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PREFACE

Paul M. Meaney, Ph.D.

Medical imaging has been transformed over the past 30 years by the advent
of computerized tomography (CT), magnetic resonance imaging (MRI), and
various advances in x-ray and ultrasonic techniques. An enabling force be-
hind this progress has been the (so far) exponentially increasing power of
computers, which has made it practical to explore fundamentally new ap-
proaches. In particular, what our group terms “model-based” modali-
ties—which rely on iterative, convergent numerical modeling to produce an
image from data that is related nonlinearly to a target volume—have become
increasingly feasible. This book explores our research on four such modali-
ties, particularly with regard to imaging of the breast: (1) MR elastography
(MRE), (2) electrical impedance spectroscopy (EIS), (3) microwave imaging
spectroscopy (MIS), and (4) near infrared spectroscopic imaging (NIS).

EIS, MIS, and NIS are tomographic. Much as in CT, where an x-ray
source and an opposing array of receivers are rotated about a target to acquire
attenuation data from many angles of view, these methods illuminate a target
with some form of electromagnetic radiation, detect transmitted and scattered
radiation, and deduce from these measurements the spatial distribution of
some diagnostically significant property or properties in the target. In CT,
image reconstruction can be done quickly and accurately by matrix inversion,
since the propagation of x-rays through the body is essentially linear, but for
the optical and radio frequencies used in EIS, MIS, and NIS propagation is
nonlinear, necessitating nonlinear (e.g., model-based) reconstruction algo-
rithms. We employ Gauss-Newton iterative schemes in which recorded data
are compared with simulated data derived from an approximate solution of a
field equation throughout the image volume. The field equation for each mo-
dality is a partial differential equation encapsulating the interaction of the il-
luminating radiation (e.g., microwaves) with some tissue property of interest
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xiv Model-Based Breast Imaging

(e.g., conductivity). The property distribution is estimated initially; the field
equation is then solved approximately over the image space, using the esti-
mated property distribution and the known illumination pattern as inputs to a
finite element method; and finally, the simulated data are compared to the
real data. If the simulated data and the real data are too dissimilar, the model
property distribution is updated (by means that will be described in detail
later in this book) and the field equation re-solved. This process is repeated
until measurement agrees satisfactorily with model output. Solving the field
equation and updating the model property distribution is computation-
intensive because it requires the inversion of large matrices.

MRE, unlike the other three modalities, is not a tomographic approach.
However, its goal—reconstruction of tissue elastic properties—also requires
the solution of a nonlinear problem, and is also achieved by a model-based
Gauss-Newton iterative method.

All our solution methods are nonlinear, but earlier attempts to utilize mi-
crowave, near infrared, and electrical impedance approaches made use of lin-
ear approximations. Although these proved inadequate, the ever-increasing
availability of computing power may make some such approach feasible
again.

Imaging for the detection of breast cancer is a particularly interesting and
relevant application of the four imaging modalities discussed in this book.
Breast cancer is an extremely common health problem for women; the Na-
tional Cancer Institute estimates that one in eight US women will develop
breast cancer at least once in her lifetime. Yet the efficacy of the standard
(and notoriously uncomfortable) early-detection test, the x-ray mammogram,
has been disputed of late, especially for younger women. Conditions are thus
ripe for the development of affordable techniques that replace or complement
the mammogram. The breast is both anatomically accessible and small
enough that the computing power required to model it is affordable.

Chapter 1 introduces the present state of breast imaging and discusses
how our alternative modalities can contribute to the field. Chapter 2 looks at
the computational common ground shared by all four modalities. Chapters 2
through 10 are devoted to the four modalities, which each modality being
discussed first in a theory chapter and then in an implementation-and-results
chapter. The eleventh and final chapter discusses statistical methods for im-
age analysis in the context of these four alternative imaging modalities.
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Chapter 1

FOUR ALTERNATIVE BREAST IMAGING
MODALITIES

Steven Poplack, M.D., Ph.D., Wendy Wells, M.D., M.S.,
and Keith Paulsen, Ph.D.

1 INTRODUCTION

1.1 Breast Cancer

In the United States, breast cancer is the most common non-skin malignancy
in women and the second leading cause of female cancer mortality. Ap-
proximately 180,000 new cases of invasive breast cancer, resulting in over
40,000 deaths, are diagnosed annually. Age-adjusted incidence has remained
approximately constant since a notable increase from the mid 1970s to the
late 1980s, while mortality, after having remained constant for at least 40
years, has been declining slowly since 1990 (i.e., from ~22% in 1990 to
~ 18% in 2000) [1, 2]. Approximately one in every eight US women is diag-
nosed with breast cancer by the age of 90, for an absolute lifetime risk of
14.4% [2]. Breast cancer also occurs in men, but accounts for less than one
percent of male malignancies.

The benefits of breast-cancer screening by existing methods, especially
for younger women, are controversial, but most experts agree that mammog-
raphy screening benefits women 50–69 years old [3–5]. Meta-analyses of
randomized-control trials of mammography screening show a 25–30% re-
duction in breast cancer mortality for women over 50, and a smaller, more
equivocal effect in women aged 40–49 [6]. Regarding breast cancer screen-
ing with clinical breast examination (CBE), the US Preventive Service Task
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2 Model-Based Breast Imaging

Force concluded that the “evidence is insufficient to recommend for or
against routine CBE alone . . . [or] teaching or performing routine breast self-
examination” [7].

Screening might produce greater benefits if it were more sensitive and
specific. However, the standard screening technology—x-ray screen-film
mammogram—has many unsatisfactory features, as reviewed below. There-
fore, a wide variety of new technologies, including alternative imaging mo-
dalities, improvements in x-ray mammography, and novel biological assays,
are being investigated (and in some cases deployed) in hopes of improving
early-detection rates.

1.2 Mammography and the Rationale for Alternatives

In the US, mammography is currently the most effective method of detecting
asymptomatic breast cancer. Its use for screening has been widely promoted
by the National Cancer Institute and other organizations. Screening is also
the primary role foreseen for most of the alternative imaging modalities now
being developed. The potential usefulness of alternative imaging is not, how-
ever, restricted to screening; it may also contribute to the characterization of
breast abnormalities detected by mammography and other means, including
breast self-examination and CBE.

Despite its recognized value in detecting and characterizing breast dis-
ease, mammography has important limitations. First, its false-negative rate
ranges from 4% to 34%, depending on the definition of a false negative and
on the length of follow-up after a “normal” mammogram [8]. Second,
screening mammography is less sensitive in women with radiographically
dense breast tissue [9]. This is of particular concern because the amount of
fibroglandular tissue may represent an independent risk factor for developing
breast cancer [10]. Third, screening mammography also suffers from a high
false-positive rate: on average, 75% of breast biopsies prompted by a “suspi-
cious” mammographic abnormality prove benign [2]. Mammography’s other
drawbacks include discomfort due to breast compression, variability in ra-
diological interpretation, and a slight risk of inducing cancer due to the ion-
izing radiation exposure.

Given these deficits, development of imaging modalities or genetic-
marker techniques that would enhance, complement, or replace mammogra-
phy has been a priority. Enhancements of screen-film mammography have
included full-field digital mammography and computer-aided detection of
abnormalities. Some of the alternative modalities under investigation are ul-
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Four Alternative Modalities 3

trasound (including compound, three-dimensional, Doppler, and harmonic
variants), magnetic resonance imaging (MRI), elastography, scintimammo-
graphy, positron emission tomography, and thermography [2].

Some alternative imaging methods do not yet achieve the high-resolution
structural imaging offered by conventional mammography. While this would
be desirable, there are good reasons for trading some spatial resolution for
other information. In particular, providing the radiologist with alternative
tools for evaluating patient populations not well-served by mammography
and expanding the diagnostic information available to the radiologist in clini-
cally suspicious cases are important goals not dependent on high spatial
resolution as such. For example, imaging methods that are sensitive to func-
tional malignant features such as angiogenesis could be exploited in an ad-
junctive role to improve the specificity of mammographic diagnosis. In
addition, x-ray mammography has been repeatably found not to detect
10–30% of cancers greater than 5 mm in diameter, largely due to its rela-
tively poor soft-tissue contrast [11]. This is particularly true for radiologi-
cally dense breasts, which are more common in younger women. Spatial
resolution may thus not be the limiting factor for detecting certain mammo-
graphic abnormalities, and so should not be the overriding concern in the de-
velopment of alternatives to current breast-imaging technologies.

Since 1999 a group of engineers and physicians at Dartmouth College
has been conducting a research program dedicated to the development of al-
ternative breast-cancer imaging technologies. We believe that the four alter-
native modalities we are investigating—magnetic resonance elastography
(MRE), electrical impedance spectroscopy (EIS), microwave imaging spec-
troscopy (MIS), and near infrared spectroscopic imaging (NIS), all discussed
in detail in this book—have the potential to increase the frequency and accu-
racy with which breast cancer can be detected and diagnosed and to improve
the staging and monitoring of disease progression/regression during treat-
ment and follow-up periods of clinical care.

Our program combines technology development with clinical studies de-
signed to establish that MRE, EIS, MIS, and NIS have the potential to con-
tribute, either alone or in combination, to breast imaging for risk assessment,
early detection, differential diagnosis, treatment prognosis, and therapy
monitoring. We have demonstrated the clinical feasibility of these imaging
technologies for breast imaging by initiating their clinical evaluation in a
common cohort of women with normal and abnormal breasts as defined by
screening mammography and subsequently verified (for abnormal breasts) by
biopsy. In the next few years we expect to generate enough evidence to
estimate the likely role of these breast-imaging alternatives for differential
diagnosis, treatment prognosis, and therapy monitoring. With greater sophis-
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4 Model-Based Breast Imaging

tication, the technologies themselves will become increasingly viable choices
for risk assessment and early detection. Indeed, a 1998 consensus report by
the National Cancer Institute blue-ribbon panel on the future of breast cancer
research (Priorities for Breast Cancer Research, 1998) explicitly cited MRE,
EIS, MIS, and NIS as promising avenues for advancing the detection and di-
agnosis of breast disease. These modalities have been rendered feasible by
the recent explosion in low-cost computational power. They do not use ion-
izing radiation, do not require painful levels of breast compression, are not
likely to be limited by radiographically dense breast composition (i.e, de-
creased sensitivity in the setting of dense breasts), and should provide quan-
titative data that can reduce the interpretive variability associated with
mammography.

In the following sections, the physical bases of MRE, EIS, MIS, and NIS
are outlined, along with the electrical and mechanical properties of normal
and abnormal breast tissue that enable these modalities to discriminate be-
tween healthy and abnormal tissues. A detailed review then follows of our
assessment of microvasculature and tissue-type interfaces in breast tissues
having normal histology, fibrocystic disease, fibroadenomas, and invasive
carcinomas. This study shows how electromechanical tissue properties can
correlate with biological characteristics. We conclude by describing some of
our near-term goals.

2 FOUR ALTERNATIVE MODALITIES

All four of the modalities being investigated by our group work by iteratively
optimizing a two- or three-dimensional finite element (FE) model of specific
material properties throughout some portion of the breast. An optimization
algorithm compares actual measurements made outside the breast—light in-
tensities, electromagnetic (EM) fields, or mechanical displacements—to data
predicted using the FE model. The model is then iteratively adjusted to make
its predictions approximately match observation, and the property distribu-
tion corresponding to the best available convergence is used to generate an
image. It is because of FE modeling’s essential role in this process that we
refer to all four techniques as model-based alternative breast-imaging mo-
dalities.

Below, we briefly indicate the physical basis of each imaging modality.
We then describe how we integrate our research on all four modalities into a
single initiative centered on two shared-resource “cores,” one clinical and
one computational.
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Four Alternative Modalities 5

2.1 Magnetic Resonance Elastography (MRE)

In this technique, mechanical vibrations are applied to the breast’s surface
that propagate through the breast as a three-dimensional, time-harmonic spa-
tial displacement field varying locally with the mechanical properties of each
tissue region. Magnetic resonance (MR) techniques are used to image this
displacement field. These data are used to optimize an FE model of the
breast’s three-dimensional mechanical property distribution by iteratively re-
fining an initial estimate of that distribution until the model predicts the ob-
served displacements as closely as possible. MRE is distinguished from the
other three methods discussed in this book by the fact that a very large, three-
dimensional data set is supplied to its FE modeling algorithm. This mandates
special “subzone” techniques to reduce the computational challenge, as dis-
cussed in Chapter 3. MRE is also the only nontomographic technique in this
set of alternative modalities.

The principal hypothesis underpinning our MRE project is that the me-
chanical properties of breast tissue provide unique information for the detec-
tion, characterization, and monitoring of pathology. There is much evidence
to suggest that tissue hardness is strongly associated with cancer. The effec-
tiveness of clinical palpation for hard tissue in discovering larger tumors is
well-established; in the Breast Cancer Demonstration Project, approximately
one-third of malignancies were discovered by physical examination rather
than by x-ray mammography [12]. Although little quantitative work has ap-
peared on the mechanical properties or behavior of breast tissue, measure-
ments of the sonoelasticity of masses in rodent prostatectomy specimens
have shown good correlations with elasticity [13–15].

As detailed in Chapter 4, our MRE team has recovered images based on
time-harmonic, steady-state mechanical wave generation, MR measurement,
and numerical inversion to form images of mechanical properties at or near
the acquisition resolution of MRI. Further, a number of clinical exams have
been completed that have demonstrated feasibility, provided preliminary es-
timates of the elastic properties of the normal breast, and highlighted areas
where further investigation is warranted.

2.2 Electrical Impedance Spectroscopy (EIS)

EIS passes small AC currents through the pendant breast by means of a ring
of electrodes placed in contact with the skin. Magnitude and phase measure-
ments of both voltage and current are made simultaneously at all electrodes.
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6 Model-Based Breast Imaging

The observed patterns of voltage and current are a function both of the sig-
nals applied and of the interior structure of the breast. EIS seeks to optimize
an FE model of the spatial distribution of conductivity and permittivity in the
breast’s interior, using the applied signals as known inputs and the observed
signals as known outputs. EIS is referred to as electrical impedance spectros-
copy because AC currents can be applied to the breast at a wide range of fre-
quencies.

In the frequency range of interest for this modality, the so-called dis-
persion is sensitive to cellular morphology and tissue microarchitecture, par-
ticularly membrane structures (both intra- and extracellular). At the low end
of the spectrum, charging and discharging of membranes occurs, which in-
troduces capacitance and forces electric current to pass through the extracel-
lular medium. As frequency is increased, cellular capacitive reactance
decreases, which causes an increase in current flow through the intracellular
space. This makes higher-frequency signals more sensitive to intracellular in-
fluences. Also at higher frequencies, dipolar reorientation of proteins and tis-
sue organelles can occur. Hence, the dispersion electrical-property
spectrum contains information about both the extra- and intracellular envi-
ronments.

A study by Cuzick et al. [16] supports this view. The authors measured
the electrical depolarization index of breasts in vivo for 661 women sched-
uled for open biopsy. Comparison of abnormalities detected from the electri-
cal depolarization data to biopsy results yielded 70% specificity at 80%
sensitivity and 55% specificity at 90% sensitivity for palpable masses. The
authors hypothesize that the measured effect results from a loss of transepi-
thelial potential during the carcinogenesis of normally polarized epithelial
cells, and further surmise that abnormal proliferation extending around the
borders of the malignancy into the surrounding regions of the affected site
(which has been shown to occur in breast and other epithelial cancers) causes
the electrical differences sensed at the surface. If these intrinsic electrical
polarization-depolarization phenomena do occur, they will perturb the ac-
tively induced electric fields associated with EIS imaging and may produce a
detectable, larger-than-tumor signature.

Further, there are significant differences between the electrical imped-
ances of histologically-confirmed diseased breast tissue and normal breast
[17–20]. These impedance heterogeneities within and around a tumor can be
discriminated with EIS. Further, the dispersion characteristics of normal and
cancerous tissues differ. This last fact is of particular interest; it means that it
may be possible to create a clinical tool that spatially resolves spectroscopic
information in such a way as to distinguish tumor from normal tissue.
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Four Alternative Modalities 7

The goal of our EIS team has been to develop an ultrafast, multidimen-
sional (i.e., spatio-spectral) EIS imaging system complete with data acquisi-
tion electronics, breast positioning interface, and exam-control and image-
reconstruction software. We have constructed three generations of such
systems, the first of which has been operational for the majority of exam ses-
sions described in Ch. 6 of this book and the latest of which represents a
large step forward in capability and speed and is now operational for clinical
use. This advanced instrument is a considerable asset in addressing funda-
mental questions surrounding the potential role of EIS in breast-imaging ap-
plications. It has yet to be optimized for clinical use from both the hardware
and software perspectives (see Ch. 6).

2.3 Microwave Imaging Spectroscopy (MIS)

Like EIS, MIS interrogates the breast using EM fields. It differs in using
much higher frequencies (300–3000 MHz). In this range it is appropriate to
treat EM phenomena in the breast in terms of wave propagation rather than
voltages and currents. The technologies and mathematics used in EIS and
MIS are, therefore, somewhat divergent, despite the fact the both exploit EM
interactions in tissue.

Like EIS and NIS, MIS surrounds the breast with a circular array of
transducers. In this case, these are antennas capable of acting either as trans-
mitters or receivers. Unlike the transducers used in EIS and NIS, these an-
tennas are not in direct contact with the breast but are coupled to it through a
liquid medium (i.e., the breast is pendant in a liquid-filled tank). Sinusoidal
microwave radiation at a fixed frequency is emitted by one antenna and
measured at the other antennas. Each antenna takes its turn as the transmitter
until the entire array has been so utilized. A wide range of frequencies may
be employed, hence the term “microwave imaging spectroscopy.” As in the
other modalities, an FE model of either a two-dimensional slice or a three-
dimensional subvolume of the breast is iteratively adjusted so that the mag-
nitude and phase measurements predicted using the transmitted waveforms as
known inputs converge as closely as possible with those actually observed.
The breast properties imaged are permittivity and conductivity, as in EIS, but
because of the disjoint frequency ranges employed these properties may
serve as proxies for different physiological variables in the two techniques.

Electromagnetic fields interact with tissues through three basic mecha-
nisms: (1) the displacement of conduction (free) electrons and ions in tissue
as a result of the force exerted on them by the applied EM field; (2) polariza-
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tion of atoms and molecules to produce dipoles; and (3) orientation of per-
manently dipolar molecules in the direction of the applied field. The number
of free electrons and ions that are available to create a conduction current
within the tissue in response to an applied field is proportional to the tissue’s
intrinsic electrical conductivity. The degree to which it can be polarized, ei-
ther by the creation of new dipoles or by the co-orientation of permanently
dipolar molecules, is a measure of its permittivity.

Ex vivo data show that electrical property values can differ by a factor of
5 to 10 between normal and malignant human breast tissues over the micro-
wave frequency range [21, 22]. Malignant mammary tumors apparently have
electrical properties which mimic those typically found in high-water-content
tissues such as muscle, whereas normal breast has properties typical of low-
water-content, fatty tissues. The increased blood volume associated with the
neovascularization of the rapidly proliferating tumor periphery may be re-
sponsible for increased water content, a variable to which microwave illumi-
nation is particularly sensitive. In fact, one study has found that for normal
and malignant human tissues of the same histological type, greater differ-
ences in electrical properties occur in mammary than in colon, kidney, liver,
lung, and muscle [17].

In short, EM properties in the microwave band offer high intrinsic con-
trast for pathology, especially in the breast. Exploiting this contrast for im-
aging has been challenging because of the difficulties associated with
inducing and measuring a response noninvasively that can be used to dis-
criminate local variations in EM properties. However, our MIS effort has met
a number of these challenges and is poised to complete the first critical
evaluation of the potential of microwave breast imaging. A clinical imaging
system has been realized that transceives broadband, high-fidelity propagat-
ing fields through a noncontacting antenna array translated axially under
computer control; this system will deliver MIS exams to pendant breasts im-
mersed in a fluid that promotes signal coupling.

2.4 Near Infrared Spectroscopic Imaging (NIS)

In NIS, a circular array of optodes (in this case, optical fibers transceiving in-
frared laser light) is placed in contact with the pendant breast. Each optode in
turn is used to illuminate the interior of the breast, serving as a detector when
nonactive. A two- or three-dimensional FE model of the breast’s optical
properties is iteratively optimized until simulated observations based on the
model converge with observation.
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Published data have long supported the notion that near infrared spec-
troscopy and imaging offer excellent contrast potential. Studies have shown
2:1 contrast between excised tumor and normal breast at certain near infrared
wavelengths [23, 24]. Correlations with increase in blood vessel number and
size (which is characteristic of neovascularization in the tumor periphery and
may lead to a fourfold increase in blood volume) have been reported [25] and
have been estimated to translate into 4:1 contrast in optical absorption coef-
ficients [26] (see Sec. 3, “Correlation With Pathology”).

In addition to the absorption contrast afforded by blood-concentration
changes in tumorigenic regions of the breast, contrast specificity provided by
light scattering resulting from calcifications involving matrix accumulation
of insoluble phosphates, often associated with tumors, may also be exploit-
able for imaging purposes [27]. The detailed forms of microcalcifications
would not be visible due to spatial resolution limits, but the aggregate optical
signature of calcification clusters may be detectable. Another potential con-
trast mechanism is provided by the lipid content of the tissue, the spectral
peaks of which occur at 750 nm and 940 nm; these peaks would presumably
be reduced in breast cancers as compared to surrounding, normal, fattier tis-
sue. It is furthermore notable that the optical properties imaged spectrally
with NIS—absorption and scatter—can be used to deduce certain physiologi-
cal variables, such as total hemoglobin concentration and oxygen saturation.
These are being investigated as possible means to differentiate benign from
malignant breast disease (see Ch. 10).

Our NIS initiative has been the first of our modality initiatives to regu-
larly employ three-dimensional data acquisition and image reconstruction
during clinical breast exams. Further, it has led the way in terms of analyzing
its imaging data in both the normal and abnormal breast in relation to clinical
factors and histological indicators in order to explore and explain the biologi-
cal/physiological basis of image contrast. It has also pioneered the overall
movement within our program toward image assessment by both quantitative
methods (contrast-to-noise metrics) and qualitative methods (observer ex-
periments) in order to characterize how nonlinear image reconstruction influ-
ences traditional contrast-detail and region-of-interest curves.

3 CORRELATION WITH PATHOLOGY

A distinguishing feature of these imaging modalities is that they recover ac-
tual tissue property distributions that provide functional information about
the tissue being interrogated. A crucial aspect of this multi-modality project
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is the investigation of the relationship between the imaged properties and
actual tissue pathology. Toward this end, the following section describes ini-
tial pathology studies that have been conducted in parallel with imaging mo-
dality development. A general overview of breast physiology is followed by
a more in-depth discussion of morphologic criteria that may correlate with
contrast mechanisms operative in alternative imaging modalities. The discus-
sion is somewhat technical, so non-medical readers may wish to skip directly
to Section 4, “Unifying the Four Modalities.”

3.1 The Breast

The adult female breast is a large, modified sebaceous gland that consists
mostly of fat, fibrous septa, and glandular structures. The weight range for a
“normal,” mature female breast is 30 grams to over 500 grams, depending on
the woman’s body habitus. The breast typically comprises 15 to 25 lobes that
are divided into multiple lobules, each containing 10–100 terminal milk-
secreting alveoli. Numerous tiny milk-transporting ductules combine to form
a single lactiferous duct that exits each lobule. About 15 to 25 such ducts
converge at the nipple. The composition of the breast varies from individual
to individual and with age and other factors. Pregnancy, lactation, menstrua-
tion, and menopause all introduce characteristic changes in breast physiol-
ogy. For example, in postmenopausal involution of the breast, the lobular and
alveolar structures regress and the vascularity of the intervening connective
tissue is reduced. Eventually only small, occasional islands of functional
breast parenchyma remain, surrounded by dense, scarred connective tissue
[28].

3.2 Breast Tissue Morphology

We have only a limited understanding of the biological and physiological
bases of image contrast for malignancy and their relation to biological and
molecular markers of cancer progression or regression that are predictive of
therapeutic response and, ultimately, outcome. The interpretation and signifi-
cance of variables imaged using alternative modalities will only be appreci-
ated if the electromechanical properties being measured (e.g., electrical
conductivity and permittivity, optical absorption and scattering, and me-
chanical elasticity and compressibility) are correlated with the biological
characteristics of the tissue being imaged. Measures of tissue microvascular-
ity such as mean vessel density and area may correlate with hemoglobin con-
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centration and oxygen saturation, as indirectly measured by NIS. The ratio of
functional breast parenchymal epithelium to surrounding dense connective
tissue stroma (epithelium-to-stroma ratio, E:S) may correlate with tissue
hardness, elasticity or compressibility as measured by MRE. Variable inter-
faces between tissue types are also likely to influence the electromagnetic
properties associated with modalities such as EIS and MIS, which are sensi-
tive to such morphologic attributes of the local cell population as volume
fraction, membrane integrity, water content, and ionic concentrations. Un-
fortunately, biological correlates with tissue water content are difficult to
evaluate since the tissue must be routinely processed (formalin-fixed, dehy-
drated, and paraffin-embedded) in order not to compromise the pathologist’s
ability to make a definitive tissue diagnosis.

A range of electromechanical and biological values for normal breast tis-
sue must first be established to ensure a meaningful comparison to diseased
breast tissue. To this end, we have completed a study employing a computer-
aided program specifically developed to reproducibly assess microvascula-
ture and tissue type interfaces in benign and malignant breast tissue.

The benign diagnostic categories comprised (1) breast tissue with normal
histology, (2) fibrocystic disease, and (3) a common benign neoplasm (fi-
broadenoma). The malignant neoplasm category comprised invasive carci-
nomas. Fourteen patients who underwent breast-reduction surgery with
sampling from both breasts provided tissue with normal breast histology.
Twenty-one patients (16 of whom also underwent breast reduction surgery
with sampling from both breasts, 5 with unilateral biopsies) provided tissue
with fibrocystic disease of variable severity (mild, moderate, or severe).
Nineteen patients provided tissue with a benign fibroadenoma from one
breast, each lesion classified according to the degree of stromal hyalinization
or scarring in the tumor. Seventeen patients provided tissue with an invasive,
malignant carcinoma from one breast [29].

Mean vessel density (MVD, percentage of each unit area that consists of
transected vessels), mean vessel area (MVA, average cross-sectional area of
an individual vessel), and vessel orientation (correlated with shape of ob-
served cross-section) were the morphologic criteria chosen to assess tissue
microvascularity. The criteria chosen to evaluate tissue hardness, elasticity,
and compressibility were the epithelium-to-stroma ratio (E:S), the degree of
severity of fibrocystic disease, the degree of stromal hyalinization or scarring
in the benign neoplasms (fibroadenomas), the infiltrative patterns of the ma-
lignant neoplasms (carcinomas), and the type of tissue interfacing with the
neoplasms (fatty, fibrofatty, fibrous, fibrocystic changes).

Computerized image-processing techniques can be used to select regions
of interest in tissue samples for analysis. First, hematoxylin and eosin are
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used to stain routinely processed (i.e., formalin-fixed, paraffin-embedded)
tissue sections. The segmentation of specific regions of interest (vessels and
epithelium) is facilitated if these regions are stained to distinguish them from
the surrounding tissues. Outlining of vessels can then be achieved using a
specific immunologic marker of the endothelial cells that line the vessels
(i.e., a commercially available CD31 stain). The epithelial component of the
tissue can be distinguished from the surrounding connective tissue stroma
using a specific immunologic marker of epithelial cells (cytokeratin 5D3).

Using these immunohistochemical techniques, we analyzed more than
100 breast specimens for MVD, MVA, shape,* and E:S across the four diag-
nostic categories, namely (1) normal, (2) fibrocystic disease, (3) benign neo-
plasms (fibroadenomas), and (4) malignant neoplasms (invasive carcinomas).
Representative micrographs illustrating tissue types, computer processing,
and staining are given in Figures 1–4. Vessel analysis of the neoplasms was
compared peripherally and centrally. Adjusted t-tests assessed the effects of
fibroadenoma stromal hyalinization or scarring and fibrocystic disease se-
verity. Measurement reproducibility for the three benign diagnostic groups
was assessed using Spearman correlation coefficients.

* Equivalent to vessel orientation. “Shape” is a unitless measure of a vessel’s elliptical cross-
section, calculated as the length of the ellipse’s minor axis divided by the length of its major
axis. For example, a vessel of circular cross section has a shape of 1; a vessel cut at such an
angle that its cross-section is an ellipse twice as long as it is wide has a shape of .5.
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Figure 1. Immunostaining of normal breast tissue with the pan-endothelial marker
CD31 highlights the endothelium-lined vessels per unit area (a). Using gray-value
segmentaion (b), the endothelial-lined vessels with positive immunostaining are
automatically outlined and counted (c). Dedicated image-processing macros then
provide the microvessel density (MVD), microvessel area (MVA), and total vessel
count per unit area. As compared to a mean MVD of 0.27 (SD 0.095) for normal
breast, the mean MVD for an infiltrating ductal carcinoma (d and e) is 0.77 (SD
0.09). Hematoxylin and eosin stain (d), CD31 immunostaining (e)

The adjusted means for the chosen morphologic variables in normal
breast, fibrocystic disease, fibroadenomas, and carcinomas are given in Table
1. There is a significant difference between the value ranges for MVD,
MVA, E:S, and shape when comparing the four diagnostic categories’
( p < .001). For the invasive carcinomas, the significances for E:S and MVD
were higher ( p < .001) as compared to fibroadenomas, but that for MVA was
smaller. When comparing the fibroadenomas and carcinomas centrally versus
peripherally, there was no significant difference between the four measured
variables.

Correlation coefficients for method reproducibility were high across the
diagnostic categories: E:S, 0.90–0.94; MVD, 0.92–0.96; MVA, 0.61–0.78;
vessel shape, 0.61–0.90. There was right-versus-left (breast) predictability
for MVD only in normal breast. In fibrocystic disease, three variables (E:S,
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Figure 2. Immunostaining of normal breast tissue with the cytokeratin 5D3 high-
lights the epithelial components (a). Using gray-value segmentation (b), the areas of
epithelium with positive immunostaining are outlined (c) and measured as a ratio of
the surrounding, unstained stroma to derive the epithelium-to-stroma ratio (E:S). As
compared to a mean E:S of 0.013 (SD 0.0045) for normal breast, the mean E:S for
an infiltrating ductal carcinoma (d, e) is 0.162 (SD 0.0395). Hematoxylin and eosin
stain (d), cytokeratin immunostaining (e).

MVA, and vessel shape) showed right-versus-left predictability, most sig-
nificantly for E:S ( p < .001).

Of the 37 cases of fibrocystic disease, 7 samples (each with right and left
specimens) were classified with mild fibrocystic changes (1+), 9 samples
(each with right and left specimens) with moderate changes (2+), and the re-
maining 5 samples (unilateral specimens) with severe changes (3+). The
trend of an increasing E:S with increased severity of fibrocystic disease
( p < .001) reflects the associated proliferation of epithelium. These findings
may influence the ability to detect a breast cancer given a background of se-
vere fibrocystic changes as compared to fat. The degree of fibrocystic disease
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did not affect the MVD but the MVA decreased as the severity of fibrocystic
disease increased ( p = .038).

Of the 19 fibroadenomas measured in our study, 6 were classified with
predominantly loose, myxoid stroma (1+), 5 with predominantly hyalinized
(scarred) stroma (3+), and 8 with a mixture of both stroma types (2+) In the
fibroadenomas with more stromal hyalinization (3+), the proportional
amounts of associated epithelium were less as compared to the fibroadeno-

Figure 4. For this infiltrating ductal carcinoma of intermediate grade, 0.8 cm di-
ameter, and interfacing with fat, shown in (a) with hematoxylin and eosin stain,
computer-assisted image processing of cytokeratin 5D3 immunostaining (b) gave an

MVD of 0.68 and and MVA of 155

Figure 3. For this benign fibroadenoma with hyalinized stroma, shown with hema-
toxylin and eosin stain (a), 1.4 cm in diameter and interfacing with fat, computer-
assisted image processing of cytokeratin 5D3 immunostaining (b) gave an E:S of
0.05. Analysisof immunostaining with the pan-endothelial marker CD31 (c) gave an
MVD of 0.45 and an MVA of 175

E:S of 0.119. Analysis of pan-endothelial marker CD31 immunostaining (c) gave an
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mas with loose, myxoid stroma (1+), where the E:S was significantly in-
creased ( p <.001). Similarly, the MVD was significantly less in the lesions
with hyalinized stroma (3+) as compared to those with myxoid stroma
( p < .001). The presence or absence of stromal hyalinization did not signifi-
cantly affect the MVA. These findings may be important in distinguishing
sclerotic, hyalinized fibroadenomas (usually seen in older patients) from ma-
lignant neoplasms. We also postulate that hyalinized fibroadenomas are
harder and less compressible than myxoid fibroadenomas, which may impact
the findings of the EIS, MIS, and MRE imaging modalities.

As expected, the E:S and MVD seen in the 17 invasive breast carcinomas
were significantly higher than the benign diagnostic groups, reflecting new
vessel formation. However, the MVA of these new vessels was smaller, both
peripherally and centrally, in the malignant neoplasms than in the benign
neoplasms. Of the 17 carcinomas measured in the current study, 14 were
usual infiltrating ductal carcinomas, 2 were lobular carcinomas, and one was
a colloid or mucinous carcinoma (a variant of a ductal carcinoma with a high
mucin component). We postulate that the infiltrative pattern of a tumor and
its ability to cause architectural distortion correlates with changes seen in im-
aging modalities. The sclerotic, spiculated mass of a typical ductal carcinoma
would most likely cause greater compression changes than the single-cell, in-
sidious growth pattern of a lobular carcinoma or the soft, well-circumscribed
mass of a colloid/mucinous carcinoma (which causes only minimal distortion
of the surrounding tissue). We also postulate that a typical invasive ductal
carcinoma arising in a fatty breast will exhibit a more sharply contrasting at-
tenuation signal at the tumor/fat interface than the same tumor arising in
dense, fibrous breast stroma. In the latter case, the attenuation gradient (i.e.,
in transitioning from tumor to collagen to surrounding fat) would be less
steep. Conversely, for tumor types such as tubular or lobular, which infiltrate
as subtle tubules or single cells respectively, it is likely that signal attenuation
would be more diffuse and the proportions of epithelium (tumor and normal)
to connective tissue stroma and to fat less well-defined.

The results for shape (vessel orientation), where ranges of 0–1 correlate
with perfectly longitudinal and perfectly transverse vessel sectioning respec-
tively, suggest near-random alignment of the vascular spaces in benign and
malignant breast tissue. Overall, vessel shape values were significantly lower
in the fibroadenomas than the other diagnostic categories, representing a
trend towards a more longitudinal arrangement.

This study has a number of limitations. Tissue fixation and dehydration
prevent the evaluation of water content and other criteria; small tissue sam-
ples may not be representative of larger volumes; the areas evaluated in each
sample are not randomly selected by a computer-driven slide stage; method
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reproducibility for multiple observers has not been evaluated; and the malig-
nant tumors used for comparison with the benign breast tissue were all inva-
sive carcinomas. Nevertheless, this study establishes a reproducible
computer-assisted technique to assess morphologic criteria in benign and
malignant breast tissue that may correlate with properties detected by alter-
native breast imaging techniques. It also provides a baseline of expected val-
ues for normal and abnormal breast tissue against which results from study
subjects can be compared. In this regard, pathological findings in 39 study
subjects with biopsied screening abnormalities have been evaluated. The
morphometric measurements from the study subjects fall within the ranges
established in Table 1. The measures from the initial core biopsies are occa-
sionally lower than either the established normal ranges or the subsequent
excisional biopsies, due to limited sampling in the cores. (Excisional biopsy
specimens were used to establish the data in Table 1.)

In an additional set of analyses, we compared pathology measures to
electromechanical properties as determined by alternative imaging modali-
ties. Table 2 reports Spearman correlations between pathology and imaged
properties for regions of interest from exams with abnormal conventional
findings. These correlation coefficients suggest possible relationships be-
tween property measures and specific pathological properties of the related
biopsy material. In particular, we note a fairly high correlation between ves-
sel density and the NIS-derived value for (total hemoglobin). The rela-
tionship between pathological vessel density and percent blood determined
from imaged NIS parameters is particularly clear (Figure 5).

Cross-modality correlations have also been investigated (Table 3). Inter-
estingly, most cross-modality property correlations are modest, suggesting
that each method is sensitive to different tissue characteristics in the region
of interest. Note, however, that water percentage from the NIS data is
strongly correlated with MIS permittivity. This is intuitively satisfying, since
MIS permittivity is known to be sensitive to water content, and confirms that
the two methods are recovering important information about tissue composi-
tion. The amount of localized property enhancement associated with cancer
in the various modalities is discussed further in Chapter 11.
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Figure 5. Relationship between pathological vessel density (MVD, expressed as a
number between 0 and 1 rather than as a percentage) and percent blood, as deter-
mined from imaged NIS parameters. Error bars show the standard deviations in both
dimensions.
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An additional remark concerning the MVD measure is called for. We
originally selected mean MVD as a morphometric measure following work
by Weidner et al. [30], who showed that increased MVD (>100 per 200 ×
field) in early-stage invasive node-negative breast carcinoma was an inde-
pendent prognostic indicator for reduced overall survival and recurrence-free
survival. However, as the review article by Hlatky et al. eloquently reminds
us [31], microvessel density does not reflect the angiogenic activity or angio-
genic dependence of a tumor. It is really a measure of “intercapillary dis-
tance” (i.e., the number of vessels per unit area), which is determined by the
net balance between the effects of stimulatory and inhibitory angiogenic
factors on vessel growth as well as by non-angiogenic factors such as oxy-
gen- and nutrient-consumption rates. In particular, the number of tumor cells
that can be supported by a vessel depends on the metabolic needs of those
cells; the higher the rate of oxygen and nutrient consumption, the smaller the
number of tumor cells that can squeeze between capillaries without becom-
ing necrotic. This, in turn, influences the vascular density (intercapillary dis-
tance). MVD therefore varies markedly with tumor type. Some tumors (e.g.,
those of the lung, colon, and kidney), despite considerable angiogenic activ-
ity, exhibit lower microvessel densities than surrounding normal tissues.
Therefore, despite its importance as a prognostic indicator in untreated tu-
mors, a low intratumoral MVD is not a sufficient criterium to exclude a pa-
tient from treatment with angiogenesis inhibitors.
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The pan-endothelial cell immunomarker CD31, which we used to meas-
ure MVD, labels both the activated endothelial cells lining newly formed
vessels and the endothelial cells lining vessels established since embryogene-
sis. MVD evaluated using CD31 needs to be validated against MVD evalu-
ated using immunomarkers specific for activated endothelial cells only, such
as the endothelial membrane glycoprotein endoglin (CD 105) and the integral
membrane metalloprotease CD 13. MVD also needs to be correlated with
other markers of angiogenic activity, including angiogenic peptides such as
vascular endothelial growth factor (VEGF) and basic fibroblast growth factor
(bFGF); matrix-degrading proteolytic enzymes such as urokinase-type plas-
minogen (uPA) and plasminogen activator inhibitor I (PAI-1); and plasmino-
gen-activated cytokines such as transforming growth factor beta (TGF-beta).

