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Preface

In the last decades, the rapid developments in the communication, control and
computer technologies have had a vital impact on the control system structure. In
the traditional control systems, the connections between the sensors, controllers and
actuators are usually realized by the port to port wiring. Such a structure has certain
drawbacks such as difficult wiring and maintenance, and the low flexibility. The
drawbacks have become more severe due to the increasing size and complexity of
modern plants. A networked control system (NCS) is a control system in which the
control loops are closed through a communication network. It is gaining popularity
recently because the utilization of a multipurpose shared network to connect spa-
tially distributed elements results in flexible architectures and it generally reduces
installation and maintenance costs. The NCSs have been successfully applied in
many practical systems such as the car automation, intelligent building, trans-
portation networks, haptics collaboration over the Internet and unmanned aerial
vehicles.

Note that an NCS works over a network through “non-ideal channels”. This is
the main difference between the traditional control systems and NCSs. In NCSs,
phenomena such as communication delays, data dropouts, packet disorder, quan-
tization errors and congestions may occur due to the usage of communication
channels. These imperfections would significantly degrade the system performance
and may even destabilize the control systems.

The wireless communication becomes more popular recently for its better
mobility in locations, more flexibility in system design, lower cost in implemen-
tation and greater ease in installation, compared with the wired one. While sharing
many common features and issues with the wired one as described above, the
wireless one has special issues worth mentioning. In wireless networked control
systems (WNCSs), a sensor usually has a limited power from its battery, and
replacing the battery during the operation of WSNs is very difficult. In addition,
sensor nodes are usually deployed in a wild region and they are easily affected by
the disturbances from the environment, which may cause malfunction of the sensor
nodes, e.g., the gain variations of the computational unit. However, the networked
systems should be robust or non-fragile to these disturbances.
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Due to the great challenges for the analysis and design of NCSs, especially for
wireless one, the filtering and control of such systems is an emerging research
domain of significant importance in both theory and applications. This book
addresses these challenging issues. It presents new formulations, methods and
solutions for filtering and control of wireless networked networks. It gives a timely,
comprehensive and self-contained coverage of the recent advances in a single
volume for easy access by the researchers in this domain. Special attention is paid
to the wireless one with the energy constraint and filter/controller gain variation
problems, and both centralized and distributed solutions are presented.

The book is organized as follows: Chap. 1 presents a comprehensive survey of
NCSs, which shows major research approaches to the critical issues and insights
of these problems. Chapter 2 gives the fundamentals of the system analysis, which
are often used in subsequent chapters. The first part with Chaps. 3–6 deals with
the centralized filtering of wireless networked systems, in which different approa-
ches are presented to achieve the energy-efficient goal. The second part with
Chaps. 7–10 discusses the distributed filtering of wireless networked systems,
where the energy constraint and filter gain variation problems are addressed. The
last part with Chaps. 11–14 presents the distributed control of wireless networked
systems, where the energy constraint and controller gain variations are the main
concerns.

This book would not have been possible without supports from our colleagues.
In particular, we are indebted to Prof. Peng Shi at University of Adelaide, Australia,
and Dr. Rongyao Ling, Zhejiang University of Technology, China, for their fruitful
collaboration with us. The supports from the National Natural Science Foundation
of China under Grant 61403341, Zhejiang Provincial Natural Science Foundation
under Grant LQ14F030002, LZ15F030003 and Zhejiang Qianjiang Talent Project
under Grant Grant QJD1402018 are gratefully acknowledged.

Hangzhou, China Dan Zhang
Johannesburg, South Africa Qing-Guo Wang
Hangzhou, China Li Yu
August 2016
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Chapter 1
Introduction

1.1 Networked Control Systems

In the last decades, with the rapid development on the communication, control and
computer technologies, the conventional control systems have been evolving tomod-
ern networked control systems (NCSs), wherein the control loops are closed through
a communication network. The utilization of a multi-purpose shared network to
connect spatially distributed elements results in flexible architectures and generally
reduces installation and maintenance costs. Nowadays, NCSs have been extensively
applied in many practical systems such as the car automation [1], intelligent building
[2], transportation networks, haptics collaboration over the Internet [3] andunmanned
aerial vehicles [4]. A typical architecture of NCSs is shown in Fig. 1.1, and its esti-
mation/filtering system is depicted in Fig. 1.2. In traditional control systems, each
component is connected through “ideal channels”, while, in NCSs, the connection
of each component is realized via “non-ideal channels”. This is the main difference
between the traditional control systems and NCSs.

In NCSs, the continuous-time measurement is first sampled and quantized. Then,
the measurement is transmitted to remote controller via the communication channel,
in which the signal may be delayed, lost or even sometimes not be allowed for
transmission due to the communication constraints. In recent years, the modeling,
analysis and synthesis of NCSs have receivedmore andmore attention, giving a great
number of publications in literature. Compared with the conventional point-to-point
control systems, the following new problems arise in NCSs:

• Signal sampling: an NCS is a digital control system and a continuous signal is
usually sampled at a certain time instant, and then the sampled measurement is
utilized for controller design. In the traditional digital control system, the sampling
period is usually fixed. However, in NCSs, the measurement packet may not be
transmitted when it is sampled since all the packets have to wait in a queue, and
then it is not desirable to sample the system with a fixed period.

• Signal quantization: Due to the limited communication bandwidth, the sam-
pled signal has to be quantized and it is a common phenomenon in any digital

© Springer International Publishing AG 2017
D. Zhang et al., Filtering and Control of Wireless Networked Systems,
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2 1 Introduction

Fig. 1.1 A typical structure of NCS

Fig. 1.2 A networked estimation system

control systems. In this scenario, only a finite bit of information is available for
the controller design.

• Communication delay: The delay in NCSs includes computation delay in each
component due to the finite processing speed of devices, the waiting delay, i.e.,
the time for a packet waiting before being sent out, and the transmission delay
with which the packet goes through the communication channel. Compared with
the other two types of delays, the computational delay is usually negligible due
to the rapid development on the hardware instrument, while, the waiting delay
is determined by the transmission protocol and the impact of this delay can be
alleviated by some appropriate protocols. Hence, the transmission delay becomes
the main concern in the system analysis and design.

• Packet dropout: Due to network traffic congestions and packet transmission fail-
ures, packet dropouts are inevitable in networks, especially in a wireless network.
Actually, the propagation of long transmission delay can also be viewed as the
packet dropout phenomenon if one ignores the outdated data. In this case, the
controller or actuator has to decide what information should be used, the newest
data in the buffer or a simple zero signal.
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• Medium access constraint: The progress in digital computation and communica-
tion has enabled the development of distributed control systems in which multiple
sensors and actuators are connected to a centralized controller via a shared com-
munication medium. Due to the limitations on data transmission, it is impossible
for all sensors and actuators to access to the communication channel for all the
time, leading to a new problem, the medium access constraint problem.

The network-induced problems mentioned above would certainly degrade the
control performance and may even destabilize the system [5]. In recent years, much
research effort has been devoted onto this area, and issues such as the stability analy-
sis, state estimation, controller design and fault detection for NCSs have been widely
investigated.According to the connection nature, we can classify theNCSs intowired
and wireless communication ones. To help readers understand some basic modeling
and analysis methods for NCSs, we first discuss the NCSs with wired communica-
tion in the subsequent sections, and each for one particular network-induced issue.
Within each section, we present different approaches to the same issue. After them,
we briefly address special issues on the wireless case. This chapter will be concluded
with a short overview of the book.

1.2 Signal Sampling

An NCS is a digital control system and a continuous-time signal is usually sampled
at a certain time instant, and then the sampled measurement is utilized for controller
design. In the traditional digital control system, the sampling period is time-invariant.
However, in NCSs, the sampled measurement may not be transmitted immediately
since the sampled data has to wait in a queue, and it has been shown that the time-
varying sampling period can achieve a better performance than the time-invariant
one. Some representative modeling and analysis methods for NCSs with sampled-
data are discussed as follows.

Hybrid discrete/continuous approach: This approach is based on the represen-
tation of system in the form of a hybrid discrete/continuous model or more precisely,
the impulsive system, and the solution was first obtained in terms of differential
Riccati equations with jumps [6] and [7]. The hybrid system approach has been
recently applied to robust H∞ filtering with sampled-data [8]. Sampling interval-
independent LMI conditions have been derived, which were quite restrictive since
the information of sampling period was not utilized in filter design. Recently, the
impulsive system modeling of sampled-data system was also used in [9], which
introduced a new Lyapunov function with discontinuities at the impulse time. To
illustrate the main results in [9], we consider the following LTI system:

ẋ(t) = Ax(t) + Bu(t), (1.1)
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where x and u are the state and the input of plant, respectively. Denote the sampling
time instant by tk , and let ε ≤ tk − tk−1 ≤ τMATI, where ε and τMATI are some positive
scalars. Then, using a linear state feedback controller u(t) = Kx(tk) and defining a
new state ξ(t) = [

xT (t) zT (t)
]T
, where z(t) = x(tk). The dynamics of system (1.1)

can be written as

ξ̇(t) = Fξ(t), t �= tk,

ξ(tk) =
[
x(t−k )

x(t−k )

]
, t = tk,

(1.2)

where F =
[
A Bu

0 0

]
and Bu = BK . Equation (1.2) means that x and z evolve accord-

ing to the first equation of (1.2) between tk and tk+1, while, at tk , the value of x before
and after tk remains unchanged but the value of z is updated by x(t−k ). The stability
condition of system (1.2) was guaranteed if there exist symmetric positive definite
matrices P,R,X1 and a slack matrix N such that the following inequalities

M1 + τMATIM2 < 0, (1.3)
[
M1 τMATIN
∗ −τMATIR

]
< 0, (1.4)

hold, where

M1 =
[
P
0

] [
A Bu

] +
[
AT

BT
u

] [
P 0

] −
[

I
−I

]
X1

[
I −I

]

−N
[
I −I

] −
[

I
−I

]
NT + τMATIF̄TRF̄,

M2 =
[

I
−I

]
X1F̄ + F̄XT

1

[
I −I

]
, F̄ = [

A Bu
]
.

The above stability statement can be proved by using the Lyapunov functional
approach, and the following candidate Lyapunov function was constructed:

V = xTPx + ξT
(∫ 0

−ρ (s + τMATI) (F exp(Fs))T R̃F exp(Fs)ds
)

ξ

+ (τMATI − ρ) (x − z)TX1 (x − z)
(1.5)

where R̃ =
[
R 0
0 0

]
and ρ = t − tk .

The improved impulsive system approach for NCSs with time-varying sampling
period has recently been proposed in [10], where an NCS was viewed as a inter-
connected hybrid system composed of an impulsive subsystem and an input delay
subsystem. A new type of time-varying discontinuous Lyapunov-Krasovskii func-
tional was introduced to analyze the input-to-state stability (ISS) property of NCSs.
More recently, the stability of impulsive systems was studied from the hybrid system
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point of view in [11] and [12], and the convex conditions for robust stability analy-
sis and stabilization of linear aperiodic impulsive and sampled-data systems under
dwell-time constraints have been presented.

Input delay systemapproach:Modeling of continuous-time systemswith digital
control in the form of continuous-time systems with delayed control input was intro-
duced byMikheev et al. [13] andAstromet al. [14], and further developed byFridman
et al. [15]. In this approach, the closed-loop system became an infinite-dimensional
Delay Differential Equation (DDE) and the stability condition was obtained by using
Razumikin or Lyapunov-Krasovskii approach. The control law was represented as
the delayed control:

u(t) = ud(t) = ud(t − (t − tk)) = ud(t − τ (t)), tk ≤ t < tk + 1, (1.6)

where τ (t) = t − tk . Then, the sampled data control system was transformed to a
time-delay system, where the time-varying delay τ (t) = t − tk is piecewise linear
with derivative 1 for t = tk . For the LTI system (1.1), the closed-loop system can be
written as

ẋ(t) = Ax(t) + Bud(t − τ (t)). (1.7)

The recent advances on the time-delay system can be applied for the sampled data
system, e.g., the free weighting matrix approach [16] and [17], Jensen’s Inequality
approach [18] and [19],Wringter Inequality approach [20] and [21] and time-varying
Lyapunov functional approach [22]. The input delay system approach has also be
applied to the synchronization of complex networks, see [23, 24].

Robust control approach: When a time-varying sampling period is applied in
control systems, the discrete-time counterpart would become a time-varying system.
For a given continuous time system:

ẋ(t) = Ax(t) + Bu(t), (1.8)

and the control input is

u(t) = Kx(tk),∀t ∈ [tk, tk + 1). (1.9)

The discrete-time system under sampling period Tk = tk+1 − tk becomes

x(tk+1) = G(Tk)x(tk), (1.10)

where G(Tk) = exp(ATk) + ∫ Tk
0 exp(Ar)BdrK . It is well known that the sufficient

condition for the asymptotic stability of system (1.10) is to find a matrix P = PT > 0
such thatGT (T)PG(T) < 0 for all Tk . For a fixed sampling period T , it is easy to find
a solution of this inequality, but for any time-varying Tk with Tmin ≤ T ≤ Tmax, it is
however not easy to find the solution since infinity number of LMIs are involved. To
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conquer this problem, Suh [25] partitioned the G(k) into G(T_nom)+ΔQ(T_nom),
and T_nom is a constant to be chosen. By doing so, G(T_nom) becomes a con-
stant matrix and the termΔQ(T_nom) caused by the sampling interval variation was
treated as an norm bounded uncertainty, which was handled by using the robust con-
trol technique. More specifically, they partitionedG(T) asG(Tnom) + Δ(τ )Q(Tnom),
where Δ(τ ) = ∫ τ

0 exp(Ar)dr. They first show that there exists an upper bound for
Δ(τ ) such that ‖Δ(τ )‖2 ≤ β. This bound can be obtained by solving the minimiza-
tion problem:

β̄ = min
Tmin≤T≤Tmax

max {β(Tmin − T),β(Tmax − T)} . (1.11)

Moreover, let Tnom be the sampling period corresponding to which β reaches its
minimum, then β̄ = β(Tnom). Based on this treatment, the closed-loop system is
stable provided that there exist a symmetric positive definite matrix P and a scalar
ε > 0 such that the following inequality holds:

⎡

⎢⎢
⎣

−P ∗ ∗
G(Tnom)P −P + εI ∗

[
A B

]
F(Tnom)

[
I
K

]
P 0 − ε

β̄2 I

⎤

⎥⎥
⎦ < 0 (1.12)

where F(Tnom) = exp

([
A B
0 0

]
Tnom

)
.

To reduce the conservatism in the above condition, Suh [25] partitioned the uncer-
tainty into N parts. But the main limitation is that the computation is high especially
when N is very large. Similar approaches have also been discussed in [26] and [27].
The research in this direction mainly focuses on how to estimate the uncertain term
to give a less conservative bound. To overcome the limitation in [25], Oishi et al.
[28] proposed three techniques, the delta-operator representation for stability analy-
sis, the parametric uncertainty rather than the matrix uncertainty for the effect of
aperiodic sampling, and an adaptive division introduced to reduce the computation.
Specifically, they have presented an LMI based sufficient condition for all possible
parameter values and they called it as a robust LMI. In Kao et al. [29], the stability of
LTI systems with aperiodic sampling devices was tackled from a pure discrete-time
point of view, and the system was modeled as the response of a nominal discrete-
time LTI system in feedback interconnection with a structured uncertainty. Stability
conditions were also derived. Further improvement can also be found in [30] and
[31].

Switched system approach: The switched linear system approach was also pro-
posed in [32] to study the sampled data control systems. To show how it works, we
consider a simple LTI system:

ẋ(t) = Acx(t) + Bcu(t). (1.13)
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It is assumed that the sampling period hk = tk+1 − tk only takes a finite number of
values. More specifically, let hk = nkT0, where nk ∈ {i1, · · · , iN }, i.e., 1 ≤ i1 < i2 <

· · · < iN , and T0 is termed as the basic sampling period. Then, hk takes N possible
values and hk ∈ {i1T0, i2T0, · · · , iNT0}. The discrete-time counterpart can now be
given by

x(tk + 1) = A(hk)x(tk) + B(hk)u(tk), (1.14)

where

A(hk) = eAchk = eAcnkT0 = (
eAcT0

)nk = Ank
0 ,

B(hk) = ∫ nkT0
0 eAcrdrBc =

(
nk−1∑

i=0

∫ (i+1)T0
iT0

eAcrdr

)
Bc =

nk−1∑

i=0
Ai
0B0,

with

A0 = eAcT0 , B0 =
∫ T0

0
eAcrdrBc.

One can see that A(hk) and B(hk) are explicitly dependent on nk , which is vary-
ing over different sampling intervals. Thus, the above discrete-time system (1.14) is
essentially a switched linear system with finite subsystems. Based on this switched
system model, the average dwell time approach from the switched system theory
was applied for the stability analysis and controller design, see [32].

In the view of the stochastic evolution of different sampling periods, the
Markovian system theory can also be applied to study the stochastic sampling prob-
lem. The modeling method is similar to the above switched system approach, but the
only difference is that the transition of different subsystems follows the Markovian
process. More specifically, Ling et al. [33] considered the distributedH∞ filtering for
NCSs with stochastic sampling, and the sampling period jumps was assumed to be
a Markovian process. Then, the well-known Markovian system theory was applied
for the stability analysis of the filtering error system. Further developments can be
found in [34]. In these results, they are assumed that the transition probabilities are
exactly known. However in some scenarios this information may not be available
[35]. Therefore, the uncertain sampling problem deserves further investigation.

1.3 Signal Quantization

Signal quantization is a common phenomenon in NCSs. The research on control with
quantized feedback is not a new topic and can be traced back to 1956 [36], in which
the effect of quantization in a sampled data system was studied. In [37], Delchamps
showed that if a linear system is open-loop unstable, there exists a minimum rate for
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the coding of the feedback information to achieve stabilization. Since then, various
methods have been proposed to study the quantized feedback control problem. The
utilization of quantizer will result in two phenomena, i.e., saturation and performance
deterioration around the original point, which may destabilize the system. Research
on quantized feedback can be categorized, depending on whether the quantizer is
static or dynamic. The logarithmic quantizer is a kind of static quantizer and the
uniform quantizer is basically a dynamical one.

Logarithmic quantization: This quantizer Q(•) is usually symmetric and time-
invariant, i.e., Q(v) = −Q(−v). The set of quantization levels is described as

U = {±κi,κi = ρiκ0, i = 0,±1,±2, ...
}

∪ {±κ0} ∪ {0} , 0 < ρ < 1,κ0 > 0.
(1.15)

The quantized output Q(•) is given by:

Q(v) =
⎧
⎨

⎩

κi, if 1
1+δ

κi < v < 1
1−δ

κi, v > 0,
0, if v = 0,
−Q(−v), if v < 0,

(1.16)

where δ = 1−ρ
1+ρ

< 1, with the quantization density 0 < ρ < 1. The illustration of
logarithmic quantization is depicted in Fig. 1.3.

Elia et al. [38] considered quadratic stabilization problemof a discrete-time single-
input single-output (SISO) linear time-invariant systems and it is shown that a log-
arithmic quantize can achieve the quadratic stabilization. Following this work, Fu
and Xie [39] proposed a sector bound approach to quantized feedback control, and

κ

( )κ =

( )κ δ= + κ =

( )δ= −

ρδ
ρ

−=
+

κ

Fig. 1.3 Logarithmic quantizer
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presented some interesting results for multiple-input multiple-output (MIMO) linear
discrete-time systems. For a given discrete-time LTI system

x(k + 1) = Ax(k) + Bu(k), (1.17)

with the quantized state feedback controller u(k) = KQ(x(k)), we can define the
quantization error

e(k) = x(k) − Q(x(k)) = (I + Δ(k))x(k), (1.18)

where ‖Δ‖ < δI . The closed-loop system now becomes

x(k + 1) = (A + BK(I + Δ(k))x(k). (1.19)

The robust control approach can then be applied to study the stability and stabiliza-
tion of closed-loop system since it is essentially an LTI system with norm-bounded
uncertainty. Recently, a suboptimal approach for the optimization of the number of
quantization levels was proposed in [40] and the design of a corresponding quantized
dynamic output feedback controller was also given. The sector bound approach is
effective to handle the quantization problem, which enables us to incorporate other
network-induced phenomena into the quantized control systems, e.g., the packet
dropouts [41, 42], and the communication delay [43, 44].

Uniform quantization: Brokett et al. [45] proposed the uniform quantizers with
an arbitrarily shaped quantitative area. Based on these quantizers, the “zooming”
theory was used for linear and nonlinear systems, and the sufficient condition for the
asymptotical stability was given. The uniform quantizers with an arbitrarily shaped
quantitative area have the following properties:

{
if ‖x‖2 ≤ Mμ, then ‖Q(x) − x‖2 ≤ Δμ,

if ‖x‖2 > Mμ, then ‖Q(x)‖2 > Mμ − Δμ,
(1.20)

where M is the saturation value and Δ is the sensitivity. The first property gives
the upper bound of the quantization error when the quantized measurement is not
saturated. The second one provides the approach to test whether the quantized mea-
surement is saturated. The illustration of uniform quantization is depicted in Fig. 1.4.

The stabilization problem was discussed recently in [46] for discrete-time lin-
ear systems with multidimensional state and one-dimensional input using quan-
tized feedbacks with a memory structure. They have shown that in order to obtain a
control strategy which yields arbitrarily small values of T/ lnC, LN/ lnC should
be big enough, where C is the contraction rate, T is the time to shrink the state of
the plant from a starting set to a target set, L is the number of the controller states,
and N is the number of the possible values that the output map of the controller
can take at each time. Recently, Liberzon et al. [47] considered the input-to-state
stabilization of linear systems with quantized state measurements. They developed a
control methodology that counteracts an unknown disturbance by switching between
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Fig. 1.4 Uniform quantizer

the so-called “zooming out” and “zooming in”, that is, when the initial state to be
quantized is saturated, the “zooming out” stage is adopted to increase the sensitivity
Δ until the state gets unsaturated, while in the “zooming in” stage, the sensitivity Δ

is reduced to push the state to zero. If the initial state to be quantized is unsaturated,
the “zooming out” stage can be omitted and the “zoom-in” stage is implemented
directly.

The “zooming out” and “zooming in” strategy has been widely used in the NCS
with quantizedmeasurement. For example, theH∞ control forNCSwith communica-
tion delay and state quantization has been studied in [48] and a unified modeling was
proposed to capture the delay and quantization. More specifically, they transformed
an NCS to a LTI system with input delay, which is the approach we have discussed
before. On the other hand, the output feedback control of NCSs with communication
delay and quantization has been studied in [49].

1.4 Communication Delay

In this section, we will focus on the transmission delay problem as other delays, e.g.,
the computation delay can be reduced by using some high performance hardware.
In a traditional control system, sensor, controller and actuator usually work based
on a fixed sampling period. But in NCSs, the above nodes can work in an event-
based mode, i.e., they can work once they have received data. It should be noted that
different work modes may lead to different models, and thus different analysis and
synthesis results would be obtained.

The communication delay can be constant or time-varying. The constant delay
occurs in NCSs when we use a buffer in the controller side and the controller reads
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the data periodically. The main limitation of such a treatment leads to much design
conservatism as we have introduced man-made delay though the packet has already
arrived but it can also be used at some fixed time instant. In other word, the delay
may have been enlarged for controller design. The analysis of NCSs with constant
delay has been discussed in Zhang et al. [50], in which the stability region was
obtained for a given constant delay. On the other hand, the controller and actuator
are usually event-driven in the NCSs, which may lead to the time-varying delay
in NCSs. Different modeling results may be obtained when different delay cases
are considered, i.e., shorter or larger than one sampling period and deterministic or
stochastic. Hence, analysis and synthesis of NCSs with time-varying delay becomes
a very active research area, and many interesting approaches are proposed.

Input delay system approach: The main idea is to transform the communication
delay into the input delay and then the recent results on the delay system approaches
are applied for the stability analysis, filter and controller designs. More specifically,
Yue et al. [51] considered the following system:

{
ẋ(t) = [A + ΔA(t)]x(t) + [B + ΔB(t)]u(t) + Bww(t),
z(t) = Cx(t) + Du(t).

(1.21)

When the state information is transmitted via a communication channel, which is
subject to communication delay, system (1.21) becomes

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = [A + ΔA(t)]x(t) + [B + ΔB(t)]u(t) + Bww(t),
z(t) = Cx(t) + Du(t),
u(t) = Kx(ikh),
t ∈ [ikh + τk, ik+1h + τk+1),

(1.22)

where τk is the time delay at the k-th sampling time instant, and h is the sam-
pling period. Then let ikh = t − (t − ikh), and define τ (t) = t − ikh, (1.22) can be
re-written as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = [A + ΔA(t)]x(t) + [B + ΔB(t)]u(t) + Bww(t),
z(t) = Cx(t) + Du(t),
u(t) = Kx(t − τ (t)),
t ∈ [ikh + τk, ik+1h + τk+1).

(1.23)

Then, the H∞ stabilization conditions have been presented by using the time-delay
system approach. Recently, Lam et al. [52] proposed a new NCS model, which
has two additive delays. The intention of Lam et al. was to expose a new delay
model and to give a preliminary result on its stability analysis. It is worth pointing
out that the above stability conditions have left much room for improvement. The
same problem was then considered in [53] and some less conservative stability and
H∞ controller design conditions have been obtained. More recently, Gao et. al also
proposed a modified model for the NCS with time-delay, in which the H∞ filtering
and output tracking problems were investigated, respectively, see [54] and [55].
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In Xiong et al. [56], the stabilization problem of NCSs was studied by using a logical
zero-order hold (ZOH), which was assumed to be both time-driven and event-driven,
and has the logical capability of comparing the time stamps of the arrived control
input packets and choosing the newest one to control the process. Based on the packet
time sequence analysis, the overall NCSwas then discretized as a linear discrete-time
system with input delay. Till now, there are still growing papers on the input delay
system approach, and the results are extended to other complex systems such as T-S
fuzzy system [57], Markovian systems [58] and singular systems [59].

Robust control approach: The sampled system is usually modeled as a discrete-
time system, and the network-induced delay is treated as a variation parameter of the
system. Here, we discuss the scenario where the time-varying delay is smaller than
one sampling period. Specifically, for an LTI system

ẋ(t) = Ax(t) + Bu(t), (1.24)

assuming that 0 ≤ τm ≤ τ (k) ≤ τM ≤ h, the discrete-time system is obtained as

x(k + 1) = (Ad + Bd0(τ (k))K)x(k) + Bd0(τ (k))Kx(k − 1), (1.25)

where

Ad = eAh,Bd0(τ (k)) =
(∫ h−τ (k)

0
eAsds

)
B,Bd1(τ (k)) =

(∫ h

h−τ (k)
eAsds

)
B.

This system can be transformed into

x(k + 1) = G(τ (k))

[
x(k)

x(k − 1)

]
, (1.26)

where G(τ (k)) = [
Ad + Bd0(τ (k))K Bd1(τ (k))K

]
.

Now by partitioning G(τ (k)) as a constant term and an uncertain term, the robust
control approach can be applied to estimate the bound of the latter uncertain term,
see [60, 61] for the different bounding techniques.

Switched system approach: Although the uncertain system approach is effec-
tive, complicated numerical algorithms or parameters tuning are usually required to
guarantee that the uncertain matrix is unit norm-bounded. Unlike the above robust
control approach, Zhang et al. [62] proposed a new modeling method, where the
actuator is assumed to be time-driven, and it reads the buffer periodically at a higher
frequency than the sampling frequency, i.e., T0 = T

/
N , where T is the sampling

period, and N ≥ 2 is a large integer. Denote the time-varying delay τk , which was
assumed to be τk < T . Then, at most two control signals can be involved in the con-
trol task during one sampling period, i.e., u(k) and u(k − 1). Let the activation time
of u(k) and u(k − 1) during one sampling period be n0(k)T0 and n1(k)T0, it is easy
to see that n0(k) + n1(k) = N . Then for a simple LTI system:

ẋ(t) = Apx(t) + Bpu(t), (1.27)
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we can define A = eApT , A0 = eApT0 , and B0 = ∫ T0
0 eAprBpdr. Then the closed-loop

system is written as

x(k + 1)
= Ax(k) + ∫T

n0(k)T0 e
AprBpdr × u(k − 1)

+ ∫ n0(k)T0
0 eAprBpdr×u(k)

= Ax(k) + ∫(n0(k)+n1(k))T0
n0(k)T0

eAprBpdr × u(k − 1)

+ ∫ n0(k)T0
0 eAprBpdr×u(k)

= Ax(k) + (
eApT0

)n0(k) ∫ n1(k)T0
0 eAprBpdr×u(k − 1)

+ ∫ n0(k)T0
0 eAprBpdr×u(k)

...

= Ax(k) +
n1(k)−1∑

i=0
Ai+n0(k)
0 B0u(k − 1) +

n0(k)−1∑

i=0
Ai
0B0u(k).

(1.28)

The above system becomes a switched system as it depends on the values of n0(k) and
n1(k). Then the average dwell time switching schemewas applied for the exponential
stability of the closed-loop system. The above modeling idea can be tracked back to
[63], where the same working mode was firstly introduced for the NCS with time-
varying delay and packet dropout. A switched system modeling was also obtained
in [64] and the NCS is presented as a discrete-time switched system with arbitrary
switching. More related results on this approach are can found in [65, 66].

Stochastic system approach: When the statistical information of delay is avail-
able for system design, the stochastic system approach can be applied. To model
the random delay, the independent identically distributed case (i.i.d) and Markov-
ian system approach have been widely used. For the i.i.d case, a delay distribution
based stability analysis and synthesis approach for NCSs with non-uniform distribu-
tion characteristics of network communication delays was firstly considered in [67],
where the delay was partitioned into multiple different time-varying delays and each
delay has a certain bound. More specifically,

u(t) = α(t)Kx(t − τ1(t)) + (1 − α(t))Kx(t − τ2(t)), (1.29)

where τ1(t) = δ(t)τ (t), τ2(t) = (1 − δ(t))τ (t), 0 < τ1(t) ≤ τ1, 0 < τ2(t) ≤ τ2, and
δ(t) = 0 or 1. They showed that a less conservative stability condition can be obtained
when the distribution information of time delay is used. The same delay distribution
based analysis method has been extended to fuzzy systems [68] and [69]. To reduce
the conservative of the results in [67], an improved Lyapunov-Krasovskii method
was proposed in [70] and a new bounding technique is introduced to estimate the
cross-product integral terms of the Lyapunov functional.

Recently, the Markovian system approach was proposed under the assumption
that the delay is correlated and the transition of different delays obey the Markovian
process. In [71] and [72], the network-induced random delays were modeled as
Markov chains such that the closed-loop system is a jump linear system with one
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mode. More specifically, let the delay rs(k) satisfy 0 ≤ rs(k) ≤ ds < ∞. Then, the
controller becomes

u(k) = Krs(k)x(k − rs(k)). (1.30)

By the lifting technique, we obtain the closed-loop system:

x̄(k + 1) = (Ā + B̄Krs(k)C̄rs(k))x̄(k), (1.31)

where

Ā =

⎡

⎢⎢⎢
⎢⎢
⎣

A 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤

⎥⎥⎥
⎥⎥
⎦

, B̄ =

⎡

⎢⎢⎢
⎢⎢
⎣

B
0
0
...

0

⎤

⎥⎥⎥
⎥⎥
⎦

,

Crs(k) = [
0 · · · 0 I 0 · · · 0 ]

.

The above augmented system is a Markovian jump system and rs(k) is a Markov-
ian chain. It should be noted that the state-feedback gain was mode-independent
in [71] and [72], the state-feedback gain only depends on the delay from sensor to
controller. Later in [73], the two random delays (sensor-to-controller and controller-
to-sensor) were modeled as two different Markov chains, and the closed-loop system
was described as a Markovian jump linear system with two modes characterized by
two Markov chains. There are also some newly reported results on the NCSs with
two random delays based on the Markovian system approach and the main con-
cerns are the design of a new mode-dependent controller with more information, see
[74, 75].

1.5 Packet Dropouts

In NCSs, the packet dropout is also inevitable, especially in a wireless networked
system. In NCSs, different transmission protocols are used, i.e., user datagram pro-
tocol (UDP) and transmission control protocol (TCP). Most results on the packet
dropouts are implicitly based on the UDP, while transmission delay may occur when
the TCP protocol is applied. The research of this area is fruitful, and the main focus
is how to model the packet dropout phenomenon and then carry out the stability
and stabilization studies based on these models. In NCSs when the packet dropout
occurs, the controller can either use the zero signal or the newest signal available in
the buffer to update the control signal, which are usually called as the zero-input and
hold-input schemes. Schenato et al. [76] discussed these schemes over a lossy link.
The expressions for computing the optimal static gain for both strategies have been
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derived and they compared their LQG performance on some numerical examples. It
is interesting to see that none of the two schemes is superior to the other. Later in
[77], a simple compensation scheme has been proposed such that the filter used the
newest signal to update the state, and the determination of optimal weighting factor
was also given. Other efforts are also devoted on how to compensate for the effect
induced by the packet dropouts, see [78, 79] and the reference therein.

We now discuss how to model and analyze the NCSs when a packet dropout
occurs.

Switched system approach: A typical work was studied by Zhang et al. [80],
where the plant was described by the following discrete-time LTI model:

{
x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k).

(1.32)

Their purpose was to design the following controller:

Observer :
{
x̂(k + 1) = Ax̂(k) + Bu(k) + L[w(k) − ŷ(k)],
ŷ(k) = Cx̂(k),

Controller : v(k) = Kx̂(k).
(1.33)

Zhang et al. [80] used two switches T1 and T2 to describe the states of the forward
channel and the backward channel, e.g., when T1 is closed, then the packet trans-
mission from the controller to actuator is successful and u(k) = v(k), otherwise,
the hold-input compensation scheme is used when the packet dropout occurs in this
channel and u(k) = u(k − 1), see Fig. 1.5. Define the estimation error by

e(k) = x(k) − x̂(k), (1.34)

Fig. 1.5 NCS with packet dropouts
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and let

z(k) = [xT (k) eT (k) uT (k − 1) wT (k − 1)]T , (1.35)

we have the following four cases:

(1) There is no packet dropout in either the backward channel or the forward channel;

(2) Packet dropout only occurs in the backward channel;

(3) Packet dropout only occurs in the forward channel;

(4) There are packet dropouts in both the backward channel and the forward channel.

For the above four different cases, the following closed-loop systems are obtained,
respectively,:

S1: z(k + 1) = A1z(k), A1 =

⎡

⎢
⎢
⎣

A + BK −BK 0 0
0 A − LC 0 0
K −K 0 0
C 0 0 0

⎤

⎥
⎥
⎦.

S2: z(k + 1) = A2z(k), A2 =

⎡

⎢⎢
⎣

A + BK −BK 0 0
LC A − LC 0 −L
K −K 0 0
0 0 0 I

⎤

⎥⎥
⎦.

S3: z(k + 1) = A3z(k), A3 =

⎡

⎢⎢
⎣

A 0 B 0
0 A − LC 0 0
0 0 I 0
C 0 0 0

⎤

⎥⎥
⎦.

S4: z(k + 1) = A4z(k), A4 =

⎡

⎢⎢
⎣

A 0 B 0
LC A − LC 0 −L
0 0 I 0
0 0 0 I

⎤

⎥⎥
⎦.

It can be seen from the above analysis that the closed-loop system is essen-
tially a switched system with four subsystems, i.e., z(k + 1) = Aσ(k)z(k), where
σ(k) = 1, 2, 3, 4. Based on this modeling, the switched linear system theory can
be applied for the stability and controller design. The extension to the filter design
has recently been reported in [81]. For the switched system approach, the packet
dropout phenomenon is usually modeled as a switch, and then different scenarios
are considered under different switch status. More recent works can also be found in
[82, 83]. The main merit is that one can find some explicit conditions on the packet
dropout boundwhich guarantees the stability of closed-loop system. For example, the
NCS with sampled-data and packet dropouts was modeled as a switched time-delay
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system in [84], and several quantitative relations among some system parameters
were obtained, such as the sampling period and the exponential decay rate, the actual
data dropout rate, and the admissible data dropout rate bound.

Stochastic system approach: If the packet dropout phenomenon occurs ran-
domly, a stochastic binary variable taking values in {0, 1} is used to model the trans-
mission process, where “1” for successful transmission and “0” for packet dropout.
The main results can be divided into two scenarios depending on whether the packet
dropout process is correlated or not. Then we will have the i.i.d. packet dropout and
Markovian packet dropout, respectively.

Consider the following discrete-time LTI system:

x(k + 1) = Ax(k) + Bu(k). (1.36)

When the zero-input compensation scheme is applied, the inputs of controller and
actuator become

uc(k) = α(k)x(k), u(k) = β(k)uc(k), (1.37)

where α(k) and β(k) are independent Bernoulli processes, and α(k), β(k) = 1
means that the packet transmission is successfully, while α(k), β(k) = 0 indicates
that the packet is lost. Usually, the probabilities of two stochastic variables are
required to be known for system analysis, i.e., Pr ob {α(k) = 1} = E {α(k)} = ᾱ,
and Pr ob {β(k) = 1} = E {β(k)} = β̄ are known. Then, the closed-loop system can
be written as

x(k + 1) = (A + α(k)β(k)BK)x(k). (1.38)

Let γ(k) = α(k)β(k), the closed-loop system becomes x(k + 1) = (A + γ(k)BK)

x(k), where Pr ob {γ(k) = 1} = E {γ(k)} = ᾱβ̄. The stability analysis and controller
design are then carried out by using some stochastic system analysis. This i.i.d
modeling is simple and it has been widely used in the analysis and synthesis of NCSs
with packet dropouts, see the control problem [85] and [86], the filtering problem [87]
and [88], and the fault detection problem [89]. More recently, the above modeling
method has been extended to study the fuzzy-model-based nonlinear NCSs, see
[90, 91].

The above modeling only considers the scenario whether the packet is lost or
not, but the information on the number of successive packet dropouts has not been
discussed. The ignorance of this information may lead to some design conservatism.
Very recently, the optimal guaranteed cost stabilizing controller design problem for
a class of NCSs with random packet losses was considered in [92]. The number of
successive packet losses was assumed to be upper bounded, and the closed-loop NCS
was modeled as a discrete-time stochastic delay system with a time-varying input
delay and a stochastic parameter:

x(k + 1) = (A + (1 − α(k))BK)x(k) + α(k)BKx(k − d(k)), (1.39)
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where α(k) is a binary variable, taking the values in {0, 1}. d(k) is the number of
successive packet dropouts and it is bounded as 1 ≤ d(k) ≤ d. By this modeling, the
closed-loop system (1.39) is a stochastic time-delay systems. The theory of time-
delay system would be applied to analyze such a system.

When the packet dropout process is correlated, a Markov chain can be used to
model such a packet dropout process [93] and Poisson processes can be used to
model stochastic dropouts in continuous-time [94]. This is usually called as the
Gilbert-Elliott channel model. One can simply introduce two Markovian chains to
model the packet dropouts in the backward and forward channels, then the closed-
loop system is modeled as a Markovian jump linear system with two Markovian
chains, i.e.,

x(k + 1) = (A + α(k)β(k)BK)x(k), (1.40)

where α(k),β(k) ∈ {0, 1} are two Markovian chains with transition probabilities

Π1 =
[
1 − p1 p1
q1 1 − q1

]
, andΠ2 =

[
1 − p2 p2
q2 1 − q2

]
. Finally, theMarkovian system

approach is applied onto the analysis and synthesis of such NCSs.

1.6 Medium Access Constraint

Due to the limitations on data transmission, it is impossible for all sensors and
actuators to have access to the communication channel for all the time, leading to a
new problem,medium access constraint problem. Such a constraint has been handled
via the well-known time-multiplexing mechanism which has been implemented in a
variety of Fieldbus and CAN-based networks. In the time-multiplexing mechanism,
time on the shared medium is divided into many slots, and only some nodes are
allowed to access the network according to a specified media access control (MAC)
protocol. In the last decades, various MAC protocols have been proposed, which
may be random or deterministic [95]. Hence, the results on this area can also be
divided into the deterministic and stochastic ones. A typical NCS including multiple
sensor-controller and controller-actuator pairs can be found in Fig. 1.6.

In the analysis and synthesis of NCSs with medium access constraint, a so-called
“communication sequence” [96] is usually used. The earlier research in this area is
to find a stabilizing constant feedback controller when a periodical communication
sequence has been chosen [96]. But it has been shown that the determination on
whether there exists such a controller is an NP-hard problem [97]. Later the attention
has been paid on how to design the communication sequence if the controller is given
in advance.Various schedulingmethods have been proposed, see theLyapunov-based
theory [98] and rate monotonic scheduling theory [99]. Very recently, Zhang et al.
[100] discussed the communication and control co-design forNCSs,where the access
process to communication medium is governed by a pair of periodic communication
sequences. The zero-input compensation scheme is applied when the corresponding
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Fig. 1.6 NCS with shared a communication medium

sensors and actuators are not actively communicating. The communication sequence
is usually a diagonal matrix and each element is a binary-valued function.

Consider a discrete-time LTI system:

{
x (k + 1) = Ax (k) + Bu (k) ,

y (k) = Cx (k) ,
(1.41)

with p sensor nodes and m actuator nodes and suppose that at any one time,
only partial sensor and actuator nodes are allowed to access to communication
channels. The node accessing process can be modeled by introducing two diago-
nal matrices, i.e., M= diag{σ1(k), · · · ,σp(k)}, N= diag{ρ1(k), · · · , ρm(k)}, where
σi (k) = {0, 1} , ρi (k) = {0, 1} , i ∈ {1, 2, · · · , p} , j ∈ {1, 2, · · · ,m}. Zhang et al.
[100] showed that when A is invertible, and the pair (A,B) is reachable, the pair
(A,C) is observable, there do exist a periodic communication sequence pairs such
that the closed-loop system is l-step reachable and l-step observable. By resorting
to the linear time-varying (LTV) system theory [101], the observer-based output
feedback controller design algorithm has been given. Based on the periodical com-
munication sequence in [100], the problem of fault detectionwas addressed for NCSs
subject to both access constraints and random packet dropout in [102].

In NCSs, a specified media access control (MAC) protocol could be random, e.g.,
Carrier Sense Multiple Access (CSMA) is a probabilistic MAC protocol in which a
node verifies the absence of other traffic before transmitting on a shared transmission
medium [95].Hence,much effort has been devoted to theNCSswith stochasticMAC.
The results can also be divided into the i.i.d and the Markovian case.

The optimal linear estimation for networked systems with communication con-
straints was firstly discussed in [103], where one network node is allowed to gain
access to a shared communication channel, and channel accessing processes of those
network nodes are modeled by Bernoulli processes. The input signal to filter is
described as
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ye(k) =
(

m̄∑

i=0

σi(k)Πi

)

y(k) + R

(

I −
m̄∑

i=0

σi(k)Πi

)

ye(k − 1), (1.42)

where

σi(k) ∈ {0, 1},
⎧
⎨

⎩

Πi = diag{δ(i − 1), · · · δ(i − m)},
Π0 = 0,
R = diag{r, · · · , r}.

and δ ∈ {0, 1} is the Kronecker delta function, R is a slack matrix introduced to
compensate for the effect of the sensors that are not accessing to the network. The
optimal linear filters were then designed by using the orthogonal projection principle.
The similar modeling was later extended to T-S fuzzy-model-based stabilization
of nonlinear NCSs with medium access constraint [104]. In [105], the stochastic
observability of discrete-time linear stochastic systems with stochastic accessing
constraint was investigated. The observability condition for both time-varying and
time-invariant systems were presented.

TheNCSswithmediumaccess constraint is also studied from theMarkovian jump
system point of view. The H∞ filtering for NCS with stochastic protocol was firstly
considered in [106], where the accessing process of multiple sensors is governed
by a Markovian chain. In their work, the filter input signal is ȳ(k) = Πρ(k)y(k), and
for each ρ(k) = i, Πρ(k) = diag{δ(i − 1), · · · δ(i − m)}. The variation of the time-
varying signal ρ(k) is assumed to obey the Markovian process. Guo et al. [107]
considered the stability analysis and controller design for linear systems, where the
sensors and actuators are triggered in groups by two independent Markovian chains.
In their work, the time-varying communication delay is also incorporated into the
closed-loop system. Very recently, theH∞ control problem for a class of linear time-
varying NCSs with stochastic communication protocol was investigated in [108],
where theMarkovian jump system approachwas used tomodel the accessing process
of sensors and actuators. The controller parameters can be determined by solving
two coupled backward recursive Riccati difference equations. By using the similar
modeling, theH∞ filtering for nonlinear networked systems with various networked-
induced stochastic uncertainties has been investigated in [109], where the accessing
process was also modeled by a Markovian chain.

1.7 Wireless Communication

In the preceding sections, we have discussed network-induced issues such as sig-
nal sampling, quantization, communication delay, packet dropouts and medium
access constraint. They are common for both wired and wireless network ones. This
section attempts to discuss some special issues in wireless network control systems
(WNCSs).



1.7 Wireless Communication 21

Fig. 1.7 Distributed control systems

Fig. 1.8 Distributed estimation/filtering systems

Compared with the wired networks, the wireless communication and networks
have gained rapid development and adaptation over recent years due to its more
mobility and flexibility compared with wired one. One popular example is the wire-
less sensor networks (WSNs). The applications ofWNCSs can be also found in target
tracking, condition monitoring, smart factory and so on. Various system structures
have been studied in this area, see, e.g., Figs. 1.7 and 1.8. InWNCSs, a sensor usually
has a limited power from the battery, and replacing the battery during the operation
of system is very difficult. Furthermore, sensor nodes are usually deployed in a wild
region and are thus much easier to be affected by the disturbance from environment,
causing malfunction of the sensor nodes, e.g., the possible gain variations. Natu-
rally, the networked systems should be robust or non-fragile to these disturbances.
Compared with the NCSs with wired communication, the analysis and synthesis
of NCSs with wireless communication are more difficult because one needs to
simultaneously consider the common imperfections encountered in wired networked
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systems together with the other two new issues, i.e., the energy constraint and system
gain variations. Substantial publications can be found in the literature but they scatter
over diverse journals and conferences with different approaches, see e.g., references
[110] and [111]. This book attempts to unify their major contributions in a single
volume for easy access for the researchers.

1.8 Oview of the Book

The rest of this book is organized as follows.
Chapter 2 presents some fundamental knowledge on the system stability, filtering

and control in framework of the Lyapunov stability theory. It also gives some useful
lemmas on matrix inequalities.

Chapter 3 studies the filtering of wireless networked systems with scheduled
transmission and random packet dropouts. First, a new time-varying transmission
protocol is introduced to reduce the communication rates of the network, which may
be helpful on reducing the communication load. Then, a set of stochastic variables
are used to model the random packet dropout phenomenon. Based on the switched
system theory and the stochastic system approach, a sufficient condition is presented
in terms of linear matrix inequality, which guarantees the mean-square exponential
stability and H∞ performance of the estimation error system. The determination of
the filter gains is also given.

Chapter 4 studies the filtering of wireless networked systems with energy con-
straint, where a nonuniform sampling is firstly used to reduce the communication
rate and then a measurement size reduction is introduced to reduce the packet size.
Both techniques are helpful to reduce the communication load. By some simple
modeling and manipulation, we show that the filtering error system can be modeled
as a switched system. The stability condition and the determination of filter gain
parameters are proposed from the switched system approach. The effectiveness of
the proposed filter design is illustrated by a simulation study.

Chapter 5 deals with the filtering of networked systems with energy constraints,
where a stochastic transmission protocol is proposed. More specifically, a set of
stochastic variables are introduced to set the transmission rate at the sensor side.
Then, a new sufficient condition is obtained such that the filtering error system is
mean-square stable and the optimal filter gain parameters are determined by solving
an optimization problem subject to some LMI constraints. The determination of the
transmission rate and the filter gain parameters are finally illustrated by a simulation
study on the CSTR system.

Chapter 6 discusses the filtering of wireless networked system with energy con-
straint and a stochastic sampling and transmission scheme is presented to achieve
this goal. First, a Markovian chain is introduced to model the stochastic sampling
and then the sampled measurements are selected such that only a finite element is
transmitted. A useful measurement size reduction scheme is proposed and different
selection schemes are assumed to follow the Markovian process. Under our design,

http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_3
http://dx.doi.org/10.1007/978-3-319-53123-6_4
http://dx.doi.org/10.1007/978-3-319-53123-6_5
http://dx.doi.org/10.1007/978-3-319-53123-6_6
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the transmission rate and the packet size are both reduced, which can save a cer-
tain amount of transmission power. Then, based on the Markovian system approach
and the Lyapunov stability theory, a sufficient condition is obtained for the stability
analysis and the filter gain parameter design procedure is also presented.

Chapter 7 deals with the distributed filtering of wireless networked systems with
energy constraint, and a unified switched system approach is proposed. Firstly, the
wireless sensor collects the measurement by a nonuniform sampling rate and then
only one element of each measurement is selected for transmission. To reduce the
communication rate, each sensor is regulated for transmission at each time instant,
leading to the topology switching phenomenon. Based on the switched system
approach, the filtering error system is exponentially stable provided that the above
scheduling is not so frequently. A simulation study is given to demonstrate the energy
efficiency of the proposed schemes.

Chapter 8 considers the distributed filtering of wireless networked systems with
energy constraint, and a stochasticMarkovian-based approach is proposed to achieve
this goal. In this chapter, the sensor collects the measurement under a nonuniform
sampling framework, and the sampling process is assumed to follow the Markov-
ian variation. A sufficient condition is obtained such that the filtering error system
is stochastic stable with a desired H∞ performance level. The filter gains can be
determined by solving a set of LMIs.

Chapter 9 investigates the distributed filtering for a class of wireless networked
systems with filter gain variations. A set of stochastic variables are introduced to
model the random filter gain variation phenomenon. The filtering error system is
shown to be asymptotically stable in the mean-square sense with a desired H∞
disturbance attenuation level. The relations on the gain variation bounds and the
filtering performance are also obtained.

Chapter 10 discusses how to design the distributed filters for the wireless net-
worked systems with gain variations and energy constraint. The measurement size
reduction technique and the stochastic signal transmission technique are both used
to save the transmission power. Meanwhile, the exponential stability condition is
obtained based on the switched system approach and the Lyapunov stability the-
ory. The optimal filter gain parameters are determined by solving an optimization
problem. The advantages and effectiveness of the proposed filter design algorithm is
verified by a simulation study.

Chapter 11 studies the distributed stabilization of large-scale networked system
with controller gain variations and controller failure. The so-called distributed non-
fragile control problem is firstly studied and a set of random variables are introduced
to model the controller failure phenomenon. Based on the Lyapunov stability the-
ory and some stochastic system analysis method, a sufficient condition is obtained
such that the closed-loop system is asymptotically stable in the mean-square sense
with a prescribed H∞ performance level. A simulation study on the interconnected
inverted pendulums is given to show the effectiveness of the proposed controller
design method.

Chapter 12 is concerned with distributed stabilization of nonlinear large-scale
systems with energy constraints and random sensor faults. Due to the limited power

http://dx.doi.org/10.1007/978-3-319-53123-6_7
http://dx.doi.org/10.1007/978-3-319-53123-6_8
http://dx.doi.org/10.1007/978-3-319-53123-6_9
http://dx.doi.org/10.1007/978-3-319-53123-6_10
http://dx.doi.org/10.1007/978-3-319-53123-6_11
http://dx.doi.org/10.1007/978-3-319-53123-6_12


24 1 Introduction

in sensors, techniques such as reduction of times and size of the transmission packet
are utilized to save the energy. While a set of binary variables is introduced to model
the sensor failure phenomenon. Based on the switched system theory, the Lyapunov
stability technique and some stochastic system analysis, a sufficient condition is
established under which the closed-loop system is exponentially stable in the mean-
square sense with a prescribedH∞ disturbance attenuation level. The controller gain
design algorithm is presented with help of the cone complementarity linearization
(CCL) method.

Chapter 13 investigates the distributed control of large-scale networked systems
with energy constraints, and a unified switched system approach is utilized to achieve
this goal. The techniques proposed in the above, i.e., nonuniform sampling, measure-
ment size reduction and communication rate scheduling are all used such that the
communication load has been reduced effectively. A sufficient condition is obtained
which can guarantee the exponential stability of the closed-loop system and the con-
troller gain parameters are determined by using the CCL method. The effectiveness
of the proposed controller design algorithm is demonstrated by a case study on the
CSTR system.

Chapter 14 is concerned with the distributed control for a class of large-scale
networked control systems with energy constraints and topology switching. The
event-based communication protocol is first employed to reduce the unnecessary
communications between the plant network and controller network. Then, the
selected measurement signal is quantized by a logarithmic quantizer for transmis-
sion. A group of asynchronous controllers are designed to tackle the problem when
the real time information about the topology is not available in such a networked
environment. A stochastic switched system model with sector bound uncertainties
is proposed to capture the communication constraints and topology switching phe-
nomena. A sufficient condition is developed that guarantees the globally exponential
stability of the overall system by using the Lyapunov direct method and the controller
gains are determined by using the CCL algorithm. Finally, a simulation study on the
CSTR systems is performed and the effectiveness of controller design algorithm is
verified.
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Chapter 2
Fundamentals

In analysis and synthesis of NCSs and WNCSs, various approaches have been
proposed, such as stochastic systems, Markovian jump systems, switched systems
and time-delay systems. To help readers understand the book well, some fundamen-
tals on stability analysis, controller and filter design are first presented for linear
time-invariant (LTI) systems, Markovian jump systems and switched systems. Sev-
eral lemmas are introduced, and some of them will be used in this chapter. The proof
of these lemmas can be found in the literature and thus are omitted in this book.

2.1 Mathematical Preliminaries

Some basic mathematical preliminaries relevant to this book are given in this section.

Lemma 2.1 ([1]) For a given matrix S =
[
S11 S12
∗ S22

]
, the following three statements

are equivalent:

(1) S < 0;
(2) S11 < 0, S22 − ST12S

−1
11 S12 < 0;

(3) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0.

Lemma 2.2 ([2]) For given matrices K1, K2 and K3 with appropriate dimensions,
and K1 satisfying K1 = KT

1 , then there holds

K1 + K2Δ(k)KT
3 + K3Δ

T (k)KT
2 < 0 (2.1)

for all ΔT (k)Δ(k) ≤ I if and only if there exists a scalar ε > 0 such that

K1 + εK2K
T
2 + ε−1K3K

T
3 < 0. (2.2)
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Lemma 2.3 ([3]) For matrices A, Q = QT and P > 0, the following matrix
inequality,

AT P A − Q < 0, (2.3)

holds if and only if there exists a matrix W of appropriate dimensions such that

[−Q ATW
∗ P − W − WT

]
< 0. (2.4)

2.2 LTI Systems

A dynamic system is usually modeled as a differential or difference equation. A
continuous-time linear time-invariant system is usually described by

ẋ(t) = Ax(t) + Bu(t), (2.5)

and a discrete-time system is

x(k + 1) = Ax(k) + Bu(k). (2.6)

where x ∈ R
n is the state vector and u ∈ R

m is the state vector. A ∈ R
n×n and

B ∈ R
n×m are two constant matrices. It follows from the Lyapunov stability theory

that the above systems are asymptotically sable if the state x(t) or x(k) tends to its
equilibrium point when the time goes to infinity. The above system is exponentially
stable if the state x(t) or x(k) tends to its equilibrium point with an exponential
decay rate. Taking the discrete-time system (2.6) as an illustration, it is said to be
exponentially stable if there exist some scalars δ > 0 and 0 < β < 1, such that the
state of (2.6) satisfies ‖x(k)‖ < δβk−k0 ‖x(k0)‖ ,∀k ≥ k0.

