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PREFACE

Relativistic effects are responsible for a number of well-known chemical
phenomena. For instance, the effect on the adsorption energy of carbon monox-
ide on platinum low-index surfaces is so pronounced that the adsorption energy
cannot be described by non-relativistic theory based on the Schrödinger equation.
Relativistic effects on Pt–C bond shortening and CO adsorption energy obtained in
calculations that include the relativistic correction, and corresponding calculations
that exclude the correction, are found dramatic. The adsorption energy increases by
about 50% when relativity is included. They point up the importance of account-
ing for relativistic effects in a general theory of atomic and molecular electronic
structure.

In the last 3 decades, a great deal of effort has been expended to develop quasi-
relativistic and fully relativistic electronic structure theory to account for these
chemical phenomena. With the increasing use of quasi-relativistic and fully rela-
tivistic quantum chemical calculations on heavy-atom-containing molecules, there
is an obvious need to provide experts’ reviews of the concept and computational
methods. This volume has the ambitious aim of addressing both experimentalists
and theoreticians interested in the area of relativistic effects in atomic and molec-
ular systems and processes and in their consequences for the interpretation of the
heavy element’s chemistry. The book will include chapters covering basic the-
ory, computational methods, and experimental aspects of interest for chemists. It
describes the essential details of the theoretical methods to account for relativistic
effects and place them into the context of modern applications, of broad interest to
experimentalists and theoretical chemists in both academia and industry.

All the authors are renowned experts in their fields and many topics covered in
this volume represent the forefront of today’s science.

The leading chapters of the book will concentrate on theory at the intermedi-
ate level, starting with the explanatory article intended to show the importance
of the relativistic theory and relativistic ‘thinking’ in chemistry and molecular
physics. This introductory chapter will outline the basic features of the transi-
tion from non-relativistic to relativistic methods and will be followed by several
chapters explaining the most promising recent development in relativistic theories
for chemistry and their computational implementations. These chapters cover the
all-electron methods in the framework of the two- and four-component relativistic
approaches, the relativistic density functional approaches, and more approximate
techniques based on the idea of relativistic pseudopotentials.
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The several chapters are focused on the relativistic methods for molecular cal-
culations and the problems discussed include relativistic two-component theory,
density functional theory, pseudopotentials and correlations. These chapters will be
mostly addressed to experimentalists with only general background in theory and
to the computational chemists without training in relativistic methods. The reliabil-
ity of different methods used in relativistic calculations on heavy molecules will be
thoroughly discussed. This should bridge the gap between recent developments in
relativistic computational methods and their understanding and use by experimen-
talists. A separate chapter will focus on the interplay between relativistic effects
and electron correlation. Both these effects need to be accounted for in calculations
aiming at high reliability of the computed data.

In contrast to recently published books on relativistic theories for atoms and
molecules, the present volume is developed at the intermediate level to be of interest
for broader audience. The different chapters in the volume are explanatory rather
than formal and primarily address the understanding of relativistic computational
methods. The book is designed for those who are not highly versed in these meth-
ods and are willing to acquire the basic knowledge of the relativistic computing and
associated problems of importance for the heavy element chemistry. The discussion
of the possible future applications of relativistic computational methods in modeling
of new materials, design of efficient catalysts, and in biochemistry-oriented spin-
forbidden photochemical processes is provided in a chapter. The book is designed
to address equally well needs of students, postgraduates, and researchers.

We owe a considerable debt to our publishers who have been very helpful and
understanding. In particular, we would like to thank Dr. Sonia Ojo and Ms. Claudia
Thieroff at Springer Publishers for their support and encouragement.

Toruń, Poland Maria Barysz
San Juan, PR Yasuyuki Ishikawa
October 2009
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AN INTRODUCTION TO RELATIVISTIC QUANTUM
CHEMISTRY
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“Those who understand nothing else than chemistry,
don’t understand chemistry either”

G. C. Lichtenberg (1793), natural scientist and writer [129]

Abstract: Chemistry is governed by the shell structure of the atoms. This holds in particular
concerning the periodic system of chemical elements. Non-relativistic quantum chem-
istry describes the motion of electrons and nuclei and their mutual interactions to a first
approximation. It reproduces a large fraction of chemistry of the more important lighter
elements sufficiently well. A significant amount of chemical insight can already be gained
from the analysis of the atomic one-electron orbitals. However, while valence electrons
have ‘non-relativistically small’ energies, they become ‘relativistically fast’ in the neigh-
borhood of heavy nuclei. The importance of relativistic effects in the atomic valence
shells increases approximately as Z2. Relativity significantly changes the chemical trends
at the bottom of the periodic table. The relativistic effects of the valence electrons can
be classified as direct and indirect ones. The direct ones are due to the increase of the
effective mass with velocity, to the change of the electric nuclear attraction of a spinning
electron, and to the magnetic spin-orbit coupling. The indirect effects on the valence elec-
trons are due to the relativistic changes of nuclear shielding and Pauli repulsion by the
inner orbitals. The changes of the radial, the angular, and the quaternionic phase behav-
ior of the relativistic atomic valence orbitals modify the atomic bonding properties, the
energetics, the structure and properties of the molecules.
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2 W.H.E. Schwarz

1.1. MOTIVATION

The world of our daily experience seems continuous and classical, but the material
world is indeed quantized and relativistic. So to speak, there are no relativistic
and quantum corrections to the real world, there are only non-relativistic and non-
quantum approximations by our common perception. Macroscopic chemistry is
essentially determined by the continuously and classically looking statistical laws,
but with the basis in relativistic discreteness. Atoms and molecules are governed,
and their chemistry is explainable, by the laws of relativistic quantum field theory.
Several reviews of relativistic quantum chemistry have appeared during the past 35
years [1–8]. The first two excellent textbooks in this special field were recently pub-
lished [9, 10]. More than 14,000 papers in the field have been collected by Pyykkö
[11, 12].

The father of relativistic quantum mechanics [13] and the author of the first
book entitled Quantum Chemistry [14] both mistakenly assumed that the chemi-
cally active valence electrons behave non-relativistically [15,134]. Both argued that
the valence energies are small and therefore the potential and kinetic contributions
should be small, too. The preconception “that a satisfactory description of the atom
can be obtained without Einstein’s revolutionary theory” [16] died out only very
slowly in the communities of both physicists and chemists. However, valence elec-
trons, diving into the atomic cores, become relativistically fast near nuclei1 with
a large Coulomb charge (direct relativistic effects), and all valence electrons are
subject to the relativistic modifications of the inner atomic cores (indirect relativis-
tic effects). Common non-relativistic quantum chemistry deviates numerically from
the facts of heavy and medium heavy elements, and sometimes even of the light
elements (e.g. the so-called ‘spin-forbidden’ processes, see Figure 1-1). Relativistic

Figure 1-1. A double spin-flip (at a and b) between the molecular potential energy surfaces of the
singlet ground state (S, solid line) and the triplet intermediate state (T, dashed line) can reduce the
non-relativistic activation energy (at c) drastically, even for medium heavy atomic molecules

1 In principle there are no local contributions to property expectation-values in holistic quantum mechan-
ics. However, choosing a specific integral representation, discussion of local contributions to this
integral can still give physical insight, see below Section 1.3 and Footnote 11.
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Figure 1-2. Quantum mechanics offers the description of point particles with intrinsic properties. The
simplest options are spin-1=2 fermions. They possess, in addition to mass and charge, an intrinsic angular
and magnetic momentum. As any angular momentum vector in three-dimensional space, the spin has
only two well-defined components (a consequence of Heisenberg’s Uncertainty Principle) and is never
vertically aligned (not ˙90ı) but tilted up or down by about ˙35ı only, with undefined horizontal
direction. Two independent spins can point (a) both upwards, (b) both downwards, (c) both sidewards
– in different directions, this is a triplet of spin-states, traditionally called “parallel” – or (d) exactly
anti-parallel, one singlet spin-state. Two fermions (e) in the same position-state (orbital) can only be in a
singlet spin-state due to Pauli’s Exclusion Principle

quantum chemistry is required even at the qualitative level to explain the heavier
elements’ chemistry and the structure of the periodic table [1–3, 17].

In Section 1.1, we will touch on quantization in Section 1.1.1, on relativity in
Section 1.1.2, then on relativistic quantum mechanics in Section 1.1.3, on common
quantum chemistry in Section 1.1.4, and finally on relativistic quantum chemistry
in Section 1.1.5. The atomic units used here are defined in Section 1.1.6. Section 1.2
is devoted to the three concepts of quantization, spin (Figure 1-2) and relativity. An
exemplary application to the simplest model, the one-electron hydrogen atom, and
then to the more realistic many electron atoms is presented in Section 1.3. The analy-
sis of atomic valence orbitals yields a significant amount of insight into the physical
mechanisms influencing the chemical behavior of matter. On this background, we
can develop the basic concepts of relativistic molecular quantum chemistry in
Section 1.4. Subsequent chapters in this volume will fill this conceptual framework
with theoretical, algorithmic and numerical details. We also refer to the more recent
reviews mentioned above, in particular to the two textbooks on relativistic quantum
chemistry [9,10], to the comprehensive Festschrift edited by Schwerdtfeger [6,7] on
the occasion of the 60th birthday of the doyen of relativistic theoretical chemistry,
Pekka Pyykkö, and to the B.A. Heß memorial issue of ‘Chemical Physics’ edited by
Dolg and van Wüllen [18].

1.1.1. Quantization

The idea that the material world is discrete dates back to some Greek natural
philosophers 25 centuries ago. But only two centuries ago, Dalton discovered the
first quantitative empirical chemical indications of the discreetness of matter. Half
a century later, the particle picture started to become also physically corroborated
by statistical and mechanical theories and laws, derived by Clausius, Boltzmann,
Maxwell and others. The discreetness of interactions (by real and virtual photons),
and of stationary state energies and of rotational motions were invented since 1900
by Planck, Einstein, Haas and Bohr et al. This led after 1925 to the invention
of non-relativistic quantum mechanics by Heisenberg, Schrödinger, Born, Jordan,
Dirac and colleagues.
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Figure 1-3. (a) Probability density distribution of electronic non-relativistic sp3-hybrid and pz AOs and
relativistic p1=2 AOs, in a plane, (b) envelope of a nuclear probability density distribution in a crystal,

in 3-D, (c) common graphical icons symbolizing a pz and four sp3 AOs, used to illustrate chemical
discussions of bonding and reactions

Observable variables were replaced by Hermitean operators, e.g. for real position
x ! Ox D x�, for canonical conjugate momentum p ! Op D –i h̄ � d=dx (and,
later, for matter field amplitude ' ! O' D ' � Oa' , where Oa' destroys one particle
described by orbital '). The measurable values ai of observable variable a had to
be represented by value-distributions with amplitude '.a/, with average expecta-
tion value Na and value-scattering�a. This sounds very ordinary, since it is in some
sense quite similar to the distribution of measured values in classical experimental
science. The concept of real sharp values of observables is only a construct of classi-
cal physical theory. On this quantum-physical basis, the quantum-chemical research
project was initiated around 1930 by Heitler, London, Hund, Mulliken, Slater, Paul-
ing, Hellmann et al. [19–21, 131]. Electrons are now represented by orbitals, and
nuclei by nuclear distributions (Figure 1-3).

1.1.2. Relativity

Einstein’s so-called principle of special relativity of 1905 [133] states that all nat-
ural laws of mechanics and electrodynamics have the same mathematical form,
independent of any forceless linear motion of the coordinate reference frame. The
concept already holds in classical mechanics, though assuming an infinitely large
(instead of a large finite) limiting velocity. The classical approximation was in
accord with several naive preconceptions, such as the absoluteness of space and
time distances, the algebraic additivity of velocities, the dependence of the velocity
of light on the motions of source and observer, or the constancy of the gravitational
and inertial masses.

However, Galilee2 – Newton’s mechanics (with unlimited maximum velocity),
and Maxwell’s electrodynamics (with a finite critical velocity) were basically incon-
sistent with each other. The principle of relativity imposes severe constraints on
the form of the natural laws. And it turned out that the basic laws of physics cor-
respond just to the simplest mathematical expressions fulfilling these constraints
(Figure 1-4). The principle of relativity fixes the explicit form of the transformation

2 We use the English modification of Galileo Galelei’s name.
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Figure 1-4. The structure of relativistic laws: A scalar ‘time-related’ variable (e.g. the total energy E)
is the Pythagorean sum of a scalar constant (here the rest-mass energy mc2) and a ‘space-related’ three-
dimensional vectorial variable (here pc): E2 D .mc2/2 C .pc/2

of time and space coordinates (Lorentz transformation) up to a critical maximum
velocity parameter. This parameter is the velocity of the electromagnetic inter-
action in vacuum (the velocity of light c). It is finite and must be determined
experimentally [22].

1.1.3. Relativistic Quantum Field Theory for Electrons

In 1928, Dirac [13] formulated a relativistic ‘Schrödinger equation’ linear in time,
the Dirac equation, which required the existence of an electronic spin (Figure 1-5).
The respective eigen-energies for electrons were either seriously above and below
zero. It took the work of many theoretical physicists during half a century, among
them Dirac, Feynman, Schwinger, Tomonaga and Dyson, to develop a conceptually
consistent approach. Electrons, electron–positron pairs and virtual photons around
the nuclei together build up the atoms, the molecules and the more complex forms
of matter. This quantum electro-dynamical (QED) theory is not that complicated,
if compared to the standard model of elementary particle physics. Quite accurate
numbers can be obtained by computational approximations to QED [24]. It is the
most accurate of all theories of natural science, ‘the jewel of theoretical physics’,
which governs and explains a large amount of chemistry, among other branches of
science.

Figure 1-5. In a relativistic quantum theory of fermions, point charge and point mass are distributed
around each other by the order of the Compton length (1/137 Bohr � 0:4 pm) causing the Darwin effect,
and giving rise to spin-orbit coupling effects
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1.1.4. Quantum Chemistry

The individual empirical findings of chemistry can be numerically reproduced or
predicted (computational chemistry), and the trends can be rationalized or explained
(theoretical chemistry), by an appropriate and skillful combination of classical
mechanical, quantum mechanical and statistical mechanical theories [25–28], and
later chapters in this book]. This holds in principle, though problems concern accu-
racy and reliability [134].3 In experimental chemistry, it is less common than in
physics or crystallography to perform statistical error analyses of the raw data and of
the data deduced from the measurements (error propagation). And concerning esti-
mates or guesses of the systematic errors, they are anyhow somewhat ‘subjective’.
The systematic errors may be due to the limitations of the experimental procedures,
or due to the bias in the theoretical prescription for the experimental raw data in
order to reconstruct physically meaningful ‘measured values’ from them.

On the side of computational chemistry, systematic errors can be due to oversim-
plifying the theory (in order to construct understandable, clear and simple models)
and due to applying too crude numerical procedures (in order to save computational
expense or human work time). Most common are the use of too restricted one-
and many-electron basis sets, the application of non-convergent perturbation expan-
sions, or the use of too strongly simplified Hamiltonians.4 The amount of systematic
errors seems to correlate with the expertise of the respective research groups; the
commercial ‘black box’ program packages cannot be used as black-box problem
solvers. Statistical errors usually play a minor role in computational chemistry, but
they also occur, for instance in Monte Carlo type approaches or in approaches of
screening out all small contributions (integrals) or all lower decimal digits.

Theoretical and computational chemistry can be applied at different levels.
Ordinary chemists think within a non-quantum non-relativistic framework. Nuclei,
atoms, molecules, complexes etc. are viewed as classical (stick and ball or space-
filling calotte) particles. The chemically active electronic systems are represented
by individualized and localized ‘chemist’s orbitals’ in space. A proper quantum
chemical counterpart is the lowest order Born–Oppenheimer (BO) approximation

3 In his famous, often-cited dictum, [134] expressed four ideas: First – The fundamental physical laws
for a ‘mathematical theory of chemistry’ are completely known. (It is not clear whether Dirac realized
that a ‘mathematical theory of chemistry’ comprises only a fraction of chemistry. Another question
is which proper chemists, computational chemists, theoretical chemists or philosophers of chemistry
are aware of this significant aspect.) Second – the relativistic theory is incomplete. (This is still valid,
but the left-over problems are mainly relevant to elementary particle physics and cosmology. Most
chemically relevant problems of the physical theory of relativity are now solved.) Third – relativity
is irrelevant to chemistry. (Now, we know it better.) Fourth – The two main and permanent problems
of theoretical chemistry are to develop computational approaches to calculate reasonably accurate
observable values, and to derive interpretational tools for a physical understanding of the complex
chemical processes in matter.

4 This comprises the approximation of static and dynamic two-electron correlations, the neglect of non-
adiabatic electron-nuclear couplings, the neglect of relativistic electron dynamics, or the neglect of
environmental perturbations by 3K cosmic background radiation, or perturbations by the condensed
phase surroundings.
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for the nuclei and the so-called ‘independent particle’ or molecular and crystal
orbital (MO, CO) approximation for the electrons.5 At best, the many-electron
correlations are somewhat accounted for in this ‘single quasi-particle’ model, e.g.
within a Kohn–Sham orbital density-functional approach. And at best, the molecu-
lar orbitals are orthogonally chosen and localized as far as possible to approach the
chemical views. Observable values of a molecule are then usually representable in
a quasi-classical manner as sums of contributions from single and pairs of nuclei,
from single and pairs of electronic orbitals and from nucleus–orbital interactions.
In such a nuclear-Born–Oppenheimer electronic-orbital model, we may speak of
distinguishable nuclear probability ellipsoids and orbital densities (Figure 1-3 left
and middle) instead of indistinguishable nuclei and electrons. In many cases, this
approximation causes only small numerical errors, despite of the basic conceptual
change from the quantum to the classical world [29].

In cases that are more ambitious, this ‘chemical’ model must be improved in four
different directions, depending on the required accuracy and reliability of the results,
on the molecular system at hand, and on the properties in question. (1) The nuclei
must be described by nuclear orbitals or wave packets, in uncorrelated or differ-
ently correlated ways. (2) Nonadiabatic or diabatic nuclear–electron couplings must
be accounted for. (3) Two- and multi-electron correlations due to electron–electron
interactions must be described explicitly. (4) The consequences of the strongly rel-
ativistic behavior of electrons in the strong fields around heavy nuclei, including
spin-dependent energy contributions, must be allowed for.

1.1.5. Relativistic Quantum Chemistry

In many cases, electron correlation (point 3) is the most important one. A reli-
able non-relativistic orbital model (applying sufficiently extended orbital basis sets)
and a reliable representation of electron correlation (extended configuration mixing)
should have first priority. In the cases of heavy elements, of high accuracy demands,
of spin-forbidden optical or reactive processes, etc., relativity (point 4) must also be
accounted for in some manner.

1.1.5.1. Fractional Relativistic Corrections

The fractional difference ırelPi D �relPi=Pi of property values Pi between
the non-relativistic approximation and relativistic reality, i.e. the fractional non-
relativistic error, is commonly called the fractional relativistic correction. ırelP is
often of the order of (’Z/2 D ”2, where Z is the nuclear charge and ’ � 1=137 is
Sommerfeld’s fine structure constant.

ırelPi D �relPi=Pi � a.i; hs ; g/ � .Z=137/2 (1-1)

5 One should distinguish between an expansion which can give, in principle, the correct value, and
an approximation consisting only of the first term of the expansion. There are the lowest-order BO
approximation and the BO expansion. There are the Hartree, Hartree–Fock and Kohn–Sham orbital
approximations and the post-independent-particle expansions.
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Figure 1-6. Coinage metal hydride molecules 29Cu-H; 47Ag-H; 79Au-H and 111EkaAu-H. Fractional
relativistic property correction ırelP versus �2 D .˛Z/2, � for bond length contraction (P D –Re, line
is ıP D a�2, a D 0:4), N for increase of dissociation energy (P D De; a D 0:9) and � for increase of
stretching force constant (P D k; a D 1:6). Higher order contributions of �2 seem important for high Z
values

a.i; hs ; g/ is an approximate constant for the given property i (such as bond length,
dissociation energy, or some spectroscopic parameter) of the homologous series hs
(molecule type) from the rows of the periodic table of group g (such as C, Si, Ge,
Sn, Pb or Cu, Ag, Au). �relP=P typically increases by factors of 2–4 from row
to row down in a group. The a-factors are of the order of unity. A few examples
are given in Figures 1-6 and 1-7. In the fourth row of the periodic table (the light
transition metals Sc–Cu and the 4sp-elements Zn–Kr), (Z/137)2 is in the range of
several percent. ırelP may reach 10–100% and even more in the sixth and seventh
rows (lanthanoids and actinoids,6 heavy transition metals and heavy main group
elements), see Reiher and Wolf [10], Dyall and Fægri [9], Schwerdtfeger [6, 7],
Pyykkö [2,3,12], Schwarz et al. [30], and later chapters in this book. Of course, rule
of thumb (1-1) is not applicable to so-called (non-relativistically) spin-forbidden
optical or molecular-reaction processes, since the whole effect is purely relativistic.

1.1.5.2. Historical Development

This was quite slow at the beginning. Chemical relativistic effects were system-
atically investigated not before the 1960s, first in atoms, then in solids (see, e.g.
[31–33, 135]), and only finally in molecules. Already in 1935, Swirles [132] con-
cluded “that for heavy atoms the relativistic correction will be of importance”.

6 The IUPAC recommends lanthanoids and actinoids instead of former lanthanides and actinides. ‘-
ides’ are usually anionic compounds such as halides, sulfides, etc. See http://en.wikipedia.org/wiki/
Lanthanoid.

http://en.wikipedia.org/wiki/Lanthanoid.
http://en.wikipedia.org/wiki/Lanthanoid.
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Figure 1-7. Group-14 monoxide molecules 6CO; 14SiO; 32GeO, 50SnO and 82PbO. Fractional relativis-
tic property correction ırelP versus�2 D .˛Z/2, for dissociation energy decrease (a D –0:86) (After
Wang and Schwarz [108])

This was substantiated from time to time by numerical calculations on atoms.
Williams [34] noted that the relativistic corrections to the charge density become
remarkable near the nucleus already for a comparatively light atom (Cu, Z D 29).
Mayers [35] investigated Hg (Z D 80) and first elaborated on the direct and indi-
rect relativistic changes of energies and radii of the inner and outer atomic shells of
different angular momenta (see Section 1.3).

Electronic computers made comprehensive investigations feasible. Herman and
Skillman [36] determined approximate relativistic contributions to the orbital ener-
gies of all atoms. Fricke [1, 37, 38] extended the periodic system of chemical
elements up to Z D 184. They showed that the structure of the system begins
to change more and more for the heavy and superheavy elements.7 Various rela-
tivistic atomic orbital corrections of all atoms up to Z D 120 were numerically
and graphically displayed by Desclaux [39]. Rosén and Ellis [40] and Desclaux
and Pyykkö [41] were the first to supplement their extensive atomic calculations
by relativistic single molecule investigations. Since then the number of publica-
tions per year in the new field of relativistic quantum chemistry has more than
doubled each decade, and has reached several hundreds to one thousand in recent
years. Pyykkö’s Account with Desclaux [4] on “Relativity and the Periodic System
of Elements” and his Chemical Review [3] on “Relativistic Effects in Structural
Chemistry” were instrumental in drawing the attention of the real chemists onto
the field. Still, many chemists believe that the empirical experience form the lighter
half of the elements can be extrapolated without drastic relativistic modifications.
One aim of this volume is to foster heavy element chemistry through a sound
quantum chemical basis.

7 Let ‘superheavy’ be defined as Z > 100.
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1.1.5.3. Targets of Relativistic Quantum Chemistry

One can distinguish six different aims: (i) Further development of theoretical
concepts and models. (ii) Improvement of numerical techniques. (iii) Numeri-
cal calculation of properties of chemically known heavy atomic compounds, for
instance concerning reaction mechanisms, dominating species in solution equilib-
ria, NMR parameters etc. (iv) Prediction of unknown chemical compounds of known
elements, such as environmentally safe actinoid complexes, catalytically active Au
cluster compounds or novel Hg(IV) compounds. (v) Prediction of unknown com-
pounds of unknown or recently synthesized short-lived superheavy nuclei. (vi) Last
but not least the derivation, explanation or rationalization of trends in the chem-
istry of heavy elements. Most publications, including the subsequent reviews in this
book, approach two or more of these targets.

1.1.5.4. Periodic Trends

The periodic table of chemical elements is one of the most prominent icons of chem-
istry and one of the great achievements of science and culture [17]. Periodic tables
were created to systematically order the empirical findings of chemistry. Most of
the data concern the more abundant and more important chemicals. Just the lighter
half of all elements, say up to Z D 54 (Xe), and then only a dozen of the heavier
ones, among them Ba, W, Pt, Au, Hg, Pb, Th and U, practically and historically
determined the structure of the periodic system. Fleck described already in 1935
[122], how so-called ‘scientific facts’ without or against sufficient empirical basis
are sometimes ‘created’ by communities of scientists and then taught to all students.

Several aspects of the periodic tables are nice examples for the creation of non-
existing chemical facts. The primary and secondary periodicities and the horizontal
and vertical trends in the periodic system embrace the light-element-biased chemical
wisdom. The chemical regularities are governed by the energetic and spatial order
of the outer core and valence orbitals of the elemental atoms in compounds, being
determined by the nuclear attractions, the electron repulsions, and the kinematical
effects under the constraints of the Pauli principle. For the lighter elements, for
which the non-relativistic approximation of theory works comparatively well, the
respective variations with nuclear charge Z are rather smooth and can be easily
interpolated.

However, it turns out that in reality, which is mapped by a relativistic theory,
the trends of many chemical properties bend away for higher Z-values. Extrapo-
lation into the high Z region is not reliable. This happens, because the electronic
motions and interactions exhibit a more complex behavior than to be expected in the
non-relativistic regime [2–4, 42]. Particularly important parameters of the elements
are the atomic radii, the ionization potentials and the common valence numbers. In
general, the ionization potentials decrease in a group of elements down the peri-
odic table, but this trend changes in the lowest row(s) for groups 1, 2 and 6–14
(Figure 1-8). There is a common increase of atomic radii down the periodic table,



An Introduction to Relativistic Quantum Chemistry 11

eV

Group

Group

18

17

15
16

14

13

1

2

20

15

10

5

0
1

H–He
2

Li–Ne
3

Na–Ar
4

K–Kr
5

Rb–Xe
6

Cs–Rn

Row

Row

18

10

eV

17
16
14
15
13

2

1

7
Fr–

IP

8

6

6

12

11
10
8
6

14

4
13

54

IP

Figure 1-8. Atomic ionization potentials (IP /eV) of the elements versus the group number in the peri-
odic system, with changes of trends in rows 6 and 7 for groups 1, 2 and 6 through 14 (After Schwarz
[41])

again with several exceptions at the bottom. For instance, while for decades the radii
of CuC, AgC and AuC were given as about 46, 67 and 137 pm, more reasonable
values are 46, 67 and 58(!) pm, respectively [43]. According to Pyykkö and Atsumi
[44] the superheavy elements E111 (Eka-Au D Rg) through E114 (Eka-Pb) have
smaller single-bond covalent radii than Au through Pb, respectively. And concern-
ing the valence numbers, the six heavy main group elements Hg, Tl, Pb, Bi, Po, At
exhibit a pronounced tendency to particularly low values (Hg0, Tl1, Pb2, Bi3, Po2,
At1). More examples are found in Chapters 2, 3, 7, and 11.

The chemistry of heavy and superheavy elements cannot even qualitatively be
understood or rationalized without accounting for the relativistic kinematics of the
core and valence electrons. In order to obtain chemically reliable numbers from
quantum chemical calculations, the relativistic behavior of the electrons must be
considered already for medium heavy elements, and concerning spectroscopy, even
for light elements (see subsequent Chapters).
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1.1.6. Units and Numbers

In the formulas, we will use the following atomic units: electronic charge
e (�–96485:3C=mol), electronic rest-mass m (�1=1822:888u, u D chem-
ical atomic mass unit D g/mol), Bohr length a0.�52:9177 pm/, Hartree
atomic energy unit EhD2ER Rydberg units (�27:21138 eV� 26255:00 kJ=mol,
1 eV�96:48535 kJ=mol), the angular momentum unit h̄ (DPlanck’s constant h,
divided by 2 ) and the velocity unit ’c (c D vacuum velocity of light D 2:99792458�
�1010 cm=s; ’ � 1=137:036 is Sommerfeld’s fine structure constant). This corre-
sponds to a dielectric constant ©0 D 1=4 . Sometimes, we will write out the units
such as e or m to make the physics clearer.

Constants like e, m, c or i (i2 D �1) are represented by standard letters, variable
values (a, b, . . . , x, y, z), functions (f .t/) and integer indices (i , j; : : :) by italics.
Three-dimensional vectors are printed bold (r D .x; y; z/), and operators with a hat
( OH ). The derivative operation is @=@t or @=@r D .@=@x; @=yx ; @=@z/ D r. We use
the electromagnetic Gauss convention, so that the magnetic potential A and field B

appear with pre-factors 1/c. The nuclear charge is Z, and ” means Z=c D ’Z.
Only a few decimal figures are experimentally obtainable as approximations to

the real values in theory. Empirically there is only a finite set of rational decimal
numbers. In addition to the single real numbers, the equations of physics may con-
tain compound variables, namely for the compact representation of sets of equations,
reflecting the mathematical structure in these equations. There occur the complex
numbers (z D a C ib), the quaternion numbers (y D a C ib C jc C kd , with
i2 D j2 D k2 D ijk D –1, i.e. ij D –ji D k; jk D –kj D i, ki D –ik D j), the
three-dimensional vectors with Euclidean norm (jrj D xx� C yy� C zz�, where �
means complex conjugation) and the four-vectors, here written as (t , r).

1.2. FROM THREE BASIC CONCEPTS TO THE DIRAC EQUATION

Three concepts form the basis of an accurate description of single electrons around
nuclei, namely by the Dirac equation: (1) relativistic invariance, (2) quantization,
and (3) the existence of spin. We introduce the Lorentz coordinates transforma-
tion in Section 1.2.1 and derive the relativistically correct expressions for effective
mass and energy in Section 1.2.2. Upon quantization, we arrive in Section 1.2.3 at
non-relativistic and relativistic wave equations for spinless particles, namely the
Schrödinger and Klein–Gordon equations. In Section 1.2.4 we admit spin and ratio-
nalize the non-relativistic and relativistic equations for particles with spin 1=2, the
Levy-Leblond and Dirac equations. All these wave equations can be represented in
different equivalent forms. In Section 1.2.5 we comment on the so-called ‘picture
changes’. A short summary is given in Section 1.2.6.

1.2.1. Principle of Invariance: The Lorentz Transformation

Galilee and Newton (early and late seventeenth century) found that one can-
not distinguish between rest and constant linear motion in force-field-free space.
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The laws in two different (time, space)-coordinate systems (t; r) and (t 0; r 0), moving
with constant velocity v against each other, should have the same form. This prin-
ciple of invariance was later called principle of ‘relativity’. The simplest type of
coordinate transformation OT is a linear one (for simplicity, we assume at first a
one-dimensional space r):

�
t 0
r 0
�

D OT .v/ �
�
t

r

�
D
�
a.v/ b.v/
d.v/ e.v/

�
�
�
t

r

�
(1-2)

The four transformation coefficients a, b, d , e, depending on the velocity v, can be
determined through the following conditions:

(i) The transformation for negative velocity should compensate the transformation
for positive velocity:

OT .v/ � OT .–v/ D 1: (1-3)

(ii) The catenation of two individual transformations for parallel velocities v1 and
v2 should correspond to the transformation of their ‘formal sum’ v1C2 D v1 ˚
v2 D v2 ˚ v1:

OT .v1/ � OT .v2/ D OT .v2/ � OT .v1/ D OT .v1 ˚ v2/: (1-4)

(iii) The transformation of the origin should correspond to a linear shift in time,
r D v � t :

d.v/ D –v � e.v/: (1-5)

(iv) The transformation should be consistent with inversion symmetry of space:

a.–v/ D a.v/; b.–v/ D –b.v/; d.–v/ D –d.v/; e.–v/ D e.v/: (1-6)

The solution for OT .v/, the Lorentz transformation, contains still an undetermined
parameter c of the dimension of a velocity:

OT .v/ D 1p
1 � v2=c2

�
�
1 �v=c2

�v 1

�
(1-7)

Consistency with electrodynamics requires c to be the vacuum velocity of light.
Theory still does not offer a value for it, so it must be determined experimentally.

The ‘formal summation’ of (parallel) velocities yields:

v1 ˚ v2 D .v1 C v2/=.1C v1 � v2=c2/: (1-8)
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The ‘sum’ of two small velocities vi � c is just the algebraic sum, v1˚v2 � v1Cv2.
For two large velocities vi . c, the sum remains below c, v1 ˚ v2 . c. The constant
vacuum-velocity of light denotes the upper limit of mechanical velocities.

1.2.2. Relativity and the Natural Laws for Mechanics
and Electrodynamics

1.2.2.1. Relativistic Mechanics

We can now search for other expressions that are invariant under Lorentz transfor-
mations. The first simplest example is the proper time duration (Eigenzeit) £ of the
relative motion of a point from (0,0) to (t , r), as detected by an external observer.
The value of £ is defined by

� D t �
p
1 � v2=c2 (1-9)

£ is the time observed at the position of the moving point by the moving observer
himself (i.e. for v D 0 and r D constant). It differs from t , as observed by an
observer, who sees the point moving. The difference is of the order of .v=c/2. An
object, suddenly accelerated, and then moving with constant velocity, ages more
slowly, £ < t (time dilatation), as compared to the non-accelerated observer. £
according to Eq. (1-9) does not change under a Lorentz transformation (1-2, 1-7).
£.t; r/ D £0.t 0; r 0/ for all observers seeing the point moving with velocities v and v0.

The canonical conjugate variables of t and r are energyE and momentum p. In
a relativistic framework, p is defined as

p D m � dr=d� D mv=
p
1 � v2=c2 D meff � v: (1-10)

m is the rest-mass of the particle, and the effective moving mass is

meff D m=
p
1 � v2=c2: (1-11)

The effective inertial mass increases with the velocity squared (Figure 1-9).
It is natural next to define the value of the energy-momentum four-vector (E , p)

as another invariant under Lorentz transformations:

Inv D E2–p2 � c2: (1-12)

where Inv turns out to be equal to E0
2 D m2c4. This may be rewritten as (Figure 1-4)

E2 D m2c4 C p2c2: (1-13)

Taking the square root of (1-13) and expanding in a power series yields

E D
p

m2c4 C p2c2 D mc2 C 1=2p2=m � 1=8p
4=m3c2 � � � (1-14a)

D mc2 C 1=2mv2 C 3=8mv4=c2 : : : (1-14b)
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Figure 1-9. Effective mass meff of an electron on a 1s Bohr orbit in the field of nuclear charge Z D 1,
10(10)120, c. In the case of a point nucleus, the classical velocity is ˛Z �c, and meff would diverge against
1 for Z ! c � 137 au

where Eq. (1-10) has been inserted. The total relativistic mechanical energy of a
moving rest-mass m is the Pythagorean sum of the rest-mass energy mc2 and the
momentum energy pc (Figure 1-4). This can be approximated by the algebraic sum
of the rest-mass energy Cmc2, the non-relativistic kinetic energy C1=2mv2, a first-
order relativistic correction C3=8mv4=c2, and higher-order terms. The kinetic energy
increases faster with velocity than in the non-relativistic approximation, and the
velocity (bounded by v < c) increases more slowly upon application of an accelerat-
ing force. Namely, the effective inertial mass (1-11) increases upon acceleration, and
the velocities can only converge from below towards the limit c. The first important
relativistic effect in atoms, molecules and crystals is the electronic mass–velocity
effect. It will be discussed in Section 1.3. Neglecting terms of order 1=c2 yields
the non-relativistic approximation to the energy, Eq. (1-15), with reference energy
E0 D mc2.

En-rel D E0 C 1=2mv2 D E0 C p2=2m (1-15)

1.2.2.2. Mechanics in Electromagnetic Fields

The directly measurable8 electric and magnetic field strengths F ;B are compactly
represented by the electromagnetic four-potential (V;A). V.t; r/ is the electric
scalar potential and A.t; r/ is called the magnetic vector potential. The field
strengths are related to the potentials [126] by

F D –@=@r � V –@=@ct � A; B D @=@r � A: (1-16)

Only electric potential differences have a physical meaning, the zero of the potential
scale can be chosen arbitrarily. Even more general so-called gauge-transformations

8 This means without accounting for any quantum interference effects.
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can be applied to an electromagnetic four-potential (V;A) without changing the
observable effects. Such gauge-transformations are achieved by arbitrary, differen-
tiable functions g.t; r/:

V ! V 0 D V � .@=@ct/g.t; r/I (1-17a)

A ! A0 D A C .@=@x; @=@y; @=@z/g.t; r/ (1-17b)

The choice of g.t; r/ is guided in a given case by the desire to obtain a simple or
elegant final formula. A specific (V;A) cannot be an observable. However, the set of
all (V;A) connected by all admissible g is indeed an observable [45]. An objective
observable in natural science is a mathematical object in a theory, which is uniquely
derivable from empirical data. Scholars, who know, what is going on in experimental
data acquisition, know that observables are not purely empirically observable. This
is the so-called ‘theory-ladenness’ of all empirical facts. An energy-difference is
an observable represented by one real number. An electromagnetic potential is an
observable, represented by a gauge-invariant set of individually gauge-dependent
analytical functions.

In order to combine electrodynamics of some electromagnetic potential (V;A)
with mechanics of a particle of mass m and charge q, one has to subtract q � .V;A/
from (E;pc). For electrons, q D –e. The relativistic energy expression then reads

Œmc2�2 D ŒE C e � V.t; r/�2–Œp � c C e � A.t; r/�2 or (1-18a)

E D –e � V.t; r/C c � fm2c2 C Œp C e=c � A.t; r/�2g1=2; (1-18b)

and the non-relativistic one

En-rel D –e � V.t; r/C mc2 C Œp C e=c � A.t; r/�2=2m: (1-19)

The factors e/c in Eqs. (1-18) and (1-19) depend on the choice of the mechani-
cal and electro-magnetic units. They are related to relativity in the sense that a
changing electric field creates a magnetic field and vice versa, and such fields
propagate in space with velocity c. Maxwell’s equations for the electromagnetic
potentials or fields (expressed by the four-potential (V;A) or the field strength
tensor fF ;Bg) require a finite wave-velocity c and a non-vanishing electro-
magnetic coupling parameter 1/c. So to say, Maxwell’s electrodynamics was
Lorentz invariant ‘from the outset’. With infinitely large c, one would obtain
vanishing electromagnetic induction. Galilee–Newton’s transformation of space
and time, i.e. the Lorentz transformation for c ! 1, corresponds to a reason-
able approximation of mechanics at ‘ordinary’ velocities, and to electrostatics,
magnetostatics and to weak and slowly varying currents and fields, but without
induction or Lorentz force. In order to combine incompatible Galilee-invariant
mechanics and Lorentz-invariant electrodynamics, Lorentz and others developed the
so-called Lorentz-transformation at the end of the nineteenth century. Einstein then
reformulated mechanics in 1905 to obtain a comprehensive and consistent picture
of electrodynamics and mechanics.
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1.2.3. Relativistic and Non-relativistic Wave Equations

The common (non-unique) quantization rules prescribe to replace the observable
variables a,c in some classical equation f .a; c/ D 0 by respective linear-Hermitean
operators Oa; Oc. They act on state functions or state vectors ‰ in Hilbert space. The
relation for numerical function f .a; c/ D 0 is replaced by the operator equation
f . Oa; Oc/ � ‰ D 0. The operators for canonically conjugated observable pairs a,b
(such as t ,E or r ;p) should fulfill the Heisenberg commutation rule:

Œ Oa; Oc� D Oa � Oc � Oc � Oa D ˙i h̄� (1-20)

The replacement rules are somewhat flexible. In the so-called space-time represen-
tation they read:

t ! OtDt �; E ! OE D Ci h̄ � @=@t �
r ! OrD Or �; p ! OpD � i h̄ � @=@r �D� i h̄�r �D� i h̄ � .@=@x; @=@y; @=@z/� (1-21)

1.2.3.1. Nonrelativistic Wave Equation without Spin

Quantization of non-relativistic energy expression (1-19) by replacement (1-21)
yields the Schrödinger equation (1-22):

i h̄ � @=@t � D ŒE0 C e � V.t; r/�C Œ Op–e=c � A.t; r/�2=2m � .acting on § .t; r//:

(1-22)

The spinless scalar quantum state function§.t; r/ describes the deterministic devel-
opment of spinless particles in time under the action of an electromagnetic potential
in the non-relativistic mechanical limit. The compound 12C and 4He nuclei and
 o;˙ mesons and anti-mesons and the elementary Higgs boson (predicted in high
energy physics) are spin-zero particles. However, the compound deuteron 2H, 6Li,
14N etc. and the elementary photon are spin-1 particles. And the compound pro-
ton, neutron, 13C etc. and in particular the elementary electron (and neutrinos and
quarks) are known to be spin-1=2 particles (spin quantum number s D 1=2) with
intrinsic mechanical angular momentum

jS j D
p

1=2.1=2 C 1/ h̄; (1-23)

The description of non-zero spin particles will be discussed in the next paragraph.

1.2.3.2. Relativistic Wave Equation without Spin

Quantization of the relativistic energy expression (1-13) with electromagnetic
potentials (Eq. 1-18b) yields

Œi h̄ � @=@t C e � V.t; r/�2�
D m2c4 � CŒ Op � c C e � A.t; r/�2 � .acting on § .t; r//

(1-24)
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Equation (1-24) is called the Klein–Gordon equation. It was first considered by
Schrödinger in 1925, and first published in 1926/1927 by Oskar Klein [128], Walter
Gordon [123], and also by several others [46]. It describes spin-zero particles cor-
rectly in the relativistic regime [47, 121]. For large c and neglecting terms of order
1=c2, one obtains the non-relativistic counterpart, the Schrödinger equation (1-22).

Different equivalent forms of classical equations for numerical variables give
rise to non-equivalent quantum mechanical operator-equations, since the operators
do not commute: a � c D c � a for real or complex (though not for quaternionic)
numbers a,c, while in general Oa� Oc ¤ Oc � Oa for operators or matrices Oa; Oc. For instance,
the square-root energy expression (1-18b) yields, for vanishing magnetic potential,

Œi h̄ � @=@t C e � V.t; r/� � D
p

m2c4 � c2r2 � .acting on  .t; r//: (1-25)

This so-called square-root or relativistically corrected Schrödinger equation (1-25)
is no longer equivalent to Eq. (1-24) [48].

In the equations above, the energy E is given by E2 D f .t; r ;p/ > 0 or
E D ˙p

f .t; r ;p/. In either case, the energies are (for small momenta and
potentials) near Cmc2 and –mc2. These so-called positive and negative energy
solutions describe particles and antiparticles, respectively, with positive or negative
wave-frequency ˙¨ D ˙E= h̄ in the time-dependent factor e˙i¨t of a stationary
state function  .t; r/. Multiplying an equation for negative frequency or energy
by –1, one obtains an equation with positive energy, positive rest-mass and kinetic
energy, but for opposite charge. That is, antiparticles have opposite charge and
positive energy.

The Klein–Gordon operator (1-24) acts on scalar 1-component wavefunctions
 .t; r/, as in the Schrödinger case (1-22). In order to describe particles and antipar-
ticles by the same equation, one needs something like a quadratic equation with a
double-valued square-root solution. One does not need two different components in
the wavefunction to describe particles and antiparticles. The Klein–Gordon equation
is such a 1-component equation for spin-0 particles and antiparticles. However,
one can transform a scalar equation containing @2=@t2 into a coupled system of
two equations looking rather similar to Schrödinger equations with terms linear in
@=@t , but with a 2-component wavefunction [47]. The 1-component Klein–Gordon
equation (second order in time) and the two coupled 2-component Schrödinger-
like equations (first order in time, Feshbach–Villars representation, see [49]) are of
course equivalent.

1.2.4. The Natural Occurrence of Spin

Classically, point like particles such as electrons or quarks cannot have inter-
nal structure without internal divergences. Because of Heisenberg’s uncertainty
principle for position and momentum of a point, and because position of charge
and position of mass are different observables, point-particles can exhibit internal
structure in quantum mechanics [49]. The operators in non-relativistic equation
(1-22) and relativistic equation (1-24) act on scalar type wavefunctions. They can
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be generalized to cover also the cases of spin > 0. The internal structure is then
represented by multi-component wavefunctions.

The operators are multiplied by mathematical objects of unit norm that act on
such multi-component wavefunctions. The general strategy is to choose the irre-
ducible representation matrices of the non-relativistic Galilee group or the relativis-
tic Poincaré group as basis for the operators. For spin-1=2 (or higher spin) particles,
four-dimensional (higher-dimensional) matrices appear in the wave equations of
such approaches [50, 51].

The wavefunction for spin-1=2 particles has four complex (or eight real) compo-
nents, although there are only two independent ones, describing the ’ and “ spins.
Two of the four complex components are dependent on the other two. Therefore,
the 4-component spin-1=2 wave equation can be transformed to a two-component
equation (although usually not in explicit form, but iteratively, in complex cases at
least on the computer). The result looks like a ‘simple’ wave equation (depending
on the approach: like a non-relativistic Schroedinger equation or like a free-particle
Dirac equation) with corrections for the kinetic energy, for the potential energy and
for mixed contributions. On one hand, two-component formulations are fully equiv-
alent to the relativistic Dirac representation; on the other hand, the two-component
representations are often formulated only approximately. Anyhow, it has become
customary to call them all quasi-relativistic.