4 UNIFYING THE FOUR MODALITIES

The importance of developing alternative breast cancer imaging modalities is
that they may access new mechanisms of physiological contrast. Further,
there may be synergistic effects when the four approaches discussed in this
text are used as complements to each other rather than in isolation. This mul-
timodality approach is an important theme, as it is unlikely that any single
breast-imaging method will be superior across the whole spectrum of women
receiving clinical breast care.

With this approach in mind, the clinical introduction of these alternative
modalities is being coordinated by our clinical research team at the
Dartmouth-Hitchcock Medical Center. The clinical team supplies the
infrastructure for efficient subject recruitment and for the generation of a
common database of clinical experiences, image analyses, case studies, and
outcomes. This enables us to compare alternative and conventional imaging
modalities in a common set of clinical circumstances and to compare the
information obtained from using multiple modalities to that gained from each
modality alone.

In addition to assessing whether there is a synergistic diagnostic effect
when combining all four approaches, the projects are working to pool their
computational resources where possible. This not only minimizes costly
overlap but also facilitates cross-fertilization of new methods that may
benefit all modalities. As mentioned earlier, each modality utilizes an
iterative technique for recovering the property images. All apply FE
modeling to achieve efficient calculation of the governing partial differential
equations and complex reconstruction techniques. These techniques involve
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advanced numerical algorithmic concepts, making them critically dependant
on the robust software implementation and access to state-of-the-art com-
puting environment that are provided by our computational team.

While this framework is clearly useful, development within each
individual project retains important independent aspects, particularly in
relation to the unique physical requirements of each. In this book, this
balance of coordination and individuality is reflected in the computational
overview in Chapter 2 and the treatises on the theory and numerical
implementation specific to each modality (Chapters 3,5,7, and 9).

Figure 6 illustrates the development interactions of the four modalities
and the supporting clinical and computational teams (or “cores”). The circu-
lar path connecting the individual modality projects represents the flow of in-
formation that may originate in any one project and influence one or more of
the others. Such influence is possible because, while each modality project is
responsible for its own technological advancement, preclinical test-
ing/evaluation, and clinical image analysis, all four projects pursue quantita-
tive breast tissue property mapping that consists of the same three essential
elements: (1) a controlled stimulus applied to the breast over a three-
dimensional volume encompassing the region of interest; (2) fast, accurate

Figure 6. Relation of the four modalities to the clinical and computational cores.
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measurement of breast response to the applied stimulus over the corre-
sponding tissue volume; and (3) image formation from the response based on
breast property parameter estimations achieved through mathematical mod-
eling techniques. As a result, interactions and collaborations between project
components exist in areas of hardware/software data generation, acquisition,
calibration, and validation along with image reconstruction and analysis.

5 A GLANCE AHEAD

The next chapter expounds the significant computational ground held in
common by all four modalities. The remainder of the book will take a closer
look at the mathematics, hardware, and results of each of the four modalities.
A pair of chapters is devoted to each modality, one to explore computational
and theoretical issues and another to describe devices and results.
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Chapter 2

COMPUTATIONAL FRAMEWORK

Paul M. Meaney, Ph.D. and Keith Paulsen, Ph.D.

1 INTRODUCTION

All of the imaging modalities discussed in this book require unique numeri-
cal algorithms and data acquisition hardware. However, they also share a
good deal of algorithmic common ground. The Dartmouth Breast Imaging
Group has therefore articulated a shared numerical-analysis framework for
these modalities. This framework facilitates communication between teams
working on different modalities while being flexible enough to allow for
needful variations, especially as dictated by the data-acquisition requirements
of each modality.

In all four modalities, imaging requires the solution of an inverse prob-
lem. That is, measurements are made of some physical process (e.g., micro-
waves, infrared light, or mechanical vibrations) that interacts with the tissue,
and from these external recordings the two- or three-dimensional distribution
of physical properties of the tissue (dielectric properties, optical absorption
coefficient, elasticity) is estimated using numerical algorithms.

The imaging strategies used by three of the modalities—electrical im-
pedance spectroscopy (EIS), microwave imaging spectroscopy (MIS), and
near-infrared spectroscopic imaging (NIS)—resemble those of x-ray com-
puted tomography (CT). That is, they collect data with an array of detectors
positioned around a central target while illuminating the target successively
from all directions. The fourth modality, magnetic resonance elastography
(MRE), is distinctly nontomographic in that it excites the whole tissue vol-
ume using a piezoelectric-based mechanical vibration system and collects
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displacement information at each voxel within the target using magnetic
resonance imaging techniques.

Because x-rays propagate in nearly straight lines through tissue, in CT an
attenuation coefficient can be assigned directly to each pixel. The inverse
solution for these attenuation coefficients requires only linear matrix opera-
tions. For the imaging modalities treated in this book, however, the inverse
problem is nonlinear, because the physical interactions do not occur along
straight lines but rather are distributed essentially throughout the imaging
field-of-view. As a result, the measured response is not a linear function of
tissue properties and iterative numerical methods are required to solve the in-
version problem.

We have chosen to apply a well-known iterative technique, the Gauss-
Newton method, to the solution of this suite of nonlinear inverse problems
[1]. We estimate the spatial distribution of the tissue’s physical properties;
calculate the response that would be observed, given this distribution (i.e.,
solve the “forward problem”); compare these calculated observations to the
actual data; and update the estimated property distribution accordingly. This
process is iterated until the real and calculated observations converge,
whereupon the estimated distribution is taken as the desired image.

2 FORWARD PROBLEM

2.1 Field Equations

Our finite-element approach requires that the measurable physical phenome-
non of interest (e.g., electromagnetic waves) must be governed by a partial
differential equation. Listed below are the model equations for the four mo-
dalities, along with the tissue properties associated with the measurable re-
sponses.

1. Helmholtz wave equation (MIS). For sinusoidal electromagnetic waves in
source-free regions, Maxwell’s equations reduce to the homogeneous Helm-
holtz wave equations [2]. In particular, the electric-field component E of a
sinusoidal electromagnetic wave obeys

Here where k is the wave number, is radian fre-
quency, and the medium is characterized by magnetic permeability

electrical permittivity and conductivity In media with nonuniform
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electrical properties (e.g., tissue), varies locally. Its spatial variation
throughout the breast is the quantity we are interested in imaging in MIS.

2. Diffusion equation (NIS). The diffusion equation for an absorptive, scat-
tering, linearly anisotropic optical medium is

where is the photon fluence, is the speed of light in the medium, is
the intensity of an isotropic light source, and D is the diffusion coefficient,
which is a function of the absorption and reduced scattering coefficients
and i.e., The diffusion coefficient is the locally-
varying physical quantity of interest in this modality.

3. Laplace’s equation (EIS). In any charge-free region in a dielectric me-
dium, the voltage (potential) at every point is governed by Laplace’s equa-
tion:

Here, is the voltage and the medium has electrical permittivity and
conductivity Laplace’s equation is an appropriate relationship for EIS be-
cause the EIS system operates at frequencies several orders of magnitude
below those used by the MIS system (a realm where the Helmholtz equation
applies). As in MIS, the electrical properties of the tissue ( and ) are the
physical quantities of interest.

4. Navier’s equation (MRE). The governing differential relationship for the
MRE modality is Navier’s equation, which is in essence a multidimensional
generalization of Hooke’s Law of linear elasticity. Navier’s equation de-
scribes the displacement field inside an elastic body subject throughout to
stress and strain as follows:

Here, the three-dimensional vector u represents displacement within the me-
dium, and are the material stiffness moduli known as Lamé’s constants
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(presumed here to vary throughout the medium as scalar fields), and is the
density. The properties of interest are the moduli and (and possibly ).

For all modalities we have focused on the frequency-domain version of
the problem; that is, we have assumed a periodic time variation of the form

for all nonconstant quantities and have solved the resulting steady-state
system. An equally valid time-domain solution could be obtained on identical
FE meshes by modeling the evolution of the system through time, but we
have chosen the frequency-domain approach for the three tomographic mo-
dalities (MIS, NIS, EIS) because of limitations imposed by hardware cali-
bration procedures and the advantages of exploiting the frequency-dispersion
characteristics of the propagating media.*

For MRE, likewise, data are acquired at only a single mechanical-
excitation frequency. Acquiring data at multiple mechanical excitation fre-
quencies is possible but would be time-consuming using current methods.

2.2 Numerical Solution Framework

There are a number of numerical approaches for computing the electromag-
netic fields or mechanical displacements throughout an inhomogeneous me-
dium. These include finite elements, finite differences, method of moments,
finite-difference time domain, and others [3–6]. Each has merits, but the fi-
nite element (FE) method is particularly useful for our purposes.

The FE method approximates a continuous medium as a mesh of po-
lygonal or polyhedral elements with shared vertices (the nodes of the mesh).
These elements are usually triangular (in 2D problems) or tetrahedral (in 3D
problems). A basis function is centered on each node, and the physical phe-
nomenon of interest is modeled at every point in the region of interest as a
weighted sum of these basis functions. For an N-node mesh, this entails the
solution of a matrix equation of the form where [A] is
N × N; however, because the basis function associated with each node is
nonzero only over those finite elements which contain that node, [A] is
sparse (populated with zeroes except near the diagonal) and therefore ame-
nable to iterative and/or banded-matrix solutions. This enables important ef-
ficiencies in storage and computation [7]. Furthermore, the nodes of an FE
mesh can be placed arbitrarily, allowing accurate modeling of irregular ob-

*  Time-domain signals could be synthetically derived from frequency data by fast Fourier
transform if it could be collected at a sufficiently large number of fixed frequencies, but this
would dramatically increase hardware complexity and data-acquisition time. Conversely, the
full-spectrum frequency response could be obtained from time-domain data.
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ject contours and increased node density in areas where the fields to be mod-
eled vary rapidly [4].

In the two-dimensional case (readily generalizable to three dimensions),
we consider the physical phenomenon of interest (i.e., waves propagating
through the image region) as a scalar field, (readily generalizable to
a vector field). is defined over an area covered by a mesh of finite
elements (Figure 1).

Figure 1. A two-dimensional finite-element mesh composed of several hundred
triangular elements. In this particular mesh, each node (element vertex) is shared
by as many as eight or as few as two elements.

Let be the differential equation (e.g., Laplace’s) for
which is the exact solution and for which some to be de-
termined, is an approximate solution over an FE mesh having N nodes.

is defined as the sum of N “basis functions,” that are
weighted by N constants,

The are known and the N coefficients are unknown.
In general, the nonzero “residual” or error that results

from substituting for the exact solution To minimize R,
that is, to find the best possible we use the weighted residual
method (described in many textbooks on finite element methods, e.g., [4]). In
this approach, R is multiplied by a chosen weighting function the
product is integrated over the domain of the entire FE mesh,
and the result is set equal to zero:
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Substituting N different weighting functions into (2.6) produces N
equations in the N unknowns

Several simplifications can be made. First, each Lagrangian basis func-
tion can be chosen to be nonzero only over those mesh elements of
which the i th node is a vertex. Within each triangular finite element, there-
fore, only three are nonzero and (2.5) simplifies to

where n is a local index denoting the three vertices of the element,
is the basis function centered on node n, and is the coefficient for

(see Figure 2).

Figure 2. A triangular finite element. A coefficient and linear basis function
are associated with each node. Each is nonzero over this element

and over all other elements of which its node is a vertex.

Second, in our implementation each basis function is linear, decreas-
ing from 1 at the i th node to 0 along the opposite edge of each element
sharing that node. The basis function at any node i that is surrounded en-
tirely by mesh elements (i.e., any node that is not an edge node) can thus be
visualized as an irregular pyramid with its peak over node i and its faces
sloping down to the distal edges of all the elements sharing the node (Figure
3).
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Figure 3. Relationship of piecewise-linear basis functions to triangular FE mesh
elements. Top left: the piecewise-linear basis function that is centered at
node j, is shown over its whole domain (in this case, five elements). Its peak value
is 1. Top right: The portion of that overlaps element (dark gray).
Bottom left: The portion of that overlaps element Bottom right: The
portion of that overlaps element All other basis functions are zero
over this element.

Third, the N basis functions used to form in (2.5) are em-
ployed as the N weighting functions When the weighting functions are
equal to the basis functions, the resulting weighted-residuals method is
termed the Galerkin method.

The presence of a Laplacian term (i.e., a second-order derivative) in the
partial differential equation for each modality presents difficulties, since
the basis functions are linear. That is, wherever a Laplacian term appears in
the governing equation, it generates
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in the residual R, and for linear on the element interior. (Tech-
nically, (2.8) generates an integrable singularity at the boundaries between
elements because of the discontinuity in at element interfaces.) The dis-
appearance of all second-derivative terms from R can be resolved by gener-
ating a weak form of (2.6) that has lower continuity requirements on
resulting derivative terms. When a basis function is used as the weighting
function in (2.6) (i.e., when the Galerkin method is used), second deriva-
tives like those in (2.8) give rise to

We apply Green’s identity to (2.9). In the two-dimensional case, Green’s
identity states that for any two scalar functions u and v continuous on some
domain with boundary C,

where dS  is a differential segment of C and (i.e., the nor-
mal derivative) [4]. This yields

where designates integration over the problem domain (In the three-
dimensional case, designates volume integration and the contour integral
becomes a surface integral.) Equation (2.11) contains derivatives of at most
first order in both integral terms, sidestepping the problem of vanishing (sin-
gular) second-order derivatives. Another advantage of (2.11) is the appear-
ance of the boundary integral, which is represented in terms of the natural
boundary conditions expressed as the flux of the field through the enclosing
surface.

When forcing and boundary conditions are taken into account, the re-
sulting set of N weighted integral equations can be written in matrix form as
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Matrix [A] is N × N and contains terms dependent on the governing equa-
tion. The vector of basis-function coefficients, is the
quantity to be computed. The entries in {b}, which account for forcing func-
tions (i.e., external inputs to the system) and boundary conditions, arise dur-
ing evaluation of the contour integral in (2.11). Matrix [A] is sparse due to
the localized nature of the basis functions, lending itself to efficient matrix-
factorization routines [8] and/or iterative solvers.

Boundary conditions vary among modalities. For instance, the NIS and
EIS approaches utilize mixed boundary conditions with

Here, A and B are known constants and n is the unit normal vector oriented
outward at the boundary [9]. The MRE approach applies either a Dirichlet or
Neumann boundary conditions, depending on the physics of the mechanical
vibration apparatus being used [4]. The MIS approach eliminates the need for
approximate radiation boundary conditions by implementing a hybrid ele-
ment method in which the FE method described above is used for the imag-
ing zone and a boundary element (BE) method is used for the surrounding
medium (i.e., in the breast-imaging setup, a homogeneous liquid in which the
breast is immersed) [10]. The methods used to cope with boundary condi-
tions are discussed in detail in the chapters devoted to the individual imaging
modalities.

3 INVERSE PROBLEM

3.1 Gauss-Newton Iteration

The forward solution described above computes the spatial variation of an
external observable (e.g., electric field) based on a given tissue-property dis-
tribution, governing equation, boundary conditions, and source terms. The
inverse solution estimates the property distribution given the governing
equation, boundary conditions, source terms, and measurements of the exter-
nal observable. For all modalities considered in this book, the forward prob-
lem is linear and the inverse problem nonlinear [1, 4]. That is, the tissue
properties to be estimated depend nonlinearly on the observable.

We have pursued a Gauss-Newton iterative scheme for solution of the
inverse problem [1]. This approach begins with an initial estimate of the
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property distribution and solves the forward problem based on this initial
distribution. It then compares this solution with the measured data (as speci-
fied below) and solves a linearized approximation of the inverse problem to
obtain a new estimate of the property distribution. This procedure is iterative:
the property-estimate updating is repeated until the algorithm converges to an
optimal least-squares fit of modeled data to measured data.

We employ an iterative Newton algorithm defined by

Here, is the estimate of the material property distribution at the v th itera-
tion, is the updated estimate, and is the derivative of with re-
spect to [11]. The functional is defined in terms of a cost function,
G, that expresses the difference between the measured and modeled data at
each iteration:

Here, vectors and are the computed (i.e., forward-solution)
and measured values, respectively, of the observable quantity of interest at
the measurement sites. Both are long, where is the num-
ber of different excitations and is the number of measurement sites per
observation. (For example, in an imaging region surrounded by 16 micro-
wave antennas, one of which transmits at any given time while the others re-
ceive, and ) Furthermore, vectors and

are all L long, where L is the number of material parameter
values to be reconstructed. L is not necessarily equal to N, the number of
nodes in the mesh used to model the observable phenomenon of interest; see
discussion of the dual mesh scheme in the next section.

Using (2.16) and the fact that (if is assumed
small enough to neglect),

TEAM LinG - Live, Informative, Non-cost and Genuine !



Computational Framework 35

Matrix is (M × O) × L and is termed the Jacobian matrix, [J], In-
serting (2.17) into (2.14) and rearranging produces (in matrix notation)

where Multiplying both sides by we have

We wish to calculate the update vector which, with gives
at the new iteration. The entries of are known and the entries of
are computed using by the forward-solution method described

earlier. Therefore, the only term of (2.19) still needed is [J]. We obtain this
by differentiating (2.12) with respect to Vector {b} contains only bound-
ary and forcing information; it is therefore not a function of and

After rearranging,

Furthermore, [A] and are computed at each iteration as part of the
forward solution. Thus, only is needed to solve (2.20) for

The details of computing and differ
among the imaging modalities (see [12] and other chapters in this book). In
Section 3.3, a closer look is taken at the method used for one particular mo-
dality (MIS).

A few of the computational techniques required for the efficient solution
of the inverse problem will now be discussed, including the dual mesh
scheme, the adjoint technique, and zone iterative reconstruction.

3.2 Dual Mesh Scheme

The system is rank N, but the dimension of the property dis-
tribution vector need not be N. We have exploited this fact to develop a
dual mesh scheme [12].
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In solving for the spatial distribution of the observable of interest in each
modality, mesh discretization must be fine enough to meet accuracy criteria.
For instance, in the MIS approach the nodes of the mesh must be separated
by no more than approximately (or one seventh of the exponential de-
cay distance, whichever is less [13]). On the other hand, the spatial resolution
required for which is directly related to the final image resolution, is
dependent both on the spatial frequency of the parameter or parameters to be
estimated (which is relatively low in all cases considered here) and on the
amount of measurement data available. This points to a natural link between
the amount of measurement data available and image resolution.

In the dual mesh method, the parameter is represented on a mesh that
is coincident with the forward-solution mesh but coarser. The nodes of this
coarse mesh may be placed arbitrarily with respect to those of the mesh used
for the forward solution of the observable phenomenon (Figure 4). Over each
element of the L-node (“coarse” or “property”) mesh, is defined as a
weighted sum of Lagrangian basis functions analogous to that defining

over the N-node (“fine” or “forward-solution”) mesh:

Each like each in (2.5), is a linear basis function that is nonzero only
over its associated triangular elements; however, each is associated with
a node of the coarse mesh, while each was associated with a node of the
fine mesh. The summation in (2.21), like that in (2.7), only has three nonzero
terms in two dimensions (four, in three dimensions) for any (x, y) in the area
covered by the mesh element.

The dual mesh approach entails some computational overhead. For in-
stance, in solving the forward problem, the property distribution must be
mapped from the parameter mesh to the forward solution mesh. However,
this is a linear operation that can be accomplished efficiently by matrix mul-
tiplication. As will be seen below, more significant computational overhead
occurs in calculating the terms of the Jacobian matrix,

As mentioned above, computing differs among modalities. For
illustrative purposes, the MIS case is considered here; the following equa-
tions are therefore specifically valid only when the governing equation is
(2.1). More detailed treatments for each modality are provided in other
chapters.
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Figure 4. A portion of a parameter mesh (large triangles) with a portion of the for-
ward-solution mesh (small triangles) that it overlays. In practice, the meshes are co-
extensive.

We begin by examining the element at row i and column j of [A] in
(2.12):

The first term on the right-hand side results from multiplying the divergence
operator in the Helmholtz equation by the weighting function and apply-
ing Green’s identity to produce the weak-form solution. The second term re-
sults from multiplying by and integrating over the model domain.
(In the MIS case, is equal to the wave number squared, .)

The next step in computing is to differentiate [A] with respect
to where denotes a node in the coarse mesh. This is accomplished by
differentiating (2.22). (In principle, the calculation of L derivatives of [A] is
required, each an N × N matrix; however, as will be shown, only a few
terms of each are nonzero.) Using the fact that neither nor is
a function of and substituting for from (2.21), differentiation of (2.22)
gives

where is the basis function associated with node in the parameter mesh.
Although in principle each term requires integration over the

entire fine-mesh area, its argument is nonzero only where and are
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all nonzero. That is, the integration in (2.23) need be performed only where
those fine-mesh elements specified by the overlap of fine-mesh basis func-
tions and are covered or masked by coarse-mesh basis function
This means that the N × N matrix contains only a few nonzero
elements, simplifying computation.

A minor complication arises whenever a fine-mesh element happens to
straddle the boundary between two coarse-mesh elements (see Figure 3). In
such a case, the argument of is nonzero over only part of that fine-
mesh element, i.e., the part masked by [12]. One might choose, when
constructing the two meshes originally, to place their nodes so that each fine-
mesh element resides entirely within one coarse-mesh element (no border-
crossers). This would eliminate fragmentary element integrations but con-
strain mesh generation. Alternatively, one might allow arbitrary generation of
both meshes and then perform fragmentary element integrations as needed.
We have chosen the latter method [12]. The required procedures are compu-
tationally complex but not conceptually difficult.

The fact that is a function only of the basis functions of the fine
and coarse meshes offers large computational savings. Since the basis func-
tions are a fixed feature of algorithm design, all nonzero elements of

can be precalculated and stored in a lookup table, which saves the
effort of recomputing them at each iteration.

3.3 Adjoint Method

A direct-differentiation technique for constructing the Jacobian matrix, which
is used to solve for the property update vector at each iteration, was
described in Section 3.1. However, this method can be computationally ex-
pensive. For instance, in a case where the forward-solution and parameter
meshes have N and L nodes, respectively, and are surrounded by
source excitations, the computational load at each iteration includes (a)
LU factorizations of [A] and matrix back-substitutions for the forward
problem and (b) matrix back-substitutions for the inverse problem.

Little can be done to reduce the computational costs of the forward
problem. However, in the inverse problem an alternative to direct computa-
tion of the Jacobian matrix is the adjoint method [14]. This is utilized in the
NIS, EIS, and MIS modalities, where the principle of reciprocity can be ex-
ploited. Reciprocity holds where, for a fixed property distribution, the physi-
cal phenomenon measured at point r due to a given source at point s is equal
to that which would be measured at s due to an equivalent source at r [15].
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Interchangeability of image and source in lens optics is an example of recip-
rocity.

Each entry of the Jacobian matrix describes the change in the observable
(e.g., electromagnetic field) corresponding to an infinitesimal property
change at node in the coarse mesh, where the wave phenomenon is gener-
ated by a point source at location s and is measured at location r. Each entry
in the Jacobian can thus be written as

where is the distribution of the observable resulting from a point source
at s, is the Dirac delta function, and are the Cartesian coordinates
of the measurement site r, and signifies integration over the region
where the coarse-mesh basis function at node is nonzero. Putting
(2.24) aside for the moment, we rewrite (2.20) as

Here, the right-hand side has been set equal to an “effective” source;
that is, holds the same place in (2.25) as does the source term {b} in
(2.12).

By reciprocity, if an auxiliary source is (conceptually) placed at the
receiver location r, the resulting observable is found by solving

Here, each of the N entries of is given by the inner product
which is constructed by the process described in Section 2.2 (i.e., is the
i th forward-mesh basis function employed as a weighting function). In
agreement with assumption in (2.24) of a point source, is chosen as

Combining (2.25) and (2.26) by reciprocity (and temporarily dropping matrix
notation for simplicity), we obtain

TEAM LinG - Live, Informative, Non-cost and Genuine !



40 Model-Based Breast Imaging

By (2.25), where the (i, j) th element of is (as
shown in the previous section) given by Substituting for terms on
both sides of (2.28) thus yields, for a reciprocal point source

Dividing both sides of (2.29) by produces

The left-hand term, per (2.24), is Since all values of can be
stored as a precomputed weighting vector, each entry of the Jacobian can be
computed during image reconstruction by means of a simple inner product of

times a constant (i.e., ) —always providing that the
sources and receivers are colocated, i.e., that each source antenna can also be
configured to operate as a receiver. (In practice, many need not be com-
puted because is often zero.) This computation is an O(N) opera-
tion, in contrast to the O(N × M) matrix back-substitutions in (2.20), where
M is the bandwidth of the sparse matrix [A]. For large N, the savings can
be significant. Finally, this approach is quite general and can be readily ex-
panded to 3D for each modality.

3.4 Iterative Reconstruction in MRE

In the MRE system, tissue is vibrated along a single axis at low amplitude
and low frequency. This excitation is phase-locked to the sequencing of the
MR system to measure the harmonic displacement of each pixel in space.
Because an information-rich volumetric data set is acquired in this case,
strategies other than those described above (which exploit the fact that there
are relatively few observations) must be utilized to improve computational
efficiency. In the MRE case, the volumetric nature of the data allows dissec-
tion of the problem into multiple subzones, where the boundary conditions of
each subzone are essentially the MR-measured displacements at each bound-
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ary node. Coupling of these multiple subzone problems allows for accurate
and efficient calculation of the inverse problem. The details of this approach
are covered in Chapter 3, Sections 3–5.

4 ILL-CONDITIONING OF THE INVERSE PROBLEM

In all the approaches described above, the inverse problem is ill-conditioned.
That is, the iterative procedure defined in (2.14)–(2.20) may not converge to
a useful solution without the placement of additional restrictions on the proc-
ess [16].

One way to assess ill-conditioning is to calculate the condition number of
the Jacobian matrix, that is, the ratio of the largest eigenvalue of the system
to the smallest [8]. As the condition number approaches or exceeds the nu-
merical accuracy of the computer to be used, the system of equations is said
to be unstable and the likelihood that the algorithm will converge diminishes.
In effect, the system of equations is rank deficient and the amount of inde-
pendent measurement information is not adequate.

Before discussing some of the standard mathematical approaches to ill-
conditioning, it should be said that certain strategies can mitigate the problem
without applying regularization methods. In general, adding more measure-
ment data will improve the process, but it is not always clear how linearly in-
dependent the new data will be compared to the existing measurement set. In
addition, the cost of adding new receiver channels can be high. Unwanted
source and receiver interactions could be exacerbated by placing more re-
ceivers in an already crowded volume [17], and the added computational
costs may be significant. However, there are important opportunities here.
For instance, in all three tomographic approaches, data are acquired at multi-
ple frequencies. Preliminary eigenvalue studies with the MIS system suggest
that the inclusion of additional multifrequency data reduces the system con-
dition number. Interestingly, depending on the individual system and on the
orientation of sources and receivers, certain data (e.g., signals passing di-
rectly through the tissue versus signals diffracted to the sides) are clearly
more valuable than others [18]. Finally, the problem statement itself can have
a significant effect on the condition number. For instance, in the MIS system
the eigenvalue spectral content is significantly improved when the minimiza-
tion statement (2.15) starts from the log magnitude and phase form of the
electric-field values rather than the more traditional complex form [18]. It
has been shown that the former emphasizes the directly-transmitted data over
the signals received by antennas close to the transmitter, and that the opposite
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is the case for the complex-form algorithm. Attention to features other than
regularization can thus be important.

4.1 Tikhonov Regularization

The most common approach to regularization is the Tikhonov method [16].
This approach begins with the minimization statement given in (2.15) and
adds a weighted penalty term:

In this case, the penalized factor is a Euclidean distance term referenced to
with as the weight. Other forms incorporate the first or second deriva-

tive of the property distribution. Now, and its derivative referred
to by (2.14), are given by

where the second-order derivative of is ignored in determining
Combining (2.14) and (2.33) yields

This can be rewritten in matrix form as

where [I] is the N × N identity matrix, and denotes the
property values at iteration i.

The value of is usually fixed. However, in one variation of this proce-
dure, is set equal to the parameter distribution at the previous iteration,

This variation is termed the Levenberg-Marquardt algorithm [1, 19, 20].
In this case, (2.35) simplifies to
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This method is of interest because it removes the penalty term from the gra-
dient (i.e., the right-hand side of the equation).

In general, the convergence characteristics of the two approaches (i.e.,
conventional, as in (2.14)–(2.20), versus with Tikhonov regularization) are
distinct and problem-specific [10, 21].

4.2 Hessian Scaling and Tikhonov Weight

The net effect of the regularization on the Hessian matrix is to ensure
its diagonal dominance, which facilitates its LU factorization [8]. However,
determining the optimal weighting factor is problem-specific and can be
quite difficult [22, 23]. One complication is that the scale of the elements of
the Hessian matrix can vary considerably from one imaging session to the
next. A novel approach was developed by Joachimowicz and colleagues [21],
who set equal to the trace of the Hessian matrix multiplied by an empiri-
cally determined factor, and the relative least-square error at each itera-
tion,

Reducing the net regularization parameter as the iterations progress allows
the influence of the less-dominant eigenvalues to be gradually introduced.
That is, with large at the algorithm’s start, a blurred or smooth image is
initially reconstructed; as is reduced at each iteration, more detail appears
(but the solution edges toward instability). The trace essentially measures the
scaling effect of the matrix [A] on the vector in (2.12) [8]. Therefore,
the level of regularization can be controlled (to some degree) by the dimen-
sionless quantity

One consequence of this approach is that since the Hessian diagonal
terms can vary in magnitude, the influence of the regularization is uneven
across the span of reconstruction parameters. Marquardt [20] introduced a
matrix scaling (previously associated with the Levenberg regularization
technique) that normalizes all Hessian diagonal terms to unity [19, 20]. Mul-
tiplying both sides of (2.18) by a diagonal matrix [G] and inserting the iden-
tity matrix (written as ) between the Hessian matrix and the
update vector we have
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which can be rewritten as

and solved for which we will call (Note that itself
can be easily recovered from as [G] is diagonal.) The nonzero ele-
ments of [G] are chosen as

where and are the diagonal elements of [G] and of the Hessian matrix
respectively. All diagonal entries of the scaled Hessian matrix

are unity, allowing for the level of regularization to be controlled
by the addition to the diagonal of a single nondimensional quantity (e.g., ).
This quantity can be empirically chosen so that the algorithm is relatively ro-
bust across a broad span of imaging tasks.

4.3 Miscellaneous Techniques

We have utilized two additional techniques which generally act as forms of
regularization. The first is a spatial filtering approach. When the property
distribution is updated at each iteration, uneven fluctuations in the intermedi-
ate image can occur, especially during the early stages of the process. We
have devised a spatial filter which can be applied through a matrix-vector
multiplication that forms a weighted average of the value at node i with
those of its surrounding neighbors [24]:

Here, q is chosen to be between 0 and 1, T is the number of nodes to be av-
eraged, and the superscripts “old” and “new” refer to the property values be-
fore and after application of the filter, respectively. As q varies from 1 to 0,
the amount of filtering goes from none to full averaging with the T neigh-
boring values.
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Another technique is to reduce the iteration step size [25, 26]. Modifying
(2.14) slightly produces

where which may be varied from 0 to 1, controls the step size.
It has been noted that in Newton iterative techniques, the computed up-

date values can overshoot the desired values by a considerable margin, espe-
cially when the starting property distribution is not chosen carefully [11].
Reducing the step size may slow convergence, but is another useful tool for
stabilizing an inherently unstable process.

5 3D IMAGING

In all of the imaging modalities discussed here, the physics of the electro-
magnetic wave propagation or mechanical vibration are intrinsically three-
dimensional. To achieve 3D images is a sizeable computational task, espe-
cially given limitations on data acquisition and computational resources.
Within each modality, therefore, we performed experiments to assess the im-
age degradation to be expected from using approximate 2D algorithms. Re-
sults varied by modality. In MRE, it was found that a 2D approach was
inadequate, while in MIS it was shown that 3D effects were greatly reduced
by utilizing a low-contrast coupling medium (i.e., choosing a fluid bath with
electrical properties as close as possible to those of the breast [27]).

In all four modalities, the ultimate goal is full 3D imaging. This can be
achieved by incrementally perfecting tools for the 2D and 2.5D (hybrid of 2D
and 3D) cases, and by designing these tools to be generalizable to fully 3D
approaches. For example, the FE methods associated with the forward and
inverse problems outlined in this chapter can be straightforwardly, albeit with
effort, generalized to 3D. The degree to which 3D implementations are being
explored for each modality is briefly discussed in the ensuing modality
chapters.

6 CONCLUSION

This chapter has provided a brief overview of the iterative approach utilized
in some form by all four imaging modalities treated in this book. It has out-
lined the basic notions of the inverse problem and highlighted issues such as
computational cost and ill-conditioning. The dual mesh scheme, adjoint
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method, and regularization strategies have been discussed, along with their
implications for the imaging process. The methods outlined here are, how-
ever, by no means exhaustive or final.

The breast is a particularly intriguing imaging target for all four modali-
ties because of its accessibility and relatively small volume. The complexity
of the data acquisition systems required is not overly burdensome and the re-
sources needed, even for the computationally intensive algorithms outlined
here, are within reach.

REFERENCES

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

B. Kaltenbacher, “Newton-type methods for ill-posed problems.” Inverse Probl., Vol.
13, 1997, pp. 729–753.
A. Papoulis, The Fourier Integral and Its Applications (New York: McGraw-Hill, 1962).
R. F. Harrington, Field Computation by Moment Methods (Melbourne, FL: R. E.
Krieger Publishing Co., 1968).
J. N. Reddy, An Introduction to the Finite Element Method, 2nd Ed. (New York:
McGraw-Hill, 1993).
G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference
Method (Oxford: Clarendon Press, 1985).
A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference
Time-Domain Method, 2nd Ed. (Boston: Artech House, 2000).
K. D. Paulsen and W. Liu, “Memory and operations count scaling for coupled finite
element and boundary element systems of equations.” Int. J. Numerical Methods in
Eng., Vol. 33, 1992, pp. 1289–1304.
G. H. Golub and C. F. van Loan, Matrix Computations, 2nd Ed. (Baltimore, MD: Johns
Hopkins Univ. Press, 1989).
T. B. A. Senior and J. L. Volakis, Approximate Boundary Conditions in Electromag-
netics (London: Institution of Electrical Engineers, 1995).
P. M. Meaney, K. D. Paulsen, and T. P. Ryan, “Two-dimensional hybrid element image
reconstruction for TM illumination.” IEEE Trans. Ant. and Prop., Vol. 43, 1995, pp.
239–247.
J. H. Mathews, Numerical Methods for Mathematics, Science, and Engineering
(Englewood, NJ: Prentice-Hall, 1992).
K. D. Paulsen et al., “A dual mesh scheme for finite element based reconstruction algo-
rithms.” IEEE Trans. Med. Imag., Vol. 14, 1995, pp. 504–514.
D. R. Lynch, K. D. Paulsen, and J. W. Strohbehn, “Finite element solution of Maxwell’s
equations for hyperthermic treatment planning.” J. Computational Physics, Vol. 58(2),
1985, pp. 246–249.
Q. Fang et al., “Microwave image reconstruction from 3D fields coupled to 2D pa-
rameter estimation.” IEEE Trans. Med. Imag., 2004 (accepted).
P. M. Meaney, N. K. Yagnamurthy, and K. D. Paulsen, “Pre-scaling of reconstruction
parameter components to reduce imbalance in image recovery process.” Physics Med.
Biol., Vol. 47, 2002, pp. 1101–1119.
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Washington, D.C.:
Winston, 1977).

TEAM LinG - Live, Informative, Non-cost and Genuine !



Computational Framework 47

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

D. M. Pozar and D. H. Schaubert, Microstrip Antennas: The Analysis of Microstrip
Antennas and Arrays (New York: Wiley-IEEE Press, 2001).
P. M. Meaney et al., “Microwave image reconstruction utilizing log-magnitude and un-
wrapped phase to improve high-contrast object recovery.” IEEE Trans. Med. Imag.,
Vol. 20, 2001, pp. 104–116.
K. Levenberg, “A Method for the solution of certain nonlinear problems in least
squares.” Q. Appl. Math., Vol. 2, 1944, pp. 164–168.
D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters.”
J. Soc. Ind. Appl. Math., Vol. 11, 1963, pp. 431–441.
N. Joachimowicz, C. Pichot, and J. R. Hugonin, “Inverse scattering: An iterative nu-
merical method for electromagnetic imaging.” IEEE Trans. Antennas Propagat., Vol.
39, 1991, pp. 1742–1752.
P. M. Meaney et al., “A two-stage microwave image reconstruction procedure for im-
proved internal feature extraction.” Med. Phys., Vol. 28, 2001, pp. 2358–2369.
D. Calvetti et al., “Tikhonov regularization and the L-curve for large discrete ill-posed
problems.” J. Comput. Appl. Math., Vol. 123, 2000, pp. 423–446.
P. M. Meaney et al., “A two-stage microwave image reconstruction procedure for im-
proved internal feature extraction.” Med. Phys., Vol. 28, 2001, pp. 2358–2369.
D. M. Bates and D. G. Watts, Nonlinear Regression and Its Applications (New York:
Wiley, 1988).
G. F. F. Seber and C. J. Wild, Nonlinear Regression (New York: Wiley, 1989).
P. M. Meaney et al., “Importance of using a reduced-contrast coupling medium in 2D
microwave breast imaging.” Int. J. Hyperthermia, Vol. 19, 2003, pp. 534–550.