There are various ways to check whether an LTI system is stable or not. We focus
on the Lyapunov stability theory and linear matrix inequality based conditions. We
first discuss the scenario when system (2.5) and (2.6) are in the absence of input, i.e.,
u = 0.

Proposition 2.1 The continuous-time LTI system (2.5) with u=0 is said to be asymp-
totically sable if there exists a positive definite matrix P > 0 such that the following
inequality is true:

AT P + PA < 0. (2.7)

Proof Consider the Lyapunov function candidate V (x(t)) = xT (t)Px(t). The deriv-
ative of this Lyapunov function is
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V̇ (x(t)) = ẋ T (t)Px(t) + xT (t)Pẋ(t)

= (Ax(t))T Px(t) + xT (t)P (Ax(t))

= xT (t)
(
AT P + PA

)
x(t).

(2.8)

One can see that V̇ (x(t)) < 0 if (2.7) holds. It follows from the Lyapunov stability
theory, the system (2.5) with u = 0 is asymptotically stable.

Proposition 2.2 The discrete-time LTI system (2.6) with u = 0 is said to be asymp-
totically sable if there exists a positive definite matrix P > 0 such that the following
inequality is true:

AT P A − P < 0. (2.9)

Proof Use the Lyapunov function V (x(k)) = xT (k)Px(k). The difference of Lya-
punov function is

ΔV (x(k)) = V (x(k + 1)) − V (x(k))

= xT (k + 1)Px(k + 1) − xT (k)Px(k)

= (Ax(k))T P (Ax(k)) − xT (k)Px(k)

= xT (k)
(
AT P A − P

)
x(k).

(2.10)

One can see thatΔV (x(k)) < 0 if (2.9) holds. It follows from the Lyapunov stability
theory, the system (2.6) with u = 0 is asymptotically stable.

For the control system (2.5) and (2.6), the state feedback controller is a simple
and effective method to adjust the dynamic of systems. The overall control system
is given by

{
ẋ(t) = Ax(t) + Bu(t),
u(t) = −Kx(t),

(2.11)

where K ∈ R
m×n is the controller gain to be determined.

Proposition 2.3 The closed-loop system (2.11) is asymptotically stable if there exist
positive definite matrix X and an appropriate matrix Y such that the following
inequalities

{
AX + X AT − Y T BT − BY < 0,
X > 0,

(2.12)

hold. Moreover, the controller gain is determined by K = Y X−1.

Proof The closed-loop system can be described as ẋ(t) = (A − BK ) x(t). By
replacing A in (2.7) by A − BK , it is easy to see that the closed-loop system is
stable when the following inequality,
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(A − BK )T P + P (A − BK ) < 0, (2.13)

holds. Since P = PT > 0, then P is invertible. Left- and right- multiplying the
above inequality by P−1 yields

AP−1 + P−1AT − (
P−1KT

)
BT − B

(
K P−1

)
< 0, (2.14)

which is (2.12) by assigning X = P−1 and Y = K P−1.
The following proposition deals with stabilization of a discrete-time system:

{
x(k + 1) = Ax(k) + Bu(k),
u(k) = −Kx(k).

(2.15)

Proposition 2.4 The closed-loop system (2.15) is asymptotic stable if there exist
positive definite matrix X and an appropriate matrix Y such that the following
inequality,

[−X X AT − Y BT

∗ −X

]
< 0, (2.16)

holds. Moreover, the controller gain is determined by K = Y X−1.

Proof The closed-loop system can be described as x(k + 1) = (A − BK ) x(k). By
replacing A in (2.9) by A− BK , it is easy to see that the closed-loop system is stable
when the following inequality holds:

(A − BK )T P (A − BK ) < 0. (2.17)

By using Lemma 2.1, (2.17) is equivalent to

[−P (A − BK )T P
∗ −P

]
< 0. (2.18)

Since P = PT > 0, then P is invertible. Left- and right- multiplying the above
inequality by diag{P−1, P−1} gives

[−P−1 P−1(A − BK )T

∗ −P−1

]
< 0. (2.19)

which is (2.16) by assigning X = P−1 and Y T = P−1KT .
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2.3 Markovian Jump Systems

A useful category of systemmodels is those in which the system operates in multiple
modes. The switching between these modes introduces non-linearity into the overall
system description even though each individual mode is linear. A general theory of
such systems is presented by the hybrid systems community. However, much tighter
results can be developed if some further assumptions are made, for example the
mode switches are governed by a stochastic process that is statistically independent
from the state values. In the case when the stochastic process can be described by a
Markov chain, the system is called a Markovian jump linear system. The Markovian
jump system has been applied to the modeling of networked systems, and we focus
on the discrete-time system.

Consider a discrete-time Markovian jump system:

x(k + 1) = Ar(k)x(k), (2.20)

where x(k) is the state vector, r(k) ∈ Θ = {1, 2, . . . ,m} is the switching law and the
transition probability is denoted as Pr ob (rk+1 = j | rk = i) = qi j , and 0 ≤ qi j ≤
1, which constitutes the transition matrix Q. Such a system has been studied for
a long time in the fault isolation community, and received new impetus with the
adventure of networked control systems. For example, as mentioned in Chap.1, the
packet dropouts process can be modeled as a two state Markovian jump system. The
stochastic access constraint phenomena can also be modeled as a Markovian jump
system. Then, it is necessary to introduce some basic knowledge of this system.

Since the Markovian jump linear system is a stochastically varying system,
numerous notions of stability may be defined. We will primarily be interested in
mean-square stability, that is the state of a Markovian system tends to its equilib-
rium point in the mean-square sense when the time goes to infinity. Mathematically,

E

{ ∞∑

k=0
‖x(k)‖2|χ(0)

}
< ∞, where χ(0) is the initial condition.

A sufficient stability condition for the Markovian jump system (2.20) is given as
follows.

Proposition 2.5 The discrete-timeMarkovian jump system (2.20) is said to bemean-
square sable if there exist positive definite matrices Pi > 0, such that the following
inequalities are all true:

AT
i

⎛

⎝
m∑

j=1

qi j Pj

⎞

⎠ Ai − Pi < 0, i, j ∈ Θ. (2.21)

Proof Let V (x(k)) = xT (k)Pr(k)x(k), r(k) = i and r(k + 1) = j , it follows from
that

http://dx.doi.org/10.1007/978-3-319-53123-6_1


36 2 Fundamentals

E {ΔV (x(k))} = E {V (x(k + 1)) − V (x(k))}
= E

{

xT (k + 1)

(
m∑

j=1
qi j Pj

)

x(k + 1) − xT (k)Pi x(k)

}

= E

{

(Ai x(k))
T

(
m∑

j=1
qi j Pj

)

(Ai x(k)) − xT (k)Pi x(k)

}

= E

{

xT (k)

[

AT
i

(
m∑

j=1
qi j Pj

)

Ai − Pi

]

x(k)

}

.

(2.22)

One can see that E {ΔV (x(k))} < 0 if (2.21) holds. It follows from the Lyapunov
stability theory, the system (2.20) is asymptotically stable in the mean-square sense.

Proposition 2.5 gives a sufficient condition for the asymptotically stability of
system (2.20). We now consider a system with the input, and the overall system is
described by

{
x(k + 1) = Ar(k)x(k) + Br(k)u(k),
u(k) = Kr(k)x(k),

(2.23)

where u(k) is the control input and Kr(k) is the feedback gain, which is to be deter-
mined. The following algorithm can be used to determine the controller gain.

Proposition 2.6 For the discrete-time Markovian jump system (2.23), it is mean-
square stable if there exist positive-definite matrices Qi > 0 and matrices K̄i , i =
1, 2, . . . ,m, such that the following inequalities,

⎡

⎢⎢⎢
⎣

−Qi
√
qi1

(
Q1AT

i + K̄ T
i BT

i

) · · · √
qim

(
Qm AT

i + K̄ T
i BT

i

)

∗ −Q1 · · · 0
... ∗ . . .

...

∗ ∗ · · · −Qm

⎤

⎥⎥⎥
⎦

< 0, (2.24)

hold. Moreover, the controller gain can be determined by Ki = K̄i Q
−1
i .

Proof By replacing Ai in (2.21) by Ai + Bi Ki , the system (2.23) is stable if

(Ai + Bi Ki )
T

⎛

⎝
m∑

j=1

qi j Pj

⎞

⎠ (Ai + Bi Ki ) − Pi < 0, i, j ∈ Θ, (2.25)

which is equivalent to

⎡

⎢
⎢⎢
⎣

−Pi
√
qi1

(
AT
i + KT

i BT
i

)
P1 · · · √

qim
(
AT
i + KT

i BT
i

)
Pm

∗ −P1 · · · 0
... ∗ . . .

...

∗ ∗ · · · −Pm

⎤

⎥
⎥⎥
⎦

< 0. (2.26)
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By left- and right- multiplying diag{P−1
i , P−1

1 , . . . , P−1
m } and its transpose to (2.26),

respectively, we have

⎡

⎢⎢
⎢
⎣

−P−1
i

√
qi1P

−1
1

(
AT
i + KT

i BT
i

) · · · √
qim P−1

m

(
AT
i + KT

i BT
i

)

∗ −P−1
1 · · · 0

... ∗ . . .
...

∗ ∗ · · · −P−1
m

⎤

⎥⎥
⎥
⎦

< 0. (2.27)

Let P−1
i = Qi and K̄ T

i = Qi K T
i . We see that (2.27) is the same as (2.24).

Apart from stability and control problems, the state estimation problem, also
called as the filtering is another important research topic. The main purpose is to
estimate the plant state by using the available measurement signals. The estimated
state can be used for state monitoring when the state is not measurable. It can also
be used for controller design when full state information is not available. In the last
decades, many filtering approaches have been proposed such as Kalman filtering, H2

filtering, H∞ filtering and l2-l∞. It is well known that the standard Kalman filter is
sensitive to modeling errors and the distribution of noise should be Gaussian white
noise. In practice, the modeling error is inevitable and one may not always have
the distribution of noise. We focus on the H∞ filtering approach in this book as it
requires less information than the Kalman filtering approach. To start, we consider
the following system:

{
x(k + 1) = Ai x(k) + Biw(k),
z(k) = Li x(k),

(2.28)

where x(k) ∈ R
n is the state vector, w(k) ∈ R

m is the unknown disturbance and
usually assumed to belong to l2[0,∞) in the H∞ filtering framework. z(k) ∈ R

p

is the signal to be estimated, which can be a partial state vector. The measurement
signal y(k) is usually described by

y(k) = Ci x(k) + Diw(k). (2.29)

To estimate z(k) in (2.28), one uses the following filter:

{
x̂(k + 1) = A f i x̂(k) + B f i y(k),
z f (k) = C f i x̂(k),

(2.30)

where x̂(k) ∈ R
n is the state of the filter, and z f ∈ R

p is the estimation of z(k) in
(2.28). A f i , B f i andC f i are the filter gains to be determined. Based on (2.28)–(2.30),
we have the filtering error system described by

{
η(k + 1) = Ãiη(k) + B̃iw(k),
e(k) = C̃iη(k),

(2.31)
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where

η(k) =
[
x(k)
x̂(k)

]
, e(k) = z(k) − z f (k),

Ãi =
[

Ai 0
B f iCi A f i

]
, B̃i =

[
Bi

B f i Di

]
, C̃i = [

Li −C f i
]
.

The purpose of the estimation problem is to design the filter in the form of (2.30)
such that the filtering error system (2.31) is mean-square stable and achieves a pre-
scribed H∞ filtering performance level. That is

• system (2.31) is stochastically stable with w(k) = 0;

• under the zero initial conditions, E

{
t∑

s=0

[
eT (s)e(s)

]}
< γ2

t∑

s=0

[
wT (s)w(s)

]

holds.

The following proposition gives a sufficient condition for the existence of such a
filter.

Proposition 2.7 The filtering error system (2.31) is asymptotically stable in the
mean-square sense and with a prescribed H∞ performance level γ, if there exist
positive-definite matrices Pi such that the following inequalities are true,

⎡

⎢⎢
⎣

−Pi 0 ÃT
i P̄i C̃

T
i

∗ −γ2 I B̃T
i P̄i 0

∗ ∗ −P̄i 0
∗ ∗ ∗ −I

⎤

⎥⎥
⎦ < 0, (2.32)

where P̄i =
m∑

j=1
qi j Pj .

Proof Let V (x(k)) = xT (k)Pr(k)x(k), r(k) = i and r(k + 1) = j , then

E
{
V (x(k + 1)) − V (x(k)) + eT (k)e(k) − γ2w(k)w(k)

}

= E
{
ηT (k + 1)P̄iη(k + 1) − ηT (k)Piη(k)

}

+E

{(
C̃i x(k)

)T (
C̃i x(k)

)
− γ2w(k)w(k)

}

= E

{[
Ãiη(k) + B̃iw(k)

]T
P̄i

[
Ãiη(k) + B̃iw(k)

]}

−ηT (k)Piη(k)

+ E

{(
C̃i x(k)

)T (
C̃i x(k)

)
− γ2w(k)w(k)

}

= E
{
η̄T (k)

(
Ω + Ω1 P̄iΩT

1 + Ω2Ω
T
2

)
η̄(k)

}
,

(2.33)
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where

η̄(k) =
[

η(k)
w(k)

]
,Ω =

[−Pi 0
∗ −γ2 I

]
,

Ω1 =
[
ÃT
i

B̃T
i

]
,Ω2 =

[
C̃T
i
0

]
.

By Lemma 2.1, it is easy to see that (2.32) guarantees Ω + Ω1 P̄iΩT
1 + Ω2Ω

T
2 < 0.

Then, E
{
V (x(k + 1)) − V (x(k)) + eT (k)e(k) − γ2w(k)w(k)

}
. By summing both

sides of this inequality, we have

E

{
t∑

s=0

[
V (x(s + 1)) − V (x(s)) + eT (s)e(s) − γ2w(s)w(s)

]
}

< 0. (2.34)

It follows from V (x(0)) = 0 and V (x(s + 1)) ≥ 0 that

E

{
t∑

s=0

[
eT (s)e(s) − γ2w(s)w(s)

]
}

< 0, (2.35)

that is

E

{
t∑

s=0

[
eT (s)e(s)

]
}

< γ2
t∑

s=0

[w(s)w(s)]. (2.36)

We can conclude that system (2.31) is mean-square stable and also has a prescribed
H∞ performance γ.

With the help of Proposition2.7, we can determine the filter gain parameters by
using the following proposition.

Proposition 2.8 The H∞ filtering problem is solvable if there exist positive defi-
nite matrices Pi and some matrices Wi with appropriate dimensions such that the
following inequalities,

⎡

⎢⎢
⎣

−Pi 0 Ξ1 Ξ3

∗ −γ2 I Ξ2 0
∗ ∗ P̃i 0
∗ ∗ ∗ −I

⎤

⎥⎥
⎦ < 0, (2.37)

hold for all i ∈ Θ . Then the filter gains can be determined by A f i = W−T
3i AFi ,

B f i = W−T
3i BFi , and C f i = CFi , where
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Ξ1 =
[
AT
i W1i + CT

i B
T
Fi A

T
i W2i + CT

i B
T
Fi

AT
Fi AT

Fi

]
,

Ξ2 = [
BT
i W1i + DT

i B
T
Fi B

T
i W2i + DT

i B
T
Fi

]
,

Ξ3 =
[

LT
i−CT
Fi

]
, P̃i =

m∑

j=1
qi j Pj − Wi − WT

i ,

Pi =
[
P1i P2i
∗ P3i

]
,Wi =

[
W1i W2i

W3i W3i

]
.

Proof By Lemma 2.3, (2.32) holds if and only if there exist matrices Wi such that

⎡

⎢⎢
⎣

−Pi 0 ÃT
i Wi C̃T

i

∗ −γ2 I B̃T
i Wi 0

∗ ∗ P̃i 0
∗ ∗ ∗ −I

⎤

⎥⎥
⎦ < 0. (2.38)

Let AFi = WT
3i A f i , BFi = WT

3i B f i , CFi = C f i , Pi =
[
P1i P2i
∗ P3i

]
and Wi =

[
W1i P2i
W3i W3i

]
. One sees that (2.38) is equivalent to (2.37). The proof is completed.

When theMarkovian jump system approach is applied to the modeling and analy-
sis of the NCSs, the transition probabilities should be known a prior. In some sce-
narios, the transition probabilities may be too expensive or even impossible to find.
Then, the following switched linear system is more appropriate for such a situation.

2.4 Switched Systems

Since the switched system approach will be used to model and analyze the wire-
less networked systems in this book, some discussions on the switched systems are
necessary. A switched system is a dynamical system that consists of a finite number
of subsystems and a logical rule that orchestrates switching between these subsys-
tems. These subsystems are usually described by a group of differential or difference
equations. Unlike the Markovian jump systems in Sect. 2.2, the probabilities of the
switching here are completely unknown. A simple way to classify switched sys-
tems is based on the dynamics of their subsystems, for example continuous-time or
discrete-time, linear or nonlinear and so on. see Fig. 2.1.

In this book,we only consider the discrete-time switched linear systems as follows

x(k + 1) = Aρ(k)x(k), (2.39)

where ρ(k) is a switching signal and ρ(k) ∈ Ω = {1, 2, . . . , M}. The switching
signal is usually piecewise constant and the subsystems are finite.
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Fig. 2.1 An illustrative example of switched system

The stability analysis of a switched system ismore difficult than the traditional LTI
systemas the dynamics of a switched system is not only determined by its continuous-
time or discrete-time dynamics but also by the switching signal. The interaction
of continuous-time or discrete-time dynamics with the switching signal makes the
research of switched system an attractive research direction. It is interesting to see
that even all subsystems are stable, the overall switched system may be unstable
[4]. In the last decades, many results have been reported in literature, and three
basic problems are studied: (1) Stability analysis of switched systems under arbitrary
switching; (2) Stability analysis of switched systems under some useful switching
signal; (3) Constructing some switching signals such that the switched systems are
stable. Among them, research of Problem 2 have been recently used to analyze the
networked systems when they are modeled as a switched system. For problem 2,
special attention has been paid on the stability analysis of switched systems under
some special switching signals. For example, Morse [5] proposed a switching signal
called as the dwell time switching signal for the switched system. They showed that
the system is stable provided that the system dwell on each subsystem for a fixed
time interval, called as the dwell time, i.e., the switching should be slow enough.
Recently, Hespanha [6] relaxed the dwell time to the average dwell time such that
only the average dwell time is required to be satisfied. More specifically, for any
k > k0, and a given switching signal ρ(τ ), k0 ≤ τ ≤ k, let Nρ denote the number
of switching of ρ(τ ) over time interval (k0, k). If Nρ ≤ N0 + (k − k0)

/
Ta holds for

Ta > 0 and N0 ≥ 0, then Ta is called the average dwell time and N0 is the chatter
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bound, which is usually set to be zero. Hespanha [6] showed that the switched system
is exponentially stable if the average dwell time of the successive switching is larger
than a constant value. In this book, the average dwell time approach will be used in
some chapters. Now some fundamental analysis and synthesis results are presented
for discrete-time switched systems.

Proposition 2.9 For given scalars 0 < λ < 1 and μ ≥ 1, the discrete-time switched
linear system (2.39) is exponentially stable under the switching signal ρ(k), if there
exist a set of positive definite matrices Pi , such that the following inequalities

[−λPi AT
i Pi∗ −Pi

]
< 0, (2.40)

Pi ≤ μPj , i 
= j, (2.41)

Ta > T ∗
a = − ln μ

ln λ
. (2.42)

are true for all i, j ∈ Ω .

Proof The switched system with average dwell time switching is known as a slowly
switching system.Wecandefine the switching time instant as k0 < k1 < · · · kl < · · · .
Then we construct the following piecewise Lyapunov function:

Vρ(k)(x(k)) = xT (k)Pρ(k)x(k). (2.43)

Then, it follows that for each i = ρ(k),

Vi (k + 1) − λVi (k)
= xT (k + 1)Pi x(k + 1) − λxT (k)Pi x(k)
= [Ai x(k)]

T Pi [Ai x(k)] − λxT (k)Pi x(k)
= xT (k)

[
AT
i Pi Ai − λPi

]
x(k).

(2.44)

By (2.40), we have AT
i Pi Ai − λPi < 0, which implies that Vi (k + 1) − λVi (k) < 0.

It is easy to see that

Vρ(k)(k) ≤ λk−kl Vρ(kl )(kl). (2.45)

According to (2.41) and (2.45), and the switching sequence, we have
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Vρ(k)(k) ≤ λk−kl Vρ(kl )(kl)
≤ λk−klμVρ(kl−1)(kl)
= λk−klμVρ(kl−1)(kl)
≤ · · ·
≤ λk−k0μ(k−k0)/Ta Vρ(k0)(k0)

= (
λμ1/Ta

)(k−k0)Vρ(k0)(k0).

(2.46)

In addition, it follows from (2.43) that Vρ(k)(k) ≥ β1‖x(k)‖2 and

Vρ(k)(k) ≤
(
λμ1/Ta

)(k−k0)
Vρ(k0)(k0) ≤

(
λμ1/Ta

)(k−k0)
β2‖x(k0)‖2, (2.47)

which yields ‖x(k)‖ ≤
√

β2
/
β1β

(k−k0)‖x(k0)‖2, where β1 = min
i∈Ω

λmin(Pi ), β2 =
max
i∈Ω

λmax(Pi ) and β = λμ1/Ta . Condition (2.42) guarantees 0 < β < 1. Thus, the

system (2.39) is exponentially stable.

Remark 2.1 we have presented an exponential stability condition for system (2.39)
in Proposition 2.9.Actually, there are also some other exponential stability conditions
reported in recent literature, see [7]. In this book, however, Proposition 2.9 will play
an important role in the sequential analysis.

For the controller design problem, we consider the following system:

{
x(k + 1) = Aρ(k)x(k) + Bρ(k)u(k),
u(k) = Kρ(k)x(k),

(2.48)

where u(k) is the control input and Kρ(k) is the feedback gain, which is to be deter-
mined. The following algorithm can be used to determine the controller gain.

Proposition 2.10 The discrete-time switched system (2.48) is exponentially stable if
there exist positive definitematrices Qi andmatrices K̄i with appropriate dimensions,
such that the (2.42) and following inequalities,

[−λQi Qi AT
i + K̄ T

i BT
i∗ −Qi

]
< 0, (2.49)

Q j ≤ μQi , i 
= j, (2.50)

hold for all i ∈ Ω , moreover, the controller gain can be determined by Ki = K̄i Q
−1
i .

Proof By replacing the Ai by Ai + Bi Ki , (2.40) is written as

[−λPi (Ai + Bi Ki )
T Pi

∗ −Pi

]
< 0. (2.51)
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By left- and right- multiplying diag{P−1
i , P−1

i } and its transpose to (2.51), respec-
tively, one sees that (2.51) is (2.49) by assigning P−1

i = Qi and K̄ T
i = Qi K T

i . By
using similar manipulation, one can also have (2.50). The proof is completed.

Based on the filter design results in Sect. 2.2, one can also have the corresponding
results for the switched systems, and the details are omitted. The fundamentals pre-
sented in this chapter will play an important role in the sequential chapters. Readers
are encouraged to read this chapter and get to know how to analyze a Markovian
jump system and a switched linear system.

2.5 Linear Matrix Inequalities

In the last decades, the linear matrix inequalities (LMIs) have emerged as a powerful
tool to solve control and estimation problems that appear hard or even impossible to
solve in an analytic way. Currently, several commercial or non-commercial software
packages are available, with which an LMI problem can be easily solved by a simple
coding. Since the main results of this book are given in terms of LMIs, some basic
information is presented in this section. For more details on the LMI, we refer the
readers to [1].

A typical LMI has the following form:

F(x) = F0 +
m∑

i=1

xi Fi > 0, (2.52)

where xi ∈ R
1 is the scalar, and the symmetric matrices Fi = FT

i ∈ R
q×q are given.

We call (2.52) is a strict LMI, while a non-strict LMI is F(x) ≥ 0. In this section, we
consider the strict LMI only. In the control system design, we will often encounter
problems in which the variables are matrices, rather than the scalar in (2.52). We
recall the results in Proposition 2.1, i.e., a continuous-time LTI system is asymptotic
stable if the following inequality is true: AT P + PA < 0, where A ∈ R

n×n is the
system matrix, and P = PT > 0 is the unknown variable. The problem now is
how to find a required matrix P such that the inequality is true. Here, an illustrative
example is first given to show how an LMI can be described by using the Matlab
LMI toolbox.

For the above system, we can use “lmivar” and “lmiterm” to describe an LMI as
follows:

setlmis([ ])
P=lmivar(1,[4 1]);
lmiterm([1 1 1 P],A′,1);
lmiterm([1 1 1 P],1,A);
lmiterm([-2 1 1 P],1,1);
lmisys=getlmis
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Discussions: An LMI usually starts by “setlmis” and ends by “getlmis”. “setlmis”
is a function, which is used to start a description of LMI. The function “lmivar” is
used to define the unknown matrix variable P , and the function “lmiterm” is used to
describe the detail of each LMI. “getlmis” returns to the internal LMI description of
“lmisys”, where it is also a name stored inside the computer.

Special attention should be paid on the “lmivar”. A common description of this
function is

P = lmivar(type, struct),

where “type” confirms the type of the matrix P , “struct” gives the structure of this
variable. Usually it has three types:

• symmetric or diagonal.
• rectangular. Then, struct=(m,n) describes the dimension.
• others.

Example 2.1 Consider an LMI with three unknown matrices P1, P2 and P3, where

• P1 is a symmetric matrix, with dimension 4 × 4.
• P2 is a rectangular matrix, with dimension 3 × 4.

• P3 =
⎡

⎣
Δ 0 0
0 χ1 0
0 0 χ2 I3

⎤

⎦, where Δ is a symmetric matrix with dimension 3 × 3, χ1

and χ2 are two scalars, I3 is an identity matrix with dimension 3 × 3.

The above matrices can be defined by the using “lmivar” as follows:

setlmis([ ])
P1=lmivar(1,[4 1]);
P2=lmivar(2,[3 4]);
P3=lmivar(1,[3 1;1 0;3 0]);

It should be pointed out that one needs to describe the LMI with the upper-
triangular part only. For example, the following LMI,

[
AT X + X A XB

BT X −I

]
< 0, (2.53)

can be described by

lmiterm([1 1 1 X ],A′,1);
lmiterm([1 1 1 X ],1,A);
lmiterm([1 1 2 X ],1,B);
lmiterm([1 2 2 0],-1);
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Next we discuss how to determine whether such an LMI admit a solution. The
LMI toolbox provides some solvers for LMI related problems such as

• Feasibility problem.
• Minimization problem subject to LMI constraint.
• Minimization problem of generalized eigenvalue.

In this book, we deal with the first two problems. Readers are referred to [1] for the
third case. We now discuss how to solve the first two problems by the LMI toolbox.

The “feasp” solver is usually described by

[tmin, xfeas] = feasp (lmisys, options, target) .

The feasibility problem is solvable, i.e., “lmisys” is feasible, provided that tmin < 0.
When it is feasible, the “xfeas” gives a feasible solution to the decision variable.
“target” is introduced for the target value of “tmin” such that “tmin < target”, then
the searching process ends. Usually, target = 0 is used.

Consider an LTI system ẋ(t) = Ax(t) + Bu(t) with the state matrices as

A =

⎡

⎢⎢
⎣

0 1 0 0
0 0 −1 0
0 0 0 1
0 0 11 0

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

0
1
0
1

⎤

⎥⎥
⎦ .

We first check the stability of this system when u = 0. By running the following
code:

A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 11 0];
setlmis([ ])
P=lmivar(1,[4 1]);
lmiterm([1 1 1 P],A′,1);
lmiterm([1 1 1 P],1,A);
lmiterm([-2 1 1 P],1,1);
lmisys=getlmis;
[tmin, xfeas] = feasp(lmisys)
PP=dec2mat(lmisys,xfeas,P)

we have

tmin = 1.1659e − 15,

which means that it is not stable. Now we use Proposition 2.3 to determine the
feedback controller gain K . Based on the following code:
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A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 11 0];
B=[0;1;0;1];
X=lmivar(1,[4 1]);
Y=lmivar(2,[1 4]);
lmiterm([1 1 1 X ],A,1);
lmiterm([1 1 1 X ],1,A′);
lmiterm([1 1 1 Y ],B,-1);
lmiterm([1 1 1 -Y ],-1,B ′);
lmiterm([-2 1 1 X],1,1);
lmisys=getlmis;
[tmin, xfeas] = feasp(lmisys)
XX=dec2mat(lmisys,xfeas,X );
YY=dec2mat(lmisys,xfeas,Y );
K=YY*inv(XX )

We obtain

K = [−3.0056 −5.8780 61.8612 13.0596
]
.

In control system design, we may encounter some optimization problem, e.g., the
disturbance attenuation level should be minimized in the H∞ control and estimation
problem. The “mincx” solver is usually adopted to the optimization problem. For
example, the following optimization problem:

min cT x
s.t. A(x) < B(x).

(2.54)

The “mincx” solver is described by

[
copt, xopt

] = mincx (lmisys, c, options, xinit, target) .

As in the “feasp” solver, “mincx” returns the optimal value to “xopt”, which can
be outputted by using the “dec2mat” function. Traditionally, “lmisys” and “c” are
compulsory for the “mincx” solver, while the rest is not. We now take a numerical
example to illustrate how to use the “mincx” solver.

Example 2.2 Consider the following optimization problem:

min Tr(P)

s.t. AT P + PA + PBBT P + Q < 0,
(2.55)

where P = PT is a unknown matrix and



48 2 Fundamentals

A =
⎡

⎣
−1 −2 1
1 2 1
1 −2 −1

⎤

⎦ , B =
⎡

⎣
1
0
1

⎤

⎦ ,

Q =
⎡

⎣
1 −1 0

−1 −3 −12
0 −12 −36

⎤

⎦ .

Solution: With Lemma 2.1, we formulate the following optimization problem:

min Tr(P)

s.t.

[
AT P + PA + Q PB

BT P −I

]
< 0.

(2.56)

A possible coding is given by:

A=[-1 -2 1;1 2 1;1 -2 -1];
B=[1;0;1];
Q=[1 -1 0;-1 -3 -12;0 -12 -36];
setlmis([ ])
P=lmivar(1,[3 1]);
lmiterm([1 1 1 P],A′,1);
lmiterm([1 1 1 P],1,A);
lmiterm([1 1 1 0],Q);
lmiterm([1 1 2 P],1,B);
lmiterm([1 2 2 0],-1);
LMIs=getlmis;
c=mat2dec(LMIs,eye(3));
options=[le-5,0,0,0,0];
[copt, xopt]=mincx(LMIs,c,options);
xopt1=dec2mat(LMIs,xopt,P)

It gives the obtained optimal P as

xopt1 =
−3.9278 −12.3556 −0.0722
−12.3556 −39.5667 1.5000
−0.07221 1.5000 −4.7834
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Chapter 3
H∞ Filtering with Time-Varying
Transmissions

3.1 Introduction

In this chapter, we consider the H∞ filtering of wireless networked systems with
a time-varying transmission protocol and random packet dropout. First, a switched
system approach is employed to model the time-varying transmission process of
each sensor. Then, the packet dropout phenomenon is modeled by a set of Bernoulli
stochastic variables. Thefiltering error system is finallymodeled as a switched system
with multiple stochastic variables. With helps of the switched system approach and
the Lyapunov stability theory, a sufficient condition is derived for the existence of
the filter such that the filtering error system is exponentially stable in the mean-
square sense with a prescribed H∞ disturbance attenuation level. The filter gains are
determined by solving an optimization problem. Two numerical examples are given
to demonstrate the effectiveness of the proposed design.

3.2 Problem Statement

Consider a networked filtering system shown in Fig. 3.1. The plant is described by
the following discrete-time linear time-invariant (LTI) model:

{
x(k + 1) = Ax(k) + Bw(k),
y(k) = Cx(k) + Dw(k),

(3.1)

where x(k) ∈ R
n is the state, y(k) = [y1(k) y2(k) · · · yp(k)]T ∈ R

p is the
measured output, and w(k) ∈ R

q is the unknown disturbance or noise but assumed
to be in l2[0,∞). A, B,C and D are some constant matrices.

The communication procedure between the plant and the filter has two stages:
local signal processing and network transfer. Local signal processing is to transmit
the measurements obtained by a set of distributed sensors, which have the ability to

© Springer International Publishing AG 2017
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Fig. 3.1 Networked H∞ filtering system

Fig. 3.2 Transmission process

measure the physical plant and to decide when to transmit the data. The transmission
process is illustrated in Fig. 3.2, where yi (k), i = 1, 2, . . . , p, is the measurement of
a physical variable. And ỹi (k) is the output signal after the local transmission process
and it can be described as

• transmitted. Then, the signal to the network is given by ỹi (k) = yi (k); or
• not transmitted. Then, there is no signal to network. ỹi (k) is empty.

In this chapter, we assume that the largest transmission time interval is N time steps,
that is, there must be one transmission for each output over N time steps.

The second stage of communication is the signal transfer through the wireless
communication network. Once the transmission occurs, ỹi (k) = yi (k) is sent to the
network. There are two possible situations for network transfer:

• the transfer succeeds. Then, the input to the filter is given by ŷi (k) = ỹi (k) = yi (k);
or

• the transfer fails. This is called the packet dropout. Then, the signal is lost due to
the unreliability of the network and the measurement signal will not be received
by the filter. There is no input to the filter. ŷi (k) is empty.

Figure. 3.3 shows this network transfer process.
A filter works at each time instant and it must be fed with some non-empty input,

ȳ(k) = [ ȳ1(k) ȳ2(k) · · · ȳp(k) ]T . This input should never have any empty element.
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Fig. 3.3 Packet dropout

Obviously, if there is no measurement transmission or the network transfer fails, no
signal comes to the filter and the input to the filter has to be pre-defined by some
rules, and in such a case, ȳi (k) is not same as ŷi (k). It is reasonable to assume that
the filter can store the last-received signal in its buffer. Our filter pre-processing will
generate ȳi (k) as follows:

• if there is a measurement transmission and network transfer is successful, there is
non-empty ŷi (k) and ȳi (k) = ŷi (k) = ỹi (k) = yi (k);

• otherwise, the input to the filter is assigned as ȳi (k) = ȳi (k − 1), or as the stored
last-received signal, that is, one possible element in this set of {yi (k−1), . . . yi (k−
N + 1)}.
To model all possible cases described above, we first determine the latest signal

received and stored in the filter, assuming that network is perfect, and then incorpo-
rate the networked packet dropout phenomenon. In the case of perfect networking,
the network block acts as a transfer function with identity matrix, or equivalently,
the network block can be removed, and Fig. 3.1 reduces to Fig. 3.4. Then, when the
measurement is transmitted, the signal always arrives at the filter successfully. Let
�

yi (k) be the signal stored in the filter. Since the largest transmission interval is limited
to be N time steps, it is easy to see that the signal

�

yi (k) in buffer must be one member
of {yi (k), yi (k − 1), · · · yi (k − N + 1)}, i = 1, 2, . . . p. Define

Fig. 3.4 Filtering system without network
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X (k) = [ xT (k) xT (k − 1) · · · xT (k − N + 1) ]T ,

W (k) = [wT (k) wT (k − 1) · · · wT (k − N + 1) ]T ,

we have
�

yi (k) = Ci Ei j (k)X (k) + Di Hi j (k)W (k), (3.2)

whereCi and Di are the i-th row ofmatrixC and D, respectively. Ei j (k) is an n×nN
matrix with its j-th n by n sub-matrix being an identity matrix and the rest being
zero, and Hi j (k) a q by qN matrix with its j-th q by q sub-matrix being an identity
matrix and the rest being zero, j = 1, 2, . . . , N . Let

σi (k) ∈ {1, 2, . . . , N }, i = 1, 2, . . . , p,
σ(k) = [σ1(k) σ2(k) · · · σp(k) ]T ,

Ẽσ(k) = [ ET
1,σ1(k)

ET
2,σ2(k)

· · · ET
p,σp(k) ]T ,

H̃σ(k) = [ HT
1,σ1(k)

HT
2,σ2(k)

· · · HT
p,σp(k) ]T .

We have the following augmented measurement signal:

�
y(k) = C̃ Ẽσ(k)X (k) + D̃ H̃σ(k)W (k), (3.3)

where C̃ = diag{C1,C2, . . . ,Cp} and D̃ = diag{D1, D2, . . . , Dp}. Note that the
total number of possible numerical realizations of σ(k) is N p, which corresponds
to the total combinations of N values of each of p variable σi (k). Defining the set
Λ = {1, 2, . . . , N p}, we can view σ(k) as the signal which takes one combination
from the set Λ and specify one particular case of (Ẽσ(k), H̃σ(k)) and thus one case of
(3.3). Therefore, the system (3.3) becomes a switched system, where σ(k) is viewed
as the switching signal.

We nowmodel the process with both time-varying transmission rates and random
packet dropout. In this paper, the binary stochastic variable method is adopted to
model the randompacket dropout phenomenon. Let p stochastic variables,αi (k), i =
1, 2, . . . , p, be mutually uncorrelated. In this chapter, αi (k) ∈ {1, 0}, and αi (k) = 1
mean that a successful transfer, while αi (k) = 0 otherwise. For filter design, the
successful transmission rate Prob {αi (k) = 1} = E{αi (k)} = ᾱi is assumed to be
known. Define

Πσ(k)(k) = diag{α1(k − σ1(k) + 1), . . . ,αp(k − σp(k) + 1)},

and let Π̄l = E{Πl(k)}, l ∈ Λ. Then, taking the filter pre-processing into consider-
ation under possible packet dropouts, the actual input to the filter is given by

ȳ(k) = Πσ(k)(k)
�

y(k) + (I − Πσ(k)(k))ȳ(k − 1), (3.4)

which by (3.3), becomes
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ȳ(k) = Πσ(k)(k)
[
C̃ Ẽσ(k)X (k) + D̃ H̃σ(k)W (k)

]
+(I−Πσ(k)(k))ȳ(k−1). (3.5)

In this chapter, we aim to estimate the signal:

z(k) = Lx(k), (3.6)

where L is a constant matrix. To this end, we construct the following filter:

{
x f (k + 1) = A f x f (k) + B f ȳ(k),
z f (k) = C f x f (k),

(3.7)

where x f (k) ∈ R
n is the state of filter, ȳ(k) ∈ R

p is the filter input defined as
before and z f (k) ∈ R

l is the estimated signal. A f , B f and C f are filter gains to be
determined.

By the lifting technique, the state equation (3.1) can be augmented as

{
X (k + 1) = ÃX (k) + B̃W (k),
z(k) = L̃ X (k),

(3.8)

where Ã =
[

A 0
I(N−1)×(N−1) 0

]
, B̃ = diag{B, 0, . . . , 0}, and L̃ = [ L 0 · · · 0 ].

Denote η(k) = [ XT (k) xTf (k) ȳT (k − 1) ]T and e(k) = z(k) − z f (k). We have
the following filtering error system for each l ∈ Λ:

{
η(k + 1) = (

�

Al + �

Cl)η(k) + (
�

Bl + �

Dl)W (k),
e(k) = L̄η(k),

(3.9)

where

�

Al =
⎡

⎣
Ã 0 0

B f Π̄l C̃ Ẽl A f B f (I − Π̄l)

Π̄l C̃ Ẽl 0 (I − Π̄l)

⎤

⎦ , B̃l =
⎡

⎣
B̃

B f Π̄l D̃ H̃l

Π̄l D̃ H̃l

⎤

⎦ ,

�

Cl =
⎡

⎣
0 0 0

B f (Πl(k) − Π̄l)C̃ Ẽl 0 B f (Π̄l − Πl(k))
(Πl(k) − Π̄l)C̃ Ẽl 0 (Π̄l − Πl(k))

⎤

⎦ ,

�

Dl =
⎡

⎣
0

B f (Πl(k) − Π̄l)D̃ H̃l

(Πl(k) − Π̄l)D̃ H̃l

⎤

⎦ , L̄ = [ L̃ −C f 0 ].

The system (3.9) is a switched system with some stochastic parameters, where
σ(k) serves as the switching signal. In this chapter, the average dwell time approach
will be utilized to analyze such a system. For simplicity but without loss of generality,
the chatter bound N0 is set to 0 in the subsequent development.We recall the following
definitions.
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Definition 3.1 The system (3.9) with w(k) = 0 is said to be exponentially stable in
themean-square sense under switching signal σ(k), if there exist some scalars K > 0
and 0 < χ < 1, such that the solution η(k) of system (3.9) satisfies E {‖η(k)‖} <

Kχ(k−k0) ‖η(k0)‖ ,∀k ≥ k0.

Definition 3.2 The system (3.9) is said to be exponentially stable in themean-square
sense with an exponential H∞ performance γ̃, if it is exponentially stable and under

zero initial condition,
+∞∑

s=0
E{eT (s)e(s)} ≤

+∞∑

s=0
γ̃2wT (s)w(s) holds for all nonzero

w(k) ∈ l2[0,∞).

3.3 Filter Analysis and Design

In this section, a novel sufficient condition for the exponential stability and H∞
performance of system (3.9) is presented as follows.

Theorem 3.1 For given scalars 0 < λ < 1,μ > 1, 1 < λ̄ < 1
/
λ, the filtering

error system (3.9) is mean-square exponentially stable with a prescribed H∞ perfor-

mance level γ̃ = τ
√

N (1−λ)

1−λλ̄
, if there exists a matrix Pl > 0 such that the following

inequalities

Ωl =
[−λPl + L̄T L̄ 0

0 −τ 2 I

]
+
[
ĀT
l

B̄T
l

]
Pl[ Āl B̄l ]

+
p∑

i=1
θ2i

[
WT

2lΦiW T
1

H̃ T
l D̃TΦiW T

1

]

Pl [W1ΦiW2l W1Φi D̃ H̃l ] < 0,
(3.10)

Pl ≤ μPv, (3.11)

Ta > T ∗
a = ln μ

ln λ̄
, (3.12)

hold for all l, v ∈ Λ, l 	= v, where

Āl =
⎡

⎣
Ã 0 0

B f Π̄C̃ Ẽl A f B f (I − Π̄)

Π̄C̃ Ẽl 0 (I − Π̄)

⎤

⎦ , B̄l =
⎡

⎣
B̃

B f Π̄ D̃ H̃l

Π̄ D̃ H̃l

⎤

⎦ ,

W1 =
⎡

⎣
0
B f

I

⎤

⎦ ,W2l = [ C̃ Ẽl 0 −I ],

Φi = diag{0, 0, · · · 0,︸ ︷︷ ︸
i−1

1, 0, . . . 0}, θi = √
ᾱi (1 − ᾱi ),

Π̄ = diag{ᾱ1, ᾱ2, . . . ᾱp}.
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Proof We first consider the exponential stability of the filtering error system with
W (k) = 0. To do so, we choose the Lyapunov functional Vl(k) = ηT (k)Plη(k).
Then, one sees that

E {Vl(k + 1) − λVl(k)}
= E

{
ηT (k + 1)Plη(k + 1) − ληT (k)Plη(k)

}

= E

{
[( �

Al + �

Cl)η(k)]
T
Pl [(

�

Al + �

Cl)η(k)] − ληT (k)Plη(k)

}

= ηT (k)

[
�

A
T

l Pl
�

Al − λPl

]
η(k) + E

{
ηT (k)

[
�

C
T

l Pl
�

Cl

]
η(k)

}
.

(3.13)

It follows from the definition of the stochastic variables αi (k) that E{Πl(k)} =
E{Π(k)} = Π̄ . We obtain

E{ �

A
T

l Pl
�

Al} = E{ ĀT
l Pl Āl}, (3.14)

E{ �

C
T

l Pl
�

Cl} =
p∑

i=1

θ2i (W1ΦiW2l)
T Pl(W1ΦiW2l). (3.15)

Then, it follows that

E{Vl(k + 1) − λVl(k)}

≤ ηT (k)

(

ĀT
l Pl Āl − λPl +

p∑

i=1

θ2i (W1ΦiW2l)
T Pl(W1ΦiW2l)

)

η(k). (3.16)

It is easy to see that (3.10) guarantees E{Vl(k + 1) − λVl(k)} < 0. For any arbitrary
switching signal σ(k), and any integer k > 0, let 0 = k0 < k1 < · · · km < k, be the
switching points over the time interval [k0, k). Then, we obtain

E{Vσ(k)(k)} ≤ λk−kmE{Vσ(km)(km)}. (3.17)

By (3.11) and (3.17), one has

E{Vσ(k)(k)} ≤ λk−kmE{Vσ(km )(km)}
≤ λk−kmμE{Vσ(km−1)(km)}
= λk−kmμE{Vσ(km−1)(km)}
≤ · · · ≤ λk−k0μ(k−k0)/TaE{Vσ(k0)(k0)}
= (λμ1/Ta )(k−k0)E(Vσ(k0)(k0)). (3.18)

In addition, for the constructed Lyapunov functional, one can easily see that
E{Vσ(k)(k)} ≥ β1E{‖η(k)‖2} and
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E{Vσ(k)(k)} ≤ (λμ1/Ta )(k−k0)E{Vσ(k0)(k0)}
≤ (χ2)(k−k0)β2 ‖η(k0)‖2 , (3.19)

which yields E{‖η(k)‖2} ≤ β2

β1
χ2(k−k0) ‖η(k0)‖2, where β1 = min

l∈Λ
λmin(Pl), β2 =

max
l∈Λ

λmax(Pl), and χ = √
λμ1/Ta . Therefore, one can readily obtain χ < 1 from

condition (3.12). According to Definition 3.1, the filtering error system (3.9) is expo-
nentially stable in the mean-square sense with W (k) = 0.

We now consider the H∞ performance of system (3.9). With a similar argument
to the above, we have

E{Vl(k + 1) − λVl(k) + Γ (k)} = ξT (k)Ωlξ(k), (3.20)

whereΓ (k) = eT (k)e(k)−τ 2WT (k)W (k) and ξ(k) = [ ηT (k) WT (k) ]T . Condition
(3.10) guarantees

E{Vl(k + 1) − λVl(k) + Γ (k)} < 0. (3.21)

Applying (3.21) recursively gives

E{Vl(k)} ≤ E{λk−k0Vl(k0)} −
∑k−1

s=k0
λk−s−1

E{Γ (s)}, (3.22)

where Γ (k) = eT (k)e(k) − τ 2WT (k)W (k). It follows from (3.11) and (3.22), that

E{Vσ(k)(k)}

≤ λk−kmE{Vσ(k)(km)} −
k−1∑

s=km

λk−s−1
E{Γ (s)}

≤ λk−kmμE{Vσ(km−1)(km)} −
k−1∑

s=km

λk−s−1
E{Γ (s)}

+ λk−kmμ[λkm−km−1E{Vσ(km−1)(km−1)} −
km−1∑

s=km−1

λkm−s−1
E{Γ (s)}]

−
k−1∑

s=km

λk−s−1
E{Γ (s)}

≤ · · · ≤ λk−k0μNσ(k0,k)Vσ(k0)(k0) − λk−kmμNσ(k0,k)
k1−1∑

s=k0

λk1−s−1
E{Γ (s)}

− λk−k2μNσ(k1,k)
k2−1∑

s=k1

λk2−s−1
E{Γ (s)} · · · −

k−1∑

s=km

λk−s−1
E{Γ (s)}
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= λk−k0μNσ(k0,k)Vσ(k0)(k0) −
k−1∑

s=k0

μNσ(s,k−1)λk−s−1
E{Γ (s)}. (3.23)

Under the zero initial condition, we have

k−1∑

s=k0

μNσ(s,k−1)λk−s−1
E{Γ (s)} ≤ 0. (3.24)

With the average dwell time condition (3.12), it is easy to see

Nσ(s, k − 1)

k − s − 1
<

ln λ̄

ln μ
. (3.25)

Since μ > 1, we have ln μNσ(s,k−1) < ln λ̄k−s−1, and

1 < μNσ(s,k−1) < λ̄k−s−1. (3.26)

It follows from (3.26) that

k−1∑

s=k0

μNσ(s,k−1)λk−s−1
E{eT (s)e(s)} ≤ τ 2

k−1∑

s=k0

μNσ(s,k−1)λk−s−1WT (s)W (s).

(3.27)
By (3.27), one can see that

∑k−1
s=k0

λk−s−1
E{eT (s)e(s)}

<
∑k−1

s=k0
μNσ(s,k−1)λk−s−1

E{eT (s)e(s)}
≤ τ 2∑k−1

s=k0
μNσ(s,k−1)λk−s−1WT (s)W (s)

< τ 2
∑k−1

s=k0
(λ̄λ)k−s−1WT (s)W (s). (3.28)

Summing (3.28) from k = k0 + 1 to k = ∞ and changing the order of summation
yield

+∞∑

s=k0

E{eT (s)e(s)}
+∞∑

k=s+1

λk−s−1 < τ 2
+∞∑

s=k0

WT (s)W (s)
+∞∑

k=s+1

(λλ̄)k−s−1. (3.29)
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Since
+∞∑

k=s+1
λk−s−1 = 1

1−λ
and

+∞∑

k=s+1
(λλ̄)k−s−1 = 1

1−λλ̄
, we have

+∞∑

s=k0

E{eT (s)e(s)} < γ2
+∞∑

s=k0

WT (s)W (s), (3.30)

where γ = τ
√

(1−λ)

1−λλ̄
. It is noted that λ̄ < 1

λ
, which ensures γ > 0. Thus, one has

+∞∑

s=0
E{eT (s)e(s)} ≤ γ2

+∞∑

s=0
WT (s)W (s) = γ̃2

+∞∑

s=0
wT (s)w(s), where γ̃2 = Nγ2. This

completes the proof.

Remark 3.1 The condition (3.12) implies that the variation rate of different trans-
missions should be bounded by ln λ̄

ln μ
. Note that the decay rate of the filtering error

system, χ, is explicitly determined by the variation rate, and thus, relation between
the filtering performance and the variation rate of different scheduling is established.
It should be pointed out that the transmission scheduling can be arbitrary if one
chooses some appropriate μ and λ̄ such that T ∗

a < 1, which enables us to use our
method for the event-driven transmission.

Remark 3.2 In Theorem 3.1, the H∞ performance level is given by γ̃ = τ
√

N (1−λ)

1−λλ̄
.

It is interesting to see that the larger N is, the worse H∞ performance is. This relation
is practical as the larger N is, the less data arrive at the remote filter.

Based on Theorem 3.1, we now discuss how to determine the filter gains. The
main procedure is presented in the following theorem.

Theorem 3.2 For given scalars 0 < λ < 1,μ > 1, 1 < λ̄ < 1
/
λ, if there exist a

matrix Pl > 0 and any matrix Gl of appropriate dimensions, such that the following
inequalities, ⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

−λPl 0 Ψ1l L̂ T θ1Ω1l · · · θpΩpl

∗ −τ 2 I Ψ2l 0 θ1Γ1l · · · θpΓpl

∗ ∗ Tl 0 0 · · · 0
∗ ∗ ∗ −I 0 · · · 0
∗ ∗ ∗ ∗ Tl · · · 0

∗ ∗ ∗ ∗ ∗ . . .
...

∗ ∗ ∗ ∗ ∗ · · · Tl

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

< 0, (3.31)

(3.11) and (3.12) hold for all l, v ∈ Λ, l 	= v, then, the filtering problem is solvable,
and the filter gains are given by A f = G−T

4 AF, B f = G−T
4 BF and C f = CF, where,
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Ψ1l =
⎡

⎣
ÃT G1l + Ẽ T

l C̃
T Π̄(BT

F + G5l)Fl
AT
F Fl

(I − Π̄)(BT
F + G5l)Fl

ÃT G2l + Ẽ T
l C̃

T Π̄(BT
F + G6l) ÃT G3l + Ẽ T

l C̃
T Π̄G7l

AT
F 0

(I − Π̄)(BT
F + G6l) (I − Π̄)G7l

⎤

⎦ ,

Ψ2l =
[
B̃T G1l + H̃ T

l D̃T Π̄(BT
F + G5l)Fl

B̃T G2l + H̃ T
l D̃T Π̄(BT

F + G6l) B̃T G3l + H̃ T
l D̃T Π̄G7l

]
,

Ωil =
⎡

⎣
Ẽ T
l C̃

TΦi (BT
F + G5l)Fl ẼT

l C̃
TΦi (BT

F + G6l) Ẽ T
l C̃

TΦiG7l

0 0 0
−Φi (BT

F + G5l)Fl −Φi (BT
F + G6l) −ΦiG7l

⎤

⎦ ,

Γil = [ H̃ T
l D̃TΦi (BT

F + G5l)Fl H̃ T
l D̃TΦi (BT

F + G6l) H̃ T
l D̃TΦiG7l

]
,

Tl = Pl − Gl − GT
l , L̂ = [ L̃ −CF 0 ],

Pl =
⎡

⎣
P1l P2l P3l
∗ P4l P5l
∗ ∗ P6l

⎤

⎦ ,Gl =
⎡

⎣
G1l G2l G3l

G4Fl G4 0
G5l Fl G6l G7l

⎤

⎦ ,

and Fl is the last n row elements of Ẽl .

Proof By Lemma 2.2, an equivalent form of matrix inequality (3.10) is given by
introducing the variable Gl as

[
Θ11l Θ12l

∗ Θ22l

]
< 0, (3.32)

where

Θ11l =

⎡

⎢⎢
⎣

−λPl 0 ĀT
l Gl L̄T

∗ −τ 2 I B̄T
l Gl 0

∗ ∗ Tl 0
∗ ∗ ∗ −I

⎤

⎥⎥
⎦ ,

Θ12l =

⎡

⎢⎢
⎣

θ1WT
2lΦ1WT

1 Gl · · · θpWT
2lΦpWT

1 Gl

θ1 H̃ T
2l D̃

TΦ1WT
1 Gl · · · θ1 H̃ T

2l D̃
TΦpWT

1 Gl

0 · · · 0
0 · · · 0

⎤

⎥⎥
⎦ ,

Θ22l = diag{Tl, Tl , . . . , Tl︸ ︷︷ ︸
p

}.

Construct Pl and Gl in (3.32) with the ones in Theorem 3.2, one can easily obtain
Theorem 3.2. This completes the proof.

Remark 3.3 In order to obtain the minimum H∞ performance γ̃∗, one can solve the
following optimization problem:

http://dx.doi.org/10.1007/978-3-319-53123-6_2
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min ρ
s.t. (3.11), (3.12) and (3.31) with ρ=τ 2 (3.33)

and find the minimum H∞ performance γ̃∗ by γ̃∗ =
√

ρ∗N (1−λ)

1−λλ̄
.

3.4 Illustrative Examples

Example 3.1 Consider a spring-mass system, which was studied in [1]. Its structure
is shown in Fig. 3.5, where m1 and m2, x1 and x2 are the weights and positions of
mass 1 and mass 2, respectively. k1 and k2 are the spring constants of spring 1 and
spring 2, respectively. c denotes the viscous friction coefficient between the masses
and the horizontal surface. The plant noise is denoted by v1. It is assumed that x1 and
x2 are measured with noise v2. By denoting x(t) = [ x1(t) x2(t) ẋ1(t) ẋ2(t) ]T and
w(t) = [ v1(t) v2(t) ]T , we obtain the following state-space model for this spring-
mass system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

− c
m1

0
k2
m2

− k2
m2

0 − c
m2

⎤

⎥
⎥
⎦ x(t) +

⎡

⎢
⎢
⎣

0 0
0 0
1
m1

0
1
m2

0

⎤

⎥
⎥
⎦w(t),

y(t) =
[
1 0 0 0
0 1 0 0

]
x(t) +

[
0 d
0 d

]
w(t),

(3.34)

where d is constant. Our objective is to estimate the signal z = x1 + x2 with
m1 = 1,m2 = 0.5, k1 = k2 = 1, c = 0.5, d = 0.1. The above dynamic system can
be described by the following continuous-time LTI system:

ẋ(t) = Acx(t) + Bcw(t), (3.35)

where

Fig. 3.5 Spring mass system
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Ac =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

−2 1 −0.5 0
2 −2 0 −1

⎤

⎥⎥
⎦ , Bc =

⎡

⎢⎢
⎣

0 0
0 0
1 0
2 0

⎤

⎥⎥
⎦ .