We stress again that the appearance of a spin is a quantum phenomenon, con-
nected with the fact that operators need not commute and that the causal law for
the development of states in time is a wave equation. In contrast, the existence of
particle–antiparticle pairs is a relativistic phenomenon, connected with the two signs
of the root expression for the relativistic energy¨ h̄ D ˙jEj D ˙.mc2C©/. ©means
the conventional energy relative to the energy of an electron or positron at rest in
field-free space.

1.2.4.1. Relativistic Wave Equation with Spin

While the group-theoretical approach of Levy-Leblond is rather involved, Dirac [25]
arrived quite early at the correct relativistic wave equation for spin-1=2 particles
by applying a simple heuristic strategy. He searched for a modified Klein–Gordon
equation that is linear in space–time derivatives. To this end, he introduced con-
stant matrices ’i, “, obeying the relations ’2

i D “2 D 14
9 and ’i’j C ˛j˛i D

’i“ C “’i D 04 (anti-commutativity). If the “ and ’i were just numbers (or one-
dimensional matrices), the relations were contradictory, and one could not explicitly
solve and linearize the square root of Eq. (1-25) to obtain the Dirac equation (1-26),

1 � .E C e � V /� D p
1 � m2c4 C 1 � . Opc C eA/2� D �

“ � mc2 C ’ � . Opc C eA/
� �

(1-26)

which acts on a multi-component ‘spinor wavefunction’.

9 04 and 14 mean the 4� 4 zero- and unit-matrices.
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To show the principle, we assume a two-dimensional space for simplicity (instead
of the real three-dimensional one). In this case, just three matrices ’0

1, ’0
2, “0 are

sufficient, and they only need to be 2 � 2 to obey the required relations; they act on
two-component spinor wavefunctions. This can easily be verified by the reader. The
matrices are known as the Pauli spin-matrices ¢i , and 12 is the 2 � 2 unit matrix:

˛0
1 D �x D

�
0 1

1 0

�
; ˛0

2 D �y D
�
0 �i
i 0

�
; ˇ0 D �z D

�
1 0

0 �1
�

(1-27)

Of course, any unitarily transformed set of these Pauli matrices can also be used.
In the case of the real three-dimensional space, one needs one ’-matrix more, and
then all matrix operators must be at least four-dimensional to fulfill the required
anticommutation relations. The respective 4 � 4 Dirac matrices can be constructed
with the help of the Pauli matrices:

’j D
�

02 ¢j

¢j 02

�
; ˇ D

�
12 02

02 �12

�
; � D

�
12 02

02 12

�
D 14 (1-28)

The Dirac equation (1-26), which describes relativistic spin-1=2 particles correctly,
then reads explicitly, with ¢ D .¢x; ¢y; ¢z/:

�
12 � .mc2 � eV �E/ � � . Opc C eA/

� � . Opc C eA/ �12 � .mc2 C eV C E/

�
�
�
®2

¦2

�
D 0 (1-29)

The Dirac equation and its transformed form (1-29) are system of 2 C 2 cou-
pled equations. Each of the two lines contains the 2 � 2 Pauli spin-matrices. The
upper and lower component functions '2 and 	2 are each a 2-component object,
'2

C D .'’; '“/ and 	2
C D .	’; 	“/, referring to ’ (up) and “ (down) spin. (These

’ and “ symbols have nothing to do with the Dirac matrices ’i, “, ”, nor with
the fine-structure constant ’.) The two spin-components of the wavefunction, i.e.
the dependence of the wavefunction on the spin directions ’ and “, in addition to the
dependence on the space coordinates x, y, z, are really needed for spin-1=2 particles.
It is somewhat accidental that the Dirac equation describes ’ and “ spin of positive
energy states (electrons) and negative energy states (positrons) just with the help of
2 � 2 D 4 components. Indeed, the 4-component Dirac equation (1-26) or (1-29) can
be transformed to a two-component equation for a negatively charged particle and a
similar two-component equation for a positively charged particle ([10, 52, 53], and
later chapters). The ‘picture change’ between 2- and 4-component representations
will be further discussed in the next Section.

One can shift the energy zero of electronic states by –mc2, © D E–mc2, to obtain
‘ordinary’ energies © for ordinarily bound electrons. If one then divides the second
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line of Eq. (1-26) by c, and uses c	 instead of 	, one obtains the following set of
equations equivalent to Eq. (1-26) or Eq. (1-29):

� �12 � .eV C "/ ¢ � . Op C e=c � A/
¢ � . Op C e=c � A/ �12 � .2m C .eV C "/=c2/

�
�
�

2

c	2

�
D 0 (1-30)

1.2.4.2. Non-relativistic Wave Equation with Spin

For small .eV –©/=2mc2, this term may be treated as a relativistic correction, or
just may be neglected. In the latter case, one obtains a 4-component non-relativistic
equation for electrons with spin, the Levy-Leblond equation [50]. Upon elimination
of c	, one obtains a two-component Schrödinger-like equation with spin, acting on
the two-component spinor wavefunction '2. We call it the two-component Levy-
Leblond equation (1-31).

12 � ��e � V � "C . Op C e=c � A/2=2m
� � Ce h̄=2mc � ¢ � B � D 02� (1-31)

Here the useful Dirac–Landau relation

.¢ � A/.¢ � B/ D .A � B/C i � DetŒ¢ ;A;B� (1-32)

has been used, where DetŒ¢;A;B� D ¢ � A � B D ¢ � A � B: e h̄=2mc D �B is
called the Bohr magneton. Equations (1-30) and (1-31) can be obtained directly,
by the tedious Galilee-group-theoretical approach applied to the non-relativistic
Hamiltonian [50]. That is, non-relativistic quantum theory with external electro-
magnetic fields offers the natural possibility of particles with intrinsic angular
momentum (here with s D 1=2, Sz D ˙ h̄=2) and with coupling to a magnetic field
as by a classical magnetic dipole moment of 1 Bohr magneton. This corresponds
to a gyromagnetic ratio ” D �B=Sz D e=mc, which is ‘anomalous’, namely twice
that of the classical or quantum mechanical value e/2mc of a freely orbiting point
charge. The coupling of a spin to a magnetic field had been introduced somewhat ad
hoc already by Pauli in 1927 [54].

1.2.4.3. Gauge Transformations

The energy term .p C e=c � A/2=2m in Eq. (1-31) combines three contributions
(i) the non-relativistic kinetic energy T D p2=2m, (ii) the paramagnetic energy
e=mc � .p � A C A � p/ and (iii) the diamagnetic energy e2=2mc2 � A2. Upon
gauge transformation with gauge function g, the paramagnetic term changes lin-
early with g, whilst the diamagnetic term changes according to .A C rg/2, i.e.
contains a term quadratic in g. This has two consequences. First, only the sums
of the para- and dia-magnetic energy shifts by a magnetic field are measurable and
theoretically well defined. The partitioning into a para- and a dia-magnetic contribu-
tion is not unique and depends on the choice of the gauge g. Second, the expectation
value of the magnetic energy depends on the Hamiltonian containing g and g2 and



22 W.H.E. Schwarz

on the wavefunction. If the gauge of the four-potential (V;A) is changed, also the
phase of the wavefunction ' for the particle in this potential changes:

'0 D exp.–ie= h̄c � g/ � ': (1-33)

In principle, for ‘exact’ calculations, the gauge transformation of the wavefunction
and of the Hamiltonian in an integral expression for the expectation values let these
values invariant. However, this does no longer hold for approximate calculations. In
practical calculations of interactions of molecules with electromagnetic fields and
radiation, the results depend less or more on the chosen gauge. It is a challenge to
find gauges, which minimize the gauge sensitivity of the approximate results for
some given type of problems (for details see Chapter 12).

Each equation of systems (1-29) or (1-30) consists of two lines. The ’ and “
lines can be mixed, corresponding to a change of the reference axis for the spin. The
upper and lower component eigenfunctions of system (1-29), ' and 	, are some-
times called the large and small components, because for small energies © and large
distances from the nuclei, '=	 � c2. However, whether ' or 	 (or c	 in Eq. 1-30)
is larger near the nuclei depends on the angular momenta and the potentials [10,55].
The two individual equations of systems (1-29) or (1-30) can also be arbitrarily
linear-combined. It changes the ratios of the upper and lower components and cor-
responds to a (unitary) equivalence-transformation of the Dirac matrices 14, ’i and
“. As Eqs. (1-19) and (1-30) clearly demonstrate, both wavefunction components
are in general equally important for the energy, irrespective of their norms. For very
large energies, ' � ˙	, depending on the sign of E , which defines the electronic
or positronic character of the state function. At least in general, the upper and lower
components of a relativistic four-component function should not be identified with
electronic and positronic components, respectively, except one has performed a uni-
tary transformation of the Dirac equation towards two uncoupled two-component
spinor equations, one for E� C mc2 (electrons) and the other one for E�–mc2

(positrons).

1.2.5. Picture Changes

Any wave equation can be unitarily transformed with the help of a unitary operator
or matrix OU . OU OUC D OUC OU D 1/,

OH‰ D E‰ ! . OUC OHU/. OUC‰/ D OH 0‰ 0 D E‰0: (1-34)

This is the so-called “picture change”. The operators of all other observables must
of course be simultaneously transformed, too, for instance the operator of the space
coordinates r, which appear in the electronic charge density distribution ¡.r/ D e �
‰�.r/ �‰.r/ and in dipole moment and transition-dipole moment expressions.

Or ! Or 0 D . OUC Or OU /: (1-35)
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Figure 1-10. Relativistic change of radial density, �relP D .�rel��n-rel/ � r2 (in au=106˛2), of the 2p1=2
spinor of Fm.Z D 100/ versus log10.Z � r/. —— charge density in the Dirac picture; - - - - - - particle
density in the two-component picture (After Autschbach and Schwarz [59])

An equivalent viewpoint is the transformation of the density operator O¡.r/ to
O¡0.r/ D OUC O¡.r/ OU [56]. In the Dirac picture, r is the position of charge coupled to
the electromagnetic potential and ¡ is the charge density, while in the transformed
picture, it is r 0 and ¡0. On the other hand, simple r in the transformed picture means
something like position of mass [56–59]. Figure 1-10 presents ¡�¡n-rel and ¡0�¡n-rel

for a 2p1=2 spinor and a large nuclear charge. The picture-change of the density dis-
tribution, i.e. the difference between the relativistic charge and mass densities, is
pronounced near the nuclei. It is qualitatively different for different nlj quantum
numbers and for large or small nuclear chargesZ.

Such ‘picture transformations’ are common in quantum chemistry. It is also a
‘picture change’ if we go from the all-electron representation of a molecule to
the valence-only representation by replacing the atomic core electrons by atomic
effective-core potentials (ECP) or pseudo-potentials (PP) [60, 61, Chapter 6] i.e.
from the valence orbitals to the valence-pseudo-orbitals with less inner nodes
in the atomic core regions. Another example of a picture change is the change
between the four-component Dirac representation and respective two-component
representations:

. OHD � E/ �‰ D
�

12 � .mc2 � eV �E/ � � . Opc C eA/

� � . Opc C eA/ �12 � .mc2 C eV C E/

�
�
�

2

	2

�

D 0 ! (1-36)

. OH 0 �E/ �‰0 D
� OHC �E 02

02
OH� �E

�
�
�

0 02

02 	0
�

D 04; (1-37)

where, for the particular case E � Cmc2, OHC and charge e in the electromagnetic
potential terms describe electrons in a convenient two-component way (and for case
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E � –mc2 positrons in an ‘unusual’ way, whilst OH� is then more convenient for
positrons). Explicit expressions for Hamiltonians (containing potential terms) can-
not be given. Either the matrix elements of OHC can be computed numerically by
computer iteration of some implicit equation, or one can develop series expansions
for the matrix elements in powers of ’ D 1=c, nuclear chargeZ or potential V (see
later chapters).

We present the lowest order approximation to [ OHC–©], obtained in the framework
of ‘direct Dirac perturbation theory’ (DPT), as applied to Eq. (1-30) [62, 63]:

h OHC � "
i

� D
h
�e � V C Op2

=2m � "C .� Op.eV C "/ Op C ¢ � rV � r/=4m2c2
i

�
(1-38)

The first two terms in the right brackets are the electrostatic potential energy and
the non-relativistic kinetic energy T0. The last terms of order ’2=4 are the lowest
order relativistic corrections. The term �� � rV � r is the spin-orbit coupling.
The other term ��p.eV C ©/p is spin-independent. In the present representation,
the respective energy contribution can be written as an expectation value of the
non-relativistic wavefunction‰o:

�spin-indep©.DPT/ D ’2=4 � h‰oj–2.©C eV /T C .rV /r j‰oi (1-39)

The historical, numerically quite sensitive Pauli expression can be recovered by
inserting the non-relativistic Schrödinger equation and integrating by parts:

�spin-indep©.Pauli/ D ’2=4 � h–1=2p
4–1=2.r2V /i (1-40)

The partitioning of the energy into spin-independent contributions of order ’�2 (i.e.
mc2), ’0 (non-relativistic potential and kinetic energies), ’2 (Eqs. 1-39 or 1-40), ’4

etc. and spin-dependent contributions of order ’2, ’4 etc. is picture-independent.
Further, one can split up the spin-independent contribution of order ’2 into a mass–
velocity term and the so-called non-classical Darwin or Zitterbewegung term. The
latter term is absent in the Klein–Gordon theory for spin-0 particles. A point parti-
cle with spin has an internal structure with positional uncertainty that reduces the
electron–nuclear attraction. The operators for positions of charge and of mass of
spin-1=2 particles differ, in any picture, at the order of ’2 by terms dependent on
the spin operators [58]. The DPT and Pauli forms of the mass–velocity and Dar-
win terms in Eqs. (1-39) and (1-40) look different, but give the same numerical
values, provided exact zeroth order wavefunctions are applied. The value of the
Darwin term can also be obtained as the limit of the spin-orbit coupling energy of
j D l C 1=2 for continuous l ! 0 [64].

Many further representations can also be generated. They differ in their sensi-
tivities on errors in the wavefunction. The Pauli form is rather sensitive due to the
singularities at the origins of the nuclear Coulomb potentials. Franke and Kutzlnigg
[65] have shown that representation (1-39) is less sensitive than (1-40), i.e. superior.



An Introduction to Relativistic Quantum Chemistry 25

Finally, it seems necessary to stress the triviality that perturbation expressions such
as (1-38)–(1-40) should never be applied in variational approaches.

1.2.6. Summary

The theoretically derivable relativistic wave equations for spin-0 and spin-1=2 parti-
cles, respectively, are the one-component Klein–Gordon equation (1-24) and the
at least two-component equivalents of the Dirac equation (1-26/1-37). Letting
c ! 1, or ’ ! 0, one obtains approximate non-relativistic equations, namely
the one-component Schrödinger equation (1-22) for spin-0 and the two-component
Levy-Leblond (or Pauli) equation (1-31) for spin-1=2. The appearance of particles
and antiparticles is a relativistic phenomenon. E-values around and above Cmc2

represent electronic states, round and below –mc2 positronic states. The physical
energy is at best defined as jEj D j¨ h̄j.

Any system of equations for massive (m > 0) spin-s particles and antiparticles of
multiplicityM D 2sC 1 must comprise at least M equations for anM -component
wavefunction, with wave-frequency ¨ 	 0 for particles and ¨ � 0 for antipar-
ticles. The wave equations may be formulated with more lines than the number
of spin-components, sometimes locking or being more simple and elegant, such as
the four-component Dirac equation in comparison to its two-component equivalents
(see later chapters). Two-component representations such as by OHC in Eq. (1-37)
may be more convenient for the numerical computation or for the explanation of the
physical mechanism of electronic states. It depends on the type of the four-to-two
components transformation, whether the spectrum of the constructed Hamiltonian
OHC contains only the electronic solutions, or the electronic positive-energy solu-

tions, and also the positronic negative-energy solutions though in an inconvenient
manner [52].

The definition of particles and antiparticles is not unique. One may choose a
basis of free waves with EC > Cmc2 for electrons and with E� < –mc2 for
positrons. Another option is the single-particle states in the field of the clamped,
naked nuclei. The best choice is a basis of self-consistent field (SCF) orbitals of
the molecule under investigation, with orbital energies EC 	 –mc2 for electronic
states and withE� < –mc2 for positronic states. This is an unproblematic definition
for all ‘chemically reasonable’ Z values.10 The complete sum of Dirac many-
electron energies and quantum field corrections is independent of the choice of the
e� � eC one-particle basis. The choice of electronic (single or multiple configura-
tion) SCF orbitals leads to comparatively small quantum electrodynamical (QED)
corrections, i.e. the Dirac approach alone without e�-eC pair corrections (‘no-pair
approximation’) is already quite good [66–69, 124, 125].

We can distinguish between quantum effects, relativistic effects and quantum
relativistic effects. The possibility of an internal spin of a point particle with

10 ForZ larger than about 165, the electronic 1s level dives into the positronic continuum of the extended
nucleus, with spontaneous electron–positron pair production.
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‘anomalous’ gyromagnetic ratio �2 is a quantum effect [50, 51]. It is connected
to Heisenberg’s uncertainty concerning the charge and mass distributions of a spin-
ning point particle, which differ from each other in strong fields by the order of the
Compton length œC D h=mc [49,58,59, Chapter 12]. It is a consequence of electro-
magnetic coupling �e=c �A, and in this sense it is a relativistic quantum field effect.
The place, where a factor ’ D 1=c appears in the equations, depends on the choice of
the electromagnetic units. For an alternative convention than used above see Chap-
ter 12, Section 12.2.5. The increase of inertial mass with velocity (Eq. 1-11), the
reduced kinetic energy expression in terms of the momenta (Eq. 1-14a) or increased
in terms of the velocities (Eq. 1-14b) are relativistic mechanical effects.

When electrons move in the field of nuclei, there are four genuine lowest-order
quantum relativistic effects [43,70]. (i) The coupling of the internal spin structure to
the strong inhomogenity of the nuclear electric field, i.e. the Darwin effect �’2. It
influences the Dirac solutions for spin-1=2, though not the Klein–Gordon or square-
root solutions for spin-0 (e.g. [48]). (ii) The coupling of the spinning electron to
magnetic (or moving electric) fields, the spin-orbit coupling �’2. It is mainly due
to the nuclear field; specific two-electron contributions in many-electron atoms and
molecules will be mentioned below. (iii) The quantum field theoretical coupling
to virtual excitations of the electromagnetic vacuum (vacuum fluctuations) and to
virtual excitations of the electron–positron vacuum (vacuum polarizations) �’3.
(iv) ‘Weak interactions’ between the electron and a nucleus. The latter are orders of
magnitude smaller, but have been suggested as origin of chirality in biomolecules
[71,72]; for a different view see [93]). At higher than second order of ’, the coupling
of the various mechanisms prevents such simple partitioning; in reality there is only
the total relativistic energy.

1.3. DIRAC SOLUTIONS FOR HYDROGEN AND OTHER ATOMS

The hydrogen atom is the only atom that has no occupied core shells and is also
not influenced by any two-electron interactions. So it is an exceptional one among
all atoms, forming an unusually small cation and a somewhat atypical covalence.
On the other hand, due to its simple structure, it is particularly useful to explain
some of the basic chemical phenomena and concepts. A simplified H-atom model
with an infinitely heavy point-nucleus without any internal structure (no nuclear
spin) and with all QED effects suppressed can be solved in closed form at the semi-
classical Bohr, at the non-relativistic Schrödinger and at the relativistic Dirac levels.
In Sections 1.3.1–1.3.3 we discuss its relativistic orbital energies, orbital functions
and orbital radii. Some common paradoxical relations are analyzed in Section 1.3.4.

Atoms with occupied inner shells are chemically more realistic examples. The
electronic shielding effects on the orbitals are discussed in Sections 1.3.5–1.3.7,
and the relativistic two-electron interactions in Section 1.3.8. The smaller quantum
electrodynamical and weak-interaction effects and the finite extension of the nuclear
charge distribution are finally mentioned in Section 1.3.9.
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1.3.1. Relativistic Orbital Energies of the Simplified H-Atom Model

The Dirac energy values of the simplified one-electron atom (ion) with nuclear point
charge Z, clamped at the coordinate origin, are known since Gordon [73], see also
Bethe and Salpeter [74]:

Enk .Z/ D mc2 � Œf1C �2=.nC
p
k2 � �2 � jkj/2g�1=2 � 1� (1-41)

Here and in the following, ” D Z=c; n D nr C l are the principal, radial and
angular orbital quantum numbers; k D ˙.l C 1=2 ˙ 1=2/, and j D l ˙ 1=2 is
the total (orbital and spin) angular momentum quantum number. The formula for
the eigen-energies of the Klein–Gordon equation is similar, except for replacing the
spin-dependent k-quantum number by spin-independent œ D C.l C 1=2 C 0/ [47].
The non-relativistic energetic degeneracy of the hydrogenic orbitals, for instance
E.3s/ D E.3px;y;z/ D E.3dxy;xz;yz;zz;xx�yy/, is partially removed. Orbitals with
different angular momentum are subject to different mass–velocity and spin-orbit
effects, e.g. E.3s/ D E.3p1=2/ < E.3p3=2/ D E.3d3=2/ < E.3d5=2/. That is the
hydrogen orbital energies depend only on n and j (or jkj). The four lowest states are

1s1=2 W n D 1; k D �1; l D 0; j D 1=2;

2s1=2 W n D 2; k D �1; l D 0; j D 1=2; (1-42)

2p1=2 W n D 2; k D C1; l D 1; j D 1=2;

2p3=2 W n D 2; k D –2; l D 1; j D 3=2:

We expand the energies in powers of ” (e.g. [75]):

1s1=2 W ED –Z2=2 � .1C 1=4�
2 C 1=8”

4C : : :/ •©D 4=16”
2 C 16=256”

4 � � �
2s1=2; 2p1=2 WED –Z2=8� .1C 5=16”

2 C 21=128”
4C : : :/ •©D 5=16�

2 C 17=256”
4 � � �

2p3=2 W ED –Z2=8 � .1C 1=16”
2 C 1=128”

4C : : :/ •©D 1=16”
2 C 1=256”

4 : : :

(1-43)

The first factors �Z2 are the non-relativistic energiesE0. •© D .E�E0/=E are the
fractional relativistic energy stabilizations, they are of the order of a fraction of C”2.
This is the ‘relativistic orbital stabilization’. For Z-values of the lighter transition
elements (Sc to Cu), •© is in the 1% range; of the second transition row elements (Y
to Ag) in the few-% range; of the lanthanoids (La to Lu) in the 5% range; and of the
actinoids (Ac to Lr) over 10%. For many chemical purposes, relativistic corrections
to first order in ”2 are sufficient for the first two transition rows of the periodic table;
the second order is needed from the lanthanoids onwards; and third and higher order
terms (i.e. the full energy) are required from the actinoids onwards. For more details,
see [76] and [75].
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1.3.2. Relativistic Atomic Spinors

When discussing the four-component complex relativistic spinor wavefunctions,
one should keep in mind that the upper and lower components have no absolute
meaning but depend on the chosen representation. We will use the standard Dirac
representation with matrices as given in Eq. (1-28).

1.3.2.1. s1=2 Spinors

At first, we discuss the simplest case, 1s1=2C. The explicit form for a point nucleus
reads:

1s1=2C W N � r�d � e�Zr �

0
BB@

.i”=d/ � ’
0

.z=r/ � ’
.x C iy/=r � “

1
CCA ; d D 1–

p
1 � �2 � 1=2”

2: (1-44)

N is the normalization factor, r the nuclear-electronic distance. The factor r�d

increases strongly for small r . The electron is nearer to the nucleus than in the
non-relativistic limit (‘relativistic orbital contraction’) and the Coulomb potential
energy becomes more negative (‘relativistic orbital stabilization’), in particular for
largeZ values. For unrealistic point nuclei, the wavefunctions even diverge towards
1 for r ! 0. However, for real extended nuclei, the wavefunction becomes smooth
and Gaussian-like inside the nucleus, without any cusp or singularity (Figure 1-11).
Typical nuclear radii are

RN � 11=4 A
1=3 fm; (1-45)

where A is the nuclear mass number. Nuclei are about 10�5 times smaller than
the whole atoms. For the heaviest nuclei, the probability of a ‘1s electron’ being
inside the nucleus approaches the �-range. In the non-relativistic limit, c ! 1, d
vanishes and the function becomes r0 � e�Zr D 1 � e�Z�r , just the non-relativistic 1s
orbital.

The lower components of the 1s1=2 spinor are smaller than the upper ones by
a factor of d=” � ”=2. For small nuclear charges Z, this is a large ratio. This is
so for all spinors with j D l C s. In the non-relativistic limit, the lower compo-
nents would contribute nothing to the charge density. But the lower components are
always important for the energy (since they are multiplied by terms of order mc2

and pc) and for other expectation values containing the factor c in front of the lower
components.

The angular behavior of the lower components is different from that of the upper
ones. If the upper component is a j D l C s function (s1=2, p3=2, etc.), the lower
component is a j D .l C 1/ � s function (p1=2, d3=2, etc.). In the present case
(l D 0), the upper component is of gerade type .1s1=2C D s’/, and the lower
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Figure 1-11. Values of 1s wavefunctions of the Tl atom (Z D 81) versus nuclear distance r (log-scale for
r in au). (a) Non-relativistic (the difference between finite and point nuclei is not visible), (b) relativistic,
finite nucleus with radius RN , and (c) relativistic, point nucleus (After Schwarz and Wallmeier [98])

component is ungerade .1p1=2C D p0’Cp
2 pC1“/. With ‘nlj’ type, we will denote

a two-component spinor �‘x,y,z’l � rn�l�1 with spin and orbital angular momenta
coupled to j D l ˙ s. For instance, ‘1p1=2C’ means a function with a factor of
type ‘x,y,z’/r . This factor changes steeply inside the nucleus (for a point nucleus, it
jumps); around r D 0, the lower component changes along the x axis from –1“ to
C1“, along the y axis from –i“ to Ci“, and along the z axis from –1’ to C1’. The
other spin state 1s1=2� with dominant “ instead of ’ spin is the complex conjugate
function, with ’ replaced by “ and “ replaced by �’ (note the negative sign). Along
any axis, the upper component of 1s has no zero, while the lower component has a
zero at r D 0.

1.3.2.2. p3=2 Spinors

Another simple case is l D 1, j D `C 1=2, i.e. 2p3=2. For a point nucleus, we have:

2p3=2; 3=2 W N 0 � rd 0 � e�Zr=2 �
 
4=” � 02p3=2

0

i � 02d3=2
0

!
; d 0D

p
4 � �2–1�1–1=4”

2: (1-46)

‘2p’ and ‘2d’, respectively, denote factors of type ‘�x,y,z’ and ‘�xy; : : : =r’ around
the nucleus. The upper 2p ungerade component has a node inside the nucleus, with
an extremely steep slope (infinite for the point nucleus), much steeper than in the
non-relativistic limit. Note that the exponent d 0 of prefactor rd 0

is smaller than 1.
Again, the relativistic spinor is more contracted than the non-relativistic orbital.
The lower 2d gerade component approaches zero inside the nucleus as a quite sharp
parabola and rises comparatively steeply outside the nucleus.
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Figure 1-12. Radial densities D.r/ D 4r2j‰j2 of spinors of Hg.Z D 80/ versus nuclear distance r
in au. (Full curves) relativistic, (dashed) non-relativistic, (left) 2s, and (right) relativistic 2p.j D 1

2
/ and

2p.j D 3
2 /, and non-relativistic 2p.l D 1/ (After Burke and Grant [76])

The higher ns1=2 spinors with n > 1 and the higher np3=2 spinors with n > 2 have
slightly more complicated and (for upper and lower components) more different r-
dependent factors. In general, the lower component ¦ has one zero more than the
upper component ®, their nodes interlacing each other. Since the charge density is
¡ D j®j2 C j¦j2, it nowhere vanishes but has minima near the points, where the
larger upper component vanishes (see Figure 1-12 left). The shell structure of the
hydrogenic spinors becomes less pronounced for increasing Z.

While ¡.r/ in the four-component Dirac picture means the charge density at r,
¡.r/ has a slightly different meaning in the two-component picture, where the
position of charge is not r but UCrU [58, 59] (Chapter 12).

1.3.2.3. p1=2 Spinors

The simplest example of a j D l�s spinor with a lower j D .l�1/Cs component
is 2p1=2C, for a point nucleus:

2p1=2C W N 00 � r�d � e�Zr=2d 00 �
 

i.rCO.�2// � 01p1=2
0

O.”/ � .r�O.”0// � 01s1=2
0

!
;

d 00Dp1 � d=2 � 1�1=8”
2: (1-47)

Both r-dependent factors r�d and e�Zr=2d 00

rise faster towards the nucleus then in
the non-relativistic case (r0 and e�Zr=2). The relativistic orbital contraction and
energetic stabilization is comparatively large for p1=2 spinors, in particular in
comparison to p3=2 spinors, which do not differ that much in energy and radial
distribution for the non-relativistic p orbitals (Figure 1-12 right). At large and
medium r , the upper ungerade term in the parentheses of formula (1-47) behaves
as r � 1p � 2p � ‘x,y,z’, whilst the lower gerade term behaves as ”.r–const/ � 1s,
i.e. radially as a small 2s component. However, for r ! 0, the upper term behaves
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as ”2 � 1p � ”2� ‘z’=r , whilst the lower term behaves as ” � 1s � ” � const. The upper
component is the smaller one near the nucleus. This holds for all j D l–s spinors.

The non-relativistic p-orbitals are completely degenerate and can be easily
mixed. The electric fields in molecules then stabilize real oriented ones such as
pz along the z-axis, which can well overlap with orbitals with same spin from
neighbor atoms on the z-axis. The relativistic spin-orbit interaction, however, cou-
ples real and imaginary, and also ’ and “ spin contributions. For instance, a p1=2C
spinor is .px“C ipy“C pz’/=

p
3 and has a non-directional spherical charge density

distribution ¡ D f .x2 Cy2 Cz2/ D f .r2/ (Figure 1-3a); the wavefunction is inher-
ently complex and spin-mixed. In general, spin-orbit coupling will weaken covalent
overlap bonding [77, 78], for details see Section 1.4.3.

1.3.3. Relativistic Changes of Orbital Radii

The atomic orbital radii r D h.®; ¦/jj Orjj.®; ¦/i had been investigated, e.g., by
Burke and Grant [76] and Andrae [79]. For the fractional relativistic orbital con-
traction •¡ D .r � r0/=r with respect to the non-relativistic value r0, one obtains
to first order in ”2

1s W •¡ � –1=3”
2 .1=3 � 0:33/;

2s W •¡ � �35=96”
2 .35=96 � 0:36/; (1-48)

2p1=2 W •¡ � �42=96”
2 .42=96 � 0:44/;

2p3=2 W •¡ � 1=10”
2 .1=10 D 0:10/:

In both cases, for orbital energies and for orbital radii, the percent-effects increase
from 1s to 2s and 2p1=2, but for large n, l , j finally become smaller. The largest
fractional energy stabilization and contraction occurs for j D 1=2 at 2s,2p1=2, for
j D 3=2 at 3p3=2; 3d3=2, for j D 5=2 at 5d5=2; 5f5=2. This is the rule for hydrogenic
orbitals, which also applies to the innermost core orbitals of heavy (neutral or nearly
neutral) atoms in chemical compounds, i.e. for the case of x-ray spectroscopy. The
relations for the relativistic corrections of energies and radii of the outer atomic core
and valence shells are different, see below.

1.3.4. Paradoxical Relations

In order to explain complex physical phenomena, one must introduce theoretical
simplifications and construct a transparent model. There may be two completely
different reasons for a model correctly reproducing some aspects of the real situ-
ation. Either the basic aspect of the physics of the system under consideration is
correctly represented by the applied model, and the approximation influences only
negligibilities in the given context. Or two significant errors accidentally happen to
cancel each.
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1.3.4.1. The Bohr Model of the H Atom

A typical example of the latter situation is Bohr’s model of the hydrogen atom.
Obviously, the H atom is an object in three-dimensional space. However, Bohr
treated it as a two-dimensional, planar, planetary object. One spatial dimension is
missing. This seriously affects the consequences of Heisenberg’s uncertainty rela-
tion, which determines the size of the unit cell in position-momentum phase space
and, thereby, the quantum-kinetic energy. To compensate for the missing radial
quantization, Bohr had to choose the minimal angular momentum value, which is
0 h̄ for the lowest rotationless states, as 1 h̄. In the case of the H atom, these two
errors cancel exactly, while they do not do so for H2

C or He or H2. Since the semi-
classical H atom is such a nice simple model, which is commonly referred to in
elementary quantum chemical explanations, we will consider it, too. However, we
should not be embarrassed, if it does not correctly work out.

In the H atom, there is equilibrium between the Coulomb attraction Ze2=r2

and the centrifugal force minert � v2=r.minert is the longitudinal and transversal iner-
tial mass, to be distinguished from the angular momentum quantum number m).
Upon angular momentum quantization, Lz D minert � v � r D m h̄, we get two
equations for the two unknown variables v and r . We note that Bohr’s quantum
number (here denoted by m) has the meaning of a quantum number for fixed-
axis rotation, though not that of Schrödinger’s principle quantum number n. Setting
e D h̄ D 4 ©o D 1, the velocity of light is c � 137. When we exchange the two
different quantum numbers m and n, we obtain for velocity v, radius r and energy
E of the hydrogenic orbit:

v D Z=n; r D n2=Zm inert; E D –T D �1=2V D –Z2minert=2n
2: (1-49)

For minert = electronic rest-mass m, these are the non-relativistic values for the
hydrogenic states. With the relativistic effective mass of Eq. (1-11), we obtain

v D Z=n; r D n2
p
1 � �2=n2=Zm; E D –T D 1=2V D –Z2m=2n2

p
1 � ”2=n2:

(1-50)

The model qualitatively explains that relativity contracts the orbital radius and stabi-
lizes the energy. Eqs. (1-11) and (1-50) are frequently cited to rationalize the direct
relativistic effects. However, the numerical values of the ‘relativistic Bohr model’
are incorrect, even the trend with respect to increasing n is not correct. The Bohr
model predicts •r � –�2=2n2 and •© � C”2=2n2, i.e. approximately the same
percent age for orbital contraction and for orbital stabilization, and both effects
decreasing for increasing quantum number squared. However, the true hydrogenic
effects are larger for the radii than for the energies. And the largest percentages
of relativistic effects occur for some small n value, depending on the property
(E , r , . . . ), though not for the smallest n, compare [75] and [80]. The relativistic
spinless Bohr model also deviates from the spinless Klein–Gordon model, where
the lowest energy varies as E D –Z2=2 � .1 C 5=8”

2 : : :/, though the deviation is
smaller than from the Dirac spin model.
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1.3.4.2. The Dirac Hydrogen Atom

Another astonishing situation of rather common logical structure is displayed in
Table 1-1. The expression for the relativistic kinetic-energy correction at lowest
order of ’ is –(’2=8) �p4, see Eq. (1-14a). The expectation value of the elec-
tronic momentum in the hydrogenic ground state is, at lowest order, hjpji D Z.
It is, however, purely accidental that the relativistic lowest order energy correc-
tion for hydrogen is just –.’2=8/ � Z4. Whilst hjpji D Z, and hjp2ji D Z2,
hjp4ji D hj2.©–V /p2ji D hj4.©–V /2ji D 5Z4! The p4 operator, applied to a
hydrogenic 1s orbital with a cusp at the origin, yields also a •-contribution at the
origin. Indeed, �5 � .’2=8/ �Z4 is the correct lowest order energy correction for the
spinless hydrogenic Klein–Gordon system. The mass–velocity stabilization for the
Dirac system, i.e. for the H atom with a spinning electron, is the same.

However, the charge versus mass distribution of an electron near to the nucleus
due to its spin-structure causes an averaging over the Coulomb potential that reduces
the nuclear-electronic attraction in particular for states with finite probability at the
Coulomb singularity. This Darwin correction to the potential energy of spinning
point charges is C1=2’

2Z4 and yields a value of –1=8’
2Z4 for the total relativistic

energy correction at lowest order of ’. (For non-s states, the Darwin correction is
smaller, of order ’4.)

The lowest order total energy can be obtained from the ‘unperturbed’ non-
relativistic wavefunction ‰0 and the lowest order correction of the Hamiltonian,
�rel OH. However, for other expectation values, for instance of the potential and
kinetic energy contributions, also the lowest order correction to the wavefunction,
�rel‰, is needed. Since the total energy is stationary, it is not changed at this order;
the kinetic and potential energy changes due to the relativistic change of the wave-
function are of opposite value, ˙’2Z4. As a result, the kinetic energy expectation
value increases by C3=8’

2Z4, despite the negative term in the Hamiltonian opera-
tor expression (�1=8’

2p4). And the potential energy expectation value decreases by
�1=2’

2Z4, despite the positive Darwin term in the Hamiltonian operator expression,
namely because of the relativistic relaxation of the wavefunction.

Table 1-1 Kinetic, potential and total energies of the hydrogenic 1s ground state
for nuclear charge Z: Non-relativistic approximation (n-rel), the two contributions of
lowest order in ˛ due to relativistic corrections of Hamiltonian (�rel OH) and of the wave-
function (�rel‰), and the total lowest order energy correction (� rel) in comparison to
Bohr’s model (�relBohr)

Energies n-rel h‰0j�rel OHj‰0i h‰0j OH0j�rel‰i C c.c �rel �relBohr

Kinetic CZ2/2 �5=8 ’
2Z4 C’2Z4 C3=8 ’

2Z4 (�1=8C1=4D/
C1=8 ’

2Z4

Potential �Z2 C1=2 ’
2Z4 �’2Z4 �1=2 ’

2Z4 (0–1=4D/–1=4 ’2Z4
Total �Z2/2 �1=8 ’

2Z4 0 �1=8 ’
2Z4 �1=8 ’

2Z4
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The kinetic and potential energy values are in accord with the relativistic virial
theorem [30, 81]:

Ekin D –E–@E=@ ln’; (1-51)

Epot D 2E C @E=@ ln’:

Here, we have defined the kinetic and potential energies in the Dirac picture as
Epot D heVii and Ekin D E � Epot D h.“� 14/mc2 C ’pci, yielding

E D h.“� 14/mc2i; Epot D E � Ekin D �h’pci: (1-52)

The momentum term h’pci is approximately twice the kinetic energy.

1.3.4.3. Covalent Bond Formation, Singlet Triplet Splitting and More

There are many other examples of such paradoxical mechanisms with similar logical
and mathematical structure. First, we mention the mechanism of covalent bond for-
mation [82, 83]. Upon overlap of two open shell atoms and concomitant electron
sharing, the bonding electrons of two atoms get more space in the bond direc-
tion. Due to Heisenberg’s uncertainty principle, the bond-parallel component of
the momentum uncertainty, and thereby the kinetic energy density functional are
reduced. The simple MO model of frozen AOs yields a reduced molecular energy.
However, the reduced kinetic energy ‘pressure’ results in a contractive relaxation of
the bond orbital, until the kinetic energy expectation value has increased, as required
by the virial theorem.

Another example is given by the two-electronic singlet and triplet states. The
uncorrelated Coulomb repulsion of two electrons in a spin-triplet state (J � K) is
reduced in comparison to the singlet state (J CK), because of Pauli’s antisymmetry
requirement. The result is a contraction of the electronic triplet shell, with increased
electron-nuclear attraction energy as compared to the singlet state. Often the triplet
has an even higher inter-electronic repulsion energy than the singlet .J �K/triplet >

.J CK/singlet.
Such counterintuitive examples, where the ‘driving force’ is of one sign, but

where the relaxation of the system upon the ‘intended’ change causes an effect of
the opposite sign, are rather ubiquitous. This ‘anti-LeChatelier’ behavior, where the
intended change is not just moderated, but at the end even inverted, depends on
the details of the system, i.e. whether some parameter values are below or above
respective critical values. This behavior does not only occur in quantum mechanics,
but also in classical mechanics, biology and ecology, economy and financing. Its
understanding is important for both sensible discussions in science and in daily life.

1.3.5. Orbitals in Many-Electron Atoms: Small Angular Momenta

The electron in a hydrogen-like ion everywhere ‘feels’ the same full nuclear charge
Z. In more typical, heavier, many-electron atoms, the effective nuclear charge
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Zeff.r/ at distance r from the nucleus is reduced through shielding by the inner (and
to some extent also by the outer) electron density. The inner electron density con-
sists of the density of the inner nlj shells, and of the inner tails of core-penetrating
outer shells (mainly valence s and p). Zeff at small r , near the nucleus, is nearly Z,
but decreases in an exponential manner for larger r . Therefore, we must distinguish
the atomic orbitals according to their radial behavior, in particular according to their
angular momenta. s1=2 and p1=2 orbitals (l D 0 and 1) always have some density near
the nucleus, whilst the centrifugal force acting on d and f orbitals keeps them away.
We must also distinguish between the lowest orbital of a given angular momentum
(‘primogenic’ orbitals 1s, 2p, 3d, 4f, i.e. nl with n D l C 1) and the higher ones
(nl with n > l C 1). The former ones ‘feel’ the centrifugal force �l.l C 1/=r3,
whilst the latter ones feel the centrifugal force and the Pauli repulsion by the lower
occupied subshell(s) of same l-value [84–86].

The hydrogenic orbitals in the Coulomb potential V.r/ D –Z=r of an unscreened
nucleus obey the virial theorem in the simple form

V C 2T D 0; V D 2E; T D –E: (1-53)

However, atomic orbitals in the strongly screened potential of real many-electron
atoms obey the generalized virial theorem:

hr � @V=@ri C 2T D 0; (1-54)

which corresponds, in the case of outer valence orbitals, to

V C T � 0; jV j 	 jEj; T 	 –E (1-55)

Figure 1-13 shows that a higher atomic orbital with several inner nodes contains
about 90% of its integrated density S in the outer diffuse spatial shell, and in each
more inner shell there is about one order of magnitude less charge. The same holds
for the total orbital energy E , which comes mainly from the outer spatial shell.11

However, despite the smaller and smaller density contributions from the inner spa-
tial shells, each spatial shell contributes a similar amount of potential or kinetic
energy. Classically, the valence electron increases its speed when it dives into the
atomic core, where the increasing kinetic energy compensates for the disappear-
ing screening of the nuclear attraction. This explains, why valence electrons have a
comparatively small energy, but may still be relativistically fast.

11 Of course, quantum mechanics is a holistic theory without physically defined local contributions to an
observable expectation value. However, in a concrete calculation of a physical value, or in a specific
explanation of the physical mechanism, one applies one specific formula chosen from a gauge-invariant
set. This then gives one of the many complementary, internally consistent pictures of physical realty.
For instance, we here choose C1=2 a s e dr � jr‰.r/j2 with positive definite integrand for local contri-
butions of the kinetic energy T . It gives a somewhat different picture than �1=2 a s edr � .‰� � r2‰/.
For the total energy we choose a s e dr �.‰� � OH‰/ D E �a s e dr �¡.r/. In the present Figures, a means
the nuclear position, r D 0, and e corresponds to the upper integration limit plotted on the abscissa.
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Figure 1-13. 7s spinor ®.r/ of a U atom (2-component picture) over a logarithmic r-scale: Radial
integration over spatial shells K (corresponding to n = 1), L, M, N, O, P, Q (� n D 7) from the
nucleus (r D 0) up to r, 0 s r dr0 � f .r0/, dr 0 D 4r 02dr 0. T : non-relativistic kinetic energy from
f D 1=2 � jr®j2; S : density from f D j®j2 D �; V : potential energy from f D Vscf � �; E: total
energy from f D E�:11 The vertical lines indicate the minima of the ns orbital densities, which all
nearly coincide (After Schwarz et al. [130])

1.3.5.1. Direct and Indirect Relativistic Effects

Whilst the total energy of the atomic valence shell dominantly stems from the
outer atomic region, and the kinetic and potential energy contributions from all
atomic spatial shells, the ‘direct’ relativistic energies from the corrections to the
potential and kinetic energy operators originate only in the neighborhood of the
nucleus, namely for s valence orbitals in the spatial K shell (D, MV and DIR in
Figures 1-14 and 1-15), for p valence shells in the spatial K and L shells (DIR and
SO in Figures 1-16 and 1-17), for d valence shells in the spatial L and M shells (DIR
and SO in Figure 1-20 below), and for f valence shells in the spatial M and N shells
(DIR and SO in Figure 1-21).

