,

242, 243
processing elements (PEs), 241
programming constructs, 241

task assignment and scheduling module, 164
FemtoCloud, 166
Serendipity, 167

time division multiple access (TDMA)
mechanism, 60

timestamp, 139
time-triggered architecture (TTA), 196
traffic, 136–137, 140, 143, 151–156

prioritization algorithm, 38–39, 41
transmission, 134, 137, 144, 150–151
transparency, 88
transparent proxy, 37
treating interference as noise (TIN), 120–121
tree, 134, 137, 144, 151–155
trust, 263, 267, 268, 270–276, 280, 281
trusted transient local connection, 270

unique new IoT security challenges, 262
user-driven QoE optimization, 27
user incentives, 186

vehicles, 264–267, 270, 271, 274, 275, 277
vehicle-wide virtualization (VWV), 206, 208, 209
video, 133–151, 153–156

encoding, 114
Video Broadcasting with Cooperative Recovery

(VBCR) algorithm, 136–138, 144, 150–156
video-on-demand systems, 114

WaterFilling (WF), 175
wireless, 133–137, 154–155
wireless video fog, 135, 137, 139, 141, 143, 145,

147, 149, 151, 153, 155
WWAN, 137

YouTube playback performance, 41

zones, 228

	fmatter
	ch0
	ch1
	ch2
	ch3
	ch4
	ch5
	ch6
	ch7
	ch8
	ch9
	ch10
	ch11
	index

