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Supervisor’s Foreword

Over the last decades, theoretical chemistry has become an integral part of scientific
research. Computer simulations provide major support in understanding experi-
mental results in greater detail and allow to predict properties of molecules which
have not been synthesized yet. The simulation of vibrational circular dichroism
spectra in the liquid phase posed a strong challenge for a long time. Previous
publications on this topic are scarce. Due to the difficulties to define the magnetic
moment, none of them has described completely general ab initio spectra on the
basis of molecular dynamics. In this thesis, several novel ideas for this field are
presented which provide important new contributions to the simulation techniques
of liquids and their vibrational spectra.

Dr. Martin Thomas has developed a new method of Voronoi spectra. To achieve
this, the electron density had to be divided with the help of a Voronoi tessellation.
As a result, the electron density can be allocated to certain molecules. It is of utmost
importance not to use the normal Voronoi tessellation but the radical Voronoi
tessellation. With this new method it is now possible to calculate the charge as well
as the dipole moment. Moreover, the infrared spectra and Raman spectra can be
calculated. As the density is written on a grid and is not treated continuously, more
developments had to be made. To solve this problem, Dr. Martin Thomas has
developed a new algorithm.

The Voronoi tessellation of the electron density in ab initio molecular dynamics
is shown to be an excellent method to calculate molecular dipole moments. While
existing approaches to calculate this quantity often rely on a Wannier localization,
which can be very costly regarding computational resources, the Voronoi tessel-
lation allows a significant speedup in simulations of infrared and Raman spectra of
liquids. Furthermore, a novel approach is developed to calculate the magnetic
moment directly from the electron density. Thus, the first fully ab initio simulation
of the vibrational circular dichroism spectrum of a liquid could be conducted.

Besides these new developments, all algorithms discussed in this thesis were
implemented in TRAVIS (http://www.thch.uni-bonn.de/tc/travis), our in-house
open-source software tool for the analysis of molecular dynamics simulations.
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In this way, the novel ideas are directly available to the scientific community.
With the new method Dr. Martin Thomas has implemented in TRAVIS, it is now
possible for other groups to use it, as it was already done (e.g., on ionic liquids
under high pressure). Therefore, the outstanding results of Dr. Martin Thomas’
thesis have already inspired further studies.

Bonn Prof. Barbara Kirchner
August 2016
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Abstract

In this thesis, the theoretical modeling of vibrational spectra in the liquid phase by
ab initio molecular dynamics simulations is discussed. All presented algorithms are
implemented in the open-source trajectory analysis software package TRAVIS to
make them publicly available to the scientific community for immediate utilization.
The basic equations that define the spectra in terms of Fourier transforms of cor-
relation functions are derived in an alternative manner to highlight the close relation
of ab initio molecular dynamics and static calculations regarding vibrational
properties. To assess the influence of approximating the nuclei by classical parti-
cles, molecular dynamics simulations are compared to the exact solution of the
nuclear Schrödinger equation for several one-dimensional and two-dimensional
example potentials. This reveals that anharmonicity effects are included in molec-
ular dynamics, but the extent depends on the simulation temperature and certain
restrictions are imposed such that, e.g., overtones appear at integer multiples of the
corresponding fundamental frequency and combination bands show up at exact
sums and differences of the corresponding fundamental frequencies. For the eval-
uation of molecular dipole moments, the scheme of maximally localized Wannier
functions is adopted. Molecular polarizabilities are obtained by recalculating the
Wannier functions under the influence of an external electric field and taking the
differences of the dipole moments. Knowing these quantities allows to compute
infrared and Raman spectra of bulk systems with a separation of the components in
mixtures and the contributions of solute and solvent in a solution. To avoid the
large computational requirements of the Wannier localization, a new method to
obtain molecular dipole moments and polarizabilities is developed. It is based on a
radical Voronoi tessellation of the electron density that is inherently available in
ab initio molecular dynamics. The influence of the radii that have to be assigned to
the Voronoi sites is investigated, and it is concluded that van der Waals radii are a
very reasonable choice to separate the molecules in a bulk phase simulation and to
obtain spectra of similar quality as the Wannier approach. Besides the improved
computational efficiency, the new method avoids certain artifacts of the Wannier
functions that prevent, e.g., the calculation of Raman spectra for aromatic com-
pounds such as benzene. To simulate also vibrational circular dichroism spectra,
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a novel method to obtain molecular magnetic moments in the bulk phase is
developed. In this approach, a partial differential equation is solved to compute the
electric current density on the basis of changes in the electron density during
the simulation. The resulting magnetic moments prove to be stable with respect to
the simulation parameters and yield vibrational circular dichroism spectra in very
good agreement with experimental data. In order to test the implementations, the
algorithms are applied to simple organic molecules that are easy to simulate and for
which experimental spectra are readily available to compare the results. In partic-
ular, the infrared and Raman spectra of methanol, carbon tetrachloride, benzene,
and phenol in the bulk phase are discussed. Moreover, the chiral molecules
2-butanol, propylene oxide, and a-pinene are investigated regarding their vibra-
tional circular dichroism spectra in the liquid state. The molecular dynamics
approach is shown to be suited very well for a modeling of bulk phase effects that
occur due to intermolecular interactions such as hydrogen bonding, e.g., in the
alcohols methanol and 2-butanol. This turns it into the primary method to study
ionic liquids with their strong and dynamic interaction network. In the example of
1-ethyl-3-methylimidazolium acetate with its potential to form a carbene, it is
demonstrated that static calculations of a single ion pair introduce certain defi-
ciencies while ab initio molecular dynamics can reproduce the experimental data
very well. This is also used to study a mixture with water and to investigate the
absorption of carbon dioxide in this ionic liquid.
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Chapter 1
Introduction

The term vibrational spectroscopy collects a wide variety of analytical techniques
that generally deal with the analysis of molecular vibrations or phonons in solids.
The frequencies of the vibrations in a molecular system or in a solid are directly
determined by the mutual interplay between its atoms, so vibrational spectroscopy
allows to study the interactions within a molecule or a solid, as well as between a
molecule and its surrounding in great detail. This leads to numerous applications in
all fields of natural sciences, medicine, and also in the industry (see, e.g., the recent
review articles [1–18] for some examples). There exist many different manifesta-
tions of vibrational spectroscopy, and each of them probes the molecular vibrations
with specific selection rules, so they often yield complementary information about
the system. Two very popular forms already undergraduate students come in contact
with are IR and Raman spectroscopy. The former is based on the absorption of elec-
tromagnetic radiation due to the excitation of the system to a higher vibrational state
with an energy that is typically in the IR region of the electromagnetic spectrum. The
corresponding IR spectrum shows vibrations that change the dipole moment of the
system. Raman spectroscopy relies on the inelastic scattering of usually visible light,
meaning that the energy of an incident photon is changed by the energy difference of
two vibrational states in the system. In this case, the spectrum contains vibrations that
modify the polarizability of the system. Closely related to these two principles are
vibrational circular dichroism (VCD) and Raman optical activity (ROA), whichmea-
sure the difference in the absorption or the scattering, respectively, of left and right
circularly polarized light. These methods provide signals only for chiral molecules.

For a detailed interpretation of vibrational spectra, accurate theoretical models on
a molecular level are essential. Today, ab initio calculations with the help of com-
puter systems allow to predict vibrational properties just on the basis of fundamental
physical laws such as the Schrödinger equation. Although the algorithms to solve this
equation sometimes contain a few general empirical constants (see Sect. 2.2), specific
parameters fitted to particular experimental vibrational spectra are not needed. This
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2 1 Introduction

makes it possible to study any arbitrary system even if it has not been synthesized
yet or if it is so reactive that it cannot be isolated in the experiment.

Basic ab initio calculations of single molecules can be regarded as a routine task
nowadays. Many different software packages provide the possibility to estimate IR
and Raman spectra within the harmonic approximation in a black box manner, and
the application of such static calculations is usually taught in introductory courses to
computational chemistry [19, 20]. The general procedure of this approach is as fol-
lows: Starting from a reasonable guess of the molecular structure, a minimum on the
potential energy surface is searched for (geometry optimization). In the vicinity of
this minimum, the potential energy surface is approximated by a quadratic function,
implicating that the molecule behaves like a harmonic oscillator (harmonic approxi-
mation). Under this assumption, the vibrational frequencies are readily given by the
diagonalized Hessian of the potential energy at the minimum, and the intensities can
be obtained as derivatives of the dipole moment and the polarizability for IR and
Raman spectra, respectively (see Sect. 2.4).

In usual cases, the harmonic approximation performs very well to reproduce the
peak positions and the intensity ratios of the fundamental transitions in a vibrational
spectrum [21]. This is often sufficient to interpret experimental data in terms of
specific molecular vibrations. For more accurate results, however, the anharmonic-
ity effects that lead, e.g., to a shift of peaks and the occurrence of overtones and
combination bands have to be included. To some extent, the shift of the peaks can
be taken into account by empirical scaling factors [22–24], which are very com-
mon due to their simple applicability. More sophisticated techniques to overcome
the harmonic approximation are, e.g., vibrational perturbation theory [25–28], the
vibrational self-consistent field method [29–31], vibrational configuration interac-
tion [32, 33], vibrational coupled-cluster theory [34, 35], the multiconfigurational
vibrational self-consistent fieldmethod [36, 37], andmulti-reference vibration corre-
lation methods [38] (see also the review articles [39–41] for an overview and further
references). Although these techniques can yield very accurate results, they are com-
putationally demanding, so they can hardly be used for molecular systems in the
order of 100 atoms or more [42], and the harmonic approximation remains as the
primary approach to study large biomolecules [43].

The static calculations either within the harmonic approximation or including
anharmonicity effects are perfectly suited to study single molecules as a model for
the gas phase. However, many experimental spectra are measured in the liquid phase,
simply because this is the natural aggregate state of the investigated substance under
ambient conditions, or just a solution of the substance is available. Depending on the
polarity of amolecule and its specific interaction sites, significant differences between
the spectra of the gas phase and the liquid phase can occur due to intermolecular
interactions or the interplay with the solvent (some examples are shown in Chap. 4).
To properly describe these situations, theoretical models are required that include
bulk phase effects. The simplest extensions directly available for static calculations
are continuum solvation approaches such as, e.g., the polarizable continuum model
[44] or the conductor-like screening model [45] (see the review article [46] for an
overview and further references). These implicit techniques place the molecule in

http://dx.doi.org/10.1007/978-3-319-49628-3_2
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a cavity surrounded by a continuum with certain electrostatic properties, so they
primarily account for the electrostatic interaction between solute and solvent. For
specific direct intermolecular contacts such as, e.g., hydrogen bonds, however, it is
necessary to include the neighboring molecules explicitly in the calculation, leading
to microsolvation approaches where clusters of molecules are studied (see, e.g.,
Refs. [47–49]). Such techniques can largely improve the description of the local
environment of a molecule, but with increasing cluster size, the necessary geometry
optimization becomes a major obstacle. In the cluster, the potential energy surface is
often quite flat for the relative orientation of themolecules,making it hard to converge
the optimization and to reach a true minimum. Furthermore, there are usually many
minima with similar energies, so preferably all of them should be considered to
properly average the spectra. A comprehensive search for all minima is, however,
not feasible for larger clusters.

In general, computational approaches to the description of liquids resort to mole-
cular dynamics (MD) simulations [50]. This means that the atomic positions are
propagated numerically according to Newton’s equations of motion for a certain
time with a finite timestep. The resulting trajectory can be analyzed to obtain struc-
tural properties in terms of, e.g., radial distribution functions or dynamical quantities
such as, e.g., the lifetime of a hydrogen bond. From the beginning on, classical force
fields with empirical potential functions were applied tomodel the interatomic forces
in MD simulations. Later, the advances in computer technology paved the way to
employ also ab initio calculations, leading to ab initio molecular dynamics (AIMD)
[51] with a quantum chemical description of the interatomic interactions. In con-
trast to a single static calculation of a molecular cluster, an AIMD simulation is not
confined to a particular minimum on the potential energy surface, but it samples
all molecular configurations accessible in the phase space at a certain temperature
(though the sampling is restricted by the simulation times and the system sizes that
can be afforded, and special algorithms might be necessary to overcome large bar-
riers and to study chemical reactions). Furthermore, AIMD simulations are easily
combined with periodic boundary conditions, avoiding the surface effects present
in a molecular cluster and improving the description of the molecular surrounding
toward the real liquid.

The particular application of AIMD simulations to calculate vibrational spectra
treating the whole system on the same level of theory started with the pioneer-
ing investigation of liquid water by Parrinello and coworkers in 1997 [52]. In this
approach, the IR spectrum was computed as the Fourier transform of the dipole–
dipole correlation function, where the dipole moment under periodic boundary con-
ditions became available by the Berry phase scheme of polarization [53–55]. Shortly
after, the method was applied to amorphous silicon [56], amorphous silica [57], and
ice under high pressure [58], later also to aqueous solutions of potassium hydroxide
[59], liquid methanol [60], and silicate melts [61]. The development of the maxi-
mally localized Wannier function method [62–66] allowed to obtain the individual
dipole moments of the molecules in the simulation cell, so solute and solvent con-
tributions could be separated, and the sampling was improved. This has been used
to investigate the IR spectra of uracil in aqueous solution [67], N -methylacetamide
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in aqueous solution [68, 69], liquid water [70–74], completely dissociated mineral
acids in water [75, 76], hydrogen chloride hydrates [77–79], sodium chloride solu-
tions in water [80], glycine in aqueous solution [81, 82], an alanine dipeptide analog
in aqueous solution [83], a bridged cyclic diamide in aqueous solution [84], liquid
methanol [85], and three bioionic liquids [86]. Recently, an alternative approach to
individual molecular dipole moments has been implemented on the basis of subsys-
tem embedding, and it has been applied to study the IR spectra of liquid ethylene
carbonate and dimethyl carbonate [87]. Even more recently, another partitioning
scheme relying on nonorthogonal generalized Wannier functions has been used to
revisit the alanine dipeptide [88]. It should be noted that also the gas phase IR spec-
tra of several peptide systems [69, 88–100], sugars [101–103], protonated methane
[104], hydrogen chloride–acetonitrile clusters [105], 2-amino-1-phenylethanol clus-
ters [106], water [88], carbon dioxide [88], and ethanol [88] have successfully been
simulated by AIMD and Fourier transform of the dipole autocorrelation function.

While the IR spectra rely on the dipole moment, Raman spectra can be calculated
in AIMD simulations as the Fourier transform of the polarizability autocorrelation
function. The polarizability of the simulation cell under periodic boundary conditions
can be obtained by density functional perturbation theory [107–113]. This technique
has been employed to study the Raman spectra of ice under high pressure [114],
naphthalene crystals [115], amorphous germanium telluride [116], spodumene crys-
tals [117], arsenic sulfides [118], liquid water [119], water under high pressure [120],
and liquid propylene oxide [121]. The polarizability of the simulation cell can also
be calculated by applying a finite electric field [113, 122, 123], and this has been
used for water under high pressure [120]. Due to the computational cost of the pertur-
bation theory calculation for the whole cell in each simulation step, clavulanic acid
and tazobactam in aqueous solution and a protein environment have been simulated
by combining quantum chemistry with classical force fields (QM/MM) and relying
on static calculations for the Raman spectra [124, 125]. Also for the investigation of
vitreous systems, it is common to obtain only the model structures by AIMD and to
perform static calculations for the spectra (see, e.g., Refs. [126–128]). Similar to the
dipole moments, it is of general interest to obtain individual molecular polarizabil-
ities in the bulk phase [129, 130]. A model based on maximally localized Wannier
function centers [129, 130] has been employed for the Raman spectra in the studies
of liquid water [119] and water under high pressure [120]. An alternative approach
assigning polarizabilities to atom-centered basis functions has been developed in the
investigation of liquid propylene oxide [121].

For the interpretation of the simulated spectra, it is desirable to assign the bands
to particular molecular vibrations. While this information is intrinsically available
in static calculations within the harmonic approximation as the normal modes of a
molecule are the coordinate system in which the Hessian is diagonal, the extraction
of normal modes from MD simulations is more involved. Several methods have
been developed in this regard, including the technique of driven molecular dynamics
[131, 132], the instantaneous normal mode analysis where the Hessian is calculated
in certain steps along the trajectory [133–140], as well as principal mode analysis
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[139–143], effective normal modes [69, 144], and generalized normal coordinates
[145, 146] where the eigenvalue problem of a cross-correlation matrix is solved.

The general aim of this thesis is to collect the approaches to the simulation of IR
and Raman spectra by AIMD, to improve their efficiency regarding the calculation of
molecular dipole moments and polarizabilities, to extend them toward a simulation
of VCD spectra, and to implement these methods in the software package Travis
[147]. The program Travis intends to provide a wide variety of trajectory analysis
algorithms under a common interface to enable an easy post-processing and visual-
ization of MD simulations. In the course of this thesis, it is considerably extended
regarding its capabilities to calculate vibrational spectra.

The thesis starts with an explanation of the general theoretical background in
terms of the Schrödinger equation in Chap. 2. On the one hand, this is needed to
understand the basic principles of vibrational spectroscopy and the influence of the
most important approximation in the simulation of vibrational spectra by AIMD,
which is the assumption of the nuclei as classical particles. On the other hand, this
is necessary to elucidate the meaning of the parameters for the treatment of the
electronic structure in ab initio calculations. In Chap.3, all the algorithms important
for the implementation in Travis are described. At first, the equations are derived
that define the vibrational spectra in AIMD simulations as Fourier transforms of
correlation functions. While this is usually started from the Heisenberg picture of
quantum mechanics in the literature [51, 148], where the quantum correlation func-
tions are approximated by classical correlation functions and quantum correction
factors are introduced, an alternative way is chosen here: the central model sys-
tem is the harmonic oscillator and everything is defined in such a way that the MD
approach provides the same spectra as quantum mechanics in this case. Except for
constant prefactors, the resulting equations are the same as the ones known in the
literature, but this clarifies the close relation of AIMD simulations and static calcu-
lations concerning the vibrational properties of a system. Afterwards, it is studied
how the methodology transfers to anharmonic systems. Although it is often stated
without further explanation in articles presenting vibrational spectra fromAIMD that
anharmonicity is included, it has to be recognized that the assumption of classical
nuclei imposes certain restrictions on the effects that can be observed. The differ-
ences between quantum mechanics and the classical approximation of the nuclei are
discussed in detail for several anharmonic model systems.

As soon as the basic equations for the spectra are known, it is important to obtain
molecular dipolemoments and polarizabilities. As the first approach, thewell-known
scheme of maximally localized Wannier functions is realized. Concerning the polar-
izabilities, the implementation is very similar to the idea in Refs. [129, 130], but it
uses a simplification that significantly reduces the computational demand without
an unacceptable distortion of the resulting Raman spectra. It should be noted that
the first Raman spectra based on these molecular polarizabilities have already been
published by the author in Ref. [149], prior to the above mentioned articles [119,
120].

http://dx.doi.org/10.1007/978-3-319-49628-3_2
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A major drawback of the Wannier functions is the required computational effort.
In particular, if the localization procedure suffers from convergence problems, this
becomes themost expensive part of anAIMDsimulation. A new approach that avoids
the huge impact on the computation time is presented in this thesis. It is based on a
radical Voronoi tessellation [150] of the total electron density, and its applicability is
tested for several organic molecules. This reveals that it constitutes a good method to
study also aromatic compounds such as benzene, for which the Wannier localization
shows severe problems that prevent especially the simulation of Raman spectra.

To date, the application of MD simulations to VCD spectroscopy is limited. It
has been derived that the VCD spectrum can be computed as the Fourier transform
of the cross-correlation of dipole moment and magnetic moment [151–153], but
the calculation of the magnetic moment needed for this approach is a major issue
in AIMD. In Ref. [152], the MD force field was parametrized with atomic axial
tensors from magnetic field perturbation theory [154–157], so this is a combination
of MD with static calculations. In Refs. [151, 153, 158], the classical definition
of the magnetic moment caused by point charges was employed. The atomic partial
charges were either fixed [151] or they were obtained from population analyses [153,
158]. Although a good agreement with the experiment could be achieved in the latter
examples, it has to be noted that atomic partial charges are not unique and the result
strongly depends on the particular population analysis that is selected. Recently,
atomic axial tensors on the basis of nuclear velocity perturbation theory [159–163]
have been implemented and the authors directly aim for the application in AIMD
simulations [164, 165]. In this thesis, a novel method to calculate magnetic moments
in AIMD is presented. It is also based on the classical definition of the magnetic
moment, but it does not resort to atomic partial charges. Instead, the electron density
from the AIMD is directly processed to obtain the electric current density in the
simulation cell. This allows to computemolecularmagneticmoments in combination
with the abovementioned Voronoi tessellation. In several examples, this proves to be
a reasonable approach to VCD spectra in the liquid phase, which does not require
any changes in the electronic structure code and can be used with any electronic
structure method that is able to provide the electron density.

Since the major focus of this thesis is the development and the implementation of
methods to simulate vibrational spectra byAIMD, the algorithms are primarily tested
with simple organic molecules for which experimental data are readily available to
compare the results (see Chap. 4). To cover a certain range of functional groups, the
implementation to process the Wannier function centers is applied to methanol, ace-
tone, and nitromethane in the gas phase, as well as to methanol in the bulk. Methanol
is a small molecule, allowing to carry out AIMD simulations with little computa-
tional effort. However, methanol also contains a hydroxyl group that is able to form
intermolecular hydrogen bonds, so it shows significant bulk phase effects and the suit-
ability of AIMD simulations to treat such cases can be demonstrated. Anharmonicity
effects are shownusing the examples of cyanoformyl chloride, cyanoformyl bromide,

http://dx.doi.org/10.1007/978-3-319-49628-3_4
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and carbon tetrachloride, where they are clearly visible in the experiment. The newly
developed dissection of the electron density on the basis of a Voronoi tessellation
for molecular dipole moments and polarizabilities is tested with methanol, benzene,
and phenol in the bulk phase. The aromatic compounds have been selected to show
the issues of the Wannier localization in this case. The novel method to simulate
VCD spectra is applied to 2-butanol, which is the smallest chiral alkanol, propylene
oxide, which is one of the smallest chiral molecules in general, and α-pinene as an
important natural product.

Beside the implementation of the methodology in Travis, another focus of this
thesis is the application to ionic liquid systems. In general, ionic liquids are ionic
compounds with such a low melting point that they are liquid at room temperature.
In the last decades, they became an extensively studied type of substances since they
often combine good thermal stability, nonflammability, and low volatility with excel-
lent solvating properties, allowing for a wide variety of applications (see, e.g., the
review articles [166–168]). Since the structure of ionic liquids is governed by a large
diversity of interactions that range from electrostatic forces [169] through dispersion
interactions [170, 171] to specific directional atom contacts such as hydrogen bonds
[172–182], they show strong bulk phase effects in their vibrational spectra that are
hard to model by static calculations of single ion pairs or clusters of a few ion pairs.
Nevertheless, several studies in this sense of ionic liquids that contain the 1-ethyl-3-
methylimidazolium ([C2C1Im]+) cation have appeared in the literature [183–193].
Although they restrict the number of conformers of the ion pair and neglect the
influence of the dynamic surrounding in the liquid, they provide a good general
insight into some of the spectroscopic features. However, a major issue occurs, e.g.,
in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]). Beside its good solvation
properties for strongly hydrogen bonding materials such as cellulose [194] or chitin
[195], this ionic liquid is able to form an N-heterocyclic carbene by a proton transfer
between cation and anion. It has been shown that this reaction is favored in the gas
phase [177] while the ion network [196, 197] stabilizes the ions and suppresses the
carbene formation in the liquid [181, 198, 199]. As a direct consequence, a static
calculation of a single ion pair, which resembles the situation in the gas phase, offers
only a limited ability to describe the behavior in the liquid state.

The detailed settings of the AIMD simulations and the static calculations dis-
cussed in Chap.4 are gathered in Appendix A. Furthermore, most of the mathemat-
ical derivations that are not primarily relevant to understand the argumentation in
Chap.3 can be found in Appendix B. In Appendix C, the method of imaginary time
propagation is shortly explained,which allows to solve the nuclear Schrödinger equa-
tion without the approximation of the nuclei as classical particles. The description
of this technique is not included in Chap.2, since it is not needed for the modeling
of vibrational spectra by AIMD presented in this thesis, and it only serves to provide
the reference spectra for the discussion of anharmonicity effects in Sect. 3.2.3.

http://dx.doi.org/10.1007/978-3-319-49628-3_4
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Chapter 2
Theoretical Background

2.1 The Schrödinger Equation

Any computational approach to study the properties of molecular systems needs
to deal with the Schrödinger equation [1], which describes the dynamics in non-
relativistic quantummechanics. A brief summary of the approximations necessary to
runmolecular simulations within reasonable periods of time is given in the following
sections. It follows several standard textbooks [2–5], so the educated reader might
directly continue with Chap.3.

The general time-dependent form of the Schrödinger equation in Dirac notation
reads as

H |Φ(t)〉 = i�
∂

∂t
|Φ(t)〉 , (2.1)

where H is the Hamiltonian and |Φ(t)〉 is a state vector in the Hilbert space of
all possible quantum states of the particular system. If the Hamiltonian does not
explicitly depend on the time t and |Φ(t)〉 is a stationary state, the time dependence
can be separated by the ansatz

|Φ(t)〉 = exp

(
− i

�
Et

)
|Ψ 〉 , (2.2)

where |Ψ 〉 is an eigenstate of H, so it fulfills the time-independent Schrödinger
equation

H |Ψ 〉 = E |Ψ 〉 (2.3)

with the energy eigenvalue E.
In amolecular system that consists ofN electrons andM nuclei, theHamiltonian is

commonly chosen to include the kinetic energy of the electrons Te, the kinetic energy
of the nuclei Tn, the Coulomb repulsion between the electrons Vee, the Coulomb
attraction of the nuclei and the electrons Vne, and the Coulomb repulsion between
the nuclei Vnn:
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H = Te + Tn + Vee + Vne + Vnn

= −
N∑

i=1

�
2

2me
∇2

i −
M∑

A=1

�
2

2MA
∇2

A + e2

4π ε0

⎛
⎝ N∑

i=1

N∑
j=i+1

1

rij
−

N∑
i=1

M∑
A=1

ZA

riA
+

M∑
A=1

M∑
B=A+1

ZAZB

rAB

⎞
⎠ .

(2.4)

In this equation, MA and ZA denote the mass and the atomic number of nucleus A,
respectively, as well as rij = |ri −rj|, riA = |ri −RA|, and rAB = |RA −RB| represent
the respective distances between electrons and nuclei. The coordinates of electron i
and nucleus A are given by ri and RA, respectively.

The electronic and the nuclear motion can be separated within the Born–
Oppenheimer approximation [6]. The total molecular wave function Ψ (r, R), which
depends on the sets of all electronic coordinates r = {ri} and nuclear coordinates
R = {Ri}, is expanded by

Ψ (r, R) =
∞∑

k=0

ψk(r; R)χk(R), (2.5)

where the electronic wave functions ψk(r; R) are assumed to form a complete set
of eigenfunctions of the electronic Hamiltonian He = Te + Vee + Vne + Vnn and
fulfill—for fixed nuclear positions R—the electronic Schrödinger equation

Heψk(r; R) = Ek(R)ψk(r; R) (2.6)

with the electronic energy Ek(R). The nuclear wave functions χk(R) can be seen as
expansion coefficients that depend on the nuclear positions. Using this ansatz for the
time-independent Schrödinger equation (2.3) with the molecular Hamiltonian (2.4)
and integrating out the electronic coordinates, leads to the set of coupled equations

(
−

M∑
A=1

�
2

2MA
∇2

A + Ek(R)

)
χk(R) +

∞∑
l=0

Cklχl(R) = εkχk(R) (2.7)

with the energy εk and the coupling operator

Ckl = −
M∑

A=1

�
2

2MA

〈
ψk(r; R)|∇2

A|ψl(r; R)
〉
r −

M∑
A=1

�
2

MA
〈ψk(r; R)|∇A|ψl(r; R)〉r ∇A.

(2.8)
Within the Born–Oppenheimer approximation, all coupling terms are neglected,
resulting in the nuclear Schrödinger equation

(
−

M∑
A=1

�
2

2MA
∇2

A + Ek(R)

)
χk(R) = εkχk(R). (2.9)
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This effectively means to assume that the gradients of the electronic wave function
along the nuclear coordinates inEq. (2.8) vanish, so the the electronicwave function is
influenced only by the positions of the nuclei but not by their momenta, and the nuclei
move without changing the quantum state of the electrons. This is usually justifiable
if the electronic states are separated well in energy. However, the approximation
breaks down if two potential energy surfaces get close. This is often important, e.g.,
for photochemical processes, but such phenomena are not investigated in this thesis.

By the separation of electronic and nuclear motion, the Schrödinger equation
is divided into two individual problems. For each nuclear configuration R, the
electronic energy Ek(R) can be calculated by solving the electronic Schrödinger
equation (2.6). This defines a potential energy surface, on which the nuclei behave
according to the nuclear Schrödinger equation (2.9). A common method to solve
the electronic Schrödinger equation is density functional theory (DFT), which is
discussed in Sect. 2.2. Afterwards, the obtained electronic energy is used to treat
the nuclear Schrödinger equation with further approximations that are described in
Sect. 2.3.

2.2 Density Functional Theory

2.2.1 Hohenberg–Kohn Theorems and Kohn–Sham Method

Density functional theory (DFT) is a widely used method to solve the electronic
Schrödinger equation, and it is founded on the Hohenberg–Kohn theorems [7]. The
first Hohenberg–Kohn theorem states that the electronic ground-state wave function
is uniquely determined by the ground-state electron density. The unique determi-
nation of the wave function also defines any further molecular property such as,
e.g., the electronic ground-state energy. Thus, it is sufficient to calculate the electron
density instead of the wave function. The advantage of the electron density is that
it only depends on three spatial coordinates, whereas the wave function depends on
the spatial and the spin coordinates of all N electrons.

In analogy to the electronic Hamiltonian He defined for Eq. (2.6), the electronic
energy is written as a functional of the electron density:

E[ρ(r)] = T [ρ(r)] + Vee[ρ(r)] + Vn[ρ(r)]. (2.10)

The last term in this sum,

Vn[ρ(r)] =
∫

ρ(r)vext(r) dr, (2.11)

is the only one that depends on the nuclear coordinates, as it contains the Coulomb
attraction of the nuclei and the electrons as well as the nuclear Coulomb repulsion
in the external potential
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vext(r) = e2

4πε0

(
−

M∑
A=1

ZA

|r − RA| +
M∑

A=1

M∑
B=A+1

ZAZB

|RA − RB|

)
. (2.12)

The other two functionals, the kinetic energy T [ρ(r)] and the electron–electron
interaction Vee[ρ(r)], are universal expressions that are valid for any system. Unfor-
tunately, their general form is hitherto unknown.

The secondHohenberg–Kohn theorem introduces the variational principle toDFT.
According to that, the energy of any trial electron density is never lower than the
exact ground-state energy. It is therefore possible to find the exact ground-state
electron density by varying a trial electron density until the energy reaches the global
minimum.

A widely used approach to actually calculate the electron density in DFT is the
Kohn–Sham method [8]. Within this technique, a fictitious system of noninteracting
electrons is considered, the electron density ρs(r) of which is equal to the one of
the real system ρ(r). The noninteracting electrons occupy the auxiliary Kohn–Sham
orbitals θi(r), and the electron density is formed according to

ρs(r) = ρ(r) = e
N∑

i=1

|θi(r)|2 . (2.13)

Since the overall wave function of this system is exactly given by a single Slater
determinant of Kohn–Sham orbitals, the kinetic energy is equal to

Ts[{θi(r)}] = − �
2

2me

N∑
i=1

〈
θi(r)|∇2|θi(r)

〉
. (2.14)

If also the classical Coulomb repulsion

J[ρ(r)] = 1

4π ε0

1

2

∫∫
ρ(r1)ρ(r2)
|r1 − r2| dr1 dr2 (2.15)

is separated from the total electron–electron interaction Vee[ρ(r)], the electronic
energy (2.10) can be rewritten as

E[{θi(r)}] = Ts[{θi(r)}] + J[ρ(r)] + Exc[ρ(r)] + Vn[ρ(r)]. (2.16)

The exchange-correlation energy functionalExc[ρ(r)] collects all unknown contribu-
tions to the energy, in particular the kinetic correlation energy, the exchange energy,
the Coulombic correlation energy and the self-interaction correction.

Based on the second Hohenberg–Kohn theorem, the Kohn–Sham orbitals are
found byminimizing the electronic energywith respect to the orbitals. As a constraint
to thisminimization, the orbitals are required to be orthonormal.Applying themethod
of Lagrange multipliers, this leads to the Kohn–Sham equations
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(
− �

2

2me
∇2 + vext(r) + 1

4π ε0

∫
ρ(r1)

|r − r1| dr1 + δExc[ρ(r)]
δρ(r)

)
θi(r) = εiθi(r)

(2.17)

with the orbital energies εi. Because the Coulomb potential and the exchange-
correlation energy depend through the electron density on the orbitals, the Kohn–
Sham equations are nonlinear and are, therefore, commonly solved iteratively. The
traditional diagonalization approach to this problem is discussed in Sect. 2.2.3.
Another method that relies on a direct minimization of the electronic energy is men-
tioned in Sect. 2.2.4.

2.2.2 Approximate Exchange-Correlation Functionals

Up to this point, DFT would provide an exact solution of the electronic Schrödinger
equation. However, the correct exchange-correlation functional Exc[ρ(r)] is hitherto
unknown, so approximations have to be made. For this purpose, the functional is
usually divided into an exchange part and a correlation part:

Exc[ρ(r)] = Ex[ρ(r)] + Ec[ρ(r)]. (2.18)

In principle, it would be possible to evaluate the exchange part in the same way
as in the Hartree–Fock method using the Kohn–Sham orbitals, but in connection
with approximations to the correlation part, this exact exchange often yields poor
results for the molecular properties. Other approaches that benefit from a successful
cancellation of errors and, furthermore, avoid the evaluation of costly exchange
integrals are therefore very popular.

A simple model for the exchange-correlation energy is the local density approxi-
mation (LDA), which assumes that the electron density is a slowly varying function,
so it can locally be treated as a uniform electron gas. In this case, an exact expression
for the exchange energy can be derived [9, 10]:

ELDA
x [ρ(r)] = −9α

8

(
3
π

) 1
3
∫

ρ
4
3 (r) dr, where α = 2

3
. (2.19)

Even for this simple system, it is impossible to give an analytic expression for the
correlation energy, but it can accurately be determined by quantum Monte Carlo
simulations. An analytic fitting formula to the results of these simulations has been
developed by Vosko, Wilk, and Nusair (VWN) [11]. Neglecting the correlation part
and taking only the exchange part (2.19) results in the Xα method proposed by Slater
[12], where differing prefactors of α = 1 and α = 3/4 are used for better agreement
with experimental results. The LDA is easily extended to open shell systems in terms
of the local spin density approximation (LSDA) [11, 12].
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Because the assumption of a uniform electron gas does not provide a good descrip-
tion of typical molecular systems, more advanced exchange-correlation functionals
depend on the gradient of the electron density. This is called generalized gradient
approximation (GGA).Commonexamples ofGGAfunctionals areBecke’s exchange
functional (B) [13] and the correlation functional of Lee, Yang, and Parr (LYP) [14],
which can be combined to form the exchange-correlation functional BLYP. Both
parts of this functional contain empirical parameters fitted to Hartree–Fock data of
noble gases. In the exchange-correlation functional of Perdew andWang (PW91) [15]
and its successor functional of Perdew, Burke, and Ernzerhof (PBE) [16], no fitting
to existing data is performed and the parameters are chosen to fulfill some general
theoretical requirements instead. The basic idea of GGA functionals is extended in
meta-GGA functionals, which depend on higher derivatives of the electron density,
such as, e.g., the exchange-correlation functional of Tao, Perdew, Staroverov, and
Scuseria (TPSS) [17].

As mentioned before, it is in principle possible to use the Kohn–Sham orbitals for
calculating the exchange part as inHartree–Fock theory. In a systemof noninteracting
electrons, this would provide the exact exchange-correlation energy as there is no
correlation energy.Basedon the adiabatic connectionmethod, hybrid functionals take
the exact exchange for a part of the exchange-correlation energy while the remainder
is calculated using the pure functionals from above. The amount of exact exchange
constitutes another empirical parameter that has to be chosen. Very common are
Becke’s three-parameter functionals (B3). The originally proposed one utilized the
B exchange and the correlation part of PW91. Its general form reads as

EB3PW91
xc = (1 − a − b)ELSDA

x + aEexact
x + bEB

x + (1 − c)ELSDA
c + cEPW91

c . (2.20)

The parameters were optimized to a = 0.20, b = 0.72 and c = 0.81 by fitting to
experimental data [18]. Later on, PW91 was replaced by LYP in the correlation part
to create the B3LYP functional, but the parameters a, b, and c were kept at the same
values [19]. In the sameway asB3LYP is connected to theBLYP functional, the PBE0
functional has been developed as a hybrid version of PBE [20]. However, in PBE0 the
amount of exact exchange is fixed at 25% according to arguments from perturbation
theory. Therefore, it does not contain any parameters fitted to experimental data and
is given by

EPBE0
xc = 1

4
Eexact
x + 3

4
EPBE
x + EPBE

c . (2.21)

Also hybrid versions of meta-GGA functionals have been developed, such as, e.g.,
TPSSh that combines TPSS with 10% of exact exchange [21].

A common deficiency of the above mentioned exchange-correlation functionals
is the lack of a proper description of dispersion interactions. Several approaches to
include also these effects have been proposed. Beside, e.g., nonlocal van der Waals
functionals [22, 23] and dispersion-corrected atom-centered potentials [24, 25], the
DFT-D technique [26–28] is widely applied. In this method, an empirical correction
term is added to the final energy of the system, which has the general form
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Edisp = −
M∑

A=1

M∑
B=A+1

∑
n=6,8,10,...

sn
CAB

n

rn
AB

fdamp(rAB), (2.22)

where the sum over all atom pairs (A, B) is taken,CAB
n denotes the averaged nth-order

dispersion coefficient of atompair (A, B), rAB = |RA−RB| is the distance of the atoms
A and B, sn is a global scaling factor adjusted to the exchange-correlation functional,
and fdamp is a damping function to avoid near-singularities at small distances and
double-counting effects at intermediate distances. In DFT-D3 [27], the sum over
n is truncated after n = 8, and the dispersion coefficients are calculated by time-
dependent density functional theory.

2.2.3 Basis Set Expansion

TheKohn–Sham equations (2.17) are usually solved by representing theKohn–Sham
orbitals θi(r) as linear combinations of a finite set of n known basis functions φi(r):

θi(r) =
n∑

j=1

Cijφj(r). (2.23)

This allows to transform the Kohn–Sham equations from their integro-differential
form into a matrix representation:

KC = SCε. (2.24)

In this equation, K is the Kohn–Sham matrix with the elements

Kij =
〈
φi(r)| − �

2

2me
∇2 + vext(r) + 1

4π ε0

∫
ρ(r1)

|r − r1| dr1 + δExc[ρ(r)]
δρ(r)

|φj(r)
〉
,

(2.25)
S is the overlap matrix with the elements

Sij = 〈
φi(r)|φj(r)

〉
, (2.26)

C is the matrix of the coefficients Cij from the basis expansion (2.23), and ε is a
diagonal matrix with the orbital energies εi on the main diagonal. In doing so, the
problemof finding theKohn–Shamorbitals θi(r) is reduced to the task of determining
the coefficients Cij. Equation (2.24) possesses the form of a generalized eigenvalue
problem, but since the Kohn–Sham matrix K depends on the coefficients C, an
iterative procedure is needed: An initial guess for the coefficients C is taken, the
Kohn–Sham matrix K is evaluated using these coefficients, new coefficients C are
calculated by solving the generalized eigenvalue problem, and this process is repeated
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until the coefficients do not change anymore. Thismeans that they are self-consistent,
and the approach is, therefore, called self-consistent field (SCF) method.

Several choices for the basis functions φi(r) have been proposed. Very common
in quantum chemistry are contracted Gaussian type orbitals (GTOs) of the general
form

φ(r) = Nξ(r − r0)
m∑

k=1

dk exp
(−ζk |r − r0|2

)
, (2.27)

which try to mimic the atomic orbitals of the individual atoms. Here, N is a nor-
malization constant, ξ(r − r0) contains the angular momentum dependence, and r0
is the center of the basis function, which usually coincides with the position of the
corresponding nucleus. The orbital exponents ζk and the expansion coefficients dk

are optimized once when the basis set is created, but they remain fixed in the SCF
procedure to solve Eq. (2.24). Advantages of GTO basis sets are the good results with
small set sizes and the straight description of all electrons in the system. However, the
basis functions are not generally orthogonal, which can lead to linear dependencies
that cause problems in the SCF procedure. Moreover, one has to take care of the
basis set superposition error and Pulay forces [29] due to the position dependence of
the basis functions.

Another approach, which is very common in solid state physics, is the use of plane
wave basis sets. The periodicity of a crystalline solid imposes the same periodicity
on the electron density, suggesting to use basis functions of the general form

φ(r) = 1√
Ω

exp (iG · r) , (2.28)

where Ω is the volume of the periodic cell, and the wave vector G has to satisfy
the periodic boundary conditions. Usually, the basis set expansion (2.23) contains
all wave vectors up to a certain cutoff. Since the plane waves are independent of the
nuclear positions, Pulay forces and the basis set superposition error do not occur.
Furthermore, all basis functions are orthogonal, making the overlap matrix trivial.
Although a plane wave basis set implies periodic boundary conditions, molecular
calculations in the gas phase are possible by applying such a large cell that the
periodic images do not interact. The drawback of this approach is that a large number
of basis functions is actually used to describe the empty part of the system.

Amajor issue of plane waves is the very high cutoff that is required to describe the
rapid oscillations of thewave functiondue to the nodal structure of the valenceorbitals
near the nuclei. To overcome this problem, it is very common to apply pseudopo-
tentials. A pseudopotential combines the Coulomb potential of the nuclei and the
effective interaction potential of the core electrons with the valence electrons, and
it replaces the sole Coulomb attraction of the nuclei in the external potential (2.12).
This softens the potential the valence electrons move in, and lower cutoffs are suf-
ficient for an adequate description. On the other hand, the core electrons are not
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treated explicitly anymore, but this is only a minor restriction for most chemical
applications.

2.2.4 The Gaussian and Plane Waves Method

The Gaussian and plane waves method [30, 31] is a particular implementation of
DFT available in the CP2K software package [32], aiming for efficient calculations
of large systems containing several thousand atoms.Within this approach, the Kohn–
Sham orbitals are expanded in terms of GTO basis functions, but an auxiliary basis
of plane waves is used for a second representation of the electron density. To convert
between these representations, the electron density in the GTO basis is mapped onto
a real-space grid with a spacing determined by the plane wave cutoff, and the plane
wave coefficients are obtained by a discrete Fourier transform. The pseudopotentials
of Goedecker, Teter, andHutter (GTH) [33–35] are employed to reduce the necessary
cutoff in the plane wave basis (see Sect. 2.2.3). These pseudopotentials are norm-
conserving and separable, and their dual-space Gaussian form allows for an analytic
calculation of the corresponding matrix elements in the GTO basis set. Also the
kinetic energy contributions to the Kohn–Sham matrix are evaluated in the GTO
basis, but the Coulomb interaction and the exchange-correlation potential are more
efficiently calculated in the plane wave representation of the electron density. This
leads to a construction scheme of the Kohn–Sham matrix that scales linearly with
the system size.

Due to the application of GTH pseudopotentials, the electron density vanishes at
the positions of the nuclei except for hydrogen atoms. Since many GGA exchange-
correlation functionals contain terms with the electron density in the denominator,
this gives rise to numerical problems in the evaluation of the exchange-correlation
potential near the nuclei, making the total energy dependent on the atom positions
relative to the real-space grid imposed by the plane wave basis. To reduce this effect,
several smoothing procedures have been developed [31].

The SCFmethod described in Sect. 2.2.3 relies on the diagonalization of a matrix.
An alternative approach is the direct minimization of the electronic energy (2.16),
rewritten with the basis set expansion (2.23). In this formulation, the energy E(C) is
a function of the expansion coefficients, and the orthonormality constraint is given
by CTSC = I, where C and S are defined in Sect. 2.2.3, and I is the identity matrix
of the appropriate size. A minimization with this nonlinear constraint would require
to follow a curved geodesic, but this can be avoided [36] by introducing a new set of
variables X that fulfill the linear constraint

XTSC0 = 0, (2.29)

whereC0 are constant initial coefficients that satisfy theoriginal constraintC0
TSC0 =

I. The coefficients C are related to the new variables X by
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C = C0 cos(U) + XU−1 sin(U), with U = (
XTSX

) 1
2 . (2.30)

With a linear constraint, any standard minimization algorithm such as the conjugate
gradient method or direct inversion in the iterative subspace (DIIS) [37] can be
employed.