Let the sampling period be h = 0.2s, we obtain the following discrete-time
system:

A =

⎡

⎢
⎢
⎣

0.9617 0.0191 0.1878 0.0012
0.0370 0.9629 0.0025 0.1789

−0.3732 0.1853 0.8678 0.0179
0.3528 −0.3553 0.0357 0.7840

⎤

⎥
⎥
⎦ ,

B =

⎡

⎢⎢
⎣

0.0193 0
0.0373 0
0.1903 0
0.3602 0

⎤

⎥⎥
⎦ ,C =

[
1 0 0 0
0 1 0 0

]
,

D =
[
0 0.1
0 0.1

]
, L = [ 1 1 0 0

]
.

It is seen that p = 2. We assume that y1 and y2 are measured by two sensors, which
are not located together and thus the outputs should be transmitted by sensors 1
and 2 via two communication channels. In this example, we assume that sensor 1
is full of power and the transmission of this sensor is always available. But sensor
2 has less energy and sensor 2 should not transmit the data for all the time. We
do simulation for 50 time steps for brevity. Here we suppose that sensor 2 is only
measuring the target plant but not transmitting data at the following time instants:
4th, 6th, 8th, 9th, 13th, 15th, 16th, 21th, 22th, 33th, 34th, 41th, 47th, and 48th.

From the transmissions of sensors 1 and 2, we have σ(k) ∈ {1, 2, 3}. It is assumed
that the packet dropout rate of the first channel is 20% and the second one is 10%.
From the transmission process discussed above, it is easy to verify that Ta = 50/14.
We choose λ = 0.97,μ = 1.1 and λ̄ = 1.028, such that Ta > T ∗

a = 3.4514 holds.
The exponential decay rate can be determined asχ = √λμ1/Ta = 0.9981. By solving
the optimization problem (3.33), the optimal H∞ performance level is obtained as
γ̃∗ = 6.4427. The corresponding filter gains are

A f =

⎡

⎢
⎢
⎣

0.3538 −0.1756 −0.0571 0.1231
−0.3208 0.2567 −0.3318 0.3158
−1.3938 0.5738 0.8427 0.0067
−1.0000 0.1480 −0.0778 0.8549

⎤

⎥
⎥
⎦ ,

B f =

⎡

⎢⎢
⎣

−0.5772 −0.2132
−0.7750 −0.4044
−0.8822 0.2859
−1.1941 0.3888

⎤

⎥⎥
⎦ ,C f =

⎡

⎢⎢
⎣

−0.9843
−0.9984
−0.3195
−0.1060

⎤

⎥⎥
⎦

T

.
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Fig. 3.6 The trajectories of z(k) and z f (k)
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Fig. 3.7 The trajectories of estimation error e(k)

In the simulation setup, we choose the following noise signal:

{
v1(k) = 2 sin(k),
v2(k) = 3 sin(2k).

The packet dropout process is randomly generated according to the given rates. The
initial condition of system (3.34) is assumed to be [ 0 0 0 0 ]T . The trajectories of z(k)
and z f (k) are depicted in Fig. 3.6. The trajectory of estimation error e(k) is shown in

Fig. 3.7. By simple calculation, we have γ̃ =
√

‖e(k)‖2
‖w(k)‖2 =

√
9.8267
325.7185 = 0.1737 < γ̃∗,

which shows the effectiveness of the proposed design method.
Now,we showhow to use ourmethod to the event-driven transmission.We assume

that multiple sensors are allowed to transmit data via their own channels simultane-
ously, and no communication constraint or channel occupation occurs.
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Example 3.2 We consider the system in [2] with some modification on the output
matrices C and D as follows:

A =
[

0.2 0.05
−0.02 0.3

]
, B =

[
0.1

−0.2

]
,

C =
[
0.5 −0.7
0 1

]
, D =

[
0.3
0.2

]
, L = [ 1 0.6 ].

We here aim to transmit the measurement signals of y1 and y2 based on the event-
driven transmission protocol proposed in [3], where the newmeasurement value will
be sent to the estimator if one of the following two conditions is satisfied:

∣∣yi (k) − ylast,i
∣∣ > δy,i , (3.36)

k − klast,i > δk,i , (3.37)

where ylast,i , i = 1, 2, is the last transmitted value of the i-th sensor at time instant
klast,i , δy,i and δk,i are the given magnitude and time threshold values respectively at
the i-th sensor node. These two threshold values are embedded into the sensors.

In this example, we set δy,1 = 0.05, δy,2 = 0.1, and δk,1 = δk,2 = 1. Then, we
have four subsystems for system (3.9). It is assumed that the packet dropout rate of the
first channel is 20% and the second one is 10%. We now choose λ = 0.97,μ = 1.03
and λ̄ = 1.0301, which yields T ∗

a = 0.9967. It follows from T ∗
a < 1 that the

scheduling can be arbitrary. By solving the optimization problem (3.33), the optimal
H∞ performance level is obtained as γ̃∗ = 0.4468. The corresponding filter gains
are

A f =
[

0.7258 0.4497
−1.4667 −0.8980

]
,

B f =
[−0.1199 −0.0951

0.3830 0.0303

]
,C f =

[−0.6473
−0.3790

]T
.

In the simulation setup, we take the noise signal as w(k) = 1.1e−0.1k sin(k). The
packet dropout process is randomly generated according to the given probability.
The initial condition of target plant is assumed to be [ 0 0 ]T . The trajectories of
z(k) and z f (k) are depicted in Fig. 3.8 by the event-driven transmission protocol.

By simple calculation, we have γ̃ =
√

‖e(k)‖2
‖w(k)‖2 =

√
0.0014
2.9925 = 0.0216 < γ̃∗, which

indicates that our design method can also be applied to the event-driven transmission
protocol. On the other hand, for given ᾱ1 = 0.5, the relation between the successful
transfer probability ᾱ2 and the minimal H∞ performance is established in Table3.1,
from which, we see that the more data successfully transferred to the filter is, the
better H∞ performance is.

In the scenario where no packet dropout occurs, we set ᾱ1 = 1 and ᾱ2 = 1. The
optimal H∞ performance level is obtained as γ̃∗ = 0.4383, which is smaller than
the ones in Table3.1. When all packets are dropped, it is seen that the optimization
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Fig. 3.8 The trajectories of z(k) and z f (k)

Table 3.1 Relations between ᾱ2 and the minimal H∞ index γ̃∗

ᾱ2 0.9 0.7 0.5 0.3 0.1

γ̃∗ 0.4732 0.4801 0.4907 0.4996 0.5017

problem (3.33) has no solution. This is because one of the eigenvalues of
�

Al + �

Cl

in (3.9) is 1, which is not stable. This is intuitively correct since one cannot design
an estimator to guarantee the estimation performance, if all packets are dropped and
thus all information is lost.

3.5 Conclusions

In this chapter, the H∞ filtering problem is addressed for the wireless networked
systems with energy constraint, and a time-varying transmission protocol has been
proposed to reduce the power consumption.A switched system approach is employed
to model the time-varying transmission process and a diagonal stochastic matrix is
introduced to model the random packet dropout phenomenon. The filter gains are
determined by solving a set of LMIs, which can be easily found in the existing
software, e.g., Matlab LMI toolbox. Two numerical examples have been given to
show the effectiveness of the proposed design method. The main results can also
be applied to the event-based communication transmission scenario. In the next
chapter, some other energy-efficient transmission protocols will be presented and
the corresponding filter design will be addressed.
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Chapter 4
H∞ Filtering with Energy Constraint
and Stochastic Gain Variations

4.1 Introduction

The filter gain variation and energy constraints are frequently encountered in wire-
less networked systems. In this chapter, these two issues are discussed in a unified
framework. New techniques for the nonuniform sampling and the measurement size
reduction are presented. In the filter design, the so-called random filter gain variation
problem is discussed. A stochastic switched system approach is first proposed to
capture the nonuniform sampling, the measurement size reduction and the random
filter gain variation phenomena. Based on the average dwell time scheme and the
Lyapunov stability theory, a sufficient condition is established such that the filtering
error system is exponentially stable in the mean-square sense with a prescribed H∞
disturbance attenuation level. The filter gain parameters are determined by solving
an optimization problem. Finally, the effectiveness of the proposed new filter design
method is demonstrated by a simulation study.

4.2 Problem Formulation

The filtering system structure under consideration is shown in Fig. 4.1, where the
plant is firstly sampled under time-varying sampling periods, and then only one
element of the sampled measurement is chosen to be transmitted to the remote filter.
The plant is described by the following continuous-time system:

{
ẋ(t) = Ax(t) + Bw(t),
z(t) = Lx(t),

(4.1)

where x(t) ∈ R
nx is the system state, z(t) ∈ R

nz is the signal to be estimated, and
w(t) ∈ R

nw is the disturbance signal, which belongs to L2[0,+∞). A, B and L are

© Springer International Publishing AG 2017
D. Zhang et al., Filtering and Control of Wireless Networked Systems,
Studies in Systems, Decision and Control 97, DOI 10.1007/978-3-319-53123-6_4
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Fig. 4.1 Structure of the filtering system

some constant matrices with appropriate dimensions. The local measurement signal
is assumed to be

y(tk) = Cx(tk) + Dw(tk), (4.2)

where y(tk) ∈ R
ny is the observation collected by the sensor at the discrete time

instants tk , k = 0, 1, 2, . . . ., C and D are constant matrices.
Let the sampling period be hk = tk+1 − tk . Then hk is a time-varying value for

nonuniform sampling. In this chapter, we assume that hk takes a value from a given
set, that is, hk = nkT0, where nk ∈ {i1, i2, . . . , in1}, i j , j = 1, 2, . . . , n1 are positive
integers, and T0 is defined as a basic sampling period.

By discretizing the system (4.1) with the sampling period hk and applying a
zero-order-hold, the following discrete-time system is obtained:

{
x(tk+1) = Akx(tk) + Bkw(tk),
z(tk) = Lx(tk),

(4.3)

where Ak = eAhk and Bk = ∫ hk0 eAτdτ . Let A0 = eAT0 and B0 = B
∫ T0
0 eAτdτ . Then

Ak = A0
nk and Bk =

nk−1∑

i=0
A0

i B0. It is seen that the values of Ak and Bk are explicitly

dependent on the sampling period hk . We now define a piecewise constant signal,
s(k) ∈ Ω1 = {1, 2, . . . , n1}. Then the system (4.3) can be re-written as

{
x(tk+1) = As(tk )x(tk) + Bs(tk )w(tk),
z(tk) = Lx(tk),

(4.4)

where As(tk ) = A0
is(tk ) and Bs(tk ) =∑is(tk )

l=1 Al−1
0 B0.

It has been shown in [1] that more power is needed if we want to transmit more
packets. Hence, if the packet size can be reduced, power can be saved. Here, only one
element of the sampled-data is selected and transmitted to the remote filter. Thus,
the selected signal is described as

ȳ(tk) = Πσ(tk )y(tk), (4.5)

where Πσ(tk ) is a structured matrix used to choose an element for transmission,
and σ(tk) is a piecewise signal belonging to Ωp2 = {1, 2, . . . , ny}. Specifically,
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Πσ(tk ) = [ 1 0 · · · 0 ] when the first element is selected, Πσ(tk ) = [ 0 1 · · · 0 ] when
the second element is selected, and so on. It is seen that σ(tk) is a switching signal
such that σ(k) ∈ Ω2 = {1, 2, . . . , ny}.
Remark 4.1 In the above measurement size reduction method, we assume that only
one element of the sampled data can be transmitted to the remote filter. One may also
extend the above to other general case. Aswe try to reduce the energy consumption of
the wireless network, the less information we transmit, the less energy are consumed.

Due to the fact that the uncertainty may occur in the filter implementation even
though the filter is well designed, we propose the following filter:

{
x f (tk+1) = (A f + α(tk)ΔA f

)
x f (tk) + (B f + α(tk)ΔB f

)
ȳ(tk),

z f (tk) = (C f + α(tk)ΔC f
)
x f (tk),

(4.6)

where x f (t) ∈ R
nx is the filter’s state and z f (t) ∈ R

nz is the estimation signal
from the filter. A f , B f and L f are the filter gain parameters to be determined. The
stochastic variable α(tk) is a binary variable. α(tk)) = 1 means the uncertainty in the
filter gain occurs, whileα(tk)) = 0means that no uncertainty occurs in the filter gain.
ΔA f , ΔB f , and ΔC f are the uncertainties in the filter gain, and they are assumed
to satisfy the following structure:

⎧
⎨

⎩

ΔA f = M1Δ1(tk)N1,

ΔB f = M2Δ2(tk)N2,

ΔC f = M3Δ3(tk)N3,

(4.7)

where Mi and Ni , i = 1, 2, 3 are some constant matrices with appropriate dimen-
sions. Δ1(tk), Δ2(tk) and Δ3(tk) are the uncertainties with ‖Δi (tk)‖ ≤ δi I , where
δi are positive scalars. In this chapter, the occurrence probability of the uncertainty
is assumed to be available for filter design, i.e., Pr ob{α(tk) = 1} = ᾱ is a known
scalar.

Remark 4.2 The filter uncertainty described above is an additive type, which can
be found in [2]. Recently, the multiplicative type filter gain variation has also been
addressed in [3]. Based on the main results proposed in this chapter, one may obtain
the corresponding filter design results for the multiplicative type uncertainty.

Based on the above discussions, for each s(tk) ∈ Ω1 andσ(tk) ∈ Ω2, the following
filtering error system is obtained:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

η(tk+1) =
(
Ãs(tk ),σ(tk ) + ᾱM̄Δ̄1(tk)N̄1,σ(tk )

)
η(tk)

+
(
B̃s(tk ),σ(tk ) + ᾱM̄Δ̄1(tk)N̄2,σ(tk )

)
w(tk)

+ (α(tk) − ᾱ)
(
M̄Δ̄1(tk)N̄1,σ(tk )η(tk) + M̄Δ̄1(tk)N̄2,σ(tk )w(tk)

)

e(tk) =
(
L̃ + ᾱM3Δ3(tk)N̄3

)
η(tk) + (α(tk) − ᾱ)M3Δ3(tk)N̄3η(tk),

(4.8)
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where

η(tk) = [ xT (tk) xTf (tk)
]T

, e(tk) = z f (tk) − z(tk),

Ãs(tk ),σ(tk ) =
[

As(tk ) 0
B f Πσ(tk )C A f

]
, B̃ρ(tk ),σ(tk ) =

[
Bs(tk )

B f Πσ(tk )D

]
,

M̄ =
[

0 0
M2 M1

]
, N̄1,σ(tk ) =

[
N2Πσ(tk )C 0

0 N1

]
,

Δ̄1(tk) =
[

Δ2(tk) 0
0 Δ1(tk)

]
, N̄2(tk) =

[
N2Πσ(tk )D

0

]
,

L̃ = [−L C f
]
, N̄3 = [0 N3

]
.

The system (4.8) has two switching signals, and it is usually not easy to analyze
such a complex system directly. As in Chap.3, we define amapping: (s(tk),σ(tk)) →
ρ(tk), and we can see that ρ(tk) ∈ Ω = {1, 2, . . . , n1×ny}. Then, for each ρ(tk) = i ,
we revise the system (4.8) as

⎧
⎪⎪⎨

⎪⎪⎩

η(tk+1) =
(
Ãi + ᾱM̄Δ̄1(tk)N̄1,i

)
η(tk) +

(
B̃i + ᾱM̄Δ̄1(tk)N̄2,i

)
w(tk)

+(α(tk) − ᾱ)
(
M̄Δ̄1(tk)N̄1,iη(tk) + M̄Δ̄1(tk)N̄2,iw(tk)

)
,

e(tk) =
(
L̃ + ᾱM3Δ3(tk)N̄3

)
η(tk) + (α(tk) − ᾱ)M3Δ3(tk)N̄3η(tk).

(4.9)

The system (4.9) now becomes a stochastic switched systemwith uncertainty and the
average dwell time approach will be utilized to derive the main results. Our filtering
purpose is to design the filter in form of (4.6) such that the system (4.9) has some
certain performance.

Definition 4.1 The system (4.9) is called exponentially stable in the mean-square
sense, if there exist some scalars π > 0 and 0 < χ < 1, such that the solution η of
system (4.9) satisfies E {‖η(tk)‖} < πχ(k−k0) ‖η(t0)‖, ∀tk ≥ t0.

Definition 4.2 For a given scalar γ > 0, the system (4.9) is said to be robustly expo-
nentially stable in the mean-square sense and achieves a prescribed H∞ performance

γ, if it is exponentially stable and under zero initial condition,
+∞∑

k=0
E{eT (tk)e(tk)} ≤

+∞∑

k=0
γ2wT (tk)w(tk) holds for all nonzero w(tk) ∈ l2[0,∞).

4.3 Filter Analysis and Design

In this section, a sufficient condition is obtained such that the filtering error sys-
tem (4.9) is exponentially stable in the mean-square sense with a prescribed H∞
performance level.

http://dx.doi.org/10.1007/978-3-319-53123-6_3
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Theorem 4.1 For some given scalars λi > 0, ᾱ > 0,μ ≥ 1, and τ > 0, if there
exist positive-definite matrices Pi and a positive scale ε > 0 such that the following
inequalities,

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

Ψ1 Ψ2 0 Ψ3 0 Ψ4 0
∗ −P−1

i 0 0 0 0 Ψ5

∗ ∗ −P−1
i 0 0 0 Ψ6

∗ ∗ ∗ −I 0 0 Ψ7

∗ ∗ ∗ ∗ −I 0 Ψ8

∗ ∗ ∗ ∗ ∗ ε̄ 0
∗ ∗ ∗ ∗ ∗ ∗ ε̄

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

< 0, (4.10)

Pi ≤ μPj , i 
= j, (4.11)

Ta > T ∗
a = − ln μ

ln λ
, (4.12)

hold for all i, j ∈ Ω , then the filtering error system (4.9) is exponentially stable in the
mean-square sense with a decay rate χ = √λbμ1/Ta and achieves a prescribed H∞
performance level γ = τ

√
(1−λa)

1−λb/λ
, where, λa = min

i∈Ω
{λi }, λb = max

i∈Ω
{λi }, λ > λb,

and

Ψ1 =
[−Pi,s 0

0 −γ2 I

]
, Ψ2 = [ Ãi B̃i

]T
, Ψ3 = [ L̃ 0

]T
,

Ψ4 =
[

εN̄ T
1 Λ̄1 εN̄ T

3 Λ3

εN̄ T
2 Λ̄1 0

]
, Ψ5 = [ ᾱM̄ 0

]
, Ψ6 = [ θM̄ 0

]
,

Ψ7 = [0 ᾱM̄
]
, Ψ8 = [0 θM̄

]
, ε̄ =

[−εI 0
∗ −εI

]
, θ = √

ᾱ(1 − ᾱ).

Proof For easy presentation, we use k to stand for tk . In order to derive the stability
condition for the system (4.9), we choose the following Lyapunov functional:

Vρ(k)(k) = ηT (k)Pρ(k)η(k). (4.13)

Then for each ρ(k) = i and ∀i ∈ Ω , it follows that
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E {Vi (k + 1) − λi Vi (k) + Υ (k)}
=
[(

Ãi + ᾱM̄Δ̄1(tk)N̄1,i

)
η(tk) +

(
B̃i + ᾱM̄Δ̄1(tk)N̄2,i

)
w(tk)

]T

×Pi
[(

Ãi + ᾱM̄Δ̄1(tk)N̄1,i

)
η(tk) +

(
B̃i + ᾱM̄Δ̄1(tk)N̄2,i

)
w(tk)

]

+ θ
[
M̄Δ̄1(tk)N̄1,iη(tk) + M̄Δ̄1(tk)N̄2,iw(tk)

]T

× Pi
[
M̄Δ̄1(tk)N̄1,iη(tk) + M̄Δ̄1(tk)N̄2,iw(tk)

]

+
[(

L̃ + ᾱM3Δ3(tk)N̄3

)
η(tk)

]T [(
L̃ + ᾱM3Δ3(tk)N̄3

)
η(tk)

]

+ θ
[(
M3Δ3(tk)N̄3

)
η(tk)

]T [(
M3Δ3(tk)N̄3

)
η(tk)

]

−λiη
T (tk)Piη(tk) − τ 2wT (tk)w(tk),

(4.14)

where Υ (k) = eT (tk)e(tk) − τ 2wT (tk)w(tk). By Lemma 2.1, one sees that

E {Vi (k + 1) − λi Vi (k) + Υ (k)} < 0 (4.15)

is equivalent to
Θ1 + Θ2Δ(k)ΘT

3 + Θ3Δ(k)ΘT
2 < 0, (4.16)

where

Θ1 =

⎡

⎢⎢⎢⎢
⎣

Ψ1 Ψ2 0 Ψ3 0
∗ −P−1

i 0 0 0
∗ ∗ −P−1

i 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥
⎦

,Θ2 =

⎡

⎢⎢⎢⎢
⎣

Ψ̄4

0
0
0
0

⎤

⎥⎥⎥⎥
⎦

,Θ3 =

⎡

⎢⎢⎢⎢
⎣

0
Ψ5

Ψ6

Ψ7

Ψ8

⎤

⎥⎥⎥⎥
⎦

T

,

with

Ψ̄4 =
[
N̄ T
1 N̄ T

3

N̄ T
2 0

]

,Δ(k) =
[

Δ̄1(tk) 0
0 Δ3(tk)

]
.

By some manipulations, (4.16) can be rewritten as

Θ1 + Θ2ΛΔ̄(k)ΘT
3 + ΘT

3 ΛΔ̄(k)Θ2 < 0, (4.17)

where Δ̄(k) = Δ(k)
Λ

. It follows that
∥∥∥Δ(k)

Λ

∥∥∥ ≤ I . Based on Lemma 2.2, one sees that

(4.17) holds if and only if (4.10) holds. Hence, we have

E {Vi (k + 1) − λi Vi (k) + Υ (k)} < 0. (4.18)

For the switching time instant k0 < k1 < · · · < kl < · · · < kt , l = 1, 2, . . . , t , we
define the switching number of ρ(k) over (k0, k) by Nρ(k0, k). Thus one has

http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_2
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E{Vl(k)} ≤ E{λk−kl
l Vl(kl)} −

k−1∑

s=kl

λk−s−1
l E{Υ (s)}. (4.19)

It follows from (4.11) and (4.19) that

E{Vρ(kl )(k)}
≤ λk−kl

ρ(kl )
E{Vρ(kl )(kl)} −

k−1∑

s=kl

λk−s−1
ρ(kl )

E{Υ (s)}

≤ λk−kl
ρ(kl )

μE{Vρ(kl−1)(kl)} −
k−1∑

s=kl

λk−s−1
ρ(kl )

E{Υ (s)}

≤ λk−kl
ρ(kl )

μ

[

λ
kl−kl−1

ρ(kl−1)
E{Vρ(kl−1)(kl−1)} −

kl−1∑

s=kl−1

λk−s−1
ρ(kl−1)

E{Υ (s)}
]

−
k−1∑

s=kl

λk−s−1
ρ(kl )

E{Υ (s)}
≤ · · · ≤ μNρ(k0,k)λk−kl

ρ(kl )
λ
kl−kl−1

ρ(kl−1)
· · · λk1−k0

ρ(k0)
Vρ(k0)(k0) − Θ(Υ ),

(4.20)

where

Θ(Υ ) = μN�(k0,k−1)λk−kl
ρ(kl )

l−1∏

s=1
λ
ks+1−ks
ρ(ks)

k1−1∑

s=k0

λk1−1−s
ρ(k0)

E{Υ (s)}

+μN�(k0,k−1)−1λk−kl
ρ(kl )

l−1∏

s=2
λ
k j+1−k j

ρ(k j )

k2−1∑

s=k1

λk2−1−s
ρ(k1)

E{Υ (s)}

+ · · · + μ0
k−1∏

s=kl

λk−1−s
ρ(kl )

E{Υ (s)}.

Now, we consider the exponential stability of system (4.9) with w(k) = 0. One
has

E{Vρ(kl )(k)}
≤ μNρ(k0,k)λk−kl

ρ(kl )
λ
kl−kl−1

ρ(kl−1)
· · · λk1−k0

ρ(k0)
Vρ(k0)(k0)

≤ μNρ(k0,k)λk−k0
b Vρ(k0)(k0)

≤ (μ1/Taλb
)k−k0 Vρ(k0)(k0)

= χ2(k−k0)Vρ(k0)(k0),

(4.21)

which yields E
{‖η(k)‖2} ≤ ϕ2

ϕ1
χ2(k−k0) ‖η(k0)‖2, where ϕ1 = min

i∈Ω
σmin(Pi ), ϕ2 =

max
i∈Ω

σmax(Pi ), χ = √λbμ1/Ta . Therefore, one can readily obtain χ < 1 from (4.14).

According to Definition 4.1, the filtering error system (4.9) is exponentially stable
in the mean-square sense with w(k) = 0.

For the H∞ performance level, we consider w(k) 
= 0. Under the zero initial
condition, it follows from (4.20) that
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k−1∑

s=k0

μNρ(s,k−1)λk−s−1
a E{eT (s)e(s)} ≤ τ 2

k−1∑

s=k0

μNρ(s,k−1)λk−s−1
b wT (s)w(s). (4.22)

Based on the average dwell time condition (4.12), it is easy to see Nρ(s,k−1)
k−s−1 < − ln λ

ln μ
.

Since μ > 1, we obtain ln μNρ(s,k−1) < ln λ−(k−s−1) and 1 < μNρ(s,k−1) < λ−(k−s−1).
Then, it can be readily seen that

k−1∑

s=k0

λk−s−1
a E{eT (s)e(s)} < τ 2

k−1∑

s=k0

(λb/λ)k−s−1 λk−s−1wT (s)w(s). (4.23)

Summing (4.23) from k = k0 + 1 to k = ∞ and changing the order of summation
yield

+∞∑

s=k0

E{eT (s)e(s)}
+∞∑

k=s+1

λk−s−1
a < τ 2

+∞∑

s=k0

wT (s)w(s)
+∞∑

k=s+1

(λb/λ)k−s−1.

(4.24)

Since
+∞∑

k=s+1
λk−s−1
a = 1

1−λa
and

+∞∑

k=s+1
(λb/λ)k−s−1 = 1

1−(λb/λ)
, we have

+∞∑

s=k0

E{eT (s)e(s)} < γ2
+∞∑

s=k0

wT (s)w(s), (4.25)

where γ = τ
√

1−λa
1−λ

. It is noted that λb < λ, which ensures γ > 0. Let k0 = 0,
the filtering error system (4.9) is exponentially stable in the mean-square sense and
achieves a prescribed H∞ performance level γ. This completes the proof.

The sufficient condition in Theorem 4.1 guarantees the existence of the filter if
certain conditions are satisfied but it does not give the filter gains. The filter gain is
given in the following theorem.

Theorem 4.2 For some given scalars λi > 0, ᾱ > 0,μ ≥ 1, and τ > 0, if there
exist positive-definite matrices Pi , any matrices Gi , and a positive scale ε > 0 such
that (4.11), (4.12) and the following inequalities,

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

Ψ1 Ψ̃2 0 Ψ̃3 0 Ψ̃4 0
∗ Pi − Gi − GT

i 0 0 0 0 Ψ̃5

∗ ∗ Pi − Gi − GT
i 0 0 0 Ψ̃6

∗ ∗ ∗ −I 0 0 Ψ̃7

∗ ∗ ∗ ∗ −I 0 Ψ̃8

∗ ∗ ∗ ∗ ∗ ε̄ 0
∗ ∗ ∗ ∗ ∗ ∗ ε̄

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

< 0, (4.26)
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hold for all i, j ∈ Ω , then the filtering problem is solvable. Moreover, the filter gains
are determined by A f = G−T

3 AF , B f = G−T
3 BF and C f = CF , where

Ψ̃2 =
[

Ψ̃21

Ψ̃22

]
, Ψ̃3 =

[
Ψ̃31

0

]
, Ψ̃4 =

[
Ψ̃41 Ψ̃42

Ψ̃43 0

]
,

Ψ̃5 = [ Ψ̃51 0
]
, Ψ̃6 = [ Ψ̃61 0

]
, Ψ̃7 = [ 0 ᾱM3

]
, Ψ̃8 = [0 θM3

]
,

with

Ψ̃21 =
[
AT
i G1i + CTΠ T

i BT
F AT

i G2i + CTΠ T
i BT

F
AT
F AT

F

]
,

Ψ̃22 = [ BT
i G1i + DTΠ T

i BT
F BT

i G2i + DTΠ T
i BT

F

]
,

Ψ̃31 = [−L CF
]T

, Ψ̃41 =
[

εCTΠ T
i N T

2 Λ2 0
0 εNT

1 Λ1

]
,

Ψ̃42 =
[

0
εNT

3 Λ3

]
, Ψ̃43 = [ εDTΠ T

i N T
2 Λ2 0

]
,

Ψ̃51 =
[

ᾱGT
3 M2 ᾱGT

3 M1

ᾱGT
3 M2 ᾱGT

3 M1

]
, Ψ̃61 =

[
θGT

3 M2 θGT
3 M1

θGT
3 M2 θGT

3 M1

]
.

Proof By left- and right- multiplying (4.10) with diag{I,GT , I,GT , I, I, I } and its
transpose, (4.10) is equivalent to

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

Ψ1 Ψ2Gi 0 Ψ3 0 Ψ4 0
∗ −GT

i Pi
−1G 0 0 0 0 GT

i Ψ5

∗ ∗ −GT
i Pi

−1Gi 0 0 0 GT
i Ψ6

∗ ∗ ∗ −I 0 0 Ψ7

∗ ∗ ∗ ∗ −I 0 Ψ8

∗ ∗ ∗ ∗ ∗ ε̄ 0
∗ ∗ ∗ ∗ ∗ ∗ ε̄

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

< 0. (4.27)

On the other hand, it is easy to see that the inequality −GT
i P

−1
i Gi ≤ Pi −Gi −GT

i
always holds for any matrix Gi . Then, (4.27) holds if

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

Ψ1 Ψ2Gi 0 Ψ3 0 Ψ4 0
∗ Pi − Gi − GT

i 0 0 0 0 GT
i Ψ5

∗ ∗ Pi − Gi − GT
i 0 0 0 GT

i Ψ6

∗ ∗ ∗ −I 0 0 Ψ7

∗ ∗ ∗ ∗ −I 0 Ψ8

∗ ∗ ∗ ∗ ∗ ε̄ 0
∗ ∗ ∗ ∗ ∗ ∗ ε̄

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

< 0, (4.28)

which is the same as (4.26) with
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Pi =
[
P1i P2i
∗ P3i

]
,G =

[
G1i G2i

G3 G3

]
,

AF = GT
3 A f , BF = GT

3 B f , LF=L f .

This completes the proof.

Remark 4.3 In Theorem 4.2, the existence condition for the filters is given in terms
of LMIs which is convex in the scalar τ 2. Therefore, one may solve the following
optimization problem:

min ρ,

s.t. (4.11), (4.12), (4.26) with ρ = τ 2 (4.29)

to obtain the filter gain parameters such that the H∞ disturbance attenuation level is
minimized. When the optimal ρ is obtained from the above optimization problem,
the designed filter guarantees that the filtering error system is exponentially stable

and achieves a prescribed H∞ performance level γ = τ
√

(1−λa)

1−λb/λ
.

4.4 An Illustrative Example

In this section, a simulation study is given to show the effectiveness of our new
design. We consider a satellite yaw angles control system with noise, which has been
studied in [4]. The state-space model of this system is given by

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 J1 0
0 0 0 J2

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

θ̇1(t)
θ̇2(t)
δ̇1(t)
δ̇2(t)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

−k k − f f
k −k f − f

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

θ1(t)
θ2(t)
δ1(t)
δ2(t)

⎤

⎥⎥
⎦

+

⎡

⎢⎢
⎣

0
0
1
0

⎤

⎥⎥
⎦ u(t) +

⎡

⎢⎢
⎣

0
0.1
0
0.1

⎤

⎥⎥
⎦w(t).

(4.30)

The satellite yaw angles control system consists of two rigid bodies jointed by a
flexible link. This link is modeled as a spring with torque constant k and viscous
damping f . θ1(t) and θ2(t) are the yaw angles for the main body and the instru-
mentation module of the satellite. Moreover, δ1(t) = θ̇1(t) and δ2(t) = θ̇2(t). u(t)
is the control torque, while J1 and J2 are the moments of the main body and the
instrumentation module, respectively.

Suppose that J1 = J2 = 1, k = 0.3, f = 0.004, the sampling period is T ∈
{0.05 s, 0.1 s} and the controller is

u(k) = 103
[−0.1591 −5.9343 −0.0172 −2.8604

]
x(k).
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The resulting discrete-time satellite yaw angles closed-loop system is given by

A1 =

⎡

⎢⎢
⎣

0.8008 −7.4165 0.0285 −3.5750
0.0003 0.9887 0 0.0495

−7.9682 −296.6333 0.1396 −142.9873
0.0132 −0.0817 0.0004 0.9673

⎤

⎥⎥
⎦ , B1 =

⎡

⎢⎢
⎣

0
0.0051

0
0.0050

⎤

⎥⎥
⎦ ,

A2 =

⎡

⎢⎢
⎣

0.2033 −29.6586 0.0140 −14.2964
0.0012 0.9871 0 0.0944

−15.9288 −592.9849 −0.7207 −285.8380
0.0188 −0.4451 0.0007 0.7980

⎤

⎥⎥
⎦ , B2 =

⎡

⎢⎢
⎣

0
0.0105
0.002
0.0098

⎤

⎥⎥
⎦ ,

and x(k) = [ θ1(k) θ2(k) δ1(k) δ2(k)
]T
.

Suppose that the remote filter is designed to estimate the signal

z(t) = Lx(t), (4.31)

where L = [1 1 0 0
]
. Two sensors are deployed to measure the target plant and the

local measurements are described by

y(t) = Cx(t) + Dw(t), (4.32)

where C =
[
1 0 0 0
0 1 0 0

]
, D =

[
0.8
1.0

]
.

For estimation purpose, the measurement size of sampled data is then reduced by
using the above scheme with Πσ(tk ) ∈ {[1 0

]
,
[
0 1
]}
. The probability of the filter

gain variation is taken as ᾱ = 0.5 and the uncertainties are Δi (tk) = rand , where
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−0.8

−0.6

−0.4

−0.2

0
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Time (tk)

z
z f

Fig. 4.2 Trajectories of z and its estimates z f
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“rand" is a random function, generating a value between 0 and 1. Such a function
will also be applied in the subsequent chapters. The uncertainty related matrices are

M1 = [0.1 0.2 0.1 0.1
]T

, M2 = [0.1 0.1 0.2 0.1
]T

, M2 = 0.2,

N1 = [0.2 0.1 0.2 0.1
]
, N2 = 0.1, N3 = [0.1 −0.1 −0.1 0.05

]
.

The mode jumping of two switching signals are assumed to be periodical and syn-
chronized. Each mode is activating for two time steps. Then, we have two subsys-
tems for (4.9), and Ta = 2. By choosing λ1 = 0.92, λ1 = 0.94, and μ = 1.05, we
have λa = 0.92 and λb = 0.94. It is seen that T ∗

a = 0.9512 < Ta , which means
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Fig. 4.3 Trajectory of estimation error e
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that (4.12) holds. By solving the optimization problem (4.29), we have H∞ level
γ = 1.9054. To illustrate the filtering performance, we take the disturbance signal
as w(tk) = rand − 0.5. Figure4.2 shows the trajectories of z and its estimate z f .
The trajectory of estimation error e is depicted in Fig. 4.3. 100 samples on the H∞
performance level γ are also depicted in Fig. 4.4. One sees that the performance of
the filtering error system is guaranteed.

4.5 Conclusions

We have discussed the H∞ filtering problem for a class of wireless networked sys-
tems with random filter gain variations and energy constraint. Techniques such as
time-varying sampling and measurement size reduction are proposed to reduce the
energy consumption. In order to capture the stochastic filter gain variations, a binary
stochastic variable is introduced. Based on the switched system theory, a sufficient
condition has been presented to guarantee the exponential stability of the filtering
error system and a prescribed H∞ performance level is also ensured. The filter gain
parameters are then determined by solving an optimization problem. Finally, a sim-
ulation study has been given to show the effectiveness of the new design method.
It is noted that in this chapter and Chap.3, the transmission process is designed
to be deterministic. In NCSs, a stochastic scheme may help improve the filtering
performance. The stochastic protocol will be discussed in the next chapter.
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Chapter 5
H∞ Filtering with Stochastic Signal
Transmissions

5.1 Introduction

In this chapter, the H∞ filtering problem is addressed for a class of networked sys-
tems, where the measurement signal is transmitted to the remote filter stochastically.
Unlike the last chapter, where the transmission process is deterministic, a new sto-
chastic strategy is proposed here. Based on the stochastic system analysis, a sufficient
condition is obtained such that the filtering error system is asymptotically stable in the
mean-square sense and achieves a prescribed H∞ performance level. A case study on
a continuous stirred-tank reactors (CSTR) system is given to show the effectiveness
of the proposed design.

5.2 Problem Formulation

Consider the following discrete-time system:

x(k + 1) = Ax(k) + Bw(k), (5.1)

where x(k) ∈ R
nx is the state, w(k) ∈ R

nw is the unknown disturbance signal
belonging to l2[0,+∞), and A and B are the constant matrices with appropriate
dimensions. Suppose that there arem distributed sensors for the system and the p-th
sensor produces its measurement as

yp(k) = Cpx(k) + Dpw(k), (5.2)

where yp ∈ R
np is the output signal, Cp and Dp are the constant matrices with

appropriate dimensions. To save energy, the measurement may not be transmitted to
the remote filter at each time instant. On the other hand, to estimate the state reason-
ably well, the filter needs recent measurements. Thus, a reasonable communication
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Fig. 5.1 Transmission process

protocol is that the measurement signal is transmitted at least once over Np time
steps, where Np > 0 is an integer. No other restrictions are made on the protocol,
implying that the transmission can happen at any time in these Np steps and is ran-
dom. One possible transmission scenario is depicted in Fig. 5.1, where yp(k) is the
measurement signal sequence and ỹp(k) is the transmitted one with Np = 3.

It follows from the transmission mechanism that there could be no transmission
at some time instants. In the case where no transmission occurs, the filter has to
use the last transmitted measurement signal as its input. Then, at each time instant
k, the filter input, ȳp(k), will be the most recent member of the transmitted subset
of
{
yp(k), yp(k − 1), . . . , yp(k − Np + 1)

}
. To reflect this random selection of one

member, a set of stochastic variables, αp,s(k) ∈ {0, 1}, s = 0, 1, . . . , Np − 1,
is introduced such that αp,s(k) = 1 if yp(k − s) is selected at k as the filter
input, which happens when there is transmission at k − s but none at k − s + 1,
k − s + 2, . . . , k; αp,s(k) = 0, otherwise. For the scenario considered before, the
selected ȳp(k) is shown in Fig. 5.1 as the 3rd line. The above filter input selection rule
implies that at each k, there is one and only one measurement point (most recent one)
is selected as the filter input, and equivalently, there is one and only one αp,s(k) = 1

with all other variables being zero, so that
Np−1∑

s=0
αp,s(k) = 1. In this chapter, the prob-

abilities Pr ob{αp,s(k) = 1} = E
{
αp,s(k) = 1

} = ᾱp,s are assumed to be known,
which is reasonable as the data on actual transmissions could be collected on any
given system and the estimates of these probabilities can be obtained with their fre-

quencies. Obviously,
Np−1∑

s=0
ᾱp,s = 1 is true. Moreover, different sensors are assumed

to operate independently of each other and their transmission sequences are then also
independent.

It follows from the above transmission protocol and input selection rule that the
filter input can be expressed as
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ȳp(k) = αp,0(k)yp(k) + αp,1(k)yp(k − 1) + · · · + αp,Np−1(k)yp(k − Np + 1).
(5.3)

The analysis is similar to the one in Chap.3.

Remark 5.1 It is seen that (5.3) reduces to measurement models in [1–3] when
αp,s(k) = 0 for all s = 1, . . . , Np − 1. Incorporating these statistics information to
our new filter design can achieve a better estimation performance than that of [1–3],
as will be shown in simulation later.

Remark 5.2 In this chapter, our attention is focused on the stochastic transmission
issue, but the packet may be lost under the networked environment. It should be
pointed out that the proposed modelling (5.3) has also captured the successive packet
dropout phenomenon. When one further considers the packet dropout problem, one
may replace Np in (5.3) by Mp + N̄p, where Mp is the upper bound of successive
packet dropout and N̄p is the largest transmission span.

Let N = max
p=1,2,...,m

{Np}. As in Chap.3, we define

X (k) = [
xT (k) xT (k − 1) · · · xT (k − N + 1)

]T
,

W (k) = [
wT (k) wT (k − 1) · · · wT (k − N + 1)

]T
.

Substituting (5.2)–(5.3) yields

ȳp(k) =
Np−1∑

s=0

αp,s(k)
{
CpEps X (k) + DpHpsW (k)

}
, (5.4)

where Eps = [
0 · · · 0 Inx 0 · · · 0 ] and Hps = [

0 · · · 0 Inw
0 · · · 0 ], in which all

elements are zeros except that they are Inx and Inw
in the (s+1)-th block, respectively.

Let αp(k) = [
αp,0(k),αp,1(k), . . . ,αp,Np−1(k)

]
. The the stochastic vector αp(k)

has Np possible realizations as

αp(k) ∈ {[1, 0, 0, . . . , 0] , . . . [0, 0, 0, . . . , 1]} . (5.5)

Define α(k) = [α1(k),α2(k), . . . ,αm(k)]. Then the total number of possible real-
izations of α(k) is N = N1 × N2 × · · · × Nm . Let

Ēα(k) = [ ET
1,α1(k)

ET
2,α2(k)

· · · ET
m,αm (k) ]T ,

H̄α(k) = [ HT
1,α1(k)

HT
2,α2(k)

· · · HT
m,αm (k) ]T .

One particular realization of α(k) means one sequence of α(k), which is a par-
ticular case of (Ēα(k), H̄α(k)). For ease of discussion, we define an integer set
Γ = {1, 2, . . . , N }, and introduce a new set of stochastic variables, βi (k) ∈
{1, 0}, i ∈ Γ , one variable for one possible realization of α(k), such that β1(k) = 1
if and only if αp(k) = [1, 0, . . . , 0], p = 1, 2, . . . ,m; β2(k) = 1 if and only if

http://dx.doi.org/10.1007/978-3-319-53123-6_3
http://dx.doi.org/10.1007/978-3-319-53123-6_3
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αp(k) = [1, 0, . . . , 0], p = 1, 2, . . . ,m − 1,αm(k) = [0, 1, . . . , 0]; and so on. By
our construction, there is one and only one realization of α(k) at any time instant, so

that
N∑

i=1
βi (k) = 1.

The probability, Pr ob{βi (k) = 1} = E{βi (k)} = β̄i , can be computed by the
probabilities of sensor transmissions, ᾱp,s . For example, we have two sensors and
each sensor transmits the measurement within two time steps stochastically with
their probabilities being ᾱ1,0, ᾱ1,1 and ᾱ2,0, ᾱ2,1, respectively. Then, it follows from
simple probability rules that β̄1 = ᾱ1,0ᾱ2,0, β̄2 = ᾱ1,0ᾱ2,1, β̄3 = ᾱ1,1ᾱ2,0 and
β̄4 = ᾱ1,1ᾱ2,1.

Based on the above development, we can express the filter input vector as

ȳ(k) =
N∑

i=1

βi (k)
{
C̄ Ēi X (k) + D̄ H̄iW (k)

}
, (5.6)

where C̄ = diag{C1,C2, . . . ,Cm} and D̄ = diag{D1, D2, . . . , Dm}.
In this chapter, we aim to estimate the following signal:

z(k) = Lx(k), (5.7)

where z(k) ∈ R
nz and L is a constant matrix with appropriate dimension. In order to

estimate the signal in (5.7), we propose the following filter:

{
x f (k + 1) = A f x f (k) + B f ȳ(k),
z f (k) = C f x f (k),

(5.8)

where x f (k) ∈ R
nx is the state of the filter and z f (k) ∈ R

nz is the estimate of z(k).
A f , B f , and C f are the filter parameters to be designed.

In order to derive the filtering error system, we rewrite state equation in (5.1) and
the estimation equation in (5.7) as

{
X (k + 1) = ĀX (k) + B̄W (k),
z(k) = L̄ X (k),

(5.9)

where

Ā =
[

A 0
InN 0

]
, B̄ =

[
B 0
0 0

]
, L̄ = [

L 0
]
.

Define the augmented state η(k) = [
XT (k) xTf (k)

]T
and let the estimation error

be e(k) = z(k) − z f (k). Then the filtering error system is given by

⎧
⎨

⎩
η(k + 1) = Ãη(k) + B̃W (k) +

N∑

i=1

(
βi (k) − β̄i

) [
Âiη(k) + B̂iW (k)

]
,

e(k) = L̃η(k),
(5.10)
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where

Ã =
[

Ā 0
B f C̄ Ē A f

]
, B̃ =

[
B̄

B f D̄ H̄

]
, L̃ = [

L̄ −C f
]
,

Âi =
[

0 0
B f C̄ Ēi 0

]
, B̂i =

[
0

B f D̄ H̄i

]
, Ē =

N∑

i=1
β̄i Ēi , H̄ =

N∑

i=1
β̄i H̄i .

Definition 5.1 The system (5.10) with w(k) = 0 is said to be asymptotically
stable in the mean-square sense, if the solution η(k) of system (5.10) satisfies
lim
k→∞E {‖η(k)‖} = η(0) for any initial condition.

Definition 5.2 For given scalars γ > 0, the system (5.10) is said to be asymptotically
stable in the mean-square sense and achieves a prescribed H∞ performance γ > 0,

if it is asymptotically stable and under zero initial condition,
+∞∑

s=0
E{eT (s)e(s)} ≤

+∞∑

s=0
γ2wT (s)w(s) holds for all nonzero w(k) ∈ l2[0,∞).

The filtering problem is stated as follows:
Filtering Problem: Design a filter in form of (5.8) such that the filtering error

system (5.10) is asymptotically stable in the mean-square sense and achieves a pre-
scribed H∞ performance level in the presence of stochastic transmissions.

5.3 Filter Analysis and Design

Based on the stochastic analysis method, a sufficient condition is established for the
solvability of considered filtering problem in the following theorem.

Theorem 5.1 For given scalars τ and β̄i , i = 1, 2, . . . , N, the filtering error system
(5.10) is asymptotically stable in the mean-square sense and achieves a prescribed
H∞ performance level γ = τ

√
N, if there exists a positive-definite matrix P such

that the following inequality,

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

Φ1 Φ2

√
β̄1Ξ1 · · ·

√
β̄NΞN Φ3

∗ −P−1 0 0 0 0
∗ ∗ −P−1 0 0 0

∗ ∗ ∗ . . . 0 0
∗ ∗ ∗ ∗ −P−1 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

< 0, (5.11)

holds, where

Φ1 =
[−P 0

0 −τ 2 I

]
, Φ2 = [

Ã B̃
]T

, Ξi = [
Âi B̂i

]T
, Φ3 = [

L̃ 0
]T

.
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Proof We first show the stability of the filtering error system (5.10) with w(k) = 0.
Suppose the following Lyapunov function for system (5.10):

V (k) = ηT (k)Pη(k). (5.12)

Then, one sees that

E {V (k + 1) − V (k)}
=
[
Ãη(k)

]T
P
[
Ãη(k)

]
− ηT (k)Pη(k)

+E

{[
N∑

i=1
φi (k) Âiη(k)

]T
P

[
N∑

i=1
φi (k) Âiη(k)

]}

,

(5.13)

where φi (k) = βi (k) − β̄i . On the other hand, we have

E

{[
N∑

i=1
φi (k) Âiη(k)

]T
P

[
N∑

i=1
φi (k) Âiη(k)

]}

= E

⎧
⎪⎪⎨

⎪⎪⎩

N∑

i=1
(φi (k))

2
[
Âiη(k)

]T
P
[
Âiη(k)

]

+
N∑

i=1

N∑

j=1, j 	=i
φi (k)φ j (k)

[
Âiη(k)

]T
P
[
Â jη(k)

]

⎫
⎪⎪⎬

⎪⎪⎭

=
N∑

i=1
β̄i

[
Âiη(k)

]T
P
[
Âiη(k)

]

−
[

N∑

i=1
β̄i Âiη(k)

]T
P

[
N∑

i=1
β̄i Âiη(k)

]

≤
N∑

i=1
β̄i

[
Âiη(k)

]T
P
[
Âiη(k)

]
.

(5.14)

Hence, we have

E {V (k + 1) − V (k)}
≤
[
Ãη(k)

]T
P
[
Ãη(k)

]

−ηT (k)Pη(k) +
N∑

i=1
β̄i

[
Âiη(k)

]T
P
[
Âiη(k)

]
.

(5.15)

It is seen that the right hand side of (5.15) is negative under (5.11), and then system
(5.10) is asymptotically stable in the mean-square sense.

Now we consider the H∞ performance of the filtering error system (5.10). It
follows from the above analysis method that
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E
{
V (k + 1) − V (k) + eT (k)e(k) − τ 2WT (k)W (k)

}

=
[
Ãη(k) + B̃W (k)

]T
P
[
Ãη(k) + B̃W (k)

]
− ηT (k)Pη(k)

+E

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
N∑

i=1

(
βi (k) − β̄i

) (
Âiη(k) + B̂iW (k)

)]T

×P

[
N∑

i=1

(
βi (k) − β̄i

) (
Âiη(k) + B̂iW (k)

)]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+
[
L̃η(k)

]T [
L̃η(k)

]
− τ 2WT (k)W (k)

≤ η̄T (k)

[
Φ1 + Φ2PΦT

2 +
N∑

i=1
β̄iΞi PΞ T

i + Φ3Φ
T
3

]
η̄(k),

(5.16)

where η̄(k) = [
η̄T (k) WT (k)

]T
. By Lemma 2.1, it is easy to see

E
{
V (k + 1) − V (k) + eT (k)e(k) − τ 2WT (k)W (k)

}
< 0. (5.17)

Summing both side of (5.17) from k = 0 to k = T leads to

E

{

V (k + 1) − V (0) +
T∑

k=0

{
eT (k)e(k) − τ 2WT (k)W (k)

}
}

< 0, (5.18)

which implies, by the zero initial condition and positiveness of V (k + 1), that

E

{
T∑

k=0

{
eT (k)e(k) − τ 2WT (k)W (k)

}
}

< 0. (5.19)

Letting T → +∞ gives

+∞∑

k=0

E
{
eT (k)e(k)

} ≤ τ 2WT (k)W (k) = γ2wT (k)w(k). (5.20)

Hence, the system (5.10) achieves a prescribed H∞ performance level as well. This
completes the proof.

Remark 5.3 In the filtering of stochastic transmitted systems, one of the main diffi-
culties is how to relate the transmission parameters to the filtering performance. In
Theorem 5.1, it is interesting to see that the filtering performance level is amonotonic
function of the largest transmission span N .

It should be pointed out that theorem 1 can not be used to determine the filter gain
directly due to the co-existence of P and P−1. In the following theorem, we present
the filter gain design algorithm.

http://dx.doi.org/10.1007/978-3-319-53123-6_2
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Theorem 5.2 For given scalars τ and β̄i , i = 1, 2, . . . , N, if there exist a positive-
definitematrix P and amatrix G with appropriate dimensions, such that the following
inequality, ⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

Φ1 Φ̄2

√
β̄1Ξ̄1 · · ·

√
β̄N Ξ̄N Φ̄3

∗ P̄ 0 0 0 0
∗ ∗ P̄ 0 0 0

∗ ∗ ∗ . . . 0 0
∗ ∗ ∗ ∗ P̄ 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

< 0, (5.21)

holds, then the filtering performance is solvable. Moreover, the filter gains are deter-
mined by A f = G−T

3 AF, B f = G−T
3 BF and C f = CF, where

Φ̄2 =
[

Φ̄1
2

Φ̄2
2

]
, Ξ̄i =

[
Ξ̄ 1

i
Ξ̄ 2

i

]
, Φ̄3 =

[
Φ̄1

3
0

]
, P̄ = P − G − GT ,

with

Φ̄1
2 =

[
ĀT G1 + ET BT

F M ĀT G2 + ET BT
F

AT
FM AT

F

]
,

Φ̄2
2 = [

B̄T G1 + H̄ T BT
F M B̄T G2 + H̄ T BT

F

]
,

Ξ̄ 1
i =

[
Ē T
i C̄

T BT
F M ĒT

i C̄
T BT

F
0 0

]
,

Ξ̄ 2
i = [

H̄ T
i D̄T BT

F M H̄T
i D̄T BT

F

]
,

Φ̄1
3 =

[
L̄T

−CT
F

]
, P =

[
P1 P2
∗ P3

]
,

G =
[

G1 G2

G3M G3

]
, M = [

I · · · I ] .

Proof By pre and post multiplying (5.11) with diag

⎧
⎨

⎩
I,GT ,GT , · · ·GT

︸ ︷︷ ︸
N

, I

⎫
⎬

⎭
and its

transpose, respectively, (5.11) is equivalent to

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

Φ1 Φ2G
√

β̄1Ξ1G · · ·
√

β̄NΞNG Φ3

∗ P̃ 0 0 0 0
∗ ∗ P̃ 0 0 0

∗ ∗ ∗ . . . 0 0
∗ ∗ ∗ ∗ P̃ 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

< 0, (5.22)

where P̃ = −GT P−1G. On other hand, it is easy to see that the inequality
−GT P−1GT ≤ P − G − GT , always hold for any matrix G. Then, (5.22) holds if
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⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

Φ1 Φ2G
√

β̄1Ξ1G · · ·
√

β̄NΞNG Φ3

∗ P̄ 0 0 0 0
∗ ∗ P̄ 0 0 0

∗ ∗ ∗ . . . 0 0
∗ ∗ ∗ ∗ P̄ 0
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

< 0, (5.23)

which is the same as (5.21) with

P =
[
P1 P2
∗ P3

]
,G =

[
G1 G2

G3M G3

]
,

AF = GT
3 A f , BF = GT

3 B f ,CF = C f .

This completes the proof.

Remark 5.4 In order to obtain the minimum H∞ performance γ∗, one can solve the
following optimization problem:

min ν
s.t. (5.21) with ν = τ 2 (5.24)

and find the minimum H∞ performance γ∗ by γ∗ = √
ν∗N .