TEAM LinG - Live, Informative, Non-cost and Genuine !



This page intentionally left blank

TEAM LinG - Live, Informative, Non-cost and Genuine !



Chapter 3

MAGNETIC RESONANCE ELASTOGRAPHY:
THEORY

Elijah E. W. Van Houten, Ph.D. and Marvin Doyley, Ph.D.

1 INTRODUCTION

Model-based mechanical property imaging is achieved by applying mechani-
cal energy to a target object (e.g., the breast), measuring the target’s re-
sponse, and using these measurements to optimize a numerical model of the
distribution of some mechanical property or properties throughout the object.
In the method discussed in this chapter, magnetic resonance elastography
(MRE), low-frequency vibrations are applied to the target and spatial dis-
placements are measured within it by means of phase-contrast magnetic
resonance imaging (MRI). Harmonic displacements within the domain of
interest are measured in phase with the mechanical excitation and compared
to displacements calculated using a numerical model of the elastic-property
distribution within the target volume. The model property distribution is then
iteratively adjusted until its predictions converge with observation. An image
is generated from the final model property distribution.

Other elasticity imaging methods are being developed. Perhaps the most
common alternative to reconstruction-based (model-based) elasticity imaging
is the conversion of displacement measurements into strain values, which can
in turn be used to solve directly for elastic property values [1, 2]. Other ap-
proaches to reconstructive elasticity imaging compare measured strains and
their resultant stresses [3]. Elastography methods can also be classified ac-
cording to the method of mechanical excitation employed; some methods use
harmonic or wavefront excitation [1, 2, 4], while others use quasistatic exci-
tation [5].
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2 RECONSTRUCTIVE ELASTICITY IMAGING

The model used to relate the current property estimate to the observable data
is a key component of any reconstructive imaging method. The equations of
linear elasticity, which relate stress to strain via an elastic modulus, are an
obvious choice for the governing equations of motion in our elastographic
imaging method.

2.1 Equations of Linear Elasticity

The most basic relations of solid mechanics are the equations of linear elas-
ticity. These assume a linear relationship between stress (applied pressure)
and strain (material deformation), an approximation valid for most materials
when strain levels are low. The relative simplicity of the equations of linear
elasticity makes them a popular estimator even when dealing with mildly
nonlinear materials or moderately high strain. Their full derivation is beyond
the scope of this work, but the interested reader is directed to the excellent
text by Chou and Pagano [6]. A brief summary is given here.

A stress, applied to a deformable material, causes a deformation or
strain, On the surface of an infinitesimal cube one can define three normal
stresses (i.e., pressures normal to the surfaces of the cube, each aligned
with the i th spatial dimension) and six shear stresses (i.e., pres-
sures acting along the j th dimension and normal to the i th dimension). For
an infinitesimal cube, only three of the shear stress terms are independent,
so altogether only six stress terms are considered. These six terms —

and    —constitute the symmetric stress tensor. Similarly, the
symmetric strain tensor comprises three normal strain terms and three in-
dependent shearing strain terms Each normal strain is defined in terms
of the displacement of a surface of the infinitesimal cube along the i th
dimension i.e.,

Each shearing strain is given by
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The displacements at a point constitute the displacement field at that
point.

For linearly elastic materials, the relationship between the stress tensor
and the strain tensor is given by Hooke’s law:

[C] is termed the material matrix or modulus matrix and has entries that are
simple functions of two constants, namely, Young’s modulus, E, and Pois-
son’s ratio,

Hooke’s law (3.3) can be used to formulate a governing equation for a
time-varying displacement field by invoking Newton’s third law in terms of
stress and displacement:

Here, is the i th spatial coordinate; and are body force and dis-
placement, respectively, along the i th direction (a body force being a force
distributed throughout a body’s volume, e.g., gravitational force); t is time;
and is density. Reformulation of (3.4) leads to the partial differential
equation commonly known as Navier’s equation:

Here u is vector displacement and and are the material stiffness moduli
known as Lamé’s constants, which are related to Young’s modulus and Pois-
son’s ratio by
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A system of linear algebraic equations whose solution specifies an ap-
proximation to in (3.5) is obtained using the method of weighted residuals,
as described in detail in Ch. 2, Sec. 2.2. This system of equations is discussed
in the following section.

2.2 Discretized Formulation of Reconstructive Elasticity
Imaging Problem

Reconstructive imaging involves a set of measurements, y, a parameter im-
age, and a numerical or analytic model, that relates y to Given
y, allows estimation of a parameter image given it allows gen-
eration of a set of simulated measurements (See Ch. 2 for fuller
discussion of iterative reconstructive imaging.) Some method for solving

over task-appropriate geometries is also required.
In our case, Navier’s equation (3.5) lends itself to analytic solution for

only the simplest geometries and material property descriptions. This neces-
sitates a numerical approach. The long association of the finite element (FE)
method with problems in linear elasticity makes it an obvious choice for
solving a discretized formulation of (3.5). Our is, therefore, a finite
element model based on (3.5) and covering the imaging zone. (Note that in
MRE, unlike the other three modalities covered in this book, the reconstruc-
tion parameter mesh is the same as the forward solution mesh, due to the fact
that displacement measurement data are given for each node by MR.)

Using the FE weighted-residual method on a three-dimensional mesh
with nodes, (3.5) can be rewritten for an approximate displacement field

as

Here has entries, {b} is a vector of forcing (source) terms having
entries, and is and has the form

for any i, j combination, where
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Here, each is a piecewise-linear Lagrangian basis function defined on the
FE mesh as described in Chapter 2, i is the row index, j is the column in-
dex, and

It is assumed that the displacement field has the time-harmonic form

To iteratively update the parameter set in accordance with

the Jacobian matrix, must be computed.* In terms of the FE dis-
cretized linear elasticity equations, is the calculated displacement solu-
tion, from (3.8) (sometimes termed the “forward solution”) and
stands for one of the three parameters or

*  (3.11) was given in Ch. 2 as (2.19), where was used instead of
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The first step in determining the entries of is to differentiate
(3.5) with respect to that is, with respect to the value of or at
node k of the FE parameter mesh covering the imaging region:

This is formally identical to (3.5), except that takes the place of
u and there are two additional quantities on the right-hand side. Since (3.11)
is evaluated for the current property estimate and the source or forcing
vector {b} is known, (3.8) can be solved for u; this leaves the only un-
known in (3.13), which can be solved by FE weighted-residuals discretiza-
tion in the same manner as (3.5), formally yielding

where [A] and are and all of the vectors are length
Here, the matrix consists of the weighted-residual entries

generated by the terms involving u appearing in the right-hand side of
(3.13). Its elements are derived from the submatrices specified by (3.10), and
their evaluation depends on whether represents or For exam-
ple, is
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Finally, the Jacobian matrix, is assembled column by column
from the vectors which involve re-solution of (3.14). The ap-
proximate Hessian matrix is then generated by direct
matrix multiplication and (3.11) is solved for the updated parameter vector.

3 SUBZONE-BASED RECONSTRUCTION
ALGORITHM FOR MRE

One might expect that the availability of full-volume, pixel-resolution dis-
placement data from the motion-encoding gradients would automatically
make a high-resolution parameter image achievable; however, the computa-
tional burden of generating iterative updates for the large number of voxels
in an MR data set is too large even for today’s processors. For example, a
typical MRI displacement map consists of 16 image slices, each discretized
to 256 × 256 data points. A single property data set thus has 1,048,576 meas-
urement entries, which is several orders of magnitude more than a typical
data set from any of the other modalities discussed in this book. Further, the
approximate Hessian is generally a full matrix whose inversion requires

floating-point operations. Generation of the Hessian would, there-
fore, entail to floating-point operations and its inversion

floating-point operations. Hence, some type of rescaling is required
for successful reconstructive error minimization in order to estimate property
distributions at such high resolution.

An approach that capitalizes on the data-rich environment provided by
MR measurement acquisition while remaining computationally tractable is
the subzone-based method for property reconstruction [4]. This technique
breaks down the global minimization problem so that the functional to be
minimized is distributed onto Q subzones, that is,

where is the nodal parameter distribution within the region of subzone z.
The minimization of is then carried out under the assumption that the
minimization of the sum of subzones is equivalent to the sum of minimiza-
tions of each subzone:
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From this point, the reconstruction process develops as described previously.
The flow of the processing routine is illustrated in Figure 1.

The breakdown of the global reconstruction into a localized process is
made possible by the MR volume-displacement data set. The displacement
information provides boundary data for (3.5), enabling a well-posed bound-
ary driven problem to be defined on any arbitrary subzone of the global
region (Fig. 2). Once a forward solution of (3.5) is available on a subzone,
the reconstruction process defined earlier can be applied.

Figure 1. Processing order of the subzone-based image-reconstruction process.
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In our approach, the definition of subzones is automated, allowing the
reconstruction process to execute in a self-contained fashion whereby glob-
ally defined inputs and outputs conceal the subdomain structure of the actual
processing. Automation is accomplished by defining overlapping spherical
(or, in two dimensions, circular) subzones centered on random seedpoints.

When a spherical subzone does not lie entirely within the global recon-
struction domain, the part of the sphere outside is ignored; the resulting
subzone has a boundary that is partially inside (therefore spherical), and
partially coincident with the outer surface of the global problem domain.
To help maintain smoother boundaries for the randomly generated subzones,
element inclusion is determined according to whether the centroid of the
element lies within radius r of the seed point (i.e., the node that is at the cen-
ter of the subzone; see Fig. 3). This eliminates the possibility of elements
being included within the subzone based only on a single node lying margin-
ally within the specified radius from the subzone center, and so preserves a
level of smoothness for the subzone boundary. Once the extent of a subzone
is defined by centroid-based element selection, its boundary can be deter-
mined automatically and the formulation of the FE forward problem under-
taken accordingly.

Figure 2. The presence of displacement data throughout global domain having
boundary allows the composition of a well-posed boundary problem on subzone
domain having boundary Figure is after [4].
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Figure 3. Subzone generation based on element centroids. The subzone in question
is centered at node “a” and has radius r. Element 123 is included in the subzone be-
cause its centroid (marked by “x”) is within the radius; element 345 is not included
in the subzone because its centroid is outside the radius.

4 PARALLELIZATION OF SUBZONE-BASED
RECONSTRUCTION

One advantage of a subzone approach is the possibility of “macroparalleliz-
ing” the computational process by taking advantage of subzone independ-
ence. By assigning the computation of individual subzone updates to separate
processors on a first-come, first-served basis, runtime can be approximately
divided by the number of available processors. In macroparallelization, each
processor is solely and independently responsible for a particular subzone
update; this is in contrast to the usual approach to parallelizing large matrix
calculations on multiple processors, which requires significant interprocessor
communications. Self-scheduled organization of the subzone calculations
allows almost the entire computational load to be divided among the avail-
able processors with very little interprocessor overhead.
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Figure 4. Flowchart of parallelized subzone-based image reconstruction.

We have implemented macroparallelized, subzone-based image recon-
struction in Fortran 77 using the message-passing interface (MPI) protocol,
which standardizes communications between processors. After a seed point
is randomly chosen by the “master” processor, subzone generation and pa-
rameter updating are handed off to a secondary (“slave”) processor. Subzone
results are returned to the master processor and assembled into the global
solution. For large numbers of processors it is better to have one processor
dedicated to overseeing the subzone computations being performed in paral-
lel on the “slave” processors, but with fewer processors one can have the
master processor perform subzone calculations between collecting solutions
from slave processors. A flow chart for this parallelized inversion process is
given in Figure 4.
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Figure 5. (a) Performance of our parallel reconstruction algorithm on a shared-
memory, 64-node SGI Origin 2000 parallel processor at Boston University. (Data
compiled by Susan Schwarz from the Dartmouth Research Computing Group.) (b)
Similar data (compiled by author) for a distributed-memory, 12-node Beowulf clus-
ter. The fact that “actual” often exceeds “ideal” is a result of the fact that placement
of the “ideal” curve is determined by the time assumed for 1 processor, which in this
case was too low.

Figure 5a shows the performance (i.e., computation time vs. number of
processors used) of our parallel reconstruction algorithm on a shared-
memory, 64-node SGI Origin 2000 parallel processor housed at Boston Uni-
versity’s Scientific Computing and Visualization Center. Figure 5b shows the
algorithm’s performance on a distributed-memory Beowulf cluster composed
of 12 dual-processing Pentium 4 Xeon nodes located in the Numerical Meth-
ods Laboratory at the Thayer School of Engineering, Dartmouth College.
With perfect division of labor among processors, runtime should scale as the
inverse of the number of processors, entailing a unitary descent with each
additional processor on a log-log graph, and this is approximately observed.
For these calculations, the master node was used solely for message passing
and bookkeeping (no update calculations performed on the master node). For
the runs performed on the Beowulf cluster, each node was treated as a single
processing node by MPI and loop-level parallelization and multithreading
were implemented on the second processor of each node. In both cases, less
improvement is obtained for large numbers of nodes or processors. This is to
be expected in parallel calculation, but more deterministic (intelligent) zone
generation is expected to improve performance for large numbers of proces-
sors.
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5 INFLUENCE OF SUBZONE SIZE ON
RECONSTRUCTION ERROR

Figure 6 shows a simulated phantom geometry for investigation of possible
inaccuracies in the assumption of 2D planar conditions in the harmonic dis-
placement field of a symmetric geometry. A spherical inclusion in the center
of a rectangular block is simulated. The plane of symmetry indicated in the
figure would exhibit 2D plane-strain conditions under static loading, but the
viability of 2D planar conditions under harmonic motion cannot be assumed.

Figure 7 shows the Young’s-modulus reconstruction results for the
simulated phantom in Figure 6 from a subzone-based 2D reconstruction algo-
rithm using the in-plane displacement fields generated from a fully three-
dimensional forward calculation. Figure 7a shows the forward-problem mate-
rial property distribution in the transverse plane in Figure 6; Figure 7b shows
the reconstruction results based on a 2D plan-stress assumption; and Figure
7c shows the reconstruction results based on a plane-strain approximation.
While some kind of central inclusion is visible in both reconstructions, the
overall quality is clearly unsatisfactory for a practical imaging modality.

Figure 8 demonstrates the ability of a three-dimensional, full-volume re-
construction method to account for three-dimensional motion fields in the
estimation process and also indicates that subzone size plays a role in deter-
mining the quality of reconstructed solutions. Figure 8b shows the results of
a global reconstruction based on calculations made with subzones averaging
10 mm in diameter (same simulated phantom as in Figs. 6 and 7, but with
the addition of normally-distributed noise truncated to 15% of image
range), while Fig. 8c shows the results of a similar calculation initiated under
identical starting conditions but with subzones averaging 18 mm in diameter.
The diameter of the subzones used for generating Figure 8b was less than the
half-wavelength of elastic shear waves in the background medium (i.e., ap-
proximately 13 mm); the diameter of the subzones used for generating Figure
8c were greater than this limit. The clear superiority of Figure 8c over Figure
8b suggests that subzone size may have an optimal value, probably based on
a tradeoff between error and total runtime (i.e., smaller zones, higher error
and shorter runtime; larger zones, lower error and longer runtimes). This op-
timal value is likely related to the length of the mechanical shear waves in
the medium.
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Figure 6. Simulated phantom with homogeneous tetrahedral FE mesh for studying
harmonic displacement fields in a symmetric geometry. The block has shear
modulus 8.62 kPa and modulus 77.58 kPa; the spherical inclusion (here bisected
by the imaging plane) is in 3:1 contrast with the block.

Figure 7. (a) Actual material property distribution in plane shown in Fig. 6. (b, c)
Young’s-modulus reconstruction results for the simulated phantom in Figure 6.
Graybar units are kPa.
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Figure 8. (a) Actual material property distribution in plane shown in Fig. 6. (b, c) In-
plane Young’s-modulus distributions for 3D subzone-based reconstruction, 10 mm
subzones and 18 mm subzones. Graybar units are kPa.

To analyze the dependence of reconstruction error on zone size, we per-
formed a simulation study in which we compared a known forward-problem
property distribution to final reconstruction solutions while systematically
varying zone radius. We calculated maximum percentage errors for the
and reconstructions and tabulated the computation time for each recon-
struction. Figure 9 summarizes the results of this study: the maximum shear
modulus error versus zone size (Fig. 9a), the maximum error versus zone
size (Fig. 9b), runtime versus zone size (Fig. 9c), and all three plots com-
bined on a normalized scale for ease of comparison (Fig. 9d). The length of
shear waves within the simulated geometry used for this study was roughly
2.91 cm (i.e., the half wavelength was about 1.455 cm). An optimal zone di-
ameter for this problem, based on an equally weighted cost-function analysis
of error, error, and runtime, is roughly 1.75 cm. An equally weighted
cost-function analysis of error and error only, disregarding runtime,
gives the same result, which corresponds roughly to the half wavelength of
shear waves in the background medium (i.e., 1.455 cm).

The increase in error found at larger zone sizes in the reconstruction
may be an effect of greater sensitivity of this parameter to the condition of
the Hessian matrix used to generate parameter updates: that is, a larger zone
size means a larger Hessian, with consequently poorer conditioning.
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Figure 9. Results of a simulation study of reconstruction solution error vs. zone ra-
dius. (a) error vs. zone radius. (b) error vs. zone radius. (c) Runtime vs. zone
radius. (d) All three of the other figures, superimposed.

6 A STATISTICAL APPROACH TO PARAMETER
RECONSTRUCTION

A statistical statement of the parameter reconstruction problem can be devel-
oped. This provides both an exact definition of the regularization parameter

(described below), which otherwise must be empirically determined, and
calculated variances for each reconstructed parameter From a Bayesian
perspective [7, 8], one assumes that the parameter set is normally distrib-
uted with variance about a set assumed a priori, (i.e.,
while the data y are normally distributed about the true distribution
with variance (i.e., The probability of a particular pa-
rameter set given a specific data set y, is given by
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The most probable is defined by the solution of

For a multivariate, normally distributed system, the probability density func-
tions and are given by

where is the number of observations and is the size of the parameter
set being imaged. If and are known, the constants ln and
ln (which result from the substitution of (3.20) and (3.21) into
(3.19)) are irrelevant in the maximization problem. Additionally, p(y) has
no dependence on and the term in (3.19) can be ignored. The
maximization problem is then written as

With a sign change and the substitution                this yields

a formulation also known as the Tikhonov problem because of the additional
a priori image regularization term it contains, (see Ch. 2, Sec. 4.1).

The Bayesian development presented here provides a definition of the
regularization factor in terms of the variances of the data measurements
and the a priori image. Approximations to these variances, and are
given by
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for an average a priori image value In (3.24) and (3.25), API stands for
“all previous images” from which was generated and stands for
“number of previous images.” The history of reconstructed images can thus
be utilized to make ensuing images more accurate and to improve conver-
gence. An iterative Gauss-Newton method is used for solution of the optimi-
zation problem in (3.23), producing a variant of (2.19) (remembering that

is the Jacobian matrix [J]):

Evaluating the statistical accuracy of the reconstructed parameter set the
covariance matrix               is given by

The matrix in (3.27) is found by differentiating (3.26) with respect
to y with      held constant:

The variance of a particular parameter value is given by the diago-
nal term Computing this variance allows calculation of the
confidence interval surrounding a reconstructed parameter value for dif-
ferent accuracies. For example, a 95% confidence interval for the k th
parameter estimate can be generated from the covariance matrix by

TEAM LinG - Live, Informative, Non-cost and Genuine !



MRE: Theory 67

6 CONCLUSION

MRE remains an imaging technique undergoing rapid development, with
considerable understanding and theory left to be discovered. Current research
on the subzone reconstruction method seeks to improve the efficiency of the
zone decomposition methods and to implement more efficient parallelization
techniques. Other work is proceeding to adopt statistically based parameter-
lumping algorithms to reduce the overall number of degrees of freedom in
the reconstruction problem. MRE techniques in general are also being refined
to pursue complex mechanical behaviors in living tissue by including such
effects as viscoelasticity, anisotropy, and nonlinearity in their underlying
models. This should not only improve the ability of these techniques to accu-
rately image elastic properties in living tissue, but may also provide access to
hitherto unexploited contrast mechanisms that could be of significant clinical
benefit. Clinical MRE results reported by a variety of research teams con-
tinue to indicate that this imaging modality does have the potential to play an
important role in the detection and diagnosis of disease.
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Chapter 4

MAGNETIC RESONANCE ELASTOGRAPHY:
EXPERIMENTAL VALIDATION AND
PERFORMANCE OPTIMIZATION

Marvin Doyley, Ph.D. and John Weaver, Ph.D.

1 INTRODUCTION

Malignant tumors, such as scirrhous carcinomas of the breast, are noticeably
stiffer and less mobile than surrounding, healthy tissues [1]. These properties
form the basis of manual palpation, the standard technique currently em-
ployed for the subjective clinical assessment of tissue elasticity for breast-
cancer detection.

Despite the recognized success of manual palpation in breast cancer de-
tection [2], there are several inherent limitations associated with this tech-
nique that diminish its efficacy. For instance, the vast majority of tumors
detected using manual palpation are large (>1 cm in diameter), late-stage,
metastatic, and treatable only by employing the most aggressive therapies
[3]. Many tumors can elude detection by manual palpation by virtue of their
small size and location within the breast.

Although the shear moduli of malignant tissues are generally several or-
ders of magnitude higher than that of normal tissue [4, 5], none of the tradi-
tional medical imaging modalities (magnetic resonance imaging [MRI],
diagnostic ultrasound, or x-ray computed tomography) are capable of ex-
ploiting the large elasticity contrast that exists between healthy and abnormal
tissues. For example, many tumors of the prostate or the breast are barely
visible on standard ultrasound examination, despite being much harder than
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the surrounding tissue. Diffuse diseases such as cirrhosis of the liver are
known to stiffen the liver appreciably, yet cirrhotic livers frequently appear
normal on conventional ultrasound examination.

These observations are not surprising, because the interactions with tis-
sue that form the bases of these techniques are not correlated with tissue
elasticity as such. Nonetheless, several conventional medical imaging mo-
dalities can provide information on externally induced internal tissue motion,
and from this information various mechanical parameters can be inferred [6].
During the last decade, there has been substantial interest in developing a
new medical imaging modality, elastography, for visualizing the mechanical
properties of soft tissues. At the core of this technique is the estimation of
externally induced internal tissue motion using a conventional medical im-
aging modality. Although the term “elastography” was originally coined by
Ophir et al. [7] to describe their ultrasonic elasticity-imaging approach, the
use of ultrasound is not essential. Consequently, several groups, including
ours at Dartmouth, have been actively developing elastography based on
MRI. Although the field of magnetic resonance elastography (MRE) is im-
mature compared to ultrasound elastography, it is likely that technological
advances in MRE will enable it to surpass ultrasound elastography relatively
soon. MRI has several features that make it ideally suited for elastographic
imaging. For example, all three spatial components of the induced internal
tissue displacements can be measured with high precision using magnetic
resonance imaging, whereas with ultrasound only the displacement compo-
nent in the direction of the propagating beam can accurately be measured.
This problem is attributable to the anisotropic resolution of current diagnostic
ultrasound scanners (i.e., axial resolution is superior to lateral and azimuthal
resolution). Furthermore, the sensitivity of MRI is superior to that of ultra-
sound, which makes it appealing when measuring small (micron-scale) inter-
nal tissue displacements.

Elastograms (i.e., shear-modulus images) are typically produced using
the three-step process illustrated in Figure 1. The first step in the elasto-
graphic image-formation process involves inducing displacements within the
tissue by employing an external mechanical stimulus. The spatial distribution
of the internal displacement field is dependent not only on the mechanical
properties of the underlying tissue structures, but also on external and inter-
nal boundary conditions and on the nature of the mechanical stimulation (i.e.,
quasistatic or harmonic). The second step is to measure the induced internal
tissue displacement field by employing an appropriate conventional medical
imaging modality such as MRI or diagnostic ultrasound. In the third step, the
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shear-modulus distribution within the tissue is estimated from the measured
displacements by applying a model-based inverse reconstruction technique.

The first two stages of this process will be discussed in this chapter in the
context of the prototype clinical MRE imaging system developed at the
Dartmouth-Hitchcock Medical Center. We will also report the results of pre-
liminary experiments conducted on phantoms and patients to evaluate and
optimize the performance of the prototype system.

Figure 1. Flow chart of elastographic image formation process.

2 CLINICAL PROTOTYPE MRE IMAGING SYSTEM

A critical step in the elastographic image formation process is the excitation
of the tissue under investigation by a mechanical source, either quasistatic or
harmonic, coupled to its surface. There is presently no consensus within the
imaging research community on whether quasistatic or harmonic excitation is
the better approach; the development of MRE has been pursued using both
modes of excitation [7–11]. The harmonic approach may have an advantage
over the quasistatic method in terms of its ability to accurately recover abso-
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lute values of shear modulus. Harmonic waves can also be used to probe tis-
sues that are not readily compressed (e.g., the brain).

A prototype clinical MRE system is currently under development at
the Dartmouth-Hitchcock Medical Center to further evaluate the potential of
steady-state harmonic elastography. The following section describes the key
components of this system, namely, mechanical excitation and displacement
estimation.

2.1 Mechanical Excitation

The mechanical actuators employed in our MRE imaging system are based
on piezoelectric crystals. Motion is induced by coupling the actuator to the
lower surface of the tissue, as illustrated in Figure 2 using a block-shaped
phantom. In the clinic, elastographic imaging is performed with the breast
pendant through an opening in the breast coil and slightly compressed against
the base plate of the actuator (Figure 3). We have constructed the mechanical
actuator to be adjustable for a wide range of breast sizes (Figure 4).

Figure 2. An elasticity phantom, piezoelectric actuator, and head coil. In clinical use,
the patient’s breast is pendant through the opening of a specialized breast coil and
rests on the actuator plate (see Figures 3 and 4).
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Figure 3. Clinical MRE imaging apparatus with breast coil and mechanical actuator
(on right-hand side).

The breast is perturbed mechanically by driving the piezoelectric actua-
tor at a fixed frequency (typically < 300 Hz) using a 150 V peak-to-peak si-
nusoidal voltage generated by an HP 33120A signal generator. The signal
generator is in phase lock with the 10 MHz MRE system clock and feeds its
signal to the actuator via a power amplifier (APC Products LE 200/150). Al-
though the displacement on the surface of the tissue is typically on the order
of larger displacements are induced inside the breast during steady-
state motion by constructive interference of wave fronts propagating in mul-
tiple directions.

2.2 Displacement Imaging

Several MRI displacement estimation schemes have been proposed for
measuring tissue motion. These techniques include spatial magnetization
tagging [8], simulated echo imaging, and phase-contrast imaging [11, 13,
14]. This discussion will focus on the phase-contrast imaging method, since
this displacement estimation approach has been incorporated into Dart-
mouth’s prototype clinical MRE imaging system.
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Figure 4. Clinical MRE imaging apparatus. The mechanical actuator is shown at
four progressively lower settings (a through d) in a specialized high-resolution
breast coil. The black bar in the foreground is the supporting post of the breast coil.

The premise of phase-contrast MRI is that phase changes will arise when
the motion of excited protons occurs in the presence of a magnetic field gra-
dient [13]. The net phase change, incurred over time t from 0 to T
when a spin with position vector r(t) is in the presence of gradient G(t) is
given by
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where is the gyromagnetic ratio for the spin. This relates the spin’s reso-
nance frequency, to the strength of the local magnetic field, by

For a uniform velocity the position of excited spins is given
by

where is the location of the spin at Substituting (4.2) into (4.1)
gives

It is interesting to note that phase accumulation will occur due to the
presence of both stationary and moving spins. In general, the phase changes
due to the stationary spins are used for normal MR images; however, in
elastographic imaging only the phase accumulation that occurs due to the
motion of moving spins is of interest. Consequently, the phase accumulation
associated with stationary spins is eliminated by acquiring the MR signal in
phase-cycling mode (i.e., the net phase is computed from the average of two
acquisitions that are obtained with opposite motion-encoding gradients). For
the situation where spins are undergoing simple harmonic motion, the dis-
placement of spins at equilibrium position is given by

where and are the amplitude and angular frequency of vibration, re-
spectively; is the wave number (i.e., where is the wavelength);
and is the initial phase offset between the motion-encoding MR gradient
and the mechanical excitation. Muthupillai et al. [13] were the first to dem-
onstrate that a phase accumulation can be generated through the MR field of
view (FOV) by applying an oscillating gradient (i.e.,
to the tissue for a duration T. The phase accumulation resulting from a par-
ticle undergoing simple harmonic motion is given by
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Here, N is the number of gradient cycles in the interval T. Snapshots of
the propagating wavefront are obtained as function of time by varying the
initial phase offset between the motion encoding gradient and mechanical
actuator. (The signal generator that drives the mechanical actuator is phase-
locked with the MR system clock.)

Figure 5 shows the pulse sequence and the synchronized motion. The
phase-contrast method generates the amplitude and relative phase of motion
at each point in the image by fitting the phase of the measured image at each
position to a sinusoidal function of the relative phase, between the motion
encoding gradient and the piezoelectric actuators inducing motion. Spurious
phases are removed by cycling the sign of the motion encoding gradient and
subtracting the phase of the signal at each position, thus removing spurious
phases.

Figure 6 shows examples of amplitude and phase of the propagating
wave obtained using the pulse sequence shown in Figure 5. It is important to
note that the amplitude and phase are computed by performing a fast Fourier
transform for each pixel over a number of phase offsets (typically four to
eight) between the applied motion and the encoding gradients. Although
these measurement were made under steady-state conditions, the develop-
ment of wavelike behavior is discernable in both the phase and amplitude
images. However, the wave propagation mechanics are fairly complex even
for this simple case, due to asymmetric boundary conditions.

Only one displacement component can be measured at a given time using
phase-contrast MR imaging. Consequently, the three-dimensional displace-
ment vector at each pixel location is reconstructed from three independent
acquisitions.

4 PERFORMANCE ASSESSMENT

4.1 Detectability of Low-Contrast Lesions

A key requirement of any diagnostic imaging system is the ability to detect
low-contrast focal lesions. Therefore, it is desirable that our imaging system,
in addition to having low-contrast detectability, be able to characterize focal
lesions. This could potentially be used as the basis for differentiating be-
tween different tumor types.
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Figure 5. A gradient-echo-based, phase-contrast, motion-imaging pulse sequence for
detecting the steady-state harmonic motion within the imaging volume. An offline
signal generator coupled to the motion-encoding gradient frequency by trigger
pulses on the RF channel is used to drive the piezocrystal actuators at phase offset
from the motion-encoding gradients. By varying and recording the resulting out-
put signal from the sequences, the motion field within the imaging volume can be
reconstructed.

Figure 6. MR images obtained from the central plane of a homogeneous elasto-
graphic imaging phantom using the phase-contrast imaging sequence shown in Fig.
5. Left, the amplitude in the x direction; center, the phase distribution corresponding
to the image shown at left; right, displacement image computed from the amplitude
and phase images.
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Figure 7 shows examples of simulated spherical tumors with sizes rang-
ing from 5 to 20 mm in diameter. They were manufactured from porcine skin
gelatin, formaldehyde, distilled water, and ethylenediamine tetra-acetic acid.
Each simulated tumor was embedded in a soft gelatin matrix to produce con-
trast-detail phantoms containing single lesions of varying size and modulus
contrast. Figure 8 shows a set of MR magnitude images obtained from a
contrast-detail phantom containing a simulated tumor 10 mm in diameter.
The modulus contrast between the simulated tumor and the background is
high (9:1) in this case. The inclusion is discernible in the MR magnitude im-
age due to the presence of copper sulfate (which is acting as an MR contrast
agent). Figures 9 and 10 show examples of elastograms obtained from high-
and low-contrast phantoms, respectively. Note that all four inclusions are
discernible in the high-contrast phantom, but that the 5 mm inclusion in the
low-contrast phantom is not visualized. Figure 11 shows a contrast-detail
curve measured by performing an objective contrast-detail analysis on elas-
tograms similar to those shown in Figures 9 and 10.

Figure 11 shows that lesion detectability is inversely proportional to le-
sion size. This is consistent with observations made in conventional imaging
modalities [15]. Further, although all lesions can be detected, it is not possi-
ble to accurately characterize the elastic moduli of very small inclusions. The
general premise of contrast-detail analysis is that the likelihood of detecting a
lesion can be expressed in the form of contrast-to-noise ratio (CNR), which is
defined in elastography as [16, 17]

where and are the mean shear modulus computed over similarly sized
regions in the lesion and background tissue, respectively, and and are
the variance of shear modulus in the lesion and background tissue, respec-
tively. We consider a lesion detected when the CNR is greater or equal to
2.2. This threshold has been selected to place a tight bound on lesion detecta-
bility.

Ability to characterize the shear modulus of a focal lesion was assessed
by comparing the mean shear modulus recovered over the inclusion relative
to independent estimates of shear modulus obtained through mechanical
testing. The reconstructed object is considered accurately characterized if the
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ently-estimated value.

Figure 7. Spherical gelatin inclusions used to simulate focal lesions. In color the in-
clusions would be green due to the presence of copper sulphate, which is used as a
contrast agent to allow the position and extent of the inclusion to be discernible in
the MR magnitude images.

5 PRELIMINARY CLINICAL EVALUATION

We have conducted a pilot study on healthy volunteers to gain insight into
the performance of our MR data acquisition system in preparation for clinical
trials and to compare the shear moduli that we have recovered from normal
breast tissues to published breast-elastography data.

Figures 12 and 13 show representative MR magnitude and shear-
modulus images obtained from healthy breasts. Figure 12 also shows Pois-
son’s-ratio (MR magnitude) and covariance images. The lower Poisson’s-
ratio levels within the fatty tissues may be an indication of the lower percentage
of water content of these tissues compared to fibroglandular tissues, as Pois-
son’s ratio is related to the compressibility of a material, which is likely re-
flective of water content. The right-hand panels in Figures 12 and 13 show
the corresponding elastograms, calculated using 3D overlapping subzone in-
version as described in Ch. 3. The fibroglandular tissue is the dark, central
region in the MR magnitude images and the fatty tissue is the light region in
the MR magnitude images. Note that the fibroglandular tissues are stiffer
(brighter) than the fatty tissues. This is consistent with observations made
from independent mechanical testing [5]. Furthermore, there is good correla-
tion between the elastograms and the anatomic features in the MR magnitude
images.

mean shear modulus computed in the lesion is within 2% of the independ-
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Figure 8. Axial MR magnitude images obtained from a 3.5 cm × 4.1 cm × 16 mm
FOV in the center of a phantom containing a 10 mm diameter inclusion. The image
planes are spaced 3 mm apart along the 3.5 cm dimension of the phantom; read
slices row-wise from top to bottom. The elastic modulus contrast between the simu-
lated tumor and the background is 9:1. An elastogram of the same phantom is shown
in Fig. 9b.
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Figure 9. Axial elastogram obtained from the central plane of high-contrast (9:1)
elasticity phantoms containing (a) 5 mm, (b) 10 mm, (c) 18 mm, and (d) 25 mm di-
ameter lesions. Each image is approximately 4 × 5 cm.
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Figure 10. Axial elastograms obtained from the central planes of low-modulus-
contrast (2:1) elasticity phantoms containing (a) 5 mm, (b) 10 mm, (c) 18 mm, and
(d) 25 mm diameter lesions. Each image is approximately 4 × 5 cm.

Figure 11. Contrast-detail curve showing the threshold modulus required to detect
and characterize focal lesions.

TEAM LinG - Live, Informative, Non-cost and Genuine !



MRE: Experiment and Performance 82

Figure 12. Examples of MR magnitude (top left) and shear-modulus (top right) im-
ages obtained from the central plane of a healthy breast. Shear-modulus grayscale
units are in units of kPa. Images at lower left are for the magnitude of the covari-
ance; images at lower right are the Poisson’s ratios.

Figure 13. MR magnitude (left) and shear-modulus (right) images obtained from the
central plane of a healthy breast. Shear-modulus grayscale units are kPa.
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Chapter 5

ELECTRICAL IMPEDANCE SPECTROSCOPY:
THEORY

Hamid Dehghani, Ph.D. and Nirmal K. Soni, M.Tech.

1 INTRODUCTION

In electrical impedance spectroscopy (EIS), electrodes are placed in contact
with the surface of the domain being imaged (e.g., head, breast, limb) and
voltages or currents are applied. The induced currents and/or voltages are
measured at some or all of the electrodes, which allows a map of the internal
distribution of conductivity and permittivity in the domain of inter-
est to be derived. EIS differs from microwave imaging spectroscopy, which
also maps and primarily in its lower operating band to 10
MHz). When tomographic techniques are used to form electrical impedance
images from boundary measurements, as in our work, EIS is often referred to
as electrical impedance tomography.

EIS is of interest because the electrical properties of tissue can vary sig-
nificantly with physiology and pathology. Of particular importance in breast
imaging are the differences between normal tissue and carcinoma (Fig. 1).
Not only are these electrical properties distinct in the range,
but for conductivity the contrast increases with frequency. Many groups
have, therefore, emphasized the importance of obtaining spectral information
to help identify tumors [1–3]. Our group at Dartmouth has constructed an
EIS system that can be operated at any desired frequency from 10 KHz to 10
MHz. This system is described further in the next chapter.

The task of mapping the electrical property distribution of a tissue vol-
ume using measurements of low-frequency surface currents and potentials is
a difficult one. First, the electrical-property features of tissue, while attractive
candidates for imaging because they offer large intrinsic contrast, are en-

TEAM LinG - Live, Informative, Non-cost and Genuine !



86 Model-Based Breast Imaging

coded as small, nonlocalized changes in surface currents and potentials. Sec-
ond, surface measurements are intrinsically less sensitive to changes in
electrical properties deep within the tissue being imaged, making EIS’s depth
resolution relatively poor. Third, the measured electrical response is a non-
linear function of the tissue electrical properties, and this nonlinearity, cou-
pled to the spatial dependence of the sensitivity map to property changes,
makes for a challenging parameter-estimation problem. (Some groups have
experimented with tomographic approaches that linearize the relationship
between electrical property change and change in measured response [4].)

All of these difficulties can be overcome with careful design of both al-
gorithms and hardware. Like the other imaging modalities represented in this
volume, we have opted for an iterative image-reconstruction approach based
on finite element (FE) modeling.