In the CP2K software package, this approach is available as orbital transformation
(OT) method. If conjugate gradients are used with an extensive line search, conver-
gence is guaranteed, leading to a procedure that can handle also cases which are
problematic within the traditional diagonalization approach. Furthermore, the OT
method is often faster than diagonalization [36].

2.3 Molecular Dynamics

Within the Born–Oppenheimer approximation, the nuclei obey the nuclear
Schrödinger equation, which was given in its time-independent form in Eq. (2.9).
The time-dependent form reads as

(
−

M∑
A=1

�
2

2MA
∇2

A + Ek(R)

)
χk(R, t) = i�

∂

∂t
χk(R, t). (2.31)

For basic cases such as, e.g., the harmonic oscillator (see Sect. 2.4.1), it can be solved
analytically. For larger systems, it can be simplified by approximating the nuclei as
classical point particles. For this purpose, the complex nuclear wave function is
rewritten as

χk(R, t) = Bk(R, t) exp

(
i
Sk(R, t)

�

)
(2.32)

with real functionsBk(R, t) (amplitude) and Sk(R, t) (phase). Applying this ansatz to
Eq. (2.31) and separating the real and imaginary parts results in two coupled equations
for amplitude and phase:

∂

∂t
Bk(R, t) +

M∑
A=1

1

MA

(
∇ABk(R, t)∇ASk(R, t) + 1

2
Bk(R, t)∇2

ASk(R, t)

)
= 0,

(2.33)

∂

∂t
Sk(R, t) +

M∑
A=1

1

2MA
(∇ASk(R, t))2 + Ek(R) = �

2
M∑

A=1

1

2MA

∇2
ABk(R, t)

Bk(R, t)
. (2.34)

Equation (2.33) can be interpreted as a continuity equation that ensures the con-
servation of the probability density |χk(R, t)|2. In Eq. (2.34), the right-hand side
vanishes in the classical limit � → 0, and the Hamilton–Jacobi equation of classical
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mechanics remains:

∂

∂t
Sk(R, t)+

M∑
A=1

1

2MA
(∇ASk(R, t))2+Ek(R) = ∂

∂t
Sk(R, t)+Hk(R, P) = 0 (2.35)

with the momenta P = {PA}, PA(t) = ∇ASk(R, t), and the Hamilton function
Hk(R, P) = T(P) + Ek(R), where T(P) is the kinetic energy. This can be trans-
formed to the Newtonian equations of motion

d

dt
PA(t) = MA

d2

dt2
RA(t) = −∇AEk(R(t)). (2.36)

Thismeans that the nuclei move according to classical mechanics in the potential that
is provided by the electronic energy Ek(R), suggesting the following procedure to
study the time evolution of a molecular system: the nuclei are propagated according
to Eq. (2.36), and at any particular time t, the electronic energy and its gradient are
obtained by solving the time-independent electronic Schrödinger equation (2.6) for
the current nuclear configuration R(t). This approach is called Born–Oppenheimer
molecular dynamics (BOMD). The AIMD simulations performed in the course of
this thesis are BOMD simulations.

The Newtonian equations of motion (2.36) are usually solved by numerical meth-
ods that introduce a discrete timestep �t. In the Verlet algorithm [38], the nuclear
coordinates are expanded in Taylor series up to third order:

RA(t + �t) = RA(t) + �t
d

dt
RA(t) + 1

2
�t2

d2

dt2
RA(t) + 1

6
�t2

d3

dt3
RA(t) + O

(
�t4

)
,

(2.37)

RA(t − �t) = RA(t) − �t
d

dt
RA(t) + 1

2
�t2

d2

dt2
RA(t) − 1

6
�t2

d3

dt3
RA(t) + O

(
�t4

)
.

(2.38)

Adding these two equations and rearranging the terms leads to

RA(t + �t) = 2RA(t) − R(t − �t) + 1

MA
�t2FA(t) + O

(
�t4

)
, (2.39)

where the forces FA(t) = MAR̈(t) = −∇AEk(R(t)) are introduced. The nuclear
velocities VA(t) = ṘA(t) are eliminated in this derivation, but it is often desirable to
know them, e.g., to calculate the kinetic energy. Therefore, it is more convenient to
apply the velocity form of the Verlet algorithm [39], where coordinates and velocities
are given by
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RA(t + �t) = RA(t) + �tVA(t) + 1

2MA
�t2FA(t), (2.40)

VA(t + �t) = VA(t) + 1

2MA
�t (FA(t) + FA(t + �t)) . (2.41)

It can be shown that this formulation is equivalent to the original Verlet method,
but it directly delivers the velocities in each step of the simulation. The complete
BOMD procedure starting from certain initial coordinates R(0) and velocities V(0)
now reads as follows: The coordinates R(t) are used to calculate the forces F(t) by
solving the time-independent electronic Schrödinger equation for these coordinates
(e.g., by applying DFT, see Sect. 2.2), the new coordinates R(t + �t) are calculated
by Eq. (2.40), they are used to obtain the new forces F(t + �t) by solving again the
electronic Schrödinger equation, and the new velocities V(t + �t) are finally given
by Eq. (2.41). This procedure has to be repeated until a reasonable part of the nuclear
phase space is sampled.

Since BOMD on the basis of the Newtonian equations of motion (2.36) conserves
the total energy, a trajectory in the microcanonical or NV E ensemble is generated.
For comparison with experiments, where usually the temperature is controlled, it is,
however, desirable to run simulations in the canonical or NV T ensemble. For this
purpose, a thermostat has to be applied. A very common choice is the Nosé–Hoover
thermostat [40–42], which adds a heat bath by introducing an additional degree of
freedom to the system. This “heat bath particle” follows a specific potential so that
the original degrees of freedom sample the NV T ensemble. To handle also difficult
cases, the concept has been extended to the Nosé–Hoover thermostat chain [43],
where the heat bath is coupled to another heat bath. Introducing further heat baths
that are successively connected to each other finally leads to a linear chain of K
thermostats with the following equations of motion:

MAR̈A(t) = −∇AEk(R(t)) − MAξ̇1(t)ṘA(t), (2.42)

Q1ξ̈1(t) =
M∑

A=1

MAṘA(t)2 − gkBT − Q1ξ̇1(t)ξ̇2(t), (2.43)

Qiξ̈i(t) = Qi−1ξ̇i−1(t)
2 − kBT − Qiξ̇i(t)ξ̇i+1(t), i = 2, . . . , K − 1, (2.44)

QK ξ̈K(t) = QK−1ξ̇K−1(t)
2 − kBT . (2.45)

Here, T is the desired average temperature, and g is the number of degrees of freedom
to which the thermostat chain is coupled (g = 3M if no constraints are imposed on
the nuclear coordinates). Each thermostat has a coordinate ξi(t) and a mass-like
parameter Qi, which is chosen as

Q1 = gkBTτ 2, Qi = kBTτ 2, i = 2, . . . , K . (2.46)

The coupling time constant τ should be in the order of the timescale of the nuclear
motions. Since the forces in the equations of motion explicitly depend on the
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velocities, the velocity Verlet algorithm cannot be applied directly. It is possible to
solve Eq. (2.41) iteratively, but also explicit reversible integrators have been devel-
oped [44] on the basis of the Liouville operator, multiple timestep schemes, and
higher order Yoshida–Suzuki integration [45, 46]. For the NV E ensemble, these
reduce to the velocity Verlet method.

For the equilibration of an MD simulation, it is convenient to use an individual
Nosé–Hoover thermostat chain for each degree of freedom (massive thermostat). This
significantly reduces the equilibration time and helps to excite even stiff vibrational
modes that are only loosely coupled to all other modes of the system, as it is required
to fulfill the equipartition theorem.

2.4 Vibrational Spectroscopy

2.4.1 The Harmonic Oscillator

As discussed in Sect. 2.1, the Born–Oppenheimer approximation decouples the elec-
tronic from the nuclear motion in a molecular system. The nuclei move on the 3M-
dimensional potential energy surface that is determined by the electronic structure.
In a typical stable molecule, this potential has distinct minima and the molecule
performs oscillations around these minima.

For simplicity, a one-dimensional potential V (x) with a minimum at x = 0 is
considered in the following. The Taylor series around x = 0 reads as

V (x) = V (0) + V ′(0)x + 1

2
V ′′(0)x2 + 1

6
V ′′′(0)x3 + . . . (2.47)

The first term is a constant offset and the potential can always be transformed tomake
this offset vanish by choosing an appropriate energy zero point. Since the potential
has a minimum at x = 0, also the second term is zero. The first non-vanishing term
is the harmonic potential

V (x) = 1

2
kx2, (2.48)

where the second derivative of the potential is identified with the force constant k.
This means that the first approximation to an arbitrarily shaped potential is given
by (2.48) in the vicinity of a minimum. In particular, also the nuclear motion in
a molecule can approximately be described within a multidimensional harmonic
potential.

In classicalmechanics (cf. Eq. (2.36)), a particle ofmassmmoving in the harmonic
potential (2.48) fulfills the differential equation

mẍ(t) + kx(t) = 0. (2.49)
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It can be shown that the general solution of this differential equation is

x(t) = x0 cos

(√
k

m
t + ϕ

)
= x0 cos (ω0t + ϕ) , (2.50)

where the eigenfrequency ω0 = √
k/m is introduced. This means that the particle

performs a harmonic vibrationwith the constant angular frequencyω0. The amplitude
x0 and the phase ϕ are determined by the initial conditions.

In quantummechanics (cf. Eq. (2.9)), the correspondingdifferential equation reads
as (

− �
2

2m

d2

dx2
+ 1

2
kx2

)
χn(x) = εnχn(x). (2.51)

If ω0 = √
k/m is set as in the classical case, the eigenfunctions of the quantum

harmonic oscillator are given by

χn(x) = 1√
2nn!

4

√
mω0

π �
Hn

(√
mω0

�
x

)
exp

(
−1

2

mω0

�
x2

)
(2.52)

with the Hermite polynomials

Hn(x) = (−1)n exp
(
x2

) dn

dxn
exp

(−x2
)
. (2.53)

The energy eigenvalues are

εn = �ω0

(
n + 1

2

)
, n ≥ 0. (2.54)

The quantum harmonic oscillator can only take discrete energy valueswith a constant
spacing of �ω0. Even the ground state has the non-vanishing energy ε0 = �ω0/2,
which is called zero-point energy.

Both types of harmonic oscillators are easily extended to the multidimensional
case, since the multidimensional harmonic potential

V (x) = 1

2
xTkx (2.55)

can always be written as a sum of one-dimensional harmonic potentials if the force
matrix k is diagonal. If the force matrix k is not diagonal, an appropriate transfor-
mation to the system of normal coordinates has to be applied beforehand. In such
a separable potential, the classical harmonic oscillator performs a harmonic vibra-
tion (2.50) along each normal coordinate. The total wave function of the quantum
harmonic oscillator is the product of the one-dimensional wave functions (2.52), and
its energy is the sum of the one-dimensional energy eigenvalues (2.54).
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2.4.2 Infrared Absorption

The nuclei in a molecule generally follow the laws of quantum mechanics, so they
can only take discrete eigenstates with certain energy values, as discussed for the
harmonic approximation to the potential energy surface in Sect. 2.4.1. A change from
one eigenstate to another one is possible by the absorption or emission of electro-
magnetic radiation, the energy of which is equal to the energy difference between
the two states. For the nuclear vibrations in a molecule, these energy differences are
typically in the range of 10−21 to 10−19 J, corresponding to the IR region of the elec-
tromagnetic spectrum. This leads to the experimental technique of IR spectroscopy:
a chemical substance is irradiated with IR radiation and its absorption is measured in
dependence of its energy. The resulting spectrum shows peaks at positions charac-
teristic for the molecular structure. For a harmonic oscillator, e.g., the peak is located
at the difference �

√
k/m between two subsequent states, so its position is directly

related to the force constant.
Beside the peak positions, also the intensities are an important property of IR

spectra. Their theoretical values can be derived [47] by applying Fermi’s golden rule
[48, 49]

Wi→f = 1

�2

∣∣〈vf |H′|vi
〉∣∣2 ρN (νfi), (2.56)

which gives the transition rate Wi→f for the transition from state |vi〉 to state
∣∣vf

〉
when

the perturbationH′ by electromagnetic radiation with a density of photon states per
frequency range ρN (ν) is applied to the system. Within the dipole approximation,
the perturbation is

〈
vf |H′|vi

〉 = − 〈
vf |μ̄(Q) · E|vi

〉 = − 〈
vf |μ̄(Q)|vi

〉 · E0 (2.57)

where μ̄(Q) is the molecular dipole moment depending on the mass-weighted nor-
mal coordinates Q (the overbar indicates the expectation value over the electronic
coordinates), andE is the electric field vector of the radiation, which is assumed to be
constant over the extent of the molecule with an average amplitude E0. For the evalu-
ation of the transition dipole matrix elements, the translational and rotational degrees
of freedom are separated and the classical average over all rotational states is taken.
Within the harmonic approximation, the harmonic oscillator wave functions (2.52)
are used for the remaining g = 3M −6 (g = 3M −5 in a linear molecule) vibrational
degrees of freedom. The molecular dipole moment is expanded in a Taylor series
around the minimum of the potential energy surface up to first order:

μ̄(Q) = μ̄0 +
g∑

k=1

(
∂μ̄(Q)

∂Qk

)
0

Qk . (2.58)

With all these assumptions, analytic expressions for the transition dipole matrix
elements can be found, and the integral absorption coefficient for the transition from



28 2 Theoretical Background

the ground state to the first excited state in the harmonic oscillator corresponding to
mode k is given by [47]

Ak = 1

4π ε0

NA π

3c2

(
∂μ̄(Q)

∂Qk

)2

0

. (2.59)

This shows that a particular vibrational mode appears as a peak in the IR spectrum
of a molecule if the dipole moment changes along this mode.

Equation (2.59) can be used to estimate IR spectra by static quantum chemical
calculations within the harmonic approximation to the potential energy surface: a
geometry optimization is performed to find the minimum of the potential energy
surface, the Hessian matrix of the potential energy at this point is the force matrix in
(2.55), the force matrix is diagonalized to get the normal coordinates and the vibra-
tional frequencies, and the dipole moment derivatives along the normal coordinates
are calculated to obtain IR intensities according to (2.59).

For chiral molecules, the absorption is not the same if left and right circularly
polarized IR radiation are compared. The difference between these two cases is
measured in VCD spectroscopy. For a theoretical model of VCD intensities, the
interaction of the molecular magnetic moment m with the magnetic field of the
electromagnetic radiation has to be taken into account. In this way, it is found that
the VCD intensity for the transition from state |i〉 to state |f 〉 is proportional to the
rotational strength [50]

Ri→f = Im
(〈

i|μ̂|f 〉 〈f |m̂|i〉) , (2.60)

where μ̂ and m̂ are the electric dipole and magnetic dipole operators, respectively.
Themagnetic transitionmoment needs special care, since thematrix elements

〈
f |m̂|i〉

always vanish within the Born–Oppenheimer approximation. This can be circum-
vented bymagnetic field perturbation theory [51–54] or nuclear velocity perturbation
theory [55–61], allowing to calculate VCD spectra by static calculations within the
harmonic approximation.

2.4.3 Raman Scattering

Beside absorption and emission, the scattering of electromagnetic radiation is another
physical process that can change the quantum state of a molecule. When photons
interact with molecules, most of them are scattered elastically, so the scattered pho-
tons have the same energy as the incident photons and the molecular quantum state
remains unchanged (Rayleigh scattering). However, a small fraction of the photons
is scattered inelastically, meaning that the molecule switches to another quantum
state and the photon energy changes by the energy difference of the two molecular
states. This effect is named Raman scattering after Chandrasekhara Raman, who first
verified it experimentally [62], five years after the theoretical prediction by Adolf
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Smekal [63]. If the molecule switches to a state higher in energy and the photon
energy is reduced, the process is called Stokes Raman scattering. If the molecule
switches to a state lower in energy and the photon energy is increased, the process
is called anti-Stokes Raman scattering.

The effect of Raman scattering is used in Raman spectroscopy as an alternative
to IR spectroscopy for the investigation of molecular vibrations. Due to the low
efficiency of the Raman scattering process and the dependence of the scattering cross
section on the fourth power of the photon energy, it is common to use high intensity
lasers in the visible region of the electromagnetic spectrum for the irradiation of
the sample. The intensity of the scattered radiation is measured in dependence of
its energy, and the peak positions are recorded relative to the incident radiation, so
they relate to energy differences between vibrational states, and Raman spectra can
directly be compared to IR spectra.

Theoretical values for Raman intensities can be obtained from Placzek’s classical
theory of polarizability [64]. The electric field of the incident radiation induces a
dipole moment in the molecule, and within classical electrodynamics, the scattered
intensity is proportional to the square of the induced dipole moment. The expectation
value of the induced dipole moment μind

fi is determined quantum mechanically by
evaluation of the corresponding polarizability matrix elements,

〈
μind

fi

〉 = 〈
vf |ᾱ(Q)|vi

〉
E0, (2.61)

where it is assumed again that the electric field is constant over the extent of the
molecule with an average amplitude E0. The polarizability tensor ᾱ(Q) (the overbar
indicates the expectation value over the electronic coordinates) is expanded in a
Taylor series analogous to (2.58):

ᾱ(Q) = ᾱ0 +
g∑

k=1

(
∂ᾱ(Q)

∂Qk

)
0

Qk . (2.62)

This allows to derive analytic expressions for the Raman intensities of individual
vibrational modes [47]. An important parameter is, however, the scattering geometry
employed in the measurement setup. A common choice for theoretical investigations
is shown in Fig. 2.1: the incident light beam propagates along the y axis and is
polarized along the x axis. The detector for the scattered light is located on the z axis
and is equipped with a polarization filter to measure the x polarized intensity I‖ and
the y polarized intensity I⊥. If the molecule is fixed with respect to the laboratory
coordinate system, the differential Raman scattering cross sections for the Stokes
line of vibrational mode k in this setup are given by

I‖
k = π2

ε20
(ν̃in − ν̃k)

4 h

8π2 cν̃k

(
∂ᾱxx(Q)

∂Qk

)2

0

1

1 − exp
(
− hcν̃k

kBT

) (2.63)
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Fig. 2.1 Measurement setup
for Raman spectra. The
incident light beam
propagates along the y axis
and is polarized along the x
axis. The light scattered
along the z axis is detected
with a polarization filter for
either x polarized or y
polarized light

and

I⊥
k = π2

ε20
(ν̃in − ν̃k)

4 h

8π2 cν̃k

(
∂ᾱxy(Q)

∂Qk

)2

0

1

1 − exp
(
− hcν̃k

kBT

) , (2.64)

where ν̃in is the wavenumber of the incident radiation, ν̃k is the wavenumber corre-
sponding to vibrational mode k, and T is the temperature. This shows that a particular
vibrational mode appears as a peak in the Raman spectrum of a molecule if the polar-
izability changes along thismode. If themolecule is randomly orientatedwith respect
to the laboratory frame, the classical averages of the polarizability tensor components
have to be taken. This results in

I‖
k = π2

ε20
(ν̃in − ν̃k)

4 h

8π2 cν̃k

45a2
k + 4γ 2

k

45

1

1 − exp
(
− hcν̃k

kBT

) (2.65)

and

I⊥
k = π2

ε20
(ν̃in − ν̃k)

4 h

8π2 cν̃k

3γ 2
k

45

1

1 − exp
(
− hcν̃k

kBT

) (2.66)

with the isotropic polarizability derivative

ak = 1

3

((
∂ᾱxx(Q)

∂Qk

)
0

+
(

∂ᾱyy(Q)

∂Qk

)
0

+
(

∂ᾱzz(Q)

∂Qk

)
0

)
(2.67)

and the anisotropy

γ 2
k = 1

2

((
∂ᾱxx(Q)

∂Qk

)
0

−
(

∂ᾱyy(Q)

∂Qk

)
0

)2
+ 1

2

((
∂ᾱyy(Q)

∂Qk

)
0

−
(

∂ᾱzz(Q)

∂Qk

)
0

)2

+ 1

2

((
∂ᾱzz(Q)

∂Qk

)
0

−
(

∂ᾱxx(Q)

∂Qk

)
0

)2
+ 3

(
∂ᾱxy(Q)

∂Qk

)2

0
+ 3

(
∂ᾱyz(Q)

∂Qk

)2

0
+ 3

(
∂ᾱzx(Q)

∂Qk

)2

0
.

(2.68)
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An important quantity related to the scattering intensities is the depolarization ratio

ρk = I⊥
k

I‖
k

. (2.69)

For vibrations that transform as the totally symmetric irreducible representation of
the molecular point group, it can be lower than 0.75, but it is 0.75 in all other cases.

Analogous to IR spectra, these expressions can be used to estimate Raman spectra
by static quantum chemical calculations within the harmonic approximation. They
just require the calculation of the polarizability derivatives along the normal coordi-
nates.
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Chapter 3
Methodological Developments

3.1 The TRAVIS Program Package

The most important output of an MD simulation (see Sect. 2.3) is a trajectory that
contains the coordinates of all atoms in each simulation step. When there are M
atoms, this is a path through the 3M-dimensional configuration space of the system.
Since this high-dimensional object is not directly accessible for interpretation and
extraction of chemical characteristics, methods to reduce the dimensionality need to
be applied. These can be simple structural analyses such as, e.g., radial pair distri-
bution functions, or more involved dynamical analyses such as, e.g., dimer lifetime
distribution functions.

From the wide variety of trajectory analyses, some common ones are integrated
in publicly available simulation software packages. In more specific cases however,
research groups often create their own private tools. To provide a more convenient
approach, the development of the Travis (Trajectory Analyzer and Visualizer) pro-
gram package was initiated in the research group of Prof. Dr. Barbara Kirchner in
2009. The aim of Travis is to collect a large range of analyses and to support many
different trajectory file formats, providing a stand-alone program package for the
analysis of results from the most popular simulation software packages. The analy-
ses are presented through an interactive user interface in a text-mode terminal asking
questions about all necessary parameters and suggesting reasonable default values in
most cases. Travis is written in the C++ programming language and it is released
as open-source software under the GNU General Public License. To make it easily
portable to a wide range of operating systems, external software is either directly
incorporated in the source code or can optionally be linked only for better perfor-
mance. The latest version is currently available from the website http://www.travis-
analyzer.de. A general documentation of Travis can be found in a scientific article
published in 2011 [1] and in the Ph.D. thesis of Dr. Martin Brehm [2].

The topic of this thesis are trajectory analyses to obtain vibrational spectra from
MD simulations. In the following sections, methods known from the literature are
studied, their general applicability is assessed, and new ideas to extend or improve
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these methods are presented. Applications to several example systems are discussed
in Chap.4. All algorithms mentioned in this thesis were implemented in Travis [3–
5], turning Travis into a versatile tool for the extraction of vibrational spectra from
MD. Furthermore, the new ideas developed in the course of this thesis are available
to the scientific community for immediate application.

3.2 Vibrational Frequencies

3.2.1 Power Spectra of Harmonic Oscillators

Thefirst step in the simulation ofmolecular vibrational spectra by theoreticalmethods
is the calculation of vibrational frequencies. The most basic approach, which is
available in most quantum chemistry software packages, relies on static calculations
within the harmonic approximation: a geometry optimization is performed to find
a minimum of the potential energy surface, and the Hessian matrix at this point is
diagonalized to get the force constants of a multidimensional harmonic potential in
the neighborhood of the minimum. For a quantum harmonic oscillator of mass m, the
force constant k determines the eigenfrequency ω0 = √

k/m and the energy spacing
�ε = �ω0 of the eigenstates (see Sect. 2.4.1). Therefore, the band positions in the
vibrational spectrum can directly be deduced from the force constants.

A classical harmonic oscillator that is subject to the same harmonic potential per-
forms a vibration with an eigenfrequency ω0 equal to the quantum eigenfrequency
(see Sect. 2.4.1). This means that the model of a classical harmonic oscillator can be
used to find the spectrum of a quantum harmonic oscillator, suggesting the follow-
ing alternative procedure for the estimation of vibrational frequencies: instead of a
geometry optimization and the calculation of the Hessian matrix, an MD simulation
is performed for a certain time, and the oscillation frequencies are extracted from the
resulting trajectory by a Fourier transform. The spectrum provided by the Fourier
transform is equal to the quantum vibrational spectrum in the case of harmonic
oscillators.

The MD approach bears the advantage that it does not require a geometry opti-
mization. Such a geometry optimization always restricts the analysis to a single
conformational isomer. For a single molecule in gas phase, this is often not a major
problem, as a limited number of conformers can be studied by static calculations
one after another and the spectra can be averaged properly. In the liquid phase, how-
ever, the potential energy surface is usually quite flat along the coordinates of the
intermolecular orientation, featuring a huge number of indistinct minima with low
barriers. In this case, it is hard to reach convergence of a geometry optimization, and
a comprehensive search for all minima is not feasible. An MD simulation, on the
other hand, can easily sample the accessible conformational space, and inherently
provides properly averaged spectra.

http://dx.doi.org/10.1007/978-3-319-49628-3_4
http://dx.doi.org/10.1007/978-3-319-49628-3_2
http://dx.doi.org/10.1007/978-3-319-49628-3_2
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Although the MD approach seems to be straightforward, it has to be stressed that
the absorption spectrum of a quantum oscillator and the frequency of a classical
oscillator are actually completely different physical phenomena. The equality of the
eigenfrequencies of the classical and the quantum harmonic oscillator is a fortu-
nate coincidence of classical and quantum physics. MD simulations are not able to
describe, e.g., rotational spectra: The energy eigenvalues of a quantum mechanical
linear rigid rotor with themoment of inertia I are εJ = J(J +1)�2/(2I), so the energy
spacing of two adjacent eigenstates is�εJ = εJ+1 −εJ = (J +1)�2/I , and the spec-
trum has an infinite number of bands with equal distances of �

2/I . The classical
linear rigid rotor, however, is not constrained to any particular angular velocity. Its
rotational frequency is proportional to the square root of its energy, but the latter can
take an arbitrary value. This means that the Fourier transform of a classical trajectory
provides a spectrum with a single peak at an arbitrary position in the NV E ensemble
and a continuous spectrum in the NV T ensemble. The crucial difference between
the linear rigid rotor and the harmonic oscillator is that the vibrational frequency of
the latter does not depend on the energy, but only its amplitude is determined by the
energy.

For a more detailed mathematical insight, a one-dimensional classical harmonic
oscillator with the coordinate x and the eigenfrequency ω0 is considered in the fol-
lowing. Its trajectory is given by (see Sect. 2.4.1)

x(t) = x0 cos(ω0t + ϕ), (3.1)

where x0 is the amplitude and ϕ is the phase. The amplitude is related to the energy
(see below), but the phase is solely determined by the initial conditions of the MD
simulation and is not connected to the eigenfrequency. It is therefore desirable to
remove the phase information, as this also turns the trajectory into an even function
and makes the Fourier transform real-valued. For this purpose, the autocorrelation
function is calculated. In general, the autocorrelation of a time-dependent quantity
A(τ ) is the expected value over τ of the product A∗(τ )A(τ + t) as a function of the
time difference t. For a periodic function, this is given by

RA(t) = 〈
A∗(τ )A(τ + t)

〉
τ

= lim
T→∞

1

2T

∫ T

−T
A∗(τ )A(τ + t) dτ. (3.2)

This means to take the complex conjugated value of A at a certain time, multiply it by
the value of A at time t later, and average over all possible pairs of values with time
difference t. For the harmonic oscillator (3.1), the autocorrelation of the coordinate
x(t) yields (see Appendix B.1)

Rx(t) = 1

2
x20 cos(ω0t). (3.3)

The cosine function with the frequency ω0 is retained, but the phase ϕ is removed.
The Fourier transform of this expression can be written as

http://dx.doi.org/10.1007/978-3-319-49628-3_2


36 3 Methodological Developments

F(Rx)(ω) =
∫ ∞

−∞
Rx(t) exp(−iωt) dt = 1

2
x20 π (δ(ω − ω0) + δ(ω + ω0)) , (3.4)

where δ denotes the Dirac delta distribution. This means that the spectrum is real-
valued, and it possesses infinitely sharp peaks at ω = ω0 and ω = −ω0, so the
eigenfrequency of the oscillator can directly be read off.

Beside the peak positions, the spectrum also delivers intensity information. Due
to the properties of the delta distribution, the total integral of the spectrum is

∫ ∞

−∞
F(Rx)(ω) dω = 1

2
x20 π ·2 = π x20 . (3.5)

The intensity is proportional to the square of the oscillator amplitude, which is in turn
related to the energy of the oscillator. At the maximum elongation x = x0, there is
only the potential energy kx20/2, and the kinetic energy vanishes. At the equilibrium
position x = 0, the potential energy is zero, and the kinetic energy is kx20/2. On
average, the kinetic energy takes half of itsmaximumvalue, 〈Ekin〉 = kx20/4.Using the
definition of the eigenfrequency ω0, the oscillator amplitude is therefore connected
to the average kinetic energy by x0 = √

4 〈Ekin〉 /m/ω0, and the integral of the total
spectrum is ∫ ∞

−∞
F(Rx)(ω) dω = 4π 〈Ekin〉

mω2
0

, (3.6)

showing that the intensity provides information about the average kinetic energy of
the oscillator in the MD simulation. In the microcanonical ensemble, this is the half
of the constant total energy. In the canonical ensemble, this average is related to
the temperature T by 〈Ekin〉 = kBT/2 according to the equipartition theorem. The
reason why the integral is expressed in terms of the average kinetic energy is that the
latter relation holds also for anharmonic oscillators, while there is usually no simple
connection between average potential energy and temperature then.

For a general comparison of MD simulations, it is unsatisfactory that the intensity
depends on the intrinsic oscillator properties, namely the mass m and the eigen-
frequency ω0. This suggests to multiply the spectrum (3.4) by mω2, creating the
mass-weighted power spectrum

P(ω) = mω2F(Rx)(ω) = 1

2
π mω2x20 (δ(ω − ω0) + δ(ω + ω0)) (3.7)

with the total integral

∫ ∞

−∞
P(ω) dω = π mω2

0x20 = 4π 〈Ekin〉 , (3.8)
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which only depends on the oscillator energy E = 2 〈Ekin〉 in the microcanonical
ensemble, or the temperature T in the canonical ensemble.

It should be noted that the power spectrum can also be calculated from the auto-
correlation of the velocity ẋ(t) = dx(t)/dt. As shown in Appendix B.1, this autocor-
relation is given by

Rẋ(t) = 〈
ẋ∗(τ )ẋ(τ + t)

〉
τ

= − d2

dt2
Rx(t). (3.9)

Since the Fourier transform of a function’s derivative is the Fourier transform of
the function multiplied by iω, the Fourier transform of the velocity autocorrelation
yields

F(Rẋ)(ω) = −i2ω2F(Rx)(ω) = ω2F(Rx)(ω), (3.10)

and the mass-weighted power spectrum can be written as

P(ω) = mF(Rẋ)(ω). (3.11)

The concept of the power spectrum as the Fourier transform of the velocity autocor-
relation has been known in the literature for a long time [6–9], although the mass-
weighting has sometimes been omitted. Further names commonly used are, e.g.,
velocity spectrum [10] or vibrational density of states [11]. Although the position
representation and the velocity representation of the power spectrum are formally
equivalent, experience shows that the latter is advantageous for numerical reasons.
In practice (see also Sect. 3.2.2), the spectrum obtained from the Fourier transform
always contains a certain level of noise, andmultiplying the spectrum byω2 enhances
the noise level at high frequencies. Furthermore, taking the autocorrelation of the
velocity clarifies the relation between the total integral of the spectrum and the aver-
age kinetic energy of the oscillator.

MD simulations are usually performed in the three-dimensional space, so the
atom positions are three-dimensional vectors. In this case, the power spectrum is
calculated by applying the vector autocorrelation. For a time-dependent vector A(τ ),
this is the expected value over τ of the scalar product A∗(τ ) · A(τ + t) as a function
of the time difference t. Due to the linearity of the integral, this is the sum of the
autocorrelations in each coordinate in an orthonormal basis (see Appendix B.1). For
a three-dimensional harmonic oscillator

x(t) = x0 cos(ω0t + ϕ), (3.12)

this leads to the autocorrelation

Rx(t) = 1

2
x2
0 cos(ω0t). (3.13)
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As x2
0 is the squared value of the amplitude, all derivations from above remain valid,

and the power spectrum
P(ω) = mF(Rẋ)(ω) (3.14)

carries the same information as in the one-dimensional case. For each atom in the
MD simulation, the power spectrum can be calculated according to Eq. (3.14) using
its particular mass m. The total power spectrum of the system is the sum of all atomic
power spectra.

Up to this point, a single harmonic oscillator was considered. An atom in a typical
molecule, however, is bonded to several other atoms and therefore participates in the
motion of several oscillators with different eigenfrequencies. For a one-dimensional
coordinate, this can be written as

x(t) =
k∑

i=1

xi(t) =
k∑

i=1

xi cos(ωit + ϕi), (3.15)

where k is the number of oscillators, and the ωi are mutually different. If the fre-
quencies ωi are integer multiples of a base frequency, this expression can also be
understood as a Fourier expansion, which allows to describe the trajectory of an
anharmonic oscillator. For this case, it has to be investigated later on, how the fre-
quencies ωi and amplitudes xi are related to the absorption spectrum of a quantum
anharmonic oscillator (see Sect. 3.2.3). At the moment, only the effect of the auto-
correlation on the expansion (3.15) shall be studied. Applying the definition of the
autocorrelation yields

Rx(t) = lim
T→∞

1

2T

∫ T

−T

(
k∑

i=1

xi cos(ωiτ + ϕi)

) ⎛
⎝ k∑

j=1

xj cos(ωj(τ + t) + ϕj)

⎞
⎠ dτ

=
k∑

i=1

k∑
j=1

lim
T→∞

1

2T

∫ T

−T
xixj cos(ωiτ + ϕi) cos(ωj(τ + t) + ϕj) dτ

=
k∑

i=1

k∑
j=1

Rxixj (t), (3.16)

where the cross-correlations Rxixj (t) are introduced. In general, the cross-correlation
of two time-dependent quantities A(τ ) and B(τ ) is the expected value over τ of the
product A∗(τ )B(τ + t) as a function of the time difference t:

RAB(t) = 〈
A∗(τ )B(τ + t)

〉
τ

= lim
T→∞

1

2T

∫ T

−T
A∗(τ )B(τ + t) dτ. (3.17)

Evaluating the cross-correlations Rxixj (t) of harmonic vibrations (see Appendix B.1)
shows that they vanish if ωi �= ωj. The total autocorrelation
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Rx(t) =
k∑

i=1

Rxixi(t) =
k∑

i=1

Rxi(t) =
k∑

i=1

1

2
x2i cos(ωit) (3.18)

is therefore the sum of the autocorrelations in each harmonic component. Since
the Fourier transform is a linear operation, also the total power spectrum is the
sum of the power spectra of the harmonic components, so it has peaks at all the
harmonic frequencies ωi. The total integral of the power spectrum is proportional to
the sum of the oscillator energies. In the canonical ensemble, where the temperature
measures the average energy over all oscillators, the total integral is proportional to
the temperature times the number of oscillators. The integrals of individual bands can
be used to inquire if the simulation is in equilibrium. In this case, each oscillator—or
vibrational mode—of the system gives a band of the same intensity.

3.2.2 Power Spectra of Molecular Dynamics Simulations

In the last section, the power spectrumof the harmonic oscillatorwas studied by using
a continuous function as trajectory. In a practical MD simulation, however, a discrete
timestep�t is employed and the coordinates are only known at certain points in time.
Furthermore, the trajectory is of finite length. In this case, the autocorrelation has to
be defined in a different way. If (Ai)

N−1
i=0 are the values of quantityA in theN snapshots

of the MD simulation, where i numbers the step, the value of the autocorrelation at
time t = n�t is given by

RA(n�t) = 1

N − n

N−n−1∑
i=0

Ai
∗Ai+n, with n = 0, . . . , N − 1. (3.19)

This means to calculate the productAi
∗Ai+n from two snapshots that are n steps apart,

and take the average over all possible pairs of this kind in the trajectory.
Since also the autocorrelation is a discrete function now, a discrete Fourier trans-

form has to be applied to obtain the power spectrum. Efficient algorithms for this
purpose are available as “fast Fourier transforms” [12], which can also be used to
efficiently calculate the autocorrelation (3.19) as shown inAppendix B.2. Employing
a discrete Fourier transform has certain implications on the shape of the spectrum.
Since it works on a discrete data set of finite length, this effectively means to take
the Fourier transform of the underlying periodic function multiplied by a rectangle
function. According to the convolution theorem, a multiplication in the time domain
is equivalent to a convolution in the frequency domain, so the spectrum of the peri-
odic function is convolved with the Fourier transform of a rectangle function. As the
latter is a sinc function, the spectrum shows bands with a certain width and an infinite
number of side lobes instead of infinitely sharp peaks. A very common technique
to reduce the intensity of the undesired side lobes is the multiplication of the data
set by a window function before the application of the Fourier transform. Plenty of
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window functions can be found in the literature. By default, Travis uses the Hann
function, the discrete values of which are given by

Wn = cos2
(

π n

2(N − 1)

)
, (3.20)

but exponential and Gaussian functions are also available in Travis. Since the total
integral of the discrete Fourier transform of a data set (Ai)

N−1
i=0 only depends on the

first value A0 (see Appendix B.2), the multiplication by a window function does not
influence the integral as long as W0 = 1 is fulfilled. Thus, the peak shapes in the
power spectrum are altered, but the integral band intensities are not influenced by
the windowing procedure.

Two other techniques common in connection with discrete Fourier transforms are
data mirroring and zero padding. In general, the continuous Fourier transform of an
even function such as the autocorrelation is purely real, but this is not necessarily
fulfilled in the discrete case. However, also the discrete Fourier transform can be
guaranteed to be real-valued by data mirroring. This means to append the data set in
reverse order to the original data set and apply the discrete Fourier transform to this
new data set. Again, this procedure does not influence the integral of the spectrum,
but as the number of data points is doubled, it also doubles the resolution of the
spectrum. This resolution can be increased even further by zero padding, meaning to
insert an arbitrary number of zeros between the original data set and its mirror image.
This does not change anything in the spectrum, but it leads to a finer frequency mesh
with a spacing that is generally given by �ω = 2π /(N ′�t), where N ′ is the total
number of data points after mirroring and zero padding. In this context, it should also
be noted that the highest observable frequency is always restricted by the timestep
to ωmax = π /�t according to the Nyquist–Shannon sampling theorem [13].

The discrete autocorrelation (3.19) is only an approximation to the continuous
autocorrelation function (3.2). For the discretized harmonic oscillator trajectory

Ai = x0 cos(iω0�t + ϕ), (3.21)

it can be shown (see Appendix B.2) that the discrete autocorrelation is

RA(n�t) = 1

2
x20 cos(nω0�t) + x20 cos((N − 1)ω0�t + 2ϕ)

2(N − n) sin(ω0�t)
sin((N − n)ω0�t).

(3.22)

Beside the first term known from the continuous case (see Eq. (3.3)), it contains an
error termwith a complicated dependence on the trajectory lengthN , the timestep�t,
and the phase ϕ. The essential features for a qualitative discussion are the propor-
tionality to 1/(N − n) and 1/ sin(ω0�t), so N − n and sin(ω0�t) should be large
to minimize the error. For the former, this can be achieved in two ways: As N is the
number of steps in the trajectory, the MD simulation should be as long as possible.
Moreover, since n numbers the discrete points of the autocorrelation, only its first part
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up to a certain correlation depth nmax should be considered for the Fourier transform
and everything else should be cut. However, although the resolution of the power
spectrum can arbitrarily be increased by zero padding, this correlation depth is the
only parameter that determines the width of the bands, and thus, how well vibra-
tions with similar frequency can be separated, so it has to be chosen carefully. The
dependence on sin(ω0�t) effectively means that the spectrum is distorted for very
low frequencies and for frequencies close to the limit given by the Nyquist–Shannon
theorem. Therefore, a long trajectory is needed to accurately detect low frequencies
and the timestep should always be chosen in such a way that also the highest frequen-
cies of the system are reasonably sampled. Also the cross-correlations introduced in
Eq. (3.16) for a linear combination of harmonic oscillators do not exactly vanish in
the discrete case (see Appendix B.2), but with two frequencies ωA and ωB, they are
proportional to 1/(N −n) and to 1/((cos((ωB−ωA)�t)−1)(cos((ωB+ωA)�t)−1)).
Similar conclusions as for the autocorrelation also hold for these expressions.

To calculate the power spectrum in the preferable velocity representation, the
atoms’ velocities are needed. Although software packages usually allow to output the
velocities during the simulation, they can also be obtained by approximate derivation
of the atoms’ positions from the trajectory afterwards. Choosing the second-order
central finite difference

VA(i�t) = RA((i + 1)�t) − RA((i − 1)�t)

2�t
(3.23)

provides even the exact velocities if the velocity Verlet algorithm has been used to
perform theMD(this canbe shownby insertingEqs. (2.40) and (2.41) intoEq. (3.23)).

3.2.3 Comparison of Classical Oscillators and Quantum
Oscillators

In Sect. 3.2.1, it was shown that power spectra from trajectories of classical harmonic
oscillators can be used to find the eigenfrequencies of the corresponding quantum
harmonic oscillators. It was also discussed that the approach is easily extended to
find the frequencies of anharmonic oscillators performing a linear combination of
harmonic vibrations in the sense of a Fourier expansion as in Eq. (3.15). However,
it remains to be clarified how the power spectrum is related to the absorption spec-
trum of the quantum system in this case. To this end, the power spectra of classical
dynamics and the quantum spectra are investigated for several one-dimensional and
two-dimensional potentials. The discussion does not aim to systematically deal with
all possibles kinds of potentials, but several examples are selected to demonstrate
the facts important for the comparison to experimental data later on.

For a harmonic potential, analytical solutions of the corresponding differential
equations are available (see Sect. 2.4.1), but numerical solutions have to be found
in the general case. For this purpose, two specialized programs were implemented

http://dx.doi.org/10.1007/978-3-319-49628-3_2
http://dx.doi.org/10.1007/978-3-319-49628-3_2
http://dx.doi.org/10.1007/978-3-319-49628-3_2
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in the course of this thesis. The first one is able to perform MD in arbitrary one-
dimensional and two-dimensional potentials. It relies on the velocityVerlet algorithm
to integrate the equations of motion, and it provides a Nosé–Hoover thermostat
chain to carry out NV T simulations (see Sect. 2.3). The second program is able to
solve the time-independent nuclear Schrödinger equation (2.9) for arbitrary one-
dimensional and two-dimensional potentials. It relies on the method of imaginary
time propagation (see Appendix C for an explanation), and it provides the energy
eigenvalues εi with the corresponding eigenfunctions |χi〉. Power spectra of the MD
simulations are obtained as described in the last section with an exponential window
function.As theFourier transformof an exponential function is aLorentzian function,
this yields spectra with Lorentzian bands. To get the quantum absorption spectra,
the transition moments 〈χj|x|χi〉 (and 〈χj|y|χi〉 in the two-dimensional case) are
calculated by numerical integration, and Lorentzian functions with areas equal to the
squared transition moments are placed at the transition frequencies in the spectra.
The squared transition moment of a harmonic oscillator with an eigenfrequency ω0

for the transition from the ground state to the first excited state is given by (see
Appendix B.3)

|〈χ1|x|χ0〉|2 = �

2mω0
. (3.24)

The integral of the power spectrum for the corresponding classical harmonic oscil-
lator is 4π 〈Ekin〉 (see Sect. 3.2.1). Thus, a dimensionless spectrum S(ω) for easy
comparison is obtained by dividing the power spectrum by 4π 〈Ekin〉 (or 2π kB 〈T〉)
and the quantum transition moments by �/(2mω). As it is very common to plot
experimental vibrational spectra as a function of the wavenumber ν̃ = ω/(2π c),
where c is the speed of light in vacuum, this quantity is used instead of the frequency
ω in all figures. The oscillator mass is set to m = 1.661 · 10−27 kg (equal to 1 u), and
all MD simulations are run for 100 ps. The correlation depth for the power spectra is
always chosen as 8.192 ps (so the number of data points is a power of two, making
“fast Fourier transform” algorithms more efficient), and the decay of the exponential
window function is selected to produce a Lorentzian band with a full width at half
maximum (FWHM) of 15 cm−1. The same FWHM is used to broaden the quantum
spectra.

The first system to be considered is a one-dimensional harmonic oscillator. For
the quantum case, this essentially tests the correctness of the implementation as
the analytical solution is known. If the force constant k in Eq. (2.48) is chosen to
give a target wavenumber of ν̃t = 1000 cm−1, the eigenfunctions shown in Fig. 3.1
are obtained. These coincide with the analytical expression (2.52). Calculating the
transition matrix elements confirms the strict selection rule �n = ±1, so dipole
transitions are only allowed between adjacent eigenstates in the harmonic oscillator.
For that reason, the spectrum possesses a single peak at 1000 cm−1 with an integral
intensity of 1 due to the abovementioned normalization.