In addition to these stabilizing, contracting, ‘direct’ relativistic effects, known
from the hydrogen atom, there appear additional ‘indirect’ relativistic effects in
many-electron atoms [2, 3, 35, 87]. The s1=2 and p1=2 orbitals contract significantly,
in many-electron atoms fractionally even more than in hydrogen-like one-electron
systems. The contraction looks like a linear shift on a logarithmic r-scale, with
a concomitant increase of the relativistic amplitude maxima, see Figure 1-18.
Thereby, the nuclear charge becomes relativistically better shielded. The relativistic
self-consistent field (scf) is less attractive than the non-relativistic one. The respec-
tive change �indV scf D V scf

rel–V scf
n-rel due to the s1=2 and p1=2 contraction acts in

a repulsive manner, in particular on orbitals not coming near to the nuclei such as d
and f orbitals, and on weakly bound orbitals such as the virtual frontier orbitals.
This indirect de-stabilization is distributed over all shielding shells, see IND in
Figures 1-14 1-16, 1-20 and 1-21.
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Figure 1-14. 7s orbital ® of a U atom: Radial energy integration (compare legend of Figure 1-13). D:
relativistic Darwin potential energy correction from f D ˛2=4 � Œ.®Vscf�®/–Vscf.r®/2�; MV : rela-
tivistic kinetic energy mass–velocity correction from f D –˛2=8 � .�®/2; DIR: the respective sum;
IND : relativistic energy correction due to the relativistic change of the nuclear screening potential from
f D �relVscf®

2; TOT : total relativistic orbital energy correction (After Schwarz et al. [130])
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Figure 1-15. 6s orbital of an Au atom: Radial energy integration (compare legends of Figures 1-13 and
1-14). D: relativistic Darwin potential energy correction; MV : relativistic kinetic energy mass–velocity
correction; IND : relativistic energy correction due to the relativistic change of the nuclear screening
potential; TOT : total relativistic orbital energy correction. IND-5d (dashed curve): IND without the
screening by the 5d10 shell (After Schwarz et al. [130])

Since the direct relativistic effects occur in the immediate vicinity of the nuclei,
they are hydrogen-like and increase as ’2Z4. However, the total orbital energies,
being produced in the outer shielded region, are reduced by the total scf shielding.
Therefore, the fractional relativistic corrections of order ’2Z2 become larger for
most orbitals in many-electron atoms as compared to the hydrogen-like orbitals in
the field of a naked nucleus. In particular, the percent-changes of the valence orbital
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Figure 1-17. 6p orbital of a Pb atom (spin-averaged): Radial energy integration (compare legends of
Figures 1-13 and 1-14). DIR: direct relativistic energy correction (kinetic velocity–mass plus potential
Darwin terms); IND : energy correction from of the relativistic change of the screening potential; TOT :
the respective sum; SO: spin-orbit coupling energy. IND-5d (dashed curve): IND without the screening
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energies and of the valence ionization potentials do not decrease with increas-
ing n (as they do for hydrogen, i.e. from nD 2 onwards for j D 1=2, from nD 3

onwards for j D 3=2 and from nD 5 onwards for j D 5=2, noted in Section 1.3.3).
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Figure 1-18. Upper component of the 7s radial Dirac spinor of a U atom, r®.r/, over a logarithmic
r-scale. - - - - - relativistic, —— non-relativistic (After Schwarz et al. [130])

The relativistic numerical atomic scf calculations of Desclaux [39] have shown that
the fractional relativistic orbital energy stabilizations of ns1=2 and np1=2 increase
with increasing n and are particularly large in the lowest row of the periodic system
of elements with the largest valence principal quantum numbers. The fractional rel-
ativistic ns1=2 and np1=2 orbital radius contractions, however, still behave nearly
hydrogen-like, being largest for 2sp.

One can still read the statement that only the innermost s and p core orbitals
are stabilized and contracted due to direct relativistic effects, the outer s and p
valence orbitals being indirectly stabilized because of the orthogonality requirement
on the contracted inner orbitals of same l value. Baerends et al. [58] have shown,
however, that the orthogonality constraint of the valence orbital on the contracted
inner core orbitals has just the opposite effect. The Pauli exclusion effect caused
by the relativistically contracted core orbitals squeezes the valence orbitals of same
angular momentum more efficiently out of the atomic core, slightly expanding the
valence orbital.

When discussing relativistic orbital contractions and expansions, one should also
not mix up different pictures. r describes the position of the charge in the four-
component Dirac picture and occurs in expressions for the electric dipole moment,
for the optical dipole transition moment or for the electric field gradients. The r

in two-component pictures (i.e. in two-component pseudo-potential or Douglas–
Kroll–Heß or regular-approximation or Pauli approaches) has a somewhat different
meaning, see Figure 1-10 [56–59, 87, 88], Chapters 4 and 12.

Concerning the trends within a row of the periodic table, i.e. upon increasing
the nuclear charge and the number of valence electrons one by one, the s1=2 and
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tic de-stabilization of 4d. (b) Relativistic stabilization of 5s. Values for valence electron configurations
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p1=2 valence orbitals become relativistically more or less stabilized, depending on
whether the added electron-density-distribution is sitting more inside or more out-
side the s or p valence-density distribution. The largest relativistic stabilization of
the s valence shell occurs, when the d and f shells are just being filled up, that is
for .n � 1/d10nsk or .n � 2/f 14.n � 1/d10nsk configurations: Concerning atoms
without (partial) charge, for d10s0 in Ni, Pd, Pt, Ds; for d10s1 in Cu, Ag, Au, Rg;
and for d10s2 in Zn, Cd, Hg, Uub. The fractional relativistic s valence stabilization
begins in each row near a hydrogen-like value, increases in the d and f blocks of
the periodic system (Figure 1-19b), and then goes down again in the p block. The
relativistic s valence stabilization also decreases upon increase of the s population.
The largest relativistic s valence stabilizations of up to 1 � ”2 are obtained in groups
10, 11 and 12, where it is largest for given s population, see Figure 1-19b [39,42,89,
Figure 3-1 in this book]. This phenomenon is called ‘the gold maximum’.

The reason for these trends is the indirect stabilization, which is less often dis-
cussed than the indirect de-stabilization. The stabilization is due to the (indirect)
expansion of the d and f orbitals and affects the outermost s valence orbitals in the
middle of the periodic table (Figure 1-15) and the outermost p valence orbitals on
the right side of the periodic table (Figure 1-17). In some cases (e.g. for Au 6s,
though not for U 7s, Figure 1-14), the indirect stabilization nearly cancels the more
common indirect de-stabilization.

1.3.6. Orbitals in Many-Electron Atoms: Higher Angular Momenta

The situation for d and f orbitals is quite different. The direct relativistic stabiliza-
tion is smaller, but more importantly, the indirect shielding de-stabilization is much
larger, see Figures 1-20 and 1-21. Due to the centrifugal force for l D 2 and 3, these
orbitals are kept outside the innermost core shells and feel a large, relativistically
improved nuclear shielding. Consequently, the d and f valence orbitals are no longer
stabilized as in the hydrogenic case, but are de-stabilized and spatially extended.
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In addition, there is the spin-orbit splitting into more stable and compact, and into
less stable and less compact components, one p1=2 versus two p3=2 components,
two d3=2 versus three d5=2 components, and three f5=2 versus four f7=2 components,
respectively. The nuclear spin-orbit splittings are partially shielded, too, by the
inner electron density, by a few percent up to about one third (Figures 1-16, 1-20,
and 1-21).

The d3=2 and d5=2 valence levels are most de-stabilized, when the d shell is begin-
ning to become populated, i.e. in group 3 of the periodic system, in particular after
the inner f shell has been filled up. The fractional averaged d orbital de-stabilizations
are around 0:9”2 for Sc, Y, Lu and Lr, but decrease for higher nuclear charges
(Figure 1-19a). The d3=2 levels are eventually stabilized again, when they become
inner core levels for larger Z values, whilst the d5=2 levels remain de-stabilized.
The orbital shapes and the radial expectation values do not differ that much from
the hydrogenic behavior. At the beginning of the transition series, d3=2 is slightly
expanded by a fraction of 0:3–0:4”2, while it begins to be more and more con-
tracted when it becomes a core level. The d5=2 orbitals are more expanded than the
d3=2 ones, by fractions of 0:5–0:6”2. As a result, significant spin-orbit splittings
show up, which increase along the transition series from groups 3 to 11, namely
from �0:1 to �0:3”2 for the orbital energies and from �0:1 to �0:15”2 for the
orbital radii.

The fractional indirect de-stabilizations dominate even more over the direct rela-
tivistic stabilizations for the 4f and 5f valence orbitals in the lanthanoid and actinoid
groups. The fractional energy effects range from 1 to 1:5”2, with spin-orbit split-
tings from 0.1 to 0:2”2. The respective orbital radii expansions range from 0.1 to
0:15”2, with spin-orbit splittings from 0.05 to 0:08”2.

1.3.7. Orbitals in Many-Electron Atoms: The p3=2 Valence Orbital

In contrast to the s1=2 and p1=2 valence orbitals, which are relativistically stabilized
and contracted, the p3=2 orbitals become at first somewhat de-stabilized and
expanded along the rows from groups 13 through 18, with largest indirect effects
in the noble gas atoms (ıE � –0:3”2, ır � C0:05”2). Then, as core orbitals for
higher nuclear charges, the direct effects increase faster than the indirect effects, and
finally the p3=2 becomes stabilized, too.

The weighted p1=2–p3=2 average orbital energies NE in the valence shell show
slight stabilizations for the lighter and earlier p-block elements, and de-stabilizations
for the heavier and later ones. The p1=2–p3=2 spin-orbit splittings form an important
aspect of the p valence shell properties. They increase from group 13 (�soE= NE �
1=4 to 1=2”

2 for the light to the heavy atoms) to group 18 (�soE= NE up to 1”2).
The fractional spin-orbit difference of the p orbital radii of the noble gasses is
�sohri=hriave � 1/3 ”

2).
While the hydrogenic model (Eq. 1-41) predicts a small increase and than a

decrease of the fractional relativistic orbital stabilization ıE � �2=n for increasing
main quantum number n, the ıE=”2 values of valence orbitals of many-electron
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atoms do not decrease. Similarly, the fractional spin-orbit splitting �soE=E varies
as ”2=2l.l C 1/ in hydrogen-like systems, i.e. decreases with increasing squared
angular momentum. However, in many-electron atoms �soE=E�2 decreases only
weakly for increasing l . When the p, d and f shells are just becoming occupied,
�soE=E”2 is about 0.3, 0.2 and 0.1, respectively, while for nearly filled p, d and f
shells, �soE=E”2 is about 1, 2=3 and 1=2.

The pattern of relativistic atomic orbital energy and radii changes is even more
complex than the pattern for the non-relativistic shells. In particular, energies and
radii vary in different manners. In rows 6 and 7 .’Z/2 is about 0.16–0.4 and
0.4–0.74, respectively. Relativistic effects become qualitatively important in the
valence shells of the heavy elements.

1.3.8. The Relativistic Two-Electron Interaction

Two points concerning the representation of the electromagnetic interaction must
be distinguished [9, 10]). The first point is the gauge of the electromagnetic poten-
tial (V;A). In order to obtain concrete compact formulas, one needs an appropriate
choice for the gauge function g.t; r/, see Eq. (1-17). Depending on the choice, some
terms in the Hamiltonian cancel. The two most common choices are the Coulomb
and the Lorentz gauge.

In the Coulomb gauge, one assumes for a free field in a space without any charges
(¡ D 0) and currents (j D 0):

V 0.t; r/ D 0;rA0.t; r/ D 0; (1-56)

leading to

r2V.t; r/ D –4 ¡.t; r/; @2A=@2t D 4 ’2 � j .t; r/ (1-57)

in the case of non-vanishing external charge and current distributions ¡ and j .
Another common gauge is the Lorentz gauge, where one assumes in a space free

of charges and currents:

r2V.t; r/ D ˛2 � @2V 0=@2t;rA0.t; r/ D –’2 � @V 0=@t (1-58)

leading to

r2V.t; r/–’2 � @2V=@2t D –4 � �.t; r/;
r2A.t; r/–˛2 � @2A=@2t D –4  � j .t; r/: (1-59)

The second point is the chosen picture for the relativistic matter field (wavefunc-
tion). The formulas (1-56–1-59) refer to the case of the Dirac picture, where r

means the position of charge, and where the mass-dependent kinetic energy takes
the simple, non-classical form (“mc2 C ’ � pc). A reasonable approximation to
the electromagnetic interaction between two moving charges q1 and q2 at distance
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r12 then takes a comparatively simple form in Lorentz gauge. The so-called Gaunt
operator reads:

V12 D q1 � q2 � .14 � 14–’1 � ’2/=r12 � exp.i’ � ¨12 � r12/: (1-60)

The two terms in the first parentheses in Eq. (1-60) describe the Coulombic charge
and the magnetic spin-and-current contributions, respectively. The last exponential
factor may be looked upon as the retardation effect, i.e. caused by the finite veloc-
ity by which the electromagnetic interaction is exchanged between the two charges.
It contributes to exchange and correlation terms [10]. ¨ h̄ is the energy difference
of the interacting orbitals, i.e. the energy transferred by the photon between the
two particles. The retardation terms are usually negligible for valence shells, but
contribute to core excited states, where ¨12 is large for core-valence correlation-
exchange-terms. They also contribute to the long-range van der Waals interactions,
where r12 is large. The leading �C6=R

6 term of the van der Waals attraction
becomes damped to �C7

0=R7 due to the finite timeR=c needed for electromagnetic
interaction.

In the Coulomb gauge and small !12 � r12, one obtains the so-called Breit
operator [10]:

V12 D q1 � q2 � .14 � 14 � 1=2Œ’1 � ’2 C .’1 � r12/.’2 � r12/=r12
2�/=r12: (1-61)

The Dirac ’ matrices couple the upper and lower components of the wavefunction
and introduce a factor ’ D 1=c each into the expectation values. The ’1 � ’2 terms
describe the relativistic lowest order corrections �’2 to the instantaneous Coulomb
interaction. The term –q1’1 � q2’2=r12 is called the magnetic Gaunt interaction.
Different authors attach different physical meanings to the difference between Eqs.
(1-60) and (1-61), which is �1/2 Œ’1 �’2–.’1 �r12/.’2 �r12/=r12

2�. It is either called
the lowest order retardation contribution or the change-of-gauge contribution. The
controversy originates in the fact that Newtonian mechanics and Maxwellian elec-
trodynamics are not compatible. If one chooses the non-relativistic representation,
all electro-magnetic couplings disappear, in particular the ’ � ’ terms in Eqs. (1-60)
and (1-61). In the relativistic representation, combining the appropriately gauge
transformed exact wavefunction (Eq. 1-33) with expression (1-60) with ¨ D 0, or
(1-61), respectively, would give the same numerical results. Different gauges lead
to different complementary pictorial explanations of the underlying physics.

In the two-component picture, r means the position of mass, and the mass-
dependent energy takes the relativistically corrected Newtonian form mc2 C
p2=2m C O.’2/. Upon unitary transformation of the Dirac equation for two parti-
cles including the electromagnetic interaction according to Eq. (1-61), many terms
cancel each other, but one still obtains a long expression for the electron–electron
interaction:

V12 D C1=r12–’2=2r12ŒMOO C TED C SOO1C SOO2C SS�: (1-62)
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The first two terms in the brackets are spin-free; MOO is the magnetic dipole orbit–
orbit interaction,

MOO D p1 � p2 C 1=r12
2.r12.r21 � p1/ � p2/I (1-63)

TED is the Darwin correction to the two-electron Coulomb repulsion 1=r12,

TED D 2 r12•.r12/: (1-64)

The next two terms are the magnetic-dipole spin-own-orbit interactions, i.e. the
orbiting of one electron around the other, in addition to their orbiting around the
nucleus,

Vnucso D CZ’2=2 � .Œs1 � r1 � p1�=r
3
1 C Œs2 � r2 � p2�=r

3
2 /: (1-65)

SOO1 refers to the electron’s orbiting around the other electron,

SOO1 D 1=r12
2Œ.s1 � r12 � p1/C .s2 � r21 � p2/�I (1-66)

SOO2 is the magnetic dipole interaction of one electron’s spin with the other
electron’s orbit,

SOO2 D 2=r12
2Œ.s1 � r21 � p2/C .s2 � r12 � p1/�: (1-67)

The two-electron terms �–1 � ’2 screen the electron-nuclear terms �CZ � ’2, cor-
responding to the difference between the nuclear Coulomb potential –Z=r and the
scf potential Vscf. Finally, there is the spin–spin interaction,

SS D Œ8 =3.s1 � s2/•.r12/–.s1 � s2/=r12
2–3.s1 � r12/.s2 � r21/=r

4
12�: (1-68)

The three terms in the brackets correspond to the classical expression for the interac-
tion of two dipoles in the limit of point-dipoles. The relativistic contributions to the
two-electron interactions contribute dominantly to the inner-shell correlation energy
of heavy atoms [127].

1.3.9. Smaller Effects: Nuclear Size, QED and Weak Interaction

1.3.9.1. Extended Nuclei

Real nuclei are not point-like, but spherically or non-spherically extended. This
has several consequences. The weak singularity of the relativistic Coulomb-point-
charge wavefunction disappears; the wavefunctions behave Gaussian-like in the
nuclear region. The inner orbital levels become somewhat de-stabilized what is rel-
evant for the calculation of core-excited states (x-ray spectroscopy), in particular for
heavy nuclei. The artifactual limitation of the Dirac–Coulomb point-charge model
to Z < 137 disappears. Since relativistic wavefunctions are quite compact in the
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neighborhood of the nuclei, finite-nucleus effects are much more pronounced in the
relativistic regime as compared to the non-relativistic approximation (Figure 1-11).

Valence properties, which mainly depend on the outer valence density distribu-
tion (bond energies) or on the atomic outer density parts (polarizability, dispersion)
are only weakly affected by the type and details of the nuclear charge distribution.
However, electric or magnetic properties which probe the distribution of the
electrons close to the nucleus are more sensitive.

Different models for the nuclear charge distribution [90] have been investi-
gated. In atomic calculations using numerical grid techniques, all nuclear models
are equally easy to apply. In molecular and basis set applications, the nuclear
charge model should lead to a simple expression of the electrostatic potential, and
the respective eigen-solutions should be well representable in the basis set. For
instance, the sharp discontinuity of the density distribution at the surface of the
‘uniformly charged sphere’ model causes problems in the relativistic regime, where
sharp boundaries are not admissible anyhow [91]. Also, simple exponential nuclear-
charge models cause problems. The best compromise seems to be a Gaussian charge
distribution, although the nuclear surface is too ‘soft’:

¡nuc.r/ D . R2
nuc/

�3=2 Z exp–.r=Rnuc/
2 (1-69)

Rnuc is the nuclear radius in this model; a good rule of thumb is

Rnuc=10
�5Å D 0:57C 0:836 3

p
A; (1-70)

where A is the nuclear mass number.
The dominant energetic effect of a finite size nucleus (fsn) is the de-stabilization

of the 1s level, strongly increasing with nuclear charge,

�fsnE1s � 102 au .’Z/7 (1-71)

For Hg, for instance, the effect is about C2 au or C55 eV, which is large but only
2=3� of the total 1s binding energy. Specific effects weighing the nuclear region
may be influenced more, such as hyperfine and Mössbaur splittings, electric field
gradients, or quantum electrodynamical and parity non-conserving shifts. The non-
sphericity of some nuclei (nuclear spin 
 1), which couples to j 
 3=2 the Chapter
by orbitals, may play a role in specific cases. For further details, see Andrae [90]
and Chapter 12.

1.3.9.2. Vacuum Polarization

Quantum electrodynamics [24, 140, 141] plays a role not only in the interaction
of two moving and spinning electrons, but also in the electron–nuclear interaction,
even if the nucleus is treated as a stationary ‘external’ source of an electromagnetic
potential [71]. The two lowest-order effects �’3 are the repulsive vacuum fluctua-
tion and the somewhat smaller attractive vacuum polarization. The latter is related
to the creation of virtual electron–positron pairs in the vicinity of the nucleus. The
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respective vacuum polarization can be modeled by the Uehling potential, which is
somewhat stronger decaying than –’=r , in particular for r values larger than 0:1’.

1.3.9.3. Electronic Self-energy

The vacuum fluctuation or self-energy effect results from the zero-point oscillations
of the quantized electromagnetic potential. No simple state-independent expres-
sion has been derived. The effect originates also in the neighborhood of the nuclei
and has been semi-empirically modeled by a nuclear-peaked Gaussian fit-potential
�CB.Z/ � exp.–“.Z/ � r2/ [92]. Vacuum fluctuations overcompensate the vacuum
polarizations; together with higher order terms they are called the Lamb shift. The
Lamb shift is largest for the 1s level and deceases with increasing n,l ,j . Hyper-
fine splittings and indirect nuclear spin-spin coupling constants of heavy atoms are
modified in the percent range.

1.3.9.4. Parity Violation

The by far smallest effect so far considered in the quantum chemical literature is the
parity-changing interaction between electrons and nuclei through the Z0 bosons,
interchanged between the quarks in the nuclei. At very high energies and short dis-
tances, the electric and the so-called weak interactions become similarly important.
A reasonable approximation to the coupling operator at the ‘low’ energies near the
nuclei is G �Q � ¡nuc.r/ � ”5, where G is the electro-weak coupling constant, Q the
‘weak charge’ of the nucleus, ¡nuc.r/ the nuclear density at electronic position r,
and ”5 is a Dirac 4 � 4 matrix, that mixes the upper and lower components of the
electronic 4-component wavefunction having opposite parities (see Eqs. 1-44, 1-46,
and 1-47). The effects are of the order of 10�21 in hydrogen, but scale at least
as Z5. Small energy differences between otherwise degenerate ’ and “ spin com-
ponents or contributions to parity-forbidden optical transitions of atoms have been
detected and calculated. Tiny energy differences of left and right-handed molecu-
lar isomers have been predicted [72]. There is the speculation that some statistical
enhancement mechanism may explain the predominance of one of the two chiralities
in carbohydrates and amino acids from the biosphere. On the other hand, if suffi-
ciently complex molecular systems have the inherent tendency to become chiral, no
additional exotic mechanism to generate chirality is needed [93, 94].

1.4. RELATIVISTIC CHANGES OF MOLECULES

The chemically most important parameters of molecules and crystals are the geo-
metric equilibrium structure Re from (@E=@R/jRe D 0, the rigidity of the structure,
i.e. the force constants ke D .@2E=@R2/jRe(or vibrational frequencies), and the bond
energies defined through atomization energies AE DE.Re/–E.1/. E here means
the total energy, and Re internuclear lengths and angles. In addition, one needs
reaction barrier energies, long range interaction forces, spin coupling constants for
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non-relativistically ‘spin-forbidden’ processes, and spectroscopic constants (such
as NMR chemical shifts and nuclear spin–spin coupling constants, Chapter 12) to
support analytical investigations.

The practical chemist wants to know reliable data of (heavy atomic) compounds,
i.e. one should determine the relativistic energy hypersurfacesE.R/ and other prop-
erties, see Chapters 2, 3, 8, 11, and 12. Various computational approaches to this
aim are discussed in Chapters 4– 7, 10. No serious problems occur in numerical
grid calculations of the four-component Dirac equation ‘other than computa-
tional expense’, which however is prohibitive for molecules. Therefore, numerical
approaches are only applied to atoms and at most to diatomic or small hydrogen
containing molecules.

Most relativistic molecular investigations are performed within the approxi-
mation of the finite basis-set expansion. The solution of the four-component Dirac
equation poses two specific problems [95]. First, the energy spectrum is not bounded
from below. So there is no lower bound for variational calculations, and one must
search for saddle points of the energy functional. This causes particular problems in
the case, where one does not have a single equation, but a set of coupled equations as
the Dirac equation. If the coupling of the upper and lower components of the Dirac
wavefunction is not correctly reproduced [96–98], large errors can be introduced.
This also happens, if the Schroedinger second order differential equation is replaced
by two coupled first-order equations. Accordingly, the first computational efforts
went quite astray, e.g. Malli and Oreg [136]. The problems are now under control
by the use of so-called kinetically balanced basis sets [99]. Second, the two-electron
interaction introduces the positron–electron continuum around every bound state.
This problem, called continuum dissolution or Brown–Ravenhall disease, can be
eliminated by ‘no-pair’ approaches. Defining electrons through positive-energy
mean-field or natural orbitals, the pair-creation corrections are minimized [66].
Both problems do not show up in the common two-component approaches, such as
the ZORA, the DKH method or the relativistic effective-core or pseudo-potential
methods.

If one has already sufficient understanding of light atomic chemistry, one
might like to make educated guesses of the relativistic corrections in the heavy
atomic domain. Below we will outline some general relativistic trends. Both com-
putationally and conceptually, one may distinguish between scalar and spinor
approximations. In the scalar approaches one applies non-relativistic concepts and
program structures, but using relativistic spin-averaged values from ab-initio or
semi-empirical electron dynamics. In the spinor approaches the orbital functions
®.r/, which can in general be chosen as real, are to be replaced by complex and
spin-dependent quaternion functions (in the two-component approaches): (®1’.r/,
i �®2’.r/; ®3“.r/; i � ®4“.r//, and by bi-quaternions or bi-spinors (in the Dirac
four-component approaches), see Chapter 9.

In this final section, we also survey the mechanisms of relativistic molecular
changes, mainly in the context of covalent bonding. (Relativistic modifications of
strongly polar bonds had been discussed, e.g., by Schwerdtfeger et al. [100], or
Schwarz [42].) In Section 1.4.1, we point out that the relativistic corrections for
molecules consist of two contributions, the relativistic change at the non-relativistic
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equilibrium structure, and the change related to the relativistic structure change. In
Section 1.4.2 we elaborate on the fact that relativistic changes of molecular prop-
erties can be theoretically described by whole sets of different, though equivalent
formulas that give rise to different, complementary physical explanations. In
Section 1.4.3 we mention the large differences and the respective consequences of
non-relativistic real spin-orbitals and relativistic complex spin-mixed and spin-split
spinors. We conclude in Section 1.4.4 with a survey of the periodic system of ele-
ments, with the structure of the atomic shells and the changes due to non-relativistic
and relativistic shell effects at the bottom of the periodic table. In this section we
present some general qualitative and conceptual outlines, while the concrete details
are unfolded in the subsequent chapters.

1.4.1. Always Two Different Relativistic Contributions

The chemically relevant molecular properties are differences or derivatives with
respect to geometric parameters or electric or magnetic field strengths. We are
interested in their relativistic corrections. In general, up to Z � 70, i.e. up to
the lanthanoids, the lowest order relativistic correction is sufficient to qualita-
tively understand the physical mechanisms and their trends. For chemically reliable
numbers, and even for the qualitative trends of higher Z values, one must live
with the fact that only the full relativistic approach gives satisfactory results. The
convergence in terms of ’2 is unsatisfactory for high Z values.

When we are interested in molecular equilibrium structures averaged over the
vibrational ground state, represented by Ro, the harmonic approximation to the
potential surface is usually insufficient because of the common anharmonicity of the
potential curves. Therefore, in order to gain some understanding, we will approx-
imate the energy function by a cubic expression in R, and (for simplicity) the
relativistic correction by terms in ’2. We here discuss the general framework.
Numerical examples of specific molecules are found in subsequent chapters.

Let �R be the deviation from the (vibrationless) non-relativistic equilibrium
bond length (or bond angle)Rn-rel

e , let kn-rel be the non-relativistic force constant,
and an-rel the non-relativistic anharmonicity. The non-relativistic approximation to
the energy function (‘potential curve or hypersurface’) is then given by

En-rel.�R/ � En-rel
o C kn-rel=2 ��R2 � an-rel=6 ��R3: (1-72)

The respective relativistic correction is

�relE.�R/

� �relEo C .@�relE=@R/ � �RC�relk=2 � �R2–�rela=6 ��R3: (1-73)

1.4.1.1. Molecular Structures

An approximate relativistic correction to the equilibrium-structure is then

�relRe � –.@�relE=@R/=k � .1� a � .@�relE=@R/=2k2/: (1-74)
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The leading term is the change of the relativistic energy correction �relE with the
structure parameterR, divided by the force constant k. We call it the ‘direct’ contri-
bution. Since the relative relativistic corrections of the force constants �relk=k are
sometimes as large as C10”2, it is better to use the relativistic force constant than
its non-relativistic approximation, even in semi-quantitative discussions. The same
holds for the anharmonicity constant a. The anharmonicity term in the parenthe-
ses is sometimes qualitatively non-negligible, in particular in heavy atomic systems.
This second term shall be called the ‘structure’ contribution. Each contribution has
‘direct relativistic’ and ‘indirect relativistic’ contributions (Section 1.3.5).

1.4.1.2. Bond Energies

The bond energy BE is the difference between molecular energies E at Re and at
infinity. Its relativistic change depends on the relation of the relativistic corrections
of the bonded system and of the dissociation products. The latter may have differ-
ent leading configurations in the dissociated state and in the bonded molecule. One
may also refer to some common diabatic dissociation products, which may be dif-
ferent from their ground states, i.e. in heterolytic decompositions. The bond energy
is not a ‘local’ property of the molecule.12 In particular in heavy atomic molecules,
there are two similarly important contributions. First, there is the difference of the
relativistic energy corrections of the atoms and of the molecule at non-relativistic
equilibrium Re

n-rel, �relBE .Re
n-rel/, the ‘direct’ energy difference. Second, there

is the change of the molecular energy due to the difference of non-relativistic and
relativistic equilibrium structures (the ‘structure’ contribution)

�relBE eq � �relBE .Rn-rel
e /–.@�relE=@R/2=2k: (1-75)

1.4.1.3. Force and Other Constants

The relativistic correction of the force constant, and of other molecular properties,
are also made up of two contributions, the ‘direct’ one .@P dir/ at non-relativistic
equilibrium, and the ‘structure’ change .@P struct/, basically the change of the non-
relativistic property upon the relativistic change of structure. Both terms are of same
order ’2, i.e. they are of comparable importance even for light systems:

�relk � �relk.Re
n-rel/C .@�relE=@R/ � a=k: (1-76)

In Table 1-2 we present results for H2
C. For smallZ D 1, the relativistic ‘structure’

contributions to bond energy and bond lengths are negligible, but to other properties
(force constant, anharmonicity) they are appreciable, and here even dominant.

There are some chemical rules of thumb that for similar systems, the shorter the
bond length, the larger (more negative) the bond energy, and the stronger the force

12 This has sometimes been called the ‘sausage phenomenon’, reminding of the carnival song ‘everything
has an end, only the sausage (and the molecular potential curve) has two ends.
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Table 1-2 Fractional relativistic property changes @P D �relP=�2P D
@P dir C @P struct of H2

C.Z D 1; � D ˛/ for P D bond energy BE,
bond length Re, force constant k D @2E=@R2, and unharmonicity a D
–@3E=@R3, using the DPT approach of Rutkowski et al. [103]

P Value @Pdir @Pstruct @P

BE(eV) �2:774 C0.132 C0.001 C0.133
Re.Å/ 1.057 �0:349 C0.000 �0:349
k.N cm�1/ 1.592 �1:116 C1.768 C0.652
a (Ncm�2/ 7.631 �0:752 C1.706 C0.954

constant (Gordy’s and Badger’s rules). However, these rules are sometimes vio-
lated when applied to relativistic corrections. Relativistic bond length contractions
are rather frequent; nevertheless, the force constant is sometimes relativistically
decreased. Relativistic bond energy stabilizations and destabilizations are rather
‘statistically’ distributed because of the ‘sausage effect’. In the case of H2

C, the
‘direct’ contributions to k and a are just opposite to the naive expectations, and only
the overcompensation by the ‘structure’ contribution restores the simple rules in the
present case [30,101–103]. For more examples from electromagnetic properties, see
Chapter 12.

1.4.2. Multiple Perturbation Theory

The term .@�relE=@R/ in the preceding equations is the simplest example of a
higher order mixed term of multiple perturbation theory. It is of lowest order in
relativity .�’2/ and of lowest order in structure-change .��R/. Such terms are
generally represented by different ‘gauge-dependent’ expressions, which offer dif-
ferent complementary physical interpretations. For more details, see Schwarz et al.
[104], Rutkowski and Schwarz [102], Rutkowski et al. [103], and Chapter 12.

We expand the relativistic Hamiltonian around the non-relativistic equilibrium
structure in powers of ’2 and�R:

OH D OH00 C ’2 � OH10 C�R � OH01 C ’2 ��R � OH11 C : : : (1-77)

Subtleties of this expansion were discussed by Rutkowski et al. [103]. OH10
contains

the relativistic correction terms of DPT (e.g., Eq. 1-39), OH11
consists of the respec-

tive @=@R derivatives, and OH01
is the @=@R derivative of the non-relativistic Hamil-

tonian (i.e. the Hellmann–Feynman force). The mixed second order perturbation
energy is

.@�relE=@R/ D h‰00j OH11j‰00i C 2Reh‰10j OH01j‰00i D (1-78a)

D h‰00j OH11j‰00i C 2Reh‰01j OH10j‰00i D etc: (1-78b)
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Table 1-3 Relativistic bond length contraction of Au2 (in Å)

Calculational
approach

All electron ab
initio

Valence electron
RECP

Valence electron
RPP

h‰00j OH11j‰00i C0.0 �0:5 �0:4
2Reh‰10j OH01j‰00i �0:4 C0.1 C0.0
Sum �0:4 �0:4 �0:4

There are two contributions to the mixed second order perturbation energy

@�relE=@R. The first ‘direct’ contribution h‰00j OH11j‰00i is due to the change of
the Hamiltonian by the two ‘perturbations’, here relativity and structure-change.
The second term can be expressed in many different forms according to the
so-called interchange theorem. Only the sum, i.e. the value of .@�relE=@R/, is
well-defined, the magnitudes of the different contributions depend of the cho-
sen picture and calculational approach (four-component Dirac, direct Dirac per-
turbation theory DPT, two-component Douglas–Kroll–Heß DKH, or relativistic
effective-core pseudo-potential RECP), see Table 1-3. In the Dirac four-component

approach, OH11 D @2.–Z=jR–r j/=@R@’2 D 0, in the RECP approach, OH11 D
@.�r OVrecp/=@R ¤0, and in the DPT approach, too, OH11¤0, namely OH11 D
@.¢pVnuc¢p=4/=@R.

The first form of the second contribution in Eq. 1-78a, 2Reh‰10j OH01j‰00i, is the
non-relativistic nuclear Hellmann–Feynman force acting on the relativistic change
of the molecular electron density distribution,

�rel¡mol D �rel¡ats C�rel¡def (1-79)

�rel¡ats is the sum of the atomic relativistic density changes, and �rel¡def is the
relativistic change of the molecular bond deformation density. The conjecture that
atomic valence orbital contraction would cause bond length contraction is obviously
too simple-minded. Core orthogonalization, overlap interference, renormalization,
polarization and deformation of the valence orbitals upon bond formation in the
relativistic and non-relativistic regimes contribute in a complex manner to �rel¡def

[101, 105]. In particular, the Hellmann–Feynman force weighs different parts of
space very differently, the main bond-force contributions being due to tiny density
polarizations near the nuclei [106]. For more details see Rutkowski, Schwarz et al.
[42, 101–104].

The second form of the second contribution in Eq. (1-78b) is 2Reh‰01j OH10j‰00i.

It describes the relativistic energy contribution . OH10
/ of the ‘non-relativistic bond

deformation density’, i.e. of .‰01�‰00 C ‰00�‰01/ � @¡mol.r/=@R. Snijders and
Pyykkö [107] have rationalized that the Pauli exclusion principle will, on the aver-
age, keep most overlapping density of atom A out of the core region of atom B,
and vice versa, when bond A–B is formed. But the core orthogonality has the result
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Figure 1-22. Relativistic bond energy corrections �Eof35 s–p bonded molecules versus electron density
pile up in the K shell upon bond formation, �¡.K/, multiplied by Z4 (After Schwarz et al. [30])

that in small regions of space, e.g. near the nuclei, the density increases. These
are just the regions where the relativistic Hamiltonian creates stabilizing energy
contributions [106]. Accordingly, relativistic bond length contractions occur rather
frequently, even for relativistically expanded valence shells, see Schwarz et al. [104].
In Figure 1-22 the relativistic bond energy correction �relBE eq (here denoted by
�E , negative value means relativistic stabilization) is plotted against the electron
density pile up in the K shell upon bond formation, ��.K/, multiplied by Z4, the
order of the relativistic corrections. The correlation line is�E D 0:9˛2 ���.K i�Z4

[30, 108, 109].

1.4.3. Atomic Spinors and Molecular Quaternions

In stationary non-relativistic quantum chemistry, one may usually assume without
restriction that the molecular spin-orbitals occur in pairs, .®’.r/; 0/ and .0; ®“.r//,
with a single real spatial part ®.r/, with arbitrary phase C1 or –1. In the relativis-
tic regime, an even degeneracy follows from Kramers’ time reversal symmetry for
single (and odd-numbered) electronic states, see Chapter 9. In the two-component
formalism, the molecular spinors occur in orthogonal quaternionic pairs .®1’.r/; i �
®2’.r/; ®3“.r/; i � ®4“.r// and .®3’.r/; –i � ®4’.r/; –®1“.r/; i � ®2“.r//, consist-
ing of four different real space functions ®i .r/. The one-electron density matrix is
now in the general case complex, self-adjoint and spin-dependent. Of course, for



54 W.H.E. Schwarz

common closed shell molecules in field-free space, the ‘one-matrix’ is still spin-
symmetric and real. Each spinor may carry an arbitrary phase factor e�i˜, and in
the case of closed shell states, the Kramers pair may be unitarily mixed. One may
choose the free mixing factors to generate spinors with minimal spin-mixture and
minimal imaginary contribution to look most similar to the common nonrelativistic
orbitals. Anyhow, the molecular spinors carry in general some r-dependent com-
plex spin admixture, corresponding to an r-dependent variation of spin direction.
Accordingly, one can no longer choose a universal axis for the spin in spin-density
functional theory (the so-called collinear spin approximation), which has been noted
by Autschbach and Ziegler [110] and van Wüllen [111].

The forms of s3=2, p1=2 and p3=2 type atomic spinors were given in Eqs. (1-44),
(1-47) and (1-46), respectively. The largest difference in complex, angular and spin-
appearance between non-relativistic atomic orbitals and relativistic spinors occurs
for the p1=2 ones. The latter have a spherical electron density (Figure 1-3a). To first
order, the valence-p1=2 spinors are doubly occupied in Pb and Eka-Pb (114Uuq);
they form, because of relativistic energy stabilization, a quasi-closed shell. The
valence-s1=2 spinors of Hg, Eka-Hg (112Uub) and subsequent elements also form
relativistically stabilized shells. This enhances the so-called inert pair effect of the
heaviest main-group elements, which have a particular tendency to form compounds
of valence and oxidation numbers of 2 or 4 below their group numbers (Hg0, TlI,
PbII, BiIII, PoII,IV/.

Since p1=2 spinors are a complex ’ � “-spin mixture of px, py, pz, .px“ C i �
py“C pz’/ and .–px’C i � py’C pz“/, s-p hybridization and the formation of p–p–
¢ bond orbitals is severly hampered, see Pitzer [137, 138], Grant and Pyper [112],
Pyper [77], and Hafner et al. [78]. The constructive interference of partially occu-
pied non-relativistic px, py and pz orbitals gives rise to one ¢ and two   bonds. Two
p1=2 spinors with strong spin-orbit coupling (dominating over the molecular field)
can even yield either a 1=3¢–2=3 � or a 2=3 –1=3¢� interaction, with reduced
bonding or antibonding power. Pairs of p3=2 spinors on two overlapping atoms
with dominating spin-orbit coupling yield one   and one 2=3 –1=3¢� interaction.
Therefore, the bond energies and bond lengths of heavy p-block elements are sig-
nificantly influenced by spin-orbit coupling, i.e. they are usually expanded, with
softened vibrations and reduced bond energies (Figure 1-23).

Although the bond-angle force constants are usually smaller than the bond-
stretching force constants, only few remarkable spin-orbit triggered bond-angle
changes are known. It has been shown by Schwarz et al. [113] that in the case
of only one heavy (Hv) and two light (Lt) atoms, the spin-orbit effects on the bond
angle of Lt-Hv-Lt are partially compensated, so that only a small overall effect is
left over. On the other hand, van Wüllen and Langermann [114] have shown more
recently that large bond-angle changes occur when the spin-orbit couplings of three
heavy atoms Hv, Hw, Hu contribute to the Hv-Hw-Hu angle. See also Kaupp and
v. R. Schleyer [115].
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1.4.4. The Periodic System of Elements and Its Natural End

1.4.4.1. Classical Considerations, Periodicity

Through elementary ordering principles, the unlimited number of static and reactive
properties of stuffs is reduced to few millions of pure substances and finally to about
a hundred different elements. The invention and systematic arrangement of the ele-
ments as the conservation principles of chemistry culminated in the construction
of the periodic table about 140 years ago. The comprehensive physical explanation
and understanding of the periodic system developed in rather slow steps until recent
years [17,84,116,139]. The identity of the chemical elements resides in the nuclear
charges, while the chemical characteristics are determined by the energetic and spa-
tial parameters of the electronic shells of bonded atoms. Several points are relevant,
which are often insufficiently appreciated in discussions of general chemistry. We
first mention these points and then point out, where relativity plays a role.

Both the outer core orbitals and the occupied and virtual valence orbitals play a
role. Pyykkö [117] had coined the term ‘primogenic’ for the lowest orbital of a given
angular momentum (Section 1.3.5). A primogenic valence orbital does not endure
the Pauli repulsion by occupied core orbitals of same angular momentum. 2p is
comparatively contracted, i.e. of similar size than the 2s, and it undergoes stronger
2s–2p hybridization than ns-np for n > 2 of the heavier main group elements [85].
3d is also comparatively contracted and less apt to covalent overlap binding than
the nd shells for n > 3 of the heavier transition metals. Similarly, 4f is particularly
deep in the atomic core and acts as an ionic spectator orbital, mainly expanding the
5sp core shell if more occupied, while 5f participates significantly more in the early
actinoids. The same is to be expected for the 5g, which would become occupied in
the yet non-existing eighth row of the periodic table.

While s and p orbitals smoothly contract for increasing Z in the series of neu-
tral or weakly charged atoms, the higher angular momentum d and f orbitals at first
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remain outside the atomic core. They feel only a strongly shielded nuclear charge;
they are weakly bounded and of spatially extended Rydberg type; they hardly con-
tribute to chemical bonding. For instance, 3d plays little role in the chemistry of P
through K. However, at some critical Z value, the orbital ‘collapses’ into the core
and is then much more energetically bound13 and spatially compact. This happens
for the .n–1/d orbitals in row n of the periodic table around group 3 [118,119]. For
the alkali metals, ns < np < .n–1/d, energetically and spatially. For the heavier
alkaline earth metals,14 ns < .n–1/d < np. The actually ‘standard’ valence-orbital
energy sequence .n–1/d < ns < np is realized for all other heavier elements. The
.n–2/f orbital collapse occurs in row n around groups 4–5, and the .n–3/g orbital
collapse around groups 6–7 [1, 116].

IR–Vis–UV spectroscopy of unbound atoms in vacuum detects low energy states
that may be spatially rather extended. The atomic Rydberg orbitals, such as 3d in
potassium or 4s in the light transition atoms have diameters of 31=2 to 4 Å. Upon
inserting an atom with an occupied Rydberg orbital into a molecule or condensed
phase, the diffuse Rydberg orbital overlaps with many doubly occupied orbitals of
adjacent atoms and becomes destabilized and depopulated [120]. Rydberg orbitals
are unimportant in qualitative quantum chemistry. The leading electron configura-
tion of chemically bonded atoms often differs from the configuration, from which
the atomic ground state derives. For example, for bonded carbon, the chemically
dominant configuration is usually 1s22s12p3, in contrast to the parent configuration
1s22s22p2 of the unperturbed atomic ground state 3Pe

o. The chemically dominant
configurations of the transition metals of groupsG D 3 through 10 are .n�1/dGns0,
throughout, usually differing from the parent configurations .n�1/dG�knsk , k D 1

or 2, of the free-atomic ground states.
Periodicity is impressed on the Z-ordered array of elements by the appearance

of closed shells that are both energetically stable and separated by a large gap from
the next higher orbital level.15 These are the noble gasses with 1s2 or np6 shells
.n D 2 � 5 or 6). Nuclear shielding modifies the hydrogenic energy-sequence only
slightly for the inner core shells:

1s � 2s < 2p1=2 < 2p3=2 � 3s < 3p1=2 < 3p3=2 < 3d3=2 < 3d5=2 � 4s etc:

(1-80)

where < means a little higher, and � significantly higher. The outer valence shells
with low angular momenta are much more strongly perturbed by nuclear shielding:

ns < np � ndnnf � � � � hydrogen-like high-l states (1-81)

13 We here define the orbital energy of a many-electron open-shell atom as the difference of the
configuration average energies of the neutral and the ionized species.

14 These few elements are the only ones, where the ubiquitous so-called .nC l; n/ text book rule holds!
15 A (separated) shell is stable, because its energy is low and therefore filled up. Chemists sometimes

apply the inverted pseudo-logics: A shell becomes stable by filling it up.
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For most heavy, bonded atoms (except the first ones in a period), the energetic
sequence in the valence shell is therefore different from the .nC l; n/-rule taught in
chemistry textbooks:

.n � 1/p3=2 � .n � 2/f5=2;7=2 < .n � 1/d3=2;5=2 < ns < np1=2 < np3=2 � (1-82)

Orbital energy gaps develop above the 1s and 2p, 3p, etc. frontier orbital levels.
Atoms with 1s2, 2p6, 3p6, etc. shells form the noble gasses. The preceding ele-
ments with np vacancies are strongly electronegative; the subsequent elements with
weakly bound ns electrons are strongly electropositive. The strong variation of
elemental properties from groups 16 (chalcogenides) to 17 (halogenides) to 18–0
(noble gases) to 1 (alkali metals) to 2 (alkaline earth metals) fixes the period lengths.
The closed ns2 shells of the metals of groups 2 and 12 are not inert because of the
nearby .n � 1/d and np shells. The closed .n � 1/d10 shells of the metals of group
10 are not inert because of nearby ns.