5.4 An Illustrative Example

In this section, a modified CSTR system [4] is used to show the usefulness of the
proposed filter design. The CSTR is depicted in Fig. 5.2, and there is the following
series-parallel reactions:

A → B → C

2A → D
(5.25)

where A = cyclopentadiene, B = cyclopentenol, C = cyclopentanediol and D =
dicyclopentadiene. The reactor inflow contains only the eductA in low concentration
cA0. The desired product is the componentB, the intermediate component in the series
reaction. Assuming constant density and an ideal residence time distribution within
the reactor, the balance equations are given in [4] as follows:

dcA
dt = V̇

VR
(cA0 − cA) − k1cA − k3c2A,

dcB
dt = − V̇

VR
cB + k1cA − k2cB,

dϑ
dt = V̇

VR
(ϑ0 − ϑ) + kw AR

ζCpVR
(ϑK − ϑ)

− k1cAΔHAB

R +k2cBΔHBC

R +k3c2AΔHAD

R
ζCp

,

(5.26)
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Fig. 5.2 Continuous stirred tank reactor

where cA and cB are the concentrations of educt A and the desired product B within
the reactor and ϑ denotes the reactor temperature. The rate factors k1, k2 and k3
depend exponentially on the reactor temperature ϑ via Arrhenius’ law,

ki (ϑ) = k0i exp

(−EAi

Rϑ

)
. (5.27)

For the reaction system at hand, we let k1 = k2. The values of model parameters
and the steady-state values of the main operating point of the reactor are listed in
Table5.1.

Linearizing (5.26) at the operating point yields the following state space model:

ẋ(t) = Apx(t) + Bpu(t), (5.28)

Table 5.1 Model parameters and main operating point

Model parameters AR = 0.215m2

k01,2 = 1.287 × 1012 h−1 V = 10.01

k03 = 9.043 × 109 l/mol h−1 ϑ0 = 403.15K

EA1,2/R = 9758.3K kw = 4032 kJ/h m2 K

EA3/R = 8560.0K Main operating point

ΔHAB

R = 4.2 kJ/mol CAs = 1.235mol/l

ΔHBC

R = −11 kJ/mol CBs = 0.9mol/l

ΔHAD

R = −41.85 kJ/mol ϑs = 407.29K

ρ = 0.9342 kg/l V̇ /VR = 18.83 h−1

CP = 3.01 kJ/kg K CA0s = 5.1mol/l
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where

x =
⎡

⎣
x1
x2
x3

⎤

⎦ =
⎡

⎣
cA − cAs
cB − cBs
ϑ − ϑs

⎤

⎦ , u =
[
u1
u2

]
=
[

V̇ − V̇s

cA0 − cA0s

]
,

Ap and Bp are Jacobian matrices with

Ap =
⎡

⎣
−86.0962 0 4.2077
50.6146 −69.4446 −0.9974
172.2263 197.9985 −65.5149

⎤

⎦ ,

Bp =
⎡

⎣
0.3861 18.83

−0.0899 0
−0.4136 0

⎤

⎦ .

In the state estimation problem, onemay also treat the control input as the unknown
input signal. It is seen that the CSTR system is open loop stable, we choose u = 0 in
the simulation. By further considering the unknown disturbance in CSTR, we have
the following discrete-time state space model with sampling period T0 = 1min:

x(k + 1) = Ax(k) + Bw(k), (5.29)

where

A =
⎡

⎣
0.2747 0.0345 0.0206
0.2323 0.3152 0.0033
1.2566 1.1042 0.3671

⎤

⎦ , B =
⎡

⎣
1
1
1

⎤

⎦ .

In practice, it may be necessary for one to know the product concentration cB
for other use, but the direct measure of concentration cB by traditional chemical
approaches is usually expensive. An alternative yet non-expensive approach is to
use signal processing approaches to estimate the concentration. In this example, we
deploy two sensors tomeasure the educt concentration cA and the reactor temperature
ϑ. Our purpose is to estimate the product concentration cB. Hence, C1 = [

1 0 0
]
,

C2 = [
0 0 1

]
, D1 = 0.3, D2 = 0.2 and L = [

0 1 0
]
. Suppose the noise varies

in w(k) ∈ [−1, 1]. Note that this assumption is only for simulation purpose. One
may obtain the statistical information about the noise in real industrial fields. In this
example, we run the estimation task for 100min.

Suppose that the transmission occurs if one of the following events happens:

∥
∥yp(k) − ylast,p

∥
∥ ≥ δy,p, (5.30)

k − klast,p > θk,p, (5.31)

where ylast,p is the last transmitted signal of sensor p and klast,p is the last transmitted
time instant of sensor p. δy,p and θk,p are the measurement threshold and time
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Fig. 5.3 Trajectories of z(k) and z f (k)

threshold, respectively. In this example, we assume that no packet dropout occurs
for simulation simplicity. We set δy,1 = 0.1, δy,2 = 0.2; θk,1 = θk,2 = 1. It implies
that N1 = N2 = 2. By doing 200 random samples for the transmissions, we have
ᾱ1,0 = 0.69, ᾱ1,1 = 0.31; ᾱ2,0 = 0.44, ᾱ2,1 = 0.56.

With all information available, we solve the optimization problem (5.24) to get
γ∗ = 1.9069. The corresponding filter gains are

A f =
⎡

⎣
0.2171 0.0420 0.0167
0.4788 −0.0179 0.0159
6.0850 −4.3532 0.6279

⎤

⎦ , B f =
⎡

⎣
−1.2479 0.1254
−1.4373 0.1444
−4.2860 0.4305

⎤

⎦ ,

C f = [−1.5297 0.7602 0.0040
]
.

One sample trajectories of z(k) and z f (k) are shown inFig. 5.3.By simple calculation,

we have

√
100∑

k=0
eT (k)e(k)

/
100∑

k=0
wT (k)w(k) = 0.9342 < γ∗ = 1.9069. In order

to see how robust our method is, we run 500 simulations. In each simulation, the
transmission process is randomly generated and the transmission probabilities of
each simulation are different (also different from the statistical one). It is shown in
Fig. 5.4 that the true performance levels are smaller than the optimal one γ∗. Hence,
the estimator design is robust to the probability uncertainties from the simulation
point of view. Please note that if the transmission protocol in [1–3] is used, the
optimal H∞ performance is γ∗ = 2.0362, which is much larger than that of our
ones.
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Fig. 5.4 True performance level of 500 samples

Table 5.2 Relation between ᾱ1,0 and γ∗

δy,1 0.1 0.15 0.2 0.25 0.3

ᾱ1,0 0.69 0.58 0.49 0.43 0.39

γ∗ 1.9069 2.0926 2.1378 2.1670 2.1859

We are now on the position to see how the transmission parameters affect the
filtering performance. Here, we increase the measurement threshold δy,1. The rela-
tion between transmission probability and the filtering performance is listed in the
Table5.2. It is seen that themore frequently themeasurement is transmitted, the better
filtering performance one obtains. In this scenario, more energy would be consumed
by the sensors. The tradeoff between the energy consumption and the filtering per-
formance should be considered in design of the WSNs, for example, if one requires
that the filtering performance level is below 2.1, then, one may set δy,1 = 0.15 but
not necessary to choose δy,1 = 0.1.

5.5 Conclusions

In this chpater, the energy-efficient filtering for a class of networked systems has been
investigated, and a new stochastic transmission protocol is proposed and formulated.
A sufficient condition has been given such that the filtering error system is asymp-
totically stable in the mean-square sense and achieves a prescribed H∞ performance
level. A filter design has been presented and the effectiveness has been illustrated by a
case study of CSTR system. The relations between the transmission parameters, e.g.,
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the transmission interval, the transmission probability and the filtering performance
have been established.
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Chapter 6
H∞ Filtering with Stochastic Sampling
and Measurement Size Reduction

6.1 Introduction

In this chapter, a new approach is proposed for the H∞ filtering over wireless net-
works. Firstly, the local measurement is sampled under a nonuniform sampling
scheme. Then, one dimension of the measurement, which is selected and quantized
for transmission. Finally, each quantized measurement is transmitted to the remote
filter under a stochastic transmission protocol. A discrete-time stochastic Markovian
system model with uncertainty is presented to model the above network-induced
issues. Sufficient conditions are obtained such that the filtering error system is expo-
nentially stable in the mean-square sense and achieves a prescribed H∞ performance
level. The filter gain parameters are determined by solving an optimization problem.
The effectiveness of the proposed design is illustrated via a simulation study. The
similar aperiodic sampling and measurement size reduction schemes have been pro-
posed in Chap.4, in which a deterministic one was addressed, but these two schemes
are stochastically triggered in this chapter.

6.2 Problem Formulation

The structure of the filtering system is shown in Fig. 6.1 The continuous-time plant
is described by the following linear time-invariant system:

{
ẋ(t) = Ax(t) + Bw(t),
z(t) = Lx(t),

(6.1)

where x(t) ∈ R
nx is the system state, z(t) ∈ R

nz is the signal to be estimated, and
w(t) ∈ R

nw is the disturbance signal, which belongs to L2[0,+∞). A, B and L are
some constant matrices with appropriate dimensions. The local measurement signal
is assumed to be

© Springer International Publishing AG 2017
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Z
Z f

e

Fig. 6.1 Structure of the filtering system

y(tk) = Cpx(tk) + Dpw(tk), (6.2)

where y(tk) ∈ R
ny is the observation collected by the sensor at the discrete time

instants tk , k = 0, 1, 2, · · · . Cp and Dp are constant matrices.
Define the measurement sampling period as hk = tk+1 − tk . Then hk is a time-

varying value. In this chapter, we assume that hk takes a value from a given set.
Specifically, let hk = nkT0, where nk ∈ {i1, i2, · · · , in1}, i j , j = 1, 2, · · · , n1, are
positive integers, and T0 is a basic sampling period.

We now discretize the system (6.1) with the sampling period hk and applying a
zero-order-holder, the following discrete-time system is obtained:

{
x(tk+1) = Akx(tk) + Bkw(tk),
z(tk) = Lx(tk),

(6.3)

where Ak = eAhk , and Bk = B
∫ hk
0 eAτdτ . Let A0 = eAT0 and B0 = B

∫ T0
0 eAτdτ .

Then Ak = A0
nk and Bk =

nk−1∑

i=0
A0

i B0. It is seen that the values of Ak and Bk are

determined by the sampling period hk . Define a piecewise constant signal ρ(k) ∈
Ω1 = {1, 2, · · · , n1}. Then we have the following switched system model for (6.3):

{
x(tk+1) = Aρ(tk )x(tk) + Bρ(tk )w(tk),
z(tk) = Lx(tk),

(6.4)

where Aρ(tk ) = A0
iρ(tk ) and Bρ(tk ) =∑iρ(tk )

l=1 Al−1
0 B0.

In this chapter, the piece-wise constant signal ρ(tk) is assumed to satisfy aMarkov-
ian process, with the transition probabilities Θ1 = [ρi j

]
:

⎧
⎨

⎩

ρi j = Pr ob {ρ(tk+1) = j | ρ(tk) = i} ,
n1∑

j=1
ρi j = 1, ρi j ≥ 0. (6.5)
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Due to the fact that the size of measurement signal yp(tk) is nyp , when such a mea-
surement is directly transmitted to the estimator, the sensor may still consume much
power. As in Chap.4, we also choose one dimension for transmission at each time
instant. Hence, the selected signal is described as

ȳ(tk) = Πσ(tk )y(tk), (6.6)

where Πσ(tk ) is a structured matrix used to choose one element for transmission,
and σ(tk) is a piecewise signal belonging toΩ2 = {1, 2, · · · , ny}. Specifically, when
the first element is selected, then Πσ(tk ) = [ 1 0 · · · 0 ], when the second element is
selected, then Πσ(tk ) = [ 0 1 · · · 0 ], and so on. It is seen that σ(tk) is a switching sig-
nal, and it is also assumed to be aMarkovian process with the transition probabilities
Θ2 = [λi j

]
:

⎧
⎨

⎩

λi j = Pr ob {λ(tk+1) = t | λ(tk) = s} ,
ny∑

t=1
λst = 1, λst ≥ 0.

(6.7)

Remark 6.1 The above nonuniform sampling and measurement size reduction are
performed in a stochastic way, which are different from the ones in Chap.4. The
stochastic modeling approach may help obtain a better estimation performance.

The measurement size reduction technique introduced above is an effective
method to reduce the measurement size. Another effective way to reduce the packet
size is the quantization scheme. In this chapter, the logarithmic quantizer Q(•) is
used to further reduce the packet size. The quantizer is assumed to be symmetric and
time-invariant, i.e., Q(v) = −Q(−v). The set of quantization levels is described as

U = {±κi ,κi = ρiκ0, i = 0,±1,±2, ...}
∪ {±κ0} ∪ {0} , 0 < ρ < 1,κ0 > 0.

(6.8)

The quantized output Q(•) is given by

Q(v) =
⎧
⎨

⎩

κi , if 1
1+δ

κi < v < 1
1−δ

κi , v > 0,
0, if v = 0,
−Q(−v), if v < 0,

(6.9)

where δ = 1−ρ
1+ρ

< 1, with the quantization density 0 < ρ < 1. The quantized mea-
surement signal is described by

ŷ(tk) = Q(ȳ(tk)). (6.10)

Define the quantization error ẽ = ŷ(tk) − ȳ(tk). Then ŷ(tk) = (I + Δ(tk))ȳ(tk),
where ‖Δ(tk)‖ ≤ Λ. The transmission of quantized measurement is finally sched-
uled by a stochastic transmission protocol, i.e., the final measurement signal used by

http://dx.doi.org/10.1007/978-3-319-53123-6_4
http://dx.doi.org/10.1007/978-3-319-53123-6_4


100 6 H∞ Filtering with Stochastic Sampling and Measurement Size Reduction

the filter is

ỹ(tk) = α(tk)Q(ȳ(tk)), (6.11)

where α(tk) ∈ {0, 1} is a binary stochastic variable, and Pr ob{α(tk) = 1} = ᾱ is
called the transmission rate, which can be set by the designer. It is easy to see that
more energy can be saved if a coarser quantizer is chosen, and more energy is saved
if one sets a smaller transmission rate.

We are now on the stage to design the following filter:

{
x f (tk+1) = A f x̂ f (tk) + B f ỹ(tk),
z f (tk) = L f x̂ f (tk),

(6.12)

where x f (t) ∈ R
nx is the filter’s state, and z f (t) ∈ R

nz is the estimation signal from
the filter. A f , B f and L f are the filter gain parameters to be determined. Based on the
above discussions, for each i ∈ Ω1 and s ∈ Ω2, the following filtering error system
is obtained:

⎧
⎪⎨

⎪⎩

η(tk+1) = Ãi,sη(tk) + B̃i,sw(tk)

+(α(tk) − ᾱ)
{
Ãsη(tk) + B̃sw(tk)

}
,

e(tk) = L̃η(tk),

(6.13)

where

η(tk) = [ xT (tk) xTf (tk)
]T

, e(tk) = z f (tk) − z(tk),
Ãi,s = Ai,s + ᾱMΔ(tk)N1s, B̃i,s = Bi,s + ᾱMΔ(tk)N2s,

Ãs = Ās + MΔ(tk)N1s, B̃s = B̄s + MΔ(tk)N2s,

Ai,s =
[

Ai 0
ᾱB f ΠsC A f

]
, Bi,s =

[
Bi

ᾱB f Πs D

]
,

Ās =
[

0 0
B f ΠsC 0

]
, B̄s =

[
0

B f Πs D

]
, L̃ = [−L C f

]
,

M =
[

0
B f

]
, N1s = [ΠsC 0

]
, N2s = Πs D.

The System (6.13) is an uncertain Markovian jump system with two Markovian
chains, and the following useful definitions are needed in the derivation of the main
results.

Definition 6.1 The filtering error system (6.13) with w(tk) = 0 is said to be mean-
square exponentially stable if there exist constants c > 0 and β > 1 such that, for
every initial conditionχ(0) = (η(0),σ(0), ρ(0)), the corresponding solution satisfies
E
{‖η(tk)‖2

∣∣χ(0)
} ≤ cβ−k‖η(0)‖2,∀k ≥ 0, where β is the decay rate.
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Definition 6.2 For given a scalar γ > 0, the filtering error system (6.13) is said to be
mean-square exponentially stable with an H∞ noise attenuation level γ if it is mean-

square exponentially stable andunder zero initial condition,
∞∑

k=0
E
{
eT (tk)e(tk)

∣∣χ(0)
}

< γ2
∞∑

k=0
wT (tk)w(tk)holds.

The filtering problem is formulated as follows.
Filtering Problem: design the filter in form of (6.12) such that the filtering error

system (6.13) is exponentially stable in the mean-square sense and achieves a pre-
scribed H∞ performance level in the presence of stochastic sampling, stochastic
measurement size reduction, signal quantization and stochastic signal transmission.

6.3 Filter Analysis and Design

In this section, a sufficient condition is firstly established such that the filtering error
system (6.13) is exponentially stable in the mean-square sense with a prescribed H∞
performance level.

Theorem 6.1 For the given scalars ρi j ≥ 0,λi j ≥ 0, ᾱ > 0, δ ≥ 1, and γ > 0, the
filtering error system (6.13) is exponentially stable in the mean-square sense with
the decay rate δ2, and achieves a prescribed H∞ performance level γ, if there exist
positive-definite matrices Pi,s and a positive scale ε > 0 such that the following
inequalities,

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 0
∗ −P̄−1 0 0 0 ᾱM
∗ ∗ −P̄−1 0 0 θM
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥
⎥
⎦

< 0 (6.14)

hold for all i ∈ Ω1, s ∈ Ω2, where

Ψ1 =
[−Pi,s 0

0 −γ2 I

]
, Ψ2 = δ

[
Ai,s Bi,s

]T
, Ψ3 = θδ

[
Ās B̄s

]T
,

Ψ4 = [ L̃ 0
]T

, Ψ5 = δ
[
N1sΛε N2sΛε

]T
,

P̄ =
n1∑

j=1

n2∑

t=1
ρi jλst Pj,t , θ = √

ᾱ(1 − ᾱ).

Proof Let ψ(tk) = δkη(tk) and v(tk) = δkw(tk). Choose the following Lyapunov
function:
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V (tk) = ψT (tk)P(ρ(tk),σ(tk))ψ(tk). (6.15)

We have

E {ΔV (tk)}
= E {V (tk+1)| ψ(tk), ρ(tk),σ(tk)} − V (tk)
= E
{
δ2(k+1)ηT (tk+1)P(ρ(tk+1),σ(tk+1))η(tk+1)

∣∣ψ(tk), ρ(tk),σ(tk)
}

−ψT (tk)P(ρ(tk),σ(tk))ψ(tk)

=
{
δ Ãi,sψ(tk) + δ B̃i,sv(tk)

}T
P̄
{
δ Ãi,sψ(tk) + δ B̃i,sv(tk)

}

+ θ2
{
δ Ãsψ(tk) + δ B̃sv(tk)

}T
P̄
{
δ Ãsψ(tk) + δ B̃sv(tk)

}

−ψT (tk)P(ρ(tk),σ(tk))ψ(tk)

=
[

ψ(tk)
v(tk)

]T
⎡

⎢
⎣

δ
(
Ãi,s

)T

δ
(
B̃i,s

)T

⎤

⎥
⎦ P̄
[
δ
(
Ãi,s

)
δ
(
B̃i,s

)] [ψ(tk)
v(tk)

]

+
[

ψ(tk)
v(tk)

]T
⎡

⎢
⎣

θδ
(
Ãs

)T

θδ
(
B̃s

)T

⎤

⎥
⎦ P̄
[
θδ
(
Ãs

)
θδ
(
B̃s

)] [ψ(tk)
v(tk)

]

+
[

ψ(tk)
v(tk)

]T [− Pi,s + L̃T L̃ 0
0 −γ2 I

] [
ψ(tk)
v(tk)

]

−
[

ψ(tk)
v(tk)

]T [
L̃T L̃ 0
0 0

] [
ψ(tk)
v(tk)

]

+ γ2vT (tk)v(tk)

=
[

ψ(tk)
v(tk)

]T {
Ξ −
[
L̃T L̃ 0
0 0

]}[
ψ(tk)
v(tk)

]
+ γ2vT (tk)v(tk),

(6.16)

where

Ξ =
⎡

⎢
⎣

δ
(
Ãi,s

)T

δ
(
B̃i,s

)T

⎤

⎥
⎦ P̄
[
δ
(
Ãi,s

)
δ
(
B̃i,s

)]

+
⎡

⎢
⎣

θδ
(
Ãs

)T

θδ
(
B̃s

)T

⎤

⎥
⎦ P̄
[
θδ
(
Ãs

)
θδ
(
B̃s

)]

+
[−Pi,s + L̃T L̃ 0

0 −γ2 I

]
.

It is seen that Ξ < 0 guarantees E {ΔV (tk)} < 0 when v(tk) = 0. By Lemma 2.1,
Ξ < 0 is equivalent to

http://dx.doi.org/10.1007/978-3-319-53123-6_2
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⎡

⎢⎢
⎣

Ψ1 Ψ2 Ψ3 Ψ4

∗ −P̄−1 0 0
∗ ∗ −P̄−1 0
∗ ∗ ∗ −I

⎤

⎥⎥
⎦

+

⎡

⎢⎢
⎣

Ψ̃5

0
0
0

⎤

⎥⎥
⎦

Δ
Λ

⎡

⎢⎢
⎣

0
ᾱM
θM
0

⎤

⎥⎥
⎦

T

+

⎡

⎢⎢
⎣

0
ᾱM
θM
0

⎤

⎥⎥
⎦

Δ
Λ

⎡

⎢⎢
⎣

Ψ̃5

0
0
0

⎤

⎥⎥
⎦

T

< 0,

(6.17)

where Ψ̃5 = δ
[
N1sΛ N2sΛ

]T
. It follows from Lemma 2.2 that (6.17) holds if and

only if there exists a scalar ε > 0 such that

⎡

⎢⎢
⎣

Ψ1 Ψ2 Ψ3 Ψ4

∗ −P̄−1 0 0
∗ ∗ −P̄−1 0
∗ ∗ ∗ −I

⎤

⎥⎥
⎦

+ ε

⎡

⎢
⎢
⎣

Ψ̃5

0
0
0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

Ψ̃5

0
0
0

⎤

⎥
⎥
⎦

T

+ ε−1

⎡

⎢
⎢
⎣

0
ᾱM
θM
0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
ᾱM
θM
0

⎤

⎥
⎥
⎦

T

< 0.

(6.18)

By Lemma 2.1, we have that (6.14) guarantees (6.18), i.e., E {ΔV (tk)} < 0 holds.
Then

E {V (tk+1)| ψ(tk), ρ(tk),σ(tk)} < V (tk). (6.19)

By deduction, it follows from (6.19) that

E {V (tk)| ψ(0), ρ(0),σ(0)} < V (0). (6.20)

Let β1 = min
{
λmin(Pi,s)

}
and β2 = λmax(P(ρ(0),σ(0))). Then it follows from (20)

and the factψ(0) = η(0) thatE
{‖η(tk)‖2

∣∣ η(0), ρ(0),σ(0)
} ≤ β2

β1

(
δ2
)−k ‖η(0)‖. By

Definition 6.1, the filtering error system (6.13) is mean-square exponentially stable
and achieves a decay rate β = δ2 ≥ 1.

Now, to establish the H∞ performance of the filtering error system, we consider
the following performance index:

J = E

{
N∑

k=0

[
eT (tk)e(tk) − γ2wT (tk)w(tk)

]∣∣χ(0)

}

, (6.21)

where χ(0) = {η(0), ρ(0),σ(0)}. Under the zero initial condition, we have

http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_2
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J = E

{
N∑

k=0

[
eT (tk)e(tk) − γ2wT (tk)w(tk) + δ−2kΔV (tk)

]∣∣χ(0)

}

−E

{
N∑

k=0

[
δ−2kΔV (tk)

]∣∣χ(0)

}

= E

{
N∑

k=0

[
ηT (tk)L̃T L̃η(tk) − γ2wT (tk)w(tk) + δ−2kγ2vT (tk)v(tk)

]∣∣∣χ(0)

}

+E

{
N∑

k=0

[

δ−2k

[
ψ(tk)
v(tk)

]T {
Ξ −
[
L̃T L̃ 0
0 0

]}[
ψ(tk)
v(tk)

]]∣∣∣∣∣
χ(0)

}

−E

{
δ−2NV (tN+1) +

N∑

k−1
δ−2(k−1)(1 − δ−2)V (tk)

∣
∣χ(0)

}
+ V (0)

≤
{

N∑

k=0

[
η(tk)
w(tk)

]T
Ξ

[
η(tk)
w(tk)

]∣∣
∣∣∣
χ(0)

}

.

Therefore, Ξ < 0 guarantees J < 0. Let N → ∞, and we have

E

{ ∞∑

k=0

[
eT (tk)e(tk)

]∣∣χ(0)

}

≤ γ2
∞∑

k=0

wT (tk)w(tk). (6.22)

Thus, the filtering error system (6.13) is exponentially stable in the mean-square
sense and achieves a prescribed H∞ performance level γ.

One also sees that it is difficult to obtain the filter gains from Theorem 6.1 due to
the fact that (6.14) is not an LMI. We now propose the filter gain design algorithm
in the following theorem.

Theorem 6.2 For the given scalars ρi j ≥ 0,λi j ≥ 0, ᾱ > 0, δ ≥ 1, and γ > 0, if
there exist positive-definite matrices Pis , any matrices G of appropriate dimensions,
and a positive scale ε > 0 such that the following inequalities,

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Ψ1 Ψ̃2 Ψ̃3 Ψ̃4 Ψ̃5 0
∗ T̄ 0 0 0 Ψ̃6

∗ ∗ T̄ 0 0 Ψ̃7

∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥
⎥
⎦

< 0, (6.23)

hold for all i ∈ Ω1, s ∈ Ω2, then our filtering problem is solvable, and the filter gains
are determined by A f = G−T

3 AF, B f = G−T
3 BF and L f = LF , where

Ψ̃2 =
[

Ψ̃21

Ψ̃22

]
, Ψ̃3 =

[
Ψ̃31

Ψ̃32

]
, Ψ̃4 =

[
Ψ̃41

0

]
, Ψ̃5 =

[
Ψ̃51

Ψ̃52

]
,

Ψ̃6 = ᾱ

[
BF

BF

]
, Ψ̃7 = θ

[
BF

BF

]
, T = P̄ − G − GT ,
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with

Ψ̃21 = δ

[
AT
i G1 + ᾱCTΠ T

s BT
F AT

i G2 + ᾱCTΠ T
s BT

F
AT
F AT

F

]
,

Ψ̃22 = δ
[
BT
i G1 + ᾱD̄TΠ T

s BT
F BT

i G2 + ᾱD̄TΠ T
s BT

F

]
,

Ψ̃31 = θδ

[
CTΠ T

s BT
F CTΠ T

s BT
F

0 0

]
,

Ψ̃32 = θδ
[
D̄TΠ T

s BT
F D̄TΠ T

s BT
F

]
,

Ψ̃41 =
[−LT

CT
F

]
, Ψ̃51 = δ

[
CTΠ T

s Λε
0

]
, Ψ̃52 = δDTΠ T

s Λε,

Pi,s =
[
P1i,s P2i,s
∗ P3i,s

]
,G =
[
G1 G2

G3 G3

]
.

Proof By left- and right- multiplying (6.14) with diag{I, I,GT ,GT , I, I, I } and its
transpose, (6.14) is equivalent to

⎡

⎢
⎢⎢⎢⎢⎢
⎣

Ψ1 Ψ2G Ψ3G Ψ4 Ψ5 0
∗ −GT P̄−1G 0 0 0 ᾱGT M
∗ ∗ −GT P̄−1G 0 0 θGT M
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥
⎥⎥⎥⎥⎥
⎦

< 0. (6.24)

On the other hand, the inequality,−GT P̄−1G ≤ P̄ − G − GT , always holds for any
matrix G. Then, (6.24) holds if

⎡

⎢⎢⎢⎢
⎢⎢
⎣

Ψ1 Ψ2G Ψ3G Ψ4 Ψ5 0
∗ P̄ − G − GT 0 0 0 ᾱGT M
∗ ∗ P̄ − G − GT 0 0 θGT M
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥
⎥⎥
⎦

< 0, (6.25)

which is the same as (6.23) with

Pi,s =
[
P1i,s P2i,s
∗ P3i,s

]
,G =
[
G1 G2

G3 G3

]
,

AF = GT
3 A f , BF = GT

3 B f , LF = L f .

This completes the proof.

Remark 6.2 In Theorem 6.2, the existence condition for the filters is given in terms
of LMIs which is convex in the scalar γ2. Therefore, one may solve the following
optimization problem:
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min ρ,

s.t. (6.23) with ρ = γ2 (6.26)

to obtain the filter gain parameters such that the H∞ disturbance attenuation level is
minimized. When the optimal ρ is obtained from the above optimization problem,
the designed filter ensures that the filtering error system is exponentially stable and
achieves a prescribed H∞ performance level ρ.

6.4 An Illustrative Example

Consider a satellite yaw angles control system with noise, which has been discussed
in Chap.4. The state-space model is described as follows:

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 J1 0
0 0 0 J2

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

θ̇1(t)
θ̇2(t)
δ̇1(t)
δ̇2(t)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

−k k − f f
k −k f − f

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

θ1(t)
θ2(t)
δ1(t)
δ2(t)

⎤

⎥⎥
⎦

+

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦ u(t) +

⎡

⎢
⎢
⎣

0
0.1
0
0.1

⎤

⎥
⎥
⎦w(t).

(6.27)

The satellite yaw angles control system consists of two rigid bodies jointed by a
flexible link. This link is modeled as a spring with torque constant k and viscous
damping f . θ1(t) and θ2(t) are the yaw angles for the main body and the instru-
mentation module of the satellite. Moreover, δ1(t) = θ̇1(t) and δ2(t) = θ̇2(t). u(t)
is the control torque, while J1 and J2 are the moments of the main body and the
instrumentation module, respectively.

Suppose that J1 = J2 = 1, k = 0.3, f = 0.004, the sampling period is T ∈
{0.05s, 0.1s} and the controller is

u(k) = 103
[−0.1591 −5.9343 −0.0172 −2.8604

]
x(k).

The resulting discrete-time satellite yaw angles closed-loop system is given by

A1 =

⎡

⎢⎢
⎣

0.8008 −7.4165 0.0285 −3.5750
0.0003 0.9887 0 0.0495

−7.9682 −296.6333 0.1396 −142.9873
0.0132 −0.0817 0.0004 0.9673

⎤

⎥⎥
⎦ , B1 =

⎡

⎢⎢
⎣

0
0.0051

0
0.0050

⎤

⎥⎥
⎦ ,

A2 =

⎡

⎢⎢
⎣

0.2033 −29.6586 0.0140 −14.2964
0.0012 0.9871 0 0.0944

−15.9288 −592.9849 −0.7207 −285.8380
0.0188 −0.4451 0.0007 0.7980

⎤

⎥⎥
⎦ , B2 =

⎡

⎢⎢
⎣

0
0.0105
0.002
0.0098

⎤

⎥⎥
⎦ ,

http://dx.doi.org/10.1007/978-3-319-53123-6_4
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and x(k) = [ θ1(k) θ2(k) δ1(k) δ2(k)
]T
.

Suppose that the remote filter is designed to estimate the signal

z(t) = Lx(t), (6.28)

by using the measurements

y(t) = Cx(t) + Dw(t), (6.29)

where L = [1 1 0 0
]
, C =
[
1 0 0 0
0 1 0 0

]
and D =

[
0.2
0.3

]
.

0 10 20 30 40 50 60 70 80 90 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (k)

A
m

pl
itu

de

z
z f

Fig. 6.2 Trajectories of z and its estimates z f
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In this example, the transition probability of the above two sampling peri-

ods is assumed to be Θ1 =
[
0.6 0.4
0.4 0.6

]
. For estimation purpose, the measurement

size of sampled data is then reduced by using a stochastic scheme, and Πσ(tk ) ∈{[
1 0
]
,
[
0 1
]}
. The transition probability of the measurement reduction policy

is taken as Θ2 =
[
0.5 0.5
0.7 0.3

]
. The selected measurement is further quantized by a

quantization density level ρ = 0.9. The transmission rate is set to be ᾱ = 0.7. By
solving the optimization problem (6.26), we have γ∗ = 2.3016. We only run 100
time steps for the sequential simulation. The unknown disturbance signal is chosen
as w(tk) = rand − 1, where rand is a random function generating a value between
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Fig. 6.4 100 samples for the performance level γ
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Fig. 6.5 The relation between the quantizer parameter ρ and the filtering performance level γ
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[0, 1]. Figure6.2 shows the trajectories of z and its estimates z f . The trajectory of
estimation error e is depicted in Fig. 6.3. 100 samples on the H∞ performance level
γ are also depicted in Fig. 6.4. One sees that the performance of the filtering error
system is guaranteed. The relation between the quantizer parameter ρ and the filtering
performance level γ is depicted in Fig. 6.5. One can see that the filtering performance
becomes worse when the quantizer parameter ρ is small.

6.5 Conclusions

We have studied the energy-efficient H∞ filtering for a class of wireless networked
systems with energy constraint. Due to the limited power in sensors, the techniques
such as stochastic sampling, measurement size reduction, signal quantization and
stochastic signal transmission have been used simultaneously. A new Markovian
system approach has been proposed to model the above issues and sufficient condi-
tions have been obtained such that the filtering error system is exponentially stable
in the mean-square sense and achieves a prescribed H∞ performance level. The filter
gain parameters have been determined by solving an optimization problem. Finally, a
simulation study has been given to show the effectiveness of the new design method.



Chapter 7
Distributed Filtering with Communication
Reduction

7.1 Introduction

Chapters3–6 present several filter designs for the wireless networked control sys-
tems with energy constraints in a centralized framework. In the last a few years, the
distributed filtering in wireless sensor networks (WSNs) has received a tremendous
attention due to its potential applications in various areas such as target surveil-
lance, information collection and environment monitoring [1]. In such a distributed
filtering system, each sensor has the ability to measure, communicate and com-
pute. Compared with the centralized filtering system, the distributed filters can share
their measurements and local estimates with each other. Such a cooperative way can
achieve a better estimation performance. Nevertheless, the sensor nodes are usually
deployed in a large area, and replacing the sensor battery is very difficult. Hence, the
power limitation should also be considered in the distributed filtering problem. The
main difficulties arise from the complicated coupling among different sensors due
to information sharing.

In this chapter, a new energy-efficient distributed filtering algorithm is proposed.
Firstly, a nonuniform sampling approach is used such that the measurements of the
target plant are sampled with a time-varying sampling period taking a finite number
of values. Secondly, only one element of each sampled measurements is selected and
then quantized for transmission. Finally, the quantizedmeasurement is transmitted to
the estimator intermittently to further save the constrained power in sensors. Based
on the switched system approach, a sufficient condition is presented to guarantee
that the filtering error system is exponentially stable in the mean-square sense with
a prescribed H∞ performance level. It is shown that the filter gain parameters can
be determined by a set of linear matrix inequalities (LMIs), which are numerically
efficient. A simulation example is given to verify the effectiveness of the proposed
design. Moreover, a detailed energy consumption study is performed for various
energy saving schemes.

© Springer International Publishing AG 2017
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7.2 Problem Formulation

A sensor network is deployed to monitor the plant, and there is no centralized estima-
tion center in this network, see the filtering structure in Fig. 7.1. Standard definitions
for the sensor networks are given as follows. Let the topology of a given sensor net-
work be represented by a direct graph π(k) = (υ,χ,Aσ(k)) of order n with the set of
sensors υ = {1, 2, . . . , n}, set of edges χ ⊆ υ × υ, and a weighted adjacency matrix
A

σ(k) = [aσ(k)
pq ]with nonnegative adjacency elements aσ(k)

pq . The edge of π is denoted
by (p, q). The adjacency elements associated with the edges of the graph are aσ(k)

pq =
1 ⇔ (p, q) ∈ υ, when sensor p can receive information from sensor q. On the other
hand, aσ(k)

pq = 0 if sensor p can not receive information from sensor q, which may be
out of sensing range or the q-th sensor does not broadcast information. Moreover, we
assume aσ(k)

pp = 1 for all p ∈ υ. The set of neighbors of node p ∈ υ plus the node itself
are denoted by Np = {q ∈ δ : (p, q) ∈ υ}. σ(k) : [0,∞) → Ω3 = {1, 2, . . . , N } is
a switching signal. For each l ∈ Ω3, Al = [ali j ] is a square matrix representing the
topology of the sensor network. The number of the topologies is determined directly
by how one regulates the working mode of the sensors.

Consider the following continuous-time system as our target plant:

{
ẋ(t) = Ax(t) + Bw(t),
z(t) = Lx(t),

(7.1)

where x(t) ∈ R
nx is the system state, z(t) ∈ R

nz is the signal to be estimated, and
w(t) ∈ R

nw is the disturbance signal, which belongs to L2[0,+∞). A, B and L
are some constant matrices with appropriate dimensions. A typical sensor network
has n sensor nodes deployed to monitor the plant (7.1) according to the following
observation model:

yp(tk) = Cpx(tk), p = 1, 2, . . . , n, (7.2)

where yp(tk) ∈ R
np is the local measurement collected by the p-th sensor at the

discrete time instants tk , k = 0, 1, 2, . . . . Cp are constant matrices. Define the mea-
surement sampling period as hk = tk+1 − tk . Then hk is a time-varying value. In this

Fig. 7.1 A structure of distributed filtering in sensor networks
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chapter, we assume that hk takes a value from a given set. Specifically, let hk = nkT0,
where nk ∈ {i1, i2, . . . , it }, i j , j = 1, 2, . . . , t are positive integers, and T0 is the so-
called basic sampling period.

We now discretize the system (7.1) with the sampling period hk and applying a
zero-order-holder to have the following discrete-time system:

{
x(tk+1) = Akx(tk) + Bkw(tk),
z(tk) = Lx(tk),

(7.3)

where Ak = eAhk and Bk = ∫ hk0 eAτ Bdτ . Let A0 = eAT0 and B0 = B
∫ T0
0 eAτdτ .

Then Ak = A0
nk , Bk =

nk−1∑

i=0
A0

i B0. It is seen that the values of Ak and Bk are deter-

mined by the sampling period hk . Define a piecewise constant signal s(k) ∈ Ω1 =
{1, 2, . . . , t}. Then we have the following switching system model for (7.3):

{
x(tk+1) = As(tk )x(tk) + Bs(tk )w(tk),
z(tk) = Lx(tk),

(7.4)

where As(tk ) = A0
is(tk ) and Bs(tk ) =∑is(tk )

l=1 Al−1
0 B0.

Since the major power consumption in sensor nodes comes from the communi-
cation process, energy can be saved by reducing the transmitted information size
at the sampling time instant tk . One sees that size of measurement signal yp(tk) in
(7.2) is nyp , when such a measurement is directly transmitted to the estimator, much
energy may still be consumed. Now, a useful measurement size reduction protocol
is introduced. Without loss of generality, only one dimension of the measurement
is selected for transmission at each time, and the remaining measurement elements
will be selected and transmitted at the rest of time. Hence, the signal after selection
is

ȳp(tk) = Πρp(tk )
yp(tk), (7.5)

where Πρp(tk )
is a matrix introduced to choose one element for transmission, and

ρp(tk ), p = 1, 2, . . . , n, are piecewise signals belonging to Ωp2 = {1, 2, . . . , np}.
Specifically, Πρp(tk )

= [ 1 0 · · · 0 ] when the first element is selected,
Πρp(tk )

= [ 0 1 · · · 0 ] if the second element is selected, and so on. It is seen that
Πρp(tk )

are a set of switching signals.
It it well known that the quantization technique is also an important method to

reduce the packet size. In this chapter, the selected measurement is then quantized
before transmission, and the logarithmic quantizer is used. The quantizer Qp(•) is
assumed to be symmetric and time-invariant, i.e., Qp(−vp) = −Qp(−vp). For any
p = 1, 2, . . . , n, the set of quantization levels are described as

U p = {±κ
p
i ,κ

p
i = ρ

p
i κ

p
0 , i = 0,±1,±2, ...

}

∪ {±κ
p
0

} ∪ {0} , 0 < ρp < 1,κp
0 > 0.

(7.6)
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The quantized output of Qp(•) is given by

Qp(vp) =
⎧
⎨

⎩

κ
p
i , if 1

1+δ p κ
p
i < vp < 1

1−δ p κ
p
i , vp > 0,

0, if vp = 0,
−Qp(−vp), if vp < 0,

(7.7)

where δp = 1−ρp

1+ρp
< 1with the quantization density 0 < ρp < 1. The quantizedmea-

surement is described by

ŷp(tk) = Qp(ȳp(tk)). (7.8)

Define the quantization error ep = ŷp(tk)−ȳp(tk). Then ŷp(tk) = (I + Δp(tk))ȳp(tk),
where

∥∥Δp(tk)
∥∥ ≤ δp. By further considering the possible measurement missing

phenomenon and disturbance signal from the environment, the final measurement
signal used by the filter is given by

ỹp(tk) = αp(k)Qp(ȳp(tk)) + Dpw(tk), (7.9)

whereαp(k) is a binary stochastic variable taking the values in {0, 1}. The occurrence
probability, Pr ob{αp(k) = 1} = ᾱp is known as the successful transmission rate of
the local measurement and is assumed to be known for filter design.

We are now on the stage to propose the filter. Traditionally, the p-th filter is
designed as

{
x̂ p(tk+1) = ∑

q∈Np

apq K pq x̂q(tk) + ∑

q∈Np

apq Hpq ỹq(tk),

ẑ p(tk) = L px̂ p(tk),
(7.10)

where x̂ p(tk) ∈ R
nx is the filter’s state, ẑ p(tk) ∈ R

nz is the estimation from the p-th
sensor, and ỹp(tk) is the input signal of filter. It is seen that the above filter is designed
based on the assumption that the sampled data is transmitted to other filter at each
sampling time instant. If the sensors do not frequently communicate with each other
at each sampling time instant, power will be saved. In the scenario where the sensors
do not communicate with each other, the topology will change. Hence, we design
the following filter:

{
x̂ p(tk+1) = ∑

q∈Np

aσ(tk )
pq K σ(tk )

pq x̂q(tk) + ∑

q∈Np

aσ(tk )
pq Hσ(tk )

pq ỹq(tk),

ẑ p(tk) = Lσ(tk )
p x̂ p(tk),

(7.11)

where σ(k) ∈ Ω3 = {1, 2, . . . , N } is a piecewise signal, and N is an integer.

Remark 7.1 In order to save energy in WSNs, sensors are not required to communi-
cate with other ones at each sampling instant tk . It follows that the topology changes
when the sensors communicate with each other at some time instant but sometimes
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they do not. Clearly, the most energy-efficient case is the scenario where the sensors
do not communicate with each other, but the corresponding filtering performance
is the worst. A tradeoff should be made between the filtering performance and the
energy consumption.

To simplify the presentations, we define the following notations:

x̄(tk) = [ xT (tk) xT (tk) · · · xT (tk) ]T , x̂(tk) = [ x̂ T1 (tk) x̂ T2 (tk) · · · x̂ Tn (tk) ]T ,
z̄(tk) = [ zT (tk) zT (tk) · · · zT (tk) ]T , ẑ(tk) = [ ẑT1 (tk) ẑT2 (tk) · · · ẑTn (tk) ]T ,
Ās(tk ) = diag{As(tk ), As(tk ), . . . , As(tk )}, B̄s(tk ) = [ BT

s(tk )
BT
s(tk )

· · · BT
s(tk ) ]T ,

C̄ = diag{C1,C2, . . . ,Cn}, D̄ = [ DT
1 DT

2 · · · DT
n ]T ,

Δ(tk) = diag{Δ1(tk),Δ2(tk), . . . , Δn(tk)}, L̄ = diag{L , L , . . . , L},
Tα= diag{ᾱ1, ᾱ2, . . . , ᾱn}, Φp= diag{0, . . . , 1︸︷︷︸

p−th

, . . . , 0},

Πρ(tk ) = diag{Πρ1(tk ),Πρ2(tk ), . . . ,Πρn(tk )},

H̄σ(tk ) =
⎡

⎢
⎣

aσ(tk )
11 Hσ(tk )

11 · · · aσ(tk )
1n Hσ(tk )

1n
...

. . .
. . .

aσ(tk )
n1 Hσ(tk )

n1 · · · aσ(tk )
nn Hσ(tk )

nn

⎤

⎥
⎦,

K̄σ(tk ) =
⎡

⎢
⎣

aσ(tk )
11 K σ(tk )

11 · · · aσ(tk )
1n K σ(tk )

1n
...

. . .
. . .

aσ(tk )
n1 K σ(tk )

n1 · · · aσ(tk )
nn K σ(tk )

nn

⎤

⎥
⎦,

L̄σ(tk ) = diag{Lσ(tk )
1 , Lσ(tk )

2 , . . . , Lσ(tk )
n },

and a mapping {ρ1(tk), ρ2(tk), . . . , ρn(tk)} → ρ(tk). With the above notations, the
following filtering error system is obtained:

⎧
⎪⎪⎨

⎪⎪⎩

x̃ tk+1) = Ãs(tk )σ(tk )ρ(tk ) x̃(tk) + Mσ(tk )Δ(tk)Nρ(tk ) x̃(tk) + B̃s(tk )σ(tk )w(tk)

+
n∑

p=1

(
αp(k) − ᾱp

) [
Ã p,σ(tk )ρ(tk ) x̃(tk) + Mp,σ(tk )Δ(tk)Nρ(tk ) x̃(tk)

]
,

ẽ(tk) = L̃σ(tk ) x̃(tk),

(7.12)

where
x̃(tk) = [ x̄ T (tk) x̂ T (tk)

]T
, ẽ(tk) = z̄(tk) − ẑ(tk),

Ãs(tk )σ(tk )ρ(tk ) =
[

Ās(tk ) 0
H̄σ(tk )TαΠρ(tk )C̄ K̄σ(tk )

]
,

Ã p,σ(tk )ρ(tk ) =
[

0 0
H̄σ(tk )ΦpΠρ(tk )C̄ 0

]
,

B̃s(tk )σ(tk ) =
[

B̄s(tk )

H̄σ(tk ) D̄

]
, Mσ(tk ) =

[
0

H̄σ(tk )Tα

]
,

Nρ(tk ) = [Πρ(tk )C̄ 0
]
, Mp,σ(tk ) =

[
0

H̄σ(tk )Φp

]
,

L̃σ(tk ) = [ L̄ −L̄σ(tk )
]
.
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Remark 7.2 A unified switched system has now been proposed to model the nonuni-
form sampling, measurement size reduction and communication rate reduction as
well as signal quantization and measurement missing phenomena. A similar mod-
eling has been proposed for the centralized filtering problem in Chap.4. Here a
distributed solution will be given.

It is noted that system (7.12) has three switching signals. It is not easy to
find a stability condition for such a hybrid system. Now, we define a mapping:
{s(tk),σ(tk), ρ(tk)} → m(tk), where m(tk) is a new piecewise signal. Then system
(7.12) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̃(tk+1) =
[
Ãm(tk ) + Mm(tk )Δ(tk)Nm(tk )

]
x̃(tk) + B̃m(tk )w(tk)

+
n∑

p=1

(
αp(k) − ᾱp

) [
Ã p,m(tk ) + Mp,m(tk )Δ(tk)Nm(tk )

]
x̃(tk),

ẽ(tk) = L̃m(tk ) x̃(tk).

(7.13)

According to the definitions of s(tk),σ(tk) and ρ(tk), one sees that m(tk) ∈ Ω ={

1, 2, . . . , t ×
(

n∏

p=1
np

)

× N

}

in general. It is seen that system (7.13) is a switched

system, and the average dwell time scheme is used to analyze this system.

Definition 7.1 The system (7.13) is called robustly exponentially stable in themean-
square sense, if there exist some scalars π > 0 and 0 < χ < 1, such that the solution
x̃ of system (7.13) satisfies E {‖x̃(tk)‖} < πχ(k−k0) ‖x̃(t0)‖, ∀tk ≥ t0.

Definition 7.2 For a given scalar γ > 0, the system (7.13) is said to be robustly expo-
nentially stable in the mean-square sense and achieves a prescribed H∞ performance

γ, if it is exponentially stable and under zero initial condition,
+∞∑

k=0

1
nE{ẽT (tk)ẽ(tk)} ≤

+∞∑

k=0
γ2wT (tk)w(tk) holds for all nonzero w(tk) ∈ l2[0,∞).

The filtering problem is now formulated as follows.
Filtering Problem: design the filter in form of (7.11) such that the filtering error

system (7.13) is robustly exponentially stable in the mean-square sense and achieves
a prescribed H∞ performance level in the presence of the nonuniform sampling,
the measurement size reduction, the signal quantization, the communication rate
reduction as well as the measurement losses.

7.3 Filter Analysis and Design

In this section, a sufficient condition is established such that the filtering error sys-
tem (7.13) is exponentially stable in the mean-square sense with a prescribed H∞
performance level.

http://dx.doi.org/10.1007/978-3-319-53123-6_4
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Theorem 7.1 For some given scalars τ > 0,μ > 1, 0 < λi < 1, δp > 0 and 0 <

λ < 1, if there exist positive-definite matrices Pi and a positive scale ε such that the
following inequalities,

⎡

⎢⎢
⎢⎢⎢⎢
⎣

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 0
∗ −P−1

i 0 0 0 Mi

∗ ∗ −nI 0 0 0
∗ ∗ ∗ −P̄i 0 Ψ6

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥
⎥⎥⎥⎥
⎦

< 0, (7.14)

Pi ≤ μPj , i 
= j, (7.15)

Ta > T ∗
a = − ln μ

ln λ
, (7.16)

hold for all i, j ∈ Ω , then the filtering error system (7.13) is exponentially stable
in the mean-square sense with decay rate χ = √λbμ1/Ta and achieves a prescribed

H∞ performance level γ = τ
√

(1−λa)

1−λb/λ , where,λa = min
i∈Ω

{λi },λb = max
i∈Ω

{λi },λ > λb,

and

Ψ1 =
[−λi Pi 0

0 −τ 2 I

]
, Ψ2 = [ Ãi B̃i

]T
,

Ψ3 = [ L̃ i 0
]T

, Ψ4 =
[

θ1 ÃT
1i · · · θn ÃT

ni
0 · · · 0

]
,

Ψ5 =
[
NT
i Λε
0

]
, Ψ6 =

⎡

⎢⎢⎢
⎣

θ1M1i

θ2M2i
...

θnMni

⎤

⎥⎥⎥
⎦

, P̄i = diag{P−1
i , . . . , P−1

i },

Λ = diag{δ1, δ2, . . . , δn}, θp = √ᾱp(1 − ᾱp), p = 1, 2, . . . , n.

Proof In order to derive the stability condition for system (7.13), we choose the
following Lyapunov functional:

Vm(k)(k) = x̃ T (k)Pm(k) x̃(k). (7.17)

Then for each m(k) = i and ∀i ∈ Ω , it follows that
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E {Vi (k + 1) − λi Vi (k) + Υ (k)}
=
[
Ãi x̃(tk) + MiΔ(tk)Ni x̃(tk) + B̃iw(tk)

]T

× Pi
[
Ãi x̃(tk) + MiΔ(tk)Ni x̃(tk) + B̃iw(tk)

]

+
n∑

p=1
θ2p

[
Ã p,i x̃(tk) + Mp,iΔ(tk)Ni x̃(tk)

]T

× Pi
[
Ã p,i x̃(tk) + Mp,iΔ(tk)Ni x̃(tk)

]

+
[
L̃ i x̃(tk)

]T [
L̃ i x̃(tk)

]
− λ2

i x̃
T (tk)Pi x̃(tk) − τ 2wT (tk)w(tk),

(7.18)

where Υ (k) = 1
n ẽ

T (tk)ẽ(tk) − τ 2wT (tk)w(tk). In the latter development, we use k
as tk for short. By Lemma 2.1, it is easy to see that

E {Vi (k + 1) − λi Vi (k) + Υ (k)} < 0 (7.19)

is equivalent to
Θ1 + Θ2Δ(k)ΘT

3 + Θ3Δ(k)ΘT
2 < 0, (7.20)

where

Θ1 =

⎡

⎢
⎢
⎣

Ψ1 Ψ2 Ψ3 Ψ4

∗ −P−1
i 0 0

∗ ∗ −nI 0
∗ ∗ ∗ −P̄i

⎤

⎥
⎥
⎦ ,Θ2 =

⎡

⎢
⎢
⎣

Ψ̄5

0
0
0

⎤

⎥
⎥
⎦ ,Θ3 =

⎡

⎢
⎢
⎣

0
Mi

0
Ψ6

⎤

⎥
⎥
⎦ ,

with

Ψ̄5 =
[
NT
i
0

]
.

Equation (7.20) can be rewritten as

Θ1 + Θ2ΛΔ̄(k)ΘT
3 + ΘT

3 ΛΔ̄(k)Θ2 < 0, (7.21)

where Δ̄(k) = Δ(k)
Λ

. It follows that
∥∥∥Δ(k)

Λ

∥∥∥ ≤ I . Based on Lemma 2.2, one sees that

(7.21) holds if and only if (7.14) holds. Hence, we have

E {Vi (k + 1) − λi Vi (k) + Υ (k)} < 0. (7.22)

For the switching time instant k0 < k1 < · · · < kl < · · · < kt , l = 1, 2, . . . , t , let
the switching numbers over (k0, k) be N�(k0, k). One has

E{Vl(k)} ≤ E{λk−kl
l Vl(kl)} −

k−1∑

s=kl

λk−s−1
l E{Υ (s)}. (7.23)

http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_2
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It follows from (7.15) and (7.23) that

E{Vm(kl )(k)}
≤ λk−kl

m(kl )
E{Vm(kl )(kl)} −

k−1∑

s=kl

λk−s−1
m(kl )

E{Υ (s)}

≤ λk−kl
m(kl )

μE{Vm(kl−1)(kl)} −
k−1∑

s=kl

λk−s−1
m(kl )

E{Υ (s)}

≤ λk−kl
m(kl )

μ

[

λ
kl−kl−1

m(kl−1)
E{Vm(kl−1)(kl−1)} −

kl−1∑

s=kl−1

λk−s−1
m(kl−1)

E{Υ (s)}
]

−
k−1∑

s=kl

λk−s−1
m(kl )

E{Υ (s)}
≤ · · · ≤ μN�(k0,k)λk−kl

m(kl )
λ
kl−kl−1

m(kl−1)
· · · λk1−k0

m(k0)
Vm(k0)(k0) − Θ(Υ ),

(7.24)

where

Θ(Υ ) = μN�(k0,k−1)λk−kl
m(kl )

l−1∏

s=1
λ
ks+1−ks
m(ks )

∑k1−1
s=k0

λk1−1−s
m(k0)

E{Υ (s)}

+μN�(k0,k−1)−1λk−kl
m(kl )

l−1∏

s=2
λ
k j+1−k j

m(k j )

∑k2−1
s=k1

λk2−1−s
m(k1)

E{Υ (s)}
+ · · · + μ0∏k−1

s=kl
λk−1−s
m(kl )

E{Υ (s)}.

Now, we consider the exponential stability of system (7.13) with w(k) = 0. One has

E{Vm(kl )(k)}
≤ μN�(k0,k)λk−kl

m(kl )
λ
kl−kl−1

m(kl−1)
· · · λk1−k0

m(k0)
Vm(k0)(k0)

≤ μN�(k0,k)λk−k0
b Vm(k0)(k0)

≤ (μ1/Taλb
)k−k0 Vm(k0)(k0)

= χ2(k−k0)Vm(k0)(k0),

(7.25)

which yields E
{
‖x̃(k)‖2

}
≤ ϕ2

ϕ1
χ2(k−k0) ‖x̃(k0)‖2, where ϕ1 = min

i∈Ω
σmin(Pi ), ϕ2 =

max
i∈Ω

σmax(Pi ), χ = √λbμ1/Ta . Therefore, one can readily obtain χ < 1 from condi-

tion (7.16). According to Definition 7.1, the filtering error system (7.13) is exponen-
tially stable in the mean-square sense with w(k) = 0.

