Aggelos Kiayias (Ed.)

Financial Cryptography
and Data Security

21st International Conference, FC 2017
Sliema, Malta, April 3-7, 2017
Revised Selected Papers

=

LNCS 10322

@ Springer

http://www.ebook3000.org

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10322

More information about this series at http://www.springer.com/series/7410

vww.ebook3000.con)

http://www.springer.com/series/7410
http://www.ebook3000.org

Aggelos Kiayias (Ed.)

Financial Cryptography
and Data Security
21st International Conference, FC 2017

Sliema, Malta, April 3-7, 2017
Revised Selected Papers

@ Springer

Editor
Aggelos Kiayias
University of Edinburgh

Edinburgh

UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-70971-0 ISBN 978-3-319-70972-7 (eBook)

https://doi.org/10.1007/978-3-319-70972-7
Library of Congress Control Number: 2017959723
LNCS Sublibrary: SL4 — Security and Cryptology

© International Financial Cryptography Association 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

vww.ebook3000.con)

http://www.ebook3000.org

Preface

The 21st International Conference on Financial Cryptography and Data Security, FC
2017, was held during April 3-7, 2017, at the Palace Hotel in Malta.

We received 132 papers by the submission deadline for the conference which was
November 14, 2016. Of these, seven were withdrawn and 35 were accepted — five as
short papers and 30 as full papers — resulting in an acceptance rate of 26.5%. The
present proceedings volume contains revised versions of all the papers presented at the
conference.

The conference started with an invited talk by Silvio Micali, titled “ALGORAND: A
New Public Ledger” and concluded with a panel titled “When Cash and Crypto Col-
lide” with panelists Adam Back, Tiago Teles, and Tarah Wheeler, moderated by
William Scannell.

The Program Committee consisted of 46 members spanning both industry and
academia and covering all facets of financial cryptography. The review process took
place over a period of two months and was double-blind. Each paper received at least
three reviews; certain papers, including submissions by Program Committee members,
received additional reviews. The Program Committee used the EasyChair system to
organize the paper reviewing. The merits of each paper were discussed thoroughly and
intensely in the online platform as we converged to the final decisions. In the end, a
number of worthy papers still had to be rejected owing to the limited number of slots in
the conference program. The Program Committee made a substantial effort in
improving the quality of accepted papers in the post-notification stage: 11 of the papers
were conditionally accepted; each one was assigned a shepherd from the Program
Committee who guided the authors in the preparation of the conference version.

A number of grateful acknowledgments are due. First and foremost, I would like to
thank the authors of all submissions for contributing their work for peer review by the
Program Committee. Their support of FC 2017 was the most important factor for the
success of the conference. Second, I would like to thank the members of the Program
Committee for investing a significant amount of their time in the review and discussion
of the submitted papers. In addition to the Program Committee, 89 external reviewers
were invited to contribute to the review process and I also thank them for their efforts.
In total, 416 reviews were submitted, 3.328 on average per submission, with 76%
of the reviews prepared by the Program Committee and the remainder by the external
reviewers.

The conference also featured a poster session. I am grateful to the presenters of the
posters for submitting their work and presenting it at the conference. The abstracts
of the posters are included in this proceedings volume.

The general chairs of the conference were Adam Back and Rafael Hirschfeld.
I would like to especially thank Rafael for his continued and tireless efforts to make FC
a success over the years. A special thanks also goes to the board of directors of the
International Financial Cryptography Association for their support and guidance.

VI Preface

Finally, I would like to thank Joe Bonneau for handling a submission with which I had
a conflict of interest (it was authored by two PhD students of mine) completely outside
to the reviewing system. I also thank the board of directors for allowing this submission
to be considered.

Finally, I would like to thank all our sponsors this year, whose generous support was
crucial in making the conference a success. In particular our platinum sponsors
Blockstream, IOHK, and Thales, our gold sponsor Rohde and Schwarz, our silver
sponsor Journal of Cybersecurity and our sponsor in kind WorldPay. For student
support, I specifically thank the Office of Naval Research.

August 2017 Aggelos Kiayias

vww.ebook3000.con)

http://www.ebook3000.org

Program Committee

Masa Abe

Ross Anderson
Diego Aranha
Frederik Armknecht
Giuseppe Ateniese
Foteini Baldimtsi
Alex Biryukov
Jeremiah Blocki

Joe Bonneau

Rainer Bohme
Christian Cachin
Jean Camp

Srdjan Capkun

Jung Hee Cheon
Nicolas Christin
Jeremy Clark

Jean Paul Degabriele
Dario Fiore

Matt Green

Thomas Gross
Jaap-Henk Hoepman
Nicholas Hopper
Kevin Huguenin
Stas Jarecki

Marc Joye

Stefan Katzenbeisser
Aggelos Kiayias
Géetan Leurent
Andrew Miller
Payman Mohassel
Arvind Narayanan
Charalampos Papamanthou
Rafael Pass

Bart Preneel

Liz Quaglia

Kazue Sako

Organization

NTT Laboratories
Cambridge University, UK

Institute of Computing, University of Campinas, Brazil

Universitit Mannheim, Germany
Stevens Institute of Technology, USA
George Mason University, USA
University of Luxembourg, Luxembourg
Purdue University, USA

Stanford University, USA

University of Innsbruck, Austria

IBM Research — Zurich, Switzerland
Indiana University, USA

ETH Zurich, Switzerland

Seoul National University, South Korea
Carnegie Mellon University, USA
Concordia University, Canada

RHUL

IMDEA Software Institute

Johns Hopkins, USA

University of Newcastle upon Tyne, UK

Radboud University Nijmegen, The Netherlands

University of Minnesota, USA

UNIL-HEC Lausanne, Switzerland
University of California, Irvine, USA

NXP Semiconductors

TU Darmstadt, Germany

University of Edinburgh, UK

Inria, France

University of Maryland, USA

University of Calgary, Canada

Princeton, USA

University of Maryland, College Park, USA
Cornell University, USA

KU Leuven COSIC and iMinds, Belgium
Royal Holloway, University of London, UK
NEC, Japan

VI Organization
Dominique Schroder

Douglas Stebila
Qiang Tang

Kami Vaniea
Serge Vaudenay
Eric Wustrow
Bingsheng Zhang
Zhenfeng Zhang
Hong-Sheng Zhou
Vasilis Zikas
Aviv Zohar

Additional Reviewers

Abramova, Svetlana
Agrawal, Shashank
Alpar, Gergely
Balli, Fatih

Blazy, Olivier
Bogos, Sonia

Bos, Joppe

Biinz, Benedikt
Carter, Henry
Chaidos, Pyrros
Chepurnoy, Alex
Cherubin, Giovanni
Choi, Gwangbae
Costello, Craig
Davidson, Alex
Duong, Tuyet
Durak, F. Betiil
Eom, Jieun

Fan, Lei

Fan, Xiong

Feher, Daniel
Frankel, Yair
Gervais, Arthur
Gordon, Dov
Grof3schidl, Johann
Han, Kyoohyung
Hansen, Torben
Heilman, Ethan
Hhan, Minki

Friedrich-Alexander-Universitdt Erlangen-Niirnberg,

Germany

McMaster University, Canada
Cornell University, USA

The University of Edinburgh, UK
EPFL, Switzerland

University of Colorado Boulder, USA
Lancaster University, UK

Chinese Academy of Sciences, China

Virginia Commonwealth University, USA
ETH Zurich,
The Hebrew University of Jerusalem, Israel

Switzerland

Hils, Maximilian
Hiromasa, Ryo
Humbert, Mathias
Isshiki, Toshiyuki
Jeong, Jinhyuck
Karvelas, Nikolaos
Khovratovich, Dmitry
Kilinc, Handan
Kim, Duhyeong
Kim, Miran

Koide, Toshio
Kosba, Ahmed
Kostiainen, Kari
Kohler, Olaf Markus
Lacharité, Marie-Sarah
Laube, Stefan
Leontiadis, Iraklis
Li, Shuai

Li, Xinyu

Li, Zengpeng

Liu, Jian

Lu, Rongxing

Lu, Yun

Luhn, Sebastian
Malavolta, Giulio
Meyer, Maxime
Mori, Kengo
Naehrig, Michael
Ohkubo, Miyako

vww.ebook3000.con)

http://www.ebook3000.org

Olteanu, Alexandra-Mihaela
Pankova, Alisa

Peeters, Roel

Plat, Jérome

Poettering, Bertram

Reinert, Manuel

Reuter, Christian A.

Riek, Markus

Ringers, Sietse

Ruffing, Tim

Schoettle, Pascal

Singelee, Dave

Son, Yongha

Teranishi, Isamu
Thyagarajan, Sri Aravinda Krishnan
Tikhomirov, Sergei

Organization

Tomida, Junichi
Udovenko, Aleksei
Vizar, Damian
Wang, Mingian
Wang, Qingju
Watson, Gaven
Weinstock, Avi
Woodage, Joanne
Yang, Kang
Young, Adam
Yu, Der-Yeuan
Zenner, Erik
Zhang, Lin
Zhang, Yupeng
Zindros, Dionysis

Contents

Privacy and Identity Management

An Efficient Self-blindable Attribute-Based Credential Scheme.
Sietse Ringers, Eric Verheul, and Jaap-Henk Hoepman

Real Hidden Identity-Based Signatures
Sherman S. M. Chow, Haibin Zhang, and Tao Zhang

BehavioCog: An Observation Resistant Authentication Scheme.
Jagmohan Chauhan, Benjamin Zi Hao Zhao, Hassan Jameel Asghar,
Jonathan Chan, and Mohamed Ali Kaafar

Updatable Tokenization: Formal Definitions and Provably

Secure CONStIUCHONS . « . o v vt ottt e e e e e et e e e e e e
Christian Cachin, Jan Camenisch, Eduarda Freire-Stogbuchner,
and Anja Lehmann

Privacy and Data Processing

SecGDB: Graph Encryption for Exact Shortest Distance Queries
with Efficient Updates.
Qian Wang, Kui Ren, Minxin Du, Qi Li, and Aziz Mohaisen

Outsourcing Medical Dataset Analysis: A Possible Solution.
Gabriel Kaptchuk, Matthew Green, and Aviel Rubin

Homomorphic Proxy Re-Authenticators and Applications to Verifiable
Multi-User Data Aggregationttt
David Derler, Sebastian Ramacher, and Daniel Slamanig

Cryptographic Primitives and API’s

A Provably Secure PKCS#11 Configuration Without
Authenticated Attributes. L
Ryan Stanley-Oakes

A Post-quantum Digital Signature Scheme Based on Supersingular

ISOgenies
Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao,
and Vladimir Soukharev

vww.ebook3000.con)

http://dx.doi.org/10.1007/978-3-319-70972-7_1
http://dx.doi.org/10.1007/978-3-319-70972-7_2
http://dx.doi.org/10.1007/978-3-319-70972-7_3
http://dx.doi.org/10.1007/978-3-319-70972-7_4
http://dx.doi.org/10.1007/978-3-319-70972-7_4
http://dx.doi.org/10.1007/978-3-319-70972-7_5
http://dx.doi.org/10.1007/978-3-319-70972-7_5
http://dx.doi.org/10.1007/978-3-319-70972-7_6
http://dx.doi.org/10.1007/978-3-319-70972-7_7
http://dx.doi.org/10.1007/978-3-319-70972-7_7
http://dx.doi.org/10.1007/978-3-319-70972-7_8
http://dx.doi.org/10.1007/978-3-319-70972-7_8
http://dx.doi.org/10.1007/978-3-319-70972-7_9
http://dx.doi.org/10.1007/978-3-319-70972-7_9
http://www.ebook3000.org

XII Contents

Optimally Sound Sigma Protocols Under DCRA. 182
Helger Lipmaa
Economically Optimal Variable Tag Length Message Authentication. 204

Reihaneh Safavi-Naini, Viliam Lisy, and Yvo Desmedt

Vulnerabilities and Exploits

Ajaya Neupane, Md. Lutfor Rahman, and Nitesh Saxena

Fantastic Timers and Where to Find Them: High-Resolution

Microarchitectural Attacks in JavaScript. 247
Michael Schwarz, Cléementine Maurice, Daniel Gruss,
and Stefan Mangard

Attacks on Secure Logging Schemes. 268
Gunnar Hartung

Economy Class Crypto: Exploring Weak Cipher Usage in Avionic

Communications via ACARS 285
Matthew Smith, Daniel Moser, Martin Strohmeier, Vincent Lenders,
and Ivan Martinovic

Short Paper: A Longitudinal Study of Financial Apps in the Google
Play Store 302
Vincent F. Taylor and Ivan Martinovic

Short Paper: Addressing Sophisticated Email Attacks 310
Markus Jakobsson

Blockchain Technology

Escrow Protocols for Cryptocurrencies: How to Buy Physical Goods

Using Bitcoin. 321
Steven Goldfeder, Joseph Bonneau, Rosario Gennaro,
and Arvind Narayanan

Trust Is Risk: A Decentralized Financial Trust Platform. 340
Orfeas Stefanos Thyfronitis Litos and Dionysis Zindros

A Smart Contract for Boardroom Voting with Maximum Voter Privacy. 357
Patrick McCorry, Siamak F. Shahandashti, and Feng Hao

http://dx.doi.org/10.1007/978-3-319-70972-7_10
http://dx.doi.org/10.1007/978-3-319-70972-7_11
http://dx.doi.org/10.1007/978-3-319-70972-7_12
http://dx.doi.org/10.1007/978-3-319-70972-7_13
http://dx.doi.org/10.1007/978-3-319-70972-7_13
http://dx.doi.org/10.1007/978-3-319-70972-7_14
http://dx.doi.org/10.1007/978-3-319-70972-7_15
http://dx.doi.org/10.1007/978-3-319-70972-7_15
http://dx.doi.org/10.1007/978-3-319-70972-7_16
http://dx.doi.org/10.1007/978-3-319-70972-7_16
http://dx.doi.org/10.1007/978-3-319-70972-7_17
http://dx.doi.org/10.1007/978-3-319-70972-7_18
http://dx.doi.org/10.1007/978-3-319-70972-7_18
http://dx.doi.org/10.1007/978-3-319-70972-7_19
http://dx.doi.org/10.1007/978-3-319-70972-7_20

Contents XIII

Improving Authenticated Dynamic Dictionaries, with Applications

to CryptOCUITENCIES o . oottt et e e e e e e 376
Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy,
and Sasha Ivanov

Short Paper: Service-Oriented Sharding for Blockchains. 393
Adem Efe Gencer, Robbert van Renesse, and Emin Giin Sirer
Security of Internet Protocols

The Security of NTP’s Datagram Protocol 405
Aanchal Malhotra, Matthew Van Gundy, Mayank Varia,
Haydn Kennedy, Jonathan Gardner, and Sharon Goldberg

Short Paper: On Deployment of DNS-Based Security Enhancements 424
Pawel Szalachowski and Adrian Perrig
Blind Signatures

A Practical Multivariate Blind Signature Scheme 437
Albrecht Petzoldt, Alan Szepieniec,
and Mohamed Saied Emam Mohamed

Efficient Round-Optimal Blind Signatures in the Standard Model 455
Essam Ghadafi
Searching and Processing Private Data

Secure Multiparty Computation from SGX. 477
Raad Bahmani, Manuel Barbosa, Ferdinand Brasser,
Bernardo Portela, Ahmad-Reza Sadeghi, Guillaume Scerri,
and Bogdan Warinschi

Efficient No-dictionary Verifiable Searchable Symmetric Encryption 498
Wakaha Ogata and Kaoru Kurosawa

Faster Homomorphic Evaluation of Discrete Fourier Transforms. 517
Anamaria Costache, Nigel P. Smart, and Srinivas Vivek
Secure Channel Protocols

Short Paper: TLS Ecosystems in Networked Devices vs. Web Servers. 533
Nayanamana Samarasinghe and Mohammad Mannan

Unilaterally-Authenticated Key Exchange. 542
Yevgeniy Dodis and Dario Fiore

vww.ebook3000.con)

http://dx.doi.org/10.1007/978-3-319-70972-7_21
http://dx.doi.org/10.1007/978-3-319-70972-7_21
http://dx.doi.org/10.1007/978-3-319-70972-7_22
http://dx.doi.org/10.1007/978-3-319-70972-7_23
http://dx.doi.org/10.1007/978-3-319-70972-7_24
http://dx.doi.org/10.1007/978-3-319-70972-7_25
http://dx.doi.org/10.1007/978-3-319-70972-7_26
http://dx.doi.org/10.1007/978-3-319-70972-7_27
http://dx.doi.org/10.1007/978-3-319-70972-7_28
http://dx.doi.org/10.1007/978-3-319-70972-7_29
http://dx.doi.org/10.1007/978-3-319-70972-7_30
http://dx.doi.org/10.1007/978-3-319-70972-7_31
http://www.ebook3000.org

X1V Contents

Formal Modeling and Verification for Domain Validation and ACME. 561
Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Nadim Kobeissi

Why Banker Bob (Still) Can’t Get TLS Right: A Security Analysis

of TLS in Leading UK Banking AppS. v .. 579
Tom Chothia, Flavio D. Garcia, Chris Heppel,
and Chris McMahon Stone

Privacy in Data Storage and Retrieval

Lavinia: An Audit-Payment Protocol for Censorship-Resistant Storage. 601
Cecylia Bocovich, John A. Doucette, and lan Goldberg

A Simpler Rate-Optimal CPIR Protocol 621
Helger Lipmaa and Kateryna Pavlyk

Poster Papers

Accountability and Integrity for Data Management Using Blockchains. 641
Anirban Basu, Joshua Jeeson Daniel, Sushmita Ruj,
Mohammad Shahriar Rahman, Theo Dimitrakos,
and Shinsaku Kiyomoto

The Amount as a Predictor of Transaction Fraud. 643
Niek J. Bouman and Martha E. Nikolaou

2-State Authentication Language, an Alternative to Bitcoin Script. 644
Alexander Chepurnoy

Broker-Mediated Trade Finance with Blockchains. 646
Mohammad Shahriar Rahman, Anirban Basu, and Shinsaku Kiyomoto

OpenTimestamps: Securing Software Updates
Using the Bitcoin Blockchain. 647
Peter Todd and Harry Halpin

Author Index e 649

http://dx.doi.org/10.1007/978-3-319-70972-7_32
http://dx.doi.org/10.1007/978-3-319-70972-7_33
http://dx.doi.org/10.1007/978-3-319-70972-7_33
http://dx.doi.org/10.1007/978-3-319-70972-7_34
http://dx.doi.org/10.1007/978-3-319-70972-7_35

Privacy and Identity Management

vww.ebook3000.con)

http://www.ebook3000.org

An Efficient Self-blindable Attribute-Based
Credential Scheme

Sietse Ringers®™), Eric Verheul, and Jaap-Henk Hoepman

Radboud University, Nijmegen, The Netherlands
{sringers,e.verheul, jhh}@cs.ru.nl

Abstract. An attribute-based credential scheme allows a user, given
a set of attributes, to prove ownership of these attributes to a veri-
fier, voluntarily disclosing some of them while keeping the others secret.
A number of such schemes exist, of which some additionally provide
unlinkability: that is, when the same attributes were disclosed in two
transactions, it is not possible to tell if one and the same or two different
credentials were involved. Recently full-fledged implementations of such
schemes on smart cards have emerged; however, these need to compro-
mise the security level to achieve reasonable transaction speeds. In this
paper we present a new unlinkable attribute-based credential scheme
with a full security proof, using a known hardness assumption in the
standard model. Defined on elliptic curves, the scheme involves bilinear
pairings but only on the verifier’s side, making it very efficient both in
terms of speed and size on the user’s side.

Keywords: Attribute-based credentials + Unlinkable - Self-blindable
Elliptic curves - Bilinear pairings

1 Introduction

An attribute-based credential (ABC) scheme allows a user, given a set of
attributes k1, ..., k,, to prove ownership of these attributes to a verifier, vol-
untarily disclosing some of them while keeping the others secret. A number of
such credential schemes exist, of which some additionally provide unlinkability:
that is, when reusing a credential the verifier cannot tell whether two transac-
tions did or did not originate from the same user (assuming the same attributes
with the same values were disclosed in both transactions). This allows for very
flexible identity management schemes, that are simultaneously very secure and
privacy-friendly.

Two well-known ABC schemes are Idemix [12,24] and U-Prove [10,29]. How-
ever, to date there is no provably secure scheme that is sufficiently efficient to allow
truly secure implementations on smart cards, while also providing unlinkability of
transactions. For example, since Idemix is based on the strong RSA-problem, one
would want the keysize to be at least 2048 bits and preferably even 4096 bits; the
IRMA project! has implemented Idemix on smart cards using 1024 bits. On the

! https://privacybydesign.foundation.

© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 3-20, 2017.
https://doi.org/10.1007/978-3-319-70972-7_1

https://privacybydesign.foundation

4 S. Ringers et al.

other hand, U-Prove is more efficient but does not provide unlinkability; in addi-
tion, its security is not fully proven.

In this paper, we provide a new provably secure, efficient and unlinkable
attribute-based credential scheme, that is based on the concept of self-blindability
[33]: before showing the credential, it is randomly modified into a new one (con-
taining the same attributes) that is still valid. This results in a showing proto-
col in which the verifier learns nothing at all about the credential besides the
attributes that are disclosed (and the fact that the credential is valid). In fact,
the showing protocol is a zero-knowledge proof of knowledge. The scheme does
not rely on the random oracle model (although usage of this model can lead
to a performance increase through the Fiat-Shamir heuristic [18]), and it uses
elliptic curves and bilinear pairings, allowing the same security level as RSA-
type groups at much smaller key sizes. Although computing a pairing is a much
more expensive operation than performing exponentiations on an elliptic curve,
all pairings occur on the verifier’s side. In addition, the kinds of pairing that we
use (Type 3) involves two distinct groups of which one is more expensive to do
computations on. However, the user only needs to perform computations on the
cheaper of the two. These two facts ensure that the amount of work that the
user has to perform is minimal.

The unforgeability of our credential scheme will be implied by the LRSW
assumption [13,26,27] introduced by Lysyanskaya et al., and used in many sub-
sequent works (for example, [1,11,13,35,36]). Actually, for our purposes a weaker
(in particular, non-interactive and thus falsifiable [28]) version of this assumption
called the whLRSW assumption [36] will suffice. After having defined attribute-
based credential schemes as well as unforgeability and unlinkability in the next
section, we will discuss these assumptions in Sect. 3. In the same section we will
introduce a signature scheme on the space of attributes, that will serve as the basis
for our credential scheme. In Sect.4 we turn to our credential scheme, defining
issuing and showing protocols, and proving that these provide unlinkability and
unforgeability for our scheme. This in turn implies the unforgeability of the signa-
ture scheme. In Sect. 5 we will discuss the performance of our scheme, by counting
the amount of exponentiations that the user has to perform and by showing aver-
age runtimes of an implementation of our scheme. First, we briefly review and com-
pare a number of other attribute-based credential schemes, in terms of features,
efficiency and speed, and security.

1.1 Related Work

The Idemix credential scheme [12,24] by Camenisch and Lysyanskaya is prob-
ably the most well-known unlinkable attribute-based credential scheme, relying
on the difficulty of the strong RSA problem in the group of integers modulo an
RSA modulus n = pq, of recommended size at least 2048 bits. Although this
credential scheme has a lot of desirable properties (it is provably unlinkable and
unforgeable, and the length of the signatures does not depend on the amount of
attributes), the large size of the modulus means that, when implementing the

vww.ebook3000.con)

http://www.ebook3000.org

An Efficient Self-blindable Attribute-Based Credential Scheme 5

user on smart cards, it is difficult to get acceptable running times for the pro-
tocols. For example, in [34] the Idemix showing protocol has been implemented
with 4 attributes and n around 1024 bits (while n should really be at least 2048
bits); there the running time for the ShowCredential protocol ranged from 1 to
1.3 s, depending on the amount of disclosed attributes.

Another well-known credential scheme is U-Prove [10,29] by Brands. Based
on the difficulty of the discrete logarithm problem in a cyclic group, it can
be implemented using elliptic curves, and additionally the showing protocol is
much less complicated than that of Idemix, also resulting in more efficiency.
However, in U-Prove two transactions executed with the same credential are
always linkable, and the showing protocol is only honest-verifier zero-knowledge
(i-e., there is no proof that dishonest verifiers cannot extract or learn information
about the undisclosed attributes). Moreover, there is no unforgeability proof for
U-Prove credentials, and it even seems that no such proof exists under standard
intractability assumptions [4].

We also mention the “Anonymous Credentials Light” construction from [3],
which can also be implemented on elliptic curves, but the credentials are not
unlinkable; and [21], which runs in RSA groups like Idemix.

The credential scheme from [13], also by Camenisch and Lysyanskaya, is much
closer to the scheme presented here: it is unlinkable, uses the (interactive) LRSW
assumption, as well as elliptic curves and bilinear pairings (of the less efficient
Type 1). In addition, how the signature scheme is used to obtain a credential
scheme with a zero-knowledge disclosure protocol is similar to this work. The
signature scheme that is used in [13] is, however, rather more complicated than
ours: for example, when showing a credential the user has to compute an amount
of pairings that is linear in the amount of disclosed attributes.

In [2] the BBS signature scheme [9] is modified into an unlinkable attribute-
based credential scheme that, like the scheme from [13], requires the user to
compute a number of (Type 2) pairings. However, the signatures in this scheme
are short, and (like in Idemix but unlike our own scheme) its length does not
depend on the amount of attributes.

More recently Fuchsbauer et al. [19] proposed a novel attribute-based cre-
dential scheme using structure-preserving signatures and a new commitment
scheme, in which the undisclosed attributes are not hidden by knowledge proofs
but rather by a partial opening to a commitment. As a result, like in Idemix
the signature length does not depend on the amount of attributes. The scheme
does, however, rely on a new variant of the strong Diffie-Hellman assumption
that was newly introduced in the same paper.

In [5] an unlinkable scheme based on proofs of knowledge of Boneh-Boyen-
like signature was proposed, achieving an efficient scheme with short signatures
like Idemix and Fuchsbauer et al., and involving pairings only on the verifier’s
side.

In [23] we have examined a number of broken self-blindable credential
schemes, and we posed a criterion which can indicate if a self-blindable creden-
tial scheme is linkable or forgeable. The scheme that we introduce in this paper

6 S. Ringers et al.

is however not susceptible to this criterion, as it only holds for deterministic
signature schemes while ours is non-deterministic.

Finally, a blindable version of U-Prove was recently proposed in [22].
Although an unlinkable credential scheme is aimed at, the paper contains no
unlinkability proof. Moreover, we have found that the scheme is forgeable: if
sufficiently many users collide then they can create new credentials containing
any set of attributes of their choice, without any involvement of the issuer [32].

2 Attribute-Based Credential Schemes

First we fix some notation. We denote algorithms with calligraphic letters such
as A and B. By y — A(z) we denote that y was obtained by running .4 on input
z. If A is a deterministic algorithm then y is unique; if A is probabilistic then
y is a random variable. We write A° when algorithm A can make queries to
oracle O. That is, A has an additional tape (read/write-once) on which it writes
its queries; once it writes a special delimiter oracle O is invoked, and its answer
appears on the query tape adjacent to the delimiter.

If A and B are interactive algorithms, we write a — A(-) < B(-) — b when A
and B interact and afterwards output a and b, respectively. By A = B we denote
that algorithm A has black-box access to an interactive algorithm B — that is,
A has oracle access to the next-message function B, , »(m) which, on input z
that is common to A4 and B, auxiliary input y and random tape r, specifies the
message that B would send after receiving messages m. Finally, |z| denotes the
length of x in bits. For example, if = is an integer then |z| = [log, x].

For zero-knowledge proofs we will use the Camenisch-Stadler notation [14].
For example, if K, P, P, are elements of some (multiplicatively written) group
then

PK{(k1,ks): K = P{"Py?}

denotes a zero-knowledge proof of knowledge of the numbers ki, ko that satisfy
the relation K = P} Py*. (Unlike Camenisch and Stadler, we do not use Greek
letters for the unknowns; instead we will consistently write them on the right-
hand side of the equation.) Such proofs are based on standard techniques and
occur in many areas of cryptography. In our case the protocol from [15] could
for example be used.

For the full definitions of bilinear pairings, zero-knowledge proofs, and the
unforgeability game of signature schemes, we refer to the full version of this
paper [30].

Definition 1. An attribute-based credential scheme consists of the following
protocols. (We assume a single issuer, but this can easily be generalized to mul-
tiple issuers).

KeyGen(1¢,n). This algorithm takes as input a security parameter ¢ and the
number of attributes n that the credentials will contain, and outputs the
issuer’s private key s and public key o, which must contain the number n,
and a description of the attribute space M.

vww.ebook3000.con)

http://www.ebook3000.org

An Efficient Self-blindable Attribute-Based Credential Scheme 7

Issue. An interactive protocol between an issuer Z and user P that results in a
credential c:

I(o,s,(ki,... . kn)) < P(o, ko, (k1,...,kn)) — c.

Here kg is the user’s private key, that is to be chosen from the attribute space
M by the user; the Issue protocol should prevent the issuer from learning it.
We assume that before execution of this protocol, the issuer and user have
reached agreement on the values of the attributes k1, ..., k,. The secret key
and attributes kg, k1, ..., k, are contained in the credential c.
ShowCredential. An interactive protocol between a user P and verifier V which
is such that, if ¢ is a credential? issued using the Issue protocol over attributes
(k1,...,kn) using private signing key s corresponding to public key o, then
for any disclosure set D C {1,...,n} the user can make the verifier accept:

P(o,¢,D) < V(o,D, (ki)iep) — 1.

Thus, the user will have to notify the verifier in advance of the disclosure set
D and disclosed attributes (k;)iep-

We expect our attribute-based credential scheme to satisfy the following
properties.

— Unforgeability (see Definition 14): no user can prove possession of attributes
that were not issued to it by the issuer.

— Multi-show unlinkability (see Definition 15): If a verifier V participates in the
ShowCredential protocol twice, in which the same credential was involved, it
should be impossible for it to tell whether both executions originated from
the same credential or from two different ones.

— Issuer wunlinkability: If in a run of the ShowCredential protocol certain
attributes were disclosed, then of all credentials that the issuer issued with
those attributes, the issuer cannot tell which one was used.

— Offline issuer: The issuer is not involved in the verification of credentials.

— Selective disclosure: Any subset of attributes contained in a credential can be
disclosed.

The unforgeability and both kinds of unlinkability of an attribute-based creden-
tial scheme are defined in terms of two games. We have included these games in
Appendix A.

The notion of unlinkability captures the idea that it is impossible for the ver-
ifier to distinguish two credentials from each other in two executions of the
ShowCredential protocol, as long as they disclosed the same attributes with
the same values. We will achieve this for our scheme by proving that our
ShowCredential protocol is black-box zero-knowledge, which essentially means
that the verifier learns nothing at all besides the statement that the user proves.
Since the verifier learns nothing that it can use to link transactions, unlinkability
follows from this (see Theorem 12).

2 As in Idemix and U-Prove, our ShowCredential protocol can easily be extended to
simultaneously show multiple credentials that have the same secret key, and to prov-
ing that the hidden attributes satisfy arbitrary linear combinations [10].

8 S. Ringers et al.

3 Preliminaries

If e: G; x Go — Gr is a bilinear pairing [20], we will always use uppercase letters
for elements of G or Go, while lowercase letters (including Greek letters) will be
numbers, i.e., elements of Z,. We will always use the index i for attributes, and
in the unforgeability proofs below we will use the index j for multiple users or
multiple credentials. For example, the number k; ; will refer to the i-th attribute
of the credential of user j. If a,b are two natural numbers with a < b, then we
will sometimes for brevity write [a, b] for the set {a,...,b}.

We write v(¢) < negl(¢) when the function v: N — Rx(is negligible; that is,
for any polynomial p there exists an ¢’ such that v(¢) < 1/p(¢) for all £ > ¢'.

3.1 Intractability Assumptions

The unforgeability of the credential and signature schemes defined in the paper will
depend on the whLRSW assumption [36], which as we will show below, is implied by
the LRSW assumption [26,27] introduced by Lysyanskaya, Rivest, Sahai, and Wolf.
The latter assumption has been proven to hold in the generic group model [31],
and has been used in a variety of schemes (for example, [1,11,13,35,36]). Although
this assumption suffices to prove unforgeability of our scheme, it is stronger than
we need. In particular, the LRSW assumption is an interactive assumption, in
the sense that the adversary is given access to an oracle which it can use as it
sees fit. We prefer to use the weaker whLRSW assumption, which is implied by
the LRSW assumption but does not use such oracles. Consequentially, unlike the
LRSW assumption itself, and like conventional hardness assumptions such as fac-
toring and DDH, this assumption is falsifiable [28]. We describe both assumptions
below; then we prove that the LRSW assumption implies the whLRSW assump-
tion. After this we will exclusively use the latter assumption.

Let e: G1 X Go — Gr be a Type 3 pairing, where the order p of the three
groups is ¢ bits, and let a, 2z €g Zy. If (k,K,S,T) € Z, x G? is such that K # 1,
S =K%and T = K#t%% then we call (k, K,S,T) an LRSW-instance.

Definition 2 (LRSW assumption). Let e be as above, and let O, . be an
oracle that, when it gets x; € Z, as input on the j-th query, chooses a ran-
dom K; €r Gp \ {1} and outputs the LRSW-instance (/ﬁj,Kj,KJ@,K;+Kjaz).
The LRSW problem is, when given (p,e, G1,Gs,Gr,Q,Q% Q%) where Q €g
G2 \ {1}, along with oracle access to O, ;, to output a new LRSW-instance
(k, K, K% K*5%%) where has never been queried to O, .. The LRSW assump-
tion is that no probabilistic polynomial-time algorithm can solve the LRSW
problem with non-negligible probability in ¢. That is, for every probabilistic
polynomial-time algorithm A we have

Pra,z €r Zy; Q €r G2\ {1};
U — (p’ 67 G17G2,GT7Q7 QG7QZ); (K7 K’ S’ T) — Aoa’z(g) :
KeG\{1}) Aw¢L A S=K" A T:K“““Z} < negl(0),

vww.ebook3000.con)

http://www.ebook3000.org

An Efficient Self-blindable Attribute-Based Credential Scheme 9

where L is the list of oracle queries sent to O, ., and where the probability is
over the choice of a, z, @, and the randomness used by A and the oracle O, .

Definition 3 (¢-whLRSW assumption[36]). Let e be as above, and let
{(k;, Kj, K]@,K;+Kjaz)}j:1w,q be a list of ¢ LRSW-instances, where the
k; and K; are randomly distributed in Z, and Gi \ {1}, respectively. The
q-whLRSW problem (for g-wholesale LRSW [36]) is, when given this list
along with (p,e,G1, Ga,Gr,Q,Q% Q%), to output a new LRSW-instance
(k, K, K K**5%%) where k ¢ {K1,...,kq}. The g-whLRSW assumption is that
no probabilistic polynomial-time algorithm can solve the ¢-whLRSW problem
with non-negligible probability in ¢. That is, for every probabilistic polynomial-
time algorithm .4 we have

Pr [a,z €R Ly K1,y kg €ER Lp; K1,..., K, €r G1 \ {1};

Q €r G2\ {1}; 0 «— (p,e,G1,G2,Gr,Q,Q,Q%);
(k, K, 8,T) — Alo, {r;, Kj, K¢, K7 i q)) ¢
KeGi\{1} N k¢ {K1,...,Kq}
AS=K"AT=K"| < negl(t), (1)

where the probability is over the choice of a,z, K1,...,Kq, K1,..., K4, Q, and
the randomness used by A.

Finally we define an unparameterized version of the assumption above by allow-
ing ¢ to be polynomial in ¢, in the following standard way (e.g., [8]). Intu-
itively, the reason that this unparameterized assumption is implied by the LRSW
assumption is simple: if there is no adversary that can create LRSW-instances
when it can (using the oracle) control the &’s of the LRSW-instances that it gets
as input, then an adversary that can create them without having control over
the x’s also cannot exist.

Definition 4. Let e, p and ¢ = |p| be as above. The whLRSW assumption states
that for all polynomials ¢: N — N, the ¢(¢)-whLRSW assumption holds.

Proposition 5. The LRSW assumption implies the whLRSW assumption.

We prove this in the full version of this paper [30]. Thus if we prove that our
scheme is safe under the whLRSW assumption, then it is also safe under the LRSW
assumption. Additionally, we have found that the whLRSW assumption can be
proven by taking an extension [7] of the Known Exponent Assumption [16], so
that unforgeability of our scheme can also be proven by using this assumption.
However, because of space restrictions this proof could not be included here.

3.2 A Signature Scheme on the Space of Attributes

In this section we introduce a signature scheme on the space of attributes. This
signature scheme will be the basis for our credential scheme, in the following

10 S. Ringers et al.

sense: the Issue protocol that we present in Sect. 4 will enable issuing such signa-
tures over a set of attributes to users, while the ShowCredential protocol allows
the user to prove that it has a signature over any subset of its signed attributes.

Definition 6 (Signature scheme on attribute space). The signature
scheme is as follows.

KeyGen(1¢,n). The issuer generates a Type 3 pairing e: G; x Go — G, such
that |p| = ¢ where p is the prime order of the three groups. Next it takes
a generator () €gr G2, and numbers a,ag,...,an,2 €r Z, and sets A =
Q% Ay =Q%, ..., A, = Q% , and Z = Q*. The public key is the tuple o =
(p,e,Q,A, Ap, ..., A, Z) and the private key is the tuple (a,ag, ..., an, 2).

Sign(ko, ..., kn). The issuer chooses K €r Zj and K €r Gp, and sets S =
K® Sy = K%,...,S, = K%, and T = (KS* [}, Szk’)z The signature is
(k, K, S,S0,...,5,T).

Verify((ko, ..., kn), (k, K,S,S0,...,5,,T),0). The signature is checked by set-
ting C = KS*], Sf"’; verifying that K, C # 1; generating random numbers
7,70,y Tn €Er Zy, and verifying?®

e(STSI ST Q) = (K, ATA - AT, e(T,Q) = e(C, Z). (2)

The numbers k, € Z, are the attributes. Although p may vary each time the
KeyGen (1, n) algorithm is invoked on a fixed security parameter ¢, the attribute
space Z, will always contain {0, ..., 22_1}. In our credential scheme in Sect. 4,
the zeroth attribute kg will serve as the user’s secret key, but at this point it
does not yet have a special role.

Notice that contrary to Idemix and the BBS+ scheme from [2], but like the
scheme from [13], the length of a signature is not constant in the amount n of
attributes, but O(n).

Although the element C' = KS*]!, Slk is, strictly speaking, not part of the
signature and therefore also not part of the credential (since it may be calculated
from k, the attributes (ko,...,k,) and the elements (K, S, Sp,...,S)), we will
often think of it as if it is. Finally, we call a message-signature pair, i.e., a tuple
of the form ((ko,...,kn), (s, K,S,So,...,S,T)) where (x,K,S,So,...,,T)
is a valid signature over (ko, ..., k,), a credential.

Notice that if (ko,...,kn), (k, K, S,So,...,5,,T) is a valid credential, then
for any o € Z,

(Kos .- k), (k, K, 8%, 88, ..., 8%, T) (3)

3 Combining the verification of the elements S, S; in this fashion achieves with over-
whelming probability the same as separately verifying e(S, Q) < e(K,A) and
e(Si, Q) z e(K, A;) [17], reducing the amount of necessary pairings from n + 3 to 2.
In implementations it will probably suffice to choose these numers from {1,..., 2“}
(with, say, ¢, = 80), resulting in a probability of 2¢ that the S,S; are the correct

powers a, a; of K. We are very grateful to I. Goldberg for suggesting this improvement.

vww.ebook3000.con)

http://www.ebook3000.org

An Efficient Self-blindable Attribute-Based Credential Scheme 11

is another valid credential having the same attributes. That is, in the terminology
of Verheul [33] our credentials are self-blindable. This self-blindability is what
makes this signature scheme suitable for the purpose of creating an unlinkable
ShowCredential protocol.

The number x will play a critical role in the unforgeability proof of our
signature and credential schemes (Theorem 10).4

Theorem 7. Our credentials are existentially unforgeable under adaptively cho-
sen message attacks, under the whLRSW assumption.

This is proven in the full version of this paper [30].

4 The Credential Scheme

In this section we present our credential scheme. The strategy is as follows: having
defined an unforgeable signature scheme on the set of attributes Zj; (Definition 6),
we provide an issuing protocol, in which the issuer grants a credential to a user,
and a showing protocol, which allows a user to give a zero-knowledge proof to a
verifier that he possesses a credential, revealing some of the attributes contained in
the credential while keeping the others secret. The Issue protocol is shown in Fig. 1,

Common information: Attributes ki, ..., kn, issuer’s public key o = (p, e, Q,
A, Aoy..., An, Z)

User Issuer
knows secret key ko knows a, ag,...,an, z

choose K € G4
— send § = K%, Sy = K%
choose a, k' €r Zy,
set S = 5% 8, =S¢
send S, So, R = S“,Sgo —
PK{(k',ko): R= 8" Sk}
set K = S/
verify S # S, K = Sé/ao
choose k" €gr Ly
set S; = K% Vi € [1,n]
set T = (K™ RITL, SI*)
«—— send k", K,S1,...,9.,T
set k =K + K
return (ko, ..., kn), (k, K,S,So,...,Sn,T)

Fig. 1. The Issue protocol.

4 We could have eased the notation somewhat by denoting the number & as an extra
attribute kn41, but because it plays a rather different role than the other attributes
(it is part of the signature), we believe this would create more confusion than ease.

12 S. Ringers et al.

Common information: Issuer’s public key o = (p, e, @, A, Ao, ..., An, Z); disclo-
sure set D, undisclosed set C = {1,...,n} \ D; disclosed attributes (k;)iep

User Verifier
knows K, S, So,...,Sn, K, (ki)icc, C, T

*

choose a, 8 €r Z,
set K = K%, S =89 5;=57Viec[0,n]
set C=C~/8 T =1-2/8
send K, S, (gi)i:o,.“,n, ~, T —
SetD:KﬂHiepg_ki set D=K ']
PK{(8, &, ko, ki)icc: D = C«ﬁgnggo L S’z’“} —

_—
1€D Sl
choose 7,70, ...,7n €R Ly,
verify e(C, Z) < (T’ Q)
and e(S"Sp% - S, Q)

L e(K,ATAP .- A7)

Fig. 2. The ShowCredential protocol. We assume that the user has the element C' =
KS“SgO .-+ §kn stored so that it does not need to compute it every time the protocol
is run (see Sect. 5 for more such optimizations).

and the ShowCredential protocol is shown in Fig. 2. Here and in the remainder of
the paper, we will write D C {1, ..., n} for the index set of the disclosed attributes,
and

C=A{1,...,n}\D

for the index set of the undisclosed attributes. We do not consider the index 0
of the secret key kg to be part of this set, as it is always kept secret.

The Issue protocol is such that both parties contribute to x and K with
neither party being able to choose the outcome in advance (unlike the signing
algorithm of the signature scheme from the previous section, where the signer
chooses £ and K on its own). This ensures that these elements are randomly
distributed even if one of the parties is dishonest. Additionally, the issuer is
prevented from learning the values of x and the secret key kg.

As noted earlier, we assume that the user and issuer have agreed on the
attributes k1, ..., k, to be contained in the credential before executing this pro-
tocol. Similarly, we assume that the user sends the disclosure set D and disclosed
attributes (k;);ep to the verifier prior to executing the ShowCredential protocol.

If the user wants to be sure at the end of the Issue protocol that the new
credential is valid, he will need to compute the pairings from Eq. (2). Even if the
user is implemented on resource-constrained devices such as smart cards this is
not necessarily a problem; generally in ABC’s the issue protocol is performed
much less often than the disclosure protocol so that longer running times may
be more acceptable. Alternatively, the user could perform the ShowCredential
protocol in which it discloses none of its attributes with the issuer, or perhaps
another party; if the credential was invalid then this will fail.

vww.ebook3000.con)

http://www.ebook3000.org

An Efficient Self-blindable Attribute-Based Credential Scheme 13

The ShowCredential credential can be seen to consist of two separate phases:
first, the user blinds the elements K, S, S;, C and T with the number « as in
Eq. (3), resulting in a new signature over his attributes. Second, the user uses the
blinded elements to prove possession of this fresh signature over his attributes.
The elements S and S; can be used for this proof of knowledge only if they have
all been correctly blinded using the same number «, which the verifier checks
using the pairings at the end of the protocol. Thus, since « is only used to
create a new blinded signature in advance of the proof of knowledge of this new
signature, the value of a need not be known to the verifier, which is why the user
does not need to prove knowledge of it. The same holds for the number « that
is used during issuance; as long as it is correctly applied (which the issuer here
checks by directly using his secret key instead of having to compute pairings),
the user can prove knowledge of ' and his secret key ko without the issuer
needing to know a.

Mathematically, we can formalize what the ShowCredential protocol should
do as follows. The common knowledge of the user and verifier when running the
ShowCredential protocol consists of elements of the following formal language:

L:{(G7D,(ki)iep)|DC{1,...,TL}, kiEZPViED} (4)

where o ranges over the set of public keys of the credential scheme, and where
n is the amount of attributes of o. In addition, let the relation R be such that
R(z,w) =1 only if z = (0,D, (ki)iep) € L, and w = ((k{, ..., k), s) is a valid
credential with respect to o, with ki = k; for i € D (i.e., the disclosed attributes
(k;)iep are contained in the credential w.) Thus the equation R(z,w) =1 holds

only if w is a valid credential having attributes (k;);ep-

Theorem 8. The showing protocol is complete with respect to the language L:
if a user has a valid credential then it can make the verifier accept.

Proof. If the user follows the ShowCredential protocol, then e(K,A) =
e(K*,Q% = e(K*,Q) = e(S% Q) = ¢(S,Q), so the first verification that the
verifier does will pass. An almost identical calculation shows that the second and
third verifications pass as well. As to the proof of knowledge, setting C' = C*
we have

crgegho [Sk = ctamsho [[8% = K [[S7* = D, (5)
ieC ieC i€D
so the user can perform this proof without problem. a

4.1 Unforgeability and Unlinkability

The proofs of the following theorems may be found in the full version of this
paper [30].

Lemma 9. With respect to the language L defined in (4), the ShowCredential
protocol is black-box extractable.

14 S. Ringers et al.

In the proofs of the unforgeability and unlinkability theorems, we will need a
tuple (K, S,50,...,5,,C,T) € G such that § = K and S; = K% for all 4,
as well as T' = C. For that reason we will henceforth assume that such a tuple is
included in the issuer’s public key. Note that one can view these elements as an
extra credential of which the numbers (k, ko, ..., k) are not known. Therefore
the credential scheme remains unforgeable (the adversary can in fact already
easily obtain such a tuple by performing an Issue query in the unforgeability
game).”

Theorem 10. Our credential scheme is wunforgeable under the whLRSW
assumption.

Theorem 11. The ShowCredential protocol is a black-box zero-knowledge proof
of knowledge with respect to the language L.

Theorem 12. Let (KeyGen, Issue, ShowCredential) be an attribute-based creden-
tial scheme whose ShowCredential protocol is black-box zero-knowledge. Then the
scheme s unlinkable.

Theorem 13. Our credential scheme is unlinkable.

5 Performance

5.1 Exponentiation Count

Table 1 compares the amount of exponentiations in our scheme to those of [13],
U-Prove and Idemix. However, note that exponentiations in RSA-like groups,
on which Idemix depends, are significantly more expensive than exponentiations
in elliptic curves. The scheme from [19] is slightly cheaper than ours for the
prover, but relies on a newly introduced hardness assumption. Also, the U-Prove
showing protocol offers no unlinkability. As to the scheme from [13], Camenisch
and Lysyanskaya did not include a showing protocol that allows attributes to be
disclosed (that is, it is assumed that all attributes are kept secret), but it is not
very difficult to keep track of how much less the user has to do if he voluntarily
discloses some attributes. We see that the amount of exponentiations that the
user has to perform in the ShowCredential protocol of [13] is roughly 1.5 times
as large as in our scheme. Since, additionally, computing pairings is significantly
more expensive than exponentiating, we expect our credential scheme to be at
least twice as efficient.

5 Credential owners already have such a tuple; verifiers can obtain one simply by
executing the ShowCredential protocol; and issuers can of course create such tuples
by themselves. Therefore in practice, each party participating in the scheme will
probably already have such a tuple, so that including it in the public key may not
be necessary in implementations.

vww.ebook3000.con)

http://www.ebook3000.org

An Efficient Self-blindable Attribute-Based Credential Scheme 15

Table 1. Exponentiation and pairing count for the user of the ShowCredential protocol
of several attribute-based credential schemes. The columns Ggc, Gr and Grsa show
the amount of exponentiations in elliptic curves, the target group of a bilinear pairing,
and RSA groups respectively, while the column labeled e counts the amount of pairings
the user has to compute. The number n denotes the amount of attributes, excluding
the secret key, and the function pk(n) denotes the amount of exponentiations necessary
in order to perform a zero-knowledge proof of knowledge of n numbers (in the case of
the Fiat-Shamir heuristic applied to the Schnorr Y-protocol, which Idemix also uses,
we have pk(n) = n).

GEc Gr e Grsa | Unlinkable
Our scheme | n + pk(|C| +3)+6 |0 0 0 Yes
[13] 2n+3 pk(|C|+2)|n+3|0 Yes
[19] Cl+pk(2)+5 |0 0o 0 Yes
[5] pk(IC|+7)+5 0 0 0 Yes
Idemix 0 0 0 IC| + 3| Yes
U-Prove IC|+1 0 0 0 No

5.2 Implementation

In order to further examine the efficiency of our credential scheme we have writ-
ten a preliminary implementation, using the high-speed 254-bit BN-curve and
pairing implementation from [6]. The latter is written in C++ and assembly but
also offers a Java API, and it uses the GMP library from the GNU project® for
large integer arithmetic. Table 2 shows the running times of our implementation
along with those from the Idemix implementation from the IRMA project.” We
have tried to make the comparison as honest as possible by writing our implemen-
tation in Java, like the IRMA Idemix implementation, which we have modified to
also use the GMP library for its large integer arithmetic. In addition, like IRMA
we have used the Fiat-Shamir heuristic. However, the comparison can still only
go so far, because the elliptic curve group that [6] offers is heavily optimized
for fast computations, from which our scheme profits because it allows multi-
ple issuers to use the same group. Such optimizations are not possible in Idemix
because each Idemix public key necessarily involves its own group. Moreover, the
IRMA Idemix implementation is 1024-bits, which according to [25] corresponds
to a 144 bit curve (see also www.keylength.com), so that the two implementa-
tions do not offer the same level of security.

For these reasons we will go no further than draw qualitative conclusions
from the data. Nevertheless, both remarks actually demonstrate the efficiency
of our scheme: the first means that our scheme can be optimized further than
Idemix could, and Table 2 shows that even though our implementation offers a
much higher level of security, it is still significantly faster than the IRMA Idemix

6 See gmplib.org.
" See privacybydesign.foundation and github.com/credentials.

www.keylength.com
https://gmplib.org/
https://privacybydesign.foundation
https://github.com/credentials

16 S. Ringers et al.

Table 2. A comparison of the running times of various actions in the implementation
of our credential scheme and the IRMA Idemix implementation, both of them using the
Fiat-Shamir heuristic. The columns labeled “computing proof” and “verifying proof”
show how long it takes to compute and to verify a disclosure proof, respectively, while
the column labeled “verifying credential” shows how long it takes to verify the signature
of a credential. £, = 80 was used (see the Footnote 3). The left column shows the total
number of attributes and, if applicable, the amount of disclosed attributes (this does
not apply to the “verifying credential” column). The attributes were randomly chosen
253-bit integers, the same across all tests, and the computations were performed on
a dual-core 2.7 GHz Intel Core i5. All running times are in milliseconds, and were
obtained by computing the average running time of 1000 iterations.

attributes total (discl.)| Computing proof |Verifying proof | Verifying credential
This work |Idemix | This work | Idemix | This work|Idemix

6 (1) 2.6 11.7 4.0 11.2 3.2 6.5

7 (1) 2.6 12.6 4.4 12.2 3.3 6.9

8 (1) 2.9 13.4 4.4 13.2 3.3 7.4

9 (1) 3.1 14.3 4.6 14.0 3.3 7.7

10 (1) 3.4 152 |47 149 |34 8.3

11 (1) 3.6 165 4.9 158 3.6 8.7

12 (1) 3.9 17.1 5.1 16.9 3.7 8.9

6 (5) 2.1 7.6 |34 9.2

7 (6) 2.1 75 3.6 9.7

8 (7) 2.2 75 |36 10.1

9 (8) 2.2 7.4 |37 10.7

10 (9) 2.3 74 |41 10.9

11 (10) 25 75 4.2 11.4

12 (11) 2.6 7.5 4.5 12.0

implementation. We believe therefore that the conclusion that our scheme is or
can be more efficient than Idemix — at least for the user in the ShowCredential
protocol — is justified.

6 Conclusion

In this paper we have defined a new self-blindable attribute-based credential
scheme, and given a full security proof by showing that it is unforgeable and
unlinkable. Our scheme is based on a standard hardness assumption and does
not need the random oracle model. Based on the fact that it uses elliptic curves
and bilinear pairings (but the latter only on the verifier’s side), on a comparison
of exponentiation counts, and on a comparison of run times with the IRMA
Idemix implementation, we have shown it to be more efficient than comparable
schemes such as Idemix and the scheme from [13], achieving the same security
goals at less cost.

vww.ebook3000.con)

http://www.ebook3000.org

An Efficient Self-blindable Attribute-Based Credential Scheme 17

Acknowledgments. We are very grateful to the anonymous referees for their helpful
and constructive feedback, and to I. Goldberg for suggesting the method from [17] for
reducing the verification pairing count.

A Unforgeability and Unlinkability Games

Unforgeability of a credential scheme is defined using the following game (resem-
bling the signature scheme unforgeability game).

Definition 14 (unforgeability game). The unforgeability game of an
attribute-based credential scheme between a challenger and an adversary A is
defined as follows.

Setup. For a given security parameter ¢, the adversary decides on the number of
attributes n > 1 that each credential will have, and sends n to the challenger.
The challenger then runs the KeyGen(1¢,n) algorithm from the credential
scheme and sends the resulting public key to the adversary.
Queries. The adversary A can make the following queries to the challenger.
Issue(ky j,...,kn ;). The challenger and adversary engage in the Issue proto-
col, with the adversary acting as the user and the challenger acting as the
issuer, over the attributes (kq j, ..., kn, ;). It may choose these adaptively.

ShowCredential(D, k1, ..., k,). The challenger creates a credential with the
specified attributes k1, . .., k,, and engages in the ShowCredential protocol
with the adversary, acting as the user and taking D as disclosure set, while
the adversary acts as the verifier.

Challenge. The challenger, now acting as the verifier, and the adversary, acting
as the user, engage in the ShowCredential protocol. The adversary chooses a
disclosure set D, and if it manages to make the verifier accept then it wins if
one of the following holds:

— If the adversary made no Issue queries then it wins regardless of the disclosure
set (even if D = 0);

— Otherwise D must be nonempty, and if (k;);cp are the disclosed attributes,
then there must be no j such that k; = k; ; for all ¢ € D (i.e., there is no single
credential issued in an Issue query containing all of the disclosed attributes

(ki)ieD)-

We say that the credential scheme is unforgeable if no probabilistic polynomial-
time algorithm can win this game with non-negligible probability in the security
parameter £.

Next we turn to the unlinkability game.

Definition 15 (unlinkability game). The unlinkability game of an attribute-
based credential scheme between a challenger and an adversary A is defined as
follows.

18

S. Ringers et al.

Setup. For a given security parameter ¢, the adversary decides on the number of

attributes n > 1 that each credential will have, and sends n to the challenger.
The adversary then runs the KeyGen(1¢,n) algorithm from the credential
scheme and sends the resulting public key to the challenger.

Queries. The adversary A can make the following queries to the challenger.

Issue(ky j,...,kn ;). The adversary chooses a set of attributes (ki j, ..., kn),
and sends these to the challenger. Then, acting as the issuer, the adversary
engages in the Issue protocol with the challenger, issuing a credential j
to the challenger having attributes (k1 ;,...,kn ;)

ShowCredential(j, D). The adversary and challenger engage in the showing
protocol on credential j, the challenger acting as the user and the adver-
sary as the verifier. Each time the adversary may choose the disclosure
set D.

Corrupt(j). The challenger sends the entire internal state, including the
secret key ko, of credential j to the adversary.

Challenge. The adversary chooses two uncorrupted credentials jg, j1 and a dis-

closure set D C {1,...,n}. These have to be such that the disclosed attributes
from credential jo coincide with the ones from credential ji, i.e., k; j, = ki j,
for each ¢ € D. It sends the indices jg, j1 and D to the challenger, who checks
that this holds; if it does not then the adversary loses.

Next, the challenger flips a bit b € {0, 1}, and acting as the user, it engages in
the ShowCredential with the adversary on credential j;. All attributes whose
index is in D are disclosed.

Output. The adversary outputs a bit ¥’ and wins if b =¥'.

We define the advantage of the adversary A as Advy4 := |Pr[b=1b'] —1/2|.

When no probabilistic polynomial-time algorithm can win this game with non-
negligible advantage in the security parameter ¢, then we say that the credential
scheme is unlinkable.

References

1.

Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID tags via insub-
vertible encryption. In: Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS 2005), pp. 92-101. ACM, New York (2005)
Au, M.H., Susilo, W.,; Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111-125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072_8

Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security (CCS
2013), pp. 1087-1098. ACM, New York (2013)

Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013. LNCS, vol. 8270, pp.
82-99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_5
Barki, A., Brunet, S., Desmoulins, N., Traoré, J.: Improved algebraic MACs and
practical keyed-verification anonymous credentials. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 360-380. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-69453-5_20

vww.ebook3000.con)

https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
http://www.ebook3000.org

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

An Efficient Self-blindable Attribute-Based Credential Scheme 19

Beuchat, J.-L., Gonzdalez-Diaz, J.E., Mitsunari, S., Okamoto, E., Rodriguez-
Henriquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over Barreto—Naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 21-39. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17455-1_2

Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
(ITCS 2012), pp. 326-349. ACM, New York (2012)

Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149-177 (2008)

Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41-55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8_3

Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge (2000)

Camenisch, J., Hohenberger, S., Pedersen, M.Q.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246-263.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_14
Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93-118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6_7

Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56-72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4
Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410-424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

Cramer, R., Damgard, 1., MacKenzie, P.: Efficient zero-knowledge proofs of knowl-
edge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000.
LNCS, vol. 1751, pp. 354-372. Springer, Heidelberg (2000). https://doi.org/10.
1007/978-3-540-46588-1_24

Damgard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445-456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_-36

Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.@.: Practical short
signature batch verification. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS,
vol. 5473, pp. 309-324. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00862-7_21

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186-194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Cryptology ePrint
Archive, Report 2014/944 (2014). https://eprint.iacr.org/2014/944

Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113-3121 (2008)

Hajny, J., Malina, L.: Unlinkable attribute-based credentials with practical revo-
cation on smart-cards. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp.
62-76. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37288-9_5

https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-72540-4_14
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-540-46588-1_24
https://doi.org/10.1007/978-3-540-46588-1_24
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2014/944
https://doi.org/10.1007/978-3-642-37288-9_5

20

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

S. Ringers et al.

Hanzlik, L., Kluczniak, K.: A short paper on how to improve U-Prove using self-
blindable certificates. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 273-282. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45472-5_17

Hoepman, J.-H., Lueks, W., Ringers, S.: On linkability and malleability in
self-blindable credentials. In: Akram, R.N., Jajodia, S. (eds.) WISTP 2015.
LNCS, vol. 9311, pp. 203-218. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24018-3_13

IBM Research Ziirich Security Team: Specification of the identity mixer crypto-
graphic library, version 2.3.0. Technical report, IBM Research, Ziirich, February
2012. https://tinyurl.com/idemix-spec

Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptol. 14(4),
255-293 (2001)

Lysyanskaya, A.: Pseudonym systems. Master’s thesis, Massachusetts Institute of
Technology (1999). https://groups.csail.mit.edu/cis/theses/anna-sm.pdf
Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184-199. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46513-8_14

Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96-109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4_6

Paquin, C., Zaverucha, G.: U-Prove cryptographic specification v1.1 (revi-
sion 3), December 2013. http://research.microsoft.com/apps/pubs/default.aspx?
id=166969. Released under the Open Specification Promise

Ringers, S., Verheul, E., Hoepman, J.H.: An efficient self-blindable attribute-based
credential scheme. Cryptology ePrint Archive, Report 2017/115 (2017). https://
eprint.iacr.org/2017/115

Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256-266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0_18

Verheul, E., Ringers, S., Hoepman, J.-H.: The self-blindable U-Prove scheme from
FC’14 is forgeable (short paper). In: Grossklags, J., Preneel, B. (eds.) FC 2016.
LNCS, vol. 9603, pp. 339-345. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54970-4_20

Verheul, E.R.: Self-blindable credential certificates from the weil pairing. In: Boyd,
C. (ed.) ASTIACRYPT 2001. LNCS, vol. 2248, pp. 533-551. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1_31

Vullers, P., Alpar, G.: Efficient selective disclosure on smart cards using
Idemix. In: Fischer-Hiibner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013.
TAICT, vol. 396, pp. 53-67. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-37282-7_5

Wachsmann, C., Chen, L., Dietrich, K., Lohr, H., Sadeghi, A.-R., Winter, J.:
Lightweight anonymous authentication with TLS and DAA for embedded mobile
devices. In: Burmester, M., Tsudik, G., Magliveras, S., Ili¢, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 84-98. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-18178-8_8

Wei, V.K., Yuen, T.H.: More short signatures without random oracles. IACR Cryp-
tology ePrint Archive 2005, 463 (2005). http://eprint.iacr.org/2005/463

vww.ebook3000.con)

https://doi.org/10.1007/978-3-662-45472-5_17
https://doi.org/10.1007/978-3-662-45472-5_17
https://doi.org/10.1007/978-3-319-24018-3_13
https://doi.org/10.1007/978-3-319-24018-3_13
https://tinyurl.com/idemix-spec
https://groups.csail.mit.edu/cis/theses/anna-sm.pdf
https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
http://research.microsoft.com/apps/pubs/default.aspx?id=166969
http://research.microsoft.com/apps/pubs/default.aspx?id=166969
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
https://eprint.iacr.org/2017/115
https://eprint.iacr.org/2017/115
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-662-54970-4_20
https://doi.org/10.1007/978-3-662-54970-4_20
https://doi.org/10.1007/3-540-45682-1_31
https://doi.org/10.1007/978-3-642-37282-7_5
https://doi.org/10.1007/978-3-642-37282-7_5
https://doi.org/10.1007/978-3-642-18178-8_8
https://doi.org/10.1007/978-3-642-18178-8_8
http://eprint.iacr.org/2005/463
http://www.ebook3000.org

Real Hidden Identity-Based Signatures

Sherman S. M. Chow'®™), Haibin Zhang?, and Tao Zhang'

! Chinese University of Hong Kong, Shatin, NT, Hong Kong
{sherman,zt112}@ie.cuhk.edu.hk
2 University of Connecticut, Mansfield, CT 06269, USA
haibin.zhang@uconn.edu

Abstract. Group signature allows members to issue signatures on
behalf of the group anonymously in normal circumstances. When the
need arises, an opening authority (OA) can open a signature and reveal
its true signer. Yet, many constructions require not only the secret key
of the OA but also a member database (cf. a public-key repository) for
this opening. This “secret members list” put the anonymity of members
at risk as each of them is a potential signer.

To resolve this “anonymity catch-22” issue, Kiayias and Zhou pro-
posed hidden identity-based signatures (Financial Crypt. 2007 and IET
Information Security 2009), where the opening just takes in the secret
key of the OA and directly outputs the signer identity. The membership
list can be hidden from the OA since there is no membership list what-
soever. However, their constructions suffer from efficiency problem.

This paper aims to realize the vision of Kiayias and Zhou for real,
that is, an efficient construction which achieves the distinctive feature of
hidden identity-based signatures. Moreover, our construction is secure
against concurrent attack, and easily extensible with linkability such
that any double authentication can be publicly detected. Both features
are especially desirable in Internet-based services which allow anony-
mous authentication with revocation to block any misbehaving user. We
believe our work will improve the usability of group signature and its
variant.