1.4.4.2. Relativistic Aspects

The chemical properties of the elements are qualitatively explainable by the energies
and radii of the atomic orbitals. The physical explanation of chemistry then consists
of two steps. Most simply, one takes the orbital parameters as empirically given,
and rationalizes the vast amount of chemical trends. More deeply, one can derive the
orbital parameters from first principles. The upper half of the periodic table contains
most of the important elements and for them, non-relativistic quantum mechanics
with spin is sufficient. The results, however, cannot be extrapolated into the region
of the heavier elements. Non-relativistic quantum chemistry is qualitatively correct
up to the third or fourth row. The lowest order relativistic corrections �.’Z/2 D ”2

work well up to the lanthanoids. Because of the strongly nonlinear dependence of
the atomic orbital parameters for higher Z values, extrapolation of the empirical
data will not lead to reliable predictions in the seventh, not to speak of the eighth
row. Trend changes in the sixth row had already been mentioned in the introduction.
At least from this row onwards, where the relativistic effects become larger than a
few percent, the different non-relativistic (electron correlation and solvent effects)
and relativistic corrections can no longer be separated in a linear, additive, first order
perturbation-theoretic manner, since cross terms contribute significantly.

Non-relativistic as well as relativistic aspects modify the structure of the periodic
system from row 6 onwards. An important point is the fundamental gap between the
(n�1)p and (n�2)f, (n�1)d, ns, np levels. Relativistic scalar and spin-orbit effects
raise the (n � 2)f and (n � 1)d levels, lower the ns1=2 and np1=2 levels, reduce the
(n � 1)p3/2 – ns gap, and split the (n � 2)f, (n � 1)d, and np levels. Together with
the non-relativistically decreasing orbital-energy gaps for increasing row number or
main quantum number n, the exceptional inertness of the p6 configuration gets lost
for the heaviest noble gasses. In addition, the atomic shell structure (visible in plots
of the radial electron density r2 � �.r/ or the density Laplacian ��.r/ for shells 1
through 4) becomes washed out.
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From bismuth (83Bi) onwards, the lifetimes of the nuclei are finite for all isotopes
and decrease irregularly for increasing Z values (at a very rough average, by factors
of 1/ 3–1=4 from Z to Z+ 1). If the lifetime of the most stable isotope is less than
a year (for 85At, 86Rn, 87Fr, and from 100Fm onwards), the radiation damage will
quickly damage solid compounds. Experimental tracer investigations are comple-
mented by theoretical predictions (Chapter 11). For elements Eka-Tl (113Uut) and
Eka-Pb (114Uuq) the lifetimes reach the 1s-range; these and the heavier elements
seem unamenable to traditional chemical investigation. Single fleeting molecules
of elements with lifetimes in the ms to �s range such as Eka-Rn (118Uuo) and the
following ones will be even hard to investigate spectroscopically. Ordinary chem-
istry seems to end with the seventh period, first because of the short nuclear lifetime
and second because of the nearly continuous bands of severely spin-orbit coupled
atomic valence spinors. The construction of periodic tables by naive extrapolation
into the region of three- or even four-digitZ values appears senseless.
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Abstract: This chapter reviews possible experimental aspects of relativistic effects in heavier
Main Group elements and their compounds. Attention is focused on the sixth, sev-
enth and eighth Period elements, for which the relativistic contribution to their physical
and chemical properties is significant. Superheavy elements through Z D 120 are
also discussed. This review may increase interest of theoreticians in chemistry-oriented
problems that require use of relativistic methods of quantum chemistry.

Keywords: Relativistic effects, Sixth, seventh and eight periodic elements, Superheavy elements

2.1. BACKGROUND

2.1.1. Introduction to Relativistic Effects

The theory of relativistic effects in Chemistry is discussed in detail elsewhere [1–9].
A simple introduction will be given here. Einstein’s Theory of Special Relativity
states that the mass of any moving object changes as its velocity changes:

m D m0Œ1 � .v=c/2��1=2 (2-1)

where m0 is the mass at zero velocity. Under ordinary conditions, the term .v=c/2 is
so small that any relativistic effects would be insignificant. However, if v becomes
sufficiently large, the ratio m=m0 becomes appreciably larger than unity.

The Bohr model for a hydrogen-like species (a one-electron cation of general
formula ZA.Z�1/C/ will illustrate this. According to this model, the electron would
obey the following equations for its velocity, energy, and its orbital radius [10]:

v D .2 e2=nh/Z (2-2)

E D �.2 2e4=n2h2/mZ2 (2-3)

r D Ze2=mv2 (2-4)
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where n is a quantum number, e is the charge on the electron, h is Planck’s constant
and Z is the atomic number of the nucleus. Equation (2-2) enables the calculation
of the electron velocity for any element. Substituting this calculated velocity into
Eq. (2-1) gives the ratio mr=m0; where mr is the relativistic mass for the electron.
Calculated values of this ratio for the ground state (n D 1) of selected elements are
shown in Table 2-1.

Elements of the first three periods show ratio changes of less than 1%;
corresponding ratios for elements in the Fourth Period vary from 0.9% to 3.6%.
For the Fifth Period elements, the ratios show changes of ca. 8%. Only for the Sixth
and Seventh Period elements does this ratio exceed 10%; these elements show the
greatest relativistic effects. Energy changes resulting from replacement of m0 by
mr increase as Z increases (Eq. (2-3)). Since the orbit radius is inversely propor-
tional to m (Eq. (2-4)), it will decrease as Z increases. It has been proposed that
relativistic effects might even depend on higher powers of Z, especially for the
heaviest elements [11].

The figures in Table 2-1 suggest a steady increase for mr=m0 across each given
period. More exact calculations indicate otherwise [12]. Across the Sixth Period,
the relativistic radius for the 6s orbital slowly decreases between Cs and Ir, then

Table 2-1 Calculated m/m0 values for the electron in E.Z�1/C
ions of groups 1, 2, 11–18

Group 1 Group 2 Group 11 Group 12

H 1.000027
Li 1.00024 Be 1.00042
Na 1.0032 Mg 1.0038
K 1.0092 Ca 1.011 Cu 1.023 Zn 1.025
Rb 1.038 Sr 1.041 Ag 1.064 Cd 1.067
Cs 1.091 Ba 1.095 Au 1.22 Hg 1.23
Fr 1.29 Ra 1.30 Rg 1.69 112 1.72
119 1.99 120 2.05
Group 13 Group 14 Group 15 Group 16
B 1.00067 C 1.00095 N 1.0013 O 1.001
Al 1.0045 Si 1.0052 P 1.0060 S 1.0068
Ga 1.026 Ge 1.028 As 1.030 Se 1.032
In 1.070 Sn 1.073 Sb 1.077 Te 1.080
Tl 1.24 Pb 1.25 Bi 1.25 Po 1.26
113 1.75 114 1.79 115 1.82 116 1.86
Group 17 Group 18

He 1.00011
F 1.0021 Ne 1.0027
Cl 1.007 Ar 1.0087
Br 1.034 Kr 1.036
I 1.084 Xe 1.087
At 1.27 Rn 1.28
117 1.90 118 1.95
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drops sharply, passes through a minimum at Au, and subsequently increases from
Au to Rn. This has become known as the “Group 11 maximum” [13], A similar
trend also occurs for the following period, although there the maximum occurs at
element 112 (“eka-mercury”) [13].

2.1.2. Intraatomic Changes

2.1.2.1. Orbital Energies

s–Orbitals decrease substantially in energy when relativistic effects are considered;
p–orbitals also decrease, but to a lesser extent. This enhances their nuclear shielding
effect, causing d– and f–orbitals to increase in energy. As a result, energy differences
among orbitals change, often drastically, for the heavier elements, compared to what
might be expected by extrapolation from their lighter congenors.

2.1.2.2. Subshell Splittings

As a result of spin-orbit interaction, subshells with l> 0 will split into two subgroups
of l � 1=2 and l C 1=2, the former being lower in energy. Figure 2-1 shows this for
the 5d, 6s and 6p subshells. The energies for these various splittings depend on the
specific element, and increase as Z increases.

6p ___   ___    ___
↑

___   ___  6p3/2

6s ___

___ 6s

___  ___  ___ 5d5/2

___  ___  5d3/2

5d ___  ___  ___  ___  ___

Nonrelativistic Relativistic

__  6p1/2

E
N
E
R
G
Y

Figure 2-1. Relativistic and nonrelativistic energy level diagrams for the 5d, 6s and 6p sublevels of sixth
period elements (Reproduced from [1] with permission from Journal of Chemical Education. Copyright
c�2005 Division of Chemical Education Inc)
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2.1.2.3. Radial Changes

If a relativistic mass is calculated and used to calculate the radius of the electron’s
orbit, the resulting value will decrease. Since relativistic effects are strongest for
s orbitals, these will shrink the most. Such shrinkage is termed the orbital con-
traction [5, 6, 8, 9]. This causes changes in bond lengths and other inter-atomic
separations.

2.1.3. Chemical Effects

All physical and chemical properties ultimately depend on the energies and spatial
distributions of electrons in the atoms involved. For heavier elements, the relativistic
effect approach must be used to give accurate descriptions for such properties.

Physical properties (bond lengths, transition energies, polarizations, etc.) have
been extensively investigated for their relativistic alterations. The two best known
macroscopic examples are the low melting point of mercury [4] and the unusual
color of gold [8]. Other examples are discussed elsewhere in this volume.

Chemical properties also are changed by relativistic effects. The best known
example is the so-called Inert Pair Effect [1, 8]. This term was originally coined
to describe the reluctance of Sixth Period elements (Hg-Rn) to use the 6s electrons
in bonding, and remains the most common example of relativistic effects mentioned
in general textbooks. Other species affected are mentioned either slightly or not at
all; species such as intermetallic compounds, semiconductors, metal clusters etc.

The Sixth Period elements can be studied directly (with difficulty for Po, At
and Rn) and effects of relativity measured For the superheavy elements, where
actual chemical studies are few and where relativistic effects are expected to be
strong, theoretical studies of such effects can be used to predict physical and/or
chemical properties, providing guidelines for future investigation.

For the purposes of this article the “heavier Main Group elements” are those of
the Sixth and Seventh Periods. Pt and Au (along with their heavier congenors Ds
and Rg) are not Main Group elements, but are included in this article because their
strong and well-studied relativistic properties provide a convenient starting point for
comparison discussion.

2.2. SIXTH PERIOD ELEMENTS

2.2.1. s-Block Elements

2.2.1.1. Cesium

Cesium behaves like a typical Group I metal, and examples of relativistic effects are
few. Like Na, K, and Rb, Cs forms an alkalide anion Cs� [14]. One paper reports
that triatomic Cs3

3� may form in solid lattices of certain cesides [15].
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2.2.1.2. Barium

In the intermetallic compound Ba2Pt [16], one of the two 6s electrons of barium is
transferred to platinum while the other remains in the barium band, indicative of the
increased stability of the 6s subshell. Experimentally observed polarizabilities of
both Ba and Ba2 agreed well with calculated relativistic values [17].

2.2.2. d-Block Elements

2.2.2.1. Introduction

These elements show the strongest relativistic effects in the Sixth Period. All three
metals can use both d-electrons and s-electrons in their bonding. The color of gold,
unique among the elements, arises from elevated energies of the 5d electrons, shift-
ing those wavelengths required for their excitation to into the visible region of
the electromagnetic spectrum [3, 8]. The liquidity of mercury at ordinary temper-
atures, unusual among metals, results from relativistically lowered energy of the 6s
electrons, weakening Hg-Hg interatomic attractions [4].

2.2.2.2. Platinumf5d3=2
45d5=2

56s1g
General The electron configuration of platinum differs from the 4d10 configura-
tion of its lighter congenor palladium and reflects relativistic changes in both the
energies of the 6s subshell and the 5d5=2 spinor. This in turn leads to substantial
differences in their chemistries.

Platinide Ions Addition of two electrons to a platinum atom forms the platinide
anion Pt2� found in the salt Cs2Pt [14, 18]. This deep red solid adopts the Ni2In
structure with each Pt atom surrounded by nine Cs atoms in a tricapped trigo-
nal prism [18]. Band structure investigations gave results consistent with an ionic
formulation [16, 18].

The ion Pt2
2� would be the first member of an isoelectronic series that contin-

ues with Au2 and Hg2
2C. BaPt did not contain this ion, but formed chains having

Pt-Pt bonds [18, 19]. Charge transfer studies indicated that each barium atom trans-
ferred only one electron to the platinum; the compound was described as “the first
example of a Zintl-phase where the polyatomic structure is established by a transi-
tion element” [19]. Ba3Pt2 contained Pt-Pt dumbbells in the solid state [19], while
Ba2Pt has a CdCl2 structure with isolated platinide ions and has been proposed
to have a charge assignment .Ba2C/2Pt2� � 2e� [16]. Electrochemical and X-ray
photoelectron spectroscopy investigations have confirmed the formation of negative
oxidation states for platinum [20].

Higher Oxidation States Common oxidation states for Pt are C2 and C4. The
C6 state is found in platinum hexafluoride, PtF6, which earned a niche in chem-
ical history as the first species to form a dioxygenyl salt, O2

C PtF6
� [21] and

a xenon compound XeCPtF6
� [22]. The ground state structure of PtF6 [23, 24]
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has a regular octahedral structure and a closed-shell ground state. This com-
pound has a high electron affinity (ca 7 eV) [25], and forms both PtF6

� and
PtF6

2� ions. The latter has had its detachment spectrum studied by a relativistic
approach [26]. No Pd(VI) compounds have been reported; apparently there is not
enough relativistic destabilization of its 4d electrons to allow their oxidation.

Platinum pentafluoride is a deep-red solid that disproportionates readily upon
heating [27]:

2 PtF5
��! PtF4 C PtF6 (2-5)

Theoretical studies indicated that platinum octafluoride, PtF8, would be unstable
towards loss of F2 [27].

Laser ablation of atomic platinum in an Ar-O2 mixture at 10 K gave evidence for
the formation of PtO3 with D3h symmetry [28]. Theoretical calculations indicate
that Pt atoms should be able to combine with noble gas atoms to form species of
formula Ng-Pt-Ng in the gas phase or in a matrix [29].

Platinum Clusters Investigation of fPt(CO)(AuR)8g2C (R D triphenylphosphine)
indicated that 5d orbitals from both Pt and Au contributed to the HOMO [30]. Simi-
lar studies on effects of mixed Au-Pt species (e.g. PtAuC) in the dehydrogenation of
methane revealed that the HOMO formed primarily from gold and showed enhanced
interaction with the LUMO ¢� of methane, when compared to the corresponding
interaction for PtC [31]. Ionization spectroscopy showed that bond energies of
Pt2 and Pt2

C were 3.14 and 3.26 eV respectively [32], indicating significant 5d
contributions to these Pt-Pt bonds.

2.2.2.3. Gold f5d106s1g
General The roles of relativistic effects in the properties of gold have been exten-
sively reported [2, 3, 6, 8, 16, 33]. These effects expand the chemistry of gold well
beyond “normal” limits for Group 11 elements (the “Coinage Metals”) and give a
remarkably rich chemistry to a “noble metal.”

Auride Salts and Au–Au Bonds The outer shell configuration of gold predicts an
oxidation state of C1, also found for other Group 11 elements. However, enhanced
stability of the 6s orbital allows formation of both auride anion, Au�, and the
molecule Au2. Comparable species are known for the alkali metals, but alkalide
compounds require stabilizing ligands for isolation [34]. The silver counterpart,
argentide ion, Ag� has been prepared by electrochemistry in liquid ammonia
solution [35]. Yellow CsAu dissolved readily in liquid ammonia; however, slow
removal of solvent resulted in crystallization of an intensely blue solid CsAu�NH3

[33, 36]. The presence of auride anion as a distinct entity has been verified by var-
ious techniques, including 197Au Mössbauer spectroscopy [16]. A colorless salt
(Me4N/C Au� fMe D methylg was prepared from CsAu by ion exchange and was
isostructural with the corresponding bromide [16]. Auride ion has been suggested
to be an analog of halide ions [16]. Two examples of this analogy:
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1. Gold undergoes disproportionation in base:

2 Cs2O C 5Au ! ŒCsAu�4 ŒCs3AuO2� (2-6)

This compares to:

Cl2 .aq/ C 2 OH�
.aq/ ! Cl�.aq/ C ClO�

.aq/ C H2O (2-7)

The product was described as “intergrowths of slabs corresponding to the binary
aurides and to the ternary aurates(I)” [37]. The presence of two different oxi-
dation states of gold was verified by 197Au Mössbauer spectroscopy [16]. The
electronic structure of auride ion has been studied [38].

2. Auride ion shows hydrogen bonding:

fRb([18]crown-6).NH3/3gC fAu�NH3g�, when studied by X-ray crystallography,
was found to have a Au–H distance of 258 pm, comparable to corresponding H-Br
and H-I hydrogen-bond distances of 249 and 272 pm [39].

Hydrolysis of the model species Au.OH2/
C, when compared to the hydrolysis

of analogous Cu(I) and Ag(I) species, showed marked relativistic effects [40]. Inclu-
sion of relativistic corrections for AuCN increased the bond order of the Au-C bond
[41,42]. Au2 showed a dissociation energy of 2.34 eV [3] (D 225.8 kJ/mol), making
it considerably more stable than Ag2 [43] or the corresponding alkali metal dimers.
The Au-Au bond length was shortened by some 35 pm by inclusion of relativistic
effects [3].

Unusual Gold Compounds Au(III) compounds with oxygen and the halogens are
well known, and less reactive than Cu(III) or Ag(III) analogs. Gold pentafluo-
ride, Au2F10 [44], is a powerful oxidizing agent and readily forms AuF6

� salts,
including ŒO2�

C ŒAuF6�
�. A compound with stoichiometry AuF7, stable at room

temperature, has been reported [45]. Theoretical studies suggested the formula
AuF5 F2 [46]! If verified, this would be the first example of difluorine acting as
a Lewis base in a condensed phase [46].

Another surprising class of ionic gold compounds contains Au-Xe cations with
Sb2F11

� counterions [47–49]. Examples reported to date are
AuXe4

2C (a square-planar Au(II) derivative), cis-AuXe2
2C (also square pla-

nar, with bridging fluorides), an unstable trans-isomer, the F-bridging species
XeAuFAuXe3C [47, 49], and the unusual ion (F3As)AuXeC, containing a linear
As-Au-Xe framework [48,50]. All these show varying degrees of fluoride bridging,
contain the unusual Au2C ion, and apparently involve d-d electron pair donation
from Xe [49]. Studies on chemical bonds between Au(I) and noble gases indicated
an appreciable charge transfer from the noble gas to Au [50–54].

Gold Clusters and Aurophilic Interactions Gold has an extensive cluster chem-
istry, as exemplified by Au55 [55] and Au2Te12

4� [56]. Gold nanoclusters have
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low-symmetry structures due to relativistic effects [57]. In mixed Cu-Au species,
pure Au clusters were more stable than mixed clusters when the total number of
atoms was less than 12 [58].

Closed-shell interactions have considerably extended the chemistry of gold
and other elements. The term “aurophilicity”, originally coined by Schmidbaur
[59], describes interactions between filled 5d subshells of adjacent gold atoms
[60, 61]. Relativistically enhanced energy of Au(I) 5d electrons makes such
interactions comparable in energy to hydrogen bonding [60, 61]. The compound
M.C6F5/fN.H/ D CPh2 (M D Ag, Au), displayed both types of bonding [62].
For the gold species, both types were almost equal in energy; in the silver species,
hydrogen bonding was stronger, indicating that ‘argentophilicity’ is weaker than its
gold counterpart. Both aurophilic attraction and relativistic effects were predicted
to stabilize the cluster species W@Au12 [63], a possible analogue to C60. This
prediction has been confirmed by experimental observation of W@Au12 and its
molybdenum counterpart [64]. Investigation indicated strong 6s – 5d5=2 hybridiza-
tion in the tungsten cluster, whose structure is icosahedral (overall symmetry Ih)
with the tungsten atom surrounded by gold atoms [64]. Gold clusters have been
investigated for their role in absorbing and catalyzing the oxidation of carbon
monoxide [65, 66].

2.2.2.4. Mercury f5d106s2g
General Unlike gold, the outermost electrons of mercury comprise a completely
filled subshell. As Norrby pointed out, gold and mercury are “next-door neighbors in
the Periodic Table but have dramatically different properties” [4]. There is an s2–s2

interaction [60]; dimeric Hg2 has a bond length of 363 pm (compared 416 pm for
the sum of the van der Waals radii) and a bond energy of 0.0434 eV. The first ioniza-
tion energy of Hg is higher than most other metals of the Sixth Period (Table 2-2),

Table 2-2 First ionization energies for fourth, fifth and sixth row
elements of groups 8 through 18 (All values are taken from The
Elements (Emsley J. ed) Clarendon, Oxford, 2nd edn, 1991 and
have units of kJ/mol)

8 9 10 11

Fe 759.3 Co 760.0 Ni 736.7 Cu 745.4
Ru 711 Rh 720 Pd 805 Ag 731.0
Os 840 Ir 880 Pt 870 Au 890.1
12 13 14 15
Zn 745.4 Ga 578.8 Ge 762.1 As 947.0
Cd 867.6 In 558.3 Sn 708.6 Sb 833.7
Hg 1007.0 Tl 589.3 Pb 715.5 Bi 703.2
16 17 18
Se 940.9 Br 1139.9 Kr 1350.7
Te 869.2 I 1008.4 Xe 1170.4
Po 812 At 930 Rn 1037



Chemistry of the Heavier Main Group Elements 71

due to relativistic stabilization of the 6s subshell. Consequently, Hg2C ion very
electrophilic, and Hg(II) compounds differ in many respects from their Zn and Cd
counterparts for this reason. The configuration also suggests that Hg(0) would be
less likely to gain electrons to form anionic species than either Pt(0) or Au(0).

Polyatomic Cations Mercurous ion, Hg2
2C, has been studied theoretically

[67–70]. This ion is isoelectronic with Au2 and Pt2
2�. In the gas phase, it was

slightly unstable towards dissociation [70]; however, a large heat of hydration sta-
bilizes it in aqueous solution. The monatomic species HgC formed only under
high energy conditions and dimerized in a second-order reaction with a rate con-
stant of 4:0 � 109 L/mol�s [68]. Stability of the Hg-Hg bond depended very much
on the attached group [70–72]: ligands with electronegativities above 2.5 formed
stable compounds, while those below that value caused disproportionation. Pure
crystals of mercurous halides needed to be prepared by sublimation [71]. Diorgan-
odimercury compounds have never been isolated because the Hg-Hg bond in such
compounds was too weak [69, 70]. Mercurous complexes of formula [M2Hg2L3]
.PF6/2 (M D Pt, Pd; L D 2,9-bis(diphenylphosphino)-1,10-phenanthroline) [72]
had one mercury atom linked to two N atoms and two Pd(Pt) atoms as well as to the
other mercury; spectroscopic evidence indicated that the Hg-Hg unit was spinning
rapidly [72].

Other polyatomic mercury cations (e.g. Hg3
2C, Hg3

4C, Hg4
2C) are also known

[73–75]. The linear Hg3
2C cation, formed by disproportionation,

2Hg2Cl2 ! Hg3
2C C HgCl2 C 2Cl� (2-8)

contributed to the photoluminescence of Hg2Cl2; as did Hg3
4C, believed to form

by the reaction [73]

Hg2Cl2 C HgCl2 ! Hg3
4C C 4Cl� (2-9)

Hg2
2C and Hg3

2C both formed complexes with benzene, in which the benzene
molecules interacted with mercury atoms at the end of the chain [74]. Both cations
also occurred in the three-dimensional framework of [Hg11As4] .GaBr4/4 [76], and
showed large Hg-Hg coupling constants in their crown ether complexes [77]. The
triangular cation Hg3

4C formed complexes with bis(diphenylphosphinomethane):
each mercury atom was bonded to two other mercury atoms and two phosphorus
atoms [78, 79]. Extended structures for mercurous-oxy cations [80] and Hg-P
linkages [81] have also been reported.

Higher Oxidation States As with platinum and gold, mercury can lose electrons
from its 5d subshell, albeit reluctantly. An early report of trivalent mercury [82] has
never been verified and must be considered doubtful. Theoretical attention has been
given to HgF4 and its derivatives [83–86]. In 2007, HgF4 was finally prepared and
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isolated in inert-gas matrices [87]. It has a square-planar structure with a 5d8 con-
figuration, making it isoelectronic with AuF4

1� and PtF4
2�. Infrared spectroscopy

of HgF4 in neon showed a peak at 703 cm�1, assigned to the degenerate Eu stretch-
ing mode of HgF4 [87]. Similar experiments involving ZnF2=F2 or HgCl2=Cl2
in Ne matrices gave no evidence for the formation of either ZnF4 or HgCl4 [87].
Theoretical studies indicated that many potential Hg(IV) complexes would be ther-
modynamically unstable [88], but might possess a sufficiently high activation energy
barrier to enable their detection. Other studies indicate that HgF3 by itself would
probably be unstable [86], but the dimeric molecule Hg2F6 or complexes such as
HgF4

� might be more stable.
Both HgH4 and HgH6 have been proposed as possible candidates for

higher-valence mercury compounds [88]. The isoelectronic species PtD4
2� [89]

and AuH4
� [90, 91] have been reported; they have square-planar 5d8 structures.

The involvement of 5d electrons in d   
� backbonding in mercury cyanides has

been proposed on the basis of their photoelectron spectra [92].

Mercury Clusters and Amalgams Mercury has an extensive cluster chemistry
[1, 93]. Polyatomic mercury cations have already been discussed. Anionic clusters
have been reported: Na3Hg contains the square planar species Hg6

4- - [93], while
electron transfer has been reported for alkaline earth metal-mercury intermetallic
compounds [94]. Bonding varies according to whether the clusters are cationic, neu-
tral or anionic [93,95]: both cationic and anionic clusters show Hg-Hg ¢ – bonding,
while neutral clusters show van der Waal’s bonding. Bonding in neutral clusters
seems also to depend on the cluster size [1, 95, 96].

2.2.3. p-Block Elements

2.2.3.1. Introduction

For the elements Tl-Rn, 6p-electrons become the dominant contributors to bond-
ing, while the 5d electrons become part of the core and the 6s electrons reacted
only under oxidizing conditions. Oxidation states involving 6s electrons become
increasingly less stable from thallium to astatine, and disappear entirely for radon.
Table 2-3 shows examples of compounds for these elements in their most posi-
tive oxidation states. The roles of relativistic effects and ligands (especially H and
the halogens) has been discussed by Schwerdtfeger [97], who noted a sharp change
between Pb and Bi for the oxidizing power of the highest oxidation state. In the
elements bismuth through radon, the energy of the 6p1=2–6p3=2 spinor separation
becomes increasingly important in determining oxidation state stability.

Because of their radioactivity, the chemistry of Po, At and Rn is less developed
than other Sixth Period elements.
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Table 2-3 Some stable compounds for Thallium through Radon
in their highest oxidation states (Reproduced from [1] with per-
mission from Journal of Chemical Education; copyright c�2005,
Division of Chemical Education, Inc.)

Element Compounds

Tl(III) TlX3 (X D F-Br), TlX4
�, Tl2E3 (E D O, S, Se)

R4Tl�, R3Tl, R2TlC, C6H5Tl(OAc)
Pb(IV) PbX4, PbX6

2� (X D F,Cl), PbO2, PbO2�
3 , PbO6�

8 ,
R4Pb, R3PbA, R2PbA2, C6H5Pb.OAc/3, R6Pb2

Bi(V) BiF5, BiF6
�, BiF2�7 , Bi2O5(?), BiO�

3

R6Bi�, R5Bi, R4BiC, Ar3BiA2

Po(VI) PoF6(?), PoO3(?)
At(VII) AtO4

� (?)

Rn(VIII) None reported

A – anion, R – alkyl and/or aryl group, Ar – aryl group, (?) – existence uncertain

2.2.3.2. Thallium f6s26p1=2
1g

General The electron configuration predicts two oxidation states: C1(“thallous”)
and C3 (“thallic”). The C1 state, isoelectronic with Hg(0), is the more stable state,
forming numerous salts. TlC is much the same size of RbC (ionic radii are 159 and
149 pm respectively), and is quite toxic. Compounds in the C3 state are covalent,
and readily reduced to the C1 state. TlI3 is actually TlC I3

�, but addition of iodide
ion produces TlI4

�, containing Tl(III). Stable Tl(III) compounds contain bonds to
electronegative elements and/or organic groups (Table 2-3).

Thallides Relativistic effect theory predicts that Tl� should be isoelectronic with
Pb(0) and have a filled 6p1=2 spinor. Both KTl and CsTl are known compounds but
do not have monatomic thallide ions; their stoichiometry is actually M6Tl6 [98,99] !
The Tl66� octahedra show D4h symmetry due to tetragonal distortion [98]. Other
binary alkali metal-thallide compounds have been reported [100,101]. BaTl3 shows
Tl-Tl interactions involving 6p orbitals [99]. Various anionic Tl clusters have also
been reported [98], including the new phase Na9K16Tl25:25, which contains Tl99�
clusters [102].

Thallium-Thallium Bonds and Heteroatomic Clusters Both the Au2 molecule and
the mercurous ion, Hg2

2C, show distinct metal-metal covalent bonds; the corre-
sponding isoelectronic thallium species would be Tl24C. No salts containing such
an ion have yet been reported. Halides of the formula TlX2 are actually mixed-
valence species TlCTlX4

� having the NiAs structure [103]. Theoretical studies
on E2X4 (E D B-Tl; X D H, F-I) indicated that the Tl-Tl bond would be the
weakest in the series [104]. Thallium forms fewer compounds of this type than do
other Group 13 elements [104, 105]. The Tl-Tl bond occurs in the cluster species
Tl0:8Sn0:6Mo7O11 [106]. Three compounds of formula Œ.R3Si/3Si�4Tl2 have been
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reported, where R D Me [107], t-Bu [108] or a t-Bu/Ph mixture [109]. All are col-
ored and decompose at 20ı [107], 52ı [108] and 125ı [109] respectively. Tl-Tl bond
lengths in these compounds vary from 2.881 to 2.966 Ĺ [107–109].

2. Tl(I)-Tl(I) interactions have been reported in some pentaorganocyclopenta-
dienylthallium(I) compounds, with Tl-Tl bond lengths exceeding 3.3 Ĺ [110–112].
The bonding appears to be another example of “metallophilic interactions” [60,112–
114]. Larger clusters have been reported, containing covalently bonded Tl atoms
with bond lengths around 2.92 Ĺ [109, 115].

A model study of Au(I)-Tl(I) complexes showed that metallophilic attraction
occurred and that the charge on Tl was more positive than on Au [116]. In clusters of
Tl with coinage metals, Au2Tl2 was the most stable [117]. Compounds of formula
Tl3Ag3E2S6 (E D As,Sb) showed certain very short Tl-Ag separations, indicating
strong metallophilic interactions [118].

2.2.3.3. Lead f6s26p002g
General The relativistically stabilized 6p00 spinor is completely filled, causing lead
metal to be unreactive; its first ionization energy is higher than that for either Tl or
Bi (Table 2-2). Predicted oxidation states are +2 (“plumbous”) and C4 (“plumbic”).
Pb(II) compounds tend to be ionic with some covalent character; Pb(IV) compounds
are rarer, polar covalent, and usually good oxidizing agents. Pb-Pb bonds are less
numerous than for lighter Group 14 elements and occur in organolead compounds or
cluster species. The marked difference in stability for Pb(IV) with inorganic versus
organic substituents has been discussed by Kaupp and Schleyer [119]. They sug-
gested that bonds to electronegative substituents deplete the 6p-orbitals more than
the 6s orbitals, weakening their ability to enter into hybridization.

Plumbides and Some Inorganic Lead Compounds Various anionic lead clusters
have been reported [120–123], of which the best known is probably Pb9

4- -. Unlike
Pt and Au, but like Hg and Tl, Pb does not form monatomic anions. Relativistic the-
ory suggests that formation of Pb4- - might not be energetically favorable, since the
additional electrons would have to go into the higher energy 6p3=2 spinor. Studies
on alkali metal-lead alloys indicate that, for Li and Na, the stable compounds nearest
in stoichiometry to the 4:1 ratio are Li22Pb5 and Na15Pb4 respectively [122].

Plumbane, PbH4, has been extensively studied [7, 119, 124–127]. Infrared spec-
tra at 3.5 K indicated that it had Td symmetry [125]. The hydride Pb2H4 was
also observed, and was assigned a trans-ring C2h structure with two-bridging H
atoms [125], in contrast to structures for ethylene or its Si and Ge analogs. Plumbane
has only a transient existence at 25ı, but is stable enough to allow its use in lead
analysis by hydride generation [128].

The tetrahaloplumbanes, PbX4, have also received theoretical investigations
[127,129–131]. Only the fluoride is stable at 25ıC; the chloride decomposes slowly
at that temperature, while the bromide and iodide have never been reported. Salts
containing PbCl62� ion have been isolated and are stable at room temperature
[132]. This ion has a yellow color, attributed to relativistic stabilization of the a1g

LUMO [133]. Solution studies on PbBr2–Br2–Br�-H2O systems led to a claim
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for both PbBr4 and PbBr6
2� formation [134, 135], but that claim has not been

verified. Advances in scientific techniques make it probable that PbBr4 and PbI4

could be formed and identified at low temperatures—probably by matrix trapping—
and that the corresponding PbX6

2� salts might be stable enough for detection
and/or isolation.

Steric effects from the lone pair on Pb(II) can be diminished by relativistic con-
traction. In the ternary oxide SnWO4, the electron pair on Sn(II) interacts strongly
with the 2p orbitals on oxygen, affecting its crystalline structure [136]; the 6s
electron pair in PbWO4 shows a markedly lower interaction.

Organolead Compounds Organolead compounds represent the most com-
mon examples of stable Pb(IV) derivatives, with, however, considerable variation
in their thermal and chemical stability. In a comparative study of bond ener-
gies in the series .CH3/2M .M D Au�; Hg; TlC; Pb2C/, the energy rose
from Au to Hg, then decreased from Hg to Tl to Pb [137], due to relativis-
tic effects. The presence of organic groups adds thermal stability to Pb-halogen
bonds. For example, all triphenyllead halides are stable solids, melting at temper-
atures above 140ı [138a]; diphenyllead dibromide decomposes above 250ı, while
the corresponding iodide melts smoothly at 103ı. Phenyllead trichloride decom-
poses below 0ı, but the derived salts tetraphenylphosphonium phenyltetrachloro-
plumbate(IV) and bis(tetramethylammonium phenylpentachloroplumbate(IV) are
stable up to 137ı and 108ı respectively [138a]. Corresponding alkyllead com-
pounds are less stable thermally, but trimethyllead bromide and iodide are both
known, and dimethyllead dibromide has been isolated as an unstable white solid
[138a]. The highly sterically hindered compound bis f2,4,6-tris[bis(trimethylsilyl)-
methyl]phenyldibromoplumbane is monomeric in the crystalline state [139], unlike
diphenyllead dihalides, which are polymeric as solids.

The previously mentioned series Pt2
2� Au2, Hg2

2C, Tl24C should continue
with Pb2

6C. No such ion has yet been reported; however, the hexaorgan-
odiplumbanes, R6Pb2, containing Pb-Pb bonds, may be considered as deriva-
tives. Hexamethyldiplumbane decomposes slowly at room temperature, while
hexaphenyldiplumbane melts at 170ı with decomposition [138a]. Pentaphenyl
[tris(trimethylsilyl)methyl]diplumbane melts at 143ı, but changes from yellow to
green at 134ı [140]. Cyclotriplumbanes are also known [141, 142], and unusual
organolead cluster compounds, containing Pb-C6H5 ¢-bonds, have been reported
[143, 144].

Pb(II) also forms organo derivatives. Plumbylenes, R2Pb:, usually polymerise to
a cycloplumbane [145, 146]

n R2Pb W! .R2Pb/n (2-10)

but, if the organic group is sufficiently bulky, a diplumbene can form [145]

2 R2Pb W! R2Pb D PbR2 (2-11)
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and, for extremely bulky groups, the monomeric plumbylene can actually be isolated
[146]. Like Tl(I), Pb(II) can form compounds with cyclopentadiene; .˜5-C5H5/2Pb
(plumbocene) and numerous derivatives have been reported [147]. Plumbocene is
polymeric as a solid but has a monomeric bent structure in the gas phase, reflecting
the steric influence of the Pb 6s electrons.

2.2.3.4. Bismuth f6s26p1=2
26p3=2

1g
General Decreasing stability of the highest oxidation state for Sixth Period
elements continues with bismuth. Table 2-3 shows fewer compounds of Bi(V) than
for either Pb(IV) or Tl(III). Inorganic Bi(V) species usually behave as strong oxi-
dizing agents. Organobismuth(V) compounds are the most numerous examples for
this oxidation state.

Inorganic Bismuth Compounds The “standard” oxidation states for Group 15
elements are �3, C3 and C5. Bismuth forms compounds in all three states. The
�3 state is found in various bismuthides, such as Na3Bi. Some reactions for this
compound in liquid ammonia have been reported [148]:

Na3Bi C 3 AgI ! Bi C 3 Ag C 3 NaI (2-12)

Na3Bi C BiI3 ! 2 Bi C 3 NaI (2-13)

Na3Bi C 2 Bi ! Na3Bi3 (2-14)

These reactions are all consistent with the presence of Bi3� but do not necessarily
prove that this ion exists as a monomer in the solid state. In species such as M11Bi10

(M D Sr, Ba) there are Bi3� ions, but also Bi24� and Bi44� [149]. Apparently, the
monomeric anion does exist for Bi, unlike Pb.

Bismuth forms a C1 oxidation state by loss of the electron from the 6p3=2

spinor, but might also form a �1 oxidation state by adding one electron to form the
half-filled 6p3=2 spinor. No compounds for the latter configuration have yet been
reported, but it is predicted to have two bound states [150]. Bismuth monohalides
BiX contain bismuth clusters [151]. BiCion does occur in solution [152, 153] and
in Bi10Hf3Cl18 [154]. Mixed-valence compounds, such as BiIfwhich contains both
Bi(0) and Bi(II)g, are also known [155]. A compound containing the Bi2 molecule
has been reported [156, 157]

Stable inorganic compounds of Bi(V) contain fluorine or oxygen. The ions
BiF6

� and BiF7
2� have been reported [158]. Other pentahalides are predicted

to be unstable towards reductive elimination of halogen [159], but they may be
detectable at low temperatures in an inert matrix, and salts containing BiCl6� may
be isolable.

Bismuth Clusters Unlike thallium and lead, bismuth usually forms cationic clus-
ters [160–162], although some neutral ones are also known [161, 163]. Homoleptic
Bi cationic clusters are electrophilic and require weakly basic counterions for sta-
bility. Bi95C is isoelectronic with Pb9

4–, but the bismuth cluster has a tricapped
trigonal prism structure whereas the lead cluster (along with its Group 14 congenors)
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has a monocapped square antiprism structure [161]. The electrophilic nature of bis-
muth clusters appears in the aromatic planar cation ŒFe.Bi5/�C [164]. A mixed
Bi-Te cluster cation has been reported [165]. Solid compounds of bismuth with
other Group 15 elements show a decrease in the band gap due to the relativistic
lowering of the 6s electrons on Bi [166, 167].

Organobismuth Compounds Bismuth forms organo derivatives in both C3 and
C5 states. The latter has a restricted range of stability: no Bi(V) derivatives contain-
ing only one or two organo ligands are known, and compounds with three organo
ligands exist only when the inorganic groups are halogens or oxygen. Tetraaryl-
bismuthonium salts, Ar4BiC X� have been isolated; tetramethylbismuthonium ion
formed from the “-decay of 210Pb.CH3/4 [168]. Pentaphenylbismuth and other
pentaarylbismuth compounds are known [169, 170], and the unstable pentamethyl-
bismuth has been reported [169]. Hexaorganobismuthates have also been prepared
[169, 171]. The color for pentaarylbismuth compounds was attributed to its square
pyramidal structure and to lowering of the HOMO-LUMO separation in this struc-
ture due to relativistic effects [133, 170]. However, pentamethyl-bismuth has a
trigonal bipyramidal structure and also a violet color [169], so other factors may
be involved.

No organo compounds containing Bi(V)–Bi(V) bonds have been reported. The
ion Bi28C, predicted by continuation of the aforementioned dimeric series starting
with Pt2

2�, does not yet have any derivatives reported; one might expect any organo
derivative of stoichiometry R8Bi2 to decompose rapidly under ordinary conditions:

R8Bi2 ! R3Bi C ŒR5Bi� ! 2 R3Bi C R2 (2-15)

Possibly such a compound may be prepared if the attached groups are very large,
as with Tl and Pb. Covalently bonded dibismuth(III) compounds R4Bi2 are known
[138b, 172], some of which are thermochromic (change color upon melting). Bond
angles are close to 90ı, indicating that the Bi atoms use p-orbitals for bonding,
and that the lone pair is predominantly situated in the 6s orbital. Thermochromic
dibismuthines, like their antimony analogues [172], show intermolecular closed-
shell interactions in the solid state.

2.2.3.5. Polonium f6s26p1=2
26p3=2

2g
General The chemistry of polonium is more extensive than textbooks indicate
[173,174], although its radioactivity has hampered investigation. ’-Polonium is the
only elemental allotrope that has a simple cubic structure, attributed to relativistic
effects [175]. Declining stability of the highest oxidation state continues: the oxida-
tion state of C6 for Po is has only two examples. The C4 state is the dominant one,
and C2 is well represented. Various polonides in the �2 state are also known.

Inorganic Chemistry: Positive Oxidation States The C6 state is currently repre-
sented by PoF6 and PoO3, neither of which has been isolated in macroscopic
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quantities. A volatile fluoride was reported for the reaction of Po with fluorine,
but was not characterized [176]., Calculations indicate that inclusion of relativistic
effects should weaken the Po-F bond in PoF6 [177]. PoI6 was reported to form and
decompose in the vapor phase [178,179]. Possibly Po(VI), like other high oxidation
states, may be stabilized by anion formation, e.g. PoF8

2� or PoO6
6�.

The C4 state includes numerous characterized compounds similar to tellurium
in their chemical behavior. Po(IV) resembles corresponding Zr, Hf and Rf species
in forming diketonate complexes [180]. Po(IV) is stable in aqueous solution over a
wide pH range, enabling both anion exchange [181] and hydration [182] studies.

The C2 state occurs in various compounds [174a] and is more widespread
than the isoelectronic C1 state for bismuth. Most of these compounds are read-
ily oxidized to the C4 state. Tracer work using 210Po indicate that Po2C can be
coprecipitated with a variety of MC2 salts [183].

While a C3 state has been claimed [173], these claims have never been verified
[174a]. The C5 state occurred when 222Rn underwent ’-decay in the presence of
water vapor or nitrogen dioxide [184]. In the latter case, electron transfer occurred:

PoO2
C C NO2 ! PoO2 C NO2

C (2-16)

From this reaction, the ionization energy of PoO2 has been estimated as 10.44 ˙
0.05 eV [184].

Inorganic Chemistry: Zero or Negative Oxidation States Polonium metal vapor-
izes as Po2 molecules [174a, 185], and its partial pressures have been calculated
over a wide temperature range [185].

Hydrogen polonide is a volatile molecule, studied for its bonding properties [186,
187]. When water vapor was exposed to 210Po, the levels of volatilized polonium
increased sharply due to H2Po formation [188, 189].

Various metal polonides have been prepared [174a, 190]. PbPo received particu-
lar attention because its volatility enabled it to vaporize from a lead-bismuth eutectic
coolant in nuclear reactors [191]. Energy band analysis for this compound indicated
that it was a semimetal rather than a direct-gap semiconductor [192]. This was also
true for ZnPo, CdPo and HgPo, being attributed to relativistic effects [193]. These
compounds had a strong ionic character; metal polonides, especially Na2Po [174a],
apparently contain the monomeric Po2� ion. No homoleptic polonium clusters have
yet been reported, even though both Bi and Te form clusters.

Organopolonium Compounds These compounds have been reviewed [174b].
Organo derivatives are known for both Po(II) and Po(IV). Arylpolonium(IV)
compounds can be formed by “ decay of 210Bi precursors [194]

Ar3BiX2 ! �
Ar3PoX2

C� ! Ar3PoX C Ar2PoX2 (2-17)
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with the product ratio depending on the nature of X. A similar reaction using
pentaphenylbismuth gave a mixture of di- and tetraphenylpolonium [194]. The
endohedral compound Po@C60 has been prepared and proposed as a candidate for
radiotracer and radiopharmaceutical work [195, 196].

Volatilization of polonium is reported to occur through bacterial methylation and
release of dimethylpolonide [197, 198].