For the H∞ performance level, we consider w(k) 
= 0. Under the zero initial
condition, it follows from (7.23) that

k−1∑

s=k0

μN�(s,k−1)λk−s−1
a E{ẽT (s)ẽ(s)} ≤ τ 2

k−1∑

s=k0

μN�(s,k−1)λk−s−1
b wT (s)w(s). (7.26)

Based on the average dwell time condition (7.16), it is easy to see N�(s,k−1)
k−s−1 <

− ln λ
ln μ

. Since μ > 1, we obtain ln μN�(s,k−1) < ln λ−(k−s−1), and 1 < μN�(s,k−1) <
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λ−(k−s−1). Then, it can be readily seen that

k−1∑

s=k0

λk−s−1
a E{ẽT (s)ẽ(s)} < τ 2

k−1∑

s=k0

(
λb
/
λ
)k−s−1

λk−s−1wT (s)w(s). (7.27)

Summing (7.27) from k = k0 + 1 to k = ∞ and changing the order of summation
yield

+∞∑

s=k0

E{ẽT (s)ẽ(s)}
+∞∑

k=s+1

λk−s−1
a < τ 2

+∞∑

s=k0

wT (s)w(s)
+∞∑

k=s+1

(
λb
/
λ
)k−s−1

. (7.28)

Since
+∞∑

k=s+1
λk−s−1
a = 1

1−λa
and

+∞∑

k=s+1

(
λb
/
λ
)k−s−1 = 1

1−(λb/λ)
, we have

+∞∑

s=k0

E{ẽT (s)ẽ(s)} < γ2
+∞∑

s=k0

wT (s)w(s), (7.29)

where γ = τ
√

1−λa
1−λb/λ . It is noted that λb < λ, which ensures γ > 0.With k0 = 0, we

can conclude that the filtering error system (7.13) is exponentially stable in themean-
square sense and achieves a prescribed H∞ performance level γ. This completes the
proof.

Unfortunately, even though we can choose some values for μ and λ such that
(7.15) and (7.16) have a feasible solution, it is still difficult for us to find the feasible
solution of condition (7.14) since it is not a linear matrix inequality due to the co-
existence of Pi and P−1

i , so the filter gain parameters H̄σ(tk ), K̄σ(tk ), and L̄σ(tk ) can
not be determined from Theorem 7.1. This leads us to present the following result
to determine these filter gain parameters.

Theorem 7.2 For given scalars τ > 0,μ > 1, 0 < λi < 1, δp > 0, and 0 < λ < 1,
if there exist positive-definite matrices Pi , a positive scale ε and any matrices Gi of
appropriate dimensions such that the following inequalities,

⎡

⎢⎢⎢
⎢⎢⎢
⎣

Ψ1 Ψ̃2 Ψ̃3 Ψ̃4 Ψ̃5 0
∗ Ti 0 0 0 Ψ̃6

∗ ∗ −nI 0 0 0
∗ ∗ ∗ T̄i 0 Ψ̃7

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥
⎥⎥⎥
⎦

< 0, (7.30)

and (7.15), (7.16) hold for all i, j ∈ Ω , then our filtering problem is solvable, and
the filter gains are determined by K̄i = G−T

3 K̃i , H̄i = G−T
3 H̃i and L̄i = L̃ i , where
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Ψ̃2 =
[

Ψ̃21

Ψ̃22

]
, Ψ̃3 =

[
Ψ̃31

0

]
, Ψ̃4 =

[
Ψ̃41 · · · Ψ̃4n

0 · · · 0

]
,

Ψ̃3 =
[

Ψ̃31

0

]
, Ψ̃7 =

⎡

⎢
⎣

Ψ̃71
...

Ψ̃7n

⎤

⎥
⎦ , Ti = Pi − Gi − GT

i ,

with

Ψ̃21 =
[
ÃT
i G1i + C̄TΠ T

i T
T
α H̃

T
i ÃT

i G2i + C̄TΠ T
i T

T
α H̃

T
i

K̃ T
i K̃ T

i

]
,

Ψ̃22 = [ B̄T
i G1i + D̄T H̃ T

i B̄T
i G2i + D̄T H̃ T

i

]
,

Ψ̃31 =
[

L̄T

−L̃T
i

]
, Ψ̃4p = θp

[
C̄TΠ T

i ΦT
p H̃

T
i C̄TΠ T

i ΦT
p H̃

T
i

0 0

]
,

Ψ̃5 =
[
C̄TΠ T

i Λε
0

]
, Ψ̃6 =

[
H̃iTα

H̃iTα

]
, Ψ̃7p = θp

[
H̃iΦp

H̃iΦp

]
,

Pi =
[
P1i P2i
∗ P3i

]
,Gi =

[
G1i G2i

G3 G3

]
, p = 1, 2, . . . , n.

Proof By left- and right-multiplying (7.14)with diag{I, I,GT
i , I,GT

i , . . . ,GT
i , I, I }

and its transpose, respectively, one sees that (7.14) is equivalent to

⎡

⎢
⎢⎢⎢⎢⎢
⎣

Ψ1 Ψ2G Ψ3 Ψ4Gi Ψ5 0
∗ −GT

i P
−1
i Gi 0 0 0 GT

i Mi

∗ ∗ −nI 0 0 0
∗ ∗ ∗ T̃i 0 GT

i Ψ6

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥
⎥⎥⎥⎥⎥
⎦

< 0, (7.31)

where T̃i = diag{−GT
i P

−1
i Gi , . . . ,−GT

i P
−1
i Gi }. On the other hand, it is easy to

verify that the inequality−GT
i P

−1
i Gi ≤ Pi − GT

i − Gi , always holds for anymatrix
Gi . Then, (7.31) holds if

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ψ1 Ψ2G Ψ3 Ψ4Gi Ψ5 0
∗ Ti 0 0 0 GT

i Mi

∗ ∗ −nI 0 0 0
∗ ∗ ∗ T̄i 0 GT

i Ψ6

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0, (7.32)

which is the same as (7.30) with

Pi =
[
P1i P2i
∗ P3i

]
,Gi =

[
G1i G2i

G3 G3

]
,

K̃i = GT
3 K̄i , H̃i = GT

3 H̄i , L̃ i = L̄ i .
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This completes the proof.

Remark 7.2 In Theorem 7.2, the existence condition for the filters are given in terms
of LMIs which is convex in the scalar τ 2. Therefore, one may solve the following
optimization problem:

min ρ,

s.t. (7.15), (7.16), and (7.30) with ρ = τ 2 (7.33)

to obtain the filter gain parameters such that the H∞ disturbance attenuation level is
minimized. When the optimal ρ is obtained from the above optimization problem,
then the designed filters guarantee that the filtering error system is exponentially

stable and achieves a prescribed H∞ performance level γ = τ
√

(1−λa)

1−λb/λ .

7.4 An Illustrative Example

In this section, a quarter-car suspension system is used to show the effectiveness of
the proposed filter design method. The system structure is shown in Fig. 7.2. The
sprung mass is ms , which denotes the car chassis; the unsprung mass is mu , which
represents the wheel assembly; the spring ks and the damper cs stand for the stiffness
and damping of the uncontrolled suspension that are placed between the car body and
the wheel assembly, while the spring kt serves to the model of the compressibility of
the pneumatic tire; the variables xs ; xu and xr are the displacements of the car body,

Fig. 7.2 The quarter-car suspension system
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the wheel, and the road disturbance input, respectively. The dynamic equations for
the sprung and unsprung masses of the quarter-car model are given by

{
ms ẍs(t) + cs ẋsu(t) + ksxsu(t) = 0,
muẍu(t) + cs ẋus(t) + ksxus(t) + kt xur (t) = 0,

(7.34)

where xsu(t) = xs(t) − xu(t), xus(t) = xu(t) − xs(t) and xsr (t) = xs(t) − xr (t).
Choose the following set of state variables:

⎧
⎪⎪⎨

⎪⎪⎩

x1(t) = xs(t) − xu(t),
x2(t) = xu(t) − xr (t),
x3(t) = ẋs(t),
x4(t) = ẋu(t),

(7.35)

where x1(t) is the suspension deflection, x2(t) is the tire deflection, x3(t) is the sprung
mass speed and x4(t) is the unsprung mass speed. Then, the quarter-car suspension
model can be represented as

ẋ(t) = Ax(t) + Bw(t), (7.36)

where

A =

⎡

⎢⎢
⎣

0 0 1 −1
0 0 0 1

− ks
ms

0 − cs
ms

cs
ms

ks
mu

− ku
mu

cs
mu

− cs
mu

⎤

⎥⎥
⎦ ,

B =

⎡

⎢⎢
⎣

0
−2πq0

√
G0v0

0
0

⎤

⎥⎥
⎦ .

The parameters in the quarter-car model matrices are chosen as in [2, 3]:

ms = 973 kg, ks = 42720N/m,

cs = 3000Ns/m, ku = 101115N/m,

mu = 114 kg,G0 = 512 × 10−6 m3,

q0 = 0.1m−1, v0 = 12.5m/s.

In this example,we aim to estimate the sprungmass speed.Hence, L = [0 0 1 0
]
.

A sensor network with three sensors is deployed to achieve this estimation task. The
measurements are assumed to be

yp(k) = Cpx(k), p = 1, 2, 3, (7.37)
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where

C1 =
[
1 0 0 0
0 1 0 0

]
,C2 = [0 0 0 1

]
,C3 = [0 0 0 1

]
.

In the example, the three sensors measure the information with a time-varying
sampling period hk ∈ {T0, 2T0}, where T0 = 0.06 s. At each sampling instant, only
one element of y1 is selected for transmission, y2 and y3 are always transmitted. In this
case,Πρ1(tk )

∈ {[1 0
]
,
[
0 1
]}
,Πρ2(tk )

= 1, andΠρ3(tk )
= 1. Then threemeasurements

are quantized by the logarithmic quantizers with quantization density ρ1 = 0.75,
ρ2 = 0.8, and ρ3 = 0.6, respectively. Since the measurement may be lost during
the transmission due to the sensor’s temporary failure and communication failure,
the measurement missing rates are set to be 30, 20, and 40%, respectively. The
disturbance weighting matrices are taken as D1 = 0.11, D2 = 0.02, and D3 = 0.03.
Now, discretizing the above quarter-car system with period T0, one obtains

A0 =

⎡

⎢⎢
⎣

0.5610 0.7804 0.0447 0.0037
0.3297 −0.0001 0.0436 0.0014

−1.9618 −4.5284 0.7529 0.0274
−1.3703 −1.2849 0.2335 −0.2335

⎤

⎥⎥
⎦ ,

B0 =

⎡

⎢⎢
⎣

−0.0024
−0.0023
0.0110
0.0503

⎤

⎥⎥
⎦ .

By applying themodelingmethod in Sect. 7.2, the target plant becomes a switched
system with two subsystems with Ai = Ai

0 and Bi = Bi
0, i = 1, 2. Moreover, these

three sensors share their local information with each other at some time instant, but

Activation time instant

Fig. 7.3 Switching signals
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they do not for the energy conservation. In this example, we assume that sensor 1
and 3 have less energy than sensor 2. Hence, at certain time instant, sensor 1 and
sensor 3 do not broadcast their information, and this network has the following two
topologies:

A
1 =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ ,A2 =
⎡

⎣
1 1 0
0 1 0
0 1 1

⎤

⎦ .

The measurement size reduction process is modeled as a switched system. For
simulation purpose, the activation time instant of three switching signals is assumed
to be as in Fig. 7.3, where the signals are varying periodically. We run simulation for
100 time steps. It follows fromFig. 7.3 that Ta = 1.4925, andwehave two subsystems
in total. Choose λ1 = 0.92,λ2 = 0.94,λ = 0.95 and μ = 1.05, we have λa = 0.92
and λb = 0.94. It is seen that T ∗

a = 0.9512 < Ta , which means that (7.16) holds.
By solving the optimization problem (7.33), one has the optimal H∞ performance
level of γ∗ = 0.2638. In the simulation setup, the unknown disturbance is taken as
w(k) = 2rand − 1, where rand is a random function generating a number between
[0,1]. Under the zero initial condition, we depict the trajectories of the z and each
estimation z p in Fig. 7.4. The trajectories of the corresponding estimation errors are
shown in Fig. 7.5. Since the disturbance in the simulation is randomly generated, we
now run additional 100 random simulations on the filtering performance, and the
simulation results are exhibited in Fig. 7.6. It is seen that the filtering performance is
guaranteed.

We now discuss the impact of the proposed method on the energy consumption.
To verify the energy consumption of three sensors, we take energy consumption data
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Fig. 7.4 Trajectories of z(k) and its estimates ẑ p(k)
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Fig. 7.5 Trajectories of estimation error ẽp(k)
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Fig. 7.6 100 samples on the filtering performance

in [4]. The energy consumption is 3.3 × 10−7 [J/bit] to transmit bits, and 1.9 × 10−7

[J/bit] to receive. To measure the energy consumption on the radio in three sensors,
we measure the amount of time that the radio on each node has spent in receiving
and transmittingmodes. The power consumption inmeasuring, CPU computing, idle
listening and sleepingmodes will not be taken into account. The following four cases
are considered:

• Case 1: sensor networks with only nonuniform sampling;
• Case 2: sensor networks with nonuniform sampling and measurement selection;



7.4 An Illustrative Example 127

0

1

2

3

4

5

6

Cases

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

Case 4
Case 3
Case 2
Case 1

Fig. 7.7 Energy consumption

• Case 3: sensor networks with nonuniform sampling, measurement selection and
signal quantization;

• Case 4: sensor networkswith nonuniform sampling,measurement selection, signal
quantization and communication rate reduction.

Case 4 is the final scheme, which has been used to design the energy-efficient
distributed filtering system in sensor networks, and case 4 can be reduced to the above
three cases. We run the simulation for 1 hour, and the detailed energy consumption
for each case is depicted in Fig. 7.7. It can be seen that each case can save a certain
amount of energy in sensor networks, and the case 4 is the most energy-efficient.

7.5 Conclusions

We have studied the distributed filtering in sensor networks from the energy-efficient
point of view. A unified switched system approach has been proposed to capture the
nonuniform sampling, measurement size reduction and communication rate reduc-
tion, all of which help us to save power in sensors. Based on the switched system
approach, a sufficient condition has been presented to guarantee that the filtering
error system is exponentially stable with a prescribed H∞ performance level. It has
also been shown that the filter gain parameters can be determined by solving an opti-
mization problem. Finally, simulation studies on the quarter-car suspension system
have been given to show the effectiveness of the new design method.
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Chapter 8
Distributed Filtering with Stochastic
Sampling

8.1 Introduction

Some energy-efficient signal sampling and transmission protocols have been
discussed in Chap. 7, and the corresponding distributed filter design algorithm is
presented. But the scheduling is deterministic. In this chapter, a stochastic sampling
scheme is applied to the distributedfiltering system.The samplingperiods are allowed
to vary in a given set, and the transition from one period to another is assumed to sat-
isfy the Markovian process. The network-induced uncertainties, signal quantization
and random missing measurements are also considered in the filter design. Based on
the Lyapunov stability theory and some stochastic analysis, a sufficient condition is
found such that the augmented system is stochastically stable with an average H∞
performance level. A design procedure is also provided for the optimal distributed
filter. An illustrative example is finally given to demonstrate the effectiveness of the
proposed design.

8.2 Problem Formulation

The system structure is similar to the one in Fig. 7.1 and shown in Fig. 8.1, where
there is no centralized fusion center. The main difference is that a stochastic sam-
pling approach is used rather than the deterministic one in Chap. 7. Meanwhile, the
quantization and random measurement missing issues are also addressed as well. As
usual, a physical plant is described by the following linear time-invariant model:

{
ẋ(t) = Ax(t) + Bw(t),
z(t) = Lx(t),

(8.1)

where x(t) ∈ R
nx is the state variable, z(t) ∈ R

nz is the signal to be estimated,
w(t) ∈ R

nw is the disturbance belonging to L2 [0,∞).
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Fig. 8.1 A structure of distributed filtering in sensor networks

As demonstrated in Chap.7, the time-varying sampling scheme can reduce the
power consumption significantly. Here, a stochastic sampling scheme is applied,
where the sampling period is time-varying but the variation of the sampling period
is assumed to satisfy a Markovian chain. The measurement output is assumed to be
sampled at discrete instant tk , and the sampling period is determined as hk = tk+1−tk .
It is assumed that hk = mkT0 andmk ∈ {i1, i2, . . . , is}, where T0 is the basic sampling
period. It is easy to see that hk ∈ {i1T0, i2T0, . . . , isT0}. We now discretize system
(8.1) with sampling period hk to obtain the following discrete-time system:

{
x(tk+1) = Akx(tk) + Bkw(tk),
z(tk) = Lx(tk),

(8.2)

where Ak = eAhk and Bk = B
∫ hk
0 eAτdτ . Denote A0 = eAT0 and B0 = B

∫ T0
0 eAτdτ .

By substituting A0 and B0 into Ak and Bk , respectively, we obtain Ak = A0
mk and

Bk =
mk−1∑

i=0
A0

i B0. It is seen that the values of Ak and Bk are critically dependent on

the parameter mk , which varies within a given set. Based on the above analysis, the
system (8.2) can be written as

{
x(tk+1) = Aσ(k)x(tk) + Bσ(k)w(tk),
z(tk) = Lx(tk),

(8.3)

where σ(k) is a piecewise signal taking values from Γ = {1, 2, . . . , s}. Here it is
assumed that the transition from one sampling period to another satisfies the Markov
process with probabilistic transfer matrix Π = [σi j ] defined by

⎧
⎨

⎩

σi j = Pr ob{σ(k + 1) = j |σ(k) = i},
s∑

j=1
σi j = 1,∀i, j ∈ Γ .

(8.4)

http://dx.doi.org/10.1007/978-3-319-53123-6_7
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The measured output of the i-th sensor is given by

yi (tk) = Ci x(tk), i = 1, 2, . . . , n, (8.5)

where yi (tk) ∈ R
ny , Ci is a constant matrix with appropriate dimensions.

It follows from Chap.7 that the signal quantization is also an effective scheme
to reduce the power consumption. In this chapter, the logarithmic quantizer is also
applied, and the set of quantization levels is defined by

Uj = {±u( j)
i : u( j)

i+1 = ρ j u
( j)
i , i = 1, 2, 3 . . .} ∪ {u( j)

0 } ∪ {0}
0 < ρ j < 1, u( j)

0 > 0.
(8.6)

Then the output of the quantizer is described by

Q j (v) =
⎧
⎨

⎩

ρij u
( j)
0 ,

0,
−Q j (−v),

if u( j)
i

1+δ j
< v ≤ u( j)

i
1−δ j

, v > 0,

if v = 0,
if v < 0,

(8.7)

where δ j = 1−ρ j

1+ρ j
is the maximum error coefficient of quantizer Q j , and q j is the

quantization density. The quantization error is defined by

eQ j = Q j (v) − v = Δ jv, (8.8)

where Δ j ∈ [−δ j , δ j ]. Then the output signal can be written as

ỹi (tk) = (In4 + Δ(i)(tk))Ci x(tk), i = 1, 2, . . . , n, (8.9)

where Δ(i)(tk) = diag{Δ(i)
1 (tk),Δ

(i)
2 (tk), . . . , Δ(i)

n4 (tk)} with Δ
(i)
k ∈ [−δi , δi ], k =

1, 2, . . . , ny .
In sensor networks, the random loss ofmeasurementmay occur due to the interfer-

ence of the external environment or sensor’s temporal failure. A set of independent
stochastic variables αi (tk), i = 1, 2, . . . , n are introduced to model this phenom-
enon, whereαi (tk) is a binary valuable taking value in {0, 1}. Specifically,αi (tk) = 1
means that the measurement is successfully received by the sensor i at tk , otherwise
αi (tk) = 0. When a sensor does not receive the real time measurement, the mea-
surement arrived in the last time instant will be used to update the filter state. In
this chapter, it is assumed that the successful transmission rates are known, i.e.,
Pr ob{αi (tk) = 1} = ᾱi is known.

http://dx.doi.org/10.1007/978-3-319-53123-6_7
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Now, by taking the measurement loss, quantization and unknown disturbance into
account, the input of each filter can be described by

ȳi (tk) = αi (tk)((I + Δ(i)(tk))Ci x(tk) + Diw(tk)) + (1 − αi (tk))ȳi (tk−1), (8.10)

where Di is a known constant matrix with appropriate dimensions.
For estimation purpose, we construct the following distributed filter:

{
x̂i (tk+1) = ∑

j∈Ni

ai j Ki j x̂ j (tk) + ∑

j∈Ni

ai j Hi j ȳ j (tk),

ẑi (tk) = L fi x̂i (tk),
(8.11)

where x̂i (tk) ∈ R
nx is the state estimate, ẑi (tk) ∈ R

nz is the estimate of z(k) from the
filter on node i , Ki j , Hi j and L fi are the filter parameter matrices to be designed. ai j
is used to describe the communication topology of sensor network, i.e., ai j = 1 if
the i-th sensor can receive information from the j-th sensor, otherwise, ai j = 0. For
easy presentation, we define:

x̂(tk) = [ x̂ T1 (tk) x̂ T2 (tk) · · · x̂ Tn (tk) ]T ,

x̄(tk) = [ xT (tk) xT (tk) · · · xT (tk)
︸ ︷︷ ︸

n

]T ,

ŷ(tk) = [ ȳT1 (tk) ȳT2 (tk) · · · ȳTn (tk) ]T ,

Āσ(k) = In ⊗ Aσ(k), B̄σ(k) = [ BT
σ(k) BT

σ(k) · · · BT
σ(k)︸ ︷︷ ︸

n

]T ,

Ĉ = diag
{
ᾱ1Δ

(1)(tk)C1, ᾱ2Δ
(2)(tk)C2, . . . , ᾱnΔ

(n)(tk)Cn
}
,

C̄ = diag {ᾱ1C1, ᾱ2C2, . . . , ᾱnCn} , C̄i = (ei eTi ) ⊗ Ci ,

Ĉi = (ei eTi ) ⊗ (Δ(i)(tk)Ci ), D̄ = [ ᾱ1DT
1 ᾱ2DT

2 · · · ᾱnDT
n ]T ,

D̄i = ei ⊗ Di , L̄ = In ⊗ L , L̂ f = diag
{
L f 1, L f 2, . . . , L f n

}
.

Let the estimation error be

e(tk) = [ (z(tk) − ẑ1(tk))
T

(z(tk) − ẑ2(tk))
T · · · (z(tk) − ẑn(tk))

T ]T .

Combining (8.4), (8.10) and (8.11) gives the following augmented system:

⎧
⎪⎪⎨

⎪⎪⎩

x̃(tk+1) = F̃σ(k) x̃(tk) + D̃σ(k)w(tk)

+
n∑

i=1
(αi (tk) − ᾱi )(G̃i x̃(tk) + Ẽiw(tk)),

e(tk) = L̃ f x̃(tk),

(8.12)

where
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x̃(tk) = [ x̄ T (tk) x̂ T (tk) ŷT (tk−1) ]T ,

F̃σ(k) =
⎡

⎣
Āσ(k) 0 0
H̄ C̃ K̄ H̄(I − Λ)

C̃ 0 I − Λ

⎤

⎦ , D̃σ(k) =
⎡

⎣
B̄σ(k)

H̄ D̄
D̄

⎤

⎦ ,

G̃i =
⎡

⎣
0 0 0

H̄ C̃i 0 −H̄((ei eTi ) ⊗ In4)
C̃i 0 −((ei eTi ) ⊗ In4)

⎤

⎦ , Ẽi =
⎡

⎣
0

H̄ D̄i

D̄i

⎤

⎦ ,

L̃ f = [ L̄ −L̂ f 0
]
, C̃ = C̄ + Ĉ, C̃i = C̄i + Ĉi ,

H̄ = [H̄i j ]n×n,withH̄i j =
{
ai j Hi j , i = 1, 2, . . . , n; j ∈ Ni

0, i = 1, 2, . . . , n; j /∈ Ni
,

K̄ = [K̄i j ]n×n,withK̄i j =
{
ai j Ki j , i = 1, 2, . . . , n; j ∈ Ni

0, i = 1, 2, . . . , n; j /∈ Ni
,

Λ = diag {Λ1,Λ2, . . . , Λn} , with Λi = diagn4 {ᾱi } .

The objective of this chapter is to design the distributed filter in the form of (8.11)
such that the augmented system (8.12) is stochastically stable and achieves an aver-
age H∞ performance under the stochastic sampling, quantization and measurement
missing effects.

Definition 8.1 When the external disturbance w(tk) = 0, ∀k > 0, the augmented
system (8.12) is said to be stochastically stable if the following inequality,

E

{ ∞∑

k=0

‖x̃(tk)‖2|ϕ(0)

}

<∞, (8.13)

holds for any initial condition ϕ(0) = {x̃(t0),σ(0)}.
Definition 8.2 For a given scalar γ > 0, the augmented system (12) is said to be
stochastically stable with an average H∞ performance γ, if it is stochastically stable
and the following inequality,

1

n
E

{ ∞∑

k=0

eT (tk)e(tk)

}

≤ γ2
∞∑

k=0

wT (tk)w(tk), (8.14)

holds for all non-zero w(tk) ∈ l2 [0,∞) under the zero initial condition.

8.3 Filter Analysis and Design

In this section, we aim to solve the distributed H∞ filtering problem for sensor
networks with stochastic sampling and network-induced uncertainties. Theorem 8.1
below guarantees that the augmented system (8.12) is stochastically stable with an
average H∞ performance γ, and Theorem 8.2 proposes the optimal distributed filter
design algorithm.
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Theorem 8.1 For the given probabilistic transfer matrix Π and a scalar γ > 0, the
augmented system (8.12) is stochastically stable with an average H∞ performance
γ if there exist symmetric positive matrices Pi > 0 and a scalar ε > 0, such that the
following inequalities,

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

−Pi 0 F̄ T
i Φ̄

√
n
n L̃T εNΔ 0

∗ −γ2 I D̃T
i Ē 0 0 0

∗ ∗ −P̄−1
i 0 0 0 MT

∗ ∗ ∗ P̂i 0 0 M̄T

∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

< 0, (8.15)

hold for all i ∈ Γ , where

P̄i =
s∑

j=1
σi j Pj , P̂i = diag{−P̄−1

i ,−P̄−1
i , . . . ,−P̄−1

i︸ ︷︷ ︸
n

},

Φ̄ = [ θ1ḠT
1 θ2ḠT

2 · · · θnḠT
n

]
, Ē = [ θ1 Ẽ T

1 θ2 Ẽ T
2 · · · θn ẼT

n

]
,

M = [0 H̄T I
]
, Ḡi =

⎡

⎣
0 0 0

H̄ C̄i 0 −H̄((ei eTi ) ⊗ In4)
C̄i 0 −((ei eTi ) ⊗ In4)

⎤

⎦ ,

F̄i =
⎡

⎣
Āi 0 0
H̄ C̄ K̄ H̄(I − Λ)

C̄ 0 I − Λ

⎤

⎦ ,N =
⎡

⎣
C̄T

0
0

⎤

⎦ ,

Δ = diag{In4 ⊗ δ1, In4 ⊗ δ2, . . . , In4 ⊗ δn}, θi = √
ᾱi (1 − ᾱi ),

M̄ = [M1 M2 · · · Mn
]
,with Mi = θi ((ei eTi ) ⊗ In4)Λ

−1M.

Proof We first consider the stochastic stability of the augmented system (8.12) with
w(tk) = 0. To this end, we construct the following Lyapunov function:

V (tk)=x̃ T (tk)Pσ(k) x̃(tk). (8.16)

Let σ(k) = i and σ(k + 1) = j . Then we have

E{ΔV (tk)} Δ= E{V (tk+1) − V (tk)}
= E{[x̃ T (tk+1)Pj x̃(tk+1)|ϕ(k)] − x̃ T (tk)Pi x̃(tk)}
= E

{[
s∑

j=1
σi j x̃ T (tk+1)Pj x̃(tk+1)

]

− x̃ T (tk)Pi x̃(tk)

}

.

(8.17)

Let P̄i =
s∑

j=1
σi j Pj . Equation (8.17) can be rewritten as
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E{ΔV (tk)} = E{x̃ T (tk+1)P̄i x̃(tk+1) − x̃ T (tk)Pi x̃(tk)}. (8.18)

Since F̃i = F̄i + F̂ , G̃i = Ḡi + Ĝi , where

F̂ =
⎡

⎣
0 0 0
H̄ Ĉ 0 0
Ĉ 0 0

⎤

⎦ , Ĝi =
⎡

⎣
0 0 0

H̄ Ĉi 0 0
Ĉi 0 0

⎤

⎦ .

We have
E {ΔV (tk)} = x̃T(tk)Σi x̃(tk), (8.19)

where

Σi = (F̄i + F̂i )
T P̄i (F̄i + F̂i ) +

n∑

j=1

θ j
2(Ḡ j + Ĝ j )

T
P̄i (Ḡ j + Ĝ j ) − Pi .

By Lemma 2.1, E{ΔV (tk)} < 0 is equivalent to

⎡

⎣
−Pi F̄T

i Φ̄

∗ −P̄−1
i 0

∗ ∗ P̂i

⎤

⎦+
⎡

⎣
NΔ

0
0

⎤

⎦Δ−1Δ(tk)
[
0 M M̄

]

+
⎡

⎣
0
MT

M̄T

⎤

⎦ [Δ−1Δ(tk)]T
[
ΔNT 0 0

]
< 0,

(8.20)

where Δ(tk) = diag{Δ(1)(tk),Δ(2)(tk), . . . , Δ(n)(tk)}, and
[

Δ(tk )
Δ

]T [
Δ(tk )

Δ

]
≤ I . By

Lemmas 2.1 and 2.2, we have

⎡

⎢⎢⎢⎢
⎣

−Pi F̄T
i Φ̄ εNΔ 0

∗ −P̄−1
i 0 0 MT

∗ ∗ P̂i 0 M̄T

∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥
⎦

< 0. (8.21)

It can be seen form (8.15) that (8.21) holds, implying

E {V (tk+1)|ϕ(k)} < V (tk), (8.22)

It is not difficult to find a scalar 0 < μ < 1, such that E{V (tk+1)|ϕ(k)} < μV (tk)
holds. Then, by deduction, we have E{V (tk)|ϕ(0)} < μkV (0), and consequently,

E

{
h∑

k=0

V (tk)|ϕ(0)

}

≤ 1+μ + · · · + μhV (t0) = 1 − μh+1

1 − μ
V (t0). (8.23)

http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_2
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Let h → ∞, we have the following inequality,

E

{ ∞∑

tk=0

‖x̃(tk)‖2|ϕ(0)

}

≤ 1

(1 − μ)λ̄
V (t0) < ∞, (8.24)

where λ̄ = min
i∈Γ

λmin(Pi ). According to Definition 8.1, the augmented system (8.12)

is stochastically stable.
We then consider the average H∞ performance of the augmented system. Define

J
Δ= E

{
1

n

∞∑

k=0

[eT (tk)e(tk) − γ2wT (tk)w(tk)]
}

. (8.25)

Under the zero initial conditions, we have

J ≤ E

{ ∞∑

k=0

[
1

n
eT (tk)e(tk) − γ2wT(tk)w(tk)+ΔV

]}

=
∞∑

tk=0

ηT (tk)Σ̄iη(tk),

(8.26)
where

Σ̄i = Σ̂i +∑5Δ(tk)Δ−1∑
4 +∑4

T
Δ(tk)Δ−1∑

5
T
,

η(tk) = [ x̃ T (tk) wT (tk)
]T

,
∑

4=
[
0 0 M M̄ 0

]
,

Σ̂i=

⎡

⎢⎢
⎢⎢
⎣

−Pi 0 F̄ T
i Φ̄

√
n
n L̃T

∗ −γ2 I D̃T
i Ē 0

∗ ∗ −P̄−1
i 0 0

∗ ∗ ∗ P̂i 0
∗ ∗ ∗ ∗ −I

⎤

⎥⎥
⎥⎥
⎦

,
∑

5 =

⎡

⎢⎢
⎢⎢
⎣

NΔ

0
0
0
0

⎤

⎥⎥
⎥⎥
⎦

.

By Lemmas2.1 and 2.2, Σ̄i < 0 is equivalent to (8.19). Thus J < 0 and the
augmented system (8.12) is stochastically stable and achieves an average H∞ per-
formance γ.

In Theorem 8.1, it is difficult to determine the filter gains due to the coupling
between filter parameters and unknown matrices. The procedures on how to design
the filter gain parameters is given in the following theorem.

Theorem 8.2 For the given probabilistic transfer matrix Π and a scalar γ > 0,
the filtering problem is solvable if there exist symmetric positive matrices Pi =⎡

⎣
Pi11 Pi12 Pi13
∗ Pi22 Pi23
∗ ∗ Pi33

⎤

⎦ > 0, any matrix Ti =
⎡

⎣
Ti11 Ti12 Ti13

T f T f 0
Ti31 Ti32 Ti33

⎤

⎦ of appropriate dimen-

sions with diagonal matrix T f , and a scalar ε > 0, such that the following inequal-
ities,

http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_2
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⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

−Pi 0 Ψ̄i

n∑

j=1
eTj ⊗ Ψi j

√
n
n Z εNΔ 0

∗ −γ2 I Ω̄i

n∑

j=1
eTj ⊗ Ωi j 0 0 0

∗ ∗ P̄i − Ti − Ti
T 0 0 0 Ξ̄i

∗ ∗ ∗ P̃i 0 0
n∑

j=1
e j ⊗ Ξi j

∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

< 0, (8.27)

hold for all i ∈ Γ . Moreover, the filter gain is determined as follows:

{
H̄ = T f

−THF , K̄ = T f
−TKF ,

L̄ f = −LF
T ,

(8.28)

where

Ψi j = θ j

⎡

⎣
C̄T

j H
T
F + C̃T

j Ti31 C̄
T
j H

T
F + C̃T

j Ti32 C̄T
j Ti33

0 0 0
−Φ j (HT

F+Ti31) −Φ j (HT
F+Ti32) −Φ jTi33

⎤

⎦ ,

Ψ̄i =
⎡

⎣
ĀT
i Ti11 + C̄T (HT

F + Ti31)

KT
F

(I − Λ)(HT
F + Ti31)

ĀT
i Ti12 + C̄T (HT

F + Ti32) ĀT
i Ti13 + C̄TTi33

KT
F 0

(I − Λ)(HT
F + Ti32) (I − Λ)Ti33

⎤

⎦ ,

Ω̄i = [ B̄T
i Ti11 + D̄T (HT

F + Ti31) B̄T
i Ti12 + D̄T (HT

F+Ti32) B̄T
i Ti13+D̄TTi33

]
,

Ωi j = θ j
[
D̄T

j H
T
F + D̄T

j Ti31 D̄T
j H

T
F + D̄T

j Ti32 D̄T
j Ti33

]
,

Ξ̄i = [Ti31 + HT
F Ti32 + HT

F Ti33
]T

, Ξi j = Φ jΛ
−1Ξ̄i ,

P̃i = diagn{P̄i − Ti − Ti
T },Z = [ L̄ L F

T 0
]T

, Φ j = ((eTj e j ) ⊗ In4).

Proof Define

Ti =
⎡

⎣
Ti11 Ti12 Ti13

T f T f 0
Ti31 Ti32 Ti33

⎤

⎦ ,HF = TT
f H,

KF = T f
TK, LF = −L̄T

f .

By Lemmas 2.1 and 2.3, it follows from inequality (8.27) that

http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_2
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⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

−Pi 0 Ψ̄i

n∑

j=1
eTj ⊗ Ψi j

√
n
n L̃T εNΔ 0

∗ −γ2 I Ω̄i

n∑

j=1
eTj ⊗ Ω j 0 0 0

∗ ∗ −Ti
T P̄−1

i Ti 0 0 0 Ξ̂i

∗ ∗ ∗ P
′
i 0 0

n∑

j=1
e j ⊗ Ξ T

i j

∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

< 0, (8.29)

holds, where P ′
i = diagn{−Ti

T P̄−1
i Ti }. Pre- and post-multiplying (8.29) by diag⎧

⎨

⎩
I, I,Ti

−T , . . . ,Ti
−T

︸ ︷︷ ︸
n+1

, I, I, I

⎫
⎬

⎭
and its transpose respectively, it is easy to have the

inequality (8.15). This ends the proof.

Remark 8.3 The optimal H∞ filter can be obtained by solving the following opti-
mization problem:

min γ2

s.t. (8.27).
(8.30)

If there exists a solution to the above optimization problem (8.30), the minimum
average H∞ performance γ∗ = √γ2

min, and the filter gains are given by (8.28).

8.4 A Simulation Example

In this section, a simulation example of spring-mass system is presented to illustrate
the effectiveness of the theoretical results. The spring-mass system can be described
by a state space model in the form of system (8.1) with

x(t)=[ xT1 (t) xT2 (t) ẋ T1 (t) ẋ T2 (t)
]T

,

A=

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

−2 1 −0.5 0
2 −2 0 −1

⎤

⎥⎥
⎦ , B=

⎡

⎢⎢
⎣

0 0
0 0
1 0
2 0

⎤

⎥⎥
⎦ ,

L= [1 0 0 0
]
.

where x1 and x2 are the displacement of masses m1 and m2, respectively. x3 and x4
are the velocities of massesm1 andm2, respectively. More discussions on the spring-
mass system can be found in the last few chapters. To estimate the displacement of
mass 1, we deploy a sensor network consisting of three sensors. The measurement
matrices are taken as
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Ci=
[
1 0 0 0
0 1 0 0

]
, Di=

[
0 0.1
0 0.1

]
, i = 1, 2, 3.

Suppose that the basic sampling period is T0=0.1s, the sampling periods vary in
Γ = {T0, 2T0, 3T0}, the transition probability matrix is

Π=
⎡

⎣
0.5 0.3 0.2
0.6 0.2 0.2
0.7 0.2 0.1

⎤

⎦ ,

and the weighted adjacency matrix

A =
⎡

⎣
1 0 1
1 1 0
0 1 1

⎤

⎦ .

The quantization densities of three sensors are ρ1 = 0.9, ρ2 = 0.8, ρ3 = 0.7, and the
measurement missing rates are 10, 20, 30% respectively, i.e., ᾱ1 = 0.9, ᾱ2 = 0.8,
ᾱ3 = 0.7. The Markovian system in the form of (8.4) is obtained with

A1=

⎡

⎢⎢
⎣

0.9902 0.0049 0.0972 0.0002
0.0096 0.9903 0.0003 0.0948

−0.1941 0.0969 0.9416 0.0047
0.1891 −01894 00095 0.8955

⎤

⎥⎥
⎦ , B1=

⎡

⎢⎢
⎣

0.0049 0
0.0097 0
0.0975 0
0.1900 0

⎤

⎥⎥
⎦ ,
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Fig. 8.2 Evolution of the Markovian chain
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A2=

⎡

⎢⎢
⎣

0.9617 0.0191 0.1878 0.0012
0.0370 0.9629 0.0025 0.1789

−0.3732 0.1853 0.8678 0.0179
0.3528 −0.3553 0.0357 0.7840

⎤

⎥⎥
⎦ , B2=

⎡

⎢⎢
⎣

0.0193 0
0.0373 0
0.1903 0
0.3602 0

⎤

⎥⎥
⎦ ,

A3=

⎡

⎢⎢
⎣

0.9162 0.0416 0.2703 0.0040
0.0792 0.9202 0.0079 0.2515

−0.5328 0.2624 0.7810 0.0376
0.4872 −0.4951 0.0753 0.6686

⎤

⎥⎥
⎦ , B3=

⎡

⎢⎢
⎣

0.0428 0
0.0811 0
0.2783 0
0.5110 0

⎤

⎥⎥
⎦ .

By solving the optimization problem (8.30), the optimal average H∞ performance
is obtained as γ∗ = 0.4127. In order to evaluate the performance of the filtering
network, we assume that the disturbances of w1 and w2 are randomly varying for
k ∈ [0, 20] and zero elsewhere. According to the given probability transfer matrix,
the Markovian chain is generated and shown in Fig. 8.2. The state trajectories of z
and its estimates ẑ1, ẑ2, ẑ3 are shown in Fig. 8.3. The trajectories of filtering errors
are given in Fig. 8.4. Through the comparison among three filters on hundred sets of
repetitive tests, it is shown that filter 2 has the least average error and filter 3 yields
the largest one.
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8.5 Conclusions

The distributed H∞ filtering problem for a class of sensor networks has been studied.
Issues such as stochastic sampling, signal quantization and random measurement
missing are treated in a unified work. A sufficient condition has been presented such
that the augmented system is stochastically stable with an average H∞ performance.
The optimal filter design method has also been provided. A numerical example has
been given to show the effectiveness of the proposed method. It is worth pointing
out that the transition probability of the sampling periods may be partially unknown,
the H∞ filtering problem for a class of sensor networks with stochastic sampling,
but with partially unknown transition probability of the sampling periods will be an
interesting work to be further done.



Chapter 9
Distributed Filtering with Random Filter
Gain Variations

9.1 Introduction

When WSNs are deployed in a vast region, they often do not work as expected.
There is environmental influence which may lead to malfunction of the sensors, and
most of time it is of non-deterministic. In other words, filters may not be imple-
mented exactly and suffers the random filter gain variation problem. In this chapter,
we are concerned with the distributed filtering for a class of sensor networks with
random filter gain variations, where the additive norm-bounded filter gain variations
is addressed. Though the non-fragile filtering problem has been studied in [1, 2],
the filter is designed in a centralized way and the occurrence of the gain variations
is deterministic. In reality, uncertainties may occur in some random time instant.
How to cope with the random gain variations in the filter gains is a challenging
work, especially in the distributed filtering problem. Two fundamental difficulties
are identified as follows: (1) For a sensor network, each filter is designed based on
the information from a sensor that communicates with its neighbors according to
certain network topology, so the first difficulty is how to handle the complicated cou-
plings between one sensor and its neighboring sensors in the presence of multiple
random uncertainties. (2) The second one is how to deal with the stochastic uncer-
tainties by quantifying their impacts on the global filtering performance in terms of
the occurrence probabilities and the variation bounds.

To handle the above challenges, attention of this chapter is focused on designing
a set of distributed filters such that the filtering error system is asymptotically stable
in the mean-square sense and achieves a prescribed H∞ filtering performance in the
presence of random variations in filter gains. Firstly, a set of stochastic variables
are introduced to capture the random uncertainties in the filter gains. Then, based
on the stochastic system analysis, the robust control technique and the Lyapunov
stability theory, a newsufficient condition is obtained for the solvability of thefiltering
problem. Finally, a numerical example is given to show the effectiveness of the
proposed design. In our result, relations between the occurrence probability of the
gain variations, the uncertain bound and the filtering performance are established.

© Springer International Publishing AG 2017
D. Zhang et al., Filtering and Control of Wireless Networked Systems,
Studies in Systems, Decision and Control 97, DOI 10.1007/978-3-319-53123-6_9
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9.2 Problem Formulation

The WSN in Fig. 9.1 is a peer-to-peer network and there is no centralized fusion
center. Each sensor has a sensing unit, a transmission unit and a computation unit.
Based on the local measurement and the neighbor’s information, each sensor is able
to provide an estimate of the plant. Fundamentals on the sensor networks have been
discussed in Chap. 7.

In this chapter, the plant model is described by the following linear discrete-time
system: {

x(k + 1) = Ax(k) + Bw(k),
z(k) = Lx(k),

(9.1)

where x(k) ∈ R
nx is the state vector, z(k) ∈ R

nz is the signal to be estimated and
w(k) ∈ R

nw is the unknown disturbance belonging to l2[0,∞). The matrices A, B
and L in system (9.1) are known constant matrices with appropriate dimensions. The
local measurement in sensor i is given by

yi (k) = Ci x(k) + Diw(k), (9.2)

where yi (k) ∈ R
ny is the output of measuring device in the i-th sensor. The matrices

Ci and Di are known constant matrices with appropriate dimensions. Due to the fact
that uncertainties exist in realWSNs, exact implementation of the filter is impossible.
We now propose the following filter at each sensor:

⎧
⎪⎪⎨

⎪⎪⎩

x̂i (k + 1) = ∑

j∈Ni

ai j (Ki j + αi (k)ΔKi j )x̂ j (k)

+ ∑

j∈Ni

ai j (Hi j + αi (k)ΔHi j )y j (k),

z f i (k) = (Lii + αi (k)ΔLii )x̂i (k),

(9.3)

Fig. 9.1 A structure of distributed filtering in sensor networks

http://dx.doi.org/10.1007/978-3-319-53123-6_7
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where x̂i (k) ∈ R
nx is the sensor’s state at node i and z f i (k) ∈ R

nz is the estimate of
z(k) from thefilter at sensor i . Ki j , Hi j and Lii are the filter parameters to be designed.
A set of binary valuables, αi (k) ∈ {0, 1}, are used to describe the random gain varia-
tion phenomenon occurring in each sensor. We assume that the occurrence probabil-
ities, E{αi (k) = 1} = ᾱi are known. ΔHi j = M1Δ1i (k)Fi j , ΔKi j = M2Δ2i (k)Ei j

and ΔLii = M3Δ3i (k)Qii are the uncertainty sizes in the sensor filter gains. The
uncertainties Δ1i (k),Δ2i (k) and Δ3i (k) in each sensor are assumed to be energy
bounded, i.e., ΔT

si (k)Δsi (k) ≤ δsi I, s = 1, 2, 3, where the scalars δsi are the magni-
tude of perturbations. The matrices, M1, M2, M3, Ei j , Fi j and Qii , are known con-
stant matrices.

Remark 9.1 The filter gain variation occurs in real systems due to the
non-deterministic behavior of malfunction of the filters. In this chapter, a set of
stochastic variables αi (k) is introduced to describe the random gain variation prob-
lem. One may conjecture that the filtering performance becomes much worse when
uncertainty occurs more frequently and the gain perturbations are larger.Wewill ver-
ify the relation between the variables ᾱi , δ1i , δ2i , δ3i and the filtering performance in
the simulation part.

For easy reference, we define

x̂(k) = [ x̂ T1 (k) x̂ T2 (k) · · · x̂ Tn (k) ]T , x̄(k) = [ xT (k) xT (k) · · · xT (k)
︸ ︷︷ ︸

n

]T ,

e(k) = [ (z(k) − z f 1(k))
T · · · (z(k) − z f n(k))

T ]T ,

C̄ = diag{C1,C2, . . . ,Cn}, Ā = In ⊗ A,

B̄ = [ BT BT · · · BT

︸ ︷︷ ︸
n

]T , D̄ = [ DT
1 DT

2 · · · DT
n ]T ,

L̄ = In ⊗ L , L̂ = diag{L11, L22, . . . , Lnn},
M̄1 = In ⊗ M1, M̄2 = In ⊗ M2, M̄3 = In ⊗ M3,

Φi = diag{0, 0, . . . , 0,︸ ︷︷ ︸
i−1

In1 , . . . , 0},

Φ̄i = diag{0, 0, . . . , 0,︸ ︷︷ ︸
i−1

In4 , . . . , 0},

Π = diag{ᾱ1 In1 , ᾱ2 In1 , . . . , ᾱn In1},
Π̄ = diag{ᾱ1 In2 , ᾱ2 In2 , . . . , ᾱn In2},
Δ̄1(k) = diag{Δ11(k),Δ12(k), . . . , Δ1n(k)︸ ︷︷ ︸

n

},

Δ̄2(k) = diag{Δ21(k),Δ22(k), . . . , Δ2n(k)︸ ︷︷ ︸
n

},

Δ̄3(k) = diag{Δ31(k),Δ32(k), . . . , Δ3n(k)︸ ︷︷ ︸
n

},

Q = diag{Q11, Q22, . . . , Qnn},
E = [

Ēi j
]
n×n, with

Ēi j =
{
ai j Ei j , i = 1, 2, ..., n; j ∈ Ni ,

0, i = 1, 2, ..., n; j /∈ Ni ,
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F = [
F̄i j

]
n×n with

F̄i j =
{
ai j Fi j , i = 1, 2, ..., n; j ∈ Ni ,

0, i = 1, 2, ..., n; j /∈ Ni ,

K̄ = [
K̄i j

]
n×n with

K̄i j =
{
ai j Ki j , i = 1, 2, ..., n; j ∈ Ni ,

0, i = 1, 2, ..., n; j /∈ Ni ,

H̄ = [
H̄i j

]
n×n with

H̄i j =
{
ai j Hi j , i = 1, 2, ..., n; j ∈ Ni ,

0, i = 1, 2, ..., n; j /∈ Ni .

Based on the above analysis, we have the following filtering error system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃(k + 1)

=
(
Ã + Π̃ M̃1Δ̃1(k)F̄

)
x̃(k) +

(
B̃ + Π̃ M̃1Δ̃1(k)F̃

)
w(k)

+
n∑

i=1
(αi (k) − ᾱi )

{
Φ̃i M̃1Δ̃1(k)F̄ x̃(k) + Φ̃i M̃1Δ̃1(k)F̃w(k)

}
,

e(k) =
(
L̃ − Π̄ M̄3Δ̄3(k)Q̄

)
x̃(k)

+
n∑

i=1
(αi (k) − ᾱi )

{−Φ̄i M̄3Δ̄3(k)Q̄
}
x̃(k),

(9.4)

where
x̃(k) = [

x̄ T (k) x̂ T (k)
]T

,

Ã =
[

Ā 0
H̄ C̄ K̄

]
, B̃ =

[
B̄
H̄ D̄

]
,

Π̃ =
[
0 0
Π Π

]
, M̃1 =

[
M̄1 0
0 M̄2

]
,

Δ̃1(k) =
[

Δ̄1(k) 0
0 Δ̄2(k)

]
, F̄ =

[
FC̄ 0
0 E

]
,

F̃ =
[
F D̄
0

]
, Φ̃i =

[
0 0
Φi Φi

]
,

L̃ = [
L̄ −L̂

]
, Q̄ = [

0 Q
]
.

The filtering problem is formulated as follows.
Filtering Problem: design a set of distributed filters such that the filtering error

system is mean-square asymptotically stable and achieves a prescribed H∞ perfor-
mance level γ in the presence of randomly occurring uncertainties in the filter gains.

Our later development makes use of the following definitions.
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Definition 9.1 The system (9.4) withw(k) = 0 is said to be asymptotically stable in
themean-square sense, if the solution x̃(k)of system (9.4) satisfies lim

k→∞E {‖x̃(k)‖} =
x̃(k0), where x̃(k0) is the initial condition.

Definition 9.2 For a given scalar γ > 0, the system (9.4) is said to be asymptoti-
cally stable in the mean-square sense with an average H∞ performance γ, if it is
asymptotically stable and 1

n

∑∞
s=k0

E{eT (s)e(s)} ≤ γ2 ∑∞
s=k0

wT (s)w(s) holds for
all nonzero w(k) ∈ l2[0,∞) under zero initial conditions.

9.3 Filter Analysis and Design

In this section, we aim to solve the distributed filtering problem.

Theorem 9.1 The filtering error system (9.4) is asymptotically stable in the mean-
square sense and achieves a prescribed H∞ performance γ if there exist positive-
definite matrix P and a positive scale ε such that the following inequality hold:

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Ξ1 Ξ2 Ξ3 0 0 Ξ4 0
∗ −P−1 0 0 0 0 Ξ5

∗ ∗ −nI 0 0 0 Ξ6

∗ ∗ ∗ −P̄−1 0 0 Ξ7

∗ ∗ ∗ ∗ −φ 0 Ξ8

∗ ∗ ∗ ∗ ∗ −ε̄I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε̄I

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

< 0, (9.5)

where

Ξ1 =
[−P 0

∗ −γ2 I

]
, Ξ2 =

[
ÃT

B̃T

]
, Ξ3 =

[
L̃T

0

]
,

Ξ4 =
[

εF̄ T Λ̄1 εQ̄TΛ3

εF̃ T Λ̄1 0

]
, Ξ5 = [

Π̄ M̃1 0
]
,

Ξ6 = [
0 −Π M̄3

]
, Ξ7 = [

Ω1 0
]
,

Ξ8 = [
0 Ω2

]
, P̄−1 = diag{P−1, . . . , P−1},

φ = diag{nI, . . . , nI }, ε̄1 I = diag{εI, εI },
Λ̄1 = diag{δ1 I, . . . δ1 I︸ ︷︷ ︸

n

, δ2 I, . . . δ2 I︸ ︷︷ ︸
n

},Λ3 = diag{δ3 I, . . . δ3 I︸ ︷︷ ︸
n

},

with

Ω1 =

⎡

⎢⎢⎢
⎣

θ1Φ̃1M̃1

θ2Φ̃2M̃1
...

θnΦ̃n M̃1

⎤

⎥⎥⎥
⎦

,Ω2 =

⎡

⎢⎢⎢
⎣

θ1Φ1M̄3

θ2Φ2M̄3
...

θnΦn M̄3

⎤

⎥⎥⎥
⎦

,

θi = √
αi (1 − αi ).
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Proof Consider the exponential stability of the filtering error system (9.4) with
w(k) = 0. We define the Lyapunov functional, V (k) = x̃ T (k)Px̃(k). Thus, one sees

E{V (k + 1) − V (k)}
= x̃ T (k)( Ã + Π̃ M̃1Δ̃1(k)F̄)T P( Ã + Π̃ M̃1Δ̃1(k)F̄)x̃(k)

+
n∑

i=1
θ2i x̃

T (k)(Φ̃i M̃1Δ̃1(k)F̄)
T
P(Φ̃i M̃1Δ̃1(k)F̄)x̃(k)

− x̃ T (k)T P x̃(k).

(9.6)

It is easy to know that E{V (k + 1) − V (k)} < 0 is equivalent to

⎡

⎢⎢⎢⎢⎢
⎣

−P ( Ã + Π̃ M̃1Δ̃1(k)F̄)
T

Θ1 · · · Θn

∗ −P−1 0 0 0
∗ ∗ −P−1 0 0

∗ ∗ ∗ . . .
...

∗ ∗ ∗ ∗ −P−1

⎤

⎥⎥⎥⎥⎥
⎦

< 0, (9.7)

where Θi = θi (Φ̃i M̃1Δ̃1(k)F̄)T , that is,

Ψ1 + Ψ2Δ̃1(k)Ψ3 + Ψ T
3 Δ̃1(k)Ψ

T
2 < 0, (9.8)

where

Ψ1 =

⎡

⎢⎢⎢
⎢⎢
⎣

−P Ã 0 · · · 0
∗ −P−1 0 0 0
∗ ∗ −P−1 0 0

∗ ∗ ∗ . . .
...

∗ ∗ ∗ ∗ −P−1

⎤

⎥⎥⎥
⎥⎥
⎦

,

Ψ2 =

⎡

⎢⎢
⎢⎢⎢
⎣

F̄ T

0
0
...

0

⎤

⎥⎥
⎥⎥⎥
⎦

, Ψ3 =

⎡

⎢⎢
⎢⎢⎢
⎣

0
Π̃ M̃1

θ1Φ̃1M̃1
...

θnΦ̃n M̃1

⎤

⎥⎥
⎥⎥⎥
⎦

T

.