Keywords: Anonymous authentication - Group signature
Hidden identity-based signature

1 Introduction

Group signature, introduced by Chaum and van Heyst [1], is a useful tool in
applications which expect anonymous authentication, where the signers typically
remain anonymous, yet some authorities can identify any misbehaving user in
case of abuse. To join a group, users first obtain their group signing keys from
a group manager (GM). The joining protocol is often interactive. Once this
registration is done, they can sign on behalf of the group with (conditional)
anonymity using the signing keys. The verifiers only know that someone in the
© International Financial Cryptography Association 2017

A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 21-38, 2017.
https://doi.org/10.1007/978-3-319-70972-7_2

22 S. S. M. Chow et al.

group signed the message, but cannot identify the specific signer. Whenever the
GM deems appropriate, it can use a system trapdoor to “open” a group signature
and reveal its true signer.

A later refinement by Camenisch and Michels [2] separates the power of
opening from the GM, by introducing an opening authority (or opener). GM in
this setting is in charge of user registration only, and the opening authority (OA)
is in charge of opening signatures. However, to enable anonymity revocation in
many realizations of group signature, the OA actually requires some help of the
GM, specifically, for the membership database the GM holds. This design comes
with some flaws—either the OA holds the member list, or the GM interacts
with the OA each time an opening is needed, which means the GM should
remains online for answering opening requests and it can possibly deny such
a request of the OA. Note that the reason why group signatures are used is
that the user wants to protect their anonymity. However, the existence of such
secret membership list conflicts with this purpose. The members cannot sign
in peace because the OA is too powerful with this membership list. This list
is a very valuable asset attracting any adversary who aims to compromise user
anonymity to attack the OA. However, since it is not a secret key by definition
and secure storage for such a large list is relatively expensive, it may not be as
well-protected as the opening trapdoor. We end up with a “no-win” no matters
which of the above options to adopt.

Kiayias and Zhou [3,4] observed this inconvenient situation and put forth the
notion of hidden identity-based signatures (HIBS). The hidden feature of HIBS
is that not only the signer identity can be hidden from a regular verifier (like
group signature), but the membership list is also hidden from the OA since there
is no membership list whatsoever. In particular, anonymity revocation will not
require such a list.

Realizing HIBS is not straightforward, even though many group signature
schemes exist. In their first concrete construction [3], one needs to solve discrete
logarithm problem to get the signer identity. Discrete logarithm problem cannot
be efficiently solved by any probabilistic polynomial-time algorithm. This makes
the hidden feature of their scheme rather artificial. Some existing group signa-
ture schemes before their work can (be extended easily to) support this “hidden-
identity” feature if the opening requires solving discrete logarithm problem. In
other words, one can consider this scheme not a “real” hidden identity-based signa-
ture scheme. Indeed, other scheme which opens to a group element embedding the
identity as an exponent also exists [5]. Their second scheme [4] does not suffer from
this problem, yet the efficiency is not that satisfactory. Specifically, it uses Paillier
encryption and thus a more involved zero-knowledge proof. Not only the signa-
ture contains more group elements, but also each of those becomes larger since the
composite order group should be large enough to withstand the best-known factor-
ization attack. In other words, the price for this hidden-identity feature is the cost
of the efficiency of all other algorithms of the signature scheme. Liu and Xu [6,7]
proposed pairing-based HIBS schemes in the random oracle model which claimed
to achieve concurrent security, CCA-anonymity, and exculpability, but their con-
structions still require solving the discrete logarithm problem for opening.

vww.ebook3000.con)

http://www.ebook3000.org

Real Hidden Identity-Based Signatures 23

1.1 Owur Contributions

We propose a generic construction for HIBS based on standard primitives:
digital signature, encryption, and non-interactive zero-knowledge (NIZK) (or
non-interactive witness-indistinguishable (NIWI)) proof. Though conceptually
simple, it has impacts in multiple aspects.

— First, we show that the seemingly difficult goal of constructing HIBS can
be generally achieved from various cryptographic assumptions in a modular
manner, leading to efficient instantiations without random oracles.

— Beyond retaining the nice feature of supporting opening without requiring
any membership list, our generic construction is secure even under concur-
rent joining, such that the GM can interact with multiple joining users in
an arbitrarily interleaving manner. Concurrent joining is more practical than
sequential joining for applications over the Internet such as anonymous com-
munication (say, via Tor), which is the original scenario Kiayias and Zhou [3,4]
brought up to motivate the concept of HIBS.

— We extend our generic construction of HIBS with linkability [8], where HIBS
signatures generated by the same signer on the same message can be linked
without revealing the identity of the signer. We call this extension linkable
hidden identity-based signature (LHIBS). This extension disallows double-
posting of the same user with respect to the same “call for contributions”,
may it be two responses to the same thread of discussion or two votes cast in
the associated reputation systems. With our modular construction, advanced
features such as escrowed linkability can be easily equipped [9].

— Finally, our generic construction and its instantiations are highly compatible
with other privacy enhancing features such as (real) traceability [10,11] and
uniqueness [12]. This echoes the work of Galindo, Herranz, and Kiltz [13],
which obtains identity-based signature schemes with additional properties
from standard signature with the corresponding properties. The details are
shown in the full version.

1.2 Relation to Existing Notions

Note that a major difference of identity-based signature from the traditional sig-
natures based on public-key infrastructure, is simply the removal of a huge list of
public-key certificates. One can simply include a signature from the certificate
authority in every signature, to realize an identity-based signature. However,
every signature comes with this additional certificate, which also means an addi-
tional verification is needed in verifying any given signatures.

In hidden identity-based signatures, this certificate can be considered as hid-
den via an implicit encryption mechanism. As such, one may not agree that such
construction should be named as identity-based. Yet, our notion does not suffer
from the loss of efficiency as in the case for “certificate-based” identity-based
signatures. This is exactly the purpose of this work to show that such construc-
tion of HIBS can be constructed in an efficient (and modular) manner. On the

24 S. S. M. Chow et al.

other hand, we stick with the original naming of Kiayias and Zhou [3]. Indeed,
as acknowledged in their work, HIBS is essentially a group signature scheme,
but just with a special care on the input requirement of the opening mechanism.

Galindo et al. [13] studied what additional properties of identity-based sig-
natures (such as proxy, blind, undeniable, etc.) can be generically obtained from
standard signature schemes with the same properties. Their work is also based
on the above generic construction of identity-based signatures from standard sig-
natures. Our modular construction here is also compatible with many additional
properties in the world of group signatures [11,12,14].

2 Preliminaries

2.1 Notations

If S is a set, s < S denotes the operation of selecting an element s from S
uniformly at random. (} denotes an empty set. If A is a randomized algorithm,
we write z < A(z,y,---) to indicate the operation that runs .A on inputs z, y, - - -
(and uniformly selected internal randomness from an appropriate domain) which
outputs z. A function €(A): N — R is negligible if, for any positive number d,
there exists some constant A\g € N such that e(\) < (1/A)? for any A > Ag.

2.2 Bilinear Map

Bilinear pairing is a powerful tool for cryptographers to construct a diversity
of primitives. In a bilinear group G = (G,H, Gr,p, e, g,h), G, H, and Gr are
groups of prime order p. g and h are random generators for the groups G and H
respectively. An efficient bilinear map e : G x H — G7 maps two group elements
from G and H to one from the target group G with the following property.

— Bilinearity. For all u € G, v € H, a,b € Z, e(u®,v) = e(u, v)?.
— Non-degeneracy. e(g,h) # 1.
— Efficiency. For all (u,v) € G x H, e(u,v) is efficiently computable.

2.3 Assumptions

Assumption 1 (Decisional Diffie-Hellman (DDH)). For a group G with
a random generator g, given (g%, g°, g¢) where a,b,c are randomly chosen from
Zy, it is hard for any probabilistic polynomial-time algorithm to decide whether
g¢ = g® or not.

Assumption 2 (SXDH). For a bilinear group G = (G, H, Gr, p, e, g, h)
where e : G x H — G, DDH assumption holds for both G and H.

Symmetric eXternal Diffie-Hellman (SXDH) assumption implies that there does
not exist any efficient transformation from G to H or from H to G.

vww.ebook3000.con)

http://www.ebook3000.org

Real Hidden Identity-Based Signatures 25

Assumption 3 (Decisional Linear (DLIN)). For a group G, given the tuple
(917 92, g3, gtll; gg; gg) € G6 where 91,92, 93 S G* and a,b,c S Z[H it is hard fOT

any probabilistic polynomial-time algorithm to decide whether g5 = gg”'b or not.

3 Hidden Identity-Based Signatures

We present the syntax and notions of security for HIBS. The contents of this
section are strengthening and extending those proposed by Kiayias and Zhou [3,4],
adding useful functionalities, and establishing stronger notions of security.

3.1 Syntax of HIBS

We consider HIBS with separated issuer (or group/identity manager) and opener
(or opening authority) [3,15]. An issuer is responsible for member enrollment,
while an opener is responsible for recovering the identities hidden in the signa-
tures given by the enrolled users, whenever need arises.

A hidden identity-based signature (HIBS) scheme HZBS is a set of nine algo-
rithms (KGen, UKGen, Reg, RegCheck, Sign, Verify, Open, Judge, Dispute):

— KGen(1*) — (gpk, ik, ok): The group key generation' algorithm takes as input
the security parameter A\ and outputs the group public key gpk, the issuer
key ik (for the issuer) and the opening key ok (for the opener).

— UKGen(1*,1D) — (upkp,uskip): The user private key generation algorithm
takes as input the security parameter A and a user identity ID, and outputs
the user personal public and private key pair (upkp, uskip).

— Reg(gpk, ik, ID, upk,p) — certip: The registration algorithm takes as input the
group public key gpk, the issuer key ik, a user identity ID, and a user personal
public key upkp to return a user membership certificate certip.

— RegCheck(gpk, ID, upk,p, certip) — 0/1: The registration checking algorithm?
takes as input the group public key gpk, a user identity ID, a user personal
public key upkp, and a user membership certificate certip to return a single
bit b. We say certp is a valid user membership certificate with respect to ID
if RegCheck(gpk, ID, upk,p, certip) = 1.

— Sign(gpk, ID, certip, uskip, m) — o: The HIBS signing algorithm takes as input
the group public key gpk, a user identity ID, the corresponding user member-
ship certificate cert|p, the user private key uskjp, and a message m to return
a signature o.

— Verify(gpk, m, o) — 0/1: The HIBS verification algorithm takes as input the
group public key gpk, a message m, a signature ¢ on m, and returns a single
bit b. We say that o is a valid signature of m if Verify(gpk,m, o) = 1.

1 'We put issuing key generation and opening key generation together for brevity. It
is easy to separate them in our schemes such that the respective private keys of
the issuer and the opener are generated independently except according to the same
security parameter, and the corresponding public keys will be put together in gpk.

2 This algorithm may be optional for some application scenarios.

26 S. S. M. Chow et al.

— Open(gpk, ok,m,0) — (ID,w): The opener takes as input the group public
key gpk, its opening key ok, a message m, and a valid signature o for m, and
outputs (ID,w), where w is a proof to support its claim that user ID indeed
signed the message. It is possible that (ID,w) = L for a valid signature, in
which case the opening procedure is foiled.

— Judge(gpk, (ID,w), (m,0)) — 0/1: The judge algorithm takes as input the
group public key gpk, the opening (ID,w), a message m, and a valid signa-
ture o of m to verify that the opening of ¢ to ID is indeed correct. We say
that the opening is correct if Judge(gpk, (ID,w), (m,0)) = 1.

— Dispute(gpk, upkp, certip, (ID,w)) — 0/1: The dispute algorithm is triggered if
a registered user ID refuses to admit guilt after an opening (ID,w) is published.
It takes as input the group public key gpk, the user personal public key upkp,
the user membership certificate certp, which are both provided by the user,
and the opening result (ID,w) published by the opener, and returns a single
bit b. The issuer is guilty with respect to ID if Dispute(gpk, upkp, certip, (1D,
w)) =1

We note that the hidden-identity nature just applies on the opener. Obvi-
ously, the group manager is governing who can join the group, and hence it can
store such a list after every Reg invocation. However, it is natural to assume that
the group manager is not motivated to put its member at risk.

Following [15] and different from [3,4], we further equip our HIBS with a
judge algorithm Judge() to protect against a fully corrupt opener. Compared
to that of [15], the Join()/Issue() algorithm [15] is replaced with Reg() and
RegCheck() algorithms for the sake of simplicity.

We now briefly consider the correctness notions for HIBS. Correctness
includes registration correctness (with respect to Reg() and RegCheck() algo-
rithms), signing correctness (with respect to Sign() and Verify() algorithms),
opening correctness (with respect to Open() and Judge() algorithms), and dis-
pute correctness. The first three can be easily adapted from those of [3,15], while
the last one requires the Dispute() algorithm to function correctly when a sus-
pected user was indeed framed.

3.2 Syntax of Linkable HIBS

We extend hidden identity-based signatures to the notion of linkable HIBS
(LHIBS) which supports linking the signatures on the same message by the
same (hidden) signer. This feature is implemented by the algorithm below.

— Link(gpk, m, 01,092) — 0/1: This algorithm takes in the group public key and
two signatures on the same message m. If o1 and oy are two valid signatures
(resulting in 1 from Verify()) generated by the same signer, this algorithm
outputs 1; otherwise, it outputs 0.

This linking feature can identify double-posting without opening the identity of
any signer.

vww.ebook3000.con)

http://www.ebook3000.org

Real Hidden Identity-Based Signatures 27

3.3 Security Notions for HIBS

We strengthen the notions due to Kiayias and Zhou [3,4], and consider the
“strongest” achievable notions (following [15]): anonymity, traceability, and non-
frameability. The security notions in [3,4], namely, security against misidentifi-
cation forgery and exculpability attacks (formally given in [4]), have been shown
to be implied by traceability and non-frameability [16].

Similar to the study of Kiayias and Zhou [3,4], we do not have an explicit
security definition to model the hidden identity nature of the scheme. It is more
a functionality requirement that the opener does not need such a list for the
proper operation. In principle, such opener can collect all signatures in the sys-
tem, open each of them, with the goal of recovering the whole membership list.
Hence, by the correct functionality of the scheme, we cannot afford to have a
security definition which prevents an adversary with the opening secret key from
outputting the identity of any member.

Notation. We use HU and CU (both initially empty) to denote a set of honest and
corrupted users respectively, and use MSGp (initially empty) to denote the set
of messages queried by the adversary to SignO oracle for ID. An adversary may
have access of the following oracles in the security games to be described.

— RegO(ID): The adversary queries this oracle with a user identity ID. If ID €
CUUHU, returns L. Otherwise, this oracle runs (upk,p, uskip) < UKGen(1*,1D)
and certip — Reg(gpk, ik, ID, upkp), sets MSGip < 0, and sets HU <+ HUU {ID}
and stores (ID, upk,p, uskp, certip) internally.

— SignO(ID, certp, m): This oracle takes in an identity ID and a message m
from the adversary, runs o « Sign(gpk, ID, certip, uskip, m) where certp
is the certificate on ID generated by RegO, sets MSGip < MSGip U {m}, and
returns o.

— CorruptO(ID): This oracle takes in an identity ID, sets CU « CU U {ID} and
HU < HU \ {ID}, and returns (upkp, uskip, certip).

— OpenO(m, o): If Verify() outputs 1 on (m, o), this oracle returns (ID,w) «—
Open(gpk, ok, m, o). Otherwise, outputs L.

Definition 1 (CCA-Anonymity). An HIBS scheme HIBS is CCA-
anonymous, if in the following experiment, Advyirzs(A) is negligible.
Experiment Exp§/755”" (A)

(gpk, ik, ok) < KGen(11); CU — (); HU «— 0);

(IDg, 1Dy, m,s) < ACorruptO()Reg0(-).0pen0() (“find’ gpk, ik)

b {0,1}; 0 < Sign(gpk, IDy, certip, , uskip, , m)

y il ACorruptO(-,~),Reg0(-),0pen0(-,~)(Aguessx’O,, S)

if ¥’ # b then return 0

return 1

28 S. S. M. Chow et al.

where the adversary .4 must not have queried OpenO(-, -) with m and o in guess
phase. We define the advantage of A in the above experiment by

Advizps(A) = PriExpyTis(A) = 1] - 1/2.

The opening of a group signature corresponds to the chosen ciphertext
attack (CCA) which features a decryption oracle to the adversary of public-
key encryption. Naturally, one can also consider a variant anonymity notion,
chosen-plaintext attack (CPA) anonymity, where the adversary is never given
access to the opening oracle. It is known as CPA-anonymity.

Our anonymity notion strengthens that of Kiayias and Zhou [4] in the sense
the adversary is given access to two more oracles CorruptO(-,-) and RegO(-).

We also consider a weak CCA-anonymity for our extension with linkability.
The definition is stated below.

Definition 2 (Weak CCA-Anonymity). An HIBS scheme HIBS is weak
CCA-anonymous, if in the following experiment, Advirrs(A) is negligible.

weak-anon

Experiment Exp}7Tzs" " (A)
(gpk, ik, ok) < KGen(1*); CU «— (); HU «— 0);
(IDg, 1Dy, m,s) < ACorruptO();Reg0().0pen0() (“find’ gpk, ik)
if m € MSGip, or m € MSGp, then abort
b {0,1}; 0 < Sign(gpk, IDy, certip, , uskip, , m)
i & AComptO(:,).Re80().0en0() (g5’ g7)
if v’ # b then return 0

return 1

where the adversary A must not have queried OpenO(-, -) with m and o in guess
phase. We define the advantage of A in the above experiment by

Advizis(A) = PriExpyzis(A) = 1] - 1/2.

One can formulate a CPA counterpart for this definition. For the linkable HIBS,
the linking token is deterministic, and is decided by the combination of iden-
tity and message to be signed. Hence, in the weak CCA-anonymity game, the
adversary is not allowed to submit challenge identity-message pairs which have
appeared in the signing queries. Otherwise, the adversary will obtain a link-
ing token on the challenge identity-message pair, and break anonymity of HIBS
trivially.

Next, we present traceability and non-frameability, which together imply
(and in fact stronger than) the security against misidentification forgery and
exculpability attacks [4].

Definition 3 (Traceability). An HIBS scheme HIBS is traceable, if in the

trace

following experiment, Advy75s(A) is negligible.

vww.ebook3000.con)

http://www.ebook3000.org

Real Hidden Identity-Based Signatures 29

Experiment Expl35s(A)

(gpk, ik, ok) < KGen(1*); CU — (); HU — 0);

(m, o) <& AComuPtO().RegO(-) (gpk ok)

if Verify(gpk, m,c) =0
then return 0

(ID,w) « Open(gpk, ok, m, o)

if (ID,w) = L or Judge(gpk, ID,w,m,c) =0
then return 1

return 0
The advantage of A in the above experiment is defined by
AdvyiTss(A) = PrExpyizss(A) = 1.

Definition 4 (Non-frameability). The definition of non-frameability consists
of two aspects: signer-non-frameability and issuer-non-frameability.

— An HIBS scheme HIBS is signer-non-frameable, if in the following experi-
ment, Adv3EEE"(A) is negligible.

signer-nf

Experiment Exp}%5s" (A)
(gpk, ik, ok) < KGen(1*); CU — (); HU — {);
(m, 0, 1D, w) < ACCTuPtO() Sign0(-,1).Re80() (ol ik ok)
if Verify(gpk, m,c) =0
then return 0
if ID € HU and m ¢ MSG)p and
Judge(gpk, ID,w, m,c) = 1 and
Dispute(gpk, certip, upk,p, ID,w) =0
then return 1

return 0
We define the advantage of A in the above experiment by
AdviEss" (A) = Pr[Expgs ™ (A) = 1].

— An HIBS scheme HZBS is issuer-non-frameable, if in the following experi-
ment, Advires™(A) is negligible.

30 S. S. M. Chow et al.

Experiment Expﬁszufggnf(A)
(gpk, ik, ok) < KGen(1*); CU — 0); HU « ();
(m, 0, 1D, w) <& ACTPIO().Sign0(-) RegO() (g ok)
if Verify(gpk, m,o) =0
then return 0
if Judge(gpk, ID,w, m,c) = 1 and
Dispute(gpk, certp, upkp, ID,w) = 1
then return 1

return 0
We define the advantage of A in the above experiment by
Adv;ii}‘gg“f(A) = Pr[Exp;Squ;g“f(A) =1].

In the signer-non-frameability game, the issuer is considered honest, and
any other parties, including the signers, are not guaranteed to be honest. This
security game models the scenario that an adversary creates an HIBS forgery on
an identity of an honest signer without the consent of the issuer.

On the other hand, the issuer-non-frameability game models the scenario
that the adversary chooses an honest signer and creates forgery on behalf of this
chosen signer without being caught.

The combination of signer-non-frameability and issuer-non-frameability
implies unforgeability. Suppose an adversary can win the game of unforgeabil-
ity against chosen message attack, it can trivially win both the signer-non-
frameability game and the issuer-non-frameability game.

LHIBS and HIBS share the security requirements above, and LHIBS has one
more security requirement called linkability.

Definition 5 (Linkability). An HIBS scheme LHIBS is linkable, if in the
following experiment, Advh/¥s(A) is negligible.
Experiment Expiiy s<(A)
(gpk, ik, ok) < KGen(1*); CU «— ; HU «— {);
(m, 1D, g, 01) <% ACOTPLO() SignO(-).Reg0() (g ik ok)
ID; <+ Open(gpk, ok, m,c;), i € {0,1}
if 3i € {0,1},s.t. Verify(gpk,m,0;) =0
then return 0
if IDy = ID; and Link(gpk, m,c9,01) =0
then return 1
if IDy # ID; and Link(gpk, m, 0¢,01) =1
then return 1

return 0

vww.ebook3000.con)

http://www.ebook3000.org

Real Hidden Identity-Based Signatures 31

We define the advantage of A in the above experiment by

AdVlﬁirﬁIBs(A) = PT[EXPE%ZBS (A) =1].

4 Generic Construction

This section presents a generic construction of HIBS built from standard signa-
ture schemes and an NIZK (or NIWI) proof system, then extends it to support
linkability.

4.1 Generic HIBS

To design a generic construction of HIBS, we start from a generic construction
of identity-based signature (IBS) from standard signature schemes—certificate-
based approach to IBS, originally brought up by Shamir [17] and formally proven
secure by Bellare, Neven, and Namprempre [18]. To construct our generic HIBS,
we “hide” the whole signing process with an encryption and prove so in an NIZK
(or NIWI) sense.?

When a signer joins the system, it generates a public-private key pair of a
signature scheme, and sends the public key along with its identity to the GM
for a certificate. The GM use its signing key to generate a signature on the
identity and public key of the signer, and returns this signature to the signer
as a certificate. To create an HIBS, the signer first uses its own signing key to
create a signature on the message, then encrypts the certificate, the signature
on the message, its identity, and its public key, and finally generates an NIZK
proof on the certificate, the signature on the message, and the ciphertext. The
ciphertext and the proof are output as the HIBS signature. The proof asserts
three statements. First, the certificate is a valid signature generated by the GM.
Second, the signature on the message is valid with respect to the public key from
the certificate. Third, the identity, the public key, and the certificate encrypted
in the ciphertext are the ones used to create the signature. The validity of the
first two statements indicates that the signer is authentic. The validity of the
third statement enforces the traceability of HIBS. The party with the decryption
key can open the signature and obtain the identity of the signer.

Let DS; = (SKG, SIG, VFY) and DS, = (skg, sig, vfy) be two signature
schemes. Let OTS = (OKGen, OSig, OVerify) be a one-time signature scheme.
Let £ = (EKGen, Enc, Dec) be a public key encryption scheme. Let (P, V) be an
NIZK (or NIWI) proof system. We define an HIBS scheme HZBS in Fig.1. In
particular, the underlying language for the proof system (P, V') is defined as

L :={(m,ovk, VK, ek, C,T)|3(r, o, D, upkp, certip)
[VFY (VK, (ID, upkp), certip) = 1 A vfy(vkip, (m,ovk),o) =1
A C = Enc(ek,r, (o, ID, upk,p, certip))] }

3 Or, we could directly use NIZK proof of knowledge (NIZKPoK), being notionally
equivalent to CCA encryption.

32 S. S. M. Chow et al.

where we write Enc(ek, r, M) for the encryption of a message M under the public
key ek using the randomness r.

In the proposed generic construction, when a user joins the system, the com-
munication between the user and the GM just consists of one round (two message
flows). Thus, even when multiple users are joining the system at the same time,
the issuing process can still be conducted securely. The follow theorem estab-
lishes the security of HZBS.

Theorem 1. The proposed generic construction HIBS in Fig.1 is CCA-
anonymous (CPA-anonymous), traceable, signer-non-frameable, and issuer-non-
frameable, if DS1 and DSs are unforgeable against chosen message attacks, OT S
is a one-time secure signature, £ is IND-CCA-secure (IND-CPA-secure), and the
proof system (P, V') is adaptively sound, adaptively zero-knowledge, and one-time
simulation-sound.

Alg KGen(1*) Alg Sign(gpk, ID, certp, uskip, m)
R {0,11P™ o' «— sig(uskip, m),
(VK, SK) <& DS1.SKG(1%) c <$— Enc(ek,r, (¢, 1D, upkp, certip))
(ek, dk) <& £ EKGen(1*) 7 P(R, (m, VK, ek, C),

’
gpk — (R, ek, VK) b (C ﬂgn o', 1D, upkyp, certin))

ik — SK
ok — dk return (m, o)
return (gpk, ik, ok) Alg Verify(gpk,m, o)
Alg UKGen(1*,1D) return V (R, (m, VK, ek, C),)
(upk,p, uskip) & DSs.skg(17) A.lg Open(gpk, ok, m, o)
return (upkyp, uskip) if V(R, (m,VK,ek,7,C,m)) =0
) return |
Alg Regsﬁgph ik, 1D, upkip) (¢/,1D, upkyp, certip) — Dec(dk, C)
certip < SIG(SK, (ID, upk,p)) w « (o', upkp, certip)
return certip return (ID,w)

Alg RegCheck(gpk, ID, upkp, certip) Alg Dispute(gpk, upkp, certip, (ID,w))
return VFY (VK, (ID, upkp), certip) parse w as (o’ upk|p, certjp)

Alg Judge(gpk, (ID,w), (m, o)) if VFY(VK, (ID, upkp), certip) = 0
parse w as (o', upk,p, certip) then return L
return VFY(VK, (ID, upk,p), certip) if VFY(VK, (1D, upk(p), certjp) = 1 and
Avfy(upkp, m, o’) upkip # upkp
then return 1
return 0

Fig. 1. A generic construction for hidden identity-based signature HZBS = (KGen,
UKGen, Reg, RegCheck, Sign, Verify, Open, Judge, Dispute): R is the common reference
string for the underlying proof system (P, V).

4.2 Extension with Linkability

Figure 2 shows how we extend the generic construction HZBS = (KGen, UKGen,
Reg, RegCheck, Sign, Verify, Open, Judge, Dispute) to a linkable HIBS (LHIBS)
scheme.

vww.ebook3000.con)

http://www.ebook3000.org

Real Hidden Identity-Based Signatures

33

Alg KGen(1*)
(gpk, ik, ok) «— HZIBS.KGen(1*)
return (gpk, ik, ok)
Alg UKGen(1*,1D)
(vk, sk) <= HZBS.UKGen(1*, D)
(pkp, skr) < FGen(1*)
upkip « (vk, pkg)
uskip «— (Sk7 SkF)
return (upk,p, uskip)
Alg Reg(gpk, ik, ID, upk,p)
certip < HIBS.Reg(gpk, ik, ID, upkp)
return certp
Alg RegCheck(gpk, ID, upk,p, certip)
return HZBS.RegCheck(gpk, ID,
upk,p, certip)
Alg Open(gpk, ok, m, o)
return HZBS.Open(gpk, ok, m, o)

Alg Sign(gpk, ID, certip, uskip, m)
parse uskp as (sk,skr)
(T, 7r) < FProve(skr, (ID,m))
o' «— sig(sk,m)
C «— Enc(ek,r, (o', 1D, upkp, certip))
7 < P(R, (m,VK, ek, C,T),

(r,o’,1D, upkp, certip, Tr))

o«— (C,7,T)
return (m, o)

Alg Verify(gpk, m, o)
return V (R, (m,VK, ek, C,T),)

Alg Dispute(gpk, upkp, certip, (ID,w))
return HZBS.Dispute(gpk, upkp,
certip, (ID,w))

Alg Link(gpk,m, o1, 02)
if Verify(gpk, m,01) =0
or Verify(gpk, m,o2) =0
then return L

parse o; as (Cs, 7, T;)
if Ty = T5 then return 1;
else return 0

Alg Judge(gpk, (ID,w), (m, 7))
return HZBS.Judge(gpk, (ID,w), (m, o))

Fig. 2. A generic construction for linkable hidden identity-based signature LHZBS =
(KGen, UKGen, Reg, RegCheck, Sign, Verify, Open, Judge, Dispute, Link)

In this extension, F' = (FGen, FProve, FVerify) is a pseudorandom function.
The verification of computation correctness of FVerify() is compatible with
Groth-Sahai proof. The underlying language for the proof system (P,V) is
defined as

L :={(m,VK, ek, C,T)|3(r, o,ID, upkp, certip, 7r)

[VFY (VK, (ID, upkp), certip) = 1 A vfy(vkip, m,0) =1

A C = Enc(ek,r, (o,ID, upkp, certip))

A FProve(pkg, (ID,m),T,7r) = 1]}.
Theorem 2. LHIBS in Fig. 2 is traceable, linkable, weak CCA-anonymous
(weak CPA-anonymous), signer-non-frameable, and issuer-non-frameable, if
DS1 and DSy are unforgeable against chosen message attacks, OTS is a
one-time secure signature, £ is IND-CCA-secure (IND-CPA-secure), the proof

system (P, V) is adaptively sound, adaptively zero-knowledge, and one-time
simulation-sound, and F is a PRF.

5 Efficient Instantiations

To instantiate our general paradigm without resorting to random oracles, we use
Groth-Sahai proof [19]. To this end, we use the group elements representation

34 S. S. M. Chow et al.

for user identities such that they are compatible with Groth-Sahai proof system.
In particular, we select a structure-preserving signature [20] as the first-level
signature (DS7) to sign the second-level signature (DSs) public key and user
identity, both of which are group elements. Moreover, the identities, being group
elements, can be fully extracted from the Groth-Sahai commitments. This makes
the Open algorithm to be purely based on identity, in particular, does not require
any archived membership information obtained when the user joins the systems
and gets the credential.

We present three instantiations here. All the proposed instantiations use
Groth-Sahai proof system as the underlying proof system. The first two instantia-
tions use the full Boneh and Boyen (BB) signature [21] as the second-level scheme
(for DSs), while the third instantiation uses a signature scheme by Yuen et
al. [22] which is based on a static assumption. The public-key of BB signa-
ture consists of 2 group elements upkip = (y1, y2) € G2. A signature for message
m € Zg is of the form (s,t) € G x Z; which is verifiable by e(s, y19™5) = (g, 9)-
We do not mention the above common designs and only describe the different
part in the following instantiations.

Table 1 summarizes the previous HIBS construction (with exculpability) due
to Kiayias and Zhou [4], our two instantiations of HIBS in our stronger model,
Instl and Inst2, and the most efficient group signature scheme (as a baseline) that
provides concurrent security, CCA-anonymity, and non-frameability [23]. The
size in kilobytes (KB) of the group elements are measured on “MNT159” [24]
curve.

Table 1. Summary of the properties among the Kiayias-Zhou HIBS construction (with
exculpability), the most efficient group signatures that provides CCA-anonymity and
non-frameability (as a baseline), and our two instantiations of HIBS in our stronger
model: [N], [n], and [g] respectively denote the size of an element in Z}, Z;,, and Zq4
(assuming that the group elements and scalars can be represented in a similar bit-size)

Scheme RO | Hidden-ID | Non-frame. | Anon. | Concur. | Assumption Sig. size Length
KZ [4] | Yes | Yes Yes CCA |No DCR; S-RSA | =3V 4 16" | 7.33 KB
AHO [23] | No | No Yes CCA | Yes ¢-SFP 55 4 114l 1.09 KB
Instl No | Yes Yes CCA | Yes ¢-SFP; ¢-SDH | 60 + 114 1.15KB
Inst2 No | Yes Yes CCA | Yes DLIN; ¢-SDH | 176 + 114! 3.41KB
Inst3 No | Yes Yes CCA | Yes DLIN 494 + 119 9.58 KB

5.1 Instantiation 1

In our first instantiation Instl, we select Groth-Sahai proof system instantiated
basing on SXDH assumption as the underlying proof system (P, V). As we have
discussed previously, this setting is suitable for ElGamal encryption. Further-
more, SXDH setting is the most efficient instantiation of Groth-Sahai proof sys-
tem, and Type III bilinear group operates with higher efficiency than the other
two types do.

vww.ebook3000.con)

http://www.ebook3000.org

Real Hidden Identity-Based Signatures 35

This instantiation uses the signature scheme proposed by Abe et al. [23]
to implement the first-level structure-preserving signature DS;. It consists of 7
group elements, 4 of which can be perfectly randomized. The message signed by
the first-level signature consists of 3 group elements, including the user identity
which is one group element. A proof for the first-level signature consists of 4
elements (since the corresponding two pairing product equations are linear) and
a proof for the second-level signature takes 4 group elements. For the underlying
encryption scheme &, we selected DDH-based ElGamal [25], which fits with the
SXDH setting. OTS can be instantiated with a weak BB signature [21] which
is not one-time. Its public key consists of 1 group element, and its signature
consists of 1 group element.

The resulting CPA-anonymous HIBS Instl consists of 45 group elements
and 1 scalar value (in Z;). Following the existing approach [26], the proposed
instantiation Instl can achieve CCA-anonymity with extra 15 group elements.
Thus, the resulting CCA-anonymous HIBS Instl consists of 60 group elements
and 1 scalar value (in Z,).

5.2 Instantiation 2

Our second HIBS instantiation Inst2 is proven secure basing on simple assump-
tions in the standard model. The first level signature DS; can be proven secure
basing on static assumptions in the standard model. If we replace the second
level signature, BB signature, with another scheme basing on a static assump-
tion, then the HIBS scheme is basing on static assumption which is more desir-
able than basing on a g-type assumption as Instl. This instantiation raises the
security level in the cost of losing efficiency.

The DLIN-based Groth-Sahai proof is chosen as the proof system. This DLIN
setting is compatible with Camenisch et al.’s encryption scheme [27].

We select the signature scheme from [27] to instantiate DS;. It consists of
17 group elements, only 2 of which can be perfectly randomized. The proof (for
two signatures) includes 10 pairing product equations (none of them are linear)
and thus consists of 90 group elements.

Since we select a CCA-secure structure-preserving encryption scheme [28],
there is no extra overhead (e.g., addition of the extra 15 group elements in Instl)
to achieve CCA-anonymity. However, it is instantiated with a Type I bilinear
group which is not as efficient as a Type III bilinear group. O7 S is instantiated
with weaker BB signature. The CCA-anonymous HIBS Inst2 obtained therefore
consists of 176 group elements and 1 scalar value.

5.3 Instantiation 3

Our third HIBS instantiation Inst3 replaces the second level signature, and the
one-time signature with a dual form exponent inversion signature scheme pro-
posed by Yuen et al. [22]. This signature is based on static assumptions, making
the whole scheme constructed upon static assumptions.

The DLIN-based Groth-Sahai proof is chosen as the proof system.

36 S. S. M. Chow et al.

Again, we use the signature scheme from [27] as DS;. It consists of 17 group
elements, only 2 of which can be perfectly randomized. The proof for the first-
level signature includes 9 pairing product equations (none of them are linear)
and thus consists of 81 group elements. Although the proof for the second-level
signature only include 1 pairing product equation, this scheme requires more
elements in the prime order group since it is converted from a dual form signature
constructed originally in composite order group. Suppose an n-dimensional space
is used to simulate the composite order group in prime order setting. We need
n elements in the prime order group to represent one composite order group
element, and need n? target group elements to represent a target group element
in the composite order setting. In this signature scheme, n = 6, hence, there are
totally 405 elements in this proof. The CCA-anonymous HIBS Inst3, instantiated
with a Type I bilinear group, consists of 489 group elements and 1 scalar value.

6 Concluding Remarks

The motivation of group signature is to protect the member’s anonymity in issu-
ing signatures on behalf of the group, with an opening mechanism to indirectly
ensure well-behavior of signers (or supports anonymity revocation especially when
the signing key is compromised by an adversary). Yet, many existing realizations
require the existence of a member list for opening to work. The existence of such
list simply put the anonymity of the members in danger. A refinement of the group
signature without such a list is called hidden identity-based signatures (HIBS) in
the literature, such that the identity of a real signer is hidden in normal circum-
stance (just like group signature), yet can be revealed directly via the opening
procedure (which does not require any input such as membership database apart
from the opening secret key). Moreover, until recent advance in Groth-Sahai proof
and structure-preserving signatures (SPS), group signature does not support con-
current member joining efficiently, which makes it impractical for settings with
many users joining everyday such as Internet-based applications. In this paper,
we propose efficient realization of HIBS which supports concurrent join.

Group signature is a fundamental primitive in supporting anonymous online
communication, and we have already witnessed many extensions of group sig-
natures. With our generic design of HIBS based on SPS, we show how various
extended notion of group signatures can be realized.

A future direction is to remove the opening authority altogether, as in black-
listable anonymous credential without trusted third party (TTP). However, the
newer schemes (e.g. [29] and its follow-up works) often require the verifier to be
the issuer itself, and the user credential is updated after each authentication for
the efficiency of the whole system. In other words, the concurrency issue in grant-
ing the credential becomes even more prominent. Proposing such a system with
concurrent security and acceptable efficiency is another interesting question.

vww.ebook3000.con)

http://www.ebook3000.org

Real Hidden Identity-Based Signatures 37

Acknowledgment. Sherman Chow is supported in part by the Early Career Scheme
and the Early Career Award (CUHK 439713), and General Research Funds (CUHK
14201914) of the Research Grants Council, University Grant Committee of Hong Kong.
Haibin acknowledges NSF grant CNS 1330599 and CNS 1413996, as well as the Office
of Naval Research grant N00014-13-1-0048.

References

10.

11.

12.

13.

14.

Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257—-265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6_22

Camenisch, J., Michels, M.: Separability and efficiency for generic group signa-
ture schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413-430.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_27

Kiayias, A., Zhou, H.-S.: Hidden identity-based signatures. In: Dietrich, S.,
Dhamija, R. (eds.) FC 2007. LNCS, vol. 4886, pp. 134-147. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77366-5_14

Kiayias, A., Zhou, H.: Hidden identity-based signatures. IET Inf. Secur. 3(3), 119-
127 (2009)

Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1-15.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_1.

Liu, X., Xu, Q.-L.: Improved hidden identity-based signature scheme. In: Interna-
tional Conference on Intelligent Computing and Intelligent Systems (ICIS) (2010)
Liu, X., Xu, Q.-L.: Practical hidden identity-based signature scheme from bilinear
pairings. In: 3rd International Conference on Computer Science and Information
Technology (ICCSIT) (2010)

Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325-335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9-28

Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp.
175-192. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239_12
Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198-214. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639_12

Chow, S.S.M.: Real traceable signatures. In: Jacobson, M.J., Rijmen, V.
Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 92-107. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_6

Franklin, M., Zhang, H.: Unique group signatures. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 643-660. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-1_37

Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based
signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASTACRYPT
2006. LNCS, vol. 4284, pp. 178-193. Springer, Heidelberg (2006). https://doi.org/
10.1007/11935230-12

Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor anony-
mous tags for traceable signatures. Int. J. Inf. Secur. 12(1), 19-31 (2013)

https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-48405-1_27
https://doi.org/10.1007/978-3-540-77366-5_14
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/11958239_12
https://doi.org/10.1007/11426639_12
https://doi.org/10.1007/978-3-642-05445-7_6
https://doi.org/10.1007/978-3-642-33167-1_37
https://doi.org/10.1007/11935230_12
https://doi.org/10.1007/11935230_12

38

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

S. S. M. Chow et al.

Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136—
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11
Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117-136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5_7

Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47-53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7_5

Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identifi-
cation and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 268-286. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3_17

Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193-1232 (2012)

Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209-236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7_12

Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56-73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

Yuen, T.H., Chow, S.S.M., Zhang, C., Yiu, S.: Exponent-inversion signatures and
IBE under static assumptions. IACR, Cryptology ePrint Archive, Report 2014/311
(2014)

Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups
for modular protocol design. IACR Cryptology ePrint Archive, Report 2010/133
(2010). http://eprint.iacr.org/2010/133

Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Trans. Fund. 84(5), 1234-1243 (2001)

ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp- 10-18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2
Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp. 164-180. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_10

Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASTACRYPT 2012. LNCS, vol. 7658,
pp. 4-24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4.3

Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure
preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.)
ASTACRYPT 2011. LNCS, vol. 7073, pp. 89-106. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25385-0_5

Au, M.H., Tsang, P.P., Kapadia, A.: PEREA: practical TTP-free revocation of
repeatedly misbehaving anonymous users. ACM Trans. Inf. Syst. Secur. 14(4), 29
(2011)

vww.ebook3000.con)

https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-540-24676-3_17
https://doi.org/10.1007/978-3-540-24676-3_17
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-540-24676-3_4
http://eprint.iacr.org/2010/133
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-25385-0_5
http://www.ebook3000.org

BehavioCog: An Observation Resistant
Authentication Scheme

Jagmohan Chauhan'2®) Benjamin Zi Hao Zhao!, Hassan Jameel Asghar?,
Jonathan Chan?, and Mohamed Ali Kaafar?

! UNSW, Sydney, Australia
{jagmohan. chauhan,ben.zhao}@dataél.csiro.au
2 Data61, CSIRO, Sydney, Australia

{hassan.asghar, jonathan.chan,dali.kaafar}@data6l.csiro.au

Abstract. We propose that by integrating behavioural biometric
gestures—such as drawing figures on a touch screen—with challenge-
response based cognitive authentication schemes, we can benefit from
the properties of both. On the one hand, we can improve the usabil-
ity of existing cognitive schemes by significantly reducing the number of
challenge-response rounds by (partially) relying on the hardness of mim-
icking carefully designed behavioural biometric gestures. On the other
hand, the observation resistant property of cognitive schemes provides
an extra layer of protection for behavioural biometrics; an attacker is
unsure if a failed impersonation is due to a biometric failure or a wrong
response to the challenge. We design and develop a prototype of such
a “hybrid” scheme, named BehavioCog. To provide security close to a
4-digit PIN—one in 10,000 chance to impersonate—we only need two
challenge-response rounds, which can be completed in less than 38s on
average (as estimated in our user study), with the advantage that unlike
PINs or passwords, the scheme is secure under observation.

1 Introduction

In Eurocrypt 1991 [30], Matsumoto and Imai raised an intriguing question: Is it
possible to authenticate a user when someone is observing? Clearly, passwords,
PINs or graphical patterns are insecure under this threat model. Unfortunately, a
secure observation resistant authentication scheme is still an open problem. Most
proposed solutions are a form of shared-secret challenge-response authentication
protocols relying on human cognitive abilities, henceforth referred to as cogni-
tive schemes. To minimize cognitive load on humans, the size |R| of the response
space R needs to be small, typically ranging between 2 and 10 [5,20,26,39].
Since anyone can randomly guess the response to a challenge with probability
|R|~1, the number of challenges (or rounds) per authentication session needs to
be increased, thereby increasing authentication time. For example, to achieve a
security equivalent to (guessing) a six digit PIN, i.e., 1075, the cognitive authen-
tication scheme (CAS) [39] requires 11 rounds resulting in 120s to authenticate,

The full (more detailed) version is available as the conference version of this paper.

© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 39-58, 2017.
https://doi.org/10.1007/978-3-319-70972-7_3

40 J. Chauhan et al.

while the Hopper and Blum (HB) scheme [20] requires 20 rounds and 660s [41].
An authentication time between 10 to 30s per round is perhaps acceptable if
we could reduce the number of rounds, since cognitive schemes provide strong
security under observation.

Our idea is to leverage gesture-based behavioural biometrics by mapping |R|
different gesture-based symbols (words or figures) to the | R| different responses.
Both the mapping and the symbols are public. The user renders symbols on
the touch screen of a device, e.g., a smartphone. A classifier decides whether
the rendering matches that of the target user. We could tune the classifier
to achieve a true positive rate (TPR) close to 1, while giving it some leverage
in the false positive rate (FPR), say 0.10. The attacker has to correctly guess
the cognitive response and correctly mimic the target user’s gesture. We now
see how we can reduce the number of rounds of the cognitive scheme. Suppose
|R| = 4 in the cognitive scheme. If the average FPR of rendering four symbols,
(i.e., success rate of mimicking a target user’s rendering of the four symbols),
is 0.10, then the probability of randomly guessing the response to a challenge
can be derived as FPR x |R|™! = 0.10 x 0.25 = 0.025. Thus, only 4 rounds
instead of 11 will make the guess probability lower than the security of a 6-
digit PIN. Reducing the number of rounds minimizes the authentication time
and reduces the cognitive load on the user. The idea also prevents a possible
attack on standalone behavioural biometric based authentication. Standalone
here mean schemes which only rely on behavioural based biometrics. Minus the
cognitive scheme, an imposter can use the behavioural biometric system as an
“oracle” by iteratively adapting its mimicking of the target user’s gestures until
it succeeds. Integrated with a cognitive scheme, the imposter is unsure whether
a failed attempt is due to a biometric error or a cognitive error, or both.

Combining the two authentication approaches into a “hybrid” scheme is
not easy, because: (a) to prevent observation attacks, the behavioural biometric
gestures should be hard to mimic. Simple gestures (swipes) are susceptible to
mimicry attacks [23], while more complex gestures [31,33] (free-hand drawings)
only tackle shoulder-surfing attacks, and (b) the cognitive schemes proposed in
the literature are either not secure [39] against known attacks or not usable due
to high cognitive load (see Sect. 7). This leads to our other main contributions:

— We propose a new gesture based behavioural biometric scheme that employs
a set of words constructed from certain letters of English alphabets (e.g.,
b, f, g, -, m). Since such letters are harder to write [22], we postulate that
they might show more inter-user variation while being harder to mimic. Our
results indicate plausibility of this claim; we achieve an average FPR of 0.05
under video based observation attacks.

— We propose a new cognitive authentication scheme inspired from the HB
protocol [20] and the Foxtail protocol [1,26]. The scheme can be thought
of as a contrived version of learning with noisy samples, where the noise
is partially a function of the challenge. The generalized form of the resulting
scheme is conjectured to resist around | R| x n challenge-response pairs against
computationally efficient attacks; n being the size of the problem.

vww.ebook3000.con)

http://www.ebook3000.org

BehavioCog: An Observation Resistant Authentication Scheme 41

— We combine the above two into a hybrid authentication scheme called
BehavioCog and implement it as an app on Android smartphones. The app
is configurable; parameter sizes of both the cognitive (challenge size, secret
size, etc.) and behavioural biometric (symbols, amount of training, etc.) com-
ponents can be tuned at set up.

— We extensively analyze the usability, security and repeatability of our scheme
with 41 users. The average authentication time for each round is as low as
19s, and we achieve security comparable to a 4-digit and 6-digit PIN in
just 2 and 3 rounds, respectively, even under observation attacks. Our user
study assesses security against video-based observation by recording success-
ful authentication sessions and then asking users to impersonate the target
users. None of the video based observation attacks were successful (with two
rounds in one authentication session). We show that by carefully designing
the training module, the error rate in authentication can be as low as 14%
even after a gap of one week, which can be further reduced by decreasing the
secret size.

We do not claim that our idea completely solves the problem raised by Mat-
sumoto and Imai, but believe it to be a step forward towards that goal, which
could potentially revive interest in research on cognitive authentication schemes
and their application as a separate factor in multi-factor authentication schemes.

2 Overview of BehavioCog

2.1 Preliminaries

Authentication Schemes: A shared-secret challenge-response authentication
scheme consists of two protocols: registration and authentication, between the a
user (prover) U, and an authentication service (verifier) S, who share a secret x
from a secret space X during registration. The authentication phase is as follows:
for v rounds, S sends a challenge ¢ € C to U, who sends the response r = f(z, ¢)
back to S. If all v responses are correct S accepts U. Here, C'is the challenge space,
and r belongs to a response space R. We refer to the function f : X x C' — R as
the cognitive function. It has to be computed mentally by the user. The server
also computes the response (as the user and the server share the same secret).
Apart from the selected secret x € X, everything else is public. A challenge and
a response from the same round shall be referred to as a challenge-response pair.
An authentication session, consists of v challenge-response pairs. In practice, we
assume U and S interact via the U’s device, e.g., a smartphone.

Adversarial Model: We assume a passive adversary A who can observe one or
more authentication sessions between U and S. The goal of A is to impersonate
U by initiating a new session with S, either via its own device or via U’s device,
and making it accept A as U. In practice, we assume that A can observe the
screen of the device used by U. This can be done either via shoulder-surfing
(simply by looking over U’s shoulder) or via a video recording using a spy camera.

42 J. Chauhan et al.

The attacker is a human who is given an indefinite access to the video recordings
of the user touch gestures and tries to mimic the user. Unlike the original threat
model from Matsumoto and Imai, our threat model assumes that the device as
well as the communication channel between the device and S are secure.

2.2 The BehavioCog Scheme

The main idea of BehavioCog hybrid authentication scheme is as follows. Instead
of sending the response r to a challenge ¢ from S, U renders a symbol correspond-
ing to r (on the touch screen of the device), and this rendered symbol is then
sent to S. More specifically, we assume a set of symbols denoted 2, e.g., a set of
words in English, where the number of symbols equals the number of responses
|R|. Each response r € R is mapped to a symbol in 2. The symbol corresponding
to r shall be represented by sym(r). Upon receiving the rendering of sym(r), S
first checks if the rendered symbol “matches” a previously stored rendering from
U (called template) by using a classifier D and then checks if the response r is
correct by computing f. If the answer to both is yes in each challenge-response
round, S accepts U.

The scheme consists of setup, registration and authentication protocols. We
begin by detailing the cognitive scheme first. Assume a global pool of n objects
(object is a generic term and can be instantiated by emojis, images or alphanu-
merics). We used pass-emojis in the paper. A secret z € X is a k-element subset
of the global pool of objects. Thus, | X| = (}). Each object of x is called a pass-
object, and the remaining n — k objects are called decoys. The challenge space C'
consists of pairs ¢ = (a,w), where a is an l-element sequence of objects from the
global pool, and w is an [-element sequence of integers from Z,4, where d > 2.
Members of w shall be called weights. The ith weight in w is denoted w; and cor-
responds to the ith element of a, i.e., a;. The notation ¢ €y C' means sampling
a random [-element sequence of objects a and a random [-element sequence of
weights w. The cognitive function f is defined as

f(z,c) = {(Zilaie:c wi) mod d, ifxNa#0

r €y ZLq, ifzNa=40.

(1)

That is, sum all the weights of the pass-objects in ¢ and return the answer
modulo d. If no pass-object is present then a random element from Zg,. is
returned. The notation €y means sampling uniformly at random. It follows that
the response space R = Z4 and |R| = d. Now, let 2 be a set of d symbols, e.g.,
the words zero, one, two, and so on. The mapping sym : Z; — {2 is the straight-
forward lexicographic mapping and is public. We assume a (d 4 1)-classifier D
(see Sect.4) which when given as input the templates of all symbols in (2, and
a rendering purported to be of some symbol from {2, outputs the corresponding
symbol in {2 if the rendering matches any of the symbol templates. If no match
is found, D outputs “none.” D needs a certain number of renderings of each
symbol to build its templates, which we denote by t (e.g., t = 3,5 or 10).

vww.ebook3000.con)

http://www.ebook3000.org

BehavioCog: An Observation Resistant Authentication Scheme 43

The setup phase consists of S publishing the parameters n, k, [and d (e.g.,
n =180, k = 14, 1 = 30, d = 5), a pool of n objects (e.g., emojis), a set of d
symbols {2 (e.g., words), the map sym from Z, to {2, the (untrained) classifier
D, and t Fig. 1 describes the registration and authentication protocols. Since the
registration protocol is straightforward, we only briefly describe the authentica-
tion protocol here. S initializes an error flag to 0 (Step 1). Then, for each of
the v rounds, S sends ¢ = (a,w) €y C to U (Step 3). U computes f according
to Eq. 1, and obtains the response r (Step 4). U gets the symbol to be rendered
through sym(r), and sends a rendering of the symbol to & (Step 5). Now, S
runs the trained classifier D on the rendered symbol (Step 6). If the classifier
outputs “none,” S sets the error flag to 1 (Step 8). Otherwise, D outputs the
symbol corresponding to the rendering. Through the inverse map, S gets the
response r corresponding to the symbol (Step 10). Now, if x Na = (, i.e., none
of the pass-objects are in the challenge, then any response r € Z, is valid, and
therefore S moves to the next round. Otherwise, if z Na # 0, S further checks
if r is indeed the correct response by computing f (Step 11). If it is incorrect, S
sets the error flag to 1 (Step 12). Otherwise, if the response is correct, S moves
to the next round. If after the end of v rounds, the error flag is 0, then S accepts
U, otherwise it rejects U (Step 13).

1: Registration. 2: Authentication.

1 U and S share a
secret x € X.

1 S sets err = 0.
2 for v rounds do
2 For each symbol in 3 S samples ¢ = (a,w) €y C and sends it to U.
2, U sends t 4 U computes r = f(z,c).
renderings to S. 5 U renders the symbol sym(r), and sends it to S.
3 For each symbol in 6 S runs D on the rendering.
§2, S trains D on 7 if D outputs “none” then
the ¢ renderings to 8 ‘ S sets err = 1.
9

obtain U’s else

template. 10 S obtains 7 corresponding to the symbol
4 The secret consists output by D.

of x and the d 11 if xNa#0 andr # f(z,c) then

templates. 12 ‘ S sets err = 1.

13 If err = 1, S rejects U; otherwise it accepts U.

Fig. 1. The registration and authentication protocols of BehavioCog.

3 The Cognitive Scheme

Our proposed cognitive scheme can be thought of as an amalgamation of the
HB scheme based on the learning parity with noise (LPN) problem [20], and the
Foxtail scheme (with window) [1,26]. Briefly, a round of the HB protocol consists
of an n-element (random) challenge from Z%. The user computes the dot product

44 J. Chauhan et al.

modulo 2 of the challenge with a binary secret vector from Z3. With a predefined
probability n, say 0.25, the user flips the response, thus adding noise. When the
series of challenge-response pairs are written as a system of linear congruences,
solving it is known as the LPN problem. The HB protocol can be generalized to
a higher modulus d [20]. The Foxtail scheme consists of dot products modulo 4 of
the secret vector with challenge vectors from Z}. If the result of the dot product
is in {0,1} the user sends 0 as the response, and 1 otherwise. The “window-
based” version of Foxtail, consists of challenges that are of length [< n. More
specifically, we use the idea of using an [-element challenge from the Foxtail with
window scheme. However instead of using the Foxtail function, which maps the
sum of integers modulo d = 4, to 0 if the sum is in {0,1}, and 1 otherwise, we
output the sum itself as the answer. The reason for that is to reduce the number
of rounds, i.e., 7, for a required security level (the success probability of random
guess is % in one round of the Foxtail scheme). Now if we allow the user to only
output 0 in case none of its pass-objects are present in a challenge, the output of
f is skewed towards 0, which makes the scheme susceptible to a statistical attack
proposed by Yan et al. [41] outlined in Sect. 3.1. To prevent such attacks, we ask
the user to output a random response from Z; (not only zero) in such a case.
Due to the random response, we can say that the resulting scheme adds noise to
the samples (challenge-response pairs) collected by A, somewhat similar in spirit
to HB. The difference is that in our case, the noise is (partially) a function of
the challenge, whereas in HB the noise is independently generated with a fixed
probability and added to the sum. We remark that if we were to use the HB
protocol with a restricted window (i.e., parameter !) and restricted Hamming
weight (i.e., parameter k), the resulting scheme is not based on the standard
LPN problem. We next discuss the security of our cognitive scheme.

3.1 Security Analysis

Due to space limitation we only discuss the general results here and leave their
derivation and detailed explanation to Appendix A in our full paper. This anal-
ysis is based on well-known attacks on cognitive authentication schemes. We do
not claim this analysis to be comprehensive, as new efficient attacks may be
found in the future. Nevertheless, the analysis shown here sheds light on why
the scheme was designed the way it is.

Random Guess Attack: The success probability prg of a random guess is condi-
tioned on the event a N = being empty or not. Since this event shall be frequently
referred to in the text, we give it a special name: the empty case. The probability
of the empty caseisP[la Nz| = 0] = py = ("?k) /(’}). We shall use the notation =
when defining a variable. Thus, prg = po + (1 — po)é.

Brute Force Attack (BF) and Information Theoretic Bound. This attack outputs
a unique candidate for the secret after m = my, = —log, () /logs(po + (1 — po)3)
challenge-response pairs have been observed. We call mj;, the information theoretic
bound on m. The complexity of the brute force attack is (Z)

vww.ebook3000.con)

http://www.ebook3000.org

BehavioCog: An Observation Resistant Authentication Scheme 45

Meet-in-the-Middle Attack (MitM). This attack [20] works by dividing the
search space in half by computing g—sized subsets of X, storing “intermedi-
ate” responses in a hash table, and then finding collisions. The time and space
complexity of this attack is (k%). There could be variants of the meet-in-the-
middle attack that could trade less space with time. For this analysis, we focus

on the version that is most commonly quoted.

Frequency Analysis. Frequency analysis, proposed by Yan et al. [41],%> could
be done either independently or dependent on the response. In response-
independent frequency analysis, a frequency table of §-tuples of objects is cre-
ated, where 1 < § < k. If a d-tuple is present in a challenge, its frequency is
incremented by 1. After gathering enough challenge-response pairs, the tuples
with the highest or lowest frequencies may contain the k secret objects if the
challenges are constructed with a skewed distribution. In the response-dependent
frequency analysis, the frequency table contains frequencies for each possible
response in Zg4, and the frequency of a d-tuple is incremented by 1 in the col-
umn corresponding to the response (if present in the challenge). Our scheme is
immune to both forms of frequency analysis (see Appendix A of the full paper).

Coskun and Herley Attack. Since only [objects are present in each challenge,
the number of pass-objects present is also less than k with high probability. Let
u denote the average number of bits of = used in responding to a challenge. The
Coskun and Herley (CH) attack [14] states that if w is small, then candidates
y € X,y # x, that are close to z in terms of some distance metric, will output
similar responses to x. If we sample a large enough subset from X, then with high
probability there is a candidate for = that is a distance £ from x. We can remove
all those candidates whose responses are far away from the observed responses,
and then iteratively move closer to x. The running time of the CH attack is at
least |X|/(log2£‘X|) [14] where | X| = (}), with the trade off that m ~ % samples
are needed for the attack to output « with high probability [2,7]. The parameter
€ is the difference in probabilities that distance £ + 1 and & — 1 candidates have
the same response as x.

Linearization. Linearization works by translating the observed challenge-
response pairs into a system of linear equations (or congruences). If this can be
done, then Gaussian elimination can be used to uniquely obtain the secret. In
Appendix A of our full paper, we show two different ways our proposed cognitive
schemes can be translated into a system of linear equations with dn unknowns.
This means that the adversary needs to observe dn challenge-response pairs to
obtain a unique solution through Gaussian elimination. Note that if U were
to respond with 0 in the empty case, then we could obtain a linear system of
equations after n challenge-response pairs. The introduction of noise expands
the number of required challenge-response pairs by a factor of d. Gaussian elim-
ination is by far the most efficient attack on our scheme, and therefore this

3 We borrow the term frequency analysis from [4].

46 J. Chauhan et al.

constitutes a significant gain. We believe the problem of finding a polynomial
time algorithm in (k,7,n) which uses m < dn number of samples (say (d — 1)n
samples) from the function described in Eq.1 is an interesting open question.

3.2 Example Parameter Sizes

Tablel (left) shows example list of parameter sizes for the cognitive scheme.
These are obtained by fixing d = 5 and changing k, [and n such that prg is
approximately 0.25. We suggest d = 5 as a balance between reducing the number
of rounds required, i.e., v, and ease of computing f. The column labelled m;; is
the information theoretic bound to uniquely obtain the secret. Thus, the first two
suggestions are only secure with < mj; observed samples. The complexity shown
for both the meet-in-the-middle attack (MitM) and Coskun and Herley (CH)
attack represents time as well as space complexity. The last column is Gaus-
sian elimination (GE), for which the required number of samples is calculated
as dn. For other attacks, we show the minimum number of required samples m,
such that m > my; and the complexity is as reported. We can think of the last
two suggested sizes as secure against an adversary with time/memory resources
~270/240 (medium strength) and ~280/2°0 (high strength), respectively. The
medium and high strength adversaries are defined in terms of the computational
resources they possess. In general, there can be many levels of strength (by
assigning limits of time/space resources an adversary can have). The strength
levels are chosen to illustrate how parameter sizes can be chosen against adver-
sarial resources. The parameter sizes are chosen such that the attack complexity
vs the number of samples required are as given in Table 1.

Based on parameter sizes for the cognitive scheme and results from the
user study, we recommend the parameters for BehavioCog shown in Tablel
(right). The columns labelled “Sessions” indicate whether the target is a medium-
strength or high-strength adversary A. Based on our experiments, CW (complex
words) gave the best average FPR of 0.05 (see next section). The “Security” col-
umn shows A’s probability in impersonating the user by random guess and mim-
icking the corresponding behavioural biometric symbol. By setting prg = 0.25
and multiplying it with FPR, we estimate the total impersonation probability
of A. For reference, the same probability for a 4-digit PIN is 1 x 10~%, and for
a 6-digit PIN is 1 x 107% (but with no security under observation).

4 The Behavioural Biometric Scheme

Our behavioural biometric authentication scheme is based on touch gestures.
We first describe the set of symbols followed by the classifier D and finally the
identified features. For each symbol in {2, TPR of D is the rate when it correctly
matches U’s renderings of the symbol to U’s template. FPR of D is the rate
when it wrongly decides A’s rendering of the symbol matches U’s template.

vww.ebook3000.con)

http://www.ebook3000.org

BehavioCog: An Observation Resistant Authentication Scheme 47

Table 1. Example parameter sizes for cognitive scheme (left) and BehavioCog (right),
where mij.: information theoretic bound, prg: random guess probability, BF: Brute
Force, MitM: Meet in the Middle, CH: Coksun and Harley, GE: Gaussian Elimination.

Sessions | Sessions .
(d,k,l,n) "y (med. A)|(high A) N ‘ Security
. (5,5,24,60) [1] 10 10 [CW[1.3 x 1072
(d,k,l,n) |mi| pro |[BF|MitM|CH| GE X 4
(5,5,24,60) | 11]0.255[2%] 2™ |2 [poly(n) Egggigg; § g g g% 1é5><><11)0—6
Samples‘ reql}lred -” 0 141 ‘11 2{ 3()9 (5,10, 30, 130) |1 24 24 CW13x10 2
(5, 10,30, 130) | 24 |0.2522™| 2% 2% [poly(n) (5.10.30.130)[2| 12 12 lowhs x 10-4
Samples required| - 0 |24] 24 |24| 650 ‘5’ 10’30" 130)13 s 3 oW 2 10-6
(5,14,30,180) |34]0.256[2%] 2™ [270[poly(n) (r’ , 30, 130) . AX —
Samples required| - 0 [34] 34 |94| 900 (5,14, ?0’ 180)/1 94 34 CW|1.3 x 1074
(5,18,30,225) | 44]0.254[257| 257 |25 [poly(n) (5,14, 30, 180) |2 47 17 CW 1.5 x 1076
Samples required| - 0 [44| 44 |168] 1125 (5,14,30,180)|3 31 1 CW| 2 x10
(5,18,30,225)(1 511 168 [CW[1.3 x 1077
(5,18,30,225)|2| 255 84 CW|1.5 x 107*
(5,18,30,225)3 170 56 CW| 2 x107°

4.1 Choice of Symbols

We require that symbols be: (a) rich enough to simulate multiple swipes,
(b) hard for A to mimic even after observation, (c) easily repeatable by U
between successive authentications, and (d) easily distinguishable from each
other by D. Accordingly, we chose four different sets of symbols (see Table2).
We tried testing all the four sets of symbols in our first phase of the user study
to see which one satisfies all the four aforementioned criteria. We used complex
words in the implementation of our scheme as it was the best symbol set. The
words or figures are used for behavioural biometrics while emojis are used for
cognitive scheme.