Also for the classical case, the analytical solution is known, so this allows to
investigate the influence of the discrete timestep in the integration of the equations of
motion. The results for two different target wavenumbers ν̃t of 1000 and 3000 cm−1

http://dx.doi.org/10.1007/978-3-319-49628-3_2
http://dx.doi.org/10.1007/978-3-319-49628-3_2
http://dx.doi.org/10.1007/978-3-319-49628-3_2
http://dx.doi.org/10.1007/978-3-319-49628-3_2
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Fig. 3.1 Five lowest energy eigenvalues and eigenfunctions of a harmonic oscillator with a target
wavenumber of ν̃t = 1000 cm−1. For convenience, the eigenfunctions are shifted to match the
energy levels

Fig. 3.2 Power spectra of harmonic oscillators with two different target wavenumbers ν̃t , applying
four different timesteps �t; comparison to the spectra of the corresponding quantum oscillators
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are presented in Fig. 3.2. Four different timesteps �t of 2, 1, 0.5, and 0.125 fs were
applied, and all simulationswere runwith a constant energy chosen to give an average
temperature of 400K. The spectra clearly demonstrate that the timestep influences
the observed vibrational frequencies. If it is too large, the vibrations are significantly
blue-shifted. The effect also depends on the underlying exact frequency. With the
same timestep, smaller frequencies are shifted less. This means that the timestep
of an MD simulation cannot be chosen just on the basis of the Nyquist–Shannon
theorem, which would require�t < 5.6 fs for the 3000 cm−1 oscillator, but the error
in the velocity Verlet method makes much smaller timesteps necessary to accurately
reproduce vibrational frequencies. A common choice for AIMD simulations, which
was used for all systems presented in Chap. 4, is a timestep of 0.5 fs. This is a
reasonable compromise between accuracy and computational resources needed for
a proper trajectory length. For the 1000 cm−1 oscillator, the error in the wavenumber
is less than 1 cm−1. However, it has to be kept in mind that the blueshift already
amounts to ca. 10 cm−1 for the 3000 cm−1 oscillator, which is a wavenumber typical
for CH stretching vibrations. A timestep of 0.5 fs is also used for all further examples
in this section.

It should be noted that the influence on the frequency can be expressed quantita-
tively. As shown in Appendix B.4, the Verlet integration of the equations of motion
for a harmonic oscillator with the target frequency ωt yields a harmonic vibration
with the frequency

ωV = 1

�t
arccos

(
1 − 1

2
ω2
t �t2

)
(3.25)

as long as the condition ωt�t < 2 is fulfilled. With even larger timesteps, the algo-
rithm usually diverges. The Verlet integration also modifies the amplitude of the
vibration, but this effect is canceled in the spectra here due to the normalization by
the average kinetic energy.

The next system to be considered is the one-dimensional Morse potential. The
Morse potential is a model for the potential energy curve of a diatomic molecule
along the coordinate of the interatomic distance. It is given by

V (x) = D (1 − exp(−ax))2 (3.26)

with the dissociation energy D and the width parameter a. For large values of x, this
function converges to D, so the reachable coordinate is not limited and the molecule
can dissociate if the energy is sufficient. For the investigation here, a dissociation
energy of D = 99.6 zJ (corresponding to 60 kJ/mol) was chosen. Compared to
typical intramolecular bonds, this value is quite low, but it is suitable to highlight the
anharmonicity effects. Furthermore, the oscillator should have a target wavenumber
of ν̃t = 1000 cm−1 within the harmonic approximation to the potential. Since the
second derivative of theMorse potential at the equilibriumposition is V ′′(0) = 2Da2,
this request leads to a width parameter of a = 0.0172 pm−1. The five lowest energy
eigenvalues with the corresponding eigenfunctions for this parameter choice are
shown in Fig. 3.3. In contrast to the harmonic potential, the eigenstates are not equally

http://dx.doi.org/10.1007/978-3-319-49628-3_4
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Fig. 3.3 Five lowest energy eigenvalues and eigenfunctions in a Morse potential with a harmonic
target wavenumber of ν̃t = 1000 cm−1. For convenience, the eigenfunctions are shifted to match
the energy levels

spaced in energy, but the distance decreases at higher quantum numbers. Also the
selection rule �n = ±1 is not strictly valid anymore, as the transition moments
between nonadjacent states do not vanish. This has several consequences for the
spectrum: The transitions from the ground state n = 0 to higher excited states
n = 2, 3, . . . appear as overtones. Moreover, transitions from excited states that are
thermally populated at finite temperature to higher excited states show up as hot
bands. Such hot bands are also present in the quantum spectrum of the harmonic
oscillator, but they are not distinguishable from the fundamental band due to the
equal spacing of all eigenstates in this case.

The quantum absorption spectrum of the Morse oscillator at 0 K (so without
any hot bands) is shown at the bottom of Fig. 3.4. Due to the anharmonicity, the
fundamental transition is shifted from the harmonic target wavenumber down to
900 cm−1. The first overtone is visible as a small peak at 1701 cm−1, and the second
overtone shows up with very low intensity at 2402 cm−1. The higher overtones are
located beyond 3000 cm−1. At finite temperature, the most intense hot band would
appear at 801 cm−1 for the transition from n = 1 to n = 2.

Classical MD simulations for the Morse potential were performed in the micro-
canonical ensemble with four different energies of 0.1, 10.0, 18.9, and 50.0 zJ. The
resulting power spectra are shown in Fig. 3.4 together with the average temperatures
(proportional to the average kinetic energies) that correspond to these energies. Since
the potential is not a purely quadratic function of the coordinate, the average kinetic
energy is not exactly the half of the total energy anymore, and even the ratio is not a
constant, but it depends on the total energy itself.

The most important finding is the dependence of the peak positions on the total
energy. With increasing energy, the bands are shifted to lower wavenumbers. This
is a consequence of the fact that the classical MD samples only a certain part of the
potential curve. If the energy is low, the amplitude of the oscillations is very small, so
the classical particle only experiences the potential in the vicinity of the minimum.
Since this can be approximated by a harmonic potential very well, the fundamental
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Fig. 3.4 Power spectra of an oscillator in a Morse potential with a harmonic target wavenumber of
ν̃t = 1000 cm−1 at four different total energies E; comparison to the spectrum of the corresponding
quantum oscillator

transition appears at the harmonic target wavenumber of 1000 cm−1 with E = 0.1 zJ
(see Fig. 3.4). If the energy is increased, the trajectory of the classical particle reaches
more and more the anharmonic region of the potential curve, leading to a successive
redshift of the fundamental band. In the limiting case where the total energy exceeds
the dissociation energy D, the particle continuously moves in positive x direction and
never returns to the minimum, so the fundamental band effectively arrives at zero
wavenumber. An interesting point is the energy, where the band position coincides
with the quantum spectrum. This is the case for E = 18.9 zJ (see Fig. 3.4). The
average temperature connected to this total energy is 〈T〉 = 1295.3K, corresponding
to an average kinetic energy of 〈Ekin〉 = 8.9 zJ. This value is the half of the transition
energy from n = 0 to n = 1 in the quantum system.However, this is just an accidental
coincidence for this special choice of the potential. The next example shows that this
is not a strictly valid rule.

Another important finding is the occurrence of overtone bands in the power spec-
tra. Analogous to the shift of the fundamental peak position, their intensity increases
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with higher total energies (see Fig. 3.4). If the amplitude is small, a single harmonic
frequency is sufficient to describe the particle oscillation. The more the vibration
reaches into the anharmonic part of the potential, the higher is the fraction of other
frequencies required to represent the motion. As the power spectra are normalized
to the average kinetic energy, the total integral is always 1, so the intensity of the
fundamental band is reduced to the same degree as the intensity of the overtones
rises. The wavenumbers where the overtone peaks are located are always integer
multiples of the fundamental wavenumber, so the overtone bands have a constant
spacing. This is an important difference to the quantum spectrum, where the spacing
of the overtones continuously decreases. The simulation with E = 18.9 zJ, which
reproduces the fundamental wavenumber of the quantum spectrum, yields the first
overtone at 1801 cm−1, so 100 cm−1 above the value in the quantum spectrum. Sim-
ilarly, the second overtone is located at 2702 cm−1, which differs by 300 cm−1 from
the quantum spectrum. Nevertheless, the intensity ratios of the fundamental transi-
tion and the overtones are equal in the power spectrum and the quantum spectrum.
This means that classical MD is in principle able to give at least a qualitative insight
into the overtone spectrum of a system.

Further important phenomena can be observed in two-dimensional systems. For
this purpose, a potential surface of the general form

V (x, y) = kxxx2 + kyyy2 + kxxxx3 + kxxyx2y + kxyyxy2 + kyyyy3 + kxxxxx4 + kyyyyy4

(3.27)

is employed. It contains the harmonic terms kxxx2 and kyyy2, as well as third power
terms to introduce anharmonicities. The fourth power terms are added to obtain a
bound potential, as they guarantee that the function approaches positive infinity in all
directions. Three different parameter sets were applied (see Table3.1). In the first set,
the cross terms kxxyx2y and kxyyxy2 are zero, so the two coordinates are uncoupled. The
remaining parameters were chosen to match the coefficients of Taylor polynomials
that approximate Morse potentials with a dissociation energy of D = 99.6 zJ and
harmonic target wavenumbers ν̃t of 1000 cm−1 along the x axis and 1200 cm−1 along
the y axis. The second set consists of the same parameters, but it adds the coupling
factors kxxy and kxyy. Their values do not have a specific background, they were just
chosen as 10−2 in atomic units, which are employed internally in the program. The
third parameter set preserves the coupling of the coordinates, but it changes the

Table 3.1 Three parameter sets applied within the two-dimensional potential in Eq. (3.27)

No. kxx kyy kxxx kxxy kxyy kyyy kxxxx kyyyy

10−2 zJ pm−2 10−4 zJ pm−3 10−6 zJ pm−4

1 2.946 4.242 −5.066 0 0 −8.753 5.081 10.54

2 2.946 4.242 −5.066 −2.942 2.942 −8.753 5.081 10.54

3 2.946 11.20 −5.066 −2.942 2.942 −37.56 5.081 73.47
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Fig. 3.5 Wave functions and energy eigenvalues of the six lowest eigenstates in the two-dimensional
potential (3.27) with parameter set 1 from Table3.1

harmonic target wavenumber of the underlying Morse potential along the y axis to
1950 cm−1. This value was selected in such a way that the first overtone in the first
coordinate coincides with the fundamental transition in the second coordinate.

The six lowest eigenfunctions of a quantum oscillator with parameter set 1 are
shown in Fig. 3.5, and the resulting spectrum can be found at the bottom of Fig. 3.6.
Due to the absence of coupling terms between the coordinates, this system behaves
like two independent one-dimensional oscillators. The two-dimensional wave func-
tions are just the products of the corresponding one-dimensional wave functions
(cf. Fig. 3.3). Thus, the first excited two-dimensional state (n = 1) corresponds to an
excitation in the x coordinate while the second excited two-dimensional state (n = 2)
arises from an excitation in the y coordinate. Analogously, the subsequent three two-
dimensional states can be assigned to a double excitation in the x coordinate (n = 3),
a simultaneous excitation in both coordinates (n = 4), and a double excitation in the y
coordinate (n = 5), respectively. Considering the spectrum, the transition from n = 0
to n = 4 is a special case, as it is forbidden by symmetry and has zero intensity, so no
band is found at 2082 cm−1. Nevertheless, all the other possible transitions from the
ground state show up as in the corresponding one-dimensional cases, and the spec-
trum of the two-dimensional system is just the sum of the one-dimensional spectra.
In particular, the fundamental peaks appear at 947 and 1136 cm−1, respectively, and
the first overtones give rise to weak bands at 1901 and 2299 cm−1, respectively.

The power spectra obtained from classical MD simulations are compared to the
quantum spectrum in Fig. 3.6. The simulationswere performed in themicrocanonical
ensemble with four different energies of 0.2, 28.5, 68.7, and 150.0 zJ. As for the one-
dimensional Morse potential, a dependence of the peak positions on the energy is
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Fig. 3.6 Power spectra of a classical oscillator in the two-dimensional potential (3.27) with para-
meter set 1 from Table3.1 at four different total energies E; comparison to the spectrum of the
corresponding quantum oscillator

observed again. This time, however, the bands are not shiftedmonotonically, but their
wavenumbers decrease up to a certain energy while they increase at higher energies.
This is a consequence of the potential form: In contrast to the Morse oscillator,
which dissociates at high energies, the particle mainly experiences the quartic terms
of the potential here. Since these rise more steeply than a harmonic potential, the
oscillation wavenumber increases more and more at high energies. With the very
low energy of E = 0.2 zJ in the MD simulation, the bands show up at the harmonic
target wavenumbers of the potential. It is possible to find two energy values where
the wavenumber of the first fundamental band at 947 cm−1 in the quantum spectrum
is exactly reproduced, E = 28.5 and E = 68.7 zJ. The turning point of the shifting
direction is located in between at E = 47.1 zJ. One can also find two further energy
values where thewavenumber of the second fundamental transition exactly coincides
with the quantum system. Since this energy of coincidence is, however, an individual
property of each mode, it is impossible to match both bands at the same time. In
contrast to theMorse potential, the average kinetic energy at the point of coincidence
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is not related to the quantum transition energy in a simple manner here. If the energy
is not too low, also the overtones appear in the power spectrum. As seen before, the
wavenumbers of the first overtones are always twice as large as the wavenumbers of
the corresponding fundamental bands, meaning that they are underestimated by 7 and
27 cm−1 compared to the quantum spectrum if the total energy is chosen to reproduce
the first fundamental band. This demonstrates that the incomplete description of
the quantum anharmonicity by classical dynamics does not generally lead to an
overestimation of the overtone wavenumbers as in the case of a Morse potential. The
intensity ratios of fundamental and overtone bands are in good agreement with the
quantum spectrum if the total energy is E = 28.5 zJ.

It is important to note that the power spectra actually show a strong dependence
on the initial conditions of the MD simulation. Since the two coordinates are not
coupled, energy cannot be exchanged between them. For all the spectra shown here,
the same energy was put into both coordinates in the beginning. However, it is easily
possible to create arbitrary intensity ratios of the two fundamental bands by choosing
different initial conditions. As the complete decoupling of all coordinates is a very
special case, this is not a major issue with regard to later applications, but it has to be
kept in mind that setting up MD simulations requires some attention in this respect.

Parameter set 2 (see Table3.1) allows to study the effect of coupling the coordi-
nates, as it introduces the cross terms kxxyx2y and kxyyxy2. The eigenfunctions of a
quantum oscillator in this potential are shown in Fig. 3.7 and the corresponding spec-
trum considering only transitions from the ground state can be found at the bottom
of Fig. 3.8. In contrast to the uncoupled system (see Fig. 3.5), the wave functions are
slightly distorted and the nodal lines are not straight anymore. Still, it is possible to

Fig. 3.7 Wave functions and energy eigenvalues of the six lowest eigenstates in the two-dimensional
potential (3.27) with parameter set 2 from Table3.1
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Fig. 3.8 Power spectra of a classical oscillator in the two-dimensional potential (3.27) with para-
meter set 2 from Table3.1 at three different total energies E; comparison to the spectrum of the
corresponding quantum oscillator. The insetsmagnify the region of overtone and combination bands
between 1500 and 2500 cm−1

interpret the states as single excitations in each coordinate (n = 1, n = 2), double
excitations in each coordinate (n = 3, n = 5), and a simultaneous excitation in both
coordinates (n = 4). Of particular importance is the distortion of the n = 4 state,
as a transition from the ground state to this state is not strictly forbidden anymore.
In addition to the fundamental bands (927, 1127 cm−1) and the overtones (1848,
2288 cm−1) known from the uncoupled system, this yields a combination band at
2044 cm−1 in the spectrum.

Classical MD simulations with parameter set 2 were performed in the micro-
canonical ensemble with energies of 0.2, 20.0, and 32.6 zJ. The resulting power
spectra are compared to the quantum spectrum in Fig. 3.8. With the lowest energy,
the fundamental bands appear at the harmonic target wavenumbers in the same way
as before. Within this parameter set, an energy of E = 32.6 zJ exactly reproduces
the wavenumber of the first fundamental band in the quantum spectrum. The most
important finding is the emergence of several additional peaks at higher energies.
Beside the first overtones showing up at the doubled wavenumbers of the funda-
mental peaks, one can also find a combination band exactly at the sum of the two
fundamental wavenumbers. With E = 32.6 zJ, it almost matches the combination
band in the quantum spectrum, showing a difference of only 4 cm−1. On the other
hand, the intensity ratios of the two overtones and the combination band are bet-
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ter reproduced with E = 20.0 zJ. Again, this indicates that classical power spectra
are not fully consistent with the spectrum of the corresponding quantum system.
However, they provide a good qualitative insight not only for overtones, but also for
combination bands.

It has to be noted that the classical simulations do not only show the desired
combination band, but they add several more peaks to the spectrum. Themost distinct
ones are the satellite peaks of the two fundamental bands, the intensity of which
is similar to the real combination band. The distance of these satellite peaks to the
fundamental bands is equal to the distance of the fundamental bands, so the four bands
are equally spaced. The satellite peaks might be interpreted as higher combination
transitions starting from excited states, i.e., double excitations in one coordinate and
simultaneous disexcitations in the other coordinate. However, as they are exactly
located at the sum of the involved transition wavenumbers, they suffer from the same
deviations as normal overtones and combination bands, making an assignment to
the finite temperature quantum spectrum very hard. In any case, this interpretation
would be inconsistent with the absence of other hot bands, e.g., no such peaks could
be observed with parameter set 1 at any energy, so the satellite peaks should be
regarded as artifacts.

Another important point is the intensity shifting between the fundamental bands
at higher energies. Although the initial conditions were chosen in such a way that
both coordinates contain the same energy in all cases, the first fundamental peak
becomes more intense than the second one. This indicates that the intensity in power
spectra cannot strictly be used to justify whether a simulation is in equilibrium when
modes are coupled to each other.

In parameter set 3 (see Table3.1), the first overtone wavenumber in the x coordi-
nate is near the fundamental wavenumber in the y coordinate. This allows to observe
the phenomenon of Fermi resonance. The corresponding eigenfunctions of the quan-
tum oscillator are shown in Fig. 3.9 and the resulting spectrum is given at the bottom
of Fig. 3.10. Comparing to the uncoupled system (see Fig. 3.5), the distinct distortion
of the wave functions with n ≥ 2 is obvious. In particular the second excited state
(n = 2) and the third excited state (n = 3) are strongly mixed, and a clear assign-
ment of the single excitation in the y coordinate and the double excitation in the x
coordinate is not possible anymore. As a consequence, a transition to both states is
equally possible from the ground state by dipole interaction, and the spectrum shows
two bands of similar intensity at 1830 and 1898 cm−1 instead of a strong peak for
the fundamental transition and a weak peak for the overtone.

The power spectra from classical MD simulations within the microcanonical
ensemble and with energies of 0.2, 10.0, and 20.0 zJ are compared to the quantum
spectrum in Fig. 3.10. Applying parameter set 3, it is impossible to find an energy
where the wavenumber of the first fundamental band is exactly reproduced. The
wavenumber in the power spectrum at the turning point of the band shifting direc-
tion is still higher than in the quantum spectrum. As before, the power spectrum with
E = 0.2 zJ provides the harmonic target wavenumbers of the potential. The most
important finding is, however, that intensity shifts similar to the Fermi resonance also
occur in the classical system, so two peaks of similar intensity can be found at the
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Fig. 3.9 Wave functions and energy eigenvalues of the six lowest eigenstates in the two-dimensional
potential (3.27) with parameter set 3 from Table3.1

position of the second fundamental transition with higher energies. As the intensity
ratio of the two bands clearly depends on the energy, classical dynamics provides
again not a quantitative estimation of the quantum spectrum, but a qualitative insight
even into special effects like Fermi resonance is possible. Similar to parameter set 2, a
small side peak at the first fundamental band appears as an artifact. Also the intensity
of the first fundamental band increases again, although the initial conditions were
still chosen to provide the same energy in both coordinates.

Summarizing the results observed in the five examples selected for this section,
the following conclusions can be drawn: In general, MD simulations with classical
particles contain a description of anharmonicity effects in qualitative agreement with
the corresponding quantum particles. This allows to observe overtones and combi-
nation bands in the power spectra, but always at integer multiples or exact sums and
differences of the fundamental wavenumbers. The intensity ratios of these bands
are usually in good accordance with the quantum system. Even intensity shifts due
to Fermi resonance are found in the classical spectra, but this requires matching
wavenumbers of a fundamental band and an overtone, and this is usually prevented
in later applications by the just mentioned shifts of overtone wavenumbers. The
most important issue, however, is the dependence of the effects on the energy (or the
temperature) of the simulation. Thus, it is usually impossible to determine quantita-
tively to which extent anharmonicity effects are included. Nevertheless, a qualitative
insight can always be gained as long as the energy (or the temperature) is not too
low.
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Fig. 3.10 Power spectra of a classical oscillator in the two-dimensional potential (3.27) with para-
meter set 3 from Table3.1 at three different total energies E; comparison to the spectrum of the
corresponding quantum oscillator

3.2.4 Influence of a Thermostat

For the comparison of classical oscillators and quantum oscillators in the last section,
the MD simulations were performed in the microcanonical ensemble, i.e., with con-
stant energy. A constant energy is, however, difficult to realize experimentally, and
measurements are usually carried out at constant temperature. For that reason, it is
very common to conduct MD simulations in the canonical ensemble by applying
a Nosé–Hoover thermostat chain (see Sect. 2.3). Thus, the question arises how the
power spectrum is influenced by the thermostat. To avoid thermostat artifacts in the
first place, it has been reported in the literature (see, e.g., references [14–17]) to
perform multiple NV E simulations and to average the resulting spectra. The initial
conditions for these NV E simulations are drawn from an NV T trajectory with the
desired temperature. To compare this approach with a straightforward calculation
of the power spectrum from the NV T trajectory, MD simulations were carried out
in the model potential (3.27) employing parameter set 2 from Table3.1. An NV T
simulation at T = 400K was conducted for 100 ps with a timestep of �t = 0.5 fs,
applying a Nosé–Hoover thermostat chain of length 3 and a coupling time constant
of τ = 100 fs. From the resulting 200000 snapshots, a certain number was selected
by a uniform random distribution and NV E simulations were started with each of

http://dx.doi.org/10.1007/978-3-319-49628-3_2
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Fig. 3.11 Power spectra of a classical oscillator in the two-dimensional potential (3.27) with para-
meter set 2 from Table3.1, employing an NV T simulation (τ = 100 fs) at 400K and different
numbers of NV E trajectories with initial conditions randomly drawn from the NV T simulation;
comparison to the spectrum of the corresponding quantum oscillator at 400K, assuming state pop-
ulations according to a Boltzmann distribution. The insets magnify the region of overtone and
combination bands

them. The power spectra obtained by averaging over the NV E trajectories are shown
together with the power spectrum from the NV T simulation in Fig. 3.11. This figure
also contains the spectrum of the quantum system at finite temperature modeled by
assuming a population of the states according to a Boltzmann distribution. The quan-
tum spectrum hardly differs from the spectrum at 0K discussed in Fig. 3.8, the only
notable change is the appearance of a hot band as a small shoulder of the second
fundamental peak.
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It is obvious that the direct NV T spectrum and the average over a sufficient
number of NV E trajectories are not equal. The peaks in the averaged NV E spectra
are broader, but the NV T spectrum shows artificial satellite peaks at all bands. The
broad asymmetric bandswith a flat edge to lowwavenumbers of theNV E spectra can
be regarded as substituted by stairs of peaks in the NV T spectrum. In this way, the
overtone region between 1500 and 2500 cm−1 can be interpreted to actually consist of
three underlying bands, which correspond to the two overtones and the combination
band visible in the quantum spectrum. It should be noted that the satellite peaks in the
NV T spectrum are influenced by the coupling time constant of the thermostat chain.
If the latter is reduced, the satellite peaks are shifted further apart from the real bands.
The satellite peaks are an undesired drawback of theNV T spectrum, but as discussed
in the last section, the thermostat is not the only source of artificial bands in a coupled
potential. On the other hand, in the order of 100 NV E simulations are needed till
the average over a set of NV E trajectories can be considered as converged. For the
application to large bulk phase AIMD simulations, this poses a tremendous increase
of the required computational resources. Therefore, the spectra are directly obtained
from NV T trajectories for all systems in Chap.4. Due to the finite simulation times
and system sizes, the correlation depth has to be chosen smaller than here, so the
bands are slightly broadened and the satellite peaks aremostly indistinguishable in the
investigated systems. This might also be connected to the fact that a two-dimensional
model potential is considered here while the systems in Chap. 4 have many more
degrees of freedom. Moreover, the approximations to treat the electronic structure
(see Sect. 2.2) and the numerical limitations to converge the forces acting on the
nuclei add further artifacts to the spectra. Nevertheless, a more detailed comparison
of NV T spectra and NV E spectra for real systems could be subject of future work.

3.2.5 Normal Coordinates

It wasmentioned in Sect. 3.2.1 that the atoms in amolecule usuallymove according to
a linear combination of several harmonic vibrations with different frequencies when
they are bonded to other atoms. If all internal degrees of freedom in the molecule
follow a harmonic potential, it is possible to find a coordinate transform such that
only a single harmonic vibration with a clearly defined frequency is performed in
each coordinate. These new coordinates, which are called normal coordinates, do
not describe the motion of single atoms, but collective displacements of all atoms in
the molecule that do not change the center of mass. The normal coordinates allow to
describe the bands observed in experimental spectra as specific molecular vibrations.

In the basic approach of static quantum chemistry, the normal coordinates are
inherently available, as this method relies on the harmonic approximation to the
potential energy surface. In this case, the normal coordinates are just the coordinate
system in which the Hessian matrix is diagonal at the potential minimum. In con-
trast, the normal coordinates cannot strictly be defined in MD, since the harmonic
approximation is not applied and the minima of the potential energy surface do not

http://dx.doi.org/10.1007/978-3-319-49628-3_4
http://dx.doi.org/10.1007/978-3-319-49628-3_4
http://dx.doi.org/10.1007/978-3-319-49628-3_2
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enter directly. Nevertheless, it is desirable to find a similar quantity with regard to
the interpretation of experimental spectra in the liquid phase. For this purpose, sev-
eral techniques have been proposed in the literature [11, 18–31]. For this thesis, the
generalized normal coordinate scheme of Mathias et al. [14, 15] was adopted and
implemented in Travis [4]. The underlying ideas are described in the remainder of
this section.

In the three-dimensional space, all atoms of a molecule have three coordinates,
and in each coordinate, the power spectrum can be calculated according to the def-
inition (3.11). Summing the three spectra belonging to the same atom gives the
atomic power spectrum (3.14). The sum of all these atomic power spectra defines
the power spectrum of the molecule. As the atoms are usually involved in several
different vibrational modes of the molecule, the atomic power spectra show peaks at
several different frequencies and the power spectra of different atoms overlap. These
overlaps can be characterized by the mass-weighted cross-correlation spectra

Pij(ω) = √
mimj Re

(
F

(
Rẋiẋj

)
(ω)

)

= √
mimj Re

(∫ ∞

−∞

〈
ẋ∗

i (τ )ẋj(τ + t)
〉
τ
exp(−iωt) dt

)
, (3.28)

where i and j subsequently number the coordinates of all atoms, so in amolecule with
M atoms, they run from 1 to 3M. The mass mi is the mass of the atom corresponding
to coordinate i. The real part of the Fourier transform is taken to guarantee that the
spectra are real-valued. This corresponds to averaging over the time forward and
the time backward trajectory [14]. In the Travis implementation, the same effect is
achieved by the mirroring technique described in Sect. 3.2.2.

As the coordinates are real, the cross-correlation spectra (3.28) constitute a sym-
metric matrix P(ω) of functions, the trace of which is the power spectrum of the
molecule. If the matrix P(ω) was calculated in the normal coordinates of a purely
harmonic system, it would be diagonal (all off-diagonal elements would be zero
functions) as long as there are no degenerate modes. With an MD trajectory of finite
length that contains anharmonicity effects, also the spectral peaks have a finite width
and the off-diagonal elements usually do not vanish completely. Still, this suggests to
search for a set of coordinates where the off-diagonal elements of P(ω) are minimal.
The magnitude of the off-diagonal elements is measured by

o =
√√√√ 3M∑

i=1

3M∑
j=i+1

∫ ∞

−∞

(
Pij(ω)

)2
dω. (3.29)

The new coordinates that minimize this expression are called generalized normal
coordinates [14].

IfP(ω)was a regular matrix, it could simply be diagonalized. But since it depends
on the frequency, a modified Jacobi algorithm is used for the minimization. In prin-
ciple, the Jacobi algorithm finds an orthogonal transformation matrix C that diago-



58 3 Methodological Developments

nalizes a general matrix A by A′ = CACT. The transformation matrix C is written
as a product of j Givens rotations G(k, l, θ):

C =
j∏

i=1

G(ki, li, θi). (3.30)

A Givens rotation is defined as

G(k, l, θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.31)

where sin θ and cos θ appear in columns and rows k and l. For each rotation, the
angle θ is chosen in such a way that the element Akl of the matrix A is zero after
the transformation. The number of rotation matrices j is determined iteratively by
applying rotations until all off-diagonal elements of A are smaller than a certain
threshold.

For the spectra matrix P(ω), the angle θ cannot generally be chosen in such a way
that the off-diagonal spectrum Pkl(ω) vanishes completely. Instead, it is requested
that the integral of its square gets minimal, yielding the condition

∂

∂θ

(∫ ∞

−∞

(
G(k, l, θ)P(ω)G(k, l, θ)T

)2
kl
dω

)
= 0. (3.32)

It can be shown [14] that this leads to a fourth order equation with the roots for
t = sin θ/ cos θ given by

tmn = 1

4

(
−η + (−1)m

√
16 + η2 + (−1)n

√
2
√
16 + η2 − (−1)mη

√
16 + η2

)
,

(3.33)

where m, n ∈ {1, 2} number the roots and η = (4χ1 − χ3)/χ2 with the integrals

χ1 =
∫ ∞

−∞
(Pkl(ω))2 dω, (3.34)

χ2 =
∫ ∞

−∞
Pkl(ω) (Pkk(ω) − Pll(ω)) dω, (3.35)
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χ3 =
∫ ∞

−∞
(Pkk(ω) − Pll(ω))2 dω. (3.36)

The root with |tmn| ≤ 1 and

− 2χ2

(t2mn + 1)4
(
2tmn

(
t4mn − 14t2mn + 9

) + η
(
3t4mn − 8t2mn + 1

))
> 0 (3.37)

is selected (the left-hand side of (3.37) is the secondderivative of the integral in (3.32),
so the condition ensures that a minimum is found), and the rotation matrix is col-
located by using cos θ = 1/

√
1 + t2 and sin θ = t cos θ . Applying such a rotation

matrix once to each pair of k and l with k < l means to perform a Jacobi sweep.
Such sweeps are carried out until the off-diagonal norm (3.29) changes less than
a certain threshold. The final transformation matrix C, which is the product of all
rotation matrices according to Eq. (3.30), contains the generalized normal coordinate
vectors. The diagonal elements of the transformed spectra matrix P′(ω) = CP(ω)CT

are the corresponding mode spectra that should be localized well in frequency space.
Since the trace of a matrix is not changed by an orthogonal transformation, the sum
of these mode spectra is equal to the power spectrum of the molecule. This means
that just another dissection of the power spectrum in terms of normal mode spectra
instead of atomic spectra is calculated.

The concept of normal coordinates is based on the assumption that the mole-
cule performs small oscillations around a minimum of the potential energy surface.
Therefore, rotational and translationalmotion in anMD trajectory have to be removed
beforehand. For this purpose, the coordinates are transformed to the Eckart frame
of reference [32]. This requires to provide an external reference structure with the
coordinates r0k , which is obtained, e.g., by a geometry optimization of the isolated
molecule. In each snapshot of the trajectory, the rotation matrix R and the translation
vector T that minimize the mass-weighted root-mean-square distance

d =
√√√√ M∑

k=1

mk
(
Rrk + T − r0k

)2
(3.38)

have to be found, where rk is the position vector of atom k in the trajectory. The
Travis implementation of this problem follows reference [33]. At first, the centroids
in both coordinate systems are calculated:

r̄ =
∑M

k=1 mkrk∑M
k=1 mk

, r̄0 =
∑M

k=1 mkr0k∑M
k=1 mk

. (3.39)

Using the centered vectors

xk = rk − r̄, yk = r0k − r̄0, k = 1, . . . , M, (3.40)
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the 3 × 3 covariance matrix
S = XMYT (3.41)

is computed, where X and Y are 3 × M matrices with the xk and yk as columns,
respectively, and M = diag (m1, . . . , mk). With the singular value decomposition

S = U�VT (3.42)

of S, the optimal rotation matrix is given by [33]

R = V

⎛
⎝1 0 0
0 1 0
0 0 det

(
VUT

)
⎞
⎠ UT. (3.43)

Finally, the optimal translation vector is [33]

T = r̄0 − Rr̄. (3.44)

The projection onto a single reference structure breaks down if there are confor-
mational changes in the trajectory. In this context, the procedure has to be extended
to several reference structures [15]. Two cases that need to be handled differently
can occur: On the one hand, the reference structures can differ only in the ordering
of equivalent atoms. This happens, e.g., if a methyl group rotates, as their hydrogen
atoms are indistinguishable. On the other hand, the reference structures can corre-
spond to conformationally different minima on the potential energy surface. This
applies, e.g., to trans and gauche conformations of a butyl group. In the former case,
all reference structures can be mapped to the same minimum by appropriately per-
muting the equivalent atoms, resulting in a single set of normal coordinates. In the
latter case, different normal coordinates are obtained for each structure.

To assign themolecular conformation from a trajectory to the reference structures,
a probability pm(t) giving the fitness of structure m has to be introduced. The general
form of a possible choice [15] reads as

pm(t) = N exp

(
−d(r(t), r0m)

2σ 2

)
, (3.45)

where N is a normalization factor ensuring that the sum of all probabilities is 1, and
σ determines the width of the switching region between two reference structures.
The distance function d(r(t), r0m) measures the distance between the coordinates
from the trajectory transformed to the Eckart frame and the coordinates of reference
structure m. The simplest choice is the mass-weighted root-mean-square distance
as in Eq. (3.38). In many cases, however, the reference structures differ only in a
few angles while the rest of the molecule has the same conformation. Under these
circumstances, it is more convenient to use the root-mean-square deviation in cer-
tain internal coordinates [15]. At the moment, the Travis implementation provides
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the possibility to employ the root-mean-square deviation of an arbitrary number of
dihedral angles δk:

d =
√√√√ l∑

k=1

(
δk − δ0k

)2
. (3.46)

With the probabilities pm(t), a spectra matrix Pm(ω) can be calculated for each
reference structure using the definition

Pmij(ω) = √
mimj Re

(∫ ∞

−∞

〈
pm(τ )ẋ∗

i (τ )ẋj(τ + t)
〉
τ
exp(−iωt) dt

)
. (3.47)

As opposed to (3.28), a modified cross-correlation enters the Fourier transform.
Whereas the normal cross-correlation equally averages over all products ẋ∗

i (τ )ẋj(τ +
t) with timeshift t, the modified cross-correlation weights by pm(τ ), so each product
gives a large contribution to the average only if the molecule is closest to reference
structure m at time τ . Since the sum of all probabilities is 1, the sum of all matrices
Pm(ω) is equal to the matrix P(ω) with only one reference structure, so the matrix
P(ω) is just split into the contributions of the different molecular conformations.
At this point, the matrices that belong to reference structures differing only in the
orderingof equivalent atoms canbe added after properly permuting the corresponding
entries. The minimization of the off-diagonal elements is carried out for each of the
remainingmatrices, yielding one set of normal coordinates for each conformationally
different reference structure.

3.3 Infrared and Raman Intensities

In static quantum chemistry, IR spectra are calculated as described in Sect. 2.4.2. As
soon as the normalmodes of amolecule are known, the IR intensities can be computed
by taking the derivatives of the dipole moment along the normal coordinates. In an
MD simulation, these derivatives are not directly accessible. An alternative approach
is, however, possible by the following line of thought: If the MD simulation is in
equilibrium, all modes are excited at once, so the oscillation of the dipole moment
contains contributions from all modes at the same time. Each of these contributions
oscillates at the frequency of the correspondingmode, suggesting to employ a Fourier
transform to obtain a frequency-resolved representation of these oscillations. In the
same manner as power spectra (see Sect. 3.2.1), these spectra show peaks at all
vibrational frequencies of the molecule, but this time, the intensity is proportional to
the amplitudes of the dipole oscillations at these frequencies. In linear approximation,
the latter are proportional to the derivatives of the dipole moment along the normal
coordinates (cf. Eq. 2.58), so the result of the Fourier transform is just the IR spectrum
of the system.

http://dx.doi.org/10.1007/978-3-319-49628-3_2
http://dx.doi.org/10.1007/978-3-319-49628-3_2
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For a more detailed mathematical insight, the one-dimensional classical harmonic
oscillator is considered again. Using the mass-weighted coordinate q = √

mx, its
trajectory is given by (see Sect. 2.4.1)

q(t) = √
mx0 cos(ω0t + ϕ), (3.48)

where x0 is the amplitude, ω0 is the eigenfrequency, and ϕ is the phase. The dipole
moment μ is assumed to depend linearly on the coordinate, so the Taylor expansion
around the equilibrium position can be truncated after the linear term:

μ(q) = μ0 +
(

∂μ

∂q

)
0

q, (3.49)

where μ0 is the dipole moment at the equilibrium position. Inserting the trajectory
yields for the time-dependent dipole moment

μ(t) = μ0 +
(

∂μ

∂q

)
0

√
mx0 cos(ω0t + ϕ). (3.50)

For power spectra (see Sect. 3.2.1), it was discussed that it is more convenient to use
the time derivative of the coordinate instead of the coordinate itself. Transferring
this to the dipole moment bears the additional advantage that the equilibrium dipole
moment, which does not carry information relevant for the IR intensities, is removed:

μ̇(t) = −
(

∂μ

∂q

)
0

√
mx0ω0 sin(ω0t + ϕ). (3.51)

To remove also the dependence on the initial conditions of the MD simulation in
terms of the phase ϕ, the autocorrelation function is calculated (see Appendix B.1):

Rμ̇(t) = 1

2

(
∂μ

∂q

)2

0

mx20ω
2
0 cos(ω0t). (3.52)

The Fourier transform of this expression can be written as

F(Rμ̇)(ω) =
∫ ∞

−∞
Rμ̇(t) exp(−iωt) dt = 1

2

(
∂μ

∂q

)2

0
mx20ω

2
0 π (δ(ω − ω0) + δ(ω + ω0)) .

(3.53)

Due to the properties of the delta distribution, the total integral of the spectrum is

∫ ∞

−∞
F(Rμ̇)(ω) dω =

(
∂μ

∂q

)2

0

mx20ω
2
0 π . (3.54)

Recalling that the amplitude is related to the average kinetic energy by x0 =√
4 〈Ekin〉 /m/ω0 (see Sect. 3.2.1), this is equal to
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∫ ∞

−∞
F(Rμ̇)(ω) dω =

(
∂μ

∂q

)2

0

· 4π 〈Ekin〉 =
(

∂μ

∂q

)2

0

· 2π kBT . (3.55)

This means that the integral of the Fourier transform of the dipole moment auto-
correlation in a harmonic oscillator is proportional to the average kinetic energy (or
the temperature) and the squared derivative of the dipole moment along the mass-
weighted coordinate at the equilibrium position. The latter is the same term as the one
appearing in static quantum chemistry (see Eq.2.59). Comparing these two expres-
sions leads to the following definition of the IR spectrum in MD simulations:

A(ω) = NA

24π ε0c2kBT

∫ ∞

−∞
〈μ̇(τ ) · μ̇(τ + t)〉τ exp(−iωt) dt. (3.56)

In this expression, the vector autocorrelation of the dipole moment is introduced
to switch over to the general three-dimensional case. The prefactor ensures that—
for a harmonic oscillator with a linear dependence of the dipole moment on the
position—the integral of the spectrum is equal to the integral absorption coefficient
in static quantum chemistry. For comparison to experimental data later on, it is more
convenient to use the wavenumber-dependent representation

A(ν̃) = NA

12ε0ckBT

∫ ∞

−∞
〈μ̇(τ ) · μ̇(τ + t)〉τ exp(−2π icν̃t) dt, (3.57)

which is the one actually calculated in the Travis implementation.
The concept of IR spectra from the Fourier transform of the dipole moment auto-

correlation function has been known in the literature for a long time [34]. The usual
derivation starts with Fermi’s golden rule (2.56) and transforms the formula for the
IR absorption coefficient from the Schrödinger picture to the Heisenberg picture of
quantum mechanics [35, 36]. In the resulting expressions, the quantum correlation
functions are approximated by classical correlation functions. Since these do not
satisfy the detailed balance condition [37], several quantum correction factors have
been discussed [28, 29, 38–42], and it has been concluded that the best choice is
the factor called “harmonic correction”. Although different variants of the constant
prefactor have been applied, this correction factor yields the same frequency depen-
dence as in Eq. (3.56). Here, this formula is directly derived in an alternative fashion
by comparing the results for a harmonic oscillator. This clarifies the close relation
of MD and static calculations regarding vibrational spectra.

Replacing the dipolemoment by the polarizability, the same derivation can in prin-
ciple be carried out for Raman spectra. The only point requiring special attention
is that the polarizability is a second-order tensor and the static quantum chemistry
formulas contain various combinations of its elements (see Sect. 2.4.3). The general
rule is to replace each quadratic term containing polarizability derivatives along the
normal coordinates by the corresponding autocorrelation function of the polarizabil-
ity time derivatives. Choosing the prefactor in such a way that the integral of the MD
spectrumagreeswith the differential Raman scattering cross section in static quantum

http://dx.doi.org/10.1007/978-3-319-49628-3_2
http://dx.doi.org/10.1007/978-3-319-49628-3_2
http://dx.doi.org/10.1007/978-3-319-49628-3_2
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chemistry (for a harmonic oscillator with a linear dependence of the polarizability on
the position), the polarized frequency-dependent differential Raman scattering cross
sections for fixed molecular orientation with respect to the laboratory coordinate
system are given by

I‖(ω)= �

64π3 ε20c4kBT

(ωin − ω)4

ω
(
1 − exp

(
− �ω

kBT

))
∫ ∞

−∞

〈
α̇xx(τ )α̇xx(τ + t)

〉
τ
exp(−iωt) dt

(3.58)
and

I⊥(ω)= �

64π3 ε20c4kBT

(ωin − ω)4

ω
(
1 − exp

(
− �ω

kBT

))
∫ ∞

−∞

〈
α̇xy(τ )α̇xy(τ + t)

〉
τ
exp(−iωt) dt.

(3.59)

For random molecular orientation with respect to the laboratory coordinate system,
the expressions read as

I‖(ω) = �

64π3 ε20c4kBT

(ωin − ω)4

ω
(
1 − exp

(
− �ω

kBT

)) 45a(ω) + 4γ (ω)

45
(3.60)

and

I⊥(ω) = �

64π3 ε20c4kBT

(ωin − ω)4

ω
(
1 − exp

(
− �ω

kBT

)) 3γ (ω)

45
(3.61)

with the isotropic contribution

a(ω) =
∫ ∞

−∞

〈
α̇xx(τ ) + α̇yy(τ ) + α̇zz(τ )

3

α̇xx(τ + t) + α̇yy(τ + t) + α̇zz(τ + t)

3

〉
τ

exp(−iωt) dt

(3.62)
and the anisotropic contribution

γ (ω) =
∫ ∞

−∞

[
1

2

〈(
α̇xx(τ ) − α̇yy(τ )

)(
α̇xx(τ + t) − α̇yy(τ + t)

)〉
τ

+ 1

2

〈(
α̇yy(τ ) − α̇zz(τ )

)(
α̇yy(τ + t) − α̇zz(τ + t)

)〉
τ

+ 1

2

〈(
α̇zz(τ ) − α̇xx(τ )

)(
α̇zz(τ + t) − α̇xx(τ + t)

)〉
τ

+ 3
〈
α̇xy(τ )α̇xy(τ + t)

〉
τ
+ 3

〈
α̇yz(τ )α̇yz(τ + t)

〉
τ

+ 3
〈
α̇zx(τ )α̇zx(τ + t)

〉
τ

]
exp(−iωt) dt.

(3.63)
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Similar to the IR spectrum (3.56), these formulas can be transferred to the
wavenumber-dependent representation, which is the one actually calculated in
Travis. For fixed molecular orientation with respect to the laboratory coordinate
system, this yields

I‖(ν̃) = h

8ε20kBT

(ν̃in − ν̃)
4

ν̃
(
1 − exp

(
− hcν̃

kBT

))
∫ ∞

−∞

〈
α̇xx(τ )α̇xx(τ + t)

〉
τ
exp(−2π icν̃t) dt

(3.64)
and

I⊥(ν̃) = h

8ε20kBT

(ν̃in − ν̃)
4

ν̃
(
1 − exp

(
− hcν̃

kBT

))
∫ ∞

−∞

〈
α̇xy(τ )α̇xy(τ + t)

〉
τ
exp(−2π icν̃t) dt.