2.2.3.6. Astatine f6s26p1=2
26p3=2

3g
General Astatine is a member of the halogens, and its chemistry is much like
iodine [199, 200]. Due to its radioactivity and the short half-lives of its isotopes
(210At has the longest t1=2: 8.1 h), investigations have been limited. Most recent
work has concentrated on the use of 211At (t00 7.2 h) in radiotherapy [200, 201].
Like the other halogens, astatine would be expected to show oxidation states of �1,
C1, C3, C5 and C7. Relativistic effects modify their relative stabilities. The highest
oxidation state of C7 has not been verified in any detected compound; earlier claims
for perastatate ion, AtO4

� [199] have not been verified. Even the C5 state seems
to be limited to astatate ion and a few organoastatine compounds [199, 200]. An
oxidation state of C3 would be predicted from the electron configuration and by
extension from Bi(I) and Po(II). Some organo derivatives are known [199,200]. The
molecule AtF3 has been investigated; the FAtF bond angle increases relative to the
corresponding bond angle in IF3 due to relativistic effects [202, 203].

Two stable states are C1 and �1, corresponding to loss or gain of one electron
by the high energy 6p3=2 spinor. Calculated values for polonium, astatine and radon
appear in Table 2-3, showing a steadily increasing gap between the 6p1=2 and 6p3=2

spinors [204], which would be expected to enhance the resistance of At in the C1
state to oxidation.

Astatides Astatide anion, At�, resembles iodide anion in its general chemical
behavior, although it was not always retained when coprecipitated with iodide [199].
Astatide formed a complex with Hg(II) in aqueous solution; as might be expected,
astatide was a softer base than iodide and formed stronger complexes [205]. It also
formed complexes with chelated Rh(III) and Ir(III), which might serve as precur-
sors to radiopharmaceuticals [206]. Liquid-liquid extraction experiments showed
high separation factors for astatide ion [207].

Hydrogen astatide, HAt, has been extensively studied for its properties [208–
211]. Its dissociation energy is 2.52 eV (HI D 3:19 eV) and the molecular dipole
moment is 0.22D (HI D 0:47D) [211]. A value of 0.06D has been calculated,
with the negative end on the hydrogen atom, indicating that this molecule should
be named astatine hydride [211].

Like iodine, astatine would be expected to form polyhalides; only a few, such as
AtI2

�, have so far been reported [199].
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2.2.3.7. Radon f6s26p1=2
26p3=2

4g
General Radon, a member of Group 18, is the last element of the Sixth Period;
relativistic trends across that Period reach their culmination here. Reported chemical
reactions for this element are few [212, 213].

No compounds in the C8 state have been reported or even claimed. RnF8 is
predicted to be unstable towards loss of fluorine [214]. By analogy with Xe, the
most likely Rn(VIII)compound to be isolated would probably be Ba2RnO6, the
radon analog of barium perxenate.

Two recent studies on RnF6 [214, 215] indicated that the molecule should
be stable to loss of fluorine, and that relativistic effects actually weakened the
Rn-F bond! Theoretical calculations indicate that RnF6 and the isoelectronic ions
AtF6

� and PoF6
2� should have regular octahedral structures because relativis-

tic contraction removes any stereochemical distortion from the 6s electron pair
[216]. Chemical species containing Rn(VI), such as RnO3 and certain derivatives,
have been claimed [213], but these claims have not been confirmed. RnF4 is also
predicted to be stable, but has yet to be prepared [214].

Radon(II) and Rn(0) Compounds The C2 oxidation state is the only one for which
compounds have been prepared and characterized. This state, isoelectronic with
At(I), corresponds to the loss of half the electrons in the 6p3=2 spinor. RnF2 and
RnFC derivatives (e.g. ŒRnFC�ŒSbF6

��) are known [213]; in fact, formation of
involatile compounds of this type has been proposed as a method for removing
gaseous radon from air [217]:

Rn.g/ C 2 O2
C SbF6.s/ ! RnFCSb2F11

�.s/C 2 O2.g/ (2-18)

Trichlorotrifluoroethane solutions of RnF2 passed through specially prepared
columns displaced protons, sodium ion and potassium ion from salts, indicating
that Rn can exist as a cation in solution [218].

Radon gas has been predicted to interact with bromide ion [219] and to form a
monomeric carbonyl RnCO [220].

2.3. SEVENTH AND EIGHTH PERIOD ELEMENTS

2.3.1. General

All elements in these Period are radioactive. Some have yet to be prepared; others
have such short half-lives that their chemical behavior has yet to be investigated.
All these elements are predicted to show strong relativistic effects. As of this writ-
ing, only francium, radium and element 112 have observed chemical properties.
For those elements whose chemistry still remains to be determined, a few selected
predictions will be presented.
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2.3.2. s-Block Elements

2.3.2.1. Introduction

Francium and radium have only s electrons in their outermost shell. The increased
stabilization of these electrons would be expected to alter their properties in com-
parison to those of the lighter elements. Such alterations do appear, but have not
been extensively investigated. Calculated values for electronegativities of the ions
FrCand Ra2C show that they increase, relative to those of CsC and Ba2C, rather
than decrease as might be expected [221].

2.3.2.2. Francium

The short half-life for this element (the most stable isotope, 223Fr, has t1=2 D
21:8min) has hampered chemical investigation. Some selected physical properties
have been reported, all of which deviate from the trends for Li through Cs. Ioniza-
tion energy [222] is higher for Fr than for Cs, as is the electron affinity [223] and
the polarizability of the anion [224]. Investigation into alkali metal homo- and het-
erodiatomic molecules showed that the dipole moment for CsFr indicated CsC Fr�
polarization [225]; by contrast, other heteroatomic dialkalis have the heavier alkali
metal atom at the positive end of the dipole. This reflects a greater relativistic sta-
bilization of the Fr 7s subshell compared to the Cs 6s subshell. Similarly, there
was more covalent character in FrO2 than in the other alkali metal superoxides,
attributed to increased interaction between 6p orbitals on Fr and orbitals on oxygen
[226]. Potential energy curves and transport coefficients for Fr with the rare gases
have been determined spectroscopically [227].

2.3.2.3. Radium

There exists a substantial literature on radium, almost all dealing with its radioactiv-
ity, environmental occurrence or use in medical treatment. An investigation into
hydrolysis of Ra2C showed that the value for the first hydrolysis constant was
the same as for Ba2C, despite the larger size of radium [228]. Studies on both
RaF2 [229] and RaAt2 [230] indicate that the 6s and 6p orbitals on Ra partic-
ipate in the bonding, creating a degree of covalency in the bonding. A study of
a radium amalgam indicated stronger Ra-Hg interactions than were found in the
Ba-Hg system [231].

2.3.3. Superheavy Elements

2.3.3.1. Introduction

Elements having Z > 103, are occasionally termed transactinide elements or
translawrencium elements. Much of the work done on these elements is described in
a book by Schädel [232], and in two papers [233, 234]. This article will discuss the
elements darmstadtium (Z D 110) through unbinilium (Z D 120). Some theoretical
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studies for elements in this series have been reported [235, 236]. At the time of this
writing, actual chemical studies have only been reported for ununbium (Z D 112).

2.3.3.2. Darmstadtium

In a study of MF6 (M D Pd,Pt,Ds), a 10Dq value of 34; 625:6 cm�1 was predicted
for Ds, compared to 29; 471:7 cm�1 for Pt [237]. Two reports on DsC [238,239] and
one on DsCl4 [240] support the placement of Ds in Periodic Group 10. Calculations
indicate that DsF6 would have an Oh symmetry [24].

2.3.3.3. Roentgenium

Roentgenium is predicted to have a ground state of 6d97s2, compared to the
expected 6d107s1 [241], reflecting enhanced relativistic stabilization of the 7s sub-
shell and destabilization of the 6d5=2 spinor. Theoretical studies indicated that Rg(I)
is a “softer” base than Au(I), making it the “softest metal ion” [242]. Studies on
Group 11 monohydrides, MH (M D Cu,Ag,Au,Rg) indicated that Au-H had a
shorter bond length than Ag-H, due to relativistic effects, and that Rg-H was shorter
still [243]. The dissociation energy for Rg2 was calculated to be less than the corre-
sponding energy of Au2 [43]. The Rg-C bond length in RgCN was predicted to be
less than the corresponding Au-C bond length [41, 42].

2.3.3.4. Element 112 (Ununbium, Eka-Mercury)

This element has received considerable attention due to an expected strong sta-
bilization of the assumed outer shell configuration 7s2, making it less reactive
than mercury, and possibly inert [244]. The atomic structure and properties of this
element have been calculated and compared to those of mercury [245].

Adsorption/desorption investigations on a gold surface, using the radioisotopes
283112, 185Hg and 219Rn, showed that element 112 behaved like a metal rather than
like a noble gas [246–248]. From these experiments, workers estimated the boiling
point of element 112 to be 357C112�108 K [248], compared to 629.7 K for Hg and
211.4 K for Rn. Fully relativistic studies on (112)X and HgX (X = Pd,Cu,Ag,Au)
showed a decrease of 15–20 kJ/mol in bonding for (112)X relative to HgX [249].
This was attributed to decreased contribution of the 7s orbital (compared to the 6s
orbital on Hg) due to stronger relativistic effects.

2.3.3.5. Element 113 (Ununtrium, Eka-Thallium)

Calculations on the linkage between element 113 and element 117 indicated that
this bond would be weaker than the Tl-At bond and that, when spin-orbit effects
were included, element 113 became more electronegative than element 117 [250].
The strong relativistic stabilization of the 7s orbital for this element suggests that
the oxidation state of �1 should be more stable than for Tl [251].
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2.3.3.6. Element 114 (Ununquadium, Eka-Lead)

Element 114 has attracted attention because its outer shell configuration 7s27p1=2
2

should be exceptionally stable, making it less reactive than lead.
Ionization potentials and excitation energies have been calculated for element

114 and its lighter homologs [252]. The C4 oxidation state is expected to be
unstable, except possibly for .114/F4 [253]. Ion exchange behavior of Pb in hydro-
halic acids was proposed as a homolog for the corresponding behavior of element
114 [254, 255].A study on mixed metal-metal species indicated that element 114
would form weaker bonds than Pb [256] and would show lower adsorption on
surfaces [257]. Density functional theoretical calculations indicate that element 114
would be more electronegative than Pb [258].

2.3.3.7. Element 115 (Ununpentium, Eka-Bismuth)

An early paper on this element [259] predicted that element 115 would have an
outer shell configuration analogous to that of Bi, that the oxidation state of C1
would become more important (with a standard reduction potential of �1:5V), and
that the aqueous chemistry of the C3 state would resemble that of BiC3. Another
paper confirmed the importance of the C1 state and suggests cluster compounds
might form [162].

2.3.3.8. Element 116 (Ununhexium, Eka-Polonium)

A study of the Group 16 dihalides reported that spin-orbit coupling was so strong in
element 116 that its dihalides would be linear rather than bent [260]. The bond
angle in .116/H2 was found to be larger than expected, and the authors sug-
gest the possibility of “supervalent” hybridization involving the 8s orbital [261].
Subshell and spinor energy splittings for this element are larger than for polo-
nium (Table 2-4), suggesting that the oxidation states of C2 and �2 may be
correspondingly more stable.

Table 2-4 Selected calculated spinor energies (All values taken
from [204]. Reproduced [with modifications] from [1] with permis-
sion from the Journal of Chemical Education; copyright c� 2005
by the Division of Chemical Education Inc.)

Element

Calculated
energies, eV
np3=2 np1=2 ns

Sixth row �8.22 �10.98 �22.04
Po �9.33 �12.80 �25.53
At �10.45 �14.70 �29.16
Rn
Seventh row
(116) �6.69 �14.67 �27.16
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2.3.3.9. Element 117 (Ununseptium, Eka-Astatine)

Element 117 has been estimated to have a boiling point of 618 K [262], comparable
to that for At(610 K) and considerably higher than for I(457.5 K). As previously
mentioned, element 117 became less electronegative than element 113 in the com-
pound (113)(117) [250, 263]. Spin-orbit effects in the molecule H(117) caused the
bond to become unusually long and unusually strong [264]. The species (117)2 has
been studied [265].

2.3.3.10. Element 118 (Ununoctium, Eka-Radon)

Element 118 has been estimated to have a boiling point of 247 K [262], compared to
211 K for Rn and 166 K for xenon. It may also be the first rare gas with an electron
affinity [266]. The compound .118/F4 is predicted to have a tetrahedral structure
rather than a square planar structure [267, 268].

2.3.3.11. Element 119 (Ununenniun, Eka-Francium)

Calculations predicted that Element 119 would have higher values for the first
ionization energy [222] and electron affinity [223] than francium.

2.3.3.12. Element 120 (Unbinilium, Eka-Radium)

Little is known of this element. Relativistic trends predict that it is likely to be more
covalent, less ionic than radium; a C1 state might be isolable. Vibrational excitations
for 292120 have been reported [269].

2.4. CONCLUSIONS

Advances in chemical theory, combined with great enhancement of computer
capabilities during the last 20 years, have resulted in a near-exponential growth
in understanding and applications of relativity theory to chemistry. Correspond-
ing advances in experimental techniques have also grown, though more slowly.
Compounds that once were considered too unstable to exist can now be prepared
and studied; HgF4 is an example.

The heavier Main Group elements have been somewhat neglected by comparison
to their lighter congenors. Growing interest in these elements over recent years has
changed that, and there is likely to be a surging growth in this area in coming years.
Realization of all the physical properties and chemical systems that can be predicted
by relativity theory, plus the ability to apply it, will play a large part in this.

Synthesis of the superheavy elements has spurred development of “single atom
techniques” for their chemical investigation, which in turn have been guided by
predictions generated from relativity. Very soon the first true compound(s) of
element 112 will be reported, with element 114 following soon thereafter. Subse-
quently, as more stable nuclides from the “Island of Stability” are synthesized, their
compounds will also be prepared.
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Relativistic effects have a much greater role in the chemistry of Main Group
elements than has generally been realized. Hopefully, this article and this volume
will do much to correct that lack of awareness.
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206. Pruszyński, M., Bilewicz, A., Zalutsky, M.R.: Preparation of Rh[16aneS4-diol]211At and
Ir[16aneS4-diol]211At complexes as potential precursors for astatine radiopharmaceuticals. Part 1:
Synthesis. Bioconjug. Chem. 19, 958–965 (2008)

207. Roy, K., Lahiri, S.: Production and separation of astatine radionuclides: Some new addition to
astatine chemistry. Appl. Radiat. Isot. 66, 571–576 (2008)

208. Baran, E.J.: Vibrational properties for hydrogen astatide, HAt. Z. Naturforsch. A 59, 133–135
(2004)

209. Saue, T., Faegri, K., Gropen, O.: Relativistic effects on the bonding of heavy and superheavy
hydrogen halides. Chem. Phys. Lett. 263, 360–366 (1996)

210. Stewart, M., Rösler Bickelhaupt, F.M.: Proton affinities in water of maingroup-element hydrides—
effects of hydration and methyl substitution. Eur. J. Inorg. Chem. 3646–3654 (2007)
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238. Patzschke, M., Pyykkö, P.: Darmstadtium carbonyl and carbide resemble platinum carbonyl and
carbide. Chem. Commun. 1982–1983 (2004)

239. De Macedo, L.G.M., Sambrano, J.R., De Souza, A.R., Borin, A.C.: All electron fully relativistic
Dirac-Fock calculation for darmstadtium carbide using prolapse free basis set. Chem. Phys. Lett.
440, 367–371 (2007)

240. Ionova, G.V., Ionova, I.S., Mikhalko, V.K., et al.: Halides of tetravalent transactinides
(Rg,Db,Sg,Bh,Hs,Mt, 110th Element): Physicochemical properties. Russ. J. Coord. Chem. 30,
352–359 (2004)

241. Eliav, E., Kaldor, U., Schwerdtfeger, P., et al.: Ground state electron configuration of element 111.
Phys. Rev. Lett. 73, 3203–3206 (1994)

242. Hancock, R.D., Bartolotti, L.J., Kaltsoyannia, H.: Density functional theory-based prediction of
some aqueous-phase chemistry of superheavy element 111. Roentgenium(I) is the “Softest” metal
ion. Inorg. Chem. 45, 10780–10785 (2006)

243. Seth, M., Schwerdtfeger, P., Dolg, M., et al.: Large relativistic effects in molecular properties of
the hydride of superheavy element 111. Chem. Phys. Lett. 250, 461–465 (1996)
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260. Van Wüllen, C., Langermann, N.: Gradients for two-component quasirelativistic methods. Appli-
cation to dihalogenides of element 116. J. Chem. Phys. 126, 114106/1–9 (2007)

261. Nash, C.S., Crockett, W.W.: An anomalous bond angle in (116)H2 . Theoretical evidence for
supervalent hybridization. J. Phys. Chem. A 110, 4619–4621 (2006)

262. Takahashi, N.: Boiling points of the superheavy elements 117 and 118. J. Radioanal. Nucl. Chem.
251, 299–301 (2002)

263. Faegri, K., Saue, T.: Diatomic molecules between very heavy elements of group 13 and group 17:
A study of relativistic effects on bonding. J. Chem. Phys. 115, 2456–2464 (2001)

264. Nash, C.S., Bursten, B.E.: Spin-orbit effects on the electronic structure of heavy and superheavy
hydrogen halides. J. Phys. Chem. A 103, 632–636 (1999)
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Abstract: Inclusion of relativistic effects is required for proper description of atomic and molecular
properties, when electrons approach the region of space with high potential energy near
the nuclei. The effects become particularly important for the systems with heavy and
very heavy atoms leading to significant changes in the energetic structure of the molecule
and in the values of spectroscopic molecular parameters, influencing the mechanism and
character of the bonds. This chapter reviews the relativistic ab initio all electron four
component calculations for molecular systems, whose results show that in many cases the
nonrelativistic description is inadequate and cannot explain certain trends of properties
observed and that the inclusion of relativistic effects is mandatory for correct predictions
of molecular properties.

Keywords: Relativistic four component methods, Dirac-Fock method relativistic corrections,
Electron correlation, Correlation-relativistic cross terms, Spectroscopic constants

3.1. INTRODUCTION

Relativistic theory of atoms and molecules can be considered as a simplification of
the description provided by quantum electrodynamics in which particles interact by
exchange of photons. The effective Hamiltonian for an N-electron system derived
from this description can be written as a sum of N one-electron Dirac operators for
an electron moving in the classical field of nucleons, Coulomb interelectron repul-
sion term and Breit operator representing relativistic corrections to this interaction.
Such a Hamiltonian is known in literature as the Dirac-Coulomb-Breit Hamiltonian
(DCB). The omission of the Breit operator leads directly to the Dirac-Coulomb
Hamiltonian (DC). The techniques and methods used to solve the DCB (DC) eigen-
value problem were derived as a analogue of methods of solving the Schrödinger
equation for N-electron system.
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The relativistic self consistent field (SCF) formalism for atoms was derived in
1935 by Bertha Swirles [1] and later reformulated using Racah’s tensor opera-
tors by I.P. Grant [2]. This allowed construction of programs solving the Dirac-
Fock (DF) equations for atoms in their general multiconfigurational version:
Multiconfigurational Dirac-Fock Package (MCDF). One of them was developed by
Desclaux and coworkers [3], while the other by the Oxford group of Grant [4]. These
two programs in principle permit accurate solutions of the DF and MCDF equations
for atoms and became standard tools in atomic physics.

For molecular systems, numerical solution of the DF equations is in practice
impossible (except for diatomic molecules) and their algebraic form, the Dirac-
Fock-Roothan (DFR) equations, have to be solved. A closed shell molecular
Dirac-Fock equations was first proposed by Malli and Oreg [5], who expanded
molecular spinors as a linear combination of atomic four-component spinors. The
crucial point in developing a relativistic four-component methods for molecules was
the introduction of the so called kinetic balance condition [6–9], which determines
the relation between basis set functions of large and small component of a one
electron spinor. This relation ensures the convergence to the non-relativistic limit
upon enlarging the value of the speed of light c to infinity and enables the cor-
rect separation of an approximate one electron Hamiltonian spectrum into electron
(positive-energy) and positron (negative-energy) part. One should also be aware that
in relativistic calculations a more physical model of finite nucleus is used, which
removes a weak singularity at the origin for the radial part of one electron spinors,
which characterizes the solutions of Dirac equation for point nucleus potential. The
ab initio all electron four-component relativistic DFR programs were developed at
a number of research centres, some of the programs were distributed freely to aca-
demic users. The MOLFDIR program package [10] was developed by the group
of Nieuwpoort in Groningen. Its first closed shell version, written by P. J. C. Aerts
was ready in 1984. L. Visscher implemented the correlated methods in this pack-
age: the general multi-reference CI (MRCI) and the coupled cluster method (CC).
In this way a range of correlation treatments in the four component formalism has
been developed, from no correlation in the DF method, through the second-order
Møller-Plesset perturbation theory (MP2), the configuration interaction with single
and double substitutions (CISD), the coupled cluster with single and double substi-
tutions (CCSD) to the most recent method, perturbatively corrected for the effect of
triple excitations (CCSD(T)). The DIRAC program package implements the direct
SCF method. Its first version was programmed by T. Saue. At present, DIRAC
is probably the most advanced relativistic four component molecular code [11],
developed by the international community of relativistic quantum chemists, with
the same range of electron correlation treatment as the MOLFDIR package, addi-
tionally equipped with the code to calculate various molecular properties including
the propagator method within the Random Phase Approximation (RPA).

Inclusion of relativistic effects is required for proper description of atomic and
molecular properties when electrons approach the region of space near nuclei with
high potential energy. These effects become particularly important for systems with
heavy and super heavy (Z > D 104) elements. There are many methods which
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take into account relativistic effects in approximate ways, such as perturbation the-
ory, relativistic pseudo-potential or density functional methods. All these methods
can be derived from the DCB equation and therefore solution of this equation
provides direct reference results for more approximate treatment of relativistic
effects. This chapter presents results of the ab initio all electron four component
calculations for molecular systems, which prove that in many cases the nonrela-
tivistic description is just inadequate and cannot explain certain trends of properties
observed and the inclusion of relativistic effects is mandatory for correct predic-
tions of molecular properties. In these calculations the basis sets for large and small
components fulfilling the kinetic balance conditions have been used. The commonly
used symbols of basis sets are employed, i.e. TZ – triple zeta, VTZ – valence triple
zeta, pVTZ – polarized valence triple zeta, aug-pVTZ – the latter one augmented
with extra diffuse functions, etc.

The relativistic effects can be analyzed in terms of direct and indirect effects.
The direct relativistic effects (the effects of dynamics) are responsible for the radial
contraction and energetic stabilization of the s1=2 and p1=2 shells as well as for
the spin-orbit splitting of shells with l > 0 into subshells with j D l � 1=2 and
j D l C 1=2. The indirect relativistic effects (i.e. the effects of potential) are con-
sequences of a more efficient screening of the d and f electrons by inner electrons
occupying the contracted s1=2 and p1=2 orbitals and lead to the radial expansion
of the d and f shells accompanied by their energetic destabilization. For p3=2

subshells both effects approximately cancel.
The values of the relativistic effects for a given quantity X are usually cal-

culated as a difference between the relativistic and nonrelativistic values of this
quantity, i.e. �X D X.rel/ � X.nrel/ calculated at the same level of theory. There-
fore, most relativistic all electron four component calculations reported here are
accompanied by the corresponding calculations with the nonrelativistic version of
the same method. The prefix DC indicates the relativistic version of given method,
for example DC-CCSD stands for the relativistic four component CCSD method.

3.2. ENERGETIC STRUCTURE AND SPECTROSCOPIC
CONSTANTS

3.2.1. Diatomic Molecules

3.2.1.1. Coinage Metal Molecules

Coinage metal atoms are well known many electron systems in which relativis-
tic effects are particularly pronounced. This phenomenon is due to the interplay of
direct and indirect relativistic effects and leads to the so-called “maximum for gold
rule” [12, 13]. According to this rule, for a given row of the periodic table, rela-
tivistic effects on bond distances and fundamental frequencies are the largest for the
molecules containing group 11 atoms. Dyall and Fægrii [14] plotted (see Figure 3-1)
the relative shrinkage of the mean radius and the relative eigenvalue decrease of
the 6s orbital across the sixth row of the periodic table. They explained the trend
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Figure 3-1. Variation in the relative mean radius (a) and the relative eigenvalue (b) of the 6s orbital
across the sixth row of the periodic table (Figure 22.1 [p. 456] from “Introduction to Relativistic Quantum
Chemistry” by Dyall, K.G. and Fægri, Jr., K. [2007]. By permission of Oxford University Press, Inc.)

observed as the interplay of the direct (contraction of 6s orbital and its energetic
stabilization) and indirect (the weakening screening of the 6s shell due to the fill-
ing of the valence d and f shells and their spatial expansion) relativistic effects.
In these considerations the conventional free atom configuration with two electrons
on the 6s orbital has been used, except for W, Pt and Au, for which one 6s-electron
was assumed. The electronic configuration with singly occupied 6s orbital addition-
ally increases the direct relativistic effects, which explains the pronounced peaks
obtained for these atoms. Results obtained for the 5dn6s2 configurations of W, Pt
and Au lead to the regular behaviour of relative decrease in the mean radius of
the 6s orbital. A combination of the above mentioned effects makes the molecules
containing coinage metal atoms particularly interesting objects to study the role of
relativistic effects for correct prediction of the energetic structure and spectroscopic
properties of molecules as well as for testing different calculation methods taking
into account the relativistic effects.
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Table 3-1 Bond length Re, fundamental frequency �e and dissociation energy De of CuH,
AgH and AuH calculated using the nonrelativistic and relativistic HF and MP2 methods. For
comparison experimental values are also given

Molecule Ref. Method Re(Å) �e.cm�1/ De(eV)

CuH [16] HF 1.569 1,642 1.416
DF 1.541 1,699 1.477
MP2 1.454 2,024 2.585
DC-MP2 1.428 2,101 2.711

[19] Expt. 1.463 1,941 2.85
AgH [15] HF 1.774 � 1.23

DF 1.697 � 1.31
[16] HF 1.779 1,473 1.126

DF 1.700 1,605 1.233
MP2 1.663 1,699 1.986
DC-MP2 1.585 1,873 2.195

[18] DF 1.691 � 1.439
[19] Expt. 1.618 1,760 2.39

AuH [15] HF 1.80 � 1.11
DF 1.64 � 1.53

[16] HF 1.831 1,464 1.084
DF 1.570 2,067 1.778
MP2 1.711 1,695 1.901
DC-MP2 1.497 2,496 3.114

[17] DF 1.570 2,091 1.778
DC- CISD 1.531 2,296 2.864

[19] Expt. 1.524 2,305 3.36

Lee and McLeen [15] in their pioneer paper have reported results of the Dirac-
Fock calculations on the AgH and AuH molecules. In their study they have exploited
the Slater type uncontracted basis sets of DZ quality, which fulfil the kinetic balance
condition for large and small components. Table 3-1 presents the values of bond
length Re, fundamental frequency �e and dissociation energy De obtained by Lee
and McLeen using the HF and DF methods. Coinage metal hydrides have also
been studied using the four component methods by Collins et al. [16], Saue and
Visscher [17] and Mohanty and Parpia [18]. Results of their calculations are also
given in Table 3-1. Collins et al. used the four component DF and MP2, while
Saue and Visscher the DF and CI methods. Results of Mohanty and Parpia were
obtained with the DF method. These authors used different basis sets that satisfied
the kinetic balance condition. Table 3-2 gives the relativistic corrections to spec-
troscopic constants of CuH, AgH and AuH. The values presented in both tables
show that the inclusion of relativistic effects leads to the bond length contraction by
about 0.03, 0.08 and 0.21–0.26 Å, for CuH, AgH and AuH, respectively. Taking into
account the relativistic effects increases the values of the fundamental frequency �e

and dissociation energy De. For AuH these effects are large, 600–800 cm�1 for �e

and 0.7–1.2 eV for De, which shows that the relativistic effects are important for
the series of coinage metal hydrides. A comparison with experiments shows that
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Table 3-2 Relativistic corrections to spectroscopic properties from Table 3-1

Molecule Ref. Method �Re(Å) ��e.cm
�1/ �De(eV)

CuH [16] DF �0:028 57 0.061
DC-MP2 �0:026 77 0.126

AgH [15] DF �0:077 � 0.080
[16] DF �0:079 132 0.107

DC-MP2 �0:078 174 0.209
AuH [15] DF �0:160 � 0.420

[16] DF �0:261 603 0.694
DC-MP2 �0:214 801 1.213

[17] DF �0:261 627 0.694

the nonrelativistic results are far from the experimental values [19]. The calcula-
tion errors for Re, �e and De obtained by Collins et al. [16] using nonrelativistic and
relativistic versions of the SCF and MP2 methods are given in Figure 3-2. As shown,
the error increases across the series for nonrelativistic SCF calculations. A similar
behaviour is observed for the correlated MP2 results. The inclusion of relativistic
effects changes this trend, while the error is smaller and not increasing. The error
in the bond length grows from 7% to 20% (HF) and 1% to 12% (MP2) across the
series, while it remains approximately constant, about 5% (DF) and 2% (DC-MP2),
when relativity is included. It is worth noticing slightly different values of the rel-
ativistic corrections for Re, �e and De obtained using SCF and correlated methods,
which indicates that the relativistic and correlation effects are not independent.

Lærdahl, Saue and Fægri [20] studied the properties of the coinage metal fluo-
rides. They have performed the four-component DF and MP2 calculations for the
ground states (1†C) of CuF, AgF and AuF using uncontracted dual family basis sets.
The basis set for the fluorine atom was generated for the negative ion F� for proper
description of strongly polar bond in the coinage metal fluorides. In the correlated
calculations the active space of virtual spinors was restricted to those with energy
smaller than 100 a.u., while the active occupied space included 18 (MP2/a) and 26
(MP2/b) valence electrons. Table 3-3 presents the values of the bond lengths Re and
the vibrational frequencies �e obtained by Lærdahl et al. [20] for the ground state of
the CuF, AgF and AuF molecules. Table 3-4 contains the values of relativistic cor-
rections for the spectroscopic constants from Table 3-3. As follows, the relativistic
effects shorten the bond length by 0.02, 0.04 and 0.18 Å on the SCF level and by
0.03, 0.05 and 0.2 Å on the correlated level. The relativity increases the values of
the vibrational frequencies �e. This effect is the largest for AuF and equals 85 cm�1

(DF) and 127 cm�1 (MP2). It is worth noting that in contrast to the coinage metal
hydrides, the electron correlation increases the value of relativistic corrections for
the fluorides. For example, the bond length contraction�Re for AuF increases from
0.178 Å (DF) to 0.204 Å (MP2). A comparison of the values of the relativistic bond
length contraction for AuH and AuF also shows that the inclusion of electron corre-
lation leads to a much smaller difference in �Re at the MP2 level. The extension of
the active space from 18 to 26 electrons leads to a significant change in the values of
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Figure 3-2. Comparison of the calculated and experimental values of the bond length Re(Å), fundamen-
tal frequency �e.cm�1/ and dissociation energy De(eV) of the coinage metal hydrides (From [16])

the spectroscopic constants of the series of CuF, AgF and AuF molecules. A com-
parison with experiment can be made only for the first two members of the series,
since the experimental data [19] for the AuF molecule are not available. The errors
in the calculations of the bond distance Re and vibrational frequency �e of the CuF
and AgF molecules are given in Figure 3-3. Again, we can notice that for the non-
relativistic methods the error for Re increases, when going from lighter to heavier
molecules, while the inclusion of relativistic effects reduces the value of the error.

Saue and coworkers studied the effect of relativity on the spectroscopic con-
stants of the homologous series CuCs, AgCs and AuCs. The results of that study
were published in two papers: Saue et al. [21] and Fossgaard et al. [22]. The authors
performed nonrelativistic and four-component relativistic SCF, MP2 and CCSD(T)
calculations employing uncontracted dual family Gaussian basis sets. They corre-
lated 38 electrons: 4d5s5p6s of the Cs atom and (n-1)s(n-1)p(n-1)d electrons of the
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Table 3-3 Bond lengths Re and fundamental frequencies �e for
the CuF, AgF and AuF molecules obtained by Lærdahl et al.
[20] using the nonrelativistic and relativistic versions of SCF and
MP2 methods [20]. MP2/a and MP2/b correspond to the results
obtained with 18 and 26 valence electrons, respectively, included in
the active occupied space. Experimental values taken from Huber,
Herzberg [19]

Molecule Method Re(Å) �e.cm�1/

CuF HF 1.823 563
MP2/a 1.754 606
MP2/b 1.751 612
DF 1.805 572
DC-MP2/a 1.728 627
DC-MP2/b 1.725 633
Expt. 1.745 623

AgF HF 2.069 472
MP2/a 2.033 491
MP2/b 2.026 496
DF 2.029 491
DC-MP2/a 1.987 515
DC-MP2/b 1.977 521
Expt. 1.983 513

AuF HF 2.146 443
MP2/a 2.113 458
MP2/b 2.103 463
DF 1.968 528
DC-MP2/a 1.916 571
DC-MP2/b 1.899 590

Table 3-4 Relativistic corrections to the bond length and harmonic
frequency of CuF, AgF and AuF obtained by Lærdahl et al. [20]
using DF and MP2 methods

Molecule Method �Re(Å) ��e.cm�1/

CuF DF �0.018 9
DC-MP2/a �0.026 21
DC-MP2/b �0.026 21

AgF DF �0.040 19
DC-MP2/a �0.046 24
DC-MP2/b �0.049 25

AuF DF �0.178 85
DC-MP2/a �0.197 113
DC-MP2/b �0.204 127

M atom (M D Cu, Ag and Au). In this way the core-valence correlation effects
were partially taken into account. The bond distances Re, harmonic frequencies �e,
anharmonic constants �exe and dissociation energies De obtained by these authors
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Figure 3-3. The difference between the calculated and experimental values of bond length Re(Å) and
vibrational frequency �e.cm�1/ for the CuF and AgF molecules (From [20])

are given in Table 3-5, while the relativistic corrections to these quantities are
given in Table 3-6. As follows from these data, the relativity is responsible for the
contraction of the bond. This effect is large and increasing along the series of the
CsM molecules (M D Cu, Ag, Au). On the DF level, the contraction is 0.09, 0.18
and 0.41 Å for CuCs, AgCs and AuCs, respectively, while on the CCSD(T) level
the corresponding numbers are: 0.08, 0.14 and 0.31 Å. The electron correlation for
these molecules reduces the relativistic contraction of the bond length. The inclusion
of the relativistic effects increases the values of the fundamental frequencies and
covalent dissociation energy. The increase in �e is small for AuCs around 22 cm�1,
while the increase in De is 1.18 eV at the CCSD(T) level. The results show the rel-
ativistic strengthening of the bond. In particular for CsAu the dissociation energy
is almost doubled. The value of De obtained at the DC-CCSD(T) level of theory
agrees very well with the experimental value of 2.53 eV [22, 23]. The relativistic
effect on anharmonicity is negligible and the trend is difficult to identify because of
the small numerical values describing this property as well as its sensitivity to the
approximate energy values. Figure 3-4 presents the ratio of relativistic and nonrel-
ativistic CCSD(T) values of the spectroscopic constants Re, �e and De for the MCs
(M D Cu, Ag and Au) series. We can see from this figure that the stabilization of the
bond is accompanied by a relativistic bond length contraction. The electron correla-
tion further strengthens and contracts the bond and causes an increase in the values
of the fundamental frequencies. Differences between the correlated and SCF results
obtained by the nonrelativistic and relativistic calculations are given in Table 3-7.
As indicated by these data the electron correlation effect on bond length is huge and
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Table 3-5 Bond length Re, fundamental frequency �e, anharmonic constant �exe and
covalent dissociation energy De

cov obtained by Fossgaard et al. [22] for the CuCs, AgCs
and AuCs molecules

Molecule Method Re(Å) �e.cm�1/ �exe.cm�1/ De
cov(eV)

CuCs HF 3.638 79 0.2 0.95
DF 3.545 83 0.2 0.98
MP2 3.207 104 0.5 1.48
DC-MP2 3.125 109 0.1 1.55
CCSD(T) 3.277 97 0.2 1.31
DC-CCSD(T) 3.198 102 0.1 1.36

AgCs HF 3.817 64 0.1 0.94
DF 3.641 71 0.1 1.16
MP2 3.376 85 0.1 1.43
DC-MP2 3.230 96 0.2 1.70
CCSD(T) 3.459 79 0.0 1.26
DC-CCSD(T) 3.316 88 0.2 1.51

AuCs HF 3.826 57 0.1 1.11
DF 3.413 79 0.1 2.31
MP2 3.522 71 0.1 1.46
DC-MP2 3.204 94 0.3 2.66
CCSD(T) 3.571 68 0.1 1.34
DC-CCSD(T) 3.263 89 0.2 2.52
Expt.a – – – 2.53

aEstimated by Fossgaard et al. [22] using results of [23]

Table 3-6 Relativistic corrections to Re, �e, �exe and De
cov from Table 3-5 for the CuCs,

AgCs and AuCs molecules

Molecule Method �Re(Å) ��e.cm
�1/ ��exe.cm�1/ �Dcov

e (eV)

CuCs DF �0.093 4 0.0 0.03

DC-MP2 �0.082 6 �0.4 0.07

DC-CCSD(T) �0.079 5 �0.1 0.05

AgCs DF �0.176 7 0.0 0.22

DC-MP2 �0.146 11 0.1 0.27

DC-CCSD(T) �0.143 10 0.2 0.25

AuCs DF �0.413 22 0.0 1.20

DC-MP2 �0.318 23 0.2 1.20

DC-CCSD(T) �0.308 22 0.1 1.18

decreases along the CuCs-AgCs-AuCs series of molecules. A similar effect is noted
for the covalent dissociation energy.

Fossgaard et al. [22] analyzed the nonrelativistic and relativistic SCF solutions
using projection analysis [24], in which the occupied molecular orbitals (MO)
are projected onto the orbitals of the neutral atomic fragments M and Cs. This
method allows unambiguous expression of MOs in terms of the atomic orbitals [22].
The projection coefficients for the six upper occupied molecular orbitals of CuCs,
AgCs and AuCs are given in Table 3-8. For all three molecules HOMO is an almost
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Figure 3-4. Relativistic effects for Re, �e and De for a series of the CuCs, AgCs and AuCs molecules
calculated using the CCSD(T) method (From [22])

Table 3-7 Differences •X D X(corr) – X(SCF) between the correlated and SCF results of
Fossgaard et al. [22] from Table 3-5

Molecule Method •Re (A) •�e.cm�1/ •�exe.cm�1/ •Dcov
e (eV)

CuCs MP2 �0.431 24 0.4 0.53
DC-MP2 �0.420 26 0.0 0.57
CCSD(T) �0.361 18 0.0 0.36
DC-CCSD(T) �0.347 19 �0.1 0.38

AgCs MP2 �0.441 21 0.1 0.49
DC-MP2 �0.411 25 0.1 0.54
CCSD(T) �0.358 15 �0.1 0.32
DC-CCSD(T) �0.325 17 0.1 0.35

AuCs MP2 �0.304 14 0.0 0.35
DC-MP2 �0.209 15 0.2 0.35
CCSD(T) �0.255 11 0.0 0.23
DC-CCSD(T) �0.150 11 0.1 0.21

pure ns orbital of M (Cu, Ag and Au) with a small contribution of Cs6 s. Five lower
MOs are nonbonding .n � 1/d orbitals of M. The analysis of Fossgaard et al. [22]
has shown that the MCs molecules (M D Cu, Ag, Au) have highly polar bonds with
a substantial electron transfer from cesium to copper, silver or gold. The projection
analysis results are in qualitative agreement with the conclusions drawn from the
Mulliken population analysis [22].

3.2.1.2. Transition Metal Hydrides

Transition metal atoms with their partly filled nd orbitals being in close proximity to
.nC 1 /s and .nC 1 /p ones, posses a large number of low-lying atomic states with
strong configurational mixing. Therefore, inclusion of nondynamical and dynamic
correlation is required for the correct prediction of the energetic structure of such
atomic systems. We can expect the relativistic effects to be also important for these
systems, because of the large direct and indirect effects (relativistic contraction of
.n C 1 /s and the expansion of nd orbital). For example, the spin-orbit splitting for
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Table 3-8 Projection coefficients cji for six upper occupied MOs of CuCs, AgCs and AuCs
obtained using the DF method (From [22])

¨ 1/2 3/2 1/2 3/2 5/2 1/2

CuCs ©(a.u.) �0:4120 �0:4117 �0:3982 �0:3980 �0:3980 �0:1581
Cs(total) 0:0010 0:0000 0:0010 0:0000 0:0000 0:2300

6s1=2 0:0040 0:0000 0:0050 0:0000 0:0000 0:3410

Cu(total) 0:9990 1:0000 0:9990 1:0000 1:0000 0:7490

3d3=2 1:0000 1:0000 0:0110 0:0050 0:0000 0:0070

3d5=2 0:0110 0:0050 1:0000 1:0000 1:0000 0:0090

4s1=2 0:0040 0:0000 0:0060 0:0000 0:0000 0:8060

AgCs ©(a.u.) �0:4543 �0:4529 �0:4297 �0:4290 �0:4279 �0:1576
Cs(total) 0:0010 0:0000 0:0010 0:0000 0:0000 0:2240

6s1=2 0:0040 0:0000 0:0050 0:0000 0:0000 0:3350

Ag(total) 0:9990 1:0000 0:9990 1:0000 1:0000 0:7560

4d3=2 1:0000 1:0000 0:0140 0:0240 0:0000 0:0080

4d5=2 0:0130 0:0240 1:0000 1:0000 1:0000 0:0110

5s1=2 0:0050 0:0000 0:0070 0:0000 0:0000 0:8110

AuCs ©(a.u.) �0:3961 �0:3932 �0:3310 �0:3293 �0:3268 �0:1902
Cs(total) 0.002 0.000 0.002 0.000 0.000 0.123
6s1=2 0.006 0.000 0.009 0.000 0.000 0.217
Au(total) 0.997 1.000 0.995 0.998 1.000 0.861
5d3=2 0.999 1.000 0.011 0.021 0.000 0.013
5d5=2 0.011 0.020 0.999 0.999 1.000 0.028
6s1=2 0.012 0.000 0.025 0.000 0.000 0.897

the 3D.5d96 s1 ) state of the platinum atom (Z D 78) is of an order of 10; 000 cm�1,
while the singlet-triplet splitting for this configuration is only of 3; 800 cm�1. Thus,
we can predict that relativistic effects will influence the character and mechanism of
bonding in the molecules containing a platinum atom. Visscher et al. [25] reported
results of the all electron four-component calculations, in which electron correla-
tion was included by means of the CI method. They studied platinum hydride, the
simplest molecule with the platinum — hydrogen bond. In their calculations the
authors used nonrelativistic basis sets with extra tight functions. The Pt basis set
was augmented with diffuse and polarization functions and subjected to general
contraction.

According to Mulliken [26], they assumed that the Pt electrons in platinum
hydride retain their n, l and jml j quantum numbers and that the � bond is cre-
ated by 1s electron of H and 6s electron of Pt. Thus, the electron configuration
of the PtH molecule can be written as 1 s2 2 s22p6 : : :5d9�2 . There are three
terms corresponding to this electron configuration: 2†, 2… and 2�. However in
the relativistic description, the 5d shell splits into 5d3=2 and 5d5=2 and we obtain
two relativistic electron configurations with nine d electrons: 5d 4

3=2
5d5

5=2�
2
1=2

and

5d 3
3=2
5d 6

5=2
�2

1=2
. According to Table 3-9, we have two groups of allowed terms

(� D jMJj) corresponding to the above two-electron configurations:� D 1=2, 3=2,
5=2 and� D 1=2, 3=2. It can be expected that the lower group of states are ordered
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Table 3-9 Nonrelativistic and relativistic electron configurations and the corresponding
terms for the ground state of platinum hydride

Nonrelativistic Relativistic
Electron configuration Term Electron configuration Term

5d9�2 
 d1 2† 2†1=2 5d43=25d
5
5=2�

2
1=2 
 d15=2 � D 1=2, 3/2, 5/2

jm`j D 0; 1; 2 2… 2…1=2;
2…3=2 jmjj D 1=2; 3=2; 5=2

s D 1=2 2� 2�3=2;
2�5=2 5d33=25d

6
5=2�

2
1=2 
 d13=2 � D 1=2; 3=2

jmjj D 1=2; 3=2

Figure 3-5. Nonrelativistic (ƒ†/ and relativistic (¨¨) terms obtained assuming a simple ¢(s-s) bonding
in the PtH molecule. In parentheses the excitation energies Te obtained from relativistic CISD calcula-
tions are given (Reprinted with permission from L. Visscher, T. Saue, W. C. Nieuwpoort, K. Fægri, O.
Gropen, J. Chem. Phys. 99, 6704 (1993). Copyright 1993, American Institute of Physics)

as 5=2 < 3=2 < 1=2 (with � D 5=2 the ground state), while two upper states are
ordered as 3=2 < 1=2. The nonrelativistic and relativistic terms from Table 3-9 cor-
responding to 5d9�2 configuration of platinum hydride are presented in Figure 3-5.
However, it must be realized that this bonding scheme can be perturbed by 5d par-
ticipation in the bond, which can change the ordering of states. Additionally, for
a strong spin-orbit coupling, a mixing between the ƒ† states with the same �
number can be expected. Therefore, for PtH we should rather use ¨¨ coupling for
description of molecular states and characterize them using the quantum number�.