Easy words: These are English words for the numbers, and serve as the base
case.

Complex words: Since the letters b, f, g, h, k, m, n, ¢, t, u, w, z, y, z are more dif-
ficult to write cursively than others as they contain more turns [22], we hypothe-
size that words constructed from them might also show more inter-user variation
and be difficult to mimic. Our user study shows positive evidence, as complex
words were the most resilient against observation attacks. We constructed five
words of length 4 from these 14 letters since users find it hard to render higher
length words on touchscreen. As it is difficult to construct meaningful words
without vowels, we allowed one vowel in each word.

Easy figures: This set contains numbers written in blackboard bold shape. A user
can render them by starting at the top left most point and traversing in a down
and right manner without lifting the finger. This removes the high variability
within user’s drawings present in the next set of symbols.

Complez figures: These figures were constructed by following some principles
(to make them harder to mimic): no dots or taps [13,24], contain sharp turns

48 J. Chauhan et al.

and angles [33], the users finger must move in all directions while drawing the
symbol. To help the user associate responses in Z5 to complex words, mnemonic
associations were used (Appendix D in the full paper).

Table 2. Mapping of responses (d = 5) to symbols.

resp onse ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4
easy words zero| one | two |three|four
complex words |xman|bmwz|quak| hurt |fogy

easy figures @ 1 E g %
complex figures CI;F)| | 2k %7

4.2 Choice of Classifier

We picked dynamic time warping (DTW) [32] because: (a) all chosen symbols
exhibit features that are a function of time, (b) it shows high accuracy with a
small number of training samples (5-10) [17,31] (to minimize registration time).
Given two time series, DTW finds the optimal warped path between the two
time series to measure the similarity between them [32]. Assume there is a set
of features, each of which is a time series. Let Q represent the set of templates
of the features in @), which are also time series. Given a test sample of these
features (for authentication), also represented @, the multi-dimensional DTW
distance between Q and Q is defined as [34]: DTW(Q, Q) = Z'f:?'l DTW (g, ¢:),
where ¢; € Q and ¢; € Q, are time series corresponding to feature 7.

4.3 Template Creation

For each user-symbol pair (each user drawing a particular symbol) we obtain ¢
sample renderings, resulting in ¢ time series for each feature. Fix each feature, we
take one of the ¢ time series at a time, compute its DTW distance with the ¢t — 1
remaining time series, and sum the distances. The time series with the minimum
sum is chosen as the optimal feature template. The process is repeated for all
features to create the template Q We created two sets of optimal templates:
(1) stm to check if U produced a valid rendering of a symbol from (2 (only using
x, y coordinates) and (2) Quser to check if the rendering comes from the target
user U or an attacker. Basically, the first template set is used to check if the user
rendered a symbol from the set of allowed symbols {2 or some random symbol not
in £2. After this has been ascertained, it is checked whether the symbol is close to
the user’s template from the other template set (check behavioural biometrics).

vww.ebook3000.con)

http://www.ebook3000.org

BehavioCog: An Observation Resistant Authentication Scheme 49

4.4 Classification Decision

Given a set of feature values) from a sample, the decision is made based on
whether DTW(Q7 Q) lies below the threshold calculated as i = p + zo. Here p
is the mean DTW distance between the user’s optimal template Q and all of the
user’s ¢t samples in the registration phase [27]. o is the standard deviation, and
z > 0 is a global parameter that is set according to data collected from all users
and remains the same for all users. The thresholds hgym, and hyser correspond to

stm and Quser, respectively. The classification works as follows:

Step 1: If for a given challenge ¢ = (a,w), zNa # O (non-empty case), S first gets
the target symbol by computing f. Target symbol is the symbol corresponding
to the correct response. Then, S rejects U if the DTW distance between stm
and the sample is > figym. Otherwise, S moves to Step 2. In the empty case, S
computes the DTW distance between the sample and stm for each symbol and
picks the symbol which gives the least distance. Next, the distance is compared
with heym for that symbol, and S accordingly rejects or goes to Step 2.

Step 2: S computes the DTW distance between the sample and Quser of the
symbol. If the distance is > Ayser, the user is rejected, otherwise it is accepted.

4.5 Feature Identification and Selection

We identify 19 types of features from the literature [11,13,35,40] and obtain 40
features (Table 3), most of which are self explanatory. Explanation of curvature,
slope angle and path angle is described in [35]. Device-interaction features were
obtained using the inertial motion sensors: accelerometer and gyroscope of the
smartphone. Our scheme can be used for any device equipped with a touch
screen and inertial motion sensors. We perform a standard z-score normalization
on each feature. As an example, Appendix B in the full paper illustrates the
discriminatory power of a single feature (x). To select the most distinguishing
features from the 40 features for each symbol, we created our own variation of
sequential forward feature selection (SFS) [15]. See Algorithm 1 in Appendix C
of our full paper. The algorithm takes as an input a list of features Q¢ and a
symbol, and outputs a selected list of features @) for that symbol. The algorithm
starts with an empty list and iteratively adds one feature at a time by keeping
TPR = 1.0 and minimizing the FPR values (calculated based on user-adversary
pairs, see Sect. 5) until all features in Qo are exhausted. At the end, we are left
with multiple candidate subsets for @) from which we pick the one with TPR =
1.0 and the least FPR as the final set of features. The algorithm calls the Get
z-List algorithm (Algorithm 2 in Appendix C of our full paper) as a subroutine
(based on a similar procedure from [27]). This algorithm computes the z values
that give TPR of 1 and the least FPR for each possible feature subset. The z
values give the amount of deviation from the standard deviation.

50 J. Chauhan et al.

Table 3. List of features.

Touch feature Symbol Stylometric feature Symbol Device-interaction Symbol
feature
Coordinates and X, y, 0%, 6y|Top, bottom, left, TMP, BMP, LMP, RMP|Rotational position of |Rx, Ry, Rz
change in coordinates right most point device in space
Velocity along X, ¥ ‘Width: RMP — LMP, width, height Rate of rotation of Gx, Gy, Gz
coordinates Height: TMP — BMP device in space
Acceleration along X, ¥ Rectangular area: area 3D acceleration force |Ax, Ay, Az
coordinates width X height due to device’s
motion and gravity
Pressure and change |p, dp ‘Width to height ratio |WHR 3D acceleration force |gx, gy, g2z
in pressure solely due to gravity
Size and change in s, 0s Slope angle Os10pe 3D acceleration force |ax, ay, az
size solely due to device’s
motion
Force: p X s F Path angle Opath
Action type: finger AT Curvature curve

lifted up, down or on
touchscreen

4.6 Implementation

We implemented BehavioCog for Android smartphones using a set of twemo-
jis [37]. We used the parameters (k,l,n) = (14,30, 180) (corresponding to the
medium strength adversary, see Sect.3.2). FastDTW was used to implement
DTW [32] with radius 20. More details are available in our full paper.

5 User Study

We did a three phase controlled experimental evaluation of our proposed scheme
with 41 participants on a Nexus 5x smartphone after getting the ethics approval.

Phase 1: We collected touch biometric samples from 22 participants: 8 females
and 14 males for different symbol sets in two sessions (a week apart) to select
the best symbol set (in terms of repeatability and mimicking hardness). As some
users contributed samples for multiple symbol sets, we had 40 logical users which
were equally divided into four groups, one for each symbol set. Each user did
13 and 3 renderings of each symbol in the first and second session, respectively.
The first session was video recorded. Each user acted as an attacker (to mimic
a target user’s symbol based on video recordings with unrestricted access) for a
particular target user and vice versa from the same group.

Phase 2: This phase had a total of 30 participants (11 from Phase
1) and consisted of two sessions (a week apart) to assess the usabil-
ity and security of BehavioCog. The first session involved cognitive and
biometric registration and authentication (video recorded). Second session
involved authentication, performing attacks against a target user, and filling
a questionnaire. The 30 users were equally divided into three groups: Group 1,
2 and 3 according to the time they spent on registration. All the users chose

vww.ebook3000.con)

http://www.ebook3000.org

BehavioCog: An Observation Resistant Authentication Scheme 51

14 pass-emojis. 3, 8 and 10 biometric samples for each of the 5 complex words
were collected from users in Group 1, Group 2 and Group 3, respectively. The
registration for Group 2 and Group 3 users included an extended training game
to help them recognize their pass-emojis for better authentication accuracy. The
training game was divided into multiple steps in increasing order of difficulty
(see Appendix D of our full paper). Users from Group 3 had to perform double
the steps of Group 2 users. Additionally, during Session 2, we asked each user
to (a) pick their 14 pass-emojis from the whole pool of emojis, and (b) pick 14
pass-emojis, which they believed belonged to their target (attacked) user.

Phase 3: To find the cause of high number of cognitive errors in Session 2 of
Phase 2, we carried out Phase 3 across two sessions (a week apart) with users
from Group 3, since they were most familiar with the authentication scheme.
First session involved an extended cognitive training: each user was shown 14
pass-emojis one by one for 10s followed by a 3s cool off period (inspired by
cognitive psychology literature [29,36]), followed by authentication attempts.
Session 2 only involved authentication attempts. There are three possible reasons
for high cognitive errors: (1) user confuses some of the decoys as pass-emojis
since only a subset of pass-emojis are present in a challenge (I = 30), (2) user
makes errors in computing f, and/or (3) number of pass-emojis is too high
(14). To find the exact reason, we asked the user to do the following in order:
(a) authenticate six times simply by selecting pass-emojis present in the challenge
with no weights (to address reason 1); (b) authenticate a further six times, but
this time the emojis had weights and the user had to compute f (to address
reason 2), (c) select the 14 pass-emojis from the total pool of 180 (to address
reason 3). Phase 3 did not involve any biometrics.

6 Results

Phase 1. We find the best symbol set in terms of repeatability and security by
selecting features (Algorithm 1, Appendix C of the full paper) for two scenar-
ios: best case scenario (secure against random attacks) and worst case scenario
(secure against video based observation attacks, and repeatability). In both sce-
narios, first 10 biometric samples from a user (Session 1) are used for training.
For the best case, three samples from the same user (Session 1) and three sam-
ples from an assigned attacker (Session 1) are used for testing. For the worst
case, three samples from the same user (Session 2) and three attacker samples
(video based observation attack) are used for testing. Table4 shows the FPR
and top features for each symbol set (TPR is one in all cases). Complex words
yield the least FPR which was: 0.0, 0.06, 0.0, 0.2, and 0.0 for xman, bmwz, quak,
hurt and fogy, respectively, in the worst case scenario. All symbol categories
have an almost 0% FPR against random attacks. The majority of features pro-
viding repeatability and mimicking hardness across all symbol sets are touch
and stylometric based. More analysis is in Appendix E.1 of our full paper.

52 J. Chauhan et al.

Table 4. Results for best and worst case scenarios for different symbol sets.

Symbol set Average FPR Top features
Best case | Worst case | Best case Worst case
Easy words 0.01 0.24 X, ¥, 0%, 8y, TMP, Os10pe , Opath; Rx TMP, height, WHR, Os10pe , Opath
Complex words | 0.00 0.05 y, dy, p, height, area, Os1ope, Ry dx, height, Opatn
Easy figures 0.01 0.38 y, 6%, 8y, p, F, height, area, Os1ope s Opath | ¥, Y, P, height
Complex figures | 0.01 0.39 ox x, TMP, BMP

Phase 2. The goal of Phase 2 was to test the full BehavioCog scheme. We only
present selected results related to training and authentication time, errors and
attacks. More results are in Appendix E of our full paper.

Registration Time: The average time to select 14 pass-emojis was around 2 min
for all groups. The maximum training time was 12min for Group 3, since it
had the most amount of training, and the minimum was 4 min for Group 1.
High training time is not a major hurdle, because it is a one time process and
most of the users reported enjoying the process as it had a “game-like” feel to
it (Appendix E.8 of our full paper). Detailed results regarding registration are
shown in Appendix E.2 of our full paper.

Authentication Time: Table 5 shows the average authentication time (per round)
taken by different user groups in the two sessions. Generally, the user spends
15-20s in computing f and 6-8s in entering the biometric response, which does
not change drastically between the two sessions. Group 3 has the least login time
(more training results in quicker recognition).

Table 5. Authentication statistics for different user groups.

Group & Session Av. Cognitive|Av. Biometric/Av. Processing|Av. Total |Success |Cognitive |Biometric
Time (sec) Time (sec) Time (sec) Time (sec)|Rate (%)|Errors (%)|Errors (%)

Group 1 - Session 1(18.3 7.9 0.7 27.0 38.3 31.6 31.0

(Phase 2)

Group 2 - Session 1/19.8 6.4 0.7 27.0 50.0 18.3 36.0

(Phase 2)

Group 3 - Session 1[12.2 5.6 0.8 18.7 85.0 15.0 0.0

(Phase 2)

Group 1 - Session 2(18.5 7.5 0.7 26.8 26.6 55.0 18.3

(Phase 2)

Group 2 - Session 2 (18.4 6.4 0.7 25.6 23.3 55.0 26.6

(Phase 2)

Group 3 - Session 2 (15.8 5.4 0.9 22.0 50.0 41.6 8.3

(Phase 2)

Group 3 - Session 1 |- - - - 94.0 6.0 -

(Phase 3)

Group 3 - Session 2 |- - - - 86.0 14.0 -

(Phase 3)

vww.ebook3000.con)

http://www.ebook3000.org

BehavioCog: An Observation Resistant Authentication Scheme 53

Authentication Errors: Table 5 shows the percentage of successful authentication
attempts along with the cognitive and biometric errors. There were a total of
v = 60 authentication attempts (six per user) for each user group in each ses-
sion. If users were randomly submitting a cognitive response, the probability that
i out of v cognitive attempts would succeed is: p = (z)piRG(l — pra)? "t We
consider i > 20 out of 60 attempts (<66% error rate) as statistically significant
(p < 0.05). Since all groups had cognitive error rate less than 66%, it implies that
users were not passing a cognitive challenge by mere chance. Cognitive training
aids the user’s short term memory, since Group 3 users authenticated successfully
85% of the time, whereas Group 1 users (without cognitive training) were only
successful 36% of the time. Group 2 users (with some cognitive training), accrue
18% cognitive errors, similar to Group 3. For Group 2 users most failures origi-
nate from biometric errors (they had lesser number of biometric training samples
than Group 3). By collecting more biometric data, performance of Group 2 can be
made similar to Group 3 with less cognitive training. We see a drastic decrease in
the successful authentication attempts in Session 2 from Session 1 especially for
Group 3 (from 85% to 50%) and Group 2 (from 50% to 24%). Cognitive errors are
predominantly responsible for the drastic decrease as they caused more than half
of the authentication attempts to fail for Group 2 and 3, and 40% for Group 1.
Phase 3 was done to find out the cause for a high number of cognitive errors.

Attack Statistics: We picked those 12 users (9 from Group 3, 2 from Group 2,
1 from Group 1) to be attacked who successfully authenticated 5 out of 6 times
in Session 1. Each of the 30 users in the three groups attacked only one of the
12 target users by performing three random and three video based observation
attacks totalling 90 attempts. The probability of a random attack can be approx-
imated as pior = prg X FPR =~ 0.256 x 0.05 ~ 0.013. Thus i out of v = 90 correct
guesses would be binomially distributed as p = (7)pfs (1 — prot)?~*. We consider
i > 4 as statistically significant (p < 0.05). Only 3 attempts (3.33%) for both
attacks were successful, and none of them were consecutive. In all six cases, the
target user wrote the words using block letters (easier to mimic [8]).

Phase 3. This phase was carried out to find the main cause of cognitive errors
and to improve our training to alleviate the issue. The users did 12 authentication
attempts each in Sessions 1 and 2. The first 6 involved merely selecting the pass-
emojis present whereas the second involved computing f as well. The results
are shown in the last two rows of Table5. The results show that our improved
training module (more exposure to each individual pass-emojis followed by blank
screens) drastically decreases the error rate. Even after a week’s gap the success
rate is 86%. We rule out the possibility that the errors in Phase 2 were due to
the size of the secret, as the average number of pass-emojis recognized by the
users in Sessions 1 and 2 were 13.6 and 13.5, respectively. We also counted the
total number of errors made by the users in the first 6 authentication attempts,
which turned up 13, and the last 6 authentication attempts, which turned up
11, adding results from both sessions. This shows no evidence that computing

54 J. Chauhan et al.

f was causing errors. We, therefore, believe that the main cause of errors is due
to the user confusing decoy emojis as its pass-emojis since only a subset of the
k emojis are present in the challenge (due to [).

7 Related Work

We proposed a new cognitive scheme in our work because existing schemes did
not possess all the attributes we desired. During actual login in CAS [39], the
user has to compute a path on a panel of images from top-left corner to the
bottom-edge corner or right side of the panel based on whether the image on
the panel at any point belongs to the user portfolio. The row or column at the
bottom or right side of the panel has labels. When the user finishes the path,
they have to input the label in response. The CAS scheme [39] is susceptible
to SAT solver based attacks [19]. CAS also uses parameter sizes of n = 80 and
k = 30, and all n images need to be shown on the screen at once, which is hard
to display on touch screens of smartphones. requires all n = 80 images to be
shown at once similar to the APW scheme [5], which is impractical on small
screens. The cognitive load of the scheme from Li and Teng [28] is very high as
it requires the user to remember three different secrets and perform lexical-first
matching on the challenge to obtain hidden sub-sequences. HB protocol [20] can
be modified to use window based challenges, but it requires the user to add
random responses with a skewed probability n < %, which can be hard for users.
Foxtail protocol [26] reduces the response space to {0,1} at the expense of a
high number of rounds for secure authentication. PAS [6] only resist a very small
number of authentication sessions (<10) [25]. The CHC scheme asks the user
to locate at least three pass-images in the challenge and click randomly within
the imaginary convex hull of the pass-images. With the default parameter sizes
k =5 and | = 82 (on average), CHC is vulnerable to statistical attacks [3,41]
and usability is impacted with larger parameter sizes. Blum et al. [10] propose
simple cognitive schemes which are easily human computable but are information
theoretically secure for only 6 to 10 observed sessions. The scheme from Blocki
et al. [9] is provably secure against statistical adversaries and can resist a sizeable
number of observed sessions. However, their scheme’s require extensive training.

Various touch-based behavioural biometric schemes have been proposed for
user authentication [18,24,40], which rely on simple gestures such as swipes.
Simple gestures require a large number of samples to be collected to get good
accuracy and are prone to observation attacks [23]. Sherman et al. [33] designed
more complex (free-form) gestures, but which are only shown to resist human
shoulder-surfing attacks. The closest work similar to ours is by Toan et al. [31].
Their scheme authenticates users on the basis of how they write their PINs on
the smartphone touch screen using x, y coordinates. In comparison, we do a more
detailed feature selection process to identify features, which are repeatable and
resilient against observation attacks. Furthermore, they report an equal error
rate (EER) of 6.7% and 9.9% against random and shoulder-surfing attacks,
respectively. Since these are EER values, the TPR is much lower than 1.0.

vww.ebook3000.con)

http://www.ebook3000.org

BehavioCog: An Observation Resistant Authentication Scheme 55

To obtain a TPR close to 1.0, the FPR will need to be considerably increased.
Thus, after observing one session, the observer has a non-negligible chance of
getting in (since the PIN is no longer a secret). To achieve a low probability of
random guess, the number of rounds in their scheme would need to be higher.
Furthermore, after obtaining the PIN, the attacker may adaptively learn target
user’s writing by querying the authentication service. The use of a cognitive
scheme removes this drawback. KinWrite [35], which asks the user to write their
passwords in 3D space, and then authenticates them based on their writing pat-
terns suffers from the same drawbacks. Pure graphical password schemes such
as DéJa Vu [16] where the user has to click directly on pass-images or reproduce
the same drawing on the screen, have the same vulnerability.

8 Discussion and Limitations

We show that a carefully designed training inspired by cognitive psychology
helped users recognize their pass-emojis better. The potential of this needs to be
further explored to see how large a set of images could be successfully recognized
by users after longer gaps. A smaller number of pass-emojis is also possible in
our scheme at the expense of withstanding less observations; it may still be
impractical for an attacker to follow a mobile user to record enough observations
over a sustained period. We also show that users make themes to pick their pass-
emojis (Appendix E.5 in our full paper). Issues arising due to picking similar
theme based images is left as a future research.

Behavioural biometrics tend to evolve over time and hence we see a slight
increase in biometric errors after a week. A remedy is to frequently update the
biometric template by replacing older samples [13]. On the flip side, we prefer
behaviour biometrics over physiological biometrics due to this exact reason, since
if stolen the consequences are less dire (user behaviour might evolve, words
could be replaced, etc.). Additionally, the exact difficulty in mimicking cursively
written words derived from certain English letters needs to be further explored
(either experimentally or in theory). Also, the security of our proposed scheme
is to be tested against a professional handwriting forger or a sophisticated robot
who can be programmed to mimic gestures. Our cognitive scheme might be
susceptible to timing attacks [38] (c.f. Table5). One way to circumvent this is to
not allow the user to proceed unless a fixed amount of time has elapsed based on
the highest average-time taken Finally, to protect the user’s secret (pass-emojis
and biometric templates), the authentication service could keep it encrypted and
decrypt it only during authentication. A better solution can use techniques such
as fuzzy vaults [21] and functional encryption [12], and is left as a future work.

9 Conclusion

The promise offered by cognitive authentication schemes that they are resistant
to observation has failed to crystallize in the form of a workable protocol. Many
researchers speculate that such schemes may never be practical. We do not deny

56

J. Chauhan et al.

this, but instead argue that combining cognitive schemes with other behavioural
biometric based authentication schemes may make the hybrid scheme practical
and still resistant to observation. Our scheme is not the only possibility. In fact,
in addition to touch based biometrics other behavioural biometric modalities
can be explored. This way, several different constructions are conceivable.

References

1.

10.

11.

12.

13.

14.

Asghar, H.J., Steinfeld, R., Li, S., Kaafar, M.A., Pieprzyk, J.: On the linearization
of human identification protocols: attacks based on linear algebra, coding theory,
and lattices. IEEE TIFS 10(8), 1643-1655 (2015)

Asghar, H.J., Kaafar, M.A.: When are identification protocols with sparse chal-
lenges safe? the case of the Coskun and Herley attack. IACR’s Cryptology ePrint
Archive: Report 2015/1231 (2015)

Asghar, H.J., Li, S., Pieprzyk, J., Wang, H.: Cryptanalysis of the convex hull click
human identification protocol. Int. J. Inf. Secur. 12(2), 83-96 (2013)

Asghar, H.J., Li, S., Steinfeld, R., Pieprzyk, J.: Does counting still count? revisiting
the security of counting based user authentication protocols against statistical
attacks. In: NDSS (2013)

Asghar, H.J., Pieprzyk, J., Wang, H.: A new human identification protocol and
coppersmith’s baby-step giant-step algorithm. In: Zhou, J., Yung, M. (eds.) ACNS
2010. LNCS, vol. 6123, pp. 349-366. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13708-2_21

Bai, X., Gu, W., Chellappan, S., Wang, X., Xuan, D., Ma, B.: PAS: Predicate-based
authentication services against powerful passive adversaries. In: ACSAC 2008, pp.
433-442 (2008)

Baigneres, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432-450.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_31
Ballard, L., Lopresti, D., Monrose, F.: Forgery quality and its implications for
behavioral biometric security. IEEE Trans. Syst. Man Cybern. 37(5), 1107-1118
(2007)

Blocki, J., Blum, M., Datta, A., Vempala, S.: Towards human computable pass-
words. In: ITCS (2017)

Blum, M., Vempala, S.S.: Publishable humanly usable secure password creation
schemas. In: Third AAAI Conference on Human Computation and Crowdsourcing
2015

](30, C)., Zhang, L., Li, X.Y., Huang, Q., Wang, Y.: SilentSense: silent user identifi-
cation via touch and movement behavioral biometrics. In: MobiCom, pp. 187-190
(2013)

Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253-273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6_16

Chauhan, J., Asghar, H.J., Mahanti, A., Kaafar, M.A.: Gesture-based continuous
authentication for wearable devices: the smart glasses use case. In: Manulis, M.,
Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 648-665.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_35

Coskun, B., Herley, C.: Can “something you know” be saved? In: Wu, T.-C., Lei,
C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 421-440.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-7_29

vww.ebook3000.con)

https://doi.org/10.1007/978-3-642-13708-2_21
https://doi.org/10.1007/978-3-642-13708-2_21
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-39555-5_35
https://doi.org/10.1007/978-3-540-85886-7_29
http://www.ebook3000.org

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

BehavioCog: An Observation Resistant Authentication Scheme 57

Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-
Hall, Englewood Cliffs (1982)

Dhamija, R., Perrig, A.: DéJa Vu: a user study using images for authentication.
In: USENIX Security, pp. 45-58 (2000)

Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. Proc. VLDB Endow. 1(2), 1542-1552 (2008)

Frank, M., Biedert, R., Ma, E., Martinovic, 1., Song, D.: Touchalytics: on the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE TIFS 8(1), 136-148 (2013)

Golle, P., Wagner, D.: Cryptanalysis of a cognitive authentication scheme
(extended abstract). In: SP, pp. 66-70 (2007)

Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASTACRYPT 2001. LNCS, vol. 2248, pp. 52-66. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1_4

Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237257
(2006)

Kao, H.S., Shek, D.T., Lee, E.S.: Control modes and task complexity in tracing
and handwriting performance. Acta Psychol. 54(1), 69-77 (1983)

Khan, H., Hengartner, U., Vogel, D.: Targeted mimicry attacks on touch input
based implicit authentication schemes. In: MobiSys 2016, pp. 387-398 (2016)

Li, L., Zhao, X., Xue, G.: Unobservable re-authentication for Smartphones. In:
NDSS (2013)

Li, S., Asghar, H.J., Pieprzyk, J., Sadeghi, A.R., Schmitz, R., Wang, H.: On the
security of PAS (Predicate-Based Authentication Service). In: ACSAC, pp. 209—
218 (2009)

Li, S., Shum, H.Y.: Secure Human-Computer Identification (Interface) Systems
against Peeping Attacks: SecHCI. Cryptology ePrint Archive, Report 2005/268
Li, S., Ashok, A., Zhang, Y., Xu, C., Lindqvist, J., Gruteser, M.: Whose move is
it anyway? authenticating smart wearable devices using unique head movement
patterns. In: PerCom, pp. 1-9 (2016)

Li, X.Y., Teng, S.H.: Practical human-machine identification over insecure chan-
nels. J. Comb. Optim. 3(4), 347-361 (1999)

Mandler, J.M., Johnson, N.S.: Some of the thousand words a picture is worth. J.
Exp. Psychol. Hum. Learn. Mem. 2(5), 529-540 (1976)

Matsumoto, T., Imai, H.: Human identification through insecure channel. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 409-421. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_35

Nguyen, T.V., Sae-Bae, N., Memon, N.: Finger-drawn PIN authentication on touch
devices. In: ICIP, pp. 5002-5006 (2014)

Sakoe, H., Chiba, S.: A dynamic programming approach to continuous speech
recognition. In: Seventh International Congress on Acoustics, vol. 3, pp. 65-69
(1971)

Sherman, M., Clark, G., Yang, Y., Sugrim, S., Modig, A., Lindqvist, J., Oulasvirta,
A., Roos, T.: User-generated free-form gestures for authentication: security and
memorability. In: MobiSys, pp. 176-189 (2014)

Shokoohi-Yekta, M., Hu, B., Jin, H., Wang, J., Keogh, E.: Generalizing DTW
to the multi-dimensional case requires an adaptive approach. Data Min. Knowl.
Discov. 31, 1-31 (2016)

Tian, J., Qu, C., Xu, W., Wang, S.: KinWrite: handwriting-based authentication
using kinect. In: NDSS (2013)

https://doi.org/10.1007/3-540-45682-1_4
https://doi.org/10.1007/3-540-46416-6_35

58

36.

37.
38.

39.

40.

41.

J. Chauhan et al.

Tversky, B., Sherman, T.: Picture memory improves with longer on time and off
time. J. Exp. Psychol. Hum. Learn. Mem. 1(2), 114-118 (1975)

Twitter, I., et al.: https://github.com/twitter/twemoji

Cagalj, M., Perkovi¢, T.: Timing attacks on cognitive authentication schemes.
IEEE TIFS 10(3), 584-596 (2014)

Weinshall, D.: Cognitive authentication schemes safe against spyware (Short
Paper). In: SP, pp. 295-300 (2006)

Xu, H., Zhou, Y., Lyu, M.R.: Towards continuous and passive authentication via
touch biometrics: an experimental study on Smartphones. In: SOUPS, pp. 187-198
(2014)

Yan, Q., Han, J., Li, Y., Deng, R.H.: On limitations of designing leakage-resilient
password systems: attacks, principles and usability. In: NDSS (2012)

vww.ebook3000.con)

https://github.com/twitter/twemoji
http://www.ebook3000.org

Updatable Tokenization: Formal Definitions
and Provably Secure Constructions

Christian Cachin®) Jan Camenisch, Eduarda Freire-Stogbuchner,
and Anja Lehmann

IBM Research, Zurich, Switzerland
{cca,jca,efr, anj }@zurich. ibm. com

Abstract. Tokenization is the process of consistently replacing sensitive
elements, such as credit cards numbers, with non-sensitive surrogate val-
ues. As tokenization is mandated for any organization storing credit card
data, many practical solutions have been introduced and are in commer-
cial operation today. However, all existing solutions are static yet, i.e.,
they do not allow for efficient updates of the cryptographic keys while
maintaining the consistency of the tokens. This lack of updatability is
a burden for most practical deployments, as cryptographic keys must
also be re-keyed periodically for ensuring continued security. This paper
introduces a model for updatable tokenization with key evolution, in
which a key exposure does not disclose relations among tokenized data
in the past, and where the updates to the tokenized data set can be made
by an untrusted entity and preserve the consistency of the data. We for-
mally define the desired security properties guaranteeing unlinkability of
tokens among different time epochs and one-wayness of the tokenization
process. Moreover, we construct two highly efficient updatable tokeniza-
tion schemes and prove them to achieve our security notions.

1 Introduction

Increasingly, organizations outsource copies of their databases to third parties,
such as cloud providers. Legal constraints or security concerns thereby often
dictate the de-sensitization or anonymization of the data before moving it across
borders or into untrusted environments. The most common approach is so-called
tokenization which replaces any identifying, sensitive element, such as a social
security or credit card number, by a surrogate random value.

Government bodies and advisory groups in Europe [6] and in the United
States [9] have explicitly recommended such methods. Many domain-specific
industry regulations require this as well, e.g., HIPAA [13] for protecting patient

This work has been supported in part by the European Commission through the
Horizon 2020 Framework Programme (H2020-ICT-2014-1) under grant agreement
number 644371 WITDOM and through the Seventh Framework Programme under
grant agreement number 321310 PERCY, and in part by the Swiss State Secretariat
for Education, Research and Innovation (SERI) under contract number 15.0098.

© International Financial Cryptography Association 2017

A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 59-75, 2017.
https://doi.org/10.1007/978-3-319-70972-7_4

60 C. Cachin et al.

information or the Payment Card Industry Data Security Standard (PCI
DSS) [10] for credit card data. PCI DSS is an industry-wide set of guidelines that
must be met by any organization that handles credit card data and mandates
that instead of the real credit card numbers only the non-sensitive tokens are
stored.

For security, the tokenization process should be one-way in the sense that the
token does not reveal information about the original data, even when the secret
keys used for tokenization are disclosed. On the other hand, usability requires
that a tokenized data set preserves referential integrity. That is, when the same
value occurs multiple times in the input, it should be mapped consistently to
the same token.

Many industrial white papers discuss solutions for tokenization [11,12,14],
which rely on (keyed) hash functions, encryption schemes, and often also non-
cryptographic methods such as random substitution tables. However, none of
these methods guarantee the above requirements in a provably secure way, backed
by a precise security model. Only recently an initial step towards formal security
notions for tokenization has been made [5].

However, all tokenization schemes and models have been static so far, in the
sense that the relation between a value and its tokenized form never changes and
that the keys used for tokenization cannot be changed. Thus, key updates are a
critical issue that has not yet been handled. In most practical deployments, all
cryptographic keys must be re-keyed periodically for ensuring continued security.
In fact, the aforementioned PCI DSS standard even mandates that keys (used
for encryption) must be rotated at least annually. Similar to proactively secure
cryptosystems [8], periodic updates reduce the risk of exposure when data leaks
gradually over time. For tokenization, these key updates must be done in a
consistent way so that already tokenized data maintains its referential integrity
with fresh tokens that are generated under the updated key. None of the existing
solutions allows for efficient key updates yet, as they would require to start from
scratch and tokenize the complete data set with a fresh key. Given that the
tokenized data sets are usually large, this is clearly not desirable for real-world
applications. Instead the untrusted entity holding the tokenized data should be
able to re-key an already tokenized representation of the data.

Our Contributions. As a solution for these problems, this paper introduces a
model for updatable tokenization (UTO) with key evolution, distinguishes mul-
tiple security properties, and provides efficient cryptographic implementations.
An updatable tokenization scheme considers a data owner producing data and
tokenizing it, and an untrusted host storing tokenized data only. The scheme
operates in epochs, where the owner generates a fresh tokenization key for every
epoch and uses it to tokenize new values added to the data set. The owner also
sends an update tweak to the host, which allows to “roll forward” the values
tokenized for the previous epoch to the current epoch.

We present several formal security notions that refine the above security
goals, by modeling the evolution of keys and taking into consideration adap-
tive corruptions of the owner, the host, or both, at different times. Due to the

vww.ebook3000.con)

http://www.ebook3000.org

Updatable Tokenization 61

temporal dimension of UTO and the adaptive corruptions, the precise formal
notions require careful modeling. We define the desired security properties in the
form of indistinguishability games which require that the tokenized representa-
tions of two data values are indistinguishable to the adversary unless it trivially
obtained them. An important property for achieving the desired strong indis-
tinguishability notions is unlinkability and we clearly specify when (and when
not) an untrusted entity may link two values tokenized in different epochs. A
further notion, orthogonal to the indistinguishability-based ones, formalizes the
desired one-wayness property in the case where the owner discloses its current
key material. Here the adversary may guess an input by trying all possible val-
ues; the one-wayness notion ensures that this is also its best strategy to reverse
the tokenization.

Finally, we present two efficient UTO constructions: the first solution
(UTOsg) is based on symmetric encryption and achieves one-wayness, and indis-
tinguishability in the presence of a corrupt owner or a corrupt host. The sec-
ond construction (UTOp) relies on a discrete-log assumption, and additionally
satisfies our strongest indistinguishability notion that allows the adversary to
(transiently) corrupt the owner and the host. Both constructions share the same
core idea: First, the input value is hashed, and then the hash is encrypted under
a key that changes every epoch.

We do not claim the cryptographic constructions are particularly novel. The
focus of our work is to provide formal foundations for key-evolving and updat-
able tokenization, which is an important problem in real-world applications.
Providing clear and sound security models for practitioners is imperative for
the relevance of our field. Given the public demands for data privacy and the
corresponding interest in tokenization methods by the industry, especially in
regulated and sensitive environments such as the financial industry, this work
helps to understand the guarantees and limitations of efficient tokenization.

Related Work. A number of cryptographic schemes are related to our notion
of updatable tokenization: key-homomorphic pseudorandom functions (PRF),
oblivious PRFs, updatable encryption, and proxy re-encryption, for which we
give a detailed comparison below.

A key-homomorphic PRF [3] enjoys the property that given PRF,(m) and
PRF,(m) one can compute PRF,,(m). This homomorphism does not immedi-
ately allow convenient data updates though: the data host would store values
PRF,(m), and when the data owner wants to update his key from a to b, he must
compute A, = PRF,_,(m) for each previously tokenized value m. Further, to
allow the host to compute PRF,(m) = PRF,(m) + A,,, the owner must provide
some reference to which PRF,(m) each A,, belongs. This approach has several
drawbacks: (1) the owner must store all previously outsourced values m and
(2) computing the update tweak(s) and its length would depend on the amount
of tokenized data. Our solution aims to overcome exactly these limitations. In
fact, tolerating (1) + (2), the owner could simply use any standard PRF, re-
compute all tokens and let the data host replace all data. This is clearly not
efficient and undesirable in practice.

62 C. Cachin et al.

Boneh et al. [3] also briefly discuss how to use such a key-homomorphic
PRF for updatable encryption or proxy re-encryption. Updatable encryption
can be seen as an application of symmetric-key proxy re-encryption, where the
proxy re-encrypts ciphertexts from the previous into the current key epoch.
Roughly, a ciphertext in [3] is computed as C = m + PRF,(N) for a nonce
N, which is stored along with the ciphertext C. To rotate the key from a to
b, the data owner pushes A = b — a to the data host which can use A to
update all ciphertexts. For each ciphertext, the host then uses the stored nonce
N to compute PRF A (N) and updates the ciphertext to ¢/ = C' + PRFA(N) =
m+ PRF, (V). However, the presence of the static nonce prevents the solution to
be secure in our tokenization context. The tokenized data should be unlinkable
across epochs for any adversary not knowing the update tweaks, and we even
guarantee unlinkability in a forward-secure manner, i.e., a security breach at
epoch e does not affect any data exposed before that time.

In the full version of their paper [4], Boneh et al. present a different solution
for updatable encryption that achieves such unlinkability, but which suffers from
similar efficiency issues as mentioned above: the data owner must retrieve and
partially decrypt all of his ciphertexts, and then produce a dedicated update
tweak for each ciphertext, which renders the solution unpractical for our purpose.
Further, no formal security definition that models adaptive key corruptions for
such updatable encryption is given in the paper.

The Pythia service proposed by Everspaugh et al. [7] mentions PRFs with
key rotation which is closer to our goal, as it allows efficient updates of the
outsourced PRF values whenever the key gets refreshed. The core idea of the
Pythia scheme is very similar to our second, discrete-logarithm based construc-
tion. Unfortunately, the paper does not give any formal security definition that
covers the possibility to update PRF values nor describes the exact properties
of such a key-rotating PRF. As the main goal of Pythia is an oblivious and ver-
ifiable PRF service for password hashing, the overall construction is also more
complex and aims at properties that are not needed here, and vice-versa, our
unlinkability property does not seem necessary for the goal of Pythia.

While the aforementioned works share some relation with updatable tok-
enization, they have conceptually quite different security requirements. Starting
with such an existing concept and extending its security notions and construc-
tions to additionally satisfy the requirements of updatable tokenization, would
reduce efficiency and practicality, for no clear advantage. Thus, we consider the
approach of directly targeting the concrete real-world problem more suitable.

An initial study of security notions for tokenization was recently presented by
Diaz-Santiago et al. [5]; they formally define tokenization systems and give sev-
eral security notions and provably secure constructions. In a nutshell, their defi-
nitions closely resemble the conventional definitions for deterministic encryption
and one-way functions adopted to the tokenization notation. However, they do
not, consider adaptive corruptions and neither address updatable tokens, which
are the crucial aspects of this work.

vww.ebook3000.con)

http://www.ebook3000.org

Updatable Tokenization 63

2 Preliminaries

In this section, we recall the definitions of the building blocks and security notions
needed in our constructions.

Deterministic Symmetric Encryption. A deterministic symmetric encryption
scheme SE consists of a key space K and three polynomial-time algorithms
SE.KeyGen, SE.Enc, SE.Dec satisfying the following conditions:

SE.KeyGen: The probabilistic key generation algorithm SE.KeyGen takes as
input a security parameter A and produces an encryption key s <
SE.KeyGen(\).

SE.Enc: The deterministic encryption algorithm takes a key s € K and a message
m € M and returns a ciphertext C' <« SE.Enc(s, m).

SE.Dec: The deterministic decryption algorithm SE.Dec takes a key s € K and
a ciphertext C' to return a message m < SE.Dec(s, C).

For correctness we require that for any key s € K, any message m € M and
any ciphertext C' < SE.Enc(s,m), we have m « SE.Dec(s, C).

We now define a security notion of deterministic symmetric encryption
schemes in the sense of indistinguishability against chosen-plaintext attacks, or
IND-CPA security. This notion was informally presented by Bellare et al. in [1],
and captures the scenario where an adversary that is given access to a left-or-
right (LoR) encryption oracle is not able to distinguish between the encryption
of two distinct messages of its choice with probability non-negligibly better than
one half. Since the encryption scheme in question is deterministic, the adversary
can only query the LoR oracle with distinct messages on the same side (left
or right) to avoid trivial wins. That is, queries of the type (mf, m}), (m}, m})
where m}, = m% or mi = m? are forbidden. We do not grant the adversary an
explicit encryption oracle, as it can obtain encryptions of messages of its choice
by querying the oracle with a pair of identical messages.

Definition 1. A deterministic symmetric encryption scheme SE = (SE.KeyGen,
SE.Enc, SE.Dec) is called IND-CPA secure if for all polynomial-time adversaries

A, it holds that | Pr[Expi:&CEpa()\) = 1]—-1/2| < €(A) for some negligible function e.

Experiment Expi:lfiécEpa (\):
s < SE.KeyGen(\)
d < {0,1}
d' & AQene(sd)())
where Oenc 0on input two messages mg, my returns C' < SE.Enc(s, mg).
return 1 if d = d and all values m{, ..., md and all values m},...,m{ are
distinct, respectively, where g denotes the number of queries to Ognc.

64 C. Cachin et al.

Hash Functions. A hash function H : D — R is a deterministic function that
maps inputs from domain D to values in range R. For our second and stronger
construction we assume the hash function to behave like a random oracle.

In our first construction we use a keyed hash function, i.e., H gets a key
hk < H.KeyGen()\) as additional input. We require the keyed hash function to
be pseudorandom and weakly collision-resistant for any adversary not knowing
the key hk. We also need H to be one-way when the adversary is privy of the
key, i.e., H should remain hard to invert on random inputs.

Pseudorandomness: A hash function is called pseudorandom if no efficient
adversary A can distinguish H from a uniformly random function f: D — R
with non-negligible advantage. That is, |Pr[AH(h’k") (A)] = Pr[AfO(N)]| is neg-
ligible in A\, where the probability in the first case is over A’s coin tosses and
the choice of hk <~ H.KeyGen(\), and in the second case over A’s coin tosses
and the choice of the random function f.

Weak collision resistance: A hash function H is called weakly collision-
resistant if for any efficient algorithm A the probability that for hk <
H.KeyGen()\) and (m,m’) <~ AH(E-)()) the adversary returns m # m’, where
H(hk,m) = H(hk, m'), is negligible (as a function of \).

One-wayness: A hash function H is one-way if for any efficient algorithm A the
probability that for hk < H.KeyGen(\), m <« D and m’ <« A(hk,H(hk, m))
returns m’, where H(hk, m) = H(hk, m’), is negligible (as a function of \).

Decisional Diffie-Hellman Assumption. Our second construction requires a
group (G, g,p) as input where G denotes a cyclic group G = (g) of order p
in which the Decisional Diffie-Hellman (DDH) problem is hard w.r.t. A, i.e., p
is a A-bit prime. More precisely, a group (G, g,p) satisfies the DDH assump-
tion if for any efficient adversary A the probability | Pr[A(G,p, g, 9%, g%, g**)]—
Pr[A(G,p, g, g% ¢°, g°)]| is negligible in \, where the probability is over the ran-
dom choice of p, g, the random choices of a,b, c € Z,, and A’s coin tosses.

3 Formalizing Updatable Tokenization

An updatable tokenization scheme contains algorithms for a data owner and a
host. The owner de-sensitizes data through tokenization operations and dynami-
cally outsources the tokenized data to the host. For this purpose, the data owner
first runs an algorithm setup to create a tokenization key. The tokenization key
evolves with epochs, and the data is tokenized with respect to a specific epoch e,
starting with e = 0. For a given epoch, algorithm token takes a data value and
tokenizes it with the current key k.. When moving from epoch e to epoch e+ 1,
the owner invokes an algorithm next to generate the key material k. for the
new epoch and an update tweak A.;1. The owner then sends A.41 to the host,
deletes k. and A.;; immediately, and uses k.1 for tokenization from now on.
After receiving A1, the host first deletes A, and then uses an algorithm upd to
update all previously received tokenized values from epoch e to e+1, using Ag4 1.
Hence, during some epoch e the update tweak from e — 1 to e is available at the
host, but update tweaks from earlier epochs have been deleted.

vww.ebook3000.con)

http://www.ebook3000.org

Updatable Tokenization 65

Definition 2. An updatable tokenization scheme UTO consists of a data space X,
a token space Y, and a set of polynomial-time algorithms UTO.setup, UTO.next,
UTO.token, and UTO.upd satisfying the following conditions:

UTO.setup: The algorithm UTO.setup is a probabilistic algorithm run by the
owner. On input a security parameter A, this algorithm returns the tokeniza-
tion key for the first epoch kg <~ UTO.setup()).

UTO.next: This probabilistic algorithm is also run by the owner. On input a
tokenization key k. for some epoch e, it outputs a tokenization key k.;1 and
an update tweak A, for epoch e+1. That is, (ket1, Aey1) < UTO.next(ke).

UTO.token: This is a deterministic injective algorithm run by the owner. Given
the secret key k. and some input data x € X', the algorithm outputs a tok-
enized value y. € Y. That is, y. < UTO.token(k., z).

UTO.upd: This deterministic algorithm is run by the host and uses the update
tweak. On input the update tweak A.;; and some tokenized value .,
UTO.upd updates y, t0 yet1, that is, yer1 «— UTO.upd(Aet1, ye)-

The correctness condition of a UTO scheme ensures referential integrity
inside the tokenized data set. A newly tokenized value from the owner in a
particular epoch must be the same as the tokenized value produced by the
host using update operations. More precisely, we require that for any =z € X,
for any kg < UTO.setup()), for any sequence of tokenization key/update
tweak pairs (k1, A1),. .., (ke, Ae) generated as (kj1,A,41) < UTO.next(k;) for
j = 0,...,e — 1 through repeated applications of the key-evolution algorithm,
and for any y, < UTO.token(k., x), it holds that

UTO.token(ket1,2) = UTO.upd(Act1, Ye)-

3.1 Privacy of Updatable Tokenization Schemes

The main goal of UTO is to achieve privacy for data values, ensuring that
an adversary cannot gain information about the tokenized values and can-
not link them to input data tokenized in past epochs. We introduce three
indistinguishability-based notions for the privacy of tokenized values, and one
notion ruling out that an adversary may reverse the tokenization and recover
the input value from a tokenized one. All security notions are defined through
an experiment run between a challenger and an adversary A. Depending on the
notion, the adversary may issue queries to different oracles, defined in the next
section.

At a high level, the four security notions for UTO are distinguished by the
corruption capabilities of A.

IND-HOCH: Indistinguishability with Honest Owner and Corrupted Host:
This is the most basic security criterion, focusing on the updatable dynamic
aspect of UTO. It considers the owner to be honest and permits corruption
of the host during the interaction. The adversary gains access to the update
tweaks for all epochs following the compromise and yet, it should (roughly
speaking) not be able to distinguish values tokenized before the corruption.

66 C. Cachin et al.

IND-COHH: Indistinguishability with Corrupted Owner and Honest Host:
Modeling a corruption of the owner at some point in time, the adversary
learns the tokenization key of the compromised epoch and all secrets of the
owner. Subsequently 4 may take control of the owner, but should not learn
the correspondence between values tokenized before the corruption. The host
is assumed to remain (mostly) honest.

IND-COTH: Indistinguishability with Corrupted Owner and Transiently Cor-
rupte Host: As a refinement of the first two notions, A can transiently corrupt
the host during multiple epochs according to its choice, and it may also per-
manently corrupt the owner. The adversary learns the update tweaks of the
specific epochs where it corrupts the host, and learns the tokenization key
of the epoch where it corrupts the owner. Data values tokenized prior to
exposing the owner’s secrets should remain unlinkable.

One- Wayness: This notion models the scenario where the owner is corrupted
right at the first epoch and the adversary therefore learns all secrets. Yet,
the tokenization operation should be one-way in the sense that observing a
tokenized value does not give the adversary an advantage for guessing the
corresponding input from X.

3.2 Definition of Oracles

During the interaction with the challenger in the security definitions, the adversary
may access oracles for data tokenization, for moving to the next epoch, for corrupting
the host, and for corrupting the owner. In the following description, the oracles may
access the state of the challenger during the experiment. The challenger initializes
a UTO scheme with global state (ko, Ag, €), where kg < UTO.setup(A), Ag «— L,
and e + 0. Two auxiliary variables e} and e, record the epochs where the host and
the owner were first corrupted, respectively. Initially e < L and e} « L.

Otoken(z): On input a value z € X, return y, < UTO.token(ke, x) to the adver-
sary, where k. is the tokenization key of the current epoch.

Ohext: When triggered, compute the tokenization key and update tweak of the
next epoch as (key1, Aey1) < UTO.next(k.) and update the global state to
(ke+1, Acy1,e+ 1)

Ocorrupt-h: When invoked, return A, to the adversary. If called for the first time
(e = L), then set e} « e. This oracle models the corruption of the host and
may be called multiple times.

Ocorrupt-o: When invoked for the first time (e} = L), then set e} « e and return
ke to the adversary. This oracle models the corruption of the owner and can
only be called once. After this call, the adversary no longer has access to
Otoken and Onext-

Note that although corruption of the host at epoch e exposes the update
tweak A., the adversary should not be able to compute update tweaks of future
epochs from this value. To obtain those, A should call Ocgrypt-h again in the cor-
responding epochs; this is used for IND-HOCH security and IND-COTH secu-
rity, with different side-conditions. A different case arises when the owner is

vww.ebook3000.con)

http://www.ebook3000.org

Updatable Tokenization 67

corrupted, since this exposes all relevant secrets of the challenger. From that
point the adversary can generate tokenization keys and update tweaks for all
subsequent epochs on its own. This justifies why the oracle Ocorrupt-o can only be
called once. For the same reason, it makes no sense for an adversary to query the
Otoken and Opext oracles after the corruption of the owner. Furthermore, observe
that Ocorrupt-o does not return A, according to the assumption that the owner
deletes this atomically with executing the next algorithm.

We are now ready to formally define the security notions for UTO in the
remainder of this section.

3.3 IND-HOCH: Honest Owner and Corrupted Host

The IND-HOCH notion ensures that tokenized data does not reveal information
about the corresponding original data when A compromises the host and obtains
the update tweaks of the current and all future epochs. Tokenized values are also
unlinkable across epochs, as long as the adversary does not know at least one
update tweak in that timeline.

Definition 3 (IND-HOCH). An updatable tokenization scheme UTO is said
to be IND-HOCH secure if for all polynomial-time adversaries A it holds that
|Pr[Exp'v'4>"%'THgCH (A) =1] = 1/2| < ¢(N) for some negligible function e.

Experiment Exp%’%ﬁgw (N\):

kg <~ UTO.setup())
e—0; ef — L // these variables are updated by the oracles
(j}O; Z1, state) < Aotokemonext;ocovrupt-h (A)
ge d< {01}
Ja,e <+ UTO.token(ke, Zq)
d & AOtokemOnexuOcorrupc-h (Z]d,éa state)
return 1 if d = d and at least one of following conditions holds
a) (e,*I <é+ 1) A A has not queried Oioken(Z0) Or Otoken(Z1) in epoch
ey — 1 or later
b) (e;‘l >é+1Ve) = L) A A has not queried Oroken(Zo) Or Otoken(Z1) in
epoch é

This experiment has two phases. In the first phase, A may query Oioken,
Ohnext and Ocorrypt-h; it ends at an epoch € when A outputs two challenge inputs
Zo and Zp. The challenger picks one at random (denoted by Z4), tokenizes it,
obtains the challenge 74 ¢ and starts the second phase by invoking A with §ge.
The adversary may then further query Oioken, Onext, ad Ocorrupt-h and eventually
outputs its guess d’ for which data value was tokenized. Note that only the first
host corruption mattersfor our security notion, since we are assuming that once

68 C. Cachin et al.

corrupted, the host is always corrupted. For simplicity, we therefore assume that
A calls Ocorrupt-h 0nce in every epoch after ef.

The adversary wins the experiment if it correctly guesses d while respecting
two conditions that differ depending on whether the adversary corrupted the
host (roughly) before or after the challenge epoch:

(a) If e < é+1, then A first corrupts the host before, during, or immediately
after the challenge epoch and may learn the update tweaks to epoch e; and
later ones. In this case, it must not query the tokenization oracle on the
challenge inputs in epoch e; — 1 or later.

In particular, if this restriction was not satisfied, when e; < €, the adversary
could tokenize data of its choice, including Zo and Z;, during any epoch
from e; — 1 to €, subsequently update the tokenized value to epoch €, and
compare it to the challenge q¢. This would allow A to trivially win the
security experiment.

For the case e = €+ 1, recall that according to the experiment, the update
tweak A, remains accessible until epoch e+ 1 starts. Therefore, A learns the
update tweak from € to €4+ 1 and may update g4 ¢ into epoch € + 1. Hence,
from this time on it must not query Oyoken With the challenge inputs either.

(b) Ifej > é+1Ve; =1, ie., the host was first corrupted after epoch €+ 1 or

not at all, then the only restriction is that .4 must not query the tokenization
oracle on the challenge inputs during epoch é. This is an obvious restriction
to exclude trivial wins, as tokenization is deterministic.
This condition is less restrictive than case (a), but it suffices since the adver-
sary cannot update tokenized values from earlier epochs to €, nor from € to
a later epoch. The reason is that A only gets the update tweaks from epoch
€ + 2 onwards.

3.4 IND-COHH: Corrupted Owner and Honest Host

The IND-COHH notion models a compromise of the owner in a certain epoch,
such that the adversary learns the tokenization key and may generate tokeniza-
tion keys and update tweaks of all subsequent epochs by itself. Given that the
tokenization key allows to derive the update tweak of the host, this implicitly
models some form of host corruption as well. The property ensures that data
tokenized before the corruption remains hidden, that is, the adversary does not
learn any information about the original data, nor can it link such data with
data tokenized in other epochs.

Definition 4 (IND-COHH). An updatable tokenization scheme UTO is said
to be IND-COHH secure if for all polynomial-time adversaries A it holds that
|Pr[ExpL'4>'v%'TC8HH()\) =1] — 1/2| < e(A) for some negligible function e.

vww.ebook3000.con)

http://www.ebook3000.org

Updatable Tokenization 69

Experiment Exp'jx’%}cg HH ()

ko < UTO.setup())

e—0; e} — 1L // these variables are updated by the oracles

(Fo, %1, state) < ACwken:Onext (\)

€+—e d«{0,1}

Ja,e < UTO.token(ke, Z4)

d & Aotoken7onextaocorrupt-o (Zjd,é» state)

return 1 if d = d and all following conditions hold
a)es>eéeVes=1
b) A never queried Ooken(Zo) 0F Oroken(Z1) in epoch &

During the first phase of the IND-COHH experiment the adversary may query
Oroken and Opext, but it may not corrupt the owner. At epoch €, the adversary pro-
duces two challenge inputs Ty and Z;. Again, the challenger selects one at random
and tokenizes it, resulting in the challenge g4 ¢. Subsequently, A may further query
Otoken and Opext, and now may also invoke Ocorrupt-o- Once the owner is corrupted
(during epoch €}), A knows all key material of the owner and may generate tok-
enization keys and update tweaks of all subsequent epochs by itself. Thus, from
this time on, we remove access to the Oioren O Opext Oracles for simplicity.

The adversary ends the experiment by guessing which input challenge was
tokenized. It wins when the guess is correct and the following conditions are met:

(a) A must have corrupted the owner only after the challenge epoch (e} > €) or
not at all (e = L). This is necessary since corruption during epoch é would
leak the tokenization key k;z to the adversary. (Note that corruption before
€ is ruled out syntactically.)

(b) A must neither query the tokenization oracle with any challenge input (Zg
or Z1) during the challenge epoch é. This condition eliminates that A can
trivially reveal the challenge input since the tokenization operation is deter-
ministic.

On the (Im)possibility of Additional Host Corruption. As can be noted, the
IND-COHH experiment does not consider the corruption of the host at all. The
reason is that allowing host corruption in addition to owner corruption would
either result in a non-achievable notion, or it would give the adversary no extra
advantage. To see this, we first argue why additional host corruption capabilities
at any epoch e; < €41 is not allowed. Recall that such a corruption is possible
in the IND-HOCH experiment if the adversary does not make any tokenization
queries on the challenge values Z or Z; at any epoch e > ej —1. This restriction is
necessary in the IND-HOCH experiment to prevent the adversary from trivially
linking the tokenized values of Zy or Z; to the challenge 4. However, when the
owner can also be corrupted, at epoch e} > €, that restriction is useless. Note
that upon calling Ocorrypt-o the adversary learns the owner’s tokenization key and
can simply tokenize Zo and z; at epoch e}. The results can be compared with
an updated version of gq s to trivially win the security experiment.

70 C. Cachin et al.

Now we discuss the additional corruption of the host at any epoch e}, > é+1.
We note that corruption of the owner at epoch e} > é allows the adversary to
obtain the tokenization key of epoch e} and compute the tokenization keys and
update tweaks of all epochs e > e} + 1. Thus, the adversary then trivially knows
all tokenization keys from e’+1 onward and modeling corruption of the host after
the owner is not necessary. The only case left is to consider host corruption before
owner corruption, at an epoch ej with € +1 < e} < e}. However, corrupting the
host first would not have any impact on the winning condition. Hence, without
loss of generality, we assume that the adversary always corrupts the owner first,
which allows us to fully omit the Ocoprypt-n oracle in our IND-COHH experiment.

We stress that the impossibility of host corruption at any epoch ef < €+
1 only holds if we consider permanent corruptions, i.e., the adversary, upon
invocation of Ocorrupt-h is assumed to fully control the host and to learn all future
update tweaks. In the following security notion, IND-COTH, we bypass this
impossibility by modeling transient corruption of the host.

3.5 IND-COTH: Corrupted Owner and Transiently Corrupted Host

Extending both of the above security properties, the IND-COTH notion consid-
ers corruption of the owner and repeated but transient corruptions of the host.
It addresses situations where some of the update tweaks received by the host
leak to A and the keys of the owner are also exposed at a later stage.

Definition 5 (IND-COTH). An updatable tokenization scheme UTO is said
to be IND-COTH secure if for all polynomial-time adversaries A it holds that
|Pr[Exp'VZ'B'198TH(/\) = 1] — 1/2| < €(\) for some negligible function €.

Experiment Exp'k‘)%‘-,gg ™N):

ko <= UTO.setup(\)

e—0; e — 1L // these variables are updated by the oracles
€last < L Efirst — L

(i»o, ‘%1’ state) & Aotokemonexuocorrupt-h ()\)

€«—e; d«{0,1}

Ja,e < UTO.token(ke, Zq)

d/ P Aotoken;Onexuocorruphh;Ocorrupt-o (gd,é; St(lt@)

elast — last epoch before é in which A queried Oioken(Zo) O Otoken(Z1)
efirst — first epoch after € in which A queried Oyoken(Z0) 0r Oroken(Z1)
return 1 if d = d and all following conditions hold

a) e >eVel=1
b) A never queried Oyoken(Zo) or Ooken(Z1) in epoch &

c) either ej = L or all following conditions hold
i) (ebst = J_) V 3 € with et < € < € where A has not queried Ocorrypt-h
ii) (eﬁrst = L) v 3 e’ with € < ¢’ < efirgy where A has not queried Ocorrypt-h
iii) (e’; = J_) Vv 3 e with € < ¢ < e} where A has not queried Ocorrypt-h

vww.ebook3000.con)

http://www.ebook3000.org

Updatable Tokenization 71

Observe that the owner can only be corrupted after the challenge epoch, just
as in the IND-COHH experiment. As before, A then obtains all key material and,
for simplicity, we remove access to the Oioken O Opext Oracles from this time on.
The transient nature of the host corruption allows to grant A additional access
t0 Ocorrupt-h before the challenge, which would be impossible in the IND-COHH
experiment if permanent host corruption was considered.

Compared to the IND-HOCH definition, here A may corrupt the host and
ask for a challenge input to be tokenized after the corruption. Multiple host
corruptions may occur before, during, and after the challenge epoch. But in
order to win the experiment, A must leave out at least one epoch and miss an
update tweak. Otherwise it could trivially guess the challenge by updating the
challenge output or a challenge input tokenized in another epoch to the same
stage. In the experiment this is captured through the conditions under (c¢). In
particular:

(c-i) If A calls Oroken With one of the challenge inputs Zg or Zy before triggering
the challenge, it must not corrupt the host and miss the update tweak in at
least one epoch from this point up to the challenge epoch. Thus, the latest
epoch before the challenge epoch where A queries Oioken(Zo) 0F Otoken(Z1),
denoted ej,s:, must be smaller than the last epoch before € where the host is
not corrupted.

(c-ii) Likewise if A queries Oioken With a challenge input Zo or #; after the
challenge epoch, then it must not corrupt the host and miss the update tweak
in at least one epoch after €. Otherwise, it could update the challenge 34 ¢
to the epoch where it calls Ooken- The first epoch after the challenge epoch
where A queries Oioken(Zo) 0r Oroken(Z1), denoted efirst, must be larger than
or equal to the first epoch after ¢ where the host is not corrupted.

(c-iii) If A calls Ocorrupt-o, it must not obtain at least one update tweak after
the challenge epoch and before, or during, the epoch of owner corruption e.
Otherwise, A could tokenize Zo and Z; with the tokenization key of epoch e,
exploit the exposed update tweaks to evolve the challenge value 74 to that
epoch, and compare the results.

PRF-style vs. IND-CPA-style Definitions. We have opted for definitions based
on indistinguishability in our model. Given that the goal of tokenization is to
output random looking tokens, a security notion in the spirit of pseudorandom-
ness might seem like a more natural choice at first glance. However, a definition
in the PRF-style does not cope well with adaptive attacks: in our security exper-
iments the adversary is allowed to adaptively corrupt the data host and corrupt
the data owner, upon which it gets the update tweaks or the secret tokenization
key. Modeling this in a PRF vs. random function experiment would require the
random function to contain a key and to be compatible with an update function
that can be run by the adversary. Extending the random function with these
“features” would lead to a PRF vs. PRF definition. The IND-CPA inspired app-
roach used in this paper allows to cover the adaptive attacks and consistency
features in a more natural way.

72 C. Cachin et al.

Relation Among the Security Notions. Our notion of IND-COTH security is
the strongest of the three indistinguishability notions above, as it implies both
IND-COHH and IND-HOCH security, but not vice-versa. That is, IND-COTH
security is not implied by IND-COHH and IND-HOCH security. A distinguishing
example is our UTOgg scheme. As we will see in Sect. 4.1, UTOgg is both IND-
COHH and IND-HOCH secure, but not IND-COTH secure.

The proof of Theorem 1 below can be found in the full version of this paper.

Theorem 1 (IND-COTH = IND-COHH + IND-HOCH). If an updata-
ble tokenization scheme UTO is IND-COTH secure, then it is also IND-COHH
secure and IND-HOCH secure.

3.6 One-Wayness

The one-wayness notion models the fact that a tokenization scheme should not be
reversible even if an adversary is given the tokenization keys. In other words, an
adversary who sees tokenized values and gets hold of the tokenization keys cannot
obtain the original data. Because the keys allow one to reproduce the tokeniza-
tion operation and to test whether the output matches a tokenized value, the
resulting security level depends on the size of the input space and the adversary’s
uncertainty about the input. Thus, in practice, the level of security depends on
the prior knowledge of the adversary about X.

Our definition is similar to the standard notion of one-wayness, with the
difference that we ask the adversary to output the exact preimage of a tokenized
challenge value, as our tokenization algorithm is an injective function.

Definition 6 (One-Wayness). An updatable tokenization scheme UTO is said
to be one-way if for all polynomial-time adversaries A it holds that

Prlz=2: 2« A(X\ ko, 7),
§ < UTO.token(ko, T),Z « X, ko < UTO.setup(\)] < 1/|X|.