(3.65)

The formulas for random molecular orientation with respect to the laboratory coor-
dinate system are given by

I‖(ν̃) = h

8ε20kBT

(ν̃in − ν̃)
4

ν̃
(
1 − exp

(
− hcν̃

kBT

)) 45a(ν̃) + 4γ (ν̃)

45
(3.66)

and

I⊥(ν̃) = h

8ε20kBT

(ν̃in − ν̃)
4

ν̃
(
1 − exp

(
− hcν̃

kBT

)) 3γ (ν̃)

45
(3.67)

with the isotropic contribution

a(ν̃) =
∫ ∞

−∞

〈
α̇xx(τ ) + α̇yy(τ ) + α̇zz(τ )

3

α̇xx(τ + t) + α̇yy(τ + t) + α̇zz(τ + t)

3

〉
τ

· exp(−2π icν̃t) dt
(3.68)

and the anisotropic contribution

γ (ν̃) =
∫ ∞

−∞

[
1

2

〈(
α̇xx(τ ) − α̇yy(τ )

)(
α̇xx(τ + t) − α̇yy(τ + t)

)〉
τ

+ 1

2

〈(
α̇yy(τ ) − α̇zz(τ )

)(
α̇yy(τ + t) − α̇zz(τ + t)

)〉
τ

+ 1

2

〈(
α̇zz(τ ) − α̇xx(τ )

)(
α̇zz(τ + t) − α̇xx(τ + t)

)〉
τ

+ 3
〈
α̇xy(τ )α̇xy(τ + t)

〉
τ
+ 3

〈
α̇yz(τ )α̇yz(τ + t)

〉
τ

+ 3
〈
α̇zx(τ )α̇zx(τ + t)

〉
τ

]
exp(−2π icν̃t) dt.

(3.69)
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The quotient I⊥(ν̃)/I‖(ν̃) provides the depolarization ratio ρ(ν̃) as a function of
the wavenumber. The result, however, is only meaningful in the region of Raman
bands. Anywhere else, it is just numerical noise due to the division of two very small
numbers.

3.4 Dipole Moments and Polarizabilities

3.4.1 Maximally Localized Wannier Functions

In the last section, it was shown how IR and Raman intensities can be obtained
from the temporal development of dipole moments and polarizabilities. Now, it is
discussed how these quantities can be calculated in AIMD simulations.

In principle, the dipole moment is easily computed as the expectation value of
the dipole operator after the wave function is known by the electronic structure
method. This approach works very well for isolated molecules in the gas phase, and
it is available in most quantum chemistry software packages. An AIMD simulation
of a liquid, however, suffers from the problem that the standard dipole operator
is ill-defined when periodic boundary conditions are applied. This issue has been
solved by the Berry phase approach to polarization [43–45], which can provide the
dipole moment of the whole simulation cell under periodic boundary conditions.
Combining this method with perturbation theory, it is also possible to calculate the
polarizability [46].

In many applications, it is desirable to assign an individual dipole moment to
each molecule of the system. This improves the sampling of the spectra, but more
importantly, it also allows to separate the spectral contributions of the components in
a mixture and it provides the possibility to study the individual spectrum of a solute
molecule. For this purpose, the scheme of maximally localized Wannier functions
[47–51] can be used in DFT. By a unitary transformation of the occupied Kohn–
Sham orbitals, a set of localized Wannier orbitals is created. The particular form
of this transformation is chosen in such a way that a specific spread functional
of the Wannier orbitals (see the references for details) is minimized. The position
expectation values ri of these Wannier orbitals are called Wannier function centers,
and they can be interpreted in a chemical sense as the locations of electron pairs. In a
bulk phase AIMD simulation, the Wannier function centers are usually located near
the molecules, allowing for a distinct assignment of each center to one molecule on
the basis of a minimum distance criterion. For each molecule I , the dipole moment
is given by the classical definition summing over the point charges:

μI = −2e
N∑

i=1

ri + e
M∑

A=1

ZARA, (3.70)

where e is the elementary charge, the first sum is over all Wannier function centers
assigned to the molecule, and the second sum is over all nuclei of the molecule with
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the positions RA and the charges ZA. If pseudopotentials are employed, the number
of electrons in the pseudopotential has to be subtracted from the nuclear charge to
obtain ZA. The sum of all molecular dipole moments calculated in this way is a good
approximation to the total dipole moment of the simulation cell [50]. It should be
noted that theWannier localization itself is required to be performed by the simulation
software package while Travis takes the resultingWannier function centers as input
to carry out the assignment to the molecules and to calculate the dipole moments.

A possible calculation scheme for polarizabilities is found by recalling that the
dipole moment induced by an electric field E is given in linear approximation as

μind = αE, (3.71)

whereα is the second-order polarizability tensor. This suggests to perform additional
single-point calculations with an external electric field for each step of the AIMD
simulation and to record the dipole moment changes. The polarizability is the dipole
moment change divided by the electric field strength. If theWannier function centers
are used for the dipole moment, this approach provides individual polarizabilities
for each molecule. To obtain the complete polarizability tensor, this has to be car-
ried out using three linear independent polarization vectors for the electric field. In
the simplest case, these are the three Cartesian coordinate axes with the same field
strength, since this makes the inversion of Eq. (3.71) trivial. If the complete polariz-
ability tensor is available, Raman spectra can be calculated for random orientation of
the simulation cell with respect to the laboratory coordinate system as in Eqs. (3.66)
and (3.67). However, this is not necessarily needed as long as isotropic systems are
studied, since the molecules rotate in a typical MD simulation and they will adopt
all possible orientations with respect to the cell coordinate system by themselves if
the trajectory is sufficiently long. This allows to identify the cell coordinate system
with the laboratory coordinate system, so that only αxx and αxy (see Eqs. (3.64) and
(3.65)) are needed to calculate the Raman spectrum. These two components of the
polarizability tensor can be found by only one additional single-point calculation
with an external electric field along the x axis. Experience shows that the complete
polarizability tensor provides only minor improvements to this approach, and it is
normally not necessary to invest three times the computational resources as long as
depolarization ratios are not needed.

The calculation of polarizabilities on the basis of Eq. (3.71) neglects changes in
the local electric field of amolecule by the polarization of the neighboringmolecules.
These can be included by considering dipole–dipole interaction tensors computed by
Ewald summation under periodic boundary conditions as explained in references [52,
53]. This method always requires to spend the computational resources for apply-
ing the electric field with three linear independent polarization directions. A recent
study of water has shown that this has only a minor influence on the resulting Raman
spectra [54].

Another important way to save computational resources is to calculate the polariz-
ability not in all steps of the trajectory. According to the Nyquist–Shannon theorem,
e.g., sampling the polarizability with a timestep of 4 fs is sufficient to obtain the
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Raman spectrum up to a wavenumber of 4170 cm−1. IR spectra benefit in a sim-
ilar manner from this fact, since already the Wannier localization to calculate the
dipole moments can be very costly. The only point that needs special attention is
the computation of the time derivative that enters the autocorrelation functions (see
Sect. 3.3). This derivative is never known exactly, but it has to be calculated by finite
differences. Taking a larger timestep makes this approximation worse. Fortunately,
the error made by the finite difference can be quantified in an easy way. For a cosine
function cos(ωt + ϕ), it can be shown (see Appendix B.5) that the second-order
central finite difference derivative is given by

D cos(ωt + ϕ) = cos(ω(t + �t) + ϕ) − cos(ω(t − �t) + ϕ)

2�t
= −ω sin(ωt + ϕ)

sin(ω�t)

ω�t
,

(3.72)

meaning that the exact derivative d(cos(ωt +ϕ))/dt = −ω sin(ωt +ϕ) is multiplied
by the sinc function sin(ω�t)/(ω�t). In other words, the amplitude of a harmonic
vibration is modified but its frequency is not affected. This allows to correct the
finite difference error by a simple factor in the final spectra. Since the product of two
time derivatives enters the autocorrelation, the final spectra have to be divided by the
square (sin(ω�t)/(ω�t))2 of the sinc function.

3.4.2 Voronoi Tessellation of the Electron Density

A major issue of the maximally localized Wannier function scheme is the computa-
tional effort required for the localization. In systems with several hundred atoms, this
easily takes much longer than the actual electronic structure calculation, in particular
when the convergence is slow. To avoid this huge impact on the computation time to
get IR and Raman spectra from an AIMD simulation, an alternative idea was imple-
mented in the course of this thesis. It relies on the fact that it is sufficient to know
the total electron density to calculate the dipole moment by integration according to
the classical definition. The Wannier function centers allow to assign each orbital to
a molecule, but this is actually unnecessary, as it is only needed to divide the total
electron density into molecular contributions. Any scheme to partition the electron
density, which is inherently available in each AIMD snapshot, should be applicable
for this purpose. Many such techniques are known [55–65], mainly to assign atomic
partial charges in molecules.

A simplemethod to generally partition the space of a simulation cell is theVoronoi
tessellation [66]. TheVoronoi tessellation takes a set ofn sites si as input, and it creates
n Voronoi cells Ci according to

Ci = {
x ∈ R

3
∣∣ (x − si)

2 ≤ (x − sj)
2 ∀ j �= i

}
, i, j = 1, . . . , n. (3.73)

This means that cell Ci consists of all points that are closer to site si than to any other
site. The Voronoi tessellation is unique and it assigns each point in space to exactly
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one cell. The cell faces are always placed midway between two atoms, which has
already been used to assign atomic partial charges on the basis of the electron density
[67].

It contradicts chemical intuition that the Voronoi tessellation equally divides the
space between two atoms irrespective of their kind. In later applications to the cal-
culation of atomic partial charges [68–70] and the molecular multipole moments of
water clusters [71], the boundary planes were shifted therefore. In reference [69],
radii were assigned to the atoms, and the position of the cell face between two atoms
was determined by the ratio of their radii. This approach, however, suffers from the
vertex error [72], meaning that not all points in space are assigned to a cell, and
the tessellation contains holes. For the separation of the water molecules in refer-
ence [71], the original Voronoi tessellation was employed, but the Voronoi sites of
the hydrogen atoms were shifted along the O-H bonds toward the oxygen atoms until
the boundary between two water molecules was approximately located in the mini-
mum of the electron density. This approach is not generally transferable to arbitrary
systems.

An extended partitioning scheme that allows to keep the Voronoi sites at the atom
positions and does not suffer from the vertex error is the radical Voronoi tessellation
[73]. In this method, a radius ri is assigned to each site and the cells are defined by

Cr
i = {

x ∈ R
3

∣∣ (x−si)
2−r2i ≤ (x−sj)

2−r2j ∀ j �= i
}
, i, j = 1, . . . , n. (3.74)

This means that the distance to the sites themselves from the original Voronoi tes-
sellation is replaced by the power distance to spheres around the sites with the
corresponding radii. The position of the cell face between two atoms is determined
by the difference of the squared radii. For each cell, it is possible to calculate the
charge

qi =
∫

Cr
i

ρ(r) dr (3.75)

and the dipole moment

μi =
∫

Cr
i

rρ(r) dr (3.76)

according to the classical definitions, where the integration has to be carried out over
the volume of the cell. The cells belonging to atoms of the same molecule can be
joined to gain a molecular cell, and the charges and dipole moments of the atomic
cells can be added to obtain a molecular charge and a molecular dipole moment. The
general idea of the Voronoi tessellation is illustrated in Fig. 3.12.

In practice, the electron density is usually output on a regular grid by simulation
software packages, and the integration is most easily performed by the rectangle
method. For the radical Voronoi tessellation, the Voro++ library of Chris Rycroft
[74] was adopted in Travis. This library takes the Voronoi sites with their radii as
input and it provides separately for each site the vertex coordinates of the correspond-
ing Voronoi cell. The straightforward approach to the integration would be to check
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Fig. 3.12 Schematic illustration of the radical Voronoi tessellation at the example of phenol. The
electron density is indicated by black isolines, the Voronoi radii are denoted by dotted circles, and
the radical Voronoi cells are shown by gray lines. Combining the cells of atoms in the samemolecule
yields the molecular cells drawn in black

for each electron density grid point one after another to which cell it belongs and to
add it to the integral of this cell. Amore efficientmethod, however, is as follows1: The
electron density grid is stored internally in memory such that adjacent points along
the first cell vector h1 (the x axis in an orthorhombic cell) appear contiguously. This
means that the grid is mapped to a number of ordered point sets, where in each set, the
points share the same coordinates along the second cell vector h2 and the third cell
vector h3 (the y and z axes in an orthorhombic cell). After the Voronoi tessellation is
known, the maximum extent along h2 and h3 (bounding box) is determined for each
cell first. This reduces the number of point sets possibly contributing to the cell, as all
point sets outside of this coordinate range do not need to be considered further. For
each of the remaining point sets, the intersections of a straight line parallel to h1 with
the corresponding coordinates along h2 and h3 are computed. Since Voronoi cells
are always convex, this line hits either none or two of the cell faces. In the latter case,
it follows easily from the coordinates of the intersections along h1, which points of
the set are located inside of the cell and have to be added to the integral (see Fig. 3.13
for an illustration in two dimensions, where the cell faces are straight lines).

The calculation of the intersections of the cell faces and a line through the point
set requires some elementary vector algebra. The Hesse normal form of a cell face
plane reads as

n · (x − c) = 0, x ∈ R
3, (3.77)

1I would like to thank Dr. Martin Brehm for the initial idea of this algorithm and the initial imple-
mentation for orthorhombic simulation cells.
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Fig. 3.13 Left: Illustration of the discrete integration over Voronoi cells in two dimensions. The
dashed lines mark the maximum extent of the cell along h2, the thin solid lines connect the point
sets sharing the same coordinate along h2, and the large circles indicate the grid points between the
intersections that are added to the integral. Right: Local coordinate system of a Voronoi cell face
used to calculate the intersection t with a line. The normal vector n is perpendicular to the paper
plane

where n is the normal vector of the plane and c is the centroid of the face. The straight
line through the point set can be written as

x = λh1 + bh2 + ch3, λ ∈ R, (3.78)

with the common coordinates b and c of the point set along h2 and h3. Combining
these two equations allows to determine λ and yields

t = n · (c − bh2 − ch3)

n · h1
h1 + bh2 + ch3 (3.79)

for the intersection t of the line with the plane in Cartesian coordinates. To find out
whether this intersection is located inside of the cell face, a local coordinate system
is defined (see Fig. 3.13), which consists of the normal vector n and two vectors s1
and s2 in the plane. The centroid c is the origin of the coordinate system. Starting
from the vertex coordinates {p1, . . . , pn} provided by the Voronoi tessellation, the
centroid c is calculated and the basis vectors are constructed by:

s1 = p1 − c
|p1 − c| , n = s1 × (p2 − c)

|s1 × (p2 − c)| , s2 = s1 × n. (3.80)

(Since n is needed to compute the intersection in Eq. (3.79), this step is actually
performed beforehand.) Calculating the scalar products (pi − c) · s1 and (pi − c) · s2
as well as (t − c) · s1 and (t − c) · s2 provides the coordinates of the vertices p′

i
and the intersection t′ in the local face coordinate system. The coordinate along n is
always zero by construction. According to the shoelace formula, the signed area of
the triangle (t′, p′

i, p′
i+1) with i ∈ Z/nZ is given by

A1 = 1

2

[
(t′)1(p′

i)2 + (p′
i)1(p

′
i+1)2 + (p′

i+1)1(t
′)2 − (p′

i)1(t
′)2 − (p′

i+1)1(p
′
i)2 − (t′)1(p′

i+1)2

]
,

(3.81)
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where the subscripts 1 and 2 at the parentheses denote the coordinates along s1 and
s2, respectively. Considering that the centroid is the origin of the local face coordinate
system, the area of the triangle (c′, p′

i, p′
i+1) is similarly given by

A2 = 1

2

[
(p′

i)1(p
′
i+1)2 − (p′

i+1)1(p
′
i)2

]
. (3.82)

If both areas have the same sign, t and c are located on the same side of the edge
between pi and pi+1. Only if this condition is fulfilled for all edges, the intersection
is located inside of the cell face, and its coordinate along h1 reads as

a = n · (c − bh2 − ch3)

n · h1
. (3.83)

Taking this coordinate for both intersections with the Voronoi cell, rounding up the
smaller value, and rounding down the larger value provides the indices of the first
and the last point in the point set that have to be added to the integral.

The internal design of the Voro++ library can sometimes cause numerical prob-
lems with this approach. As each Voronoi cell is computed independently on the
basis of the Voronoi sites, the coordinates of a common vertex shared by several
cells can differ between the cells in the order of the machine precision. This means
that very small volumes of the simulation cell are actually assigned to two Voronoi
cells while other very small volumes do not belong to any Voronoi cell. Although
the spacing of the grid points is by orders larger than the machine precision, it can
accidentally happen that grid points are located within these small volumes. To avoid
an assignment of any grid point either to two cells or to no cell, grid points very close
to a cell face are shifted temporarily by a small positive displacement along the cell
vectors until they can unambiguously be assigned to exactly one cell.

It is apparent in Fig. 3.13 that the accuracy of the integration depends on the
grid spacing, since the shape of the Voronoi cell is rasterized to the electron density
data grid. Also if the Voronoi cell moves smoothly during an AIMD simulation, the
integral shows finite jumps over time, as grid points can only enter or leave the cell
completely at once. Moreover, the assignment of each grid point to exactly one cell
can introduce a systematic error in highly ordered systems such as crystals, where
many grid points might be close to cell faces. To avoid these distortions, it would
be desirable to have some kind of equitable binning [1]. Along h1, this is easily
implemented by weighting the grid points adjacent to the cell faces by the relative
distance to the intersection.A suitable algorithm in this sense for the other cell vectors
has, however, not been found yet. Applying the equitable binning only for h1 turned
out to make the results worse, probably because one of the cell vectors is favored and
the rotational invariance is disturbed even more. As an alternative approach, a linear
interpolation of the grid is therefore available in Travis. This allows to create an
arbitrary number of intermediate points in the data grid provided by the simulation
software. The linear interpolation is consistent with the rectangle method, so the total
integral of the grid is not changed, but the finer mesh allows for a more appropriate
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representation of the cell shape. In the limit of infinitely many intermediate points
this would provide a true equitable binning. This interpolation can be carried out on
the fly, so the memory requirements are not increased.

For the dipole moment, it is important to note that it generally depends on the
reference point. Choosing r′ as the reference point or, equivalently, calculating the
dipole moment in a shifted coordinate system with r′ as origin yields

μ′
i =

∫
Cr

i

(r − r′)ρ(r) dr =
∫

Cr
i

rρ(r) dr − r′
∫

Cr
i

ρ(r) dr = μi − qir′. (3.84)

Only if the charge qi is zero, the dipole moment is independent of r′. This leads to the
general issue that the dipole moment of a molecular ion cannot be defined uniquely.
Several possibilities to select the reference point have been discussed in the context
of ionic liquids [75]. In connection with vibrational spectra, the most reasonable
choice is the center of mass, which remains fixed in all normal modes, so that the
reference point becomes independent of the internal degrees of freedom. In all other
cases, translational motion can show up in the spectra (see Appendix B.6).

It remains to discuss how the radii for the radical Voronoi tessellation should be
chosen. For the calculation of spectra, which rely on molecular dipole moments,
the most important aim is a reasonable separation of the molecules in the bulk,
whereas the intramolecular partitioning of the electron density is of minor interest.
This suggests to employ van der Waals radii [76–78], since these were fitted to
reproduce intermolecular distances. For the assignment of atomic partial charges,
on the other hand, it would be more important to get a proper distribution of the
electron density within the molecule, and minor deficiencies in the partitioning of
the low electron density between the molecules can be accepted. This suggests to
apply covalent radii [79], as these were fitted to reflect intramolecular bond lengths.
A further justification of these choices is given in Sect. 4.5.1 by an investigation of
the standard deviations in the charge distribution functions that were implemented
in Travis.

3.5 Magnetic Moments and Vibrational Circular Dichroism

VCD is a spectroscopic technique closely related to IR spectroscopy. It measures
the difference in the absorption of left and right circularly polarized IR radiation,
so it is a prominent method to investigate chiral molecules. Both enantiomers of a
chiral molecule show the same VCD intensities but with opposite sign, meaning that
their spectra are mirror images with respect to the wavenumber axis. If theoretical
methods are used to predict the VCD spectrum of a chiral molecule, this allows to
determine the absolute configuration of an experimental sample.

A few quantum chemistry software packages provide the possibility to obtain
VCD intensities by static calculations with DFT. These implementations compute

http://dx.doi.org/10.1007/978-3-319-49628-3_4
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rotational strengths relying either on magnetic field perturbation theory [80–83] or
on nuclear velocity perturbation theory [84–90]. Alternatively, it has been shown in
the context of MD simulations [91–93] that the VCD spectrum can be calculated by
Fourier transforming the cross-correlation of the dipole moment and the magnetic
moment. (The terms dipole moment and magnetic moment are used throughout
this thesis to refer to the electric dipole moment and the magnetic dipole moment,
respectively.) A derivation starting with the one-dimensional harmonic oscillator
analogous to Sect. 3.3 is not possible here, since this system does not possess a mag-
neticmoment.Nevertheless, the expressions for IR andVCDspectra in reference [91]
can be compared, revealing that the prefactors—in SI units—just differ by the speed
of light c. The same result is found with the formulas in reference [93]. Following
Eq. (3.56) for the IR intensity, the VCD spectrum is therefore defined as

�A(ω) = NA

24π ε0c3kBT

∫ ∞

−∞
[〈μ̇(τ ) · ṁ(τ + t)〉τ − 〈ṁ(τ ) · μ̇(τ + t)〉τ

]
exp(−iωt) dt, (3.85)

where m is the magnetic moment. The corresponding wavenumber-dependent rep-
resentation reads as

�A(ν̃) = NA

12ε0c2kBT

∫ ∞

−∞
[〈μ̇(τ ) · ṁ(τ + t)〉τ − 〈ṁ(τ ) · μ̇(τ + t)〉τ

]
exp(−2π icν̃t) dt.

(3.86)

The crucial point in this approach is the calculation of the magnetic moments.
While dipole moments are readily accessible in AIMD by the methods described
in Sect. 3.4, this is not the case for magnetic moments so far. Previous applications
of the time-correlation formalism applied atomic axial tensors by magnetic field
perturbation theory to parametrize theMD force field [92], or they used atomic partial
charges to calculate the magnetic moment according to the classical definition for
point charges:

mI = 1

2

M∑
A=1

qARA × VA. (3.87)

Either the charges were fixed [91], or they were obtained by population analyses in a
QM/MM setup [93, 94]. The utilization of atomic partial charges is perfectly suited
for MD simulations with classical force fields. However, it poses a clear restriction
for AIMD where the complete electron density is known, and computing atomic
partial charges drops information that is actually present. Furthermore, the charges
always depend on the method chosen for the population analysis, so they are not
uniquely defined. Therefore, an important aim in the course of this thesis was the
development of a model for magnetic moments in AIMD that directly relies on the
electron density.

In theWannier center approach, dipole moments are calculated by a classical sum
over point charges (see Eq. (3.70)). This suggests to extend Eq. (3.87) for magnetic
moments to include the Wannier centers as equivalents of electron pairs:
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mI = −2e · 1
2

N∑
i=1

ri × vi + e · 1
2

M∑
A=1

ZARA × VA, (3.88)

where the first sum is over all Wannier centers and the second sum is over all
nuclei with the effective charges ZA accounting for pseudopotentials. This expression
includes the velocities vi of the Wannier centers. In principle, these can readily be
computed by finite difference derivation of the Wannier center coordinates ri anal-
ogous to the nuclear velocities in Eq. (3.23). In practice, this is hampered by the
fact that there is no specific ordering of the Wannier centers, so they are arbitrarily
mixed in each step of the trajectory. This requires to sort the Wannier centers in each
snapshot, so that they can be followed along the trajectory before the velocities are
calculated. A reasonable criterion for this purpose is that the sum of the squared dis-
tances between theWannier centers in two subsequent steps should becomeminimal.
To this end, the Kuhn–Munkres algorithm [95, 96] was implemented in Travis.

Another issue is the jumping of the Wannier centers in certain cases. In aromatic
rings, e.g., the Wannier localization produces an alternating pattern of single and
double bonds (see Sect. 4.5.3 for further details). Switching between the two possible
ways to form this pattern yields large velocities of the correspondingWannier centers,
leading to unphysically largemagneticmoments. Effects of this kind cannot generally
be avoided, and are probably the reason, why it turned out to be impossible to obtain
reasonable magnetic moments or meaningful VCD spectra with the Wannier center
technique according to Eq. (3.88). Neither did the spectra coincide with experimental
data, nor were they stable with respect to simulation parameters such as the timestep.

In the more general definition of the dipole moment, the sum over point charges
is replaced by an integration over the electron density (see Eq. (3.76)). The corre-
sponding classical definition of the magnetic moment reads as

mi = 1

2

∫
Cr

i

r × j(r) dr, (3.89)

where j(r) is the electric current density. If the electric current density is known,
molecular magnetic moments can be calculated in the same manner as molecular
dipole moments by integration over Voronoi cells. However, the computation of the
current density on the basis of the electron density requires further assumptions. In
principle, these two quantities are connected by the continuity equation

∂ρ(r)
∂t

+ ∇ · j(r) = 0. (3.90)

This means that changes in the electron density act as sources and sinks of an electric
current. If the electron density is saved in each snapshot of the trajectory, the time
derivative can be calculated by finite difference derivation after the simulation. This
allows to find the divergence of the current density in each step, but this is not
sufficient for a unique definition of the current density itself. Any arbitrary solenoidal

http://dx.doi.org/10.1007/978-3-319-49628-3_4
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vector field can be added to the current density without violating the continuity
equation. This is equivalent to the statement that arbitrary eddy currents cannot be
seen as changes in the electron density. Furthermore, it is closely related to the
abovementioned jumping of the Wannier centers, e.g., the switching of the Wannier
localization between the two patterns of alternating single and double bonds in an
aromatic ring is just a particular eddy current. The more general concept on the basis
of the current density allows to avoid these effects explicitly.

The naive ansatz to avoid eddy currents would be to demand that the current
density is an irrotational vector field, so it could be expressed as the gradient of
a scalar field. It is appealing that this would turn the continuity Eq. (3.90) into the
Poisson equation,which can be solved under periodic boundary conditions byFourier
transform very efficiently. However, it becomes easily apparent that this would not
yield the desired result: Substituting the electric field for the current density and the
charge density for the density derivative, the Poisson equation also describes the
electric field caused by a charge distribution. If a small electron density distribution
moves with constant speed along a straight line, the density derivative looks like a
dipole, being negative where the density distribution moves away and positive where
it moves to. Thus, the current density of this system would look like the electric field
of a dipole, ranging far into the empty space. However, it is expected that the current
density of this system points into the moving direction and is zero outside of the
charge distribution. For that reason, it is assumed instead that the current density is
the product of the electron density ρ(r) and a conservative velocity field v(r) which
is expressed as the negative gradient of a scalar field α(r):

j(r) = ρ(r)v(r) = −ρ(r)∇α(r). (3.91)

In this way, the current can only flow in spatial regions with finite electron density,
but still it follows an irrotational vector field. The same ansatz is employed, e.g., to
describe a potential flow in fluid dynamics, which is used to model the irrotational
flow of a homogeneous fluid with negligible frictional forces. This is a reasonable
analogon of the molecular electron density in the classical limit.

Inserting ansatz (3.91) into the continuity equation (3.90) yields

∂ρ(r)
∂t

= −∇ · j(r)

= −∇ · (−ρ(r)∇α(r))

= (∇ρ(r)) · (∇α(r)) + ρ(r)�α(r). (3.92)

As the electron density is known from the AIMD, and its time derivative and its
gradient can be calculated by finite difference derivation, this constitutes a second-
order partial differential equation that needs to be solved to find the scalar field α(r)
which provides the current density j(r) according to Eq. (3.91).
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For a numerical solution of the differential equation (3.92), a finite difference
method is used in Travis. This means that the differential equation is discretized on
a regular grid, replacing it by a system of linear equations. Most easily, the already
present grid of the electron density data is used as discretization grid. The derivatives
of α(r) are approximated by second-order central finite differences, so the current
implementation only works for orthorhombic simulation cells where the cell vectors
are the Cartesian coordinate axes. If the grid consists of nx × ny × nz points with
spacings of hx, hy, and hz along the three axes, the components of the gradient are
given by

(Dxα)i,j,k = αi+1,j,k − αi−1,j,k

2hx
, (3.93)

(Dyα)i,j,k = αi,j+1,k − αi,j−1,k

2hy
, (3.94)

(Dzα)i,j,k = αi,j,k+1 − αi,j,k−1

2hz
, (3.95)

and the Laplacian reads as

(Lα)i,j,k = αi+1,j,k − 2αi,j,k + αi−1,j,k

h2
x

+ αi,j+1,k − 2αi,j,k + αi,j−1,k

h2
y

+ αi,j,k+1 − 2αi,j,k + αi,j,k−1

h2
z

,

(3.96)

where i, j, and k number the points along the x, y, and z axes, respectively. The periodic
boundary conditions are properly taken into account by i ∈ Z/nxZ, j ∈ Z/nyZ, and
k ∈ Z/nzZ, so, e.g., the successor of i = nx −1 is i = 0 and the predecessor of i = 0
is i = nx − 1. The grid is linearized in such a way that x lines and then xy planes of
the grid follow one after another, so l = i + jnx + knxny becomes the new index in
the one-dimensional arrays. This leads to the following matrix representation of the
system of linear equations that emerges from the discretization of Eq. (3.92):

A

⎛
⎜⎝

α0
...

αnxnynz−1

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

(
∂ρ

∂t

)
0

...(
∂ρ

∂t

)
nxnynz−1

⎞
⎟⎟⎟⎠ , (3.97)

where A = B + G ∈ R
nxnynz×nxnynz with the definitions
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h2 = 1

h2
x

+ 1

h2
y

+ 1

h2
z

, (3.98)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C0 F0 0 F0

F1 C1 F1
. . .

0 F2 C2
. . . 0

. . .
. . .

. . . Fnz−2

Fnz−1 0 Fnz−1 Cnz−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
nxnynz×nxnynz , (3.99)

Cm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Dmny Emny 0 Emny

Emny+1 Dmny+1 Emny+1
. . .

0 Emny+2 Dmny+2
. . . 0

. . .
. . .

. . . Emny+ny−2

Emny+ny−1 0 Emny+ny−1 Dmny+ny−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
nxny×nxny , (3.100)

Dn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2h2ρnnx

ρnnx
h2x

0 ρnnx
h2x

ρnnx+1

h2x
−2h2ρnnx+1

ρnnx+1

h2x

. . .

0 ρnnx+2

h2x
−2h2ρnnx+2

. . . 0
. . .

. . .
. . . ρnnx+nx−2

h2x
ρnnx+nx−1

h2x
0 ρnnx+nx−1

h2x
−2h2ρnnx+nx−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
nx×nx ,

(3.101)

En =

⎛
⎜⎜⎜⎜⎜⎝

ρnnx
h2y

0 · · · 0

0 ρnnx+1

h2y

. . .
...

...
. . .

. . . 0
0 · · · 0 ρnnx+nx−1

h2y

⎞
⎟⎟⎟⎟⎟⎠

∈ R
nx×nx , (3.102)

Fm =

⎛
⎜⎜⎜⎜⎜⎝

ρmnx ny

h2z
0 · · · 0

0
ρmnx ny+1

h2z

. . .
...

...
. . .

. . . 0
0 · · · 0

ρmnx ny+nx ny−1

h2z

⎞
⎟⎟⎟⎟⎟⎠

∈ R
nxny×nxny , (3.103)
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G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H0 K0 0 −K0

−K1 H1 K1
. . .

0 −K2 H2
. . . 0

. . .
. . .

. . . Knz−2

Knz−1 0 −Knz−1 Hnz−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
nxnynz×nxnynz , (3.104)

Hm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Imny Jmny 0 −Jmny

−Jmny+1 Imny+1 Jmny+1
. . .

0 −Jmny+2 Imny+2
. . . 0

. . .
. . .

. . . Jmny+ny−2

Jmny+ny−1 0 −Jmny+ny−1 Imny+ny−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
nxny×nxny , (3.105)

In =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
( ∂ρ

∂x )nnx
2hx

0 − ( ∂ρ

∂x )nnx
2hx

− ( ∂ρ

∂x )nnx+1

2hx
0

( ∂ρ

∂x )nnx+1

2hx

. . .

0 − ( ∂ρ

∂x )nnx+2

2hx
0

. . . 0
. . .

. . .
. . .

( ∂ρ

∂x )nnx+nx−2

2hx

( ∂ρ

∂x )nnx+nx−1

2hx
0 − ( ∂ρ

∂x )nnx+nx−1

2hx
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
nx×nx ,

(3.106)

Jn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∂ρ

∂y

)
nnx

2hy
0 · · · 0

0

(
∂ρ

∂y

)
nnx+1

2hy

. . .
...

...
. . .

. . . 0

0 · · · 0

(
∂ρ

∂y

)
nnx+nx−1

2hy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
nx×nx , (3.107)

Km =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

( ∂ρ

∂z )mnx ny

2hz
0 · · · 0

0
( ∂ρ

∂z )mnx ny+1

2hz

. . .
...

...
. . .

. . . 0

0 · · · 0
( ∂ρ

∂z )mnx ny+nx ny−1

2hz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
nxny×nxny . (3.108)

The square matrix A is sparse, and for the applications studied in this thesis, it
has in the order of 106 rows and columns. Several iterative algorithms have been
developed to solve systems of linear equations with this size [97]. As A is not sym-
metric, the extended biconjugate gradient stabilized method BiCGstab(l) [98–101]
was selected for Travis. A Fortran implementation of this method is available in
reference [102], which was transferred to C++ to be used in Travis. The conver-
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gence of the algorithm is improved by using an incomplete LU factorization [103]
of A for preconditioning. To exploit the sparsity of A and its incomplete LU factor-
ization for memory efficiency, the Travis implementation relies on the compressed
row storage format [97] to store the matrices. This means that not the whole matrices
are kept in memory, but only the value and the position of each nonzero entry are
saved.

Experience shows that the convergence behavior of the BiCGstab(l) algorithm
needs special attention due to numerical issues. Apart from the fact that the residual
is not smoothly reduced but oscillates, the algorithm usually reaches aminimum after
some iterations and strongly diverges then. Furthermore, it is not easy to estimate
how small the absolute value of the residual has to be to obtain reasonably converged
magnetic moments. Therefore, the following way is taken to select a convergence
threshold: In the first snapshot, the solution guess for α(r) is set to zero on the
whole grid. The threshold for all steps is calculated relative to the residual in the
first snapshot with this initial guess. Relative convergence criteria of 0.005 or 0.01
proved to be sufficient to converge the final magnetic moments within a few percent
in typical bulk phase simulations studied here (see also Sect. 4.6.1).With these values
and l = 4, about 10–20 iterations are usually needed to solve the system of linear
equations in the first step. Subsequently, the solution of the previous step is used
as guess for the next step, reducing the number of iterations to less than 10 in most
cases. The following check is incorporated to facilitate the application in a black-box
manner: if the algorithm diverges before the threshold is reached, it is restarted and
the threshold is temporarily increased to the lowest residual that occurred in the first
run for the snapshot. Future work could focus on other solution algorithms for the
system of linear equations (3.97) that might be more stable in this regard.

The integral of the density time derivative over the whole grid, which is the sum
of all elements on the right-hand-side of (3.97), has to vanish. Otherwise, this would
mean that the total electron density changes and that a current flows out of or into
the grid, but this is incompatible with periodic boundary conditions and would imply
that the total number of electrons is not conserved in the AIMD. Caused by the
error of the finite difference approximation to the time derivative, this condition is
not necessarily fulfilled in practice. For that reason, the values of the density time
derivative are shifted by their average before the system of linear equations (3.97) is
solved.

Another issue occurs in regions with vanishing electron density. In principle, α(r)
can take arbitrary values there without violating the differential equation (3.92). To
improve the stability of the solution algorithm in this case, the Travis implemen-
tation provides the possibility to add a constant background electron density. Since
this is done only for the determination of α(r), other quantities such as the dipole
moment are notmodified. Experience shows that densities in the order of 10−3 e/nm3

are necessary for gas phase calculations with large empty regions of the simulation
cell. However, this is not needed at all for the bulk phase simulations investigated
here.

http://dx.doi.org/10.1007/978-3-319-49628-3_4
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Analogous to the dipole moment, the magnetic moment depends on the choice of
the reference point. However, not only the position of the reference point, but also its
velocity are important. For an arbitrary electron density distribution with the centroid
s(t) that internally vibrates and globally moves, it can be shown (see Appendix B.6)
that the magnetic moment is given by

m(t) = ms(t) + 1

2
s(t) × Js(t) + 1

2
μs(t) × ∂s(t)

∂t
+ 1

2
q(t)s(t) × ∂s(t)

∂t
. (3.109)

Here, ms(t), Js(t), and μs(t) are the magnetic moment, the total current, and the
dipole moment, respectively, in the centroid coordinate system. The total current is
the integral over the current density,

J =
∫

Cr
i

j(r) dr, (3.110)

just as the charge is the integral over the electron density. Thus, the second term
of the sum in Eq. (3.109) is similar to the dependence of the dipole moment on the
reference point in Eq. (3.84). The time-dependence of ms(t) and Js(t) just stems
from the internal vibrations of the electron density, but similar to m(t), a general
total current is given by (see Appendix B.6)

J(t) = Js(t) + q(t)
∂s(t)
∂t

, (3.111)

where the translational motion appears too. The grid used to solve the partial differ-
ential equation (3.92) is fixed with respect to the simulation cell and the molecules
move around during the simulation. Based on the same justification as for dipole
moments, however, the molecular center of mass is the most reasonable choice for
the reference point when VCD spectra are calculated. Thus, the molecular magnetic
moments and the total currents obtained by integration of the current density solving
Eq. (3.92) are transformed according to Eqs. (3.109) and (3.111) in Travis.

References

1. M. Brehm, B. Kirchner, J. Chem. Inf. Model. 51, 2007–2023 (2011)
2. M. Brehm, Analyzing trajectories from molecular simulation (Universität Leipzig, Leipzig,

2014)
3. M. Thomas, M. Brehm, R. Fligg, P. Vöhringer, B. Kirchner, Phys. Chem. Chem. Phys. 15,

6608–6622 (2013)
4. M. Thomas, M. Brehm, O. Hollóczki, Z. Kelemen, L. Nyulászi, T. Pasinszki, B. Kirchner, J.

Chem. Phys. 141, 024510 (2014)
5. M. Thomas, M. Brehm, B. Kirchner, Phys. Chem. Chem. Phys. 17, 3207–3213 (2015)
6. J.M. Dickey, A. Paskin, Phys. Rev. 188, 1407–1418 (1969)
7. R. Futrelle, D. McGinty, Chem. Phys. Lett. 12, 285–287 (1971)



82 3 Methodological Developments

8. E. Kestemont, J.V. Craen, J. Comput. Phys. 22, 451–458 (1976)
9. D.W. Noid, M.L. Koszykowski, R.A. Marcus, J. Chem. Phys. 67, 404–408 (1977)

10. P.H. Berens, D.H.J. Mackay, G.M.White, K.R.Wilson, J. Chem. Phys. 79, 2375–2389 (1983)
11. M.-P. Gaigeot, M. Martinez, R. Vuilleumier, Mol. Phys. 105, 2857–2878 (2007)
12. M. Frigo, S. Johnson, Proc. IEEE 93, 216–231 (2005)
13. C.E. Shannon, Proc. IEEE 86, 447–457 (1998)
14. G. Mathias, M.D. Baer, J. Chem. Theory Comput. 7, 2028–2039 (2011)
15. G. Mathias, S.D. Ivanov, A. Witt, M.D. Baer, D. Marx, J. Chem. Theory Comput. 8, 224–234

(2012)
16. S.D. Ivanov, A. Witt, D. Marx, Phys. Chem. Chem. Phys. 15, 10270–10299 (2013)
17. J. Sun, G. Niehues, H. Forbert, D. Decka, G. Schwaab, D. Marx, M. Havenith, J. Am. Chem.

Soc. 136, 5031–5038 (2014)
18. J.M. Bowman, X. Zhang, A. Brown, J. Chem. Phys. 119, 646–650 (2003)
19. M. Kaledin, A. Brown, A.L. Kaledin, J.M. Bowman, J. Chem. Phys. 121, 5646–5653 (2004)
20. M. Buchner, B.M. Ladanyi, R.M. Stratt, J. Chem. Phys. 97, 8522–8535 (1992)
21. M. Cho, G.R. Fleming, S. Saito, I. Ohmine, R.M. Stratt, J. Chem. Phys. 100, 6672–6683

(1994)
22. R.M. Stratt, Acc. Chem. Res. 28, 201–207 (1995)
23. T. Keyes, J. Phys. Chem. A 101, 2921–2930 (1997)
24. T. Kalbfleisch, T. Keyes, J. Chem. Phys. 108, 7375–7383 (1998)
25. M. Nonella, G. Mathias, P. Tavan, J. Phys. Chem. A 107, 8638–8647 (2003)
26. R.A. Wheeler, H. Dong, S.E. Boesch, Chem. Phys. Chem. 4, 382–384 (2003)
27. R.A. Wheeler, H. Dong, Chem. Phys. Chem. 4, 1227–1230 (2003)
28. M. Schmitz, P. Tavan, J. Chem. Phys. 121, 12233–12246 (2004)
29. M. Schmitz, P. Tavan, J. Chem. Phys. 121, 12247–12258 (2004)
30. A. Strachan, J. Chem. Phys. 120, 1–4 (2004)
31. M. Martinez, M.-P. Gaigeot, D. Borgis, R. Vuilleumier, J. Chem. Phys. 125, 144106 (2006)
32. C. Eckart, Phys. Rev. 47, 552–558 (1935)
33. O. Sorkine, Least-squares rigidmotion using SVD, http://igl.ethz.ch/projects/ARAP/svd_rot.

pdf. Accessed 7 June 2013
34. R.G. Gordon, J. Chem. Phys. 43, 1307–1312 (1965)
35. D. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, 2000)
36. D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods

(Cambridge University Press, Cambridge, 2009)
37. J. Borysow, M. Moraldi, L. Frommhold, Mol. Phys. 56, 913–922 (1985)
38. P.L. Silvestrelli, M. Bernasconi, M. Parrinello, Chem. Phys. Lett. 277, 478–482 (1997)
39. M.-P. Gaigeot, M. Sprik, J. Phys. Chem. B 107, 10344–10358 (2003)
40. R. Ramírez, T. López-Ciudad, P.P. Kumar, D. Marx, J. Chem. Phys. 121, 3973–3983 (2004)
41. C.P. Lawrence, A. Nakayama, N. Makri, J.L. Skinner, J. Chem. Phys. 120, 6621–6624 (2004)
42. R. Iftimie, M.E. Tuckerman, J. Chem. Phys. 122, 214508 (2005)
43. R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47, 1651–1654 (1993)
44. R. Resta, Rev. Mod. Phys. 66, 899–915 (1994)
45. R. Resta, Phys. Rev. Lett. 80, 1800–1803 (1998)
46. A. Putrino, D. Sebastiani, M. Parrinello, J. Chem. Phys. 113, 7102–7109 (2000)
47. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847–12865 (1997)
48. P.L. Silvestrelli, M. Parrinello, Phys. Rev. Lett. 82, 3308–3311 (1999)
49. P.L. Silvestrelli, M. Parrinello, J. Chem. Phys. 111, 3572–3580 (1999)
50. B. Kirchner, J. Hutter, J. Chem. Phys. 121, 5133–5142 (2004)
51. R. Iftimie, J.W. Thomas, M.E. Tuckerman, J. Chem. Phys. 120, 2169–2181 (2004)
52. R.J. Heaton, P.A. Madden, S.J. Clark, S. Jahn, J. Chem. Phys. 125, 144104 (2006)
53. M. Salanne, R. Vuilleumier, P.A. Madden, C. Simon, P. Turq, B. Guillot, J. Phys. Condens.