Figure 1. Conductivity and dielectric constant of breast carcinoma as a function of
frequency. (*) = sample from central part of tumor, (+) = sample from tissue sur-
rounding tumor, (o) = sample consisting mainly of fatty tissue containing infiltrating
tumor cells, (x) = peripheral sample located relatively far from central part of tumor,
and (v) = normal breast tissue. From Surowiec et al. [5].
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2 THE PHYSICAL MODEL

2.1 Conditions and Assumptions

EIS requires a numerical model that links surface voltages and currents, both
injected and measured, to the electrical-property distribution within the target
volume. Such a model can be derived from Maxwell’s equations if several
simplifying assumptions are invoked. In an inhomogeneous medium, Max-
well’s equations can be written as

where E is the electric field, B is the magnetic induction, H is the magnetic
field, J is the electric current density, and D is the electric displacement.
Assuming a simple linear isotropic medium, it is also true that

where is the permittivity, is the magnetic permeability, and is the
conductivity of the medium.

In EIS, further assumptions can be made:

1. Time harmonic variables. Assuming that the injected currents and
voltages are time-harmonic at a given radian frequency and that

(where is the ohmic current, and is the
source current), (5.1) and (5.2) can be written

where

2. Quasistatic assumption. The exact expression for E can be given as
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where is the electric potential and A is the magnetic vector po-
tential. If magnetic induction of electric fields is neglected—as it can
be if the time variation in A is small relative to the spatial gradient
in  – then the static form holds (i.e., A problem in
which the static form of (5.5) is used even when (relatively slow)
time variation is present is termed quasistatic.

3. Isotropic tissue properties. Although many tissues are clearly electri-
cally anisotropic, isotropy is assumed in EIS to make the problem
tractable. In the breast, this is probably a more reasonable assump-
tion than in some other body tissues (e.g., muscle), although evi-
dence of mechanical anisotropy in the breast does exist [6].

Under these conditions (i.e., quasistatic fields in a linear, isotropic medium),
Maxwell’s equations can be recast as

and

Taking the divergence of both sides of (5.7) and substituting (5.6) into the re-
sult, we obtain

Here, where is the absolute permittivity of
free space and is the (unitless) relative electrical permittivity. The poten-
tial, is a function of and which are themselves functions of position
(assuming time invariance). Below, for brevity, we employ the notation

where is referred to as the “complex-valued conductiv-
ity.”

2.2 Boundary Conditions

In order to obtain a reasonable model for EIS from the equations above, ap-
propriate boundary conditions must be specified. Several boundary condi-
tions are widely used:
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1.

2.

3.

4.

Continuum model. This model assumes that there are no electrodes
and that the injected current or applied voltage is a continuous func-
tion of position around the periphery of the imaging domain.

Gap model. This model assumes that the injected current or the ap-
plied voltages are uniform under each electrode, i.e., that for each
node under an electrode the current is equal to (total current for
that electrode) divided by the area of the electrode, and that for nodes
elsewhere on the boundary the current is zero.

Shunt model. This model takes into account the shunting effect of
the electrode, i.e., assumes that the potential under each electrode is
constant. This model improves over the gap model, where one as-
sumes that the excitation signal is constant under each electrode, by
ensuring that the resultant voltage or current is also constant.

Complete electrode model. This model takes into account both the
shunting effect of the electrode and the impedance between the elec-
trode and tissue at the point of contact. Using this boundary condi-
tion, the EIS model in (5.8) is augmented with the following
constraints:

where is the number of electrodes, x is a point in the domain,
is the effective contact impedance between the electrode and the
tissue, is the applied current at the electrode, is the result-
ing voltage at the electrode, and denotes the portion of
the problem domain occupied by electrode The notation

indicates a boundary point that is not under any
electrode.
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3 IMAGE RECONSTRUCTION

3.1 Problem Formulation

Image reconstruction begins with a set of boundary data values, that
are measured by electrodes in contact with the surface of an object. can
represent either the measured voltage due to injected current or vice versa.
Because current and voltage may be measured simultaneously at each elec-
trode, may be greater than

A general approach to imaging the interior spatial distribution of electri-
cal properties is to minimize the squared difference between these
measured values and a set of quantities derived from some numerical
model, that is, to minimize the error function

where m denotes a measured value and c denotes its model-calculated
counterpart. The distribution that minimizes provides the desired
spatial map or image of the object electrical properties. Finding this distribu-
tion requires that we set the derivative of (5.12) with respect to equal to
zero, which, through application of Newton’s method to solve the resulting
nonlinear system of equations, generates an expression for an update vector,

(in matrix notation):

Here, is a vector of length L (the number of estimated parameter
values); is a vector of length is a regularization parameter
(see Ch. 2, Sec. 4.1); [I] is the L × L identity matrix; and [J] is the
Jacobian matrix the matrix of derivatives of the calculated
measurements with respect to each of the L estimated parameter values.
The Jacobian, which expresses the sensitivity of the measurements to infini-
tesimal changes in at each position in the property domain discretization
(e.g., node in the property mesh), has the form
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is calculated from the current estimate of using the tech-
niques for solving the forward problem described in Chapter 2. In the fol-
lowing section, the determination of [J] is described. With these tools in
hand, it is possible to solve (5.13) iteratively to find the that minimizes
(5.12) and becomes the resultant image.

3.2 The Jacobian

The Jacobian, also known as the sensitivity or weight matrix, maps a small
change in electrical properties to a small change in measured boundary data:

for a small change The strict definition of [J] is, therefore,
There are three common methods of calculating [J], which are outlined be-
low.

1. The perturbation method. The perturbation method invokes finite differ-
ence calculus to directly calculate the Jacobian, one pixel at a time. The basis
of the method is that given a domain to be imaged, each pixel (e.g., node or
element) in turn is altered in conductivity by a change for each excita-
tion pattern. A resulting change is measured (calculated) at each elec-
trode and is used to approximate the corresponding continuum derivative as
an entry in the requisite location of the Jacobian matrix. The computation
time is proportional to the number of excitation patterns times the number of
pixels in the image.
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2. The direct method. In the direct method, the Jacobian can be calculated by
differentiating (5.8) with respect to This produces

where the prime indicates differentiation with respect to Equation (5.16)
is an inhomogeneous PDE in which has the identical form of (5.8)
with the addition of a forcing term involving and Since the deriva-
tive quantities in the Jacobian are needed at the current estimate of the
forcing term can be computed everywhere in the domain. Discretization of
(5.16) onto a linear algebraic system can be achieved by the same method
employed to solve (5.8). In discrete matrix form, the solution to (5.16) can
be written as

Here, and are already known from the forward solution, which only
leaves the calculation of which can be determined one pixel (node,
element) at a time by

where is the shape function associated with each node or element i, j, or
k (analogous to the basis function described in Ch. 2). In practice, the Jaco-
bian is assembled on a column-by-column basis. The computation time is
proportional to the number of excitation patterns times the number of recon-
struction parameter nodes.

3. The adjoint method. The calculation of the Jacobian by the adjoint method
is similar to that described for the near infrared tomography case and is given
in [7] as
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where is the image domain, is the direct forward solution calculated
for each excitation pattern, and is the adjoint field calculated for each
measurement electrode (see Ch. 2).

In our case, the adjoint field is computed by assuming that a current or
voltage of unity is injected into the measurement electrode while a current or
voltage scaled by 1/(N–1) is induced at the (N–1) other electrodes. Here,
each row of the Jacobian can be calculated at once using (5.19). The compu-
tation time for the entire Jacobian is proportional to the number of excitation
patterns times the number of electrodes (adjoint fields), which is significantly
less than for the other two methods described above.

4 TRIGONONOMETRIC DRIVING PATTERNS

In EIS it is possible to drive and measure current and voltage at the same
electrode simultaneously. This makes possible a wide variety of
drive/measure permutations. Since current must flow into the body through at
least one electrode and out of the body through at least one other, the mini-
mum excitation pattern is a pair. One paired driving approach is the adjacent
method, in which current is injected at two adjacent electrodes (by specifying
either the voltage or the current) and potentials are measured at all other
sites. A set of measurements can be constructed by exciting more than one
pair in turn. This method probes near-surface structure most effectively. Al-
ternatively, current can be passed between two electrodes on opposite sides
of the body, and potentials measured at all of the other positions. This con-
figuration probes deeper structure most effectively [8].

A third approach varies the current magnitude across a number of cur-
rent-injecting electrodes. One class of driving patterns, the trigonometric ex-
citation patterns, was shown by Isaacson [9] to provide maximum sensitivity
to structural heterogeneity for a cylindrically symmetric geometry. In this
technique, all possible sine and cosine modulations (i.e., those having an in-
tegral number of periods) are applied in sequence to the electrodes positioned
around the perimeter. That is, for electrodes, passes are made,
during which the signal amplitude for the electrode at angle (as meas-
ured from the center of the target) is given, on the K th pass, by
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where A is the maximum signal amplitude. In effect, the high spatial fre-
quencies (higher- K passes) maximize the distinguishability of near-surface
structure while low spatial frequencies (lower- K passes) maximize the
distinguishability of deep structure.

As noted above, the contact impedance at each electrode (generally in the
range of a few tens of ohms) causes an unknown voltage drop to occur at
each electrode that passes current. When trigonometric excitation patterns are
applied, all electrodes pass current simultaneously and suffer from an un-
known voltage drop. As a countermeasure, we have experimented with an
excitation method termed the synthesized trigonometric pattern, which works
as follows.

If the system comprising the target, electrodes, and system electronics is
linear with regard to the driving signals, the principle of superposition can be
applied. That is, a weighted sum of the voltages and currents from a number
of excitation patterns applied sequentially should equal the voltages and cur-
rents that would result if all of those excitation patterns were applied simul-
taneously. Hence, a trigonometric excitation pattern can be synthesized as a
weighted sum of a set of currents applied sequentially between each elec-
trode and a fixed reference electrode (Fig. 2) [10]. Since one electrode must
be devoted to the role of reference, sub-patterns are summed for each
trigonometric excitation pattern where there are electrodes.

Simulation and practice have shown that synthesized trigonometric ex-
citation is, as expected, less susceptible to the effects of electrode contact re-
sistance. However, since noise is compounded during the synthesis process,
it is more sensitive to noise. Whether or not it is beneficial to employ, there-
fore, depends on whether image quality in a given system is degraded more
by signal noise or by contact resistance.
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Figure 2. Top: Trigonometric excitation pattern for a 16-electrode system with
K = 1. “V_orig” is the applied voltage and “V_dropped” is the applied voltage plus
simulated contact-impedance drop. Sixteen random contact impedances between

and were assigned to the 16 electrodes. Bottom: Same variables for
one of the 15 excitation patterns used in synthesizing the trigonometric pattern
above. Since for each sub-pattern only one electrode (not counting the reference, not
shown) passes current, only one electrode suffers from an unknown voltage drop.
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5 DATA CALIBRATION

Quantitative reconstruction of the impedance map relies on accurate meas-
urement and processing of the voltages and currents present at the electrodes,
but hardware differences in the signal paths cause interchannel measurement
errors that degrade data acquisition quality and distort the image. We have
therefore implemented a system for internal, automated, on-demand calibra-
tion of the hardware in our EIS system. This hardware instrumentation is de-
scribed more fully in the following chapter. (Note that our approach to
calibration differs from that for near-infrared spectroscopic imaging, dis-
cussed in Ch. 10, Sec. 4.)

We are also investigating mathematical data-calibration techniques to
combat two persistent artifacts in EIS images, namely, the low-conductivity
halo around the periphery of the conductivity image and inaccurate estima-
tion of the global conductivity average (Fig. 3). Experiments show that these
artifacts can be smoothed but not removed by more accurate electrode mod-
eling [7].

Figure 3. Conductivity (left) and relative permittivity (right) images of an agar
phantom with an air core, made using a 16-electrode EIS system operating at 125
kHz. A point-electrode model was used (i.e., one boundary node per electrode).
Units of conductivity image are S/m; relative permittivity is unitless. Agar phantom
is 10 cm in diameter and 4 cm tall. Air hole is 2 cm in diameter and 2 cm from the
edge of the cylinder. The actual conductivity and relative permittivity of the phan-
tom are approximately 2 S/m and 78, respectively. The peripheral ring in the con-
ductivity image and the overall elevation in the conductivity values are artifacts that
occur despite the correct identification of the location of the air hole.
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We have, therefore, developed a data calibration scheme (so far applied
to phantoms only) that corrects data collected from inhomogeneous targets
using data from homogeneous simulations and phantoms. This scheme con-
sists of three steps [11]:

1. Scaling factor determination. Consider the matrix of boundary cur-
rent values that is obtained by simulating the imaging of a homoge-
neous target by an system applying
trigonometric excitation patterns (directly, not using the synthetic
scheme noted above). Let be the matrix of result-
ing complex-valued current measurements (where hs stands for
“homogeneous simulation”). Further, let be the matrix of cur-
rents measured using a homogeneous phantom (where he stands for
“homogeneous experiment”). A matrix of scaling factors, [SF], also

can be calculated by element-by-element division of
by

where ( j , i) denotes the jth electrode recording of the ith parame-
ter. When is calculated as an average of adjacent
electrode values:

Furthermore, these scaling factors are averaged across the electrodes
for each excitation pattern to produce a vector of averaged scaling
factors, {ASF}, of length where

A matrix of experimental measurements from an inhomogeneous
target, (ae stands for “anomaly experiment”), are mapped to a
matrix of “anomaly experiment equivalent” (aee) values or of “ho-
mogeneous experiment equivalent” (hee) values through multiplica-
tion by the ASF values:
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2. Global property value estimation. Global target property values are
determined by a single-pixel or global average reconstruction that
applies the assumption of homogeneity to the scaled data from Step
1. The scaled currents in (5.24), along with the known voltage exci-
tation, are used in a single-pixel forward solution that produces prop-
erty estimates for both the homogeneous agar phantom and
where hg stands for “homogeneous global”) and for the agar phan-
tom with the inclusion or anomaly and where ag stands for
“anomalous global”). These values are used in Step 3.

3. Offset removal. The scaled currents from Step 1 for the homogene-
ous and anomalous cases should, respectively, match forward solu-
tions obtained with and as initial estimates.
Due to various experimental errors (contact impedances, hardware
drift, etc.), this is not true. Therefore, we calculate an offset between
the modeled currents (i.e., forward-solution currents based on global
property values from Step 2) and the scaled measured currents (the
final product of the calibration process). This offset is calculated
both for the homogeneous phantom and the phantom with an anom-
aly. We denote the offset between measured and modeled currents
for a homogeneous phantom (with the modeled currents based on

and as (where oh stands for “offset, homogeneous”);
and we denote the offset between measured and modeled currents for
the anomalous phantom (with the modeled currents based on and

as (where oa stands for “offset, anomalous”). The calibrated
currents are then given by

Here, (where ac stands for “anomalous, calibrated”) is used along
with the global property values and as the data input for fi-
nal image reconstruction.

A flow chart of the calibration scheme is given in Figure 4 and an exam-
ple of its effect is shown in Figure 5. The peripheral low-conductivity artifact
has been removed and the global conductivity value is much closer to that of
the agar phantom (approximately 2 S/m). Transfer of this technique to clini-
cal breast imaging will require the construction of appropriate calibration
phantoms for the breast.
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Figure 4. Flow chart of data calibration scheme using homogeneous phantoms.

Figure 5. Conductivity (left) and relative permittivity (right) images of an agar
phantom with a hole, recovered with the same system and concomitant measurement
data that produced the images in Fig. 3. The data calibration scheme described in the
text was used, eliminating the peripheral low-conductivity artifact and maintaining
accuracy in the reconstructed property values. Units of conductivity image are S/m;
relative permittivity is unitless.
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6 THREE-DIMENSIONAL RECONSTRUCTION

In order to demonstrate 3D reconstruction capabilities, which are presently
under development, we have used a cylindrical model of radius 50 mm and
height 150 mm (Figure 6a). The mesh consisted of 10,295 nodes corre-
sponding to 44,725 linear tetrahedral elements. Four planes of electrodes 30
mm apart were modeled, each plane consisting of 16 circular electrodes 5
mm in diameter. In order to ensure that equal numbers of nodes were used to
model each electrode, their locations and shapes were taken into considera-
tion during the meshing of the domain. The model was assigned the homoge-
nous electrical properties and All of the results presented
here were confined to the excitation frequency of 125 kHz.

We have completed several studies using this model. In the first instance,
the voltage drive mode was considered. In this mode, one applies a set of
voltage patterns at all electrodes simultaneously and measures the resulting
currents at all electrodes. Three current patterns were evaluated: (1) 15 sinu-
soidal current patterns over each plane, where all planes were in phase with
each other; (2) 15 sinusoidal current patterns over each plane, where each
plane was 45° out of phase with respect to its neighbors; and (3) 15 sinusoi-
dal current patterns over each plane, where each plane was 90° out of phase
with respect to its neighbors.

Boundary data were calculated for each set of current pattern in the pres-
ence of two spherical anomalies (Fig. 7). One was a conducting anomaly lo-
cated at z = 0, 20 mm from the cylinder center, with conductivity 5 times the
background value and a radius of 15 mm. The other was a permittive anom-
aly located at z = 0, 20 mm from the cylinder center opposite the conductive
anomaly, with relative permittivity 10 times the background value and a ra-
dius of 15 mm. Using these data sets, images were reconstructed using a dual
mesh scheme with the discretizations shown in Figure 6 (see discussion of
the dual mesh method in Ch. 2, Sec. 3.2). The property estimation mesh con-
sisted of 4638 nodes and 22,808 linear tetrahedral elements (Fig. 6b). For
image reconstruction, the initial value of the regularization parameter in
(5.13) was chosen to be 0.001. At each iteration, if the projection error,
was found to have decreased as compared to the last iteration then was de-
creased by a factor of 0.7499. Images shown in Figures 8–10 represent the
29th iteration, which was chosen because beyond this point did not de-
crease by more than 0.1% from the previous iteration.
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Figure 6. (a) Finite element model used for the generation of the Jacobian and syn-
thetic measurement data for the 3D simulation experiments described in the text.
The forward mesh is cylindrical with radius 50 mm and height 150 mm. Four planes
of electrodes are modeled (at z = – 45, –15, 15, and 45 mm), each plane con-
taining 16 equally-spaced circular electrodes of radius 5 mm. (b) Finite element
mesh used as the reconstruction basis. This mesh has the same geometrical dimen-
sions as the field solution mesh in (a), but fewer degrees of freedom (nodes).

Figure 7. Schematic of the simulation model used to generate synthetic anomaly
data for numerical experiments. Background conductivity and relative permittivity
are 2 S/m and 80, respectively. As shown, a spherical conductive anomaly with con-
ductivity 10 S/m and radius 15 mm is placed 20 mm left of the center at z = 0 mm,
and a spherical permittivity anomaly with relative permittivity 800 and radius 15
mm is placed 20 mm right of the center at z = 0 mm.
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Reconstructed images from simulated data with anomalies present in the
domain are presented in Figures 8, 9, and 10 using the first, second, and third
current patterns, respectively. It can be seen that for all current patterns both
the conductivity and permittivity anomalies have been reconstructed in the
correct locations and with good separation between the two physical proper-
ties. These images required approximately 10 minutes of computation time
per iteration on a 1.7 GHz PC with 2 GB of RAM. It is evident that the prop-
erty values in the targets are much lower than expected, a problem that is
commonly seen in 3D imaging and has also been reported in other similar
modalities [12, 13].

Using all patterns, good separation between the conductivity and permit-
tivity anomalies has been achieved. Furthermore, although the reconstructed
images have localized the anomalies in the correct position, Figure 11 shows
that the images obtained from the first current pattern (all planes in-phase) is
more blurred in the z direction. This phenomenon, which has been reported
elsewhere, is a common problem in 3D imaging that is sometimes referred to
as the “partial volume effect.” Quantitative accuracy can be improved by
using other types of regularization or reconstruction bases and by the addi-
tion of constraints or other a priori information.

Figure 8. Simultaneously reconstructed images of conductivity (left) and relative
permittivity (right) from data simulated using the first current drive pattern (i.e., in-
phase pattern along the cylinder axis). Images represent the 29th iteration. Each im-
age consists of cross-sections through the cylindrical model stacked at appropriate z
levels to outline the cylinder. Conductivity grayscale units are S/m.
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Figure 9. Same as Figure 8 (conductivity image on left, permittivity image on right)
but using the second current drive pattern, i.e., each electrode plane 45° out of phase
with its neighbors. Conductivity grayscale units are S/m.

Figure 10. Same as Figures 8 and 9 (conductivity image on left, permittivity image
on right) but using the third current drive pattern, i.e., each electrode plane 90° out
of phase with its neighbors. Conductivity grayscale units are S/m.
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Figure 11. Left: Cross-sections of the conductivity images shown in Figures 8–10.
The cross-sections are in the z direction at x = –20 mm, y = 0 mm (i.e., through
the center of the anomaly shown in Fig. 7). Right: Same as at left but at
x = + 20 mm, y = 0 mm (i.e., through the center of the anomaly). Dashed verti-
cal lines indicate the boundaries of the inclusion in each case (15 mm diameter).

7 CONCLUSION

We have used data acquired in a single plane to reconstruct properties in a
3D volume, but under these conditions out-of-plane structural resolution in-
evitably degrades. We are in the process of designing a new hardware system
to acquire multiplane data that will enable fully three-dimensional image re-
construction. Maximally accurate 3D image reconstruction is necessary if
EIS is to play a role in the clinical diagnosis of anomalous lesions in the
breast.

The data calibration scheme described in Section 5 is readily generaliz-
able to three dimensions, and will be essential to improving image quality as
we refine our techniques.
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Chapter 6

ELECTRICAL IMPEDANCE SPECTROSCOPY:
TRANSLATION TO CLINIC

Alex Hartov, Ph.D., Ryan J. Halter, and Todd E. Kerner, M.D., Ph.D.

1 INTRODUCTION

This chapter describes our experience in building three generations of elec-
trical impedance spectroscopy (EIS) systems. X-ray mammography, the cur-
rently accepted method for breast-cancer screening, has significant false-
negative and false-positive rates, which lead to unnecessary biopsies; there is
thus motivation for exploring EIS, among other modalities, as an alternative
or complement to x-ray mammography.

The underlying rationale for using EIS in breast cancer screening is that
significant differences between the electrical properties of malignant and
normal breast tissues have been observed [1]. These differences are fre-
quency-dependent. Greater differences in conductivity are seen at higher
frequencies and greater differences in permittivity at lower frequencies.

2 GENERAL CONSIDERATIONS

Before describing the design and construction of our EIS systems, we clarify
a few aspects and limitations of the technology. First, the spatial resolution
and sensitivity of EIS are not uniform, but are greatest in the vicinity of the
electrodes. This is directly related to the current distribution in the medium
being interrogated, which is densest near the sourcing electrodes. As a result,
the lowest spatial resolution and sensitivity will be observed in the central
region of any cross-section (assuming that the electrodes are located around
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the periphery). Second, unpredictable contact-impedance variations between
electrodes degrade image quality. Spatial resolution can be improved by us-
ing more electrodes; sensitivity to impedance variations can be improved by
making the electrodes as large as possible, thus covering as much of the pe-
riphery as possible. Another way to improve sensitivity is to use the largest
allowable current. In clinical applications, however, current is limited by pa-
tient safety considerations. In some situations (though not in breast imaging)
it is possible to improve spatial resolution near a target subvolume by using
internal electrodes.

EIS was first developed as a two-dimensional imaging technology. Im-
age reconstructions were based on a number of assumptions. One — which is
inherent to two-dimensional EIS, regardless of the method of image recon-
struction adopted (e.g., back-projection or finite element) — is that current
flows only in the imaging plane. Yet this clearly cannot be the case. For ex-
ample, in a homogeneous cylindrical volume encircled by an array of elec-
trodes set in a horizontal transecting plane, significant currents (i.e., currents
that will have an impact on the measurements) will flow in a prolate spheroi-
dal volume extending approximately half of the radius of the cylinder above
and below the transecting plane. Impedance inhomogeneities that do not
intersect the imaging plane can thus influence reconstructed 2D images by
interacting with the current field. This is verifiable experimentally using
high-contrast inclusions in a saline tank. For this reason, a fully three-
dimensional treatment of the data is theoretically liable to produce better re-
construction results. This is true for data acquired both from a single planar
array of electrodes and from three-dimensional arrays (e.g., multiple planar
arrays).

3 FIRST-GENERATION SYSTEM IN VITRO

Having implemented the image-reconstruction algorithms described in the
previous chapter, we realized a two-dimensional first-generation EIS system
[2, 3]. The physical interface consisted of a shallow, circular, saline-filled
tank in which conducting and insulating targets could be placed for imaging
(Figure 1). The tank, 20 cm in diameter and 6 cm deep (filled to 4 cm depth
with a 0.9% NaCl solution), was fabricated from a PVC pipe and mounted on
a Lucite base. The 32 electrodes around the perimeter of the shallow tank
were steel paper clips attached over the tank edge so that a portion of the
wire (immersed area approximately extended straight to the
tank base. The goal was to create a simple platform on which to test the
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electronics and software, which could then be ported to a second-generation
system with an electrode interface suitable for clinical breast imaging.

Figure 1. In vitro application of our first-generation, 32-electrode EIS system. The
tank is depicted with a cylindrical target placed upright midway between electrode
17 and the tank’s center.

We designed this system to provide maximum flexibility. Each channel
could be operated in either voltage or current mode, with a relay switching
either a voltage source or current source to the electrode as desired. The
electrodes were driven by 32 in-phase sinusoidal signals at one of 10 select-
able frequencies (10, 20, 40, 50, 70, 125, 225, 525, 750, and 950 kHz) sup-
plied by a digitally-controlled source having 12-bit accuracy over a ±12 V,
±50 mA range (Datel PC-420, Mansfield, MA). All electrodes were excited
and measured simultaneously, sampling being performed with a 16-bit, 200
kHz A/D board (Datel PCI-416M). Trigonometric excitation patterns were
used, as was undersampling (to extend the effective bandwidth of the A/D
board [3]). The system was controlled by a 200 MHz Pentium II PC via a 32-
bit digital I/O board (DIO48, Cyber Research, Branford, CT). A simplified
schematic of the electronics associated with a single channel is shown in
Figure 2.

Calibration of system outputs and inputs was performed by a computer-
ized utility using a special relay board that could individually connect each of
the 32 channels to a known load [2, 4]. Our A/D board was calibrated using
manufacturer specifications, while our waveform generator (the source of

Fig. 2) was calibrated by comparing the requested output to the output
actually delivered (using the A/D board to measure the delivered output).
The D/A in each channel (Fig. 2) was also calibrated by comparing requested
to delivered outputs. Finally, precision loads were connected under computer
control to the channels at their board connections. By using several load val-
ues, we characterized the relationship between the voltages and load currents
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across each channel’s 100 sense resistor. We then performed a three-
parameter, two-dimensional, first-order linear regression of the form

where and are the voltages on either side of the sense resistor (Fig. 2)
and is the residual error or offset term. Furthermore, by making phase-
sensitive measurements with reactive loads consisting of precisely-known re-
sistor and capacitor networks we were able to determine and correct for any
channel phase skew. System performance metrics are discussed in [4].

Figure 2. Simplified schematic of the circuitry for a single channel of our first- and
second-generation EIS systems. and are sampled by the A/D board, not
shown. is a reference sinusoid sent to all channels. The load includes both
electrode and target. Circuitry is shown only for the voltage mode; current mode is
achieved by disconnecting the OP amp, resistor, and resistor from
the circuit and replacing them with a current source connected between the mixer
output (i.e., the + input of the OP amp) and Relays and control lines are omitted
from this drawing.

We did not measure signal magnitude and phase in hardware. Rather, in
order to achieve affordable lock-in performance over the relatively wide fre-
quency range of the system, our channel circuits were designed to sample the
AC voltage across a sense resistor in series with the electrode. A software
lock-in amplifier algorithm was then used to extract signal magnitude and
phase from the data.

We began by imaging a wide range of targets consisting of conducting
(brass) and nonconducting (nylon) cylinders of various diameters placed up-
right at various points in the tank. We acquired data for each target at all 10
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frequencies, which took approximately 3.5 min. Usually we recorded two
signal periods at 101 samples/period. Representative in vitro results are
shown in Figure 3.

Blurring of feature borders, as seen in Figure 3, is an artifact of the re-
construction algorithm, in which the final value at each property mesh node
is a function of the values at all other nodes. An electrode-associated periph-
eral artifact is also apparent (top row). As discussed in the previous chapter,
numerical electrode modeling only slightly reduces the latter artifact;
difference imaging does so more effectively. In difference imaging, the ab-
solute node values in a target image are subtracted from those calculated for
a homogeneous tank. Amelioration of peripheral artifact in the saline-tank
setup by means of difference imaging is indicated in Figure 3, which com-
pares absolute and difference images of a 0.64 cm diameter conducting cyl-
inder at three depths. The contact impedances for the saline-immersed
electrodes in the two-dimensional tank geometry were nearly invariant and
identical, providing optimal conditions, but difference imaging does not cope
equally well with nonuniform contact impedances, which occur clinically.

Figure 3. Absolute (upper row) and difference (lower row) conductivity images of a
0.64-cm-diameter brass cylinder placed 1 cm (left), 2 cm (center), and 4 cm (right)
from electrode 10 (at about 5 o’clock). Images were acquired in voltage mode at 950
kHz. Graybar units are S/m.
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Using the saline-tank configuration, we verified that electrode artifact is
less pronounced at higher frequencies and characterized system resolution as
a function of inclusion width and distance from the center of the imaging re-
gion [1, 2]. We found that conductors are distinguishable at greater depth
than insulators of equal size, though difference imaging improves maximum
resolvable depth for both types of targets. The effect of difference imaging
on the depth resolution of a conducting target is evident in Figure 3. Resolv-
ability diminishes with target depth for both the absolute and difference im-
ages, but more slowly for the difference images. The target used in Figure 3
was essentially undetectable at depths greater than 4 cm, even in difference
images. A conducting target had to be greater than 2.5 cm in diameter to be
detected at the center of the tank.

4 FIRST-GENERATION SYSTEM IN VIVO

To render our first-generation system suitable for clinical use, we employed a
specially-constructed electrode system and patient imaging station [5]. In-
stead of paper clips, sixteen 8 mm diameter Ag/AgCl imaging electrodes
were used (plus four 4 mm diameter Ag/AgCl ground electrodes interspersed
among the imaging electrodes at 90° intervals). The electrodes were mounted
on radially adjustable rods to create an annular opening with a diameter be-
tween 5 cm and 18 cm. The patient was positioned prone on an examining
table so that one breast was pendant through a circular opening, and the
electrodes were moved inward until they made circular contact with the
breast. The operator visually inspected the interface to ensure good electrode
contact. A video camera provided digital views of the final breast position for
documentation.

Because EIS intentionally passes electrical currents through the body,
safety is a concern. The currents injected by the system must not interfere
with any normal electrophysiological functions. However, at frequencies sig-
nificantly above 1 kHz it is unlikely that AC currents will interfere grossly
with the behavior of ion channels in the cell wall, which require on the order
of 1 ms to open and close; furthermore, resistive heating is avoided by
maintaining current flow sufficiently low. Our system meets American Na-
tional Standards Institute guidelines for maximum current as a function of
frequency (ANSI/AAMI ES1-1993). Further, the EIS system is electrically
isolated from earth ground through the use of an isolating transformer. This
prevents possible return-current paths through grounded objects. Currents
can enter and leave the body only via the imaging electrodes.
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After testing the new electrode system on agar and fruit phantoms and on
the arm and leg [2], we undertook clinical exams of the breast. In a prelimi-
nary study of 12 volunteers having among them 14 abnormal breasts (i.e.,
breasts containing lesions identified as suspicious by mammography), 11
(79%) of the abnormal breasts were correctly identified by inspection of EIS
images, all four (100%) of the tumors present were identified, and 9 (82%) of
the normal breasts were identified [6]. (Quantitative analysis of the images
was also performed but had lower accuracy.) Images of a normal breast, a
breast with cyst, and a breast with a large tumor are shown in Figure 4. In
Figure 5, a complete set of conductivity and permittivity images are shown
for the cystic breast in Figure 4 and the contralateral breast of the same indi-
vidual.

We conducted additional studies of 26 women in 2001–2002 using a
second-generation breast interface with improved electrode-positioning con-
trol [7]. Using trigonometric excitation patterns, we acquired voltage-mode
images at the 10 frequencies listed in the previous section. Breasts designated
as abnormal on the basis of preliminary mammograms were imaged in three
planes: one above the level of the suspicious lesion, one at the level of the le-
sion, and one below the level of the lesion. The image-reconstruction algo-
rithm was executed for five iterations in each case. Images from the five
highest frequencies were judged visually for the presence of abnormalities,
based on earlier reproducibility studies which showed that the most consis-
tent images were generated at these frequencies.

Fifty-one breasts were imaged in this study. These included 38 normal
breasts and six containing ACR 4 or 5 lesions.* Thirty (79%) of the normal
breasts and five (83%) of the ACR 4 or 5 breasts were correctly identified by
visual inspection of our EIS images. These provisional results show a rate of
cancer detection comparable to that achieved by groups using surface-
impedance mapping methods [7], but it is notable the latter approaches are
intrinsically limited to depths of a few centimeters, whereas our tomographic
technique has the potential to resolve abnormalities near the center of the im-
aging volume.

* In the American College of Radiology (ACR) BI-RADS rating system, ACR 1 is negative;
ACR2 is a benign finding, negative; ACR 3 is probably a benign finding; ACR 4 is a suspi-
cious abnormality; and ACR 5 is highly suggestive of malignancy (American College of Ra-
diology, Breast Imaging Reporting and Date System (BI-RADS), 3rd Edition, Reston, VA,
1998).
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Figure 4. Three clinical images from our first-generation EIS system. Left: Normal
breast. Center: Breast with a cyst (bright area at 3 o’clock). Right: breast with a
large tumor (elliptical bright area dominating the superior portion of the image from
10 to 3 o’clock). These are voltage-mode images acquired at 125 kHz. Graybar units
are S/m.

Figure 5. Images from a subject presenting with a cyst in the left breast (bottom im-
age pair in Fig. 4). Left: Conductivity images for right (R) and left (L) breasts
(units S/m). Right: relative permittivity images for right and left breasts (di-
mensionless).
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5 SECOND- AND THIRD-GENERATION SYSTEMS

5.1 Design Overview

Our first-generation EIS system suffered from two fundamental limitations.
The first was its two-dimensionality. As noted above, during impedance
tomography of a three-dimensional target some current will inevitably
traverse out-of-plane regions, distorting two-dimensional images. Combining
data acquired sequentially at multiple planes does not enable three-
dimensional imaging per se because the breast deforms under pressure,
producing a different geometry when the data is acquired in each plane.
Optimization of a three-dimensional finite element model using two-
dimensional data, though possible, suffers from having too few data points to
meaningfully adjust so many degrees of freedom.

The second limitation of our first-generation system was its bandwidth.
Experience showed that the best images were generally obtained at the
highest available operating frequency (950 kHz), which was consistent with
various studies arguing that frequencies above 1 MHz are better for the
bioelectrical characterization of various types of tissue in the breast [8–10].
Higher frequencies were thus desirable.

We planned our second-generation system to acquire data simultaneously
in multiple planes and to operate at any frequency between 10 kHz and 10
MHz [11]. Extension to high frequencies entails problems with stray
capacitance, signal generation, and signal sampling. To bring the driving and
sensing electronics as close as possible to the electrodes, we integrated
custom-built circuit boards with the breast interface. Each board contained
the sampling and driving circuitry for a pair of channels. Each channel was
configured under computer control to sample the voltage across a sense
resistor or to drive the electrode in voltage or current mode. The boards were
wedge-shaped to allow placement of all electronics components as close as
possible to the electrodes. Sixteen such boards were arranged around a
radially-adjustable array of 16 electrodes similar to that used in our first-
generation system. Use of 32 channels allowed for simultaneous driving and
measurement on all 16 electrodes. Up to four such 32-channel, 16-electrode
levels could, in principle, be stacked to enable three-dimensional imaging,
but we did not construct a multilevel system using our second-generation
hardware design.

We gained valuable experience from our second-generation system, and
it has been retained for in vitro studies. However, the integration times re-
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quired by the analog RMS-to-DC converters and phase detectors that em-
ployed in this system (as opposed to the software lock-in amplifier solution
we used in our first-generation system) resulted in longer examination times
than were acceptable for patient studies. Design details of our second-
generation system are therefore omitted here in favor of those of our third-
generation system, which is now being used clinically.

Our third-generation system consists of four stacked annular arrays with
16 electrodes in each plane. Radially arranged wedge-shaped circuit boards
are used, as in the second-generation design, but perform signal control, gen-
eration, and processing using digital signal processor (DSP) technology. This
reduces the analog signal path for each channel to a minimum (less than 10
cm) and allows arbitrary waveform generation.

Individual wedge boards contain the circuitry for four bidirectional
channels, with each stackable layer comprising eight wedge boards. A dedi-
cated custom-built control board allows the user interface computer (a 1.79
GHz AMD Athlon™ laptop) to interact with the wedge boards and mechani-
cal electrode-positioning system for each layer. The basic layout for a single
layer is shown in Figure 6. An individual wedge board and three stacked lay-
ers are shown in Figure 7.

Figure 6. System layout for a single 32-channel layer of our third-generation EIS
system. The system may be configured with one to four layers. Each layer has its
own control board. Each motor moves four electrodes in a single layer.
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As in previous systems, the breast interface is placed under an examina-
tion table below the opening into which the breast is introduced (Fig. 8).
Electrode position is adjusted radially at each level (5–18 cm adjustable
opening diameter) to enable the electrodes to make contact with the breast.
The height (distance from the chest wall) of each level is fixed, the first level
being approximately 1.5 cm from the chest wall and the following levels 3
cm apart. This multilevel configuration makes it possible to acquire planar
data at multiple levels for reconstruction of multiple two-dimensional images
or to acquire data on all levels simultaneously for reconstruction of three-
dimensional images. From the channel-design point of view, the 2D/3D dis-
tinction is not crucial except that three-dimensional imaging implies more
channels.