By Lemma 2.2, (9.8) holds if and only if

⎡

⎣
Ψ1 εΨ2Λ̄1 Ψ T

3∗ −εI 0
∗ ∗ εI

⎤

⎦ < 0. (9.9)

Clearly, condition (9.5) guarantees (9.9), which indicates that the filtering error sys-
tem (9.4) ismean-square stable. Nowwe consider the H∞ performance.We construct
the same Lyapunov function V (k) = x̃ T (k)Px̃(k). It follows that

http://dx.doi.org/10.1007/978-3-319-53123-6_2
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E
{
V (k + 1) − V (k) + 1

n e
T (k)e(k) − γ2wT (k)w(k)

}

= [
Ax̃(k) + Bw(k)

]T
P

[
Ax̃(k) + Bw(k)

]

+
n∑

i=1
θ2i

[
Si x̃(k) + Riw(k)

]T
P

[
Si x̃(k) + Riw(k)

]

+ 1
n

[
Wx̃(k)

]T [
Wx̃(k)

]

+ 1
n

n∑

i=1
θ2i

[
Zi x̃(k)

]T [
Zi x̃(k)

]
,

(9.10)

where
A = Ã + Π̃ M̃1Δ̃1(k)F̄,B = B̃ + Π̃ M̃1Δ̃1(k)F̃,

Si = Φ̃i M̃1Δ̃1(k)F̄,Ri = Φ̃i M̃1Δ̃1(k)F̃,

W = L̃ − Π̄ M̄3Δ̄3(k)Q̄,Zi = −Φ̄i M̄3Δ̄3(k)Q̄.

Following the similar analysis method as before, we have

E

{
V (k + 1) − V (k) + 1

n
eT (k)e(k) − γ2wT (k)w(k)

}
< 0. (9.11)

Under the zero initial condition, it is easy toobtain 1
n

∑∞
s=k0

E{eT (s)e(s)} ≤ γ2 ∑∞
s=k0

wT (s)w(s) by following the methods in the last few chapters. This completes the
proof.

Remark 9.2 Theorem 9.1 provides a sufficient stability condition for the filtering
error system (9.4), where the parameters ᾱi , i = 1, 2, . . . , n, and δ1i , δ2i and δ3i are
included in this theorem. The impacts of the occurrence probability and the uncertain
bounds of perturbations on the global filtering performance have been established.

It should be noted that we can not obtain filter gains by solving the matrix inequal-
ity (9.5) due to the existence of the term P−1. The gains are determined in the
following theorem.

Theorem 9.2 Thefiltering problem is solvable if there exist a positive-definitematrix

P =
[
P1 P2
∗ P3

]
, a positive scale ε and any matrix G =

[
G1 G2

G3 G3

]
with appropriate

dimensions, such that the following inequality,

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Ξ1 Ξ̄2 Ξ3 0 0 Ξ4 0
∗ T 0 0 0 0 Ξ̄5

∗ ∗ −nI 0 0 0 Ξ6

∗ ∗ ∗ T̄ 0 0 Ξ̄7

∗ ∗ ∗ ∗ −φ 0 Ξ8

∗ ∗ ∗ ∗ ∗ −ε̄I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε̄I

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

< 0 (9.12)

holds. Then the filter gains are given by H̄ = G−T
3 H̃ , K̄ = G−T

3 K̃ and L̂ = 


L. where
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Ξ̄2 =
[

Ξ̄21

Ξ̄22

]
, Ξ̄5 = [

Ξ̄51 0
]
, Ξ̄7 = [

Ω̄1 0
]
,

with

Ω̄1 =

⎡

⎢⎢⎢
⎣

Ω̄11

Ω̄12
...

Ω̄1n

⎤

⎥⎥⎥
⎦

,

and

Ξ̄21 =
[
ĀT G1 + C̄T H̃ T ĀT G2 + C̄T H̃ T

K̃ T K̃ T

]
,

Ξ̄22 = [
B̄T G1 + D̄T H̃ T B̄T G2 + D̄T H̃ T

]
,

Ξ̄51 =
[
GT

3 Π M̄1 GT
3 Π M̄2

GT
3 Π M̄1 GT

3 Π M̄2

]
,

Ω̄1i = θi

[
GT

3 Φi M̄1 GT
3 Φi M̄2

GT
3 Φi M̄1 GT

3 Φi M̄2

]
,

T = P − G − GT , T̄ = diag{T, T, . . . , T︸ ︷︷ ︸
n

},

G3 = diag{G31,G32, . . . ,G3n}.

Proof For a matrix G, one has the following fact

− GT P−1G ≤ P − G − GT . (9.13)

Suppose that the inequality

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

Ξ1 Ξ̄2 Ξ3 0 0 Ξ4 0
∗ −GT P−1G 0 0 0 0 Ξ̄5

∗ ∗ −nI 0 0 0 Ξ6

∗ ∗ ∗ T̂ 0 0 Ξ̄7

∗ ∗ ∗ ∗ −φ 0 Ξ8

∗ ∗ ∗ ∗ ∗ −ε̄I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε̄I

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

< 0 (9.14)

holds, where T̂ = diag{−GT P−1G, . . . ,−GT P−1G︸ ︷︷ ︸
n

}. Then, left- and right-

multiplying (9.14) by diag{I, I,G−T , I,G−T , . . . ,G−T
︸ ︷︷ ︸

n

, I, . . . , I︸ ︷︷ ︸
n

, I, I, I, I } and its

transpose, respectively, gives (9.5). By (9.13), one sees that inequality (9.12) guar-
antees (9.14). This completes the proof.

Remark 9.3 In order to obtain the minimum H∞ performance γ∗, one can solve the
following optimization problem with linear matrix inequality constraint:
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min ρ
s.t. (9.12) with ρ=γ

(9.15)

and obtain the minimum H∞ performance γ∗ by γ∗ = ρ.

9.4 A Simulation Example

We consider a mechanical system with two masses and two springs. A similar exam-
ple has been studied in Chaps. 3–8, but here a small modification is made, i.e., Mass 2
is not affected by disturbance. For simplicity but without loss of generality, a wireless
sensor network with two sensors is deployed to monitor the spring-mass system. The
structure of the distributed filtering for spring-mass system is depicted in Fig. 9.2.
The mechanical system is represented by its state-space model:

ẋ(t) =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

− k1+k2
m1

− k2
m1

− c
m1

0
k2
m2

− k2
m2

0 − c
m2

⎤

⎥⎥
⎦ x(t) +

⎡

⎢⎢
⎣

0
0
1
m1

0

⎤

⎥⎥
⎦ w(t), (9.16)

where x1 and x2 are the positions of masses m1 and m2, respectively. k1 and k2
are the spring constants. The viscous friction coefficient between the masses and
the horizontal surface is denoted by c. Suppose that x2 is to be estimated by the
filters, and x1 is measured by two sensors with noisew(t) via the broadcasting of the
wireless module in mass 1. We have z(t) = [ 0 1 0 0 ]x(t), C1 = C2 = [

1 0 0 0
]
,

D1 = 1 and D3 = 0.6.
The discrete version of the system (9.17) with sampling period T = 0.3s is given

by

Fig. 9.2 Structure of the spring-mass system

http://dx.doi.org/10.1007/978-3-319-53123-6_3
http://dx.doi.org/10.1007/978-3-319-53123-6_8
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A =

⎡

⎢⎢
⎣

0.9162 0.0416 0.2703 0.0040
0.0792 0.9202 0.0079 0.2515

−0.5328 0.2624 0.7810 0.0376
0.4872 −0.4951 0.0753 0.6686

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

0.0422
0.0006
0.2703
0.0079

⎤

⎥⎥
⎦ .

In this example, two sensors share their local estimate and measurement with
each other. Suppose that the occurrence probabilities of the filter gain variation are
ᾱ1 = 0.8 and ᾱ2 = 0.6, respectively, and the variation bounds are δ1i = δ2i = δ3i =
1. The related uncertain matrices are

M1 = [
0.1 0.1 0.1 0.1

]T
,

M2 = [
0.1 0.2 0.1 0.1

]T
, M3= 0.1,

E11 = E12 = E21 = E22 = [
0.1 0.1 0.1 0.1

]
,

F11 = 0.2, F12 = 0.2, F21 = −0.1, F22 = 0.1,
Q11 = Q22 = [

0.1 0.1 0.1 0.1
]
.

By solving the optimization problem (9.16), we obtain the optimal performance
γ∗ = 0.3774. To further investigate the filtering performance, we assume that the
uncertainties in gains are Δ1(k) = sin(k), Δ2(k) = rand[−1, 1], Δ3(k) = cos(k).
The noise w(k) is assumed to be

w(k) =
{
rand[−1, 1], k ∈ [1, 50];
0, k = (50, 100]. (9.17)

Fig. 9.3 Trajectories of estimated signals
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The trajectories of the estimated signals are shown in Fig. 9.3. The actual H∞ per-
formance levels and the optimal one are shown in Fig. 9.4 after 100 Monte Carol
simulations.

Next, the relations between the occurrence probability of the gain variation and
the filtering performance are found and shown in Table9.1 when we set ᾱ1 = 0.8.
The relation between the uncertain bound δ1i and the γ∗ is given in Table9.2 whenwe
choose δ2i = δ3i = 1 and δ11 = δ12. It is seen that themore frequently the uncertainty
occurs, theworse filtering performance result is. In addition, the filtering performance
is worse when the larger perturbation occurs.

Fig. 9.4 Actual performance level and optimal performance level

Table 9.1 Relation between ᾱ2 and γ∗

ᾱ2 0.4 0.5 0.6 0.7 0.8

γ∗ 0.3506 0.3658 0.3774 0.3865 0.3937

Table 9.2 Relation between δ1i and γ∗

δ1i 0.4 0.6 0.8 1.0 1.2

γ∗ 0.3660 0.3689 0.3727 0.3774 0.3826
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9.5 Conclusions

We have investigated the distributed filtering for a class of sensor networks with
filter gain variations, in which a set of stochastic random variables are introduced
to model the so-called random filter gain variation phenomenon. Based on the Lya-
punov stability theory, the solvability condition of the considered filtering problem is
presented. The relations between the occurrence probability of uncertainty, uncertain
bound and the filtering performance are established. A numerical example has been
given to show the effectiveness of the proposed design.
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Chapter 10
Distributed Filtering with Measurement Size
Reduction and Filter Gain Variations

10.1 Introduction

We have mentioned two practical problems, i.e., energy constraint and filter gain
variations are commonly encountered inWSNs. In this chapter, the distributed filter-
ing for a class of discrete-time systems in sensor networks with these two problems
is discussed in a unified framework. The strategies of reducing the packet size and
the transmission rate are proposed to save sensor’s power. Firstly, the local measure-
ment size is reduced by using an effective measurement selection protocol, and then
the selected measurement is transmitted stochastically to its neighboring sensors. In
order to capture the filter implementation uncertainties, the additive gain variation
problem is also considered. Based on the switched system approach and some sto-
chastic system analysis methods, a new sufficient condition is obtained such that the
filtering error system is exponentially stable in the mean-square sense and achieves a
prescribed H∞ performance level. As usual, the filter parameters are determined by
solving a set of linear matrix inequalities. A simulation example is finally presented
to show the effectiveness of the proposed results.

10.2 Problem Statement

The sensor network is deployed tomonitor the plant, and there is no centralized fusion
center in this network. In this chapter, each sensor collects a local measurement and
shares the information with its’ neighboring ones, see Fig. 10.1 for illustration.

In this chapter, the plant is described by the following discrete-time state space
model: {

x(k + 1) = Ax(k) + Bw(k),
z(k) = Lx(k),

(10.1)

© Springer International Publishing AG 2017
D. Zhang et al., Filtering and Control of Wireless Networked Systems,
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Fig. 10.1 A structure of distributed filtering in sensor networks

where x(k) ∈ R
nx is the state vector. z(k) ∈ R

nz is the signal to be estimated.
w(k) ∈ R

nw is the noise vector, belonging to l2[0,∞). A, B and L are some known
constant matrices with appropriate dimensions.

The local measurement of the i-th sensor is given by

yi (k) = Ci x(k) + Diw(k), (10.2)

where yi (k) ∈ R
pi is the measured output from the i-th sensor. The matrices Ci and

Di are some known matrices with appropriate dimensions.
Due to the power limitation, not all local measurements are allowed to be trans-

mitted. Only one element of measurement signal is selected and then encapsulated
into a packet for transmission as this is the most energy-efficient. The measurement
selection scheme is achieved by introducing the following matrix:

Πρi (k) =
[
0 · · · 1︸︷︷︸

i

· · · 0]
, (10.3)

where ρi (k) ∈ {1, 2, . . . , pi } is a time-varying signal describing which element
of the measurement is selected. For example, when the first element of yi is
selected for transmission, we have ρi (k) = 1 and Πρi (k) = [

1 · · · 0 · · · 0 ]. When
the second element of yi is selected for transmission, we have ρi (k) = 2 and
Πρi (k) = [

0 1 · · · 0 · · · 0 ]. Based on the similar idea, one may also select more
elements for transmission. Then, the measurement after selection is

ȳi (k) = Πρi (k) [Ci x(k) + Diw(k)] . (10.4)

Compared with the original measurement signal, the size of measurement has been
reduced and fewer packets are needed to transmit required information. In order
to save more sensor power, the transmission rate reduction scheme is also applied.
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Here, a stochastic transmission protocol is introduced, that is, the sensor transmits
the measurement signal according to a given probability. Moreover, the zero input
scheme is applied when no current measurement is received. In this scenario, the
sensor does not need an additional unit to store the last received measurement. Then,
the input of filter is described as

ỹi (k) = αi (k)Πρi (k) [Ci x(k) + Diw(k)] , (10.5)

whereαi (k) is a binary stochastic variable, taking the values in {0, 1}. In this chapter,
Pr ob{αi (k) = 1} = E{αi (k)} = ᾱi is the transmission rate of the i-th sensor. The
transmission rate can be set to a certain value based on the trade-off between the
filtering performance and the energy consumption.

In order to capture the filter implementation uncertainties, the additive filter gain
variation problem is taken into account when we design the filter. Hence, the follow-
ing filter structure is adopted:

{
x̂i (k + 1) = (Kii + ΔKii )x̂i (k) + ∑

j∈Ni

ai j (Hi j + ΔHi j )ỹ j (k),

ẑi (k) = (L f i + ΔL f i )x̂i (k),
(10.6)

where x̂i (k) ∈ R
nx is the state of the i-th filter, and ẑi (k) ∈ R

nz is the estimate of z(k)
from the filter in sensor i . Kii , Hi j and L f i are the filter parameters to be determined.
The uncertainties in the filter gains are described as follows:

⎧
⎨

⎩

ΔHi j = Wi j Δ̄i j (k)Vi j ,

ΔKii = MiiΔi i (k)Nii ,

ΔL f i = SiΔ̃i (k)Ti ,
(10.7)

where ‖Δi i (k)‖ ≤ δi i I ,
∥∥Δ̄i j (k)

∥∥ ≤ δ̄i j I ,
∥∥∥Δ̃i (k)

∥∥∥ ≤ δ̃i I with some known

scalars δi i , δ̄i j and Δ̃i . These scalars are regarded as the bounds of the uncertainties.
Wi j , Vi j , Mii , Nii , Si and Ti are the known matrices with appropriate dimensions.

For easy presentation, we define the following notations:
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x̄(k) = [ xT (k) xT (k) · · · xT (k) ]T , x̂(k) = [ x̂ T1 (k) x̂ T2 (k) · · · x̂ Tn (k) ]T ,

ẑ(k) = [ ẑT1 (k) · · · ẑTn (k) ]T , z̄(k) = [ zT (k) · · · zT (k) ]T ,

Πα = diag{α1 I,α2 I, . . . ,αn I },Πρ(k) = diag{Πρ1(k), . . . , Πρn(k)},
Ā = diag{A, . . . , A}, B̄ = [ BT · · · BT ]T ,

C̄ = diag{C1, . . . ,Cn}, D̄ = [ DT
1 · · · DT

n ]T ,

L̄ = diag{L , L , . . . , L},Wi = diag{W1i , . . . ,Wni },
Δ̄i (k) = diag{Δ̄1i (k), . . . , Δ̄ni (k)},Δ1(k) = diag{Δ11(k), . . . , Δnn(k)},
Λ̄ = diag{Λ̄1, . . . , Λ̄n},Λ = diag{δ11 I, . . . , δnn I },
Λ̃ = diag{Δ̃11 I, . . . , Δ̃nn I }, Λ̄i = diag{δ̄1i I, . . . , δ̄ni I },
M̄ = diag{M11, M22, . . . , Mnn}, N̄ = diag{N11, N22, . . . , Nnn},
S̃ = diag{S1, S2, . . . , Sn}, T̄ = diag{T1, T2, . . . , Tn},
K̄ = diag{K11, K22, . . . , Knn}, L̄ f = diag{L f 1, L f 2, . . . , L f n},

H̄ =

⎡

⎢⎢
⎣

a11H11 · · · a1nH1n

...
. . .

...

an1Hn1 · · · annHnn

⎤

⎥⎥
⎦ , V̄ =

⎡

⎢⎢
⎣

a11V11 · · · a1nV1n

...
. . .

...

an1Vn1 · · · annVnn

⎤

⎥⎥
⎦ ,

Φi = diag{δ(i − 1), . . . , δ(i − t), . . . , δ(i − n)},

where δ(i) ∈ {0, 1} is the Kronecker delta function, and ρ(k) is a mapping from
{ρ1(k), ρ2(k), . . . ρn(k)}. It follows from the above definition of ρi (k), one sees that

ρ(k) takes the values from the set: Ψ =
{
1, 2, . . . ,

n∏

i=1
pi

}
.

Remark 10.1 It is noted that we have introduced several switching signals ρi (k)
to model the measurement selection process. By using one-to-one mapping above,
we can use only one switching signal ρ(k) to describe all the switching cases. Due
to the fact that we only select one element at each time instant, we have ρi (k) ∈
{1, 2, . . . , pi }. Then, for the switching signal ρ(k), the maximal possible number is

p1 × p2 × · · · × pn , and ρ(k) takes the values from the set: Ψ =
{
1, 2, . . . ,

n∏

i=1
pi

}
,

where
n∏

i=1
pi = p1 × p2 × · · · × pn .

Based on the above notations we have the following filtering error system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x̃(k + 1) =
(
Ãρ(k) + M̃Δ(k)N̄1

)
x̃(k) +

(
B̃ρ(k) + M̃Δ(k)N̄2

)
w(k)

+
n∑

s=1
(αs(k) − ᾱs)

⎡

⎣

(
Ãs,ρ(k) + M̃sΔ(k)N̄1

)
x̃(k)

+
(
B̃s,ρ(k) + M̃sΔ(k)N̄2

)
w(k)

⎤

⎦,

e(k) =
(
L̃ + S̃Δ̃(k)T̃

)
x̃(k),

(10.8)

where
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x̃(k) = [ x̄ T (k) x̂ T (k) ]T , e(k) = ẑ(k) − z̄(k),

Ãρ(k) =
[

Ā 0
H̄ΠαΠρ(k)C̄ K̄

]
, B̃ρ(k) =

[
B̄

H̄ΠαΠρ(k) D̄

]
,

Ãs,ρ(k) =
[

0 0
H̄ΦsΠρ(k)C̄ 0

]
, B̃s,ρ(k) =

[
0

H̄ΦiΠρ(k) D̄

]
,

M̃ =
[

0 · · · 0 0
α1W1 · · · αnWn M̄

]
,

N̄1 =

⎡

⎢⎢⎢
⎣

V̄Φ1Πρ(k)C̄ 0
...

...

V̄ΦnΠρ(k)C̄ 0
0 N̄

⎤

⎥⎥⎥
⎦

, N̄2 =

⎡

⎢⎢⎢
⎣

V̄Φ1Πρ(k) D̄
...

V̄ΦnΠρ(k) D̄
0

⎤

⎥⎥⎥
⎦

,

M̃i =
[
0 · · · 0 · · · 0 0
0 · · · Wi · · · 0 0

]
,Δ(k) = diag{Δ̄1(k), . . . , Δ̄n(k),Δ1(k)}

L̃ = [−L̄ L̄ f ].

The system (10.8) is a switched system, and the average dwell time approach is
utilized to derive the main results.

Definition 10.1 The system (10.8) is called robustly exponentially stable in the
mean-square sense, if there exist some scalars π > 0 and 0 < χ < 1, such that the
solution x̃ of system (10.8) satisfies E {‖x̃(k)‖} < πχ(k−k0) ‖x̃(k0)‖, ∀k ≥ k0.

Definition 10.2 For a given scalar γ > 0, the system (10.8) is said to be robustly
exponentially stable in the mean-square sense and achieves a prescribed H∞ perfor-
mance γ, if it is exponentially stable and under zero initial condition,
+∞∑

k=0
E

1
n {eT (k)e(k)} ≤

+∞∑

k=0
γ2wT (k)w(k) holds for all nonzero w(k) ∈ l2[0,∞).

Our filtering problem is stated as follows.
Filtering Problem: design a filter in form of (10.6) such that the filtering error

system (10.8) is robustly exponentially stable in the mean-square sense and achieves
a prescribed H∞ performance level in the presence of measurement size and trans-
mission rate reduction and uncertain filter gain variation.

10.3 Filter Analysis and Design

In this section, a sufficient condition is first established to guarantee the exponential
stability of the filtering error system (10.8) with a prescribed H∞ performance level.

Theorem 10.1 For given scalars τ > 0,μ > 1, 0 < λi < 1, and 0 < λ < 1, if
there exist positive-definite matrices Pi and a positive scalar ε > 0 such that the
following inequalities,



160 10 Distributed Filtering with Measurement Size Reduction and Filter Gain Variations

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ξ1 Ξ2 Ξ3 Ξ4 Ξ5 0
∗ −P−1

i 0 0 0 Ξ6

∗ ∗ −nI 0 0 Ξ7

∗ ∗ ∗ −P̄i 0 Ξ8

∗ ∗ ∗ ∗ −ε̄ 0
∗ ∗ ∗ ∗ ∗ −ε̄

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0, (10.9)

Pi ≤ μPj , i 	= j, (10.10)

Ta > T ∗
a = − ln μ

ln λ
, (10.11)

hold for all i, j ∈ Ψ , then the filtering error system (10.8) is exponentially stable
in the mean-square sense with decay rate χ = √

λbμ1/Ta and achieves a prescribed

H∞ performance level γ = τ
√

(1−λa)

1−λb/λ , where λa = min
i∈Ψ

{λi }, λb = max
i∈Ψ

{λi }, λ > λb,

and

Ξ1 =
[−λi Pi 0

0 −τ 2 I

]
, Ξ2 = [

Ãi B̃i

]T
, Ξ3 = [

L̃ 0
]T

,

Ξ4 =
[

θ1 ÃT
1i · · · θn ÃT

ni

θ1 B̃T
1i · · · θn B̃T

ni

]
, Ξ5 =

[
N̄ T
1 Λ̂ε T̃ T Λ̃ε

N̄ T
2 Λ̂ε 0

]
,

Ξ6 = [
M̃ 0

]
, Ξ7 = [

0 S̃
]
, Ξ8 =

⎡

⎢
⎣

θ1M̃1 0
...

...

θn M̃n 0

⎤

⎥
⎦ , Λ̂ =

[
Λ 0
0 Λ̃

]
,

P̄i = diag{P−1
i , . . . , P−1

i }, ε̄ = diag{εI, εI }.

Proof We choose the following Lyapunov functional:

Vρ(k)(k) = x̃ T (k)Pρ(k) x̃(k). (10.12)

Then for each ρ(k) = i , it follows that ∀i ∈ Ψ ,

E {Vi (k + 1) − λi Vi (k) + Υ (k)}
=
[(

Ãρ(k) + M̃Δ(k)N̄1

)
x̃(k) +

(
B̃ρ(k) + M̃Δ(k)N̄2

)
w(k)

]T

×Pi
[(

Ãρ(k) + M̃Δ(k)N̄1

)
x̃(k) +

(
B̃ρ(k) + M̃Δ(k)N̄2

)
w(k)

]

+
n∑

i=1
θ2i

[(
Ãi,ρ(k) + M̃iΔ(k)N̄1

)
x̃(k) +

(
B̃i,ρ(k) + M̃iΔ(k)N̄2

)
w(k)

]T

×Pi
[(

Ãi,ρ(k) + M̃iΔ(k)N̄1

)
x̃(k) +

(
B̃i,ρ(k) + M̃iΔ(k)N̄2

)
w(k)

]

+ 1
n

[(
L̃ + S̃Δ̃(k)T̃

)
x̃(k)

]T [(
L̃ + S̃Δ̃(k)T̃

)
x̃(k)

]

−λiη
T (k)Piη(k) − τ 2wT (k)w(k),

(10.13)
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where Υ (k) = 1
n e

T (k)e(k) − τ 2wT (k)w(k). By some arrangement, it is easy to see
that E {Vi (k + 1) − λi Vi (k) + Υ (k)} < 0 is equivalent to

Ω1 + Ω2Δ(k)ΩT
3 + Ω3Δ(k)ΩT

2 < 0, (10.14)

where

Ω1 =

⎡

⎢⎢
⎣

Ξ1 Ξ2 Ξ3 Ξ4

∗ −P−1
i 0 0

∗ ∗ −nI 0
∗ ∗ ∗ −P̄i

⎤

⎥⎥
⎦ ,Ω2 =

⎡

⎢⎢
⎣

Ξ̄5

0
0
0

⎤

⎥⎥
⎦ ,

Ω3 =

⎡

⎢⎢
⎣

0
Ξ6

Ξ7

Ξ8

⎤

⎥⎥
⎦ , Δ̂(k) =

[
Δ(k) 0
0 Δ̃(k)

]
,

with

Ξ̄5 =
[
N̄ T
1 T̃ T

N̄ T
2 0

]
.

By some manipulation, (10.14) is written as

Ω1 + Ω2Λ̄Δ̄(k)ΩT
3 + ΩT

3 Λ̄Δ̄(k)Ω2 < 0, (10.15)

where Λ̄= diag{Λ, Λ̃}, and Δ̄(k) =
[

Δ(k)
Λ

0

0 Δ̃(k)
Λ̃

]

. It follows that
∥∥∥Δ(k)

Λ

∥∥∥ ≤ I ,
∥∥
∥ Δ̃(k)

Λ̃

∥∥
∥ < I . Based on Lemma 2.2, one sees that (10.15) holds if and only if (10.9)

holds. Hence,
E {Vi (k + 1) − λi Vi (k) + Υ (k)} < 0. (10.16)

For the switching time instant k0 < k1 < · · · < ki < · · · < ks , we define the
switching number of ρ(k) over (k0, k) as Nρ(k0, k). One has

E{Vi (k)} ≤ E{λk−ki
i Vi (ki )} −

k−1∑

s=ki

λk−s−1
i E{Υ (s)}. (10.17)

It follows from (10.10) and (10.17) that

http://dx.doi.org/10.1007/978-3-319-53123-6_2
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E{Vρ(kl )(k)}
≤ λk−kl

ρ(kl )
E{Vρ(kl )(kl)} −

k−1∑

s=kl

λk−s−1
ρ(kl )

E{Υ (s)}

≤ λk−kl
ρ(kl )

μE{Vρ(kl−1)(kl)} −
k−1∑

s=kl

λk−s−1
ρ(kl )

E{Υ (s)}

≤ λk−kl
ρ(kl )

μ

[

λ
kl−kl−1

ρ(kl−1)
E{Vρ(kl−1)(kl−1)} −

kl−1∑

s=kl−1

λk−s−1
ρ(kl−1)

E{Υ (s)}
]

−
k−1∑

s=kl

λk−s−1
ρ(kl )

E{Υ (s)}
≤ · · · ≤ μNρ(k0,k)λk−kl

ρ(kl )
λ
kl−kl−1

ρ(kl−1)
· · · λk1−k0

ρ(k0)
Vρ(k0)(k0) − Θ(Υ ),

(10.18)

where

Θ(Υ ) = μNρ(k0,k−1)λk−kl
ρ(kl )

l−1∏

s=1
λ
ks+1−ks
ρ(ks )

k1−1∑

s=k0

λk1−1−s
ρ(k0)

E{Υ (s)}

+μNρ(k0,k−1)−1λk−kl
ρ(kl )

l−1∏

s=2
λ
k j+1−k j

ρ(k j )

k2−1∑

s=k1

λk2−1−s
ρ(k1)

E{Υ (s)}

+ · · · + μ0
k−1∏

s=kl

λk−1−s
ρ(kl )

E{Υ (s)}.

Now, we consider the exponential stability of system (10.8) with w(k) = 0. One
has

E{Vρ(kl )(k)}
≤ μNρ(k0,k)λk−kl

ρ(kl )
λ
kl−kl−1

ρ(kl−1)
· · · λk1−k0

ρ(k0)
Vρ(k0)(k0)

≤ μNρ(k0,k)λk−k0
b Vρ(k0)(k0)

≤ (
μ1/Taλb

)k−k0 Vρ(k0)(k0) = χ2(k−k0)Vρ(k0)(k0),

(10.19)

which yields E

{
‖x̃(k)(k)‖2

}
≤ ϕ2

ϕ1
χ2(k−k0) ‖x̃(k0)‖2, where ϕ1 = min

i∈Ψ
σmin(Pi ),

ϕ2 = max
i∈Ψ

σmax(Pi ), χ = √
λbμ1/Ta . Therefore, one can readily obtain χ < 1 from

(10.11). According to Definition 10.1, the filtering error system (10.8) is exponen-
tially stable in the mean-square sense with w(k) = 0.

For the H∞ performance level, we consider w(k) 	= 0. Under zero initial condi-
tion, it follows from (10.18) that

k−1∑

s=k0

μNρ(s,k−1)λk−s−1
a E{eT (s)e(s)} ≤ τ 2

k−1∑

s=k0

μNρ(s,k−1)λk−s−1
b wT (s)w(s). (10.20)

With the average dwell time condition (10.11), it is easy to see Nρ(s,k−1)
k−s−1 < − ln λ

ln μ
.

Since μ > 1, we obtain ln μNρ(s,k−1) < ln λ−(k−s−1), and 1 < μNρ(s,k−1) < λ−(k−s−1).
Then, it can be readily seen that
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k−1∑

s=k0

λk−s−1
a E{eT (s)e(s)} < τ 2

k−1∑

s=k0

(
λb
/
λ
)k−s−1

λk−s−1wT (s)w(s). (10.21)

Summing (10.21) from k = k0 + 1 to k = ∞ and changing the order of summation
yield

+∞∑

s=k0

E{eT (s)e(s)}
+∞∑

k=s+1

λk−s−1
a < τ 2

+∞∑

s=k0

wT (s)w(s)
+∞∑

k=s+1

(
λb
/
λ
)k−s−1

. (10.22)

Since
+∞∑

k=s+1
λk−s−1
a = 1

1−λa
and

+∞∑

k=s+1

(
λb
/
λ
)k−s−1 = 1

1−(λb/λ)
, we have

+∞∑

s=k0

E{eT (s)e(s)} < γ2
+∞∑

s=k0

wT (s)w(s), (10.23)

where γ = τ
√

1−λa
1−λb/λ . It is noted that λb < λ, which ensures γ > 0. Let k0 = 0, one

sees that the filtering error system (10.8) is exponentially stable in the mean-square
sense and achieves a prescribed H∞ performance level γ. This completes the proof.

Theorem 10.1 does not give the filter gains directly. The filter gains are determined
in the following theorem.

Theorem 10.2 For given scalars τ > 0,μ > 1, 0 < λi < 1, and 0 < λ < 1, if
there exist positive-definite matrices Pi , a positive scalar ε > 0, and any matrices
Gi of appropriate dimensions such that the following inequality,

⎡

⎢⎢⎢
⎢⎢⎢
⎣

Ξ1 Ξ̃2 Ξ̃3 Ξ̃4 Ξ5 0
∗ Ti 0 0 0 Ξ̃6

∗ ∗ −nI 0 0 Ξ7

∗ ∗ ∗ T̄i 0 Ξ̃8

∗ ∗ ∗ ∗ −ε̄ 0
∗ ∗ ∗ ∗ ∗ −ε̄

⎤

⎥⎥⎥
⎥⎥⎥
⎦

< 0, (10.24)

(10.10) and (10.11) hold for all i, j ∈ Ψ , then the filtering problem is solvable, and
the filter gains are determined by K̄ = G−T

3 K̃ , H̄ = G−T
3 H̃ and L̄ f = L̃ f , where

Ξ̃2 =
[

Ξ̃21

Ξ̃22

]
, Ξ̃3 =

[
Ξ̃31

0

]
, Ξ̃4 =

[
Ξ̃41 · · · Ξ̃4n

Ξ̄41 · · · Ξ̄4n

]
,

Ξ̃6 =
[

ᾱ1GT
3 W1 · · · ᾱnGT

3 Wn GT
3 M̄

ᾱ1GT
3 W1 · · · ᾱnGT

3 Wn GT
3 M̄

]
, Ξ̃8 =

⎡

⎢
⎣

Ξ̃81
...

Ξ̃8n

⎤

⎥
⎦ ,

Ti = Pi − Gi − GT
i ,
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with

Ξ̃21 =
[
ATG1i + C̄TΠ T

i Π T
α H̃ T AT G2i + C̄TΠ T

i Π T
α H̃ T

K̃ T K̃ T

]
,

Ξ̃22 = [
BTG1i + D̄TΠ T

i Π T
α H̃ T BT G2i + D̄TΠ T

i Π T
α H̃ T

]
,

Ξ̃31 =
[−L̄T

L̃T
f

]
, Ξ̃4s = θs

[
C̄TΠ T

i ΦT
s H̃

T C̄TΠ T
i ΦT

s H̃
T

0 0

]
,

Ξ̄4s = θs
[
D̄TΠ T

i ΦT
s H̃

T D̄TΠ T
i ΦT

s H̃
T
]
,

Ξ̃81 =
[

θ1GT
3 W1 · · · 0 0

θ1GT
3 W1 · · · 0 0

]

, Ξ̃8s =
[
0 · · · θsGT

3 Ws · · · 0 0

0 · · · θsGT
3 Ws · · · 0 0

]

,

Ξ̃8n =
[
0 · · · θnGT

3 Wn 0

0 · · · θnGT
3 Wn 0

]

, Pi =
[
P1i P2i
∗ P3i

]
,Gi =

[
G1i G2i

G3 G3

]
,

and G3 is a diagonal matrix.

Proof It is seen that (10.24) holds if there exists a matrix Gi such that
⎡

⎢⎢
⎢⎢⎢
⎣

Ξ1 Ξ̃2 Ξ̃3 Ξ̃4 Ξ5 0
∗ −GT

i P
−1
i Gi 0 0 0 Ξ̃6∗ ∗ −nI 0 0 Ξ7

∗ ∗ ∗ T̃i 0 Ξ̃8∗ ∗ ∗ ∗ −ε̄ 0
∗ ∗ ∗ ∗ ∗ −ε̄

⎤

⎥⎥
⎥⎥⎥
⎦

< 0, (10.25)

where T̃i = diag{−GT
i P

−1
i Gi , . . . ,−GT

i P
−1
i Gi }. Then by left- and right- multi-

plying (10.25) with diag{I, I,G−T
i , I,G−T

i , . . . ,G−T
i , I, I, I, I } and its transpose,

respectively, it is easy to see that (10.9) guarantees (10.25). This completes the proof.

Remark 10.2 In Theorem10.2, the existence condition for the filters is given in terms
of LMIs which is convex in the scalar τ 2. Therefore, one may solve the following
optimization problem:

min ρ,

s.t. (10.10), (10.11), (10.24) with ρ = τ 2.
(10.26)

to obtain the filter gain parameters such that the H∞ disturbance attenuation level is
minimized. When the optimal ρ is obtained from the above optimization problem,
then the designed filters guarantee that the filtering error system is exponentially

stable and achieves a prescribed H∞ performance level γ = τ
√

(1−λa)

1−λb/λ .

10.4 An Illustrative Example

Consider a spring-mass system, which has been studied in Chap. 9. The dynamics
of spring-mass system can be modeled as the following LTI system under sampling
period T = 0.3s:

http://dx.doi.org/10.1007/978-3-319-53123-6_9
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x(k + 1) = Ax(k) + Bw(k), (10.27)

where

A =

⎡

⎢⎢
⎣

0.9162 0.0416 0.2703 0.0040
0.0792 0.9202 0.0079 0.2515

−0.5328 0.2624 0.7810 0.0376
0.4872 −0.4951 0.0753 0.6686

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

0.0422
0.0006
0.2703
0.0079

⎤

⎥⎥
⎦ .

More discussions on modeling of spring-mass system can be found in Chap.9. As
in Chap.9, two sensors are deployed to monitor the spring-mass system. In this
example, the local measurements are assumed to be

{
y1(k) = C1x(k) + D1w(k),
y2(k) = C2x(k) + D2w(k),

(10.28)

with C1 =
[
1 0 0 0
0 1 0 0

]
, D1 =

[
0.5
0.6

]
, C2 = [

1 0 0 0
]
, D2 = 0.6.

Due to the energy constraints of the sensor network, the size of measurement y1
should be reduced before transmission, and y2 is transmitted directly. In this example,
Πρ1(k) ∈ {[

1 0
]
,
[
0 1

]}
, and each element of y1 is designed to be transmitted for

5 time steps. The transmission rate of each sensor is set to be 10, and 20%, i.e.,
ᾱ1 = 0.9, and ᾱ2 = 0.8. The signal to be estimated is z(k) = [

1 1 0 0
]
x(k). In this

estimation task, these two sensors share their measurements with each other. The
matrices in (10.7) is assumed to be

M11 = [ 0.1 0.1 0.2 0.1 ]T , M22 = [ 0.05 0.1 0.1 0.1 ]T ,

N11 = [ 0.1 0.1 0.1 0.1 ], N22 = [ 0.1 0 0.1 0.1 ],
W11 = [ 0.1 0.1 0.2 0.1 ]T ,W12 = [ 0.1 0.1 0.1 0.1 ]T ,

W21 = [−0.1 0.1 0.2 0.1 ]T ,W22 = [ 0.1 0.1 0 0.1 ]T ,

V11 = 0.1, V12= 0.08, V21= 0.05, V22= 0.03,
S1 = 0.1,S2 = 0.1,T1 = [ 0.1 0.1 0.1 0.1 ],
T2 = [−0.1 0.1 −0.1 0.1 ].

The uncertainties in (10.7) are Δi i (k) = rand[0, 1], Δ̄i j (k) = rand[0, 1] and
Δ̃i (k) = rand[0, 1], where rand is a random function. Choosing λ1 = 0.92,λ2 =
0.95,λ = 0.96 and μ = 1.1, we have λa = 0.92 and λb = 0.95. By solving
optimization (10.26), we obtain the optimal H∞ performance level is γ∗ = 4.1783.
The corresponding filter gain parameters are

http://dx.doi.org/10.1007/978-3-319-53123-6_9
http://dx.doi.org/10.1007/978-3-319-53123-6_9
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K11 =

⎡

⎢⎢
⎣

0.6891 −0.0971 0.1101 0.0083
−0.2865 0.1683 −0.4210 0.0573
−0.7598 0.3223 0.6706 −0.0293
−0.3400 −0.2475 −0.3959 −0.3505

⎤

⎥⎥
⎦ ,

H11 =

⎡

⎢⎢
⎣

−0.0892
−0.3558
−0.2611
0.6194

⎤

⎥⎥
⎦ , H12 =

⎡

⎢⎢
⎣

−0.1947
−0.4891
0.2026
0.5422

⎤

⎥⎥
⎦ ,

K22 =

⎡

⎢⎢
⎣

0.7180 −0.0796 0.1209 0.0058
−0.1849 0.1194 −0.3842 0.0882
−0.7449 0.2355 0.7267 0.0025
−0.2168 −0.0014 0.2172 −0.3073

⎤

⎥⎥
⎦ ,

H21 =

⎡

⎢⎢
⎣

−0.0912
−0.4202
−0.3471
0.1254

⎤

⎥⎥
⎦ , H22 =

⎡

⎢⎢
⎣

−0.1715
−0.5076
0.1314
0.2889

⎤

⎥⎥
⎦ ,

L f 1 = [−1.3752 −0.7531 0.0810 0.0263
]
,

L f 2 = [−1.4260 −0.7532 0.1011 0.0165
]
.

In the simulation setup, the unknown disturbance is taken as w(k) = e−0.5k

sin(0.05k). Under the zero initial conditions, the filtering performance is shown in
Figs. 10.2 and 10.3. It follows from Fig. 10.3 that the true H∞ performance level
is 0.7623, which is smaller than γ∗ = 4.1783. Due to the fact that there are many
stochastic uncertainties in the simulation, we run 100 simulations on the H∞ perfor-

Fig. 10.2 Trajectories of z(k) and its estimates ẑi (k)
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Fig. 10.3 Trajectories of estimation error ei (k)

Fig. 10.4 One hundred samples without packet losses

mance level and the results are depicted in Fig. 10.4. It is seen that our filter design
method is very effective. In order to see that our filtering result is also robust to packet
losses, we depict the 100 simulations on the filtering performance with 20% packet
dropout in each channel, see Fig. 10.5. Compared with Fig. 10.4, the estimation per-
formance becomes worse, but the overall performance is still guaranteed.



168 10 Distributed Filtering with Measurement Size Reduction and Filter Gain Variations

Fig. 10.5 One hundred samples with packet losses

10.5 Conclusions

We have studied the distributed non-fragile filtering for a class of discrete-time sys-
tems in sensor networks with energy constraints. Measurement size reduction and
stochastic transmission techniques are used in a unified framework to overcome
power constraints in sensors. Moreover, the practical issue, i.e., the filter gain vari-
ation problem, is also taken into account in the filter design. Based on the switched
system approach and some stochastic system analysis, the filter gain parameters can
be found by solving a set of LMIs,which is numerically efficient. Finally, a simulation
example has been given to show the effectiveness of the proposed design.



Chapter 11
Distributed Control with Controller Gain
Variations

11.1 Introduction

In the last few chapters, we have addressed the filtering problem of wireless networks
with energy constraints and filter gain variations. From this chapter onwards, we turn
to discuss the stabilization problem. In this chapter, the attention is focused on the
non-fragile distributed stabilization of large-scale system, in which the controller
gain variation and random controller failure are taken into account. Specifically,
a set of stochastic variables are introduced to model the random controller failure
phenomenon, then the additive controller gain variation problem is considered in
the controller design. Based on the Lyapunov stability theory and some stochastic
system analysis, a sufficient condition is obtained to guarantee that the closed-loop
system is asymptotically stable in the mean-square sense with a prescribed H∞ dis-
turbance attenuation level. The optimal controller gain design algorithm is presented
by solving an optimization problem. A simulation example is finally given to show
the effectiveness of the proposed design.

11.2 Problem Formulation

Theproblemunder consideration is to stabilize the interconnected systems bydeploy-
ing a group of controllers. The system structure is shown in Fig. 11.1, where each
controller is able to communicate with its neighbors via networked communication.
The multiple controllers act as a controller network with a certain topology.

Standard definitions for the controller network are given as follows. Let the topol-
ogy of a given controller network be represented by a direct graph π(k) = (υ,χ,A)

of order n with the set of controllers υ = {1, 2, . . . , n}, set of edges χ ⊆ υ × υ, and a
weighted adjacency matrix A = [ai j ] with nonnegative adjacency elements ai j . The
edge of π is denoted by (i, j). The adjacency elements associated with the edges
of the graph are ai j = 1 ⇔ (i, j) ∈ υ, when controller i can receive information

© Springer International Publishing AG 2017
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Fig. 11.1 The structure of distributed control systems

from sensor j . On the other hand, ai j = 0 if controller i can not receive information
from controller j , which may be out of communication range or the j-th controller
does not transmit information. Moreover, we assume aii = 1 for all i ∈ υ. The set of
neighbors of node i ∈ υ plus the node itself are denoted by Ni = { j ∈ υ : (i, j) ∈ υ}.
A = [ai j ] is a square matrix representing the topology of the controller network.

The plant to be controlled is represented by the following discrete-time large-scale
systems:

⎧
⎨

⎩
xi (k + 1) = Aii xi (k) +

n∑

j=1, j �=i
Ai j x j (k) + Biui (k) + Eivi (k),

zi (k) = Li xi (k),
(11.1)

where xi (k) ∈ R
ni is the system state, zi (k) ∈ R

mi is the performance output vector,
ui (k) ∈ R

pi is the control input vector and vi (k) ∈ R
qi is the unknown disturbance

belonging to l2[0,∞). Ai j is the couplings of the j-th subsystem onto i-th subsystem.
Ai j , Bi , Ei and Li are known matrices with appropriate dimensions.

Remark 11.1 The analysis and synthesis of the above large-scale system (11.1) has
been widely studied in the literature. Specifically, the above large-scale system has
been used to model various practical plants, such as process network [1] and inverted
pendulum system [2]. But so far, no results have been reported on the distributed
non-fragile control problem.

Due to the implementation uncertainties in the controller and the occurrence of
controller failure, we design the following controllers:

ui (k) =
∑

j∈Ni

αi (k)ai j (Ki j + ΔKi j )x j (k), (11.2)

where the stochastic variables, αi (k) ∈ {0, 1} are introduced to model the random
controller failures. In this chapter, the probabilities, Pr ob{αi (k) = 1} = ᾱi , are
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assumed to be available for our controller design, and Pr ob{αi (k) = 0} = 1 − ᾱi

is known as the failure rate of the i-th controller. Ki j is the controller gains to be
determined. The controller gain variations are assumed to beΔKi j = Mi jΔi j (k)Ni j ,
where

∥∥Δi j (k)
∥∥ ≤ δi j are the upper bounds of the variation. Mi j and Ni j are some

constant matrices with appropriate dimensions.
The topology of controller network may not be the same as the plant network

due to the fact that the controllers are communicating with each other via the net-
worked communication. The controller network is a sparse network, whichwill bring
us many difficulties on modeling of the closed-loop system. Specifically, when the
random controller failure problem is taken into account, the problem is more compli-
cated since the controller gains will be coupled with random variables and multiple
uncertainties. In order to model the closed-loop system, we define the following
notations:

x(k) = [
xT1 · · · xTn

]T
, z(k) = [

zT1 · · · zTn
]T

,

u(k) = [
uT
1 · · · uT

n

]T
, v(k) = [

vT
1 · · · vT

n

]T
,

K =
⎡

⎢
⎣

a11K11 · · · a1nK1n
...

. . .
...

an1KN1 · · · annKnn

⎤

⎥
⎦ , A =

⎡

⎢
⎣

A11 · · · A1n
...

. . .
...

An1 · · · Ann

⎤

⎥
⎦ , N̄ =

⎡

⎢
⎣

N1
...

Nn

⎤

⎥
⎦ ,

B = diag{B1, . . . , Bn}, E = diag{E1, . . . , En}, L = diag{L1, . . . , Ln},
Π̄ = diag{ᾱ1 I, . . . , ᾱn I }, Φi = diag{ρ(i − 1)I, . . . , ρ(i − n)I },
Mα = [

α1Φ1M · · · αnΦnM
]
,Δ(k) = diag{Δ1(k), . . . , Δn(k)},

M̄i = diag{ρ(i − 1)Φ1M, . . . , ρ(i − n)ΦnM},Λ = diag{δ1, . . . , δn},

with
Ni = diag{Ni1, . . . , Nin},Δi (k) = diag{Δi1(k), . . . , Δin(k)},
δi = diag{δi1 I, . . . , δin I }.

where ρ(i) is the Kreonecker function. Therefore, we have the following closed-loop
system,

⎧
⎪⎪⎨

⎪⎪⎩

x(k + 1) = [
A + B(Π̄K + MαΔ(k)N̄ )

]
x(k) + Ev(k)

+
n∑

i=1
(αi (k) − ᾱi )

[
B(Φi K + M̄iΔ(k)N̄ )x(k)

]
,

z(k) = Lx(k),

(11.3)

The control problem is formulated as follows: design the controller in form of
(11.2) such that the closed-loop system (11.3) is asymptotically stable in the mean-
square sense and achieves a prescribed H∞ performance level in the presence of
controller gain variation and random controller failure. We need the following defi-
nition in the subsequent analysis and development.

Definition 11.1 For a given scalar γ > 0, the system (11.3) is said to be asymptot-
ically stable in the mean-square sense and achieves a prescribed H∞ performance
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γ, if it is asymptotically stable, and under zero initial condition,
+∞∑

s=0
E{zT (s)z(s)} ≤

+∞∑

s=0
γ2vT (s)v(s) holds for all nonzero v(k) ∈ l2[0,∞).

11.3 Main Results

In this section, a sufficient condition is firstly established such that the closed-loop
system (11.3) is asymptotically stable in the mean-square sense with a prescribed
H∞ performance level.

Theorem 11.1 For given scalars δi j , ᾱi > 0, γ > 0 and the controller gain K , if
there exist a positive definite matrix P > 0 and a positive scalar ε > 0 such that the
following inequality,

⎡

⎢⎢⎢⎢
⎢⎢
⎣

Ξ Ω1 Ω2 Ω3 εΩ4 0
∗ −P−1 0 0 0 BMα

∗ ∗ −I 0 0 0
∗ ∗ ∗ −P̄ 0 Ω5

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥
⎥⎥
⎦

< 0, (11.4)

holds, then the closed-loop system (11.3) is asymptotically stable in the mean-square
sense and achieves a prescribed H∞ performance level γ, where

Ξ =
[−P 0

0 −γ2 I

]
,Ω1 = [

A + BΠ̄K E
]T

,

Ω2 = [
L 0

]T
,Ω3 = [

Ω31 · · · Ω3n
]
,

Ω4 = [
ΛN̄ 0

]T
,Ω5 = [

ΩT
51 · · · ΩT

5n

]T
,

P̄ = diag{−P−1, . . . ,−P−1}, θi = √
ᾱi (1 − ᾱi ),

with
Ω3i = [

θi BΦi K 0
]T

,Ω5i = θi B M̄i .

Proof We construct the following Lyapunov functional:

V (k) = xT (k)Px(k). (11.5)

Then, one sees
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E
{
V (k + 1) − V (k) + zT (k)z(k) − γ2vT (k)v(k)

}

= E
{
xT (k + 1)Px(k + 1) − xT (k)Px(k) + zT (k)z(k) − γ2vT (k)v(k)

}

= {[
A + B(Π̄K + MαΔ(k)N̄ )

]
x(k) + Ev(k)

}T

×P
{[
A + B(Π̄K + MαΔ(k)N̄ )

]
x(k) + Ev(k)

}

+
N∑

i=1
θ2i

[
B(Φi K + M̄iΔ(k)N̄ )x(k)

]T
P

[
B(Φi K + M̄iΔ(k)N̄ )x(k)

]

−xT (k)Px(k) + [Lx(k)]T [Lx(k)] − γ2vT (k)v(k)

= ηT (k)

(
Ξ + Ω̄T

1 Ω̄1 + Ω̄T
2 Ω̄2 +

n∑

i=1
Ω̄T

3iΩ̄3i

)
η(k),

(11.6)

where

η(k) = [
xT (k) vT (k)

]T
, Ω̄1 = [

A + B(Π̄K + MαΔ(k)N̄ ) E
]
,

Ω̄3i = [
B(Φi K + M̄iΔ(k)N̄ ) 0

]
.

It is seen Ξ + Ω̄T
1 PΩ̄1 + ΩT

2 Ω2 +
n∑

i=1
Ω̄T

3iΩ̄3i < 0 is equivalent to

⎡

⎢⎢
⎣

Ξ Ω1 Ω2 Ω3

∗ −P−1 0 0
∗ ∗ −I 0
∗ ∗ ∗ −P̄

⎤

⎥⎥
⎦ +

⎡

⎢⎢
⎣

Ω4

0
0
0

⎤

⎥⎥
⎦

Δ(k)
Λ

⎡

⎢⎢
⎣

0
BMα

0
Ω5

⎤

⎥⎥
⎦

T

+

⎡

⎢⎢
⎣

0
BMα

0
Ω5

⎤

⎥⎥
⎦

Δ(k)
Λ

⎡

⎢⎢
⎣

Ω4

0
0
0

⎤

⎥⎥
⎦

T

< 0

(11.7)

It follows from Lemma 2.2 that (11.7) holds if and only if there exists a positive
scalar ε > 0 such that

⎡

⎢⎢
⎣

Ξ Ω1 Ω2 Ω3

∗ −P−1 0 0
∗ ∗ −I 0
∗ ∗ ∗ −P̄

⎤

⎥⎥
⎦ + ε

⎡

⎢⎢
⎣

Ω4

0
0
0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

Ω4

0
0
0

⎤

⎥⎥
⎦

T

+ ε−1

⎡

⎢⎢
⎣

0
BMα

0
Ω5

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0
BMα

0
Ω5

⎤

⎥⎥
⎦

T

< 0.

(11.8)

By using the Lemma 2.2, (11.8) is equivalent to (11.4). Then, we have

E
{
V (k + 1) − V (k) + zT (k)z(k) − γ2vT (k)v(k)

}
< 0. (11.9)

It follows fromChap.2, the system (11.3) is asymptotically stable in themean-square
sense and achieves a prescribed H∞ performance level γ. This completes the proof.

http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_2
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Remark 11.2 It is noted that the uncertain bounds on the gain variation have been
included in the above theorem. One may establish the relation between these gain
variation bounds and the control performance, e.g., the H∞ performance level.

Due to the co-existence of P and P−1, we can not obtain the controller gain
directly from Theorem 11.1. The controller design is given in the following theorem.

Theorem 11.2 For given scalars δi j , ᾱi > 0 and γ > 0, if there exist a diagonal
matrix Q and a positive scalar ε̄ > 0 such that the following inequality,

⎡

⎢⎢
⎢⎢⎢⎢
⎣

Ξ̃ Ω̃1 Ω̃2 Ω̃3 Ω̃4 0
∗ −Q 0 0 0 BMαε̄
∗ ∗ −I 0 0 0
∗ ∗ ∗ −Q̄ 0 Ω̃5

∗ ∗ ∗ ∗ −ε̄I 0
∗ ∗ ∗ ∗ ∗ −ε̄I

⎤

⎥⎥
⎥⎥⎥⎥
⎦

< 0, (11.10)

holds, then the closed-loop system (11.3) is asymptotically stable in the mean-square
sense and achieves a prescribed H∞ performance level γ. Moreover the controller
gain is determined by K = K̄ Q−1, where,

Ξ̃ =
[−Q 0

0 −γ2 I

]
, Ω̃1 = [

AQ + BΠ̄ K̄ E
]T

,

Ω̃2 = [
LQ 0

]T
, Ω̃3 = [

Ω̃31 · · · Ω̃3N

]
,

Ω̃4 = [
ΛN̄ Q 0

]T
, Ω̃5 = [

Ω̃T
51 · · · Ω̃T

5n

]T
,

Q̄ = diag{−Q, . . . ,−Q},

with
Ω̃3i = [

θi BΦi K̄ 0
]T

, Ω̃5i = θi ε̄BM̄i .

Proof By left- and right-multiplying (11.4) by diag{P−1, I, I, I, I, . . . , I︸ ︷︷ ︸
n

, }

{ε−1 I, ε−1 I } and its transpose, (11.4) becomes

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Ξ̂ Ω̂1 Ω̂2 Ω̂3 Ω̂4 0
∗ −Q 0 0 0 BMαε−1

∗ ∗ −I 0 0 0
∗ ∗ ∗ −Q̂ 0 Ω̃5ε

−1

∗ ∗ ∗ ∗ −ε−1 I 0
∗ ∗ ∗ ∗ ∗ −ε−1 I

⎤

⎥⎥⎥⎥⎥
⎥
⎦

< 0, (11.11)

where
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Ξ̂ =
[−P−1 0

0 −γ2 I

]
, Ω̂1 = [

AP−1 + BΠ̄K P−1 E
]T

,

Ω̂2 = [
LP−1 0

]T
, Ω̂3 = [

Ω̂31 · · · Ω̂3n

]
,

Ω̂4 = [
ΛN̄ P−1 0

]T
,

Q̂ = diag{−P−1, . . . ,−P−1},

with
Ω̂3i = [

θi BΦi K P−1 0
]T

.