Matter 20, 494207 (2008)
54. Q. Wan, L. Spanu, G.A. Galli, F. Gygi, J. Chem. Theory Comput. 9, 4124–4130 (2013)
55. F. Hirshfeld, Theor. Chim. Acta 44, 129–138 (1977)

http://igl.ethz.ch/projects/ARAP/svd_rot.pdf
http://igl.ethz.ch/projects/ARAP/svd_rot.pdf


References 83

56. M. Yáñez, R.F. Stewart, J.A. Pople, Acta Cryst. A34, 641–648 (1978)
57. R.F.W. Bader, Chem. Rev. 91, 893–928 (1991)
58. K. Laasonen, M. Sprik, M. Parrinello, R. Car, J. Chem. Phys. 99, 9080–9089 (1993)
59. P.M.W. Gill, J. Phys. Chem. 100, 15421–15427 (1996)
60. L.D. Site, A. Alavi, R.M. Lynden-Bell, Mol. Phys. 96, 1683–1693 (1999)
61. C. Fonseca Guerra, J.-W. Handgraaf, E.J. Baerends, F.M. Bickelhaupt, J. Comput. Chem. 25,

189–210 (2004)
62. P. Bultinck, C. Van Alsenoy, P.W. Ayers, R. Carbó-Dorca, J. Chem. Phys. 126, 144111 (2007)
63. T.C. Lillestolen, R.J. Wheatley, Chem. Commun. 50, 5909–5911 (2008)
64. T.A. Manz, D.S. Sholl, J. Chem. Theory Comput. 8, 2844–2867 (2012)
65. D. Geldof, A. Krishtal, F. Blockhuys, C. Van Alsenoy, J. Chem. Phys. 140, 144104 (2014)
66. G. Voronoi, J. Reine Angew. Math. 134, 198 (1908)
67. M. Pollak, R. Rein, J. Chem. Phys. 47, 2045–2052 (1967)
68. P. Politzer, R.R. Harris, J. Am. Chem. Soc. 92, 6451–6454 (1970)
69. B. Rousseau, A. Peeters, C.V. Alsenoy, J. Mol. Struct. 538, 235–238 (2001)
70. M. Swart, P.T. Van Duijnen, Int. J. Quantum Chem. 111, 1763–1772 (2011)
71. E.R. Batista, S.S. Xantheas, H. Jónsson, J. Chem. Phys. 111, 6011–6015 (1999)
72. F.M. Richards, J. Mol. Biol. 82, 1–14 (1974)
73. B. Gellatly, J. Finney, J. Mol. Biol. 161, 305–322 (1982)
74. C.H. Rycroft, Chaos 19, 041111 (2009)
75. M. Brehm, H. Weber, A.S. Pensado, A. Stark, B. Kirchner, Phys. Chem. Chem. Phys. 14,

5030–5044 (2012)
76. A. Bondi, J. Phys. Chem. 68, 441–451 (1964)
77. R.S. Rowland, R. Taylor, J. Phys. Chem. 100, 7384–7391 (1996)
78. M. Mantina, A.C. Chamberlin, R. Valero, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. A 113,

5806–5812 (2009)
79. B. Cordero, V. Gómez, A.E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán,

S. Alvarez, Dalton Trans. 21, 2832–2838 (2008)
80. P.J. Stephens, J. Phys. Chem. 89, 748–752 (1985)
81. P.J. Stephens, J. Phys. Chem. 91, 1712–1715 (1987)
82. J. Cheeseman, M. Frisch, F. Devlin, P. Stephens, Chem. Phys. Lett. 252, 211–220 (1996)
83. V.P. Nicu, J. Neugebauer, S.K. Wolff, E.J. Baerends, Theor. Chem. Acc. 119, 245–263 (2008)
84. L.A. Nafie, T.B. Freedman, J. Chem. Phys. 78, 7108–7116 (1983)
85. L.A. Nafie, J. Chem. Phys. 79, 4950–4957 (1983)
86. A. Buckingham, P. Fowler, P. Galwas, Chem. Phys. 112, 1–14 (1987)
87. L.A. Nafie, J. Chem. Phys. 96, 5687–5702 (1992)
88. L.A. Nafie, J. Phys. Chem. A 108, 7222–7231 (2004)
89. A. Scherrer, R. Vuilleumier, D. Sebastiani, J. Chem. Theory Comput. 9, 5305–5312 (2013)
90. A. Scherrer, F. Agostini, D. Sebastiani, E.K.U. Gross, R. Vuilleumier, J. Chem. Phys. 143,

074106 (2015)
91. S. Abbate, G. Longhi, K. Kwon, A. Moscowitz, J. Chem. Phys. 108, 50–62 (1998)
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Chapter 4
Applications

4.1 Spectra of Single Molecules

4.1.1 Comparison of Molecular Dynamics and Static
Calculations

In Chap.3, the theoretical foundations to calculate vibrational spectra from AIMD
simulations were discussed. Several derivations are based on the idea that the MD
approach and static quantum chemical calculations should provide the same spectra
for a system of harmonic oscillators. The general success of the harmonic approxi-
mation for the prediction of vibrational spectra of real molecules suggests to compare
these two techniques for single molecules in the gas phase, which are readily acces-
sible in both ways. In addition, this allows to present all the basic spectra analysis
features available in Travis and to discuss some general points that need to be
considered for AIMD spectra. For this purpose, the three small organic molecules
methanol, acetone, and nitromethane were selected as test cases to cover a certain
range of functional groups. Computational details and a discussion of the dipole
moments from the AIMD simulations at 400K and the static calculations within
the harmonic approximation can be found in Appendix A. Except for the normal
coordinate analysis, the results in this section have been published in Ref. [1]. The
Raman spectra shown here are slightly different due to a mistake in Travis that was
fixed shortly after publication of Ref. [1].

The comparison of the spectra for methanol (see Fig. 4.1) is divided into six parts.
The first part shows the power spectrum as solid line and its integral as dotted line.
The spectrum is normalized in such away that the total integral is equal to the number
of 18 degrees of freedom, meaning that it was divided by the average simulation tem-
perature. The gray dashed lines indicate the vibrational wavenumbers from the static
calculation. At each of these wavenumbers, the power spectrumwould feature a band
of the same intensity in the harmonic case. Obviously, this is not strictly fulfilled as
some of the bands are shifted and the peak integrals are not exactly equal to the num-
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Fig. 4.1 Spectra of methanol in the gas phase: power spectrum, IR spectrum, and Raman spectrum
from an AIMD simulation, IR spectrum and Raman spectrum from a static calculation. The gray
dashed lines denote the vibrational frequencies from the static calculation, and the dotted lines
show the integrals with the scales on the right side. The Raman depolarization ratios from the static
calculation are shown as circles

ber of underlying modes. Several reasons have to be considered for these deviations.
First of all, the system is not purely harmonic as the potential of a real molecule
is applied. Furthermore, the finite simulation timestep introduces a certain blueshift
that is particularly important in the region of higher wavenumbers (see Sect. 3.2.3).
Moreover, the simulation is not fully in equilibrium and some modes carry more
energy than others on average. Finally, the electronic structure methods in the AIMD
and the static calculations are not fully consistent due to the restrictions imposed by
the employed software packages.Although the same exchange-correlation functional
is used, the basis sets are only of similar quality but not equal.

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Fig. 4.2 Fitness of the reference structures employed in the normal coordinate analysis of methanol
in the gas phase. The three probabilities are shown in different colors over the whole trajectory
(above) and 1 ps of the trajectory (below)

For amore detailed discussionof the power spectrum, a normal coordinate analysis
was carried out (see Figs. 4.2 and 4.3, and Table4.1). A geometry optimization was
performed using the electronic structure method of the AIMD and the three cyclic
permutations of the methyl hydrogen atoms were employed as reference structures
to account for the rotation of the methyl group in the trajectory. (Only one optimized
structure has to be entered in Travis, and the permutations are created within the
program.) As the distance function, the sum of the three dihedral angles over the C–
O bond was applied, and a width parameter of σ = 15◦ was used for the switching
region. The resulting probabilities (see Fig. 4.2) clearly show that the methyl group
undergoes regular rotations in the middle of the simulation while it stays in one
minimum in the beginning and in the end. The magnified part of 1 ps demonstrates
how the exponential probability function (3.45) in connection with the chosen width
parameter provides for smooth transitions between the reference structures.

The power spectrum in the normal coordinate analysis (see Fig. 4.3) differs from
the original power spectrum (see Fig. 4.1) due to the transformation of the trajectory
to the Eckart frame of reference. The former possesses narrower bands and it does
not show an intense peak at zero wavenumber because global rotation and translation
of the molecule are removed and only the 12 internal degrees of freedom remain.
In particular the global rotation is responsible for the broadening of the bands in
the original power spectrum while the translation appears as a strong peak close to
zero. For all internal degrees of freedom, the normal coordinate analysis provides
individual mode spectra which are shown in different colors. Each of the spectra
consists of a well defined single peak that can be characterized by its maximum (see
Table4.1). Other quantities such as the centroid of the spectrum are less suitable

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Fig. 4.3 Normal coordinate spectra of methanol in the gas phase: total power spectrum and dissec-
tion into mode spectra. The colored dashed lines indicate the corresponding vibrational frequencies
in the static calculation. Graphical representations of the normal coordinate vectors obtained from
the AIMD simulation

since misleading values can be obtained if the separation is not perfect and other
modes slightly contribute at vastly different wavenumbers. The normal mode vectors
corresponding to the spectra are in very good agreement with the ones from the static
calculation, allowing to assign a wavenumber from the static calculation to each
mode as indicated by the colored dashed lines. The largest differences concern the
CH stretching modes, which are significantly blue-shifted in the AIMD simulation.
At least to a certain amount, this is caused by the finite timestep, but it is interesting
to note that not all three modes are affected in the same way and the AIMD gives
almost equal wavenumbers for the two antisymmetric vibrations (modes 10 and 11).
Thus, a significant coupling of these modes also plays a role. In contrast, almost no
blueshift is observed for the OH stretching vibration (mode 12) though it occurs at
even higher wavenumbers. This is likely related to the anharmonicity of the bond
potential. According to the observations in Sect. 3.2.3, the temperature is clearly
too low to fully recover this anharmonicity, but the induced redshift at least cancels
the blueshift due to the finite timestep. Another effect are the side lobes of the OH
stretching band. Their distance to the main peak exactly matches the wavenumber
of the HCOH torsion (mode 1), so these are combination bands of the two modes.
Also the torsional mode shows a significant deviation from the static calculation as a
consequence of the regularly rotating methyl group. The AIMD simulation samples

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Table 4.1 Normal coordinates of methanol in the gas phase: Wavenumbers ν̃static from the static
calculation, peak maxima ν̃AIMD and average mode temperatures 〈T 〉 from the AIMD simulation

No. ν̃static/cm−1 ν̃AIMD/cm−1 〈T 〉/K Description

1 294 199 474 HCOH torsion

2 971 950 203 CO stretching

3 1037 1044 257 CH3 bending +
COH bending

4 1124 1120 382 CH3 bending

5 1330 1305 495 COH bending +
CH3 bending

6 1431 1444 275 CH3 bending

7 1440 1466 246 CH3 bending

8 1459 1480 272 CH3 bending

9 2879 2991 800 Symmetric CH3
stretching

10 2927 3064 289 Antisymmetric
CH3 stretching

11 3013 3066 393 Antisymmetric
CH3 stretching

12 3665 3677 1015 OH stretching

the complete torsional potential while the static calculation approximates it by a
clearly insufficient quadratic function around one minimum.

As the mode spectra are not normalized here, their integrals give the average
temperature of each mode (see Table4.1). It is immediately apparent that there are
significant differences, confirming that the simulation is not fully in equilibrium. In
particular the symmetric CH3 stretching vibration (mode 9) and the OH stretching
vibration carry an excess of energy. This phenomenon is a general issue of MD
simulations of small molecules in the gas phase. If there is only a small number
of degrees of freedom and if these are not strongly coupled, it takes a long time
to exchange energy between them, making it hard to reach equipartition within the
time affordable by AIMD. Also the technique of massive thermostatting, which was
applied here, does not completely remedy this effect. In bulk phase simulations, for
which the MD approach is primarily intended, this problem does not occur to that
extent (see Sects. 4.2.1 and 4.3.1).

The IR spectra and the Raman spectra of methanol are shown as solid lines and
their integrals are plotted as dotted lines (see Fig. 4.1). The static calculation actually
provides only intensities for each mode, but for convenience, it is very common to
broaden these line spectra. Lorentzian functions with a FWHM of 15 cm−1 were
selected for this purpose here. In principle, the line width in the AIMD spectra is
governed by the choice of the window function and the correlation depth, but it is
clearly apparent that the AIMD simulation also contains information about peak
shapes. In particular the HCOH torsion leads to a broader band than the other modes.
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Due to these effects, it is important to compare the peak integrals and not only the
peak heights in order to draw conclusions for the absolute intensities. Furthermore,
it is important to note that the Raman spectra from AIMD always possess a large
peak at zero wavenumber. Even if the full polarizability tensor is taken into account,
the anisotropy γ (ν̃) is not formally invariant under rotations of the molecule. This is
amplified in practice by the finite difference approximations in the application of the
electric field and in the time derivative of the polarizability. This means that also the
rotational motion of the molecule contributes at low wavenumbers, and this part of
the spectrum is exaggerated by the factor 1/ν̃ in Eqs. (3.66) and (3.67). To facilitate
the comparison of the vibrational bands in the spectrum, the integral axis on the right
side of the Raman spectrum (see Fig. 4.1) does not start at zero, and the integral of
the low wavenumber band is cut.

While the IR intensities agree very well below 2000 cm−1, the comparison of
AIMD and static spectra reveals certain differences in the high-wavenumber region.
In contrast to the static calculation, which assigns significant intensity to all three
CH stretching modes, the AIMD simulation yields only a peak for the symmetric
vibration. Furthermore, the AIMD predicts a much larger OH stretching intensity.
Comparison with experimental gas phase data of methanol [2–4] shows that the latter
is clearly overestimated, but this is a direct consequence of the excess energy in this
mode. Considering that also the symmetric CH3 stretching vibration carries excess
energy, the reasonable agreement of this mode with the experimental intensity is
probably caused by a cancellation of errors.

In the Raman spectra, the AIMD yields very broad bands below 2000 cm−1,
but the peak integrals agree reasonably well with the static calculation. The high
wavenumber region shows a similar effect as the IR spectra: while the static calcu-
lation predicts significant intensities for all three CH stretching modes, the AIMD
estimatesmuch less intensity for the antisymmetric vibrations. However, considering
the excess energies of the symmetric CH3 stretching and OH stretching modes, the
overall agreement of the AIMD and the static calculation is very reasonable. The CH
stretching region of methanol is generally a complex task for theoretical methods,
as it is governed by several Fermi resonances with bending overtones [5], which are
included only to some extent in the AIMD (see Sect. 3.2.3) and not at all in the static
calculation.

The last quantity to be analyzed is the Raman depolarization ratio. In the AIMD,
this is calculated as the ratio of two spectra (see Sect. 3.3), so it has a certain value
in the whole wavenumber range. In parts of the spectrum without Raman intensity,
however, this is just noise, so the depolarization ratio is shown as a solid line only in
the range of Raman bands (see Fig. 4.1). The static calculation provides a value for
each mode as indicated by the black circles. Considering the shift of the CH stretch-
ing modes, their depolarization ratios coincide very well. Also the value of 0.75 for
the depolarized bands below 2000 cm−1 is predicted by the AIMD simulation. For
the polarized bands, the values are at least in qualitative agreement. The AIMD depo-
larization ratio probably suffers from too much noise in the Raman spectra to allow
for quantitative estimations. Although the Raman spectrum itself does not change
considerably when the rotational averaging of the polarizability tensor is omitted,

http://dx.doi.org/10.1007/978-3-319-49628-3_3
http://dx.doi.org/10.1007/978-3-319-49628-3_3
http://dx.doi.org/10.1007/978-3-319-49628-3_3
http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Fig. 4.4 Spectra of acetone in the gas phase: power spectrum, IR spectrum, and Raman spectrum
from an AIMD simulation, IR spectrum and Raman spectrum from a static calculation. The gray
dashed lines denote the vibrational frequencies from the static calculation, and the dotted lines
show the integrals with the scales on the right side. The Raman depolarization ratios from the static
calculation are shown as circles

the depolarization ratio becomes much more noisy then, so it is more sensitive to
numerical errors.

Similar conclusions as for methanol can be drawn from the simulation of acetone
(see Fig. 4.4). The peak positions in the power spectrum agree very well with the
vibrational wavenumbers from the static calculation, only the CH stretching modes
around 3000 cm−1 are significantly blue-shifted again. Furthermore, the integral of
this band is equal to eight modes instead of six, indicating that equipartition is not
fully reached. Another vibration that carries excess energy according to the integral
curve is the in-plane CCO bending at 520 cm−1. This is directly transferred to the
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IR and Raman spectra: the intensities of AIMD simulation and static calculation
are in very good agreement below 2000 cm−1 except for the in-plane CCO bending
mode, for which the AIMD predicts a significantly larger intensity in both spectra.
The CH stretching modes behave similar to methanol: despite their excess energy,
the AIMD provides much lower IR intensities, and it assigns less Raman intensity
to the antisymmetric vibrations, but the depolarization ratios agree very well. The
depolarization ratios below 2000 cm−1 show stronger differences, but at least for
most of the depolarized bands, the AIMD estimates a value of 0.75 too.

An important point to note is the peak at 20 cm−1 in the AIMD IR spectrum.
Analogous to the intense zero wavenumber band in the Raman spectra, it is con-
nected to the global rotation of the molecule. In general, if the molecule possesses
a permanent dipole moment, already a simple rotation changes the dipole moment
vector with respect to the space-fixed coordinate system, and a peak appears at the
wavenumber of the rotation in the IR spectrum. In the case of methanol, however,
this effect is covered by the broad band of the HCOH torsional mode.

The last example to be discussed is nitromethane (see Fig. 4.5), which shows in
principle the same effects as methanol and acetone. It is clearly apparent in the power
spectrum that the in-planeNO2 bendingmode at 846 cm−1 carries a significant excess
of energy. As a direct consequence, theAIMD simulation predictsmuch larger IR and
Raman intensities for this vibration. All other intensities below 2000 cm−1 coincide
very well. As seen before, less Raman intensity is assigned to the antisymmetric
CH3 stretching modes above 3000 cm−1 in the AIMD, but the depolarization ratios
of these vibrations are reproduced well. Both methods agree about the very low IR
intensity of the CH stretchingmodes. The depolarization ratios show some deviations
for the polarized bands below 2000 cm−1 again.

4.1.2 Temperature Dependence of Molecular Dynamics
Spectra

In Sect. 3.2.3, it was discussed that MD based spectra show a temperature dependent
shift of the vibrational wavenumbers since the temperature determines the extent to
which the anharmonicity of the potential is sampled. To investigate this effect for a
real molecule, the simulation of a single methanol molecule was carried out at 10,
100, and 1000K in addition to the simulation at 400K analyzed in the last section.
The comparison of the power spectra (see Fig. 4.6) clearly shows the expected shifts.
They are mostly apparent for the OH stretching vibration and the HCOH torsion.
While the peak position of the torsional mode perfectly matches the wavenumber
from the static calculation at 10K, it appears at significantly lowerwavenumber in the
400K simulation. A temperature of 10K is certainly too low to overcome the barrier
of the torsion as it is easily verified by a visual inspection of the trajectory. In this case,
the AIMD just samples the torsional potential in the close vicinity of one minimum,
which is approximated very well by the harmonic potential of the static calculation,
so both approaches yield the same wavenumber. At 400K, the barrier is regularly

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Fig. 4.5 Spectra of nitromethane in the gas phase: power spectrum, IR spectrum, and Raman
spectrum from an AIMD simulation, IR spectrum and Raman spectrum from a static calculation.
The gray dashed lines denote the vibrational frequencies from the static calculation, and the dotted
lines show the integrals with the scales on the right side. The Raman depolarization ratios from the
static calculation are shown as circles

passed (see Fig. 4.2) and the AIMD samples the complete torsional potential, leading
to a strong redshift of the band. In contrast, the OH stretching wavenumber from the
AIMD is almost equal to the static calculation at 400K, while it is somewhat higher
at 10K. This supports the conclusion from the last section that the anharmonicity-
induced redshift just cancels the blueshift caused by the finite timestep for this mode.
Moreover, the side lobes of the OH stretching band do not appear at 10 and 100K.
This is totally in line with their identification as combination bands with the torsional
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Fig. 4.6 Power spectra of methanol in the gas phase at four different temperatures. The gray
dashed lines denote the vibrational frequencies from a static calculation, and the dotted lines show
the integrals with the scale on the right side

mode, as a certain temperature is needed to sample the corresponding anharmonic
region of the potential energy surface.

Beside the band shifts, it is also important to note the intensities. In particular at
10K, the integral curve immediately indicates strong differences between themodes,
so equipartition of the energy is not achieved. The almost complete decoupling of
the vibrational degrees of freedom and the slow dynamics at this temperature make
it very hard to reach equilibrium even with massive thermostatting. In the case of
ideal harmonic potentials, there would not be any coupling, and the modes could not
exchange energy at all. As a direct consequence, the IR and Raman intensities are
strongly distorted and the low temperature simulation does not provide reliable IR
and Raman spectra. An advantage of the AIMD at 10K is, however, that the peaks
are very sharp, while they are significantly broadened at higher temperatures. This is
related to the global rotation of the molecule. At higher temperatures, the amplitude
of the vibrations is so large that the moments of inertia are substantially influenced,
introducing a strong coupling between rotational and vibrational degrees of freedom
that broadens the vibrational bands.
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4.1.3 Anharmonicity Effects in Molecular Dynamics Spectra

The investigation of the two-dimensional model potentials in Sect. 3.2.3 revealed that
it is in principle possible to observe overtones and combination bands in MD based
vibrational spectra. To demonstrate this effect for real molecules, cyanoformyl chlo-
ride (ClC(O)CN) and cyanoformyl bromide (BrC(O)CN) were selected as example
systems. The gas phase IR spectra of these molecules have recently been measured
[6], and they show several distinct bands that could be assigned to overtones and
combination bands. This marks cyanoformyl chloride and cyanoformyl bromide as
ideal example systems, since it is easily validated if AIMD simulations also produce
these distinct bands. Simulations of the single molecules were performed as detailed
in Appendix A.

The comparison of the IR spectrum from the AIMD simulation with the experi-
mental data (see Fig. 4.7) shows a very good coincidence except for the slight redshift
of all AIMD bands. In particular, this is not only true for the fundamental transitions
but also for the distinct overtones and combination bands that are marked by arrows.
The experimental peak at 1025 cm−1 is not fully resolved in the AIMD spectrum,
but it is clearly visible as a shoulder at 987 cm−1. The normal coordinate analysis
(see Fig. 4.7 and Table4.2) allows to assign a particular vibrational mode to each
fundamental peak. According to that, the intense experimental bands at 2242 and
1774 cm−1 are connected to the CN stretching (ν1) and CO stretching (ν2) modes,
respectively. The mode vector of the most intense experimental band at 986 cm−1 is
best described as CC stretching (ν3), but it is significantly mixed with the in-plane
CCO bending (ν4), CCl stretching (ν5), and in-plane OCCl bending (ν6) vibrations
that occur with further peaks at wavenumbers of 654, 510, and 422 cm−1. The out-of-
plane OCCl bending (ν8) is found as a small shoulder at 677 cm−1 in the experiment,
but it is hard to distinguish it in the AIMD spectrum where it is covered by ν4 due to
a more pronounced wavenumber shift. Altogether, this assignment is in full agree-
ment with Ref. [6]. In this article, the experimental satellite bands at 1074, 907, and
1025 cm−1 have been attributed to the combination bands ν4 + ν6 and ν5 + ν6, and
the first overtone of ν5, respectively, which gain intensity by Fermi resonance with
ν3 [6]. For MD based spectra, it was found in Sect. 3.2.3 that overtones and combi-
nation bands always appear at integer multiples or exact sums, respectively, of the
corresponding fundamental wavenumbers. Although this is a general deficiency of
the model, it is a big advantage for the assignment of the bands: it is just necessary
to calculate the corresponding sums of the fundamental wavenumbers found in the
normal coordinate analysis and to check for peaks in the IR spectrum. This analysis
reveals that the satellite bands in the AIMD spectrum perfectly match the expected
positions of ν4 + ν6, ν5 + ν6, and 2ν5. This also holds for 2ν2, which is not shown in
the experimental spectrum, but is mentioned in Ref. [6] too. Therefore, the AIMD
spectrum is totally in line with the experimental assignment of the overtones and
combination bands.

It is interesting to note how the normal coordinate analysis treats the combination
bands. From the viewpoint of this analysis, the combination peaks are artifacts, as

http://dx.doi.org/10.1007/978-3-319-49628-3_3
http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Fig. 4.7 IR spectra and normal coordinate analysis of cyanoformyl chloride. The arrows mark
overtones and combination bands. The experimental spectrum and the mode numbering are taken
from Ref. [6]

they cannot be separated into individual modes. Since the normal coordinate analysis
performs a unitary transformation that does not change the total power spectrum, it
also cannot remove these peaks, so they have to remain as satellite bands in some
of the fundamental mode spectra. It is not generally predictable where they appear.
Here, they show up as satellite peaks and a shoulder in the mode spectrum of ν3.

Another point to note is the splitting of the bands in the experiment due to the
rotational transitions. In particular for ν2, this splitting is partially reproduced by the
AIMD simulation. However, this agreement can only be of qualitative nature, and the
AIMDwill not resolve individual rotational bands for the reason given in Sect. 3.2.1.

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Table 4.2 Vibrational wavenumbers of cyanoformyl chloride from experiment (ν̃exp) and AIMD
(peak maxima ν̃AIMD). The experimental values and the mode numbering are taken from Ref. [6]

Assignment ν̃exp/cm−1 ν̃AIMD/cm−1 Description

2ν2 3525 3503

ν1 2242 2225 CN stretching

ν2 1774 1752 CO stretching

ν4 + ν6 1074 1054

2ν5 1025 987

ν3 986 958 CC stretching

ν5 + ν6 907 897

ν8 677 645 Out-of-plane OCCl bending

ν4 654 649 In-plane CCO bending

ν5 510 493 CCl stretching

ν6 422 405 In-plane OCCl bending

ν9 – 252 Out-of-plane CCN bending

ν7 – 168 In-plane CCN bending

Fig. 4.8 IR spectra of cyanoformyl bromide. The arrows mark overtones and combination bands.
The experimental spectrum is taken from Ref. [6]. The asterisks mark Br2CO impurity bands

Based on the simulation of cyanoformyl bromide (see Fig. 4.8), similar conclu-
sions can be drawn as for cyanoformyl chloride. Again, a slight redshift of the bands
is observed, but all fundamental transitions as well as all overtones and combina-
tion bands indicated by the arrows are reproduced. Only the intensity ratios are less
accurate here, since equipartition is not completely fulfilled in this simulation.
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4.2 Spectra of Molecular Liquids

4.2.1 Methanol

In Sect. 4.1, some general properties of MD based vibrational spectra were discussed
on the basis of several gas phase simulations. However, the main purpose of the MD
approach to vibrational spectroscopy is the application to bulk phase systems that are
not readily accessible by static calculations. As the first example, methanol is studied
in this section. Methanol is a polar molecule and the hydroxyl group provides for
the possibility to form intermolecular hydrogen bonds. This raises the expectation of
strong differences in the spectra between gas phase and liquid phase, and an AIMD
simulation should be particularly suited to model these effects. An AIMD simulation
of 16 methanol molecules under periodic boundary conditions was carried out as
detailed in Appendix A. Except for the normal coordinate analysis, the spectra have
been published in Ref. [1].

For the comparison of simulation and experiment, the power, IR, and Raman
spectra from the AIMD as well as two experimental IR spectra1 and one experimen-
tal Raman spectrum are given (see Fig. 4.9). Already the power spectrum indicates
the changes when passing from the gas phase to the bulk phase: the sharp peak of
the OH stretching mode at 3677 cm−1 is replaced by a broad band centered around
3370 cm−1, and another broad band appears, which is centered around 670 cm−1.
The remaining peaks of the gas phase spectrum are partially fused but mostly retain
their positions. A more detailed insight is provided by the normal coordinate analy-
sis (see Fig. 4.10 and Table4.3), which clearly confirms that the broad band around
3370 cm−1 is connected to the OH stretching vibration. The shift and the broadening
of this peak in contrast to the gas phase are a consequence of the strong hydrogen
bonding network in liquid methanol. The formation of a hydrogen bond weakens the
O–H bond in the donating molecule and, therefore, reduces its stretching wavenum-
ber. The dynamic and flexible nature of the hydrogen bonding network leads to a
wide distribution of the induced wavenumber shifts, so the band becomes very broad.
Simultaneously, librational modes or bending modes of the hydrogen bond are added
to the system. As the normal coordinate analysis relies on a separation into single
molecules, it does not reproduce them as additional modes. Instead, the spectrum
of the HCOH torsion (mode 1) possesses two peaks: a very broad one centered
around 670 cm−1, which can be assigned to the librations [8], and a narrower one at
106 cm−1, which is the actual torsion of the C–O bond. The COH bending is much
less affected by the hydrogen bonding network, but a blueshift and a slight broaden-
ing of the involved modes 3 and 5 compared to the gas phase are still recognizable.
Asmentioned before, the mode temperatures in the bulk indicate much less deviation
from equipartition than in the gas phase.

1I would like to thank Prof. Dr. Peter Vöhringer for providing several experimental IR spectra
discussed throughout this thesis.
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Fig. 4.9 Spectra of methanol in the liquid phase: power spectrum, IR spectrum, and Raman spec-
trum from anAIMD simulation of 16methanol molecules, experimental IR and Raman spectra. The
power spectrum of the gas phase is shown in gray for comparison. IR experiment 1 has been pro-
vided by the research group of Prof. Dr. Peter Vöhringer. IR experiment 2 and the Raman experiment
are taken from Ref. [7]

A prominent feature of the experimental IR spectrum of methanol are the two
broad and intense bands that are caused by the OH stretching vibration (around
3340 cm−1) and the librational modes (around 660 cm−1). It is an important result
that the AIMD simulation reproduces them very well. They appear with some noise
in the simulated spectrum, but this is caused by the limited size of the system and
the finite length of the trajectory. In principle, it can be concluded that 16 molecules
under periodic boundary conditions are sufficient to get the essential bulk phase
effects on the vibrational spectra of methanol. Also the absolute intensities are in
good agreement with further experimental data [9]. While the librational modes and
the OH stretching vibration give rise to intense IR bands, they possess only a low
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Fig. 4.10 Normal coordinate spectra of methanol in the liquid phase: total power spectrum and
dissection into mode spectra. The power spectrum of the gas phase is shown in gray for comparison.
See Fig. 4.3 for graphical representations of the normal coordinate vectors

Table 4.3 Normal coordinates of methanol in the liquid phase: peak maxima ν̃ and average mode
temperatures 〈T 〉
No. ν̃/cm−1 〈T 〉/K Description

1 106, ≈670 371 HCOH torsion + libration

2 945 477 CO stretching

3 1099 396 CH3 bending + COH bending

4 1121 397 CH3 bending

5 1386 396 COH bending + CH3 bending

6 1433 382 CH3 bending

7 1464 484 CH3 bending

8 1467 540 CH3 bending

9 2989 408 Symmetric CH3 stretching

10 3063 509 Antisymmetric CH3 stretching

11 3073 548 Antisymmetric CH3 stretching

12 ≈3370 421 OH stretching

Raman intensity. The librations are not visible in the spectra shown here, but the
broadness of the weak OH stretching band is predicted very well by the AIMD also
in the Raman spectrum. Also the other bands below 2000 cm−1 are reproduced well
by theAIMDsimulation. In the IR spectrum, these are theCOstretching (mode 2) and
the modes involving COH bending (modes 3 and 5), while in the Raman spectrum,
these are the CO stretching (mode 2) and several CH3 bending vibrations (modes 4,
6, 7, and 8). As the latter occur at very similar wavenumbers, it is not possible to
completely discern their individual contributions here. The only remarkable deviation
is the slight redshift of the bands in the simulation, which is particularly apparent for
the CO stretching vibration.
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A stronger difference appears, however, for the CH stretching modes. Apart from
the significant blueshift, the simulationyields only one intense band for the symmetric
CH3 stretching vibration in both spectra. The second band occurring in both experi-
ments is connected to several Fermi resonances with overtones of bendingmodes [5],
which also induce certain wavenumber shifts. It is obvious that the AIMD simulation
insufficiently accounts for these Fermi resonances, so it underestimates the intensity
of the second band. Thus, the band is covered by the OH stretching vibration in the
IR spectrum and only a small peak shows up in the Raman spectrum.

4.2.2 Carbon Tetrachloride

As the second example for simple molecular liquids, carbon tetrachloride was sim-
ulated. Due to the absence of hydrogen bonds, less pronounced bulk phase effects
than for methanol have to be expected, but carbon tetrachloride is interesting with
regard to several distinct overtone and combination bands that are found in the IR
and Raman spectra. An AIMD simulation of 32 carbon tetrachloride molecules was
performed as detailed in Appendix A.

The comparison of IR and Raman spectra from simulation and experiment (see
Fig. 4.11) shows a good general agreement. The normal coordinate analysis identifies
four different fundamentals: the non-degenerate symmetric stretching ν1, the doubly
degenerate symmetric deformation ν2, the triply degenerate antisymmetric stretch-
ing ν3, and the triply degenerate antisymmetric deformation ν4 (see Table4.4 and
Ref. [11]). While ν3 gives rise to an intense IR band, it appears only with low Raman
intensity. In contrast, the other three modes show up as distinct Raman peaks, but
possess a very low IR intensity. As long as isotope effects [11] are neglected, the sym-
metricmodes ν1 and ν2 are even forbidden by symmetry in the IR spectrum. Themost
important differences between simulation and experiment concern the wavenumber
shift of ν3 and the Raman intensity ratios of ν1, ν2, and ν4. These deficiencies have
to be attributed to the PBE exchange-correlation functional. Neglecting the solute
influence on the solvent, it can be found in the solution spectra in Sect. 4.3 that BLYP
provides a better estimate of the relative Raman intensities, but on the other hand,
it introduces more pronounced wavenumber shifts for theses modes. In general, the
vibrational wavenumbers of carbon tetrachloride pose a challenge for DFT. A com-
parison of several exchange-correlation functionals (see Table4.5 and Appendix A)
shows that all of them underestimate the wavenumbers except for PBE0. Among the
GGA functionals, which are the ones readily accessible for AIMD, PBE performs
best.

In the experiment, the intense IR band at 786 cm−1 shows a splitting due to the
Fermi resonance of ν3 and the combination band ν1 + ν4 [11]. The AIMD simulation
does not fully reproduce the intensity transfer between these transitions, but the
combination band is clearly visible as a shoulder at 750 cm−1. Further overtones
and combination bands occur at higher wavenumbers. A detailed comparison in the
range between 800 and 1600 cm−1 (see Fig. 4.12) reveals a qualitative agreement
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Fig. 4.11 Spectra of carbon tetrachloride in the liquid phase: IR spectrum, Raman spectrum, and
normal coordinate analysis from an AIMD simulation of 32 carbon tetrachloride molecules. The
experimental IR and Raman spectra are taken from Ref. [10]. The mode numbering is adopted from
Ref. [11], and degenerate modes are denoted by primes. The inset magnifies the simulated Raman
spectrum between 1200 and 1600 cm−1

Table 4.4 Normal coordinates of carbon tetrachloride in the liquid phase: experimental wavenum-
bers ν̃exp in the IR spectrum [11], AIMD peak maxima ν̃AIMD and average mode temperatures
〈T 〉. The mode descriptions are adopted from Ref. [11]. In the symmetric modes, the carbon atom
remains fixed, while it is displaced in the antisymmetric modes

Mode ν̃exp/cm−1 ν̃AIMD/cm−1 〈T 〉/K Description

ν2 218 210 475 Symmetric deformation

ν4 314 304 422 Antisymmetric deformation

ν1 456 444 361 Symmetric stretching

ν3 786 700 382 Antisymmetric stretching

of simulation and experiment also for these transitions. The peaks that show up in
this region are the combination bands of ν3 and ν1 + ν4 with all the fundamentals,
and Fermi resonances are responsible for the occurrence of these transitions as split
double bands in the experiment [11]. Since the AIMD does not fully describe these
effects, the intensity ratios are distorted, and the first-order combination transitions
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Table 4.5 Comparison of several exchange-correlation functionals regarding the vibrational
wavenumbers of carbon tetrachloride predicted by static calculations in the gas phase

Functional ν̃2/cm−1 ν̃4/cm−1 ν̃1/cm−1 ν̃3/cm−1

BLYP 201 289 414 664

BP86 203 296 432 700

PBE 205 300 440 714

B97D 207 298 422 673

TPSS 202 295 434 708

B3LYP 212 306 443 734

PBE0 217 316 468 788

TPSSh 207 302 447 741

Experiment
(liquid) [11]

218 314 456 786

Fig. 4.12 Overtones and combination bands in the IR spectrum of carbon tetrachloride. The exper-
imental spectrum has been provided by the research group of Prof. Dr. Peter Vöhringer. The assign-
ment in the experimental spectrum is taken from Ref. [11]

are more intense than the second-order combination transitions. Nevertheless, all
peaks of the experiment can be identified in the simulated spectrum by calculating
the corresponding sums of the fundamental wavenumbers obtained from the normal
coordinate analysis.

Similar effects can be observed in the Raman spectra: Also here, the Fermi res-
onance of ν3 and ν1 + ν4 [11] causes a splitting of the band at 786 cm−1 in the
experiment. The simulation shows a broader peak instead, which consists of both the
fundamental transition and the combination band. The first overtone of ν3 and the
combination ν1 + ν3 + ν4, which are found as a weak band around 1540 cm−1 in the
experiment, are also predicted by the AIMD, though with a significant redshift due
to the underestimated fundamental wavenumber of ν3.
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4.3 Spectra of Solute Molecules

4.3.1 Methanol in Carbon Tetrachloride

A major advantage of the MD approach to vibrational spectra is the possibility to
separate the spectra of solvent and solute in a solution. As a first example, methanol
in carbon tetrachloride is studied. The idea for this simulation originates from the
measurement in the research group of Prof. Dr. Peter Vöhringer, where methanol was
solved in carbon tetrachloride to obtain the spectrum of isolatedmethanol molecules,
which should resemble the gas phase spectrum of methanol. The AIMD simulation
of one methanol molecule in 32 carbon tetrachloride molecules was carried out as
detailed in Appendix A.

A direct comparison of simulation and experiment (see Fig. 4.13) is only possible
above 2000 cm−1. Since methanol is hardly soluble in carbon tetrachloride and the
formation of methanol clusters should be avoided, a thick solution layer with a low
methanol concentration was measured. Thus, the region below 2000 cm−1 is totally
covered by the carbon tetrachloride bands. The intensity ratios of the OH stretching
and the symmetric CH3 stretching vibrations are, however, in very good agreement.
A blueshift of these modes in the simulation is observed in the same way as in the
gas phase (see Sect. 4.1.1). As already mentioned before, the broader second peak
of the CH stretching modes is largely influenced by Fermi resonances with bending

Fig. 4.13 Spectra of methanol in carbon tetrachloride: IR spectrum and normal coordinate analysis
from an AIMD simulation of one methanol molecule in 32 carbon tetrachloride molecules. The
experimental IR spectrum has been provided by the research group of Prof. Dr. Peter Vöhringer.
Due to the strong absorption bands of carbon tetrachloride, it is shown only above 2000 cm−1. See
Fig. 4.1 for graphical representations of the normal coordinate vectors
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overtones [5]. Since these are insufficiently included in the AIMD, the simulated
spectrum does not show the second peak.

Compared to the gas phase simulation, the HCOH torsional mode gives rise to a
broader band in the solution, showing that the torsion is significantly influenced by
the surrounding carbon tetrachloride molecules. Furthermore, it possesses a much
larger IR intensity, and the main reason for that is the significant excess energy
of this mode in comparison with the other vibrations (see Table4.6). However, as
the simulation was performed with the thermostat temperature set to 400K, the
energy of the other vibrations is actually too low. This is a general artifact of the
simulation: although massive thermostatting was used to approximately equilibrate
the system, the energy flows from the high-frequency modes of methanol to the
low-frequency modes of the carbon tetrachloride. A potential solution would be the
application of two thermostats, one for the carbon tetrachloride molecules and one
for the methanol molecule. However, since the temperature of the CH stretching
and OH stretching modes is similar, no major influence on the intensity ratios in the
spectral region important for the comparison with the experiment is expected in the
particular case studied here. Nevertheless, simulations of solute molecules have to
be checked carefully for this issue in general. A side effect of the lowered methanol
temperature is the slight blueshift of all bands with respect to the gas phase, since a
smaller part of the anharmonic potential energy surface is sampled (see Sect. 4.1.2).

Table 4.6 Normal coordinates of methanol in carbon tetrachloride: peak maxima ν̃ and average
mode temperatures 〈T 〉
No. ν̃/cm−1 〈T 〉/K Description

1 ≈270 395 HCOH torsion

2 956 109 CO stretching

3 1059 93 CH3 bending + COH bending

4 1135 100 CH3 bending

5 1322 116 COH bending + CH3 bending

6 1447 101 CH3 bending

7 1473 111 CH3 bending

8 1474 108 CH3 bending

9 3002 117 Symmetric CH3 stretching

10 3080 131 Antisymmetric CH3 stretching

11 3109 145 Antisymmetric CH3 stretching

12 3681 179 OH stretching
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4.3.2 Pinacol in Carbon Tetrachloride

The second example to be investigated is pinacol solved in carbon tetrachloride.
Pinacol is studied in the research group of Prof. Dr. Peter Vöhringer as a model
system for extended hydrogen bond wires [12, 13]. In the synclinal conformation,
the two hydroxyl groups of pinacol form an intramolecular hydrogen bond where
one hydroxyl group acts as donor while the other one is the acceptor. The solution
in a nonpolar solvent such as carbon tetrachloride largely suppresses the influence
of the surrounding molecules, allowing to study the hydrogen bond dynamics of the
almost isolated system.

The comparison of simulation and experiment (see Fig. 4.14) shows a very good
agreement of most bands. The five experimental lines between 1000 and 1500 cm−1

are reproduced very well by the simulation, only the intensity of the peak in the
middle of the higher triplet is underestimated and the bands are slightly red-shifted.
Also the lower-wavenumber region, which is covered by the carbon tetrachloride
here, coincides with experimental data obtained in the gas phase and in a carbon
disulfide solution [14, 15]. The OH stretching band around 3600 cm−1 clearly shows
a splitting of 47 cm−1 in the experiment. The narrow peak at 3626 cm−1 is connected
to the dangling hydroxyl group that acts as the hydrogen bond acceptor, while the
slightly broader peak at 3579 cm−1 belongs to the donating hydroxyl group [12]. Due
to the noise in the simulated spectrum, it is hard to exactly quantify the splitting there,
but the width of the band indicates that it is in the order of 50 cm−1, which is very
similar to the experiment. A clear deficiency of the simulation is, however, the strong
underestimation of the CH stretching vibrations around 3000 cm−1. This is in line
with earlier observations (see Sect. 4.1.1) though the effect is muchmore pronounced
here. On the one hand, this might be caused by the underlying electronic structure
method, but a static calculation within the harmonic approximation using the same

Fig. 4.14 Spectra of pinacol in carbon tetrachloride: IR spectrum from an AIMD simulation of
one pinacol molecule in 32 carbon tetrachloride molecules. The experimental IR spectrum has been
provided by the research group of Prof. Dr. Peter Vöhringer. Due to the strong absorption bands of
carbon tetrachloride, certain regions of the experimental spectrum are cut out
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method provides larger IR intensities for these modes. On the other hand, it is likely
that anharmonicity effects in terms of Fermi resonances play a significant role similar
to the methanol system, and these are insufficiently included in the AIMD, leading to
the strongly reduced intensities. Moreover, the integral over the CH stretching bands
in the power spectrum is equal to around nine modes instead of the expected twelve
modes, so this is another reason for the underestimation of the IR intensity, but it
cannot explain the complete effect.

It is important to note that the simulation of pinacol in carbon tetrachloride does
not show the same temperature shifting effect as the simulation ofmethanol in carbon
tetrachloride. The total integrals of the power spectra indicate that both the pinacol
molecule and the carbon tetrachloridemolecules have temperatures of approximately
400K. A possible reason might be that pinacol, in contrast to methanol, possesses
many modes at low wavenumbers close to carbon tetrachloride. This largely facili-
tates the exchange of energy between the solute and the solvent, allowing to maintain
equipartition more easily.

4.4 Spectra of Ionic Liquid Systems

4.4.1 Neat 1-Ethyl-3-Methylimidazolium Acetate

The examples discussed so far have shown that the MD approach to vibrational
spectra is suited very well to model the effects of the molecular surrounding in the
bulk phase. This is of particular interest for ionic liquids with a strong network of
intermolecular interactions. As an important system of this kind, the ionic liquid
1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) was extensively studied in
the course of this thesis. The discussion starts with the neat ionic liquid in this section.
A [C2C1Im][OAc]–water mixture follows in Sect. 4.4.2, and the absorption of carbon
dioxide in [C2C1Im][OAc] is presented in Sect. 4.4.3. All the results concerning the
spectra of [C2C1Im][OAc] have been published in Ref. [16]. The IR spectra shown
here are slightly different since the molecular center of geometry has been used as
dipole reference point in Ref. [16] while the molecular center of mass was employed
here as suggested in Sect. 3.4.

An interesting property of [C2C1Im][OAc] is the possibility to form an
N-heterocyclic carbene by a proton transfer from the imidazolium ring to the basic
acetate ion (see Fig. 4.15). Different spectroscopic experiments have revealed that

Fig. 4.15 Carbene
formation by a proton
transfer in [C2C1Im][OAc]

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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the equilibrium is shifted toward the hydrogen-bonded carbene–acetic acid complex
in the gas phase, which can even dissociate under low pressure [17]. In the liquid,
however, the ion network [18, 19] of the surrounding charged particles stabilizes the
ionic state and suppresses the carbene formation [20–22]. Although trapping reac-
tions with different chalcogens, benzaldehyde [23], and carbon dioxide [24] indicate
its accessibility, the carbene has not yet been observed by any direct approach in the
liquid phase.