Figure 7. Left: A four-channel board in our third-generation EIS system. Right: A
stack of three eight-board layers with the top mechanical layer removed. Each layer
is 60 cm in diameter. The round protrusions in the photograph at right are the motors
that adjust electrode position (four motors per layer). The control boards and user-
interface computer do not appear in the picture.

5.2 Channel Board Design and Signal Processing

We found that the best way to generate and measure signals up to 10 MHz
while still maintaining a compact design was to incorporate a combination of
advanced DSP chips, reconfigurable logic devices (field programmable gate
arrays [FPGAs]), high-performance digital-to-analog converters (DACs), and
analog-to-digital converters (ADCs). The DSP chip we use is a 32-bit ADSP-
21065L (Analog Devices, Norwood, MA), clocked at 66 MHz; the FPGA is
a XILINX Spartan XC2S30™ (XILINX, San Jose, CA) clocked as high as
80 MHz; the DAC is a 14-bit AD9754 (Analog Devices); and the ADC is a
16-bit differential AD7677AST (Analog Devices) with a maximum through-
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Figure 8. Third-generation EIS patient-imaging station. Top: Subject prone on table
with four-level breast interface partly visible below. Bottom: Breast interface pre-
sented in profile view. The shield that normally covers the mechanical and elec-
tronics assemblies has been removed for illustration. A standard x-ray biopsy table
has been adapted by mounting two rails on its underside, allowing the EIS assembly
to slide in and out like a drawer. The x-ray unit and detector assembly for a biopsy
procedure remain in place. Moving the x-ray components as low as possible with re-
spect to the table leaves a 7.5" gap that is sufficient for mounting the EIS imaging
system.
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put of 1 million samples per second. The applied voltage range is 4 V peak-
to-peak. A simplified schematic of a single channel is shown in Figure 9.

We use a dual-ported pattern memory (implemented in the FPGA) to
create the applied signal. Bits 0–13 of the 256×16 pattern memory in the
FPGA are fed to a 14-bit DAC; this is followed by a buffer stage to create the
applied signal, while bit 14 is used to trigger the ADCs that sample and

the voltages on both sides of the sensing resistor This allows sam-
pling to take place in lockstep with signal generation.

Signal frequency is established by a combination of the number of words
that make up a full signal cycle in the pattern memory, nwords, and the sig-
nal memory clock, that is, With this arrangement,
the extensive range of frequencies targeted for this design is readily achiev-
able. A few exemplary configurations are listed in Table 1.

All channels are controlled by a common clock, with a channel timing
skew of less than 2 ns. The pattern clock is produced by a direct-digital-
synthesis chip on a control board that communicates with all channel boards.
The DSP chip executes at 66 MHz asynchronously with respect to the pattern
clock. Its interaction with the ADCs is interrupt-driven. The DSP chip com-
putes the pattern values based on the requested amplitude and frequency,
then loads them into the pattern RAM. It also collects the measured values
from both ADCs, and from these computes and for a given
electrode. These four floating-point values are then sent to the controller,
which in turn relays the information to the system computer.

Computation of the complex AC values of V and I by the DSP chip is a
two-step process. The first step converts the 16-bit integer data from the
ADCs into voltages. This is accomplished using a calibration curve obtained
by using the ADCs to measure DC voltages that are simultaneously recorded
with a trusted precision instrument. A linear regression is computed between
the known voltages and the ADC numerical values to obtain slope and offset
calibration parameters.

The second step computes the complex values from the measurements.
Two techniques are available to perform vector (i.e., real and imaginary or
magnitude and phase) voltage measurements, namely, quadrature sampling
and mixing. In quadrature sampling, two samples are recorded per cycle of
the measured waveform. Since acquisition timing occurs in lockstep with the
waveform generator, we place samples at the first positive peak and the fol-
lowing zero crossing of the input waveform. These samples correspond to
the 0° and 90° phase points in the waveform. The measured values corre-
spond to the waveform’s real and imaginary components, the phase being
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Figure 9. Simplified schematic of a single DSP-based channel in our third-
generation EIS system. Drawing shows half of a two-channel circuit in which both
channels share the FPGA and the DSP controller. Each wedge board contains two
dual-channel circuits for a total of four channels per board. Compare to the channel
schematic for our second-generation system (Fig. 2).
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referenced to the input waveform. From this information, any representation
of the AC waveform sampled can be computed. Given the in-phase and
quadrature voltages and we have

Mixing, on the other hand, requires that the signal be sampled at multiple
points, not just two. The real and imaginary parts of the signal are obtained
by mixing the signal samples with synthetic (i.e., computed) sine and cosine
waveforms. Assuming that the zero-phase reference signal is a cosine, the
products of mixing with the synthetic sine and cosine waveforms will be the
real and imaginary components, respectively, of the measured signal. The
mixing operation itself consists of multiplying the signal samples with the
synthetic waveform samples and averaging:

We sample and (see Fig. 9) but seek the complex-valued electrode
voltage and current, with the phase of the load current expressed with re-
spect to the load voltage For this reconstruction, we need

and will have some phase skew due to the
buffer OP amp and the impedance in series with the driver. This phase can be
removed by rotating the phasor in the phase plane to the 0° position.
and can then be found from the following relationships:
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Debate exists over whether it is preferable to apply currents or voltages
and then measure the resulting voltages or currents. In the design presented
here, the driver circuitry falls into the voltage-mode category. However, by
programming the DSP appropriately one can use the channel as a current
source. This is achieved by measuring the current in real time and applying
an adjusted scaling factor to the signal pattern data to produce the desired
levels.

5.3 Three-Dimensional Trigonometric Excitation

As discussed in the previous chapter, trigonometric signal patterns are opti-
mal for two-dimensional imaging of a circularly symmetric target. Our new
system raises the question of the optimal signaling scheme in three dimen-
sions. We have conjectured that spatially rotating the trigonometric signal
patterns in the third (vertical) dimension will be close to optimal. In effect, in
a four-level system we apply a spatial rotation of 90° to the trigonometric
pattern for each successive layer (Fig. 10). We have not yet compared this
pattern to others experimentally.

Figure 10. Three-dimensional trigonometric excitation scheme. Left: Pattern applied
to the 16 electrodes of a single layer. Right: Pattern applied to a four-layer system.
Continuous curves show ideal variation, points show actual (discrete) values.
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It should be noted that trigonometric patterns are only optimal for homo-
geneous domains. For practical applications, optimality will depend on the
spatial distribution of the load. Algorithms have been presented [12] which
iteratively estimate the optimal patterns for a given load. Another approach
would be to use vectors with random magnitudes, as explained in [13].

5.4 Breast Interface

The breast interface is one of the most critical components of an EIS system,
as poor electrode contact will result in poor images. Further, image recon-
struction requires precise knowledge of the relative positions of the elec-
trodes in space. Some EIS groups approximate electrode position by a
circular geometry even when the arrangement is clearly not circular, the
electrodes being attached to a patient’s chest, for example. As breasts are
easily deformed, we have the opportunity to shape the imaged volume into a
circular cross section. The electrodes have been configured in a circular array
of adjustable diameter (Fig. 11); by bringing them into contact with the
breast, we deform it into a circular shape. Only mild pressure is required and
there is no discomfort to the patient. In contrast, many women avoid mam-
mograms because they find the required breast compression uncomfortable
and in some instances painful [15].

Figure 11. View of third-generation system looking straight down through the hole
in the examining table. Electrodes are retracted as far as they will go. A two-layer
system configuration was in place when this photograph was taken. See Fig. 8 for
two side views of the patient-imaging station as a whole.
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An additional clinical advantage of our new system is its speed of opera-
tion. The high-speed serial port interface we have used to interconnect the
system interface computer, the control modules, and the channel modules of-
fers the possibility of data acquisition at near-video rate: a 4-layer, 10-
frequency exam will take about 1 minute. Postprocessing of the data to pro-
duce images requires considerably more time.

5.5 Preliminary Results

We have performed phantom studies and pilot breast exams with our third-
generation system, but the hardware is still being calibrated and optimized
and extensive results will take some months to acquire and analyze. We ex-
pect, however, to realize a significant increase in diagnostic capability over
earlier systems due to the increased precision and dimensionality of the new
system.

Figure 12 shows some of the results of a recently completed phantom
study. We suspended a brass cylinder 1.3 cm in diameter in three positions in
a saline tank and acquired data from a single electrode plane at 1.129 MHz.
(Data were also acquired at 127.4 kHz and 3.36 MHz, but are not shown.)
Conductivity and permittivity images were reconstructed simultaneously us-
ing a two-dimensional finite element mesh with 1345 nodes and 2560 linear
triangular elements. The clarity and consistency with which the anomaly is
imaged at the three positions, compared to images from our first-generation
system (see Fig. 3), bodes well for two- and three-dimensional imaging of
more complex targets.

Figure 12. Conductivity images of a 1.3 cm–diameter brass cylinder suspended in a
saline tank 8.5 cm across. The brass cylinder is shown 1 cm from tank’s edge (left),
2 cm from the tank’s edge (middle), and in the center of the tank (right). Images
were acquired in voltage mode. Graybar units are S/m.
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6 CONCLUSION

It is not expected that EIS will compete with x-rays, magnetic resonance im-
aging, or computerized tomography for image resolution. The available data
suggests, however, that it may be more specific in discriminating between
certain types of soft tissues, specifically in showing large contrast for malig-
nant breast tissues as compared to normal breast or fat [1]. As a result, al-
though reconstructed EIS images have relatively poor spatial resolution,
certain types of small abnormalities leave a noticeable signature in the re-
sulting images when compared to normal tissues.

With completion of our highly flexible third-generation EIS system this
technology will have achieved a level of sophistication that may allow it to
be used as an immediate follow-up to mammography when abnormalities are
observed. In such cases, it may help differentiate between malignant and be-
nign observations.
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Chapter 7

MICROWAVE IMAGING: A MODEL-BASED
APPROACH

Paul M. Meaney, Ph.D. and Qianqian Fang

1 INTRODUCTION

Microwave signals, which are nonionizing, tissue-penetrating, and focusable,
are attractive for the diagnosis and treatment of various disorders, especially
cancer. They have been used, for example, as a noninvasive means of deliv-
ering energy for the hyperthermic treatment of tumors [1,2].

In the realm of diagnosis, microwave techniques are generally of two
types, backscatter and transmission (or tomographic). Investigators have of-
ten sought to apply expertise gained with radar technology during the Cold
War, with a resulting emphasis on backscatter techniques [3]. Backscatter is
central to radar because the medium between antenna and target (vacuum or
air) is essentially homogeneous and because targets are primarily in the far
field of the antenna radiation pattern.

For medical diagnosis, however, the objects being interrogated (human
bodies) are generally in the near field and therefore invite a different ap-
proach. The most common near-field technique is x-ray computed tomogra-
phy (CT) [4]. In x-ray CT, signals are transmitted through the body from a
large number of positions and detected on the opposite side. Because x-rays
propagate in nearly straight lines through the body, are minimally scattered,
and undergo absorption that is proportional to tissue density, high-resolution
tomographic images can be produced using linear algorithms in which the
value of each image pixel represents the radiodensity of a corresponding tis-
sue volume. This approach has been used for diagnosis of conditions where
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tissue radiodensity is correlated to pathology. The method does have certain
drawbacks, however, such as minimal sensitivity in certain situations (e.g., in
detecting tumors that do not differ greatly in radiodensity from healthy tissue
[5]). Further, x-rays expose patients to ionizing radiation, which carries a
cumulatively increased risk of genetic damage [6].

Magnetic permeability is effectively uniform in the body, while permit-
tivity and conductivity vary locally depending largely on water, fat, and pro-
tein content [7–10]. Generally, water molecules (which are highly polar)
have high relative permittivity ranging from 79.7 at 300 MHz to 77.3 at 3
GHz. Water undergoes a molecular relaxation near 25 GHz, where its per-
mittivity drops considerably.* The relative permittivity of fatty tissue and
bone, which consist mostly of nonpolar molecules, ranges from 5 to 15 over
this frequency band [8]. Further, water in the body is generally in the form of
serum, whose main constituent is saline. Consequently, tissues with higher
water content, such as muscle, have higher conductivity than fatty tissue or
bone [12].

The variability of permittivity and conductivity within the body suggests
that imaging of these properties in a noninvasive manner may have diagnos-
tic value. Developing an imaging system in this frequency range has, how-
ever, been challenging [13–16], because microwaves, unlike x-rays, undergo
significant reflection and refraction in the body. Figure 1 shows simulated
two-dimensional electric-field magnitude contours for a microwave point
source illuminating a circular, high-contrast target. Significant field varia-
tions occur both inside and outside the object. Further, in practice scattering
occurs in three dimensions.

Other types of microwave breast imaging that are currently under inves-
tigation, though not discussed further in this text, include (1) confocal mi-
crowave approaches developed by Hagness et al. [17–19] and by Fear et al.
[20–22], which seek to locate high-contrast objects without recovering their
actual electrical properties; (2) passive radiometric techniques developed by
Carr et al. [23] and Mouty et al. [24], which act to identify subsurface hot
spots associated with tumor metabolism; (4) a thermoacoustic approach re-
alized by Kruger et al. [25], which excites the breast tissue volume with a
high-power microwave pulse and records the resulting microwave property-
based mechanical displacements with an ultrasound transducer; and (4) other

* Note that we extend the lower bound of the “microwave” frequency range from its standard
1 GHz down to 300 MHz. Our definition preserves the standard wavelength range, not the
standard frequency range; the wavelength used to define the standard bound is computed in
free space for vacuum), while the wavelength in a material medium is proportional to
the free-space wavelength divided by the square root of the medium’s relative permittivity [11].
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microwave tomographic approaches reported by Bulyshev et al. [26] and
Zhang et al. [27].

The rest of this chapter will discuss the algorithms involved in a two-
dimensional microwave imaging system developed by our group with special
attention to breast imaging. We begin below by describing the electric field
with a truncated Taylor series [28]. This series forms the basis of an inverse,
iterative, Newton-type numerical solution [29–31]. Next, we detail a forward
solution for the electric field based on a hybrid numerical approach utilizing
both finite element and boundary element methods [26, 32]. Finally, we
cover several optimization issues. These include (1) choice of antenna-array
elements [33]; (2) compensation for the presence of nonactive antenna ele-
ments [34, 35]; (3) log-magnitude/phase representation of the reconstruction
algorithm [16] (especially useful when imaging large scatterers such as the

Figure 1. Calculated log-magnitude electric-field distributions within a circular im-
aging zone containing an off-center circular target (light area with dashed border).
Four possible transmitter placements are shown. Field distribution is notably de-
pendent on angle of illumination and distance to target.
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breast; and (4) a conformal-mesh approach to improving property characteri-
zation of an object (e.g., breast) embedded in a homogeneous background
(e.g., saline pool) [36]. Chapter 8 will discuss simulations and phantom ex-
periments demonstrating overall system capability, along with clinical results
from initial studies.

2 GAUSS-NEWTON IMAGE RECONSTRUCTION
ALGORITHM

2.1 General Derivation

We first assume two finite element (FE) meshes covering the imaging zone,
as described in Chapter 2: an N-point electric-field mesh and a coextensive
L-node parameter mesh ( L < N ) [37]. We also assume, initially, that there
is a single point of transmission on one side of the target and a single point of
observation on the other, both outside the dual mesh area [32]. We then ap-
proximate the true electric field at the point of observation, which is a
function of the true property profile, defined on the L nodes of the pa-
rameter mesh, as a two-term Taylor series expanded around an approximate
property profile, [26, 38]:

Here and are vectors of length L ;  and are the true and
approximate complex-valued electric fields at the point of observation;

is a 1 × L matrix containing the first derivatives of the approxi-
mate solution with respect to the L variables, here evaluated at their ap-
proximate values; and is the vector difference When
is given (j being the index of a node in the parameter mesh), the electrical
properties at that node (i.e., permittivity and conductivity can easily
be determined from where is the operating frequency
in radians, is the magnetic permeability (here constant), and

The above relationship describes a single observable, that is, the electric
field at a single point of observation (receiving antenna). The number of ob-
servables can be increased both by measuring the electric field produced by a
single excitation (microwave transmission) at multiple points of observation
and by providing excitations at different locations. The number of observa-
tions per image reconstruction, is the product of the number of excita-
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tions, and the number of observations per excitation, (In our sys-
tem, 16 antennas illuminate the imaging zone, allowing 16 distinct excita-
tions and 15 observation points per excitation; hence, and

For as in the image reconstruction problem,
(7.1) becomes the matrix equation

where in (7.1) has been replaced by the vector of actually measured
electric field values, entries long; has been replaced by the
vector of calculated electric-field values, is L entries long; and
the Jacobian matrix [J] equals A least-squares fit for

is obtained by solving the set of normal equations produced by multi-
plying of both sides of (7.2) by [39, 40]:

is termed the Hessian matrix. The vector for which (7.4) is
solved, is used to provide an update to at each iteration of a Gauss-
Newton routine that converges to a least-squares estimate of the true property
distribution that is [41],

where v is the iteration number.
Two points should be made regarding (7.2). First, the forward solution

must be accurate; the degree to which it approximates the actual fields
at the observation points determines the quality of the final image [42].
Second, in order to determine the elements of the Jacobian matrix [J], some
method must be found to determine the derivative of the electric field at each
measurement site with respect to the property values at the L nodes of the pa-
rameter mesh. Both issues are addressed in the following section.

It should also be noted that the algorithm described in this section is ap-
plicable to both 2D and 3D problems, but the derivation in the following
section is specific to two-dimensional scalar image reconstruction. In this
case, transverse magnetic illumination is assumed, implying that the electric
field is oriented in the z direction (out of the page) and can be treated as a
scalar quantity [28].

Finally, the locations of the observation points and property-mesh nodes
have deliberately been left arbitrary in order to facilitate later use of the dual
mesh approach discussed in Chapter 2.
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2.2 Hybrid Element Forward Solution

Solution of the Helmholtz equation (2.1), given some estimate of the
property distribution—the “forward problem”—is required at each iteration
of the method outlined above. In choosing a solution technique, certain con-
ditions or goals have been kept in mind. (1) An optimal model-based imaging
algorithm should capture its corresponding physical configuration as accu-
rately as possible in numerical form [32]. (2) The computational size of the
problem must be kept tractable, because not the forward problem must not
only be solved, it must be solved at each iteration of the Newton’s method
inversion. N must therefore be minimized [43]. (3) Working against (2),
spatial sampling of the electric field in the imaging zone (which must be cal-
culated at all N nodes in order to determine in (7.4)) must be suffi-
ciently dense to permit accurate field solution [44].

To satisfy these criteria, we have chosen a hybrid of the finite element
(FE) and boundary element (BE) methods [45] for the two-dimensional
problem. The FE method is well-suited for representing fields within a
closed, heterogeneous, arbitrarily shaped imaging zone. The BE method, on
the other hand, may be used to represent the homogeneous medium sur-
rounding the imaging zone and may be coupled to the FE formulation by
node sharing (Fig. 2) [46]. The region outside the FE zone, which contains
all antennas, extends to infinity; however, given a medium sufficiently lossy
to guarantee minimal reflections, only the surfaces of certain types of anten-
nas and the interface of the BE and FE nodal systems need be discretized.
The BE method entails a full-matrix problem (as opposed to the banded-
matrix structure associated with FEs), so the number of shared boundary
elements must be limited to prevent the problem from becoming computa-
tionally expensive.

The hybrid method provides a set of exact boundary conditions for the
FE discretization [44, 47]. Furthermore, it allows the FE zone to be as small
as possible by relegating large areas of homogenous space to treatment with
the BE method. Keeping the FE zone small is helpful because the bandwidth
of the matrices generated by the FE zone is proportional to the smallest
cross-sectional dimension within the image field-of-view (and computational
cost is proportional to the bandwidth squared) [42]. Wider nodal spacing
over a fixed imaging field also reduces N, but an upper limit on internodal
distance is determined by the need to accurately model the electric field
across the imaging zone—in effect, by the operating frequency [43]. In prac-
tice, therefore, N can be reduced beyond a certain point only by minimizing
the physical size of the FE mesh, which the hybrid method facilitates.
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Figure 2. Schematic of hybrid method using both finite elements and boundary ele-
ments for solution of the forward problem. Filled triangle vertices are nodes in the
FE mesh; open vertices are boundary element nodes shared with the FE mesh; open
nodes on the source antenna are boundary element nodes not shared with the FE
mesh.

Taking into account internal forcing functions and all nodes shared with
the BE system, the FE region produces a matrix equation of the form
[A]{E} = [B]{F} or, more fully,

Here the subscripts I and B refer, respectively, to nodes interior to the FE
mesh (I nodes) and to nodes shared by the FE and BE problems (B nodes):
I + B = N. The dimensions of the four submatrices of [A] are indicated by
their subscripts; for example, submatrix is I × B. Zeros indicate subma-
trices with all entries equal to zero. Similar notation is used for the column
vectors {E} and {F}, where {E} is electric field and that is,

and are column vectors whose lengths are indicated by their re-
spective subscripts.

Equation (7.6) comprises N equations in I + 2B unknowns (i.e., the I
unknowns of vector the B unknowns of vector and the B unknowns
of vector Therefore, more equations are required for a solution. These
are produced by applying Green’s functions to the calculation of the electric
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field at each node in the BE region, that is, in the homogenous portion of the
problem domain outside the FE region [45]. In particular, for each BE node
bounding the FE mesh (B nodes) and for each point source located in the
homogeneous region of the problem space (S points), an equation is derived
from the Green’s function:

Here is a geometric shape factor associated with contour integration
around a singularity (i.e., 0.5 for nodes on the BE boundary and 1.0 for all
internal nodes); is the electric field at node i; signifies line integration
about the complete BE region (including excursions around antennas, as
shown in Fig. 2); is the unbounded-space Green’s function for the two-
dimensional Helmholtz equation (in this case, the Hankel function), singular
at node i; the flux of the electric field across the line
of integration at node i; is the flux of the Green’s function
across the line of integration at node i; f is a forcing function (e.g., a Dirac
delta function) representing sources in the BE region; and indicates inte-
gration over the entire boundary of the BE region (i.e., from the FE mesh
boundary out to infinity). Equation (7.7) is valid not only at nodes, but at all
points within the BE region.

Application of (7.7) to all boundary and source nodes yields B + S inte-
gral equations. The method of weighted residuals (see Ch. 2) is applied to
these integral equations, using a Green’s function centered at the mth node
as the mth weighting function. This produces a set of linear equations that
can be written

where the entries of [C] involve the entries of [D] involve and
the entries of {Z} include the terms from (7.7), and and

are the flux and field associated with the discretization of the source an-
tenna, one of which can be specified a priori while the other must be com-
puted along with the other unknowns in the system.

Equations (7.6) and (7.8) can be solved simultaneously either by multi-
plying both sides of (7.6) by and substituting for in (7.8) or by
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multiplying both sides of (7.8) by and substituting for in (7.6). A
complete forward solution (including a new [A]) must be computed at each
iteration of the inverse solution, but because the electrical properties of the
BE zone do not vary, can be precalculated and stored in memory. For
the breast-imaging application discussed in the next chapter, the latter ap-
proach is optimal.

After multiplying both sides of (7.8) by we have

where the sizes of the submatrices of and have
been indicated by subscripts. Inserting the portion of (7.9) into (7.6)
and rearranging produces

All subvectors on the right-hand side of (7.10) originate from antennas in the
BE region and are therefore known. (Our treatment of (7.9) has assumed that

is known and that is solved as part of the overall system. The meth-
odology is sufficiently general to permit the use of antennas where is
known and floats.)

Equation (7.10) is solved for and The latter is substituted into
(7.9) to compute and The electric field at any point in the BE region
(i.e., outside the FE region) can then be computed using equation (7.7).

A basic feature of this method is that terms coupled into the FE system
from the BE equations are never more than B entries long. In practice, there-
fore, the computational impact on the FE problem of even large, complex
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structures outside the FE zone depends only on B, the number of nodes
shared by the FE and BE systems [30].

2.3 Hybrid Element Reconstruction

Once the forward solution has been derived, the only term required to com-
pute using (7.4) is the Jacobian matrix, [J]. For this, we need the de-
rivatives of the electric field at all observation points with respect to the
electrical property value at each node in the reconstruction parameter
mesh. (As discussed further below, the parameter mesh is not necessarily the
same as the mesh used to compute the electric field.) We begin by differenti-
ating (7.6) and (7.8) with respect to and obtain (after rearrangement)

In differentiating (7.6) to form (7.11) the chain rule has been applied, while
in differentiating (7.8) to form (7.12) the derivatives of and with
respect to are all zero. and are obtained by solving (7.10), leaving

and as unknowns in (7.11). However,
is known in terms of from (7.12). Substituting (7.12) into (7.11)
produces, after rearrangement,
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The matrix on the left-hand side of this equation is the same as that used in
the forward solution (7.10). Thus, the only terms required to solve (7.13) for

and are the elements of matrix This necessitates
examination of the terms in [A] as specified by the dual mesh analysis out-
lined in Chapter 2.

A measurement site may be modeled as one or more BE nodes (in which
case the boundary of integration must make an excursion around that node or
nodes) or as an arbitrary point in the BE region. The latter method shrinks the
matrix problem but entails additional calculations. That is, when the obser-
vation site is an arbitrary point in the BE region, at that location
must still be computed in order to construct the Jacobian matrix (see (7.2)).
To do this we first compute and using (7.12). Once these
vectors are known, (7.7) can be used to compute at the measurement
site by differentiating both sides with respect to (which changes E to

and to and solving for at the point
within the BE region.

2 ANTENNA SELECTION

Any antenna to be employed in our system must be suitable for immersion in
a liquid medium that (a) surrounds the target, (b) has electrical properties that
are similar to those of the target, and (c) is lossy enough to permit the as-
sumption that all fields propagate to infinity without reflection. (Alternative
models have been proposed that incorporate perfectly reflecting or matched
boundaries, but it is unclear how well either of these concepts will perform in
practice.)

Antenna selection must accommodate both limitations in the numerical
model and practical feasibility. Our earliest work [26] used liquid-filled
waveguide radiators, which proved amenable to modeling and useful for ac-
tual imaging. They were relatively efficient and operated over a nominal
bandwidth typical of waveguide aperture antennas, but were bulky. Given the
lossiness of the medium, which limited the distance at which antennas could
be positioned from the target, this bulkiness limited the number of antennas
that could be placed around the target. Subsequently, we adopted simple mo-
nopole antennas, realizing quantifiable benefits [32]. This may seem coun-
terintuitive, given the fact waveguides provide a more directed beam and
therefore higher signal strength at the receiver antennas. However, a key
element of any model-based approach is accurate matching to the physical
system [41]. And while a waveguide antenna can be represented well by our
mixed-element method, a monopole antenna allows even greater modeling
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accuracy for less effort. Further, the benefits of waveguide directionality
were minimized by its radiation pattern, which was significantly broadened
in practice by the lossy coupling medium.

Conventional wisdom suggests that monopole antennas are undesirable
because they have a narrow operating bandwidth and cause surface currents
that can propagate into the system hardware [48]. They are, nevertheless,
well-suited to this imaging application. Figure 3 shows a monopole antenna’s
return loss in deionized water versus that in 0.9% saline. Note that the rapidly
varying ripples in the deionized-water plot disappear in the saline results, an
indication that spurious surface currents have been attenuated. Further, the
antenna in saline has 10 dB or better return loss over the 100 to 1100 MHz
bandwidth. While this return loss is not impressive by radar standards, it suf-
fices for this transmission-mode measurement system—and the broad band-
width is impressive. Broad bandwidth is essential for the log-
magnitude/phase algorithm described below.

Finally, the simple structure of the monopole antenna allows compensa-
tion for nonactive antenna effects, as discussed in the next section.

Figure 3. Return loss of monopole antenna for immersion in deionized (DI) water
versus 0.9% saline solution. Lower return loss indicates better impedance match
between the antenna and the liquid medium in which it is immersed.
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3 NONACTIVE ANTENNA COMPENSATION

Simple one-transmitter, one-receiver arrangements are ideal for laboratory
experiments because wave interactions with adjacent antennas do not occur
and there is plenty of time to rotate the antennas and take more data. In a
clinical system, however, examination time must be minimized. An antenna
array is therefore logical because it enables the transmission and measure-
ment to be switched electronically. Array utilization implies that the charac-
teristics of the nonactive antennas must be incorporated into the forward
model. Each nonactive antenna may, for example, be modeled as a perfect
conductor [49], which is appealing because the resulting boundary conditions
can be easily and accurately implemented in the numerical model in order to
couple the signals to the metal structure for reradiation into the medium [50].
However, this approach ignores the fact that the nonactive antennas (like
those actively transmitting and receiving) are connected to a cascade of mi-
crowave components that influences the reradiation. In practice, an incident
signal couples to the antenna, propagates into the componentry path, and in-
teracts with various impedance mismatches before it is reflected and reradi-
ated [34].

To account for these interactions between the incident signal and the
nonactive antennas, we have modified the microwave componentry attached
to each antenna to present a matched termination during system operation
when the antenna is nonactive (neither transmitting nor being used to make a
measurement). Coupled energy is absorbed by the terminated antenna with
minimal reradiation. This provides, in essence, the equivalent of first-order
radiation boundary conditions at the surface of the nonactive antenna [51].
Furthermore, it eliminates mutual coupling between antenna elements. In
mutual coupling, signals from a transmitting antenna couple to adjacent an-
tennas, reradiate, and are coupled back to the transmitter with sufficient
power to perturb its characteristic behavior. With matched terminations and a
lossy medium, however, any signal reflected back to the original transmitter
is too weak to have more than a modest impact [34].

Even so, the ring of antennas does perturb the overall field and can de-
grade image quality. Furthermore, the perturbation cannot be eliminated by
subtracting a fixed contribution due to each nonactive antenna from each
measured electric field value, because the impact of the nonactive antennas
on a measurement is not a linear effect; the nonactive antennas must be fully
represented as part of the complete forward solution [33]. (In the presentation
that follows, compensation for nonactive antennas is discussed only with re-
gard to the forward problem. Because the matrices of the inverse problem are
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similar, translation of these results to the inverse formulation [33, 34] is not
given here.)

Figure 4 shows a schematic of the BE and FE regions, including a trans-
mit antenna, a receive antenna, a nonactive antenna, and the BE integration
path. Figure 4 is identical to Figure 2 except that the general source antenna,
previously incorporated into the BE boundary integral, has been replaced by
a point source. A single BE node is associated with each nonactive antenna
(assumed to have radius and is located at its center.

In using (7.9) to eliminate from (7.6), we assumed a fixed Dirichlet
boundary condition (i.e., constant and allowed the flux at
the antenna’s surface to be determined as part of the overall solution. How-
ever, it would have been possible to assume, alternatively, a Neumann
boundary condition—constant   – and allow the electric field at
the antenna surface to evolve. For the electromagnetic model applied to the

Figure 4. FE and BE systems for hybrid electric-field forward solution. Shown are a
point illumination source and a single nonactive antenna of radius (readily
generalizable to multiple nonactive antennas). As in Fig. 2, FE nodes are filled verti-
ces and BE nodes are open. A BE node (not shown) is located at the center of the
nonactive antenna.
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nonactive antennas, we assume a first-order radiation boundary condition on
the circular antenna surface [50]:

Here is the effective impedance factor, is the electric field at
the ith BE node, and (i.e., is the electric field flux across the
BE integration path at the ith node. Substituting (7.14) into (7.8) and rear-
ranging produces

can now be computed as in Section 2.2, the difference being that [C] and
[D] are altered by the addition of the nonactive antenna contour as described
below.

We assume that is sufficiently small so that the electric field can be
treated as constant over the antenna surface. This allows us to model the an-
tenna with a single BE node placed at its center, which significantly reduces
the size of [C] and [D] (i.e., by keeping S, the number of source nodes,
small). Values of and can be determined empirically by first measur-
ing the electric fields at the receiver sites both with and without the nonactive
antennas present, producing a measured field perturbation. A computed ver-
sion of the same experiment can be performed repeatedly, adjusting the em-
pirically determined values of and until the computed and measured
field perturbations converge [52].

Addition of the nonactive antenna contour to the BE integration path
(i.e., the path along which the contour integral of (7.7) is evaluated, yielding
the entries of [C] and [D]) alters the matrix elements in (7.15) differently
under two conditions: (1) the singularity of the Green’s function is coin-
cident with the BE node at the center of a nonactive antenna, and (2) the sin-
gularity is located at another BE node (Fig. 5).
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Figure 5. Two types of integration in nonactive antenna compensation. (a) Green’s
function singularity is positioned at BE node i at the center of the nonactive antenna;
(b) singularity is located at BE node i outside a nonactive antenna. (Figure not drawn
to scale.)

When the Green’s-function singularity is positioned at the center of the
nonactive antenna (Fig. 5a), the integrations are straightforward: the distance
argument is measured from the center of the nonactive antenna to the inte-
gration path along the imaging region boundary. The first term on the right-
hand side of (7.7) then produces

for the portion of the contour integral that passes around the nonactive an-
tenna modeled by BE node i, where is the integration angle about the
center of the antenna, is assumed to be sufficiently small that E (and,
therefore, is constant along the integration path. Also, use has been
made of the fact and are constant at a fixed distance from the sin-
gularity at the antenna center and are therefore not functions of Since both
integrals with respect to evaluate to the right-hand side of (7.16)
can be rewritten
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where evaluation of at has been emphasized. There are still two un-
knowns, and We invoke the impedance relationship (7.14) to
eliminate the former and obtain

This term produces contributions to the diagonal of the [C] matrix in (7.15).
When the singularity in is centered at a BE node on the boundary of

the FE region or at the center of another nonactive antenna (Fig. 5b), then we
again assume that E and are constant for the portion of the contour
which encircles the nonactive antenna. The distance argument of the Green’s
function is not constant in this case but is a function of the angle from BE
node i to each point on the contour. Denoting this distance by we
have

where and are the electric field and flux on the antenna surface,
respectively (and are related to each other through (7.14)), and and

are written as functions of to stress their angular dependence. The right-
hand side of (7.19) is easily integrated by Gaussian quadrature or can be
further approximated as

when the distance from the singularity to the nonactive antenna is large com-
pared to (i.e., and can be considered a constant), since in this
case
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The approximation given in (7.20) is valid when the BE node on which the
Green’s function is centered is distant from the antenna in question. With

at the nonactive antenna site given by (7.20), we can find E at
that point through (7.14).

Equation (7.20) and evaluation of (7.19) produce contributions to [C] in
(7.15) in the column associated with the BE node at the center of one mo-
nopole antenna.

4 LOG-MAGNITUDE, UNWRAPPED-PHASE
RECONSTRUCTION ALGORITHM

When the target is electrically high-contrast with respect to the background
medium, phase differences in excess of radians may occur between obser-
vation points. In complex-plane representation [26, 27, 53, 54], electric-field
values are, by default, mapped into the Riemann sheet bounded by and

through the addition or subtraction of multiples of That is, antenna-
to-antenna phase variations that are actually smooth may appear grossly dis-
continuous when they pass over and suddenly reappear at in the re-
corded data. Under these conditions, image reconstruction may fail due to the
nonunique nature of the gradient in (7.4) (i.e., without reli-
ance on a priori information about the size and structure of the target, an-
tenna placement, and the inherent smoothness of phase variation,.

To cope with large phase, we have devised an alternate formulation of
the general inverse algorithm based on expanding the log-magnitude and
unwrapped phase components of the electric fields in a truncated Taylor se-
ries about an approximate solution [16]. While the formulation necessitates
phase unwrapping of the measured and computed data, it has two major
benefits. The first is a reduced dependence on a priori information, and the
second is a correction in the weighting of field values measured by receiver
antennas opposite the transmitter relative to more peripheral ones. This bias
is mainly due to attenuation of signals propagating through the medium com-
pared to measurements on the sides closer to the transmitter, where values
may be orders of magnitude greater.

In practice, peripheral measurements are influenced primarily by prop-
erty contrast between the overall (large) object and background, while signals
propagating through the object contain significantly more information about
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structures within. Our algorithm, which we call log-magnitude/phase form
(LMPF) reconstruction, emphasizes the relative differences between the
measured and computed fields for both log magnitude and phase. Further-
more, it utilizes field values and (for the Jacobian matrix) derivatives already
computed, thus adding minimal computational cost (relative to its complex-
form counterpart).

Below, we derive the update computation in the LMPF algorithm
that is analogous to (7.4) in the conventional approach. We then describe
strategies for unwrapping the phase terms for the measured and computed
field terms and discuss issues complicating its use.

4.1 LMPF Reconstruction

As in the complex-form approach, the electric-field values are computed at
the points of measurement at each iteration in the LMPF scheme. However, it
is necessary to separate the log of the electric-field magnitude

from the electric-field phase It is also useful to separate
into its real and imaginary components, and The true log elec-

tric-field magnitude and electric field phase vectors, and which are
functions of the true electrical property distribution (having real and imagi-
nary parts and are each approximated as a three-term Taylor se-
ries expanded around an approximate electrical property profile represented
by the L-dimensional vectors and i.e.,

where and are matrices;
and

Much as in (7.1) and (7.2), this process can be written as
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where [J] is the Jacobian matrix and and are
the measured and calculated log-magnitude and phase vectors (all length

This set of equations can also be solved as a least-squares problem
using the method of normal equations. We multiply both sides of (7.24) by

to obtain [39]

where is the Hessian matrix. The Jacobian matrix is

where each submatrix is The elements of the four submatrices in
(7.26) can be written

where j ranges from 1 to ranges from 1 to L; the log magnitude
and phase are expressed in terms of the real and imaginary parts of the
electric field, and and
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To find the partial derivatives of and required in (7.27), we dif-
ferentiate both sides of the matrix representation of the forward solution,
[A]{E} = {b} (still maintaining the previous complex representations), first
with respect to and second with respect to This yields two
equations,

The nonzero terms of [A] are

where and are basis functions from the FE representation of the electric
field and is a basis function from the FE representation of the material
property distribution, i.e.,

The entries of matrix in (7.29) are zero except when is
nonzero, in which case Likewise, all terms of

in (7.30) are zero except where is nonzero, in which case

From (7.29) and (7.30) we can extract the derivatives required to con-
struct the Jacobian, (7.26), via substitution in (7.27) and the relationships
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Additionally, because and in (7.29) and (7.30) differ
only by a factor of i,

This improves algorithmic efficiency because all four components in (7.27)
can be computed with a single matrix back-substitution.