4 UTO Constructions

In this section we present two efficient constructions of updatable tokeniza-
tion schemes. The first solution (UTOsg) is based on symmetric encryption and
achieves one-wayness, IND-HOCH and IND-COHH security; the second con-
struction (UTOpy) relies on a discrete-log assumption, and additionally satisfies
IND-COTH security. Both constructions share the same core idea: First, the
input value is hashed, and then the hash is encrypted under a key that changes
every epoch.

vww.ebook3000.con)

http://www.ebook3000.org

Updatable Tokenization 73

4.1 An UTO Scheme Based on Symmetric Encryption

We build a first updatable tokenization scheme UTOsg, that is based on a sym-
metric deterministic encryption scheme SE = (SE.KeyGen, SE.Enc, SE.Dec) with
message space M and a keyed hash function H : L x X — M. In order to tok-
enize an input x € X', our scheme simply encrypts the hashed value of z. At each
epoch e, a distinct random symmetric key s, is used for encryption, while a fixed
random hash key hk is used to hash x. Both keys are chosen by the data owner.
To update the tokens, the host receives the encryption keys of the previous and
current epoch and re-encrypts all hashed values to update them into the current
epoch. More precisely, our UTOsg scheme is defined as follows:

UTO.setup()\): Generate keys sg «— SE.KeyGen(\), hk «— H.KeyGen(\) and out-
put ko — (so, hk).

UTO.next(k.): Parse k. as (se, hk). Choose a new key s.y1 < SE.KeyGen()\)
and set ket1 < (Set1, k) and Aepq < (Se, Set1)- Output (key1, Aet1).

UTO.token(k.,z): Parse k. as (s., hk) and output y. < SE.Enc(s., H(hk, x)).

UTO.upd(Aci1,ye): Parse Aqpq as (Se, Seq1) and output the updated value
Yet+1 — SE.Enc(sc+1,SE.Dec(se, ye))-

This construction achieves IND-HOCH, IND-COHH, and one-wayness but
not the stronger IND-COTH notion. The issue is that a transiently corrupted
host can recover the static hash during the update procedure and thus can link
tokenized values from different epochs, even without knowing all the update
tweaks between them.

Theorem 2. The UTOsg as defined above satisfies the IND-HOCH, IND-
COHH and one-wayness properties based on the following assumptions on the
underlying encryption scheme SE and hash function H:

UTOse SE H
IND-COHH | IND-CPA | Weak collision resistance
IND-HOCH | IND-CPA | Pseudorandomness

One-wayness | — One-wayness

The proof of Theorem 2 can be found in the full version of this paper.

4.2 An UTO Scheme Based on Discrete Logarithms

Our second construction UTOp, overcomes the limitation of the first scheme by
performing the update in a proxy re-encryption manner using the re-encryption
idea first proposed by Blaze et al. [2]. That is, the hashed value is raised to
an exponent that the owner randomly chooses at every new epoch. To update
tokens, the host is not given the keys itself but only the quotient of the current

74 C. Cachin et al.

and previous exponent. While this allows the host to consistently update his
data, it does not reveal the inner hash anymore and guarantees unlinkability
across epochs, thus satisfying also our strongest notion of IND-COTH security.

More precisely, the scheme makes use of a cyclic group (G, g,p) and a hash
function H : X — G. We assume the hash function and the group description
to be publicly available. The algorithms of our UTOp_ scheme are defined as
follows:

UTO.setup(A): Choose ko < Z,, and output k.

UTO.next(k.): Choose kei1 < Zp, set Aerq — keti/ke, and output (Key1,
Ae+1).

UTO.token(k,,x): Compute y. < H(x)ke, and output y,.

UTO.upd(Act1,ye): Compute yoiq «— yeAE“, and output Ye1.

Our UTOp_ scheme is one-way and satisfies our strongest notion of IND-
COTH security, from which IND-HOCH and IND-COHH security follows (see
Theorem 1). The proof of Theorem 3 below can be found in the full version of
this paper.

Theorem 3. The UTOp. scheme as defined above is IND-COTH secure under
the DDH assumption in the random oracle model, and one-way if H is one-way.

Acknowledgements. We would like to thank our colleagues Michael Osborne, Tamas
Visegrady and Axel Tanner for helpful discussions on tokenization.

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535-552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_30

2. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127-144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

3. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRF's
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410-428. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4_23

4. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. IACR Cryptology ePrint Archive 2015, 220 (2015).
http://eprint.iacr.org/2015,/220

5. Diaz-Santiago, S., Rodriguez-Henriquez, .M., Chakraborty, D.: A cryptographic
study of tokenization systems. In: Obaidat, M.S., Holzinger, A., Samarati, P. (eds.)
Proceedings of the 11th International Conference on Security and Cryptography
(SECRYPT 2014), Vienna, 28-30 August 2014, pp. 393-398. SciTePress (2014).
https://doi.org/10.5220/0005062803930398

6. European Commission, Article 29 Data Protection Working Party: Opin-
ion 05/2014 on anonymisation techniques (2014). http://ec.europa.eu/justice/
data-protection/article-29/documentation /opinion-recommendation /

vww.ebook3000.con)

https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
http://eprint.iacr.org/2015/220
https://doi.org/10.5220/0005062803930398
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/
http://www.ebook3000.org

10.

11.

12.

13.

14.

Updatable Tokenization 75

Everspaugh, A., Chatterjee, R., Scott, S., Juels, A., Ristenpart, T.: The
Pythia PRF service. In: Jung, J., Holz, T. (eds.) 24th USENIX Security
Symposium, USENIX Security 2015, Washington, D.C., 12-14 August 2015,
pp. 547-562. USENIX Association (2015). https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/everspaugh

Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive pub-
lic key and signature systems. In: Proceedings of the 4th ACM Conference on
Computer and Communications Security (CCS 1997), Zurich, 1-4 April 1997, pp.
100-110 (1997). https://doi.org/10.1145/266420.266442

McCallister, E., Grance, T., Scarfone, K.: Guide to protecting the confidential-
ity of personally identifiable information (PII). NIST special publication 800-122,
National Institute of Standards and Technology (NIST) (2010). http://csrc.nist.
gov/publications/PubsSPs.html

PCI Security Standards Council: PCI Data Security Standard (PCI DSS) (2015).
https://www.pcisecuritystandards.org/document_library?document=pci_dss
Securosis: Tokenization guidance: How to reduce PCI compliance costs. https://
securosis.com/assets/library /reports/TokenGuidance-Securosis-Final.pdf

Smart Card Alliance: Technologies for payment fraud prevention: EMYV,
encryption and tokenization. http://www.smartcardalliance.org/downloads/
EMV-Tokenization- Encryption- WP-FINAL.pdf

United States Department of Health and Human Services: Summary of the HIPAA
Privacy Rule. http://www.hhs.gov/sites/default/files/privacysummary.pdf
Voltage Security: Voltage secure stateless tokenization. https://www.voltage.com/
wp-content /uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_
and_PCI_Scope_Reduction_for_Todays_Businesses.pdf

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/everspaugh
https://doi.org/10.1145/266420.266442
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
https://www.pcisecuritystandards.org/document_library?document=pci_dss
https://securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf
https://securosis.com/assets/library/reports/TokenGuidance-Securosis-Final.pdf
http://www.smartcardalliance.org/downloads/EMV-Tokenization-Encryption-WP-FINAL.pdf
http://www.smartcardalliance.org/downloads/EMV-Tokenization-Encryption-WP-FINAL.pdf
http://www.hhs.gov/sites/default/files/privacysummary.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf
https://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_SST_Data_Protection_and_PCI_Scope_Reduction_for_Todays_Businesses.pdf

Privacy and Data Processing

vww.ebook3000.con)

http://www.ebook3000.org

SecGDB: Graph Encryption for Exact Shortest
Distance Queries with Efficient Updates

Qian Wang"2®) Kui Ren®, Minxin Du', Qi Li*, and Aziz Mohaisen?

1 School of CS, Wuhan University, Wuhan, China
{qianwang,duminxin}@whu.edu.cn
2 Collaborative Innovation Center of Geospatial Technology, Wuhan University,
Wuhan, China
3 Department of CSE, University at Buffalo, SUNY, Buffalo, USA
{kuiren,mohaisen}@buffalo.edu
4 Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
qi.li@sz.tsinghua.edu.cn

Abstract. In the era of big data, graph databases have become increas-
ingly important for NoSQL technologies, and many systems can be mod-
eled as graphs for semantic queries. Meanwhile, with the advent of cloud
computing, data owners are highly motivated to outsource and store their
massive potentially-sensitive graph data on remote untrusted servers in
an encrypted form, expecting to retain the ability to query over the
encrypted graphs.

To allow effective and private queries over encrypted data, the most
well-studied class of structured encryption schemes are searchable sym-
metric encryption (SSE) designs, which encrypt search structures (e.g.,
inverted indexes) for retrieving data files. In this paper, we tackle the
challenge of designing a Secure Graph DataBase encryption scheme
(SecGDB) to encrypt graph structures and enforce private graph queries
over the encrypted graph database. Specifically, our construction strate-
gically makes use of efficient additively homomorphic encryption and gar-
bled circuits to support the shortest distance queries with optimal time
and storage complexities. To achieve better amortized time complex-
ity over multiple queries, we further propose an auxiliary data structure
called query history and store it on the remote server to act as a “caching”
resource. We prove that our construction is adaptively semantically-
secure in the random oracle model and finally implement and evaluate it
on various representative real-world datasets, showing that our approach
is practically efficient in terms of both storage and computation.

Keywords: Graph encryption - Shortest distance query
Homomorphic encryption + Garbled circuit

1 Introduction

Graphs are used in a wide range of application domains, including social networks,
online knowledge discovery, computer networks, and the world-wide web, among

© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 79-97, 2017.
https://doi.org/10.1007/978-3-319-70972-7_5

80 Q. Wang et al.

others. For example, online social networks (OSN) such as Facebook and LinkedIn
employ large social graphs with millions or even billions of vertices and edges in
their operation. As a result, various systems have been recently proposed to handle
massive graphs efficiently, where examples include GraphLab [22], Horton [29] and
TurboGraph [9]. These database applications allow for querying, managing and
analyzing large-scale graphs in an intuitive and expressive way.

With the increased popularity of cloud computing, data users, including both
individuals and enterprises, are highly motivated to outsource their (potentially
huge amount of sensitive) data that may be abstracted and modeled as large
graphs to remote cloud servers to reduce the local storage and management
costs [6,15,19-21,30,31]. However, database outsourcing also raises data confi-
dentiality and privacy concerns due to data owners’ loss of physical data control.
Privacy-sensitive data therefore should be encrypted locally before outsourcing
it to the untrusted cloud. Data encryption, however, hinders data utilization and
computation, making it difficult to efficiently retrieve or query data of interest
as opposed to the case with plaintext.

To address this challenge, the notion of structured encryption was first intro-
duced by Chase and Kamara [3]. Roughly speaking, a structured encryption
scheme encrypts structured data in such a way that it can be privately queried
through the use of a specific token generated with knowledge of the secret key.
Specifically, they presented approaches for encrypting (structured) graph data
while allowing for efficient neighbor queries, adjacency queries and focused sub-
graph queries on labeled graphs.

Despite all of these important types of queries, finding the shortest distance
between two vertices was not supported. The shortest distance queries are not
only building blocks for various more complex algorithms, but also have appli-
cations of their own. Such applications include finding the shortest path for
one person to meet another in an encrypted social network graph, seeking the
shortest path with the minimum delay in an encrypted networking or telecom-
munications abstracted graph, or performing a privacy-preserving GPS guidance
in which one party holds the encrypted map while the other knows his origin
and destination.

Recently, Meng et al. [24] addressed the graph encryption problem by pre-
computing a data structure called the distance oracle from an original graph. They
leveraged somewhat homomorphic encryption and standard private key encryp-
tion for their construction, thus answering shortest distance queries approximately
over the encrypted distance oracle. Although their experimental results show that
their schemes are practically efficient, the accuracy is sacrificed for using the dis-
tance oracle (i.e., only the approximate distance or even the negative result is
returned). On the one hand, the distance oracle based methods only provide an
estimate on the length of the shortest path. On the other hand, the exact path
itself could also be necessary and important in many of the aforementioned appli-
cation scenarios. Furthermore, both of the previous solutions only deal with static
graphs [3,24]: the outsourced encrypted graph structure cannot explicitly support

vww.ebook3000.con)

http://www.ebook3000.org

SecGDB 81

efficient graph updates, since it requires to either re-encrypt the entire graph, or
make use of generic and expensive dynamization techniques similar to [4].

To tackle the practical limitations of the state-of-the-art, we propose a new
Secure Graph DataBase encryption scheme (SecGDB) that supports both exact
shortest distance queries and efficient dynamic operations. Specifically, our con-
struction addresses four major challenges. First, to seek the best tradeoff between
accuracy and efficiency, we process the graph itself instantiated by adjacency
lists instead of encrypting either the distance oracle pre-computed from the
original graph or the adjacency matrix instantiation. Second, to compute the
exact shortest path over the encrypted graph, we propose a hybrid approach
that combines additively homomorphic encryption and garbled circuits to imple-
ment Dijkstra’s algorithm [5] with the priority queue. Third, to enable dynamic
updates of encrypted graphs, we carefully design an extra encrypted data struc-
ture to store the relevant information (e.g., neighbor information of nodes in
adjacency lists) which will be used to perform modifications homomorphically
over the graph ciphertexts. Fourth, to further optimize the performance of the
query phase, we introduce an auxiliary data structure called the query history by
leveraging the previous queried results stored on the remote server as a “caching”
resource; namely, the results for subsequent queries can be returned immediately
without incurring further cost.

Our main contributions are summarized as follows.

— Functionality and efficiency. We propose SecGDB to support exact shortest
distance queries with optimal time and storage complexity. We further obtain
an improved amortized running time over multiple queries with the auxiliary
data structure called “query history”.

— Dynamics. We design an additional encrypted data structure to facilitate effi-
cient graph updates. Compared with the state-of-the-art [3,24], which con-
sider only static data, SecGDB performs dynamic (i.e., addition or removal
of specified edges over the encrypted graph) operations with O(1) time com-
plexity.

— Security, implementation and evaluation. We formalize our security model
using a simulation-based definition and prove the adaptive semantic secu-
rity of SecGDB under the random oracle model with reasonable leakage. We
implement and evaluate the performance of SecGDB on various representative
real-world datasets to demonstrate its efficiency and practicality.

2 Preliminaries and Notations

We begin by outlining some notations. Given a graph G = (V, E)) which consists
of a set of vertices V and edges E, we denote its total number of vertices as
n = |V|] and its number of edges as m = |E|. G is either undirected or directed.
If G is undirected, then each edge in F is an unordered pair of vertices, and we
use len(u,v) to denote the length of edge (u,v), otherwise, each edge in F is an
ordered pair of vertices. In an undirected graph, deg(v) is used to denote the
number of vertices adjacent to the vertex v (i.e., degree). For a directed graph,

82 Q. Wang et al.

we use deg” (v) and deg™ (v) to denote the number of edges directed to vertex v
(indegree) and out of vertex v (outdegree), respectively. A shortest distance query
q = (s,t) asks for the length (along with the route) of the shortest path between
s and ¢, which we denote by dist(s,t) or dist,. [n] denotes the set of positive

integers less than or equal to n, i.e., [n] = {1,2,...,n}. We write z S X to
represent an element x being uniformly sampled at random from a set X. The
output x of a probabilistic algorithm A is denoted by x < A and that of a
deterministic algorithm B by x := B. Given a sequence of elements v, we refer
to the i*® element as v[i] or v; and to the total number of elements in v by |v|. If
A is a set then |A] refers to its cardinality, and if s is a string then |s| refers to its
bit length. We denote the concatenation of n strings si,...,s, by (s1,...,8n),
and also denote the high-order |s3|-bit of the string s; by 5‘1‘32|.

We also use various basic data structures including linked lists, arrays and
dictionaries. Specifically, a dictionary T (also known as a map or associative
array) is a data structure that stores key-value pairs (k,v). If the pair (k,v) is
in T, then T[k] is the value v associated with k. An insertion operation of a
new key-value pair (k,v) to the dictionary T is denoted by T[k] := v. Similarly,
a lookup operation takes a dictionary T and a specified key k as input, then
returns the associated value v denoted by v := T[k].

2.1 Cryptographic Tools

Homomorphic encryption. Homomorphic encryption allows certain com-
putations to be carried out on ciphertexts to generate an encrypted result
which matches the result of operations performed on the plaintext after being
decrypted. In this work, we only require the evaluation to efficiently support
any number of additions, and there are many cryptosystems satisfying with this
property. In particular, we use the Paillier cryptosystem [27] in our construction.

In the Paillier cryptosystem, the public (encryption) key is pk, = (n =
1q,9), where g € Z*,, and p and ¢ are two large prime numbers (of equivalent
length) chosen randomly and independently. The private (decryption) key is
sk, = (p(n),o(n)™! mod n). Given a message a, we write the encryption of a
as [a]pk, or simply [a], where pk is the public key. The encryption of a message
x € Zy is[z] = g% - r™ mod n?, for some random r € Z*. The decryption of
the ciphertext is = L{z]*™ mod n?) - ¢~1(n) mod n, where L(u) = “-1.
The homomorphic property of the Paillier cryptosystem is given by [z1] -[x2] =
(g™ 1) (g% - r) = g™ 2 (rir2)" mod n? =[x + 22].

Pseudo-random functions (PRFs) and permutations (PRPs). Let F :
{0,1}* x {0,1}* — {0,1}* be a PRF, which is a polynomial-time computable
function that cannot be distinguished from random functions by any probabilistic
polynomial-time adversary. A PRF is said to be a PRP when it is bijective.
Readers can refer to [16] for the formal definition and security proof.

Oblivious transfer. Parallel 1-out-of-2 Oblivious Transfer (OT) of m I-bit
strings [13,25], denoted as OT}", is a two-party protocol run between a chooser

vww.ebook3000.con)

http://www.ebook3000.org

SecGDB 83

C and a sender S. For i = 1,...,m, the sender & inputs a pair of [-bit strings
59, s} € {0,1}! and the chooser C inputs m choice bits b; € {0,1}. At the end
of the protocol, C learns the chosen strings si"’ but nothing about the unchosen

strings s}fb", whereas S learns nothing about the choice b;.

Garbled circuits. Garbled circuits were first proposed by Yao [32] for secure
two-party computation and later proven practical by Malkhi et al. [23]. At a high
level, garbled circuits allow two parties holding inputs = and y, respectively, to
jointly evaluate an arbitrary function f(z,y) represented as a boolean circuit
without leaking any information about their inputs beyond what is implied by
the function output.

Several optimization techniques have been proposed in the literature to con-
struct the standard garbled circuits. Kolensikov et al. [18] introduced an efficient
method for creating garbled circuits which allows “free” evaluation of XOR gates.
Pinkas et al. [28] proposed an approach to reduce the size of garbled gates from
four to three entries, thus saving 25% of the communication overhead.

2.2 Fibonacci Heap

Fibonacci heap [7] is a data structure for implementing priority queues, which
consists of a collection of trees satisfying the minimum-heap property; that is, the
key of a child is always greater than or equal to the key of the parent. This implies
that the minimum key is always at the root of one of the trees. Generally, a heap
data structure supports the following six operations: Make-Heap(), Insert(H, z),
Minimum(H), Extract-MIN(H), Decrease-Key(H, z) and Delete(H, x).

Compared with many other priority queue data structures including the
Binary heap and Binomial heap, the Fibonacci heap achieves a better amor-
tized running time [7].

3 System Model and Definitions

In this work, we consider the problem of designing a structured encryption
scheme that supports the shortest distance queries and dynamic operations over
an encrypted graph stored on remote servers efficiently.

At a high level, as shown in Fig. 1, our construction contains three entities,
namely the client C, the server S and the proxy P. In the initialization stage, the
client C processes the original graph G to obtain its encrypted form (2, outsources
2 tothe server S and distributes partial secret key sk to the proxy P. The privacy
holds as long as the server S and the proxy P do not collude, and this architec-
ture of two non-colluding entities has been commonly used in the related literature
[1,6,26]. Subsequently, to enable the shortest distance query over the encrypted
graph {2¢, the client generates a query token 7, based on the query ¢ and submits
it to the cloud server S. Finally, the encrypted shortest distance along with the
path are returned to the client C. In addition, the graph storage service in consid-
eration is dynamic, such that the client C may add or remove edges to or from the

84 Q. Wang et al.

a, +r, T a, +1, T,
k bils‘ ‘k bits k bits‘ ‘k bits
S "
& Client C % SUB SUB
&)
& &/ %
<& & & I low bits Ilow bits
&
§
<&
CMP
Secure comparison protocol
l 1 bit
Cloud server S Proxy P x
Fig. 1. System model Fig. 2. The secure comparison circuit.

encrypted graph {2¢ as well as modify the length of the specified edge. To do so,
the client generates an update token 7, corresponding to the dynamic operations.
Given 7, the server S can securely update the encrypted graph 2¢.

Formally, the core functionalities of our system are listed as below.

Definition 1. An encrypted graph database system supporting the shortest dis-
tance query and dynamic updates consists of the following five (possibly proba-
bilistic) polynomial-time algorithms/protocols:

sk « Gen(1*): is a probabilistic key generation algorithm run by the client. It
takes as input a security parameter A and outputs the secret key sk.

¢ «— Enc(sk, G): is a probabilistic algorithm run by the client. It takes as input
a secret key sk and a graph G, and outputs an encrypted graph (2.

disty «— Dec(sk,cq): is a deterministic algorithm run by the client. It takes as
input a secret key sk and an encrypted result ¢y, and outputs disty including the
shortest distance as well as its corresponding path.

(cq;0") < DistanceQuery(sk, q; 2¢,0): is a (possibly interactive and probabilis-
tic) protocol run between the client and the server'. The client takes as input a
secret key sk and a shortest distance query q, while the server takes as input the
encrypted graph 2¢ and the query history o (which is empty in the beginning).
During the protocol execution, a query token 7, is generated by the client based
on the query q and then sent to the server. Upon completion of the protocol, the
client obtains an encrypted result ¢, while the server gets a (possibly new) query
history o’.

(L; 24, 0) <« UpdateQuery(sk, u; 2¢): is a (possibly interactive and probabilistic)
protocol run between the client and the server. The client takes as input a secret key
sk and an update object u (e.g., the edges to be updated), while the server takes as

1 A protocol P run between the client and the server is denoted by (u;v) « P(z;y),
where x and y are the client’s and the server’s inputs, respectively, and v and v are
the client’s and the server’s outputs, respectively.

vww.ebook3000.con)

http://www.ebook3000.org

SecGDB 85

input the encrypted graph 2. During the protocol execution, an update token 1, is
generated by the client based on the object u and then sent to the server. Upon com-
pletion of the protocol, the client gets nothing while the server obtains an updated
encrypted graph 2¢, and a new empty query history o.

3.1 Security Definitions

As in previous SSE systems [2,4,8,14,15] we also relax the security requirements
appropriately by allowing some reasonable information leakage to the adversary
in order to obtain higher efficiency. To capture this relaxation, we follow [3,4,8,15]
to parameterize the information by using a tuple of well-defined leakage functions
(see Sect.5). Besides, we assume that the server and the proxy are both semi-
honest entities in our setting.

In the following definition, we adapt the notion of adaptive semantic security
from [3,4,15] to our encrypted graph database system.

Definition 2. (Adaptive semantic security) Let (Gen,Enc,Dec,DistanceQuery,
UpdateQuery) be a dynamic encrypted graph database system and consider the
following experiments with a stateful adversary A, a stateful simulator S and
three stateful leakage functions L1, Lo and L3:

Realy()\) : The challenger runs Gen(1*) to generate the key sk. A outputs G
and receives 2 — Enc(sk,G) from the challenger. A then makes a polynomial
number of adaptive shortest distance queries q or update queries u. For each q,
the challenger acts as a client and runs DistanceQuery with A acting as a server.
For each update query u, the challenger acts as a client and runs UpdateQuery
with A acting as a server. Finally, A returns a bit b as the output of the erper-
1ment.

Ideal 4 s(\) : A outputs G. Given L£1(G), S generates and sends ¢ to A. A
makes a polynomial number of adaptive shortest distance queries q or update
queries u. For each q, S is given L2(G,q), and simulates a client who runs
DistanceQuery with A acting as a server. For each update query u, S is given
L3(G,u), and simulates a client who runs UpdateQuery with A acting as a server.
Finally, A returns a bit b as the output of the experiment.

We say such a queryable encrypted graphs database system is adaptively
(L1, Lo, L3)-semantically secure if for all probabilistic polynomial-time (PPT)
adversaries A, there exists a probabilistic polynomial-time simulator S such that

| Pr[Real 4(\) = 1] — Pr[Ideal 4 s(\) = 1]| < negl(\),

where negl(-) is a negligible function.

86 Q. Wang et al.

4 Our Construction: SecGDB

In this section, we present our encrypted graph database system—SecGDB, which
efficiently supports the shortest distance query and the update query (i.e., to
add, remove and modify a specified edge).

4.1 Overview

We assume that an original graph is instantiated by adjacency lists, and every
node in each adjacency list contains a pair of the neighboring vertex and the
length of the corresponding edge (i.e., vertex and length pair).

Our construction is inspired by [15], and the key idea is as follows. During
the initialization phase, we place every node of each adjacency list at a random
location in the array while updating the pointers so that the “logical” integrity
of the lists are preserved. We then use the Paillier cryptosystem to encrypt the
length of the edge in each node, and use a “standard” private-key encryption
scheme [16] to blind the entire node. In the shortest distance query phase, if
the query has been submitted before or was a subpath of the query history, the
result can be immediately returned to the client; otherwise, we implement the
Dijkstra’s algorithm with the aid of Fibonacci heap in a secure manner, and
then query history is updated based on the results. To support efficient dynamic
operations on the encrypted graph, we generate the relevant update token, which
allows the server to add or remove the specified entry to and from the array. After
finishing the updates, the query history is rebuilt for future use.

4.2 Initialization Phase

Intuitively, the initialization phase consists of Gen and Enc as presented in
Definition 1. The scheme uses the Paillier cryptosystem, and three pseudo-
random functions P, F' and G, where P is defined as {0, 1}* x {0,1}* — {0,1}*,
F is defined as {0,1}* x {0,1}* — {0,1}* and G is defined as {0, 1}* x {0,1}* —
{0,1}*. We also use a random oracle H which is defined as {0,1}* — {0, 1}*.

Gen(1*): Given a security parameter)\, generate the following keys uniformly at

random from their respective domains: three PRF keys kq, ko, k3 & {0,1}* for
Py, (+), Fr,(-) and Gi,(-), respectively, and (sk,, pk,) for the Paillier cryptosys-
tem. The output is sk = (ki, ko, k3, sky, pkp), where sk, is sent to the proxy
through a secure channel.

As shown in Algorithm 1, the setup procedures are done in the first five
steps. From line 6 to 29, the length of the edge is encrypted under the Paillier
cryptosystem and the entire node N; is encrypted by XORing an output of the
random oracle H. Meanwhile, the neighboring information of each node N; (i.e.,
the nodes following and previous to N; in the original adjacency lists, and the
corresponding positions in Ag) constitutes the dual node D;, and the encrypted
dual node will be stored in the dictionary Tp. Generally speaking, Tp stores
the pointer to each edge, and it is used to support efficient delete updates on the

vww.ebook3000.con)

http://www.ebook3000.org

SecGDB 87

Algorithm 1. Graph Enc algorithm

Input: G = (V, E), sk +1));
Output: Qg 21: Set D; = (Pr;((u,v;—1)),7(ctr —
1: Set n = |V|,m = |E|; 1), m(ctr),m(ctr + 1), Pe; ((u, vig1)));
2: Initialize an array Ag of size m + z; 29: end if
3: ;I:;iiii.ze two dictionaries Tg, Tp of size n+1 23- Sample 7; i {0, 1}>\;
4 Initi 1,’ d . 24: Store the encrypted N; in the array
: n.1t1a ize a random permutation 7 over [m + Aglm(ctr)] i= (N; @ H(Kuy,7:),m4);
5 f]’_t, i " N 1 25: Store the encrypted D; in the dictionary
: Initialize a counter ctr = 1;
’ Tp[P i) :=Di & F) Vi));
6: for each vertex u € V do D[Py ((u, vi))] @ Fy ((w,vi))
7. G ,7 . 26: Increase ctr = ctr + 1;
: enerate Ky := Gpg(u); 27 end for
. P + :
8: for i =1 to deg™ (u) do 28: Store a pointer to the head
9: Encrypt the length of the edge (u, vi) node of the adjacency list for wu
under the Paillier cryptosystem c¢; « in the dictionary Tg[Pk, (u)] —
Dlen(u, vi)]pry (addr(N1), Pr, ((u, v1)), Ku) & F, (w);
10: if i =1 and i # deg™ (u) then 29: end for
11: Se;)Ni = <Pk1 (Ui)v sz (’Ui)v Ci, 7T(Ctr 30: for i =1 to z do
+1)); 31: Set F; := (0, 7(ctr+1)) ;
12: Set D; := (0,0,w(ctr),w(ctr + 32: ifi =t 2 then
1), Py ({u, vig1))); 33: Set F; := (0, NULL);
13: else if i # 1 and i = deg™ (u) then 34: end if
14: Set N; := (P, (vi), Fry (vi), ci, NULL); 35: Store the unencrypted F; in the array
15: Set D; := (Pg;((u,vi—1)),7(ctr — Ag[m(ctr)] := Fi;
1), w(ctr),0, 0); 36: Increase ctr = ctr + 1;
16: else if i = 1 and i = deg* (u) then %g end for .
17: Set N; = (Py, (v3), Fiey (v3), ¢, NULL); . Store a pjalnter to.the head node of the
18: Set D, := (0.0 0.0): free list in the dictionary Tg[free] :=
: et D; := (0,0, w(ctr), 0, 0); .
. (addr(F1), 0);
19: else 39: Output the encrypted graph Qg =
20: Set N; := (P, (vi), Fy(vi), ci, m(ctr

(A, Ta, Tp);

encrypted graph. After the aforementioned operations are done, the address of
each head node will be encrypted and stored in the dictionary T, namely, T
stores the pointer to the head of each adjacency list. The remaining z cells in
the array construct an unencrypted free list, which is used in the add updates.
To ensure the size of all the entries in Ag, T¢ and Tp is identical, we should
pad by a string of 0’s (i.e., 0). Finally, we output the encrypted graph 2.

Figure 3 gives an illustrative example to construct the encrypted graph from
a directed graph with four vertices vy, va, v3 and vy as well as five edges. All the
nodes contained in the original (three) adjacency lists are now stored at random
locations in Ag, and the dictionaries T and Tp are also shown in Fig. 3. Note
that in a real encrypted graph, there would be padding to hide partial structural
information of the original graph (as will be discussed in Sect.5); we omit this
padding for simplicity in this example.

4.3 Shortest Distance Query Phase

In this section, we describe the process of performing the exact shortest distance
query over the encrypted graph, as summarized in Algorithm 2.

First, the client generates the query token 7, based on a query ¢ = (s,t), and
then sends it to the server. If the token has been queried before or acts as a sub-
path of the query history o, the server returns the result ¢, (¢, C o) to the client

88 Q. Wang et al.

Graph G : Dictionary To Dictionary T
i
FoRe)— (3.0). K, >®F) P (<Vw"z>)*’<003 00>@FA (<h "z>)
U ey —(L0yv). K YOF,0) (o)) —(001.200,v)) @F, ({r,v,)
B vy ;él BEOY 1) {020 1200)0F, (1)
)) —>
el b)) —00.400,12) 9%, ()
: —~ . P ({rov)) —{05v.64,00)@F, ((v,v,))
i ’(\r:,VJ)(Vl.L’;)’(V‘.vj)rv‘.vl) free rv\,m free
Pls 8|32 6
P12 03 4 s 6 7
: Array Au

Fig. 3. An example of the encrypted graph construction.

immediately; otherwise, the server executes the Dijkstra’s algorithm with the aid
of a Fibonacci heap H in a private way. Concretely, the server first reads off the
vertices that are adjacent to the source s and inserts to the heap H (line 14 to 22).
Subsequently, each iteration of the loop from line 23 to 49 starts by extracting the
vertex o with the minimum key. If the vertex « is the requested destination 75, the
server updates the query history ¢ based on the newly-obtained path, computes
the encrypted result ¢, via reverse iteration and returns it to the client. Else, the
server recovers the pointer to the head of the adjacency list for the vertex a, and
then retrieves nodes in the adjacency list. Specifically, for the node N;, once an
update of £[a;] occurs it indicates that a shorter path to a; via « has been discov-
ered, the server then updates the path. Next, the server either runs Insert(H, «;) (if
a; isnot in H) or Decrease-Key(H, «;, key(a;)). It is worth noting that both the con-
ditional statement £[a] - ¢; < £[a;] and some specific operations on the Fibonacci
heap (e.g., Extract-MIN) require performing a comparison on the encrypted data.
Hence we build a secure comparison protocol (see Sect. 4.3) based on the garbled
circuits and invoke it as a subroutine.

Finally, the client runs Dec(c,, sk) to obtain the dist, as follows. Given ¢,
the client parses it as a sequence of {c1, co) pairs, and for each pair, the client
decrypts ¢ (the path) and ¢y (the distance) by using ky and sk,, respectively.

Remarks. Conceptually, the history o consists of all previous de-duplicated
queried results. For a new query, the server traverses ¢ and checks whether
the new query belongs to a record in o. For example, let history o consist of
a shortest path from s to ¢ (i.e., {s,...,u,...,v,...,t}), then for a new query
q = (u,v), the corresponding encrypted result ¢, = {u,...,v} where ¢, C o can
be returned immediately. Note that only lookup operations (of dictionary) are
required, thus making the whole process highly efficient.

Secure Comparison Protocol. We now present the secure comparison pro-
tocol which is based on the garbled circuits [12,32] for selecting the minimum
of two encrypted values. This subroutine is implemented by the circuit shown
in Fig. 2, and we use a CMP circuit and two SUB circuits constructed in [17] to
realize the desired functionality.

vww.ebook3000.con)

http://www.ebook3000.org

SecGDB 89

Algorithm 2. DistanceQuery protocol

Input: 23: repeat

The client C’s input is sk, q = (s, t); 24: S : parse Extract-MIN(H) as (a, key(«));

The server S’s input is 2¢, 03 25: if a = 7o then
Output: 26: S : update o’ based on path;

The client C’s output is cg; 27: S = C : return ¢4 to the client;

The server S’s output is o’} 28: S : break;
1: ¢ : compute 74 := (Prey (8), Prey (1), Frep (5))s 29: end if
2: C = S : output T4 to the server; 30: S : compute (addry, str, Ky) := Tgla] @ B;
3: S : parse Tq as (71,72, 7T3); 31: S : parse Ag[addr1] as (N7, 71);
4: if Tg[r1] =L or Tg[r2] =L then 32: S : compute Ny := N} @ H(Kuy,71);
5: S = C: return L to the client; 33: while addr; 41 7 NULL do
6: else if {71,72} C o then 34: S : parse N; as (a;, B4, ¢;,addr;11);
7: S = C: return cq to the client; 35: if ¢[a] - ¢; < €[a;] then
8: else 36: S : update glay] := £[a] - ej;
9: S : initialize a Fibonacci heap H — 37: St set key(a;) = €loy];

Make-Heap(); 38: S : store path[a;] := (o, ¢;);
10: S : initialize two dictionaries & and path; 39: end if
11: S : compute (addry, str, Ks) := Tg[r1] & 73; 40: if a; € H then
12: S : parse Ag[addry] as Wi,) 41: S : run Insert(H, a;) with the key(a;);
13: S : compute Nj := I\I’1 D H(Ks,7m1); 42: else
14: while addr;;; # NULL do 43: S : run Decrease-Key(H, av;, key(a;));
15: S : parse N; as (a;, B4, ¢;,addrj11); 44; end if
16: S : store path[a;] := (71, ¢;) 45: S : parse Ag[addrj 1] as <N£+1: Tit1)s
17: S :set [a;] = ¢; and key(ay) := &[ay]; 46: S : compute Njig = N;+1 &)
18: S : run Insert(H, a;) with the key(a;); H(Ky,7i41);
19: S : parse Ag[addr; 1] as (N;+1, Tig1); 47: S :increase i = 1 + 1;
20: S : compute Nj 1 := N;+1 @® H(Ks,7i41); 43 e‘:'d vs'/hile
21: S :increase i = i + 1; 49 until H is empty
50: end if

22: end while

At the beginning, the server has two encrypted values [a1] and [az] and the
proxy has the secret key sk,. W.l.o.g., we assume that the longest shortest distance
between any pair of vertices (i.e., diameter [10]) lies in [2!], namely, a; and ay are
two [-bit integers. Instead of sending [a;] and [as] to the proxy, the server first
masks them with two k-bit random numbers r1 and r2 (e.g.,[a1 + 1] =[a1] -[r1])
respectively, where k is a security parameter (k > [). Then the server’s inputs
are r1 and 79, and the proxy’s inputs are a; + 1 and ag + r3. Finally, the output
single bit x implies the comparison result: if x = 1, then a; > as; 0 otherwise.
Note that masking here is done by performing addition over the integers which is
a form of statistical hiding. More precisely, for a [-bit integer a; and a k-bit integer
r;, releasing a; +1; gives statistical security of roughly 2!=F for the potential value
a;. Therefore, by choosing the security parameter k properly, we can make this
statistical difference arbitrarily low [12].

Packing Optimization. It is worth noting that the message space of the Paillier
cryptosystem is much greater than the space of the blinded values. We can
therefore provide a great improvement in both computation time and bandwidth
by leveraging the packing technique. The key idea lies in that the server can send
one aggregated ciphertext in the form [{(a;4+1 +7i+1), .- -, (@i+p +7i1p))] instead
of p ciphertexts of the form [a; + 7;], where p = % (1024-bit modulus used in

Paillier cryptosystem).

90 Q. Wang et al.

Algorithm 3. UpdateQuery protocol

Input:
The client C’s input is sk, u;
The server S’s input is 2¢;
Output:
The client C’s output is L;
The server S’s output is QIG, g,

a) Adding new edges

At the client C:

1) u contains information about newly-added
edge (v1,v2) with the length len(vy, va2);

2) compute the update token 7, := (P (v1),

Fiy (v1)/ 9050 1 P (01, 02)), Fry ({01,
va)),N), where N = <<P’C1 (v2), Fy (v2),[len], O)
SH (K, 1), 7);

C = S : output 7, to the server;

At the server S:

1) parse 7, as (71,72, T3, T4, T5) and return L
if 71 is not in Tg;

8) store Tp[rs] := (0,0, addry, addrs, str) D 7y4;
9) update Tp[str] := Tp[str]/(dmstDl g
(13, addr);

10) obtain an updated graph Q'G and rebuild
a;
b) Deleting existing edges

At the client C:

1) w contains information about the existing
edge (v1,v2) to be deleted;

2) compute 7, = (Pg, ((v1,v2)),

Floy ((v1,v2))) ;

C = S : outputs 7, to the server;

At the server S:

1) parse 7y, as (71, 72) and return L if 71 is not
in Tp;

2) look wup in Tp and computes
(stri, addry, addra, addrs, strg) := Tp[r1]®7o;
3) compute (addry, 0) := Tg[free];

4) free the node and set Agladdry] :=
(0, addry);

5) update the pointer Tg[free] := (addrs, 0);
6) parse Ag[addrq] as (N7, 71);

7) update node Agladdri] := (N} @ addr> &
addrs, 71);

8) update the corresponding entry Tp[stri] :=
Tp[stri] ® (addra, 71) @ (addrs, strz);

9) update the corresponding entry Tp[strz] :=
Tp[str3] ® (addra, 71) ® (addry, stry);

10) obtain an updated graph Q’G and rebuild
o;

2) compute (addri, 0) := Tg[free];

3) parse Ag[addry] as (0, addrs);

4) update the pointer to the next free node
Tg[free] := (addrs, 0);

5) compute (addrs, str) := Tg[r]/ (4= g
T2;

6) parse 75 as (N',r) and set Agladdri] :=
(N @ (0, addrs), r);

7) update the pointer to the newly-added node
Ta[r] = Te[n]® s ¢ (addrs, str) &
(addrq, 73);

4.4 Supporting Encrypted Graph Dynamics

We next discuss the support of update operations over the encrypted graph, and
the details are given in Algorithm 3. Here, we do not particularly consider the
addition and removal of vertices, because the update of the vertex can be viewed
as the update of a collection of related edges.

To add new edges, the client generates the corresponding token 7, for an
update object u and sends it to the server. After receiving 7,, the server locates
the first free node addr; in the array Ag, and modifies the pointer in T to point
to the second one. Later, the server retrieves the high-order useful information
(without the key K,,) of the head node Ny, stores N that represents the newly
edge at location addr; and modifies its pointer to point to the original head
node N; without decryption. Then, the server updates the pointer in Tg to
point to the newly-added node, and finally updates the corresponding entries in
the dictionary T p. To remove the existing edges, the client generates the update
token 7, and submits it to the server. Subsequently, the server looks up in the
Tp and recovers the adjacency information of the specified edge. In the following
steps, the server frees the node, inserts it into the head of the free list and then
homomorphically modifies the pointer of the previous node to point to the next
node in Ag. Eventually, the server updates the related entries in the dictionary
Tp. Note that modifying a specified edge can be easily achieved by removing

vww.ebook3000.con)

http://www.ebook3000.org

SecGDB 91

the “old” edge first, and adding a “new” edge with the modified length later.
After the encrypted graph has been updated, the old query history is deleted
and a new empty history will be rebuilt simultaneously.

4.5 Performance Analysis

The time cost of initialization phase is dominated by encrypting all the edges
using Paillier cryptosystem and processing all the vertices, thus the time com-
plexity of this part is O(m +n). The generated encrypted graph, which consists
of an array and two dictionaries, has the storage complexity O(m + n). In the
query phase, we use the Fibonacci heap to speed up the Dijkstra’s algorithm,
and thus we obtain an O(nlogn + m) time complexity which is optimal among
other priority queue optimization techniques (e.g., binary or binomial heap) [7].
During the execution of the secure comparison protocol, the overheads between
the server and the proxy are directly related to the number of gates in the com-
parison circuit. Since many expensive operations of the garbled circuits can be
pushed into a pre-computation phase, most of the costs will be relieved from the
query phase. By maintaining an auxiliary structure history ¢ at the server, we
can obtain an even better amortization time complexity over multiple queries,
i.e., the query time for subsequent queries that can be looked up in the history
are (almost) constant. Besides, it is obvious that the time complexity for both
addition and removal operations on the encrypted graph are only O(1).

5 Security

We allow reasonable leakage to the server to trade it for efficiency. Now, we pro-
vide a formal description of the three leakage functions £1, £o and L3 considered
in our scheme as follows.

— (Leakage function L1). Given a graph G, £1(G) = {n,m,#Aq}, where n is
the total number of vertices, m is the total number of edges in the graph G
and #A¢s denotes the number of entries (i.e., m + z) in the array Ag.

— (Leakage functionLs). Given a graph G, a query q, L2(G, q) = {QP(G, q), AP
(G,q)}, where QP(G, q) denotes the query pattern and AP(G, ¢) denotes the
access pattern, both of which are given in the following definitions.

— (Leakage function Ls). Given a graph G, an update object u, L3(G,u) =
{idy, idyew, next} is for add updates, and L3(G,u) = {idgei, next, prev} is for
delete updates, where id, denotes the identifier of the start vertex in the
newly edge, id,e, and idge; denote the identifiers of the edges to be added
and deleted, respectively. prev and next contain the neighboring information
(i.e., the identifiers of the neighboring edges) of the edge to be updated. If
there are no nodes in Ag before and after the edge to be updated then prev
and next are set to L.

Definition 3 (Query Pattern). For two shortest distance queries ¢ = (s,t),q =
(s',t), define sim(q,q¢') = (s = s',s=t',t =s',t =t'), i.e., whether each of the

92 Q. Wang et al.

vertices in ¢ matches each of the vertices in q'. Let q = (q1,...,qs) be a sequence
of § queries, the query pattern QP(G,q) induced by q is a § X & symmetric
matriz such that for 1 < i,7 < 6, the element in the i row and j** column
equals sim(g;, q;). Namely, the query pattern reveals whether the vertices in the
query have appeared before.

Definition 4 (Access Pattern). Given a shortest distance query q for the graph
G, the access pattern is defined as AP(G,q) = {id(cq),id(cq)’,id"(cq)}, where
id(cq) denotes the identifiers of vertices in the encrypted result ¢y, id(cq)" denotes
the identifiers of vertices contained in the dictionary path and it reveals the
subgraph consisting of vertices reachable from the source (id(cq) C id(cq)’), and
id*(cq) denotes the identifiers of the edges with one of its endpoints is the head
node of retrieved adjacency lists.

Discussion. The query pattern implies whether a new query has been issued
before, and the access pattern discloses the structural information such as graph
connectivity associated with the query. The leakage is not revealed unless its cor-
responding query has been issued. This is similar to keyword-based SSE schemes,
where the leakage (i.e., patterns associated with a keyword query) is revealed
only if the corresponding keyword is searched. Fortunately, we can guarantee
some level of privacy to the structural information with slightly lower efficiency
in our setting, namely, we can add some form of noise (i.e., padding carefully
designed fake entries [3,4,15] to each original adjacency list) when generates the
encrypted graph. Moreover, in various application scenarios where the data may
be abstracted and modeled as sparse graphs (see Table1), the leakage would
not be a big problem. Fully protecting the above two patterns (also forward
privacy defined in [30]) without using expensive ORAM techniques remains an
open challenging problem, which is our future research focus.

Theorem 1. If Paillier cryptosystem is CPA-secure and P, F and G are
pseudo-random, then the encrypted graph query database system is adaptively
(L1, L2, L3)-semantically secure in the random oracle model.

Due to the space limitation, please refer to our technical report for the proof
details.

6 Experimental Evaluation

In this section, we present experimental evaluations of our construction on dif-
ferent large-scale graphs. The experiments are performed on separate machines
with different configurations: the client runs on a machine with an Intel Core
CPU with 4-core operating at 2.90 GHz and equipped with 12 GB RAM, both
the server and the proxy run on machines with an Intel Xeon CPU with
24-core operating at 2.10 GHz and equipped with 128 GB RAM. We imple-
mented algorithms described in Sect. 4 in Java, used HMAC for PRF/PRPs and
instantiated the random oracle with HMAC-SHA-256. Our secure comparison
protocol is built on top of FastGC [11], a Java-based open-source framework.

vww.ebook3000.con)

http://www.ebook3000.org

SecGDB 93

Table 1. The characteristics of datasets. ~ Table 2. The cost of initialization phase.

Dataset |Type Vertices Edges Storage Dataset |Time (min.) Storage (MB)
Talk |directed |2,394,3855,021,410/63.3 MB Te |Tp |Ag |Total
Youtube |undirected|1,134,890|2,987,624|36.9 MB Talk 1042.1 3.6 |172.3/1460.5/1636.4
EuAll |directed 265,214 420,045 4.76 MB Youtube| 460.6 8.93/102 |874 984.93
Gowalla |undirected| 196,591|1,900,654|21.1 MB EuAll 76.8 5.37|14.4 |122 141.77
Vote |directed 7,115/ 103,689| 1.04 MB Gowalla | 307.77 4.69/65.24|556.42| 626.35
Enron |undirected 36,692| 367,662 3.86 MB Vote 17.8 0.14/3.55 |30.3 33.99
Enron 69.4 0.88(12.6 |107 120.48

Our implementation used the following parameters: we use Paillier cryptosys-
tem with a 1024-bit modulus, the bit length allocated for the diameter [is 16
and the bit length of each random mask is 32. Besides, the FastGC framework
provides a 80-bit security level, namely, it uses 80-bit wire labels for garbled
circuits and security parameter ¢ = 80 for the OT extension.

6.1 Datasets

We used real-world graph datasets publicly available from the Stanford SNAP
website (available at https://snap.stanford.edu/data/), and selected the follow-
ing six representative datasets: wiki- Talk, a large network extracted from all user
talk pages; com-Youtube, a large social network based on the Youtube web site;
email-EuAll, an email network generated from a European research institution;
loc-Gowalla, a location-based social network; wiki- Vote, a network that contains
all the Wikipedia voting data; and email-Enron, an email communication net-
work. Table 1 summarizes the main characteristics of these datasets.

6.2 Experimental Results

Table 2 shows the performance of the initialization phase (one-time cost). As can
be seen, the time to encrypt a graph ranges from a few minutes to several hours
which is practical. For example, it takes only 17.4h to obtain an encryption of
the wiki- Talk graph including 2.4 million vertices and 5.1 million edges. Besides,
we note that this phase is highly-parallelizable; namely, we bring the setup time
down to just over 30 min by utilizing a modest cluster of 32 nodes. Furthermore,
the storage cost of an encrypted graph is dominated by Ag with the total size
ranging from 33.99 MB for wiki- Vote to 1.60 GB for wiki- Talk. We also note that
our construction has less storage space requirements compared to Meng et al. [24]
(e.g., 2.07 GB for com-Youtube in [24], whereas our scheme takes 984.93 MB).
We first measured the time to query an encrypted graph without
query history. To simulate realistic queries that work in a similar manner with [§],
we choose the query vertices in a random fashion weighted according to their
outdegrees. The average time at the server (taken over 1,000 random queries)
is given in Fig.4(a) for all encrypted graphs. In general, the results show that
the query time ranges from 20.4 s for wiki- Vote to 46.4 min for wiki- Talk. Addi-
tionally, we can obtain an order-of-magnitude improvement in both computation

https://snap.stanford.edu/data/

94 Q. Wang et al.

time and bandwidth by using the packing optimization presented in Sect.4.3.
The actual time for the client to generate the token and decrypt the encrypted
result per each query is always less than 0.1s which is very fast. In addition,
about 1.5 KB communication overhead is required to transfer the token and the
encrypted result for each query.

Next, the performance of the query phase with the help of history stored
on the server is illustrated in Fig.4(b) and (c¢), and a block of 1,000 random
executions results in one measurement point in both figures. In Fig.4(b), the
y-axis represents the ratio of the average query time using history to that with-
out using history. Generally, it reflects that the average query time decreases
with the increase of the number of queries, because subsequent queries can first
be answered by leveraging the history. Furthermore, as can be seen, after 10,000
queries, it obtains about 86% reduction of the query time for wiki- Vote com-
pared to that without using history, i.e., it only needs roughly 2.9s to answer a
subsequent query. Figure 4(c) demonstrates the increasing size of history (instan-
tiated by HashMap in our implementation) with the increasing amount of total
shortest distance queries.

g

A3

-

Vote
-5 Enron
7 Gowalla
4 Euall
-5~ Youtube.

Query time (min.)
Query time ratio
History size (MB)

2

-6~ Youtube
- Talk

H e
2000 4 0 8000 10000
Number of quenes

(c) Query with history

“&\\\W

&~ Talk

e
2000 4000 6000 8000 10t
Number of queries

(a) Query without histo- (b) Query with history

10" 10°

Enron Vote Gowalla EUAI Youtube Talk
Datasets

00

ry
Fig. 4. The cost of distance query phase.
g query p
Figure5 shows the o
At the server At the server
execution time (aver— - BN At the chent 0.25, . At the cllent

aged over 1,000 runs)
for adding and delet-
ing an edge over all the

Time cost (ms)
5

]

Time cost (ms)
°
7]

encrypted graphs. Obvi-
ously, both addition and
deletion operations are

10°
Enron Vote Gowalla EuAll Youtube Talk

Datasets

(a) Add updates

Enron Vote Gowalla EuAll Youtube Talk
Datasets

(b) Delete updates

practically efficient and
independent of the scale
of the graphs. As shown
in Fig.5(a), the time
cost at the client side is dominated by generating an encryption of the length of
the edge to be updated (roughly 10 ms), while the server side has a negligible
running time. Similar results can be obtained in Fig. 5(b) for the delete updates.
It only needs about 0.25 ms to delete a specified edge, and the time to generate
the delete token at the client side dominates the time cost of the entire process.

Fig. 5. The time cost of dynamic updates.

vww.ebook3000.con)

http://www.ebook3000.org

SecGDB 95

In addition, about 0.3 KB and tens of bytes are consumed when performing
adding and deleting operations, respectively.

7 Conclusion

In this paper, we designed a new graph encryption scheme-SecGDB to encrypt
graph structures and enforce private graph queries. In our construction, we used
additively homomorphic encryption and garbled circuits to support shortest dis-
tance queries with optimal time and storage complexities. On top of this, we
further proposed an auxiliary data structure called query history stored on the
remote server to achieve better amortized time complexity over multiple queries.
Compared to the state-of-the-art, SecGDB returns the exact distance results
and allows efficient graph updates over large-scale encrypted graph database.
SecGDB is proven to be adaptively semantically-secure in the random oracle
model. We finally evaluated SecGDB on representative real-world datasets, show-
ing its efficiency and practicality for use in real-world applications.

Acknowledgment. Qian and Qi’s researches are supported in part by National Nat-
ural Science Foundation of China (Grant No. 61373167, U1636219, 61572278), National
Basic Research Program of China (973 Program) under Grant No. 2014CB340600, and
National High Technology Research and Development Program of China (Grant No.
2015AA016004). Kui’s research is supported in part by US National Science Foundation
under grant CNS-1262277. Aziz’s research is supported in part by the NSF under grant
CNS-1643207 and the Global Research Lab (GRL) Program of the National Research
Foundation (NRF) funded by Ministry of Science, ICT (Information and Communi-
cation Technologies) and Future Planning (NRF-2016K1A1A2912757). Qian Wang is
the corresponding author.

References

1. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database
queries using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M.,
Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102-118.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_7

2. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Rogu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353-373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_20

3. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577-594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_33

4. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of CCS 2006,
pp. 79-88. ACM (2006)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269-271 (1959)

https://doi.org/10.1007/978-3-642-38980-1_7
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-17373-8_33

96

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Q. Wang et al.

Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: Proceedings of ICDE 2014, pp.
664-675. IEEE (2014)

Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. JACM 34(3), 596-615 (1987)

. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.

In: Proceedings of CCS 2014, pp. 310-320. ACM (2014)

Han, W.-S., Lee, S., Park, K., Lee, J.-H., Kim, M.-S.; Kim, J., Yu, H.: Turbo-
Graph: a fast parallel graph engine handling billion-scale graphs in a single PC.
In: Proceedings of SIGKDD 2013, pp. 77-85. ACM (2013)

Harary, F.: Graph Theory. Westview Press, Boulder (1969)

Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Proceedings of USENIX Security 2011. USENIX (2011)
Huang, Y., Malka, L., Evans, D., Katz, J.: Efficient privacy-preserving biometric
identification. In: Proceedings of NDSS 2011, pp. 250-267 (2011)

Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145-161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258-274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_22

Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of CCS 2012, pp. 965-976. ACM (2012)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press,
Boca Raton (2014)

Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1-20. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6_1

Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damgard, I., Goldberg, L.A., Halldérsson, M.M.,
Ingdélfsdbttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486—498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3-40

Lai, R.W.F., Chow, S.S.M.: Structured encryption with non-interactive updates
and parallel traversal. In: Proceedings of ICDCS 2015, pp. 776-777. IEEE (2015)
Lai, R.W.F., Chow, S.S.M.: Parallel and dynamic structured encryption. In: Pro-
ceedings of SECURECOMM 2016 (2016, to appear)

Lai, R.W.F., Chow, S.S.M.: Forward-secure searchable encryption on labeled
bipartite graphs. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017.
LNCS, vol. 10355, pp. 478-497. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61204-1_24

Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning and data mining in the
cloud. PVLDB 5(8), 716-727 (2012)

Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al.: Fairplay-secure two-party com-
putation system. In: Proceedings of USENIX Security 2004, pp. 287-302. USENIX
(2004)

Meng, X., Kamara, S., Nissim, K., Kollios, G.: GRECS: graph encryption for
approximate shortest distance queries. In: Proceedings of CCS 2015, pp. 504-517.
ACM (2015)

vww.ebook3000.con)

https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-319-61204-1_24
https://doi.org/10.1007/978-3-319-61204-1_24
http://www.ebook3000.org

25.

26.

27.

28.

29.

30.

31.

32.

SecGDB 97

Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of
SODA 2001, SIAM, pp. 448-457 (2001)

Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: Proceedings of
S&P 2013, pp. 334-348. IEEE (2013)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computa-
tion is practical. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 250—
267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7-15
Sarwat, M., Elnikety, S., He, Y., Kliot, G.: Horton: Online query execution engine
for large distributed graphs. In: Proceedings of ICDE 2012, pp. 1289-1292. IEEE
(2012)

Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: Proceedings of NDSS 2014 (2014)

Wang, Q., He, M., Du, M., Chow, S.S., Lai, R.W., Zou, Q.: Searchable encryption
over feature-rich data. IEEE Trans. Dependable Secure Comput. PP(99), 1 (2016)
Yao, A.: Protocols for secure computations. In: Proceedings of FOCS 1982, pp.
160-164. IEEE (1982)

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-10366-7_15

Outsourcing Medical Dataset Analysis:
A Possible Solution

Gabriel Kaptchuk®™), Matthew Green, and Aviel Rubin

John Hopkins University, Baltimore, USA
{gkaptchuk,mgreen,rubin}@cs. jhu.edu

Abstract. We explore the possible ways modern cryptographic meth-
ods can be applied to the field of medical data analysis. Current systems
require large computational facilities owned by the data owners or exces-
sive trust given to the researchers. We implement one possible solution in
which researchers operate directly on homomorphically encrypted data
and the data owner decrypts the results. We test our implementation on
large datasets and show that it is sufficiently practical that it could be a
helpful tool for modern researchers. We also perform a heuristic analysis
of the security of our system.

1 Introduction

Modern medical dataset analysis methods take large sets of medical records and
attempt to extract truths about the underlying population. Because of the sensi-
tive nature of the data being analysed and regulations requiring strict limitations
on the sharing of that data, it is difficult for researchers to share datasets. Today,
it can take up to a year before a researcher can actually begin the computational
process of analyzing a dataset that they did not collect on their own. Data is
often shared in sanitized form, with much of the data removed; this sanitization
process requires time, labor and statistical expertise. Some data owners have
chosen to allow researchers to send their queries to the data owners, who per-
form the analysis on the researcher’s behalf. The process of analyzing medical
datasets requires large amounts of computation on the part of the data owner
for each question posed by a researcher. To best serve the medical research com-
munity, data owners must acquire technical expertise to properly anonymize and
maintain datasets or contract a trusted third party to do it for them.

In this work we consider an institutional medical researcher, such as a mem-
ber of a university or the research division of a company, interested in answering
some query but who is without access to the required data. While it may be
infeasible to independently gather data, it is likely that there exists a dataset con-
taining sufficient information to answer the researcher’s query. The data owner
may want to share with the researcher but because the information is related to
the medical history of patients, and therefore considered sensitive, sharing that
dataset may be a complicated process.

We explore existing cryptographic methods in an effort to tackle the two
main problems with the current way of sharing medical data. First, we wish to

© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 98-123, 2017.
https://doi.org/10.1007/978-3-319-70972-7_6

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 99

move the burden of cost from data owners to the researchers who want access
to the data. All modern solutions that properly secure patient data require data
owners to make large investments in hardware and technical expertise. While it is
possible for a data owner to recoup those costs over time, requiring large startup
costs deters the sharing of data and charging for access to the dataset limits the
kinds of researchers able to use it. Second, it takes far too long for a researcher
to acquire and analyze a dataset that has been properly anonymized and cer-
tified. Even after proper permission has been acquired, it may be extremely
inconvenient to actually run analysis or to tweak the nature of the researcher’s

query.

2 Objectives

In order to build something useful to the medical research community, we
attempt evaluate the usefulness of Fully Homomorphic Encryption while still
ensuring the following six properties. These objectives were derived from con-
versations with professionals working in the medical research industry. Addi-
tionally, the analysis we ran to confirm that our system was practical enough to
be used by members of the medical research community were also informed by
these conversations.

Authenticity of results - the results obtained by the researcher should be
as authentic and accurate as possible without compromising the privacy of
individuals.

A rich range of possible analyses - virtually any analytical technique
should be possible to the researcher. More formally, the limits on the possible
set of operations should depend only on the parameters chosen for the FHE
scheme.

Minimal computation on the part of the data owner - the computa-
tional responsibility of the data owner should be almost entirely limited to
preprocessing the dataset a single time. We propose that a data owner should
only have to provide a single server to allow for large numbers of researchers
to perform analysis.

Privacy for individuals in the dataset - it should be impossible for a
researcher with auxiliary information to learn anything about an individual
in the population using legitimate analysis techniques. Specifically, we invoke
differential privacy to protect information about individuals.

Security against adversarial researchers - an adversarial researcher
attempting to extract information about individuals from the dataset should
be caught with very high probability.

Practicality - our system should shorten the time it takes for a researcher
to conceive of a researcher question to when their computational analysis has
finished. The actual time it takes for a single run of the analysis process may
take longer than current methods, providing this overall time shrinks.

100 G. Kaptchuk et al.

While many existing solutions address some subset of these objectives,
none accomplish all of them. In particular, existing systems lack practicality,
proper cost distribution or a large space of possible computation. Anonymiza-
tion presents security concerns and lacks practicality due to the long wait times
for dataset acquisition. Analysis as a service requires a misappropriation of costs
between the researcher and the data owner. Attempts like [19] have managed
to be both practical and to outsource computation, but failed to allow for rich
space of analytical techniques required by the medical industry. Our construction
satisfies all the requirements of researchers in the medical industry.

3 Background

To understand our motivation, it is important to consider the ways in which
modern medical dataset analysis is done. The reality of current analysis systems
is that they are both extremely expensive for the data owner and take a long
time for the query of a researcher to be fully answered. Researchers interested in
fields as diverse as drug side effects, public health and genetics all utilize the large
amounts of data regularly collected by medical professionals, insurance compa-
nies, or governments to make new discoveries or confirm theories. Under ideal
circumstances, analysis is done with large sample sizes - discussions with pro-
fessionals in the field lead us to believe that most studies utilize around 100,000
data points. The analytical models used by researchers vary from simplistic count
and average to complex regressions or machine learning. While complex methods
are gaining in popularity, measurements like regression, covariance and averages
remain the primary tools employed by researchers.

There are various practical constructions employed to allow external
researchers access to private data. The obvious, simple, and clearly insecure solu-
tion is to naively share the data without any security. While efficient, this makes
the assumption that the researcher is a trusted party, which is often invalid.

3.1 Anonymization

Anonymization is a technique in which large amounts of information, hopefully
all irrelevant, is purged before a dataset is shared with a researcher. The goal
of anonymization is to allow an untrusted third party to confirm results or per-
form original analysis without revealing any personally identifiable information.
The process is computationally expensive because it requires a data owner to
reprocess the dataset each time a researcher posits a new query. For example, a
researcher may start the process interested in a certain subset of the information
about each patient only to later decided that other qualities of each patient are
also required to confirm their hypothesis. This method also makes it extremely
expensive for a researcher to explore a dataset without a specific hypothesis
in mind. Additionally, there have been recent results showing that anonymiza-
tion is not as secure as previously thought [28]. While a single instance of an

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 101

anonymized dataset leaks minimal information under most circumstances, com-
bining it with a version of the same dataset anonymized for a different query can
certainly allow a malicious researcher to compromise the privacy of individuals.

3.2 Analysis as a Service

This model has becoming increasingly popular recently as the medical commu-
nity has adopted cloud technologies. Data owners or trusted third parties provide
a service through which researchers are able to submit requests for work. The
data owners or their surrogates then perform the computation over the dataset
stored as plaintext. This requires data owners to acquire the technical expertise
to maintain the system. More importantly, this forces data owners to shoulder
the cost of providing their data to the medical research community or possibly
charge researchers for the use of their data which would discourage collaboration.

3.3 Cost Consideration

While both anonymization and analysis as a service are common models for
sharing statistical datasets, cutting-edge systems combine both techniques. The
largest data owners maintain massive datasets on expensive computational
infrastructure. When a researcher wants to answer some new query, they access
the infrastructure itself, either physically or over a secure channel. Then, based
on the requirements of their query, they select a certain anonymization of the
dataset to use. A certain anonymization of the data may leave more information
about income, but may contain little geographical information. Each time a new
anonymization of the data is required by a researcher, the data owners must
prepare a new subset of the data and get statisticians to certify it.