Due to this difference between vapor and liquid, significant bulk phase effects
have to be expected also in the vibrational spectra of [C2C1Im][OAc]. This is easily
apparent in the IR spectra obtained by static calculations of a single ion pair and a
cluster of five ionpairs (seeFig. 4.16),where the cluster provides afirst approximation

Fig. 4.16 IR spectra of [C2C1Im][OAc] from static calculations of a single ion pair and a cluster
of five ion pairs. The lines are broadened by Lorentzian functions with a FWHM of 20 cm−1. The
experimental IR spectrum of the liquid has been provided by Prof. Dr. Tibor Pasinszki. Adapted
from reference [16], reprinted with the permission of AIP Publishing
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Fig. 4.17 IR spectra of neat [C2C1Im][OAc]: disentanglement of cation and anion contributions
in an AIMD simulation of 36 [C2C1Im][OAc] ion pairs. The experimental IR spectrum has been
provided by Prof. Dr. Tibor Pasinszki. The dashed lines indicate the peak assignment to cation and
anion

to the bulk phase as it models the influence of the surrounding on the central ions.
Similar to the data previously reported in the literature on the basis of a different
electronic structure method [25], the most intense band of the single ion pair is
predicted at 2167 cm−1 where the experiment2 shows almost no absorption in the
liquid. The mode vector corresponding to this peak primarily consists of the ring
proton shift between the cation and the anion that leads toward the carbene. Due to
the facilitated carbene formation in the gas phase, the potential energy surface of the
proton transfer becomes flatter, and the wavenumber of this mode is significantly
reduced. For the cluster of five ion pairs, the spectrum is already closer to the liquid,
but there are still several distinct peaks for the proton shifting modes between 2600
and 2900 cm−1 with no direct counterpart in the experiment. Aside from the difficulty
to converge the geometry optimization of such a system, the single structure selected
here is by far not sufficient to cover thewhole range of possible cluster configurations.
Thus, the application of clusters can only partially model the bulk phase and surface
effects will always be present.

An AIMD simulation of 36 [C2C1Im][OAc] ion pairs under periodic boundary
conditions (see Appendix A for computational details) performs much better regard-

2I would like to thank Prof. Dr. Tibor Pasinszki for providing the experimental data of liquid
[C2C1Im][OAc].
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Fig. 4.18 Raman spectra of neat [C2C1Im][OAc]: disentanglement of cation and anion contribu-
tions in an AIMD simulation of 36 [C2C1Im][OAc] ion pairs. The experimental Raman spectrum
has been provided by Prof. Dr. Tibor Pasinszki. The dashed lines indicate the peak assignment to
cation and anion

ing the comparison with experimental IR and Raman spectra (see Figs. 4.17 and
4.18). Similar to the examples discussed in the last sections, there is a slight redshift
of almost all fingerprint bands by (24 ± 14) cm−1, but most of the peak shapes and
intensity ratios agree very well with the experiment. In contrast, the broad IR band
feature around 3000 cm−1 is blue-shifted by ca. 70 cm−1, but this is also in line with
previous observations for CH stretching vibrations. Most importantly, its FWHM of
240 cm−1 is reproduced very well by the simulation. This broadening is a direct con-
sequence of the hydrogen bonding network in the ionic liquid, which is proficiently
modeled by the AIMD.

The first step toward a detailed analysis of the spectra is the separation of cation
and anion contributions by considering only their individual dipole moments and
polarizabilities. This leads to the classification indicated by the dashed lines, reveal-
ing that the IR spectrum is dominated by the [OAc]− anion while most of the
Ramanbands are connected to the 1-ethyl-3-methylimidazolium ([C2C1Im]+) cation.
Although most of the cation’s IR spectrum between 1200 and 1700 cm−1 is covered
in [C2C1Im][OAc], it agrees well with experimental data of other ionic liquids that
combine the [C2C1Im]+ cation with anions that do not absorb in this wavenumber
range [26–33].

An assignment of each peak to a particular molecular vibration is possible by a
normal coordinate analysis. The reference structures for this purpose were obtained
by geometry optimizations of the single ions (see Fig. 4.19). For the anion, the three
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Fig. 4.19 Reference structures for the normal coordinate analysis in [C2C1Im][OAc]. The
[C2C1Im]+ cation is divided into three parts for the mode descriptions in Table4.8. Adapted from
reference [16], reprinted with the permission of AIP Publishing

cyclic permutations of the hydrogen atoms were employed as references to account
for the rotation of the methyl group, and the root-mean-square deviation of all six
H–C–C–O dihedral angles was used as distance function with a width parameter of
σ = 15◦. For the cation, two optimized structures are needed at first to take the rota-
tion of the ethyl group into consideration. Although these are actually mirror images,
they were treated as two structurally different minima, so that two sets of normal
coordinates were obtained. As it should be expected, these are very similar, and only
one of them is shown here. Future work could aim to extend the Travis implemen-
tation to map the two structures onto a single minimum by appropriate mirroring
operations. In each of the two structures, the respective three cyclic permutations of
the methyl group’s hydrogen atoms and the ethyl group’s terminal hydrogen atoms
were employed as references to account for rotations of the terminal methyl moieties.
This results in nine references for each structure, and a total number of 18 references
for the normal coordinate analysis of the cation. To distinguish between the permu-
tations of the hydrogen atoms, the root-mean-square deviation of all six dihedral
angles across the CMe–N bond and all nine dihedral angles across the CEt–CEt bond
was used as distance function with a width parameter of σ = 20◦. The two separate
minima of the ethyl group orientation were discriminated by the root-mean-square
deviation of all six dihedral angles across the CEt–N bond with a width parameter of
σ = 20◦.

The mode spectra obtained from the normal coordinate analysis (see Figs. 4.20
and 4.21) show that the disentanglement of the power spectrumworks very well even
for the more complicated case of the [C2C1Im]+ cation with 51 internal degrees of
freedom. Some are very sharp and some are broader, but most of the mode spectra
consist of one single peak. Only several alkyl CH stretching modes at 3000 cm−1

are slightly mixed with CH bending vibrations in the fingerprint region and torsional
modes below 200 cm−1. One reason for that are low rotational barriers: by definition,
normal coordinates are always related to minima on the potential energy surface, but
these are not well-defined anymore in the limiting case of a vanishing barrier. For
example, the distinction of the torsional mode and the symmetric stretching mode of
a methyl group is arbitrary in this situation.
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Fig. 4.20 Normal coordinate spectra of [OAc]− in [C2C1Im][OAc]: total power spectrum and
dissection into mode spectra from the AIMD simulation. Graphical representations of the normal
coordinate vectors assigned in the experiment

A detailed comparison of the peak positions in the mode spectra and in the sim-
ulated IR and Raman spectra allows to assign specific modes to the experimentally
observed bands (see Tables4.7 and 4.8). The most intense band in the IR spectrum
is connected to the antisymmetric CO stretching mode of the anion (A12) as it is
generally expected for carboxyl compounds. Two other importantmodes are the sym-
metric CO stretching (A8) and a methyl group bending (A9). For these two modes,
the IR spectra show a notable difference between simulation and experiment as their
intensity ratio is significantly distorted. Beside the assignment made in Ref. [16] that
is shown here, it might also be possible that the wavenumber ordering of these vibra-
tions is simply swapped. However, the Raman spectrum shows some deviations in
this wavenumber region too, as the simulation predicts two peaks for the cationwhich
are not separately visible in the experiment: a CN stretching mode at 1271 cm−1 and
a CH bending mode at 1342 cm−1. The experimental Raman band at 1334 cm−1 that
was assigned to the anion’s symmetric CO stretching (A8) simply on the basis of its
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Fig. 4.21 Normal coordinate spectra of [C2C1Im]+ in [C2C1Im][OAc]: total power spectrum and
dissection into mode spectra from the AIMD simulation. Graphical representations of the normal
coordinate vectors assigned in the experiment
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Table 4.7 Normal coordinate assignment for [OAc]− in the spectra of neat [C2C1Im][OAc]. Simu-
lated wavenumbers ν̃AIMD from the AIMD and experimental wavenumbers ν̃exp from the measured
IR and Raman spectra

No. ν̃AIMD/cm−1 ν̃exp/cm−1 Description

IR Raman

A2 448 452 In-plane CCO bending

A4 608 632 635 OCO bending + CC stretching

A5 852 897 899 OCO bending + CC stretching

A6 995 1000 CH3 bending

A8 1301 1323 1334 Symmetric CO stretching

A9 1338 1374 CH3 bending

A10, A11 1430 1430 CH3 bending

A12 1535 1559 1567 Antisymmetric CO stretching

Table 4.8 Normal coordinate assignment for [C2C1Im]+ in the spectra of neat [C2C1Im][OAc].
Simulated wavenumbers ν̃AIMD from the AIMD and experimental wavenumbers ν̃exp from the
measured IR and Raman spectra

No. ν̃AIMD/cm−1 ν̃exp/cm−1 Description

IR Raman

C6 381 388 CEtCEtN bending

C7 424 440 CEtNCIm bending + CMeNCIm bending

C9 573 597 In-plane ring deformation + CEtN stretching
+ CMeN stretching

C12 674 702 701 In-plane ring deformation + CEtN stretching
+ CMeN stretching

C17 918 957 CEtCEt stretching + in-plane ring
deformation

C18 982 1019 In-plane ring deformation

C20 1059 1089 CEtH bending

C22 1097 1118 CEtH bending

C25 1135 1175 In-plane CImH bending

C31 1373 1381 CEtH bending + CImN stretching

C33 1414 1417 CMeH bending

C34 1452 1451 CEtH bending

simulated intensity, therefore, potentially contains significant cation contributions,
and it is very likely that some anharmonic coupling effects insufficiently included in
the AIMD are responsible for the differences in this wavenumber region.

Further deviations between simulation and experiment occur for the broad exper-
imental IR peak feature between 750 and 800 cm−1, which is significantly underesti-
mated by the simulation, and the splitting of the CH stretching Raman band predicted
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by the AIMD. The reason for the latter could be the insufficient modeling of Fermi
resonances similar to the observations made for methanol (see Sect. 4.2.1). It should
be noted that the role which Fermi resonances play for the CH stretching vibrations
of imidazolium-based ionic liquids has been a matter of heavy debate in the literature
[34–39].

An interesting feature of the normal coordinate analysis are the very broad mode
spectra of the ring CH stretching modes in the cation (C49, C50, and C51). This
result is absolutely in line with the general structural analysis of [C2C1Im][OAc] on
the basis of the AIMD simulation [20, 21], where it was demonstrated that the ring
hydrogen atoms of the [C2C1Im][OAc] cations are strongly involved in the network
of intermolecular interactions by forming hydrogen bonds to the [OAc]− anions. The
dynamic nature of this interaction network leads to a very broad distribution of the
corresponding vibrational wavenumbers. This is discussed further at the end of the
next section.

4.4.2 1-Ethyl-3-Methylimidazolium Acetate–Water Mixture

The ionic liquid [C2C1Im][OAc] is a highly hygroscopic substance, so it always
contains traces of moisture if it is handled without special care under ambient con-
ditions. For that reason, it is very interesting to study the effect of water on the ionic
liquid regarding its vibrational spectra. To clearly observe the effect, an AIMD sim-
ulation of 27 [C2C1Im][OAc] ion pairs with 81 water molecules was carried out (see
Appendix A for computational details), which corresponds to a water mass fraction
of 24.1%. Furthermore, this demonstrates the applicability of the MD approach to
vibrational spectra for binary mixtures of ionic liquids and molecular liquids.

The comparison of the IR spectra from simulation and experiment shows a very
good agreement again (see Fig. 4.22). Apparently, the water molecules give rise to
three broad bands in the spectrum. The OH stretching vibrations contribute to the
peak of the CH stretching modes of cation and anion, making it even broader than
in the neat ionic liquid. The HOH bending mode shows up at 1650 cm−1 and the
librational motions appear below 1000 cm−1 with a maximum around 600 cm−1. It
is obvious that the water molecules significantly influence the spectral contributions
of the ions. Many of the anion’s bands are slightly blue-shifted in the experiment,
and the simulation reproduces this shift in most cases (see Table4.9). The intensity
ratio of modes A8 and A9 is shifted in favor of A9. Although this is a step toward the
experiment, the intensity of these two modes is still a deficiency as in the neat ionic
liquid (see Sect. 4.4.1). The changes in the cation’s spectrum aremostly indiscernible
in the experiment due to the dominance of the anion and the water molecules. The
only notable difference is the slight redshift of mode C25, which is also reproduced
in the simulation.

The effects observed in the IR spectra are totally in line with the general structural
analysis of this system [20, 21]. There, it was found that the water molecules weakly
interact with the cations, but show a strong tendency to form hydrogen bonds with
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Fig. 4.22 IR spectra of a [C2C1Im][OAc]–water mixture: disentanglement of cation, anion, and
water contributions in an AIMD simulation of 27 [C2C1Im][OAc] ion pairs and 81water molecules.
The experimental IR spectrum has been provided by Prof. Dr. Tibor Pasinszki. The dashed lines
indicate the peak assignment to cation, anion, and water. The spectra of the neat ionic liquid (see
Fig. 4.17) are drawn in gray for comparison

Table 4.9 Vibrational wavenumbers in neat [C2C1Im][OAc] and in the [C2C1Im][OAc]–water
mixture: comparison of simulated wavenumbers ν̃AIMD and experimental wavenumbers ν̃exp in the
IR spectra

No. ν̃AIMD/cm−1 ν̃exp/cm−1

Neat Mixture Neat Mixture

A2 448 464 452 466

A4 608 619 632 632

A5 852 863 897 915

A6 995 994 1000 1012

A8 1301 1316 1323 1335

A9 1338 1353 1374 1393

A10, A11 1430 1428 1430 1451

A12 1535 1516 1559 1560

C12 674 674 702 700

C25 1135 1125 1175 1169
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the anions, heading toward a proton transfer and the generation of acetic acid. This
disturbance of the cation–anion network significantly reduces the interaction between
[OAc]− and the ring hydrogen atoms of [C2C1Im]+, and it suppresses the proton
shift from the cation to the anion. The strong interaction between water and [OAc]−
directly transfers to the significant wavenumber shifts observed in the IR spectrum of
the anion. Furthermore, it considerably changes also the bands of thewatermolecules:
in an AIMD simulation of neat water with the same electronic structure method, the
peakmaxima are located at 3400 cm−1 for theOH stretching vibrations and 550 cm−1

for the librations (these values are taken from the power spectrum of system D in
Refs. [20, 21]), while they are found at 3300 and 600 cm−1, respectively, in the
mixture with the ionic liquid. This means that the O-H bonds become weaker while
the intermolecular hydrogen bonds get stronger, indicating that the strength of the
anion–water interaction exceeds that of the hydrogen bonding network in pure water
due to the polarization of the water molecules by the anions.

The influence on the cation is most obvious in the normal coordinate spectra of the
ring hydrogen CH stretchingmodes around 3000 cm−1 (see Fig. 4.23). Asmentioned
before, these modes possess very broad mode spectra in the neat ionic liquid because
the dynamic hydrogen bonding network between [OAc]− and [C2C1Im]+ leads to
a wide distribution of the vibrational wavenumbers. In the mixture with water, this
broadening is much less pronounced and the wavenumber redshift is reduced. This

Fig. 4.23 CH stretching normal coordinate spectra of [C2C1Im]+ in neat [C2C1Im][OAc] and in
the [C2C1Im][OAc]–water mixture. Graphical representations of the normal coordinate vectors cor-
responding to the ring hydrogen atoms. Adapted from reference [16], reprinted with the permission
of AIP Publishing
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is a direct consequence of the decreased interaction between anion and cation, which
transfers to a narrower wavenumber distribution of the ring hydrogen CH stretching
vibrations.

4.4.3 Carbon Dioxide Absorption
in 1-Ethyl-3-Methylimidazolium Acetate

The ability to physically absorb significant amounts of carbon dioxide is a general
property of many ionic liquids [40–43]. In the case of [C2C1Im][OAc] [44], however,
the accessibility of a carbene (see Sect. 4.4.1) is of particular importance, as it also
allows a chemical absorption by the formation of a bond between carbon dioxide and
the carbene (see Fig. 4.24). This process has been proven by the X-ray structure of the
resulting 1-ethyl-3-methylimidazolium-2-carboxylate [C2C1ImCO2] [24]. Later on,
it has also been shown in the liquid phase of 1-butyl-3-methylimidazolium acetate
by IR, Raman, and NMR spectroscopy with support by static calculations in the
gas phase [45–47] and classical molecular dynamics simulations [48]. Here, the
vibrational spectra of carbon dioxide in [C2C1Im][OAc] are studied by AIMD. For
this purpose, two simulations were performed (see Appendix A for computational
details): one with a [C2C1ImCO2] molecule and an acetic acid molecule in 35 ion
pairs of [C2C1Im][OAc], and one containing a free carbon dioxide molecule in 36
ion pairs of [C2C1Im][OAc] to model the physical absorption. The acetic acid in the
first simulation is the byproduct of the carbene formation (see Fig. 4.15) needed for
the chemical absorption process. It is tightly bound to an acetate anion forming a
[H(OAc)2]− complex that persists during the whole simulation.

The carboxylate as the product of the chemical absorption can be identified by
three very intense IR bands in the fingerprint region (see Fig. 4.25). To assign these
bands to specific molecular vibrations, a normal coordinate analysis was carried out.
Four different structures of [C2C1ImCO2]were foundbygeometry optimizations (see
Fig. 4.26). Similar to the [C2C1Im]+ cation, these are actually two pairs of mirror
images, but they were treated as four structurally different minima. Analogous to
the cation, the respective three cyclic permutations of the methyl group’s hydrogen
atoms and the ethyl group’s terminal hydrogen atoms were used as references in
each of the structures to account for rotations of the terminal methyl moieties. This
results in a total number of 36 references for the normal coordinate analysis. The

Fig. 4.24 Carbon dioxide absorption in [C2C1Im][OAc] by the formation of [C2C1ImCO2]
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Fig. 4.25 IR spectra of [C2C1ImCO2] in [C2C1Im][OAc]: disentanglement of cation, anion, car-
boxylate, and [H(OAc)2]− contributions in an AIMD simulation of 35 [C2C1Im][OAc] ion pairs
with one [C2C1ImCO2] molecule and one acetic acid molecule. The experimental IR spectrum has
been provided by Prof. Dr. Tibor Pasinszki. The dashed lines indicate the peak assignment to cation,
anion, and carboxylate. The experimental spectrum of the neat ionic liquid (see Fig. 4.17) is drawn
in gray for comparison

Fig. 4.26 Reference structures for the normal coordinate analysis of [C2C1ImCO2] in [C2C1Im]
[OAc]. Adapted from reference [16], reprinted with the permission of AIP Publishing

permutations of the hydrogen atoms were distinguished by the root-mean-square
deviation of all six dihedral angles across the CMe–N bond and all nine dihedral
angles across the CEt–CEt bond with a width parameter of σ = 20◦. To discriminate
the four structurally different minima, the root-mean-square deviation of all four
dihedral angles across the C–C bond connecting the carboxylate group to the ring
and the two CIm–N–CEt–CEt dihedral angles was employed with a width parameter
of σ = 5◦. The permutations of the oxygen atoms were not considered because the
carboxyl group does not completely turn around during the simulation. The result
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Table 4.10 Normal coordinate assignment for [C2C1ImCO2] in [C2C1Im][OAc]
No. ν̃AIMD/cm−1 ν̃exp/cm−1 Description

D18 764 790 In-plane OCO bending

D32 1256 1320 Symmetric CO stretching + in-plane CImH
bending

D47 1602 1666 Antisymmetric CO stretching

of the normal coordinate analysis shows that all three intense IR bands are related
to the carboxyl group: the antisymmetric CO stretching mode, the symmetric CO
stretchingmodemixed with ring CH bending vibrations, and the OCO bendingmode
(see Table4.10).

As the disentangled contributions (see Fig. 4.25) are normalized to one mole-
cule, the bands of the carboxylate appear much weaker in the total spectrum of the
simulation cell due to the concentration ratios. Nevertheless, the antisymmetric CO
stretching mode at 1602 cm−1 should act as a good indicator for the formation of the
carboxylate in the ionic liquid. This agrees very well with the experimental observa-
tion3: after treatment of [C2C1Im][OAc] with carbon dioxide for two hours, the peak
at 1666 cm−1 is easily identified, showing that the carboxylate is readily formed.

The increasing background in the fingerprint region found experimentally is likely
related to the acetic acid in the [H(OAc)2]− complex. Due to the dynamics of the
proton [49, 50] and the large conformational flexibility, its spectral contribution is
obtained with limited quality from the simulation, but it is still possible to identify
some bands at similar positions as in the bare [OAc]−. The spectrum clearly indicates
that the complex should show up as a very broad background in the IR spectrum.

The simulation of the physical absorption shows the carbon dioxide with the anti-
symmetric CO stretching mode at 2291 cm−1 and the OCO bending modes around
600 cm−1 (see Fig. 4.27 and Table4.11). The latter are degenerate in the gas phase,
but they appear as a split peak with maxima at 598 and 626 cm−1 in the liquid.
The extent of this splitting has been suggested to provide insight into the strength
of the anion–carbon dioxide interactions [51], which are very strong in the case of
[OAc]− [52, 53]. The symmetric CO stretching vibration, which is forbidden by
symmetry in the gas phase, possesses a very low IR intensity in the liquid, and its
wavenumber is found to be 1282 cm−1 in the power spectrum. Due to its separation
from all other components of the system, the antisymmetric CO stretching vibration

3I would like to thank Prof. Dr. Tibor Pasinszki for providing the corresponding data, where carbon
dioxide was passed above stirred [C2C1Im][OAc] and IR spectra were measured after different time
ranges.
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Fig. 4.27 IR spectra of carbon dioxide in [C2C1Im][OAc]: disentanglement of cation, anion, and
carbon dioxide contributions in an AIMD simulation of 36 [C2C1Im][OAc] ion pairs with one
carbon dioxide molecule. The experimental IR spectrum has been provided by Prof. Dr. Tibor
Pasinszki. The dashed lines indicate the peak assignment to cation, anion, and carbon dioxide. The
experimental spectrum of the ionic liquid after two hours of treatment with carbon dioxide (see
Fig. 4.25) is drawn in gray for comparison. The inset magnifies the spectrum of the carbon dioxide
molecule around 600 cm−1

Table 4.11 Vibrational wavenumbers of carbon dioxide in [C2C1Im][OAc] and in the gas phase
obtained from AIMD simulations of one carbon dioxide molecule in 36 [C2C1Im][OAc] ion pairs
and of a single carbon dioxide molecule. The experimental wavenumbers are taken from Ref. [45]

No. ν̃AIMD/cm−1 ν̃exp/cm−1 Description

In [C2C1Im][OAc] Gas phase Gas phase

1 598/626 627 667 OCO bending

2 1282 1289 1337 Symmetric CO
stretching

3 2291 2313 2349 Antisymmetric
CO stretching

allows to identify physically absorbed carbon dioxide very easily. Thus, the experi-
mental spectra reveal that chemical absorption is the primary way of carbon dioxide
incorporation in [C2C1Im][OAc], since there is no peak around 2300 cm−1 after
treatment with carbon dioxide for two hours. Only at higher concentrations (after
22h of treatment with carbon dioxide), a small band indicating physical absorption
is observed. The increased bands of the carboxylate and the stronger background in
the experimental spectrum show that the ionic liquid contains significant amounts
of the carboxylate and acetic acid at this point. Therefore, the AIMD simulation of
one carbon dioxide molecule in the pure ionic liquid might not be fully adequate
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anymore to reflect the experiment. Nevertheless, it is still possible to qualitatively
study the wavenumber shifts of the carbon dioxide compared to the gas phase (see
Table4.11). A slight redshift of all bands is found, which is caused by the interaction
of the carbon dioxide with the anions as well as the cations [22, 53]. This agrees with
the experimental result, where the antisymmetric CO stretching occurs at 2337 cm−1

in the ionic liquid, which is slightly below the wavenumber of 2349 cm−1 in the gas
phase [45]. Similar shifts have been observed in other ionic liquids that do not show
the chemical absorption process [51, 54]. Another effect of the interaction between
carbon dioxide and the surrounding ions is the distortion of the molecular symmetry,
which lifts the degeneracy of the OCO bending modes and allows for the small inten-
sity gain of the symmetric CO stretching vibration. Due to the coincidence with an
intense band of the acetate ion, the peak splitting cannot be verified in the experiment
here, but it has been observed in IR measurements of 1-butyl-3-methylimidazolium
tetrafluoroborate and hexafluorophosphate [51].

4.5 Voronoi Tessellation of the Electron Density

4.5.1 Selection of the Radii

In Sect. 3.4.2, the idea of the radical Voronoi tessellation as an alternative to the
maximally localized Wannier functions was introduced. An important parameter in
this approach are the radii that are assigned to the Voronoi sites, which are the atoms
of the AIMD simulations here. In principle, the electron density should be separated
in a chemically reasonable sense between the molecules, so hydrogen atoms should,
e.g., have smaller radii than carbon atoms and oxygen atoms. A readily accessible
quantity to assess the distribution of the electron density are the resulting partial
charges of the atoms and the molecules. In the simulation of a molecular liquid,
e.g., the molecules are expected to be neutral on average. This suggests to take a
snapshot of the simulation cell and to calculate the charge distribution function,
which is just a histogram of all molecular charges. As long as the whole simulation
cell does not carry a charge, the mean value of the molecular charge distribution
is automatically zero. The standard deviation, however, shows the difference of the
individual charges from zero. Thus, it appears to be a reasonable criterion to demand
that the standard deviation of the charge distribution should be as small as possible
for a proper tessellation of the electron density.

As the first example, one snapshot of an AIMD simulation of 16 benzene mole-
cules (see Appendix A for computational details) is analyzed. Since benzene only
consists of carbon atoms and hydrogen atoms, there are just two radii that can be
varied. This allows to visualize the standard deviation as a function of the radii in a
two-dimensional contour plot (see Fig. 4.28). Apparently, the contour lines are sim-
ple hyperbolas. This is a direct consequence of the tessellation procedure: although
the radii constitute two parameters, only the position of the cell face between a car-

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Fig. 4.28 Standard
deviation of the molecular
charge distribution in a
calculation of 16 benzene
molecules as a function of
the Voronoi radii. The values
are given as multiples of the
elementary charge. The
black cross marks the van
der Waals radii, and the
dashed line connects all
combinations leading to the
same tessellation as the van
der Waals radii

bon atom and a hydrogen atom determines the dissection of the electron density.
It follows from the definition of the radical Voronoi tessellation (see Eq. (3.74))
that this position is directly related to the difference of the squared radii r2H − r2C,
since adding the same arbitrary number to both squared radii does not change the
inequality in (3.74). As the difference of the squared radii is not bound to a particular
range, this also shows that the cell face of two neighboring atoms is not necessarily
located between them, so that atoms can be situated outside of their respective cell.
This happens in the upper left corner and the lower right corner of the contour plot
for benzene. On the plateaus, the radius of one atom kind is so large that the other
atom kind does not have a cell at all. Since the cell faces are always located halfway
between equivalent atoms even in the radical Voronoi tessellation, the same result
could be obtained by using the original Voronoi tessellation just with the atoms of
one kind as Voronoi sites. While the standard deviation of the charge distribution
becomes very large if only the hydrogen atoms have a cell, it is interesting to note that
it is quite low if only the carbon atoms remain. Its value is significantly lower than
the one obtained with the original Voronoi tessellation employing all atoms, which
can be found on the diagonal from the lower left corner to the upper right corner. This
indicates that the hydrogen atoms play a minor role for an appropriate dissection of
the benzene molecules. The global minimum of the standard deviation is found in the
valley between the carbon atom plateau and the diagonal. Most importantly, apply-
ing van der Waals radii or any combination with the same difference of the squared
radii yields a result very close to this minimum. This shows that a radical Voronoi
tessellation using van der Waals radii as Voronoi radii provides a very reasonable
distribution of the electron density to the benzene molecules, as it should generally
be expected due to the purpose these radii have been developed for.

The next example is one snapshot from an AIMD simulation of 16 methanol
molecules (see Appendix A for computational details). Methanol contains hydrogen
atoms, carbon atoms, and oxygen atoms, so there are three radii to be varied. It might
be argued that different radii should be assigned to the hydrogen atoms in the hydroxyl

http://dx.doi.org/10.1007/978-3-319-49628-3_3
http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Fig. 4.29 Standard
deviation of the molecular
charge distribution in a
calculation of 16 methanol
molecules as a function of
the Voronoi radii. The values
are given as multiples of the
elementary charge. The
black cross marks the van
der Waals radii

group and the methyl group, but the same radius is assigned to all atoms of one kind
for simplicity here, as also, e.g., the van der Waals radii do not distinguish such
cases. Although there are three radii, only two parameters determine the tessellation
because just the differences of the squared radii are important (see above). This allows
to show the standard deviation in a two-dimensional contour plot again, but this time
as a function of two differences of squared radii (see Fig. 4.29). Any combination
of differences could be used on the axes without loosing or gaining information,
and r2H − r2C and r2H − r2O were selected for the presentation here. With this choice,
horizontal lines and vertical lines correspond to the same location of the cell faces
between hydrogen atoms and oxygen or carbon atoms, respectively. On diagonal
lines from the lower left corner to the upper right corner, the difference r2C − r2O is
constant, so these lines correspond to the same location of the cell faces between
carbon atoms and oxygen atoms. The surface of the standard deviation consists of
three plateaus in the corners that are separated by three valleys along the horizontal,
the vertical, and the diagonal. In the upper right corner, only the hydrogen atoms have
a Voronoi cell, while only the carbon atoms remain in the upper left corner, and the
tessellation just contains the oxygen atoms in the lower right corner. Consequently,
the carbon atoms disappear in the valley to the right side, the oxygen atoms vanish
in the valley to the top, and the hydrogen atoms do not have a cell in the valley to the
lower left corner. The deepest valley is the one leading to the right side, indicating
that it is most important to correctly place the cell faces between hydrogen and
oxygen atoms for a reasonable distribution of the electron density to the methanol
molecules. This can be explained by the structure of methanol, which implicates that
intermolecular contacts are primarily formed between hydrogen atoms as well as
hydrogen and oxygen atoms while the size of the carbon atoms only influences the
intramolecular dissection. The global minimum of the standard deviation is found
where the three valleys meet. Most importantly, the van derWaals radii are very close
to this minimum again. This shows that they provide a reasonable tessellation also
for a molecular liquid with significant intermolecular interactions.
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It is interesting to study also the partial charges of carbon atoms and oxygen
atoms resulting from the radical Voronoi tessellation in the methanol simulation (see
Fig. 4.30). In contrast to the mean value of the molecular charge, which is determined
by the total charge of the simulation cell, the mean values of the atomic charges are
not necessarily zero. Instead, they lie in a certain range that depends on the kind of
the atom and the total number of electrons. If the radii are chosen in such a way that
an atom has no cell at all, it just remains the effective nuclear charge defined by the
pseudopotential. For the carbon atom, this is +4e on the right side of the plot, and
for the oxygen atom, this is +6e in the upper part of the plot. As this value is fixed,
also the corresponding standard deviations vanish in these regions. In the opposite
case, the radius of one atom kind is so large that it is the only one remaining in the
tessellation. On average, all 14 electrons of the methanol molecule are assigned to
this atom kind then, resulting in average net charges of−10e and−8e for carbon and
oxygen, respectively. Since the cell faces are not generally equal to the molecular
boundaries in this case, the standard deviations have finite values in these regions.
As before, it is possible to find a minimum in the standard deviation between these
two extrema. This time however, the van der Waals radii are not as close to the
minimum as for the molecular charges. In particular for the carbon atom, a lower
standard deviation is obtained if covalent radii are employed, and the partial charge
of +0.2e with covalent radii is chemically more intuitive than the partial charge of
−2.5e with van der Waals radii. This is not surprising, since covalent radii have
been fitted to resemble intramolecular bond lengths and, therefore, should yield a
more reasonable intramolecular distribution of the electron density. For the oxygen
atom, both sets of radii do not reach the minimum of the standard deviation, and
they provide more similar charges of −0.1e (covalent) and −0.5e (van der Waals).
This result is an indication of the dilemma that occurs for a proper choice of the
radii to obtain reasonable atomic partial charges. While the covalent radii yield an
appropriate distribution of the electron density within the molecule, the van der
Waals radii are needed at the same time to separate the electron density between the
molecules. It is not possible to simultaneously use two sets of radii in the tessellation,
but the following two-step procedure to calculate atomic partial charges in bulk phase
simulations can be suggested: At first, molecular cells should be created by a radical
Voronoi tessellation with van der Waals radii and a subsequent unification of the
atomic cells that belong to the same molecule. Afterwards, another radical Voronoi
tessellation with covalent radii should be applied to each molecular cell to obtain
new atomic cells with a better intramolecular separation. Future work could focus
on an implementation of this method in Travis.

In ionic liquids, the charges assigned to the ions by the Voronoi tessellation
are of particular interest. Thus, one snapshot from an AIMD simulation of 36
[C2C1Im][OAc] ion pairs (see Appendix A for computational details) is consid-
ered now. This ionic liquid contains four different kinds of atoms: hydrogen, carbon,
oxygen, and nitrogen, so three differences of squared radii can be chosen indepen-
dently. For that reason, it is hard to completely visualize the mean charge and the
standard deviation as a function of the radii. Instead, a plot of the standard devia-
tion as a function of the mean charge is presented (see Fig. 4.31). Each combination
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Fig. 4.30 Mean values and standard deviations of the atomic partial charges in a calculation of
16 methanol molecules as a function of the Voronoi radii. The values are given as multiples of the
elementary charge. The cross signs and the plus signs mark van der Waals radii and covalent radii,
respectively
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Fig. 4.31 Standard deviation of the anion’s and the cation’s charge distribution in a calculation of
36 [C2C1Im][OAc] ion pairs as a function of the corresponding mean charge. The axes are scaled
in multiples of the elementary charge. The black crosses mark the result with van der Waals radii

of radii adds one point for the cation and one point for the anion to this diagram.
Apparently, the points form a V-shaped pattern for both the cation and the anion,
allowing to identify the minimum of the standard deviation easily. Two results are
very important to note. As indicated by the black crosses, the radical Voronoi tes-
sellation with van der Waals radii yields a result that is very close to the minimal
standard deviation, so these radii provide also a reasonable separation of the ions in
the ionic liquid. Furthermore, the van derWaals radii result in ionic charges of±0.8e
instead of the ±1.0e for the isolated ions. Charge transfer effects that lead to such
reduced ion charges in ionic liquids have already been discussed in the literature (see
article [55] and references therein). In classical molecular dynamics simulations with
fixed atomic partial charges, the total ion charges are usually chosen between ±0.6e
and ±0.9e to model such effects [56–64]. These charges are often selected on the
basis of static calculations of single ions or ion pairs in the gas phase, but Mulliken
population analysis [57], Blöchl charges [59], and density-derived electrostatic and
chemical charges [64] employed in ab initio calculations of the bulk phase have also
been used to confirm these values. Here, another justification of the reduced ionic
charges in an ionic liquid is found by a radical Voronoi tessellation of the electron
density in bulk phase simulations, where van der Waals radii are applied, which
deliver an almost minimal standard deviation of the charge distribution.

The examples presented in this section show that it is a chemically reasonable cri-
terion to demand that the radii in the radical Voronoi tessellation should be selected
in such a way that the standard deviation in the charge distribution is minimal. This
suggests to find the best radii for each particular system by an optimization algorithm
that minimizes this standard deviation. This should be of particular interest for the
ab initio calculation of atomic partial charges that are needed for classical molecular
dynamics simulations, as it constitutes a rigorous procedure without adjustable para-
meters. Future work could focus on this aspect. The examples also show that van der
Waals radii are often close to optimal for the separation of molecules or ions in the
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Fig. 4.32 Dipole moments of a single methanol molecule and a single methane molecule by
integration of the electron density and maximally localized Wannier function centers as a function
of the cell size

bulk phase. Thus, it can safely be recommended to employ van der Waals radii for
the calculation of vibrational spectra.

4.5.2 Dipole Moments

For the calculation of vibrational spectra, the molecular dipole moment is the most
important quantity to be obtained from a Voronoi tessellation of the electron density.
This approach is intended to be used as a replacement for the technique of maximally
localized Wannier functions (see Sect. 3.4). Before IR and Raman spectra obtained
by these two methods are analyzed in Sect. 4.5.3, the dipole moments are directly
compared here. At first, single point calculations of several small test molecules were
performed for their respective equilibrium geometries in the gas phase4 to avoid the
influence of the molecular separation. In this case, the Voronoi approach effectively
corresponds to an integration over the whole electron density, it just simplifies the
treatment of the boundaries if themolecule is located near a face of the simulation cell.
As the maximally localized Wannier functions stem from a unitary transformation
of the Kohn–Sham orbitals, they provide the same total electron density and should,
in principle, yield the same dipole moment as the Voronoi method.

Since the electronic structure method used for the bulk phase simulations in this
thesis relies on periodic boundary conditions, these were also employed for the
gas phase calculations. In doing so, the cubic simulation cell should be sufficiently
large to avoid the interaction of the molecule with its periodic images, and for that
reason, the dependence of the dipole moments on the cell size is studied first. For a
methanol molecule (see Fig. 4.32), a significant difference of the two techniques is
found in small cells. TheVoronoi dipolemoment can be regarded as convergedwithin
the numerical accuracy of the method at a cell size of a = 1500 pm, and also the

4I would like to thank Roman Elfgen for carrying out some of the calculations presented in this
section.

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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relative difference between a = 1000 pm and a = 4000 pm is less than one percent.
In contrast, the Wannier dipole moment shows a much stronger dependence on the
cell size and it converges very slowly. Nevertheless, both methods yield the same
dipole moment of 1.65D in the limit of a large cell. This value is slightly lower than
the experimental result of 1.68D [65], and the deviation has to be attributed to the
electronic structure method. However, the Wannier method clearly seems to suffer
from intrinsic problems in small cells. A completely analogous behavior is observed
with other polar molecules such as water, ammonia, and formaldehyde.

The issue of theWannier approach becomes evenmore severe in the case of certain
nonpolarmolecules. Formethane (see Fig. 4.32), which cannot have a dipolemoment
due to its symmetry, the Voronoi method yields a vanishing dipole moment within
the numerical accuracy for any cell size. The Wannier localization results in a dipole
moment of more than 0.01D with a = 1000 pm instead. Only in very large cells, the
Wannier dipole moment reaches zero, so this is a deficiency of the Wannier method.
The same behavior is found in calculations of acetylene, where the Wannier dipole
moment is even 0.07D with a = 1000 pm. For other nonpolar molecules, however,
the Wannier method agrees with the Voronoi approach about the vanishing dipole
moment, e.g., for ethane and ethylene. A systematic rule for which nonpolar systems
the Wannier approach shows an artificial dipole moment has not been found yet.

Another issue of the Wannier technique occurs in the special case of benzene.
This nonpolar molecule belongs to the class for which the Wannier localization
introduces an artificial dipole moment, and this becomes even larger than 0.2D in
small simulation cells (see Fig. 4.33). The Wannier function centers in benzene are
arranged in a pattern of alternating single bonds and double bonds, just as in the
well-known Kekulé formula [66] (see Sect. 4.5.3 for further details). There are two
such patterns, and the solution to which the localization converges depends only
on the internal numerics of the implementation. It is important to note that this
also influences the orientation of the artificial dipole moment, as it is apparent in
the components of the dipole vector (see Fig. 4.33 for the z component, the other
components show the same behavior). Between a = 3000 pm and a = 4000 pm, the

Fig. 4.33 Magnitudeμ and z componentμz of the dipole moment of a single benzene molecule by
integration of the electron density and maximally localized Wannier function centers as a function
of the cell size
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dipole vector is inverted because the Wannier localization switches between the two
patterns of single bonds and double bonds.

The application of a cubic simulation cell with periodic boundary conditions
always disturbs the rotational invariance of the system to a certain degree. To investi-
gate if the result of the Wannier localization strongly depends on this, the orientation
of the molecules in the simulation cell was varied starting from the structures used
above. In a systematic manner, arbitrary rotations in the three-dimensional space can
be represented by the Euler angles φ, θ , and ψ [67], which describe three consec-
utive rotations about specific coordinate axes. There exist different conventions to
which axis each angle refers, and the one that constructs the final rotation matrix
according to

R =
⎛
⎝1 0 0
0 cosφ sin φ

0 − sin φ cosφ

⎞
⎠

⎛
⎝cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠

⎛
⎝ cosψ sinψ 0

− sinψ cosψ 0
0 0 1

⎞
⎠
(4.1)

was applied here. Due to the cubic symmetry of the simulation cell, a sufficiently
large number of orientations can be sampled if each angle takes values of 0.0◦, 22.5◦,
and 45.0◦. This results in 27 combinations, which are systematically ordered for the
visualization in such a way that φ varies slowliest and ψ varies fastest. For each of
the rotated structures, single point calculations were performed with a cell size of
a = 1200 pm to recalculate the dipole moments. At first, the magnitude of the dipole
moments is studied for the molecules methanol and benzene (see Fig. 4.34). As it
should be expected, the molecular orientation in the simulation cell has a negligible
influence on the Voronoi dipole moment in both cases. The Wannier dipole moment
is almost constant for methanol too, but it is important to note that it shows strong
fluctuations for benzene. To visualize also the direction of the dipole vector with
respect to the molecule, the following procedure is used: For each molecular orienta-
tion, the normalized difference vector of the Voronoi dipole moment and theWannier
dipole moment is calculated. Furthermore, each rotation matrix is applied to the nor-
malized difference vector of the first orientation with (φ, θ, ψ) = (0◦, 0◦, 0◦). For
each orientation, these two vectors are compared (see Fig. 4.34 for the x components,
the other components show the same behavior). In the case of methanol, the vectors
agree very well, showing that it does not matter for the result whether the molecule
or the dipole vector is rotated. This means that the dipole moment is independent of
the molecular orientation in the simulation cell, and the Wannier localization always
adds a constant offset. The picture is, however, very different for benzene, where the
two vectors do not coincide for most orientations. This means that not only the mag-
nitude but also the direction of the dipole vector in the molecular coordinate system
strongly depends on the orientation of the benzene molecule in the simulation cell.
While the constant offset in methanol can be tolerated and possibly fixed afterwards,
the situation in benzene is a clear deficiency of the Wannier method. For IR spectra,
e.g., the time derivative of the dipole moment is used, so the constant in methanol
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Fig. 4.34 Dipole moment μ of methanol and benzene by integration of the electron density and
maximally localizedWannier function centers for different molecular orientations in the simulation
cell, and x component dx of the normalized difference vector between these two methods for
different molecular orientations in the simulation cell

vanishes, but the situation in benzene is likely to introduce artifacts in the spectrum
(this is confirmed in Sect. 4.5.3).

To compare Voronoi dipole moments and Wannier dipole moments in the bulk
phase, a sequence of 20 steps was taken from an AIMD simulation of 16 methanol
molecules under periodic boundary conditions (see Appendix A for computational
details). The dipole moment curves of one particular molecule (see Fig. 4.35) show
that themagnitude of theWannier dipolemoment is larger, and that its fluctuations are
stronger. The difference in the magnitude is also apparent in the average over all 16
molecules (see Fig. 4.35), where the standard deviation additionally indicates that the
Wannier dipole moments have a broader distribution. Beside the general issues of the
Wannier localization that were discussed for the gas phase, another explanation has
to be considered for the liquid additionally. In the Wannier approach, each Wannier
function center is assigned to exactly one molecule, so the total electron density is
dissected in such a way that all molecules are neutral. In the Voronoi method instead,
the electron density can flow between the cells and the molecules carry temporarily
fluctuating charges. Considering a certain piece of electron density moving from one
molecule toward its neighbor, this fully contributes to an increase of the Wannier
dipole moment, but it only increases the Voronoi dipole moment until the cell face
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Fig. 4.35 Dipole moment of one selected molecule and average dipole moment of all molecules
in a bulk phase simulation of 16 methanol molecules over 20 steps. The dotted lines indicate the
standard deviation

is reached while it transfers to a change in the charge from then on. Therefore, the
Voronoi dipole moments are smaller, have a narrower distribution, and show less
fluctuations than the Wannier dipole moments.

The experimental dipole moment of methanol in the liquid phase is 2.87D [68],
which is in better agreement with theWannier technique. However, it has to be taken
into consideration that such experimental values are usually based on models like
the Debye theory [69], which relate molecular dipole moments to the macroscopi-
cally measurable susceptibility due to orientational polarization. Since these models
presume neutral molecules, it cannot be expected that the Voronoi approach with
temporarily fluctuating charges accurately reproduces them.

4.5.3 Vibrational Spectra

In the last section, it was shown that the Wannier approach and the Voronoi method
do not necessarily yield the same dipole moments. In the gas phase, this appears
to be a general deficiency of the Wannier localization, while in the liquid phase,
differences in the molecular separation have to be considered too. To investigate
how these effects transfer to IR and Raman spectra, the two techniques are compared
in this regard for several bulk phase simulations (see Appendix A for computational
details). Except for neat [C2C1Im][OAc], all spectra presented in this section have
been published in Ref. [70].