Visscher et al. [25] performed all electron four-component DF calculations and
used the resulting molecular orbitals in relativistic RAS CI calculations of the
five lower states of PtH. Molecular parameters of PtH calculated using the DF
and CI methods are presented in Table 3-10. The Mulliken population analysis of
the DF wave function has proved a significant participation of Pt5d orbitals in
the Pt-H bond, which changes the order of the three lower states of PtH from
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Table 3-10 Molecular properties of PtH calculated by (a) Visscher et al. [25] and (b) Dyall
[28] using DF and post DF methods

Method State Re (Å) �e.cm�1/ �exe.cm�1/ De (eV) Te (eV)

DF (a) 5/2 1.548 2,251 69 2.28 0.00
1/2 1.568 2,095 70 1.96 0.32
3/2 1.581 2,044 69 1.86 0.41

DF (b) 5/2 1.551 2,234 � 2.03 0.00
1/2 1.573 2,094 � 1.69 0.34
3/2 1.584 2,080 � 1.61 0.42
3/2(2) 1.577 2,162 � 0.60 1.43
1/2(2) 1.590 2,097 � 0.47 1.55

DC-CISD (a) 5/2 1.518 2,458 63 2.98 0.00
1/2 1.526 2,419 66 2.74 0.24
3/2 1.542 2,313 65 2.54 0.44
3/2(2) 1.540 2,365 62 2.73 1.46
1/2(2) 1.562 2,277 64 2.58 1.61

Expt. (c), (d),
(e)

5/2 1.528 2,378 � 3.6 0.00

1/2 �
3/2 1.520 2,265 � 0.41
3/2(2) � 2,349 � � 1.45
1/2(2) � � � � �

(c) Scullman et al. [29, 30] and references therein
(d) McCarthy et al. [31]
(e) Squires [32]

5=2 < 3=2 < 1=2 to 5=2 < 1=2 < 3=2. The values of the corresponding exci-
tation energies Te are given in Table 3-10 as well as in Figure 3-5 (in cm�1) and
they confirm the change in the order (similar change in the energetic order of the
d-type orbitals was observed by Wang and Schwarz [27] for the ground state of
the first row transition metal dihalides). The population analysis set up in terms
of the nonrelativistic functions � ,  and ı confirms a strong mixing of nonrela-
tivistic configurations corresponding to a given � state. It is worth mentioning that
the parameters characterising molecular properties of PtH obtained on the DF level
agree very well with those of DF calculations reported by Dyall [28]. As follows
from Table 3-10, electron correlation is important and responsible for the shorten-
ing of the bond length Re and an increase in the dissociation energy De and harmonic
frequency �e. The CI results show good agreement with experimental data [29–32].
The difference in Re is close to 0.01 Å, while that in �e � 80 cm�1 for the � D 5=2

ground state of PtH. For the three lower states, the weight of the DF reference con-
figuration in the CI expansion is 90%, while for the other configurations it is less
then 0.4%. This indicates that in contrast to the platinum atom, static correlation is
not important in the PtH molecule. It should be emphasised that the unusual stability
of the Pt-H bond (Re D 1:518 Å, De D 2:98 eV) can be explained in terms of the
relativistic stabilization of the 6s orbital of platinum.



Why do we Need Relativistic Computational Methods? 113

Table 3-11 Bond distances and excitation energies of PdH
obtained by Sjøvoll et al. [33] using the nonrelativistic and rela-
tivistic versions of the MR-CISD method

Method State Re (Å) Te (eV)

Nrel 2† 1.59 0.00
2� 1.68 0.97
2… 1.76 1.09

Rel 1/2(1) 1.53 0.00
5/2(1) 1.60 0.67
3/2(1) 1.63 0.85
3/2(2) 1.63 1.20
1/2(2) 1.68 1.28

A similar mechanism of bonding as in PtH takes place in palladium hydride
(palladium belongs to the same group of the periodic table). Again we can assume
that electrons of Pd in the PdH molecule can be characterized by n; l and jml j
quantum numbers and that the Pd-H bond is created mainly by 5s and 1s electrons
of Pd and H, respectively. For the 4d9�2 electron configuration, assuming the ƒ†
coupling scheme we can find five states: 2†1=2;

2…1=2;
2…3=2 and 2�3=2;

2�5=2,
while within the !! scheme we will obtain the states with � D 1=2; 3=2; 5=2

and � D 1=2, 3=2. Sjøvoll et al. [33] performed series of calculations, including
those by the four-component DF and RAS CI methods, for the palladium hydride
molecule. They have used basis sets with nonrelativistically optimized exponents
augmented with relativistic (tight) functions. The values of the bond distances and
excitation energies obtained by Sjøvoll et al. [33] are given in Table 3-11. The PdH
molecule, similarly as the PtH one, turned out to be single configurational with
the weight of reference determinant in CI expansion of more than 90% for a given
state. The population analysis of the DC wave function shows that the bonding has
strong d - and p-contributions. The 1/2(1), 1/2(2) and 5/2(1) states may be charac-
terized as almost pure 1�2 2�1 14 1ı4 , 1�2 2�2 13 1ı4 and 1�2 2�2 14 1ı3

configurations, respectively. However the states 3=2.1/ and 3/2(2) are mixtures
of 1�2 2�2 13 1ı4 and 1�2 2�2 14 1ı3 states. From the excitation energies
Te given in Table 3-11 we conclude that, unlike for PtH, the ground state of the
PdH molecule is � D 1=2 and the states are grouped like 1:2:2. This grouping
is due to the weaker spin-orbit splitting in the palladium atom as compared to
those in platinum and participation of the 4p- and 4d-orbitals of palladium in the
bonding. The relativistic effect leads to a substantial bond contraction and lower
excitation energies.

The relativistic effects turned out also to be crucial for a reasonable descrip-
tion of the energetic structure of other transition-metal molecules: cadmium hydride
and its ions. Eliav, Kaldor and Hess [34] studied spectroscopic parameters of the
CdH, CdHC and CdH� molecules applying the relativistic Fock-space coupled clus-
ter method with single and double excitations of 18 external electrons to include
core-valence polarization. In their four-component calculations they have exploited
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Table 3-12 Spectroscopic parameters of CdH, CdHC and CdH� obtained by Eliav et al. [34]
using the nonrelativistic and relativistic versions of the Fock space coupled cluster method

State Method Re(Å) �e.cm�1/ �exe.cm�1/ De(eV) IP (eV) Te (eV) EA (eV)

CdHC

X 1†C CCSD 1.758 1,625 42.4 1.812 � � �
DC-CCSD 1.709 1,672 35.3 1.908 � � �
Expt.a 1.667 1,771 35.4 2.081 � � �

CdH
X 2†C CCSD 1.820 1,386 30.3 0.867 7.081 � �

DC-CCSD 1.778 1,370 37.2 0.703 7.273 � �
Expt.a 1.781 1,337 � 0.68 � � �

A 2… CCSD 1.765 1,571 41.2 � � 2.553 �
A 2…1=2 DC-CCSD 1.702 1,652 38.9 � � 2.688 �
A 2…3=2 1.701 1,659 39.2 � � 2.811 �
A 2…1=2 Expt.a 1.669 1,677 � � � 2.742 �
A 2…3=2 Expt.a 1.657 1,758 38.6 � � 2.866 �
C 2†C CCSD 1.763 1,560 31.6 � � 4.650 �

DC-CCSD 1.709 1,654 48.1 � � 4.780 �
Expt.a 1.68 1,567 50 � � 4.984 �

CdH�

X 1†C CCSD 1.847 1,442 35.7 � � � 0.456
DC-CCSD 1.806 1,389 42.0 � � � 0.442

aExpt. – experimental values from Huber and Herzberg [19]

Table 3-13 Relativistic corrections to the spectroscopic parameters from Table 3-12 obtained
using the DC-CCSD method for the CdHC, CdH and CdH� molecules (From [34])

State Re (Å) �e.cm�1/ �exe.cm�1/ De(eV) IP (eV) Te (eV) EA (eV)

CdHC

X 1†C �0.049 47 �7.1 0.096 � � �
CdH

X 2†C �0.042 �16 6.9 �0.164 0.192 � �
A 2…1=2 �0.063 81 �2.3 � � 0.135 �
A 2…3=2 �0.064 88 �2.0 � � 0.258 �
C 2†

C

0 �0.054 94 16.5 � � 0.131 �
CdH�

X 1†C �0.041 �53 6.3 � � � �0:014

basis sets with nonrelativistic exponents. Table 3-12 gives the values of the bond
length Re, harmonic frequency �e, anharmonic constant �exe, dissociation energy
De, ionization potential IP, excitation energy Te and electron affinity EA for the
ground and excited states of CdH, CdH C and CdH�. Table 3-13 contains relativis-
tic corrections to the parameters from Table 3-12. As follows from both tables, for
the ground state of CdHC the relativistic corrections are responsible for a significant
bond strengthening with a bond contraction of 0.05 Å, an increase in the dissociation
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Figure 3-6. Differences between the calculated and experimental values of bond length Re(Å), har-
monic frequency �e.cm�1/ and dissociation energy De(eV) for the ground state of the CdHC and CdH
molecules (From [34])

energy by 0.1 eV and an increase in the fundamental frequency by 47 cm�1. For
CdH we observe also a contraction of the bond by 0.04 Å, while the dissociation
energy and harmonic frequency are decreased by 0.16 eV and 16 cm�1, respectively.
The coupled cluster results for the ground states of CdHC, CdH and CdH� agree
well with the corresponding experimental values [19]. It is worth emphasising that
relativistic effect reduces the error by about one order of magnitude as illustrated
in Figure 3-6.

3.2.1.3. Di- and Inter-halogens

Diatomic molecules containing halogen atoms, presented on the diagram in
Figure 3-7 were the subjects of very accurate benchmark calculations using the four-
component SCF and post SCF methods [24, 35–39]. The analysis performed for a
series of dihalogens, interhalogens and hydrogen halides using a series of correlated
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Figure 3-7. Diagram presenting a series of halogen diatomic molecules analyzed using all electron
four-component DF and post DF methods (molecules, whose names are written in Italic have not been
studied yet)

Figure 3-8. Molecular orbitals of the X2 molecule obtained as linear combinations of atomic np orbitals
in the nonrelativistic (a) and relativistic (b) approaches

methods, which exploited a series of basis sets, gave insight to relativistic changes
that occur in the bonding and allowed identification of the trends across the series,
with increasing atomic number of atoms making the molecules.

Visscher and Dyall [35] studied the relativistic and correlation effects on the
spectroscopic properties of dihalogens: F2, Cl2, Br2, I2 and At2. They performed a
series of calculations using the DF, MP2, CISD and CCSD methods and exploiting
basis sets of VDZ and VTZ quality. These basis sets, augmented with extra diffuse
functions, were also used by Visscher et al. [36] and de Jong et al. [37], who stud-
ied the spectroscopic properties of hydrogen halides and interhalogens, respectively.
To understand the mechanism of bonding in dihalogen and interhalogen molecules,
let us consider the linear combinations of valence p orbitals of both halogen atoms
of the X2 molecule as shown in Figure 3-8. There are six such combinations: �g ,
u; u, g , g and �u. In the relativistic description the p orbitals split into p1=2

and p3=2 . Since the large component of the atomic spinor pj;mj
can be expanded

into the nonrelativistic spin-orbitals pl;ml
˛ and pl 0;ml0

ˇ, we can express the large
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component of the relativistic molecular spinors in terms of the � and  molecular
orbitals. However, since the large component of the molecular spinor is a mixture of
� and  orbitals, we can talk only about the approximate � and  character of the
relativistic molecular orbitals. For the dihalogen molecule X2, the six possible lin-
ear combinations can be labelled as �1=2g , 1=2u, 3=2u, 1=2g , 3=2g , �1=2u. If
the energy difference between p1=2 and p3=2 is small, the molecular orbitals have
pure � or  character. However, for increasing spin-orbit splitting of the atomic p
orbitals, the admixtures of  and � in the � and  orbitals, respectively, become
increasingly important. The degree of mixing can be obtained from the popula-
tion analysis of the DF solutions. For the homonuclear molecules, the gerade or
ungerade symmetry of molecular spinors makes them partially bonding and anti-
bonding. The formation of diatomic molecular spinors from a linear combination of
atomic spinors (LCAS) is discussed in details in Chapter 22 of the book by Dyall
and Fægrii [14]. For the series of dihalogens we observe increasing antibonding
contribution of �1=2u in the 1=u molecular orbital: 0.00%, 0.01%, 0.2%, 1% and
10% for F2, Cl2, Br2, I2 and At2, respectively. It is also displayed in Figure 3-9.

Molecular bonding can be analyzed in similar way for the hydrogen
halide molecules. Figure 3-10 presents the molecular orbitals formed as linear
combinations of the valence np orbitals of the halogen atom and 1s orbital of
hydrogen. Those combinations are labelled � ,  ,  and �� in the nonrelativistic
description, while �1=2 , 1=2 , 3=2 and �1=2

� in the relativistic one. The relativis-
tic molecular orbitals have no pure � and  character and the degree of mixing
depending on the spin-orbit splitting of atomic p orbitals can be determined from
the population analysis of molecular solutions. The admixture of the 1=2 orbital
into the �1=2 orbital determined by such an analysis is 0.01%, 0.02%, 0.34%, 1.6%
and 18% for HF, HCl, HBr, HI and HAt, respectively. This increasing 1=2 con-
tribution in the �1=2 orbital is also displayed in Figure 3-9. Tables 3-14–3-16 give
the values of the bond distance Re, harmonic frequency �e and dissociation energy
De and the corresponding relativistic corrections for the dihalogen molecules X2,
obtained using the nonrelativistic and relativistic versions of SCF and post SCF

0
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12

16

20

F Cl Br I At

X2

HX

Figure 3-9. Gradual increase in the percentage of the ¢�. / character in the first ¨ D 1=2u .¨ D 1=2/

molecular orbital of the X2 (HX) series of molecules, X D F, Cl, Br, I and At
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Figure 3-10. Molecular orbitals of the HX molecule, obtained as linear combinations of the atomic Xnp
and H1s orbitals in the nonrelativistic (a) and relativistic (b) approaches

Table 3-14 Bond distance Re for the dihalogen molecules obtained by Visscher and Dyall
[35] at various levels of theory

Method F2 Cl2 Br2 I2 At2

Re (Å)
HF 1.329 1.984 2.279 2.681 2.904
DF 1.329 1.985 2.277 2.682 2.973
DF C Br 1.329 1.985 2.278 2.683 2.974
MP2 1.398 1.997 2.291 2.686 2.914
DC- MP2 1.398 1.998 2.291 2.688 2.984
CISD 1.371 1.997 2.292 2.691 2.919
DC-CISD 1.371 1.997 2.292 2.693 2.993
CCSD 1.395 2.009 2.307 2.704 2.934
DC-CCSD 1.395 2.010 2.306 2.708 3.022
CCSD(T) 1.416 2.018 2.315 2.712 2.942
DC-CCSD(T) 1.416 2.019 2.315 2.717 3.046
Expt.a 1.412 1.987 2.281 2.666 �
aExperimental values from Huber and Herzberg [19]

methods with pVTZ basis sets. As shown by these data, the relativistic effects lead
to a destabilization of the bond. These effects are negligible for lighter molecules,
up to Br2. However, the bond length expansion for I2 calculated using the CCSD(T)
method is 0.006 Å and the decrease in the dissociation energy is 13 kcal/mol. The
values of these effects for the At2 molecule are 0.1 Å and 24 kcal/mol, respectively.
Taking into account the relativistic effects causes a lowering in the harmonic fre-
quency on the CCSD(T) level by 11 and 46 cm�1 for I2 and At2, respectively. The
increase in the relativistic corrections with Z for dihalogens is plotted in Figure 3-11.
As it can be seen from this figure and from the corresponding tables, the ASO
approximation, in which the relativistic effect on dissociation energy is obtained by
correcting the nonrelativistic results for the spin-orbit splitting of atomic asymptote
only, gives correct results for lighter molecules, up to I2. In At2 this simple model,
assuming that the spin-orbit coupling is completely quenched in the molecule, fails,
indicating that scalar and spin-orbit effects in molecule should be taken into account.
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Table 3-15 Harmonic frequency �e and dissociation energy De for the dihalogen molecules
obtained by Visscher and Dyall [35] at various levels of theory

Method F2 Cl2 Br2 I2 At2

�e .cm�1/

HF 1; 267 613 354 237 169

DF 1; 266 612 351 228 131

DF C Br 1; 266 612 350 228 132

MP2 1; 017 578 336 230 164

DC-MP2 1; 016 576 333 221 126

CISD 1; 110 585 338 229 163

DC-CISD 1; 110 584 335 220 125

CCSD 1; 013 562 324 222 158

DC-CCSD 1; 012 561 321 212 116

CCSD(T) 919 546 316 217 154

DC-CCSD(T) 920 544 312 206 108

Expt.a 917 560 325 215 –
De (kcal/mol)

HF �25:3 26:5 23:4 23:8 22:2

DF �26:3 24:5 15:7 9:2 �8:2
DF C Br �26:2 24:5 15:8 9:3 �8:1
MP2 42:3 56:9 49:5 45:6 42:1

DC-MP2 41:5 55:0 42:5 32:2 15:0

CISD 11:8 32:1 29:1 26:8 24:7

DC-CISD 10:9 30:3 22:3 14:3 0:9

CCSD 28:3 48:6 42:9 39:5 36:4

DC-CCSD 27:5 46:8 36:0 26:7 11:4

CCSD(T) 34:8 52:3 46:1 42:3 39:0

DC-CCSD(T) 34:0 50:4 39:2 29:6 14:6

Expt.a 38:2 58:0 45:9 35:9 -
aExperimental values from Huber and Herzberg [19]

Visscher and Dyall [35] in their study correlated 14 valence electrons of the X2

molecule, however de Jong et al. [40] performed calculations for the I2 molecule
using the same basis set but correlating also the electrons from the 4d inner shell.
Their CCSD(T) results show that inclusion of the core-valence effects addition-
ally shortens the bond by 0.02 Å and causes an increase in the dissociation energy
by 2 kcal/mol and harmonic frequency by 11 cm�1. It indicates that core-valence
effects are important for correct prediction of spectroscopic constants of dihalogens.

A comparison of theory and experiment can be done for all the molecules except
At2, for which experimental data are not available. The differences between the
calculated and experimental values [19] of the spectroscopic constants of the F2,
Cl2, Br2 and I2 molecules are displayed in Figures 3-12–3-14. As follows from
the figures, the agreement between the calculated and experimental values is good.
The difference in the bond length changes with the method but does not exceed a
few tenth of Å. The differences in the harmonic frequency and dissociation energy
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Table 3-16 Relativistic corrections to Re, �e and De for the dihalogen molecules obtained by
Visscher and Dyall [35] at various levels of theory

F2 Cl2 Br2 I2 At2

�Re (Å)
DF 0.000 0.001 �0.002 0.001 0.069
DF + Br 0.000 0.001 �0.001 0.002 0.070
DC- MP2 0.000 0.001 0.000 0.002 0.070
DC-CISD 0.000 0.000 0.000 0.002 0.074
DC-CCSD 0.000 0.001 �0.001 0.004 0.088
DC-CCSD(T) 0.000 0.001 0.000 0.005 0.104

��e.cm�1/

DF �1 �1 �3 �9 �38
DF + Br �1 �1 �4 �9 �37
DC- MP2 �1 �2 �3 �9 �38
DC-CISD 0 �1 �3 �9 �38
DC-CCSD �1 �1 �3 �10 �42
DC-CCSD(T) 1 �2 �4 �11 �46

�De (kcal/mol)
DF �1.0 �2.0 �7.7 �14.6 �30.4
DF + Br �0.9 �2.0 �7.6 �14.5 �30.3
DC- MP2 �0.8 �1.9 �7.0 �13.4 �27.1
DC-CISD �0.9 �1.8 �6.8 �12.5 �23.8
DC-CCSD �0.8 �1.8 �6.9 �12.8 �25.0
DC-CCSD(T) �0.8 �1.9 �6.9 �12.7 �24.4
ASOa �0.8 �1.7 �7.0 �14.5 �45.0
aASO – the nonrelativistic results corrected for the spin-orbit splitting of atomic asymptote

are of an order of a few cm�1 and a few kcal/mol, respectively. However, perhaps
more interesting is the unexpected trend observed for Re, which can be formulated
as follows: the better and the more advanced the correlation method used, the worse
the agreement with experiment. For example, for I2 the best agreement is obtained
on the HF level, while the worst on the CCSD(T) one. This behavior of the com-
putational error can be attributed to the incompleteness of the basis sets used in
calculations or the neglect of the core-valence electron correlation. We will discuss
this problem in the next subsection of this chapter.

It is interesting to notice that the DF method and post DF methods give slightly
different values of relativistic corrections for spectroscopic properties of the dihalo-
gen molecules, which proves that relativistic and correlation effects are not simply
additive. We can estimate the value of the correlation-relativistic cross terms for
the dissociation energy as the difference between the relativistic corrections to De

obtained on the DF and on the correlated levels:

ıxDe D �Drel
e .corr /��Drel

e .DF /: (3-1)
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Figure 3-11. Relativistic corrections to bond length Re, harmonic frequency �e and dissociation energy
De for a series of dihalogen molecules (From [35])

The values of the •xDe cross terms are displayed in Figure 3-15, which indicates that
these effects are small for the light elements, but grow fast with Z and for At2 are of
about 6 kcal/mol, which makes 25% of the relativistic corrections to De calculated
using the CCSD(T) method.

Similar trends have been observed by de Jong et al. [37] for the series of
interhalogen molecules listed in the columns of the diagram in Figure 3-7. They
performed a series of four-component calculations (DF, MP2, CCSD) exploiting the
basis sets used by Visscher and Dyall for dihalogens, augmented by the extra diffuse
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Figure 3-12. Differences (in Å) between the calculated and experimental values of bond length Re of
dihalogen molecules F2, Cl2, Br2 and I2 (From [35])
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Figure 3-15. The correlation-relativistic cross terms for De of dihalogens obtained using different
correlated methods (From [35])

functions [36]. In correlated calculations, the excitations of 14 valence electron were
taken into account. The values of the spectroscopic constants calculated by de Jong
et al. [37] for the XY molecules, X, Y D F, Cl, Br and I are given in Table 3-17,
while the corresponding relativistic corrections are given in Table 3-18. To analyze
the trends, we can divide the set of the XY molecules into a several series in such a
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Table 3-17 Spectroscopic constants of interhalogens calculated by de Jong et al. [37] at
various levels of theory using pVTZ basis sets

Method ClF BrF IF BrCl ICl IBr

Re(Å)
HF 1.590 1.716 1.876 2.129 2.319 2.472
DF 1.590 1.718 1.886 2.130 2.326 2.475
DF C Br 1.590 1.719 1.887 2.131 2.327 2.476
MP2 1.637 1.759 1.916 2.143 2.330 2.483
DC-MP2 1.637 1.762 1.928 2.144 2.338 2.486
CCSD 1.632 1.754 1.910 2.156 2.341 2.497
DC-CCSD 1.633 1.757 1.921 2.157 2.349 2.501
CCSD(T) 1.645 1.765 1.920 2.165 2.349 2.506
DC-CCSD(T) 1.645 1.769 1.932 2.166 2.359 2.511
Expt. 1.628 1.759 1.91 2.136 2.321 2.469

�e.cm�1/

HF 918 777 703 487 424 295
DF 915 771 680 483 411 287
DF + Br 915 771 680 483 411 287
MP2 809 699 645 458 405 283
DC-MP2 808 693 624 455 392 275
CCSD 814 705 654 446 395 275
DC-CCSD 814 699 632 443 383 266
CCSD(T) 781 679 634 433 385 267
DC-CCSD(T) 780 673 611 429 372 258
Expt. 786 671 610 444 384 269

De(kcal/mol)
HF 17.1 20.1 30.1 26.1 29.1 25.7
DF 15.2 14.9 20.7 21.1 20.9 14.5
DF C Br 15.2 15.0 20.9 21.2 21.0 14.6
MP2 68.1 70.1 78.1 55.1 56.1 50.5
DC-MP2 66.4 66.3 70.5 50.9 49.1 40.4
CCSD 56.1 59.1 66.1 48.1 49.1 44.0
DC-CCSD 54.7 54.5 58.8 43.2 41.7 34.1
CCSD(T) 61.1 63.1 70.5 51.2 52.3 47.1
DC-CCSD(T) 59.4 59.1 63.1 46.9 45.2 37.4
Expt. 66.3 64.7 67.3 52.1 50.2 42.3

way that each series starts with a dihalogen molecule, while the remaining members
are obtained by replacing one atom of X2 by a heavier halogen atom Y. In this
way we will obtain: F2, ClF, BrF, IF; Cl2, BrCl, ICl and Br2, IBr etc., which cor-
respond to the columns in the diagram in Figure 3-7. The relativistic corrections to
Re, �e and De for the series of interhalogen atoms are displayed in Figure 3-16. Sim-
ilarly like for dihalogens, the relativistic effect weakens the bond. We observe an
increase in the bond length and a decrease in the dissociation energy and in the har-
monic frequency. Again, these effects are small for light molecules but increase for
the molecules containing heavier elements. For example for the IF molecule, the
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Table 3-18 Relativistic corrections to spectroscopic constants of interhalogens calculated by
de Jong et al. [37] at various levels of theory using pVTZ basis sets

Method ClF BrF IF BrCl ICl IBr

�Re(Å)
DF 0.000 0.003 0.010 0.001 0.007 0.003
DF C G 0.000 0.003 0.011 0.001 0.008 0.004
MP2 0.001 0.003 0.011 0.001 0.008 0.004
CCSD 0.001 0.003 0.011 0.001 0.009 0.004
CCSD(T) 0.001 0.003 0.012 0.001 0.010 0.005

��e.cm�1/

DF �2 �6 �23 �3 �13 �8
DF C G �3 �6 �23 �4 �13 �8
MP2 �1 �6 �21 �3 �12 �8
CCSD �1 �6 �21 �4 �13 �8
CCSD(T) �1 �6 �23 �4 �13 �9

�De(kcal/mol)
DF �1.5 �4.6 �8.8 �4.9 �8.2 �11.2
DF C G �1.5 �4.5 �8.7 �4.8 �8.1 �11.0
MP2 �1.4 �4.0 �7.4 �4.5 �7.4 �10.1
CCSD �1.4 �4.1 �7.6 �4.4 �7.2 �9.8
CCSD(T) �1.4 �4.0 �7.4 �4.3 �7.1 �9.7
ASO �1.3 �4.0 �7.8 �4.5 �8.3 �11.0

corrections obtained using the correlated method are of an order of 0.01 Å, 20 cm�1

and 7.5 kcal/mol for Re, �e and De, respectively. The ASO approximation estimates
correctly the relativistic corrections to the dissociation energy for lighter systems.
However, for the molecules containing iodine atom, the relativistic shift in the De

is by over 1 kcal/mol smaller then the ASO values. Inclusion of the Breit correction
does not change in practice the values of the spectroscopic constants. The values of
the correlation-relativistic cross terms for the dissociation energy of the interhalo-
gen molecules are presented in Figure 3-17. As for dihalogens, they are small for
light molecules but grow fast and become not negligible (up to 20% of the total
relativistic correction) for heavier systems.

The theoretical values can be compared with the experimental data [19] also
given in Table 3-17. The differences between the experimental and theoretical values
obtained on the correlated level do not exceed 0.05 Å, 45 cm�1 and 12 kcal/mol
for Re, �e and De, respectively. These differences are plotted in Figures 3-18–3-20.
Similarly as for the dihalogen molecules, the differences in the bond length reveal
the unexpected tendency: the more advanced the method of inclusion of electron
correlation, the worse the agreement between the calculated and the experimental
values of Re. This problem will be discussed in the next subsection of this chapter.

3.2.1.4. Hydrogen Halides

Visscher et al. [36] studied the relativistic and correlation effects on the properties
of the molecules of hydrogen halides: HF, HCl, HBr, HI and HAt. The molecules
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Figure 3-16. Variation in relativistic corrections to spectroscopic constants of interhalogen molecules
obtained at various levels of theory (From [35, 37])

containing a hydrogen atom bonded to a heavy atom pose a feasible computational
problem to most methods, yet giving some insight to the changes in the bond-
ing caused by the relativistic effects. The authors used the DF, MP2, CISD and
CCSD methods to calculate the energetic structure and spectroscopic proper-
ties of these diatomic systems. Thus they got a range of correlation treatments,
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from no correlation in the DF method to a fairly high level of correlation in the
CCSD(T) method. In their calculations the authors used the basis sets of Dyall and
Visscher [35] for dihalogens, but augmented with extra diffuse functions to describe
the electronegativity of the halogen atom in the molecule. In the post DF methods
the authors correlated eight valence electrons of hydrogen and halide atoms.

For the hydrogen halide molecules we can assume a simple model of bonding as
already explained at the beginning of the previous subsection (see Figure 3-10 and
its description in the text). The results of the calculations are given in Tables 3-19
and 3-20. Table 3-19 displays the values of the bond distances Re, harmonic fre-
quencies �e and dissociation energies De, calculated using different methods with
aug-pVTZ basis sets, while Table 3-20 presents the relativistic corrections obtained
as the differences between the corresponding relativistic and nonrelativistic val-
ues. These corrections for the series of hydrogen halides are also displayed in
Figure 3-21. As follows, the relativistic effects are negligible for the light molecules
HF and HCl. They do not change the bond length, decrease the harmonic frequency
by a few cm�1 and the dissociation energy by up to 1 kcal/mol. The effects grow up
with increasing atomic number of the halogen atom. Thus, the bond is contracted
by about 0.002 and 0.004 Å for HBr and HI, respectively. However, for the heav-
iest member of the series, HAt, we observe the opposite effect, i.e. the expansion
of the bond by 0.01 Å (on the CCSD(T) level). This trend can also be noted in
Figure 3-21: from HF to HI the relativistic bond length contraction increases, while
for HAt we observe a change in the trend and a significant bond length expansion.
This observation can be explained in terms of the two effects: the contraction of
the p shell responsible for a decrease in the bond length is counteracted by the
spin-orbit coupling, which leads to a mixing of the occupied  orbitals with the ��
orbital, thus weakening the bond and increasing the bond length. The above trend
has been confirmed by the DF calculations of Saue et al. [24] for the HI, HAt and
H(117) molecules. The results for HI and HAt obtained by these authors agree very
well with those of Visscher et al., while the relativistic bond length expansion for
H(117) of 0.13 Å is a continuation of the trend noted for HAt.
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Figure 3-18. Differences between the theoretical and experimental values of the bond distance Re(Å)
for interhalogen molecules calculated at various levels of theory (From [37])

The relativistic effects on the harmonic frequency and on the dissociation energy
cause a monotonic decrease in both these parameters. They grow with Z of the
halogen atoms and are more pronounced in the methods treating the electron
correlation on higher levels. For the CCSD(T) calculations for the HAt molecule, the
decrease in �e and De, is 216 cm�1 and 18 kcal/mol, respectively. The Breit correc-
tion to the two-electron interaction (not included in the tables) gives only a marginal
change in the parameters calculated.
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Figure 3-19. Differences between the theoretical and experimental values of the fundamental frequency
�e.cm�1/ for interhalogen molecules calculated at various levels of theory (From [37])

Similarly as for the series of dihalogens and interhalogens, we can estimate the
values of the correlation-relativistic cross terms for the dissociation energy of the
HX molecules, X D F, Cl, Br, I and At. They are small for light molecules and
increase with Z of the X atom, as shown in Figure 3-22. For HAt they are of about
3 kcal/mol, which makes about 16% of the relativistic correction to De obtained on
the CCSD(T) level.

Another interesting aspect of these calculations is revealed from a compari-
son between the theoretical results and the experimental values. We can compare
them only for the first four members of the series, for which experimental data are
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De(calc)-De(expt)

CCSD

CCSD(T)

MP2

HF

–60

–50

–40

–30

–20

–10

0

10

BrF
nrel

rel

De(calc)-De(expt)

CCSD(T)
CCSD

MP2

HF

–50

–40

–30

–20

–10

0

10

20

IF
nrel

rel

De(calc)-De(expt)

CCSD(T)

CCSD
MP2

HF

–40

–30

–20

–10

0

10

ICl
nrel

rel

De(calc)-De(expt)

CCSD(T)

CCSD

HF

MP2

–30.0

–20.0

–10.0

0.0

10.0

IBr
nrel

rel

De(calc)-De(expt)

CCSD(T)
CCSD

MP2

HF

–40

–30

–20

–10

0

10

BrCl
nrel

rel

De(calc)-De(expt)

CCSD

CCSD(T)

MP2

HF

–60

–50

–40

–30

–20

–10

0

10

ClF
nrel

rel
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De(kcal/mol) for interhalogen molecules calculated at various levels of theory (From [37])

available [19]. Figures 3-23–3-25 show differences between the experimental and
the calculated values of spectroscopic constants. Similarly as for the dihalogen and
interhalogen molecules, we observe an interesting trend for the bond length values
Re: the better the correlation method used, the worse the agreement with experiment.
As already mentioned, such trend can be a consequence of the truncation of the basis
set and the neglect of the core-valence electron correlation. This problem was dis-
cussed by Styszyski and Kobus [38,39]. In the calculations reported in these works,
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Table 3-19 Spectroscopic properties of hydrogen halides calculated by Visscher et al. [36]
at various levels of theory

HF HCl HBr HI HAt

Re(Å)
HF 0.899 1.267 1.408 1.611 1.713
DF 0.899 1.267 1.406 1.603 1.715
MP2 0.922 1.275 1.415 1.616 1.719
DC-MP2 0.922 1.275 1.413 1.610 1.723
CCSD 0.918 1.277 1.419 1.623 1.727
DC-CCSD 0.918 1.277 1.417 1.617 1.737
CISD 0.915 1.274 1.415 1.619 1.723
DC-CISD 0.915 1.273 1.414 1.613 1.731
CCSD(T) 0.921 1.279 1.421 1.625 1.73
DC-CCSD(T) 0.921 1.279 1.419 1.620 1.739
Expt. 0.917 1.275 1.414 1.609 �

�e.cm�1/

HF 4,466 3,136 2,795 2,457 2,306
DF 4,464 3,132 2,784 2,429 2,112
MP2 4,123 3,044 2,724 2,404 2,258
DC-MP2 4,121 3,041 2,711 2,373 2,070
CCSD 4,169 3,014 2,679 2,351 2,198
DC-CCSD 4,168 3,011 2,664 2,314 1,983
CISD 4,223 3,049 2,711 2,382 2,228
DC-CISD 4,222 3,046 2,697 2,347 2,017
CCSD(T) 4,124 2,991 2,660 2,334 2,182
DC-CCSD(T) 4,123 2,988 2,645 2,297 1,966
Expt. 4,138 2,991 2,648 2,309 �

De(kcal/mol)
HF 101.2 81.1 69.2 58.0 52.0
DF 100.5 79.9 64.9 49.4 30.7
MP2 142.9 104.1 89.7 76.0 69.1
DC-MP2 142.3 103.0 85.7 68.2 49.9
CCSD 136.1 102.2 89.1 76.5 70.0
DC-CCSD 135.5 101.1 85.2 68.8 51.6
CISD 133.4 100.1 87.2 74.6 68.2
DC-CISD 132.8 99.0 83.2 66.9 49.7
CCSD(T) 138.0 103.4 90.2 77.4 70.8
DC-CCSD(T) 137.4 102.3 86.3 69.9 52.6
Expt. 141.2 106.5 90.4 73.6 �

the electron correlation is examined in two steps. In the first step, called the core-
valence 1 (CV1), the eight valence electrons of the HX molecule and the outermost
core electrons are included, resulting in N D 10, 16, 26, 26 and 26 correlated
electrons in HF, HCl, HBr, HI and HAt, respectively. In the second step, the core
valence 2 (CV2), the next inner shell is also included. This increases N to 18, 36,
44 and 58, respectively, as explained in Table 3-21. Table 3-22 presents the values of
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Table 3-20 Relativistic corrections to spectroscopic constants of hydrogen halides calculated
by Visscher et al. [36] at various levels of theory

F HCl HBr HI HAt

�Re(Å)
DF 0.000 0.000 �0.002 �0.007 0.002
MP2 0.000 0.000 �0.002 �0.006 0.004
CCSD 0.000 0.000 �0.002 �0.006 0.009
CISD 0.000 0.000 �0.002 �0.006 0.008
CCSD(T) 0.000 0.000 �0.002 �0.005 0.010

��e.cm�1/

DF �1 �3 �12 �29 �194
MP2 �2 �3 �13 �31 �188
CCSD �2 �3 �14 �37 �215
CISD �1 �3 �14 �35 �211
CCSD(T) �2 �3 �15 �37 �216

�De(kcal/mol)
DF �0.6 �1.2 �4.4 �8.6 �21.3
MP2 �0.6 �1.1 �4.0 �7.9 �19.3
CCSD �0.6 �1.1 �3.9 �7.6 �18.4
CISD �0.6 �1.1 �3.9 �7.7 �18.5
CCSD(T) �0.6 �1.1 �3.9 �7.5 �18.2
ASO �0.39 �0.8 �3.5 �7.3 �23.0

the bond length, harmonic frequency and dissociation energy of hydrogen halides
obtained for CV1 and CV2 calculations. For the sake of comparison, the results of
the plain valence calculations (V) with only eight valence electrons included for
each molecule in the correlated method are also given. As follows from the table,
the inclusion of the core spinors in the correlation calculations brings an additional
shortening (relative to the results with the valence electrons only) of Re. This effect
is of �0.002 Å for the HF molecule and it increases by one order of magnitude
for heavier molecules (it amounts to 0.02 Å for HAt). The core-valence correlation
increases the values of the harmonic frequency and dissociation energy in compari-
son with the results obtained for the valence electrons only. This increase, depending
on the method and the number of correlated shells, is of order of a few tens of cm�1

and of 1–3 kcal/mol for �e and De, respectively. The relativistic corrections to the
bond length Re are given in Table 3-23. They are consistent with the results obtained
for the valence electron only (V) calculations except the HAt molecule, for which we
observe the differences of 0.01 Å. The relativistic effects on the harmonic frequency
vary with different levels of inclusion of the core shell electrons in the correlation
calculation. For the HF, HCl and HBr molecules the differences between V, CV1
and CV2 approximations are equal to several cm�1 and change in an irregular way.

However, for the HI and HAt the values of the relativistic corrections change in a
systematic way: for the HI molecule they are �37, �32 and �24 cm�1, while for the
HAt molecule �191, �180 and �179 cm�1, in the V, CV1 and CV2 approximations,
respectively. The values of the relativistic corrections to the dissociation energy
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Figure 3-21. Relativistic corrections to spectroscopic constants of hydrogen halides calculated at
various levels of theory (From [36])
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Figure 3-23. Differences between the theoretical and experimental values of the bond length Re(Å) for
the hydrogen halides molecules calculated at various levels of theory (From [36])

of halogen halides obtained on the CV1 and CV2 levels of inclusion of core-
valence correlation are consistent with the DF and post DF results with the valence
electrons only (V).
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Figure 3-24. Differences between the theoretical and experimental values of the harmonic frequency
�e.cm�1/ for the hydrogen halides molecules calculated at various levels of theory (From [36])
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Figure 3-25. Differences between the theoretical and experimental values of the dissociation energy
De(kcal/mol) for the hydrogen halides molecules calculated at various levels of theory (From [36])
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Table 3-21 Subshells of halogen atoms X and the number of electrons included in the
correlated calculations of StyszyKnski and Kobus [38, 39] for the HX molecules

HF HCl HBr HI HAt

V 2s22p5 3s23p5 4s24p5 5s25p5 6s26p5

N(V) 8 8 8 8 8
CV1 1s2 2s22p6 3s23p63d10 4s24p64d10 5s25p65d10

N(CV1) 10 16 26 26 26
CV2 1s2 1s22s22p6 3s23p63d10 4s24p64d104f14

N(CV2) 18 36 44 58

The inclusion of core-valence electron correlations substantially improves the
agreement between the theoretical results and experiment and changes the trend
obtained when only eight valence electrons are involved in the correlated methods.
This is illustrated in Figure 3-26 showing the differences between the calculated
and experimental values of the bond distance Re for the HCl molecule. The theo-
retical values presented there were obtained with the inclusion of valence electrons
(a) Cl3 s2 3p5 and electrons of subsequent inner subshells: (b) 2p6 , (c)2 s22p6 ,
(d)1 s2 . As implied by the data in this figure, the core-valence effects for Re cause a
qualitative change in the picture and improve the agreement with experiment, which
is the better the more inner electrons are taken into account. Finally, when all elec-
trons are included, the theory-experiment agreement for the CCSD(T) method is
excellent. Figures 3-27 and 3-28 present the differences in the harmonic frequency
and dissociation energy. The inclusion of the core-valence effects only slightly
changes the theory-experiment differences, but it does not change the tendencies
which remain the same as for the correlated calculations with valence electrons only.
Therefore, for the remaining hydrogen halide molecules, we present in Figure 3-29
the corresponding differences in the bond length Re only and omit the analogous
figures for �e and De. The inclusion of the core electrons in the correlation calcu-
lations for the hydrogen halide molecules substantially changes the values of the
bond lengths and improves the agreement with experiment. If core-valence correla-
tion is properly included, then the wrong trend obtained when only valence electrons
are correlated in the post DF calculations, is reversed to the expected one: the more
advanced the method of electron correlation inclusion, the better the agreement with
experimental values.

3.2.1.5. Super Heavy Molecules

Systems containing heavy and super heavy elements are particularly interesting for
studying the relativistic effects on the energetic structure and bonding in molecules,
because of large values of these effects. Super heavy elements are yielded in
nuclear synthesis reactions producing a small number of short lifetime atoms.
Therefore, chemical experiments with such elements are extremely difficult and
theoretical calculations can be a source of very useful information. On the other
hand, the calculations for super heavy system with many electrons are not trivial
and require enormous computer resources and CPU time.
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Table 3-23 Relativistic effects on spectroscopic constants of hydrogen halides obtained by
StyszyKnski and Kobus [38, 39] at various levels of approximation

Method HF HCl HBr HI HAt

�Re(Å)
MP2 v 0.0000 �0.0001 �0.002 �0.006 �0.001

cv1 �0.0001 0.0000 �0.003 �0.006 �0.012
cv2 � �0.0004 �0.003 �0.007 �0.014

CCSD v �0.0001 �0.0001 �0.002 �0.006 0.004
cv1 �0.0001 0.0000 �0.002 �0.005 �0.006
cv2 � �0.0004 �0.003 �0.006 �0.008

CCSD(T) v �0.0001 �0.0001 �0.002 �0.005 0.004
cv1 �0.0001 0.0001 �0.002 �0.005 �0.005
cv2 � �0.0003 �0.002 �0.006 �0.007

��e.cm�1/

MP2 v �2 �3 �13 �31 �164
cv1 �2 5 4 �25 �149
cv2 � 6 7 �17 �149

CCSD v �2 �3 �14 �37 �191
cv1 �2 5 0 �30 �177
cv2 � 6 3 �23 �177

CCSD(T) v �2 �3 �15 �37 �191
cv1 �2 4 �1 �32 �180
cv2 � 6 2 �24 �179

�De(kcal/mol)
MP2 v �0.6 �1.1 �4.0 �7.7 �18.0

cv1 �0.6 �1.4 �4.0 �7.6 �16.6
cv2 � �1.2 �3.8 �7.4 �16.3

CCSD v �0.6 �1.1 �4.0 �7.5 �17.2
cv1 �0.6 �1.4 �4.0 �7.5 �16.3
cv2 � �1.2 �3.9 �7.3 �16.0

CCSD(T) v �0.6 �1.1 �3.9 �7.4 �17.1
cv1 �0.6 �1.4 �4.0 �7.4 �16.0
cv2 � �1.2 �3.8 �7.2 �15.8

Saue et al. [24] performed the relevant calculations for H(117), Sethe et al. [41]
for HTl, H(113) and F(113), Fægri and Saue [42] for diatomic molecules of very
heavy of group 13 and 17 atoms: TlAt, Tl(117), (113)At and (113)(117). The basis
sets used by Saue et al. [24] for H and (117) and by Seth et al. [41] for H, F, Tl
were derived by energy optimization in nonrelativistic atomic calculations and fur-
ther augmented by extra tight functions, while the basis set used by Seth et al. for
(113) were optimized in relativistic calculations. Fægri and Saue [42] used both
types of basis sets. The results of DF, MP2 and CCSD(T) calculations for hydrides
and fluorides of group 13 and 17 atoms are presented in Table 3-24. The correlated
calculations were performed taking into account the valence electron excitations.
Since in nonrelativistic and relativistic calculations Seth et al. [41] used the active
space of different size, the values of relativistic correction obtained on the correlated
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Figure 3-26. Differences between the calculated and experimental bond length values Re(Å) for HCl
obtained using the DF, DF C Br, MP2, CCSD and CCSD(T) methods for various levels of core electrons
inclusion (From [38])

level given in Table 3-25 should be considered as a crude estimation only. The
theory-experiment agreement for the HTl molecule is good. The CCSD(T) method
gives the 0.015 Å difference in the bond length Re, which is probably due to the
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Figure 3-27. Differences between the calculated and experimental harmonic frequency values �e(cm�1/

for HCl obtained using the DF, DF C Br, MP2, CCSD and CCSD(T) methods for various levels of core
electrons inclusion (From [38])

neglect of the core-valence correlation effects. The relativistic effects on bonding in
hydrides of super heavy atoms are dramatic and cause a shortening of the bond by
0.38 Å for H(113), while extending the bond by 0.13 Å for H(117). These opposite
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Figure 3-28. Differences between the calculated and experimental dissociation energy values
De(kcal/mol) for HCl obtained using the DF, DF C Br, MP2, CCSD and CCSD(T) methods for various
levels of core electrons inclusion (From [38])

effects my by rationalized as a result of a competition between the scalar and spin-
orbit relativistic effects, which has been previously assumed to explain the change in
the trend of variation in�Re for the hydrogen halide series. The large contraction of
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Figure 3-29. Differences between the calculated and experimental bond length values Re(Å) for HF,
HBr and HI obtained using the DF, DF C Br, MP2, CCSD and CCSD(T) methods for various levels of
inclusion of core electrons (From [38])

the H-(113) bond is due to the spin-orbit splitting of 7p shell and a large contraction
of 7p1=2 orbital participating in the bond. On the other hand, an increased contri-
bution of 7p3=2 to the bond in H(117) is responsible for the bond length expansion.
The inclusion of relativistic effects increases by 278 cm�1 the value of the funda-
mental frequency in H(113) and decreases it by 285 cm�1 in H(117). Moreover, for
H(113) the dissociation energy decreases by �1 eV and the dipole moment by �1 D.
The relativistic effects on Re and �e of F(113) are smaller due to the ionic character
of the bond in this molecule.