Once an appropriate version of the dataset has been prepared, the analy-
sis is run on the data owner’s systems. Because of inference attacks, allowing
researchers to remove even anonymized datasets can be dangerous, especially
when the researcher is likely to return to the same data owner to perform a dif-
ferent analysis soon afterwards. The two main concerns addressed in this work
are time and cost. It is not uncommon for the time between the conception of a
question and the moment when computational analysis begins to be months or
even a year.

It is nearly inevitable that research will involve high costs for at least some of
the parties involved. While typically one might assume that the burden of cost
should be on the researchers themselves, given that they are the ones directly
benefiting from computation, it is often the data owners who are forced to acquire
expertise and infrastructure to service the researcher community. One company
with which we spoke had $1 million in hardware costs to support the needs of
researchers. While costs might eventually be recouped by charging researchers
for use of the dataset, the costs from purchasing hardware alone may make it
infeasible for a data owner to securely share their data. Especially if their dataset
becomes desirable to many researchers, the costs of scaling up their operations
quickly make it impossible to support widespread interest.

102 G. Kaptchuk et al.

3.4 Existing Cryptographic Options

In order to construct a system that addresses the problems above, we call upon
existing cryptographic primitives and systems. Some, like differential privacy,
have been widely used in the field and their limitations are well understood. The
practicality of others, like FHE and homomorphic signatures, has yet to be fully
tested. Because we are attempting to build a practical system that minimizes
the amount of time between the medical researcher’s initial query and receiving
the final answer, we choose our cryptographic primitives carefully. Additionally,
various primitives may be helpful in achieving some of the objectives in Sect. 2
but may prohibit the achievement of others. We give a broad summary of the
cryptographic methods chose to use in our case study below and include methods
we chose not to utilize in Appendix D.

3.5 Fully Homomorphic Encryption

FHE allows for addition and multiplication on encrypted data without the need
for decryption. The first construction of FHE was published in [21] but was
too inefficient for practical computation. Subsequent efforts, most notably the
BGYV construction in [9], have attempted to increase the efficiency and modern
constructions are teetering on the edge of practicality. To make the schemes
more usable, there has been a push towards “leveled” homomorphic encryption
schemes which can compute a certain depth of circuit before inherent noise
renders the ciphertext useless. For a full background on the intricacies of FHE
and a more complete list of citations, refer to [33].

Smart and Vercauteren proposed an addition to the BGV FHE in [31], in
which many plaintext values could be encoded into a single ciphertext. To do
this, the plaintext values are put into a vector and all additions and multi-
plications are computed entrywise. This allows for single instruction multiple
data operations and significantly increasing the efficiency of the scheme. Our
implementation requires that the FHE scheme used supports Smart-Vercauteren
plaintext packing and for the rest of this work all homomorphic operations can
be considered to be done within this framework.

3.6 HELib

The best available implementation of a modern leveled FHE is the C++ library
HELib. While most of the code currently written using HELib implements rel-
atively simple computations, our testing shows that is both robust and reason-
ably efficient for more complex computations. The FHE scheme it implements
encodes integers into BGV ciphertext, supporting addition and multiplication
operations. The underlying plaintext values are added and multiplied modulo
some prime. The choice of primes, the maximum level of the circuit, and secu-
rity parameter all influence the size of the ciphertext and the efficiency of the
operations. Details about the use of HELib and the FHE scheme it implements
can be found at [23].

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 103

3.7 Differential Privacy

Differential privacy prevents an attacker from learning anything about individ-
uals while still gleaning meaningful information from aggregated statistics. This
is not the only notion of privacy that can be applied to statistical datasets, but
it has recently become the most popular. With the rise of laws requiring the
protection medical data, ensuring it is impossible to recover the information of
any given individual effectively shields data owners from legal action. We give a
more detailed background of differential privacy in Appendix C.

4 Construction

We assume a data owner D with a medical dataset Dipjtia1 of vectors d € R™.
D transforms the dataset into the proper format, encrypts it using fully homo-
morphic encryption as D* = Encrypt(Dsormatted) and publishes it on the internet.
A researcher R then prepares a program to be run on the dataset, described in
the form of a transcript 7" and performs the computation T'(D*). The result of
this computation is a ciphertext ¢ with an embedded integrity check and trans-
mits ¢ to D. Finally D verifies that T" and ¢ match, computes the decryption,
adds noise to guarantee differential privacy and sends this final result to R. A
protocol diagram can be found in Appendix B.

4.1 Dataset Formatting

We assume that the data owner D has some set of D = {d;,dy,...,d|p|} s.t. d; €
R"™ where each dimension of d; represents part of the medical record for patient .
Each vector d is made up of data entries o and binary entries 3. The data entries
arereal valued and represent information about the patient like age, blood pressure
or income. The binary entries represent the qualities of a patient, like the presence
of a medication or medical condition.

(e 5} aq
« «
Dinitial = T o
mitia. 161 ﬁl
/anm anm

If D has a dataset that is formatted differently, it is clear how to transform
any dataset into this format. The only intricacy of this transformation is that
all values in the vector must be integer valued, while real medical datasets also
contain both text and real-number values. For the most part, this problem can
be easily solved while only losing a little granularity in the data. Real-number
values can be scaled and rounded such that the information is still rich enough
to convey meaning. Text data can either be automatically binned, adding a 3
value for each possible value of that text field, or can be manually translated
into a integer scale as appropriate.

104 G. Kaptchuk et al.

4.2 Data Binning

Data binning beings with D dividing the range of each data entry «; into con-
tinuous disjoint bins {57, 85", ..., 3, }, where the number of bins b; is chosen
separately for each a;. D then inserts a new row into the data set for each ﬁ;.“
and sets the ﬁ;“ = 1 containing the value for «; for each «;. For example, if o
represents age, D might create ﬁ;‘ as b year bins from 0 to 100. A patient of
age 37 would have g =1 and 3} =0 Vj # 8.

The increased number of bins for each « give researchers greater granularity
of possible computations but also increases the size of the dataset. Because
this dataset will be prepared only once, the data owner chooses the maximum
possible granularity for all researchers at once. Many fields, like age or income,
have natural bin sizes while other fields will be completely at the discretion of
the data owner.

4.3 Integrity Check Embedding and Encryption

The FHE scheme used in encrypting the dataset should include Smart-
Vercauteren plaintext packing. This property allows a vector of plaintext val-
ues to be encrypted into a single ciphertext and all operations are computed
entry-wise. The length [of the plaintext vectors is determined by the various
parameters to the FHE scheme, but in general we will consider vectors of about
1000 values.

Each plaintext vector contains values from a single row of the database (i.e.
a specific a or 8 from multiple patients). Each vector begins % values from the
dataset, in the order listed in the dataset. Thus, the first ciphertext will be an
encryption of the a; entry from the first é patient record; the second will be
the oy entries from the next % patient records, and so on. For each such vector,
D embeds the tools to allow for rapid verification. D selects a random value 7
and a random permutation @, both to be used for all vectors in the D. For each
entry e in the vector v, D computes ¢’ = me mod p, where p is a prime and a
parameter to the FHE scheme, and appends that value to v. Next, D appends a
different random value k to the end of each vector and records k for each vector.
Finally, D applies @ it to all vectors in D.

Lo
P (a% ol of ma? of Tad ... af Tad)

To encrypt the dataset, D runs FHEKeyGen() to generate a public key pk and
a secret key sk. Each permuted vector is then encrypted under sk and the entire
encrypted data set is released to researchers, along with pk. In the scheme we
use, the evaluation key is the same as the public key, but if another scheme with
a separate evaluation key were to be substituted, the evaluation key would be
released to the researcher instead.

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 105

4.4 Researcher Computation

Once the new data set D* has been published, a researcher R prepares a tran-
script T' of the steps of some operation they want to perform over D*. Imagine
R wants to compute the average age of death of patients with a certain disease
who are also taking a certain medication. To compute this value, R uses the 3
associated with the disease and the 3 associated with the medication to include
only patients with both characteristics when summing age of death.

> (B x B x ay)

deD*

> B x B

deD

While machine learning style analysis has been growing more popular among
the research community, computing more simple metrics like counts, correlations,
and linear regressions are still the main methods of conducting computational
analysis. All of these techniques can clearly be implemented using the same
filter and sum method above. For example, a simple linear regression between
the variables 1 and x2 can be computed as

To =ax1 +b

Such that a and b can be calculated as

o = S xo—bd> h— nY T1T2—y T1 Y, T2
n ny xi—(3 z2)?

where n is the number of samples in the dataset. Clearly all of these summations
are easy to compute. Because of the data binning process, a researcher can also
restrict their analysis to certain cohorts, focusing their attention on, for instance,
subsets of the socioeconomic ladder or only more urgent hospital admittances.

4.5 Verification

When D receives the result of R’s computation, he runs the verification algorithm
Verify(T, m*). It is important that the multiplicative depth of the transcript can
be easily extracted; we denote the multiplicative depth d.

Verify(T, m*) takes a transcript 7' and some encrypted vector ¢ as input. The
goal of the verification algorithm is to quickly decide if the steps taken in T
would result in the vector ¢, returning 1 if it is the result vector and 0 if it is
not. The verification algorithm is as follows:

1. m = Decrypt(c)

2. Compute ¢~ (m)

3. For each plaintext value a in ¢~1(m) make sure the corresponding verification
value is 7% 'a, where d can be learned from T

4. Perform the computation described in T over the random tags in each vector
and make sure it matches the tag of ¢=1(v)

5. Return 1 if steps 3 and 4 both pass, otherwise return 0

106 G. Kaptchuk et al.

While running the verification algorithm is constant in the computation time
because the random tags must be computed, it is still much quicker and less
memory intensive than running the computation itself. There is a single value
for k in each vector, so the runtime will be at least %, where [is length of each
plaintext vector.

If the verification algorithm returns 1, D strips out all values associated with
the verification process before the data is put through the differential privacy
process. In this way, the permutation, the random tag, and 7 all stay secret and
the adversarial researcher gains no advantage once they perform a single valid
computation. If the algorithm returns a 0, D must assume R is attempting to
circumvent the encryption on the data. A cheating researcher is banned from
further use of the system and their results immediately discarded.

4.6 Additive Noise

One of the goals of our construction is to make it difficult for a malicious
researcher to extract information about an individual while performing a legit-
imate analysis. Because of the verification algorithm, we can show that it is
difficult to gain information by cheating on computation. To ensure that it is
difficult to gain information from legitimate analysis, we introduce differential
privacy as the final step in the process. To this end, D adds noise sampled from a
laplacian distribution with variance equal to the sensitivity of the function com-
puted, where sensitivity is defined in Appendix C. This method has been shown
to ensure differential privacy for single queries in previous works [17]. There have
been no constructions for imposing differential privacy when an adversary can
make any number of queries.

5 Security Analysis

It is clear that an adversarial researcher cannot directly access the plaintext data
because the encryption scheme is semantically secure. We must give a heuristic
argument that it is impossible for the system to leak unintended information
when decrypting queries. This model is odd because it allows for limited decryp-
tion queries even though the underlying encryption scheme is not CCA2. The
goal of our security analysis is to determine if it is possible for an adversarial
researcher to gain information about the contents of the dataset besides the
answer to the exact query specified in the transcript. Because it is difficult to
characterize every kind of attack that a researcher might mount to learn about
an individual in the population, we must ensure that there has been no deviation
whatsoever from the supplied transcript.

In order to formalize our argument about the security of our scheme against
information leakage, we begin by creating a security game. Unlike traditional
games in the cryptographic setting, we do not allow an adversarial researcher to
continue accessing the system once they have been caught attempting to cheat
the system. In modern systems, it is common for the researcher to sign documents

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 107

making them liable for large sums of money if they are noticed attempting to
recover the private information of a patient. Currently, these agreements are
enforced by human log auditors. We borrow this notion and include it in our
security game. The goal of the adversary is to cheat undetected; if their cheating
is detected they are banned from use of the system and heavily fined (Fig. 1).

1: (z,F) < Client() 1: T « Select(T)
2: (m,r) < Server(z, F) 2: D" < Encrypt(D)
3: y <« Verify(m,r) 3: c¢— A(T,D")
4: ify=1: 4: y < Verify(T\,c)
5 : return Decrypt(r) 5: ify=1:
6: else: 6 return Decrypt(r)
7 return L 7: else:
8 return L

Fig. 1. Left: Traditional verifiable computation game. Right: Our updated version of
this game

The traditional game for verifiable information is between a client, correspond-
ing to the data owner, and a server, corresponding to the researcher. The client
chooses some function F', usually represented in circuit form, and an input x.
The server is then charged with computing F'(x) and proving that the computa-
tion was done honestly. We modify this game slightly to allow an adversary to select
their own function, represented as a transcript, from a family of acceptable tran-
scripts T. We put some minimal limitations on T, but additional limitation can be
imposed by each individual data owner as needed. Valid transcripts must have the
following properties:

1. The first level of computation must be performed within a single patient
vector and the same computation must be performed on each patient vector.

2. The results of each such computation must be combined in a way such that
the result of T'when computed over the dataset is a single value (or a constant
number of values with respect to the size of the dataset).

3. Results of the computation, including the processing of the results vector,
must be independent of the order of vectors in the dataset.

The first property should ensure that a researcher doesn’t combine §’s from
one patient with a’s from another patient. If a researcher somehow learns about
the contents of the record for a single patient and learns its location in the
dataset, it should be impossible for them to leverage that information to com-
promise the privacy of another patient. Similarly, we require that all of the
results of the computations on individual are combined into a single result. This
prevents an adversarial researcher submitting a transcript that simply decrypts

108 G. Kaptchuk et al.

patient vectors directly. Finally, the order of the vectors in the dataset should
not impact the final results. Because the result of a computation over the cipher-
text will yield a result vector instead of a single value, shuffling the order of the
patient vectors will likely affect the individual values in the results vector but
will have no impact on the sum (or product, as appropriate).

It is known to be hard to impose security policies on queries. In order to
impose this specific set of security policies, the researcher is required to state
their transcript in two pieces, (1) the computation to be done on each patient
vector and (2) the method used to combine the results of each patient vector.
Because there are no limitations on the valid kinds of computations that can be
done within a single patient vector and we require that the method for combining
vector results must be written in a vector independant way, any transcript that
can be written in this form is valid.

We show that with our construction, the probability of creating a transcript
T and ciphertext m* that verify but were not generated honestly is bounded by
the probability of guessing the random permutation @, specifically the location of
the random tag k in the permuted vector. We assume the adversary has submit-
ted a transcript-message pair which passes the verification algorithm, specifically
recomputation of T' over the random tags only. One of two things must be true:
(1) the computation was done honestly or (2) some of the vectors used in the
computation were altered. In the first case, clearly there is no unintended infor-
mation leakage; only the answer to the adversaries exact, legitimate query has
been decrypted. If some of the vectors were altered, there are two possibilities.

1. In a given vector j < |v| values of the vector were altered. Given that @ is
unknown to the adversary

Pr[Successful Edit of j elements| = Pr[Editing k]
+ Pr[Not editing k] x Pr[Edit results in format|

. . |v]
_J + [v| —j 1— (lz‘)
ol * Rl i

< Pr[guessing location of k]

2. All values in some vector were edited without editing the tag k. In the worst
case, an adversary has all elements of the vector besides k properly formatted
(i.e. the contents of another vector in the dataset). The probability of switch-
ing out the contents of vector with the contents of another without editing

the k is .
[v]

Therefore, in all cases, the probability of an adversarial researcher computing
some m without following T" properly is bounded by the probability of finding
k in the randomly permuted vector. We assume that the length of the vector
is roughly around 1000, so ﬁ & 1(}%' If this probability of being caught is too
low in the eyes of the data owner, additional k’s can be added to the vector.
Each additional k£ must also be avoided when editing an existing vector, so the

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 109

chance of correcting identifying all k’s in the vector goes down by approximately

a multiplicative factor of Tloo for each additional k.

6 Implementation

We implemented the above construction to measure its practical feasibility. To
ensure that a medical dataset could be meaningfully transformed into the proper
format, we processed NY State’s public hospital discharge dataset from 2012 [32].
The dataset comprises 2.5 million patient encounters, recording data including
facility information, patient demographics, patient complaint, and medical code
information. While our system can scale to be used with datasets of this size,
discussions with members working in the medical dataset analysis indicated that
most researcher do analysis on smaller datasets of around 100,000 patient vec-
tors. In order to test the practicality of our system, we chose to test on this
normal cohort size.

The NY State dataset contained data in the form of text, integers and
real-valued numbers. We transformed the dataset into the format described in
Sect. 4.2. Some fields, like length of stay and total charges, mapped cleanly into
the construction; while there were minor choices to be made regarding the gran-
ularity of the bins and how we wanted to round the decimal values to integers,
the process was very intuitive. Other fields, like admit day of week and APR
risk of mortality were less obvious. We chose to map each day of the week to
a separate (value. In the original dataset, APR risk of mortality was assigned
values like “Minor” and “Major”. We chose to create a scale such that the lowest
rating was a 0 and then each increasing level of risk was one above the previous
level. Additionally we mapped each possible value of this field to its own (value.
Through this process, the initial dataset, which was 100,000 vectors of length
39, was transformed into a dataset in which each vector was 912 elements long.

We encrypted large portions of the dataset for testing purposes. We chose not
to encrypt the entire dataset because of space concerns, but we did encrypt 50
rows of the dataset for trial purposes. When stored naively, these 50 encrypted
rows take a total of 752 GB, consuming approximately 7MB per ciphertext.
The key information and encryption context was stored in a separate file which
was 16 GB. We can easily cut the size of the stored data by a factor of 2 using
naive compression and there are other possible optimizations to make the storage
scheme more efficient (see Appendix E.1).

Encryption was done on consumer grade electronics, specifically a MacBook
Pro with a 2.5 GHz Intel i7 Core processor and 16 GB of RAM. The ciphertext
was written out to an external storage device over USB 3, so the efficiency of
the system was impacted severely by disk I0. We chose to set the maximum
circuit depth to 100, which would accommodate most computations. We chose a
security parameter of 80 and a prime modulo of 17389. Generating the context
and secret key for the scheme took 22.8 min. Once the context was set up, we
wrote it out to a file. To encrypt vectors, we read in the context and secret key,
which took 19 min and then each plaintext vector took 10.4 s to encrypt. We split

110 G. Kaptchuk et al.

the encryption onto two separate threads, the first thread encrypting « values
and the second encrypting § values. In total, the encryption time of 50 vectors
was 30.04 h and encrypting the entire dataset would have taken 584 h. Note that
all the times recorded were when operations are performed linearly and without
any optimizations (Fig. 2).

Task [Key Setup |Key Reading |Encryption [Sum per Ciphertext [Sum Total
Time | 22.8m 15.2m 10.4s each 33.08s each 1.98hr

Fig. 2. Timing results

We performed a linear regression to test the runtime that a researcher might
encounter. A linear regression is a simplistic metric to compute but is a method
still often used by researchers today. Regressions and averages are basically the
same operations; averages are computed with two sums and linear regressions are
computed with four. Reading in the context and key information takes 15.2 min.
Processing a single set of ciphertexts take 33.08 s, which includes multiplying
an « ciphertext by a [ciphertext and summing it with a ciphertext that is a
running sum of all previous vectors. We performed our computation without any
parallelization, so a single sum of the linear regression took 1.98h to compute
when done naively. To compute the full linear regression, it took approximately
9.5h when each sum was computed consecutively.

7 Discussion

In order for this system to be useful, there must be a clear economic incentive for
the data owner. Specifically, it must be beneficial to use homomorphic encryption
rather than simply performing analysis on local plaintext and returning results
to the researcher. We can denote the time it take for the data owner to perform
a some computation on behalf of the user as tcomputation-

We consider the various costs associated with doing computation. In addition
to the time to perform the computation itself, there is tcpcryption, the total
computation time required to encrypt a single ciphertext, and tgecryption, the
time required to decrypt a single ciphertext. Additionally, the time to verify
that a researcher has performed their computation honestly is denoted tyerify-
We can express the cost of using this system for ¢ queries as

q
C = —|D|t i
OStsystem — ¢ Yencryption + qtdeCTyption + tvem‘fy
2 i=0

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 111

whereas the cost of the data owner performing each query on the plaintext is
given as

COStnawe - E tcomputatwn

The computational time required to impose differential privacy on the result
of the analysis is consistent no matter the manner in which the result is computed
so it can be ignored when comparing the costs of the two alternatives. Thus the
marginal cost of system over simply performing the plaintext in the clear is given
by

Marginal Cost = Costsysiem — CoStnaive

2D

= ¢ tencryptwn + qtdecryptwn + Z tvemfy Z tcomputatwn
=0
2|D 2
|€ |tencryptzon + qtdecryptwn + Z tcomputatzon(g - 1)
=0

Notice that the encryption time is a one-time cost incurred by the data owner;
no additional encryption processing time is required for each new query posed by
researchers. While the cost is very high, it can be amortized over many queries.
In order for the data owner to be incentivized to use this system, the marginal
cost of the system must be negative, that is

2|\D 2
|€ |tencryptwn + qtdecryptzon + Z tpomputatwn(; - 1) <0
=0

Intuitively, the computational savings from just doing verification instead of
the full computation must outweigh the cost of decrypting the result vector. To
give concrete examples for the variables above, we use the same parameters from
Sect. 6. tgecryption is a constant value no matter the query; as computation gets
more complex the advantage of this system increases. With these parameters,
decrypting a ciphertext will take approximately 18 min. We note that we mea-
sured decryption time using simple consumer grade electronics and a CPU. It
may be possible to speed this process up using hardware accelerators [12,13].
In Fig. 3 we graph the marginal cost per query as a function of the decryption
time and computation time, ignoring the initial encryption time. Red areas of
the surface represent values for which the system is more efficient than the naive
strategy. We note that the efficiency of Fully Homomorphic Encryption Schemes
is likely to increase in the future, whereas the statistical tests researchers want
to perform will only grow in complexity.

Remember that tcomputation denotes the total time that it would take the data
owner to perform analysis, including system overhead like accessing data, which
can become logistically complicated. Using this system for simple operations on
small numbers of records is actually more computationally intensive for the data
owner; the computation required to decrypt the results vector would be more

112 G. Kaptchuk et al.

1500 feuibren

1000
800
600 ««\0
400 3O

200 o

1000
o -
Computg top 120

Time 200

o O

Fig. 3. Marginal cost as a function of computation time and decryption time. Negative
values, red, show where this system has advantages over the naive approach (Color
figure online)

than the computation itself. More complex regression methods and statistical
tests are the best candidate operations for which a data owner would gain an
advantage by using this system. Specifically, functionalities that would take more
than the approximately 18 min decryption time. One concrete example that fits
into this category is computing maximum likelihood estimators (MLE) for large
numbers of parameters over a fairly large datasets. While computing simple
estimators can be faster than decryption time, computing complicated estimators
or estimators when data independence cannot be assumed is far more expensive.
Without data independence, computing even a single iteration of MLE can be
computationally infeasible on consumer hardware. Extreme examples of these
costly functions can be seen in the field of economics, like [10]. While simple
functions like linear regression might be the most common tools for medical
researchers today, the field is growing increasingly computationally complex and
being able to outsource the computation of these costly functions to researchers
is a powerful tool.

In Sect. 1, we proposed six properties that would ensure that our system is
useful, efficient, and secure. Our system was constructed to specifically address
these properties, and we show that each one is satisfied.

Authenticity of Results. Fully homomorphic encryption guarantees addition
and multiplication operate as though there were not encryption layer present.
Because the researcher is doing the computation on internal systems, they do
not have to be worried about some mistake in computation. We assume that the
data owner is a trusted entity so there is no worry that the decrypted results do
not correspond to the ciphertext delivered by the researcher. Therefore, we can
conclude that all results from this system are authentic.

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 113

A Rich Range of Possible Analyses. We want to ensure that a researcher
can perform any operations required for their analysis. Other solutions that
manage to be both practical and cost efficient are lacking this property. The only
limitations imposed on computation in our system are the limitations on valid
transcripts. With access to addition and multiplication, most analysis techniques
can be realized including basic machine learning algorithms.

Minimal Computation on the Part of the Data Owner. In order to
maintain a secure system that can be helpful to the medical community, it is
impossible not to incur high costs. The construction presented in this work shares
that cost burden with researchers. For the purposes of this work, we restrict
our interest to researchers with access to large computational infrastructure,
like those with affiliations at universities or members of industrial researcher
teams. This infrastructure currently cannot be leveraged because of difficulties
obtaining data. In our discussions with individuals who work in the industry,
they consider it a reasonable assumption that researchers will have access to
large computational infrastructure. Most of the work we have done in our system
can utilize many cores to speed up computation. No matter the computational
requirements, most of the costs associated with computation are placed on the

researcher. The verification time is Tloo of the computation itself, so the system
offloads % of the computation to the researcher, minus the time required to

decrypt the result vector.

Privacy for Individuals in the Dataset. Fully homomorphic encryption
allows for exporting the dataset does not compromise the security of any individ-
ual in the dataset. Fully homomorphic encryption guarantees semantic security,
so no information can leak from ciphertext without access to a decryption ora-
cle. Our limited decryption oracle only decrypts the results of computation that
operates over the entire dataset, meaning that it can only disclose meaningful
information about individuals if the legitimate query only operates over a very
small subset of the dataset population. When this is the case, the noise added by
the differential privacy mechanism makes it impossible to glean any information.

The main concern when sharing data is that an individual’s privacy is com-
promised and differential privacy make that impossible for a single query. While
differential privacy makes it impossible for a single query to reveal any informa-
tion about a single individual in the population, it is still theoretically possible
for a determined researcher to learn about an individual because we allow for
multiple queries. Unfortunately, there are no constructions that we are aware of
that allow for both a rich, repeated query space and multiple query differential
privacy. The notion of a privacy budget, in which a researcher has a maximum
number of queries or an upper bound on the allowable complexity of queries,
might be used to protect about this kind of attack. We choose to leave it to each
data owner if and how they would like to implement a privacy budget.

114 G. Kaptchuk et al.

Security Against Adversarial Researchers. Because we give researchers
access to a decryption oracle, it must be impossible for an adversarial researcher
to simply decrypt arbitrary ciphertext. Clearly, an insecure decryption oracle
would allow an adversary to trivially learn private information about individuals.
The verifiable computation scheme embedded into the system guarantees that
only decryption queries that operate over the entire dataset are processed. We
have argued in Sect.5 that it is very unlikely for an adversarial researcher to
go unnoticed. Indeed, the data owner can tweak the probability of catching a
researcher until they are comfortable with the odds.

In a traditional security model, the probability of catching a cheating adver-
sary in our system is insufficient. Importantly, in our system a cheating adver-
sary is banned from ever using the system again and is heavily fined. Banning
an adversary prevents them from searching @ for the location of k. Charging
them for attempting to cheat means it is impractical to run multiple analyses
under different identities. If there are two k’s in each vector, the probability of
a cheating researcher of not being caught is #, which may be insufficient for a
theoretical system but is sufficient for a practical one.

Practicality. Current systems suffer from two major time related weaknesses.
The first is that it takes a long time to actually begin computation. Second, if a
data owner instead chooses to leverage an analysis as a service style solution, it
becomes more difficult and time consuming for a researcher to access the data.

While fully homomorphic encryption does make running a single analysis
significantly slower, it is important to remember that the vast majority of a
researcher’s time is not spent running their program. Most of the life of a research
project is spent waiting to acquire a dataset or waiting to access a dataset. Our
system requires a one-time cost of formatting and encryption and every future
researcher will be able to use the same version of the dataset without waiting.
Because we construct a system that reduces the wait time required to access a
dataset, increasing the time it would take to actually perform the computation is
acceptable. Recall that our goal was to make the entire process of doing research
quicker, not the computation itself.

Our system also allows a researcher to perform their analysis on their own
schedule. While working on this project, we found a researcher who waited
months to get permission to use a specific dataset and was only able to run
analysis from 2 am until 8 am while the servers storing the data were not in use;
these kinds of limitations make research impossible. In our system, computation
can begin without ever interacting with the data owner.

8 Conclusion

In this work we have presented a practical system for securely outsourcing med-
ical dataset analysis. The system ensures that the researcher has the freedom to
compute a rich range of metrics over the database and get results perturbed by

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 115

the minimum amount of noise to guarantee differential privacy. Our construction
moves the burden of cost onto the beneficiaries of the analysis and also shortens
the amount of time it takes for them to acquire and analyze a dataset. Together,
these properties provide the alternative the medical research industry needs to
properly incentivize data owners to share their datasets.

A Architecture Diagram

See (Fig.4).

Encrypted Dataset

-

Upload Encrypted
Dataset
(One time for all queries)

Data Owner

@ Download encrypted dataset from public intemet /

Researcher Send result of computation to data owner for S/
verification ,,’

Decrypted result sent to researcher with additive /»/
noise /

Fig. 4. System overview

B Protocol Diagram

See (Fig. 5).

116 G. Kaptchuk et al.

Protocol for Medical Database Analysis

R D
D* = EnC(Dformatted)
D*
TeT
¢ =T(D")
T,c

)

m = Dec(c)
VE(T,m)
r=m+ L(0,0°)

Fig. 5. Protocol diagram

C Differential Privacy

There are a number of different formal definitions for differential privacy, we
choose to use the most common definition from [15-18].

Definition 1. A randomized function K gives e-differential privacy if for all
data sets Dy and Do differing on at most one element, and all S C Range(K)

Pr[K(D;) € S] < e x Pr[K(D2) € 5]

Intuitively this means that an adversary with access to arbitrary auxiliary
information can not use the function K to distinguish if the dataset in question
is D1 or Ds. Because D or Ds differ in at most one element, an adversary learns
the same information about an individual no matter if they are in the dataset or
not. Obviously a dataset without the individual contains no information about
that individual, so an adversary can also learn nothing from a dataset with all
information about that individual.

The most practical methods for imposing differential privacy on functions
without completely destroying the usefulness of their results is introducing noise.
A number of attempts have been made to create noiseless differential privacy in
[6,14], but neither solution proves robust enough for our purposes. Additionally,
a summary of alternative differential privacy methods can be found in [25];
we chose our solution for its elegance and computational simplicity. The most
effective way to introduce noise is to add it in once the entire computation

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 117

has finished; if noise is added to the underlying data before computation, the
effects of the noise are harder to predict and control [1]. Because the noise
used is additive, this means that any noise-based differential privacy is secure
against only single queries. If many queries are allowed, the additive noise can be
cancelled out by taking an average over the multiple results. Because it is hard
to decide if two queries are equivalent, protecting against these attacks is usually
implemented with a privacy budget, in which only a certain number of queries
are allowed for each researcher. In our construction, we do not address the issue
of a privacy budget and if cancelling out the additive noise is concerning to a
data owner, they should implement a privacy budget as appropriate.

C.1 Sensitivity

The method we choose for adding differential privacy to our system is adding
noise sampled from a laplacian with variance equal to the sensitivity of the
function computed, where sensitivity is defined as

Definition 2. For g: S — RF, the sensitivity of g is
Ag = max [|g(51) — 9(S2)[[x
1,02

for all datasets Sy, Sy differing in at most one element.

Because the noise is related directly to the maximum change that changing a
single vector could have on the function g, it is intuitive that this method would
introduce differential privacy. Computing the sensitivity of a function, at least
for the class of functions relevant to this work, can be done in constant time
with respect to the function itself.

Because the space of computation is limited by the transcript 7, it is easy
to compute the sensitivity of any valid function. The limitations on transcripts
are formalized in Sect. 5. The data owner stores a patient vector with maximum
values in each « entry and a patient vector with minimum values in each «
entry. Both of these vectors have all 3 values set to 1. The main limitation on
transcripts is that the same computation is done to each vector. If we denote this
computation g(-), the sensitivity can be computed as |g(Vmaximal) — 9(Vminimal)|-

D Related Solutions

D.1 Data Simulation

One current alternative solution to anonymization and analysis as a service is data
simulation. While real datasets contain information about real individuals, it is
possible to construct synthetic datasets that contain no actual people but contain
the same trends as a real data set. These synthetic datasets can then be released to
the public without fear of compromising the privacy of any of the original patients.
This is a common practice particularly in genetics research [36].

118 G. Kaptchuk et al.

Data simulation provides an interesting solution to the same problem we are
attempting to address but ultimately limits the creative abilities of researcher.
Because the data is generated using statistical methods and machine learning,
it is inherently limited by the foresight of its creators. The data is generated by
trends observed by the data owner, but if some trend is missed, the resulting
dataset will clearly not contain that trend. For this reason, synthetic data offers
a wonderful opportunity to confirm previous findings but is not the best way to
allow researchers to find some new information.

D.2 Verifiable Delegation of Computation

Verifiable computation or delegation of computation is a rich field of research
in computer science in which a client wants to outsource some computation
to an untrusted server. Because the server is an untrusted entity, the client
must be able to verify that the server has done the computation honestly. In
general, the problem assumes that the client has insufficient computational power
to perform the original computation so the verification algorithm must be less
computationally intensive than the original computation.

While there are many verifiable computation and delegation of computation
constructions that we could use in our system, including [3,5,11,20,24,27], there
are many requirements that are different for our problem than the traditional
verifiable computation problem. Firstly, in the traditional problem there are
no bounds on the computational abilities of the server; constructions prioritize
lowering the asymptotical complexity of the verification algorithm at the cost
of the running time of the server. Modern methods have found polylogarithmic
verification algorithms, but in general the runtime of the server is completely
impractical. Because we aim to construct a system that is feasible to use for
both researchers and data owners, we attempt to balance the runtime on the
two system such that neither is unreasonable.

Traditional Solution. The classic strategy for constructing a solution to the
verifiable computation problem involves generating many function inputs, all of
which look like they were selected from the same distribution [22]. One of these
inputs is the true input and the others are random inputs for which the output
is known to the client. The server computes the function over all the inputs and
returns them all to client. If all the known outputs match the previously known
outputs, the client accepts the unknown output. Otherwise, the client rejects the
output and knows that the server is untrustworthy.

The obvious problem with this solution is that it requires the client to know
many input - output pairs. Moreover, each time the client wants the server to
perform a new computation, a new set of dummy inputs is required. Clearly this
is not sustainable for a system that needs to be operational long term. Moreover,
we want the server to be able to select their own circuits to compute, as a
researcher in this work does. This model does not easily extend to accommodate
this stipulation.

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 119

PCP and SNARKSs. Modern solutions to the verifiable computation problem
leverage the PCP theorem to create proofs of computation that can be checked
in polylogarithmic time. Probabilistically Checkable Proofs and Probabilistically
Checkable Arguments [26] are powerful cryptographic tools that allow a verifier
to probabilistically sample small parts of a proof and still be convinced of its
reliability. Recently, projects like [29,30,34] make the first steps towards usable
PCP constructions but still fall short of being practical tools. While verification
of a proof can be done quickly, the process of constructing the proof is pro-
hibitively slow. Because one of our goals was to create a system that could be
practically usable, we chose to not use any kind of PCP. As the constructions of
these proofs get more efficient, it may become practical to use them instead of
the proof embedding and verification methods we use in our construction.

Succinct non-interactive arguments of knowledge, or SNARKS, are an exten-
sion of zero-knowledge proofs that do not require interaction [4,7]. SNARKSs
allow a verifier to be convinced that a challenger possesses a witness to some
NP statement without revealing the witness itself. Critically, they allow it to be
done without interaction. While the zero-knowledgeness property of a SNARK
would not be easily utilized, SNARKS provide another possible way to prove
work. Unfortunately, SNARKSs suffer from similar weaknesses as PCPs and are
not practical enough for use or rely upon non-standard assumptions.

It is worth noting that the computation done by the researcher is assumed
to be polynomial in the size of the dataset. If we allow the researcher to be able
to compute circuits that are exponential in the size of the dataset, PCPs and
SNARKS may be the only viable solutions as our verification algorithm is propor-
tional to the computation time. Additionally, giving the researcher exponential
computational power would be problematic given that the security parameter
of the FHE scheme is almost certainly going to be smaller than the size of the
dataset.

D.3 Systems with Limited Analytics

The work that does the best job addressing the issues with medical research is by
Fiore et al. [19]. Their work creates a set of protocols to do verifiable computation
on a limited set of functions computed over BGV encrypted data. They use the
classic verifiable computation model in which a trusted client supplies both the
encrypted data and the function F' to be computed. They introduce the notion of
a homomorphic, collision resistant, one-way hash function that allows the client
to quickly verify if the untrusted party correctly computed F. They are able
to guarantee amortized verification time that is either linear or constant in the
time of computation. They are able to create protocols for performing a number
of helpful functions, including linear combinations and multivariate polynomials
of degree two.

While this work provides solutions to the issues of privacy, practicality and
allows for the outsourcing of cost, it does not provide the flexibility required by
medical researchers. While their scheme is more efficient for linear combinations,
the limitations of only being able to compute multivariate polynomials of degree

120 G. Kaptchuk et al.

two or univariate polynomials of higher degree renders their construction unsuit-
able for the needs of researchers. The examples cited in our implementation were
already using higher order multiplication than would be supported in their work
and our examples are still reasonably simple.

Another similar work is [35], in which the authors investigate the practicality
of calculating statistical metrics over encrypted data. Their results of overall
positive and similar to our findings. Additionally, the space of operations in their
experiments are similar to our experiments. While this work provides a good
start towards outsourcing medical analysis, they lack verifiable computation, a
critical component given an untrusted researcher.

D.4 Personalized Medicine

Some work has been done utilizing the analysis as a service model for person-
alized medicine, in which a patient uploads their data to a service provider to
learn some metric about their health. In [8] a system for using homomorphi-
cally encrypted data to allow the owner of a proprietary algorithm to compute
a patient’s risk of heart disease without learning about the patient. A similar
system is [2], in which medical units can access genomic, clinical, and environ-
mental data to compute risk metrics for a patient. The computational require-
ments from the FHE scheme for this problem setting are far lower than in our
problem setting. The circuits computed are of lower complexity and the number
of datapoints are fewer. Most importantly, computation in these system are done
only over a single patient’s information making the threat vectors different.

E Optimization and Future Work

E.1 Ciphertext Compression

We utilize the ciphertext I/O in the HELib to write our ciphertexts to file.
While HELib provides efficient ciphertext operations, it stores its ciphertexts
extremely inefficiently. The coefficients on the polynomials are all written as
ascii numbers separated by spaces. To store ciphertext more efficiently, these
coefficients can be stored in some binary form and then compressed. We chose
to store all ciphertext in a single file for simplicity, but to minimize the size of the
file a researcher would have to download, all ciphertexts containing values from
a given row of the dataset should be stored in a compressed file. This storage
scheme allows a researcher to pick and choose exactly what subset of the data
is important to their query.

E.2 Multithreading

Much of the computation done by the researcher can be completely parallelized.
Because the same operation must be done on each patient vector before the
results of those computations can be combined, each of the vector operations

vww.ebook3000.con)

http://www.ebook3000.org

Outsourcing Medical Dataset Analysis: A Possible Solution 121

must be completely independent. When illustrating the viability of our system,
we did no parallelization whatsoever, so all timing results are worst case. To
optimize efficiency, each set of ciphertext can be processed in parallel and then
combined pairwise in a tree structure. Additionally, the one-time cost of encrypt-
ing the dataset can also benefit from parallelization. Each row in the dataset can
be formatted and encrypted independently.

E.3 Future Improvements to FHE

The efficiency of this system is directly tied to the efficiency of the underlying
FHE scheme. We have seen tremendous strides in the efficiency of FHE since its
initial construction in 2009. While we cannot anticipate the rate at which FHE
will improve, it is reasonable to assume that we will see better constructions of
FHE in the near future. Although we leverage the Smart-Vercauteren vectors
in our construction, if future implementations do not support SIMD ciphertext
operations, similar strategies can be used to bind many plaintext values together
so verification can be done quickly.

References

1. Adam, N.R., Worthmann, J.C.: Security-control methods for statistical databases:
a comparative study. ACM Comput. Surv. 21(4), 515-556 (1989)

2. Ayday, E., Raisaro, J.L., McLaren, P.J., Fellay, J., Hubaux, J.-P.: Privacy-
preserving computation of disease risk by using genomic, clinical, and environmen-
tal data. Presented as part of the 2013 USENIX workshop on health information
technologies, USENIX, Berkeley, CA (2013)

3. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on out-
sourced data. Cryptology ePrint Archive, Report 2013/469 (2013). http://eprint.
iacr.org/

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Snarks for C: ver-
ifying program executions succinctly and in zero knowledge. Cryptology ePrint
Archive, Report 2013/507 (2013). http://eprint.iacr.org/

5. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. Cryptology ePrint Archive, Report 2011/132 (2011). http://eprint.
iacr.org/

6. Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless data-
base privacy. Cryptology ePrint Archive, Report 2011/487 (2011). http://eprint.
iacr.org/2011/487

7. Bitansky, N.; Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. Cryp-
tology ePrint Archive, Report 2011/443 (2011). http://eprint.iacr.org/

8. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted med-
ical data. Technical report MSR-TR-2013-81, September 2013

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) 3rd Innovations in
Theoretical Computer Science, ITCS 2012, Cambridge, Massachusetts, USA,
8-10 January 2012, pp. 309-325. Association for Computing Machinery (2012)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/487
http://eprint.iacr.org/2011/487
http://eprint.iacr.org/

122

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

G. Kaptchuk et al.

Christakis, N.A., Fowler, J.H., Imbens, G.W., Kalyanaraman, K.: An empirical
model for strategic network formation. Working Paper 16039, National Bureau of
Economic Research, May 2010

Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. Cryptology ePrint Archive, Report 2010/241
(2010). http://eprint.iacr.org/

Cousins, D., Rohloff, K., Sumorok, D.: Designing an FPGA-accelerated homomor-
phic encryption co-processor. IEEE Trans. Emerg. Top. Comput. (2016)

Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In:
Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169—
186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29172-7_11
Duan, Y.: Privacy without noise. In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM 2009, New York, NY, USA, pp.
1517-1520. ACM (2009)

Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1-19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4_1

Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Mitzenmacher, M.
(ed.) 41st Annual ACM Symposium on Theory of Computing, Bethesda, Maryland,
USA, May 31-June 2, 2009, pp. 371-380. ACM Press (2009)

Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265-284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
Dwork, C., Smith, A.: Differential privacy for statistics: what we know and what
we want to learn. J. Priv. Confidentiality 1, 135-154 (2009)

Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2014, New York, NY, USA, pp. 844-855. ACM
(2014)

Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. Cryptology ePrint Archive, Report
2009/547 (2009). http://eprint.iacr.org/

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st Annual ACM Symposium on Theory of Computing, Bethesda,
Maryland, USA, May 31-June 2, 2009, pp. 169-178. ACM Press (2009)

Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 425-440. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45353-9_31

Halevi, S., Shoup, V.: Helib. http://shaih.github.io/HElib/

Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264-282. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_15

Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy and machine learning: a survey
and review. CoRR, abs/1412.7584 (2014)

Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 143-159. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_9

Narayan, A., Feldman, A., Papadimitriou, A., Haeberlen, A.: Verifiable differential
privacy. In: Proceedings of the Tenth European Conference on Computer Systems,
EuroSys 2015, New York, NY, USA, pp. 28:1-28:14. ACM (2015)

vww.ebook3000.con)

http://eprint.iacr.org/
https://doi.org/10.1007/978-3-319-29172-7_11
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/11681878_14
http://eprint.iacr.org/
https://doi.org/10.1007/3-540-45353-9_31
http://shaih.github.io/HElib/
https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1007/978-3-642-03356-8_9
http://www.ebook3000.org

28.

29.

30.

31.

32.

33.

34.

35.

36.

Outsourcing Medical Dataset Analysis: A Possible Solution 123

Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: IEEE Symposium on Security and Privacy, SP 2008, pp. 111-125. IEEE (2008)
Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical veri-
fiable computation. Cryptology ePrint Archive, Report 2013/279 (2013). http://
eprint.iacr.org/

Setty, S.T.V., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument sys-
tems for outsourced computation practical (sometimes). In: ISOC Network and
Distributed System Security Symposium - NDSS 2012, San Diego, California, USA,
5-8 February 2012. The Internet Society (2012)

Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology
ePrint Archive, Report 2011/133 (2011). http://eprint.iacr.org/2011/133
SPARCS: Hospital inpatient discharges (sparcs de-identified) (2012). https://
health.data.ny.gov/Health/Hospital-Inpatient- Discharges-SPARCS-De-Identified /
udud-whH5t

Vaikuntanathan, V.: Computing blindfolded: new developments in fully homomor-
phic encryption (tutorial). In: Ostrovsky, R. (ed.) 52nd Annual Symposium on
Foundations of Computer Science, Palm Springs, California, USA, 22-25 October
2011, pp. 5-16. IEEE Computer Society Press (2011)

Wahby, R.S., Setty, S., Howald, M., Ren, Z., Blumberg, A.J., Walfish, M.: Effi-
cient ram and control flow in verifiable outsourced computation. Cryptology ePrint
Archive, Report 2014/674 (2014). http://eprint.iacr.org/

Wu, D., Haven, J.: Using homomorphic encryption for large scale statistical analy-
sis (2012)

Yuan, X., Miller, D., Zhang, J., Herrington, D., Wang, Y.: An overview of popu-
lation genetic data simulation. J. Comput. Biol. 19(1), 42-54 (2012)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/133
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/u4ud-w55t
http://eprint.iacr.org/

Homomorphic Proxy Re-Authenticators
and Applications to Verifiable Multi-User Data
Aggregation

David Derler'®) | Sebastian Ramacher!, and Daniel Slamanig?

L JAIK, Graz University of Technology, Graz, Austria
{dderler,sramacher}@iaik.tugraz.at
2 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

Abstract. We introduce the notion of homomorphic proxy re-
authenticators, a tool that adds security and verifiability guarantees
to multi-user data aggregation scenarios. It allows distinct sources to
authenticate their data under their own keys, and a proxy can trans-
form these single signatures or message authentication codes (MACs) to
a MAC under a receiver’s key without having access to it. In addition,
the proxy can evaluate arithmetic circuits (functions) on the inputs so
that the resulting MAC corresponds to the evaluation of the respective
function. As the messages authenticated by the sources may represent
sensitive information, we also consider hiding them from the proxy and
other parties in the system, except from the receiver.

We provide a general model and two modular constructions of our
novel primitive, supporting the class of linear functions. On our way, we
establish various novel building blocks. Most interestingly, we formally
define the notion and present a construction of homomorphic proxy re-
encryption, which may be of independent interest. The latter allows users
to encrypt messages under their own public keys, and a proxy can re-
encrypt them to a receiver’s public key (without knowing any secret key),
while also being able to evaluate functions on the ciphertexts. The result-
ing re-encrypted ciphertext then holds an evaluation of the function on
the input messages.

1 Introduction

Proxy re-cryptography [11] is a powerful concept which allows proxies to trans-
form cryptographic objects under one key to cryptographic objects under another

The full version of this paper is available as IACR, Cryptology ePrint Archive Report
2017/086. All authors have been supported by EU H2020 project PRISMACLOUD,
grant agreement no. 644962. S. Ramacher has additionally been supported by EU
H2020 project CREDENTIAL, grant agreement no. 653454.
Work done while Daniel Slamanig was still at TAIK, Graz University of Technology,
Graz, Austria.

© International Financial Cryptography Association 2017

A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 124-142, 2017.

https://doi.org/10.1007/978-3-319-70972-7_7

vww.ebook3000.con)

http://www.ebook3000.org

Homomorphic Proxy Re-Authenticators and Applications 125

key using a transformation key (a so called re-key). In particular, proxy re-
encryption has shown to be of great practical interest in cloud scenarios such as
data storage [12,16], data sharing [49], publish-subscribe [15] as well as cloud-
based identity management [41,42,47,50]. In contrast, other proxy re-primitives,
and in particular proxy re-signatures (or MACs), seem to unleash their full
potential not before considering them in combination with homomorphic prop-
erties on the message space. Interestingly, however, this direction has received
no attention so far. To this end, we introduce the notion of homomorphic proxy
re-authenticators (HPRAs), which allows distinct senders to authenticate data
under their own keys, and an evaluator (aggregator) can transform these single
signatures or message authentication codes (MACs) to a MAC under a receiver’s
key without knowing it. Most importantly, the aggregator can evaluate arith-
metic circuits (functions) on the inputs so that the resulting MAC corresponds
to the evaluation of the respective function. Furthermore, we investigate whether
we can hide the input messages from the aggregator. On the way to solve this, we
formally define the notion of homomorphic proxy re-encryption (HPRE). Data
aggregation is the central application of our framework, but it is not limited to
this application.

Motivation. Data aggregation is an important task in the Internet of Things
(IoT) and cloud computing. We observe a gap in existing work as the important
issue of end-to-end authenticity and verifiability of computations on the data
(aggregation results) is mostly ignored. We address this issue and propose a
versatile non-interactive solution which is tailored to a multi-user setting. The
additional authenticity features of our solution add robustness to errors occurring
during transmission or aggregation even in the face of a non-trusted aggregator.

Multi-User Data Aggregation. Assume a setting where n senders, e.g., sensor
nodes, regularly report data to some entity denoted the aggregator. The aggre-
gator collects the data and then reports computations (evaluations of functions)
on these data to a receiver. For example, consider environmental monitoring of
hydroelectric plants being located in a mountainous region, where small sen-
sors are used for monitoring purposes. Due to the lack of infrastructure (e.g.,
very limited cell coverage) sensors are not directly connected to the Internet and
collected data is first sent to a gateway running at the premise of some telecom-
munication provider. This gateway aggregates the data and forwards it to some
cloud service operated by the receiver.

Obviously, when the involved parties communicate via public networks, secu-
rity related issues arise. Apart from achieving security against outsiders, there
are also security and privacy related issues with respect to the involved parties.

In general, we identify three main goals. (1) End-to-end authenticity, i.e., pro-
tecting data items from unauthorized manipulation and preserving the source
authenticity. (2) Concealing the original data from the aggregator and the
receiver, and, even further, concealing the result of the computation from the
aggregator. Clearly, in (2) we also want to conceal data from any outsider.
(3) Establishing independent secret keys for the involved parties so that they
do not share a single secret. Latter facilitates a dynamic setting.

126 D. Derler et al.

Below, we present such an aggregation scenario, discuss why straightforward
solutions fall short, and sketch our solution. Then, we discuss the problems
popping up when we require stronger privacy guarantees and show how our
primitives help to overcome these issues.

Authenticity and Input Privacy. In our first scenario, the n senders each hold
their own signing key and within every period sender ¢ reports a signed data
item d; to the aggregator. The aggregator must be able to evaluate functions
f € F (where F is some suitable class of functions, e.g., linear functions) on
di,...,d, so that a receiver will be convinced of the authenticity of the data
and the correctness of the computation without fully trusting the aggregator
(recall the end-to-end authenticity requirement). Moreover, although the inputs
to the aggregator are not private, we still want them to be hidden relative to
the function f, i.e., so that a receiver only learns what is revealed by f and
d= f(dq,...,d,), as a receiver might not need to learn the single input values.

A central goal is that the single data sources have individual keys. Thus, we
can not directly employ homomorphic signatures (or MACs). Also the recent con-
cept of multikey-homomorphic signatures [25,26,33] does not help: even though
they allow homomorphic operations on the key space, they do not consider trans-
formations to some specific target key.! With HPRAs we can realize this, as the
aggregator (who holds re-keys from the senders to some receiver) can transform
all the single signatures or MACs to a MAC under the receiver’s key (with-
out having access to it). Moreover, due to the homomorphic property, a MAC
which corresponds to the evaluation of a function f on the inputs can be com-
puted. The receiver can then verify the correctness of the computation, i.e., that
d=f (di,...,dy), and the authenticity of the used inputs (without explicitly
learning them) using its independent MAC key.

Adding Output Privacy. In our second scenario, we additionally want data pri-
vacy guarantees with respect to the aggregator. This can be crucial if the aggre-
gator is running in some untrusted environment, e.g., the cloud. We achieve this
by constructing an output private HPRA. In doing so, one has to answer the
question as how to confidentially provide the result of the computation to the
receiver and how to guarantee the authenticity (verifiability) of the computation.
We tackle this issue by introducing a HPRE where the homomorphism is com-
patible to the one of the HPRA. The sources then additionally encrypt the data
under their own keys and the aggregator re-encrypts the individual ciphertexts
to a ciphertext under a receiver’s key and evaluates the same function f as on the
MACs on the ciphertexts. This enables the receiver to decrypt the result d using
its own decryption key and to verify the MAC on d together with a description
of the function f. In addition, we use a trick to prevent public verifiability of the
signatures from the single data sources, as public verifiability potentially leaks
the signed data items which trivially would destroy output privacy.

! While the homomorphic properties might allow one to define a function mapping to
a target key, it is unclear whether handing over the description of such a function to
a proxy would maintain the security requirements posed by our application.

vww.ebook3000.con)

http://www.ebook3000.org

Homomorphic Proxy Re-Authenticators and Applications 127

Contribution. Our contributions in this paper can be summarized as follows.

— We introduce the notion of homomorphic proxy re-authenticators (HPRA).
Our framework tackles multi-user data aggregation in a dynamic setting. For
the first time, we thereby consider independent keys of the single parties, the
verifiability of the evaluation of general functions on the authenticated inputs
by the sources, as well as privacy with respect to the aggregator.

— As a means to achieve the strong privacy requirements imposed by our secu-
rity model, we formally define the notion of homomorphic proxy re-encryption
(HPRE), which may be of independent interest.

— We present two modular constructions of HPRA schemes for the class Fj;, of
linear functions, which differ regarding the strength of the provided privacy
guarantees. On our way, we establish various novel building blocks. Firstly,
we present a linearly homomorphic MAC which is suitable to be used in
our construction. Secondly, to achieve the stronger privacy guarantees, we
construct a HPRE scheme for linear functions. All our proofs are modular in
the sense that we separately prove the security of our building blocks; our
overall proofs then build upon the results obtained for the building blocks.
Thus, our building blocks may as well easily be used in other constructions.

Related Work. Subsequently, we review related work. As our focus is on non-
interactive approaches, we omit interactive approaches where clients download
all the data, decrypt them locally, compute a function, and send the results back
along with a zero-knowledge proof of correctness (as, e.g., in [24]).

Proxzy Re-Cryptography. Proxy re-encryption (PRE) [11] allows a semi-trusted
proxy to transform a message encrypted under the key of some party into a
ciphertext to the same message under a key of another party, where the proxy
performing the re-encryption learns nothing about the message. This primitive
has been introduced in [11], further studied in [30] and the first strongly secure
constructions have been proposed by Ateniese et al. in [5]. Boneh et al. construct
PRE in the symmetric setting [14]. Follow-up work focuses on even stronger (IND-
CCA2 secure) schemes (cf. [17,39,43,44]). Since we, however, require certain
homomorphic properties, we focus on IND-CPA secure schemes (as IND-CCA2
security does not allow any kind of malleability). In previous work by Ayday
et al. [7], a variant of the linearly homomorphic Paillier encryption scheme and
proxy encryption in the sense of [30] were combined. Here, the holder of a key
splits the key and gives one part to the proxy and one to the sender; with the
drawback that the secret key is exposed when both collude. We are looking for
proxy re-encryption that is homomorphic, works in a multi-user setting but is
collusion-safe and non-interactive, i.e., re-encryption keys can be computed by
the sender using only the public key of the receiver without any interaction
and a collusion of sender and proxy does not reveal the receiver’s key. Also
note that, as our focus is on practically efficient constructions, we do not build
upon fully homomorphic encryption [27], which allows to build HPRE using
the rather expensive bootstrapping technique. In concurrent work Ma et al.
[40] follow this approach and propose a construction of a PRE scheme with

128 D. Derler et al.

homomorphic properties which additionally achieves key privacy. They build
upon [28] using the bootstrapping techniques in [4] and apply some modifications
for key privacy. While their construction can be seen as a HPRE in our sense,
they do not formally define a corresponding security model and we are not aware
of a suitable formalization for our purposes.

Proxy re-signatures, i.e., the signature analogue to proxy re-encryption, have
been introduced in [11] and formally studied in [30]. Later, [6] introduced
stronger security definitions, constructions and briefly discussed some applica-
tions. However, the schemes in [6] and follow up schemes [38] do not provide
a homomorphic property and it is unclear how they could be extended. The
concept of homomorphic proxy re-authenticators, which we propose, or a related
concept, has to the best of our knowledge not been studied before.

Homomorphic Authenticators. General (non-interactive) verifiable computing
techniques (cf. [48] for a recent overview) are very expressive, but usually pro-
hibitive regarding proof computation (proof size and verification can, however,
be very small and cheap respectively). In addition, the function and/or the data
needs to be fixed at setup time and inputs are not authenticated. Using homo-
morphic authenticators allows evaluations of functions on authenticated inputs
under a single key (cf. [19] for a recent overview). They are dynamic with respect
to the authenticated data and the evaluated function, and also efficient for inter-
esting classes of functions. Evaluating results is typically not more efficient than
computing the function (unless using an amortized setting [8,21]). Yet, they
provide benefits when saving bandwidth is an issue and/or the inputs need to
be hidden from evaluators (cf. [22,32]). Computing on data authenticated under
different keys using so called multi-key homomorphic authenticators [25,26,33],
has only very recently been considered. Even though they are somewhat related,
they are no replacement for what we are proposing in this paper.

Aggregator-Oblivious Encryption (AOE). AOE [45,46] considers data provided
by multiple producers, which is aggregated by a semi-honest aggregator. The
aggregator does not learn the single inputs but only the final result. Follow-up
work [10,31,34] improved this approach in various directions. Furthermore, [23]
introduced a method to achieve fault tolerance, being applicable to all previous
schemes. There are also other lines of work on data aggregation, e.g., [18,36],
[29,37]. Very recently, [35] combined AOE with homomorphic tags to additionally
provide verifiability of the aggregated results. Here, every user has a tag key and
the aggregator additionally aggregates the tags. Verification can be done under a
pre-distributed combined fixed tag key. Their approach is limited to a single func-
tion (the sum) and requires a shared secret key-setting, which can be problematic.

In all previous approaches it is impossible to hide the outputs (i.e., the aggre-
gation results) from the aggregator. In contrast to only hiding the inputs, we
additionally want to hide the outputs. In addition, we do not want to assume
a trusted distribution of the keys, but every sender should authenticate and
encrypt under his own key and the aggregator can then perform re-operations
(without any secret key) to the receiver.

vww.ebook3000.con)

http://www.ebook3000.org

Homomorphic Proxy Re-Authenticators and Applications 129

2 Preliminaries

Unless stated otherwise, all algorithms run in polynomial time and return a
special symbol L on error. By y « A(z), we denote that y is assigned the output
of the potentially probabilistic algorithm A on input z and fresh random coins
(we may also use sans serif font to denote algorithms). Similarly, ¥ <& S means
that y is assigned a uniformly random value from a set S. If a and b are strings,
alb is the concatenated string and @||b means extending the vector @ with element
b. For a sequence of vectors (¥;);c[,) of length £, we use f((¥;);ic[n)) to denote the
element-wise application of the function f, i.e., f((¥i)iepn)) = (f(vi1)iems---»
J((vie)iem))). We let [n] == {1,...,n} and let Pr[f2 : E] denote the probability
of an event E over the probability space 2. A function () : N — Rx¢ is called
negligible, iff it vanishes faster than every inverse polynomial, i.e., V k : 3 ny :
¥V n>ng:e(n) <n~*. A polynomial function is denoted by poly(-).

Let G1 = {g), G2 = (3), and Gt be cyclic groups of prime order ¢q. A paring
e : G1 x Gy — Gr is an efficiently computable, bilinear, non-degenerate map.
For simplicity we present our results in the (symmetric) Type-1 setting where
G1 = Gy. We stress that there are tools [1,3] to automatically translate them to
the more efficient (asymmetric) Type-3 setting. Henceforth we use BG to denote
a description of a bilinear group and use boldface letters to denote elements in
Gr. We formally define bilinear group generation and the required computational
hardness assumptions in the full version.

Linearly Homomorphic MACs. Our definition is inspired by [2] and cov-
ers homomorphic MACs for the family of linear function classes {Fhn}, further
referred to as HOM-MAC.

Definition 1 (HOM-MAC). A HOM-MAC is a tuple (P,G,S,C, V) of algorithms
defined as:

P(k,L): Takes a security parameter £ and an upper bound £ on the vector length
as input and outputs public parameters pp, determining the message space
ME, function class]-'"j; containing functions f : (MH™ — M*, as well as a
tag space being exponentially large in r, where £,n < poly(k).

G(pp): Takes the public parameters pp as input and outputs a secret key sk.

S(sk,v,id, 7): Takes a MAC key sk, a vector U, an identifier id, and a tag T as
input, and outputs a MAC u.

C(pp, f; (1i)ie[n)) : Takes public parameters pp, a function f € Fin and a sequence
of valid MACs (j1;)ie[n) on vectors (V;)ie[n) as input, and outputs a MAC p
on 0= f(()ie[m))-

V(sk, T, u, 7, (idi)ien), f): Takes a MAC key sk, a vector v, a MAC p, a tag 7, a
sequence of identifiers (id;)ic[n), and a function f € Fin as input, and outputs
a bit.

A linearly homomorphic MAC is required to be correct and unforgeable.
Formal definitions are presented in the full version.

Proxy Re-Encryption. A proxy re-encryption (PRE) scheme is an encryption
scheme that allows a proxy to transform a message m encrypted under public

130 D. Derler et al.

key rpk 4 of party A into a ciphertext to m under rpky for another party B, so
that the proxy learns nothing about m. A PRE scheme is called non-interactive if
party A can produce a re-encryption key from A to B locally by having access to
its private key and only B’s public key, collusion-safe if the proxy colluding with
either of the parties can not recover the other parties private key, unidirectional
if a re-encryption key only allows transformations in one direction (e.g., from A
to B), and single-use if one ciphertext can be transformed only once. For our
formal definitions, we largely follow [5].

Definition 2 (PRE). A PRE is a tuple (P,g,f,ﬁ, RG,RE) of algorithms,
where € = (E%)icrz) and D= (D%)iep), which are defined as follows:

P(1%): Takes a security parameter k and outputs parameters pp.

G(pp): Takes parameters pp and outputs a key pair (rsk, rpk).

RG(rska,rpkp) : Takes a secret key rska and a public key rpkg and outputs a
re-encryption key rka_pg.
E¥(rpk,m): Takes a public key rpk and a message m and outputs a ciphertext c.

RE(rka—p,ca): Takes a re-encryption key rka_,p and a ciphertect c4 under
rpk 4, and outputs a re-encrypted ciphertext cp for rpkg.

Di(rsk,c): Takes a secret key rsk and a ciphertext ¢, and outputs m.

A PRE scheme needs to be correct. This notion requires that for all security
parameters £ € N, all honestly generated parameters pp < P(1%), all key pairs
(rska, rpk4) < G(pp), (rskp,rpkg) < G(pp), all re-encryption keys rka_.p «—
RG(rska, rpky), all messages m it holds with probability one that

Vie[2]3j€2] : Di(rska,E (rpky,m)) = m, and
Jic2]3je[2 : Di(rskp, RE(rka_p,E (pky,m))) = m.

Thereby ¢ and j determine the level of the ciphertexts. We will henceforth use
the following semantics: first-level ciphertexts (£!) cannot be re-encrypted by a
proxy, whereas second-level ciphertexts (£2) can be re-encrypted.

In addition, a PRE needs to be IND-CPA secure. We, henceforth, only require
a relaxed IND-CPA notion which we term IND-CPA™. It is clearly implied by the
original IND-CPA notion from [5] (some oracles are omitted and the adversary
only gets to see a second-level ciphertext).

Definition 3 (IND-CPA™). A PRE is IND-CPA™ secure, if for all PPT adver-
saries A there is a negligible function €(-) such that

pp < P(l’i)v b i {07 1}7 (Skta pkt) — g(pP)v
(Skh7 pkh) — g(pp)a rkt—>h — Rg(Skta pkh)a - b
(mOv mi, St) — A(pp, pkta pkh7 rktﬁh)a .

¢ «— E%(my, pk,), b «— A(st, c)

Pr =b | <Y24e(k).

We remark that RG as defined in [5] also takes the target secret key to cover
interactive schemes. As we only deal with non-interactive ones, we omit it.

vww.ebook3000.con)

http://www.ebook3000.org

Homomorphic Proxy Re-Authenticators and Applications 131

3 Homomorphic Proxy Re-Authenticators

We introduce homomorphic proxy re-authenticators (HPRAs) and rigorously for-
malize a suitable security model. Our goal is to obtain a flexible framework with
various possible instantiations. Accordingly, our definitions are rather generic.
We stress that both the source and receiver re-key generation, besides the secret
key of the executing party, only require public inputs, i.e., are non-interactive.