The assessment starts with methanol (see Fig. 4.36). Both approaches agree very
well concerning relative intensities and peak shapes, but the Voronoi method yields
significantly lower absolute intensities. This is a direct consequence of the decreased
dipole fluctuationsmentioned before (see Sect. 4.5.2). In linear approximation, the IR
intensity is proportional to the square of the dipole moment change (see Sect. 2.4.2),
so the absolute intensities are closely related to the amplitude of the dipole fluctu-
ations in the MD approach. To assess whether the Voronoi method or the Wannier

http://dx.doi.org/10.1007/978-3-319-49628-3_2
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Fig. 4.36 Spectra of methanol in the liquid phase: comparison of IR and Raman spectra byWannier
approach and Voronoi approach from an AIMD simulation of 16 methanol molecules. The dotted
lines show the integrals with the scales on the right side. The experimental spectra are taken from
Ref. [7]

method performs better in this respect, accurate experimental data would be needed
and the influence of the approximations in the electronic structure calculation had to
be considered in greater detail. For the interpretation of the experiment, however, the
relative peak intensities and the band positions are often more important, and these
are reproduced in a very similar manner by both methods [7].

Also for benzene, the IR spectra show a good general agreement (see Fig. 4.37).
The only important difference is the additional broad band feature predicted by the
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Fig. 4.37 Spectra of benzene in the liquid phase: comparison of IR and Raman spectra byWannier
approach and Voronoi approach from an AIMD simulation of 16 benzene molecules. The dotted
lines show the integrals with the scales on the right side. The experimental spectra are taken from
Ref. [7]. The arrow marks the artificial band introduced by the Wannier localization

Wannier method between 1200 and 1350 cm−1 as marked by the arrow. This is
neither found with Voronoi dipole moments, nor is there a corresponding peak in the
experimental data [7, 71]. The reason for that is the combination of the artificial dipole
moment and the two possible solutions of the Wannier localization in benzene. The
maximally localizedWannier function centers are arranged in a pattern of alternating
single bonds and double bonds (see Fig. 4.38), which can be placed in two different
ways. As shown in Sect. 4.5.2, this also influences the direction of the artificial
dipole vector, so switching the bond pattern directly transfers to a change of the
dipole moment that should appear in the IR spectrum. In the equilibrium structure
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Fig. 4.38 Left: Wannier function centers in benzene. Right: Normal mode deforming benzene
toward cyclohexatriene. Adapted from reference [70] with permission from the PCCP Owner Soci-
eties

with equal C–C bond lengths, it is arbitrary which solution is reached, but during
the AIMD, the bond lengths fluctuate and it is reasonable to assume that shorter
distances are preferred for the placement of the double bonds. This suggests that the
bond pattern should primarily follow a vibrational mode that changes the C–C bond
lengths alternatingly. In the normal coordinate analysis, one such mode is found,
which deforms the benzene toward cyclohexatriene (see Fig. 4.38), and the power
spectrum of this mode exactly matches the shape of the additional band feature in
the Wannier IR spectrum.

Due to the artificial IR band when Wannier function centers are employed, the
Voronoi spectrum agrees better with the experiment. A deficiency is again the
blueshift and the underestimated intensity of the CH stretching modes. However,
it is important to point out that the two bands between 1750 and 2000 cm−1 are
reproduced very well, as this is the wavenumber region where overtones and com-
bination bands of aromatic compounds typically appear.

The artificial dipole moment in the Wannier method constitutes an even more
severe problem for the estimation of polarizabilities. If the Wannier localization
does not converge to the same bonding pattern in the two calculations with external
electric field and without external electric field, the flipping dipole vector strongly
interferes with the change in the dipole moment induced by the electric field. This
artificially increases the resulting polarizability by orders of magnitude, leading to
strong spikes in its time development, and making the Fourier transform unsuitable
as a Raman spectrum (see Fig. 4.37). The Voronoi method does not suffer from this
problem and it provides a Raman spectrum that is in very good agreement with
experimental data [7, 72], so it clearly outperforms theWannier approach in the case
of benzene.
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Since it contains an aromatic ring, phenol is expected to show the same effects
in the Wannier spectra as benzene. However, it intrinsically absorbs IR radiation
in the wavenumber region of the cyclohexatriene mode around 1310 cm−1, so the
potentially present artificial band in the IR spectrum is not discernible (see Fig. 4.39).
Instead, both approaches agree verywellwith each other and alsowith the experimen-
tal data [7, 73, 74] below 2000 cm−1. The only differences in the Voronoi spectrum
are the significantly reduced absolute intensity similar to methanol, and the reduced

Fig. 4.39 Spectra of phenol in the liquid phase: comparison of IR and Raman spectra by Wannier
approach and Voronoi approach from an AIMD simulation of 32 phenol molecules. The dotted
lines show the integrals with the scales on the right side. The experimental spectra are taken from
Ref. [7]
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relative intensity of the broad OH stretching band. In contrast, the Raman spectra
clearly reveal the deficiency of the Wannier localization for phenol (see Fig. 4.39).
Although the broad OH stretching band can be identified and the absolute noise level
is reduced in comparison to benzene, the Wannier spectrum is still unsuitable for
a detailed analysis. The Voronoi approach, instead, provides a reasonable spectrum
that agrees very well with the experiment [7, 74, 75] below 2000 cm−1. A clear
deficiency is only the overestimation of the OH and CH stretching vibrations above
3000 cm−1, but also the literature data [7, 74, 75] is not fully consistent at this point.
Since this intense band is even discernible in the noise of theWannier spectrum and it
is rather insensitive to changes of the Voronoi radii, it is unlikely to be a specific issue
of the Voronoi method. To check if it is a particular problem of the BLYP exchange-
correlation functional selected for the AIMD, static calculations of a single phenol
molecule were carried out comparing BLYP with the meta-GGA functional TPSS
and the hybrid functional B3LYP (see Fig. 4.40). The gas phase calculations can-
not reproduce the broad OH stretching band caused by the intermolecular hydrogen
bonding in the bulk. The three functionals yield slightly different band positions,
but they agree very well on the intensities. This indicates that also the choice of
the exchange-correlation functional is not responsible, and the intensity mismatch
between simulation and experiment seems to be a more general issue of DFT.

In Sect. 4.5.1, the charge transfer between the ions in [C2C1Im][OAc] was dis-
cussed. Due to the discrete nature of the Wannier function centers, the charges are
quantized to integer numbers in the Wannier approach, and in particular, they are
fixed at±1.0e for the ions in [C2C1Im][OAc]. In contrast, the electron density is con-

Fig. 4.40 Raman spectra of phenol in the gas phase by static calculations employing three different
exchange-correlation functionals. The lines are broadened by Lorentzian functions with a FWHM
of 15 cm−1
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tinuously divided by the radical Voronoi tessellation, and the ions in [C2C1Im][OAc]
carry average charges of ±0.8e if van der Waals radii are applied. Consequently,
deviations in the vibrational spectra might be expected too. The most important
difference in the IR spectra (see Fig. 4.41) concerns the broad CH stretching band
around3000 cm−1.While theWannier approach assigns a significant part of the inten-
sity to the anion, there is almost no anion contribution to this band in the Voronoi
spectrum. In linear approximation, the IR spectrum can only possess peaks at the
wavenumbers of the normal modes. Reconsidering the normal coordinate analysis
of [C2C1Im][OAc] (cf. Figs. 4.20 and 4.21) reveals that the cation has three broad
modes that match the IR band while the anion has only three sharp modes in the
corresponding wavenumber range and no mode that matches the IR band. This

Fig. 4.41 Spectra of neat [C2C1Im][OAc]: comparison of IR and Raman spectra by Wannier
approach and Voronoi approach from an AIMD simulation of 36 [C2C1Im][OAc] ion pairs. The
experimental spectra have been provided by Prof. Dr. Tibor Pasinszki
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means that the broad band around 3000 cm−1 should preferably be assigned only
to the cation and not to the anion. In this regard, the Voronoi method performs much
better than theWanniermethod, and it makes the IR spectrum consistent with the nor-
mal coordinate analysis. In the Raman spectra (see Fig. 4.41), the Voronoi approach
predicts a much lower intensity and a significantly different shape for the CH stretch-
ing band around 3000 cm−1. While the Wannier spectrum is superior regarding the
intensity of this band relative to the other peaks in the spectrum, theVoronoi spectrum
reproduces the experimental shape of this bandmuch better. Furthermore, significant
differences are apparent between 1200 and 1600 cm−1. In particular, the two anion
peaks in this wavenumber range are significantly reduced in the Voronoi spectrum.
This suggests an alternative assignment in comparison to Sect. 4.4.1 and Ref. [16].
The experimental Raman peaks at 1334 and 1567 cm−1 that were assigned to modes
A8 and A12 of the anion could also be matched to modes C27 and C40 of the cation.
The latter describe a mixture of CEtN stretching and CMeN stretching, and a CImCIm

stretching vibration, respectively. However, both the Voronoi approach and theWan-
nier approach are not fully consistent with the experimental result in this part of the
Raman spectrum.

Similar effects as in the neat ionic liquid are also found in the IR spectra of the
mixture with water (see Fig. 4.42). Again, the main difference between Wannier and
Voronoi method concerns the intensity assigned to the anion in the wavenumber
region above 3000 cm−1. Although the anion does not possess any broad normal
modes, it has a very broad IR band in the Wannier spectrum. In this system, the
IR intensity is transferred not only from the cation but in particular from the water

Fig. 4.42 IR spectra of a [C2C1Im][OAc]–water mixture: comparison of IR spectra by Wannier
approach and Voronoi approach from an AIMD simulation of 27 [C2C1Im][OAc] ion pairs with 81
water molecules. The experimental spectrum has been provided by Prof. Dr. Tibor Pasinszki
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molecules, which possess two very broad OH stretching modes in this wavenumber
range. The Voronoi approach provides amore reasonable separation of themolecules
and the ions in this respect, and it assigns almost no IR intensity to the anion above
3000 cm−1. This makes the result more consistent with the picture of the normal
coordinates.

4.6 Vibrational Circular Dichroism

4.6.1 Assessment of the Magnetic Moments

The general methodology to predict VCD spectra in theMD approach was described
in Sect. 3.5. Of particular importance is the calculation of magnetic moments, for
which a new approach is proposed in this thesis. Before theVCD spectra are analyzed
for several examples, the accuracy of the magnetic moments with respect to the
parameters entering their calculation is assessed. These parameters are the timestep
at which the electron density needs to be sampled, the convergence threshold in the
BiCGstab(l) algorithm, and the background electron density to stabilize the solution.
The model system for this purpose should preferably be a chiral molecule, and
2-butanol was selected here as it is the smallest chiral alkanol.

For the simulation of IR and Raman spectra, it is sufficient to sample the dipole
moments and the polarizabilities with a step size of 4 fs.With the simulation timestep
of 0.5 fs used for all AIMD simulations in this thesis, this means that the dipole
moments and the polarizabilities need to be calculated in every eighth step.According
to the Nyquist–Shannon theorem, this provides the spectrum up to a wavenumber
of 4170 cm−1. In principle, this would be sufficient for VCD spectra too, but it has
to be taken into consideration that the time derivative of the electron density enters
the calculation of the magnetic moments. To find the timestep that is needed to
obtain this time derivative with reasonable accuracy, the 2-butanol molecule was
simulated with a timestep of 0.1 fs and the electron density was saved in all steps.
At first, the magnetic moment was calculated in each step by taking the whole
trajectory, and using a background electron density of 6.7 · 10−3 e/nm3 and a relative
convergence criterion of 1 · 10−3 (cf. Sect. 3.5). Afterwards, only every fifth step and
every tenth step of the trajectory were processed, so the time derivative is computed
with step sizes of 0.5 and 1.0 fs. A comparison of the resulting magnetic moments
(see Fig. 4.43) within a time range of 20 fs shows that the difference between 0.1 and
0.5 fs is in the order of 10−5 μB, which usually corresponds to a relative error of about
1%. For a step size of 1.0 fs, the deviation to a step size of 0.1 fs reaches values in the
order of 10−4 μB, yielding a relative error around 5%. This indicates that the even
larger step size of 4 fs recommended for dipole moments is surely insufficient for
magnetic moments. On the other hand, the result suggests that the usual simulation
timestep of 0.5 fs does not need to be reduced if the electron density is processed
in every step. Considering that this timestep introduces further deviations regarding,

http://dx.doi.org/10.1007/978-3-319-49628-3_3
http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Fig. 4.43 Vector components of the magnetic moment of a single 2-butanol molecule for three
different timesteps

e.g., the vibrational wavenumbers (see Sect. 3.2.3), the relative difference in the order
of 1% in themagneticmoments due to the cruder approximation of the time derivative
is absolutely tolerable.

The next parameter to be studied is the relative convergence threshold in the
BiCGstab(l) algorithm that is applied as described in Sect. 3.5. Three different val-
ues are compared for a timestep of 0.5 fs and a background electron density of
6.7 · 10−3 e/nm3 (see Fig. 4.44). The value of 1 · 10−3 chosen in the comparison of
different timesteps above is very tight, since in some snapshots, the solution algo-
rithm is even not able to reach this threshold. However, it is obvious that less tight
criteria are sufficient to obtain a reasonably converged magnetic moment. Even with
a value 5 · 10−2, the relative deviations are in the order of a few percent. The thresh-
old of 1 · 10−2 appears to be a proper choice, and thus, a threshold of 5 · 10−3 should
be a safe recommendation.

An important issue for the calculation of magnetic moments are large empty
regions in the simulation cell. At these points, the scalar field α(r) in the partial dif-
ferential equation (3.92) can take, in principle, arbitrary values without influencing
the resulting current density. This strongly hampers the convergence of the solution
algorithm, and for the 2-butanol simulation here, it is not possible to obtain a rea-
sonable result in any snapshot of the trajectory. To avoid this problem, a constant
background electron density is added to the system. To a small extent, this allows a
current to flow everywhere in the simulation cell, and it makes the solution of the
differential equation much more stable. For 2-butanol, it is found that a minimal
background electron density in the order of 6.7 · 10−3 e/nm3 (equal to 10−6 a. u.)

http://dx.doi.org/10.1007/978-3-319-49628-3_3
http://dx.doi.org/10.1007/978-3-319-49628-3_3
http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Fig. 4.44 Vector components of the magnetic moment of a single 2-butanol molecule for three
different convergence criteria in the BiCGstab(l) algorithm

Fig. 4.45 Isosurfaces of the electron density in 2-butanol. Left: ρ = 1.3 · 10−2 e/nm3, right: ρ =
50 e/nm3

is needed. Significantly smaller choices do not sufficiently stabilize the algorithm.
Still, this value is by several orders of magnitude lower than the electron density
in the molecule near the nuclei (see Fig. 4.45) and the influence on the magnetic
moment should be negligible. This can be confirmed by comparing the result with
two larger values of the background electron density (see Fig. 4.46). This shows that
clear effects on the magnetic moment start to be visible with a background electron
density of 6.7 · 10−1 e/nm3. Since the result with 6.7 · 10−2 e/nm3 is almost equal to
6.7 · 10−3 e/nm3, it is safe to assume that the latter does not influence the magnetic
moment in an unacceptable manner. Finally, it should be noted that the background
electron density is not needed at all for bulk phase simulations. In this case, calcula-
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Fig. 4.46 Vector components of the magnetic moment of a single 2-butanol molecule for three
different values of the background electron density

tions with the unmodified electron density from the AIMD simulation proved to be
stable in all systems investigated here.

4.6.2 Analysis of the Spectra

As shown in the last section, the magnetic moments are reasonably converged with
the parameters selected for the solution of Eq. (3.92). The resulting VCD spectra
are investigated for several different systems in this section. As the first example, a
single 2-butanol molecule in the (R)-configuration is chosen (see Appendix A for
computational details). Beside the magnetic moments, also the dipole moments are
needed for the VCD spectrum (see Sect. 3.5), so the IR spectrum is immediately
available for analysis too. Both spectra are compared to experimental data of a dilute
(0.029mol/L) solution of (R)-2-butanol in carbon disulfide [76], which should pro-
vide a reasonable approximation to the gas phase [77] (see Fig. 4.47). Due to the
restrictions imposed by the experimental setup and the IR bands of carbon disulfide,
the measured spectra are only available between 900 and 1400 cm−1, but this is the
most important wavenumber region in the case of 2-butanol.

The IR spectra are in good agreement, but the simulation shows the significant
redshift that has been observed in other systems before. This concerns in partic-
ular the two intense bands at 910 and 989 cm−1 in the experiment, for which the
AIMD predicts wavenumbers of 857 and 932 cm−1, respectively. The OH stretching
mode appears with an intense peak at 3671 cm−1 in the simulated spectrum. Due
to the coupling with the torsion of the C–O bond showing up at 227 cm−1, the OH

http://dx.doi.org/10.1007/978-3-319-49628-3_3
http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Fig. 4.47 IR spectrum and VCD spectrum from an AIMD simulation of (R)-2-butanol in the gas
phase. The experimental spectra of a (R)-2-butanol solution in carbon disulfide (0.029mol/L) are
taken from Ref. [76]

stretching band possesses broad satellite peaks analogous to the effect observed in
methanol (see Sect. 4.1.1). The most important result for the investigation in this
section is that the simulation reproduces the shape of the VCD spectrum very well.
The experimental pattern with a positive peak at 1076 cm−1 followed by a strong
negative peak at 1143 cm−1 and another positive peak at 1241 cm−1 appears in the
same manner also in the simulated spectrum. The wavenumbers are slightly shifted,
so the bands are found at 1078, 1118, and 1227 cm−1 in the AIMD, but the intensity
ratios are in very good agreement. The coincidence is of particular interest regarding
the conformational flexibility of 2-butanol. Both the C–O bond and the central C–C
bond have three distinct torsional minima on the potential energy surface, resulting in
nine conformations for the molecule. Static calculations reveal that they significantly
differ in the VCD spectra [76, 77], but apparently, the AIMD simulation properly
averages over all important conformers. It should be noted that simulated VCD spec-
tra are more sensitive to noise than simulated IR spectra. The experiment does not
include the wavenumber region of the OH stretching band, but since there is only
one vibrational mode, it is unlikely that it would show a strong positive peak next to
a strong negative peak as predicted by the AIMD, and this should be considered as
noise. Finally, it should also be recognized that the absolute intensities in simulation
and experiment agree very well for both the IR and the VCD spectrum.

Due to the ability to form intermolecular hydrogen bonds, significant differences
in the spectra of the gas phase and the liquid phase of 2-butanol are expected. For that
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Fig. 4.48 IR spectra and VCD spectra of 2-butanol in the (R)-configuration and the
(S)-configuration fromAIMD simulations of 16 2-butanol molecules. The dotted lines facilitate the
comparison of the VCD spectra of the enantiomers and show the assignment between simulation
and experiment. The experimental IR spectrum is taken from Ref. [78]. The experimental VCD
spectrum of the (R)-configuration is taken from Ref. [76]

reason, two bulk phase AIMD simulations of 16 2-butanol molecules under periodic
boundary conditions were carried out, one for each enantiomer (see Appendix A for
computational details). Simulating both configurations allows for an important basic
test of the VCDmodel proposed in this thesis, since the VCD spectra of enantiomers
generally differ only in the sign of the intensity while the band shapes are equal.
The AIMD simulation, of course, should reproduce this effect. The obtained IR and
VCD spectra are compared to experimental data [76, 78] (see Fig. 4.48) where the
VCD spectrum has been recorded for the (R)-enantiomer. It has to be noted that the
simulated IR spectra of the enantiomers show minor differences, indicating that the
spectra are not strictly converged with respect to the system size and the simulation
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time. Nevertheless, the experimental IR spectrum is reproduced very well, though
the already known redshift in the fingerprint region as well as the blueshift and the
reduced intensity of the CH stretching modes are found. Comparing to the gas phase,
themost distinct changes concern the broadOHstretching band above 3000 cm−1 and
the broadbandof the librations around600 cm−1. This is very similar tomethanol (see
Sect. 4.2.1), but 2-butanol also shows significant differences in the fingerprint region
between 800 and 1600 cm−1. The only important deficiency in this wavenumber
range regards the two separate experimental peaks at 992 and 1031 cm−1, for which
the simulation predicts only one band at 947 cm−1 with a shoulder at 975 cm−1.

Comparing the VCD spectra of the two enantiomers shows that the AIMD simula-
tions meet the expected result: each bandwith a positive sign in the (S)-configuration
has a negative sign in the (R)-configuration and vice versa, so the proposed VCD
model is valid regarding this basic property of VCD spectroscopy. Minor differences
in the intensity ratios occur for the same reason as in the IR spectra. Furthermore,
the simulated spectrum of the (R)-enantiomer is in very good agreement with the
experiment, as the pattern of positive and negative bands is reproduced very well.
The only exception is the positive peak found at 968 cm−1 in the experiment, which
is missing in the simulation. However, this is the wavenumber region, where also
the IR spectrum deviates from the experiment, so this is unlikely to be a particular
issue of the VCD model. Comparing gas phase and liquid phase, the most impor-
tant change is the vanishing positive band at 1241 cm−1. According to the normal
coordinate analysis, this band belongs to the COH bending mode. In the liquid, this
vibration is shifted to the region of the CH bending modes around 1400 cm−1. The
behavior of this vibration due to the hydrogen bonding in the liquid is reproduced
very well by the simulation, showing again that AIMD is suited to model bulk phase
effects in vibrational spectra.

The next example system is a bulk phase simulation of 16 propylene oxide mole-
cules in the (R)-configuration (see Appendix A for computational details). The IR
and VCD spectra are compared to experimental data of the liquid [79–81] (see
Fig. 4.49). The general agreement of simulation and experiment is very good, only
the relative intensity of the band at 782 cm−1 is overestimated in the simulation and
a redshift of most fingerprint bands is observed again. This concerns in particular
the peaks found at 747 and 829 cm−1 in the IR experiment, for which the simula-
tion predicts wavenumbers of 683 and 782 cm−1, respectively. Furthermore, several
bands are merged in the IR spectrum, so the AIMD shows only two peaks instead
of four between 1300 and 1550 cm−1, and the splitting of the two signals around
1100 cm−1 is less pronounced. These effects directly transfer to the VCD spectrum,
where the simulated intensities in the negative–positive–negative peak feature around
1100 cm−1 are decreased in comparison to the experiment. In the IR spectrum, the
bands of shifted modes are just merged, while in the VCD spectrum, the intensities
of peaks with opposite sign can cancel each other. This makes the shape of VCD
spectra more sensitive to a shift of the wavenumbers by the underlying AIMD. The
same applies to the weak bands observed at 1458 and 1499 cm−1 in the VCD exper-
iment. Moreover, the simulation predicts a positive peak at 782 cm−1, for which no
counterpart is found in the experimental spectrum. Nevertheless, it is important to
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Fig. 4.49 IR spectrum and VCD spectrum from an AIMD simulation of 16 (R)-propylene oxide
molecules. The experimental IR spectrum is taken from Ref. [79]. The experimental VCD spectrum
is the inverted spectrum of the (S)-enantiomer from Ref. [80]

note that the intense experimental bands at 895, 950, and 1407 cm−1 are reproduced
very well by the simulation.

The last example is a bulk phase simulation of 16 (1R, 5R)-(+)-α-pinene mole-
cules (see Appendix A for computational details). The IR and VCD spectra are
compared to experimental data of the liquid [78, 82] (see Fig. 4.50). The IR spec-
trum of α-pinene possesses a lot of bands in the fingerprint region, and due to the
shifts of wavenumbers and intensities, it is hard to find a fully unambiguous assign-
ment between simulation and experiment. A combined comparison of simulated and
measured IR and VCD spectra, however, allows to match the bands as indicated by
the dotted lines. This shows thatmany of the distinct features in theVCDspectrumare
reproduced very well by the simulation. Considerable differences concern the neg-
ative peak at 1265 cm−1 in the experiment, which is partially merged with another
negative band at 1197 cm−1 in the simulation, the negative peak at 1063 cm−1 in the
experiment, which is missing in the simulation, and the predicted negative band at
1143 cm−1 in the AIMD, for which no counterpart is observed in the experiment. It
should be noted that some of the fingerprint bands are blue-shifted in the simulation
opposed to the trend found for other molecules. Since the deviations of the AIMD
from the experiment are not limited to the VCD spectrum but occur in the IR spec-
trum to the same extent, they should not primarily be attributed to the model for the
magnetic moments, but to the electronic structure method in the underlying AIMD.
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Fig. 4.50 IR spectrum andVCD spectrum from anAIMD simulation of 16 (1R, 5R)-(+)-α-pinene
molecules. The experimental IR spectrum is taken from Ref. [78]. The experimental VCD spectrum
is taken from Ref. [82]. The dotted lines indicate the assignment of simulation and experiment

The most important result of the comparison is that the simulated VCD spectrum
is clearly sufficient to identify the correct enantiomer of α-pinene, so the combina-
tion of experiment and calculation could readily be used to determine the absolute
configuration of the molecule.
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Chapter 5
Conclusion and Outlook

In the framework of this thesis, the application of AIMD simulations to model the
vibrational spectra of liquids was discussed. The techniques known in the literature
were extended by several new ideas, and all algorithms presented here were imple-
mented in the open-source trajectory analysis software package Travis, making
everything publicly available to the scientific community for immediate utilization.

The basic equations that define the spectra in terms of Fourier transforms of cor-
relation functions were derived in an alternative manner with the harmonic oscillator
as the reference system. While this is usually started from the Heisenberg picture of
quantummechanics [1, 2], approximating the quantum correlation functions by clas-
sical correlation functions and introducing quantum correction factors, the approach
chosen here highlights the close relation of AIMD simulations and static calcula-
tions with respect to vibrational properties. Using several selected example poten-
tials, it was analyzed in detail how themethodology transfers to anharmonic systems.
This revealed that MD simulations generally include anharmonicity effects, but the
approximation of the nuclei as classical particles imposes certain restrictions on the
effects that can be observed. Accordingly, MD based spectra always show overtones
at integer multiples and combination bands at exact sums and differences of the
corresponding fundamental frequencies. Furthermore, the band positions depend on
the energy or the temperature of the simulation. At low energies, the MD samples
the potential energy surface only in the close vicinity of a minimum, which can be
approximated by a quadratic function very well, so the peaks appear at the harmonic
frequencies of the system. At higher energies, the MD also reaches the more anhar-
monic parts of the potential energy surface, so the band positions and the intensities
are shifted. Due to this energy dependence, it is usually impossible to quantitatively
determine the amount of anharmonicity, but the examples of cyanoformyl chloride,
cyanoformyl bromide, and carbon tetrachloride showed that a very good qualitative
picture can be obtained in many cases if the simulations are performed at ambient
temperature or slightly above. Even the intensity shifts due to Fermi resonances can
in principle be seen in MD based spectra, but this requires that the frequency of an
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overtone closely matches another fundamental frequency, and the frequency shifts
induced by the assumption of classical nuclei often prevent that this effect is observed
in investigations of real systems.

For the evaluation of molecular dipole moments and polarizabilities in a bulk
phase AIMD simulation, the scheme of maximally localized Wannier functions was
employed first. This is common practice to simulate IR spectra in the literature [2].
The polarizabilities can be obtained by relocalizing the Wannier functions under the
influence of an external electric field and calculating the differences of the dipole
moments. A simplification compared to the method reported in the literature [3, 4]
that applies the field only in one direction and uses only a part of the polarizability
tensor proved to work well for reasonable Raman spectra in the liquid phase. This is
due to the fact that the molecules usually adopt all possible orientations with respect
to the cell coordinate axes in a typical bulk phase AIMD simulation, so averaging
the orientation of the simulation cell with respect to the laboratory coordinate system
provides only a minor improvement.

The applications of the method to several organic molecules demonstrated the
suitability of AIMD simulations to model bulk phase effects on vibrational spec-
tra, as, e.g., the influence of the hydrogen bonding in liquid methanol was cor-
rectly reproduced. This is of particular importance for ionic liquids due to their
strong and dynamic network of diverse intermolecular interactions. In the case of
[C2C1Im][OAc], the gas phase and the liquid phase show significant differences
regarding the formation of a carbene, so static calculations of a single ion pair are
insufficient to accurately model the vibrational spectra of the liquid. In contrast, the
predictions of the AIMD simulation are in very good agreement with the experiment.
This is also true for the effects observed in a mixture of [C2C1Im][OAc] and water,
as well as the physical and chemical absorption of carbon dioxide. The influence
of the ionic liquid as a solvent on the physically absorbed carbon dioxide could be
reproduced very well. The implementation of a normal coordinate analysis [5, 6]
allows to assign the experimentally observed bands to specific molecular vibrations.
Moreover, it provides a detailed insight into the CH stretching modes, indicating that
the ring hydrogen atoms of the cation are heavily involved in the hydrogen bonding
network, as it was also concluded in the structural analyses of this system [7, 8].

Due to the computational effort needed for the calculation of the Wannier func-
tions, an alternative approach to obtainmolecular dipolemoments andpolarizabilities
was developed in the course of this thesis. It is based on a radical Voronoi tessellation
and integration of the electron density. Thus, it avoids the costly localization proce-
dure, as it just relies on the electron density data inherently available in an AIMD
simulation. An important parameter of the radical Voronoi tessellation are the radii
that are assigned to the Voronoi sites. As a reasonable criterion for the adequacy of a
certain set of radii, the standard deviation of the charge distribution was required to
be minimal. If the molecular charge is considered, this minimum is usually close to
the result that is obtained by simply applying van derWaals radii to the atoms. This is
not surprising, since van derWaals radii have been fitted to reproduce intermolecular
distances. Furthermore, this condition yields average charges of ±0.8 e for the ions
in [C2C1Im][OAc], which is another support for the generally accepted fact that the
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ionic charges are reduced by charge transfer effects in ionic liquids [9]. In the same
way, it should also be possible to obtain reasonable atomic partial charges by min-
imizing the standard deviations in the corresponding distribution functions. It was
found that the result is often close to the minimum if covalent radii are employed.
However, this leads to the conflict that one set of radii is needed to optimally separate
the electron density between the molecules while another set of radii provides the
best distribution of the electron density within the molecules. Future work could
focus on an implementation that allows a two-step procedure, where molecular cells
are created with one set of radii and these molecular cells are further tessellated using
another set of radii.

Regarding the dipole moments, it could be shown that there exist many molecules
for which the Wannier function scheme introduces artifacts in small periodic simu-
lation cells. In particular, it assigns a finite dipole moment to certain molecules that
are actually nonpolar due to their symmetry. In most cases, only a constant offset
is added to the dipole moment, and this does affect neither the IR spectra, where
the time derivative of the dipole moment enters, nor the polarizabilities, where the
difference of two dipole moments is taken. In the special situation of a benzene ring,
however, there are two solutions the localization can converge to, and they differ
in the orientation of the artificial dipole moment. Regular switches between these
solutions appear as an artificial band in the IR spectrum, and they totally prevent the
calculation of polarizabilities and Raman spectra. The Voronoi approach does not
suffer from this issue, and it allowed to simulate the spectra of benzene and phenol
in very good agreement with the experiment.

In general, the Voronoi method yields vibrational spectra of similar quality as
the Wannier function scheme, but it saves a lot of computation time. For the phe-
nol simulation with the Wannier centers calculated in every eighth step, e.g., the
localization took approximately one third of the total time needed to perform the
whole AIMD, corresponding to ten days with parallelization on 32 processor cores
of the employed computer cluster. In contrast, the electron density data could be
processed within 30min using Traviswithout parallelization on a workstation com-
puter. This allows to recommend theVoronoi approach as a favorable alternative to the
Wannier function scheme for the calculation of vibrational spectra in the liquid phase
byAIMD. It should be noted that theVoronoi tessellation is totally independent of the
underlying electronic structure method in the AIMD. Thus, it can easily be combined
with any technique that is able to provide the total electron density.

To extend the AIMD approach toward a simulation of VCD spectra in the liquid
phase, a novel method to calculate magnetic moments was developed in the course
of this thesis. The electron density from an AIMD simulation is processed and a
partial differential equation is solved to compute the electric current density on the
basis of the continuity equation and the request that there should not be any eddy
currents. According to the classical definition, the current density allows to calcu-
late the magnetic moment of the simulation cell. In combination with the Voronoi
tessellation technique, this also provides individual molecular magnetic moments.
These can be used to obtain the VCD spectrum as the Fourier transform of the
dipole moment–magnetic moment cross-correlation function. It was shown that the
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magnetic moments are reasonably converged with respect to the timestep of the
simulation, the background electron density needed in gas phase systems, and the
threshold of the BiCGstab(l) algorithm. All the example systems chosen here could
be treated without major issues, but future work could still try to improve the con-
vergence behavior and the stability of the solution of the partial differential equation
by testing other algorithms known in the literature [10]. Using the examples of
2-butanol, propylene oxide, and α-pinene, it could be shown that the approach pro-
vides VCD spectra in very good agreement with experimental data. All the essential
features of the spectra were reproduced by the simulations, in particular also the
bulk phase effects in 2-butanol could be modeled. In contrast to previous work in
a QM/MM framework [11, 12], the new approach does not rely on atomic partial
charges obtained by population analyses, but it uses the complete information con-
tained in the electron density. Furthermore, it does not need special implementations
of perturbation theory [13, 14], but it can straightforwardly be coupled with any
electronic structure method that is able to provide the electron density. Although
the authors of reference [13] are aiming for a direct application in AIMD, a study
that shows a complete VCD spectrum had not appeared in the literature—to the best
of the author’s knowledge—prior to the submission of this thesis in October 2015.
In any case, the approach presented here can be considered as the one of the first
employments of AIMD for VCD spectra that treats the whole system on the same
level of theory.

The proposal of a model for VCD spectra immediately raises the question about
Raman optical activity (ROA). In principle, the necessary ingredients should be
available now. The intensities in ROA spectra depend on the electric dipole–electric
dipole polarizability tensor, the electric dipole–magnetic dipole polarizability tensor,
and the electric dipole–electric quadrupole polarizability tensor in static calculations
(see, e.g., Ref. [15]). The former tensor was simply called polarizability throughout
this thesis, and it is already known from Raman spectra. The latter two tensors
should similarly be obtainable by the method of a finite electric field. One just
needs to calculate the differences in the magnetic dipole moment and the electric
quadrupole moment. However, it has to be checked carefully if the magnetic moment
induced by an external electric field can be computed with the density derivative in
the differential equation (3.92) approximated by the finite difference of two densities
under the influence of an external electric field. If this works correctly, the tensor
derivatives along the normal coordinates in the expressions for static calculations
(see, e.g., Ref. [15]) have to be replaced by certain cross-correlation functions, and
this should yield formulas for the simulation of ROA spectra by AIMD.

Another interesting extension are resonance Raman spectra, where the frequency
of the incident laser matches an electronic transition of the system. This enhances the
Raman signal by several orders of magnitude, and it also shifts the relative intensities
in the spectrum. One of the different techniques to model these effects by static cal-
culations relies on the equations for nonresonant Raman spectra shown in Sect. 2.4.3,
but inserts the dynamic polarizability at the laser frequency [16]. This is easily trans-
ferred to the MD approach, as one just needs to apply the dynamic polarizability in
the expressions shown in Sect. 3.3. The dynamic polarizability for this purpose can

http://dx.doi.org/10.1007/978-3-319-49628-3_3
http://dx.doi.org/10.1007/978-3-319-49628-3_2
http://dx.doi.org/10.1007/978-3-319-49628-3_3
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be evaluated by linear response theory [17], or by real-time time-dependent density
functional theory as shown by static calculations in earlier works of the author [18,
19]. In the latter method, the Kohn–Sham orbitals are propagated according to the
time-dependent form of theKohn–Sham equations (2.17) after excitationwith a finite
electric field pulse. The time development of the dipole moment is recorded during
the propagation, and its Fourier transform directly yields the dynamic polarizability
as a function of the frequency afterwards. This can readily be combined with the
Voronoi tessellation to get the molecular quantities in a bulk phase simulation if
the full electron density is saved during the propagation. In contrast to the single
point calculation with an external electric field needed to get the static polarizability
(see Sect. 3.4), this requires, however, a complete real-time propagation at regular
intervals of the AIMD simulation, so it tremendously increases the computational
demands. Nevertheless, it would also provide the electronic spectrum of the system
and it would pave the way for an investigation of surface-enhanced Raman scattering
[18, 20] by AIMD.
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Appendix A
Computational Details

A.1 Ab Initio Molecular Dynamics Simulations

All AIMD simulations discussed in this thesis were performed using the CP2K
software package [6]. For solving the electronic structure problem, the Quickstep
module [7] of CP2K provides an efficient implementation of DFT in terms of the
Gaussian and plane waves method [8] in combination with the OT approach [9]
(see Sect. 2.2.4). In all simulations, the molecularly optimized double-zeta basis
set MOLOPT-DZVP-SR-GTH [10] was applied to all atoms together with the corre-
spondingGTHpseudopotentials [11–13] and a planewave cutoff of 280 Ry. Smooth-
ing algorithms (NN10 for the density and NN10_SMOOTH for its derivative) were
employed to reduce grid effects on the exchange-correlation potential, and the con-
vergence criterion for the OT iterations (EPS_SCF) was set to 10−5. The nuclei
were propagated with a timestep of 0.5 fs, and the temperature was adjusted by a
Nosé–Hoover thermostat chain [14–17]. Further parameters such as the exchange-
correlation functional, the size of the cubic simulation cell with periodic boundaries,
the target temperature, and the thermostat coupling time constant are individually
given for each simulation in Table A.1.

The simulations of neat [C2C1Im][OAc] (I1) and the [C2C1Im][OAc]–water mix-
ture (I2) were prepared and started by Dr.Martin Brehm. Detailed structural analyses
of these trajectories can be found in Refs. [18, 19]. The trajectories were extended in
the course of this thesis to obtain the vibrational spectra. The simulations of physically
(I3) and chemically (I4) absorbed carbon dioxide in [C2C1Im][OAc] were prepared
and started by Dr. Oldamur Hollóczki. A detailed structural discussion of the physi-
cal absorption can be found in Refs. [20, 21]. Also these trajectories were extended
in the course of this thesis to obtain the vibrational spectra. For all other bulk phase
simulations, initial configurations were obtained with classical force fields using the
Lammps software package [22]. Force constants for bonds, angles, dihedral angles,
and improper torsions, as well as Lennard-Jones parameters were taken from the
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Table A.1 AIMD simulation parameters: exchange-correlation functional with dispersion correc-
tion, cubic cell size a, density ρ, thermostat target temperature T , equilibration time teq, production
time tsim, and thermostat coupling time constant τsim during production run

System Functional a/pm ρ/g cm−3 T /K teq/ps tsim/ps τsim/fs

G1 1 methanol

a BLYP-D3 [1–3] 1000.0 – 400 3.1 31.2 100.0

b 10 5.6 32.9

c 100 4.1 30.8

d 1000 3.5 31.7

G2 1 acetone

BLYP-D3 [1–3] 1000.0 – 400 3.2 31.0 100.0

G3 1 nitromethane

BLYP-D3 [1–3] 1000.0 – 400 4.8 31.8 100.0

G4 1 cyanoformyl chloride

PBE-D3 [3, 4] 1200.0 – 400 10.0 120.0 50.0

G5 1 cyanoformyl bromide

PBE-D3 [3, 4] 1200.0 – 400 10.0 76.3 50.0

L1 16 methanol

BLYP-D3 [1–3] 1025.0 0.79 400 1.1 60.7 100.0

L2 32 carbon tetrachloride

PBE-D3 [3, 4] 1725.9 1.59 400 5.0 27.9 50.0

S1 32 carbon tetrachloride + 1 methanol

BLYP-D3 [1–3] 1733.2 1.58 400 9.7 36.7 100.0

S2 32 carbon tetrachloride + 1 pinacol

BLYP-D3 [1–3] 1743.2 1.58 400 7.6 33.6 100.0

I1 36 [C2C1Im][OAc]
BLYP-D2 [1, 2, 5] 2121.2 1.07 350 18.9 91.8 16.7

I2 27 [C2C1Im][OAc] + 81 water

BLYP-D2 [1, 2, 5] 2158.2 1.00 350 15.0 113.1 16.7

I3 36 [C2C1Im][OAc] + 1 carbon dioxide

BLYP-D3 [1–3] 2121.2 1.07 350 5.5 103.3 50.0

I4 35 [C2C1Im][OAc] + 1 [C2C1ImCO2] + 1 acetic acid

BLYP-D3 [1–3] 2121.2 1.07 350 10.0 106.3 50.0

V1 16 benzene

BLYP-D3 [1–3] 1331.1 0.88 400 12.2 30.0 50.0

V2 32 phenol

BLYP-D3 [1–3] 1751.9 0.93 400 8.0 30.2 50.0

C1 1 (R)-2-butanol

BLYP-D3 [1–3] 1200.0 – 400 5.0 30.0 50.0

C2 16 (R)-2-butanol

BLYP-D3 [1–3] 1345.0 0.81 400 10.0 30.0 50.0

(continued)
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Table A.1 (continued)

System Functional a/pm ρ/g cm−3 T /K teq/ps tsim/ps τsim/fs

C3 16 (S)-2-butanol

BLYP-D3
[1–3]

1345.0 0.81 400 10.0 30.0 50.0

C4 16 (R)-propylene oxide

BLYP-D3
[1–3]

1230.0 0.83 400 10.0 30.0 50.0

C5 16 (1R, 5R)-(+)-α-pinene

BLYP-D3
[1–3]

1615.0 0.86 400 5.0 30.0 50.0

general Amber force field [23]. Electrostatic interactions were modeled by atomic
partial charges derived from a restrained electrostatic potential fit [24] in the isolated
molecule. To equilibrate the AIMD simulations, massive thermostatting was applied
with a coupling time constant of 10 fs.

Dipole moments in the AIMD can be obtained by a Wannier localization or a
Voronoi tessellation of the electron density (see Sect. 3.4). Which method was used
for which simulation is shown in Table A.2. The maximally localized Wannier func-
tion centers resulting from the Wannier localization were saved as atoms in the
trajectories. The electron density needed for the Voronoi tessellation performed by
Travis was written to files in Gaussian cube format, which provide the density
values on a regular grid. Such a representation of the electron density is directly
available in the Gaussian and plane waves method, and due to the large amount of
data, the internal grid of CP2K can be written with a certain stride to the hard disk.
A stride of 2 proved to work well for the calculation of IR and Raman spectra in
the molecular liquids (L1, V1, V2), but a stride of 1 significantly reduced the noise
in the Raman spectrum of [C2C1Im][OAc] (I1) and is generally recommended for
the simulation of VCD spectra to improve the stability of the magnetic moments.
An important limitation in this regard is the required disk space. Saving the electron
density with a stride of 2 in every eighth timestep yielded, e. g., 68GB of data for
the simulation of phenol (V2). This amount can readily be handled on contemporary
computer systems, but writing the electron density with a stride of 1 in all simulation
steps would increase the size by a factor of 64, and this is still a challenge for today’s
hardware. For that reason, a streaming scheme was implemented where Travis runs
in parallel to the AIMD simulation and directly processes the Gaussian cube files
written by CP2K, eliminating the need for large amounts of disk space.

For the gas phase simulations of methanol (G1a), acetone (G2), and nitromethane
(G3), histograms of the dipole moments obtained byWannier localization are shown
in Fig.A.1. Each of the distributions possesses a single maximum and reveals the
oscillations of the dipole moment due to the molecular vibrations. The average val-
ues are 1.81D for methanol, 3.12D for acetone, and 3.68D for nitromethane with
standard deviations of 0.10D, 0.15D, and 0.17D, respectively. The corresponding

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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Table A.2 Methods used to obtain dipole moments and polarizabilities for the AIMD simulations.
The start time tstart and the end time tend are given relative to the beginning of the production run of the
whole simulation (see Table A.1). Their difference t is the time over which the spectra are sampled.
The Wannier localization was performed or the electron density was saved, respectively, with a
stride of �tdip. The dipole moments were evaluated with an external field to obtain polarizabilities
with a stride of �tpol. The internal grid representation of the electron density in CP2K was written
to Gaussian cube files with the stride given in the last column

System Method tstart /ps tend/ps t /ps �tdip/fs �tpol/fs Cube
stride

G1a Wannier 0.0 31.2 31.2 0.5 2.5 –

G2 Wannier 0.0 31.0 31.0 0.5 2.5 –

G3 Wannier 0.0 31.8 31.8 0.5 2.5 –

G4 Wannier 20.0 120.0 100.0 2.5 – –

G5 Wannier 0.0 76.3 76.3 2.5 – –

L1 Wannier 0.0 30.7 30.7 0.5 2.5 –

Wannier 30.7 60.7 30.0 4.0 4.0 –

Voronoi 30.7 60.7 30.0 4.0 4.0 2

L2 Wannier 0.0 27.9 27.9 2.5 2.5 –

S1 Wannier 0.0 36.7 36.7 2.5 – –

S2 Wannier 0.0 33.6 33.6 2.5 – –

I1 Wannier 49.6 70.0 20.4 2.5 2.5 –

Voronoi 71.8 91.8 20.0 4.0 4.0 1

I2 Wannier 61.6 93.1 31.5 2.5 – –

Voronoi 93.1 113.1 20.0 4.0 – 2

I3 Wannier 83.1 103.3 20.2 2.5 – –

I4 Wannier 80.6 106.3 25.7 2.5 – –

V1 Wannier 0.0 30.0 30.0 4.0 4.0 –

Voronoi 0.0 30.0 30.0 4.0 4.0 2

V2 Wannier 0.0 30.2 30.2 4.0 4.0 –

Voronoi 0.0 30.0 30.0 4.0 4.0 2

C1 Voronoi 0.0 30.0 30.0 0.5 – 1

C2 Voronoi 0.0 30.0 30.0 0.5 – 1

C3 Voronoi 0.0 30.0 30.0 0.5 – 1

C4 Voronoi 0.0 30.0 30.0 0.5 – 1

C5 Voronoi 0.0 30.0 30.0 0.5 – 1

experimental dipole moments determined in the gas phase are 1.68D for methanol
[25], 2.90D for acetone [26], and 3.46D for nitromethane [27], which are all slightly
overestimated by the simulations. The main reason is the issue of the Wannier func-
tions in small simulation cells that is discussed in Sect. 4.5.2. Further deviations can
be caused by the electronic structure method, but in general, DFT with the employed
exchange-correlation functional describes the dipole moment of the molecules in a
reasonable manner.

http://dx.doi.org/10.1007/978-3-319-49628-3_4
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Fig. A.1 Dipole distribution functions of methanol from simulation G1a, acetone from simulation
G2, and nitromethane from simulation G3 obtained by the method of maximally localized Wannier
functions

A.2 Static Calculations

Static calculations of vibrational spectra were always performed in the following
way: Starting from a reasonable guess of the structure, a full geometry optimization
was carried out first. Afterwards, the Hessian of the potential energy was calculated
numerically by finite differences of analytic first derivatives. The detailed setups
employed in the course of this thesis are, however, slightly different.