Let P be a diagonal matrix, Q = P−1, K̄ = K P−1, and ε̄ = ε−1. One sees that
(11.11) is the same as (11.10), which indicates that the closed-loop system is asymp-
totically stable in the mean-square sense and achieves a prescribed H∞ performance
level under the controller (11.2). The proof is completed.

Remark 11.3 A diagonal matrix Q is introduced to obtain the control gain parame-
ters due to the sparse restriction on the controller gain K . The similarmethod has been
recently used in [3], where the distributed filtering in sensor networks with missing
measurement was studied. Such a choice may introduce some design conservatism.
An alternative algorithm is to use the well-known cone complementarity lineariza-
tion algorithm (CCL) method in [4]. Nevertheless, the CCL method needs a lot of
iterations, which may not be easy to be applied to a system with large dimensions.

Remark 11.4 In Theorem 11.2, the existence condition for the controllers are given
in terms of LMIs which is convex in the scalar γ2. Therefore, one may solve the
following optimization problem:

min ρ,

s.t. (11.10) with ρ = γ2.
(11.12)

to obtain the controller gain parameters such that the H∞ disturbance attenuation level
is minimized. When the optimal ρ is obtained from the above optimization problem,
the designed controllers guarantee that the closed-loop system is asymptotically
stable and achieves a prescribed H∞ performance level ρ.

11.4 An Illustrative Example

In this section, a large-scale system with two identical inverted pendulums is given
to verify the effectiveness of our results. The inverted pendulums are coupled by
springs and subject to two distinct inputs. The structure is seen in Fig. 11.2.

The position, a, of the spring can be changed along the full length l, of the
pendulums. The objective is to design two distributed controllers for the individual
masses, m. Two controllers are sharing their local measurement with each other,
i.e., ai j = 1 for all i, j = 1, 2. Let k and g denote the spring constant and gravity
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Fig. 11.2 The interconnected inverted pendulum system

acceleration, respectively. Then the motion equation for the i-th inverted pendulum
is given in [2] by

ẋi (t) =
[

0 l
g
l − 2ka2

ml2 0

]
xi (t) +

[
0
1

ml2

]
ui (t) +

2∑

j=1, j �=i

[
0 0
ka2

ml2 0

]
x j (t), (11.13)

where xi (t) = [
θi (t) θ̇i (t)

]T
.

We set k = 1, l = 1,m = 1 and a = 0.1. For the sampling period of T = 0.02s,
the following discrete-time model is obtained:

xi (k + 1) =
[
1.002 0.02
0.1957 1.002

]
xi (k) +

[
0.0002
0.02

]
ui (k) +

2∑

j=1, j �=i

[
0 0

0.002 0

]
x j (k).

(11.14)

For the disturbance on the inverted pendulum,we assume that the disturbanceweight-
ing matrices are E1 = E2 = [

0.1 0.2
]
, and disturbance signals are given by

vi (k) =
{
rand, 1 ≤ k ≤ 20,
0, 20 < k ≤ 200.

(11.15)

where rand is a random function generating a value between [0, 1]. It follows from
Fig. 11.3 that the inverted pendulum system is open-loop unstable as the state diverges
from the equilibrium point. Before the controller design, the performance related
matrices are taken as L1 = L2 = [

0.5 0.5
]
. The gain variation related matrices are

assumed to be

M11 = 0.1,M12 = 0.1,M21 = 0.05, M22 = 0.08,
N11 = [

0.1 0.1
]
, N12 = [

0.1 0.03
]
,

N21 = [
0.1 −0.1

]
, N22 = [

0.05 0.1
]
,

Δi j (k) = rand, i, j = 1, 2.



11.4 An Illustrative Example 177

0 20 40 60 80 100 120 140 160 180 200
−12

−10

−8

−6

−4

−2

0

2
x 104

Time(k)

S
ta

te
x11
x12
x21
x22

Fig. 11.3 The state trajectories of open-loop system

It follows from the above assumptions, the uncertain bounds on the controller
gain variation are δi j = 1, i, j = 1, 2. Suppos that the controller failure probabilities
are 20 and 10%, respectively, i.e., ᾱ1 = 0.8, and ᾱ2 = 0.9. Then, by solving the
optimization problem (11.12), we have γ∗ = 0.3279, and the controller gain is

K =
[−69.2272 −53.7477 −0.1993 −0.0020

−0.1720 −0.0033 −62.4480 −51.8637

]
.

Under the zero initial condition, the state-trajectories of closed-loop system are
depicted in Fig. 11.4. It is seen that states tend to zero, which means that the
closed-loop system is asymptotically stable. To verify the H∞ performance level,
we depict the performance output signals in Fig. 11.5. It is seen that the controlled
performance state tends to zero when the disturbance signal disappear. We compute

γ =

√√√√
√

200∑

s=0
zT (s)z(s)

200∑

s=0
vT (s)v(s)

= 0.1631. 100 samples on the true performance level are shown in

Fig. 11.6. Theminimal performance level is 0.13, and themaximal performance level
is 0.24, which is smaller than the optimal one. We thus conclude that our controller
design algorithm is effective.
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Fig. 11.4 The state trajectories of closed-loop system
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Fig. 11.5 The trajectories of performance output signal and disturbance
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11.5 Conclusions

We have investigated the non-fragile distributed stabilization of large-scale systems
with random controller failure. The additive gain variation and the random controller
failure are simultaneously considered in the controller design.Based on theLyapunov
stability theory and the stochastic system approach, a sufficient condition has been
obtained such that the closed-loop system is asymptotically stable in the mean-
square sense and guarantees a prescribed H∞ disturbance attenuation level. Finally,
a simulation study has been given to show the effectiveness of the newdesignmethod.
In the next chapter, the energy constraint problem will be addressed.
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Chapter 12
Distributed Control with Measurement Size
Reduction and Random Fault

12.1 Introduction

This chapter is concerned with the design of energy-efficient and reliable distrib-
uted controllers for a class of nonlinear large-scale systems. Techniques such as
reducing the packet size and the communication times are used to save the energy
consumption of the sensors, and thereby extend the lifetime of the networks. The
signal quantization technique is used to reduce the transmitted packet size, and a
communication sequence is introduced to reduce the communication times. A set
of stochastic variables are employed to model the random sensor failure phenom-
enon. Based on the switched system theory and the Lyapunov stability technique,
a sufficient condition is proposed such that the closed-loop system is exponentially
stable in the mean-square sense and achieves a prescribed H∞ disturbance attenua-
tion level. The controller gain design algorithm is presented by resorting to the cone
complementarity linearization (CCL) method. A numerical example is finally given
to show the effectiveness of the proposed design.

12.2 Problem Formulation

The system under consideration is shown in Fig. 12.1, where each sensor is able to
communicatewith its neighbouring ones viawireless communication. In this chapter,
each sensor is equipped with ameasuring unit, a quantization unit, a processing unit
and a communication unit. The sensor network acts as a control network.

The plant to be controlled is represented by the following discrete-time nonlinear
large-scale system:

© Springer International Publishing AG 2017
D. Zhang et al., Filtering and Control of Wireless Networked Systems,
Studies in Systems, Decision and Control 97, DOI 10.1007/978-3-319-53123-6_12
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Fig. 12.1 The sensor-network-based control system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xi (k + 1) = Aii xi (k) + W0ig(xi (k)) + W1ig(xi (k − di (k)))

+
N∑

j=1, j �=i
Ai j x j (k) + Biui (k) + Eivi (k),

zi (k) = Li xi (k),
xi (s) = ψi (s), s = −d2i , . . . , 0,

(12.1)

where xi (k) ∈ R
ni is the state vector, ui (k) ∈ R

pi is the control input vec-
tor, and vi (k) ∈ R

qi is the unknown disturbance, belonging to l2[0,∞). g(xi (k))
is the nonlinear perturbation on the i-th subsystem and is assumed to satisfy
‖g(xi (k))‖ ≤ ‖Uxi (k)‖ with a known matrix U . It is seen that the matrix U
represents the bound of the nonlinear perturbation. ψi (s) is the initial condition.
zi (k) ∈ R

mi is the performance output vector. Ai j , j �= i , is the couplings of the j-th
subsystem onto i-th subsystem. di (k) is the time-varying delay and it is assumed
to be bounded by d1i ≤ di (k) ≤ d2i , where d1i and d2i are some positive scalars.
Aii , Ai j ,W0i ,W1i , Bi , Ei and Li are known matrices with appropriate dimensions.

In order to reduce the communication between the local sensors, the local mea-
surement signal is quantized and scheduled before transmission to other sensors.
In this scenario, less information is transmitted but the topology of sensor network
becomes time-varying. We now use the following controller:

ui (k) =
N∑

j=1

aσ(k)
i j K σ(k)

i j α j (k)Q j (x j (k)), (12.2)

where Qi (•) is the i-th quantizer with the quantization density 0 < ρi < 1 and it
is assumed to be symmetric and time-invariant, i.e., Qi (−τi ) = −Qi (−τi ). For any
i, i = 1, 2, . . . , N , the set of quantization levels are described as

Ui = {±κs
i ,κ

s
i = ρsi κ

0
i , s = ±1,±2, . . .

}

∪ {±κ0
i

} ∪ {0} , 0 < ρi < 1,κ0
i > 0.

(12.3)
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The quantized output Qi (•) is given by

Qi (τi ) =
⎧
⎨

⎩

κs
i , if 1

1+δi
κs
i < τi ≤ 1

1−δi
κs
i , τi > 0,

0, if τi = 0,
−Qi (−τi ), if τi < 0,

(12.4)

where δi = 1−ρi
1+ρi

< 1. Define the quantization error

ei = Qi (τi ) − τi = Δi (k)τi , (12.5)

the signal after quantization can be described as

x̃i (k) = (I + Δi (k))xi (k), (12.6)

where ‖Δi (k)‖ ≤ δi I . The stochastic variables αi (k) ∈ {0, 1}, are introduced to
model the random sensor failures, with αi (k) = 1 if a sensor is working normally,
αi (k) = 0, otherwise. In this chapter, Pr ob{αi (k) = 1} = E{αi (k)} = ᾱi is as-
sumed to be known. The scalar aσ(k)

i j , j �= i is the interconnection of the sensors,

which is different from that of the plant networks, where aσ(k)
i j = 1, if i-th sensor

receives information from the j-th subsystem, whereas aσ(k)
i j = 0 if the i-th sensor

cannot receive information from the j-th subsystem. Suppose we have M scheduled
communication sequences, then σ(k) ∈ Γ = {1, 2, . . . , M}, and it is viewed as a
switching signal. Clearly, different topologies represent different energy consump-
tion. K σ(k)

i j is the controller gains in the i-th subsystem under the switching signal
σ(k), which will be determined later.

Remark 12.1 Unlike the fixed topology assumptions that were made on the distrib-
uted control of large-scale systems in [2–6], the topologies of the sensor network
here are dynamical, which provides a tradeoff between the energy consumption and
control performance. In order to achieve this, one may design two topologies, one
is for the energy-efficiency, e.g., local sensor does not communicate with the neigh-
bouring ones, while the other one is for the control performance improvement, i.e.,
local sensor communicates with the neighbouring ones in a fully connected manner.
It is interesting to see that the controller design is completely different from the exist-
ing decentralized and distributed frameworks. Here, we have built a bridge between
the decentralized control methodology and the distributed one.

Due to the couplings of the system state variables and also the couplings of local
controllers, we define the following notations for easy presentation:

x(k) = [ xT1 · · · xTN
]T
, z(k) = [ zT1 · · · zTN

]T
, u(k) = [uT

1 · · · uT
N

]T
,

v(k) = [ vT
1 · · · vT

N

]T
, g(x(k)) = [ gT (x1(k)) · · · gT (xN (k))

]T
,

g(x(k − d(k))) = [ gT (x1(k − d1(k))) · · · gT (xN (k − dN (k)))
]T
,
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Kσ(k) =
⎡

⎢
⎣

aσ(k)
11 K σ(k)

11 · · · aσ(k)
1N K σ(k)

1N
...

. . .
...

aσ(k)
N1 K σ(k)

N1 · · · aσ(k)
NN K σ(k)

NN

⎤

⎥
⎦, A =

⎡

⎢
⎣

A11 · · · A1N
...

. . .
...

AN1 · · · ANN

⎤

⎥
⎦,

W0 = diag{W01, . . . ,W0N }, W1 = diag{W11, . . . ,W1N },
B = diag{B1, . . . , BN }, E = diag{E1, . . . , EN },
L = diag{L1, . . . , LN }, Ū = diag{U, . . . ,U }, Π̄ = diag{ᾱ1 I, . . . , ᾱN I },
Φi = diag{ρ(i − 1)I, . . . , ρ(i − N )I }, Δ(k) = diag{Δ1(k), . . . , ΔN (k)},
Λ = diag{δ1 I, . . . , δN I }, d1 = min{d1i }, d2 = max{d2i }.
where ρ(i) is the Kreonecker function. With the above notations, we have the fol-
lowing closed-loop system,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(k + 1) = [A + BKσ(k)Π̄(I + Δ(k))
]
x(k)

+ W0g(x(k)) + W1g(x(k − d(k))) + Ev(k)

+
N∑

i=1
(αi (k) − ᾱi )

[
BKσ(k)Φi (I + Δ(k))x(k)

]
,

z(k) = Lx(k),

(12.7)

where d1 ≤ d(k) ≤ d2. The System (12.5) is a switched system and the average
dwell time approach is also be utilized to analyze the closed-loop system.

The distributed control problem in this chapter is formulated as follows: design a
set of controllers in form of (12.2) such that the closed-loop system (12.5) is expo-
nentially stable in the mean-square sense and achieves a prescribed H∞ performance
level in the presence of reduced communications and random sensor fault.

Definition 12.1 The closed-loop system (12.5) is said to be exponentially stable in
the mean-square sense, if there exist some scalars π > 0 and 0 < χ < 1, such that
the solution x(k) of system (12.5) satisfiesE {‖x(k)‖} < πχ(k−k0) sup

k0−d2≤s≤k0

‖ψ(s)‖ ,

∀k ≥ k0.

Definition 12.2 For given scalars γ > 0, system (12.5) is said to be exponen-
tially stable in the mean-square sense and achieves a prescribed H∞ performance

γ, if it is exponentially stable and under zero initial condition,
+∞∑

s=0
EzT (s)z(s)} ≤

+∞∑

s=0
γ2vT (s)v(s) holds for all nonzero v(k) ∈ l2[0,∞).

12.3 Main Results

Theorem 12.1 Forgiven scalars τ > 0,μ > 1, 0 < λl < 1, ᾱi > 0and0 < λ < 1,
if there exist positive definite matrix Pl > 0, positive scalars ε > 0, β1 > 0 and
β2 > 0 such that the following inequalities
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⎡

⎢⎢⎢⎢⎢⎢
⎣

Ξ ΩT
1 ΩT

2 Ω3 ΩT
4 0

∗ −P−1
l 0 0 0 BKlΠ̄

∗ ∗ −I 0 0 0
∗ ∗ ∗ −P̄l 0 ΩT

5∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0, (12.8)

Pl ≤ μPv, l �= v, (12.9)

Ta > T ∗
a = − ln μ

ln λ
, (12.10)

hold for all l, v ∈ Γ , then the closed-loop system (12.5) is exponentially stable in the

mean-square sense and achieves a prescribed H∞ performance level γ = τ
√

(1−λa)

1−λb/λ ,

where
Ξ = Ξ5×5,

Ω1 =
[
A + BKlΠ̄ 0 W0 W1 E

]
,

Ω2 =
[
L 0 0 0 0

]
,Ω3 =

[
Ω31 · · · Ω3N

]
,

Ω4 = [Λε 0 0 0 0
]
,Ω5 = [Ω51 · · · Ω5N

]
,

P̄l = diag{P−1
l , . . . , P−1

l }, θi = √
ᾱi (1 − ᾱi ),

λa = min
l∈Γ

{λl},λb = max
l∈Γ

{λl},λ > λb, d12 = d2 − d1.

with
Ξ11 = −λl Pl + β1Ū T Ū + (d12 + 1)Ql ,

Ξ22 = −λd2
l Ql + β2Ū T Ū ,

Ξ33 = −β1 I, Ξ44 = −β2 I, Ξ55 = −τ 2 I,

Ω3i = [ θi BKlΦi 0 0 0 0
]T

,Ω5i = θi (BKlΦi )
T .

Proof We construct the following Lyapunov functional for each l ∈ Γ :

V (k) =
3∑

i=1

Vi (k), (12.11)

where
V1(k) = xT (k)Plx(k),

V2(k) =
k−1∑

s=k−d(k)
xT (s)λk−s−1

l Ql x(s),

V3(k) =∑k−d1
t=k−d2+1

k−1∑

s=t
xT (s)λk−s−1

l Ql x(s).

Then, one has
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E {V1(k + 1) − λl V1(k)}
= E

{
xT (k + 1)Plx(k + 1) − λl xT (k)Plx(k)

}

=
{[

A + BKlΠ̄(I + Δ(k))
]
x(k) + W0g(x(k))

+W1g(x(k − d(k))) + Ev(k)

}T
Pl

×
{[

A + BKlΠ̄(I + Δ(k))
]
x(k) + W0g(x(k))

+W1g(x(k − d(k))) + Ev(k)

}

+
N∑

i=1
θ2i [BKlΦi (I + Δ(k))x(k)]T Pl [BKlΦi (I + Δ(k))x(k)]

−λl xT (k)Plx(k)

= ηT (k)

(
Ω̄T

1 PlΩ̄1 +
N∑

i=1
Ω̄T

3iΩ̄3i

)
η(k) − λl xT (k)Plx(k),

(12.12)

where
Ω̄1 =

[
A + BKlΠ̄(I + Δ(k)) 0 W0 W1 E

]
,

Ω̄3i =
[
θi BKlΦi (I + Δ(k)) 0 0 0 0

]
,

η(k) = [ xT (k) xT (k − d(k)) gT (x(k))

gT (x(k − d(k))) vT (k)
]T

.

In addition, we have

E {V2(k + 1) − λl V2(k)}
=

k∑

s=k−d(k+1)+1
xT (s)λk−s

l Ql x(s) −
k−1∑

s=k−d(k)
xT (s)λk−s

l Ql x(s)

= xT (k)Qlx(k) − λd(k)
l xT (k − d(k))Qlx(k − d(k))

+
k−1∑

s=k−d(k+1)+1
xT (s)λk−s

l Ql x(s) −
k−1∑

s=k−d(k)+1
xT (s)λk−s

l Ql x(s)

≤ xT (k)Qlx(k) − xT (k − d(k))λd2
l x(k − d(k))

+
k−d1∑

s=k−d(k+1)+1
xT (s)λk−s

l Ql x(s) +
k−1∑

s=k−d1+1
xT (s)λk−s

l Ql x(s)

−
k−1∑

s=k−d(k)+1
xT (s)λk−s

l Ql x(s).

(12.13)

Note that

k−d1∑

s=k−d(k+1)+1
xT (s)λk−s

l Ql x(s) +
k−1∑

s=k−d1+1
xT (s)λk−s

l Ql x(s)

≤
k−d1∑

s=k−d2+1
xT (s)λk−s

l Ql x(s) +
k−1∑

s=k−d(k)+1
xT (s)λk−s

l Ql x(s).
(12.14)

Then, it follows that
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E {V2(k + 1) − λl V2(k)}
≤ xT (k)Qlx(k) − xT (k − d(k))λd2

l x(k − d(k))

+
k−d1∑

s=k−d2+1
xT (s)λk−s

l Ql x(s).
(12.15)

Furthermore, we see

E {V3(k + 1) − λl V3(k)}
=

k−d1+1∑

t=k−d2+2

k∑

s=t
xT (s)λk−s

l Ql x(s) −
k−d1∑

t=k−d2+1

k−1∑

s=t
xT (s)λk−s

l Ql x(s)

= d12xT (k)Qlx(k) −
k−d1∑

s=k−d2+1
xT (s)λk−s

l Ql x(s).

(12.16)

According to the assumptions on the nonlinear function g(x(k)), the following in-
equalities are true for positive scalars β1 > 0 and β2 > 0:

β1x
T (k)Ū T Ū x(k) − β1g

T (x(k))g(x(k)) ≥ 0, (12.17)

β2xT (k − d(k))Ū T Ū x(k − d(k))
−β2g

T (x(k − d(k))g(x(k − d(k)) ≥ 0.
(12.18)

It follows from the above analysis that

E
{
V (k + 1) − λl V (k) + zT (k)z(k) − τ 2vT (k)v(k)

}

≤ ηT (k)

[
Ξ + Ω̄T

1 PlΩ̄1 + ΩT
2 Ω2 +

N∑

i=1
Ω̄T

3iΩ̄3i

]
η(k).

(12.19)

By some manipulation, it is seen that Ξ + Ω̄T
1 PlΩ̄1 + ΩT

2 Ω2 +
N∑

i=1
Ω̄T

3iΩ̄3i < 0 is

equivalent to

⎡

⎢
⎢
⎣

Ξ ΩT
1 ΩT

2 Ω3

∗ −P−1
l 0 0

∗ ∗ −I 0
∗ ∗ ∗ −P̄l

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

Ω̄T
4
0
0
0

⎤

⎥
⎥
⎦

Δ(k)
Λ

⎡

⎢
⎢
⎣

0
BKlΠ̄

0
Ω5

⎤

⎥
⎥
⎦

T

+

⎡

⎢⎢
⎣

0
BKlΠ̄

0
Ω5

⎤

⎥⎥
⎦

Δ(k)
Λ

⎡

⎢⎢
⎣

Ω̄T
4
0
0
0

⎤

⎥⎥
⎦

T

< 0.

(12.20)

By Lemma 2.2, it is seen that (12.18) holds if (12.8) holds. Then, we have

E
{
Vl(k + 1) − λl V (k) + zT (k)z(k) − τ 2vT (k)v(k)

}
< 0. (12.21)

http://dx.doi.org/10.1007/978-3-319-53123-6_2
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For the switching time instant k0 < k1 < · · · < kl < · · · < ks , we define the
switching numbers of σ(k) over (k0, k) as Nσ(k0, k). One has

E{Vl(k)} ≤ E{λk−kl
l Vl(kl)} −

k−1∑

s=kl

λk−s−1
l E{Υ (s)}, (12.22)

where Υ (k) = zT (k)z(k) − τ 2vT (k)v(k). It follows from (12.9) and (12.20) that

E{Vσ(kl )(k)}
≤ λk−kl

σ(kl )
E{Vσ(kl )(kl)} −

k−1∑

s=kl

λk−s−1
σ(kl )

E{Υ (s)}

≤ λk−kl
σ(kl )

μE{Vσ(kl−1)(kl)} −
k−1∑

s=kl

λk−s−1
σ(kl )

E{Υ (s)}

≤ λk−kl
σ(kl )

μ

[

λ
kl−kl−1

σ(kl−1)
E{Vσ(kl−1)(kl−1)} −

kl−1∑

s=kl−1

λk−s−1
σ(kl−1)

E{Υ (s)}
]

−
k−1∑

s=kl

λk−s−1
σ(kl )

E{Υ (s)}
≤ · · · ≤ μNσ(k0,k)λk−kl

σ(kl )
λ
kl−kl−1

σ(kl−1)
· · · λk1−k0

σ(k0)
Vσ(k0)(k0) − Θ(Υ ),

(12.23)

where

Θ(Υ ) = μNσ(k0,k−1)λk−kl
σ(kl )

l−1∏

s=1
λ
ks+1−ks
σ(ks)

k1−1∑

s=k0

λk1−1−s
σ(k0)

E{Υ (s)}

+μNσ(k0,k−1)−1λk−kl
σ(kl )

l−1∏

s=2
λ
k j+1−k j

σ(k j )

k2−1∑

s=k1

λk2−1−s
σ(k1)

E{Υ (s)}

+ · · · + μ0
k−1∏

s=kl

λk−1−s
σ(kl )

E{Υ (s)}.

Now, we consider the exponential stability of the system (12.5) with v(k) = 0.
By choosing N0 = 0, one has

E{Vσ(kl )(k)}
≤ μNσ(k0,k)λk−kl

σ(kl )
λ
kl−kl−1

σ(kl−1)
· · · λk1−k0

σ(k0)
Vσ(k0)(k0)

≤ μNσ(k0,k)λk−k0
b Vσ(k0)(k0)

≤ (μ1/Taλb
)k−k0 Vσ(k0)(k0) = χ2(k−k0)Vσ(k0)(k0),

(12.24)

where χ = √
λbμ1/Ta . It follows from (12.9) that there exist two positive scalars

ϕ1 > 0 and ϕ2 > 0 such that

E
{‖x(k)‖2} ≤ ϕ2

ϕ1
χ2(k−k0) sup

k0−d2≤s≤k0

‖ψ(s)‖ . (12.25)
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According to condition (12.8), one can readily obtain χ < 1. Hence, the closed-loop
system (12.5) is exponentially stable in the mean-square sense.

We now consider the H∞ performance level. Under zero initial condition, it fol-
lows from (12.21) that

k−1∑

s=k0

μNσ(s,k−1)λk−s−1
a E{zT (s)z(s)} ≤ τ 2

k−1∑

s=k0

μN (s,k−1)λk−s−1
b vT (s)v(s). (12.26)

With the average dwell time condition (12.8), it is easy to see Nσ(s,k−1)
k−s−1 < − ln λ

ln μ
. Since

μ > 1,we obtain ln μNσ(s,k−1) < ln λ−(k−s−1), and 1 < μNσ(s,k−1) < λ−(k−s−1). Then,
it can be readily seen that

k−1∑

s=k0

λk−s−1
a E{zT (s)z(s)} < τ 2

k−1∑

s=k0

(
λb
/
λ
)k−s−1

λk−s−1vT (s)v(s). (12.27)

Summing (12.27) from k = k0 + 1 to k = ∞ and changing the order of summation
yield

+∞∑

s=k0

E{zT (s)z(s)}
+∞∑

k=s+1

λk−s−1
a < τ 2

+∞∑

s=k0

vT (s)v(s)
+∞∑

k=s+1

(
λb
/
λ
)k−s−1

. (12.28)

Since
+∞∑

k=s+1
λk−s−1
a = 1

1−λa
and

+∞∑

k=s+1

(
λb
/
λ
)k−s−1 = 1

1−(λb/λ)
, we have

+∞∑

s=k0

E{zT (s)z(s)} < γ2
+∞∑

s=k0

vT (s)v(s), (12.29)

where γ = τ
√

1−λa
1−λb/λ . According to Definition 12.2, the closed-loop system (12.5)

is exponentially stable in the mean-square sense and achieves a prescribed H∞ per-
formance level. This completes the proof.

Due to the co-existence of Pl and P−1
l , we can not obtain the controller gain

directly from Theorem 12.1. We now present the following theorem for the gain
calculation.

Theorem 12.2 Forgiven scalars τ > 0,μ > 1, 0 < λl < 1, ᾱi > 0and0 < λ < 1,
the control problem is solvable if there exist positive definite matrices Pl > 0, Tl > 0,
and positive scalars ε > 0, β1 > 0, β2 > 0 such that the following inequalities,
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⎡

⎢⎢
⎢⎢⎢⎢
⎣

Ξ ΩT
1 ΩT

2 Ω3 ΩT
4 0

∗ −Tl 0 0 0 BKlΠ̄

∗ ∗ −I 0 0 0
∗ ∗ ∗ −T̄l 0 ΩT

5∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥
⎥⎥⎥⎥
⎦

< 0, (12.30)

Tl Pl = I, (12.31)

and (12.7) hold for all l, v ∈ Γ , where T̄l = diag{Tl, . . . , Tl}.
Proof The proof is trivial by letting Tl = P−1

l , and thus it is omitted.

We can see fromTheorem12.2 that the conditions (12.7) and (12.30) are linearmatrix
inequalities which can be solved efficiently by available software. The challenge lies
in the condition (12.31),which is a bilinearmatrix equation and it is non-convex.Over
the past decades, much work has been done to solve this kind of problems, among
which the cone complementarity linearization (CCL) algorithm [1] was shown to be
efficient by many numerical implementations. In this chapter, the CCL algorithm is
used to solve the above non-convex problem, and the controller gain parameter can
be obtained by solving the following optimization problem:

Controller design:

min Tr

(
M∑

l=1

(Tl × Pl)

)

, (12.32)

s.t. (12.7), (12.30) and [
Tl I
I Pl

]
≥ 0. (12.33)

Remark 12.2 In solving the optimization problem (12.32), the control performance
related parameter τ should be given first. Thus, the minimal H∞ performance level
may not be obtained. In order to obtain the minimal H∞ performance, one may
initially choose a large τ , and then solve the optimization problem. If no solution is
found, one reduces a larger τ until the the optimization problem is feasible. On the
other hand, if the optimization problem admits a solution for the chosen τ , then one
decreases τ by a small Δτ and solve the optimization problem.

12.4 An Illustrative Example

In this section, a practical example is given to show the effectiveness of the proposed
design. The example under consideration is the interconnected chemical reactors
composing of two non-isothermal continuous stirred-tank reactors (CSTRs) with
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Fig. 12.2 Process flow diagram of two interconnected CSTR systems

interconnections between reactors. Figure12.2 shows the process flow diagram of
two interconnected CSTR units. It follows from Fig. 12.2 that the feed to CSTR 1
consists of two streams, one containing fresh flow at rate F0, molar concentration
CA0, and temperature T0; the second stream contains recycled flow from CSTR 2 at
rate Fr , molar concentration CA2, and temperature T2. The feed to CSTR 2 consists
of the output of CSTR 1, and an additional fresh stream at flow rate F3, molar
concentration CA03, and temperature T03. The plant model is given [4] by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṫ1 = F0
V1

(T0 − T1) + Fr
V1

(T2 − T1) +
3∑

i=1
Gi (T1)CA1 + Q1

ρcpV1
,

ĊA1 = F0
V1

(CA0 − CA1) + Fr
V1

(CA2 − CA1) +
3∑

i=1
Ri (T1)CA1,

Ṫ2 = F1
V2

(T1 − T2) + F3
V2

(T03 − T2) +
3∑

i=1
Gi (T2)CA2 + Q2

ρcpV2
,

ĊA2 = F1
V2

(CA1 − CA2) + F3
V2

(CA03 − CA2) −
3∑

i=1
Ri (T2)CA2,

(12.34)
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where Gi (Tj ) = (−(ΔHi )
/
ρcp
)
Ri (Tj ) and Ri (Tj ) = ki0 exp

(
(−Ei )

/
RTi
)
for

j = 1, 2. ΔHi , ki0, Ei , i = 1, 2, 3, denote the enthalpies, pre-exponential con-
stants and activation energies of the reactions, respectively; Also, cp and ρ denote
the heat capacity and density of fluid in the reactor, respectively. The open-loop
plant is unstable at the desired operating point ((T s

1 ,Cs
A1, T

s
2 ,Cs

A2) = 457.9K,

1.77 kmol/m3, 415.5K, 1.75 kmol/m3). By linearizing the plant equations (12.34)
around the given operating point, the following system is obtained:

{
ẋ1(t) = Ac

11x1(t) + B̄c
1u1(t) + Ac

12x2(t),
ẋ2(t) = Ac

22x2(t) + B̄c
2u2(t) + Ac

21x1(t),
(12.35)

where xi and ui are the state and input vectors for the i-th subsystem, respectively,
and they are defined by

x1 =
[ T1−T s

1
T s
1

CA1−Cs
A1

Cs
A1

]

, x2 =
[ T2−T s

2
T s
2

CA2−Cs
A2

Cs
A2

]

,

u1 =
[

Q1

CA0 − Cs
A0

]
, u2 =

[
Q2

CA03 − Cs
A03

]
.

Based on the values of the process parameters given in Table12.1 (taken from
[4]), the matrices in (12.35) are obtained as:

Table 12.1 Parameters and steady-state values for the chemical reactors

F0 = 4.998m3/h R = 8.314 kJ/kmol K

F1 = 39.996m3/h E1 = 5.0 × 104 kJ/kmol

F3 = 30.0m3/h E2 = 7.53 × 104 kJ/kmol

Fr = 34.998m3/h E3 = 7.53 × 104 kJ/kmol

V1 = 1.0m3 ρ = 1000.0 kg/m3

V2 = 3.0m3 Cp = 0.231 kJ/kmol K

T0 = 300.0K T s
1 = 457.9K

T03 = 300.0K T s
2 = 415.5K

CS
A0 = 4.0 kmol/m3 Cs

A1 = 1.77 kmol/m3

CS
A03 = 2.0 kmol/m3 C2

A2 = 1.75 kmol/m3

ΔH1 = −5.0 × 104 kJ/kmol k10 = 3.0 × 105 h−1

ΔH2 = −5.2 × 104 kJ/kmol k20 = 3.0 × 105 h−1

ΔH3 = −5.4 × 104 kJ/kmol k30 = 3.0 × 105 h−1
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Ac
11 =

[
25.2914 4.9707
−78.028 −45.9368

]

, Ac
12 =

[
31.7512 0

0 34.6421

]
,

B̄c
1 =

[
9.45 × 10−6 0

0 2.8234

]
,

Ac
22 =

[ −2.8370 1.4157
−22.4506 −24.8828

]
, Ac

21 =
[
14.6953 0

0 13.4690

]
,

B̄c
2 =

[
3.47 × 10−6 0

0 5.7071

]
.

With a sampling time of Ts = 0.0025 h, the above process system is transformed to
the following discrete-time interconnected system:

{
x1(k + 1) = Ad

11x1(k) + B̄d
1 u1(k) + Ad

12x2(k),
x2(k + 1) = Ad

22x2(k) + B̄d
2 u2(k) + Ad

21x1(k),
(12.36)

where
Ad
11 =

[
1.0632 0.0124

−0.1951 0.8852

]
, Ad

12 =
[
0.0794 0

0 0.0866

]
,

B̄d
1 =

[
9.45 × 10−7 0

0 0.0071

]
,

Ad
22 =

[
0.9929 0.0035

−0.0561 0.9378

]
, Ad

21 =
[
0.0367 0

0 0.0337

]
,

B̄d
2 =

[
3.47 × 10−7 0

0 0.0143

]
.

It follows from [7] that the nonlinear perturbation, time-delay and disturbance occur
in CSTR systems. Then, we model the interconnected CSTR system by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi (k + 1) = Aii xi (k) + W0ig(xi (k)) + W1ig(xi (k − di (k)))

+
2∑

j=1, j �=i
Ai j x j (k) + Biui (k) + Eivi (k),

zi (k) = Li xi (k).

(12.37)

The parameters of each subsystem are given as follows.
Subsystem 1:

A11 =
[

1.0632 0.0124
−0.1951 0.8852

]
, A12 =

[
0.0794 0

0 0.0866

]
,

W01 = W11 =
[
0.1 0
0.1 0.01

]
, B1 =

[
9.45 × 10−7 0

0 0.0071

]
,

E1 =
[
0.7
0.3

]
, L1 = [0.5 0.5

]
.



194 12 Distributed Control with Measurement Size Reduction and Random Fault

Fig. 12.3 State trajectories of subsystem 1 without control

Subsystem 2:

A22 =
[

0.9929 0.0035
−0.0561 0.9378

]
, A21 =

[
0.0367 0

0 0.0337

]
,

W02 = W12 =
[−0.1 0

−0.1 0.1

]
, B2 =

[
3.47 × 10−7 0

0 0.0143

]
,

E2 =
[
0.5
0.3

]
, L2 = [0.1 0.8

]
.

The nonlinear disturbance is assumed to be g(xi (k)) =
[
tanh(0.2x1i )
tanh(0.2x2i )

]
. Then we

have U = diag{0.2, 0.2}. The time-varying delays are assumed to be 1 ≤ d1(k) ≤ 3
and 2 ≤ d2(k) ≤ 4, respectively. Then, d1 = 1, and d2 = 4. Choosing initial
conditions as ψ1 = ψ2 = [

0.1 0.1
]T
, random delays for d1(k) and d2(k), and

v1 = v2 = 0, then the state trajectories of these two systems are shown in Figs. 12.3
and 12.4, respectively. One can see that this system is open-loop unstable.

In this example, we use two wireless sensors to perform the control task and all
state variables are assumed to be available for controller design. In order to save
energy in sensors, signal is quantized before transmission and the communication
between these two sensors is scheduled to be intermittent. The quantization densities
are set to be ρ1 = 0.9, ρ2 = 0.7. In addition, we choose a1i j = 1 and a2i j = 0 for
i, j = 1, 2, i �= j . The communication sequence is scheduled to be the following
periodical signal,

σ(k) =
{
1, 1 ≤ k ≤ 5,
2, 6 ≤ k ≤ 10.

(12.38)

It is seen that the entire system works in the centralized framework under topology
1 and the decentralized control one under topology 2. The sensor faulty rates in this
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Fig. 12.4 State trajectories of subsystem 2 without control

example are assumed to be 20, 30%, that is ᾱ1 = 0.8, ᾱ2 = 0.7. By choosing
λ1 = 0.95, λ2 = 0.98, λ = 0.99 and μ = 1.05, we have T ∗

a = 4.8546 < 5, hence
the condition (12.8) is satisfied. Solving the optimization problem (12.32), we obtain
the minial H∞ performance level γ∗ = 0.7141. The corresponding controller gains
are

K1 =

⎡

⎢⎢
⎣

−1.2724 × 106 −0.1511 × 106 −0.1636 × 106 −420.0542
14.7123 −126.5612 8.9966 −17.5228

−0.0944 × 106 −0.0868 × 106 −3.2858 × 106 −0.6258 × 106

−0.6780 −1.2824 −3.9407 −76.4545

⎤

⎥⎥
⎦,

Fig. 12.5 State trajectories of subsystem 1 with control
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K2 =

⎡

⎢⎢⎢
⎣

−1.2791 × 106 −0.0859 × 106 0 0

11.8000 −127.1985 0 0

0 0 −3.3545 × 106 −0.4665 × 106

0 0 −5.1766 −75.3818

⎤

⎥⎥⎥
⎦
.

Under the same initial conditions as before, the state trajectories of these two systems
are depicted in Figs. 12.5 and 12.6, respectively. One sees that the closed-loop sys-
tem is stable based on our design. We now evaluate the H∞ performance level.
For simulation purpose, we choose v1(k) = sin(0.2k) and v2(k) = cos(0.2k).

Fig. 12.6 State trajectories of subsystem 2 with control

Fig. 12.7 Trajectories of noise
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Fig. 12.8 State trajectories of two subsystems

Fig. 12.9 Trajectories of performance output

The trajectories are shown in Fig. 12.7. Choosing the zero initial conditions for
the two subsystems, the state trajectories are depicted in Fig. 12.8. Figure12.9
depicts the trajectories of performance output. By simple calculation, we have√

100∑

s=0
zT (s)z(s)

/
100∑

s=0
vT (s)v(s) = 0.5678 < γ∗.
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12.5 Conclusions

We have studied the distributed stabilization of large-scale systems in a sensor net-
workwith energy constraint and random sensor faults. In order to save limited energy
in sensors, techniques such as reducing the packet size reduction and the commu-
nication frequency reduction have been used. A set of binary variables has been
introduced to model the random sensor fault phenomenon. Based on the switched
system theory, Lyapunov stability technique and some stochastic system analysis, a
sufficient condition has been obtained such the closed-loop system is exponentially
stable in the mean-square sense and achieves a prescribed disturbance attenuation
level in the H∞ sense. Controller gains is designed based on the CCL method. A
numerical example has been given to show the effectiveness of the proposed design.

In this chapter, we only use the signal quantization and transmission rate reduction
schemes to reduce the transmission power. As we have mentioned that some other
methods such as aperiodic sampling and measurement size reduction schemes can
also help reduce the transmission power. Now, the problem is if we can simultane-
ously use these schemes to achieve the energy-efficiency goal? The similar problem
has been discussed in the distributed filtering system. We will discuss the distributed
control problem in the next chapter.
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Chapter 13
Distributed Control with Communication
Reduction

13.1 Introduction

In this chapter, we revisit the sensor-network-based control problem for a class of
large-scale systems, and the energy constraint is still our main concern. To achieve
the energy-efficiency goal, the measurement size reduction technique and commu-
nication rate reduction method are introduced in the control system design. Firstly, a
time-varying sampling scheme is used in the sampling process, and only one element
of the sampled data is then chosen and quantized for transmission. Then, an inter-
mittent communication between the local sensors with their neighbours are used to
reduce the communication rate. A unified switched system approach is proposed to
model the nonuniform sampling, the measurement size reduction, and the communi-
cation rate reduction phenomenon. A sufficient condition is presented such that the
closed-loop system is exponentially stable in the mean-square sense and achieves
a prescribed H∞ performance level. The controller gains are determined by using
the cone complementarity linearization (CCL) algorithm subject to certain LMI con-
straint. Finally, a case study on the interconnected CSTR system is given to show
the effectiveness of the proposed new design.

13.2 Problem Formulation

The problem under consideration is to stabilize the large-scale system by the distrib-
uted control. The target plant is firstly sampled under time-varying periods. Then, we
select one element of state measurement, and quantize this measurement for trans-
mission. It is known that the controller failure may occur in the control system. Our
system is shown in Fig. 13.1.

Consider the following continuous-time linear time-invariant (LTI) system:

© Springer International Publishing AG 2017
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Fig. 13.1 Sensor-network-based control system

{
ẋ(t) = Ax(t) + Bu(t) + Ev(t),
z(t) = Lx(t),

(13.1)

where x(t) ∈ R
n is the state vector, z(t) ∈ R

m is the performance output vector,
u(t) ∈ R

p is the control input vector and v(t) ∈ R
q is the unknown disturbance

belonging to L2[0,+∞). A, B, E and L are some constant matrices with appropri-
ate dimensions. To control a large-scale system, the first step is to partition it into
some small subsystems. These subsystems are interconnected under certain topol-
ogy, hence the system (13.1) is sparse. Let G = (v, ε) be the direct graph associated
with the matrix A = [ai j ], that is, the node set is v = {1, 2, . . . , N } and there exists
a directed edge (i, j) ∈ ε ⊆ v × v if and only if ai j �= 0. Let v be partitioned into N
disjoint sets, v = {v1, v2, . . . , vN }, and let Gi = (vi , εi ) be the i-th subgraph of G
with vertices vi and edges εi = ε ∩ (vi × vi ). According to this partition, the matrix
A us given by

A =

⎡

⎢⎢⎢
⎣

A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...

AN1 AN2 · · · ANN

⎤

⎥⎥⎥
⎦

= AD + AC ,

where Aii ∈ R
ni×ni , Ai j ∈ R

ni×n j , AD is block-diagonal, and AC = A − AD . It is
noted that if AD = diag{A11, . . . , ANN } then AD represents the decoupled diagonal
subsystems and AC describes their interconnections. Specifically, if A is sparse, then
several blocks in AC are zero. In this chapter, we assume that the interconnection of
the plant only occurs in the state variables. Then, we have

B = diag{B1, B2, . . . , BN }, E = diag{E1, E2, . . . , EN },
L = diag{L1, L2, . . . , LN }.

With the above structure, the system (13.1) becomes an interconnected system and
the dynamics of each subsystem is given by
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⎧
⎨

⎩
xi (t) = Aii x(t) +

N∑

j=1, j �=i
Ai j x j (t) + Biui (t) + Eivi (t),

zi (t) = Li x(t).
(13.2)

We are now in the position to discuss the issues with networked control.

13.2.1 Sampling

In the networked control system, a signal is usually sampled and only its value
at the sampling time instant is available for controller design. In this chapter, the
sampling period of each sensor is set to be the same, and all the sensors work in
an synchronous mode. For each sensor, the sampling period is allow to vary, i.e.,
each sensor has a time-varying sampling period. Define the measurement sampling
period as hk = tk+1 − tk , where, tk is the sampling time instant. In this chapter, we
assume that hk takes a value from a given set. Specifically, let hk = nkT0, where
nk ∈ {l1, l2, . . . , lN1}, l j , j = 1, 2, . . . , N1 are positive integers, and T0 is the basic
sampling period.

We now discretize the system (13.2) with the sampling period hk and applying a
zero-order-holder, we obtain the following discrete-time system:

⎧
⎪⎪⎨

⎪⎪⎩

xi (tk+1) = Aii (k)x(tk) +
N∑

j=1, j �=i
Ai j (k)x j (tk)

+Bi (k)ui (tk) + Ei (k)vi (tk),
zi (tk) = Li x(tk),

(13.3)

where Aii (k) = eAii hk , Ai j (k) =
(∫ hk

0 eAii τdτ
)
Ai j , Bi (k) =

(∫ hk
0 eAii τdτ

)
Bi and

Ei (k) =
(∫ hk

0 eAii τdτ
)
Ei . Let Aii0 = eAii T0 , Ai j0 =

(∫ T0
0 eAii τdτ

)
Ai j , Bi0 =

(∫ T0
0 eAii τdτ

)
Bi , Ei0 =

(∫ T0
0 eAii τdτ

)
Ei . Then, we have Aii (k) = A0

nk , Ai j (k) =
nk−1∑

t=0
Aii0

t Ai j0, Bi (k) =
nk−1∑

t=0
Aii0

t Bi0, Ei (k) =
nk−1∑

t=0
Aii0

t Ei0. It is seen that the values

of Ai j (k), Bi (k) and Ei (k) are determined by the sampling period hk . Define a
piecewise constant signal, s(k) ∈ Ω1 = {1, 2, . . . , N1}. Then, we have the following
switching system model for (13.3):

⎧
⎪⎪⎨

⎪⎪⎩

xi (tk+1) = Aii
s(tk )

x(tk) +
N∑

j=1, j �=i
Ai j
s(tk )

x j (tk)

+Bi
s(tk )

ui (tk) + Ei
s(tk )

vi (tk),
zi (tk) = Li x(tk),

(13.4)
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where Aii
s(tk )

= Aii0
ls(tk ) , Ai j

s(tk )
= ∑ls(tk )

t=1 At−1
i i0 Ai j0, Bi

s(tk )
= ∑ls(tk )

t=1 At−1
i i0 Bi0, Ei

s(tk )
=

∑ls(tk )

t=1 At−1
i i0 Ei0.

13.2.2 Measurement Size Reduction

It follows from the simulation results in Chap.10 that reducing the packet size and
transmission rate are efficient methods to save the sensor power. Since the size
of the original measurement may be large, we introduce a measurement selection
scheme. Only one element is selected and quantized for transmission. The selected
measurement signal is described as

x̃ p(tk) = Πρi (tk )xp(tk), (13.5)

where Πρp(tk )
is a matrix introduced to choose one element for transmission, and

ρp(tk ), p= 1, 2, . . . , N , are piecewise signals,whichbelongs toΩp2 = {1, 2, . . . , np}.
Specifically, when the first element is selected, thenΠρp(tk )

= [ 1 0 · · · 0 ]; the second
element is selected, then Πρp(tk )

= [ 0 1 · · · 0 ], and so on. It is seen that Πρp(tk )
are a

set of switching signals.
The selected measurement is then quantized for transmission. In this chapter, the

logarithmic quantizer is used. The quantizer Qp(•) is assumed to be symmetric and
time-invariant, i.e., Qp(−vp) = −Qp(−vp). For any p = 1, 2, . . . , n, the set of
quantization levels are described as

U p = {±κ
p
i ,κ

p
i = ρ

p
i κ

p
0 , i = 0,±1,±2, ...

}

∪ {±κ
p
0

} ∪ {0} , 0 < ρp < 1,κp
0 > 0.

(13.6)

The quantized output of Qp(•) is given by

Qp(vp) =
⎧
⎨

⎩

κ
p
i , if 1

1+δ p κ
p
i < vp < 1

1−δ p κ
p
i , vp > 0,

0, if vp = 0,
−Qp(−vp), if vp < 0,

(13.7)

where δp = 1−ρp

1+ρp
< 1, with the quantization density 0 < ρp < 1. The quantized

measurement is described by

x̂ p(tk) = Qp(x̄ p(tk)). (13.8)

Define the quantization error ep = x̂ p(tk)− x̄ p(tk), then x̂ p(tk) = (I +Δp(tk))x̄ p(tk),
where

∥
∥Δp(tk)

∥
∥ ≤ δp.

It has been shown that reducing the communication rate is also an effectivemethod
to save sensor power. The most energy-efficient case is no communication among
different smart sensors, but the control performance is known to be the worst. So,
we introduce a time-varying communication scheme for our system, which can also

http://dx.doi.org/10.1007/978-3-319-53123-6_10
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affect the sensor network’s structure. Basis on sensor networks is given as follows.
Let the topology of a given sensor network be represented by a direct graph π(k) =
(ξ,χ,Bσ(k)) of order n with the set of sensors υ = {1, 2, . . . , N }, set of edges
χ ⊆ ξ × ξ, and a weighted adjacency matrix B

σ(k) = [bσ(k)
pq ] with nonnegative

adjacency elements bσ(k)
pq . The edge ofπ is denoted by (p, q). The adjacency elements

associated with the edges of the graph are bσ(k)
pq = 1 ⇔ (p, q) ∈ ξ, when the sensor

p can receive information from controller q. On the other hand, bσ(k)
pq = 0 if sensor p

can not receive information from controller q, which may be out of communication
range or the q-th sensor does not broadcast information. Moreover, it is seen that
bσ(k)
pp = 1 for all p ∈ ξ. The set of neighbors of node p ∈ ξ plus the node itself are

denoted by Np = {q ∈ ξ : (p, q) ∈ ξ}. σ(k) : [0,∞) → Ω3 = {1, 2, . . . , N3} is
a switching signal. For each l ∈ Ω3, Bl = [bli j ] is a square matrix representing the
topology of the sensor network. The number of the topologies is determined directly
by how one regulates the working mode of the sensor network.

With the controller failure, the controller is described as

u p(tk) =
∑

p∈Np

αp(tk)b
σ(tk )
pq K σ(tk )

pq x̂q(tk), (13.9)

where αp(tk) ∈ {0, 1} is a binary value, indicating whether the controller has failure
or not. When αp(tk) = 1, it means that the controller is working normally, while
the controller has fault if αp(tk) = 0. This value is not known in advance, but the
statistic value is known, i.e., E

{
αp(tk) = 1

} = ᾱp is known for controller design. In
implementation of the controller, the actuator will receive zero control input signal
when the controller has failure.

To simplify the presentation, we define the following notations:

x(tk) = [
xT1 (tk) xT2 (tk) · · · xTN (tk)

]T
, u(tk) = [

uT
1 (tk) uT

2 (tk) · · · uT
N (tk)

]T
,

v(tk) = [
vT
1 (tk) vT

2 (tk) · · · vT
N (tk)

]T
, z(tk) = [

zT1 (tk) zT2 (tk) · · · zTN (tk)
]T
,

Πα = diag{ᾱ1 I, ᾱ2 I, . . . , ᾱN I }, Πρ(tk ) = diag{Πρ1(tk ),Πρ2(tk ), . . . ,ΠρN (tk )},

As(tk ) =

⎡

⎢⎢⎢⎢
⎣

A11
s(tk )

A12
s(tk )

· · · A1N
s(tk )

A21
s(tk )

A22
s(tk )

· · · A2N
s(tk )

...
...

. . .
...

AN1
s(tk )

AN2
s(tk )

· · · ANN
s(tk )

⎤

⎥⎥⎥⎥
⎦
, Bs(tk ) = diag{B1

s(tk )
, B2

s(tk )
, . . . , BN

s(tk )
},

Es(tk ) = diag{E1
s(tk )

, E2
s(tk )

, . . . , EN
s(tk )

}, L = diag{L1, L2, . . . , LN },
Φp = diag{0, . . . , I︸︷︷︸

p−th

, . . . , 0}, Δ(tk) = diag{Δ1(tk),Δ2(tk), . . . , ΔN (tk)},

Kσ(tk ) =

⎡

⎢⎢
⎢⎢
⎣

bσ(tk )
11 K σ(tk )

11 bσ(tk )
12 K σ(tk )

12 · · · bσ(tk )
1N K σ(tk )

1N

bσ(tk )
21 K σ(tk )

21 bσ(tk )
22 K σ(tk )

22 · · · bσ(tk )
2N K σ(tk )

2N
...

...
. . .

...

bσ(tk )
N1 K σ(tk )

N1 bσ(tk )
N2 K σ(tk )

N2 · · · bσ(tk )
NN K σ(tk )

NN

⎤

⎥⎥
⎥⎥
⎦
.

Then, we have the following closed-loop system,
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⎧
⎪⎪⎨

⎪⎪⎩

x(tk+1) = [
As(tk ) + Bs(tk )ΠαKσ(tk ) (I + Δ(tk))Πρ(tk )

]
x(tk)

+Es(tk )v(tk) +
N∑

p=1
θp(tk)

[
Bs(tk )ΦpKσ(tk ) (I + Δ(tk))Πρ(tk )

]
x(tk),

z(tk) = Lx(tk),

(13.10)

where θp(tk) = αp(tk) − ᾱp. The system (13.10) has three switching signals,
and analysis of such a complex system is difficult. Here, we define a mapping:
{σ(tk), ρ(tk), s(tk)} → δ(tk), then for each δ(tk) = i , we have

⎧
⎪⎪⎨

⎪⎪⎩

x(tk+1) = [Ai x(tk) + BiΠαKi (I + Δ(tk))Πi ] x(tk) + Eiv(tk)

+
N∑

p=1
θp(tk)

[
BiΦpKi (I + Δ(tk))Πi

]
x(tk),

z(tk) = Lx(tk).

(13.11)

One sees that the system (13.11) is a switched system, and δ(tk) ∈ Ω ={

1, 2, . . . , M × N3 ×
N∏

p=1
np

}

. As in the last few chapters, we will also use the

average dwell time approach to analyze (13.11).
The control problem is now formulated as follows: design the controller in form of

(13.9) such that the closed-loop system (13.11) is robustly exponentially stable in the
mean-square sense and achieves a prescribed H∞ performance level in the presence
of nonuniform sampling, the measurement size reduction, the communication rate
reduction as well as the controller failure.

Definition 13.1 The system (13.11) is called robustly exponentially stable in the
mean-square sense, if there exist some scalars π > 0 and 0 < χ < 1, such that the
solution x̃ of system (13.11) satisfies E {‖x(tk)‖} < πχ(k−k0) ‖x(t0)‖, ∀tk ≥ t0.

Definition 13.2 For a given scalar γ > 0, the system (13.11) is said to be
robustly exponentially stable in the mean-square sense and achieves a prescribed
H∞ performance γ, if it is exponentially stable and under zero initial condition,
+∞∑

k=0
E{zT (tk)z(tk)} ≤

+∞∑

k=0
γ2vT (tk)v(tk) holds for all nonzero v(tk) ∈ l2[0,∞).