Definition 4 (HPRA). A homomorphic proxy re-authenticator (HPRA) for a
family of function classes {Fpp} is a tuple of PPT algorithms (Gen, SGen, VGen,
Sign, Verify, SRGen, VRGen, Agg, AVerify), where Verify is optional. They are
defined as follows:

Gen(1%,£) : Takes security parameter k and vector length £ and outputs param-
eters pp, determining the message space M’, function class Fop containing
functions f : (M™ — MF, as well as a tag space being exponentially large
in Kk, where £,n < poly(k).

SGen(pp): Takes parameters pp as input, and outputs a signer key (id, sk, pk).

VGen(pp) : Takes parameters pp, and outputs a MAC key mk and auxiliary
information aux.

Sign(sk, i, 7): Takes a signer secret key sk, a message vector mi, and a tag T as
mput, and outputs a signature o.

Verify(pk, m, 7,0) : Takes a signer public key pk, a message vector m, a tag T,
and a signature o as input, and outputs a bit b.

SRGen(sk;,aux): Takes a signer secret key sk;, some auziliary information aux,
and outputs a re-encryption key rk;.

VRGen(pk;, mk, rk;): Takes a signer public key pk, and a MAC key mk, as well
as a re-encryption key rk; as input, and outputs an aggregation key ak;.

Agg((aki)icn), (0i)ien)> 7> f) = Takes n aggregation keys (ak;)ic[n), n signatures
(0i)icin), a tag 7, and a function f € Fpp as input, and outputs an aggregate
authenticated message vector A.

AVerify(mk, A, ID, f): Takes a MAC key mk, an aggregate authenticated message
vector A, n identifiers 1D = (id;)ief), and a function f € Fyp. It outputs a
message vector and a tag (m,T) on success and (L, L) otherwise.

Security Properties. Below we define the oracles, where the public param-
eters and the keys generated in the security games are implicitly available to
the oracles. While most oracle definitions are fairly easy to comprehend and
therefore not explicitly explained, we note that the RoS oracle is used to model
the requirement that signatures do not leak the signed data in a real-or-random
style. The environment maintains the initially empty sets HU and CU of hon-
est and corrupted users (CU is only set in the output privacy game). Further,
it maintains the initially empty sets S, RK and AK of signer, re-encryption and
aggregation keys, and an initially empty set SIG of message-identity pairs.

SG(i): If S[i] # L return L. Otherwise run (id;, sk;, pk;) < SGen(pp), set S[i] —
(id;, sky, pk;), and, if 4 ¢ CU set HU «— HU U {i}. Return (id;, pk;).

132 D. Derler et al.

SKey(#): If i ¢ HU return L. Otherwise return S[i].

Sig((ji)ien)> (Ms)iem)): 1f 8[js] = L for any i € [n], or there exists u,v € [n],u #
v so that j, = j,, return L. Otherwise sample a random tag 7 and compute
(7, — Sign(Sil2l, s, 7)icp, set SIGlr] — STGIF] U { (g, 8Ll 1))} for
i € [n], and return (0,);e[n) and 7.

RoS((js)ien]s (Mi)iem)» b): If S[ji] = L or j; € CU for any i € [n] return L.
Otherwise sample 7 uniformly at random and if b = 0 compute (o, < Sign(
S[ji][2], 7, 7))ien)- Else choose (7i)iefm <= (M*)™ where M is the message
space and compute (o, < Sign(S[j;][2], 75, 7))icm)- Finally, return (o},)icn)-

SR(7): If 8[i] = L V RK[{] # L return L. Else, set RK[i] «— SRGen(8]i][2], aux)
and return RK[i].

VR(#): If 8[i] = L V RK[i] = L V AK[i] # L return L. Else, set AK[i] «+ VRGen(
S[4][3], mk, RK[7]).

VRKey(7): Return AK[i].

A((0j,)iem)> (Ji)iem)» 7> f): Check validity of all o;,, whether f € F,,, whether
SIG[7] = 1, and return L if any check fails. Further, check whether there
exists u,v € [n],u # v so that j, = j, and return L if so. Obtain (aky,)icmn
from AK and return L if AK[j;] = L for any i € [n]. Set SIG[7] — ;[{ (7},

S[z][1])} and return A — Agg((ak;,)iefn]: (75)ien)s 7 f)-

We require a HPRA to be correct, signer unforgeable, aggregator unforgeable,
and input private. We formally define those notions below. Intuitively, correct-
ness requires that everything works as intended if everyone behaves honestly.

Definition 5 (Correctness). A HPRA for a family of function classes {Fpp} is
correct, if for all k, for all € < poly(k), for all pp — Gen(1%,¢) determining Fpp,
for all n < poly(x), for all ((id;,sks, pk;) < SGen(pp))ic[n), for all (mk,aux)
VGen(pp), for all (m;)iem), for all T, for all (o; < Sign(ski, My, T))iem), for
all (ak; «— VRGen(pk;, mk, SRGen(sk;, aux)))ic(n), for all f € Fpp, for all A*
Agg((aki)icin), (04)ien)> T, f) it holds that (Verify(pk;, mi;, 7, 0:) = 1)ic[n) and that
AVerify(mk, A~ 1D, f) = 1, where we sometimes omit to make the domains of the
values over which we quantify explicit for brevity.

Signer unforgeability requires that, as long as the aggregator remains honest,
no coalition of dishonest signers can produce a valid aggregate authenticated
message vector A with respect to function f € Fp, so that A is outside of
the range of f evaluated on arbitrary combinations of actually signed vectors.
Aggregator unforgeability is the natural counterpart of signer unforgeability,
where the aggregator is dishonest while the signers are honest.?

2 Tt is impossible to consider both, signers and aggregators, to be dishonest at the
same time, as such a coalition could essentially authenticate everything. This is in
contrast to the setting of proxy re-encryption, where it makes sense to model security
in the face of receivers colluding with the proxy.

vww.ebook3000.con)

http://www.ebook3000.org

Homomorphic Proxy Re-Authenticators and Applications 133

Definition 6 (T-Unforgeability). Let T € {Signer, Aggregator}. A HPRA for
family of function classes {Fyp} is T-unforgeable, if for all PPT adversaries A
there is a negligible function €(-) such that

. m#EL N freFpp A
pp < Gen(1%,0), 0 <n,¢ < poly(k) A

Pr (mk, aux) < VGen(pp), L (B () c(Vjen]:| <e(x)
(A°,1D°, 1) = A (pp,awx), * P \Tlacinl ’

(1, 7) < AVerify(mk, A*,ID", f*) (T}L ((m]))]EESIG[])m/)\

where Ot = {SG(-),SKey(-),SR(:), VR(:),A(-,-,-)} for T = Signer and Ot :=
{SG("),Sig(-,"),SR(*), VR(*), VRKey ()} for T = Aggregator.

Input privacy captures the requirement that an aggregate authenticated mes-
sage vector does not leak more about the inputs to f as the evaluation result
and the description of f would leak on their own.

Definition 7 (Input Privacy). A HPRA for a family of function classes {Fpp}
is input private if for all K € N, for all £ < poly(k), for all pp «— Gen(1%,{)
determining Fpp, for all f € Fpp implicitly defining n, for all tags 7, and for all
(’f_fbu, vy Tﬁnl) and (77742, e ,T?lng) where f(’r?lu, . ,’I’ﬁnl) = f(’r?hg, e ,’I’?LHQ),
for all (mk, aux) < VGen(pp), for all ((sk;, pk;) < SGen(pp))icin], (aki <= SRGen(
ski, aux, VRGen(pk;, mk)))ic(n, the following distributions are identical:

{Agg((akq)ieqn), (Sign(ski, mi1, 7))iem)> 7> £},
{Agg(<akz)’b€[n]7 (Slgn(Skw mi2a T))iE[n]7 T, f)}

Additionally, a HPRA may provide output privacy. It models that the aggre-
gator neither learns the inputs nor the result of the evaluation of f.

Definition 8 (Output Privacy). A HPRA for a family of function classes
{Fop} is output private, if for all PPT adversaries A there is a negligible function
€(+) such that:

pp < Gen(1%,/), (CU,st) «— A(pp),b <= {0,1},
(mk, aux) < VGen(pp), O — {SG(-), SKey(-),
RoS(+, -, b),SR(), VR(:), VRKey()},

b* «— A (aux, st)

Pr cb=0b" | <1/24¢(k).

4 An Input Private Scheme for Linear Functions

Now we present our first HPRA for the family of linear function classes {fg;}.
The main challenge we face is to construct a signature scheme with an associated
HOM-MAC scheme, where the translation of the signatures under one key to a
MAC under some other key works out. Since we believe that our HOM-MAC may
as well be useful in other settings we present it as a standalone building block
and then proceed with our full construction, where HOM-MAC is used as a

134 D. Derler et al.

P(k,0): Run BG « BGGen(1"), fix H : Z; — G, choose (g:)icpg <= (G*)*, and return
pp (BG, H, (gi)ie[[]vg)'

G(pp): Choose a £ 7, and return sk < (pp, a).

S(sk, ¥,id, 7): Parse sk as (pp, &) and return p < e(H(7|id) - Ty g;J,g"‘).

wl

Clpp, /. (1)iein): Parse f as (wi)ieqn and return o],

V(sk, T, i, 7, (id:)ien), f): Parse sk as (pp,a), f as (wi)ie[n and output 1 if the fol-
lowing holds, and 0 otherwise: pu = e(J[;c(,) H(7|[idi)*" [];¢]gj ,9%)

Scheme 1. Linearly homomorphic MAC based on [13].

submodule. Both build upon the ideas used in the signature scheme presented
n [13].

A Suitable Linearly Homomorphic MAC. We present our HOM-MAC in
Scheme 1. We can not recycle the security arguments from [13] as we require
the ability to submit arbitrary tags 7 to the Sig oracle. Thus we directly prove
unforgeability.

Lemma 1 (Proven in the full version). If the bilinear DDH (BDDH)
assumption holds, then Scheme 1 is an unforgeable HOM-MAC in the ROM.

Our Input Private Construction. In Scheme 2 we present our HPRA con-
struction for the family of linear function classes {F ""} It allows to authenticate
vectors of length ¢, so that the same function can be evaluated per vector compo-
nent. In our application scenario we have £ = 1. We allow one to parametrize our
construction with an algorithm Eval(-, -), which defines how to compute f € fg;
on the message vector. When directly instantiating Scheme 2, Eval is defined as

Eval(f, () ieqm)) = f((Mi)icin)-

Theorem 1 (Proven in the full version). If HOM-MAC in Scheme 1 is
unforgeable and the e BCDH assumption holds, then Scheme 2 represents a signer
unforgeable, aggregator unforgeable and input private HPRA for the family of
linear function classes {Fin} in the ROM.

5 Adding Output Privacy

An additional goal is that the aggregator neither learns the input nor the output
(output privacy). On our way to achieve this, we formally define the notion of
homomorphic proxy-re encryption (HPRE) and develop an instantiation for the
family of linear function classes {F, "”} Based on this, we extend Scheme 2 to
additionally provide output privacy.

vww.ebook3000.con)

http://www.ebook3000.org

Homomorphic Proxy Re-Authenticators and Applications 135

Gen(17,¢): Run BG « BGGen(1%), fix H : Zg — G, choose (g:)icpg <= G*, and return
pPp < (BG7 H, (gi)ie[l],£)~

SGen(pp): Choose 3 <X Z,, set id — ¢°, pk — (pp,g°,9"?), sk — (pk, 3), and return
(id, sk, pk).

VGen(pp): Choose « %il Zq, set aux < 0, mk < (pp,) and return (mk,aux).

Sign(sk, 77, 7): Parse sk as (((BG, H, (i)icfg:£), 9",), 3), compute and return o «
(o', m), where
my B
— (H(llg™) - TIZy o)

Verify(pk, m, 7,0): Parse pk as ((BG, H, (gi)icig, ¢), g°,),and o as (¢/, M), and return
1 if the following holds and 0 otherwise:

e(H(7||¢°) - TIZ, 97", d°) = e(o,9) N m=m.

SRGen(sk;,aux): Return rk; < 0.

VRGen(pk,, mk, rk;): Parse pk; as (-,-,9”%), mk as (-, a), and return ak; «— (g"/%)°.

Agg((aki)icn)s (i) icm)» 7> f): Parse f as (wi)ic[n, and for i € [n] parse o as (o7, ;)

and return A «— (Eval(f, (Mi)icn)), 4, T), Where
B Hie[n] 6(0—2%7 akl)

AVerify(mk, A, ID, f): Parse mk as (pp,«), A as (m,u,7), ID as (gg')le[n] and f as
(wi)ie[m) and return (1, 7) if the following holds, and (L, L) otherwise:

W= (I elg™ Hirllg™)) - e(Tiz 9, 9)"

Scheme 2. HPRA scheme for the family of linear function families {Fan } parametrized
by Eval.

5.1 Homomorphic Proxy Re-Encryption

A homomorphic proxy re-encryption scheme (HPRE) is a PRE which addition-
ally allows the homomorphic evaluation of functions on the ciphertexts. This
functionality firstly allows to aggregate messages encrypted under the same pub-
lic key, and, secondly, to transform the ciphertext holding the evaluation of a
function to a ciphertext for another entity, when given the respective proxy re-
encryption key. We stress that if the initial ciphertexts are with respect to differ-
ent public keys, then one can use the respective re-encryption keys to transform
them to a common public key before evaluating the function. More formally:

Definition 9 (HPRE). A HPRE for the family of function classes {Fpp} is a
PRE with an additional evaluation algorithm EV .

136 D. Derler et al.

EV(pp, f,©): This algorithm takes public parameters pp, a function f € Fpp, and
a vector of ciphertexts € = (¢;)ic[n) to messages (M;)icin) all under public key
pk, and outputs a ciphertext c to message f((m;)ie[n)) under pk.

Additionally, we require the following compactness notion (analogous to [20]).

Definition 10 (Compactness). A HPRE for the family of function classes
{Fop} is called compact if for all pp < P(1%) and for all f € Fpp the running time

of the algorithms D is bounded by a fixed polynomial in the security parameter k.

Besides the straightforward adoption of correctness, IND-CPA™ remains iden-
tical (£V is a public algorithm). However, we require an IND-CPA™ variant, where
the adversary may adaptively choose the targeted user. To the best of our knowl-
edge, such a notion does not exist for PRE. We introduce such a notion (termed
mt-IND-CPA~) and show that it is implied by the conventional IND-CPA notions.

Definition 11 (mt-IND-CPA™). A (H)PRE is mt-IND-CPA™ secure, if for all
PPT adversaries A there is a negligible function (-) such that

ppHP()l“%bi{)O,l}, « }

(skn, pkp,) < G(pp), O «— {G("),RG(")}, ., _ ..

Pr (m07m17i*a5t) — Ao(pp7 pkh)) =0 § 1/2 + g(li)’
c — E2(my, pky), b — A(st, c)

where the environment holds an initially empty list HU. G and RG are defined as:

G(7) : If HU[i] # L return L. Otherwise, run (sk;,pk;) < G(pp), set HU[i] «—
(ski, pk;), and return pk;.

RG(i) : If HU[¢{) = L return L. Otherwise, set rk,—p «— RG(HU[i][1], pk,) and
return rk;_;.

Lemma 2 (proven in the full version). Fvery IND-CPA™ (and thus every
IND-CPA) secure PRE also satisfies mt- IND-CPA™ security.

HPREConstruction for the Family of Linear Function Classes. We state
our construction in Scheme 3. Essentially, we build upon the PRE scheme in
[5, third attempt] and turn it into a HPRE for the family of linear function
classes {]—"",'{,‘}, henceforth referred to as HPREj;,. For the desired homomorphism
we use a standard trick in the context of ElGamal-like encryption schemes: we
encode messages m € Z, into the exponent and encrypt g™. Decryption then
yields m’ = g™ and one additionally needs to compute m = log, m’ to obtain
m. Thus, for the schemes to remain efficient, the size of the message space
needs to be polynomial in the security parameter. While this might sound quite
restrictive, we stress that in practical settings one deals with numerical values
where messages in the order of millions to billions are by far sufficient. Thus,
this type of decryption is not a limitation and entirely practical.

As £V is a public algorithm it does not influence IND-CPA security. Thus,
our argumentation is identical to [5] and we can use the following theorem.

vww.ebook3000.con)

http://www.ebook3000.org

Homomorphic Proxy Re-Authenticators and Applications 137

P(1%): Run BG <« BGGen(1"), and return pp < BG.

G(pp): Choose (a1, as) L 72 and return (rska, rpk4) < ((a1,a2), (g, g*?)).

q>

RG(rska, rpkg): Parse rska as (aia,-) and rpkg as (-,¢?%) and return rka—p «
W

E'(rpk,m): Parse rpk as (g*,-), choose k il Z4, and return ¢ «— (gF, g™ - (g1)*, 1)
E%(rpk,m): Parse rpk as (g*!,-), choose k il Zq4, and return ¢ «— (g%, g™ - (g°1)*,2)

RE(rka—p,ca): Parse ca as (c1,c2,2) and return ¢ < (e(c1,rka—p), c2, R)

—aq

Dl(rsk7 ¢): Parse c as (ci1,c2,c3) and rsk as (a1, az2), and return g™ «— c2-¢; “*if ez =1

and g™« ¢z - cfl/"'z if ¢c3 = R.

1

D?(rsk,c): Parse ¢ as (c1,c2,2) and rsk as (a1, az2), and return g™ « ¢ - e(g, c; **).

EV(pp, f,¢): Parse f as (wi,...,wn) and € as (¢i)ie[s), and return ¢ « [T, ¢,
where multiplication and exponentiation is component-wise.

Scheme 3. HPRE;;, based on [5, third attempt].

Theorem 2 (cf. [5]). If the eDBDH assumption holds in (G, Gr) then Scheme 3
15 an IND-CPA secure HPRE;;,.

We note that compactness of Scheme 3 (Definition 10) is easy to verify.

HPREji,for Vectors. We extend HPRE;;, to vectors over Z,, while preserving the
support for re-encryption and the homomorphic properties. It turns out that we
can employ a communication efficient solution. That is, borrowing the idea of
randomness re-use from [9] and applying it to HPRE;;,, we can reduce the size of
the ciphertexts as long as no re-encryption is performed. Upon setup, we have
to fix a maximal length ¢ of the message vectors. The secret and the public
keys are then of the form rsk « (rsk;);cg = ((a14,a2i))ic[g, rek < (rpk;)icig =
(g%, 9%%))iciq), where (ai, azi)ic[q £ (Zi)f. First and second level encryption
are defined as

£} (rpk, 1) = (g", (8™ - rpk;[1]")ic(q, 1), and
&7 (rpk, i) = (g*, (8™ - rpk;[1]%)ic(q), 2), respectively.

Decryption DJ(-,-) of a ciphertext (c[1], (c[i + 1])ic(q,) is defined as Dj(
rsk, ¢) == (c[i+1] ~c[1}*'5ki[1])ie[g], and D3(rsk,) == (c[i+1] -e(c[l],g*'Skim))iem.
Re-encryption key generation is RG,(rska,rpkp) = (((rpkB)Z—[2])(rSkA)i[1])iE[g].
From a second level ciphertext ¢4 for A and a re-encryption key rk4_. g, one can
compute a ciphertext ¢g for B as ég «— RE(rka—p,¢a) = ((e(ca[l],rka—5[i]),
cali 4+ 1]))icjg- Note that re-encrypted ciphertexts have a different form.

138 D. Derler et al.

Thus we do not need to add the level as suffix. Decryption D} (-,-) for re-
encrypted ciphertexts is D (rsk, (¢;)iefq) = (ci[2] - ¢;[1] 71/l 0y

Theorem 3. If the eDBDH assumption holds, then the extension of HPREy, as
described above, yields an IND- CPA secure HPREy, for vectors.

Proof (sketch). IND-CPA security of the original scheme implies Theorem 3 under
a polynomial loss: using ¢ hybrids, where in hybrid ¢ (1 < ¢ < ¢) the i-th
ciphertext component is exchanged by random under the original strategy in [5].

Combining the theorem above with Lemma 2 yields:

Corollary 1. The extension of HPREy, as described above yields an mt-IND-
CPA™ secure HPREy, for vectors.

5.2 Putting the Pieces Together: Output Privacy

Our idea is to combine Scheme 2 with the HPRE};,, presented above. In doing so,
we face some obstacles. First, a naive combination of those primitives does not
suit our needs: one can still verify guesses for signed messages using solely the
signatures, since signatures are publicly verifiable. Second, switching to a MAC
for the data sources is also no option, as this would require an interactive re-
key generation. This is excluded by our model as we explicitly want to avoid it.
Thus, we pursue a different direction and turn the signatures used in Scheme 2
into a MAC-like primitive by blinding a signature with a random element ¢g”. An
aggregated MAC holding an evaluation of f is then blinded by g/ ie.,
the receiver needs to evaluate the function f on the all blinding values from the
single sources. Now the question arises as how to transmit the blinding values to
the receiver. Using our HPRE};, for vectors yields an arguably elegant solution:
by treating the randomness as an additional vector component, we can use the
re-encryption features of the HPRE,. More importantly, by executing the £V
algorithm the aggregator simultaneously evaluates the function f on the data
and on the randomness so that the receiver can directly obtain the blinding value
f(C .. r,...) upon decryption.

Note on the Instantiation. Augmenting Scheme 2 to obtain Scheme 4 using
HPRE;;, requires an alternative decryption strategy for the vector component
containing r, as r is uniformly random in Z, and can thus not be efficiently recov-
ered. Fortunately, obtaining r € Z, is not required, as ¢g” (resp. g") is sufficient
to unblind the signature (resp. MAC). Those values are efficiently recoverable.

Theorem 4 (proven in the full version). If Scheme 2 is signer and aggregator
unforgeable, and HPREy;, for vectors is mt-IND-CPA™ secure, then Scheme 4 is a
signer and aggregator unforgeable, input and output private HPRA for class Fi,.

vww.ebook3000.con)

http://www.ebook3000.org

Homomorphic Proxy Re-Authenticators and Applications 139

Gen(1%,¢): Fix a homomorphic PRE = (P,g,z,ﬁ,Rg,RS,EV) for class Fin
and the HPRA(EV) = (Gen, SGen, VGen, Sign, Verify, SRGen, VRGen, Agg,
AVerify) from Scheme 2 such that Mpra C Mpgre, run pp, — Gen(1",7),
pp, < P(1%,£+ 1), and return pp < (pp,, pp.)-

SGen(pp): Run (id,sk,pk) <« SGen(pp,), (rsk,rpk) < G(pp.), and return (id, sk,
pk) « (id, (sk, rsk, rpk), pk).

VGen(pp): Run (mk,aux) <« VGen(pp,), (rsk,rpk) «— G(pp,), and return (mk,
aux) < ((mk, rsk), (aux, rpk)).

Sign(sk, m, 7): Parse sk as (sk, -, rpk), choose r il Zg, and return o « (0’ -g", @), where

(0’,-) « Sign(sk, m,7) and &« EZ, 4 (rpk, m||7).

SRGen(sk;, aux): Parse sk; as (ski,rski,rpk;) and aux as (aux,rpk). Obtain rk; «
SRGen(sk;,aux) and prk, < RG(rsk;, rpk), and return rk; < (rk;, prk;).

VRGen(pk;, mk, rk;): Parse pk; as pk; and mk as (mk,-), obtain ak; <— VRGen(pk;,
mk) and return ak; < (ak;,rk;).

Agg((akl)ze[n]> (Ui)'ié[n]:T? f) For i € [TL} parse ak; as (ak’i> (rkiv prk7))7 0 as (0—27 61)

Output A « (¢, u, 7), where
(a — Rg(prkw Ei))ie[n]a (Zla 122 T) — Agg((akl)ze[n]v (Ugv E;)le[n]a f)

AVerify(mk, A,ID, f): Parse mk as (mk,rsk) and A as (& pu,7), obtain m'|jr «
Dj 1 (rsk, €) and return (77, 7) if the following holds, and (L, L) otherwise:

AVerify(mk, (m, - (g") ", 7),ID, f) =1

Scheme 4. Output private HPRA scheme for the family of linear function classes {Fan }
with Fin with Eval(-,-) := EV(pp, -,)

6 Conclusion

In this paper we introduce the notion of homomorphic proxy re-authenticators.
This concept covers various important issues in the multi-user data aggregation
setting not considered by previous works. We present two provably secure and
practically efficient instantiations of our novel concept, which differ regarding
the strength of the privacy guarantees. Our schemes are modular in the sense
that they are constructed from building blocks which may as well be useful in
other settings. One important building block is the concept of homomorphic
proxy re-encryption, which we also introduce and construct in this paper.

Acknowledgements. We thank David Nuiiez for his valuable comments on a draft
of this paper.

140

D. Derler et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Abe, M., Hoshino, F., Ohkubo, M.: Design in Type-I, run in Type-III: fast and
scalable bilinear-type conversion using integer programming. In: CRYPTO 2016
2016

ggrav?zal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292-305. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01957-9_18

Akinyele, J.A., Garman, C., Hohenberger, S.: Automating fast and secure transla-
tions from Type-I to Type-III pairing schemes. In: CCS 2015 (2015)

. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:

Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297-314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17
Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1-30 (2006)

. Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms,

and applications. In: CCS 2015 (2005)

Ayday, E., Raisaro, J.L., Hubaux, J., Rougemont, J.: Protecting and evaluating
genomic privacy in medical tests and personalized medicine. In: WPES 2013 (2013)
Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: CCS 2013 (2013)

Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multirecipient encryption
schemes: How to save on bandwidth and computation without sacrificing security.
IEEE Trans. Inf. Theory 53(11), 3927-3943 (2007)

Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 21 (2016)
Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127-144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

Blazy, O., Bultel, X., Lafourcade, P.: Two secure anonymous proxy-based data
storages. In: SECRYPT, pp. 251-258 (2016)

Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68-87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1_5

Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410-428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4_23

Borceaa, C., Guptaa, A.B.D., Polyakova, Y., Rohloffa, K., Ryana, G.: Picador:
End-to-end encrypted publish-subscribe information distribution with proxy re-
encryption. Future Gener. Comp. Syst. 62, 119-127 (2016)

Canard, S., Devigne, J.: Highly privacy-protecting data sharing in a tree structure.
Future Gener. Comp. Syst. 62, 119-127 (2016)

Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
CCS, pp. 185-194 (2007)

Castelluccia, C., Chan, A.C.F., Mykletun, E., Tsudik, G.: Efficient and provably
secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sen.
Netw. 5(3) (2009)

vww.ebook3000.con)

https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
http://www.ebook3000.org

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Homomorphic Proxy Re-Authenticators and Applications 141

Catalano, D.: Homomorphic signatures and message authentication codes. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 514-519.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7-29

Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: CCS 2015 (2015)

Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371-389. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2_21

Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups:
new homomorphic primitives and applications. In: Sarkar, P., Iwata, T. (eds.)
ASTACRYPT 2014. LNCS, vol. 8874, pp. 193-212. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8_11

Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with
fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200-214.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_15
Danezis, G., Livshits, B.: Towards ensuring client-side computational integrity. In:
CCSW 2011 (2011)

Derler, D., Slamanig, D.: Key-homomorphic signatures and applications to multi-
party signatures. Cryptology ePrint Archive 2016, 792 (2016)

Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic
authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 499-530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6_17

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009
(2009)

Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75-92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

Giinther, F., Manulis, M., Peter, A.: Privacy-enhanced participatory sensing
with collusion resistance and data aggregation. In: Gritzalis, D., Kiayias, A.,
Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 321-336. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12280-9_21

Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS 2003 (2003)

Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111-125.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_10

Lai, J., Deng, R.H., Pang, H., Weng, J.: Verifiable computation on outsourced
encrypted data. In: Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS,
vol. 8712, pp. 273-291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11203-9_16

Lai, R.W.F., Tai, R.K.H., Wong, H-W.H., Chow, S.5.M.: A zoo of homomorphic
signatures: Multi-key and key-homomorphism. Cryptology ePrint Archive, Report
2016/834 (2016)

Leontiadis, 1., Elkhiyaoui, K., Molva, R.: Private and dynamic time-series data
aggregation with trust relaxation. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.
(eds.) CANS 2014. LNCS, vol. 8813, pp. 305-320. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12280-9_20

https://doi.org/10.1007/978-3-319-10879-7_29
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-45608-8_11
https://doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-12280-9_21
https://doi.org/10.1007/978-3-642-39884-1_10
https://doi.org/10.1007/978-3-319-11203-9_16
https://doi.org/10.1007/978-3-319-11203-9_16
https://doi.org/10.1007/978-3-319-12280-9_20
https://doi.org/10.1007/978-3-319-12280-9_20

142

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

D. Derler et al.

Leontiadis, I., Elkhiyaoui, K., Onen, M., Molva, R.: PUDA — privacy and unforge-
ability for data aggregation. In: Reiter, M., Naccache, D. (eds.) CANS 2015. LNCS,
vol. 9476, pp. 3-18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26823-1_1

Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing
with low aggregation error. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013.
LNCS, vol. 7981, pp. 60-81. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39077-7_4

Li, Q., Cao, G., Porta, T.F.L.: Efficient and privacy-aware data aggregation in
mobile sensing. IEEE Trans. Dep. Sec. Comput. 11(2), 115-129 (2014)

Libert, B., Vergnaud, D.: Multi-use unidirectional proxy re-signatures. In: CCS
2008 (2008)

Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Trans. Inf. Theory 57(3), 1786-1802 (2011)

Ma, C., Li, J., Ouyang, W.: A homomorphic proxy re-encryption from lattices. In:
Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 353-372. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47422-9_21

Nunez, D., Agudo, I.: BlindIdM: a privacy-preserving approach for identity man-
agement as a service. Int. J. Inf. Sec. 13(2), 199-215 (2014)

Nuifiez, D., Agudo, 1., Lopez, J.: Integrating OpenID with proxy re-encryption
to enhance privacy in cloud-based identity services. In: CloudCom, pp. 241-248
(2012)

Nuifiez, D.; Agudo, I., Lopez, J.: A parametric family of attack models for proxy
re-encryption. In: CSF, pp. 290-301 (2015)

Nuifiez, D., Agudo, I., Lopez, J.: On the application of generic CCA-secure transfor-
mations to proxy re-encryption. Secur. Commun. Netw. 9(12), 1769-1785 (2016)

Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series
with transformation and encryption. In: SIGMOD 2010 (2010)

Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: NDSS 2011 (2011)

Slamanig, D., Stranacher, K., Zwattendorfer, B.: User-centric identity as a service-
architecture for eIDs with selective attribute disclosure. In: SACMAT, pp. 153-164
(2014)

Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74-84 (2015)

Xu, P, Xu, J., Wang, W., Jin, H., Susilo, W., Zou, D.: Generally hybrid proxy
re-encryption: a secure data sharing among cryptographic clouds. In: AsiaCCS, pp.
913-918 (2016)

Zwattendorfer, B., Slamanig, D., Stranacher, K., Horandner, F.: A federated
cloud identity broker-model for enhanced privacy via proxy re-encryption. In: De
Decker, B., Ziquete, A. (eds.) CMS 2014. LNCS, vol. 8735, pp. 92-103. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44885-4_8

vww.ebook3000.con)

https://doi.org/10.1007/978-3-319-26823-1_1
https://doi.org/10.1007/978-3-319-26823-1_1
https://doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/978-3-319-47422-9_21
https://doi.org/10.1007/978-3-662-44885-4_8
http://www.ebook3000.org

Cryptographic Primitives and API’s

A Provably Secure PKCS#11 Configuration
Without Authenticated Attributes

Ryan Stanley-Oakes®™)

University of Bristol, Bristol, UK
ryan.stanley@bristol.ac.uk

Abstract. Cryptographic APIs like PKCS#11 are interfaces to trusted
hardware where keys are stored; the secret keys should never leave the
trusted hardware in plaintext. In PKCS+#11 it is possible to give keys
conflicting roles, leading to a number of key-recovery attacks. To prevent
these attacks, one can authenticate the attributes of keys when wrapping,
but this is not standard in PKCS#11. Alternatively, one can configure
PKCS#11 to place additional restrictions on the commands permitted
by the API.

Bortolozzo et al. proposed a configuration of PKCS#11, called the
Secure Templates Patch (STP), supporting symmetric encryption and
key wrapping. However, the security guarantees for STP given by Bor-
tolozzo et al. are with respect to a weak attacker model. STP has been
implemented as a set of filtering rules in Caml Crush, a software filter
for PKCS#11 that rejects certain API calls. The filtering rules in Caml
Crush extend STP by allowing users to compute and verify MACs and
so the previous analysis of STP does not apply to this configuration.

We give a rigorous analysis of STP, including the extension used in
Caml Crush. Our contribution is as follows:

(i) We show that the extension of STP used in Caml Crush is insecure.
(ii) We propose a strong, computational security model for configura-
tions of PKCS#11 where the adversary can adaptively corrupt keys
and prove that STP is secure in this model.
(iii) We prove the security of an extension of STP that adds support for
public-key encryption and digital signatures.

1 Introduction

In high-risk environments, particularly where financial transactions take place,
secret and private keys are often stored inside trusted, tamper-proof hardware
such as HSMs and cryptographic tokens. Then ordinary host machines, which
could be compromised by malware or malicious users, can issue commands to the
trusted hardware via an interface called a cryptographic API. The operations
that can be carried out using the API often include key wrapping, which is the
encryption of one key under another to enable the secure exchange and storage of

R. Stanley-Oakes—The author is supported by an EPSRC Industrial CASE stu-
dentship.
© International Financial Cryptography Association 2017

A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 145-162, 2017.
https://doi.org/10.1007/978-3-319-70972-7_8

vww.ebook3000.con)

http://www.ebook3000.org

146 R. Stanley-Oakes

keys. The API can also be used to add new keys to the trusted hardware, either
by issuing a key generation command or unwrapping a wrapped key. The API
refers to each key by a handle, which has attributes used to specify the intended
use of the key. By wrapping and unwrapping, it is possible for different handles,
each with different attributes, to point to the same key. This could cause a key
to have conflicting roles within the API.

The study of cryptographic APIs was initiated by Bond and Anderson in
2001, when they described attacks against ATMs and prepayment utility meters,
exploiting weaknesses in the interfaces to the trusted hardware, rather than in
the cryptographic algorithms performed by the hardware: “The basic idea is that
by presenting valid commands to the security processor, but in an unexpected
sequence, it is possible to obtain results that break the security policy envisioned
by its designer” [3].

While Bond and Anderson identified vulnerabilities in particular devices
with bespoke APIs; Clulow then used their approach to find devastating key
recovery attacks against a widely-used, generic API [6]. This API, called
PKCS#11! is independent of the hardware with which it communicates and was
designed to enable interoperability between the trusted hardware from different
manufacturers [10].

In 2008, Delaune et al. presented a formal, Dolev—Yao style model of
PKCS#11 and used model-checking tools to find new attacks [7,8]. Bortolozzo
et al. then developed an automated tool called Tookan, built on the model by
Delaune et al., that found and executed attacks against real hardware devices
using PKCS#11 [4]. As a result of these attacks, an important research question
has been to find a configuration of PKCS#11, i.e. a set of restrictions on the
commands that can be issued to the API, such that the API is secure with these
restrictions.

Bortolozzo et al. suggested a configuration of PKCS#11, supporting just
symmetric encryption and symmetric key wrapping, called the Secure Tem-
plates Patch (STP) [4]. In STP, newly-generated keys are separated into encryp-
tion/decryption keys and wrapping/unwrapping keys, while keys imported by
unwrapping can be used for encryption and unwrapping, but not decryption or
wrapping. STP has been implemented as a set of filtering rules in Caml Crush,
a software filter that rejects certain PKCS#11 calls [1]. However, the filtering
rules in Caml Crush allow users to compute and verify MACs, which is not cap-
tured by the model from Delaune et al. [7,8]. Therefore the previous analysis of
STP does not apply to what is implemented in Caml Crush. Furthermore, while
STP is resistant to attack by Tookan, there has not yet been a formal proof of
security for this configuration, which is the problem we address here.

! PKCS#11 is actually the name of the cryptographic standards document that
describes the API, which is called Cryptoki. However, it is conventional to refer
to the API itself as PKCS#11.

A Provably Secure PKCS#11 Configuration 147

1.1 Owur Contribution

As a first result, we show that the filtering rules in Caml Crush are not sufficient
to secure PKCS#11. The attacker is assumed to have knowledge of how the filter
operates, but can only interact with the API via the filter. Two sets of filtering
rules are offered; the first set is trivially broken if the attacker can read the source
code of the filter. The second set of rules is designed to emulate STP, but offers
MAC functionality that was not modelled by Delaune et al. and hence is not
exploited by Tookan. We show that the filtering does not enforce a separation
between encryption and MAC keys. We also show that there exist encryption
and MAC schemes that are individually secure, but completely insecure when
the same keys are used for both primitives. Therefore STP, as implemented in
Caml Crush, is only safe to use if one is certain that the encryption and MAC
schemes are jointly secure.

Our second contribution is a computational security model for configurations
of PKCS#11, where certain API calls are rejected according to the policy in the
configuration. The policy may determine, for example, what attributes newly-
generated or newly-imported keys can have. Our model captures the use of both
symmetric and asymmetric variants of encryption and signing primitives within
the API. We say that an API is secure if, for any cryptographic primitives used
by the API, encrypting and signing data using the API is as secure as using the
primitives themselves in isolation. This is strictly stronger than the model from
Delaune et al., where an API is considered secure if the attacker cannot learn
the values of honestly-generated secret keys [7,8]. Moreover, the adversary in
our model is allowed to adaptively corrupt certain keys.

Our main result is a PKCS#11 configuration that is provably secure in our
model. We first show that STP as proposed by Bortolozzo et al. is not secure;
STP allows the same keys to be used for encryption and unwrapping, so an
attacker can encrypt (rather than wrap) their own key, import this key by
unwrapping and use this key to encrypt or sign data. Since keys used by the
API could have been generated by the adversary, there can be no guarantees
for data protected by the API, even if the cryptographic primitives are secure.
However, we prove that if the policy prevents the encryption (rather than wrap-
ping) of keys, then the configuration is secure. Moreover, our main result holds
for an extension of STP that supports public-key encryption and digital signa-
tures.

The proof of our main result is highly non-trivial since we allow the adversary
to adaptively corrupt keys. Adaptive corruption captures the realistic threat sce-
nario that certain keys are leaked through side-channel attacks, which, due to the
key wrapping operation, can have devastating consequences for the API. Never-
theless, most existing analyses of cryptographic APIs avoid this strong attacker
model because traditional proof techniques cannot be used; for a standard cryp-
tographic reduction, one has to know in advance which keys will be corrupted to
correctly simulate the environment of the adversary. Instead, our security proof
uses techniques from Panjwani’s proof that the IND-CPA security of encryption
implies its Generalised Selective Decryption (GSD) security [11]. This is a com-

vww.ebook3000.con)

http://www.ebook3000.org

148 R. Stanley-Oakes

plex hybrid argument where one first guesses a path, in the wrapping graph that
will be adaptively created by the adversary, from a source node (corresponding
to a key that does not appear in a wrap) to a challenge node (corresponding to
a key used for encryption of data, or signing, etc.). Then the way in which one
responds to wrap queries depends on the positions of the corresponding nodes
relative to the guessed path. To our knowledge, we are the first to adapt Pan-
jwani’s result to the API setting. A detailed discussion of related work is given
in the full version of the paper [14].

2 Preliminaries

We use the term token to refer to any trusted hardware carrying out crypto-
graphic operations. All keys are stored inside the token and the user has an API
used to issue commands to the token.

We assume the API used by the token is compliant with at least v2.20 of the
PKCS#11 standard.? While the PKCS#11 specification distinguishes between
normal users and security officers, we conflate these roles and assume the adver-
sary can perform any operations permitted by the API. Security in this sense
automatically implies security against adversaries who can only interact with
the API as normal users or security officers.

We assume that tokens store no keys in their initial state. Then keys can
be added to the device using one of the following commands: C_GenerateKey
or C_GenerateKeyPair, which cause the token to generate a new key or key
pair using its own internal randomness; C_UnwrapKey, which causes the token to
decrypt the supplied ciphertext and store the plaintext as a new key (without
revealing it); C_CreateObject, which we used to model importing public keys
from other tokens; or C_TransferKey, which we use to model an out-of-band
method for securely transferring long-term secret keys between tokens (this could
happen during the manufacturing process, for example).

The API refers to keys using handles; these are public identifiers. So, for
example, if the user issues the command C_Encrypt(h, m), they expect to receive
the encryption of the message m under the key pointed to by the handle h. The
class of a key is whether it is public, private or secret. For each handle, the token
stores the corresponding key, the class of this key and its template, which is a set
of attributes that determine how the key can be used. Attributes are either set
or unset. For example, PKCS#11 mandates that the command C_Encrypt(h,m)
must fail if the attribute CKA_ENCRYPT is not set in the template associated to h.

In the language of PKCS#11, the value of a key is also an attribute of its
handle, and the API has to prevent the reading of this attribute if the attribute
CKA_SENSITIVE is set, i.e. the API should not reveal the values of keys that are
supposed to be secret. For simplicity we say that templates do not contain the
value of keys. This way all attributes are binary and can be disclosed to the user.

2 Version 2.20 of the standard was published in 2004, and was the first to introduce
the attributes CKA_TRUSTED and CKA_WRAP_WITH_TRUSTED, which we use to prevent
key cycles.

A Provably Secure PKCS#11 Configuration 149

Accordingly we have no need for the attribute CKA_SENSITIVE; all public keys
will be returned to the user at generation time and other keys can only be
revealed by corruption.

PKCS#11 allows an incomplete template to be supplied when a new handle
is created, forcing the API to choose whether to set or unset the unspecified
attributes; we simply assume that the operation fails if the template is incom-
plete. For convenience, we also assume that the template of a handle contains
the class of the corresponding key.

In PKCS#11, some attributes can be changed by the user (or by the API).
For example, perhaps the attribute CKA_ENCRYPT is not initially set in the tem-
plate of some handle h pointing to the key k, but later the user wishes to use
k to encrypt data. We exclude this from our model, preferring to assume that
the intended use of all keys is known at generation time. In the language of
PKCS#11, all our attributes are sticky.

There are nine attributes relevant to our analysis, as follows:
CKA_EXTRACTABLE, which we abbreviate by CKA_EXTR, is used to identify those
keys that can be wrapped (in the case of private or secret keys), or given out
(in the case of public keys). CKA_WRAP_WITH_TRUSTED, which we abbreviate by
CKA_WWT, is used to identify those keys that can only be wrapped by keys with
CKA_TRUSTED set. CKA_TRUSTED is used to identify those keys that are consid-
ered trusted wrapping keys. CKA_WRAP, CKA_UNWRAP, CKA_ENCRYPT, CKA_DECRYPT,
CKA_SIGN and CKA_VERIFY are used to identify those keys that can wrap keys,
unwrap keys, encrypt data, decrypt data, sign (or MAC) data and verify signa-
tures (or MAC tags), respectively.

PKCS#11 specifies some rules, which we call the policy, about how attributes
must be used (like how the template of h must have CKA_ENCRYPT set in order
for C_Encrypt(h,m) to succeed). But the standard also allows manufacturers,
in their own configurations of PKCS#11, to impose additional restrictions on
how the API operates. For example, the PKCS#11 policy allows a symmetric
key to be generated with both CKA_WRAP and CKA_DECRYPT set, leading to the
famous wrap/decrypt attack [6]. Manufacturers should therefore disable this
command in their configuration. We assume that the policy in the manufacturer’s
configuration allows a subset of commands allowed by the PKCS#11 policy (so
that the configuration is actually compliant with the specification) and therefore
we use a single policy algorithm to capture both the standard PKCS#11 policy
and any additional restrictions, i.e. any command not rejected by our policy
algorithm is automatically allowed within PKCS#11.

3 Vulnerabilities in Caml Crush

In Caml Crush, the idea is that the interface to some trusted hardware is a
PKCS#11-compliant, but insecure, API [1]. The software is then used to filter
out API calls that could lead to attacks. This is rather like having a more restric-
tive policy within the API and so the authors adapt the PKCS#11 configurations
suggested by Bortolozzo et al. to filtering rules. Bortolozzo et al. suggested two

vww.ebook3000.con)

http://www.ebook3000.org

150 R. Stanley-Oakes

configurations of PKCS#11 that are resistant to attack by Tookan [4], both of
which are implemented in Caml Crush as sets of filtering rules [1]:

1. In the Wrapping Formats Patch (WFP), the attributes of a key are transmit-
ted as part of a wrap of the key and authenticated using a MAC.

2. In the Secure Templates Patch (STP), wrapping and encryption keys are
separated at generation time and imported symmetric keys can be used for
unwrapping and encryption, but not wrapping or decryption.

We remark that the first patch is actually a violation of the PKCS#11 stan-
dard: the standard mandates that a wrap of a key is solely the encryption of the
value of the key, i.e. the attributes of the key are not included in the output and
no MAC tag is added. Tokens whose APIs use WFP are not interoperable with
tokens using PKCS#11-compliant APIs.

Moreover, the way WFP is implemented in Caml Crush is trivially insecure.
Examining the source code, the MAC used to authenticate the attributes of the
wrapped key is computed using a key that is stored in plaintext in the con-
figuration file of the filter [2]. This is a clear violation of Kerckhoffs’ principle:
the attacker who knows how the filter is constructed (i.e. can read the source
code of the filter) can immediately circumvent the additional protection pro-
vided by the MAC and use the wrap/decrypt attack to learn the value of any
extractable secret key. The authors of Caml Crush acknowledge this vulnerabil-
ity in a comment: “We use the key configured in the filter configuration file ...
You might preferably want to use a key secured in a token”. We feel this is an
understatement of the insecurity of their solution.

We focus our attention on STP, as this is compliant with the PKCS#11
specification. Note that STP, as presented by Bortolozzo et al., only enables the
symmetric encryption, decryption, wrapping and unwrapping functions of the
APT and not, for example, the MAC and verify functions [4]. The implementation
in Caml Crush adds MAC functionality to STP, but does so in a potentially
insecure way. Their filtering rules allow freshly generated symmetric keys to be
used for wrapping and unwrapping, encryption and decryption, or signing and
verifying (using a MAC scheme). Then keys imported via the unwrap command
can either unwrap and encrypt, or unwrap, sign and verify. At first glance, these
restrictions appear to maintain a separation between encryption and MAC keys,
but this is not the case. One can generate an encryption key, wrap it, and unwrap
it as a MAC key. This configuration is only secure if the encryption and MAC
schemes are jointly secure, i.e. it is safe to use the same key for both primitives.
In the full version of the paper, we show that this assumption does not always
hold [14].

4 Security Model and Assumptions

PKCS#11 supports both symmetric and asymmetric primitives for encrypt-
ing and signing data and for wrapping keys. For simplicity we will assume
that all keys and key pairs are generated using the same two algorithms KG

A Provably Secure PKCS#11 Configuration 151

and KPG. Moreover, we assume that the key wrap mechanisms use the same
encryption schemes as for encrypting data. Therefore our model of a con-
figuration of PKCS#11 is parameterised by four cryptographic primitives: a
probabilistic symmetric encryption scheme & = (KG,Enc,Dec), a probabilis-
tic public-key encryption scheme PKE = (KPG, AEnc,ADec), a MAC scheme
M = (KG,Mac,MVrfy) and a digital signature scheme S = (KPG, Sign, SVrfy).
The syntax of these primitives and the formal definitions of correctness and
security are all given in the full version of the paper [14].

The API also has an algorithm NewHandle for generating fresh handles. This
will be called when keys are imported via unwrapping or the C_CreateObject
command or new keys are generated. This algorithm is assumed to be stateful so
that it never returns the same value. For each handle h returned by NewHandle,
the API stores a template h.temp and a pointer p to the token memory where the
value of the key is stored. By abuse of notation, the contents of the token memory
at p will be written h.key (even though this value is not directly accessible to
the API). The class of the key, i.e. secret, public or private, is stored in h.class.

The configuration of the API is defined by the policy. We model the policy
by the algorithm P that takes the name of the API command and the inputs to
that command as inputs, then returns 1 if this combination is permitted and 0
otherwise.

Before giving the formal security definition, we introduce a restriction which
is necessary for security and considerably simplifies the model:

Remark 1. Asymmetric key wrapping must be disabled.

Even before a formal security definition is given, it should be clear that
any mechanism for key wrapping must provide integrity as well as secrecy. If
it were not the case, then an adversary could generate their own keys, forge
wraps of these keys, unwrap them and use them to wrap honestly-generated
keys or encrypt and sign data. If this attack is possible, there can be no guar-
antees for data and keys protected by the API, since any keys used by the API
could be adversarially generated. Of course, the notion of integrity of cipher-
texts makes no sense in the public key encryption setting without the sender
needing a private key as well as a public key to encrypt. Therefore we make the
standard assumptions from the literature that all key wrapping is symmetric
and, for bootstrapping, there is an out-of-band method for securely exchanging
long-term secret keys [4,9,12,13].

4.1 Security Definition

Following [9,12,13], we give a computational, rather than symbolic, security def-
inition for a configuration of PKCS#11, where the adversary has access to a
number of oracles and plays a game. Winning the game means violating the
security of one of the cryptographic primitives used by the token. We say, infor-
mally, that a configuration of PKCS#11 is secure if using the API to encrypt

vww.ebook3000.con)

http://www.ebook3000.org

152 R. Stanley-Oakes

and sign data is as secure as encrypting and signing with the separate, individ-
ual primitives. This notion of security is similar to the one used by Cachin and
Chandran [5].

Formally, for each adversary A and each b € {0, 1}, we define an experiment
APIP(A) = APlbs,M,Plcs,s,p(A) where the adversary has access to a number of
oracles capturing the commands one can issue to the API, and some challenge
oracles whose responses depend on b. The oracles all first check, using the policy
P, that the command from the adversary is allowed. If this succeeds, then the
oracles perform the cryptographic operations that would be carried out by the
token. Note that our formal model conflates the roles of the API and the token,
which simplifies notation considerably, but is without loss of generality since we
know how PKCS#11-compliant APIs interact with tokens. The only thing we do
not know is how the token implements the cryptographic operations, and these
details are abstracted away in our model.

After interacting with the API oracles, the adversary returns a guess b'.
Provided that certain conditions are met whereby the adversary cannot trivially
learn b, the experiment returns b’. Otherwise, the experiment returns 0. The
advantage of A against the API is defined to be the following quantity:

AdvA”'(A) := |P[API'(A) = 1] — P[API°(A) = 1]|.

The experiment API” is shown in Fig. 1, with the oracles available to A shown
in Figs.2 and 3.

Experiment AplgM,p)cg,s‘,p(A)i

i—0

Chal < 0, Cor = {0}

W —0,E—0,V—{0}

P—0,K«10

for all j € [n],

b o— A°

if Chal N Comp # @ then return 0

if 35 € [n] such that:
Cilf]NCi[j] #0
or Co[j]NC3[j] # 0
or T[jINT"[] # 0
or S[j] N S*[j] # 0:

then return 0

else return b’

Fig. 1. The Security Experiment API°(A) for a cryptographic API supporting symmet-
ric and asymmetric encryption, a MAC scheme and a signature scheme. The oracles O
are defined in Figs. 2 and 3.

A Provably Secure PKCS#11 Configuration

Oracle OC,CreateDbject (pk, t)l
if P(C_CreateObject, pk,t):
h < NewHandle
h.key «— pk
h.temp «— t
h.class < public
X — {1 € P: 1 key = pk}
if X #0:
idx(h) < ming/ e xidx(h")
else idx(h) — 0

return h

Oracle QO°-Transterkey (L 1).
if P(C_TransferKey, k,t):
h < NewHandle
h.key «— k
h.temp «— t
h.class < secret

X {h’ eK: }
h'.key =k AR temp=1
if X #0:
idx(h) < miny exidx(h")
else idx(h) — 0
return h

Oracle OC,GenerateKey(t):
if P(C_GenerateKey, t):
i+ +
h «— NewHandle
K = KU{h}
idx(h) < 1
V—Vu{i}
h.key — KG
h.temp «— ¢
h.class < secret
return h

Oracle OC,GenerateKeyPair (t, t/):
if P(C_GenerateKeyPair, t,t'):
i+ +
h <— NewHandle
h' «— NewHandle
P=PuU{h}
idx(h) < 1
idx (i) — i
V—Vu{i}
(h.key, h' key) <+ KPG
h.temp «— t
h' .temp «— t/
h.class < public
h'.class « private
return h, ', h.key

Oracle Q%" =Py (p, p'):

if P(C_WrapKey, h, h'):
if h.class = secret:
if h'.class = private
or h/.class = secret:
w « Enc(h.key, h'.key)
W — W U{(h,h',w)}
E — EU{(idx(h),idx(h"))}
return w

Oracle O%U 2KV (p) ¢):

if P(C_UnwrapKey, h, w, t):
if h.class = secret:
k' « Dec(h.key, w)
if k' € SecretKeys
or k' € PrivateKeys:
h' < NewHandle
h' temp «— t
b .key «— K’
unwrapbookkeeping
return b’

Macro unwrapbookkeeping:

ho : (h1,h2,w) cWw

X { Nidx(h1) = idx(h)}
if X #0:

idx(h') « minp,exidx(h2)
else if idx(h) € Comp:

idx(h') < 0
else:

1+ +

idx(h') — i

V—Vu{i}

Oracle O™ (}):

if h.class = private

or h.class = secret:
Cor « Cor U {idx(h)}
return h.key

153

Fig. 2. Oracles Representing PKCS#11 Key Management Commands and Key
Corruption

vww.ebook3000.con)

http://www.ebook3000.org

154 R. Stanley-Oakes

Oracle O°F™Pt (b m):
if P(C_Encrypt, h, m):
if h.class = secret:
return Enc(h.key, m)
if h.class = public:
return AEnc(h.key, m)

Oracle O®P°™V?t (b ¢):
if P(C_Decrypt, h, ¢):
if h.class = secret:
¢ <« Dec(h.key, c)
Chlidx(h)] < Ci[idx(h)] U {c}
return c
if h.class = private:
¢ < ADec(h.key, c)
Calidx(h)] < Calidx(h)] U {c}
return ¢

Oracle O°**"(h,m):
if P(C_Sign, h,m):
if h.class = secret:
7 «— Mac(h.key, m)
Tlidx(h)] « T[idx(h)] U {7}
return 7
if h.class = private:
o « Sign(h.key, m)
Slidx(h)] « Slidx(h)] U {c}
return o

Oracle O%"*"*Y(h m, s):
if P(C_Verify, h,m,s):
if h.class = secret:
return MVrfy(h.key, m, s)
if h.class = public:
return SVrfy(h.key, m, s)

Enc-Challenge .
Oracle O, (hymo,m1):

if P(C_Encrypt, h, mo):
if P(C_Encrypt, h, m1):
if |m()‘ = \m1|:

if h.class = secret:
Chal < Chal U {idx(h)}
¢ «— Enc(h.key, my)
O lidx(h)] — i [idx(h)] U {c}
return ¢

if h.class = public:
Chal « Chal U {idx(h)}
¢ < AEnc(h.key, my)
C5lidx(h)] <« C5[idx(h)] U {c}

return c

Oracle O} 8718 () 1 s):
if P(C_Verify, h,m,s):
if h.class = secret:
T[idx(h)] <« T*[idx(h)] U {s}
Chal « Chal U {idx(h)}
if b = 0 return MVrfy(h.
else return 0
if h.class = public:
S*[idx(h)] < S*[idx(h)] U {s}
Chal « Chal U {idx(h)}
if b = 0 return SVrfy(h.key, m, s)
else return 0

key, m, s)

Fig. 3. Oracles Representing PKCS#11 Cryptographic Operations and the IND-CCA
and EUF-CMA Games

Now we explain some of the rationale behind the security game. We have
two challenge oracles Op*¢ *11em8e and OFIE B8 corresponding to confi-
dentiality (of public key and symmetric encryption) and authenticity (of signa-
tures and MACs), respectively. These oracles closely resemble the IND-CCA and
EUF-CMA games. For encryption, the bit b determines which of the messages
mg and my is encrypted under the challenge key. As usual, to avoid trivial wins

we have to record the ciphertexts output by OF"° “***%° and the queries made

A Provably Secure PKCS#11 Configuration 155

to the decryption oracle O°Pe¢T¥Pt and check that the two sets corresponding to
the same key are disjoint. For signing and MACs, the bit b determines whether
the adversary sees the genuine result of the verification algorithm, or always sees
the bit 0 (indicating that the verification has failed). To avoid trivial wins here,
we record the signatures and tags output by O°5i€® and the candidate signatures
and tags submitted to Of 8 *1°%® and check that the two sets corresponding
to the same key are disjoint.

In our model, we include an oracle (O*™P* that allows the adversary to
adaptively corrupt certain keys. This captures the situation where some keys
may be leaked, for example through side-channel attacks. Obviously, if such
keys are used by the challenge oracles, then A can trivially recover the bit b.
Moreover, if the adversary were to wrap a key under a corrupt key, then the
wrapped key must be assumed compromised, since it can be trivially recovered
by the adversary. Like corrupt keys, compromised keys are not safe for use by
the challenge oracles. Therefore we keep track of a set Comp of corrupt and
compromised keys and a set Chal of keys used by the challenge oracles, and the
experiment only returns the guess b’ from A if Comp and Chal are disjoint.

The situation is complicated by the fact that the adversary queries (O®°r¥upt
with handles, not keys, and learns the value of the key pointed to by the handle.
But by wrapping and unwrapping a key, the adversary obtains a new handle
for the same key and clearly all handles pointing to the same key are compro-
mised by the corruption of just one of them. Therefore we keep track of which
handles point to the same key by giving them the same index idx(h) and store
which indices are compromised, rather than which handles. This is based on the
security model by Shrimpton et al. [13].

We assume that there is an authenticated channel for transmitting public
keys using the C_CreateObject command. Therefore we check that any public
keys imported via (O¢-Createlbiect had at some point been honestly generated by
a token. If so, the new handle is given the same index as the handle that was
given out when the key was first generated. If not, the new handle is given index
0, which is used to represent automatically compromised keys (and therefore if
this new public key is used in the challenge oracles, the guess output by A will be
ignored). Note that we do not check that the template of the imported public key
matches the template of the key when it was first generated. This is because we
are not assuming that the attributes of keys are always authenticated. Therefore
the policy of our configuration will have to restrict the roles of imported public
keys.

Similarly, we assume there is a secure out-of-band method for transferring
long-term wrapping keys, modelled by the C_TransferKey command, so we check
that keys imported via (OC-Transterkey were previously generated on the token. If
this check fails, the new handle is given index 0. Unlike with (C-Createfbject ' o
check that the template of the key matches the template it had when it was first
generated. This is because the transfer mechanism is designed for keys of the
highest privilege, so we must ensure that keys imported this way were always
intended to have this role. As a result, the transfer mechanism cannot really

vww.ebook3000.con)

http://www.ebook3000.org

156 R. Stanley-Oakes

benefit the adversary, since they can only import a key with the same value and
role as it had previously. We only include this oracle to model a system with
multiple tokens.

Finally, when a key is imported via O¢-U»"¥2PKey we check if the wrap had been
previously generated by the token. To carry out this check, we maintain a list
W of triples (h, h’,w) such that the query O°-¥=aPkey(h_h') received the response
w.3 If the wrap submitted to O°-U»¥raPXey wag indeed generated by the token, we
know the contents of the wrap, so the new handle is given the same index of
the originally wrapped handle.* If the wrap submitted to O°-Un"raPKey wag not
generated by the token, then it was forged by the adversary. If the unwrapping
key is compromised, then the new handle is assumed compromised and given
index 0. This is because it is trivial to forge a wrap under a compromised key
and so we do not allow the adversary to win the security game this way. However,
if the unwrapping key is not already compromised, then the new handle is given
a fresh (non-zero) index, even though there can be no security guarantees for the
imported key. This allows the adversary to benefit from creating forged wraps
without compromising the wrapping key, which is a realistic attack. It will be
necessary for security to prove that this can never happen, using the integrity
of the wrapping mechanism.

Now we give the formal definition of the security of a PKCS#11 configura-
tion. Suppose AdvAPl(A) < € for all adversaries A running in time at most ¢,
making at most g oracle queries and such that the number of non-zero handle
indices used in API®, i.e. the number of keys generated by the token or imported
into the token by forgeing a wrap under an uncompromised key, is at most n.
Then we say the API is (¢, ¢, n, €)-secure.

4.2 Security Assumptions

In order for an API to securely support both symmetric and asymmetric crypto-
graphic primitives, we have to assume that the encoding of keys is such that the
three key classes cannot be confused.? More precisely, algorithms that are sup-
posed to use secret keys will automatically fail if one tries to use a public key or a
private key instead, and so on. This is necessary to avoid otherwise secure primi-
tives exhibiting insecure behaviour (such as returning the value of the key) when
used with a key of the wrong class. Moreover, when one imports a new key using
the C_CreateObject command or the C_UnwrapKey command, the class of the
new key will be automatically determined by the input to the command. We cap-
ture these assumptions in our formal syntax by having the keyspaces SecretKeys,
PublicKeys and PrivateKeys be disjoint sets. These assumptions mean that,

3 A real API does not need to maintain such a list; it is purely for preventing trivial
attacks in our model.

4 Actually it is given the minimal index of all wrapped handles satisfying these con-
ditions, but if the API is secure then all these indices will agree, or they will all be
in Comp.

5 In practice, the length of the bitstring could determine the class of the key.

A Provably Secure PKCS#11 Configuration 157

for example, a secure symmetric encryption scheme and a secure digital sig-
nature scheme are automatically jointly secure, but different primitives using
the same class of keys, e.g. a symmetric encryption scheme and a MAC scheme,
could still interfere with each other.

Furthermore, as explained above, the wrapping mechanism must provide
integrity (in addition to secrecy) to prevent the adversary from importing their
own keys. While we assume the wrapping mechanism authenticates the values of
keys, we do not assume that the attributes of keys are authenticated. We remark
that some wrapping mechanisms supported by early versions of PKCS#11, e.g.
LYNKS from v2.20, attempted to authenticate the values of keys by adding an
encrypted checksum to the ciphertext, which was then checked when unwrap-
ping. On the other hand, even the latest version of PKCS#11 does not explic-
itly support including and authenticating the attributes of keys when wrapping.
While we assume the use of a strong wrapping mechanism, we show how security
can be achieved without any changes to the PKCS#11 standard.

5 Secure Templates

Since we do not assume that the PKCS#11 wrapping mechanism authenticates
the attributes of keys, we have no way of knowing what the attributes of imported
keys were when the keys were first generated. This means the API must impose
attributes on imported keys regardless of user input.

Furthermore, it is very difficult to separate the roles of imported keys of
the same class without authenticated attributes. This is because forcing the
adversary to choose between templates of imported keys (such as unwrap and
encrypt or unwrap and sign/verify) does not limit the adversary at all, since
the adversary can just unwrap the same wrapped key twice with different roles.
Moreover, if one tries to prevent this attack by rejecting unwraps of a ciphertext
that has previously been unwrapped on the same token, the adversary can just
unwrap the same key on multiple tokens and use them together. The only way
to avoid this entirely is with a central log of all the operations performed on
any token, as suggested by Cachin and Chandran, which is impractical for more
than one token [5]. Since we do not assume that attributes are authenticated or
that there is a central log of all operations, our configuration must have exactly
one template for all imported keys of the same class. Under our assumption that
the three classes of keys cannot be confused, we can have a different template
for each class.

Recall that, in STP, imported secret keys can be used for encryption, but not
decryption [4]. This is because these keys may be stored under a different handle
with the ability to wrap other keys and so we must prevent the wrap/decrypt
attack. Similarly, such keys can be used for unwrapping, but not wrapping,
since they may be stored under a different handle with the ability to decrypt
ciphertexts. However, this does not prevent all the attacks that we consider: STP
is actually not secure in our model.

vww.ebook3000.con)

http://www.ebook3000.org

158 R. Stanley-Oakes

There are two reasons why we will not be able to reduce the security of
STP to the confidentiality and integrity of the underlying symmetric encryp-
tion scheme. The first is technical: STP allows the creation of key cycles, since
any key with CKA_WRAP set can wrap any key with CKA_EXTR set, and key cycles
cannot be modelled by standard, computational security notions for encryp-
tion. However, one can prevent key cycles using the attributes CKA_TRUSTED and
CKA_WWT: we allow the creation of trusted wrapping keys that are not extractable
and untrusted wrapping keys that are extractable but can only be wrapped
under trusted wrapping keys. Moreover, all imported secret keys must have
CKA_WWT set, since they may be stored under a different handle as an untrusted
wrapping key.