4.2 Phase Unwrapping

For relatively low frequencies and fine levels of electrical property mesh dis-
cretization, elements of the two lower submatrices of the Jacobian matrix in
(7.26) — namely, and —typically do not need to
be unwrapped because phase changes at a measurement site due to perturba-
tion of the electrical properties of a single node in the property mesh rarely
exceed However, the measured and computed electric-field phases in
(7.25), and do require phase unwrapping.

We begin by evaluating the phase at all receiver sites for a given trans-
mitter. Either the absolute phase or the relative phase with respect to a cali-
bration common to both the measured and computed fields can be used.

For phase unwrapping of the computed field, provided by the for-
ward solution at a given iteration of the imaging algorithm, we compare
phase values at receiver sites counterclockwise around the target region,
adding or subtracting whenever the difference between adjacent sites ex-
ceeds (i.e., whenever the antenna-to-antenna phase curve suffers a discon-
tinuity due to wrapping of to However, at high frequencies
and when the receiver sites are separated by electrically large distances, non-
artifactual interantenna phase differences greater than are possible. This
problem can be alleviated by computing additional electric-field values at
positions intermediate between receiver sites and subsequently re-applying
the phase unwrapping scheme. Unwrapping of the computed phase can thus
be efficiently incorporated into our existing numerical algorithm.

Phase unwrapping is not as readily accomplished for the measured data,
There is a physical lower limit to receiver antenna spacing, making it
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impossible to keep phase differences between adjacent antennas below a
certain limit. As with the calculated phase, it is entirely possible to observe
phase differences between adjacent receivers greater than especially at
high frequencies. Receiver data does not provide electric field values at posi-
tions intermediate to receiver sites that can be used to distinguish phase dif-
ferences greater and less than (as calculated intermediate values are used
in unwrapping To solve this problem, we take advantage of the
broadband data available from our current data acquisition system. These
data are a collection of imaging measurement sets for a given target, each
gathered at a different frequency. When the interval between acquisition fre-
quencies is sufficiently small, the scattered field values for a given transmit-
ter/receiver pair will not vary significantly. The phase of the measured elec-
tric fields for each transmit/receive antenna pair is unwrapped by comparing
phases of adjacent receiver antennas for the lowest-frequency data, for which
phase shift is minimal; these values are then compared to those for each
transmitter/receiver pair at a slightly higher frequency, yielding a highly
probable value for the unwrapped phase at that frequency. This value can in
turn be used to guide unwrapping at the next-highest frequency, and so on.
When the operating frequency range is sampled at relatively close intervals,
this process can be automated in a robust manner.

5 CONFORMAL MESH APPROACH

The microwave imaging approach is distinguished from the other tomo-
graphic modalities, EIS and NIR, by the fact that the antennas (sensors) do
not directly contact the breast. The imaging zone can be any convex, con-
tinuous region surrounding the breast within the antenna array (usually a cir-
cular or elliptical region, given our circular antenna array). When the imag-
ing zone is considerably larger than the breast, however, the image can
become degraded because a significant fraction of the parameter-mesh nodes
are needed to represent the property gradient between the breast and sur-
rounding liquid. Given limited N, this inevitably reduces resolution within
the breast itself.

We have developed a “conformal mesh” approach whereby the property
mesh can be conformed to the actual breast perimeter [55]. The property dis-
tribution used in the forward solution can be set to a step function at the
breast perimeter by utilizing the flexibility of the hybrid forward method,
which couples a BE representation of the surrounding, electrically homoge-
neous medium with an FE description of the heterogeneous breast. If the
breast contour can be determined exactly, the final image will not be de-

TEAM LinG - Live, Informative, Non-cost and Genuine !



150 Model-Based Breast Imaging

graded by oversampling of the boundary gradient. (The boundary gradient,
because of the regularization applied during the reconstruction process, can
extend well inside the physical breast boundary.) Our studies have demon-
strated that even when the contour is not known exactly, image quality im-
proves progressively as the conformal mesh perimeter approaches the exact
breast boundary. This makes it worthwhile to approximate the boundary us-
ing a convenient regular shape (e.g., ellipse) that best fits the breast contour.

The challenge here is to determine the breast boundary. Suggested ap-
proaches have included (1) using an optical laser or ultrasound system to il-
luminate the breast from multiple angles to deduce its surface; (2) examining
broadband projection data for phase and magnitude changes indicating the
boundary; (3) recovering an image of the breast using a large, circular mesh
concentric with the antenna array and then performing edge detection (auto-
mated or user-guided) on the image. The first method faces the difficulty of
integrating extra hardware with the microwave array without disrupting the
imaging signals, but could produce accurate measures of the contour. The
latter two methods use data that have already been acquired. We have had
some success with the third approach, using an image reconstructed on the
large, antenna-concentric, default mesh as a guide for superimposing a finer,
elliptical mesh with unchanged N on the area of interest (Fig. 6).

Figure 6. Conformal mesh method applied to a hypothetical elliptical target
containing an anomaly. Sixteen fixed monopole antennas (not shown) encircle the
region. Left: target with circular, antenna-concentric mesh. Right: Same target with
elliptical, conformal mesh having the same number of nodes as the circular mesh.
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Chapter 8

MICROWAVE IMAGING: HARDWARE AND
RESULTS

Paul M. Meaney, Ph.D. and Dun Li, Ph.D.

1 INTRODUCTION

Simulations are useful for assessing early-stage design options and for aiding
in the understanding of unexpected experimental behavior. However, ex-
perimenting with a clinical prototype is essential for illuminating practical is-
sues, many of which are difficult to simulate (e.g., depth of submersion of the
antenna array in the coupling medium), and allows assessment of image
quality under conditions similar to those that occur during actual patient ex-
ams. Ultimately, using a prototype with patients is the only way to verify
certain performance characteristics, such as whether the coupling medium
will work appropriately, whether the system is comfortable for women,
whether exam duration is tolerable, and so on. Results from such testing in-
formed changes integrated into our second-generation prototype, and will
continue to be important during system development.

Our hardware design process has been structured around four basic
themes: simplicity, modularity, spectral capability, and reliability [1].

Simplicity. Our image-reconstruction algorithm uses a model-based Gauss-
Newton iterative approach. It is, therefore, imperative that our numerical
model accurately represent the physical interactions occurring in the illumi-
nation chamber. Use of a lossy coupling medium (fluid bath) to minimize
out-of-plane and tank-wall reflections, along with monopole antennas that
can be represented as simple line sources, makes accurate modeling feasible
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while keeping the hardware design simple and flexible. In general, as is often
the case, we have found it less expensive in terms of both capital and labor
costs to build complexity into software rather than hardware.

Modularity. Because our development is relatively early-stage, it has been
important to organize the system into functional units that can be fabricated,
tested, and modified independently prior to integration [2]. The hardware
system consists of four primary units: (1) illumination tank, (2) electronics
assembly, (3) liquid reservoir station, and (4) computer for image processing.
The first three units are integrated into an overall patient interface, but the
image-reconstruction computer can be located anywhere; in fact, as part of
early-stage development, image reconstruction is often executed off line and
off site.

Modularization has also proved useful within the four basic units. This is
particularly true of the electronics assembly, where the microwave circuitry
is divided into a radio-frequency (RF) switching network, a local-oscillator
(LO) power-divider network, and a set of transceiver modules. There are also
low-frequency electronics performing digital signal sampling, namely a
commercial analog-to-digital (A/D) board plus signal-conditioning unit. In
general, we have purchased the highest-quality components affordable. For
instance, the Agilent ESG 4432B synthesized RF source provides an accu-
rate, clean, wideband signal and a coherent reference for use at the receiver.
The Agilent unit is easily controlled through a general-purpose interface bus,
significantly reducing system complexity and integration costs.

Spectral capability. Broadband design requires tradeoffs between cost, re-
sponse time, size, and other factors. These factors can be particularly difficult
to reconcile in cases where the overall bandwidth must be subdivided into
narrower bands. Bandwidth also affects antenna design, because antennas
generally operate over narrow spectral ranges.

However, broadband capability offers potential benefits for numerical
modeling and image reconstruction. Monitoring system performance over a
wide bandwidth rather than at a single frequency provides important insight
when characterizing installations during early development stages. Further-
more, there may not be an optimal single frequency for breast imaging;
rather, different imaging tasks may be best carried out at different frequen-
cies. Reconstructing images at several frequencies simultaneously may also
provide benefits. For example, lower-frequency data tends to stabilize image
reconstruction and higher-frequency data improves resolution. Multifre-
quency data may thus improve the ill-conditioning of the inverse problem.
Extrapolating the multifrequency concept to its natural limit, we might even
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reconstruct images in the time domain (with possible increases in diagnostic
utility) by Fourier-transforming multifrequency data.

Reliability. We have selected high-speed electrical components having ex-
cellent impedance matching, signal-transmission fidelity, and (where appro-
priate) isolation. This is particularly important in the selection of the
amplifiers and switches used in the three microwave-circuit modules. The
amplifiers chosen all have a voltage standing-wave ratio (VSWR) of less
than 1.25:1 from 300 MHz to 3 GHz and isolation greater than 25 dB. Their
high isolation makes them particularly suitable for use as buffers between
cascaded components. We have taken care to identify all possible paths of
signal leakage and to ensure that all leakage is sufficiently attenuated (e.g.,
by incorporating extra single-pole, single-throw [SPST] switches) to elimi-
nate channel crosstalk. All component housings are designed with covers
having raised surfaces that protrude into the circuit chambers and reduce un-
wanted signals, and all cables are double-braided to minimize stray radiation.

When appropriate, commercial devices have been purchased to serve
certain critical functions. We chose the Agilent synthesized RF source be-
cause of its wideband capacity and significant spur rejection in single-
sideband modulation mode. Use of this high-end device in a production unit
would probably be unnecessary; however, during development it has been
imperative to eliminate all potential sources of signal errors so that we can
accurately assess our algorithms. Likewise, a National Instruments (NI) A/D
board and NI signal-conditioning assembly with programmable gain were
purchased as an integrated unit after crosstalk specifications were verified
during initial system evaluation. Similar low-risk strategies were used in the
design of all modules to assure that they could be fabricated in a timely way.

In the next section, the design and performance of all second-prototype
modules are described. The coupling medium, especially with regard to
variations in the electrical properties of the breast, is also evaluated. Meas-
ured data and images from relevant phantom experiments and patient exami-
nations are reported as well.
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2 ELECTRONICS SYSTEM DESIGN AND BREAST
INTERFACE

2.1 Superheterodyne Signal Detection

We have chosen a superheterodyne approach to recover the coherent signals
required for our reconstruction algorithm [3]. While our operating frequen-
cies (500–3000 MHz) are not particularly high by today’s standards, utilizing
intermediate frequencies (IFs) of 1 MHz or less has allowed for excellent
phase and amplitude detection with relatively low-cost components.

In our calibration scheme, phase and amplitude data are collected both
with and without an imaging target present so that the scattered fields for
each measurement can be recovered by simple log-magnitude and phase
subtractions. Collection of this data generally requires a modulated RF
source (i.e., a source offset from a coherent LO reference by the IF fre-
quency) that can be down-converted to produce an IF signal with embedded
phase and magnitude information. Two common approaches for producing
these RF and LO signal pairs are (1) using two phase-locked signal genera-
tors and (2) using one signal generator with a portion of its output coupled to
and modulated by a single-sideband up-converter (traditionally an I-Q
modulator). The former approach has the attraction that spurious signals do
not arise from modulation, but entails the added size and cost of a second
generator. In the latter approach, modulation is generally only possible over a
modest bandwidth and with nominal rejection of unwanted sideband signals.
Fortunately, certain modulated sources designed specifically for testing ap-
plications in wireless communications have combined the benefits of both
approaches. The Agilent ESG 4432B produces a modulated signal from 250
KHz to 3 GHz with all unwanted spurs suppressed by 60 dB or more below
the carrier.

2.2 Multichannel Design

The number of channels used to acquire data can vary widely. At one ex-
treme is the mechanically-rotated, single-transmitter, single-receiver system.
In this case, data acquisition can be prohibitively slow, and in our application
would be complicated by mechanical translation (and/or rotation) of the
transmitter-receiver antenna pair in a liquid bath. The electronics for such a
single-port (single input-output) system, however, are the simplest. At the
other extreme, one fixes the antennas at all desired transmit and receive posi-
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tions and controls the radiate/receive patterns electronically. This scheme,
besides being more costly, faces a number of unresolved issues: (1) deter-
mining the optimal number of antennas, (2) deciding on 2D versus 3D data
acquisition, (3) choosing between dual transmit/receive antennas versus
dedicated transmit and receive antennas, and (4) optimizing individual an-
tenna design and orientation around the target.

These considerations are clearly interrelated. For example, number of
antennas, spacing of antennas about the target, and individual antenna design
all affect one another. It has been our experience in both microwave imaging
and electrical impedance imaging that image quality degrades rapidly as an-
tenna-to-target distance increases [4]; there is also a need to keep the electri-
cal distance between adjacent illuminators small (for adequate spatial
sampling) while minimizing antenna/antenna interactions (which become
significant when spacing is too close). Deciding whether antennas should op-
erate as dual-role transmitter/receivers or as dedicated transmitters and re-
ceivers further complicates the antenna-array design. Dual-mode operation
has the attraction of increasing the amount of measured data—since, for a
given degree of antenna spacing, more transmit and receive points are avail-
able—but complicates design of the switching electronics by introducing the
possibility of unwanted channel-to-channel crosstalk.

Our design is a hybrid of mechanical motion and electronic switching.
The antenna array is a horizontal circular ring of 16 vertically-oriented mo-
nopole antennas, each a few centimeters in length. The breast to be imaged is
positioned pendant inside the ring. Vertical motion of the ring is provided by
a Compumotor Series J linear actuator positioned below the tank. This design
allows for horizontally two-dimensional data acquisition at multiple vertical
positions and can be readily adapted to three-dimensional acquisition by par-
titioning the array into interleaved subarrays that can be raised and lowered
independently. Further, since the monopole antennas have a small horizontal
cross-section, two-dimensional spatial sampling density can be readily in-
creased by packing them more closely. Because of their short vertical length
(a few centimeters), spatial sampling in the vertical direction can also be
fairly fine. Finally, we have chosen to operate the antennas in the dual trans-
mit/receive mode to maximize the amount of data acquired.

Figure 1 shows a schematic of the overall system design. This includes
(1) illumination tank with circular array of 16 antennas, (2) NI A/D board
with integrated signal-conditioning unit, (3) 16 transceiver modules (only
four of which are shown, for simplicity), (4) 1:16 RF switching matrix,
(5) 1:16 LO power-divider network, (6) Agilent modulated RF source, and
(7) system control computer. Our electronics can accommodate 32 channels,
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but this capacity has not yet been utilized. The transceiver, RF switching, LO
power-divider, and illumination tank modules are discussed in more detail in
the following three sections.

Figure 1. Schematic of the Dartmouth microwave imaging system. For simplicity,
only 4 of the 16 signal paths are shown. The switches in the transceiver and switch-
matrix modules are always set so that one antenna is selected as a transmitter while
the other 15 act as receivers. Control lines from the computer to the various units are
not drawn.
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2.3 Transceiver Module

Figure 2 shows a schematic of the transceiver module. We chose to imple-
ment a separate receiver (i.e., low-noise amplifier [LNA] and mixer) for each
channel primarily in order to exploit the parallel-data acquisition capabilities
of currently available A/D boards and to minimize channel-to-channel cross-
talk. A buffer amplifier (M/A-COM MAAM02350) is positioned at the RF
input to boost the power just prior to reaching the antennas. This amplifier
(VSWR 1.7:1, isolation 30 dB) damps any mismatch losses from interactions
between the components of the switching matrix and the switches in the
transceiver. Its isolation characteristics also help to attenuate any spurious
signal that might leak backwards through the amplifier into the RF switching
matrix and couple to the output of other channels. A second subsection con-
tains an SPST switch (M/A-COM SW05-0311) and a single-pole, double-
throw (SPDT) switch (M/A-COM SW10-0312) that select the transmit and
receive antenna modes. (The SPDT switch actually performs the mode selec-
tion, but the SPST is essential to isolating the transmitting signal from the
LNA of the receiver and preventing leakage of the signal back through the
RF switching matrix.) Each switch has isolation of 40 to 60 dB over the full
operating band.

Figure 2. Schematic of receiver module.

On the receiver arm of the module are two LNAs (M/A-COM
MAAM02350) and a balanced mixer (Mini-Circuits ADE-30). The LNAs
have excellent VSWR to reduce mismatch losses between the switches and
mixer, as well as significant isolation to reduce back-leakage to the antenna
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and switching matrix of various harmonic spurs generated at the mixer. The
low noise figure and high gain of each amplifier (NF = 4.0, G = 18 dB) en-
sure an excellent cascaded noise figure for the composite re-
ceiver, which is separated from the antenna by only a single switch. The
cascaded noise figure is defined as

where is the noise figure of the i th cascaded component, is the gain
of the i th cascaded component, and N is the number of cascaded stages.

The mixer, which operates over the full band, requires only nominal LO
drive power (optimal levels between +7 and +10 dBm) and has a 1 dB com-
pression point of –10 dBm. This enables us to perform linear signal detec-
tion from roughly –27 dBm down to the noise floor. At the mixer LO input
port is another buffer amplifier (M/A-COM MAAM02350) to suppress sig-
nal mismatch losses between the LO power divider network and mixer, boost
the LO power prior to mixing, and attenuate any unwanted spurs propagating
back through the LO network.

We chose to drive the mixers simultaneously through a power-divider
network so that the IF frequencies produced at each channel could be sam-
pled simultaneously for faster overall data acquisition. In such a design, it is
important that the drive-power level of the mixer be selected carefully. While
the conversion loss of the fundamental received signal will decrease even
after achieving a nominal level, the higher-order spurs (most notably, those
due to the third and fifth harmonics) increase considerably. In fact, the spurs
due to the third and fifth harmonics increase in strength at three and five
times the rate of the input power level, respectively, and can quickly reach
levels which can contribute significantly to the phase error of the desired sig-
nal (Figure 3).

All modules are oriented to minimize loss by keeping transmission paths
short. Coplanar waveguides are utilized, where possible, to reduce loss with-
out exciting extraneous cavity (housing) modes. All components are segre-
gated into individual chambers connected by small apertures. These apertures
are just large enough to fit the actual transmission lines and act as cutoff
waveguides to suppress coupling of cavity-mode signals between chambers.
Finally, the housing covers are machined with raised surfaces to minimize
coupling of signals into the free space outside the modules.

24-bit A/D boards were not commercially available at reasonable cost
when we designed and implemented our second-generation prototype system.
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This has changed dramatically, and 24-bit boards are now readily available
with sufficient sampling speed and channel count. However, this discussion
will focus on the design of our 16-bit system.

Figure 3. Intercept plot for third-order harmonics. Viable operating range is the lin-
ear region of the fundamental response, at left; system design assures that third-
order harmonics do not interfere with the operating range (i.e., that the third-order
intercept point is sufficiently far to the right).

The receiver design goal was not only to sample signals down to a low
noise floor but also to sample the much higher-amplitude signals generally
associated with antennas proximal to the transmitter, and to do so over as
broad a frequency range as possible. Figure 4 shows simulated signal ampli-
tudes at 15 receiver antennas for a signal broadcast by one transmit antenna
in an 80:20 glycerin:water coupling medium over 500 to 2500 MHz. The
antennas are mounted on a 15-cm diameter array with relative receiver num-
ber 8 being the farthest from the transmitter. Given the free-space loss factor
[5], increased attenuation at the higher frequencies, and the broad operating
frequency band, it is clear that the effective dynamic range required exceeds
the 90 dB range of a 16-bit A/D board. To compensate, we utilized a vari-
able-gain preamplifier (NI SCXI-1125) that allowed us to dynamically in-
crease the gain applied to the IF signal by a factor of 1 to 1000 immediately
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prior to sampling. We could then sample the weakest signals with the highest
gain setting and the strongest signals (generally those from receivers closest
to the transmitter) with the lowest. In this way the effective dynamic range of
the receiver was increased to 150 dB. The transmitted power levels from the
Agilent ESG 4432B synthesized source are computer-adjustable, so that the
transmitter power for the lower frequencies can be sufficiently reduced to
avoid possible system saturation. This further improves data-sampling capa-
bility over the widest possible dynamic range and frequency band.

Figure 4. Simulated electric-field strength in a homogeneous 80:20 glycerin:water
background bath for 1 transmitter and 15 receiving sites at 500, 900, 1300, 1700,
2100, and 2500 MHz.

Figure 5 shows the power spectrum of a low-amplitude IF signal meas-
ured at the A/D converter. The system bandwidth for purposes of computing
the theoretical noise floor is 2 KHz, as defined by the IF frequency divided
by the full number of IF signal periods sampled by the A/D converter (in this
case, 1). The noise floor for this example, as seen at the A/D board, is
roughly –120 dBm. (For lower IF frequencies, the noise floor increases due
to 1/f noise). The effective noise floor for the RF signal at the receiver is
considerably lower, due to transmission loss in the SPDT switch, conversion
loss in the mixer, and the gains of the two low-noise amplifiers preceding the
mixer. For this case, the RF frequency is 1.4 GHz and the cascaded gain is
roughly 14 dB. This gain, when combined with the observed –120 dBm IF
noise floor, gives an effective RF noise floor of –134 dBm. This is very
close to the theoretical limit of –136 dBm when the 5.4 dB noise figure is
taken into account. The available thermal noise is –141 dBm at room tem-
perature for a 2 kHz bandwidth.
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Figure 5. System IF power spectrum in detecting a –110 dBm, 1.4 GHz RF signal
(2 KHz IF signal).

2.4 RF Switching and LO Power Divider Networks

Only one antenna at a time illuminates the target; all others act as receivers.
This requires a switching network, which we have created by cascading one
SPDT switch (M/A-COM SW10-0312) with two levels of single-pole, four-
throw (SP4T) switches (M/A-COM SW15-0315) for a combined 1:32 corpo-
rate switching matrix. Each switch has a nominal VSWR of 1.5:1 with inser-
tion loss of 1.0 dB or less over the band. The switches’ excellent impedance
characteristics minimize reflection losses. The channel-to-channel isolation,
which is defined in the worst case by the single-switch isolation, is better
than 40 dB across the band. Given that these signals are amplified immedi-
ately afterward in the transceiver modules, the extra isolation provided by the
SPSTs and the SPDTs of the transceiver modules is essential to prevent leak-
age of the transmitted signal into the receiver circuitry of adjacent channels.
The goal of the system is to measure signals down to –130 dB, so inade-
quately attenuated leakage signals could easily corrupt measurements.

For our second-generation system we wanted to exploit the parallel op-
eration of commercially available A/D boards. This required that the mixers
at all receiver channels be driven simultaneously, which we achieved by us-
ing a five-level corporate network of two-way power dividers (Sage Labora-
tories 4122) with two sets of buffer amplifiers (M/A-COM MAAM02350) to
boost the output power levels for driving the mixers in the transceiver mod-
ules. The Sage power dividers were not optimal for this wideband applica-
tion, in the sense that their designed operating frequency range was only 1–2
GHz (these types of components are inherently narrowband). Outside this
range, the VSWR and isolation of each power divider degraded considerably,
while the insertion loss only diminished slightly. In a cascaded configuration
without some form of buffering, suboptimal VSWR outside the preferred
range can cause significant mismatch losses. We employed well-matched co-
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axial attenuators (INMET 2A-03) along with the previously mentioned buffer
amplifiers to dampen these interactions. Clearly, there is a practical limit to
the amount of attenuation between stages that can be achieved by these
means; however, 3 dB was generally sufficient, and we were able to realize
even output power for all channels with minimal ripple at either end of the
frequency band. To control the output power to the mixer at each frequency,
a digital attenuator (M/A-COM AT-213) was also incorporated. (The coher-
ent reference source from the Agilent ESG 4432B RF generator did not in-
clude an output power-level control.)

2.5 Illumination Tank

Figure 6 shows the illumination tank with antenna array, both in isolation and
integrated with the electronics assembly and exam table. Each monopole an-
tenna consists of a vertical, rigid segment of coaxial cable attached to a
mounting plate below the tank, which occupies the upper third of the unit.
The center conductor of the cable protrudes 3.3 cm above the termination of
the outer conductor and is protected by a Teflon sheath. The coaxial rods
slide vertically through hydraulic seals in the base of the tank. The mounting
plate’s vertical position is adjusted by a computer-controlled linear actuator
(Compumotor, series J) to allow for data collection at multiple levels. The
antennas can operate with minimal artifacts as close as 1 mm from the liquid-
air interface, allowing for data collection all the way from the nipple up to
near the chest wall. This is important, given the large fraction of cancers de-
tected in the axillary region. One planned improvement is the use of multiple,
interleaved arrays to facilitate cross-plane data collection, which will be es-
sential as we proceed to three-dimensional image reconstruction.

The coupling liquid we have chosen is a mixture of glycerin and water.
Figure 7 shows the conductivity and relative permittivity of this fluid as
functions of frequency. Permittivity levels can be optimized for any fre-
quency range by manipulating the glycerin:water ratio. Given the low per-
mittivity of breast tissue (caused by its high fat content), a relatively low-
permittivity coupling fluid is desirable to reduce image artifacts due to large
reflections at the breast-fluid interface. As for conductivity, the antennas
generally require a coupling medium with or greater for proper
operation (to provide them with sufficient resistive loading). Beyond this
threshold, however, the extra attenuation associated with greater conductivity
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Figure 6. Antennas, illumination tank, and computer-controlled linear actuator as-
sembled on test bench (top) and integrated with breast interface (bottom).

TEAM LinG - Live, Informative, Non-cost and Genuine !



168 Model-Based Breast Imaging

acts to limit the size of the imaging zone and operating frequency range.
Since the coupling fluid is attenuating, unwanted tank reflections can be pre-
vented by placing its walls sufficiently far away from the imaging zone.

Figure 7. The relative conductivity and permittivity of deionized (D.I.) water and
five different mixture ratios of glycerin and water. The 88% glycerin mixture is the
one closest to that which we have used in the illumination tank (i.e., a glycerin:water
ratio of 87:13).

As Figure 7 confirms, a glycerin:water ratio of approximately 88% is
useful for breast imaging because it provides appropriately low permittivity.
For this ratio, the conductivity is relatively constant above 1 GHz (i.e., about
1.0 S/m), which compares favorably to the rapidly increasing conductivity of
lower glycerin:water ratios. In general, no coupling fluid is ideal for all cases
because the electrical properties of individual breasts vary, largely due to
their variable fat content. An 87:13 mixture is reasonable for the property
range typically encountered.

A glycerin-and-water mixture is used because, in addition to having good
electrical properties, it is well-suited to tissue contact. Glycerin is a common
ingredient of soaps, hand creams, and many foods; is inexpensive; does not
cause any known skin irritations; is environmentally innocuous; and does not
support bacterial growth (a significant concern in the clinical setting [4]).
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3 RESULTS

Although the published data on ex vivo electrical properties of the normal
breast are limited and contradictory [6, 7], it is known that over the ultra-
high-frequency and microwave ranges the principle parameter determining
tissue permittivity and conductivity is water content [8]. Generally, both
quantities follow a simple Fricke relationship with respect to tissue water
content. Variations are related to amounts of bound water versus free water.
The water content of dense fibroglandular tissue can range from 30% to 70%,
while that for adipose tissue (most of the breast) is generally under 25% [9].
Furthermore, breast composition varies by individual, with some breasts be-
ing mostly adipose while others are largely glandular. Figure 8 shows a series
of MR image slices for a healthy breast [10].

To further complicate matters, the physiology of the breast, like that of
many other organs, changes significantly with age. The most dramatic
changes occur after menopause, when much of the glandular tissue atrophies
and is progressively replaced with adipose tissue. Breast physiology also
varies notably throughout the menstrual cycle [11].

Figure 8. A sequence of anatomically sagittal MR sections of a breast from medial
to lateral in 3 cm increments. (Images are ordered left to right in each line, lines are
ordered top to bottom.) Dark regions correspond to glandular tissue and light regions
to adipose tissue. For these images, the breast was positioned in the vibrating appa-
ratus of the MRE system (i.e., slightly compressed). Internal inhomogeneity is nota-
ble.
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In vitro tissue is available for refined property measurements. How-
ever, Foster and Schepps [8] have shown that in vivo breast-tissue prop-
erties change with perfusion approximately in accordance with the
equation

Here, and are the complex permittivities of blood, tissue in the ab-
sence of blood, and perfused tissue, respectively; p is the blood-volume
fraction; and x is the blood-cell shape factor. For tissues with high water
content, such as muscle and most internal organs, the effect of blood volume
is minimal, but for adipose and other low-permittivity tissues the effect of
blood volume can be significant [8]. Furthermore, blood volume can be an
important indicator of tumor activity. In near-infrared spectroscopic imaging,
oxygenated hemoglobin is the primary parameter for cancer detection [10].
The physiological basis for this correlation is the increased cellular metabo-
lism and angiogenesis associated with tumor growth. The extra water from
the blood volume present at the tumor site may increase the in vivo contrast
between normal and malignant tissue. A comprehensive study of in vivo
breast properties would be difficult at this time; therefore, values published
for ex vivo breast tissue must suffice as a starting point for the clinical im-
aging problem.

We have primarily investigated the effects of background contrast on re-
constructed images of the breast and of phantoms. We have attempted to
identify an optimal coupling medium. This is a difficult task, not only be-
cause of the factors noted above but because of recently published data sug-
gesting that breast radiographic density has a direct impact on average tissue
properties measured in vivo [12]. No single medium, therefore, can couple
optimally to all breasts. Our studies, along with imaging variations associated
with operating frequency and multiple planes of the breast, are reviewed be-
low.
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3.1 Raw Data Comparison

Figure 9 shows the 500 MHz scattered-field phases measured at the nine re-
ceivers associated with a single transmitter. (Data was acquired from only
nine receivers because this study used the first-generation electronics system,
which only acquires data at the nine antennas directly opposite to a given
transmitter.) These data were acquired in the plane closest to the chest wall
of a 53-year-old woman with radiographically scattered breasts. Data were
collected for four background media covering a range of contrasts with the
breast: (1) 70% glycerin (2) 60% glycerin, (3) 50% glycerin, and (4) 0.9%
saline (listed lowest-contrast to highest-contrast). The scattered-field values
indicate the degree of difference (in both log-magnitude and phase) between
the measured field values when a scattering target is present relative to the
homogenous (no-target) situation. In all cases shown in Figure 9, the phase
values are largest for receivers 4, 5, and 6 and taper towards 0° at receivers 1
and 9. Since the phase projections are all negative, the average breast dielec-
tric properties are lower than those of the four coupling media used. Addi-
tionally, the magnitude of the maximum phase projection is generally well-
behaved and increases monotonically with contrast. The values to either side
of the projection are not so well-behaved and indicate the presence of more
complex diffractive effects, especially at the higher contrasts (i.e., for 50%
glycerin and 0.9% saline).

Figure 9. 500 MHz measured phase projections for a radiographically scattered
breast in multiple media: (1) 70% glycerin (2) 60%
glycerin (3) 50% glycerin and
(4) 0.9% saline
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Figure 10 shows the 500 MHz scattered field phase projections for the
same patient using the 50% glycerin bath for five coronal planes of the same
breast starting nearest the chest wall and separated by 1 cm increments. In-
terestingly, there is a monotonic reduction in the magnitude of the maximum
phase projection with increasing position number. This makes intuitive sense
in that the breast’s diameter is at a maximum closest to the chest wall and
diminishes toward the nipple. The maximum phase projection of each curve
in Figure 10 is thus proportional to the planar area transected at each vertical
position. In this regard it is interesting to note that the steepest jump in the
maximum phase projection occurs between Positions 3 and 4. A photograph
of the breast taken during the exam (Figure 11) shows that the transected area
shrinks quite abruptly from one plane to the next near the nipple as compared
to the more gradual reduction for planes nearer the chest wall.

These qualitative observations generate some confidence that the data re-
flect the physics of the imaging setup. In addition, they may prove useful in
identifying effective plane positions with respect to the geometry of particu-
lar breasts. This has generally been difficult to assess by viewing only the re-
constructed images, yet is important with regard to cross-correlation analysis
of our images and those from the other modalities.

Figure 10. 500 MHz phase projections for a radiologically scattered breast in the
50% glycerin coupling medium for five coronal planes (Positions 1–5) starting clos-
est to the chest wall and separated by 1 cm increments.
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Figure 11. Photograph of a breast pendant in the illumination tank during an exam.
Also shown are the partially retracted monopole antennas. The parallax associated
with light refraction at the multiple interfaces of plastic and water makes broad fea-
ture identification somewhat difficult in this image.

3.2 Contrast Studies

Figure 12 shows recovered 1000 MHz permittivity and conductivity images
of a 10 cm diameter homogeneous phantom (i.e., cylinder of molasses,

immersed in four different background solutions:
(1) 0.9% saline (2) 50:50 glycerin:water

(3), 60:40 glycerin:water
and (4) 70:30 glycerin:water The 16 mo-

nopole antennas were positioned on a 15 cm diameter circle with coherent
signal detection at 9 opposing antennas for each of the 16 transmitters. First-
generation electronics were utilized. Image reconstruction employed the log-
magnitude/phase (LMPF) algorithm with a hybrid of the Tikhonov and Mar-
quardt regularization strategies (see Ch. 7). The forward-solution mesh con-
tained 3903 nodes and 7588 triangular elements while the parameter-
reconstruction mesh contained 269 nodes and 464 elements.

For the three glycerin:water ratios, the object size, shape, and properties
are, as Figure 12 shows, recovered quite well; however, the saline images
clearly diverged. The radius, location, and uniformity of the permittivity ob-
ject component appear to be better than the corresponding conductivity com-

TEAM LinG - Live, Informative, Non-cost and Genuine !



174 Model-Based Breast Imaging

Figure 12. 1000 MHz recovered permittivity (top row) and conductivity (bottom
row) images of a 10 cm diameter homogeneous cylinder of molasses, acquired using
four backgrounds covering a range of decreasing contrasts: 0.9% saline (first col-
umn), 50:50 glycerin:water (second column), 60:40 glycerin:water (third column),
and 70:30 glycerin:water (fourth column).

ponents, which are noticeably smaller. As can also be seen, the circular shape
of the conductivity object improves progressively with reduced background
contrast (more glycerin).

Unwrapped projections of the scattered phase values for a single trans-
mitter for the full range of background contrasts (Figure 13) reveal signifi-
cant phase wrapping for the saline case. We have demonstrated that this is a
possible source of image divergence when utilizing the complex-form algo-
rithm. In extreme cases it can also confound the LMPF approach, since
situations can arise where there is not necessarily a unique local phase [13].
That is, the unwrapped phase value at a given point can depend on the path
taken in the unwrapping process. This underlines the need to minimize the
contrast between breast and background.

Figure 14 shows 1000 MHz permittivity and conductivity images for the
same molasses phantom used in Figures 12 and 13, except that the phantom
now contains a 3 cm diameter cylindrical saline inclusion in the lower right
quadrant. As in the homogeneous molasses phantom experiments, the images
diverge for the saline background. For all of the glycerin:water background
cases, the phantom structure is well-defined in both the permittivity and
conductivity images, with some minor blurring of the recovered permittiv-
ity objects into the imaging-zone boundary. The inclusion is readily visible
for all of the permittivity images, but its shape is best resolved in the lowest-
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Figure 13. Unwrapped phase projections measured at nine receiver antennas for a
single transmitter at 1000 MHz, acquired using four backgrounds covering a range
of contrasts. The same phantom was used as in Figure 12.

Figure 14. 1000 MHz recovered permittivity (top row) and conductivity (bottom
row) images of a 10 cm diameter cylinder of molasses with a 3 cm diameter cylin-
drical saline inclusion in the lower right quadrant. The images were acquired using
four backgrounds covering a range of contrasts: 0.9% saline (first column), 50:50
glycerin:water (second column), 60:40 glycerin:water (third column), and 70:30
glycerin:water (fourth column).
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contrast case (70:30). In all three of the glycerin:water conductivity images,
the inclusion is visible as an indentation in the lower right of the recovered
cross-section that becomes progressively more pronounced with lowered
background contrast. These results confirm the homogeneous-phantom ob-
servations, in that the quality of the recovered image improves as the back-
ground contrast is reduced [14].

3.3 Low-Contrast Studies

The following phantom studies represent attempts to study the effects of re-
duced contrast on reconstructed images. We have chosen an operating fre-
quency of 1300 MHz and a low-permittivity coupling liquid, i.e., 79%
glycerin and have reconstructed images for a 10
cm diameter, thin-walled plastic cylinder containing a variety of breast-
mimicking liquids. The phantom mixtures we have devised are glycerin-and-
water mixtures containing (1) 97% glycerin (2)
88% glycerin (3) 84% glycerin

and (4) 80% glycerin These four
phantoms were respectively termed (1) fatty ( s f ) , (2) scattered (ss), (3) het-
erogeneously dense (sh), and (4) extremely dense (sx). The particular phan-
tom permittivity values were nominally chosen by extrapolating the 600
MHz in vivo values reported in [10] up to 1300 MHz. The phantoms were
imaged with a 2.1 cm diameter “tumor” inclusion in the lower left quadrant.
The tumor inclusion was a cylinder containing 55% glycerin solution

the permittivity value of the liquid being chosen to
match that of the 900 MHz value reported in [7]. The conductivities of the
“breast” and “tumor” components of the phantom could not be readily ma-
nipulated independently of permittivity and so were simply allowed to track
what was achieved by setting the permittivities. These conductivity values
may therefore not be representative of the actual tissues being mimicked;
however, the primary intent of this study was not to exactly characterize
system response to actual fatty, scattered, heterogeneous, and dense breasts
but to assess potential difficulties when imaging breasts possessing a wide
range of property values.