13.3 Main Results

In this section, a sufficient condition is firstly presented such that the closed-loop
system (13.11) is exponentially stable in the mean-square sense with a prescribed
H∞ performance level.
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Theorem 13.1 For some given scalars τ > 0,μ > 1, 0 < λi < 1, δp > 0,
0 < λ < 1, and controller gains Ki , if there exist positive-definite matrices Pi , and
a positive scale ε such that the following inequalities,

⎡

⎢⎢
⎢⎢⎢⎢
⎣

Σ1 Σ2 Σ3 Σ4 Σ5 0
∗ −P−1

i 0 0 0 Σ6

∗ ∗ −I 0 0 0
∗ ∗ ∗ P̄i 0 Σ7

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥
⎥⎥⎥⎥
⎦

< 0, (13.12)

Pi ≤ μPj , i �= j, (13.13)

Ta > T ∗
a = − ln μ

ln λ
, (13.14)

hold for all i, j ∈ Ω , then the closed-loop system (13.11) is exponentially stable in
the mean-square sense with decay rate χ = √

λbμ1/Ta and achieves a prescribed

H∞ performance level γ = τ
√

(1−λa)

1−λb/λ
, where λa = min

i∈Ω
{λi }, λb = max

i∈Ω
{λi }, λ > λb,

and

Σ1 =
[−λi Pi 0

0 −τ 2 I

]
,Σ2 =

[
AT
i + ΠT

i K T
i Π T

α BT
i

ET
i

]
,Σ3 =

[
LT

0

]
,

Σ4 =

⎡

⎢⎢⎢
⎣

θ1Π
T
i K T

i ΦT
1 B

T
i θ2Π

T
i K T

i ΦT
2 B

T
i · · · θNΠ T

i K T
i ΦT

N B
T
i

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤

⎥⎥⎥
⎦

,

Σ5 =
[

ΠT
i Λε
0

]
,Σ6 = BiΠαKi ,Σ7 =

⎡

⎢⎢⎢
⎣

θ1BiΦ1Ki

θ2BiΦ2Ki
...

θN BiΦN Ki

⎤

⎥⎥⎥
⎦

,

Λ = diag{δ1, δ2, . . . , δn}, θp = √
ᾱp(1 − ᾱp), p = 1, 2, . . . , n,

P̄i = diag{−Pi ,−Pi , . . . ,−Pi }.

Proof Choose the following Lyapunov functional:

Vδ(k)(k) = xT (k)Pδ(k)x(k). (13.15)

Then for each δ(k) = i and ∀i ∈ Ω , it follows that



206 13 Distributed Control with Communication Reduction

E {Vi (k + 1) − λi Vi (k) + ϒ(k)}
= ([Ai x(tk) + BiΠαKi (I + Δ(tk)) Πi ] x(tk) + Eiv(tk))

T

×Pi ([Ai x(tk) + BiΠαKi (I + Δ(tk))Πi ] x(tk) + Eiv(tk))

+
N∑

p=1
θ2p
([
BiΦpKi (I + Δ(tk)) Πi

]
x(tk)

)T
Pi
([
BiΦpKi (I + Δ(tk))Πi

]
x(tk)

)

+[Lx(tk)]
T [Lx(tk)] − τ 2vT (tk)v(tk),

(13.16)

where ϒ(k) = zT (k)z(k) − τ 2vT (k)v(k). By using Lemma 2.1, it is easy to see that

E {Vi (k + 1) − λi Vi (k) + ϒ(k)} < 0 (13.17)

is equivalent to
Θ1 + Θ2Δ(k)ΘT

3 + Θ3Δ(k)ΘT
2 < 0, (13.18)

where

Θ1 =

⎡

⎢⎢
⎣

Σ1 Σ2 Σ3 Σ4

∗ −P−1
i 0 0

∗ ∗ −I 0
∗ ∗ ∗ −Pi

⎤

⎥⎥
⎦ ,Θ2 =

⎡

⎢⎢
⎣

Σ̄5

0
0
0

⎤

⎥⎥
⎦ ,Θ3 =

⎡

⎢⎢
⎣

0
Σ6

0
Σ7

⎤

⎥⎥
⎦ ,

with

Σ̄5 =
[

ΠT
i
0

]
.

By some manipulations, (13.18) can be rewritten as

Θ1 + Θ2ΛΔ̄(k)ΘT
3 + ΘT

3 ΛΔ̄(k)Θ2 < 0, (13.19)

where Δ̄(k) = Δ(k)
Λ

. It follows that
∥∥∥Δ(k)

Λ

∥∥∥ ≤ I . Based on Lemma 2.2, one sees that

(13.19) holds if and only if (13.12) holds. Hence, we see

E {Vi (k + 1) − λi Vi (k) + ϒ(k)} < 0. (13.20)

For the switching time instant k0 < k1 < · · · < kl < · · · < kt , l = 1, 2, . . . , t ,
we define the switching numbers of δ(k) over (k0, k) as Nδ(k0, k), then one has

E{Vl(k)} ≤ E{λk−kl
l Vl(kl)} −

k−1∑

s=kl

λk−s−1
l E{ϒ(s)}. (13.21)

It follows from (13.13) and (13.21) that

http://dx.doi.org/10.1007/978-3-319-53123-6_2
http://dx.doi.org/10.1007/978-3-319-53123-6_2
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E{Vδ(kl )(k)}
≤ λk−kl

δ(kl )
E{Vδ(kl )(kl)} −

k−1∑

s=kl

λk−s−1
δ(kl )

E{ϒ(s)}

≤ λk−kl
δ(kl )

μE{Vδ(kl−1)(kl)} −
k−1∑

s=kl

λk−s−1
δ(kl )

E{ϒ(s)}

≤ λk−kl
δ(kl )

μ

[

λ
kl−kl−1

δ(kl−1)
E{Vδ(kl−1)(kl−1)} −

kl−1∑

s=kl−1

λk−s−1
δ(kl−1)

E{ϒ(s)}
]

−
k−1∑

s=kl

λk−s−1
δ(kl )

E{ϒ(s)}
≤ · · · ≤ μNδ(k0,k)λk−kl

δ(kl )
λ
kl−kl−1

δ(kl−1)
· · ·λk1−k0

δ(k0)
Vδ(k0)(k0) − Θ(ϒ),

(13.22)

where

Θ(ϒ) = μNδ(k0,k−1)λk−kl
σ(kl )

l−1∏

s=1
λ
ks+1−ks
σ(ks )

k1−1∑

s=k0

λk1−1−s
σ(k0)

E{ϒ(s)}

+μNδ(k0,k−1)−1λk−kl
σ(kl )

l−1∏

s=2
λ
k j+1−k j

σ(k j )

k2−1∑

s=k1

λk2−1−s
σ(k1)

E{ϒ(s)}

+ · · · + μ0
k−1∏

s=kl

λk−1−s
σ(kl )

E{ϒ(s)}.

Now, we consider the exponential stability of the system (13.11) with v(k) = 0.
One has

E{Vδ(kl )(k)}
≤ μNδ(k0,k)λk−kl

σ(kl )
λ
kl−kl−1

ρ(kl−1)
· · · λk1−k0

ρ(k0)
Vρ(k0)(k0)

≤ μNδ(k0,k)λk−k0
b Vδ(k0)(k0)

≤ (
μ1/Taλb

)k−k0 Vδ(k0)(k0) = χ2(k−k0)Vδ(k0)(k0),

(13.23)

which yields E
{‖x(k)‖2} ≤ ϕ2

ϕ1
χ2(k−k0) ‖x(k0)‖2, where ϕ1 = min

i∈Ω
σmin(Pi ),

ϕ2 = max
i∈Ω

σmax(Pi ), χ = √
λbμ1/Ta . Therefore, one can readily obtain χ < 1 from

condition (13.14). According to Definition 13.1, the closed-loop system (13.11) is
exponentially stable in the mean-square sense with v(k) = 0.

For the H∞ performance level, we consider v(k) �= 0. Under the zero initial
condition, it follows from (13.22) that

k−1∑

s=k0

μNδ(s,k−1)λk−s−1
a E{zT (s)z(s)} ≤ τ 2

k−1∑

s=k0

μNδ(s,k−1)λk−s−1
b vT (s)v(s). (13.24)

With the average dwell time condition (13.14), it is easy to see Nδ(s,k−1)
k−s−1 < − ln λ

ln μ
.

Sinceμ > 1, we obtain ln μNδ(s,k−1) < ln λ−(k−s−1), and 1 < μN�(s,k−1) < λ−(k−s−1).
Then, it can be readily seen that

k−1∑

s=k0

λk−s−1
a E{zT (s)z(s)} < τ 2

k−1∑

s=k0

(λb/λ)k−s−1 λk−s−1vT (s)v(s). (13.25)
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Summing (13.25) from k = k0 + 1 to k = ∞ and changing the order of summation
yield

+∞∑

s=k0

E{zT (s)z(s)}
+∞∑

k=s+1

λk−s−1
a < τ 2

+∞∑

s=k0

vT (s)v(s)
+∞∑

k=s+1

(λb/λ)k−s−1. (13.26)

Since
+∞∑

k=s+1
λk−s−1
a = 1

1−λa
and

+∞∑

k=s+1
(λb/λ)k−s−1 = 1

1−(λb/λ)
, we have

+∞∑

s=k0

E{zT (s)z(s)} < γ2
+∞∑

s=k0

vT (s)v(s), (13.27)

where γ = τ
√

1−λa
1−λb/λ

. It is noted that λb < λ, which ensures γ > 0. Let k0 = 0,

the system (13.11) is exponentially stable in the mean-square sense and achieves a
prescribed H∞ performance level γ. This completes the proof.

We see from Theorem 13.1 that the conditions (13.13) and (13.14) are linear
matrix inequalities which can be solved efficiently by available software toolboxes.
The challenge lies in the condition (13.12),wherewe have Pi and P

−1
i . This condition

is known to be a nonlinear matrix inequality. The CCL algorithm is employed to
determine the controller gains.

Theorem 13.2 For some given scalars τ > 0,μ > 1, 0 < λi < 1, δp > 0, and
0 < λ < 1, if there exist positive-definite matrices Pi , Ti , and a positive scale ε
such that the following optimization problem has a feasible solution, then the control
problem is solvable.

Optimization problem:

min Tr

(
Z∑

i=1

(Ti × Pi )

)

(13.28)

s.t. (13.13), (13.14) and [
Ti I
I Pi

]
≥ 0, (13.29)

⎡

⎢⎢⎢⎢
⎢⎢
⎣

Σ1 Σ2 Σ3 Σ4 Σ5 0
∗ −Ti 0 0 0 Σ6

∗ ∗ −I 0 0 0
∗ ∗ ∗ T̄i 0 Σ7

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥
⎥⎥
⎦

< 0, (13.30)
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where T̄i = diag{Ti , Ti , . . . , Ti︸ ︷︷ ︸
N

}, and Z = M × N3 ×
N∏

l=1
nl .

Remark 13.1 To solve the above optimization problem, the H∞ performance related
parameter τ should be given first. Then in order to obtain the minimal H∞ perfor-
mance level, one may first choose a relative large value for τ , and decrease this value
until the above optimization has no solution. Eventually, one has the minimal τ , we

obtain the minimal H∞ performance level as γ = τ
√

(1−λa)

1−λb/λ
.

13.4 An Illustrative Example

In this section, a real-world example is given to show the effectiveness of the proposed
design. The example under consideration is the interconnected chemical reactors
composing of two non-isothermal continuous stirred-tank reactors (CSTRs) with
interconnections between reactors. System structure is depicted in Fig. 13.2. The

Fig. 13.2 Process flow diagram of two interconnected CSTR systems
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CSTR system can be described by the following LTI system when it is linearized
around the point of ((T s

1 ,Cs
A1, T

s
2 ,Cs

A2) = 457.9K, 1.77 kmol/m3, 415.5K, 1.75
kmol/m3): {

ẋ1(t) = Ac
11x1(t) + B̄c

1u1(t) + Ac
12x2(t),

ẋ2(t) = Ac
22x2(t) + B̄c

2u2(t) + Ac
21x1(t),

(13.31)

where xi and ui are the state and input vector for the i-th subsystem, respectively,
and they are defined by

x1 =
[ T1−T s

1
T s
1

CA1−Cs
A1

Cs
A1

]

, x2 =
[ T2−T s

2
T s
2

CA2−Cs
A2

Cs
A2

]

,

u1 =
[

Q1

CA0 − Cs
A0

]
, u2 =

[
Q2

CA03 − Cs
A03

]
.

With the values of the process parameters given in Table12.1, the matrices in (13.32)
are obtained as

Ac
11 =

[
25.2914 4.9707
−78.028 −45.9368

]
, Ac

12 =
[
31.7512 0

0 34.6421

]
,

B̄c
1 =

[
9.45 × 10−6 0

0 2.8234

]
,

Ac
22 =

[ −2.8370 1.4157
−22.4506 −24.8828

]
, Ac

21 =
[
14.6953 0

0 13.4690

]
,

B̄c
2 =

[
3.47 × 10−6 0

0 5.7071

]
.

In this example, the disturbance weight matrices are taken as E1 =
[
0
1

]
, and

E2 =
[
1
0

]
. We now discrete the above system by using two sampling periods,

i.e., hk ∈ {T0, 2T0}, with T0 = 0.0025h. Then, based on our sampling approach, a
discrete-time interconnected system with two subsystems is obtained as

xi (tk+1) = Aii
s(tk )x(tk) +

2∑

j=1, j �=i

Ai j
s(tk )

x j (tk) + Bi
s(tk )ui (tk) + Ei

s(tk )vi (tk), (13.32)

where s(tk) ∈ Ω1 = {1, 2}, and other matrices are not given for presentation brevity.
In this example, we aim to design two distributed smart controllers to stabilize this

plant. Due to the power constraint, at each sampling time instant, only one element of
the state xi (tk) is chosen and this element is then quantized for transmission. Hence,
Πρ1(tk ) ∈ {[

1 0
]
,
[
0 1

]}
, andΠρ2(tk ) ∈ {[

1 0
]
,
[
0 1

]}
. The quantization density is

taken as ρ1 = 0.9, and ρ1 = 0.8. In the distributed control system, two smart sensors

http://dx.doi.org/10.1007/978-3-319-53123-6_12
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Fig. 13.3 Switching signals

are allowed to communicate with each other to improve the control performance. But
as we know, the communication will consume much energy. Hence, in this example,
controller 2 does not transmit its information to controller 1, and controller 1 transmits

its information to the controller 2 intermittently. The topologies are B
1 =

[
1 0
0 1

]
,

and B
2 =

[
1 0
1 1

]
.

The controller failure rates are taken as 10, and 20%, respectively, that is ᾱ1 = 0.9,
and ᾱ2 = 0.8. For simulation purpose, the activation time instant of the switching
signals is assumed to be as in Fig. 13.3, where the signals are varying periodically.

According to the activation process in Fig. 13.3, we haveΠρ(tk ) ∈
{[

1 0
1 0

]
,

[
0 1
0 1

]}
.

Moreover, one also sees from Fig. 13.3 that the closed-loop system (13.33) can be
modeled as a switched system with two subsystems. In this simulation, we run
experiment for 100 time steps. The disturbance signals are taken as

v1(k) = v2(k) =
{
rand − 0.5, 1 ≤ k ≤ 50,

0, others,
(13.33)

where rand is random function generating a value between 0 to 1. Figure13.4 shows
the evolution of the above disturbance signal. Under this signal, Fig. 13.5 shows the
state evolution of system (13.33) without control. It is seen that the original system
is unstable. It follows from Fig. 13.3 that Ta = 1.4925. Choosing λ1 = 0.92,λ2 =
0.94,λ = 0.95 and μ = 1.05, we have λa = 0.92 and λb = 0.94. It is seen that
T ∗
a = 0.9512 < Ta , which means that (13.13) holds. To illustrate the performance

against the unknown disturbance, we take L1 = L2 = [
0.5 0.5

]
. By solving the

optimization problem (13.28), we have the H∞ performance level γ = 0.0357. With
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Fig. 13.4 The trajectories of the disturbance
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Fig. 13.5 The trajectories of the open-loop system

the controller, we depict the state trajectories in Fig. 13.6. It is seen that when the
disturbance turns to be zero, the state will also becomes zero. One hundred samples
on the H∞ performance level are shown in Fig. 13.7. It is clear that our control design
can guarantee the control performance.
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Fig. 13.6 The trajectories of the closed-loop system
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Fig. 13.7 On hundred samples on the H∞ performance level

13.5 Conclusions

We have studied the distributed stabilization of a class of large-scale systems with
power constraint. The techniques such as reducing the measurement size and com-
munication rates are introduced to achieve the energy-efficiency goal. Based on the
switched system theory, a sufficient condition has been proposed such that the filter-
ing error system is exponentially stable in the mean-square sense and also achieves a
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prescribed H∞ performance level. The controller gains are determined by using the
CCL algorithm. Finally, the effectiveness of the proposed design is illustrated by the
CSTR system.

It should be noted that in many complex networks, the interconnection of a target
control plant may change due to possible disturbances, fault or attack. Then, how to
handle the topology switching of plant network is the topic in the next chapter.



Chapter 14
Distributed Control with Event-Based
Communication and Topology Switching

14.1 Introduction

In Chaps. 11–13, the connectivity of topology in plant network is assumed to be
fixed. However, such an assumption may not hold in many practical systems. Take
the smart grid system as an example, the transmission control has been identified as
a valuable mechanism for a variety of benefits, e.g., improving the system reliability
and the market surplus. However, the use of transmission as a controllable asset will
inevitably lead to the topology switching of a power grid [1]. Another example is
the possible cyber or physical attacks on the modern industrial systems, in which
the topology may be changed by such attacks, see [2] for more details. The robust
distributed control of large-scale systems under the uncertain topologywas discussed
in [3], and the novelty is that they give the robustness analysis under the topology
uncertainty and look for some appropriate control rules for the desired H∞ robust
performance. However, no topology switching is taken into account. Very recently
in [4], the state estimation for a class of complex networks with topology switching
was investigated. An asynchronous estimatorwas designed to overcome the difficulty
that the estimator can not access to the topology information instantly. But they only
considered the decentralized state estimation problem, and the topology switching
is assumed to satisfy a Markovian process. How to design a distributed control
algorithm for a class of large-scale networked control systemswith a general topology
switching phenomenon is a challenging work.

Motivated by the above discussions, we pay our attention on the distributed con-
trol for a class of large-scale networked control systems with energy constraints and
topology switching. First, the event-based communication protocol is employed to
reduce the unnecessary communications between the plant network and controller
network. Such anon-line scheduling not only alleviates the communication constraint
problem, but also achieves a better control performance. The selected measurement
signal is then quantized by a logarithmic quantizer for transmission. A group of asyn-
chronous controllers are designed when the real time information about the topology
is not available in such a networked environment. A stochastic switched system

© Springer International Publishing AG 2017
D. Zhang et al., Filtering and Control of Wireless Networked Systems,
Studies in Systems, Decision and Control 97, DOI 10.1007/978-3-319-53123-6_14
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model with sector bound uncertainties is proposed to capture the communication
constraints and topology switching phenomena. A sufficient condition is developed
that guarantees the globally exponential stability of the overall system by using the
Lyapunov direct method and the controller gains are determined by using the cone
complementarity linearization (CCL) algorithm. Finally, a simulation study on the
CSTR systems is performed and the effectiveness of controller design algorithm is
verified.

14.2 Problem Formulation

In this chapter, we suppose that a networked control system consists of a number
of subsystems, each comprising of a plant and a controller, coupled together in
a networked structure. The interaction of plants with each other forms the plant
network. Control signals are exchanged using the control network. The system is
depicted in Fig. 14.1. In the following, each component is described in detail.

Consider a discrete-time large-scale system with N subsystems with the p-th
subsystem described as

⎧
⎪⎪⎨

⎪⎪⎩

x p(k + 1) = Apx p(k) +
N∑

q=1,q �=p
W σ(k)

pq xq(k)

+Fpg(x p(k)) + E pu p(k) + Bpwp(k),

z p(k) = L px p(k), p = 1, 2, . . . , N ,

(14.1)

where x p(k) ∈ R
n p is the state vector, u p(k) ∈ R

m p is the control input vector,
g(x p(k)) is the nonlinear perturbation on the p-th subsystem and it is assumed to
satisfy

∥∥g(x p(k))
∥∥ ≤ ∥∥U x p(k)

∥∥, in which U is a bounding matrix. wp(k) ∈ R
n p is

the unknowndisturbance,which belongs to l2[0,∞). z p(k) ∈ R
l p is the output vector.

W ρ(k)
pq is the coupling matrix of the plant network under a certain topology and ρ(k) ∈

Υ1 = {1, 2, 3, . . . , M} is a piecewise signal describing which topology is activated.
Ap, W σ(k)

pq , Fp, E p, Bp and L p are known matrices with appropriate dimensions. We
assume that the pair (Ap, E p) is controllable. For the switching signal ρ(k), we define

Fig. 14.1 Structure of the considered distributed control system
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the switching sequence {(i1, k1) , (i2, k2) , . . . , (it , kt ) , . . . , |it ∈ Υ1, l = 1, 2, . . .}.
It indicates that the il -th topology is activated when k ∈ [kl, kl+1).

Our purpose is to design a state feedback based controller to manage the plant,
but due to the communication constraint, the state measurement might not be al-
lowed to be transmitted for controller network design. In this chapter, the event-
based communication protocol is first employed such that the transmission only
occurs if it changes a lot. The event generation function is taken as f p(ωp(k), τp) =
�T

p (k)Σp�p(k) − τpxT
p (k)Σpx p(k), where �p(k) is the error between two suc-

cessive transmissions, i.e., �p(k) = x p(kl) − x p(k), x p(kl) is the next possible
transmitted state measurement and x p(k) is the last transmitted one. Σp > 0 is a
weightingmatrix and τp ∈ [0, 1) is a slack variable, which can be tuned in the design.
In this chapter, the transmission only occurs when the following event happens:

f p(�p(k), τp) > 0. (14.2)

The event-triggered time instant can be determined by

k p
l+1 = inf

{
k ∈ N| k > k p

l , f p(�p(k), τp) > 0
}
,

which might not be equal to the current sampling time k.
The transmitted measurement can be described as x̃ p(k) = x p(kl), which is then

quantized by a logarithmic quantizer. Note that the logarithmic quantizer is static and
time-invariant, and it has been widely used in many digital and networked control
systems. For any p = 1, 2, . . . , N , we define the following set of quantization levels:

Up =
{
±κ

(p)

i ,κ
(p)

i = ρi
pκ

(p)

0 , i = 0,±1,±2, . . .
}

∪
{
±κ

(p)

0

}
∪ {0} , 0 < ρp < 1,κ(p)

0 > 0.
(14.3)

The quantized output of Q p(•) is then given by

Q p(vp) =
⎧
⎨

⎩

κ
(p)

i , if 1
1+δp

κ
(p)

i < vp < 1
1−δp

κ
(p)

i , vp > 0,

0, if vp = 0,
−Q p(−vp), if vp < 0,

(14.4)

where δp = 1−ρp

1+ρp
< 1, and the quantization density is 0 < ρp < 1. The quantized

state is described by

x̄ p(k) = Q p
(
x̃ p(k)

)
. (14.5)

Let the quantization error be ep(k) = x̄ p(k) − x̃ p(k). We have x̄ p(k) = (I +
Δp(k))x̃ p(k), where

∥∥Δp(k)
∥∥ ≤ δp I .

In the networked control system, the transmitted packet may be lost due to the
unreliability nature of a communication channel. When the packet dropout occurs,
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the zero input mechanism is applied when the packet is lost. With the packet dropout,
the control input signal is described by

u p(k) = αp(k)
∑

q∈Np

apq K ρ(k)
pq x̄q(k), (14.6)

where αp(k) ∈ {0, 1} is a binary variable, indicating whether the control input signal
is lost or not. As in the last chapters, Pr ob{αp(k) = 1} = E{αp(k)} = ᾱp is known
as the successful transmission rate, which is assumed to be a known scalar. ρ(k) ∈ Υ1

is the switching signal obtained by the controller, and it may not be the same as the
plant’s topology due to remote transmission. In this chapter, we assume that the
maximal transmission delay is bounded by π, where π is a positive integer. apq is
the connection variable of the controller network, and apq = 1 if the q-th controller
is the neighbor of the p-th controller, otherwise, apq = 0. K ρ(k)

pq is the controller
gains to be determined. Define the asynchronous time lag by lt , and lt ≤ π. Then the
switching sequence of ρ(k) is given by

{(i1, k1 + l1) , (i2, k2 + l2) , . . . , (it , kt + lt ) , . . . , |pt ∈ Υ1, l = 1, 2, . . .} ,

which means that it -th controller mode is activated when k ∈ [kt + lt , kt+1 + lt+1).

Remark 14.1 ρ(k) is actually a delayed switching signal of σ(k). In particularly,
ρ(k) = σ(k − lt ), where lt is the transmission delay, and it is also regarded as
the asynchronous switching time. We use two switching signals only for analysis
simplicity.

For easy presentation, we first define the following notations:

x(k) = [
xT
1 (k) xT

2 (k) · · · xT
N (k)

]T
, u(k) = [

uT
1 (k) uT

2 (k) · · · uT
N (k)

]T
,

w(k) = [
wT

1 (k) wT
2 (k) · · · wT

N (k)
]T

, v(k) = [
�T

1 (k) �T
2 (k) · · · �T

N (k)
]T

,

G (x(k)) = [
gT (x1(k)) gT (x2(k)) · · · gT (xN (k))

]T
,

z(k) = [
zT
1 (k) zT

2 (k) · · · zT
N (k)

]T
, A = diag{A1, A2, . . . , AN },

F = diag{F1, F2, . . . , FN }, E = diag{E1, E2, . . . , EN },
B = diag{B1, B2, . . . , BN }, L = diag{L1, L2, . . . , L N },
Δ(k) = diag{Δ1(k),Δ2(k), . . . , ΔN (k)},
Wρ(k) = [

wσ(k)
pq

]
N×N

, Kρ(k) =
[
apq K ρ(k)

pq

]

N×N
,

Π̄ = diag{ᾱ1 I, ᾱ2 I, . . . , ᾱN I }, Φp = diag{0, . . . , I︸︷︷︸
p−th

, . . . 0},

Λ = diag{δ1 I, δ2 I, . . . , δN I }, Ψ = diag{Σ1,Σ2, . . . , ΣN },
Ψ̃ = diag{τ1Σ1, τ2Σ2, . . . , τN ΣN }.

The closed-loop system is obtained as
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x (k + 1) = Aσ(k),ρ(k)x (k) + FG (x (k))

+EΠ̄ Kρ(k) (I + Δ(k)) v(k) + Bw (k)

+
N∑

p=1
θp(k)

[
EΦp Kρ(k) (I + Δ(k)) x (k) + EΦp Kρ(k) (I + Δ(k)) v (k)

]
,

z(k) = Lx(k),

(14.7)

where Aσ(k),ρ(k) = A + Wσ(k) + EΠ̄ Kρ(k) (I + Δ(k)), θp(k) = αp (k) − ᾱp.
It follows from the switching sequences of ρ(k) and σ(k) that for each σ(k) =

i, ρ(k) = j; i, j ∈ Υ1, when k ∈ [kt + lt , kt+1), system (14.7) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

x (k + 1) = Ai x (k) + FG (x (k)) + EΠ̄ Ki (I + Δ(k)) v(k) + Bw (k)

+
N∑

p=1
θp(k)

[
EΦp Ki (I + Δ(k)) x (k) + EΦp Ki (I + Δ(k)) v (k)

]
,

z(k) = Lx(k),

(14.8)

When k ∈ [kt , kt + lt ), t = 1, 2, . . ., we have

⎧
⎪⎪⎨

⎪⎪⎩

x (k + 1) = Ai j x (k) + FG (x (k)) + EΠ̄ K j (I + Δ(k)) v(k) + Bw (k)

+
N∑

p=1
θp(k)

[
EΦp K j (I + Δ(k)) x (k) + EΦp K j (I + Δ(k)) v (k)

]
,

z(k) = Lx(k).

(14.9)

Note that the system described by (14.8)–(14.9) is a very complicated dynamic
system as it has asynchronous and synchronous motions. In this chapter, the average
dwell time approach will be utilized to obtain the main results. The basic idea is that
each subsystem should be activated for some time and the average activating time
should be larger than a certain value.

For simplicity, we assume N0 = 0. We want to design the sparse controller Kρ(k)

such that the closed-loop system (14.8)–(14.9) is exponentially stable in the mean-
square sense and a prescribed H∞ disturbance attenuation level is also guaranteed.

Definition 14.1 The systemdescribed by (14.8)–(14.9) is said to bemean-square ex-
ponentially stable, if there exist some scalars δ > 0 and 0 < χ < 1, such that the tra-
jectory x(k) of system (14.8)–(14.9) satisfies E

{‖x(k)‖2} < δχk−k0 ‖x(k0)‖2 , k ≥
0, where χ is called the decay rate and x(k0) is the initial condition.

Definition 14.2 For a given scalar γ > 0, system described by (14.8)–(14.9) is
said to be mean-square exponentially stable and achieves a prescribed H∞ perfor-
mance γ, if it is mean-square exponentially stable and under zero initial condition,
+∞∑

k=0
E{zT (k)z(k)} ≤

+∞∑

k=0
γ2wT (k)w(k) holds for all nonzero w(k) ∈ l2[0,∞).
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14.3 Main Results

By the aid of the switched system theory, we find a sufficient condition such that
the closed-loop system is exponentially stable with a prescribed H∞ disturbance
attenuation level.

Theorem 14.1 For some given scalars 0 < a < 1, b ≥ 1, 1 < c < 1
/

a, and μ ≥ 1,
the closed-loop system (14.8)–(14.9) is exponentially stable in the mean-square sense

with a prescribed H∞ performance level γ =
√

1−a
1−ac λ, if there exist positive-definite

matrices Pi , Pi j and scalars λ1,λ2, ε such that the following inequalities,

⎡

⎢⎢⎢
⎢⎢⎢
⎣

Ω1i Ω2i Ω3 Ω4i Ω5 0
∗ −P−1

i 0 0 0 EΠ̄ Ki

∗ ∗ −I 0 0 0
∗ ∗ ∗ Ω6i 0 Ω7i

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥
⎥⎥⎥
⎦

< 0, (14.10)

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Ω1i j Ω2i j Ω3 Ω4 j Ω5 0
∗ −P−1

i j 0 0 0 EΠ̄ K j

∗ ∗ −I 0 0 0
∗ ∗ ∗ Ω6i j 0 Ω7 j

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥
⎥
⎦

< 0, (14.11)

Pi ≤ μPi j , (14.12)

Pi j ≤ μPj , (14.13)

Ta > T ∗
a = ln

[(
b
/

a
)π

μ2
]

ln c
, (14.14)

hold for all i, j ∈ Υ1 and i �= j,, where

Ω1i =

⎡

⎢
⎢
⎣

−a Pi + λ1Ū T Ū + λ2Ψ̃ 0 0 0
∗ −λ1 I 0 0
∗ ∗ −λ2Ψ 0
∗ ∗ ∗ −λ2 I

⎤

⎥
⎥
⎦ ,

Ω2i = [ (
A + Wi + EΠ̄ Ki

)
F
(
EΠ̄ Ki

)
B
]T

,Ω3 = [
L 0 0 0

]T
,

Ω4i =

⎡

⎢⎢
⎣

θ1K T
i ΦT

1 E θ2K T
i ΦT

2 E · · · θN K T
i ΦT

N E
0 0 · · · 0

θ1K T
i ΦT

1 E θ2K T
i ΦT

2 E · · · θN K T
i ΦT

N E
0 0 · · · 0

⎤

⎥⎥
⎦ ,
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Ω5 = [
εΛ 0 εΛ 0

]T
,Ω6i = diag

{−P−1
i ,−P−1

i , . . . ,−P−1
i

}
,

Ω7i = [
(θ1KiΦ1E)T (θ2KiΦ2E)T · · · (θN KiΦN E)T

]T
,

Ω1i j =

⎡

⎢⎢
⎣

−bPi j + λ1Ū T Ū + λ2Ψ̃ 0 0 0
∗ −λ1 I 0 0
∗ ∗ −λ2Ψ 0
∗ ∗ ∗ −λ2 I

⎤

⎥⎥
⎦ ,

Ω2i j = [ (
A + Wi + EΠ̄ K j

)
F
(
EΠ̄ K j

)
B
]T

,

Ω4 j =

⎡

⎢⎢
⎣

θ1K T
j ΦT

1 E θ2K T
j ΦT

2 E · · · θN K T
j ΦT

N E
0 0 · · · 0

θ1K T
j ΦT

1 E θ2K T
j ΦT

2 E · · · θN K T
j ΦT

N E
0 0 · · · 0

⎤

⎥⎥
⎦ ,

Ω6i j = diag
{
−P−1

i j ,−P−1
i j , . . . ,−P−1

i j

}
,

Ω7 j =
[ (

θ1K jΦ1E
)T (

θ2K jΦ2E
)T · · · (θN K jΦN E

)T
]T

.

Proof Since the closed-loop system (14.7) consists of two different dynamics, (14.8)
and (14.9), it is reasonable to construct two different Lyapunov functional for such
a complex system. To do so, for each σ(k) = i, ρ(k) = j; i, j ∈ Υ1, we propose the
following Lyapunov functional:

{
Vi = xT (k)Pi x(k), k ∈ [k0, k1) ∪ [kt + lt , kt+1),

Vi j = xT (k)Pi j x(k), k ∈ [kt , kt + lt ),
(14.15)

We now consider the case where k ∈ [k0, k1) ∪ [kt + lt , kt+1) and check the stability
of x(k). Then we have

E {Vi (k + 1) − aVi (k) + Γ (k)}
= E

{
xT (k + 1)Pi x(k + 1) − axT (k)Pi x(k) + Γ (k)

}

= [
Ai x (k) + FG (x (k)) + EΠ̄ Ki (I + Δ(k)) v(k) + Bw (k)

]T

× [
Ai x (k) + FG (x (k)) + EΠ̄ Ki (I + Δ(k)) v(k) + Bw (k)

]

+
N∑

p=1
θ̄2p
[
EΦp Ki (I + Δ(k)) x (k) + EΦp Ki (I + Δ(k)) v (k)

]T

× [
EΦp Ki (I + Δ(k)) x (k) + EΦp Ki (I + Δ(k)) v (k)

]

+ [Lx(k)]T [Lx(k)] − λ2wT (k)w(k),

(14.16)

where Γ (k) = zT (k)z(k) − λ2wT (k)w(k). It follows from the assumption of non-
linear function g(x p(k)) that there exists a positive scalar λ1 > 0 such that

− λ1GT (x(k))G(x(k)) + λ1xT (k)x(k) > 0. (14.17)

On the other hand, the event condition (14.2) implies that the following inequality is
true:

− λ2v
T (k)Ψ v(k) + λ2xT (k)Ψ̃ x(k) > 0, (14.18)



222 14 Distributed Control with Event-Based Communication and Topology Switching

where λ2 is a positive scalar. Let χ1 = −λ1GT (x(k))G(x(k)) + λ1xT (k)x(k), and
χ2 = −λ2v

T (k)Ψ v(k) + λ2xT (k)Ψ̃ x(k). It follows from (14.16) that

E {Vi (k + 1) − aVi (k) + Γ (k)}
≤ E {Vi (k + 1) − aVi (k) + Γ (k)} + χ1 + χ2

= ηT (k)

[

Ω1i + Ω̄2i PiΩ̄
T
2i + Ω3Ω

T
3 +

N∑

p=1
θ̄2pΩ̄

p
4i Pi

(
Ω̄

p
4i

)T

]

η(k),

(14.19)

where

η(k) = [
xT (k) GT (x(k)) vT (k) wT (k)

]T
,

Ω̄2i = [ (
A + Wi + EΠ̄ Ki (I + Δ(k))

)
F
(
EΠ̄ Ki (I + Δ(k))

)
B
]T

,

Ω̄
p
4i = [

EΦp Ki (I + Δ(k)) 0 EΦp Ki (I + Δ(k)) 0
]T

.

It is seen that E {Vi (k + 1) − aVi (k) + Γ (k)} < 0 if

Ω1i + Ω̄2i PiΩ̄
T
2i + Ω3Ω

T
3 +

N∑

p=1

θ̄2pΩ̄
p
4i Pi

(
Ω̄

p
4i

)T
< 0 (14.20)

is true. By Lemma 2.1, (14.20) is equivalent to

⎡

⎢⎢
⎣

Ω1i Ω̄2i Ω3 Ω̄4i

∗ −P−1
i 0 0

∗ ∗ −I 0
∗ ∗ ∗ Ω6i

⎤

⎥⎥
⎦ < 0, (14.21)

where Ω̄4i = [
Ω̄1

4i Ω̄2
4i · · · Ω̄ N

4i

]
. By some manipulations, (14.21) can be written as

⎡

⎢⎢
⎣

Ω1i Ω2i Ω3 Ω4i

∗ −P−1
i 0 0

∗ ∗ −I 0
∗ ∗ ∗ Ω6i

⎤

⎥⎥
⎦+

⎡

⎢⎢
⎣

Λ

0
Λ

0

⎤

⎥⎥
⎦

Δ

Λ

⎡

⎢⎢
⎣

0
EΠ̄ K
0

Ω7i

⎤

⎥⎥
⎦

T

+

⎡

⎢⎢
⎣

0
EΠ̄ K
0

Ω7i

⎤

⎥⎥
⎦

Δ

Λ

⎡

⎢⎢
⎣

Λ

0
Λ

0

⎤

⎥⎥
⎦

T

< 0.

(14.22)

Since
∥∥Δ

Λ

∥∥ ≤ I , it is easy to see that (14.22) holds if and only if (14.10) is true. Then,
we can infer

E {Vi (k + 1) − aVi (k) + Γ (k)} < 0, (14.23)

that is,

E {Vi (k)} < ak−lt −kt E {Vi (kt + lt )} +
∑k−1

s=kt +lt

ak−s−1
E {Γ (s)} , (14.24)

http://dx.doi.org/10.1007/978-3-319-53123-6_2
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Similarly, we have

E {Vi (k)} < ak−k0E {Vi (k0)} +
∑k−1

s=k0
ak−s−1

E {Γ (s)} . (14.25)

For the scenario where k ∈ [kt , kt + lt ), the following statement holds,

E
{

Vi j (k)
}

< bk−kt E
{

Vi j (kt )
}+

∑k−1

s=kt

bk−s−1
E {Γ (s)} . (14.26)

We are now on the stage to consider the exponential stability of the closed-loop
system (14.8)–(14.9) with w(k) = 0. Since the state could either be operated under
the asynchronous control mode or the synchronous control one, we first discuss
the first case, i.e., for k ∈ [kt , kt + lt ). It follows from (14.26) that E

{
Vi j (k)

}
<

bk−kt E
{

Vi j (kt )
}
. By resorting to (14.12) and (14.13), we eventually obtain

E
{

Vσ(k)ρ(k)(k)
}

≤ bk−kt E
{

Vσ(kt )ρ(kt )(kt )
}

= bk−kt E
{

Vσ(kt )ρ(kt−1+lt−1)(kt )
}

≤ bk−kt μE
{

Vσ(kt −1)(kt )
}

= bk−kt μE
{

Vσ(kt−1)(kt )
}

≤ bk−kt μakt −kt−1−lt−1E
{

Vσ(kt−1)(kt−1 + lt−1)
}

= bk−kt μakt −kt−1−lt−1μE
{

Vσ(kt−1)ρ(kt−2+lt−2)(kt−1 + lt−1)
}

...

≤ μNσ(k0,k)μNρ(k0,k)aT
↓(k0 ,k)

bT
↑(k0 ,k)

Vσ(k0)(k0),

(14.27)

where Nρ(k0, k) is the switchingnumbers ofρ(τ )over time-interval (k0, k),T↓(k0,k) =
kt − k0 − (lt−1 + · · · l1), and T

↑(k0,k) = k − kt + (lt−1 + · · · l1). Due to the fact that
ρ(k) is a delayed signal of σ(k), Nρ(k0, k) ≤ Nσ(k0, k) must hold. With μ ≥ 1, it
follows that

E
{

Vσ(k)ρ(k)(k)
}

≤ (μ2)Nσ(k0,k)aT
↓(k0 ,k)

bT
↑(k0 ,k)

Vσ(k0)(k0)

= (μ2)Nσ(k0,k)a(k−k0)
(
b
/

a
)T↑(k0 ,k)

Vσ(k0)(k0)

≤ (μ2)Nσ(k0,k)a(k−k0)
(
b
/

a
)π×Nσ(k0,k)

Vσ(k0)(k0).

(14.28)

By the average dwell time condition (14.14), and the relation Nσ(k0, k) ≤ k−k0
Ta

, we
have

E
{

Vσ(k)ρ(k)(k)
} ≤ (ca)(k−k0)Vσ(k0)(k0). (14.29)

On the other hand, it follows from the Lyapunov function (14.15) that there exist two
scalars �1 > 0 and �2 > 0 such that

�1E
{‖x(k)‖2} ≤ E

{
Vσ(k)ρ(k)(k)

} ≤ �2(ca)(k−k0) ‖x(k0)‖2 , (14.30)
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where �1 = min
i, j∈Υ1;i �= j

λmin(Pi j ), �2 = max
i∈Υ1

λmax(Pi ). Since 1 < c < 1
a , (14.30)

implies that the system (14.8)–(14.9) is mean-square exponentially stable when k ∈
[kt , kt + lt ).

By a similar analysis for k ∈ [kt + lt , kt+1), we obtain

E
{

Vσ(k)(k)
}

≤ ak−kt −lt E
{

Vσ(k)(kt + lt )
}

= ak−kt −lt E
{

Vσ(kt +lt )(kt + lt )
}

...

≤ μNσ(k0,k)μNρ(k0,k)aT
↓(k0 ,k)

bT
↑(k0 ,k)

Vσ(k0)(k0)
...

≤ (ca)(k−k0)Vσ(k0)(k0).

(14.31)

There also exist two scalars �̄1 > 0 and �2 > 0 such that

�̄1E
{‖x(k)‖2} ≤ E

{
Vσ(k)(k)

} ≤ �2(ca)(k−k0) ‖x(k0)‖2 . (14.32)

One has

E
{‖x(k)‖2} ≤ �2

�̄1
(ca)(k−k0) ‖x(k0)‖2 . (14.33)

Let �̃1 = min{�1, �̄1}. We finally have

E
{‖x(k)‖2} ≤ �2

�̃1

(ca)(k−k0) ‖x(k0)‖2 . (14.34)

According to Definition 14.1, system (14.8)–(14.9) is exponentially stable in the
mean-square sense when w(k) = 0.

We now address the H∞ disturbance attenuation level of the closed-loop system.
Based on the above analysis, it is easy to see that

E
{

Vi j (k)
} ≤ (μ2)Nσ(k0,k)aT

↓(k0 ,k)

bT
↑(k0 ,k)

Vσ(k0)(k0)
−∑k−1

s=k0
μNσ,ρ(s,k−1)aT

↓(s,k−1)
bT

↑(s,k−1)
E {Γ (s)} ,

(14.35)

for k ∈ [kt , kt + lt ), where Nσ,ρ(s, k − 1) = Nρ(s, k − 1) + Nσ(s, k − 1). Under the
zero initial condition, i.e., Vσ(k0)(k0) = 0, and Vi j (k) ≥ 0, we have

k−1∑

s=k0

μNσ,ρ(s,k−1)aT
↓(s,k−1)

bT
↑(s,k−1)

E {Γ (s)} ≤ 0, (14.36)

i.e.,
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∑k−1
s=k0

μNσ,ρ(s,k−1)aT
↓(s,k−1)

bT
↑(s,k−1)

E{zT (s)z(s)}
≤ λ2∑k−1

s=k0
μNσ,ρ(s,k−1)aT

↓(s,k−1)
bT

↑(s,k−1)
wT (s)w(s).

(14.37)

Note that

∑k−1
s=k0

μNσ,ρ(s,k−1)aT
↓(s,k−1)

bT
↑(s,k−1)

E{zT (s)z(s)}
= ∑k−1

s=k0
μNσ,ρ(s,k−1)ak−1−s

(
b
/

a
)T↑(s,k−1)

E{zT (s)z(s)}
≥ ∑k−1

s=k0
ak−1−s

E{zT (s)z(s)},
(14.38)

and ∑k−1
s=k0

μNσ(s,k−1)μNρ(s,k−1)aT
↓(s,k−1)

bT
↑(s,k−1)

wT (s)w(s)

≤ ∑k−1
s=k0

μ2Nσ(s,k−1)ak−1−s
(
b
/

a
)T↑(s,k−1)

wT (s)w(s)

≤ ∑k−1
s=k0

μ2Nσ(s,k−1)ak−1−s
(
b
/

a
)π×Nσ(s,k−1)

wT (s)w(s)

≤ ∑k−1
s=k0

[
μ2
(
b
/

a
)π] k−s−1

Ta ak−1−swT (s)w(s).

(14.39)

By (14.14), we obtain

∑k−1
s=k0

μNσ(s,k−1)μNρ(s,k−1)aT
↓(s,k−1)

bT
↑(s,k−1)

wT (s)w(s)
≤ ∑k−1

s=k0
ck−s−1ak−1−swT (s)w(s)

= ∑k−1
s=k0

(ca)k−1−swT (s)w(s).
(14.40)

Then, the following inequality,

∑k−1
s=k0

ak−1−s
E{zT (s)z(s)}

≤ λ2∑k−1
s=k0

(ca)k−1−swT (s)w(s),
(14.41)

is true. Summing both sides of (14.41) from k = 1 to k = +∞ and changing the
order of summation yield

∑+∞
s=k0

E{zT (s)z(s)} ≤ 1 − a

1 − ca
λ2
∑+∞

s=k0
wT (s)w(s). (14.42)

By following a similar analysis for k ∈ [kt + lt , kt+1), we can also have the same
result. Thus, the system (14.8)–(14.9) is exponentially stable in the mean-square

sense with a prescribed H∞ disturbance attenuation level γ =
√

1−a
(1−ca)

λ. The proof

is now completed.

One can see from Theorem 14.1 that we have Pi , Pi j and their inverses in
Eqs. (14.10) and (14.11), it is impossible for us to determine the controller gain
at this stage. To overcome this problem, we present the following theorem.

Theorem 14.2 For some given scalars 0 < a < 1, b ≥ 1, 1 < c < 1
/

a, and μ ≥ 1,
the control problem is solvable if there exist positive-definite matrices Pi , Pi j , Qi ,
Qi j , and positive scalars λ1,λ2, ε such that the conditions (14.12)–(14.14) and
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⎡

⎢⎢⎢⎢⎢
⎢
⎣

Ω1i Ω2i Ω3 Ω4i Ω5 0
∗ −Qi 0 0 0 EΠ̄ Ki

∗ ∗ −I 0 0 0
∗ ∗ ∗ Ω̄6i 0 Ω7i

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥
⎥
⎦

< 0, (14.43)

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ω1i j Ω2i j Ω3 Ω4 j Ω5 0
∗ −Qi j 0 0 0 EΠ̄ K j

∗ ∗ −I 0 0 0
∗ ∗ ∗ Ω̄6i j 0 Ω7 j

∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0, (14.44)

Qi Pi = I, (14.45)

Qi j Pi j = I, (14.46)

are all satisfied for i, j ∈ Υ1, where Ω̄6i = diag {−Qi ,−Qi , . . . ,−Qi } and Ω̄6i j =
diag

{−Qi j ,−Qi j , . . . ,−Qi j
}
.

Proof it is easy to see that Theorem 14.2 reduces to Theorem 14.1 by Qi = P−1
i

and Qi j = P−1
i j .

It should be pointed out that (14.43) and (14.44) in Theorem 14.2 have become
a set of linear matrix inequalities, which can be easily solved by some standard
software, but (14.45) and (14.46) are two bilinear matrix equations. It is still not an
easy task to use Theorem14.2 directly to calculate the controller gains Ki . To conquer
this problem, we resort to the cone complementarity linearization algorithm, and the
controller gain Ki can now be calculated by solving the following optimization
problem:

min Tr

{
Υ1∑

i=1
Qi Pi +

Υ1∑

i=1

Υ1∑

j=1
Qi j Pi j

}

s.t. (14.12) − (14.14), (14.43), (14.44) and[
Qi I
∗ Pi

]
≥ 0,

[
Qi j I
∗ Pi j

]
≥ 0.

(14.47)

14.4 A Simulation Study

In this section, a simulation study on the network-based chemical reactors consisting
of two non-isothermal continuous stirred-tank reactors (CSTRs) with interconnec-
tions between reactors is presented. The system is depicted in Fig. 14.2. It follows
from Chap.12 that the dynamics of CSTR can be modeled as the following LTI
system when the original nonlinear system is linearized around the operating point:

http://dx.doi.org/10.1007/978-3-319-53123-6_12
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Fig. 14.2 Process flow diagram of two interconnected CSTR systems

{
ẋ1(t) = Ac

11x1(t) + B̄c
1u1(t) + Ac

12x2(t),
ẋ2(t) = Ac

22x2(t) + B̄c
2u2(t) + Ac

21x1(t),
(14.48)

where xi and ui are the state and input vectors for the i-th subsystem, respectively,
and they are defined by

x1 =
[ T1−T s

1
T s
1

C A1−Cs
A1

Cs
A1

]

, x2 =
[ T2−T s

2
T s
2

C A2−Cs
A2

Cs
A2

]

,

u1 =
[

Q1

CA0 − Cs
A0

]
, u2 =

[
Q2

CA03 − Cs
A03

]
.

With the parameters in Table12.1, the matrices in (14.49) are calculated as

http://dx.doi.org/10.1007/978-3-319-53123-6_12
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Ac
11 =

[
25.2914 4.9707
−78.028 −45.9368

]

, Ac
12 =

[
31.7512 0

0 34.6421

]
,

B̄c
1 =

[
9.45 × 10−6 0

0 2.8234

]
,

Ac
22 =

[ −2.8370 1.4157
−22.4506 −24.8828

]
, Ac

21 =
[
14.6953 0

0 13.4690

]
,

B̄c
2 =

[
3.47 × 10−6 0

0 5.7071

]
.

Discretizing system (14.48) under a sampling time of Ts = 0.0025 h gives fol-
lowing discrete-time interconnected systems:

{
x1(k + 1) = Ad

11x1(k) + B̄d
1 u1(k) + Ad

12x2(k),

x2(k + 1) = Ad
22x2(k) + B̄d

2 u2(k) + Ad
21x1(k),

(14.49)

where

Ad
11 =

[
1.0632 0.0124

−0.1951 0.8852

]

, Ad
12 =

[
0.0794 0

0 0.0866

]
,

B̄d
1 =

[
9.45 × 10−7 0

0 0.0071

]
, Ad

22 =
[

0.9929 0.0035
−0.0561 0.9378

]
,

Ad
21 =

[
0.0367 0

0 0.0337

]
, B̄d

2 =
[
3.47 × 10−7 0

0 0.0143

]
.

In a practical CSTR system, the feed to CSTR 1 and CSTR 2may be changing due
to different operation tasks, which result in a time-varying connection configuration
of CSTR 1 and CSTR 2. Hence the topology switching problem is taken into account
to reflect a more practical CSTR system. In addition, note that the nonlinear pertur-
bation and the unknown disturbance usually occur in CSTR systems. Therefore, a
practical CSTR system can be modeled by system (1) with two subsystems, and the
parameters of each subsystem are listed as follows.

Subsystem 1:

A1 =
[

1.0632 0.0124
−0.1951 0.8852

]
, W 1

12 =
[
0.0794 0

0 0.0866

]
, W 2

12 = 0.5W 1
12,

F1 =
[
0.1 0
0.1 0.01

]
, E1 =

[
9.45 × 10−7 0

0 0.0071

]
, B1 =

[
0.7
0.3

]
, L1 = [

0.5 0.5
]
;

Subsystem 2:

A2 =
[

0.9929 0.0035
−0.0561 0.9378

]
, W 1

21 =
[
0.0367 0

0 0.0337

]
, W 2

21 = 0.5W 1
21,
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F2 =
[
0.1 0
0.1 0.01

]
, E2 =

[
3.47 × 10−7 0

0 0.0143

]
, B2 =

[
0.5
0.3

]
, L2 = [

0.1 0.8
]
.

The nonlinear disturbance is assumed to be g(x p(k)) =
[
tanh(0.2x1i )

tanh(0.2x2i )

]
, and then

U = diag{0.2, 0.2}.
It has been shown in the last few chapters that the above CSTR system is open-

loop unstable. In this example, we use two controllers to perform the control task
and all states are assumed to be measurable. To handle the communication constraint
problem, the state measurement is transmitted only a pre-designed event condition
(14.2) is satisfied. Theweightingmatrices and tuning parameters of the event function
are chosen to be Σ1 = Σ2 = I , τ1 = 0.95, and τ2 = 0.9. The selected measurement
signals are then quantized by two logarithmic quantizers with quantization densities
ρ1 = 0.9 and ρ2 = 0.8. As we mentioned above, the transmission in a networked
environment is not always reliable and the packet dropout may occur. We assume
that the packet dropout rates are 10 and 20%. Then ᾱ1 = 0.9 and ᾱ2 = 0.8. Suppose
that the topology switching is periodical with the period T = 5, which is unknown to
the controller side. The transmission of real-time topology switching information to
the controller network is through a communication network and it suffers some time
delay and the maximal delay bound is assumed to π = 2. Choosing a = 0.95, b =
1.01, c = 1.05 and μ = 1.01, we have T ∗

a = 4.8171, which means that condition
(14.14) holds. Now solving the optimization problem (14.47), we have γ∗ = 4.5750,
and the controller gains

K1 =

⎡

⎢⎢
⎣

−631750 17.4059 −56796 −0.0144
18.1060 −54.3548 −2.5585 −0.9495
−29965 −0.4728 −1614900 0.2100
−0.4626 −2.3728 0.5786 −18.7411

⎤

⎥⎥
⎦ ,

K2 =

⎡

⎢⎢
⎣

−629800 17.4578 −50356 0.0275
16.9747 −54.5540 −1.0162 0.5902
−2821.4 −0.4287 −1620200 0.1752
−0.9302 0.5184 −0.1141 −18.7036

⎤

⎥⎥
⎦ .

To verify control performance, we first consider the case wherew(k) = 0. Choos-

ing the initial conditions as x1(0) =
[
0.3
0.8

]
, x2(0) =

[
1.2
0.4

]
, we depict the state

response trajectories in Figs. 14.3 and 14.4. It is seen that closed-loop system is sta-
ble. We now consider the scenario that w1(k) = w2(k) = sin(0.1k) ∗ e−0.1k , and
the initial conditions of the CSTR are zero. The simulation results are depicted in
Figs. 14.5, 14.6, 14.7 and 14.8. Specifically, Figs. 14.5 and 14.6 illustrate the state
response trajectories and Figs. 14.7 and 14.8 show the performance trajectories. The
above simulation results have demonstrated the effectiveness of the proposed control
algorithm.
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Fig. 14.3 State trajectories of subsystem 1
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Fig. 14.4 State trajectories of subsystem 2
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Fig. 14.5 State trajectories of subsystem 1



14.4 A Simulation Study 231

0 20 40 60 80 100 120 140 160 180 200
Time(k)

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
x12
x22

Fig. 14.6 State trajectories of subsystem 2
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Fig. 14.7 Trajectories of performance output 1
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Fig. 14.8 Trajectories of performance output 2
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14.5 Conclusions

We have investigated the distributed control problem for a class of large-scale system
with communication constraints and topology switching. Strategies such as event-
based communication and logarithmic quantization have introduced to reduce the
transmitted information. A set of asynchronous controllers have been designed to
deal with the difficulty that the topology information can not be accessed in time
by the controller. Based on the Lyapunov direct method and the switched system
approach, a sufficient condition has been proposed such that the closed-loop system
is exponentially stable in the mean-square sense and achieves a prescribed H∞ dis-
turbance attenuation level. The well-known CCL algorithm has been borrowed for
the controller gain design. Finally, a simulation study has been given to demonstrated
the effectiveness of the proposed controller design algorithm.
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