The second security flaw is more serious. While Tookan found no attacks
against STP, this was with respect to a weak security notion that honestly-
generated keys cannot be recovered by the adversary. Our stronger security
notion requires that all keys on the token that are not trivially compromised
are safe to use for encryption and signing. This means the attacker should not
be able to import their own keys, which is why we need INT-CTXT security for
the wrapping mechanism. However, since STP allows the same keys to be used
for encryption and wrapping, the adversary could encrypt their own key and then
unwrap the ciphertext, without violating the integrity property of the wrapping
mechanism. The newly-imported key, known to the adversary, can then be used
by the encryption challenge oracle, trivially leaking the hidden bit . To prevent
this attack, our policy must not allow the encryption (as opposed to wrapping)
of any element of SecretKeys.

Let STP+ be the PKCS#11 configuration obtained by restricting STP as
described above, thereby preventing the creation of key cycles and the encryp-
tion, rather than wrapping, of secret keys. We will extend STP+ by enabling
public-key encryption and signatures and our main result (Theorem 1) is a secu-
rity reduction for this configuration to the security of the underlying primitives.
As an immediate corollary, we see that the security of STP+ is implied by the
confidentiality and integrity of the underlying symmetric encryption scheme.

In describing STP, Bortolozzo et al. did not consider MAC functionality [4].
As mentioned in Sect. 3, the extension of STP used in Caml Crush is such that
secret keys can have both MAC and encrypt functionality. We also show in the
full version of the paper that a secure MAC scheme and a secure encryption
scheme are not always jointly secure [14]. Therefore, if we do not assume the
joint security of the encryption and MAC schemes, we cannot prove the security
of our configuration of PKCS+#11 if it allows unwrapped secret keys to compute
or verify MACs. Thus there is no generically secure way to exchange MAC keys
between tokens and so we must only use (asymmetric) signatures to provide data
authenticity.

Then, since unwrapped private keys need to be used to create signatures,
such keys cannot be allowed to decrypt messages (without assuming the joint
security of public key encryption and signing). So private decryption keys must
be unextractable, meaning there is no way to safely transmit such keys between

A Provably Secure PKCS#11 Configuration 159

tokens. However we do not need to disable public-key encryption altogether, since
tokens can exchange public encryption keys over an authenticated channel and
decrypt ciphertexts using their unextractable, locally-generated private keys.

Since tokens are required to transmit public keys for encryption and verifying
signatures, it is quite possible for the adversary to use an encryption key to verify
signatures, by generating the key in one role and then re-importing it with a differ-
ent role. However, this does not affect the joint security of the encryption scheme
and the signature scheme. The verification algorithm has no way of knowing that
the key it uses was ‘intended’ as an encryption key and will function as normal.
Moreover, as the key is public there is no risk from leaking parts of the key not
needed for verification. Similarly there is no risk from encrypting data using keys
intended for signature verification. In summary, it is not necessary to authenticate
the attributes of public keys, only the values of these keys. As a result our config-
uration of PKCS#11 allows all imported public keys to have both encryption and
verification capabilities.

Bringing together this analysis, we obtain a set of attribute templates that,
without assuming the joint security of different primitives, is maximal among
those with which the API is secure:

1. Generated secret keys must have one of the following templates:

(a) TRUSTED: trusted wrapping keys that are unextractable and cannot be
used for encryption or decryption,

(b) UNTRUSTED: untrusted wrapping keys that can themselves be wrapped
under trusted wrapping keys, but cannot be used for encryption or decryp-
tion,

(c) ENC: keys that can be wrapped and used for encryption and decryption,
but cannot wrap other keys.

2. Imported secret keys have the template IMPORTSECRET: they can encrypt
data and unwrap keys, but cannot decrypt data or wrap keys. To prevent key
cycles, imported secret keys must only be wrapped under trusted wrapping
keys.

3. Only trusted wrapping keys, i.e. keys with template TRUSTED, can be trans-
ferred using the secure out-of-band mechanism C_TransferKey (for bootstrap-
ping).

4. The templates of generated public and private key pairs must be one of the
following:

(a) AENC, ADEC: the public key can encrypt data and the private key can
decrypt data; neither can wrap or unwrap and the private key is not
extractable.

(b) VERIFY, SIGN: the public key can verify signatures and the private key can
create signatures; neither can wrap or unwrap and both are extractable.

5. Finally, imported public keys must have the template IMPORTPUBLIC: such keys
can encrypt data and verify signatures, but cannot wrap or unwrap keys.

In Tables 1 and 2, we define our set of secure templates with respect to the
PKCS+#11 attributes CKA_EXTR, CKA_WWT, CKA_TRUSTED, CKA_WRAP, CKA_UNWRAP,
CKA_ENCRYPT, CKA_DECRYPT, CKA_SIGN, and CKA_VERIFY. Any attributes from this

vww.ebook3000.con)

http://www.ebook3000.org

160 R. Stanley-Oakes

Table 1. Templates for Secret Keys (note that CKA_SIGN and CKA_VERIFY are always
unset). The attribute CKA_TRUSTED, not shown here, is set in the template TRUSTED and
unset in all other templates.

Template Name | CKA_EXTR | CKA_WWT | CKA_WRAP | CKA_UNWRAP | CKA_ENCRYPT | CKA_DECRYPT
TRUSTED v v

UNTRUSTED v v v v

ENC v v v
IMPORTSECRET | v/ v v v

Table 2. Templates for Public and Private Keys (note that CKA_TRUSTED, CKA_WRAP and
CKA_UNWRAP are always unset).

Template Name | CKA_EXTR | CKA_WWT | CKA_ENCRYPT | CKA_DECRYPT | CKA_SIGN | CKA_VERIFY

AENC v v

ADEC v

SIGN v v

VERIFY v v
IMPORTPUBLIC | v/ v v

set that are not shown in the tables, or not marked with v , are unset. The only
exception to this rule is CKA_TRUSTED, which is not shown in any of the tables
due to limitations on space, but is set in the template TRUSTED and unset in all
other templates.

The policy P used in our configuration is given in Table 3. We remark that
P(C_UnwrapKey, h, w, t) sometimes depends on the value of Dec(h.key, w). Since
h.key is not accessible to the API, what this means is that the API makes the
relevant decryption call to the token, receives a response, and then determines
whether or not to release the response to the user based on its value. Note that
this policy could not be achieved by simply using a filter (like Caml Crush). For
comparison, we also give the default PKCS#11 policy and the STP+ policy in
the full version of the paper [14]. One can see that our configuration is indeed
PKCS#11 compliant and STP+ is a special case of our configuration.

Let t,,4, be the maximum run time of any of the following operations: Enc,
AEnc, ADec, Sign, SVrfy, one call to NewHandle and one call to Dec; one call to
NewHandle and two calls to KG; and two calls to NewHandle and two calls to
KPG. Then, with the configuration presented here, we obtain our main result,
which is proved in the full version of the paper [14]:

Theorem 1. Suppose P is as defined in Table 3, £ is (t,€1)-IND-CCA-secure
and (t,e2)-INT-CTXT secure, PKE is (t,e3)-IND-CCA-secure and S is (t,€4)-
EUF-CMA-secure. Then the API is (t',q,n,€')-secure, where:

V=1t—q tma, 6/:n[(8n2+4n+1)€1+262+63+64].

A Provably Secure PKCS#11 Configuration 161

Table 3. The policy of our configuration (where a € h.temp means that the attribute
a is set in h.temp)

Function Value

1 if ¢ = IMPORTPUBLIC,

0 otherwise

1 if ¢ = TRUSTED,

0 otherwise

1 if ¢t € {TRUSTED, UNTRUSTED, ENC},

0 otherwise

1if (t,¢') € {(AENC, ADEC) , (VERIFY, SIGN)},
0 otherwise

1 if CKA_WRAP € h.temp, CKA_EXTR € h’.temp
P(C_WrapKey, h, h') and if CKA_WWT € h/temp then CKA_TRUSTED € h.temp,

P(C_CreateObject, pk,t)

P(C_TransferKey, k,t)

P(C_GenerateKey,)

P(C_GenerateKeyPair, t,t')

0 otherwise
1 if CKA_UNWRAP € h.temp and
Dec(h.key, w) € SecretKeys and ¢t = IMPORTSECRET
or Dec(h.key,w) € PrivateKeys and ¢ = SIGN,
0 otherwise
1 if CKA_ENCRYPT € h.temp and m ¢ SecretKeys,
0 otherwise
1 if CKA_DECRYPT € h.temp,
0 otherwise
1 if CKA_SIGN € h.temp,
0 otherwise
1 if CKA_VERIFY € h.temp,

0 otherwise

P(C_UnwrapKey, h, w, t)

P(C_Encrypt, h,m)

P(C_Decrypt, h, c)

P(C_Sign, h,m)

P(C_Verify, h,m,s)

6 Conclusion and Acknowledgements

We have given a security definition for configurations of PKCS#11, where the
adversary can adaptively corrupt keys. We proved the security, in this strong
attacker model, of a configuration of PKCS#11 that extends the Secure Tem-
plates Patch from Bortolozzo et al. [4]. Unlike most existing analyses of APIs in
the literature, we do not assume the attributes of keys are authenticated when
wrapping.

Our result holds under the assumption that private, public and secret keys
cannot be confused. Moreover, since our configuration does not support asym-
metric key wrapping, we have to assume for bootstrapping that there is a secure
channel for transmitting long-term secret keys and also an authenticated channel
for transmitting public keys. We feel that these assumptions are likely to hold
in practice.

Our security proof is far from tight: the advantage of the adversary against
the API is potentially n® times bigger than the advantage against the underlying

vww.ebook3000.con)

http://www.ebook3000.org

162 R. Stanley-Oakes

symmetric encryption scheme used for wrapping, where n is an upper-bound on
the number of distinct keys stored on the token. Whether such losses can ever
be avoided is the subject of ongoing research.

The author would like to thank Bogdan Warinschi, Martijn Stam and the
anonymous reviewers for their useful feedback on the paper.

References

1. Benadjila, R., Calderon, T., Daubignard, M.: Caml crush: a PKCS#11 filtering
proxy. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 173—
192. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3_11

2. Benadjila, R., Calderon, T., Daubignard, M.: Source code for Caml Crush (2016).
https://github.com/ANSSI-FR/caml-crush. Accessed 19 Oct 2016

3. Bond, M., Anderson, R.J.: API-level attacks on embedded systems. IEEE Comput.
34(10), 67-75 (2001)

4. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, 4-8
October 2010, pp. 260—-269 (2010)

5. Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proceedings
of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port
Jefferson, New York, USA, 8-10 July 2009, pp. 141-153 (2009)

6. Clulow, J.: On the security of PKCS #11. In: Walter, C.D., Kog, C.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 411-425. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6_32

7. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11. In: Proceedings of
the 21st IEEE Computer Security Foundations Symposium, CSF 2008, Pittsburgh,
Pennsylvania, 23-25 June 2008, pp. 331-344 (2008)

8. Delaune, S., Kremer, S., Steel, G.: Formal security analysis of PKCS#11 and pro-
prietary extensions. J. Comput. Secur. 18(6), 1211-1245 (2010)

9. Kremer, S., Steel, G., Warinschi, B.: Security for key management interfaces. In:
Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF
2011, Cernay-la-Ville, France, 27-29 June 2011, pp. 266280 (2011)

10. PKCS#11 cryptographic token interface base specification version 2.40, April 2015.
http://docs.oasis-open.org/pkesll/pkesll-base/v2.40/pkesll-base-v2.40.html

11. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21-40. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7_2

12. Scerri, G., Stanley-Oakes, R.: Analysis of key wrapping APIs: generic policies,
computational security. In: IEEE 29th Computer Security Foundations Sympo-
sium, CSF 2016, Lisbon, Portugal, 27 June-1 July 2016, pp. 281-295. IEEE (2016)

13. Shrimpton, T., Stam, M., Warinschi, B.: A modular treatment of cryptographic
APIs: the symmetric-key case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 277-307. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53018-4_11

14. Stanley-Oakes, R.: A provably secure PKCS#11 configuration without authen-
ticated attributes. Cryptology ePrint Archive, Report 2017/158 (2017). http://
eprint.iacr.org/2017/134

https://doi.org/10.1007/978-3-319-16763-3_11
https://github.com/ANSSI-FR/caml-crush
https://doi.org/10.1007/978-3-540-45238-6_32
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
https://doi.org/10.1007/978-3-540-70936-7_2
https://doi.org/10.1007/978-3-662-53018-4_11
https://doi.org/10.1007/978-3-662-53018-4_11
http://eprint.iacr.org/2017/134
http://eprint.iacr.org/2017/134

A Post-quantum Digital Signature Scheme
Based on Supersingular Isogenies

Youngho Yoo!®) | Reza Azarderakhsh®®), Amir Jalali®, David Jao'2(®),
and Vladimir Soukharev*

L University of Waterloo, Waterloo, Canada
{yh2yoo0,djac}Cuwaterloo.ca
evolutionQ, Inc., Waterloo, Canada
david. jao@evolutiong.com
3 Florida Atlantic University, Boca Raton, USA
{razarderakhsh,ajalali2016}@fau.edu
4 InfoSec Global, Inc., North York, Canada
Vladimir.Soukharev@infosecglobal.com

2

Abstract. We present the first general-purpose digital signature scheme
based on supersingular elliptic curve isogenies secure against quantum
adversaries in the quantum random oracle model with small key sizes.
This scheme is an application of Unruh’s construction of non-interactive
zero-knowledge proofs to an interactive zero-knowledge proof proposed
by De Feo, Jao, and Plit. We implement our proposed scheme on an x86-
64 PC platform as well as an ARM-powered device. We exploit the state-
of-the-art techniques to speed up the computations for general C and
assembly. Finally, we provide timing results for real world applications.

Keywords: Digital signatures - Isogenies
Post-quantum cryptography

1 Introduction

The security of most public-key cryptosystems in use today are based on the
intractability of certain mathematical problems, namely integer factorization
and discrete logarithms. However, large-scale quantum computers will be able to
efficiently solve both of these problems, posing a serious threat to modern cryp-
tography. Post-quantum cryptography is the study of classical cryptosystems
that remain secure against quantum adversaries. There are several candidate
approaches for building post-quantum cryptographic primitives: lattice-based,
code-based, hash-based, and multivariate cryptography. Recently, cryptosystems
based on supersingular elliptic curve isogenies were proposed by De Feo, Jao, and
Plit [12], who gave protocols for key exchange, zero-knowledge proof of identity,
and public key encryption. With small key sizes and efficient implementations
[8,17], isogenies provide a strong candidate for post-quantum key establishment.

© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 163-181, 2017.
https://doi.org/10.1007/978-3-319-70972-7_9

vww.ebook3000.con)

http://www.ebook3000.org

164 Y. Yoo et al.

Various isogeny-based authentication schemes have been proposed as well,
such as strong designated verifier signatures [20], undeniable signatures [16], and
undeniable blind signatures [19]. However, it was not known whether isogeny-
based cryptography could support general authentication. In this paper, we show
that this is indeed possible by constructing the first digital signature scheme
based on isogenies which is strongly unforgeable under chosen message attack in
the quantum random oracle model.

Our signature scheme is obtained by applying a generic transformation to the
zero-knowledge proof of identity proposed in [12]. Classically, obtaining a secure
digital signature from an interactive zero-knowledge proof can be achieved by
applying the Fiat-Shamir transform [13]. However, its classical security proof
requires certain techniques such as rewinding and reprogramming the random
oracle which do not necessarily apply in the quantum setting. Quantum rewind-
ing is possible in some restricted cases [23,25], but it has been shown to be inse-
cure in general [1]. Further, since random oracles model hash functions which,
in a real world implementation, could be evaluated in superposition by a quan-
tum adversary, we require quantum random oracles which can be queried in a
superposition of possibly exponentially many states. This makes it difficult to
observe an adversary’s queries as measuring the input disturbs the state.

Unruh [24] recently proposed a transformation which remedies these prob-
lems to produce a secure signature in the quantum random oracle model. Its
overhead is generally much larger than Fiat-Shamir — in some cases exponentially
large, making the scheme impractical. Fortunately, applying it to the isogeny-
based zero-knowledge proof incurs only twice as much computation as the Fiat-
Shamir transform, producing a workable quantum-safe digital signature scheme
with small key sizes.

Our Contributions

— We construct the first general-purpose digital signature scheme based on
supersingular elliptic curve isogenies, and prove its security in the quantum
random oracle model.

— We analyze implementation aspects of our scheme and compare parameter
sizes with various post-quantum signature schemes, showing that our scheme
achieves very small key sizes.

— We provide source code! as well as performance results on x86-64 platforms
and on ARM devices with assembly-optimized arithmetic.

Related Work. Independently of us, Galbraith, Petit, and Silva recently pub-
lished a preprint containing two isogeny-based digital signature schemes [14].
Their second scheme, based on endomorphism rings, is completely unrelated to
our work. Their first scheme, based on the De Feo, Jao, and Pliat identifica-
tion scheme, is conceptually identical to our scheme, but they present significant
space optimizations to reduce the signature size down to 12\? bits (or 62 if

! Source code is available at https://github.com/yhyo093/isogenysignature.

https://github.com/yhyoo93/isogenysignature

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 165

non-repudiation is not required), compared to our signature size of 69\? bits.
However, we note that their signature size is for classical security level A and as
of this writing their posted preprint contains no signature sizes for post-quantum
security, whereas our signature sizes are given in terms of post-quantum secu-
rity. Moreover, their scheme may be slower, since they use a time-space tradeoff
to achieve such small signature sizes. The performance of their scheme is not
immediately clear, since they provide no implementation results. In this work,
by contrast, we provide a complete implementation of our scheme, as well as
performance results on multiple platforms and source code for reference.

Outline. The rest of the paper is organized as follows. In Sect. 2, we give a
brief preliminary on isogeny-based cryptography and describe the interactive
zero-knowledge proof which will be used to construct our scheme. In Sect. 3, we
describe Unruh’s construction. We construct our isogeny-based digital signature
scheme and analyze its algorithmic aspects and parameter sizes in Sect.4, and
give security proofs in Sect. 5. Performance results are provided in Sect. 6.

2 Isogeny-Based Cryptography

We consider elliptic curves over a finite field F,. An isogeny ¢: By — Es is
a surjective rational map between elliptic curves which preserves the point at
infinity O. Isogenies are necessarily group homomorphisms E1(F,;) — E2(F,)
and can be identified with their kernels. This gives a one-to-one correspondence
between isogenies and subgroups of the curve. Two curves E; and E, over F,
are isogenous if and only if #E4(F,) = #E2(F,) [22]. The degree of an isogeny
is its degree as a rational map. For separable isogenies, as are all isogenies in
this paper, the degree is equal to the size of the kernel.

Every isogeny ¢: E1 — FEs with degree d has a unique dual isogeny g?): By —
FE; of the same degree such that (;ASO ¢: B — FEi is the multiplication map
P — [d]P. The set of isogenies mapping a curve E to itself forms a ring under
pointwise addition and composition, called the endomorphism ring. A curve F is
supersingular if its endomorphism ring is isomorphic to an order in a quaternion
algebra, and ordinary otherwise. All supersingular elliptic curves over finite fields
of characteristic p are isomorphic to curves defined over F..

The (-torsion group of E is defined as E[(] = {P € E(F,2): [(|P = O}. If ¢
is coprime to p, then E[f] = (Z/¢Z)?, thus an (-torsion group is generated by
two elements of order /.

2.1 Zero-Knowledge Proof of Identity

We use primes of the form p = £5*¢%’ f £ 1 where £4,¢p are small primes
(typically 2 and 3) with roughly ¢%* ~ (7, and f is a small cofactor to ensure p is
prime. The public parameters consist of a prime p = £5*¢77 f+1, a supersingular
curve E(F,2) of order (¢5A¢%F f)?, and generators Pp,Qp of the (7F-torsion
subgroup E[¢7F].

vww.ebook3000.con)

http://www.ebook3000.org

166 Y. Yoo et al.

E/(R) ——F/(R.5)
Fig. 1. Each arrow is labelled by the isogeny and its kernel.

The zero-knowledge proof takes place over the diagram in Fig. 1. Peggy (the
prover) has a secret point S generating the kernel of the isogeny ¢: E — E/(S).
Her private key is S (or any generator of (S)) and her public key is the curve
E/(S) and the images of the public generators ¢(Pg), »(Qp).

In order to prove her knowledge of (S) to Vic (the verifier), Peggy chooses a
random point R of order £ defining an isogeny ¢: E — E/(R). Note that

(E/(S)/(¢(R)) = E/(R,S) = (E/(R))/((S5))

In other words, the diagram in Fig. 1 commutes.

Peggy computes the isogenies in the diagram and sends to Vic the two non-
public curves. Vic sends her a challenge bit b € {0,1}, and Peggy reveals some
of the isogenies depending on b, which Vic then verifies.

More precisely, Peggy and Vic run the following protocol:

1. — Peggy chooses a random point R of order ¢77.
— She computes the isogeny ¢: E — E/(R).
— She computes the isogeny ¢': E/(R) — E/(R,S) with kernel (¥(5))
(alternatively the isogeny ¢': E/(S) — E/(R,S) with kernel (¢(R))).
— She sends the commitment com = (Fy, E3) to Vic, where By = E/(R)
and Ey = E/(R, S).
Vic randomly chooses a challenge bit ch € {0,1} and sends it to Peggy.
. Peggy sends the response resp where
— If ch = 0, then resp = (R, ¢(R)).
— If ch = 1, then resp = ¢(S).
4. —Ifch = O Vic verifies that R and ¢(R) have order £% and generate the
kernels for the isogenies E — E; and E/(S) — E5 respectively.

N

B oo 2 B/(5) B .+ B(5)
Y
B/~ B(.s) E/(R) %)E/m, s)

Fig. 2. Hidden isogenies are indicated by dashed lines. Bolded lines indicate the iso-
genies revealed by Peggy on challenge b. In either case, the revealed isogenies do not
leak information about the secret isogeny ¢.

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 167

— If ch = 1, Vic verifies that ¢(S) has order ¢%* and generates the kernel
for the isogeny Ey — Fy (Fig.2).

To achieve A bits of security, the prime p should be roughly 6A bits (see
Sect. 5) and this protocol should be run A times. If Vic successfully verifies all
A rounds of the protocol, then Peggy has proved her identity (knowledge of the
private key S) to Vic. Otherwise, Vic rejects.

3 Unruh’s Construction

Unruh’s construction [24] transforms an interactive zero-knowledge proof system
into a non-interactive one. The construction satisfies online extractability which
allows us to extract the witness (private key) from a successful adversary without
rewinding. It also avoids the problem of determining the query inputs of the
quantum random oracle by including its outputs in the proof (signature) and
“Inverting” them in the security proof. See [24] for the full security proof.

We fix a binary relation R. A statement x holds if there exists w such that
(z,w) € R. In this case, we call w a witness to x. In a proof system, a prover P
tries to prove a statement = to a verifier V' (in other words, to convince V' that
P knows a witness w to). We assume that all parties have access to a quantum
random oracle H which can be queried in superposition.

3.1 Sigma Protocols

A sigma protocol X = ((P', P?),V) is an interactive proof system consisting of
three messages in order: a commitment com = P!(x,w) made by the prover,
a challenge ch chosen uniformly at random by the verifier, and the response
resp = P?(x,w, com, ch) computed by the prover based on the challenge. Then
V outputs V(x, com, ch, resp), indicating whether they accept or reject the proof.

Let ¥ = (P,V) be a sigma protocol where P = (P!, P?). We define the
following properties of sigma protocols (from [24, Sect. 2.2]):

Completeness: If P knows a witness w to the statement x, then V' accepts.

Special soundness: There exists a polynomial time extractor Es such that,
given any pair of valid interactions (com,ch,resp) and (com, ch’, resp’) with
ch # ch’ that V accepts, Ex can compute a witness w such that (z,w) € R.

Honest-verifier zero-knowledge (HVZK): There is a polynomial time sim-
ulator Sy with outputs of the form (com, ch,resp) that are indistinguishable
from valid interactions between a prover and an honest verifier by any quan-
tum polynomial time algorithm.

Note that the isogeny-based zero-knowledge proof of identity from the previ-
ous section is a sigma protocol. We will show in Sect. 5 that it satisfies all three
properties listed above.

vww.ebook3000.con)

http://www.ebook3000.org

168 Y. Yoo et al.

3.2 Non-interactive Proof Systems

A non-interactive proof system consists of two algorithms: a prover P(x,w) out-
putting a proof 7 of the statement 2 (which has witness w), and a verifier V(x,)
outputting whether it accepts or rejects the proof w of x.

For a non-interactive proof system (P, V'), we define the following properties
(from [24, Sect. 2.1]):

Completeness: If (z,w) € R, then V accepts the proof 7 = P(x,w).

Zero-knowledge (NIZK): There exists a polynomial time simulator S such
that, given the ability to program the random oracle, S can output proofs
indistinguishable from those produced by P by any quantum polynomial time
algorithm.
The simulator is modeled by two algorithms S = (Sinis, Sp), where Sinit
outputs an initial circuit H simulating a quantum random oracle, and Sp is
a stateful algorithm which may reprogram H and produce proofs using H.

Simulation-sound online-extractability: (with respect to a simulator S =
(Sinit, Sp)) There exists a polynomial time extractor E such that, if a quan-
tum polynomial time algorithms A with quantum access to H «— Sjy;; and
classical access to the prover Sp outputs a new valid proof of a statement x,
then E can compute (extract) a witness w of x.

Remark 1. Granting A classical access to the simulated prover Sp is analogous
to granting the adversary access to a classical signing oracle in a chosen message
attack in the context of signatures. We could allow A to have quantum access to
Sp, corresponding to a guantum chosen message attack as defined in [6]. We do
not know whether Unruh’s construction remains secure under this relaxation.

3.3 Unruh’s Construction

Unruh’s construction transforms a sigma protocol X' into a non-interactive proof
system (Pog, Vog) so that, if X' satisfies completeness, special soundness, and
HVZK, then the result is a complete NIZK proof system with simulation-sound
online extractability.

Suppose we have a sigma protocol X' = (Px, V) with Py, = (P&, P%), where
there are ¢ possible challenges in the challenge domain V., and the parties want
to run the protocol ¢ times, where ¢ depends on the security parameter A (in our
signature scheme we will have N, = {0,1}, ¢ = 2, and ¢ = 2)\). Let G, H be
quantum random oracles, where G has the same domain and range. We define
a non-interactive proof system (Pog,Vog) where Pog and Vo are given by
Algorithms 1 and 2 respectively.

The idea is to simulate the interaction in X by setting the challenge
J = Ji||...||Jt as the output of the random function H. However, instead of
evaluating H on the commitments (com;); alone as in the Fiat-Shamir trans-
form, we also include the hashes h; ; = G(resp; ;) of the responses resp; ; to
each possible challenge ch; ;, for each commitment com;. Then the produced
proof consists of the commitments, an ordering of all possible challenges, hashed

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 169

Algorithm 1. Prover: Pog on input (z,w)

// Create t-c proofs and hash each response
fori=1totdo
com; «— Px(x,w)
for j =1tocdo
Chi’j “—R Nch \ {Ch7;717 ey Chr;,];l}
resp, ; — P%(z, w, com;, ch; ;)
hi; < G(resp, ;)

// Get challenge by hashing
Jull - A1 — H(, (coms)s, (chij)i g, (hij)is)

// Return proof
return 7 « ((comy)s, (chi ;)i j, (hij)is, (vesp; z,)i)

responses to the corresponding challenges, and the responses to the challenges
given by Ji||...]||J:- The verifier can then take the data to reproduce Ji|| .. .|| Js,
check that the data was produced properly, and verify the responses (resp; ;)i
for each round of X.

The main theorem of [24] proves that this construction is secure in the quan-
tum oracle model. Its proof is based on the fact that the random oracle G is
indistinguishable from a random permutation, and replaces G with an efficiently
invertible function (a random polynomial of high degree) which is unnoticeable
by any quantum polynomial time adversary. This allows the hashes to be inverted
to obtain the hidden responses in the adversary’s forged proof.

Theorem 1. ([24, Corollary 19]). If X' satisfies completeness, special sound-
ness, and HVZK, then (Pog, Vog) s a complete non-interactive zero-knowledge
proof system with simulation-sound online extractability in the quantum random
oracle model.

Algorithm 2. Verifier: Vog on input (z,7), where
7 = ((comy)s, (chij)i5, (hij)i g, (vesp; g,)i)

// Compute the challenge hash

Jill o[y = H (2, (comy)i, (chi ;)i g (hij)ig)

fori=1totdo
check ch; 1, ..., ch; » pairwise distinct
check h;, j, = G(resp,)
check Vx(z,com;, ch; j,,resp;) =1
if all checks succeed then
return 1

3.4 Signatures from Non-interactive Zero-Knowledge Proofs

A digital signature scheme consists of three algorithms:

vww.ebook3000.con)

http://www.ebook3000.org

170 Y. Yoo et al.

— Keygen(\): takes a security parameter A and outputs a key pair (pk, sk).

— Sign(sk, m): signs the message m using sk, outputting a signature o.

— Verify(pk, m, 0): takes the public key of the claimed signer and verifies the
signature ¢ on the message m.

A digital signature scheme is strongly unforgeable under chosen message
attack (SUF-CMA) if, for any quantum polynomial time adversary A with clas-
sical access to the signing oracle sig: m — Sign(sk, m), A cannot produce a new
valid message-signature pair with non-negligible probability.

Suppose we have a function Keygen generating a public-private key pair
(pk, sk) such that no quantum polynomial-time algorithm can recover a valid sk
from pk with non-negligible probability. A proof of identity can be viewed as
proving the statement x = pk with witness w = sk, where (z,w) € R if and only
if (z,w) is a valid key pair that can be generated by Keygen.

In this sense, a digital signature is basically a non-interactive zero-knowledge
proof of identity, except that we need to incorporate a specific message into each
proof (signature). This is done by including the message as a part of the state-
ment x = (pk, m), and the relation R ignores the message m; i.e. ((pk,m),w) € R
if and only if (pk,w) is a valid key pair. Thus, from a NIZK proof of identity
(P, V), we obtain a digital signature scheme DS = (Keygen, Sign, Verify) where
Sign(sk,m) = P((pk,m),sk) and Verify(pk, m, o) = V((pk, m), o).

Theorem 2. ([24, Theorem 23)). If (P, V') is a NIZK proof of identity satisfying
simulation-sound online-extractability, then the signature scheme DS above is
SUF-CMA in the quantum random oracle model.

Proof (sketch). Since (P, V) is zero-knowledge, there is a polynomial time simu-
lator that can indistinguishably simulate proofs (signatures) by reprogramming
the random oracle. If an adversary can forge a new valid message-signature pair
by querying the simulator, then by simulation-sound online-extractability, we
can efficiently extract a witness sk. a

4 Isogeny-Based Digital Signature

We propose our isogeny-based digital signature scheme based on the results from
previous sections. Let X' denote the isogeny-based zero-knowledge proof of iden-
tity described in Sect.2.1. Applying Unruh’s construction to X, we obtain a
non-interactive proof of identity (Pog, Vog), from which we get a digital signa-
ture scheme:

Public Parameters. We have the same public parameters as in X' a prime
p = 505 f £ 1, a supersingular curve E of cardinality (¢5¢57)? over Fz,
and generators (Pp, @ p) of the torsion group E[¢%].

Key Generation. To generate keys, select a random point S of order ¢5*,
compute the isogeny ¢: E — E/(S), and output the key pair (pk,sk) where

pk = (B/(S), 6(Pp), (Qr)) and sk = 5.

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 171

Signing. To sign a message m, set Sign(sk, m) = Pogr((pk,m), sk).
Verification. To verify the signature o of message m, set Verify(pk,m,o) =
Vor((pk,m),0).

Algorithms 3, 4, and 5 give explicit descriptions of (Keygen, Sign, Verify).

Algorithm 3. Keygen(\)
Pick a random point S of order £5*
Compute the isogeny ¢: E — E/(S)
pk - (E/<S>7¢(PB)7¢(QB))
sk «— S
return (pk,sk)

Algorithm 4. Sign(sk,m)

for i =1 to 2\ do
Pick a random point R of order (3P
Compute the isogeny ¢: E — E/(R)
Compute either ¢': E/(R) — E/(R,S) or ¢': E/(S) — E/(R,S)
(Er, E2) — (E/(R), E/(R,S)
com; <«— (El,Eg)
Chi,o “—R {07 1}
(1esp, g, 15, 1) (R, 6(R)), (5))
if ch; o = 1 then

Swap(resp, o, 1esp, 1)

hi; < G(resp, ;)

Jill - [J2x <= H(pk, m, (com;);, (chi)iz, (hij)i5)

return o « ((com;)s, (chi)iz, (Rij)i,5, (resp; j.)i)

4.1 Algorithmic Aspects

We describe some of the lower-level algorithmic aspects of our signature scheme.
Full details can be found in [8,12]. For efficiency in our implementation, we
mainly follow [8] for their algorithms and representations of parameters.

Sampling Torsion Points. Let P, () be fixed generators for the torsion group
E[¢¢]. To sample a point R of order ¢¢, we choose m,n € Z/{°Z, not both
divisible by ¢, and compute R = [m]P + [n]Q. Since R and [k]R generate the
same subgroup (R) = ([k]R) for any k not divisible by ¢, we can replace R by
P+ [m~1n]Q or [mn~1]P + Q, depending on which coefficient is coprime to .

For simplicity, we ignore the coefficient of P as in [8] where it is shown that,
for certain pairs of generators P, (@ related by distortion maps, each value of
n€{1,2,...,£71 — 1} gives a point R = P + [¢n]Q of full order ¢¢ generating
distinct subgroups. Note that this procedure samples from ¢¢~' — 1 possible
subgroups (Fig. 3).

vww.ebook3000.con)

http://www.ebook3000.org

172 Y. Yoo et al.

£ ‘ ’ ‘ B/(5)
Ri < D] Re —n ISP
lAJ Jui UfJ J‘w/
E/(R1) ————E/(R1,5) E/(Ri) ————E/(R,,S)
1 t
comy = (E/(Ry),E/(R1,S)) comy = (E/(Ry), E/(Ry,S))
chy —r {0,1} chy —r {0,1}
respio = (Ri,¢(R1)) B respro = (R, ¢(Ry))
respi,1 = ¥1(9) respe1 = i(S)
hy,; = G(resp1,j) hy; = G(respy ;)

J1 || . HJt = H(pk, m, (comi)i, (Chi)i, (]Li,j)i,j)
o = ((comi)i, (chi)i, (hi ;)i z, (respi,z,)i)

Fig. 3. An illustration of the signing algorithm running ¢ rounds of the isogeny-based
zero-knowledge proof. For each ZKP round, the signer chooses a random full-order
03P -torsion point R and computes the relevant data in the ZKP and hashes of the
responses (note that these can run in parallel and be precomputed before the message
m is known). The collective data is then hashed together with the message to obtain the
challenge bits Ji|| ... ||J:. The signature o contains the data necessary for the verifier
to compute Ji||...||J:, and the responses to the challenges.

Computing Isogenies. Isogenies of degree /¢ can be computed by composing
e isogenies of degree £. Isogeny computation is by far the most expensive process
in isogeny-based systems. Detailed analysis on optimizing isogeny computation
can be found in [8,12].

Representing of Curves and Points. We use projective coordinates for both
points and curve coefficients as in [8] to reduce the number of field inversions.
The curves in our system are isomorphic to Montgomery curves which have
the form E(4 gy : By? = 23 + Az? + 2. The Kummer line on a Montgomery
curve, which identifies each point (X : Y : Z) with its inverse (X : =Y : Z),
has efficient point arithmetic and allows us to disregard the Y coordinate in
our computations. This allows us to represent points by just one field element
X/Z in F)2. However, to compute linear combinations we require an additional
z-coordinate of P — @) to perform differential addition. We thus include the

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 173

Algorithm 5. Verify(pk, m, o)
Jill .l J2x = H(m, 2, (com;)s, (chij)i,5, (Riyj)ig)

for i =1 to 2\ do
check h; j; = G(resp; ;,)
if ch; ;; = 0 then
Parse (R, #(R)) « resp; ;.
check R, ¢(R) have order (7
check R generates the kernel of the isogeny F — F1
check ¢(R) generates the kernel of the isogeny E/(S) — E>
else
Parse 9(5) « resp, ;,
check ¢(5) has order £
check 9(S) generates the kernel of the isogeny F1 — E»
if all checks succeed then
return 1

z-coordinate of ¢(Pp — @p) as part of the public key. Isogeny computations are
unaffected because a point R and its inverse —R generate the same subgroup.
In the Montgomery form, it turns out that there are only two isomorphism
classes of Montgomery curves for a given coefficient value A, and they have the
same Kummer line. So the B coefficient also does not affect our computations,
and curves can also be represented by one field element for their A-coordinate.

4.2 Parameter Sizes

Recall that our primes have the form p = ¢5* (%7 f £ 1 with roughly £5* ~ ¢3F.
Note that we require primes of bitlength 6 in order to achieve A bits of post-
quantum security (see Sect. 5), so we have (5 ~ (97 ~ 23},

Since all supersingular curves are defined over [F 2, each field element requires
12X bits. Our curves are represented in Montgomery form By? = 23 + Ax? + =
where the A-coefficient suffices for isogeny computations. Similarly, a point on
the Kummer line can be represented by their X-coordinate. In both cases, we
need one field element, requiring 12X bits.

Compression. Azarderakhsh et al. [2] showed that torsion points can be com-
pressed by representing them by their coefficients with respect to a determinis-
tically generated basis (computing 2-dimensional discrete log is polynomial-time
for smooth curves). Their implementation was however very slow. Recent work
by Costello et al. [7] proposed new algorithms accelerating the previous work
by more than an order of magnitude and further reduce public key sizes. Their
improved compression algorithm runs roughly as fast as a round of the ZKP
protocol.

A torsion point used to generate a subgroup can be represented by one coeffi-
cient since we can always normalize the coefficient of one generator. Compressing
two generators of a torsion group requires three coefficients to keep track of their

vww.ebook3000.con)

http://www.ebook3000.org

174 Y. Yoo et al.

relation when computing linear combinations. Each coefficient requires roughly
3 bits.

We can apply the compression to our signature scheme in two ways: first to
the public key and second to the responses 1(S) for the rounds where ch = 1.
The private key and the other responses (R, ¢(R)) are generated using a 3A-bit
coefficient and as such do not require additional computation for compression.

Public Keys. The public key has the form pk = (a,z(Pg),2(Qp), 2(Ps—Q5)),
where a denotes the A-coefficient of the public curve E/(S). These four field
elements require 48\ bits of storage.

We can compress the public key significantly by compressing the torsion basis
(6(PB), ¢(@pB)), requiring three 3A-bit coefficients. Moreover, the X-coordinate
of ¢(Pg—@Q) is no longer required since the full coordinates of ¢(Pp) and ¢(Qp)
can be recovered from their compressed coefficients. Thus the compressed public
key requires 12\ bits for the curve and 9\ bits for the generators, for a total of
21X bits.

Private Keys. The private key S can be stored as a single coefficient n with
respect to a £*-torsion basis Pa,Qa (i.e. S = P4+ [n]Qa4), requiring 3\ bits.

Signatures. The signature contains (com;,ch; ;,h; j,resp; ;) for each round
i1 of the ZKP protocol. Each commitment contains two curves (FEj, Es), each
requiring one field element. We need one bit to indicate the first challenge bit
ch; o. We do not need to send ch;; since ch;; = 1 — ch;o. The hash h; ; =
G (resp; ;) should have bitlength 3\ (this will be justified in Sect. 5.2). Note that
we do not need to send h; , since it can be computed from resp; ;..

The response has a different length depending on the challenge bit J;. If
Ji = 0, the response (R, $(R)) can be represented by their coefficients with
respect to the public bases at no additional computational cost, requiring only
3X bits. If J; = 1, the response ¢ (S) requires 12\ bits as a field element. With
compression, ¥(S) can be represented in 3\ bits.

In total, each round of the ZKP requires roughly 24X + 1 + 3\ 4 328122 ~
34.5\ bits on average without compression, and roughly 30\ bits on average
with compression. Although A rounds of the ZKP sufficed for A bits of post-
quantum security, the signature requires 2\ rounds of the ZKP protocol due to
the challenge hash being vulnerable to Grover’s algorithm [15] (see Sect 5.3). So
the entire signature has size roughly 69A? (60\? compressed) bits on average.

For instance, to achieve 128 bits of post-quantum security, our signature
scheme requires 48\ = 6144 bits (768 bytes) for the public key (336 bytes com-
pressed), 3\ = 384 bits (48 bytes) for the private key, and 69\? = 1,130,496
bits (141,312 bytes) for the signature (122,880 bytes compressed) on average.

Comparison. We compare our parameter sizes with various post-quantum sig-
nature schemes: the stateless hash-based signature SPHINCS-256 [4], a code-
based signature based on Niederreiter’s variant of the McEliece cryptosystem

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 175

Table 1. Comparison of parameter sizes (in bytes) with various post-quantum signa-
ture schemes at the quantum 128-bit security level.

Scheme Public-key size | Private-key size | Signature size
Hash-based 1,056 1,088 41,000
Code-based 192,192 1,400,288 370
Lattice-based 7,168 2,048 5,120
Ring-LWE-based 7,168 4,608 3,488
Multivariate-based | 99,100 74,000 424
Isogeny-based 768 48 141,312
Compressed 336 48 122,880

[5,9], a lattice-based signature BLISS [11], a recent ring-LWE-based signature
TESLA# [3], and the multivariate polynomial-based Rainbow signature [10,18].

It is clear from Table 1 that our isogeny-based signature achieves very small
key sizes relative to the other post-quantum signature schemes. We note that
the variants of the Merkle signature scheme can achieve smaller (32 byte) key
sizes at the same security level, but require state management. We expect future
works in isogenies to improve upon signature sizes and performance to produce
more practical signatures with still compact keys.

5 Security

The security of isogeny-based cryptosystems are based on the following prob-
lems (from [12, Sect. 5]), which are believed to be intractable even for quantum
computers.

Computational Supersingular Isogeny (CSSI) problem: Let ¢4: Fy —
E4 be an isogeny whose kernel is (R4) where R4 is a random point with
order £5*. Given E4,$4(Pg), »4(Qg), find a generator of (R4).

Decisional Supersingular Product (DSSP) problem: Let ¢: Ey — E3 be
an isogeny of degree (5*. Given (E1, Ey, ¢') sampled with probability 1/2 from
one or the other of the following distributions, determine which distribution
it is from.

— A random point R of order ¢7F is chosen and Ey = Ey/(R), Ey =
Es/{¢(R)), and ¢': E1 — E is an isogeny of degree £5*.

— FE1 is chosen randomly among curves of the same cardinality as Ey, and
¢': By — Es is a random isogeny of degree ¢

The best known attack for the CSSI problem involves claw-finding algorithms
using quantum walks [21] and takes O(p'/%) time, which is optimal for a black-
box claw attack [26]. Therefore it is believed that a prime with bitlength 6\
achieves A bits of post-quantum security.

vww.ebook3000.con)

http://www.ebook3000.org

176 Y. Yoo et al.

5.1 Security of the Zero-Knowledge Proof

It is proven in [12, Sect.6.2] that our isogeny-based zero-knowledge proof of
identity from Sect. 2.1 satisfies completeness, soundness, and honest-verifier zero-
knowledge under the assumption that the CSSI and DSSP problems are hard.
However, Unruh’s construction requires special soundness.

Theorem 3 ([12, Theorem 6.3]). The isogeny-based zero-knowledge proof of
identity satisfies completeness, special soundness, and HVZK.

Proof. We only prove special soundness. Suppose we are given two valid tran-
scripts (com, 0, resp,) and (com,1,resp;), where com = (Ej, E3). Then we
can use resp, = (R,¢(R)) to compute the isogeny ©: E — FE/(R). Since
resp; = ¥(S) is a generator of the kernel of ¢, we can take the dual isogeny
¢: E/(R) — E, and compute t)(resp,), a generator for (S) (Fig. 4). O

BIR) ———F/(R.$)
Fig. 4. If v and ¢’ are both known, then we can recover the secret subgroup ().

5.2 Security of the Signature

Theorem 2 implies that our isogeny-based signature scheme obtained in Sect. 4 is
SUF-CMA. However, one important detail in Unruh’s proof is that the quantum
random oracle G must have the same domain and range for both response types,
so that one can substitute G with a random polynomial and invert hashes in the
security proof. In Sect. 4.2, we described compression techniques giving us a few
variants of our signature scheme with a space-time tradeoff (we could compress
the public key, the responses, or both), and we also took G to be a random oracle
outputting hashes of bitlength £ ~ 3\. While Unruh’s proof applies directly to
our compressed signatures, it is invalid in our uncompressed signature scheme
where the responses can have bitlength k& or 4k. In this case, the only way to
apply Unruh’s construction directly is to pad the shorter responses to 4k bits.
G should then output hashes of bitlength 4k so that the domain and range of G
are both equal to {0,1}** increasing signature sizes by roughly 18\? bits.

We show by an ad-hoc argument that compression is not necessary—the
uncompressed signature scheme remains secure when G outputs hashes of
bitlength k£ ~ 3\. Let DS,, denote the uncompressed signature scheme and DS,
denote the scheme where the responses ¢(S) are compressed.

Theorem 4. DS, is SUF-CMA in the quantum random oracle model.

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 177

Proof. Since all responses are represented by bitstrings of length k, the security
of DS, follows from Theorem 2. O

Theorem 5. DS, is SUF-CMA in the quantum random oracle model.

Proof. Suppose there exists a quantum polynomial-time adversary A breaking
the SUF-CMA security of DS,,. We show that, given a classical signing oracle
to an instance of DS, with quantum random oracle G.: {0,1}* — {0,1}%, we
can forge a new valid message-signature pair for DS, using A.

Suppose we are given the public key pk and a signing oracle to an instance
of DS, with quantum random oracles G, and H. Let Cy,C7 denote the set of
possible responses to the challenge ch = 0,1 respectively in DS.. Note that
both sets have cardinality roughly 2% and consist of k-bitstrings. We create an
instance of DS,, with the same setup, except the quantum random oracle G,, is
to be defined as follows.

Let Uy, Uy denote the set of possible responses to the challenge ch = 0,1
respectively in DS,,. Then we have Cy = Uy and |Cy| = |U;], but the elements
of Uy are 4k-bitstrings. Let C: U; — C denote the compression map taking the
field representation of a point ¥(S) in U; to its compressed coefficient represen-
tation in C;. Then C is a bijection that can be computed efficiently both ways
since the compression map is injective and its inverse just computes the linear
combination. Let GZ,: {0,1}** — {0,1}* be a quantum random oracle such that
G! (z]|x) = Ge(x) for all x € {0,1}*, where z denotes the all-zeros string of
length 3k. Define G,,: {0,1}** — {0, 1}* where

Gl (z||IC(x)) ifxel;
Gu(z) =G (C 7 (y)) if x = 2|y where y € 4
G, (z) otherwise

Since G, just permutes the inputs according to the bijection C (with MSB zero-
padding) before applying the quantum random oracle G,,, it follows that G,, is
indistinguishable from G’,. Hence A can break DS, when instantiated with G,,.

We give A the same public key pk with quantum random oracles G,, and H.
When A makes a signing query on a message m, we relay it to the DS, signing
oracle to get back a signature

o = ((comy)i, (chy j)ij, (hij)ij, (vesp; g,)i)

where Ji||...||J; = H(pk,m, (com;);, (ch; ;)i , (hij)i;) and h;; = G.(resp; ;).
We simply decompress all responses resp; ;. in o where ch; j, = 1, and give this
modified o to A. Since G, (C71(y)) = G’ (z|ly) = G.(y) for all y € Cy, and
Gu(z) = G.(z) for all x € Cy (with MSB zero-padding of input), it follows that
the h; ;’s are still valid hashes in DS, with G,. Hence the modified o is a valid
signature for m in DS,,.

Therefore we can answer A’s signing oracle queries so that 4 can forge a
new valid message-signature pair (m, o) in DS,,. By similar reasoning, we can
then re-compress the new signature without recalculating the hashes to obtain
a valid message-signature pair for DS, contradicting Theorem 4. O

vww.ebook3000.con)

http://www.ebook3000.org

178 Y. Yoo et al.

5.3 Number of Rounds

To achieve X bits of security, the protocol must be run at least ¢ = 2 times, since
a quantum adversary can choose arbitrary bits Ji||...||J;, compute simulated
proofs using J1 || ... || J; as challenge, then perform a pre-image search on H using
Grover’s algorithm [15] to find a message m that will give the required hash. A
faster collision attack does not seem to apply since an adversary must know the
challenge bits beforehand in order for their simulated proofs to be verifiable with
non-negligible probability. Thus to achieve A bits of security against quantum
attacks, our signature scheme runs the zero-knowledge proof ¢ = 2\ times.

We have seen that, in the underlying zero-knowledge proof, revealing
responses to both challenges b = 0,1 will allow anyone to compute the secret
isogeny. Consequently, it is crucial that our signature scheme does not use the
same commitment twice. We show that this happens with negligible probability.

Recall that p = (54057 f £ 1 ~ 25 with ¢ ~ (3 ~ 23*. There are roughly
05F 11 ~ 23X distinct cyclic subgroups of E [¢%7] from which the commitments
are chosen randomly. The zero-knowledge protocol is run 2\ times for each sig-
nature, so if we sign 2° messages, we would select 251\ cyclic subgroups of
E[¢5f] at random. An upper bound on the probability that we will select the
same subgroup at least twice is given by the Birthday bound:

2s+1>\(2s+1)\ _ 1) 22s+2)\2)\2
2. 93A — 923x+1 — 9A-1

for s < A, which is negligible in \.

6 Implementations

For maximum performance, we implemented the uncompressed signature scheme
by modifying the Supersingular Isogeny Diffie-Hellman (SIDH) library published
by Costello, Longa, and Naehrig [8]. The SIDH implementation uses fixed public
parameters: the prime p = 2372 . 3239 — 1, the curve Ey : %> = 2% + z, and
generators Pp,Qp related by a distortion map. The prime p has bitlength 751,
providing 186 bits of classical security and 124 bits of quantum security.

6.1 Performance

Performance tests of the uncompressed signature scheme were run on an Intel
Xeon E5-2637 v3 3.5 GHz Haswell processor running CentOS v6.8, compiled
with GCC v4.4.7. We also present timing results on the high-performance ARM
Cortex-A57 processor in both C and an optimized arithmetic library on ASM [17].
The Juno platform provides a combination of Cortex-A57 and Cortex-A53 cores
for ARMvS big. LITTLE technology. However, our software is only benchmarked
on a single high-performance Cortex-A57 core to get the most performance-
oriented results. The software is compiled with Linaro GCC v4.9.4 on a single core
1.1 GHz ARM Cortex-A57 running OpenEmbedded Linux v4.5.0.

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 179

The signing and verifying algorithms are easily parallelizable with linear
speedup, since the computations required for each round of the ZKP proto-
col is independent. We have implemented parallelization for the PC platform.
The timing results are summarized in Table 2.

Table 2. Performance results (in 10° clock cycles) on Intel Xeon E5-2637 v3 3.5 GHz.

Platform Threads | Keygen Signing Verifying
1 63 28,776 19,679
PC 2 . 14,474 10,042
4 - 7,449 5,536
ARM (C) - 1,656 767,928 493,797
ARM (ASM) |- 123 57,092 36,757

As noted before, the computing costs in the signing algorithm are incurred
almost entirely in the ZKP rounds which can be precomputed offline. With
precomputation, the signing algorithm simply needs to evaluate a hash function
on the data and output the appropriate responses for the signature.

7 Conclusion

We present and implement a stateless quantum-resistant digital signature scheme
based on supersingular elliptic curve isogenies with very small key sizes, useful
for post-quantum applications with strict key size requirements. Combined with
previous works, these results show that isogenies can provide the full range of
public-key cryptographic primitives including key establishment, encryption, and
digital signatures. Though our results are promising, further improvements are
still needed to bring isogeny-based signatures truly into the realm of practicality.

Acknowledgments. We thank Steven Galbraith for helpful comments on an ear-
lier version of this paper, and the anonymous reviewers for their constructive feed-
back. This work was partially supported by NSF grant no. CNS-1464118, NIST award
60NANB16D246, the CryptoWorks2l NSERC CREATE Training Program in Build-
ing a Workforce for the Cryptographic Infrastructure of the 21st Century, and InfoSec
Global, Inc.

References

1. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, 18-21
October 2014, pp. 474-483 (2014)

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, AsiaPKC 2016, pp. 1-10. ACM,
New York (2016)

vww.ebook3000.con)

http://www.ebook3000.org

180

10.

11.

12.

13.

14.

15.

16.

17.

Y. Yoo et al.

Barreto, P.S.LL.M., Longa, P., Naehrig, M., Ricardini, J.E., Zanon, G.: Sharper
ring-LWE signatures. Cryptology ePrint Archive, report 2016/1026 (2016)
Bernstein, D.J., Hopwood, D., Hiilsing, A., Lange, T., Niederhagen, R.,
Papachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 368-397. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5_15

Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31-46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_3
Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361-379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1_21

Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
compression of SIDH public keys. Cryptology ePrint Archive, report 2016/963
(2016)

Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular
isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 572-601. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4_21

Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASTACRYPT 2001. LNCS, vol. 2248, pp.
157-174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_10
Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Toannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164-175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 40-56. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4_3

Feo, L.D., Jao, D., Plut, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209-247 (2014)

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186-194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Galbraith, S.D., Petit, C., Silva, J.: Signature schemes based on supersingular
isogeny problems. Cryptology ePrint Archive, report 2016/1154 (2016)

Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC 1996, pp. 212-219. ACM, New York (1996)

Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In:
Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160-179. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11659-4_10

Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Kermani, M.M.: NEON-SIDH:
Efficient implementation of supersingular isogeny Diffe-Hellman key exchange pro-
tocol on ARM. In: Cryptology and Network Security - 15th International Confer-
ence, CANS 2016, Milan, Italy, 14-16 November 2016, Proceedings, pp. 88-103
(2016)

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-11659-4_10

A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies 181

18.

19.

20.

21.

22.

23.

24.

25.

26.

Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting parameters for the rainbow
signature scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 218—
240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_16
Seshadri, S.M., Chandrasekaran, V.: Isogeny-based quantum-resistant undeniable
blind signature scheme. Cryptology ePrint Archive, Report 2016/148 (2016)

Sun, X., Tian, H., Wang, Y.: Toward quantum-resistant strong designated verifier
signature from isogenies. In: 2012 Fourth International Conference on Intelligent
Networking and Collaborative Systems (2012)

Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci.
410(50), 5285-5297 (2009)

Tate, J.: Endomorphisms of Abelian varieties over finite fields. Inventiones Math-
ematicae 2(2), 134-144 (1966)

Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135-152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4_10

Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random Ora-
cle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 755-784. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46803-6_25

Watrous, J.: Zero-knowledge against quantum attacks. STAM J. Comput. 39(1),
25-58 (2009)

Zhang, S.: Promised and distributed quantum search. In: Wang, L. (ed.) COCOON
2005. LNCS, vol. 3595, pp. 430-439. Springer, Heidelberg (2005). https://doi.org/
10.1007/11533719_44

vww.ebook3000.con)

https://doi.org/10.1007/978-3-642-12929-2_16
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/11533719_44
https://doi.org/10.1007/11533719_44
http://www.ebook3000.org

Optimally Sound Sigma Protocols Under DCRA

Helger Lipmaa(™

University of Tartu, Tartu, Estonia
helger.lipmaa@gmail.com

Abstract. Given a well-chosen additively homomorphic cryptosystem
and a Y protocol with a linear answer, Damgard, Fazio, and Nicolosi
proposed a non-interactive designated-verifier zero knowledge argument
in the registered public key model that is sound under non-standard
complexity-leveraging assumptions. In 2015, Chaidos and Groth showed
how to achieve the weaker yet reasonable culpable soundness notion
under standard assumptions but only if the plaintext space order is
prime. It makes use of X protocols that satisfy what we call the
optimal culpable soundness. Unfortunately, most of the known addi-
tively homomorphic cryptosystems (like the Paillier Elgamal cryptosys-
tem that is secure under the standard Decisional Composite Residu-
osity Assumption) have composite-order plaintext space. We construct
optimally culpable sound X' protocols and thus culpably sound non-
interactive designated-verifier zero knowledge protocols for NP under
standard assumptions given that the least prime divisor of the plaintext
space order is large.

Keywords: Culpable soundness + Designated verifier
Homomorphic encryption *+ Non-interactive zero knowledge
Optimal soundness - Registered public key model

1 Introduction

Non-interactive zero knowledge (NIZK, [8]) proof system enable the prover to
convince the verifier in the truth of a statement without revealing any side infor-
mation. Unfortunately, it is well known that NIZK proof systems are not secure
in the standard model. Usually, this means that one uses the random oracle
model [6] or the common reference string (CRS, [8]) model. In particular, X
protocols [14] can be efficiently transformed into NIZK proof systems in the ran-
dom oracle model by using the Fiat-Shamir heuristic [21]. However, the random
oracle model (and this concrete transformation) is questionable, since there exist
protocols secure in the random oracle model that are not instantiable with any
function [11,24]. While newer transformations make less use of the random ora-
cle (for example, by relying on non-programmable random oracles [13,32]), it is
commonly felt that the random oracle model is at best a heuristic.

On the other hand, using the CRS model results often — though, not always,
one notable exception being zk-SNARKSs [23,26,33] — in less efficient protocols;

© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 182-203, 2017.
https://doi.org/10.1007/978-3-319-70972-7_10

Optimally Sound Sigma Protocols Under DCRA 183

moreover, also the CRS model is quite strong and requires significant amount
of trust in the creator of the CRS. See [3] for some of the critique; although one
can partially decrease the required trust by using multi-party computation to
generate the CRS [7,9] and verify the correctness of the CRS (subversion zero-
knowledge, [1,5,22]). Still, it is desirable to construct NIZK proof systems based
on a less demanding trust model.

Moreover, NIZK proof systems in the CRS model are not always perfect
approximations of interactive zero knowledge proof systems [3,16,30].

First, interactive zero knowledge provides undeniability: since the verifier can
simulate the proof, she cannot convince third parties that she received a ZK proof
from the specific prover. Undeniability is important in many applications where
it provides a certain amount of protection against third parties (for example,
coercers, see [30] for more motivation).

To provide undeniability also in the case of NIZK, Jakobsson et al. [30] intro-
duced the notion of designated verifier proof systems. A designated verifier NIZK
(NIDVZK) proof system is of type “either the statement is true or I am the
intended verifier (i.e., I know some witness wy associated with the verifier)”.
Hence, the designated verifier is convinced that the claim is true, while for every-
body else it could look like this proof came from the verifier instead of the prover
and thus they will not be convinced in the veracity of the claim. While NIDVZK
proofs are verifiable only by (the prover and) the designated verifier, one can argue
that an NIDVZK proof system provides a good approximation of interactive zero
knowledge proof systems since neither is transferable [30].

Second, one can rewind interactive zero knowledge proofs of knowledge to
extract the prover’s witness. This guarantees that an accepted prover also knows
the witness. Such extraction is impossible, for example, in the case of some
Groth-Sahai proof systems [29]. To “emulate” extractability, Groth et al. [28]
introduced the notion of culpable soundness. In a nutshell, culpable soundness
means that it should be difficult to break the soundness of a zero knowledge proof
system while knowing a witness wgq1: that the input does not belong to the input
language. Culpable soundness has been successfully used in applications like
shuffling [20,27]; see [28] for other applications. Moreover, culpable soundness is
also sometimes the most one can get since there exist no computationally (non-
culpably) sound statistical NIZK argument systems for non-trivial languages
under standard assumptions [2].

Closer to the current work, Damgard, Fazio, and Nicolosi [16] constructed
what we will call the DFN transformation from an optimally sound [35]' and
specially honest-verifier zero knowledge X-protocol [14] with a linear answer to
an NIDVZK argument system (i.e., a computationally sound NIDVZK proof
system) under a complexity leveraging assumption. Recall that a X' protocol
for language L is optimally sound if the following holds: if the common input
x is not in L, then for every a there exists at most one good e for which there
exists a z, such that (z,a,e, z) is an accepting view of the X protocol. Optimal
soundness is a potentially weaker requirement than special soundness.

! This property is also known under the name of relawed special soundness [16].

vww.ebook3000.con)

http://www.ebook3000.org

184 H. Lipmaa

Importantly, the DFN transformation results in an NIDVZK argument
system that is secure in the registered-public key (RPK, [3]) model that is con-
sidered to be significantly weaker than the CRS model. Moreover, the resulting
NIDVZK argument systems are almost as efficient as the original X-protocols.
While the DFN transformation can be only applied to optimally sound
J)-protocols with a linear answer, most of the known X-protocols in the discrete-
logarithm based setting have those properties. In particular, [16] constructed an
NIDVZK argument system in the RPK model for the NP-complete language
Circuit-SAT.

As argued before, the designated verifier property of the DFN transformation
is very useful in certain applications. Hence, the DFN transformation results in
efficient argument systems, secure in a weaker trust model (the RPK model)
that better approximate security properties of interactive zero knowledge proof
systems than say the Groth-Sahai proof system. However, it also has weaknesses.
In particular, the original DFN transform from [16] is only secure under non-
standard complexity leveraging assumptions.

Ventre and Visconti [39] modified the DFN transformation to work under
standard (non-leveraged) assumptions, but their NIDVZK argument system
only achieves weak culpable soundness (called weak co-soundness in [39]).2 As
we argued before, culpable soundness approximates interactive zero knowledge.
However, weak culpable soundness seems to be too restrictive, and results in
undesirable overhead. We omit discussion due to space limits and refer to [12].

Recently, Chaidos and Groth [12] further modified the DFN transformation
so that the resulting NIDVZK argument systems are culpably sound under stan-
dard assumptions. However, for this they assumed that the plaintext space of
the underlying strongly additively homomorphic cryptosystem (see [12] for the
definition of such cryptosystems), about which the X-protocols are, has a prime
order p. Under this assumption, they showed that several known efficient X
protocols have the optimal culpable soundness property.

However, the restriction that p is prime can be a problem in many applica-
tions, since only some cryptosystems with required properties (like the Okamoto-
Uchiyama cryptosystem [36]) are known. Moreover, in the Okamoto-Uchiyama
cryptosystem, p must stay secret; this complicates the design of many common
protocols where one needs to know the order of the plaintext space. Currently,
the fact that one would like to have efficient X-protocols excludes known lattice-
based cryptosystems with prime-order plaintext space.

Our Contributions. We construct a DFN-transform under standard assump-
tion for additively homomorphic cryptosystems where the plaintext space has
a composite order IV, such that it is solely required that the least prime factor
of N is sufficiently large. While all our examples are about the DCRA-based

2 Briefly, weak culpable soundness means that it is intractable to cheat while knowing
a witness assessing the fact that you are cheating, and also know that your cheating
succeeds (i.e., know a witness that certifies that the verification equations hold). In
the case of culpable soundness [28], the latter is not needed. See [39] for more details.

Optimally Sound Sigma Protocols Under DCRA 185

Paillier Elgamal cryptosystem [10,18], it is clear that they can modified to work
with other suitable cryptosystems. The main novelty of our work is proving that
several known X protocols over composite order plaintext spaces are optimally
culpably sound. We postpone the construction of culpably sound NIDVZK argu-
ment systems to the appendix.

More precisely, an optimally sound X protocol is optimally culpable sound?
if the following property holds: a successful cheating prover A who knows that
she cheats (e.g., she knows the secret key of the public key cryptosystem IT) can
efficiently recover the good e. That is, there exists an efficient extractor S.EX
that extracts good e (if it exists), given the common input, the first message of
the X protocol (e.g., a tuple of ciphertexts) output by A, and the guilt witness
(e.g., the secret key of IT). We emphasize that the optimal culpable soundness
is a stronger notion of security compared to the optimal soundness.