Figure 15 shows 1300 MHz reconstructed images for all four breast
phantoms with the tumor-like inclusion in a 80:20 glycerin:water bath

and The array of monopole antennas was config-
ured to have a 15 cm diameter, giving an imaging zone of 14.5 cm diameter.
The forward-solution finite element mesh had 3903 nodes and 7588 triangu-
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lar elements, while the reconstruction parameter mesh contained 559 nodes
and 1044 elements. The outline of the breast phantom is readily discernable
in all cases except that of the sx phantom (where failure to resolve the
boundary is due to low contrast with the background). As expected, the re-
covered bulk and values for the phantoms progress monotonically from
quite low levels for the sf case to being nearly equal to those of the back-
ground for the sx case. It is notable that the recovered distribution for the
conductivity is generally more uneven than the permittivity. We have found
this to be a fairly typical observation for many phantom and patient imaging
experiments to date. Additionally, the level of artifact is highest in the sf case
and progressively diminishes toward the sx case.

In all cases, the tumor inclusion is well-resolved in both the and
images. (The grayscale was deliberately set to allow some recovered values
of the tumor inclusion to saturate so that resolution of the remainder of the
phantom and background could be readily examined.) The peak values at the
center of the recovered inclusions were 32.1, 31.9, and 39.4 and

1.58, 1.58, and 1.57 S/m for the sf, ss, sh, and sx cases, respectively.
These are good property estimates, considering the inclusion’s high contrast
with respect to the rest of the phantoms and its relatively small size.

Figure 15. 1300 MHz reconstructed relative permittivity and conductivity images for
a 10 cm diameter phantom with a 2.1 cm diameter tumor-like inclusion. The phan-
tom relative permittivity and conductivity values were sf: 8.9, 0.47 S/m; ss: 13.1,
0.83 S/m; sh: 16.4, 1.05 S/m; and sx: 19.9, 1.18 S/m.
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3.4 Clinical Examples

Figure 16 shows 900 MHz reconstructed permittivity and conductivity im-
ages for the right breast of a 45-year-old woman. The images show seven
coronal planes positioned at 1 cm increments starting nearest the chest wall.
The subject’s breasts were radiographically heterogeneously dense. The im-
ages are informative in that the recovered cross-sections are largest in di-
ameter nearest the chest wall and diminish as they approach the nipple near
plane 7, with the permittivity and conductivity pairs tracking each other well.
A dominant feature in the permittivity images is a localized property increase
in the lower left quadrant. Although interpreting these images according to
standards prevailing in the literature might suggest that this substantial prop-
erty increase is due to a tumor [7, 13], this woman had normal breasts. We
have hypothesized that the increased-permittivity area corresponds to a con-
centrated zone of fibroglandular tissue.

Figure 17 shows an MR image for a single coronal slice relatively close
to the chest wall. There is a large darkened zone oriented towards the lower
left. In fact, it occupies approximately half of the total area. While the segre-
gation of tissue types is not absolute (i.e., not all glandular tissue is in one
zone, with none in the neighboring area), differentiation is pronounced. We
hypothesize such a zone most likely has increased water content compared
with the surrounding adipose tissue and that its overall electrical properties
will be further enhanced with increased blood volume in vivo [15].

It is interesting to note that the localized property increases are more
pronounced in the permittivity images than the conductivity images. Water-
content variations associated with normal breast tissue may thus impact the
permittivity distribution to a greater degree than the corresponding conduc-
tivity component. In contrast, we have also observed in some preliminary
studies that the conductivity distribution has a higher correlation with NIR
recovered hemoglobin [12]. Given that elevated hemoglobin levels have been
shown to correlate well with breast tumors [10], this distinction between the
recovered permittivity and conductivity images may prove important. For
example, Figure 18 shows the 900 MHz left- and right-breast permittivity
and conductivity images for two coronal planes, the subject being a 53-year-
old woman with heterogeneously dense breasts and a tumor in the left breast
as verified by x-ray mammography and confirmed with biopsy. In this
case, the fibroglandular regions are readily visible in symmetric lower,
outer locations for the contralateral breasts. For the left breast, there is a lo-
calized increased permittivity area just above the glandular region at the
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Figure 16. 1100 MHz reconstructed relative permittivity (top of each pair) and con-
ductivity (bottom of each pair) images for the normal, heterogeneously dense right
breast of a 45-year-old woman. Images are recorded at seven planes 1 cm apart, or-
dered from the chest wall to just above the nipple.
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known tumor location of about 3 o’clock. While the corresponding conduc-
tivity image is not as clear in terms of broad features, such as identification
of the breast perimeter, the localized conductivity increase at the tumor site is
considerably more accentuated than that in the permittivity image. It is also
significantly enhanced compared with the conductivity values observed for
the contralateral breast. Understanding these effects will prove essential in
utilizing microwave imaging for breast cancer detection.

Figure 17. T2 weighted MR image for a representative coronal plane close to the
chest wall for the same breast imaged in Figure 16.

Figure 18. 900 MHz reconstructed permittivity (top row) and conductivity (bottom
row) images for the first two planes closest to the chest wall for the left and right
breasts of a 53-year-old woman with heterogeneously dense breasts. A tumor is lo-
cated in the left breast at roughly 3 o’clock, relatively close to the chest wall.
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Chapter 9

NEAR INFRARED SPECTROSCOPIC IMAGING:
THEORY

Hamid Dehghani, Ph.D. and Brian Pogue, Ph.D.

1 INTRODUCTION

The propagation of infrared light in tissue is not described by simple, loga-
rithmic attenuation, as is the transmission of x-rays, but is approximated as a
multiple-scattering transport process [1, 2]. Several groups are seeking to
model light propagation in tissue using the diffusion approximation for ra-
diation transport and to reconstruct tomographic images from diffuse projec-
tion measurements. Diffusion tomography poses two theoretical challenges:
(1) derivation of an optical-fluence rate diffusion model that accurately
matches the observed light distribution in tissue and the optical flux at its
surface (the implementation of such a model is often termed the forward
problem), and (2) estimation of tissue’s optical properties by matching the
solution of the forward problem to measurements of the optical flux at the
surface (this estimation task is often termed the inverse problem). In general,
both the forward and inverse problems yield approximate solutions, and
small inconsistencies in either can result in degraded image quality.

In this chapter, numerical methods for solving both the forward and in-
verse problems are outlined in the context of near-infrared (NIR) spectro-
scopic imaging of the human breast. Because our imaging approach is not
only multifrequency but tomographic, it is sometimes referred to as near-
infrared tomography.

In the forward problem, the diffusion equation is generally applicable
when
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applied to bulk tissues in which scattering dominates absorption (i.e.,
most soft mammalian tissues) [3,4], and

the point of measurement is more than a few scattering lengths (i.e., in
tissue, more than about 3 mm) from the point of illumination [5].

Generally, in any regime where the optical fluence is significantly greater
than the directional flux, the diffusion approximation will be adequate.

Within these confines, the choice of the appropriate boundary conditions
at the tissue surface has been an issue of particular interest and remains con-
troversial [5–14]. In general, the air-tissue boundary is reasonably approxi-
mated by a partial-current or Robin (type III) boundary condition, where the
flux at a point on the surface is assumed to be proportional to the fluence rate
at that point multiplied by a coupling coefficient. (See (9.2) and (9.3) for
definitions of fluence and flux.) The exact value of this coupling coefficient
has been the subject of several investigations [5–14]. In our earlier modeling
studies, where a two-dimensional finite element (FE) method was applied in
NIR tomography [15, 16], we found it useful to derive the coupling coeffi-
cient as a free parameter, thus allowing a good empirical fit between the
model and the data under homogeneous conditions. However, in the present
work, development of a fully three-dimensional FE model facilitates exami-
nation of this coefficient beyond its empirical fit to the data, and we investi-
gate how well the theoretically motivated value fits both our model and
experimental data [17].

2 FORWARD PROBLEM

2.1 The Diffusion Equation

The derivation of the diffusion equation is briefly recounted below, with an
emphasis on how this derivation impacts the FE implementation and the
boundary conditions that might be applied.

The interaction of light with tissue is dominated by elastic scattering of
photons by cellular organelles, membranes, and structural matrices. The opti-
cal radiance in tissue should therefore be well-predicted by the single-
velocity radiation transport equation, a form of the Boltzmann equation [18]:
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where is the velocity of light in the medium; is the radiance at
point r, time t, and solid angle (where and are the
absorption and scattering coefficients, respectively, which specify a photon’s
probability of absorption or scattering per unit distance traveled); is
the normalized differential scattering function, which predicts the probability
of scattering from angle into the angle and is a source func-
tion.

Equation (9.1) is readily simplified to yield the diffusion equation by in-
voking two assumptions: (1) the radiance is only linearly anisotropic, and (2)
the rate of change of the flux is much lower than the collision frequency. The
derivation of the diffusion approximation further assumes that the radiance in
tissue can be represented by an isotropic fluence rate, plus a small
directional flux, J(r, t), where

With these two quantities defined, the radiance given by (9.1) can be ex-
panded into a first-order set of spherical harmonics and integrated over all
solid angles to give the radiation transport equation:

By substituting (9.2) and (9.3) into (9.4) and integrating over all angles, we
arrive at the continuity equation for the photon flux:

Next, multiplying (9.1) by and integrating over all angles leads to
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where D is the diffusion coefficient, i.e., (The parameter
is the reduced scattering coefficient, related to the scattering coefficient
by where g is the anisotropic factor, equal to 0.9 for

biological tissue.) Equation (9.6) can be further simplified, since under most
conditions the time derivative of the flux is much less than the collision fre-
quency, i.e.,

This simplification leads to Fick’s Law:

Equation (9.8) is generally valid for steady-state solutions and time-varying
fluxes where the frequency is less than about 1 GHz [19, 20]. The diffusion
equation can then be obtained by substituting (9.8) into (9.5):

We have been able to achieve an equation that reliably predicts the flu-
ence rate within a highly scattering medium because we have assumed that
the radiance is dominated by the isotropic fluence rate and is only weakly
anisotropic [1]. It is well-recognized that this equation will not be accurate
near boundaries or sources, so it cannot be assumed that diffusion theory will
predict measurements near abrupt boundary changes; nonetheless, (9.9) is
routinely used to predict the flux exiting from tissue surfaces by applying
boundary conditions that allow a relatively good match between calculated
and measured data.

We obtain the frequency-domain version of (9.9) by Fourier transform-
ing each term to yield
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where is the intensity modulation frequency of the light signal. The flu-
ence at any point, is a complex quantity. Equation (9.10) can be
solved for specific regular geometries analytically or for more general shapes
using the FE method. Measurements of the optical flux at the boundary can
be predicted, using Fick’s Law, as the normal derivative of the fluence in the
direction of the optical detector:

Here    is the unit normal vector at the boundary point indexed by m.

2.2 Boundary Conditions

The best description of the air-tissue boundary is given by an index-
mismatched Robin-type boundary condition, where the fluence at the surface
of the tissue exits and does not return. The flux leaving the boundary is thus
equal to the fluence rate at the boundary times a factor that accounts for in-
ternal reflection of light back into the tissue [6, 21]. This relationship is de-
scribed by

The value of the boundary reflection coefficient, A, depends upon the
indices of refraction of tissue and air. (The term A could be redefined to
eliminate the factor of 2 in (9.12), but we have not done so in order to be
consistent with earlier authors.) Groenhuis et al. [6] derive

where being the relative
index of refraction of tissue with respect to air. Keijzer et al. [22] use a dif-
ferent approach to define A, deriving it from Fresnel’s law as

is the critical angle andwhere
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Both (9.13) and (9.14) yield A = 1.0 for a matched boundary
(i.e., which leads back to (9.12). For a typical tissue-air value of

we get A = 2.82 using (9.13) and A = 2.34 using (9.14). For our
work, we have adopted the boundary coefficient defined by (9.14).

We model the diffusion equation over a given imaging volume using the
FE method, which is attractive due to its geometric flexibility. We generate
meshes using the open-source program NETGEN [23]. Figure 1a shows a
typical cylindrical mesh of tetrahedral finite elements, with dots added to
represent sources and detectors (co-located, in this case). Figure 1b shows the
calculated fluence for a single source modeled as a Gaussian point distribu-
tion located one scattering distance below the surface at the position indi-
cated by the arrow. As might be expected, the uniform cylindrical target is
filled with a diffuse glow that is brightest nearest the source.

Figure 1. Exemplary solution of the forward problem. (a) Cylindrical FE mesh con-
taining 12,587 nodes and 63,857 linear tetrahedral elements. The arrow indicates the
location of the source used for this example; other dots represent the remaining 47
sources (unused) and colocated detectors. (b) Calculated log intensity of the fluence
throughout the cylinder. Each plane represents a horizontal slice through the mesh.
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3 INVERSE PROBLEM

3.1 Problem Statement

In solving the inverse problem in image reconstruction, the goal is to esti-
mate the most accurate possible values of and at each FE node based
on a finite number of measurements of optical flux at the tissue surface.
Various reconstruction schemes have been employed by members of the im-
aging community, including (1) analytic methods, (2) back-projection meth-
ods, (3) linear methods, and (4) nonlinear methods. For a good overview of
these techniques, the reader is referred to Arridge [2].

Most image-reconstruction algorithms seek to minimize an objective
function that depends on the difference between the measured data and
calculated data (obtained from a forward solution, as described above).
Both and depend on source and detector position, operating fre-
quency, and the spatial distribution of and Typically, the objective
function to be minimized is

where i is the index for each source-detector pair and is the total num-
ber of measurements. A least-squares minimum of can found by setting
its derivative equal to zero and using a Gauss-Newton iterative approach to
solve the resulting equation (see Ch. 2, Sec. 3.1). In particular, we use a
Levenberg-Marquardt algorithm to repeatedly solve the matrix equation

where is a vector of length {a} is the solution up-
date vector, length 2L, which defines the difference between the true and
estimated optical properties (both magnitude and phase) at all L property-
mesh nodes at each iteration; is a scalar factor introduced to stabilize ma-
trix inversion; [I] is the 2L×2L identity matrix; and [J] is the Jacobian
matrix, which we calculate using the adjoint method [24]. The Jacobian,
which is has the following form:
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Here, and define the relationships between the log
amplitude of the ith measurement and D and respectively, at the jth
property-mesh node; and define the relationship between
the phase of the ith measurement and D and respectively, at the jth
property-mesh node; is the number of measurements; and L is the num-
ber of nodes in the property mesh.

The Jacobian matrix (9.18), also often referred to as the sensitivity or
weight matrix, describes the relationship between surface measurements and
infinitesimal changes in optical properties throughout the volume modeled by
the FE matrix. Figure 2 plots the values of a Jacobian matrix for a model
having one source-detector pair. For simplicity, the modeled medium is a flat
disc with radius 43 mm, and The plot shows
the relative influence on measurements at the detection point (at right-hand
side of circle) of small perturbations in and D at each location in the im-
age, given a point source (at bottom of circle). As one might expect, pertur-
bations at positions lying more or less between the source and detector have
the greatest effect on measurements at the detector.
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Figure 2. Plots of Jacobian matrix values for a single source-detector pair in a 2D
simulation. In all four images, source is at bottom, detector at right. Top left:

(i.e., effectiveness of perturbations in D at mesh node j in changing log
amplitude measurements at detector i). Top right: Bottom left:

Bottom right:

3.2 Image Reconstruction

We incorporate regularization methods and a priori information into image
reconstruction. In theory, both can be included by starting with new objective
functions, thereby altering the matrix equation that is solved. In practice, this
has been shown to markedly increase the ability to localize and quantitatively
characterize objects in tissue-phantom experiments [15].

The Tikhonov approach [25] minimizes an objective variable which
differs from in (9.16) by a penalty term:
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Here is the number of measurements, L is the number of nodes in the
property mesh, and the regularization parameter can, if desired, be varied
throughout the iterative process to improve convergence and smooth the final
solution [26]. The use of such a penalty term, which may contain a priori in-
formation about the system, is an attempt to overcome the frequent ill-
conditioning of matrices in optical tomography. (Note that the Levenberg-
Marquardt method is a special case of Tikhonov regularization [27]. See Ch.
2, Sec. 4.1.) A spatially varying i.e.,

has been shown to improve image reconstruction [28]. In this work, Pogue et
al. focused on a radially variant regularization (i.e., giving a
simple exponential dependence on radial position in a circular imaging field,
i.e., This provided some correction of the radial depend-
ence of imaging field resolution and contrast. More complex distributions
can be implemented, such as that suggested by Eppstein and colleagues [29],
who calculate based upon the covariance matrix at each pixel location.
Projection measurement error can also be a useful predictor of the regulari-
zation parameter (i.e., where is
the variance of each projection measurement and and are free-varying
regularization parameters), thus allowing adaptive regularization based upon
the relative uncertainty at each node due to the accuracy of each detector
measurement.

If we have structural knowledge of the tissue under investigation (pro-
vided by MRI, for example) and estimates of tissue optical properties, we
may choose to minimize a modified objective function with some pre-
existing distribution that incorporates the difference between the current
estimate of the optical properties subtracted from the initial estimate
This term can be thought of as a damping factor, which tends to keep the cur-
rent optical property estimate from straying too far from the initial estimate:
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To calculate this initial optical property distribution input, we use an es-
timation algorithm similar to that used by Schweiger and Arridge [30], which
relies on structural information and boundary data. Tailoring the regulariza-
tion parameter spatially based upon MRI information leads to the solution

where is a function which may be derived from the MR image data.
The utility of these functions in characterizing regional heterogeneities ap-
pears to be promising.

Finally, in the inverse problem, where we aim to recover internal optical
property distributions from boundary measurements, we assume that
and are expressed in a basis with a limited number of dimensions (less
than the dimension of the FE system matrices). A number of different strate-
gies for defining reconstruction bases are possible. In this work we use a sec-
ond mesh basis whose local shape and continuity characteristics are the same
as those used on the original mesh, but with fewer degrees of freedom.

4 IMAGES FROM SIMULATIONS

To illustrate the principles described above, data were simulated for a ho-
mogenous cylindrical phantom containing a single absorption anomaly and a
single scatter anomaly (Fig. 3). The cylinder has radius 43 mm and height 60
mm and is centered at (x,y,z) = (0,0,0) mm. The mesh contains 12,587
nodes and 63,857 linear tetrahedral elements (see Fig. 1). The background
optical properties are and The absorption
anomaly is a sphere of radius 10 mm with and
placed at (–20,0,5) mm. The scatter anomaly is a sphere of radius 10 mm
with and placed at (20,0,–5) mm.

Data were generated using a total of 48 sources and 48 detectors posi-
tioned circularly around the FE mesh at z = –10, 0, and +10 mm. These
three levels are denoted by dashed lines in Figure 3. There were 16 sources
and 16 detectors per plane. A total of 720 amplitude and 720 phase meas-
urements were calculated (3 planes × 16 sources per plane × 15 detectors per
source = 720). In order to simulate realistic measurements, Gaussian noise
was added to this data (clipped to maximum 1 % of data amplitude range, 2°
of data phase range). Absorption and scatter images were calculated using
the simulated data and a second mesh was employed for property reconstruc-
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tion (see Ch. 2, Sec. 3.2). The absorption and scatter images at the 20th itera-
tion of the reconstruction algorithm are shown in Figure 4. The bright
patches in the absorption and scatter images correspond to the original
anomalies.

Imaging accuracy will be inevitably poorer in planes near the top and
bottom of the cylinder, given their greater distance from the sources and de-
tectors. However, this simulation does demonstrate that our algorithm can (a)
recover a reasonably accurate image from noisy data and (b) distinguish ab-
sorption anomalies from scatter anomalies. Images from clinical data and the
extraction of spectral and scattering information from them are discussed in
the next chapter.

Figure 3. Schematic of model used to generate data for Fig. 4. The absorption coef-
ficient for the black sphere is twice the background and the scattering coef-
ficient for the gray sphere is twice the background Dotted lines indicate
levels at which sources and detectors are positioned at even intervals.

Figure 4. Reconstructed absorption (left) and scatter (right) images for the model in
Fig. 3 (convergence reached at 20th iteration, Graybar units are
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5 CALIBRATION

When acquiring patient data, additional data are always measured from a
phantom to enable calibration. Precise data calibration is an essential part of
image reconstruction [17, 31–33]. The basic steps of calibration are as fol-
lows:

1.

2.

3.

4.

Using a homogeneous phantom, measurements from all sources in each
plane are averaged to produce 15 measurements per plane,
Here, both phase and amplitude of the data are used. Since we have a
symmetric circular measurement array, is calculated as

where d is the number of measurements per source per plane (15 meas-
urements per plane), is the total number of sources per plane, and the
data are log amplitude or phase values (see Fig. 6). From this informa-
tion, global and values are estimated that give the best fit to this
data. This is done using a two-step algorithm [32]:

a.

b.

Global and values are calculated using an analytical model for
an infinite medium coupled to a Newton-Raphson iterative scheme.

Using the values calculated in Step 1a as an initial guess, new global
and values and are calculated using an FE

model of the imaging domain.

From the data measured with an anomaly present (i.e., either data from a
phantom with a built-in structural anomaly or patient data), Steps 1a and
1b are repeated to calculate global and values for the anomaly
data, and

An offset, points), is calculated between the measured
homogenous data, and the modeled homogenous data,

(the latter calculated using and A second
offset, is calculated between the measured anomaly data,

and the modeled anomaly data, (the latter cal-
culated using and

Based on the offset values from Step 3 and the homogenous fit, the data
are then calibrated using the following relationship:
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The calibration stage of the reconstruction algorithm eliminates system-
atic error in the data and provides an initial estimate of the optical properties
for image recovery, which is crucial for convergence of the iterative method.
The last term in the above equation, corrects for
error due to system drift if any exists. In all of our studies, however, this term
has been found to be very small.

Figure 6. Log amplitude and phase of averaged measured data (dots) compared to
averaged calculated data (crosses) for a homogeneous phantom. The calculated data
are from an FE forward solution using the global parameter estimates and

Each 15-point curve (e.g., points 1–15 in the log-magnitude plot) is the
averaged data from a single plane. There were 3 planes, thus 45 complex data
points. The phantom consisted of Intralipid solution and India ink formed into a
cylinder with radius 43 mm and height 100 mm [17].
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6 CONCLUSION

In this chapter, the theory behind our modeling and image reconstruction al-
gorithm has been outlined. Implementation of the diffusion equation in a fi-
nite element framework has been omitted, as the focus has been on the
methods currently in use by our research group. It is important to note that
other techniques are widely used for modeling light propagation in media,
including analytical, finite difference, and boundary element models. Each
has benefits and limitations. For example, although analytical models are
computationally faster, they are confined to simple, homogeneous geo-
metries. As for finite-difference models of the diffusion equation, these are
conducive to regular grid problems and are not easily implemented for arbi-
trary shapes (though this can be done). Boundary element models, although
not common in this field, again are advantageous when modeling homoge-
nous media.

A common problem in modeling light propagation using the diffusion
approximation is implementation of the correct boundary condition. In this
chapter discussion has been limited to the type III or Robin ( “mixed ”)
boundary condition, as we have found that this option provides the best
match between measured and simulated data. Another widely used boundary
constraint is the type I condition, which, while not the best practical solution,
is easy to implement.

Discussion of image reconstruction has also been limited to the methods
and algorithms mostly used by our research group. There are, however, many
possible algorithms. A common method is the use of linear or single-step re-
construction, which provides a fast qualitative solution with low quantitative
accuracy. Other nonlinear, iterative reconstruction methods exist, such as
gradient-based solvers. One benefit of using such algorithms is that the Jaco-
bian does not need to be directly calculated (as in our method) since the cost
function itself can be directly derived using the adjoint properties [34]. This
allows for more computationally efficient methods. It has been our experi-
ence, however, that although gradient-based solvers are computationally
faster and require less overhead, they are generally slower to converge to a
solution than the algorithm described in this chapter.

It should also be noted that there are a number of methods for calculating
the inverse of the Jacobian, which is required for the method described in this
chapter. Discussion of these possibilities has been omitted because it has
been our experience that the methods described here are adequate. However,
the interested reader is referred to the excellent review by Arridge [2].
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Finally, simple 3D simulation examples of our modeling and reconstruc-
tion algorithm have been included. In the following chapter, the reader can
see clinical images that have been obtained using the tools described here.
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Chapter 10

NEAR INFRARED SPECTROSCOPIC IMAGING:
TRANSLATION TO CLINIC

Brian Pogue, Ph.D., Shudong Jiang, Ph.D., Hamid Dehghani, Ph.D.,
and Keith D. Paulsen, Ph.D.

1 INTRODUCTION

Near-infrared spectroscopic imaging (NIS) has a considerable history in
medical applications, ranging from the tremendously successful use of pulse
oximetry in critical-care medicine [1] to the failed use of transillumination
(diaphanography) of the breast for early detection of cancers [2]. As early as
the 1920s, tumors were being examined with red light transmitted through
the breast [3, 4]. These investigations were formalized in the 1970s and
1980s with the rapid commercialization of transillumination systems for
clinical deployment, even before medical efficacy was established. Studies
based on this type of laser scanning for breast imaging continued into the
1980s, culminating in large clinical trials in the US and Sweden [2, 5–8]. Ul-
timately, transillumination was found not to be as sensitive as mammogra-
phy, its major limitation being an inability to detect smaller lesions in the
breast.

Early attempts to image the breast with near infrared (NIR) light demon-
strated certain weaknesses in the approach, yet NIR spectroscopy became
very successful. Jobsis discovered that it is possible to measure oxygen-
saturation changes in the blood through thick tissue volumes such as the cat
cranium [9]. This breakthrough was rapidly exploited for oximetry monitor-
ing of the neonate brain and for measuring arterial oxygen saturation from
pulsatile flow in the finger, toe, or earlobe [1, 10–13]. Pulse oximeters have
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evolved into sophisticated measurement systems that use intelligent methods
to suppress movement artifacts, and are now found in most critical-care
monitoring settings [1]. The attraction of NIR measurement is the ability to
obtain functional information about oxygenation status of the arterial blood
with an inexpensive, compact, noninvasive method. NIR monitoring can po-
tentially be extended to methemoglobin, cytochromes [14–19] and their oxy-
gen saturation, and water and lipid content [20]. Similarly, the scattering
spectrum and phase function of light in tissue have been shown to provide in-
formation about the nuclear transformations from normal tissues to dysplastic
or malignant tissues [21–26]. Key to exploiting these potential signatures are
(1) continued study of the nature of light scatter and attenuation in tissue,
(2) development of advanced technologies for light generation and detection,
and (3) appreciation of the heterogeneity existing between subjects and
within any given tissue sample.

The interpretation and modeling of light transport in tissue has grown
into a sizeable field of study, and understanding of macroscopic light trans-
port in tissue is relatively well-developed. While individual scattering events
are well described by direct solution of Maxwell’s equations, it has been use-
ful to assume that most scattering centers behave as Mie particles having di-
mensions similar to the wavelength of the illuminating light. This approach
has led to significant new discoveries, e.g., that polarization state and spectral
signature preserve information about the scattering-particle size and number
density. This offers the diagnostic opportunity to measure cellular character-
istics related to volume fraction, nuclear size, and intracellular organelle ar-
rangement.

When light transport is examined more macroscopically, the approxima-
tions of radiation transfer become more relevant and the single-energy neu-
tral particle approximation to the Boltzmann equation provides a simple ap-
proximation of the transport mechanism [27, 28]. This approach has followed
the mathematical formalism of neutron-transport theory, which was largely
developed in the 1950s and 1960s [29, 30]. In macroscopic spectroscopy and
imaging of tissue with NIR light, this approach allows use of the diffusion
equation to model the light transport in tissue. This equation is readily solved
both analytically and numerically for a number of different geometries. Nu-
merous studies from the 1980s to the present have focused on the use of
analytic solutions from diffusion theory to provide quantitative modeling of
light propagation through tissue, demonstrating that this approach can enable
deconvolution of absorption and elastic scattering effects. Specifically, the
temporal shift of the transmitted light pulse is related to the reduced scatter-
ing coefficient of the medium and the exponential decay constant of the tail
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of the pulse is related to the absorption coefficient of the medium (Figure 1).
Patterson et al. [31] demonstrated that the absolute absorption coefficient and
the reduced scattering coefficient of a tissue could be analyzed with diffu-
sion-theory solutions. This technique has been extended in many studies to
examine frequency-domain light signals [32–35], spatially resolved light sig-
nals [36–39], and spectrally resolved light signals [40, 41].

Figure 1. Illustration of a short pulse of light (top) and a sinusoidally modulated
beam of light (bottom) being transmitted through a hypothetical block of scattering
medium (e.g., tissue). In the pulsed or “time-domain” case (top), the time shift in the
peak of the pulse is related to the reduced scattering coefficient, and the expo-
nential decay constant of the tail of the pulse is related to the total absorption coeffi-
cient of the medium, [31, 42]. In the amplitude-modulated or “frequency-
domain” case (bottom), the signal is attenuated in amplitude and phase-shifted in
time. These shifts in the signal can be predicted by diffusion theory, and estimates of

and can be derived from them [32, 42, 43].

Numerical solutions to the diffusion equation adequately describe the
passage of light signals through irregular tissue regions such as the breast.
Thus, diffusion theory based imaging has been developed for numerical im-
age reconstruction [44, 45]. Further theoretical discussion of the diffusion-
theory approach is presented in the previous chapter; the remainder of this
chapter focuses on the technological and clinical approaches that have been
implemented.
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2 IMAGING SYSTEM GEOMETRIES: REFLECTANCE,
TRANSMISSION, CIRCULAR

Current imaging systems can generally be categorized by their source/sensor
geometry. Three specific geometries exist: (1) reflectance for subsurface to-
mography, (2) parallel-plane projection (transmittance) imaging and tomo-
graphy, and (3) circular-region or annular tomography. These three geo-
metries are illustrated in Figure 2.

Figure 2. Three NIS imaging geometries: (a) subsurface reflectance, where all
source and detection fibers terminate on the upper surface of the tissue (shown at left
in a compressed-slab configuration similar to that employed in x-ray mammogra-
phy); (b) transmittance (with tissue in compressed-slab arrangement); and (c) circu-
lar/annular (with sources and detectors distributed evenly around tissue).

The mathematical and computational formalism for NIS image recon-
struction was developed by Simon Arridge and David Delpy at University
College London [46, 47]. Britton Chance and colleagues at the University of
Pennsylvania, together with Enrico Gratton and collaborators at the Univer-
sity of Illinois Urbana-Champaign, pioneered the actual use of reflectance
imaging tomography for both brain and breast imaging [48, 49]. Image-
reconstruction algorithms were later refined by groups focusing on analytic
reconstruction methods [50–54], gradient-based recovery methods, and
Newton-type inversion methods [45, 55–63]. The reflectance geometry has
been used by several investigators to study brain function, although the lim-
ited depth penetration of this approach has led several groups to use this mo-
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dality for brain “topography” rather than true tomography. This approach has
proved successful for studying localized changes in blood volume and oxy-
gen saturation in response to traumas such as stroke or infarct [64–68]. It has
also been useful in imaging functional activation changes to determine the
normal physiological functioning of the brain [19, 69–72].

In the field of breast imaging, reflectance geometry has been exploited
by Chance and colleagues [73] to image palpable breast tumors and by
Tromberg and colleagues to record spectra from palpable breast lesions [20,
74, 75]. These studies have made it possible to estimate the available contrast
in breast tumors and to gain an initial understanding of the basic spectral sig-
natures of different tumor types. Both Chance et al. and Tromberg et al.
chose the frequency-domain approach for its simplicity and reliability.

Breast imaging based on the parallel-plate transmittance geometry typi-
cal of radiographic mammography has also been realized. Perhaps the first
and most widely discussed system was that developed by Zeiss using algo-
rithms advanced by Fantini and Franceschini [76–78]. Similar systems have
been constructed at the University of Pennsylvania, at Massachusetts General
Hospital, in Germany, and as a commercial venture by ART Inc. Near-
infrared imaging using the parallel-plate geometry continues to be investi-
gated by several researchers for diagnosis of clinically relevant features
[79–82]. Fantini et al. continue to analyze the data set from the Zeiss group
to determine if oxygen-saturation changes in tumors can be reliably predicted
and, if so, whether this provides sufficient information to stage the disease
[79, 83].

While the parallel-plate acquisition geometry limits image quality, it
provides maximal signal transmission through the breast and thus may pro-
vide the best signal-to-noise ratio and, concomitantly, the best information
about tumor spectral response. Recent studies by Boas et al. [84] combining
NIR imaging with mammography tomosynthesis reconstruction may yield
the optimal way to implement this imaging modality in the clinic, especially
since the method generates images in the geometry to which mammogra-
phers are most accustomed. Further study in this direction would, ideally, be
supported by frequency-domain data (for robustness) and iterative image re-
construction methods (for optimal image recovery).

A number of early breast-imaging ventures, including commercial efforts
by Phillips Inc. [63, 85] and Imaging Diagnostic Systems (IMDS) Inc. [86,
87], incorporated continuous-wave systems based on a circular geometry
[88]. Because these systems were unable to deconvolve absorption and scat-
tering coefficients, they resulted in failed clinical trials. IMDS has made an-
other commercial attempt in this direction using time-resolved data collection
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and short-pulse laser excitation (http://www.imds.com). Other studies have
been conducted by Jiang et al. at Clemson University [89, 90] and by Bar-
bour et al. at the State University of New York [91–95]. In our work at
Dartmouth College, the circular geometry has been pursued since 1995,
largely because this configuration provides the most symmetric data-
collection arrangement and the best sampling of the image space from multi-
ple angles [96]. This, in turn, results in an optimal sampling of the frequency
space (K space) for image reconstruction and leads to the optimal spatial
frequency distribution. However, it is important to note that the recoverable
spatial frequencies are not homogeneous across the image field, so direct
comparisons to x-ray tomographic image-reconstruction algorithms are of
limited utility. We continue to develop and study NIS imaging in this prom-
ising geometry [96].

3 CIRCULAR/ANNULAR TOMOGRAPHY SYSTEM
DEVELOPMENT

Initial studies were carried out with tissue-simulating phantoms using a sin-
gle-source, single-detector system developed at the Hamilton Regional Can-
cer Center. This led to the successful demonstration of feasibility for NIR
imaging in breast-tissue-like media [59, 60, 97–101]. An initial prototype
single-channel system was developed at Dartmouth College in 1997 [102]
(Figures 3 and 4). This system’s success in imaging tissue phantoms led to
the development of a first-generation clinical prototype that was tested in a
pilot study involving a small group of women [103] including both normal
subjects (to characterize variation between subjects) and a few women with
characterized tumors. This first-generation system was adapted to feature an
array of 32 optical fibers that could be translated radially in and out to ac-
commodate different breast diameters and to facilitate breast positioning
within the array. The second-generation array is shown in Figure 4.

We also developed a second-generation light delivery and acquisition
system based on serial input of the source and simultaneous parallel detection
at all receiver locations [104] (Figure 5). The number of wavelengths was in-
creased to six, which permitted deconvolution not only of oxyhemoglobin
and deoxyhemoglobin but also of tissue water fraction [105, 106]. These ad-
vances were key to improving the system’s ability to accurately quantify the
chromophores and scatterers which cause contrast in tumors. In addition, the
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newest system interface was designed to include three imaging layers, al-
lowing capture of three cross-sections of light data in one setting.

Figure 3. Schematic of NIS tomography system using 16 source fibers (gray) and 16
detection fibers (black). Light from a single laser is launched into the source fibers
by sequential alignment of the laser with each fiber using a translation stage. Detec-
tion is achieved by aligning a single detector with each fiber using a separate trans-
lation stage.

4 CALIBRATION

4.1 System Calibration with Tissue-Simulating Phantoms

For any medical imaging method, the use of tissue-simulating phantoms to
evaluate and calibrate the system is central to achieving a useful device. In
our studies, we have developed several different types of tissue phantoms, as
discussed below.

In all imaging situations, we insert a homogeneous phantom into the fi-
ber array to provide a homogeneous field in which to test the system re-
sponse and the ability of our finite element code to match the measured data.
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Figure 4. Table-top system (top) whose schematic is shown in Figure 3. In the three
photographs at bottom, the first-generation clinical system (schematically similar to
the table-top system) is shown with its fibers opened to three different diameters.
Each fiber is adjusted one tooth at a time through a mechanical gearing system that
simultaneously moves all fibers radially inwards or outwards.

Measurements of phase shift and AC amplitude are taken for the intensity-
modulated light that is transmitted through the phantom. These values are
averaged for all source positions, assuming that the response at each of the
15 detectors will be the same as the source is rotated (i.e., as each fiber is
used in turn as the source). Using this averaged data set, the finite element
diffusion simulation is calculated and its absorption and scattering values
systematically updated until the best possible approximation is found. In our
estimation algorithm, phase shift is treated as a linear function of distance
from the source and the slope of this linear relationship is extracted. The
same process is completed for the logarithm of the AC amplitude versus dis-
tance from the source. These two slopes have been found from both phan-
toms and tissues to be very robust, and so provide a stable way to fit the
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Figure 5. Second-generation system with parallel detection and three layers of opti-
cal fibers. The fiber translation array system (top left) drives three layers of fibers
(top center) to accommodate radial and vertical positioning relative to the pendant
breast. The computer control panel and data acquisition system (right) and the exam
table with optical array (bottom left) are also shown. The array of photomultiplier
tubes that is translated to multiplex to each of the three layers of 16 detection fibers
is immediately below the table.

homogeneous estimates of the bulk optical properties. The fitting of the
slopes of phase versus distance and log AC amplitude versus distance is ac-
complished by a Newton-Raphson algorithm. Estimates of the absorption and
reduced scattering coefficients are typically obtained in less than ten itera-
tions. These data are then used in a diffusion-model simulation, along with
calculated offsets in AC amplitude and phase shift at zero distance. The best
estimate of the simulated data is subtracted from the actual set of measured
data and this difference residual is subtracted from all future measurements
recorded during the same session. The calibration process provides a correc-
tion for interfiber variations in phase and amplitude as well as for any cou-
pling errors. It is important to note that this calibration routine is not equiva-
lent to what is sometimes called “difference imaging” relative to the
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phantom, because in both cases we match the simulation to the data; hence,
the absolute absorption and scattering coefficients are recovered.