Results of the calculations by Fægri and Saue [42] for TlAt, Tl(117), (113)At
and (113)(117) are presented in Tables 3-26 and 3-27. The authors obtained the rel-
ativistic results within the DF approach, while the nonrelativistic ones were obtained
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Table 3-24 Spectroscopic properties of the HTl, H(113), F(113) and H(117) molecules
obtained at various levels of theory. Negative value of dipole moment corresponds to negative
charge of the heavier atom

Molecule Ref. Method Re(Å) �e.cm�1/ De (eV) �e(D)

HTl [41] DF 1.869 1,449 1.17 �0.94
DC-MP2 1.862 1,431 1.83 �1.39
DC-CCSD(T) 1.885 1,371 2.07 �1.22
Expt. 1.870 1,389 2.06 �

H(113) [41] HF 2.082 1,412 1.77 0.53
DF 1.704 1,690 0.50 �0.17
MP2 2.059 1,388 2.19 1.24
DC-MP2 1.757 1,476 1.20 0.28
CCSD(T) 2.077 1,345 2.52 0.99
DC-CCSD(T) 1.789 1,357 1.44 0.19

H(117) [24] HF 1.849 1816 � �
DF 1.978 1531 � �

F(113) [41] HF 2.203 485 3.73 3.34
DF 2.167 461 0.64 �
MP2 2.219 462 5.37 4.14
DC-MP2 2.180 478 2.77 �
CCSD(T) 2.215 468 5.36 3.81
DC-CCSD(T) 2.187 463 2.52 �

Table 3-25 Relativistic corrections to spectroscopic properties from Table 3-24 (From
[24, 41])

Molecule Method �Re(Å) ��e.cm�1/ �De(eV) ��e(D)

H(113) DF �0.378 278 �1.270 �0.700
DC-MP2 �0.302 88 �0.99 �0.96
DC-CCSD(T) �0.288 13 �1.08 �0.80

H(117) DF 0.129 �285 � �
F(113) DF �0.036 �24 �3.090 �3.340

DC-MP2 �0.039 16 �2.60 �
DC-CCSD(T) �0.028 �5 �2.84 �

using the standard HF method and solving the four-component Lèvy-Leblond (L-L)
equations [14], generated by the nonunitary transformation of the four-component
spinor and by letting the speed of light c ! 1. The values of the spectroscopic
parameters of the XY molecules, X D Tl, (113) and Y D At, (117) obtained
by these authors are given in Table 3-26. The values of the estimated relativistic
corrections to these parameters are included in Table 3-27.

We can assume a simple bonding mechanism in the XY molecules, in which the
bond is created by the valence s orbital of group 13 atom X and the valence p orbital
of group 17 atom Y. The energies of the valence orbitals of the Tl, (113), At and
(117) atoms are displayed in Figure 3-30. The relative contribution of the valence
np1=2 and np3=2 orbitals to the bonding is determined by the energy splitting and
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Table 3-26 Spectroscopic properties of diatomic molecules of very heavy elements of group
13 and 17 calculated by Fægri and Saue [42]. Negative value of dipole moment corresponds
to negative charge of group 17 atom

Molecule Method Re(Å) �e.cm�1/ �.D/

TlAt HF 3.069 116 �
L-L 3.057 113 �4.32
DFa 2.987 115 �
DF 2.977 116 �4.37

Tl(117) HF 3.234 99 �
L-L 3.235 99 �4.46
DFa 3.113 95 �
DF 3.112 98 �1.67

(113)At HF 3.209 103 �
L-L 3.206 102 �4.79
DFa 2.970 114 �
DF 2.948 114 �2.24

(113)(117) HF 3.373 96 �
L-L 3.391 83 �4.99
DFa 3.056 102 �
DF 3.044 101 1.80

aResults obtained with basis sets of nonrelativistically optimised exponents but augmented with extra tight exponents

Table 3-27 Relativistic corrections to spectroscopic properties from Table 3-26 estimated as
a difference between the relativistic (DF) and the corresponding nonrelativistic (HF, L-L)
values (From [42])

Molecule Method �Re(Å) ��e.cm�1/ ��.D/

TlAt DFa-HF �0.082 �1 �
DFa-(L-L) �0.070 2 �
DF-HF �0.092 0 �
DF-(L-L) �0.080 3 �0.05

Tl(117) DFa-HF �0.121 �4 �
DFa-(L-L) �0.122 �3 �
DF-HF �0.122 �1 �
DF-(L-L) �0.123 �1 2.79

(113)At DFa-HF �0.239 10 �
DFa-(L-L) �0.236 12 �
DF-HF �0.261 11 �
DF-(L-L) �0.258 12 2.55

(113)(117) DFa-HF �0.317 6 �
DFa-(L-L) �0.336 19 �
DF-HF �0.329 5 �
DF-(L-L) �0.347 18 6.79

aResults obtained with basis sets of nonrelativistically optimised exponents but augmented with extra tight exponents
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Figure 3-30. Valence nsnp atomic energy levels for group 13 and 17 atoms

different spatial extents of these two groups of orbitals [42]. Stabilization of the
Ynp1=2 orbital increases the Ynp3=2 contribution to the bonding, which leads to
an expansion of the bond due to the increased size of the Ynp3=2 orbital. On the
other hand, the stabilization of the Xp1=2 orbital induces its greater participation in
the bonding and leads to a dramatic contraction of the bond length. The finial effect
is a resultant of these two opposite effects. The above mechanism describes also the
bonding in hydrides of group 13 and 17 atoms, if we substitute the valence s orbital
by 1s orbital of the hydrogen atom. Therefore, in hydrides of very heavy halides,
where the bonding is dominated by np3=2 , we observe the final bond expansion by
0.002 and 0.13 Å, for HAt and H(117), respectively. In the diatomic XY molecules
of group 13 and 17 atoms the final effect is the contraction of the bond as can be seen
from Table 3-27. These effects are large, for example, 0.26 and 0.35 Å for (113) At
and (113)(117), respectively. The increasing involvement of the np3=2 orbital of Y
results in a decreased participation of group 17 elements in the bond and in changing
the dipole moment� from �4:37D in TlAt to �1:67D in Tl(117). The negative sing
of � corresponds to the negative charge of the group 17 atom. In (113)At again we
have an increased group 13 participation in the bond and � D �2:24 D. Finally, in
the (113)(117) molecule, both stabilization of (113)7p1=2 orbital and destabiliza-
tion of (117)7p3=2 orbital result in a more pronounced participation of the (113)
atom in the bond and gives a transfer of electron charge from the (117) to (113)
atom, leading to the dipole moment � D C1:80 D.
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3.2.2. Polyatomic Molecules

3.2.2.1. PtCH2
C

Cationic platinum carbene is the most likely reaction product between PtC and CH4

and it is the key molecule for subsequent C-C coupling reactions. Heinemann et
al. [43] postulated that the PtC mediated activation of methane (PtC C CH4 !
PtCH2

C C H2) can occur due to a relativistic strengthening of the PtC–CH2 bond.
In their paper, they evaluated the interplay of relativistic and correlation effects on
the structure and the bond strength of PtC–CH2. They used basis sets of roughly
triple-zeta quality with extra polarization functions for Pt and performed DF and
relativistic MP2 calculations with 15 valence electrons included in the active space,
assuming C2v symmetry. Figure 3-31 presents the valence molecular orbitals of
PtCHC

2 formed from the 5d, 6s orbitals of PtC .2D/ and the a1 , b1 orbitals of CH2.
The ground state of methylene is 3B1, while its first excited state is 1A1, with the
energy difference (MP2) of 16 kcal/mol. The authors expected these two lowest
electronic states of CH2 to mix upon binding to PtC and considered three extreme
bonding situations. Relativistic effects, influencing the ordering of the valence 5d
and 6s orbitals of Pt with respect to each other and relative to the orbitals of
methylene, may change the bonding mechanism in PtCH2

C.
The population analysis of the nonrelativistic wave function allows an

interpretation of PtCH2
C as an electrostatic complex with the 5s/6d hybridization

due to the donation of the lone pair into the axial hybrid. Analysis of the relativistic
results leads to an increase in the Pt6 s occupation accompanied by the depletion of
the 5d occupation, which can be attributed to the stabilization of the 6s orbital and

6s(a1)

4a1 y

Pt C
Z

H

H

2b1

3a1

2a1

1a2 b1

a1

1b2

1b1
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5dx2–y2(a1) 5dz2(a1)

Figure 3-31. Qualitative molecular orbital diagram for PtCH2
C (Reprinted with permission from C.

Heinemann, H. Schwarz, W. Koch, K. Dyall, J. Chem. Phys. 104, 4642 (1996). Copyright 1996,
American Institute of Physics)
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Table 3-28 Optimised geometry parameters and bond dissociation energy (BDE) for the
PtCHC

2 molecule and relativistic corrections to them calculated by Heinemann et al. [43] at
various levels of theory. Bond lengths are given in Å, bond angles in degrees and BDE in
kcal/mol

Method R1(Pt-C) R2(C-H) �(Pt-C-H) ’(H-C-H) BDEa

HF 2.243 1.083 125.2 109.6 20.1
DF 1.935b 1.107 120.2 119.6 47.2
MP2 1.898 1.090 121.8 116.4 50.6
DC-MP2 1.787 1.089 120.4 119.2 100.8
expt. � � � � 113.3c

�rel(DF) �0.307 0.023 �5.0 10.0 27.1
�rel(DC-MP2) �0.111 �0.001 �1.4 2.8 50.2

aBDE D E.PtC/ C E.CH2/ – E(PtCHC

2 )
bOptimised with the R(C-H) and �(Pt-C-H) parameters kept frozen
cDerived by Heinemann et al. [43] from experimental data of [44]

destabilization of the 5d orbitals. In other words, the excited 5d86 s1 configuration
mixes into the wave function leading to a twofold electron pair formation with the
CH2 group, i.e. to the formation of the Pt-C double bond. The relativistic effects
favour the formation of a double bond and change the bond order from one to two.
Table 3-28 gives the values of the optimized geometry parameters. As shown, the
relativistic effects are dramatic and stabilize the cationic platinum carbene. They
shorten the bond by 0.3 and 0.1 Å on DF and MP2 level of theory, respectively.
The bond contraction is three times smaller on the correlated level than in the DF
method. Inclusion of the relativistic effects decreases the Pt-C-H angle by 5ı and
1:4ı and increases the bond dissociation energy (BDE) relative to that of PtC and
CH2 in their electronic ground states by 27 kcal/mol and 50 kcal/mol on the DF and
MP2 level of theory, respectively. The influence of both relativistic effects and elec-
tron correlation is shown to be highly significant in the calculation of BDE and their
incorporation leads to doubling of its value. The inclusion of electron correlation
improves the agreement with experiment [44]. However, the authors conclude that
the MP2 method performs fortuitously well because of the oscillating behaviour of
the perturbation series. In this case the relativistic and correlation effects are strongly
nonadditive.

3.2.2.2. UF 6

De Jong and Nieuwpoort [45] studied the influence of relativistic and correlation
effects on the electronic structure and spectroscopic properties of the uranium hex-
afluoride molecule. They derived for uranium a contracted basis set of dual family
type (i.e. basis set, which consists of a two sets of exponents and the (l C 2)-
exponents form a subset of the l-exponents set [46]) augmented with extra tight and
diffuse functions. The molecular calculations for the ground state 1A1g of UF6 were
performed using the DF and CISD methods and assuming Oh symmetry. The ener-
gies of valence spinors obtained from the DF calculations are graphically presented
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Figure 3-32. Nonrelativistic (HF) and relativistic (DHF) energies (in a.u.) of valence orbitals of UF6
(Figure 1 from W. A. de Jong and W. C. Nieuwpoort, International Journal of Quantum Chemistry, Vol.
58, No. 2, 1996, 203–216. Reprinted with permission of John Wiley and Sons, Inc.)

in Figure 3-32. For the sake of comparison, the energies of the nonrelativistic HF
spinors are also given. As implied by the figure, the relativistic effects change the
value and the order of orbital energies. The HOMO orbital 9a1g in the HF cal-
culations is of U6 s1=2 character and shifts down (9�6g ) in energy. The next one
below, the 10 t1u orbital with a large amount of U6p character, splits into the 12 �8u

and 10�6u orbitals. Both effects reflect the relativistic atomic effects in the uranium
atom: a strong contraction (12.4 eV) of the 6 s1=2 shell and a large spin orbit split-
ting (9.7 eV) of the 6p shell. The DF results indicate the 12�8u orbital to be HOMO
as shown in Figure 3-32. The molecular orbitals with a significant U6s contribution
are antibonding in the nonrelativistic description and due to a strong contraction of
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Table 3-29 Bond length, atomization energy and electron affinity
of UF6 obtained by de Jong and Nieuwpoort [45]

Re(Å) De(eV) EA (eV)

HF 1.995 9.0 8.9
DF 1.994 23.1 6.4
DF C Br � 22.7 6.5
DC-CISD � � 5.3
Expt.a 1.999 31.9 5.1
�rel(DF) �0.001 14.1 �2.5
�expt(DF) 0.005 8.8 �1.3
�expt(CISD) � � �0.2
aExperimental results of Compton [48]
�rel(DF) D X(DF) – X(HF)
�exp(DF) D X(DF) – X(expt.)
�exp(CISD) D X(DC-CISD) – X(expt.)

the U6 s orbitals, become nonbonding in the relativistic description. This means that
DF calculations imply a stronger bonding. The same occurs for the U6p orbitals but
this effect is smaller. The large (�8 eV) upward shift in the energy of U5f (due to a
more effective screening of the nucleus by contracted inner s and p orbitals) is also
reflected in the upward shift of the corresponding molecular orbitals (9�6u, 10�8u)
with large 5f character. This effect for the U6d orbitals is much smaller. These
conclusions are in agreement with the DF results reported by Malli and Styszyski
[47]. In Table 3-29 the values of the bond length Re, the atomization energy De into
seven atoms and the electron affinity EA obtained by de Jong and Nieuwpoort [45]
are given. Their results agree well with the experiment. The relativistic corrections
to the bond length are small and cause its contraction by 0.001 Å. On the other
hand, we observe a dramatic increase in the atomization energy by 14 eV. The small
relativistic contraction of the bond length, in spite of increased bonding energy, is
consistent with the relativistic effects on the molecular orbitals with a significant
U6s contribution. The electron affinity calculated on the DC-CISD level agrees well
with the experimental result of Compton [48].

3.2.2.3. CUO

Laser ablation matrix infrared experiments have made it possible to synthesize small
actinide molecules like CUO. In such experiments, laser ablated uranium atom con-
tacts with CO, which breaks the triple C-O bond. Adrews et al. [49, 50] suggested
that due to the interaction with the noble gas (Ar, Kr) matrix, the ground state of the
gas phase molecule is changed from 1†0

C to 3ˆ2, which leads to a large vibration
frequency shift in the C-U stretching.

Infante and Visscher [51] reported the energy distance between the two low-
est lying states 1†0

C and 3ˆ2 of CUO calculated by different four-component
methods. In the calculations by the DF, CCSD, CCSD(T) and MR-CCSD meth-
ods they exploited the basis sets of de Jong [52] and Fægrii [53] for the uranium
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Table 3-30 Optimised values of the bond distances RCU and RUO for the 3ˆ2 and 1†C
0 states

of the CUO molecule and adiabatic energy difference �E2 D E.3ˆ2/ – E.1†C
0 / calculated

by Infante and Visscher [51] at various levels of theory

State RCU(Å) RUO (Å) Method Act. space �E2(kJ/mol)

1†
C

0 1.772 1.808 DF � �36.8
3ˆ2 1.889 1.842 CCSD 12e 2.5

22e 34.3
34e 49.8

CCSD(T) 12e 3.3
22e 40.6
34e 58.2

MR-CCSD 12e 23.0
22e 34.3
34e 57.3

atom and cc-pVTZ basis sets for carbon and oxygen. The CC calculations were per-
formed for different sizes of the active space by inclusion of 12, 22 and 34 valence
and subvalence electrons in the correlated calculations. In this way the core-valence
correlation effects were partly taken into account. The set of virtual orbitals was
restricted to those with the orbital energy below 10 a.u. Since in the triplet state there
is one electron less participating in the bond relative to those in the singlet state, the
authors expected these two states to have different RCU (and RUO) bond distances.
Therefore, they computed the energy of a given state assuming the geometry opti-
mized for that state, rather then the common optimized geometry. Table 3-30 gives
the bond lengths RCU, RUO and the energy difference �E2 D E.3ˆ2/ – E.1†0

C/
calculated at various levels of theory. The correlation energy changes the value of
�E2 from �36:8 to 58.2 kJ/mol for the largest active space of 34 electrons, i.e.
makes it positive. It fits with the experimental picture in which the interaction with
a number of noble gas atoms is required to change the ground state. Spin-orbit
coupling splits the 3ˆ state into 3ˆ2, 3ˆ3 and 3ˆ4 and lowers the lowest 3ˆ2

component by 40 kJ/mol, however the correlation energy stabilizes the 1†0
C state

more (by almost 100 kJ/mol) than the 3ˆ2 state. The result of Infante and Visscher is
in contrast to the earlier accurate CASPT2 calculations of Roos et al. [54], who pre-
dicted 3ˆ2 as the ground state (both with and without approximate inclusion of the
spin-orbit coupling) in contradiction to the experimental findings of the inversion of
the ground state relative to the gas phase.

3.3. ELECTRIC PROPERTIES OF MOLECULES

An important contribution to the development of ab initio all electron four-
component methods for molecules was the paper by Visscher et al. [55], in which
the four-component random phase approximation (RPA) method was described
and implemented in the RELCCSD code. The authors applied this method to the
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calculation of the frequency dependent dipole polarizabilities ’.¨/ of H2O, SnH4

and Hg. The relativistic corrections to ’.¨/ of the water molecule are small, of about
0.1% of the corresponding nonrelativistic values and are becoming significant (a few
per cent) for a heavier molecule of tin tetrahydride. The relativistic corrections to
the frequency-dependent polarizability ’.¨/ of mercury are very large (50% and
more), change its value significantly and give two (instead of one in nonrelativis-
tic case) excitation peaks, due to the spin-orbit splitting which makes the transition
1S0 !3 P1 allowed.

3.3.1. Electric Properties of Interhalogens

The RPA method implemented by Visscher et al. [55] was used by de Jong et al. [37]
in their calculation of electric properties of interhalogens. They studied the rela-
tivistic effects on the electric dipole and quadrupole moments and the static dipole
polarizability of the XY series, X, Y D F, Cl, Br, I. These parameters were cal-
culated assuming the experimental bond length and the quadrupole moment was
computed relative to the centre of mass of the molecule. The dipole and quadrupole
moments were calculated as expectation values, while the dipole polarizability as a
response property using the propagator method within the RPA approach. The corre-
lation effects were estimated by means of CISD calculations. The calculations were
performed with the pVDZ and pVTZ basis sets used in the calculations of spectro-
scopic properties of the HX and XY molecules as described earlier in this chapter.
The values of the electric dipole moment �z, quadrupole moment �zz and static
dipole polarizability ’zz for the series of interhalogen molecules XY, X, Y D F,
Cl, Br and I, calculated using the relativistic DF and CISD methods and exploiting
the pVTZ basis sets are given in Table 3-31. All quantities are in atomic units. For
the sake of comparison, the corresponding nonrelativistic and experimental values
[56–64] are also given in Table 3-31. The relativistic corrections to the electric prop-
erties of XY are presented in Table 3-32 and in Figure 3-33. As implied by the data,
the electric dipole moment undergoes a relativistic increase for all the molecules.
This effect becomes increasingly important for the heavier molecules. For the iodine
containing molecules this contribution is 10–20% of the total value. The theoretical
CISD results overestimate the experimental values by 5–9%. The inclusion of the
correlation effects significantly improves the agreement with experiment. The com-
putation error bars for �z and�zz are marked in Figure 3-34. The relativistic effects
on quadrupole moment show monotonic behavior and are large for iodine contain-
ing molecules IF and ICl. The�zz values of the two lightest molecules are within the
wide error bars of the experimental data. The inclusion of relativistic effects leads
to an increase in ’zz except for the IF molecule, in which a significant decrease is
found. This increase is significant for BrCl, IF, ICl and IBr, with the largest rel-
ativistic effect on IBr. Figure 3-35 presents the correlation-relativistic crossterms
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Table 3-31 Dipole moments �z, quadrupole moments �zz and static dipole polarizability
’zz calculated by de Jong et al. [37] for interhalogen molecules. The positive sign of �z
corresponds to XCY� polarity

ClF BrF IF BrCl ICl IBr

�z(a.u.)
HF 0.438 0.644 0.790 0.201 0.425 0.243
DF 0.444 0.680 0.900 0.234 0.548 0.340
CISD 0.378 0.569 0.709 0.194 0.405 0.226
DC-CISD 0.383 0.601 0.810 0.224 0.518 0.313
Expt. 0.3494a 0.559c 0.766d 0.204e 0.49f 0.290h

0.346b � � � 0.475g 0.286i

�zz (a.u.)
HF 0.828 0.382 0.059 2.515 2.313 3.696
DF 0.836 0.349 �0.189 2.533 2.123 3.772
CISD 0.912 0.557 0.255 2.535 2.352 3.722
DC-CISD 0.922 0.534 0.045 2.560 2.196 3.815
Expt. 1.00b 0.68b � � � �

0.65b 0.91b � � � �
’zz (a.u.)

HF 22.18 27.97 36.30 51.55 64.98 78.85
DF 22.20 27.96 35.85 51.82 65.49 80.38
aExperimental value of Davis and Muenter [56]
bExperimental value of Ewing et al. [57]
cExperimental value of Nair et al. [58]
dExperimental value of Nair et al. [60]
eExperimental value of Nair et al. [59]
fExperimental value of of Herbst and Steinmetz [61]
gExperimental value of Durand et al. [62]
hExperimental value of Tiemann and Dreyer [63]
iExperimental value of Nair and Hoeft [64]

Table 3-32 Relativistic effects on electric properties of interhalogens from Table 3-31 (From
[37])

ClF BrF IF BrCl ICl IBr

��z (a.u.)
DF 0.006 0.036 0.111 0.033 0.123 0.097
DC-CISD 0.005 0.032 0.101 0.030 0.112 0.087

��zz (a.u.)
DF 0.009 �0.033 �0.248 0.018 �0.191 0.076
DC-CISD 0.010 �0.023 �0.210 0.025 �0.156 0.093

�’zz (a.u.)
DF 0.02 �0.01 �0.46 0.27 0.51 1.53

contributing to electric dipole and quadrupole moments. These effects are small, of
a few tenth of a.u., but increase fast and we may expect them to be not negligible
for interhalogens with heavy and superheavy atoms At and (117).
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Figure 3-33. Relativistic effects (in a.u.) on dipole moment �z, quadrupole moment �zz and dipole
polarizability ’zz of interhalogens (From [37])

3.3.2. Electric Field Gradient and Quadrupole Moments

The nuclear quadrupole moment (NQM) is a quantity describing the nonspherical
distribution of the nuclear charge. It can be determined from the molecular cal-
culations by combining the experimental nuclear quadrupole coupling constants
(NQCC) available from microwave spectroscopy and the electric field gradients
(EFG) calculated according to the formula:

Q.X/ D k
�Q.X/

q.X/
; (3-2)
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Figure 3-34. Differences (in a.u.) between the calculated and experimental values of electric properties
of interhalogens (From [37])

where �Q(X) is NQCC in MHz, q(X) is EFG (in a.u.) at the position of the nucleus
X, Q(X) is NCM in barns and the conversion factor k D 1=234:9647. For the nuclei
for which highly accurate experimental NQCC are available, the accuracy of NCM
is determined by the quality of calculated EFG. Visscher’s group published a series
of papers in which the state of art of the relativistic molecular calculations of EFG
and new recommended values of NQM are reported. Such calculations require an
advanced level of inclusion of not only relativistic effects but also electron cor-
relation. In the molecular approach the values of NQM are usually derived for a
series of molecules containing the atom of interest and then they are averaged for
a given method. Van Stralen and Visscher [65] determined NQM of 115In on the
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Figure 3-35. Correlation-relativistic cross terms (in a.u.) for the electric dipole and quadrupole moments
of interhalogens (From [37])

Table 3-33 Electric field gradient (in a.u.) values at the In nucleus in a series of
indium halides calculated by van Stralen and Visscher [65] at various levels of
theory. DF-benchmark results were obtained using the basis sets for indium and
halogen atoms for which the EFG on In was converged within 0.001 a.u; the remain-
ing results were obtained using smaller basis sets, for which EFG convergence
within 0.01 a.u. was obtained

Method InF InCI InBr InI

HF �3.990 �3.671 �3.553 �3.462
DF �4.425 �4.067 �3.910 �3.762
DF-benchmark �4.432 �4.074 �3.914 �3.754
DC-MP2 0.404 0.449 0.441 0.438
DC-CCSD 0.326 0.347 0.318 0.309
DC-CCSD(T) 0.420 0.422 0.405 0.400

basis of the calculations for indium halides: InF, InCl, InBr, InI. Accurate calcula-
tions of EFGs have to take into account the core and valence polarization, which
in turn requires large basis sets. To optimize the exponents of the basis set for the
indium atom, the authors used the DF energy criterion for the ground state of In.
In the next step, the convergence of EFG as a function of basis set extension with
extra polarization, diffuse and tight functions, was studied. For halide atoms the
basis sets of triple zeta quality were used. On the correlated level van Stralen and
Visscher performed a thorough analysis of the core correlation and the effect of
truncation of the virtual spinors. They came to the conclusion, that both relativis-
tic and correlation contributions to EFG at the In nucleus in indium halides are of
roughly the same magnitude but of the opposite sign. Therefore, due to the near
cancellation of both contributions, they observe a fortuitous agreement between the
HF and DC-CCSD(T) values. The values of EFG at the indium nucleus in various
indium halides are presented in Table 3-33. The values of the nuclear quadrupole
moments of In obtained using the calculated EFGs are given in Table 3-34 and in
Figure 3-36. Average values of NQMs derived from different molecules and their
average absolute deviations (AAD) are given in the last column of this table. As fol-
lows, the relativistic effect and electron correlation reduce substantially the values
of these deviations. The small value of AAD at the DC-CCSD(T) level indicates
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Table 3-34 Nuclear quadrupole moments of 115In (in mb) derived by van Stralen and
Visscher [65] from a series of indium halides at various levels of theory

Method InF InCI InBr InI Average

HF 775:7 764:7 760:2 746:7 761:8 .8:4/

DF 699:4 690:2 690:9 687:2 691:9 .3:7/

DC MP2 768:3 774:6 777:6 779:7 775:1 .3:6/

DC CCSD 753:7 750:7 751:1 750:6 751:5 .1:1/

DC CCSD(T) 771:4 768:8 769:6 770:8 770:2 .1:0/
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Figure 3-36. NQMs of 115In derived from different indium halides using different methods (From [65])

the quality of these calculations. Therefore, the authors used these results to recom-
mend the new value of nuclear quadrupole moment of 115In as Q(115In) D 770(8)
millibarn (mb).

In another paper van Stralen and Visscher [66] calculated NQM of 127I in thor-
ough relativistic molecular calculations on nine closed-shell diatomic molecules:
HI, IF, ICl, IBr, I2, CuI, AgI, AuI and TlI. The recommended value of NQM
obtained by them is 696(12) mb. A separate paper of Belpassi and coworkers [67]
was devoted to NQM of gold. They report relativistic calculations of EFG at gold
atom in six molecules: AuF, XeAuF, KrAuF, ArAuF, (OC)AuF and AuH. On the
basis of these results the authors obtained NQM of gold as Q.197Au/ D 510.15/mb.
Pernpointner and Visscher [68] investigated different approaches to the calculation
of EFG, they calculated EFG for a series of diatomic molecules: AlF, AlCl, AlBr,
GaF, GaCl, GaBr and derives new values of NQM for 27Al and 69Ga. The values
of NQM they recommended are 146.0(0.4) and 171(2) mb, for Al and Ga respec-
tively. The values of the nuclear quadrupole moments derived in the fully relativistic
four-component framework are collected in Table 3-35.
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Table 3-35 Nuclear quadrupole moments (in mb) of the nucleus
X derived from fully relativistic four component calculations of
the EFG at nucleus X performed for different series of molecules
containing atom X

X Ref. Q(X) Uncertaintya

27Al [68] 146 0.4
69Ga [68] 171 2
115In [65] 770 8
127I [66] 696 12
197Au [67] 510 15
aEstimated uncertainty for calculated Q(X)

3.4. CONCLUSIONS

The calculations reported in this chapter have shown that the inclusion of the rela-
tivistic effects leads to a significant change in the values of spectroscopic molecular
parameters. For the coinage metal hydrides a contraction of the bond length and an
increase in the values of the fundamental frequency and of the dissociation energy
are observed. For AuH these effects are large, 0.3 Å, 800 cm�1 and 1 eV, for Re, �e

and De respectively. The difference between the experimental and theoretical results
increases across the CuH-AgH and AuH series, however the inclusion of relativis-
tic effects reduces this discrepancy and keeps it not growing. Similar trends were
observed for the MF and MCs series, where M D Cu, Ag and Au. For example, the
relativistic effects almost doubled the value of the dissociation energy for AuCs.

The study of the energetic structure of the PtH and PdH molecules has shown that
relativistic effects influence both the character and the mechanism of bonding and
because of the mixing of nonrelativistic states with the same � quantum number,
the¨¨-coupling scheme should be used for the description of molecular states. This
mixing leads to a change in the order of the molecular states for PtH. The relativistic
contraction and the energetic stabilization of the 6s orbital of Pt is responsible for the
unusual stability of the Pt-H bond, while the higher value of the spin-orbit splitting
in Pt when compared to that in Pd, influences the pattern of grouping of molecular
states for the PdH and PtH molecules. For the series of diatomic molecules with
halogen atoms (X2, XY and HX; X, Y D F, Cl, Br, I, At) the increasing relativistic
effects on the spectroscopic constants of these molecules have been evidenced. For
di- and inter-halogens a relativistic expansion of the bond length was obtained, while
for hydrogen halides the contraction (for HF, HCl, HBr and HI) and expansion (for
HAt) were found. The change in the trend can be explained as a result of the com-
petition between the scalar and the spin-orbit relativistic effects. This mechanism is
even more pronounced for the molecules with superheavy elements of group 13 and
17 of the periodic table. The relativistic admixture of antibonding ��.�/ orbital to
bonding .�/ orbitals weakens the bond in the X2, XY and HX molecules.

Although the relativistic effects grow fast with the atomic number of atoms mak-
ing the molecule, the electron correlation remains always important for the correct
prediction of molecular parameters and its inclusion usually improves the agreement



Why do we Need Relativistic Computational Methods? 159

of theory with experiment. The different values of relativistic corrections obtained
on DF and post DF level of theory indicate that the relativistic and correlation effects
are not additive and should be considered simultaneously. The increasing values of
the correlation-relativistic cross terms estimated for the diatomic molecules contain-
ing halogen atoms illustrate this conclusion. Moreover, the proper description of the
core-valence electron correlation is also important for these molecules and changes
the trend obtained when the correlation effects are included in the valence shell only.

The relativistic effects in dihalogen molecules containing superheavy elements
are responsible for dramatic changes in the spectroscopic constants of these sys-
tems. The bond contraction for H(113) and (113)(117) is almost 0.4 Å and the bond
length expansion for H(117) is 0.1 Å. Relativistic effects lead to different polariza-
tions of group 13 and 17 diatomic molecules which result in a dramatic change in
the value of dipole moment of the (113)(177) molecule from �4:99 to 1.80 (the
negative value corresponds to the negative charge of the (117) atom). The relativis-
tic effects in PtCH2

C are also large; they favour the formation of a double bond
and change the bond order from one to two, shorten the bond by 0.3 Å and dou-
ble the value of the bond dissociation energy. These effects stabilize the bonding in
the UF6 molecule (due to the relativistic contraction of the U6s orbital involved in
the antibonding molecular orbitals) and are responsible for the change in the order
of molecular energy levels of UF6, which significantly influences the assignment
of lines in the photoelectron spectrum. The relativistic correction to the atomiza-
tion energy of UF6 is 14 eV. The state of art calculations of electric field gradient
for the series of molecules containing the atom of interest, which take into account
both electron correlation (with core and valence polarization) and relativistic effects,
lead to significantly more accurate values of nuclear quadrupole moments of various
nuclei.

The calculation results obtained in the last 2 decades (see Appendix for a list of
molecules for which ab initio four-component calculations have been performed)
have proved that in many cases the inclusion of relativistic effects is mandatory for
proper description of the energetic structure of many electron systems and leads to a
better agreement of theory with experiment. We have discussed only the examples of
ab initio all electron four component methods assuming that N-electron molecular
system is described by the Dirac-Coulomb-Breit Hamiltonian. These methods are
much more expensive when compared to their nonrelativistic counterparts because
of large basis set required for molecular calculations. On the other hand, the four
component DF and post DF calculations are considered to be the most accurate and
supply the results which can serve as benchmark results necessary for testing or for
calibration of less advanced methods.

APPENDIX

Styszyński [69] listed the molecules whose energetic structure and spectroscopic
constants have been determined by the ab initio all-electron four-component meth-
ods. Table 3-36 gives the list of the molecules, methods, year of publication and
references to the relevant calculations.
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Table 3-36 The molecules whose energetic structure and spectroscopic constants have been
determined by the four-component methods (From “Badanie efektów relatywistycznych
w molekułach. Metody czteroskładnikowe” by J. Styszyński (2007). By permission of
Wydawnictwo Naukowe Uniwersytetu Szczecińskiego)

Molecule DF DF C Br MP2 CISD CISD(Q) CCSD CCSD C T CCSD(T)

CuH 1995 [16]

AgH 1982 [15] 1995 [16]

1995 [16]

1996 [18]

AuH 1982 [15] 1995[16] 1996 [17]

1995 [16]

1996 [17]

HO 1995 [70]

HS 1995 [70]

HSe 1995 [70]

HTe 1995 [70]

HPo 1995 [70]

GeO 1992 [71, 72]

SnO 1992 [71, 72]

PbO 1993 [71–73]

ThO 1997 [74]

PtH, PtHC 1993 [25, 28] 1993 [25]

PdH 1997 [33] 1997 [33]

CdH, CdH˙ 1998 [34] 1998 [34]

PtCu 2005 [75] 2005 [75] 2005 [75]

PtAg 2005 [75] 2005 [75] 2005 [75]

PtAu 2005 [75] 2005 [75] 2005 [75]

CuCl 1997 [76, 77]

CuBr 1997 [77]

CuI 1997 [77]

CuF 1997 [20] 1997 [20]

AgF 1997 [20] 1997 [20]

AuF 1997 [20] 1997 [20]

CsAu 1997 [21] 2003 [22] 2003 [22]

2003 [22]

CsAg 2003 [22] 2003 [22] 2003 [22]

CsCu 2003 [22] 2003 [22] 2003 [22]

KF 1993 [78]

RbF 1993 [78]

CsF 1993 [78]

GdF 1997 [79]

GdF2 1998 [80]

FO 1996 [81] 1996 [81] 1996 [81] 1996 [81]

ClO 1996 [81] 1996 [81] 1996 [81] 1996 [81]

(continued)
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Table 3-36 (continued)

Molecule DF DF C Br MP2 CISD CISD(Q) CCSD CCSD C T CCSD(T)

O˙

2 1996 [81] 1996 [81] 1996 [81] 1996 [81]

F2 1996 [35] 1996 [35] 1996 [35] 1996 [35] 1996 [35] 1996 [35]

Cl2 1996 [35] 1996 [35] 1996 [35] 1996 [35] 1996 [35] 1996 [35]

Br2 1996 [35] 1996 [35] 1996 [35] 1996 [35] 1996 [35] 1996 [35]

1997 [82] 1997 [82]

I2 1996 [35] 1996 [35] 1996 [35] 1996 [35] 1996 [35] 1996 [35]

1997 [82] 1997 [82]

1997 [40]

At2 1996 [35] 1996 [35] 1996 [35] 1996 [35] 1996 [35] 1996 [35]

1997 [82] 1997 [82]

HF 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36]

2000 [38] 2000 [38] 2000 [38]

HCl 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36]

2000 [38] 2000 [38] 2000 [38]

HBr 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36]

2000 [38] 2000 [38] 2000 [38]

HI 1992 [83] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36]

1996 [36] 2000 [38] 2000 [38] 2000 [38]

1996 [24]

HIC 1992 [83]

HAt 1992 [83] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36] 1996 [36]

1996 [36] 2003 [39] 2003 [39] 2003 [39]

1996 [24]

HAtC 1992 [83]

HUus 1996 [24]

ClF 1998 [37] 1998 [37] 1998 [37] 1998 [37] 1998 [37]

BrF 1998 [37] 1998 [37] 1998 [37] 1998 [37] 1998 [37]

BrCl 1998 [37] 1998 [37] 1998 [37] 1998 [37] 1998 [37]

IF 1998 [37] 1998 [37] 1998 [37] 1998 [37] 1998 [37]

ICl 1998 [37] 1998 [37] 1998 [37] 1998 [37] 1998 [37]

IBr 1998 [37] 1998 [37] 1998 [37] 1998 [37] 1998 [37]

H2O 1994 [84, 85] 1998 [86]

1998 [86]

H2S 1994 [84, 85]

H2Se 1994 [84, 85]

H2Te 1994 [84, 85]

H2Po 1994 [84, 85]

H2Pt 1993 [28] 1995 [87]

PtCH2 1996 [43] 1996 [43]

CH4 1991 [88] 1992

1992

SiH4 1991 [88] 1992 [89]

1992 [89]

GeH4 1991 [88] 1992 [89]

1992 [89]
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Table 3-36 (continued)

Molecule DF DF C Br MP2 CISD CISD(Q) CCSD CCSD C T CCSD(T)

SnH4 1991 [88] 1992 [89]

1992 [89]

PbH4 1991 [88] 1992 [89]

1992 [89]

XeF 1997 [90] 1997 [90]

XeF2 1995 [91] 1995 [91] 2008 [92] 2008 [92] 2008 [92]

1997 [90] 1997 [90]

2008 [92]

XeF4 1995 [93] 1995 [93]

1997 [90] 1997 [90]

XeF6 1997 [90] 1997 [90]

ThF4 1994 [94] 1994 [94]

RfCl4 1998 [95] 1998 [95]

UF6 1996 [47] 1996 [47] 1996 [45]

1996 [45] 1996 [45]

EuO9�
6 1992 [96]

1995 [97]

CoF2�6 1994 [98] 1994 [98]

RhF2�6 1994 [98] 1994 [98]

IrF2�6 1994 [98] 1994 [98]

TlH 1999 [41] 1999 [41] 1999 [41]

(113)H 1999 [41] 1999 [41] 1999 [41]

(113)F 1999 [41] 1999 [41] 1999 [41]

TlAt 2001 [42]

Tl(117) 2001 [42]

(113)At 2001 [42]

(113)(117) 2001 [42]

(110)C 2007 [99] 2007 [99] 2007 [99] 2007 [99]
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CHAPTER 4

TWO-COMPONENT RELATIVISTIC THEORIES

MARIA BARYSZ
Institute of Chemistry, N. Copernicus University, 87 100 Toruń, Gagarina 7, Poland
e-mail: teomjb@chem.uni.torun.pl

Abstract: This review describes a variety of two-component methods of relativistic quantum
chemistry. It starts with the description of elimination of the small component and
the Pauli expansion and followed by the regular approximation method. Then the two-
component methods of relativistic quantum chemistry based on the unitary transformation
of the Dirac Hamiltonian are reviewed. After discussing the Douglas–Kroll–Hess method
and its generalizations the main emphasis is put on the infinite-order two-component
method (IOTC). The transition from the Dirac formalism to any two-component approx-
imation is accompanied by the change of all operators, including those which correspond
to external perturbations and lead to properties of different orders. This so-called change
of picture problem is given some attention as well. The back-transformation of the two-
component wave function to the four-component spinor and the quality of the resulting
four-component wave function is discussed. Finally some discussion of the two-electron
terms is presented.

Keywords: Dirac equation, Elimination of small component, Regular approximation, Douglas–
Kroll–Hess method, Infinite-order Two-component (IOTC) method, Change of picture,
Relativistic interactions

4.1. INTRODUCTION

For relatively light elements the electronic structure of their compounds is studied
in terms of solutions of the non-relativistic equation, i.e., the Schrödinger equation.
For stationary states these solutions are the eigenstates of the electronic Schrödinger
Hamiltonian:

HS D
nX

iD1

(
�1
2

r2
i C

NX
AD1

.�ZA

rAi

/

)
C
X
i<j

1

rij
(4-1)

where the terms in the bracket represents the one particle kinetic and the potential
energy operators. The last term is the two-electron Coulomb potential operator.

M. Barysz and Y. Ishikawa (eds.), Relativistic Methods for Chemists,
Challenges and Advances in Computational Chemistry and Physics 10,
DOI 10.1007/978-1-4020-9975-5 4, c� Springer Science+Business Media B.V. 2010

165

teomjb@chem.uni.torun.pl


166 M. Barysz

Most of the analysis of these solutions and the methods of approximation
are rooted in solutions of the non-relativistic one-electron problem with the
Hamiltonian.

hS D �1
2

r2 C Vext (4-2)

where Vext is the external potential. The simplest case is that of the Coulomb
interaction with a single nucleus of chargeZA,

Vext D �ZA

rA
(4-3)

If the electron spin is taken into account each solution of the one-electron
Schrödinger equation is doubled and leads to two spin-orbitals, uk1 D  k˛ and
uk2 D  kˇ, where ˛ and ˇ are the so-called spin functions which correspond to
the 1/2 and �1/2 values of the so called spin quantum number ms, respectively.
Hence, the Schrödinger equation which includes some information about spin can
be interpreted in terms of the 2 � 2 matrix Hamiltonian’s,

hS D
�

hS 0

0 hS

�
: (4-4)

with solutions

hS �k D �k�k (4-5)

where

�k D c1

�
 k

0

�
C c1

�
0

 k

�
(4-6)

Since hS does not include spin operators one can choose two independent solutions

uk1 D
�
 k

0

�
(4-7)

and

uk2 D
�
0

 k

�
(4-8)

which correspond to the usual spin-orbitals of the spin-restricted method of non-
relativistic quantum chemistry.
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With the increasing value of the nuclear chargeZA the relativistic effects become
of increasing importance. In consequence the one-electron Schrödinger Hamiltonian
needs to be replaced by its appropriate relativistic counterpart which is the Dirac
Hamiltonian, hD , which will be defined later.

Once we know the solution of the Dirac equation for a single electron moving in
the external potential it is tempting to build the relativistic theory of many-electron
systems in a similar way as the non-relativistic theory is built, i.e., by combining
the one-electron Dirac Hamiltonian for each electron with the Coulomb interaction
between electrons,

HDC D
NX

iD1

hD.i/C
X
i<j

1

rij
(4-9)

This is the simplest approximation to the true relativistic Hamiltonian of a many par-
ticle system which would follow from quantum electrodynamics. The one-electron
part of Eq. (4-9) is fully consistent with all requirements of the relativistic theory
of a particle moving in some external potential. However, the Coulomb interaction
term in Eq. (4-9) assumes that the interaction is instantaneous like in non-relativistic
theory. Hence, as a whole the Hamiltonian (4-9) is not fully relativistic.

Leaving aside for a moment the problem of the relativistic Hamiltonian for many
particle systems we learn from [1, 2] that the central issue is the form of hD .

Unlike the non-relativistic one-electron Hamiltonian, hD leads to the station-
ary eigenvalue problem which is defined in terms of mutually coupled first-order
differential equations. These are usually written in the matrix operator form

hD�D D �D�D (4-10)

where

hD D c˛p C ˇmc2 C .V �mc2/I D
�

V c�p

c�p V � 2mc2

�
; (4-11)

where V is the external potential of the Coulomb type, or alternatively a potential
derived from an extended nuclear charge distribution.