The main technical contribution of the current paper is the construction of an
efficient S.EX for several (known) X protocols about the plaintexts of the Pail-
lier Elgamal cryptosystem. By using S.EX, we prove optimal culpable soundness
of corresponding X' protocols without relying on the Strong RSA or any other
computational assumption. Importantly, the proofs of optimal culpable sound-
ness are simpler than the special soundness proofs — that we also reproduce for
the sake of completeness — for the same X' protocols.

For the constructed extractors to be successful, it is only required that the
least prime factor of N is large enough. This means that one can use essentially
any known additively homomorphic public-key cryptosystem that has a large
plaintext space. On the other hand, Chaidos and Groth [12] constructed S.EX
only in the case of prime-order plaintext space (with the Okamoto-Uchiyama
cryptosystem being the sole mentioned candidate cryptosystem in [12]).

Before we give more details about the new X protocols, let us recall that the
Paillier Elgamal cryptosystem has several other interesting properties:

1. First, it is double trapdoor [10]: it has two statistically independent trapdoors,
the prime factorization skyqe; of an RSA modulus N, and an Elgamal-like
secret key skg;. Decryption is possible, given either of the two trapdoors.
Hence, given that IV is securely generated, many different parties can operate
with plaintexts and ciphertexts modulo the same N; this simplifies the design
of threshold encryption schemes, [18].

2. Second, many of the standard X protocols, see [31], working on top of the
Paillier Elgamal cryptosystem satisfy special soundness only under the Strong
RSA assumption [4].

In the case of the Paillier Elgamal cryptosystem, S.EX only needs to use the
second trapdoor skg. Hence, if a cheating prover manages to make the verifier
to accept, the extractor who knows skg; can extract the good challenge, given
that it exists. On top of it, the extractor may also extract a non-trivial factor of
N, which means that he will break the factoring assumption. In practice, this
fact is relevant in the case of threshold encryption, where such a factor can be

3 Chaidos and Groth called it soundness with the unique identifiable challenge.

vww.ebook3000.con)

http://www.ebook3000.org

186 H. Lipmaa

recovered only when a majority of the key generating parties collaborate, while
extraction is possible by every single party who knows the key skg;.

However, the extractor does not need factoring to be hard to be successful,
i.e., extraction is unconditionally successful. Thus, while some X protocols about
the plaintexts of the Paillier Elgamal cryptosystem are specially sound only
under the Strong RSA assumption, their optimal culpable soundness (and hence,
also optimal soundness) is unconditional. Up to our knowledge, this separation
has not been noticed before. We leave it as in interesting question whether such
a phenomenon is widespread.

The modified DFN-transform achieves culpable soundness in the sense that
soundness is guaranteed against adversaries that return together with the accept-
ing view also the secret key of the prover (but no other secret value). If the
verifiers gives to the authority a zero knowledge proof of knowledge of her secret
key sk, we can construct an adversary that retrieves sk from the registration
process, and thus achieves the standard (not culpable) notion of soundness.

2 Preliminaries

For a predicate P, let [P(x)] be 1 iff P(x) is true, and 0 otherwise. We denote
uniform distribution on set S by U(S), and let ¢ <, S to denote choos-
ing a from U(S). The statistical distance between two sets S;,S2 C (2 is
SD(U(51),U(S2)) = 3> .cn | Prlz € S2] — Pr[z € S1]|. We will implicitly use
the following lemma.

Lemma 1. Let S; and Sy be two finite sets. If S; C So, we have
SD(U(S1),U(S2)) = 1 —|S1|/|S2|. In particular, if |Se| = (1 4+ 1/t) - |S1| for
some positive integer t, then SD(U(S1),U(S2)) = 1/(t +1).

Proof. SD(U(81),U(S2)) = 5 (1S2\ S1l/[S2] +[S1] - (1/|S1| = 1/]S2])) = 1 —
1S11/]S2]. O

For a positive integer N, let Ipf(N) be its least prime factor. Let ¢(N) be
the Euler totient function. Given that ged(a,b) = v, the Extended Euclidean
Algorithm returns integers o and 3, such that aa + 8b = ~.

For any integer a and an odd prime p, the Legendre symbol (%) is defined

as (%) =0,ifa=0 (mod p), (%) =+1,if a # 0 (mod p) and for some integer

x, a = 2° (mod p), and % = —1, if there is no such z. For any integer a and
any positive odd integer N, the Jacobi symbol is defined as the product of the

pi
where N = [['_, p for different primes p;. Let Jy = {a € Zy : (&) =1}
clearly Jy < Z% (i.e., Jy is a subgroup of Z%). Let Qn < Jn be the subgroup
of quadratic residues in Zy. The Jacobi symbol can be computed in polynomial

time, given only a and N.

(o33
Legendre symbols corresponding to the prime factors of N: (%) = H§=1 (—) ,

Optimally Sound Sigma Protocols Under DCRA 187

2.1 Cryptographic Assumptions

Within this paper, x is an exponential (e.g., k &~ 128) security parameter. We
denote f(k) =, f'(r), if |f(k) — f'(k)] = k=M. A function f(k) is negligible, if
f(k) =, 0. For any x, we assume that factoring 7(k)-bit integers is intractable.

Strong RSA. We say that the Strong RSA assumption [4] holds, if given a
product N = pq of two randomly chosen 7(x)/2-bit safe primes p = 2p’ + 1 and
q=2¢ +1, and y «, Z%, it is computationally difficult to output (z,e), such
that e > 1 and y = z° mod N.

DCR [15,37]. Let N = pg be a product of two 7(x)/2-bit random safe primes
p=2p +1and qg=2¢ +1. Let N' = p'q’. Let s > 1. Write G := Z}..1 =
Gn: G N B Go BT, where 2 indicates group isomorphism, @ is the direct sum
or Cartesian product, G; are cyclic groups of order i, and T is the order-2 cyclic
group generated by —1 mod N*T!. Let X := P := Jy:11 =2 Gn: @GN B T,
X =P :=Qns+1 = Gns @ Gnr, and L =2 Gy be multiplicative groups.

Let g be a random generator of IL; g can be thought of as a random 2/N*-th
residue. It can be computed by choosing a random p <, Zys+1 and then setting
g — >N mod Nst1,

A witness w € W := Z for x € L is such that x = ¢g* (mod N**1). Finally,
let g, be an arbitrary generator of the cyclic group Gy- (for example g, =
14+ N €Zpys+1). Weset A= (N,s,9,91).

The Decisional Composite Residuosity (DCR, [37]) assumption says that it
is difficult to distinguish random elements of L from random elements of X.

We remark that we cannot sample uniform witnesses as W = Z is infinite.
From a mathematical standpoint, we could have set W = Z -, but we cannot do
that here, as computing N’ from A requires to factorize N. Instead, we sample
witnesses uniformly from W3, := Z|n/4). This is statistically close to uniform
over Zy: as: SD(U(Zy/),U(W%)) =1 — p'd'/(pg/4) = (20" + 2¢" + 1)/(pq) <
2(p + ¢)/(pq) < 4/1pf(N). From this distribution over W, we can derive a
statistically uniform distribution over L.

2.2 Paillier Elgamal Cryptosystem

We use the following CPA-secure double-trapdoor cryptosystem II =
(K, VK, E, D) that is based on a projective hash proof system from [15]. We make
it proof-friendly by using ideas from [18] and augment it with the VK procedure
needed to get optimal culpable soundness. Following say [34], we call this cryp-
tosystem Paillier Elgamal. See, e.g., [10,18] for variants of this cryptosystem.
Let A = (N = pg,s,9,91) and (p = 2p' + 1,9 = 2¢' + 1) be chosen as in
Sect. 2.1, with N’ = p'q’. Set skyaer < (p,q) and skg <, Wi Let h « gka
mod N*t1. Hence, g,h € P = Jys+1. The key generator I1.K(A) returns the
public key pk := (A, h) and the secret key sk := (skfqet, Skar). The message space

vww.ebook3000.con)

http://www.ebook3000.org

188 H. Lipmaa

is equal to Mpk := Zn-, the ciphertext space is equal to Cpx := P?, and the
randomizer space is equal to Rpx := W} X Zg X Zs.

Define VK(skg;, pk) = 1 iff sky; is the secret key, corresponding to the public
key pk. In the case of the Paillier Elgamal, VK can be evaluated efficiently by
checking whether h = g**¢ (mod N**1). Define

Epk(m;r,to,t1) == (=D)fg", (N +1)™(=1)""A") mod N*T1,

Here, ty and ¢; are only needed for the sake of constructing zero knowledge
proofs, to obtain soundness also in the case when g &€ Qns+1 or h € Qns+1. By
default, one just sets tg =t; = 0.

Given a ciphertext C' = (Cy,C2), the decryption algorithm Dj, (C') checks
that C7,Cy € P = Jys+1 and rejects otherwise. Second, it computes (N +1)2™ =
(Cy/C3)2 mod N*+!, and then retrieves m from this by using the algorithm
described in [17]. IT is IND-CPA secure under the DCR assumption, [15].

The Paillier Elgamal cryptosystem is additively homomorphic, since
Eok(ma; 71, tor, t1n)-Epy (ma; m2, to2, ti2) = By (ma +ma;ri+r2, to1 ©t11, o2 ®ti2).
Moreover, it is blindable, since for ' «—, W4, tyo «—» Z2 and tp1 «—, Zo,
E;k(m;r, to,t1)- E;k(O; 5 tpo, th1) = E;k(m;r—i—r’,to—i—tbo mod 2,t1 +1tp,1 mod 2)
is a (close to uniformly) random encryption of m.

This cryptosystem has two statistically independent trapdoors, sk et = (p, q)
and skg;. To decrypt (C1, C3), it suffices to have either. However, in some applica-
tions IV can be generated in a highly secure environment so that its factorization
is not known to anybody. Alternatively, one can create a huge N randomly, so
that with a high probability it is guaranteed that N has large factors, [38]. Many
different parties can then have N as a part of their public key (without knowing
the factorization), and generate their own trapdoor sky;. A natural application is
threshold encryption, where the factorization of N is only known by a threshold
of the parties, while each party has their own skg; see [18].

2.3 X Protocols

Let R = {(z,w)} be a polynomial-time verifiable relation, and let Lx = {z :
(Jw)(x,w) € R}, where w has polynomial length.

A X-protocol [14] S is a three-message protocol between the prover S.P and
the verifier .V, where the first and the third messages are send by the prover,
and the second message is a uniformly random message e <, Zox chosen by
the verifier. The prover S.P and the verifier S.V are two efficient algorithms
that have a common input x. Additionally, the prover knows a secret witness
w. At the end of the X protocol, the verifier either accepts (x € L) or rejects
(z & Lr). We will implicitly assume that the three messages of S belong to some
sets whose memberships can be efficiently tested.

In addition, we require the X' protocol to have a linear answer [16].

Definition 1. A ¥ protocol with a linear answer for an NP-relation R that
consists of three messages and of the verifier’s decision algorithm defined by a
pair (S.P,S.V) of efficient algorithms as follows:

Optimally Sound Sigma Protocols Under DCRA 189

1. (€qy 21, 22) — S.P(z;w), where z1 and z are two m-dimensional vectors for
some m. Here, ¢, is the first message sent by the prover to the verifier.

2. The second message is e <, ZLar, chosen by the verifier randomly, and sent
to the prover.

8. The third message is z «— ez, + 2o, sent by the prover to the verifier.

4. Finally, the verifier outputs SN (x; cq, €, 2) € {0,1}, that is, the verifier either
accepts or rejects.

Here, (x, ¢4, €, z) is called the (real) view of the X protocol. Thus, the verifier
either rejects or accepts the view. In the latter case, the view is said to be
accepting (for S).

A X protocol § with a linear answer for relation R is perfectly complete, if
for every (z,w) € R and every (cg, 21, 22) € S.P(z;w) and e € {0,1}", it holds
that S.V(z; ¢4, e,ez1 + 22) = 1.

A X protocol § with a linear answer for relation R is perfectly (resp., sta-
tistically) special honest-verifier zero knowledge [14], if there exists an efficient
simulator S.sim that inputs = and e € {0,1}", and outputs (c,, 2z), such that
(x, cq,e,z) is accepting, and moreover, if e is a uniform random element of
{0,1}", then (z, cq,e, z) has the same (resp., is negligibly different from the)
distribution as the real view of S.

A ¥ protocol § with a linear answer is specially sound [14] for R if, given
two accepting views (z, ¢4, €, z) and (x, ¢4, €', 2’) with the same (z, ¢,) but with
e # €', one can efficiently recover a witness w, such that (z,w) € R. A X protocol
is computationally specially sound for R if it is specially sound for R under a
computational assumption.

Consider any input z (possibly € Lz) and any ¢,. Then e € {0,1}" is a
good challenge [16] for a X protocol S, if there exists a z such that (z, ¢4, e, 2)
is an accepting view for S.

Definition 2 (Optimal Soundness). A X protocol S is optimally sound [35]
(also known as relaxed specially sound [16]) for R, if for any x € Lr and any
purported first message c,, there exists at most one good e € {0,1}" for S.

We note that in some X' protocols it will be important not to allow e to fall
outside of {0,1}*. For example, it can be the case that if e is good, then also
e + p is good, where p > 2" is a non-trivial factor of N. There will be at most
one good e < 2" under the assumption that Ipf(N) > 2~.

To make the definition of optimal soundness compatible with culpable sound-
ness, Chaidos and Groth [12] modified it as follows. (In [12], this property was
called soundness with uniquely identifiable challenge using relation RI%".) We
note that differently from [12], we only require the extractor to return e, if it
exists; as we will show, there are cases where such e is not available.

Definition 3 (Optimal culpable soundness). For a relation R, let RI“* =
{(z,w)} be a polynomial-time verifiable relation, where it is required that x & Lr if
(z,w) € RI¥ for somew. A X protocol S has optimal culpable soundness using
relation RI%! for R, if (i) it is optimally sound for R, and (i) there exists an

vww.ebook3000.con)

http://www.ebook3000.org

190 H. Lipmaa

efficient algorithm S.EX, such that if (v, wyuit) € RIU then S.EXuw, i (7, €4)
returns the unique good e where c,, is a first message returned by S.P.

It is claimed in [16] that every specially sound X' protocol is optimally sound.
As we will show in Sect. 2.3, an even stronger claim holds: there exist cases where
the X' protocol is computationally specially sound (for example, one needs to
rely on the Strong RSA assumption [4]) and unconditionally optimally culpably
sound and thus also unconditionally optimally sound.

3 New Optimally Culpably Sound Y-Protocols

Let I = (K,VK,E,D) be the double-trapdoor additively homomorphic cryp-
tosystem from Sect.2.2. We next describe two simple X' protocols about the
plaintext of a IT ciphertext that both satisfy optimal culpable soundness using
a naturally defined relation R9“!* where the witness is just the secret key skg
of II. Close variants of these X-protocols also work with the DCR-based cryp-
tosystems from [10,17,18]; see, e.g., [31]. Basing the X protocols on IT (and not,
say, on the cryptosystem from [17]) makes it easier to pinpoint some differences
between the special soundness and the optimal culpable soundness.

3.1 X-Protocol for Zero

Consider the following X protocol, see Fig. 1, with a linear answer for the relation
7?'ZERO = {((pk? C)a (’I", bOa bl)) :C = E;k(oy T, bOa bl)}

That is, a honest verifier accepts iff C encrypts to 0.

1. S.P(pk,C;(r € Z|nya),bo € Z2,b1 € Zz)) does the following:
(a) Set Ta < r ZQz”LN/‘U’ to —r ZQ, tl —r ZQ,
(b) Set ca «— Ep(0;74,0,11),
(¢) Return (eq,z1 < (r,bo,b1), 22 — (ra,t0,t1)).
The prover’s first message is c,.
2. The verifier’s second message is e «— Zar.
3. The prover sets 1, «— er 4+ 74, tyo < ebo + top mod 2, tp; < eby +t1 mod 2, and
outputs z < (74, tso, tp1) as the third message.
4. The verifier S.V(pk, C; cq, e, z) checks that
(a) C,ca €P* = T3 41,
(b) z = (’r‘b,tbo,tzﬂ), where r, € Z(22n+2n,1>u\;/4j,2n+1, too € Za, ty1 € Za,
(c) the following holds:

(C°cq - Ep(0;74,0,0)") =1 (mod N*T) . (1)

Fig. 1. X protocol for ZERO

Optimally Sound Sigma Protocols Under DCRA 191

Theorem 1. Let Il be the Paillier Elgamal cryptosystem. The X protocol of
Fig. 1 has a linear answer, is perfectly complete, and statistically special HVZK.
Assume pk is a valid public key. Then this X protocol is computationally specially
sound for R under the Strong RSA assumption [/].

Proof. First, clearly, r, < (22% + 2% — 1) [N/4] — 2.
LINEAR ANSWER: straightforward.

PERFECT COMPLETENESS: straightforward. If the prover is honest, we have
(Cca - E5(0;75,0,0)71)% = B (0;er + 14 — (er +14), ebo + to mod 2,eby + t;
mod 2))? = E},(0;0,0,0) =1 (mod N**1).

STATISTICAL SPECIAL HVZK: the simulator S.sim(x, e) first sets z « Zazx| n/4),
to < Za, t1 < Lz, and then ¢, « E5,(0;2,t0,t1)/C*. Clearly, if e «; Zax,
then due to the choice of r,, z is statistically close to z in the real protocol.
Moreover, in both real and simulated protocols, ¢, is defined by ((pk, C),e, 2)
and the verification equation.

COMPUTATIONAL SPECIAL SOUNDNESS: From two accepting views (¢4, e,z =
(rp, oo, te1)) and (eq, €', 2" = (1,10, t;,)) with e # €’ and Eq. (1), we get that

C2=) =ZE5,(0;2(ry, — 14),0,0) = (279, B2 =r1)) (mod N*F1). (2)

To recover from this the witness r = (r, —})/(e — €’) mod ¢(N), we have to
compute (rp —ry)/(e —€’) modulo ¢(N), without knowing ¢ (V). We show that
one can either recover r, or break the Strong RSA assumption.

First, if (e — ¢’) | (ry — 7},) over Z, then we set r « (rp, — r})/(e — €’), and
we are done: C? = E;x(0;27,0,0) and thus C = E; (0;7,bo,b1) for efficiently
recoverable by and b;.

Second, assume (e — €’) { (rp, — 1) over Z. In this case, let v «— ged(2(e —
€),2(ry = 1p)), Ye < 2(e — €') /v, and y, — 2(ry — 7}) /7. According to Eq. (2),
012(6_6/) = ¢(=7) (mod N*t1), and thus (—1)°C¥ = g% (mod N*t1) for
efficiently computable ¢y € Z,. Since ged(yp, ye) = 1, we can use the extended
Euclidean algorithm to compute integers 7, and 7, s.t. 7yp + Teye = 1. Thus,

g :gfbyb+fcye — gTbybchyc = (_l)TthC;byEchyc
=(=1)""(Cr g™)% (mod N*T1).

Since y. > 1, then this means that we have found a non-trivial root (C{"g™
mod N*t1 5.) of (—1)™%g modulo N**! and thus also modulo N, and thus
broken the Strong RSA assumption. O

Next, we will show that the same Y-protocol from Fig. 1 has optimal culpable
soundness using the relation
{ ((pk, C),ska) : C € P2AD,(C) # O/\}

guilt
RZERO -

VK(Skdl, pk) =1 (3)

without relying on any computational assumptions. Here, wgqq1¢ is equal to skqg;
hence, the extractor S.EX gets sky; as the secret input.

vww.ebook3000.con)

http://www.ebook3000.org

192 H. Lipmaa

Theorem 2. Let II be the Paillier FElgamal cryptosystem. Assume that
Ipf(N) > 2%. Then the X protocol S from Fig. 1 has optimal culpable sound-

, ilt
ness using Riqne -

Proof. Consider the extractor in Fig.2 that either returns “reject” (if C is not
a valid ciphertext or VK(skg;, pk) does not hold; in such cases S.V also rejects),
“accept” (the prover was honest), or the good challenge (if it exists) together
with a non-trivial factor of N.

S.EX,, ((pk, C), ca) :
1. If C € P? or ¢, & IP?: return “reject”;

If VK(skar, pk) = 0: return “reject”;

Let m « D, (C); Let mq + D5, (¢ca);

If m =0 (mod N°®): return “accept”; /* prover was honest */

Let v «+ ged(m, N®);

Let m «— m/v; Let mq < ma/7; Let N, — N°/v;

e «— —img/m mod Nj;

If e < 2%: return e;

else: return “no accepted challenges”;

© XN WD

Fig. 2. Extractor from Theorem 2 for the X' protocol from Fig. 1 for RYuiLt

7ZERO

We will now argue that this extractor functions as claimed. First, from the
Eq. (1) of the X protocol in Fig.1 it follows that

2(em +my) =0 (mod N?), (4)

where m is the plaintext in C' and m, is the plaintext in ¢,. Since the verification
accepts and N is odd, em = —m, (mod N¥).

If m = 0 (mod N?), then the prover is honest. Otherwise, setting v «
ged(m, N#), we can retrieve an e that satisfies Eq. (4), given such an e exists. Really,
if a good e exists then 2(em + m,) = 0 (mod N?), and thus em + m, = 0
(mod N*¥). Hence, me + m, = 0 (mod Ny), and thus e = —m,/m (mod Ny).
Since a good challenge is smaller than 2%, it is also smaller than N,, and thus
computing e modulo Ny = N*/v does not throw away any information. Since
emy+mg =0 (mod N*)and vy | N*, we get m, =0 (mod ~y) and thus v | mg. O

3.2 X Protocol for Boolean
Consider the following X protocol, see Fig. 3, with a linear answer for the relation
RBooreax = {((pk, C), (m, 1)) : C = Ej (m;7,bo,b1) Am € {0,1}}.

Le., a honest verifier accepts iff C' encrypts to either 0 or 1. This X' protocol is
derived from the X protocol from [12] where it was stated for prime modulus.

Optimally Sound Sigma Protocols Under DCRA 193

1. S.P(pk,C;m € Za, (r € Z|nya),bo € Z2,b1 € Z3)) does the following:
(a) Let mq — 22 + U(Zo2w), ra —r Zozx | nya)s T r Lasn | Nja);
(b) Let tao, ta1, tvo, to1, teo, ter «—r Zo;
(¢) Let co — Epy(ma;7a,ta0,ta1), €b < Eg(—mma;rs,tho, tr1);
(d) Return ((€a,cp), 21 = (m,r,7(m—1),bo,b1), 22 = (Ma,Ta, rMa+7s), teo, te1)-
The prover’s first message is (¢€q, ¢).

2. The verifier’s second message is e <, Zax,

3. The prover’s third message is 2 = (zm, 2a, 2b, tdo, ta1), where z, «— em + mq,
Zaq — er—+rq, 2 — er(m—1)+rmg+71p, tdo — ebo +tco mod 2, tg1 «— eby +te1
mod 2.

4. The verifier checks that
(a) C,ca,cp € P? = J]%,SH,

(b) 2m € Zz.92x 1on_1, Za € L(22n 425 _1)|N/a)—25+1
(c) z» € Z(23N+3,22N,1)ALN/4J,3‘2%“, tao € Za, ta1 € Za,
(d) the following holds:

(Ceca, : E;k(zm; za,070)71)2 =1 (mod N5+1) s
(C* ey - Ege(0524,0,0)"")? =1 (mod N**) . (5)

Fig. 3. X protocol for BOOLEAN

Theorem 3. The X protocol (Boolean Proof) of Fig. 3 has a linear answer, and
it is perfectly complete and statistically special HVZK. Assume that the Strong
RSA assumption [}] holds, pk is a valid public key, and Ipf(N®) > 2. Then this
X protocol is computationally specially sound.

Proof. Clearly, in the honest case, z, = (2, — €) + rp. The choice of m, guar-
antees that z, > 0. Now,
Zm = em+mg < (28 — 1) + (22T £ 227 — 1) =3.22% 427 — 2
Za = er+r, < (2" —1)(|N/4] — 1) + (227 |[N/4] — 1)
= (2% + 25 — 1) | N/4] — 2%,
and (here we need that m, > e)

zp=er(m—1)+rmg + 1y
(2% = 1)([N/4] —1) - 04 (| N/4] — 1)(2%+1 4227 — 1) + (23 [N/4) — 1)
= (2% +3.2% —1) . [N/4] —3-2%".

IN

LINEAR ANSWER: straightforward. COMPLETENESS: let t.; = b;(m,+e(m—1))+
tp; for i € {0,1}. Equation (5) holds since

C* " “cp = Eg((em +my — e)m — mma;7(2m — €) + 7o, teo, te1)
= Egk(e(m - 1)m, Zb7t603t61) = E;k(07 Zb;t607tel)7

if m € {0,1}. Thus, C?Gn=9)¢2 = Epk(05225,0,0) if m € {0, 1}. Other verifica-
tions are straightforward.

vww.ebook3000.con)

http://www.ebook3000.org

194 H. Lipmaa

STATISTICAL SPECIAL HVZK: Given e € Zo~, the simulator gener-
ates zpm —p 221 4+ U(Zopee), za —r DLore|nja), 2 v Lok Njaj,
and tqo,ta1,te0, toistaostar < Zo. He sets z «— (2Zm, Zas 26, tdo, tar),
Cq — E;k(zm;zaata(htal)/ce mod NSJrl and Cy — E;S)k(O;vatb()atbl)/czm_e
mod N1 and returns (pk, C;(cq4, cp), e, 2) as the view. Clearly, both in the
real and simulated proof, ¢, and ¢, are fixed by (pk, C;e, z) and the verification
equations. Moreover, given that e <, Za«, the simulated z,,, 24, 25, tq0, tq1 are
statistically close to the values in the real proof.

SPECIAL SOUNDNESS: Assume that the verifier accepts two views (pk, C; ¢q, ¢y,
e,z) and (pk, C;cg, cp, €', 2") for e # €. From the first equality in Eq. (5) we
get that

C* ™) = By (2(zm — #,): 2(2a — #),0,0). ©)

Hence, C encrypts m := (z,, — 2,,)/(e — €’) mod N*. (Here, we use the fact
that e, e’ € Zax < Ipf(N?), e # €/, and thus e — ¢’ is invertible.) To recover the
randomizer used in encrypting C, we use the same technique as in the proof
of Theorem 1: we either obtain that (e — ') | (2, — 2.,) (in this case, we set
r— (2o — 2,)/(e — €')), or we break the Strong RSA assumption. Similarly, we
obtain the randomizers by and b; that were used when computing C'.

From the second equality in Eq. (5) holds, we get that

C2em =) =2e=e) ZE3 (0;2(2 — #),0,0) (mod N**1),

and thus, when combining it with Eq. (6),
ok(2(zm — 23,)m; 2(zm — 2,,)r,0,0)
=E3(2(zm — 21,): 2(2a — 24 + 2 — 2,),0,0) (mod N**1),
Since 2y, — 2, = (e — €¢/)m (mod N¥), we get after decrypting that
2(e — e Ym? = 2(e — ¢')m (mod N¥).

Since ged(e — €', N¥) =1, m mod N® € {0,1}. O

Next, we show that this X' protocol has optimal culpable soundness using
the guilt relation
Rguilt _ ((pkv C)aSkdl) :C e]P2 N D:kdl(c) ¢ {07]-}/\ (7)
BOOLEAN VK(Skdl, pk) _ 1 :

Theorem 4. Let IT be the Paillier Elgamal cryptosystem, and let Ipf(N) > 27

(thus also 2+ N). Then the X protocol of Fig. 3 has optimal culpable soundness
uilt
gBOOLEAN'

using R

Optimally Sound Sigma Protocols Under DCRA 195

S.EXskdl (C, Cq, Cb):
1. If C ¢ P? or ¢, € P? or ¢, & P?: return “reject”;
If VK(skar, pk) = 0: return “reject”;
Let m « D, (C);
Let m, — Dy, (€0). my — Dy, (c0);
Let m* < (m —1)m mod N°¥;
If m* =0 (mod N¥): return “accept”;
else if m* € Zys: let e — —(mmq +mp)/m* mod N°;
else if ged(m, N°) > 1:
(a) Let v« ged(m, N®);
(b) Let m « m/~y; my < mp/7y, m* < m*/v; Ns «— N*/7;
(c) Let e < —(mam +mp)/m* mod Ns;
9. else: /* gcd(m —1,N°) >1%*/
(a) Let v < ged(m —1,N°®);
(b) Let 1 — (m — 1)/, foup — (ma +m) /7, 7* — m* /7, No — N*/3;
(c) Let e < —(mam1 + Map)/m* mod Ns;
10. If e < 2%: return e;
11. else: return “no accepted challenges”;

PN W

Fig. 4. Extractor in Theorem 4 for RI"*

BOOLEAN

Proof. We prove the optimal culpable soundness as in Theorem 2. The main new
complication is that there can now be two strategies of cheating: it can be that
either ged(m, N®) > 1 or ged(m — 1, N®) > 1, so the extractor has to test for
both. We thus construct the following extractor, see Fig. 4.

Let m* := (m —1)m mod N*. From the verification equalities in Eq. (5) we
get that z,, = em + m, (mod N®) and (z,, — e)m + mp = 0 (mod N*®), thus
(em +mg —e)m +myp =0 (mod N*#), and thus

em” = —(mgm + myp) (mod N?). (8)

Clearly, the constructed extractor works correctly. If m* = 0 (mod N¥) or
m* =1 (mod N¥), then the prover was honest. Otherwise, if m* € Z%., then
one can recover e from Eq.(8) efficiently. Otherwise, if ged(m*, N®) > 1, we
have either ged(m, N°*) > 1 or ged(m — 1, N®) > 1. Those two possibilities are
mutually exclusive, since ged(m,m — 1) = 1.

In the case v = ged(m, N°) > 1, we can divide the left hand side and right
hand side of Eq. (8) by 7, and obtain e mod (N*®/~) as in Fig. 4, line 8c. This is
possible since in this case, from Eq. (8) we get that e(m — 1)my = —(mgmy +myp)
(mod N*) and hence mpy =0 (mod ~y) and 7y | my. Since e < 2% < Ipf(N), we have
obtained e.

In the case v = ged(m—1, N®) > 1, we can divide the left hand side and right
hand side of Eq. (8) by «, and obtain e mod (N®/v) as in Fig. 4, line 9c. This
is possible since in this case, we can rewrite Eq. (8) as e(m — 1)m = —(my(m —
1) + mq + mp) (mod N®). Thus, we get that emiym = —(mqam1y + mq + mp)
(mod N*®) and hence m, +mp =0 (mod 7) and 7 | (m, + my). Since e < 2% <
Ipf(N), we have obtained e.

This finishes the proof. O

vww.ebook3000.con)

http://www.ebook3000.org

196 H. Lipmaa

3.3 X Protocol for Circuit-SAT

To construct a X protocol for the NP-complete language CIRCUIT-SAT, it suf-
fices to construct a X protocol for BOOLEAN [12]. Really, each circuit can be
represented only by using NAND gates, and a NAND b =ciffa+b+2c—2¢€
{0,1} [28].

One hence just has to prove that (i) each input and wire value is Boolean,
and (ii) each gate is correctly evaluated. According to [19], each test in step ii
can be reformulated as a Boolean test. Hence, it is sufficient to run m +n X
protocols for BOOLEAN in parallel, where m is the summatory number of the
inputs and the wires, and n is the number of gates. See [12] for more information.

3.4 General Idea

In both covered cases (ZERO and BOOLEAN), we constructed X protocols that
were specially sound and HVZK, and then applied the following idea to obtain
optimal culpable soundness. We expect the same idea to work also in general.

Let £ C C be a language about the ciphertexts of /I that naturally defines
a language Ly C M;k about the plaintexts. For example, in the case £ = ZERO,
Ly ={0}. Let R = {(z,w) : € L} and, for some n,

Rouitt _ { (= (pk, C,skar) : € € G A (Ci)iy & ERA} |)
VK(Skdl7 pk) =1

The general idea is to construct a X-protocol with the following property. If the

prover is cheating, then for each first message ¢, there is at most one good e.

Moreover, this e can be computed as e = e;/ea, where either ey is invertible

modulo N* or e/~ is invertible modulo N?®/~, where v is the greatest common

divisor of N*® and some function f(m) of m & Ly such that f(m) # 0.

Acknowledgments. We would like to thank Jens Groth, Ivan Visconti and anony-
mous reviewers for insightful comments. The authors were supported by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No.
653497 (project PANORAMIX), and by institutional research funding TUT2-1 of the
Estonian Ministry of Education and Research.

A Preliminaries: DFN

A.1 RPK Model

In the registered public key (RPK, [3]) model, we assume that everybody has
an access to a key registration functionality Fj,.. A party (say, Alice) generates
her public and secret key pair, and then sends both (together with used random
coins) to Fy,, who verifies that the keys were created correctly (this means that
to register her public key, Alice must know the corresponding private key), and
then stores the public key together with Alice’s identity in a repository.

Optimally Sound Sigma Protocols Under DCRA 197

Later, Bob (for this, it is not necessary for Bob to register his public key) can
query FJ, and then retrieve the public key of Alice together with a corresponding
certificate. On the other hand, in security proofs, we may give an adversary
control over F},., enabling access not only to the public but also to the secret
key of Alice. While every party can use a different F.., all parties need to trust
Fi, of other parties in the following sense. Fj, guarantees that

(i) the public keys of uncorrupted parties are safe (the corresponding secret key
is chosen randomly, and kept secret from the adversary), and

(ii) the public keys of corrupted parties are well-formed (the functionality has
seen the corresponding secret key).

Hence, Alice must trust her Fy, to do key registration correctly, and Bob must
trust that Alice’s F}, has verified that Alice knows the corresponding secret key.

As noted in [3,16], one can make this model more realistic by letting Alice
to send her public key to Fj, and then give an interactive zero knowledge proof
that she knows the corresponding private key. In the security proof, we can then
construct an adversary who rewinds Alice to extract her private key.

A.2 NIDVZK Argument Systems

In a non-interactive designated verifier zero knowledge (NIDVZK, [12]) argument
system in the RPK model, the verifier has a public key Z.pk and a corresponding
secret key Z.sk specific to this argument system, that she has set up by using
a trusted functionality Fy,.. An NIDVZK argument system Z consists of the
following three efficient algorithms:

Z.G(1"): generates, registers (by using Fj,), and then returns a key pair
(Z.sk, Z.pk).

Z.P(Z.pk,z,w): given a public key Z.pk obtained from F},, an input and a
witness w, returns a proof 7.

ZN(Z.sk,xz,m): given a secret key, an input z, and a proof 7, returns either 1
(accept) or 0 (reject).

Next, Z = (2.G,Z.P,Z.V) is an NIDVZK argument system* for R with
culpable soundness for RI“! if it is perfectly complete, culpably sound [28]
for R9%# and statistically (or computationally) composable zero knowledge,
given that the parties have access to the certified public key of the verifier. More
precise definitions follow.

Let £,(x) be a polynomial, such that (common) inputs of length ¢, (k) cor-
respond to security parameter x. Then let R, = {(x, w) : bitlength(z) = £, (k)}
and Lr , = {z: (Jw)(z,w) € Ry}, where again w has polynomial length.

Z is perfectly complete, if for all kK € N, all (z,w) € Ry, and all (Z.sk, Z.pk) €
Z.G(1%), ZNV(Z.sk,z, Z.P(Z.pk, z,w)) = 1.

4 We recall that an argument system is a proof system where soundness only holds
against efficient adversaries.

vww.ebook3000.con)

http://www.ebook3000.org

198 H. Lipmaa

In our constructions we will get zero-knowledge even if the adversary knows
the secret verification key. This strong type of zero-knowledge is called com-
posable zero-knowledge in [25] due to it making composition of zero-knowledge
arguments easier. More precisely, it is required that even an adversary who knows
the secret key (or trapdoor, in the CRS model) cannot distinguish between the
real and the simulated argument, [25].

Definition 4. Z is computationally composable zero-knowledge if there exists
an efficient simulator Z.sim, such that for all probabilistic polynomial-time state-
ful adversaries A,

(Z.sk, Z.pk) — Z.G(1%), (Z.sk, Z.pk) — Z.G(1"),
(x,w) «— A(Z.sk, Z.pk), ~ Pr (z,w) «— A(Z.sk, Z.pk),
m— Z.P(Z.pk,z,w) : " m— Z.sim(Z.sk,x) :
(x,w) e RANA(m) =1 (x,w) e RANA(m) =1

Z is statistically composable zero-knowledge if this holds for all (not necessar-
ily efficient) adversaries A. A statistically composable zero-knowledge argument
system is perfectly composable, if =, can be replaced with = (i.e., the above two
probabilities are in fact equal).

In the case of culpable soundness [28], we only consider false statements
from some language Lgy1: C L characterized by a relation RI%**. We require a
successfully cheating prover to output, together with an input = and a successful
argument , also a guilt witness wgqi¢ such that (z, wguir) € RI¥E That is,
we require a successful cheater to be aware of the fact that she cheated.

Formally, Z is (non-adaptively) culpably sound for RI“" if for all proba-
bilistic polynomial-time adversaries A,

(Z.sk, Z.pk) — Z.G(1%), (z, 7, wguirr) — A(Z.pk) :
(2, Wguirt) € RIVIE N ZNV(Z.sk,z,m) = 1

~
~

Note that culpable soundness is implicitly computational (defined only w.r.t. to
an efficient adversary), thus a culpably sound proof system is always an argument
system.

In our applications, wgyi: Will be the secret key of the cryptosystem, about
which the NIDVZK arguments are about. For example, in an NIDVZK argument
that the plaintext is 0 (or Boolean), Wguit¢ is equal to the secret key that enables
to decrypt the ciphertext. Such culpable soundness is fine in many applications,
as we will discuss at the end of the current subsection.

Finally, for some o = o(k), Z is o-adaptively culpably sound for RI%! if for
all probabilistic polynomial-time adversaries A,

(Z.sk, Z.pk) «— Z.G(1%), (z, 7, wyyirt) < AZ'V(Z'Sk"*')(Z.pk) :

) ~, 0.
(2, Wguire) € RIM N ZN(Z.sk,z,7) =1

Here, the adversary is allowed to make up to ¢ queries to the oracle Z.V.

Optimally Sound Sigma Protocols Under DCRA 199

As shown in [16], one can handle cases where the adversary has an access
to a logarithmic number of queries, simulating their answers by guessing their
answers; this still guarantees that her success probability is inverse polynomial.

On Culpable Soundness. We will prove culpable soundness [28] of argument sys-
tems about the plaintexts of a cryptosystem by showing that if an adversary
outputs an accepting argument and the secret key sk, then she has broken an
underlying assumption. This version of culpable soundness is acceptable since
in protocols that we are interested in, there always exists a party (namely, the
verifier) who knows sk. Hence, the cheating adversary together with the verifier
can break the (non-culpable) soundness of the argument system.

Thus, such culpable soundness is very natural the RPK model, especially if
we assume that the verifier has provided an interactive zero knowledge proof of
knowledge of sk while registering it with the authority. Then, in the soundness
proof, we can just construct an adversary who first retrieves sk from the latter
zero knowledge proof, and then uses the culpable soundness adversary whom we
already have.

A.3 DFN Transform for the Paillier Elgamal Cryptosystem

Consider the DFN [16] transformation, given the Paillier Elgamal cryptosystem
IT = (II.K, VK, E, D) where the plaintext space is Zys for some reasonably large
s. W.l.o.g., we assume that the same cryptosystem is used to encrypt the chal-
lenge e and the witness plaintexts and the same value of s, but by using the
different secret and public keys where one secret key sk, is known by the verifier
and another secret key sk is (possibly) known by the prover. For the sake of
efficiency, one could use different cryptosystems or at least different values of s
but we will avoid the general case not to clutter the notation.

This transformation assumes that the original X-protocol S is has a linear
answer and optimal culpable soundness using some relation RI*", see Sect. 2.3.
More precisely, we assume that R9% is as defined by Eq. (9).

The description of the DFN transform is given in Fig. 5. The following theo-
rem and its proof follows [12,16] in its structure. The part of using the extractor
to achieve culpable soundness is from [12] while the idea of letting the con-
structed adversary A, answer randomly to oracle queries goes back to [12,16].
The latter means that we only get O(log k)-adaptive soundness.

Theorem 5. Assume that S is a complete and computationally (resp., statis-
tically) special HVZK X protocol with a linear answer for R that is optimally
culpably sound for RI“!. Let Il = (K,VK,E,D) be the Paillier Elgamal cryp-
tosystem. Then the NIDVZK argument system for R of Fig. 5 is o-adaptively
computationally culpably sound for RI“" of Eq. (9) for o = O(log k), and com-
putationally (resp., statistically) composable zero knowledge for R.

Proof. ADAPTIVE CULPABLE SOUNDNESS. We show that if a cheating prover
A returns a good challenge ¢’ for the NIDVZK argument system with some

vww.ebook3000.con)

http://www.ebook3000.org

200 H. Lipmaa

|Z.G(17) | |2.P(Z.pk; C;m, 7, b0, b1) | [Z2.V(Z.sk;C,) \
(ske, pk,) «— IT.K(17)| |// Ci = Ep(mi;7i, boi, bii) Parse m = (¢q, cz)

re ¢ U(Wh) (ca,21,22) — For i =1 to n:

€ <y Zzhﬂ S‘P(pk, C; m,r, bo, b1) Zi Dsskﬂ (Czi)

Ce —r E;ke (e;7e) For i =1 to n: Return S.V(C;cq, ¢, 2)
Z.pk — (pk,, ce) ri — Wy

Z.sk «— (Ske, 6) Cri < Cé” . Eske (221'5 Ti, bOi, bu)

Return (Z.sk, Z.pk) | |Return 7 <« (cq, cz)

Fig.5. The DFN transform for the Paillier Elgamal cryptosystem. Here we assume
s = max;[logy(z2; + 1)] is fixed by the description of S.P and thus known to the
verifier

probability € = §, then we can break the message recovery security of I with
probability e, = 1/(022)0.

For this, we note that A, gets information about e from two sources, from
c. and from the response of the verifier to different queries. We now construct an
adversary A, that, given access to A, breaks the message recovery security of
IT (where the public key Z.pk includes ¢.). It uses the extractor S.EX, who —
given that the prover is dishonest and such a challenge exists — returns the good
challenge ¢’.

First, the challenger uses Z.G(1") to generate a secret key Z.sk = (ske,¢)
and a public key Z.pk = (pk,,ce), and sends Z.pk to A,. A, then runs
AZZ,C'V(Z'Sk;"') (Z.pk). Assume A, replies with a tuple (z;, m;, w;). Since A, is suc-
cessful, A, emulates the verifier by replying with a random bit b. Once A, stops
(say after p = O(log k) steps), A, chooses uniformly one tuple (x;,, m;,, w;,), and
then runs the extractor with the input (x;,,w;,), and obtains either “accept”,
or a candidate challenge €’. Then, A, outputs what the extractor outputs.

With probability 2-¢ = 2-0(egr) — x,=O) a]] bits that A, chose are equal
to the bits that the verifier would have sent. Since A, is successful, then with a
non-negligible probability, one of the input/argument tuples, say (x;,, 7, , w;,),
is such that (z;,,w;,) € R9%! but the verifier accepts. With probability 1/ =
O(1/logk), ig = ¢1. Thus, with probability e, = ﬁ = k= 9W A, has given
to the extractor an input (x;,,w;,) € RI*! such that there exists 7, such that
the verifier accepts (z;,, Ti,, Wi,). With such inputs, since the verifier accepts,
there exists a good challenge €/, and the extractor outputs it. In this case, A,
has returned a good ¢’.

Finally, if the verifier accepts then due to the optimal culpable soundness,
the value €’ returned by the extractor must be equal to the value e that has
been encrypted by ¢.. Since the only information that A4, has about e is given
in ¢. (since A,’s random answers do not reveal anything), this means that A,
has returned the plaintext of ¢, with non-negligible probability, and thus break
the message recovery security of IT.

Optimally Sound Sigma Protocols Under DCRA 201

COMPOSABLE ZERO KNOWLEDGE. Assume that (Z.sk, Z.pk) «— Z.G(1"), and
(z,w) «— A(Z.sk, Z.pk). The simulator Z.sim(Z.sk,z) can obtain e from ¢, by
decrypting it. Given e, he runs S.sim(z, e) to obtain an accepting view (cg, e, z).
He then computes c. < Ep_(2) and returns 7 « (cq, c.).

We now show that the transcript comes from a distribution that is indistin-
guishable from that of the real view. Consider the following hybrid simulator
Z.sim® that gets the witness w as part of the input. Z.sim® does the following:

1. Create (¢q, 21, 22) «— S.P(z,w) and the X protocol transcript (¢q, e, 2), z «—
ez1 + zg, by following the Y-protocol.

2. Encrypt z component-wise to get c,.

3. Return 7 < (¢q, €2)

Since the encryption scheme is blindable, such a hybrid argument is perfectly
indistinguishable from the real argument. Since the X-protocol is specially
HVZK, hybrid arguments and simulated arguments are computationally indis-
tinguishable. If the Y-protocol is statistically specially HVZK, then hybrid argu-
ments and simulated arguments (and thus also real arguments and simulated
arguments) are statistically indistinguishable. a

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A Subversion-Resistant
SNARK. TR 2017/599, IACR (2017). http://eprint.iacr.org/2017/599

2. Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 118-136. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70936-7_7

3. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS 2004, pp. 186-195 (2004)

4. Bari¢, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signa-
ture schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 480-494. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-69053-0_33

5. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASTACRYPT
2016. LNCS, vol. 10032, pp. 777-804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6_26

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62-73 (1993)

7. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling
of public parameters for succinct zero knowledge proofs. In: IEEE SP 2015, pp.
287-304 (2015)

8. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC 1988, pp. 103-112 (1988)

9. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing
the public parameters of the Pinocchio zk-SNARK. TR 2017/602, IACR (2017).
http://eprint.iacr.org/2017 /602

vww.ebook3000.con)

http://eprint.iacr.org/2017/599
https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
http://eprint.iacr.org/2017/602
http://www.ebook3000.org

202

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

H. Lipmaa

Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37-54. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40061-5_3

Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology. In: STOC
1998, pp. 209-218 (1998). Revisited

Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random
oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650-670. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_29

Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost
as efficient and general as the Fiat-Shamir transform without programmable ran-
dom oracles. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
83-111. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_4
Cramer, R., Damgard, 1., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174-187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5_19

Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45-64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7_4

Damgard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp- 41-59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_3
Damgard, 1., Jurik, M.: A generalisation, a simpli.cation and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119-136. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44586-2_9

Damgard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350-364.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45067-X_30

Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532-550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8_28

Fauzi, P., Lipmaa, H.: Efficient culpably sound NIZK shuffle argument without
random oracles. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 200-216.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_12

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186-194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Fuchsbauer, G.: Subversion-zero-knowledge SNARKSs. TR 2017/587, IACR (2017).
http://eprint.iacr.org/2017 /587

Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626-645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

Goldwasser, S., Kalai, Y.T.: On the (In)security of the Fiat-Shamir Paradigm. In:
FOCS 2003, pp. 102-113 (2003)

https://doi.org/10.1007/978-3-540-40061-5_3
https://doi.org/10.1007/978-3-662-46447-2_29
https://doi.org/10.1007/978-3-662-49099-0_4
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-45067-X_30
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-319-29485-8_12
https://doi.org/10.1007/3-540-47721-7_12
http://eprint.iacr.org/2017/587
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Optimally Sound Sigma Protocols Under DCRA 203

Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006. LNCS, vol. 4284,
pp. 444-459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230-29
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477, pp. 321-340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_19

Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51-67. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_4

Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1-11:35 (2012)

Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415-432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_-24

Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143—
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_13
Jurik, M.J.: Extensions to the Paillier cryptosystem with applications to crypto-
logical protocols. Ph.D. thesis, University of Aarhus, Denmark (2003)

Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS
and non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9014, pp. 93-109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6_5

Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169—
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10
Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key
encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 507-526. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4_28

Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent
zero-knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
140-159. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9-9
Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308-318. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054135

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

Sander, T.: Efficient accumulators without trapdoor extended abstract. In: Varad-
harajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 252—-262. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-0-21

Ventre, C., Visconti, I.: Co-sound zero-knowledge with public keys. In: Preneel, B.
(ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 287-304. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02384-2_18

vww.ebook3000.con)

https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1007/3-540-39200-9_9
https://doi.org/10.1007/BFb0054135
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-540-47942-0_21
https://doi.org/10.1007/978-3-642-02384-2_18
http://www.ebook3000.org

Economically Optimal Variable Tag Length
Message Authentication

Reihaneh Safavi-Naini!®) | Viliam Lisy??, and Yvo Desmedt*?

! Department of Computer Science, University of Calgary, Calgary, Canada
rei@ucalgary.ca
2 Department of Computing Science, University of Alberta, Edmonton, Canada
3 Department of Computing Science, FEE, Czech Technical University in Prague,
Prague, Czech Republic
4 Department of Computer Science, University College London, London, UK
5 Department of Computer Science, University of Texas at Dallas, Richardson, USA

Abstract. Cryptographic authentication protects messages against
forgeries. In real life, messages carry information of different value and
the gain of the adversary in a successful forgery and the correspond-
ing cost of the system designers, depend on the “meaning” of the mes-
sage. This is easy o see by comparing the successful forgery of a $1,000
transaction with the forgery of a $1 one. Cryptographic protocols require
computation and increase communication cost of the system, and an eco-
nomically optimal system must optimize these costs such that message
protection be commensurate to their values. This is especially important
for resource limited devices that rely on battery power. A MAC (Message
Authentication Code) provides protection by appending a cryptographic
tag to the message. For secure MACs, the tag length is the main deter-
minant of the security level: longer tags provide higher protection and
at the same time increase the communication cost of the system. Our
goal is to find the economically optimal tag lengths when messages carry
information of different values.

We propose a novel approach to model the cost and benefit of infor-
mation authentication as a two-party extensive-form game, show how to
find a Nash equilibrium for the game, and determine the optimal tag
lengths for messages. We prove that computing an optimal solution for
the game is NP-complete, and then show how to find an optimal solution
using single Mixed Integer Linear Program (MILP). We apply the app-
roach to the protection of messages in an industrial control system using
realistic messages, and give our analysis with numerical results obtained
using off-the-shelf IBM CPLEX solver.

Keywords: Message authentication + Economics of authentication
Authentication game - Rational adversary in cryptography
Game complexity

© International Financial Cryptography Association 2017
A. Kiayias (Ed.): FC 2017, LNCS 10322, pp. 204-223, 2017.
https://doi.org/10.1007/978-3-319-70972-7_11

Economically Optimal Variable Tag Length Message Authentication 205

1 Introduction

Information authentication is an indispensable part of today’s computer and
communication systems. Gilbert et al. [14] considered codes that detect “decep-
tion” to provide protection against message tampering. A Message Authentica-
tion Code (MAC) is a symmetric key cryptographic primitive that consists of
a pair of algorithms: a tag generation algorithm T AG that generates a short
string called tag that is appended to the message, and a verification algorithm
VER that takes a message and an appended tag, and accepts or rejects the
message. Message Authentication Codes (MAC) when the adversary has unlim-
ited computational power, were first modelled and analyzed by Simmons [27]
as a two-party zero-sum game. Security of MAC when the adversary is compu-
tationally bounded has also been formalized using a two-party zero-sum game
that allows the adversary to have a learning phase (by querying authentication
and verification oracles), before constructing the forgery. Efficient constructions
of MAC with provable security have been proposed using block ciphers [6] and
hash functions [5]. In all these works, messages are assumed to have equal val-
ues for the adversary and the communicants, and the adversary is considered
successful with any forgery that passes the verification test.

In practice however, messages have different values for the adversary and
the communicants, and the impact of a successful forgery will depend on the
information that they carry: forging a $1,000 transaction will be much more
desirable for the adversary than forging a $1 one! Similarly, in an industrial
control system that uses information communication in the daily operation of
the system, a control message that causes the system to shut down is far more
valuable, than a simple regular status update message.

An authentication system that provides the same protection for all messages,
must either choose security parameters of the system for the protection of the
most high-valued messages in the system, or accept higher risks for the more
important messages.

Cryptographic authentication has two types of cost: the computation cost of
generation and verification of MAC, and the extra communication cost of trans-
mitting and receiving the appended tag. These costs could become significant
for small devices that must minimize their energy and power consumption, and
carefully plan their resources [31]. In the fast growing Internet of Things (IoT),
the bulk of messages that are sent between devices are short status update and
control messages that must be authenticated, and optimizing the cost becomes
highly desirable [26]. In [22], in the context of securing IoT and in particular
machine-type communication, the author noted that:

“They generally have low data rtate requirements, periodic data traffic
arrivals, limited hardware and signal processing capabilities, limited storage mem-
ory, compact form factors, and significant energy constraints [20] As an example,
a battery life of ten years at a quarter of the cost of wideband LTE-A devices is
one of the objectives of the Release 13 LTE-A MTC standardization effort [21].”

Our objective is to optimize the cost of message authentication to be com-
mensurate with the value of information that the message carries.

vww.ebook3000.con)

http://www.ebook3000.org

206 R. Safavi-Naini et al.

Our work. We depart from the traditional two-party zero-sum game model of
security of MAC, and consider the problem of using an ideal MAC for protecting
messages that have different values. To adjust the protection level of messages,
we will use variable tag lengths for the ideal MAC: the MAC guarantees that
when the tag length is 7, the adversary’s success chance of a forgery is 277. This
implicitly assumes that the key length is at least the size of the tag length. Ideal
MAC:s can be closely approximated with existing MAC algorithms in information
theoretic and computational security.

We model the problem as a game between two rational players, a system
designer that includes the sender and the receiver, and an adversary. The game
is an infinite general-sum extensive form game with perfect information. We
consider the following setting: there is a message source with ¢ messages and a
publicly known probability distribution; time is divided into intervals; in each
interval the source generates a message according to the known distribution. We
also allow intervals without any message (empty message). This is similar to
the model considered by Simmons [27] and a natural model for many message
sources including messages that are generated in an industrial control system.

The cost of a successful forgery for the system designer includes the opera-
tional cost of the cryptographic protection that they use, and the loss incurred
because of the particular forgery. The adversary’s gain will also depend on the
particular forgery and the information that the forged message carry. The game
proceeds as follows.

There is a publicly known ideal MAC. First, the system designer chooses a
vector T' = (1;) € N1 of authentication tag lengths, one for each message,
and makes the vector public. We assume the empty message will also receive a
tag. Next, a message m; appears in the system (e.g. a message appearing in an
industrial plant). The designer computes a tag of length 7;, appends it to the
message, and sends it. Finally, the adversary sees the message and decides how
to replace it with another message, including the empty message. The latter is
equivalent to removing the message from the channel and had not been consid-
ered in traditional MAC systems.We derive expressions that capture the cost
and the gain of the designer and the adversary, and by analyzing the strategies
of the two, show how to find a Nash equilibrium of the game and determine the
optimal tag lengths for messages. Our work makes the following contributions.

(1) Tt introduces a novel approach to security analysis of cryptographic mes-
sage authentication that takes into account the value of information that
messages carry as well as the cost of using cryptographic protection,and
provides an optimal fine-grained protection mechanism using a secure MAC
algorithm that supports different tag lengths. The model can realistically
capture a variety of costs and rewards for players. The integrity attacks
include traditional message forgeries (i.e. message injection and substitu-
tion) as well as message deletion (jamming) attack.

(2) We present a sound method of finding optimal (Nash equilibrium) strategies
using backward induction argument.The method, however, requires solving

Economically Optimal Variable Tag Length Message Authentication 207

an exponential (in the number of messages) number of non-linear integer
optimization problems.

(3) Using a transformation from the vertex cover problem, we show that com-
puting optimal vector of tag lengths, is NP-hard.

(4) We present an equivalent formulation of the problem in the form of a mixed
integer linear program (MILP) that proves that the decision version of our
problem is NP-complete. The MILP formulation provides an attractive app-
roach which allows us to use an off-the-shelf solver to find a solution to
a concrete instance of the problem. We apply our formulation and MILP
approach to the analysis of message authentication in an industrial control
system for oil pipes.

Paper organization. In Sect. 2 we provide preliminary background and describe
the proposed game of message authentication. Section 3 is the analysis of the
game and finding a Nash equilibrium using backward induction. Sections 3.2
and 4 give computational complexity of the game and the formulation of finding
the Nash equilibrium as a solution to an MILP. In Sect.5 we discuss related
works. Section 6 concludes the paper and suggests directions for future work.

2 An Economic Model for Information Authentication

In the following we recall the security definition of MAC that is relevant to
our work, and then describe our game model. Game theoretic definitions and
concepts follow [23].

A Message authentication code MAC is a symmetric key cryptographic prim-
itive for providing message integrity. A MAC consists of a pair of algorithms
(TAG,VER). The TAG algorithm takes two inputs, a shared secret key k, and
a message m, and generates a tag t = TAG(m) that is appended to the mes-
sage, resulting in a tagged message. The V ER algorithm takes a pair of inputs,
a key k and a tagged pair (m’;t'), and outputs VERg(m',t') = T to indi-
cate that the tagged pair is valid and message is accepted as authentic, and
VERy(m',t') = F to denote detection of a forgery. Correctness of the MAC
requires that VER,(m, TAG,(m)) =T.

A MAC is (g,u)-secure if an adversary who has a learning phase during
which they can query u tagged messages from an authentication oracle cannot
successfully forge a message with probability better than . (One can also allow
access to verification oracle.) An u-time ideal MAC is a (277, u)-secure MAC,
where 7 is the length of the tag in bits. A vIMAC family in this paper is a
family of (277, u)-secure MAC for 7 € N, where N = {0} UZ™" denotes the set
of non-negative integers. We use u = 1. This means that the MAC can detect
with a high probability, forged messages that are injected into the system, or
the substitution of a message with a forged one. Our game theoretic model also
considers the cost of dropping a message. To prevent message replay, one needs
to consider additional mechanisms such as counters, or ensure that each message
includes extra redundancy to make each message unique. This will not affect our
analysis.

vww.ebook3000.con)

http://www.ebook3000.org

208 R. Safavi-Naini et al.

Game setting. Let I, = {¢,1,--- £} denote the set of indexes of possible mes-
sages, including the empty message, and let I = {1,---¢}, denote the set of
indexes of non-empty messages.

— A sender S wants to send messages to a receiver R over a channel that is con-
trolled by an adversary, Eve.Eve can either inject a message into the channel,
delete (jam), or modify the message that is sent by S. S and R together form
a system designer player.

— Time is divided into intervals. A message source # = {my,---my} generates
messages independent of the sender and the receiver. In each time interval a
message m;, ¢ € I., may appear at the sender terminal that must be sent to
the receiver.Let .#. = {m;,i € I.} denote the set of messages in the system
(e.g. an industrial control system), and m. be a special message denoting
“no-message” appearing in the interval. We assume messages from .Z. appear
with a publicly known probability distribution (pe, p1, - - - p¢), and p; = Pr(m;)
is the probability of m; appearing in the system, and p. = Pr(m,) is the
probability that no message appears in a time interval. Messages have different
lengths. We will also use m; to denote the length of the message m;.

— Messages have different “values” for the system designer and the adversary.
If Eve succeeds in changing m; to m;, where ,j € I., their gain will be
gi,;- The impact of a successful forgery on the system designer’s operation is
measured by a cost function ¢}]1 that reflects the economic cost of successful
message substitution for the system designer. Note that i = & corresponds to
message injection and j = ¢ is message deletion (jamming, dropping) by the
adversary. We also consider the cost d; of a detected forgery attempt on m,;.
This captures the cost of, for example, request for retransmission or using
alternative channels for retransmission.

We assume g; ; and ¢} 0, J € Ie, are non-negative and public.

— The total cost of the system designer when a forgery occurs, includes the eco-
nomic impact of an undetected forgery, the cost associated with detected forg-
eries, and the investment to provide the required computation for MAC gen-
eration and verification, and the communication cost of sending and receiving
messages with the appended tag. We assume that the operational cost of the
MAC system is proportional to the length of the authenticated message (i.e.
message appended with the tag). This is reasonable for small devices in an
IoT setting and can be replaced by other functions to reflect other settings.
We use a; and . to denote the (per bit) operational cost of the cryptographic
MAC for the sender and the receiver, respectively.

— The system designer uses a vIMAC to provide authentication for messages.
Security of MAC guarantees that a tagged message (m,t) can be forged with
probability 277, where 7 is the length of the tag t. Weuse T' = (¢, 71, - 7¢) €
Nf*1 to denote the vector of tag lengths for messages m., m; - - - my.

! For our analysis we define ¢; ; that includes Cij

Economically Optimal Variable Tag Length Message Authentication 209

2.1 Game Structure

We model the interaction between the two players (the system designer and the
adversary) in the above scenario when messages are generated by an external
source, using a perfect information extensive form game with chance moves. We
assume a secure key has been shared between the sender and the receiver.

Pe, Mg p1,mp

me mp ... my mem; ... My
/ . P o
ul(Tl-,mE’mE) M](T]7m£7m€) u](Tlvmbmf)
MZ(T17m€7m£) MZ(Thmam/) M2(T17m[,m[)

Fig. 1. A sketch of the game tree © that represents the message authentication game.
The circles labeled by 1, 2 and ¢, represent the points in the game that the players 1,
2, or the chance player, must take action. The labels on the edges denote the actions
taken by the player associated with the circle that is at the higher end of the edge. The
leaves of the tree are labelled by the payoffs of the two players.

The game [= (N, H, P, f., (u;)) is defined by the set of players N, the
set of histories H, a player function P, a fixed distribution for chance moves f.,
and the utility functions (u;),7 = 1,2. A tree representation of the game is given
in Fig. 1.

A history is a list of actions by players corresponding to a path from the root
of the game tree to a node in the tree. The length of a history is the number of
elements in the list. The set of histories H is given by:

H={0{T e N°T 1} {(T,m;) e N°*' x ..}, {(T,m;,m;) € N“T 1 5 . x Y.

At a history T of length one, the system designer has chosen a tag length
vector T' = (7;)ier.; at a history (T,m;) of length 2, the system designer has
chosen T and the chance move has selected m;; finally at a terminal history
(T, m;,m;) of length 3, a length 2 history (7', m;) has been followed by player
2’s choice of the forged message m; € .#.. A player function P takes a non-
terminal history h € H \ Z, and outputs a player in N. The set of actions
available to a player at history h is denoted by A(h) = {a : (h,a) € H}. For all
chance nodes h = T' € N**1| f.(m;|h) = p(m;) is an independent probability
distribution on possible moves A(h) = ., at h.

vww.ebook3000.con)

http://www.ebook3000.org

210 R. Safavi-Naini et al.

Let Kronecker delta ¢;; be defined as, d;; = 0 if j # 4, and 6;; = 1,
otherwise. For a tag length vector T' = (7., 71 - - - 7¢), the chance move m;, and
Eve’s move m;, where 4,j € I, = {¢,1,--- £}, the players’ utilities are,

uy (T, mg, my) = a(mi +) + ap(my +75) + ¢ ;277 +di(1=277)(1 = d; 5),

us (T, my, my) = g; ;2771700

The utility w1 (T, m;, m;) consists of, (i) a;(m;+7;), the sender’s cost of sending
the tagged message (my;,t;), (ii) a,(m; + 7;), the receiver’s cost of receiving a
tagged message (m;,t;), (iii) ¢; ;277, the economic cost of accepting a fraudu-
lent message m; in place of the original message m;, and (iv) d;(1-277)(1-6; ;),
the economic cost of detection of a forgery in the organization. The utility
uo(T, m;, m;) of player 2, is their expected gain that is realized by the successful
replacement of m; by m;. We use,

mi +7i) +on(my +75) + 65277 +di(1-277)(1 = 6i5) (1)
m; +7i) + ar(my +75) + 277 +di(1 = di5), (2)

U1(T, m;, mj) = at(

= au(
where ¢; ; = cg’j —d;(1 — 6;), effectively combining the cost of an undetected
forgery and a detected forgery.

Assumptions: We assume the cost and gain parameters are known to the system
designers. Real world applications of game theory in physical security suggest
that these values can be reliably estimated [28]. Although exact values may be
hard (or impossible) to find, system designers can use risk analysis methods to
categorize messages into types, and attach a value to each type. Small errors in
estimates of system designer’s costs cannot lead to large errors in the proposed
solutions. This mi