We have systematically examined the impact of the properties and size
of the homogeneous calibration phantom on image quality by calibrating
with different homogeneous phantoms before repeatedly imaging the same
heterogeneous phantom. We developed a heterogeneous phantom with a
cavity that could be filled with a mixture of water, Intralipid, and blood at
varying concentrations, allowing a direct measure of an object with well-
established optical properties. Photographs of one heterogeneous phantom
and six homogeneous calibration phantoms are shown in Figure 6. The het-
erogeneous phantom is 84 mm in diameter, with a single, 20 mm–diameter
hole parallel to the depth-axis of the cylinder. This hole was filled with dif-
ferent ratios of water, Intralipid, and blood to provide a target with variable
contrast. The human blood used in the experiment was kept in a 7 ml tube
with liquid additive to reduce the clotting of the platelets (volume, 0.07ml of
15% solution [buffered]; weight: 10.5 mg EDTA[k3]). The total hemoglobin
content in these samples of blood was 140 g/dL as measured spectropho-
tometrically in a clinical co-oximeter system. The blood was then aliquoted
into a water-Intralipid solution to make specific concentrations of blood so-
lution as needed.

Figure 6. Heterogeneous target phantom (left) and a representative set of homogene-
ous calibration phantoms (right). The target phantom has a diameter of 84 mm and
height of 55 mm, with a cylindrical hole of diameter 20 mm. The homogeneous
calibration phantoms labeled P1, P2 and P3 are all 55 mm high but are 73 mm, 84
mm, and 92 mm in diameter, respectively. The average optical property coefficients
of P1, P2 and P3 are and for P1;
and for P2; and and for P3. Both P4
and P5 were 82 mm in diameter and had and The
P6 phantom is approximately breast-shaped and constructed of a soft, RTV-based
material. The bottom diameter and the height of P6 are 82 mm and 78 mm, respec-
tively, and its optical properties are and

TEAM LinG - Live, Informative, Non-cost and Genuine !



NIS: Translation to Clinic 211

The phantom’s optical properties were measured before the hole was
drilled. It was found to have an absorption coefficient of
and a reduced scattering coefficient of respectively, at a
wavelength of 785 nm. The hole was filled with an Intralipid and ink solution
which matched the background reduced scattering coefficient and had a
slightly higher absorption before different concentrations of
blood were added. This type of phantom is constructed using the methods de-
scribed by Firbank et al. [107]. Specifically, 330 grams of resin (GY502 Ar-
aldite resin, D. H. Litter, Elmsford, NY) are mixed with 99 grams of hard-
ener (HY832, D. H. Litter), 1.4 g of titanium dioxide, and 0.5 ml of a 2% ink
solution. The ingredients are carefully mixed, then degassed in a large bell
jar before being moved to an evacuation fume hood to cure for several days.
When this process is complete, the phantom is finished by machining (on a
lathe) to reduce its diameter to the desired size. Machining is also a good way
to reduce the superficial sticky layer that remains after curing. The final
product has a solid, smooth surface and is easily handled in the lab.

Measurements from six homogenous phantoms were used to calibrate
data recorded from the target heterogeneous phantom. The first three calibra-
tion phantoms (P1, P2, and P3 in Figure 6) were constructed from the resin
composition discussed above and were similar in composition to the hetero-
geneous phantom used in this study.

A second kind of phantom was also investigated—a “soft” phantom that
provides an elastic property similar to most breast tissue. Coupling of the op-
tical fibers to harder phantoms is never achieved with complete and even
contact because the surface is curved and rigid, whereas the ends of the fibers
are large and flat. It was, therefore, hypothesized that a softer phantom would
provide better contact and thus mimic imaging of the actual breast. A soft,
RTV-based material was used to make three soft calibration phantoms (P4,
P5, and P6 in Figure 6). These phantoms were fabricated by using 500g Sili-
cone (RTV141, Medford Silicone, Medford, NJ) mixed with 17 g of hardener
(comes with RTV141), 1.7 g of titanium dioxide, and 0.8 ml of a 2% ink so-
lution.

Following measurements on all of these phantoms, images of the single
inhomogeneous phantom were reconstructed. The absorption coefficient was
varied for the inhomogeneous phantom by varying the blood concentration.
Values for the slope of absorption coefficient versus blood concentration of
an embedded inclusion at a wavelength of 785 nm were compared between
data sets reconstructed with calibration phantoms of different stiffness, size,
shape, and optical properties. Figure 7 shows plots of the estimated maxi-
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mum within the blood region the of target phantom versus blood concen-
tration, with each line of data corresponding to a different homogeneous
calibration phantom. The blood concentration was varied from 0% to 1%, as
shown on the horizontal axis.

Figure 7. Estimated versus blood con-
centration. The lines through are
linear regression fits to the values of
maximum within the blood region for
phantoms P1 through P6 (see Fig.6). The
equations in the lower right-hand corner
show the slopes of the fitted lines.

The standard deviation of the slopes of the lines in Figure 7 was 8% of
the average slope. If reconstructions from data calibrated using the hard
phantom with a diameter of 73 mm (P1) were omitted, the standard deviation
was less than 3%. For the variations in the reconstructed absorption coeffi-
cient for the same blood concentration, the variations in the reconstructed ab-
sorption coefficient for the same blood concentration were within 2% when
ignoring the P1 phantom. This shows that the effect of using different cali-
bration phantoms is small as long as all of the source and detector fibers re-
main in good contact with the target (not the case with P1). Considering the
tradeoff between detector size and the curvature of the reference phantom
surface, 80–90 mm diameter phantoms with optical properties similar to
those of the normal breast appear to produce the best image quality for the 6
mm diameter fiber bundles currently in use within our imaging system. In
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addition, it can be seen that the corresponding to the breast-shaped cali-
bration phantom (P6) is approximately the same as the data corresponding to
the soft phantom P4, which has the same diameter and similar optical prop-
erties and height.

4.2 Calibration of Spectral Absorption Parameters

The measurements recorded by our system at six different wavelengths can,
in theory, be used to estimate various chromophore concentrations. (A chro-
mophore is a blood fraction or constituent that possesses distinct optical
properties, e.g., red blood cells, lipid bodies, or plasma.) We have, therefore,
carried out a series of phantom experiments which test our ability to quantify
chromophore concentration changes.

To validate the values of (total hemoglobin), (tissue hemoglo-
bin oxygen saturation), and water concentration obtained by our system and
to understand the relationship between the number of wavelengths used and
the estimation accuracy, experiments involving a series of phantoms with
well-characterized properties were conducted. Reconstructed absorption co-
efficient images were obtained from the measurements and and
water concentration were estimated for each phantom. The basic phantom
was a circular plastic container 90 mm in diameter and 200 mm high. It was
filled with Intralipid and human blood in solution at varying blood concen-
trations, where the Intralipid was fixed at 1.4% to maintain at
785 nm. The blood concentration was varied in successive tests from 0.2% to
1.2% to provide a target with variable contrast. We used the same blood that
was employed during the homogeneous phantom calibration testing. Figure 8
shows a set of representative images of the total hemoglobin oxygen

saturation water concentration, scattering amplitude, and scattering
power within a phantom having a blood concentration of 0.8%.

Images can be formed by implementing a linear inversion to solve for
concentrations of total oxyhemoglobin, deoxyhemoglobin, and water based
upon knowledge of the molar absorption coefficients and the estimated (im-
aged) at all six wavelengths. (This method is described in detail in the
following section.) In the images shown here, the edges are effected by the
wall of the container and generate lower concentration values than those in
the center of the image. Figure 9 shows and water concentration
versus blood concentration from 0.2% to 1.2% when the fitted curves are
based on images reconstructed for three, four, five, and six wavelengths, re-
spectively. The solid lines show the true values of and water
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Figure 8. Images of total hemoglobin in units of microMolar (a), tissue oxygen satu-
ration as a percentage (b), water concentration as a percentage of the tissue volume
(c), scattering logarithm of amplitude (d), and scattering power (e) are shown for a
phantom with a blood concentration of 0.8% in a background solution of 1.4% In-
tralipid. These images show a ring around the perimeter, which is nominally attrib-
uted to the tissue phantom container and which is excluded when we quantify the
chromophore or scatterer values in these homogeneous test cases.

concentration within the phantom based upon knowledge of its composition.
Three-wavelength fitting utilized 785 nm, 805 nm, and 826 nm. When four,
five, and six wavelengths were used for fitting, values at wavelengths of
761 nm, 661 nm, and 850 nm were added serially to the fitting process. The
effect of the walls of the phantom container presents a problem in analyzing
this data; to avoid wall effects, all of the values in the analysis were obtained.
by averaging over a centered circular area with a diameter of 70 mm.

The five- or six-wavelength fits for are closer to the true values for all
three properties and water concentration) than those fitted at
three or four wavelengths (see Figure 9). The differences between the five- or
six-wavelength values for and water concentrations are
1%, and 1%, respectively. Further studies are ongoing to determine the value
of using even more wavelengths in the fitting process.

5 SPECTRAL ANALYSIS OF ABSORPTION IN
TISSUE

A unique feature of NIS imaging is its ability to provide information about
different absorbing molecules and scatterers within the tissue. When spectral
analysis is performed on NIS data (assuming that a sufficient number of
wavelengths are measured), several chromophores can be deconvolved.

In single-point measurement systems such as the one demonstrated by
Tromberg et al. [108], it is relatively easy to sample multiple wavelengths
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Figure 9. Estimated values of (top), (bottom left), and water concentration
(bottom right) as calculated from three, four, five, and six wavelengths of image data
are shown for blood concentrations varying from 0.2% to 1.2%. The solid lines
show the true values of and water concentration in the phantom.

in order to solve for the concentrations of various chromophores. The abso-
lute absorption coefficient at any wavelength can be calculated from a
diffusion-theory analysis; this coefficient can be represented as a linear
summation of the absorptions due to all relevant chromophores in the sam-
ple, the ith chromophore having molar absorption coefficient at the
k th wavelength:

where there are wavelengths and chromophores and is the con-
centration of the i th chromophore.

When this spectral analysis is applied to tomographically reconstructed
images, it requires that a number of estimates of be obtained for
each pixel in the image (index j indicates pixel number). Thus, given a set
of values for the relevant chromophores and all relevant frequen-
cies, the inverse of (10.1) must be calculated to determine the array of es-
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timates at every pixel location. This leads, for each wavelength to a ma-
trix equation

where {c} is the vector of chromophore concentrations at all pixel locations
(length where is the number of pixels); [E] is the
matrix containing the molar extinction coefficients (having many
zero entries) for each of the chromophores at the k th wavelength; and

is the vector of absorption coefficients (at the given wavelength) for all
pixels.

Based on this approach, we have used multispectral tomographic data to
estimate images of oxyhemoglobin and deoxyhemoglobin in vivo. The noise
in the absorption-coefficient images prohibits the fitting of water concentra-
tion, so we have analyzed much of the preliminary in vivo data using an av-
erage assumed water concentration. These results were then used to calculate
total-hemoglobin and oxygen-saturation images, which have a broader appli-
cability for interpreting physiologic and pathophysiologic changes in the
breast.

Representative images are shown in Figure 10 for a patient with a 3 cm
ductal carcinoma (central right region of each image). The tumor can be
clearly seen as a region of increased absorption and increased hemoglobin
and water in the spectrally constructed images. Figure 11 presents the images
from the contralateral breast of the same patient; no remarkable features are
evident in this normal breast tissue. In the latter case, interestingly, there are
significant features in the absorption images, but when the spectral analysis
is completed these are found to be wavelength-independent and therefore not
strongly apparent in the hemoglobin, oxygen-saturation, or water-
concentration images. This observation supports the idea of analyzing the
clinical significance of the chromophore images rather than absolute absorp-
tion-coefficient images. In the chromophore images, the spectral changes
must agree with the known spectral absorption of the chromophore or else
they do not appear, providing some spectral filtering and thereby reducing
artifacts that may only appear at a few wavelengths.
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Figure 10. The top row shows multispectral absorption coefficient images for a pa-
tient with a ductal carcinoma in the middle right region of the breast cross-section
presented here (units of The images at bottom report total hemoglobin

tissue hemoglobin oxygen saturation and water concentration re-
spectively.

6 SPECTRAL ANALYSIS OF SCATTERING IN
TISSUE

The scattering spectrum provides data about the nature of the scattering par-
ticles and, hence, some information on the composition of the tissue. Since
scattering in tissue occurs predominantly from Mie-sized particles, the gen-
eral trend for scattering coefficients is a smooth decrease with increasing
wavelength. This curve is well-represented by a power law of the type [22,

where SA and SP are arbitrary fitting constants for scattering amplitude and
scattering power, respectively. SP increases with decreasing scatterer size,

107]
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Figure 11. These images show the contralateral breast of the same patient as in Fig-
ure 10. This breast is disease-free. It shows considerably lower values in the images
of and water concentration (bottom row).

i.e., as scattering tends toward a Rayleigh spectrum (SP = 4.0). As the scat-
tering particle dimension becomes much greater than then the value of
SP decreases toward zero. In tissue, typical SP values range between 0.1
and 0.3 [109, 110]. In standard 1% Intralipid solutions used to mimic the
scattering of soft tissues, SP = 0.24.

In our studies, we have begun to fit the scattering spectrum at each pixel
within the image to (10.3) and create images of scattering power and loga-
rithm of the scattering amplitude. A set of representative images is shown in
Figure 12 for the patient with an interior ductal carcinoma (same patient as
for Figs. 10 and 11). The area of increased scattering can be observed at all
wavelengths (top row), as can the effect on scattering amplitude and power
(bottom row). In particular, there is a focal increase in amplitude and a focal
decrease in scattering power. Images from the contralateral breast are high-
lighted in Figure 13 for comparison. There are no significant findings in this
normal breast.
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Figure 12. In the top row of images, the reduced scattering coefficient is shown for
the same breast presented in Figure 10, which has a localized invasive ductal carci-
noma. The two lower images show the logarithm of the scattering amplitude ( S A )
and the absolute scattering power (SP), respectively.

Figure 13. In the top row of images, the reduced scattering coefficient is shown for
the contralateral breast of the same patient as in Figures 10–12. The two images at
bottom show the logarithm of the scattering amplitude (SA ) and absolute scattering
power (SP) for this breast.
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One of major structural features of the breast is the large adipose fraction
typically found near the periphery. This is thought to average near 75%, al-
though there is large variation between women that is correlated with body
mass index and breast size [111–113]. In many instances, the interior of the
breast is largely glandular tissue, which has a higher blood content and hence
higher water content. This area has a higher scattering power, perhaps due to
smaller scattering sites in the tissue, although the origin of the higher value
has not been clearly established. In areas of adipose tissue where fat content
is high the scattering power is lower, perhaps due to the larger scattering
centers of the lipid-filled cellular space. In most of our images of scattering
power we see this trend clearly: the scattering power is highest in the interior
of the breast and decreases towards its exterior surface.

Further study of the scattering power and its ability to report valuable in-
formation about the tissue is clearly required.
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Chapter 11

STATISTICAL METHODS FOR ALTERNATIVE
IMAGING MODALITIES IN BREAST CANCER
CLINICAL RESEARCH

Tor D. Tosteson, Sc.D.

1 INTRODUCTION

The imaging modalities that are the focus of this book are being developed to
improve the diagnosis and treatment of breast cancer. Essential to this proc-
ess is research to facilitate the practical application of the new techniques and
to identify ways to maximize their clinical utility. In particular, statistical
methods can help to establish quantitative measures of imaging and
diagnostic accuracy based on data generated by clinical research. In this
chapter, several important statistical issues associated with clinical applica-
tions and research are explored and illustrated with examples drawn from ac-
tive projects within the Dartmouth alternative imaging program.

In all projection-based imaging modalities relying upon measurements
made at the target surface, reconstructed images are subject to noise in data
acquisition and to artifacts due to the imaging algorithm and experimental
conditions. The nature and magnitude of measurement errors must therefore
be carefully factored in when trying to predict future clinical impacts of the
new modalities and while prioritizing further technical improvements. This
issue is important both when evaluating the clinical significance of a single
image (where it may be appropriate to consider a range of possible images
due to uncertainty in the measurements) and when developing summaries of
many imaging sessions with respect to their diagnostic or prognostic value in
the clinic. In this chapter, we describe efforts under way to develop statistical
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approaches for both single imaging studies and multimodality evaluation
studies. Topics include confidence intervals for single images [1], techniques
for summarizing the diagnostic value of images based on region-of-interest
(ROI) summaries for single and multimodal studies [2], and empirical ex-
periments on the character and magnitude of spatial accuracy across several
imaging modalities [3].

2 STATISTICAL MODELING FOR SINGLE-IMAGE
RECONSTRUCTION

2.1 Need for Statistical Methods

While x-ray computed tomography images can have a relatively well-defined
image response with little apparent measurement error, model-based imaging
methods may exhibit a complicated nonlinear relationship between meas-
urement error and image accuracy. For example, in near infrared tomogra-
phy, light propagation through tissue is modeled by diffusion theory and
reconstructed images are derived by solution of the inverse problem [4, 5]
(see Ch. 2 for discussion of the inverse problem and its converse, the forward
problem). The inverse problem is typically ill-posed and ill-conditioned,
requiring iterative optimization rather than exact solution. The derived im-
ages are generally of low resolution, although with proper calibration they
may accurately reproduce average property values over specific areas of in-
terest. Evaluation of reconstructed images requires consideration of statistical
tools for assessment and visualization.

This chapter explores some possible analytical and graphical techniques
for performing statistical inference on individual images. The concepts of
statistical hypothesis testing and confidence are used to construct graphical
presentations as aids for properly interpreting images known to contain noise.
In particular, the concept of a “confidence interval” is extended as a means
for visualizing the range of alternative images consistent with a particular set
of sensor data. Techniques are illustrated with simulated images and phantom
data from our alternative imaging program. Further details are available in
[1] and [2].
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2.2 Statistics of Finite Element Image Reconstruction

The finite element image reconstruction procedures used for image recon-
struction in near infrared spectroscopic imaging (NIS), electrical impedance
spectroscopy (EIS), magnetic resonance elastography (MRE), and micro-
wave imaging spectroscopy (MIS) have many similarities [5–8]. All these
procedures attempt to estimate the property distribution within a field repre-
senting the tissue, this field being discretized into a mesh of L nodal points.
After the property values at these nodes are estimated, the resulting image
estimate is constructed by interpolating values of individual pixels between
adjacent nodes.

The reconstructed images specify a property coefficient at each
of j = 1,...J pixels. The interpolation process can be summarized by an
equation relating the J pixel estimates to the L nodal points, i.e.,

where represents the property value at the node and repre-
sents a known interpolation or basis function (see Ch. 2). For our purposes,
the number of pixels is assumed to be greater than the number of nodes (i.e.,
J > L).

Let denote an L-dimensional vector containing all
of the node parameters. Further, let denote the signals from
sensing devices at sites. These are the actual data available for con-
structing image estimates. It is reasonable to assume that each observed sig-
nal is a true signal (which is a function of the vector ) plus a noise
component:

where each noise signal has zero mean and variance The function
is implicitly defined by partial differential equations (PDEs) specific to

each imaging modality (as discussed further in the earlier chapters of this
book). In the statistical literature, (11.2) might be referred to as a nonlinear
regression model with parameters given by Such models are the subject
of an extensive theory of statistical analysis [4].

At the heart of the finite element image reconstruction is a least-squares
problem in which an estimate of the property-parameter
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vector is obtained by minimizing the sum of squares with respect to
i.e., by minimizing

where is a predicted measurement based on the estimated parameter
vector.

Direct optimization of (11.3) is difficult due to the multiplicity of pa-
rameters and the computational burden of numerically solving PDEs at each
iteration of the least-squares optimization. Several approaches have been
proposed to reduce these difficulties, including adaptive regularization of the
Gauss-Newton method and spatial filtering [5]. More recent developments
utilize statistical methods for ill-conditioned regression models to minimize
bias due to the overspecified nature of the inverse problem [9, 10].

The theory of nonlinear least squares shows that under certain regularity
conditions the parameter estimate minimizing converges to the true
value of as the amount of data gets large (i.e., as ). This estimate
will be asymptotically multivariate normal with a covariance matrix M that
can be estimated as a by-product of the optimization procedure. However,
estimation of M depends on the existence of a unique and stable solution for
the optimization criterion. The corresponding theory for methods using
regularization and other devices to improve the numerical algorithms is in-
complete and does not provide variances for image estimates at this time.
Below, some practical suggestions are discussed for obtaining variance esti-
mates after procedures are described for performing statistical inferences that
are possible once M has been estimated.

The image estimate can be represented as a J -dimensional vector
formed from the nodal parameters by substituting in (11.1). Since these
pixel estimates are simple linear functions of the covariance matrix of the
estimated image pixels is given by

where is a J × L matrix with
Using we can provide analytic and graphical tools for assessing

uncertainty about the properties of given areas within the image on a pixel-
by-pixel basis. For instance, suppose that we wished to identify regions with
optical property values greater than or less than a given level c. Because we
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can estimate the variance of each pixel as we can classify each
pixel according to whether z is less than –1.96 or greater than 1.96, where

This is useful because viewing versions of the image which identify areas
that are clearly different from a specified property value may help in locating
abnormalities.

Statistical inference for entire images requires consideration of the extent
to which pixel estimates are statistically correlated with one another. (This
should be distinguished from the task of comparing individual pixels to a
single reference level.) To judge the full range of possible images consistent
with a reconstruction, one must consider the joint distribution of all pixel (or
node) estimates. Simple confidence intervals for single means or other pa-
rameter estimates are commonly used in scientific reports; however, a si-
multaneous confidence interval for a highly dimensional estimate such as a
reconstructed near infrared image takes the form of a confidence ellipse in
the L dimensions of the node estimates The true image then lies within
the confidence ellipse with probability the “coverage prob-
ability” of the ellipse.

Visualization of these highly dimensional confidence ellipses poses a
special graphical problem. One method is to show images on the surface of
the ellipse corresponding to its widest principal axes. In effect, this gives a
confidence interval for the most variable normalized linear combination of
the pixel estimates. This method has been adopted using procedures involv-
ing orthogonal decompositions of the covariance matrix M (see [1]). The
procedure can be repeated for the characteristic vectors corresponding to
successively smaller characteristic values.

Figure 1 shows example images based on this procedure using a simu-
lated image with an assumed value for M defined by a multiplicative error
structure and an exponentially inverse relationship between pairwise pixel
correlations and the distance separating pixels. By looking at these images,
one can judge the range of reasonable images for the given sensor data. Note
that the first pair of confidence-interval images (Image 1) weight the brighter
of the two regions, since the multiplicative error structure means that these
are also the most variable pixels. However, the brightest region is still detect-
able, looking at the lower-confidence-interval version of Image 1. The sec-
ond pair of confidence-interval images (Image 2) primarily shows changes in
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Figure 1. Confidence intervals for simulated images with multiplicative error struc-
ture and inter-pixel correlation decreasing with distance between pixels. Spatial
units and grayscale are arbitrary for this synthetic data.
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the larger region in the lower right quadrant. Given our assumptions about
the variance of the pixel estimates in this area, the image corresponding to
the lower limit of the confidence interval indicates that the data are consistent
with an absence of the faint structure identified in the original image esti-
mate.

These confidence-interval techniques require an estimate of M. In the-
ory, (11.3) can be used to develop suitable estimates. In practice, however,
the choices for initial values, regularization parameters, and convergence
criteria for the numerical optimization and PDE algorithms often result in
unusable and potentially inaccurate values for M, as defined by the gradient
of the optimization criterion (11.3).

For the example given here, an alternative procedure has been adopted of
dividing the signal measurement period into three equal segments and pro-
ducing a triplicate set of node estimates from the three separate image recon-
structions. These are used to empirically estimate the relationship between
the distance separating two nodes and the correlation of their residuals from
the node-specific means. An estimate of M is then formed by replacing the
covariance term between any two nodes with the correlation predicted on the
basis of the distance separating them multiplied by the square root of the
product of the estimated variances at each node derived from the three repli-
cate estimates.

Figure 2 shows the result of applying this procedure to a physical phan-
tom with a single embedded object or anomaly imaged using our NIS tech-
nology. The true optical absorption image is computed from the known
properties of the object and the relevant diffusion theory. Based on the three
replicates, the average coefficient of variation for the absorption coefficient
at each node is 1.4%. Because of a strong dependence of the residual vari-
ance on the mean, the node estimates were log-transformed prior to calcula-
tion of the covariance matrix for the image confidence intervals.

The confidence-interval images are plotted from the first two principal
axes of the 95% confidence ellipse. Both statistical analyses indicate a region
in the upper left quadrant with higher-than-average intensity. However, the
intensity and exact location of the object are somewhat uncertain. A confi-
dence map is also given in Figure 2 that shows elements of the image which
differ from the overall mean with a statistical significance level of 5%, based
on a two-sided t-test without any adjustments for multiple comparisons.

These graphical methods provide a means of guiding statistical inference
for single images; other developments in the imaging literature have focused
more on inferences for experimental designs comparing groups of images
(see [11] for a summary of methods used in fMRI studies). The extension of
the concepts of hypothesis testing and confidence intervals to imaging
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technology is not yet common, although there have been other treatments of
uncertainty in imaging. Qi and Leahy [12], for example, present positron
emission tomography voxel-specific variances in image format, where the
variances are derived through the asymptotic theory of maximum likelihood
estimation as applied to positron emission tomography image reconstruction.
Their results for visualizing statistical tests and confidence intervals could
also be applied in the setting of our program. However, for nonlinear image
reconstruction applications, an empirical estimate of the covariance matrix
for the estimated nodal parameters may be necessary. This is obtained by
modifying data acquisition software to obtain replicate image reconstruc-
tions.

Figure 2. Confidence maps and confidence intervals for the absorption-coefficient
image of a phantom with a single embedded object in the upper left quadrant. The
true image is given in panel at upper left.
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A key assumption in our methods is that image estimates are in fact un-
biased, meaning that given an infinite number of replicated images the aver-
age reconstructed image will correspond precisely to the “true” image.
Experimental projects described later in this chapter may help to provide em-
pirical estimates of the potential for future improvements in these methods.

3 STATISTICAL METHODS FOR ASSESSING
THE DIAGNOSTIC VALUE OF IMAGING

As part of our alternative imaging program, we are studying summary
methods for diagnostic test variables derived from images. A clinical study
currently in progress (2004) will compare imaging studies for 75 women
having abnormal mammographic findings to those for 75 women having
normal mammograms. All four modalities are included in this study. Image
summaries will consist of average property values over entire images and
within specific regions of interest, typically those marking the locations of
possible abnormalities scheduled for biopsy. Statistical comparisons will
focus on comparing the means of the property values of normal and
abnormal tissues. The primary evaluation study is still in progress, but a
preliminary study of normal subjects has been published [13] and some
results are available for a limited number of abnormal patients.

Traditionally, diagnostic tests are characterized in terms of sensitivity
(true-positive rate) and specificity (true-negative rate). With quantitative
measures such as mean property values derived from images, the definition
of test positivity involves specifying a cutoff beyond which a test result is
considered abnormal. Receiver operating characteristic (ROC) curves plot
sensitivity versus false-positive rate (1-specificity) as the cutoff is increased.
For low values of the cutoff, fewer measurements from the abnormal group
will test positive, while more from the normal group will test positive. There
is an extensive literature on the use of ROC curves with either a continuous
test variable or a categorized version of an underlying latent variable [14,
15]. The overall value of a diagnostic test is often summarized by the area
under the ROC curve (“area under curve,” AUC), which represents the prob-
ability that the test value for a normal subject exceeds that for an abnormal
subject.

Two important issues arise in applying statistical methods for ROC
curves to the data generated in the clinical evaluation studies from the Dart-
mouth program, namely (1) measurement error in the property values and
(2) the use of test measures based on multiple imaging modalities. The topic
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of measurement error and ROC curves has generated recent interest in the
statistical literature [16–19]. The primary finding from this work is that addi-
tional measurement errors will tend to move the ROC curve toward the “di-
agonal” line representing the ROC curve for a completely noninformative
test and tend to reduce the AUC.

With our alternative breast imaging systems, it is possible to assess the
accuracy of individual image summaries using the methods discussed in the
previous section. Thus, each property mean over a specific region of interest
has a corresponding standard error. Specialized statistical methods have been
developed to take advantage of this information to create adjusted estimates
of ROC curves [2]. Revised confidence bands and intervals for specific
points on the binormal ROC curve have been developed to adjust for hetero-
scedastic and possibly non-normal measurement errors.

These methods can be described as follows. Let d = 1 indicate “abnor-
mal” cases and d = 0 indicate “normal” cases. The true (unobserved) values
for the test variable are denoted for and d = 0,1 and are as-
sumed to be normally distributed with mean and variance The ob-
served, error-prone values are denoted for and d = 0,1 and
are assumed to follow an additive measurement model, i.e.,

If (constant variance within abnormal and normal groups), the sen-
sitivity, specificity, and AUC based on W are given by

and

Figure 3 shows the effect of increasing and on the ROC. Separate
curves are shown for increasing values of the relative measurement error,

In general, an increase in measurement error moves
the ROC curve towards the diagonal (noninformative) line and decreases the
value of the AUC.
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If there is measurement-error heterogeneity, the binormal model may not
apply to the ROC based on W alone. This case is also illustrated in Figure 3,
which shows examples where each observation is assigned its own separate
measurement error variance (randomly generated to be lognormal and inde-
pendent of X). The curves labeled a and b show the heterogeneous case with
an average for a and for b. This example is analogous to what
we expect for test data collected from the alternative imaging systems. Al-
though the general effect of increasing measurement error is analogous to the
homogenous case, the shapes of the ROC curves may be affected, and the
heterogeneous case requires additional consideration in developing the esti-
mation procedures.

Figure 3. The effect of increasing levels of measurement error (m.e.) variance on
ROC curves. Curves a and b show the effect of heterogeneous rather than homoge-
neous measurement-error variances.

Two possible methods have been explored for forming adjusted esti-
mates and confidence intervals and confidence bands for ROC curves. The
starting point for these methods is estimation of the mean and variance for
each group, denoted by and for group d. The first set of estimators
consist of a simple unweighted mean and a method-of-moments estimate for

i.e.,
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These unweighted estimators are simple moment estimators and are always
unbiased, even under heteroscedasticity. The second set of estimators is
based on methods developed for meta-analysis [20] and incorporate the esti-
mated measurement error variances as weighting factors. The meta-weighted
estimates are of interest as a possible means of improving the efficiency of
the estimated ROC curves.

The two methods are illustrated in Figure 4 using pathology data from the
Dartmouth program [2]. For this example, vessel-density estimates and stan-
dard errors were obtained using automated image analysis with optical mi-
croscopy in specimens of normal and fibrocystic tissue. Results for
unweighted and meta-weighted estimators are shown. Note how the cor-
rected estimate of the ROC curve moves upwards away from the uncorrected

Figure 4. Example of an ROC curves corrected for heterogeneous measurement er-
ror and provided with 75% confidence bounds. Results for both weighted and meta-
weighted estimators are shown.
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curve (curve obtained when ignoring the presence of measurement error).
This correlated estimate can be expected to be less biased than the uncor-
rected ROC curve. Confidence bounds are given for the corrected estimate
using both an asymptotic (delta) approximation and a bootstrapping tech-
nique.

These results demonstrate that correction for measurement error in ROC
curves is relatively simple and need not be limited to the AUC. However,
more flexible assumptions about the distributions of the continuous test vari-
ables are needed [21], and the issue of the use of multiple imaging modalities
needs to be addressed in this context. Preliminary data from our imaging
program has provided an opportunity to consider methods for combining
ROI measurements from multiple modalities. ROI analysis was performed
for localized property enhancement relative to the background breast average
for EIS, MIS, and NIS in 15 women subsequently found to have cancer. A
comparable analysis was made of data from 8 women with benign condi-
tions. In this study, the ROI was defined using a conventional mammogram.

Based on a simple comparison of means, the amount of localized prop-
erty enhancement associated with cancer in all three modalities was encour-
aging. A multimodal index was formed using a linear discriminant function
to optimally combine the three modalities. Figure 5 shows corresponding
ROC curves plotted both empirically and as fitted binormal models with 95%
confidence intervals. These preliminary results support a possible specificity

Figure 5. ROC curves and confidence intervals for three multimodality indices to
discriminate cancer biopsies from non-cancer biopsies. The stairstep function repre-
sents the raw data; the heavy black line shows the ROC curve obtained by fitting a
binormal model to the raw data. Shaded areas show 95% confidence intervals.
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of approximately 80% with respect to pathologically benign lesions for a test
based on the abnormal ROI multimodal index with a threshold small enough
to detect 80% of cancers. This pretrial data are not subject to the same level
of blinding and control as our evaluation trial (currently under way with
mammographically normal and abnormal subjects), but nevertheless yield
encouraging preliminary findings.

4 SPATIAL ACCURACY ACROSS IMAGING
MODALITIES

To investigate the intermodal comparability and spatial accuracy in the early
phase of technologies for EIS, NIS, and MIS, we performed an experiment
with two sets of common phantoms that were repeatedly imaged by different
modalities (EIS/NIS or MIS/NIS). This data has been reported in detail in [3]
and is summarized here.

Each phantom was recorded in nine measurement sets in each imaging
system: i.e., there were three separate sessions with three data acquisitions
apiece. The sessions included a 10-minute electronics/optical system on/off
interval, system recalibration, and phantom repositioning to simulate routine
patient imaging sessions on different clinical days. To maintain identical po-
sitioning for all three modalities, each phantom was marked and carefully
positioned within the detecting array of each imaging system, with the
marker always aligned to the same optical fiber (or electrode, or antenna) in
each system.

We performed a statistical analysis to estimate accuracy, validity, and
intermodal comparability based on the data set of common image-node val-
ues. We formed estimates of bias and the standard error of the mean nodal
value using the nine repeated imaging sessions for each imaging modality
and phantom. Bias and standard-error images were formed for each phantom
and modality combination and scatter plots were generated to illustrate the
correspondence between individual nodal values obtained in different mo-
dalities. Finally, we computed the means of the bias and standard error im-
ages and used them in a two-way analysis of variance, treating the phantoms
and modalities as the two factors. These analyses were used to summarize the
comparisons of accuracy between the modalities.

Figure 6 gives spatial averages for the percentage bias and standard er-
rors by imaging modality and type of phantom. Due to persistent artifacts at
the image periphery in this set of experiments, the EIS shows a strong posi-
tive bias on the homogeneous and single-inclusion phantoms (top panel of
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Fig. 6). All the modalities show a negative average bias on the phantoms
with two inclusions, tending to smooth over these smaller features. The two-
way analysis of variance of these data shows a statistically significant inter-
modality comparison (F = 5.81, p = 0.011). The test for differences between
phantoms is less significant (F = 2.59, p = 0.09).

The spatial averages for standard errors based on the repeated recon-
structions are generally less than 10% (lower panel of Fig. 6). MIS, as ap-
plied to the two-inclusion phantom, showed the highest standard error,
10.9%. The two-way analysis of variance of these data shows little evidence
of a systematic difference according to phantom type ( R = 0.81, p = 0.54)
and only modest evidence of a difference between the modalities (F = 2.28,
p = 0.13).

Figure 6. Percentage bias (top) and standard error (bottom) by imaging modality and
phantom type.
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Although average bias is shown in the analysis of variance to differ ac-
cording to modality, strong spatial correlations are seen between individual
images and between the percentage bias at each image node. Correlations
between the bias at common nodes range from 0.68 for NIS and EIS applied
to the small phantom with a single inclusion to 0.91 for NIS and MIS applied
to the large phantom with a single inclusion. This suggests that the error
structures for the imaging modalities are related, probably due to the use of a
common image-reconstruction algorithm paradigm.

5 CONCLUSION

The statistical methods and experimental data described in this chapter at-
tempt to deal with fundamental scientific and engineering issues in the de-
velopment of multiple imaging modalities. Statistical methods are needed to
portray the uncertainty in individual images and the diagnostic potential of
image summaries in realistic clinical settings and for the comparison and
combination of multiple modalities. Objective data-based evaluations of the
scientific accuracy of new and emerging modalities will aid the development
of reliable clinical applications.
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ductal,216,217f,218f,219f
electrical properties of, 8, 86, 86f
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iteration step size, 45
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Lagrangian basis function. See basis function(s), Lagrangian
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breast interface, 7, 166–168, 167f
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conformal mesh approach to, 149–150, 150f
contrast studies, 173–177
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eigenvalue spectral content, 41
Gauss-Newton image reconstruction in, 130–137
liquid medium for, 137–138, 138f, 166–168
local-oscillator power divider network for, 160f, 165–166
log-magnitude/phase reconstruction in, 144–149
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low-contrast studies, 173–177
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MRE. See magnetic resonance elastography
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multichannel design (in MIS), 158–160, 160f
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National Cancer Institute, 4
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Neumann boundary condition, 140
Newton’s method (algorithm), 34, 90, 132
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noise figure, 162, 164
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nonlinear image reconstruction, 9, 128–129, 129f
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parameter mesh. See property mesh
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Poisson’s ratio, 51
positron emission tomography, 234
property mesh, 36–38, 37f, 39, 52, 90–91, 130–137, 189–193. See also dual
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quadrature sampling, 119-122
quasistatic assumption, 87-88

R
radar, 127
Rayleigh scattering, 218
receiver operating characteristic curves, 235–240, 237f–239f
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region-of-interest studies, 228, 239–240, 239f
regularization. See Tikhonov regularization
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safety concerns, 112
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screening for breast cancer, 1–2
sensitivity (statistical), 235
shape measure, 12
shunt model, 89
source(s)

effective vs. auxiliary, 39–40
terms, 35

spatial accuracy across modalities, 228, 240–242, 241f
spatial filtering, 44
specificity (statistical), 235
spin, particle, 74–75
statistical approach to parameter reconstruction, 64–66
strain and stress, 50–51
subzone reconstruction, 40–41, 55–60, 56f, 57f, 58f, 59f
superheterodyne signal detection, 158
synthesized trigonometric pattern, 94–95, 95f

T
tensors, stress and strain, 50–51
three-dimensional imaging, 9, 29, 32, 45, 52, 100–104,101f–104f, 108, 117,

122–123
Tikhonov

problem, 65
regularization, 42–43,191–192
weight, 43–44

time harmonic assumption (in EIS), 87
time-domain solutions, 28
tissue water fraction. See water, percentage of in tissue
trigonometric driving patterns, 93–95, 95f, 113, 122–123, 122f
tumors. See cancer, breast

V
vascular density, 19. See also mean vessel density

W
water, percentage of in tissue, 18t, 19t, 206, 213–214,214f, 215f
waveguides, 137–138
weighted residuals, 29–30, 54
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X
x-ray

computed tomography, 25–26, 69, 127, 206, 228
mammography, 1–2, 5, 107, 235

Y
Young’s modulus, 51, 62f, 63f
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