The calculations of methanol, acetone, and nitromethane in Sect. 4.1.1 were per-
formed using Turbomole 6.0 [28, 29]. DFT was applied within the RI approx-
imation [30–34] employing the BLYP exchange-correlation functional [1, 2] and
Grimme’s dispersion correction D2 [5]. The polarized triple-zeta basis set def2-
TZVP [35]was applied to all atoms, and the polarizability derivativeswere calculated
analytically [36]. The resulting dipole moments are 1.68D for methanol, 2.90D for

http://dx.doi.org/10.1007/978-3-319-49628-3_4
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acetone, and 3.45D for nitromethane. These values are in very good agreement with
the experimental data (see Sect.A.1).

The calculations of carbon tetrachloride in Sect. 4.2.2were carried out usingTur-
bomole 6.5 [29, 37]. DFT was applied combining Grimme’s dispersion correction
D3 [3] with eight different exchange-correlation functionals: BLYP [1, 2], BP86 [1,
38], PBE [4], B97D [5], TPSS [39], B3LYP [40], PBE0 [41], and TPSSh [42]. The
RI approximation [30–34] was employed for the GGA functionals, and the polarized
triple-zeta basis set def2-TZVP [35] was applied to all atoms.

The calculations of [C2C1Im][OAc] in Sect. 4.4.1 were performed using CP2K
with the same parameters in the electronic structure calculation as for the AIMD
simulations (see Sect.A.1). The BLYP exchange-correlation functional [1, 2] was
employed with Grimme’s dispersion correction D3 [3]. The cubic cell sizes were
2000.0 and 2500.0 pm for the single ion pair and the cluster of five ion pairs, respec-
tively. The same methodology was also used to optimize the reference structures for
all the normal coordinate analyses and to calculate the dipole moments in Sect. 4.5.2.

The calculations of phenol in Sect. 4.5.3 were performed using Orca 3.0.2 [43].
DFT was applied within the RI approximation [44, 45] employing the exchange-
correlation functionals BLYP [1, 2], TPSS [39], and B3LYP [40] in combination
with Grimme’s dispersion correction D3 [3]. The polarized triple-zeta basis set def2-
TZVPP [34, 35] was applied to all atoms.
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Appendix B
Mathematical Derivations

B.1 Correlation of Periodic Functions

Autocorrelation

The autocorrelation of a time-dependent function A(τ ) is the expected value over τ

of the product A∗(τ )A(τ + t) as a function of the time difference t , which is given
by

RA(t) = 〈A∗(τ )A(τ + t)
〉
τ

= lim
T →∞

1

2T

∫ T

−T
A∗(τ )A(τ + t) dτ. (B.1)

Applying this to the harmonic oscillator trajectory x(t) = x0 cos(ω0t +ϕ) leads to

Rx (t) = lim
T →∞

1

2T

∫ T

−T
x20 cos(ω0τ + ϕ) cos(ω0(τ + t) + ϕ) dτ

= lim
T →∞

1

2T

∫ T

−T
x20

[
cos2(ω0τ)

(
cos(ω0t) cos2 ϕ − sin(ω0t) sin ϕ cosϕ

)

− sin(ω0τ) cos(ω0τ)
(
sin(ω0t) cos2 ϕ + 2 cos(ω0t) sin ϕ cosϕ − sin(ω0t) sin2 ϕ

)

+ sin2(ω0τ)
(
sin(ω0t) sin ϕ cosϕ + cos(ω0t) sin2 ϕ

)]
dτ

= x20

(
cos(ω0t) cos2 ϕ − sin(ω0t) sin ϕ cosϕ

)

lim
T →∞

1

2T

∫ T

−T
cos2(ω0τ) dτ − x20

(
sin(ω0t) cos2 ϕ

+ 2 cos(ω0t) sin ϕ cosϕ − sin(ω0t) sin2 ϕ
)
lim

T →∞
1

2T

∫ T

−T
sin(ω0τ) cos(ω0τ) dτ

+ x20

(
sin(ω0t) sin ϕ cosϕ + cos(ω0t) sin2 ϕ

)
lim

T →∞
1

2T

∫ T

−T
sin2(ω0τ) dτ, (B.2)
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where the trigonometric sum and difference formulas are applied, the integral is split,
and constant factors are placed outside the integrals and the limits. The three new
integrals are given by

lim
T →∞

1

2T

∫ T

−T
cos2(ω0τ) dτ = lim

T →∞
1

2T

[
ω0τ + sin(ω0τ) cos(ω0τ)

2ω0

]T

τ=−T

= lim
T →∞

1

2T

(
sin(ω0T ) cos(ω0T ) + ω0T

ω0

)
= 1

2
, (B.3)

lim
T →∞

1

2T

∫ T

−T
sin(ω0τ) cos(ω0τ) dτ = lim

T →∞
1

2T

[
− cos2(ω0τ)

2ω0

]T

τ=−T

= 0, (B.4)

lim
T →∞

1

2T

∫ T

−T
sin2(ω0τ) dτ = lim

T →∞
1

2T

[
ω0τ − sin(ω0τ) cos(ω0τ)

2ω0

]T

τ=−T

= lim
T →∞

1

2T

(
ω0T − sin(ω0T ) cos(ω0T )

ω0

)
= 1

2
. (B.5)

Inserting these expressions into (B.2) yields

Rx (t) = 1

2
x2
0

(
cos(ω0t) cos2 ϕ − sin(ω0t) sin ϕ cosϕ

)

+ 1

2
x2
0

(
sin(ω0t) sin ϕ cosϕ + cos(ω0t) sin2 ϕ

)

= 1

2
x2
0 cos(ω0t)

(
cos2 ϕ + sin2 ϕ

) = 1

2
x2
0 cos(ω0t). (B.6)

Autocorrelation of the Derivative

The autocorrelation of the time derivative Ȧ(τ ) = dA(τ )/dτ is given by

RȦ(t) = 〈 Ȧ∗(τ ) Ȧ(τ + t)
〉
τ

= − d2

dt2
RA(t). (B.7)

This can be shown by inserting the definition of the derivative:

RȦ(t) = lim
T →∞

1

2T

∫ T

−T
Ȧ∗(τ ) Ȧ(τ + t) dτ

= lim
T →∞

1

2T

∫ T

−T
lim
g→0

A∗(τ + g) − A∗(τ )

g
lim
h→0

A(τ + t + h) − A(τ + t)

h
dτ

= lim
g→0

lim
h→0

[
1

gh
lim

T →∞
1

2T

∫ T

−T

(
A∗(τ + g) − A∗(τ )

)
(A(τ + t + h) − A(τ + t)) dτ

]

= lim
g→0

lim
h→0

[
1

gh

(
lim

T →∞
1

2T

∫ T

−T
A∗(τ + g)A(τ + t + h) dτ

− lim
T →∞

1

2T

∫ T

−T
A∗(τ + g)A(τ + t) dτ

− lim
T →∞

1

2T

∫ T

−T
A∗(τ )A(τ + t + h) dτ + lim

T →∞
1

2T

∫ T

−T
A∗(τ )A(τ + t) dτ

)]
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= lim
g→0

lim
h→0

[
1

gh
(RA(t − g + h) − RA(t − g) − RA(t + h) + RA(t))

]

= lim
g→0

[
1

g

(
d

dt
RA(t − g) − d

dt
RA(t)

)]
= − d2

dt2
RA(t), (B.8)

where uniform convergence is presumed to ensure the permutability of the limits and
the integral.

Vector Autocorrelation

The autocorrelation of an n-dimensional vectorial quantityA(τ ) is the expected value
over τ of the scalar product A∗(τ ) · A(τ + t) as a function of the time difference t .
It is given by

RA(t) = 〈A∗(τ ) · A(τ + t)
〉
τ

= lim
T →∞

1

2T

∫ T

−T
A∗(τ ) · A(τ + t) dτ

= lim
T →∞

1

2T

∫ T

−T

n∑
i=1

A∗
i (τ )Ai (τ + t) dτ =

n∑
i=1

lim
T →∞

1

2T

∫ T

−T
A∗

i (τ )Ai (τ + t) dτ

=
n∑

i=1

RAi (t), (B.9)

so it is the sum of the autocorrelations of the vector components in an orthonormal
basis.

Cross-Correlation

The cross-correlation of two time-dependent functions A(τ ) and B(τ ) is the expected
value over τ of the product A∗(τ )B(τ + t) as a function of the time difference t ,
which is given by

RAB(t) = 〈A∗(τ )B(τ + t)
〉
τ

= lim
T →∞

1

2T

∫ T

−T
A∗(τ )B(τ + t) dτ. (B.10)

The autocorrelation is the special case of the cross-correlation of a function A(τ )

with itself:
RA(t) = RAA(t). (B.11)

Calculating the cross-correlation of two harmonic oscillator trajectories xi (t) =
xi cos(ωi t + ϕi ) and x j (t) = x j cos(ω j t + ϕ j ) leads to

Rxi x j (t) = lim
T →∞

1

2T

∫ T

−T
xi x j cos(ωiτ + ϕi ) cos(ω j (τ + t) + ϕ j ) dτ

= lim
T →∞

1

2T

∫ T

−T
xi x j

[
cos(ωiτ) cos(ω jτ)

(
cos(ω j t) cosϕi cosϕ j

− sin(ω j t) cosϕi sin ϕ j
)+ sin(ωiτ) cos(ω jτ)
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(
sin(ω j t) sin ϕi sin ϕ j − cos(ω j t) sin ϕi cosϕ j

)
− cos(ωiτ) sin(ω jτ)

(
sin(ω j t) cosϕi cosϕ j + cos(ω j t) cosϕi sin ϕ j

)

+ sin(ωiτ) sin(ω jτ)
(
sin(ω j t) sin ϕi cosϕ j + cos(ω j t) sin ϕi sin ϕ j

)]
dτ

= xi x j
(
cos(ω j t) cosϕi cosϕ j − sin(ω j t) cosϕi sin ϕ j

)

lim
T →∞

1

2T

∫ T

−T
cos(ωiτ) cos(ω jτ) dτ

+ xi x j
(
sin(ω j t) sin ϕi sin ϕ j − cos(ω j t) sin ϕi cosϕ j

)

lim
T →∞

1

2T

∫ T

−T
sin(ωiτ) cos(ω jτ) dτ

− xi x j
(
sin(ω j t) cosϕi cosϕ j + cos(ω j t) cosϕi sin ϕ j

)

lim
T →∞

1

2T

∫ T

−T
cos(ωiτ) sin(ω jτ) dτ

+ xi x j
(
sin(ω j t) sin ϕi cosϕ j + cos(ω j t) sin ϕi sin ϕ j

)

lim
T →∞

1

2T

∫ T

−T
sin(ωiτ) sin(ω jτ) dτ, (B.12)

where the trigonometric sum and difference formulas are applied, the integral is split,
and constant factors are placed outside the integrals and the limits. For ωi �= ω j , the
four new integrals are given in the following way:

lim
T →∞

1

2T

∫ T

−T
cos(ωi τ) cos(ω j τ) dτ = lim

T →∞
1

2T

∫ T

−T

cos((ωi + ω j )τ )

2
+ cos((ωi − ω j )τ )

2
dτ

= lim
T →∞

1

2T

[
sin((ωi + ω j )τ )

2(ωi + ω j )
+ sin((ωi − ω j )τ )

2(ωi − ω j )

]T

τ=−T

= lim
T →∞

1

2T

(
sin((ωi + ω j )T )

ωi + ω j
+ sin((ωi − ω j )T )

ωi − ω j

)
= 0,

(B.13)

lim
T →∞

1

2T

∫ T

−T
sin(ωi τ) cos(ω j τ) dτ = lim

T →∞
1

2T

∫ T

−T

sin((ωi + ω j )τ )

2
+ sin((ωi − ω j )τ )

2
dτ

= lim
T →∞

1

2T

[
− cos((ωi + ω j )τ )

2(ωi + ω j )
− cos((ωi − ω j )τ )

2(ωi − ω j )

]T

τ=−T

= lim
T →∞

1

2T

(
− cos((ωi + ω j )T )

ωi + ω j
− cos((ωi − ω j )T )

ωi − ω j

)
= 0,

(B.14)

lim
T →∞

1

2T

∫ T

−T
cos(ωi τ) sin(ω j τ) dτ = lim

T →∞
1

2T

∫ T

−T
sin(ωi τ) cos(ω j τ) dτ = 0, (B.15)

lim
T →∞

1

2T

∫ T

−T
sin(ωi τ) sin(ω j τ) dτ = lim

T →∞
1

2T

∫ T

−T
− cos((ωi + ω j )τ )

2
+ cos((ωi − ω j )τ )

2
dτ
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= lim
T →∞

1

2T

[
− sin((ωi + ω j )τ )

2(ωi + ω j )
+ sin((ωi − ω j )τ )

2(ωi − ω j )

]T

τ=−T

= lim
T →∞

1

2T

(
− sin((ωi + ω j )T )

ωi + ω j
+ sin((ωi − ω j )T )

ωi − ω j

)
= 0.

(B.16)

Therefore, the cross-correlation vanishes if the frequencies are different:

Rxi x j (t) = 0, ωi �= ω j . (B.17)

For ωi = ω j , the integrals are given in Eqs. (B.3)–(B.5). It remains

Rxi x j (t) = 1

2
xi x j

(
cos(ωi t) cosϕi cosϕ j − sin(ωi t) cosϕi sin ϕ j

)

+ 1

2
xi x j

(
sin(ωi t) sin ϕi cosϕ j + cos(ωi t) sin ϕi sin ϕ j

)

= 1

2
xi x j

(
cos(ωi t) cos(ϕi − ϕ j ) + sin(ωi t) sin(ϕi − ϕ j )

)
, ωi = ω j .

(B.18)

It should be noted that the sum in Eq. (3.16) also contains Rx j xi (t), which is given by

Rx j xi (t) = 1

2
xi x j

(
cos(ωi t) cos(ϕi − ϕ j ) − sin(ωi t) sin(ϕi − ϕ j )

)
, ωi = ω j .

(B.19)

Thus, only the cosine functionwithout a phase remains also if the autocorrelation of a
linear combination of two harmonic vibrations with the same frequency is calculated.

B.2 Correlation of Discrete Data Sets

Autocorrelation

The autocorrelation of a quantity A in a finite MD trajectory with a discrete timestep
�t is given by

RA(n�t) = 1

N − n

N−n−1∑
i=0

Ai
∗ Ai+n, with n = 0, . . . , N − 1, (B.20)

where (Ai )
N−1
i=0 are the values of A in the N snapshots of the simulation, and i numbers

the steps of the trajectory.
Applying this to the harmonic oscillator trajectory Ai = x0 cos(iω0�t +ϕ) yields

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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RA(n�t) = 1

N − n

N−n−1∑
i=0

x20 cos(iω0�t + ϕ) cos((i + n)ω0�t + ϕ)

= 1

N − n

N−n−1∑
i=0

x20

[
cos2(iω0�t)

(
cos(nω0�t) cos2 ϕ − sin(nω0�t) sin ϕ cosϕ

)

− sin(iω0�t) cos(iω0�t)
(
sin(nω0�t) cos2 ϕ + 2 cos(nω0�t) sin ϕ cosϕ

− sin(nω0�t) sin2 ϕ
)

+ sin2(iω0�t)
(
sin(nω0�t) sin ϕ cosϕ + cos(nω0�t) sin2 ϕ

)]

= x20
N − n

(
cos(nω0�t) cos2 ϕ − sin(nω0�t) sin ϕ cosϕ

) N−n−1∑
i=0

cos2(iω0�t)

− x20
N − n

(
sin(nω0�t) cos2 ϕ + 2 cos(nω0�t) sin ϕ cosϕ

− sin(nω0�t) sin2 ϕ
) N−n−1∑

i=0

sin(iω0�t) cos(iω0�t)

+ x20
N − n

(
sin(nω0�t) sin ϕ cosϕ + cos(nω0�t) sin2 ϕ

) N−n−1∑
i=0

sin2(iω0�t),

(B.21)

where the trigonometric sum and difference formulas are applied, the sum is split,
and constant factors are placed outside the sums. The three new sums are calculated
in the following way:

N−n−1∑
j=0

cos2( jω0�t) =
N−n−1∑

j=0

(
exp(i jω0�t) + exp(−i jω0�t)

2

)2

= 1

4

N−n−1∑
j=0

(
exp(2i jω0�t) + exp(−2i jω0�t) + 2

)

= 1

4

N−n−1∑
j=0

exp(2i jω0�t) + 1

4

N−n−1∑
j=0

exp(−2i jω0�t) + 1

2
(N − n),

(B.22)

where the definition of the cosine in terms of exponential functions is used and the
sum is split. The two individual sums are partial sums of geometric series, so the first
one is given by

N−n−1∑
j=0

exp(2i jω0�t) =
N−n−1∑

j=0

(
exp(2iω0�t)

) j

= 1 − (exp(2iω0�t)
)N−n

1 − exp(2iω0�t)
= 1 − exp(2i(N − n)ω0�t)

1 − exp(2iω0�t)
(B.23)
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for ω0�t �= z π, z ∈ Z. Since the Nyquist–Shannon theorem limits the sampling by
ωmax�t = π, the case ω0�t = z π is not considered further. The timestep in a simu-
lation should always be chosen small enough to sample all vibrational frequencies of
the system. Applying this also to the second geometric series, using Euler’s formula
for the exponential, and employing the trigonometric sum and difference formulas
leads to

N−n−1∑
j=0

cos2( jω0�t) = 1

4

(
1 − exp(2i(N − n)ω0�t)

1 − exp(2iω0�t)

+ 1 − exp(−2i(N − n)ω0�t)

1 − exp(−2iω0�t)
+ 2(N − n)

)

= 1

4

(
2(N − n) + 1 − cos(2Nω0�t) cos(2nω0�t)

− sin(2Nω0�t) sin(2nω0�t)

+ cos(ω0�t)

sin(ω0�t)

(
sin(2Nω0�t) cos(2nω0�t)

− cos(2Nω0�t) sin(2nω0�t)
))

(B.24)

In the same way, the other sums in (B.21) are obtained:

N−n−1∑
j=0

sin( jω0�t) cos( jω0�t)

=
N−n−1∑

j=0

exp(i jω0�t) − exp(−i jω0�t)

2i

exp(i jω0�t) + exp(−i jω0�t)

2

= 1

4i

N−n−1∑
j=0

(
exp(2i jω0�t) − exp(−2i jω0�t)

)

= 1

4i

(
1 − exp(2i(N − n)ω0�t)

1 − exp(2iω0�t)
− 1 − exp(−2i(N − n)ω0�t)

1 − exp(−2iω0�t)

)

= 1

4

(
cos(2Nω0�t) sin(2nω0�t) − sin(2Nω0�t) cos(2nω0�t)

+ cos(ω0�t)

sin(ω0�t)

(
1 − cos(2Nω0�t) cos(2nω0�t) − sin(2Nω0�t) sin(2nω0�t)

))
(B.25)

N−n−1∑
j=0

sin2( jω0�t)

=
N−n−1∑

j=0

(
exp(i jω0�t) − exp(−i jω0�t)

2i

)2
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= − 1

4

N−n−1∑
j=0

(
exp(2i jω0�t) + exp(−2i jω0�t) − 2

)

= − 1

4

(
1 − exp(2i(N − n)ω0�t)

1 − exp(2iω0�t)
+ 1 − exp(−2i(N − n)ω0�t)

1 − exp(−2iω0�t)
− 2(N − n)

)

= 1

4

(
2(N − n) − 1 + cos(2Nω0�t) cos(2nω0�t) + sin(2Nω0�t) sin(2nω0�t)

− cos(ω0�t)

sin(ω0�t)

(
sin(2Nω0�t) cos(2nω0�t) − cos(2Nω0�t) sin(2nω0�t)

))
(B.26)

Inserting these terms into (B.21), and applying the trigonometric sum and difference
formulas yields

RA(n�t) = 1

2
x2
0 cos(nω0�t) + x2

0 cos((N − 1)ω0�t + 2ϕ)

2(N − n) sin(ω0�t)
sin((N − n)ω0�t).

(B.27)

Cross-Correlation

The cross-correlation of two quantities A and B in a finite MD trajectory with a
discrete timestep �t is given by

RAB(n�t) = 1

N − n

N−n−1∑
i=0

Ai
∗ Bi+n, with n = 0, . . . , N − 1, (B.28)

where (Ai )
N−1
i=0 and (Bi )

N−1
i=0 are the respective values of A and B in the N snapshots

of the simulation, and i numbers the steps of the trajectory.
Applying this to two harmonic oscillator trajectories

Ai = xA cos(iωA�t + ϕA), Bi = xB cos(iωB�t + ϕB) (B.29)

with ωA �= ωB yields very long expressions that are not shown here. With the aid
of a computer algebra system (e. g.,Maxima [1]), however, it is possible to find out
that the discrete cross-correlation does not vanish as in the continuous case, but is
proportional to 1/(N −n) and 1/((cos((ωB −ωA)�t)−1)(cos((ωB +ωA)�t)−1),
so it becomes large if a long correlation depth is chosen, as well as if both frequencies
are similar and very high or very low.

Correlation by Fourier Transform

The discrete Fourier transform is defined as

Ãk = F(A)k =
N−1∑
j=0

A j exp

(
−2π i jk

N

)
, (B.30)



Appendix B: Mathematical Derivations 173

and its inverse is

Ak = F−1( Ã)k = 1

N

N−1∑
j=0

Ã j exp

(
2π i jk

N

)
. (B.31)

It should be noted that the factor 1/N in the inverse transform is usually omitted
in publicly available computer codes for fast Fourier transforms such as, e. g., the
FFTW library [2] and has to be inserted by hand.

According to Wiener–Khintchine theory [3, 4], the autocorrelation of a function
can be calculated by taking the square of the absolute value of its Fourier transform
and applying the inverse Fourier transform. This approach bears the advantage that
fast Fourier transform algorithms feature a better scaling behavior [2] than the direct
computation according to (B.20). If the method is applied to a discrete data set, an
auxiliary data set (Bi )

2N−1
i=0 defined by

Bi =
{

Ai if 0 ≤ i ≤ N − 1

0 if N ≤ i ≤ 2N − 1
(B.32)

has to be introduced. The autocorrelation of the original data set (Ai )
N−1
i=0 is given by

RA(n�t) = 1

N − n
F−1

(|F(B)|2)n , with n = 0, . . . , N − 1. (B.33)

This can be shown by inserting the definition of the discrete Fourier transform of
(Bi )

2N−1
i=0 ,

B̃ j =
2N−1∑
k=0

Bk exp

(
−2π i jk

2N

)
, (B.34)

into the inverse discrete Fourier transform of the squared absolute value:

F−1
(
|F(B)|2

)
n

= 1

2N

2N−1∑
j=0

∣∣∣B̃ j

∣∣∣2 exp
(
2π i jn

2N

)
= 1

2N

2N−1∑
j=0

B̃ j
∗ B̃ j exp

(
2π i jn

2N

)

= 1

2N

2N−1∑
j=0

[(
2N−1∑
k=0

Bk
∗ exp

(
2π i jk

2N

))

(
2N−1∑
l=0

Bl exp

(
−2π i jl

2N

))
exp

(
2π i jn

2N

)]

= 1

2N

2N−1∑
k=0

2N−1∑
l=0

⎡
⎣Bk

∗ Bl

2N−1∑
j=0

exp

(
2π i j (k − l + n)

2N

)⎤⎦ .
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As the Bi vanish for i > N − 1, the limits of the sums over k and l can be rewritten:

= 1

2N

N−1∑
k=0

N−1∑
l=0

⎡
⎣Bk

∗ Bl

2N−1∑
j=0

exp

(
2π i j (k − l + n)

2N

)⎤⎦

= 1

2N

N−1∑
k=0

N−n−1∑
m=−n

⎡
⎣Bk

∗ Bm+n

2N−1∑
j=0

exp

(
2π i j (k − m)

2N

)⎤⎦

= 1

2N

N−1∑
k=0

N−n−1∑
m=0

⎡
⎣Bk

∗ Bm+n

2N−1∑
j=0

exp

(
2π i j (k − m)

2N

)⎤
⎦

+ 1

2N

N−1∑
k=0

−1∑
m=−n

⎡
⎣Bk

∗ Bm+n

2N−1∑
j=0

exp

(
2π i j (k − m)

2N

)⎤⎦ .

The sum over j is the partial sum of a geometric series that vanishes if k − m is not
an integer multiple of 2N . In the first term, this is the case except for k = m, where
the sum over j takes the value 2N ,

= 1

2N

N−1∑
k=0

N−n−1∑
m=0

[
Bk

∗ Bm+n · 2Nδkm
]

+ 1

2N

N−1∑
k=0

−1∑
m=−n

⎡
⎣Bk

∗ Bm+n

2N−1∑
j=0

exp

(
2π i j (k − m)

2N

)⎤⎦

=
N−n−1∑

k=0

Bk
∗ Bk+n + 1

2N

N−1∑
k=0

−1∑
m=−n

⎡
⎣Bk

∗ Bm+n

2N−1∑
j=0

exp

(
2π i j (k − m)

2N

)⎤⎦ .

For the second term, another index shift is required to apply this fact:

=
N−n−1∑

k=0

Bk
∗ Bk+n + 1

2N

N−1∑
k=0

2N−1∑
p=2N−n

⎡
⎣Bk

∗ Bp+n−2N

2N−1∑
j=0

exp

(
2π i j (2N + k − p)

2N

)⎤
⎦

=
N−n−1∑

k=0

Bk
∗ Bk+n + 1

2N

N−1∑
k=0

2N−1∑
p=2N−n

⎡
⎣Bk

∗ Bp+n−2N

2N−1∑
j=0

exp

(
2π i j (k − p)

2N

)⎤⎦

=
N−n−1∑

k=0

Bk
∗ Bk+n + 1

2N

N−1∑
k=0

2N−1∑
p=2N−n

[
Bk

∗ Bp+n−2N · 2Nδkp
]

=
N−n−1∑

k=0

Bk
∗ Bk+n +

N−1∑
k=2N−n

Bk
∗ Bk+n−2N . (B.35)

For n < N , the second sum is empty and only the first sum remains. Except for the
prefactor 1/(N −n), the latter is equal to the definition of the autocorrelation (B.20).



Appendix B: Mathematical Derivations 175

The second sum is the reason for the introduction of the auxiliary data set. If the
method is applied to the original data set with N points, the terms of the second sum
mix into the first sum.

In a similarmanner, for the cross-correlation of twodata sets (Ai )
N−1
i=0 and (Ci )

N−1
i=0 ,

the auxiliary data sets (Bi )
2N−1
i=0 and (Di )

2N−1
i=0 are introduced according to

Bi =
{

Ai if 0 ≤ i ≤ N − 1

0 if N ≤ i ≤ 2N − 1
, Di =

{
Ci if 0 ≤ i ≤ N − 1

0 if N ≤ i ≤ 2N − 1
. (B.36)

The cross-correlation is given by

RAB(n�t) = 1

N − n
F−1((F(B))∗F(D)

)
n, with n = 0, . . . , N − 1.

(B.37)
The proof is completely analogous to the one for the autocorrelation above, just

instead of |B̃ j |2, the product B̃ j
∗ D̃ j has to be inserted.

Integral of the Fourier Transform

For any data set (Ai )
N−1
i=0 that is collected with a discrete timestep �t , the integral

over its discrete Fourier transform is given by

N−1∑
k=0

Ãk�ω = N A0�ω = A0
2π

�t
. (B.38)

This can be shown by inserting the definition (B.30) of the discrete Fourier trans-
form:

N−1∑
k=0

Ãk�ω =
N−1∑
k=0

⎡
⎣
⎛
⎝N−1∑

j=0

A j exp

(
−2π i jk

N

)⎞⎠�ω

⎤
⎦

=
N−1∑
j=0

[
A j�ω

N−1∑
k=0

exp

(
−2π i jk

N

)]

The sum over k is the partial sum of a geometric series that vanishes if j is not an
integer multiple of N . This is the case except for j = 0, where the sum over k takes
the value N ,

=
N−1∑
j=0

[
A j�ωNδ0 j

] = N A0�ω. (B.39)
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B.3 Transition Moments of the Quantum Harmonic
Oscillator

The transition moment of a harmonic oscillator with the eigenfrequency ω0 between
the states m and n is given by

〈χm |x |χn〉 =

⎧⎪⎪⎨
⎪⎪⎩

√
n + 1

√
�

2mω0
if m = n + 1

√
n
√

�

2mω0
if m = n − 1

0 otherwise

. (B.40)

This can be shown by inserting the wave functions of the harmonic oscillator
given in Sect. 2.4.1:

〈χm |x |χn〉 =
∫ ∞

−∞
xχm(x)χn(x) dx

=
∫ ∞

−∞
1√
2mm!

1√
2nn!

√
mω0

π �
x Hm

(√
mω0

�
x

)
Hn

(√
mω0

�
x

)
exp

(
−mω0

�
x2
)
dx .

(B.41)

Using the recursive definition

Hn+1(x) = 2x Hn(x) − 2nHn−1(x) (B.42)

of the Hermite polynomials, the integral can be rewritten as

〈χm |x |χn〉 =
∫ ∞
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2mm!

1√
2nn!
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)
dx
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)
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(
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+
∫ ∞
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1√
2mm!

1√
2nn!

1√
π

nHm

(√
mω0

�
x

)
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(√
mω0

�
x

)
exp

(
−mω0

�
x2
)
dx .

(B.43)

Applying the orthogonality relation

∫ ∞

−∞
exp(−x2)Hm(x)Hn(x) dx = 2n · n! · √

π · δmn (B.44)

of the Hermite polynomials, the first integral evaluates to
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∫ ∞
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(B.45)

and the second integral is given by

∫ ∞

−∞
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(B.46)

Form = n+1, only the first integral remains and takes the value
√

(n + 1)�/(2mω0).
For m = n − 1, only the second integral remains and takes the value

√
n�/(2mω0).

In all other cases, both integrals vanish and the transition moment is zero.

B.4 Verlet Integration of the Classical Harmonic Oscillator

For a particle of mass m in the one-dimensional harmonic potential V (x) = kx2/2,
the Verlet algorithm with the timestep �t yields the trajectory

x(n�t) = xn = A cos(ωVn�t + ϕ), (B.47)

where the amplitude A and the phase ϕ are determined by the initial conditions, and
the frequency ωV is related to the frequency ω0 = √

k/m of the exact solution (2.50)
by

ωV = 1

�t
arccos

(
1 − 1

2
ω2
0�t2

)
. (B.48)

This is valid as long as the timestep fulfills the condition ω0�t < 2.
This can be shown by transforming the recurrence relation of the Verlet algorithm

to an explicit form. According to Eq. (2.39), the position in the nth step is given by

xn = 2xn−1 − xn−2 + Fn−1

m
�t2. (B.49)

In the harmonic potential, the force is Fn−1 = −kxn−1 = −mω2
0xn−1, so this can be

written as
xn − (2 − ω2

0�t2
)

xn−1 + xn−2 = 0. (B.50)
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This is a linear homogeneous recurrence relation with constant coefficients, which
can be solved by the ansatz xn = λn:

λn − (2 − ω2
0�t2

)
λn−1 + λn−2 = 0

λn−2 (λ2 − (2 − ω2
0�t2

)
λ + 1

) = 0. (B.51)

The root λ = 0 is not considered further as it would provide the trivial trajectory
xn = 0. For ω0�t < 2, the second factor (the characteristic polynomial of the
recurrence relation) possesses the roots

λ1,2 = 1 − 1

2
ω2
0�t2 ± 1

2
iω0�t

√
4 − ω2

0�t2. (B.52)

The exponential form of this complex expression reads as

λ1,2 = exp(±iα) with α = arccos

(
1 − 1

2
ω2
0�t2

)
, (B.53)

so the general solution of the recurrence relation is

xn = C1λ1
n + C2λ2

n = C1 exp(inα) + C2 exp(−inα) (B.54)

with the constants C1 and C2 that are determined by the initial conditions. It is
convenient to write this as

xn = A cos(nα+ϕ) with A = 2
√

C1C2 and ϕ = arccos

(
C1 + C2

2
√

C1C2

)
,

(B.55)
since this form shows that the trajectory is a harmonic vibration

xn = A cos(ωVn�t + ϕ) (B.56)

with the frequency

ωV = α

�t
= 1

�t
arccos

(
1 − 1

2
ω2
0�t2

)
. (B.57)

If the initial position x0 and the initial velocity v0 are chosen, the amplitude A
and phase ϕ are determined by the equation system

A cosϕ = x0 (B.58)

A cos(ωV�t + ϕ) = x1 = x0

(
1 − 1

2
ω2
0�t2

)
+ v0�t, (B.59)
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where the velocity form of the Verlet algorithm (2.40) is used to obtain x1. The
solution is given by

A =
√

x2
0 + v2

0

ω2
0

(
1 − 1

4ω
2
0�t2

) , ϕ =
{

− arccos
( x0

A

)
if v0 ≥ 0

arccos
( x0

A

)
if v0 < 0

. (B.60)

For the exact solution x(t) = A cos(ω0t + ϕ) (see Eq. (2.50)), the same initial
conditions yield the equation system

A cosϕ = x0 (B.61)

−Aω0 sin ϕ = v0 (B.62)

with the solution

A =
√

x2
0 + v2

0

ω2
0

, ϕ =
{

− arccos
( x0

A

)
if v0 ≥ 0

arccos
( x0

A

)
if v0 < 0

. (B.63)

This means that not only the frequency, but also the amplitude and the phase are
influenced if the Verlet algorithm is employed to integrate the equations of motion
for the harmonic oscillator.

B.5 Finite Difference Derivatives

The second-order central finite difference derivative of a cosine function cos(ωt +ϕ)
is given by

D cos(ωt + ϕ) = cos(ω(t + �t) + ϕ) − cos(ω(t − �t) + ϕ)

2�t
= −ω sin(ωt + ϕ)

sin(ω�t)

ω�t
.

(B.64)

This means that the exact derivative d(cos(ωt + ϕ))/dt = −ω sin(ωt + ϕ) is
multiplied by the sinc function sin(ω�t)/(ω�t).

This can be shown by applying the trigonometric sum and difference formulas:

D cos(ωt + ϕ) = cos(ω(t + �t) + ϕ) − cos(ω(t − �t) + ϕ)

2�t

= 1

2�t

(
cos(ωt + ϕ) cos(ω�t) − sin(ωt + ϕ) sin(ω�t)

− cos(ωt + ϕ) cos(ω�t) − sin(ωt + ϕ) sin(ω�t)
)

= − sin(ωt + ϕ) sin(ω�t)

�t

= −ω sin(ωt + ϕ)
sin(ω�t)

ω�t
. (B.65)
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B.6 Reference Point for Molecular Moments

Infrared Spectrum of a Translating Oscillator

If an oscillator is charged, its translational motion shows up in the IR spectrum
depending on the choice of the origin for the dipole moment.

This can be shown in the following way: According to Eq. (3.84), the dipole
moment of an oscillator with the translating center of mass s(t) is given by

µ(t) = µs(t) + qs(t), (B.66)

where µ(t) is the dipole moment with the coordinate origin as reference point, µs(t)
is the dipole moment with the center of mass as reference point, and q is the charge.
The time derivative of the dipole moment reads as

µ̇(t) = µ̇s(t) + q ṡ(t). (B.67)

Thus, the autocorrelation is

〈µ̇(τ ) · µ̇(τ + t)〉τ = 〈(µ̇s(τ ) + q ṡ(τ )) · (µ̇s(τ + t) + q ṡ(τ + t))
〉
τ

= 〈µ̇s(τ ) · µ̇s(τ + t)
〉
τ
+ q

〈
µ̇s(τ ) · ṡ(τ + t)

〉
τ

+ q
〈
ṡ(τ ) · µ̇s(τ + t)

〉
τ
+ q2 〈ṡ(τ ) · ṡ(τ + t)〉τ , (B.68)

so it contains additional charge-dependent terms involving the center ofmass velocity
in contrast to the autocorrelation 〈µ̇s(τ ) · µ̇s(τ + t)〉τ that is obtained in a coordinate
system fixed at the oscillator.

Magnetic Moment of a Translating Electron Density

The magnetic moment of a translating electron density distribution ρ(r, t) with the
centroid s(t) is given by

m(t) = ms(t) + 1

2
s(t) × Js(t) + 1

2
µs(t) × ∂s(t)

∂t
+ 1

2
q(t)s(t) × ∂s(t)

∂t
, (B.69)

where ms(t) and Js(t) are the magnetic moment and the total current density in the
centroid coordinate system, respectively. This can be, e. g., a molecule with center
of mass s(t) that is translating and vibrating. The analogous expression for the total
current density reads as

J(t) = Js(t) + q(t)
∂s(t)
∂t

, (B.70)

where q(t) is the total charge of the electron density distribution.
This can be shown in the following way: It is assumed that the electron density

can be separated by

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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ρ(r, t) = ρ0(r − s(t)) + ρ1(r − s(t), t), (B.71)

where ρ0(r) is the equilibrium electron density that depends on the time only implic-
itly due to the translation of the centroid, and ρ1(r, t) collects all changes in the
electron density due to vibrations, which keep the centroid fixed. The time derivative
of the electron density reads as

∂ρ(r, t)

∂t
= −∇ρ0(r − s(t)) · ∂s(t)

∂t
+ ∂ρ1(r − s(t), t)

∂t
− ∇ρ1(r − s(t), t) · ∂s(t)

∂t
,

(B.72)
and the gradient is given by

∇ρ(r, t) = ∇ρ0(r − s(t)) + ∇ρ1(r − s(t), t). (B.73)

Inserting this into the differential equation (3.92) yields

∂ρ1(r − s(t), t)

∂t
−∇ρ(r, t)· ∂s(t)

∂t
= ∇ρ(r, t)·∇α(r, t)+ρ(r, t)�α(r, t). (B.74)

A similar ansatz is made for α(r, t):

α(r, t) = α0(r − s(t)) + α1(r − s(t), t), (B.75)

where α0(r) is the solution without vibrations of the electron density distribution. In
this case, the current density should be proportional to the velocity, so it is required
that ∇α0(r) = −∂s(t)/∂t . This leads to

∇α(r, t) = −∂s(t)
∂t

+ ∇α1(r − s(t), t) (B.76)

�α(r, t) = �α1(r − s(t), t). (B.77)

Inserting this into (B.74) yields

∂ρ1(r − s(t), t)

∂t
− ∇ρ(r, t) · ∂s(t)

∂t
= −∇ρ(r, t) · ∂s(t)

∂t
+ ∇ρ(r, t) · ∇α1(r − s(t), t) + ρ(r, t)�α1(r − s(t), t)

∂ρ1(r − s(t), t)

∂t
= ∇ρ(r, t) · ∇α1(r − s(t), t) + ρ(r, t)�α1(r − s(t), t).

(B.78)

Replacing r−s(t) by r′, this is exactly the differential equation (3.92) in a coordinate
system with fixed centroid. This means that α1(r, t) can be used to calculate the
current density in the centroid coordinate system.

Using the current density j(r) = −ρ(r, t)∇α(r, t), the magnetic moment is given
by

http://dx.doi.org/10.1007/978-3-319-49628-3_3
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m(t) = 1

2
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2
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2
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and the total current density is given by

J(t) =
∫

C r
i (r)

j(r) dr

=
∫

C r
i (r)

∂s(t)
∂t

ρ(r, t) dr −
∫

C r
i (r)

∇α1(r − s(t), t)ρ(r, t) dr

= ∂s(t)
∂t

∫
C r

i (r)
ρ(r, t) dr −

∫
C r

i (r
′)
∇α1(r′, t)(ρ0(r′) + ρ1(r′, t)) dr′

= q(t)
∂s(t)
∂t

+ Js(t). (B.80)
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Appendix C
The Method of Imaginary Time Propagation

The time-independent nuclear Schrödinger equation (2.9) can be solved by the
method of imaginary time propagation (see, e. g., Refs. [1–4]). The explanation starts
with the time-dependent Schrödinger equation (2.1), which can be rewritten in the
integral form

|Φ(t)〉 = exp

(
− i

�
Ht

)
|Φ(0)〉 (C.1)

for a HamiltonianH that does not explicitly depend on time. The exponential is the
time-evolution operator or propagator of the system. The eigenfunctions |Ψi 〉 of the
Hamiltonian, which satisfy the time-independent Schrödinger equation (2.3), form
a complete basis, so they can be used to express the initial state |Φ(0)〉 as a linear
combination of eigenstates:

|Φ(t)〉 = exp

(
− i

�
Ht

) ∞∑
i=0

ci |Ψi 〉

=
∞∑

i=0

ci exp

(
− i

�
Ei t

)
|Ψi 〉 , (C.2)

where Ei is the energy eigenvalue corresponding to |Ψi 〉. If the time t is replaced by
the imaginary time −iτ in this expression, it results

|Φ(τ)〉 =
∞∑

i=0

ci exp

(
−1

�
Eiτ

)
|Ψi 〉 . (C.3)

This means that the coefficients in the basis expansion of |Φ(τ)〉 are exponentially
damped with increasing τ . In the limit τ → ∞, only the state with the lowest energy
eigenvalue E0 remains, so |Φ(τ)〉 becomes the ground state |Ψ0〉. Thus, starting
from an arbitrary initial state |Φ(0)〉, a sufficiently long propagation in imaginary
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time yields the ground state of the system. Higher eigenstates can be obtained by
starting with an initial state that is orthogonal to all lower eigenstates.

Since the Hamiltonian in the nuclear Schrödinger equation (2.9) consists of a
kinetic part and a potential part, H = T + V , the propagation can be performed
with the split operator technique in practice. This means that a finite timestep �τ is
employed and the propagator is split according to

exp

(
−�τ

�
H
)

= exp

(
−1

2

�τ

�
V
)
exp

(
−�τ

�
T
)
exp

(
−1

2

�τ

�
V
)

+ O
(
�τ 3

)
.

(C.4)

The splitting is not exact because T and V do not commute. The wave function is
represented on a discrete grid in real space, and the potential propagator with V =
V (x) is easily applied by multiplication. The kinetic propagator with T = p2/(2m),
however, can only be applied by a simple multiplication in momentum space, but
a change between real space and momentum space is readily possible by Fourier
transform. This leads to the following computation scheme for one propagation step:
At first, a half step in real space is performed by multiplication with the potential
propagator. Then, the wave function is transformed to momentum space by a Fourier
transform and the kinetic propagator is applied by multiplication. Afterwards, an
inverse Fourier transform is applied and another half step is carried out in real space
by multiplying with the potential propagator. Finally, the wave function has to be
normalized, since the imaginary time propagator is not unitary. For excited states,
also all lower states have to be removed from the wave function by Gram–Schmidt
orthogonalization after each propagation step.

For the systems studied in Sect. 3.2.3, the propagation timestepwas always chosen
as �τ = 12.1 as (equal to 0.5 a. u.). For the one-dimensional examples, the real
space grid consisted of 2048 points with a spacing of �x = 0.529 pm (equal to
0.01 a. u.). It ranged from −529 to 554 pm for the harmonic potential, and from
−265 to 819 pm for the Morse potential. For all the two-dimensional cases, the real
space grid consisted of 256 × 256 points with a spacing of �x = �y = 1.06 pm
(equal to 0.02 a. u.), ranging from −135 to 135 pm along both axes.
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