˛ D
�

0 �

� 0

�
;ˇ D

�
I 0

0 �I

�
; (4-12)

with

0 D
�

0 0
0 0

�
; I D

�
1 0
0 1

�
(4-13)
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and

¢x D
�

0 1
1 0

�
; ¢y D

�
0 �i
i 0

�
; ¢z D

�
1 0
0 �1

�
(4-14)

are the Pauli matrices. Except for a factor of 1
2

, the �x;y;z matrices can be viewed
as sx , sy and sz spin operators, respectively, with the spin functions of the form of
two-dimensional column vectors. Then,

sz D 1

2
�z (4-15)

sz

�
1

0

�
D 1

2

�
1

0

�
(4-16)

sz

�
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1

�
D �1

2

�
0

1

�
(4-17)

Moreover, in order to get electronic binding energies from Eq. (4-10) directly
comparable to the non-relativistic theory the energy scale is shifted by the rest mass
energymc2 of the electron.

The 4 � 4 matrix form of the Dirac equation (4-10) gives for each energy state
four solutions which are arranged into a four-component column vector referred to
as the 4-spinor. Each of these solutions can be written as

�D D
�
 L

 S

�
; (4-18)

where the upper and lower two components�L and�S are spinors originating from
the electronic and positronic degrees of freedom.

In the limit of c ! 1 the lower component vanishes and �L terms into
non-relativistic solutions the Eq. (4-5). Simultaneously the Dirac energy for these
solutions becomes equal to the non-relativistic energy. For a free electron the limit
c ! 1 would correspond to positive energy states. For this reason the part of
the Dirac spectrum which has the Schrödinger non-relativistic limit for c ! 1
is referred to as the positive energy spectrum and is associated with the dominant
contribution of �L in the �D-spinor (4-18).

The solutions of the Dirac equation have four components and manipulating
them in the many-electron theory based on the Dirac–Coulomb Hamiltonian is quite
cumbersome.

Moreover, the use of the Dirac Hamiltonian (4-11) requires considerably larger
computational resources compared to the use of the Schrödinger Hamiltonian.
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The four-component relativistic Dirac wave function contains information about
positive- and negative-energy states of the system. In chemical applications, one
is usually concerned with the electronic (or positive-energy) states only. Therefore,
some reduction of the four-component wave function seems to be preferred. The
history of this ‘reduction’ goes back to the period before the Dirac equation. The
first step in this direction appears to have been made by Pauli in the form of a quasi-
relativistic Hamiltonian known as the Pauli Hamiltonian [1, 2]. This Hamiltonian
can be approximately derived from the Dirac Hamiltonian by using the fact that in
the non-relativistic limit the ‘large’ (the upper) 2-vector part of the Dirac 4-spinor
becomes the electronic (positive energy) solution with spin. On this basis one could
expect that there is some representation of the Dirac Hamiltonian which completely
separates the positive and negative energy spectra and permits to focus all attention
on the electronic part only.

Actually the 2-spinor formalism may not be that much an approximation as far
as relativistic quantum chemistry is concerned. The idea of this separation goes
back to Foldy and Wouthuysen [3]. The exact separation of the two spectra would
be equivalent to the transformation of the Dirac 4-spinors into either electronic or
positronic 2-spinors. Alternatively, this means that the 4 � 4 Dirac Hamiltonian is
to be block-diagonalized, i.e., brought into the form of the direct sum of two 2 � 2
matrix Hamiltonian’s, one of them corresponding to the electronic spectrum and
the other one referring solely to the positronic eigenvalues. Once this is achieved
most problems of the relativistic quantum chemistry can be formulated solely in
terms of electronic 2-spinors. The positronic solutions can be simply abandoned.
Obviously, they will be needed in all cases which may involve the electron–positron
pair creation processes, i.e., whenever the given problem needs to be considered
in the framework of quantum electrodynamics [4–6]. However, for the majority of
problems encountered in relativistic quantum chemistry the use of the advanced
apparatus of the quantum field theory does not seem to be urgently required [7].

4.2. THE TWO-COMPONENT METHODOLOGY

In this Section we describe the general ideas of the two-component methods. We
start with the method of the elimination of the small component and the ZORA
ansatz followed by the Douglas–Kroll approximation and the Douglas–Kroll–Hess
methods. The main discussion will be based on the Infinite Order Two-Component
method (IOTC) which seems to be the best available exact two-component method.

4.2.1. Elimination of the Small Component and the Pauli Expansion

Since ˛ and ˇ are block matrices, the Dirac equation (4-10) can be factored out in
two equations.

.c�p/�S C V �L D E�L

.c�p/�L C .�2mc2 C V /�S D E�S (4-19)
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Here �L and �S are large and small two-component wave functions that include
the ˛ and ˇ spin functions. The latter equation can be solved for �S .

�S D .E C 2mc2 � V /�1c�p�L (4-20)

Equation (4-20) or approximations to this equation can be used as an ansatz for
the small component. The Pauli expansion results from taking 2mc2 out of the
denominator of Eq. (4-20) for the elimination of the small component (ESC).

.E C 2mc2 � V /
�1 D .2mc2/�1

�
1C E � V

2mc2

��1

(4-21)

By inserting it into Eq. (4-20) and then into the Dirac equation (4-19), modified but
still exact Dirac equations are obtained.

.V � E/�L C 1

2m
.�p/

�
1C E � V

2mc2

��1

.�p/�L D 0 (4-22)

We may obtain relativistic corrections by expanding the right side of Eq. (4-21) in
the Taylor series.

�
1C E � V

2mc2

��1

D 1 � E � V

2mc2
C � � � (4-23)

The problem with this expansion is, that it is only valid when E � V � 2mc2,
however in the region of atom close to the nucleus where V ! �1 for r ! 0 this
is not fulfilled. Inserting (4-23) in (4-22), using the vector identity

.� u/.� v/ D .uv/ C i�.u � v/ (4-24)

and assuming the Coulomb potential �Z=r one obtains, after renormalization of
the large component of the wave function, the non-relativistic limit through terms
of the order of 1

c2 [2, 8–10]:

�
p2

2m
C V � p4

8m3c2
C Zsl

2m2c2r3
C Zı.r/

2m2c2

�
�L D E�L (4-25)

Equation (4-25) is called the two-component Pauli equation. The first two terms
are the non-relativistic kinetic and potential energy operators, the p4 term is called
the mass-velocity correction, and is due to the dependence of the electron mass on
the velocity. The next is the spin–orbit term (s is the electron spin and l is the angu-
lar momentum operator r � p), which corresponds to an interaction of the electron
spin with the magnetic filed generated by the orbital movement of the electron.
The last term involving the ı function is the Darwin correction, which corresponds



Two-Component Relativistic Theories 171

to the correction that can be interpreted as the result of the oscillation of the elec-
tron around its mean position, referred also as Zwitterbewegung. The mass–velocity
and Darwin corrections are often called the scalar (spin-free) relativistic correc-
tions. Due to the singular behaviour of Pauli operators the Pauli Hamiltonian is
not bounded from below and can only be used as first-order corrections to the
non-relativistic calculations.

4.2.2. Regular Approximations (RA)

The Pauli expansion results from taking 2mc2 out of the denominator of the
equation for the elimination of the small component. The problem with this is that
both E and V can potentially be larger in magnitude than 2mc2 and so expansion
(4-23) is not valid in some region of space. An alternative way is to extract from
the denominator (4-21) the operator (2mc2 � V ), which is always positive definite
for the nuclear potential and is always greater than 2mc2. With this choice we may
eliminate the small component by writing the Eq. (4-22)

.V � E/�L C 1

2m
.�p/

2mc2

2mc2 � V
�
1C E

2mc2 � V

��1

.�p/�L D 0 (4-26)

The minimum value of the potential is zero, so the power series is now valid
everywhere for energies jEj < 2mc2. This range covers all the electron bound
states, and continuum states up to an energy of 2mc2.

In the development of the Pauli Hamiltonian, truncation of the power series
expansion of the inverse operator after the first term gives the non-relativistic
Hamiltonian.

The zero-order term is obtained by setting the expression .1 C E
2mc2�V

/�1 in
Eq. (4-26) to 1 and after the Taylor expansion of .2mc2 � V /�1. The zero-order
Hamiltonian is

HZORA D V C 1

2m
.�p/

�
1C V

2mc2
C V 2

4m2c4
C � � �

�
.�p/ (4-27)

This Hamiltonian first developed by Chang et al. [11], is often referred to as the
CPD Hamiltonian. The method was further developed by van Lenthe et al. [12, 13]
and the name given was the zeroth-order regular approximation (ZORA).

The first term in the bracket of Eq. (4-27) is the non-relativistic kinetic energy T .
Commuting �p to the right and using the vector identity (4-24), the second
term gives

.�p V /.�p/ D V p2 C .pV /p C „� .rV /�p (4-28)

This operator contains the Pauli spin–orbit operator and part, but not all of the spin-
free relativistic correction [10]. What is missing, compared with the Pauli expansion
in (4-25) is the term which gives rise to the mass–velocity correction and part of the
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Darwin term. Since the missing term is positive for the bound states, ZORA will
give energies that are too low. The ZORA advantage over the Pauli expansion is the
fact that the ZORA energy (contrary to the Pauli energy) is bounded from below for
Z < c, and hence variationally stable. However one minor drawback of ZORA is
that it is not gauge independent, (i.e.), a change of the zero in the energy scale does
affect the results. Solutions to this problem have been proposed [14–16]. The further
development of the regular approximation is based on the expansion of the inverse
operator 1

2mc2�V CE
in Eq. (4-20)

1

2mc2 � V CE
D 1

2mc2 � V

�
1C E

2mc2 � V

��1

D
1X

kD0

.�E/k
.2mc2 � V /kC1

(4.29)

While the ZORA Hamiltonian .k D 0/ is E-independent, higher order approxima-
tions involveE-dependent operators what makes it difficult to apply. In the contents
of the Regular Approximation, the other methods based on the elimination of the
small component (ESC) must be mentioned, mainly the normalized elimination of
the small component (NESC) proposed by Dyall [17].

4.2.3. Unitary Transformations of the Dirac Hamiltonian

In solving the Dirac equation, it would be desirable to use as much as possible of
the well-established techniques known from non-relativistic theory. However, as we
have discussed above we quickly encounter a problem with the variational princi-
ple, since our master equation (4-10) describes both electronic and positronic states.
The latter have much lower energies, and any attempt to minimize the energy with-
out additional constraints is likely to result in a positronic-like solution. To avoid
such a collapse, one must first take necessary precautions to ensure that the solu-
tions are constrained to a space of proper electron-like solutions. This would be
accomplished if one could find a unitary transformation of the 4 � 4 Eq. (4-10) that
would de-couple the large and the small component and bring it on a block-diagonal
form. It was the idea of Foldy and Wouthuysen [3] to completely separate the elec-
tronic and positronic solutions of the Dirac equation by the van Vleck-type (unitary)
transformation of the Dirac Hamiltonian:

HU
D D U�HDU ; (4-30)

i.e.,

HU
D D

�
hC 0

0 h�

�
: (4-31)
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Such a transformation converts the 4 � 4 Dirac equation (4-10) into two separate
eigenvalue problems. The one which corresponds to what is called the positive
(electronic) part of the spectrum:

hC C D �C C; (4-32)

where  C is the upper 2-spinor of the transformed four-component function:

�U
D D U��D D

�
 C
0

�
; (4-33)

and should convert into the two-component non-relativistic Schrödinger equation in
the limit of c ! 1 (or ˛ D 1=c ! 0).

The FW transformation U of Eq. (4-30) can be specified in a number of dif-
ferent forms [18, 19]. The most common are the exponential and the square root
forms [20]. Moreover, it can be also expressed as a product of subsequent unitary
transformations:

U D U0U1 : : : (4-34)

Until recently this way of composing the final transformationU seemed to be of par-
ticular importance for the development of non-singular two-component relativistic
Hamiltonians and this is the way how we are going to define it in this review.

The one-step transformation can be easily determined in the case of a free Dirac
particle [3, 21–24] and has the following form:

U0 D
�

A ˛AB
˛AB -A

�
; U0

�U0 D I; (4-35)

where

A D
s
ep C 1

2ep

; B D 1

ep C 1
�p; (4-36)

and

ep D
p
1C ˛2p2: (4-37)

When applied to the free-particle Dirac Hamiltonian this transformation brings it
into diagonal form:

U0
�

�
0 c�p

c�p �2c2

�
U0 D

�
Tp 0
0 �2c2 � Tp

�
; (4-38)
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where

Tp D c2.ep � 1/: (4-39)

The atomic units has been used in the above equations. Thus the free-particle posi-
tive and negative energy spectra become fully separated. In other words one may say
that fpFW of Eq. (4-35) accounts for all ‘kinetic’ relativistic effects. Simultaneously,
there is no power expansion involved and one may expect that if the same trans-
formation were applied to the Hamiltonian (4-11) the strongly divergent operators
would not appear in the transformed Hamiltonian. In the traditional FW transfor-
mation of the Dirac Hamiltonian [1, 3, 20], the essentially singular operators arise
either from high powers of p2 or from their action on the Coulombic term V . This
observation leads immediately to the conclusion that one may considerably profit by
carrying out a preliminary free-particle Fouldy–Wouthuyse (fpFW) transformation
of the Hamiltonian (4-11). Obviously, this transformation will not block-diagonalize
HD . In a general case to build the exact two-component formalism would mean that
the next step is to define the complementary transformation U1 which would fully
block-diagonalizeH1, i.e.,

U�
1 H1U1 D U�

1U
�
0 HDU0U1 D

�
hC 0

0 h�

�
: (4-40)

Usually, this block-diagonalization is achieved only approximately and one of the
possibilities is that used by Douglas, Kroll and Hess [25–28]. A general description
of the method will be presented in the next Section.

4.2.3.1. Douglas–Kroll–Hess Approximation

Although the unitary matrix U in Eq. (4-30) can be given in closed-form, what will
be shown later in this review, historically, the first was the strategy introduced in
1974 by Douglas and Kroll [23] and followed by B.A. Hess [25, 26] who found
the efficient way of handling the matrix elements of the two-component Douglas–
Kroll Hamiltonian. B.A. Hess defined the unitary transformation U as the sequence
of two transformations U1U0. The inter most first unitary transformation U0 was,
chosen to be the fpFW transformation. The decoupling of the Dirac Hamiltonian in
the framework of the Douglas–Kroll transformation was achieved by an expansion
of the Hamiltonian in ascending powers of the external potentialV , whereby the off-
diagonal terms, which are called odd terms were removed to a certain order in V .
What is referred to as the Douglas–Kroll–Hess (DKH) method corresponds to the
approximate unitary transformation U1 which makes the block of the partly block-
diagonalized Hamiltonian accurate through the certain order of V . The resulting
approximate two-component approximation to hC exact through the terms of the
order of V 2 has been thus referred to as the DKH2 method. Since than the Douglas–
Kroll–Hess (DKH2) numerical method became the very successful two-component
computational tool of the relativistic quantum chemistry.
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In the past few years several attempts have been made to formulate approximate
two-component DK-type relativistic theories of the higher than the second-order
with respect to the external potential. The third-order (DKH3) scheme has been
proposed by Nakajima and Hirao [29] and recently generalized Douglas–Kroll–
Hess (DKHn) transformation [30–32] up to any predefined order in the external
potential has been formulated as well. The idea of the generalized DKHn method is
to decompose the overall unitary transformation U into a sequence of simpler uni-
tary transformations by a consecutive decoupling in terms of a sequence of unitary
transformations U D U0U1U2U3 � � � , which block-diagonalizes HD of Eq. (4-11)
stepwise.

HU
D D � � �U �

3U
�
2U

�
1U

�
0HDU0U1U2U3 � � � D

1X
kD0

Ek : (4-41)

It requires the construction of a sequence of unitary transformations Ui ; i D
1; 2; 3; :::which eliminate the lowest order odd terms in the i th step in order to arrive
at the block-diagonal Hamiltonian HU

D . This order by order block diagonalization
assumes the existence of an expansion of the block-diagonal Hamiltonian in terms of
a suitable expansion parameter, which allows to identify block-diagonal (so called
even) operators, Ek , of a given order k. Once all these even operators are added we
obtain the block-diagonal HamiltonianHU

D .
The most general ansatz to construct a unitary transformation U D f .W / as an

analytical function of an antihermitian operator W is a power series expansion,

U D a01 C a1W C a2W
2 C a3W

3 C � � � D a01 C
1X

kD1

akW
k (4-42)

which is assumed to converged within a suitable number of steps. The analytic
expansion of Um in Eq. (4-42) is the most general form of a parametrization
of a unitary matrix with W being the parameter. Exploiting the antihermiticity
(W � D �W ) the power series expansion of the hermitian conjugate transformation
can be given as

U � D a01 � a1W C a2W
2 � a3W

3 C � � � D a01 C
1X

kD1

.�1/kakW
k (4-43)

The coefficients ak have to satisfy a set of constraints such that U is unitary, i.e.,
U �U D 1. The use of these most general parametrization of the unitary matrices
has led to the term generalized Douglas–Kroll–Hess transformation as the resulting
Hamiltonian make no reference to a specific parametrization All these parametriza-
tions lead to the same DKHm Hamiltonian which results from a certain truncation
of Eq. (4-41) after the term Em (see the details in Refs. [30–32]).
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4.2.4. Infinite Order Two-Component (IOTC) Method

Recently Barysz et al. has proposed [19, 33] a method for the generation of
two-component solutions of arbitrarily high accuracy which are formally equivalent
to solutions of the Dirac equation for the discrete electronic part on its eigenspec-
trum. The method is formally of infinite order in the fine structure constant and has
been acronymed as the IOTC (infinite-order two-component) theory. Its equivalence
to the four-component Dirac approach has been documented by calculations of spin-
orbital energies and some selected atomic properties [34, 35]. In the IOTC method
the preliminary fpFW transformationU0 (4-35) of the Dirac HamiltonianHD is fol-
lowed by the second unitary transformationU1 which is meant to block-diagonalize
H1, (i.e.) to bring it to the form (4-40). Thus, the total unitary transformation U of
HD is factorized into two transformations U0 and U1, U D U1U0, with U1 defined
[21, 24]

U1 D
�

˝C R�˝�
RC˝C ˝�

�
(4-44)

where

˝C D .1CR
�
CRC/�1=2; ˝� D �.1CR��R�/�1=2; R� D �R�

C; (4-45)

and RC = R is the root of the following operator equation [24],

fH1g21 C fH1g22R �RfH1g11 � RfH1g12R D 0: (4-46)

The subscripts of H1 denote the appropriate 2 � 2 blocks of the fpFW-transformed
Hamiltonian:

H 1 D U
�
0HDU0

D
�
Tp C A.V C ˛2BVB/A ˛AŒV;B�A

˛AŒB; V �A �2˛�2 � Tp CA.V C ˛2BVB/A

�
(4-47)

For the purpose of its iterative solutions Eq. (4-46) can be written in the form,

R D ŒfH1g22�
�1 Œ�fH1g21 CRfH1g11 CRfH1g12R� (4-48)

and corresponds to the assumption that the R operator is a ‘small’ operator as
compared to the R-independent term in the r.h.s. of Eq. (4-46).

After substituting the H1 blocks into Eq. (4-48) one finds that the determination
of R requires that the following equation
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2R C ˛2TpRC ˛2RTp D epRCRep D
D ˛3AŒB; V �AC ˛2ŒAVA;R�C ˛4ŒBAVAB;R�

C˛3RŒB;AVA�R (4-49)

is solved.
Once the solution RC D R of Eq. (4-49) is known, the exact two-component

‘electronic’ Hamiltonian hC becomes:

hC D ˝
�
C
h
fH1g11 C fH1g12RCR�fH1g21 CR�fH1g22R

i
˝C: (4-50)

No closed-form solution of Eq. (4-49) have been available until the IOTC method
has been formulated and different truncated iterative solutions have been proposed
[33,36,37], leading to explicit analytic approximations to the exact Hamiltonian hC.
All of them can be classified [33, 36] according to what is called the leading order
with respect to ˛2.

4.2.4.1. Matrix Approximation to the Unitarly Transformed Dirac Equation

When Hess presented his work he followed the momentum–space representation
of Douglas–Kroll. The origin of the momentum–space presentation of the DKH
method may be traced back to the square-root operator in ep, i:e:, ep D p

1C ˛2p2

Eq. (4-37). This term requires the calculation of the square root of the momentum
operator. Such a square-root expression can hardly be evaluated in a position–
space representation with linear momentum operators as differential operators. In
momentum–space representation however, the momentum operator takes a sim-
ple multiplicative form. Finally, we then have to Fourier-transform, together with
the momentum–space operators all operators which possess in position space a
simple multiplicative form like the scalar potential V , and obtain integral opera-
tors defined by their operator kernels. However, if the DKH method remained in
its original formulation [23] with the need for the Fourier transforms of operators
defined in coordinate, its use in relativistic quantum chemistry would be rather lim-
ited. The success of the DKH2 and related approximations is mostly due to excellent
and rather bold idea of Hess [25, 26] to replace the explicit Fourier transforms
by some basis set which diagonalizes the p2 operator. Consequently, the matrix
approximation of the IOTC method is based on converting the R-operator equation
(4-49) into such a form that it can be solved by standard algebraic techniques. The
first step is the generation of eigenvectors of the p2; this is done by using a finite
coordinate-dependent basis set f�˛.r/g in which the eigenvectors j ki of p2:

j ki D
X

˛

c˛k�˛.r/ (4-51)

are determined, i.e.,

hk j p2 j k0i D wkıkk0 : (4-52)
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In the basis set fj kig the approximate identity resolution is built:

1 �
X

k

j kihk j (4-53)

and inserted between operators defined in the coordinate and momentum spaces.
Then, for any function of the p2 operator, say f .p2/ the following approximation
is introduced:

hk j f .p2/ j k0i D f .wk/ıkk0 ; (4-54)

whereas the matrix elements of V and �pV �p can be evaluated directly in the
r-space. What remains are the operators of the form:

�pVf .p2/V �p: (4-55)

They will lead to integrals with linear terms in �p whose accurate enough evaluation
would require large basis sets with high angular momentum functions. Hess avoided
this problem by using the identity:

�p�p

p2
D 1; (4-56)

whose insertion into (4-55) gives:

�pV �pp�2f .p2/�pV �p: (4-57)

The use of eigenvectors of the p2 operator determined in the r-dependent basis set
and of the identity (4-56) reduces most of the terms needed for the evaluation of
(4-49) to rather elementary integrals in the coordinate representation. However, this
method will not remove the cumbersome terms which are linear in �p. This means
that one needs an additional steps before Eq. (4-49) can be solved.

4.2.4.2. The Exact Separation of Electronic Solutions of the Dirac Equation

The problem of solving the Eq. (4-49) lies in the presence of linear terms in �p

in this equation and has been solved recently [33]. It opened the possibility to solve
this equation in a purely numerical way. Let us multiply Eq. (4-49) from the left by
the operator p�1�p, where p�1 denote the inverse square root of p2 and is a scalar
operator. One obtains then:

epY C Yep D ˛3.pAbVA� p�1A�pV �pbA/

C˛2.p�1A�pV �pp�1AY � YAVA/
C˛4.pAbVbApY � YAb�pV �pbA/

C˛3Y.Ab�pV �pAp�1 � AVAbp/Y; (4-58)
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where

b D 1

ep C 1
(4-59)

and the operator Y is

Y D p�1�pR: (4-60)

Converting the R-operator equation into (4-58) means that all its matrix elements
can be easily evaluated by using the method surveyed in Section 4.2.4.1. Thus, the
equation for matrix elements Ykk0 :

Ykk0 D 1

Ek C Ek0

"
˛3hk j pAbV A� p�1A�pV �pbA j k0i

C˛2
X
k00

�hk j p�1A�pV �pp�1A j k00iYk”k0 � Ykk00hk00 j AVA j k0i	

C˛4
X
k00

�hk j pAbVbAp j k00iYk00k � Ykk00hk00 j Ab�pV �pbA j k0i	

C ˛3
X

k00k000

Ykk00hk00 j Ab�pV �pAp�1 � AVAbp j k000iYk000k0

#
(4-61)

can be solved to arbitrarily high accuracy by using standard iterative approaches.
Once this numerical (algebraic) solution for the matrix representation of Y is found,
the corresponding matrix representation of hC can be calculated as well [33].

The numerical (algebraic) solution of Eq. (4-61) followed by the evaluation of the
matrix elements of hC gives the infinite-order solution for the block-diagonalization
of the Dirac Hamiltonian. The numerical accuracy of the IOTC method have been
demonstrated many times [19, 33, 34, 36, 38, 39]. The IOTC method is nowadays a
part of the commonly used molecular code Molcas [40].

4.2.4.3. The Ricatti Equation Method

An alternative route to the iterative IOTC method based on the diagonalization of
.2n/ � .2n/ IOTC matrix Hamiltonian may be defined as well [42]. The method
based on the diagonalization helps to avoid the slow convergence or divergences
which may occur in the iterative scheme [33, 34].

The IOTC method is based on converting the R-operator equation into a matrix
representation in a basis set. If this is done the form of the R-operator Eq. (4-46)
becomes equivalent to what is known in algebra as the non-symmetric algebraic
Ricatti equation (n-ARE) [41]. This does not seem to have been exploited until
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recently [42]. Though relatively trivial, this observation immediately opens several
new or at least alternative routes to the solution of Eq. (4-46).

It can be shown [41] that solutions of (4-46) are associated with the eigenvec-
tors of the matrix representation of the H1 operator expressed in some spinor (or
bi-spinor) basis set,

H1 D
�
.H1/11 .H1/12

.H1/21 .H1/22

�
; (4-62)

In the present case the eigenvectors V of (4-62) can be assumed to be composed of
n � n-dimensional invertible blocks Vij:

V D ŒV1;V2� D
��

V11

V21

�
;

�
V12

V22

��
; (4-63)

where the 2n � n matrices V1 and V2 correspond to positive and negative eigen-
values of H1, respectively. Thus, the eigenvalue problem of the H1 matrix may be
written as:

H1V1 D V1E1; (4-64)

H1V2 D V2E2; (4-65)

where E1 and E2 are the diagonal matrices of the positive and negative eigenvalues
of H1. Thus, one finds that,

H11V11 C H12V21 D V11E1 (4-66)

and

H21V11 C H22V21 D V21E1: (4-67)

Since the Vij blocks are assumed to be invertible, the eigenvalue matrix E1 can be
determined from (4-66) and then inserted into (4-67). This leads to the following
result:

.H21 C H22V21V
�1
11 � V21V

�1
11 H11 � V21V

�1
11 H12V21V

�1
11 /V11 D 0;

(4-68)

which is the non-symmetric algebraic Ricatti equation, associated with the H1

matrix:

H21 C H22R � RH11 � RH12R D 0; (4-69)

associated with the H1 matrix and R,

R D V21V
�1
11 ; (4-70)
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is the matrix representation of the operatorR. Once the V matrix is obtained by the
diagonalization of the 2n � 2n matrix H1, the solution for the matrix representa-
tion of the operator R can be determined. The diagonalization of the H1 is carried
out only once and the eigenvectors of this matrix are used then to build the matrix
representation of the hC Hamiltonian. One should stress that all this is done for
one-electron operators. The many-electron theory with the one-electron part given
by hC is the two-component theory and represents the infinite-order extension of the
usual (many-electron) Douglas–Kroll methods [33, 34, 43, 44].

4.2.4.4. The Performance of the Two-Component IOTC Method

Numerical accuracy of the infinite-order two-component method has been studied
and documented in other papers [19,34,35,38,42]. In this section we will show some
selected results which confirm the excellent performance of the IOTC method.

We will start the numerical investigations of the numerical accuracy of the IOTC
method with the 1s1=2 energy level in one-electron ions with different values of the
nuclear chargeZ. The tabulated data will be given in terms of the parameter � which
is defined by the orbital energy �.

� D ��=Z2 (4-71)

The data of the Table 4-1, which are copied from the earlier paper [42], show
that the 1s1=2 energies are essentially the same as the corresponding Dirac energies.
This confirms that the IOTC method recovers the spectrum of the Dirac operator.

One of the important features of the hydrogenic Dirac Hamiltonian is that its
spectrum forms a super-symmetric pattern [45–47]. This is reflected by the so-called
accidental degeneracy [1,47] of all but the lowest energy levels with the same abso-
lute value of the quantum number � D ˙.j C 1=2/. The origin of this degeneracy
can be analysed [47] in terms of the Johnson–Lippmann (JL) operator [48] which is
the relativistic counterpart of the Runge–Lenz vector of the non-relativistic Kepler
problem [49, 50]. For the hydrogenic problem the JL operator commutes with the
Dirac Hamiltonian hD (4-11) and with the square (J 2) of the total angular momen-
tum operator J and its Cartesian components. On the other hand, the JL operator can
be shown to anti commute with the Dirac (K) and inversion operators [47]. These
features of the hydrogenic Dirac Hamiltonian give its (positive) energy spectrum

Table 4-1 1s1=2 Energies for H-like ions expressed in
terms of the parameter � defined by Eq. (4-71) (see the
text)

Z IOTC Dirac

80 0.5519050236 0.5519050236
100 0.5939195384 0.5939195384
120 0.6743599667 0.6743599667
130 0.7596994464 0.7596994934
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in the form of degenerate stacks of the energy levels [47]. This degeneracy in the
positive-energy Dirac spectrum for hydrogenic systems is been referred to as the
�-degeneracy.

Since the infinite-order two-component theory is based on exact equations, it
is obvious that it must reproduce all features of the positive-energy Dirac spec-
trum, including its supersymmetric pattern. However, the way this theory is used
introduces the algebraic approximation. It has been shown that with sufficiently
large and flexible Gaussian basis sets the supersymmetric pattern of bound energy
levels is fully restored [51], The majority of methods based on approximate two-
component Hamiltonians cannot reproduce the supersymmetric features of the Dirac
Hamiltonian. Among these methods one should also list the otherwise very efficient
Douglas–Kroll–Hess (DKH) scheme [25,26,30,32]. In consequence the degeneracy
pattern for example, for ns1=2 and np1=2 or np3=2 and nd3=2 levels is not reproduced
by the DKH2 method. In consequence, this method cannot give the right values of
the spin–orbit splittings in the np shells. For the illustration see the Tables 4-2–4-3.
Results presented in Tables 4-2–4-3 are taken from our earlier publications [51].

Finally one should stress that the infinite-order two-component theory (IOTC)
presented in this review gives all of the positive-energy spectrum of the Dirac
Hamiltonian. Thus, within this part of the Dirac spectrum the IOTC two-component
method is exactly equivalent to the exact four-component theory.

Table 4-2 A study of � degeneracy in one-electron ions and comparison of
IOTC and DKH results with the corresponding Dirac energies. Energies are
expressed in the parameter � defined by Eq. (4-71) (see text)

Z IOTC DKH2 Dirac

80 2s1=2 0.14138247 0.14120194 0.14138247
2p1=2 0.14138247 0.14130478 0.14138247

100 2s1=2 0.15486562 0.15440847 0.15486562
2p1=2 0.15486562 0.15450851 0.15486562

120 2s1=2 0.18117521 0.17987940 0.18117521
2p1=2 0.18117520 0.17953312 0.18117521

80 3p3=2 0.05720980 0.05720927 0.05720980
3d3=2 0.05720980 0.05720975 0.05720980

100 3p3=2 0.05821391 0.05821247 0.05821391
3d3=2 0.05821391 0.05821368 0.05821391

120 3p3=2 0.05952362 0.05952047 0.05952362
3d3=2 0.05952362 0.05952285 0.05952362
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Table 4-3 Spin–orbit splittings for np3=2-np1=2 in eV

Z IOTC DKH2 Dirac

2p
80 2368.45 2355.21 2368.45

100 6912.41 6816.46 6912.41

120 19407.99 18768.48 19407.99

7p
80 53.846 53.506 53.846

100 153.60 151.46 153.61

120 411.49 400.12 411.49

4.2.4.5. Change of Picture Effect

The transformation of the Dirac Hamiltonian to two-component form is
accompanied by a corresponding reduction of the wave function. The four-
component Dirac spinor has only two non-vanishing components, as soon as the
complete decoupling of the electronic and positronic degrees of freedom is achieved,
and can thus be used as a two-component spinor. The so called change of picture
problem arises in this context in the calculations of the expectation values of opera-
tors. Let U be the exact unitary transformation defined by Eq. (4-30) that decouples
the Dirac Hamiltonian. The transformed wave function has thus only non-vanishing
upper component and is given by Eq. (4-33). Every physical observableO within the
Dirac theory is described by a self-adjoint .4� 4/ operator, which can be written as

O D
�

O11 O12

O21 O22

�
: (4-72)

Its expectation value NO should be written as

NO D hΨDjOjΨDi (4-73)

Thus in terms of two-component solutions (4-33), the corresponding expression
becomes

NO D
D
ΨDjUU�OUU�jΨD

E
D
D
ΨU

DjU�OUjΨU
D

E

D ˝
ΨU

DjOUjΨU
D

˛ D ˝
ΨCjOU

11jΨC
˛

(4-74)
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where

OU D U�OU (4-75)

and OU
11 denotes its .1; 1/ block. This expression is still exact and no approximation

has been introduced yet. However, in two-component approximation, which leaves
the non-relativistic philosophy of quantum chemical calculations, this expectation
value is calculated as:

No D hΨCjO11jΨCi (4-76)

That is, the change of picture of the operator O is neglected completely, and the
difference NO � No is referred to as the picture change effect on the expectation value.
In general, whenever a unitary transformation is applied to the Hamiltonian in order
to block-diagonalise it, but not to other physical observables, some picture change
effect will occur. For operators which assume large values in the vicinity of nuclei,
this effect is expected to be quite large. Indeed, it has been found that for elec-
tric field gradients at heavy nuclei, as the nuclear quadruple moments, the picture
change contribution is not negligible [52, 53]. The picture change effect has been
also found to be quite large for dipole moments derivatives with respect to nuclear
coordinates. The same is true for the dipole polarizability derivatives [52]. These
findings show that two-component calculations of infrared and Raman intensities
for heavy systems need to take into account the picture change of the relevant oper-
ators. In the case of major molecular electric properties, i.e., multiple moments and
multiple polarizabilities, the change of picture should be rather small [38, 54, 55].

4.2.4.6. Back-Transformation

The two-component IOTC method is formally of infinite order and its equivalence
to the four-component Dirac approach has been documented by calculations of
spinorbital energies. However, the implementation of the method introduces certain
approximations while moving to the matrix approximation to the unitarly trans-
formed Dirac equation (see Section 4.2.4.1). It may affect the exact equivalence. It
can be demonstrated [38] that the two-component IOTC wave function which is the
upper component of the unitarly transformed four-component Dirac spinor �

˚ D U�
1U

�
0� D

�

IOT C

0

�
; (4-77)

can be back transformed and one obtains the exact Dirac solution which corresponds
to the given IOTC solution:

� D U0U1˚ (4-78)
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Because of the approximate determination of U1 the inverse transformation
(4-78) may not exactly reproduce the Dirac bi-spinors. In order to check how exact
is the back-transformed function � , the transformed two-component solutions can
than be used to evaluate different moments < rk > of the electron distribution.

The transformation matrices which enter (4-78) has been defined earlier by Eqs.
(4-35) and (4-44). The transformation of (4-78) will therefore read

U0U1 j˚i D
�
A˝C C ˛ABRC˝C AR�˝� C ˛AB˝�
˛AB˝C �ARC˝C ˛ABR�˝� � A˝�

��

IOT C

0

�

D
�
A˝C C ˛ABRC˝C
˛AB˝C �ARC˝C

� ˇ̌
ˇ
IOT C

E
(4-79)

For the operator Y defined by (4-60) one obtains

R� D �R�
C D �Y ��pp�1 (4-80)

and the form of the inverse transformation of the IOTC wave function (4-78)
becomes

j� i D
 

A˝C C ˛A 1
epC1

pY˝C
�p


˛A 1

epC1
˝C � Ap�1Y˝C

�
! ˇ̌̌

IOT C

E
(4-81)

The approximate algebraic Dirac wave function (4-81) calculated with the
algebraic approximation is then used to evaluate expectation values of different
operators OO . These expectation values can be compared with the exact Dirac values
and will give the measure of the accuracy of the algebraic IOTC approximation.

Let OO be a diagonal operator defined in the Dirac picture. Then its expectation
value for the approximate algebraic Dirac state (4-78) will be given by:

D OO
E

D
D
�
ˇ̌
ˇU �

1U
�
0

OOU0U1

ˇ̌
ˇ� E

D
D

IOT C

ˇ̌
ˇ 
˝CAC ˛˝CY �

Cp 1
epC1

A


˛˝CA 1

epC1
�˝CY �

Cp�1A
�

�p
�

OO
 

A˝C C ˛A 1
epC1

pYC˝C
�p


˛A 1

epC1
˝C �Ap�1YC˝C

�
! ˇ̌
ˇ
IOT C

E

D
D

IOT C

ˇ̌
ˇ
�
˝CAC ˛˝CY �

Cp
1

ep C 1
A


OO
�
A˝C C ˛A

1

ep C 1
pYC˝C



C
�
˛˝CA

1

ep C 1
�˝CY �

Cp
�1A



�p OO�p

�
˛A

1

ep C 1
˝C � Ap�1YC˝C

 ˇ̌
ˇ
IOT C

E
(4-82)
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In the algebraic approximation the evaluation of (4-82) can be carried out by
using the approximate identity resolution in terms of eigenfunctions of the p2 oper-
ator in the selected basis set [19,25,26,33]. As it has been shown recently [38] with
sufficiently large basis set of Gaussian functions, the Dirac values of the < rk >

moments calculated with the formula (4-82) can be fully recovered. Hence, it may
be conclude that the IOTC approach for time-independent problems is as relativistic
as the four-component wave function.

4.3. INTERACTIONS

The attention of the present study was focused on the electronic part of the Dirac
spectrum and this appears to be sufficient for the majority of relativistic studies
in quantum chemistry. However, since both the hC and h� spectra can be gener-
ated in the same way one can, if needed, proceed towards quantum electrodynamics
formulated in finite basis sets. The first step in this direction will be the appropri-
ate definition of the electron–electron interaction. The theory investigated in this
review is the one electron theory. However, the electron–electron interaction can
be included by passing to the field-theoretic formalism. A Hamiltonian of an N
electron system may be written as

H.1; 2; : : : ; N / D
NX

j D1

h1.j /C
NX

i<j

h2.i; j / (4-83)

where h1 are the one-electron Hamiltonians and h2 describe the interactions
between electrons. In the non-relativistic case, h1 D hS

1 and h2.i; j / D e2

rij

is the inter-electron Coulomb interaction. In the relativistic theory defining an
N -electron Hamiltonian is a major fundamental problem. A Lorentz-invariant
quantum mechanics of many particles cannot be formulated.

The operator (4-83) is referred to as the Dirac–Coulomb (HDC ) Hamiltonian and
represents the lowest order approximation of the electron– electron interactions.

The two-electron Dirac–Coulomb equation can be shown to have no
bound states. Thus, there is no protection against the variational collapse into neg-
ative energy states. The ill-conditioned form of the Dirac–Coulomb Hamiltonian
has been first recognized by Brown and Ravenhall and is usually termed as the
‘Brown–Ravenhall disease’. This follows from the fact that a bound state of two
non-interacting Dirac electrons, is degenerate with a continuum of non-normalizable
states having one electron in the positive energy state and another one in the negative
energy state. When the Coulomb interaction is included, the initial wave function of
non-interacting electrons gains contributions from all those continuum states and
becomes ‘dissolved in continuum’.

Inspite of its rather obscure meaning and mathematical features the
Dirac–Coulomb Hamiltonian is underlying the majority of relativistic techniques
in quantum chemistry.
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A rigorous formulation of a two-electron theory is only possible at the level of
quantum electrodynamics [56]. However, using the correspondence principle, one
may obtain the same result from classical electrodynamics. Classically, the scalar
and the vector potentials generated at the point rj by a charge e located at the point
ri and moving with velocity vi (Lienard–Wiechert potentials) are given by

V LW
i .rj / D e2

rij

�
1C .vi � rij /

crij

��1

(4-84)

and

ALW
i .rj / D vi

c
V LW

i .rj / (4-85)

respectively. By substituting these potentials into the classical relativistic Hamilton
function with the vector potential A

H D mc2

r
1C 1

m2c2



p � e

c
A
�2 C V (4-86)

and expanding into a power series with respect to v
c

we get

H D
NX

j D1

H1.j /C
NX

i<j

e2

rij

�
1 � vi � vj

2c2
� .vi � rij /.vj � rij /

2c2rij 2

�
C

CO
�
 v

c

�2
�

(4-87)

where

H1.j / D mc2

r
1C 1

m2c2

h
pj � e

c
A.rj /

i2 C V.rj / (4-88)

Now, according to the correspondence principle, we substitute:

H1.j / ) hD
1 .j / D c˛j

h
pj � e

c
A.rj /

i
C V.rj / (4-89)

and

v ) c˛ (4-90)

The resulting Hamiltonian reads:

HDB .1; 2; : : : ; N / D
NX

j D1

hD
1 .j /C

NX
i<j

�
h2.i; j /C h

mag
2 .i; j /C hret

2 .i; j /
�

(4-91)
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where

h
mag
2 .i; j / D � e2

2rij
.˛i � ˛j / (4-92)

and

hret
2 .i; j / D � e2

2rij 3
.˛i � rij /.˛j � rij / (4-93)

are, respectively, corrections due to two-electron magnetic interactions and due
to retardation resulting from the finite velocity of propagation of the interac-
tion. A relativistic Hamiltonian (4-91) is called the Dirac–Breit many-electron
Hamiltonian. This replacement, however, does not remove the ‘Brown–Ravenhall
disease’ problem. Moreover, the Dirac–Breit Hamiltonian is derived perturbation-
ally and there may be some objections against its use in variational calculations.
Thus, it is frequently suggested that the Breit correction to the Coulomb interaction
should be considered in the perturbation framework and evaluated as the first-order
contribution to the energy which follows from HDC Since the Hamilton function
(4-87) is correct up to

�
v
c

	2
terms, also the quantum-mechanical Hamiltonian is

correct up to this accuracy and the formulation based on this Hamiltonian is only
approximately Lorentz invariant (see the details in [56]).

In the context of the two-electron Breit operator (4-91) one should also mention
its approximate form known as the Gaunt interaction V G :

V G.i; j / D 1

rij
C ˛i � ˛j

rij

(4-94)

which leads to the Dirac–Gaunt (HDG) many-electron Hamiltonian:

HDG.1; 2; : : : ; N / D
NX

j D1

OhD
1 .j /C

NX
i<j

V G.i; j / (4-95)

The derivation of the two-component Hamiltonians neglects all effect related to
the creation of virtual electron–positron pairs. Also the effects of virtual photons are
neglected.

4.4. SUMMARY AND CONCLUSION

The present review is primarily intended to introduce the concept of the
two-component relativistic methodology. With the development of efficient infinite-
order IOTC method in its truly two-component form and the design of the corre-
sponding codes, one may expect it to become a the powerful tool for the molecular
computational chemistry. However, in the context of applications of relativistic
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quantum chemistry, one has to mention that actually most of the corresponding
calculations are carried out in the spin-free approximation. This permits that stan-
dard non-relativistic codes can be used with a simple modification of the core
Hamiltonian. The future still seems to be in the development of the true two-
component codes which will be able to deal with the spin–orbit interaction effect.
The present alternative is to include the spin–orbit coupling terms in a posteriori
way in the form of the configuration interaction calculations [57].
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Pedersen, T.B., Raab, J., Roos, B.O., Schimmelpfennig, B., Schütz, M., Seijo, L., Serrano-Andrés,
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CHAPTER 5

RELATIVISTIC DENSITY FUNCTIONAL THEORY
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Abstract: This review starts with the basics of nonrelativistic density functional theory, followed
by the foundation of the relativistic variant. How to formulate a relativistic spin density
functional theory is shown through the comparison of the non-collinear and collinear
approximations. It is shown where relativistic corrections to the exchange-correlation
functionals are important and that they have a sizeable influence on total energies but are
not so important for valence properties. After discussing some four-component Dirac–
Kohn–Sham implementations, quasirelativistic methods are reviewed with emphasis on
the zeroth-order regular approximation and the Douglas–Kroll–Hess method. This review
contains 163 references.

Keywords: Relativistic, Density functional theory, Electron gas, Collinear, Four-current, Dirac
equation

5.1. NONRELATIVISTIC DENSITY FUNCTIONAL THEORY BASICS

Computational schemes based on density functional theory (DFT) range among
the most important methods for the quantum mechanical modeling of atoms,
molecules, and solids. While DFT has been a standard computational method in
solid state physics for nearly four decades, it became popular for molecular sys-
tems in the second half of the 1980s, after second-generation gradient-corrected
exchange-correlation functionals had been developed based on the so-called gener-
alized gradient approximation (GGA). For extended systems (large molecules or
solids with large unit cells), the accuracy and the efficiency of DFT makes it a
highly competitive method. The cornerstones of DFT are the Hohenberg–Kohn the-
orem [1] and the Kohn–Sham kinetic energy functional [2]. The Hohenberg–Kohn
theorem establishes that for electrons moving in an external potential v.r/, dif-
ferent potentials give rise to different ground-state electron densities, such that
the external potential is a functional of the electron density. Since the knowl-
edge of the ground state density then also uniquely determines (via the external
potential) the Hamiltonian of the system, the ground state energy and other prop-
erties (including those of excited states!) are a functional of the electron density.

M. Barysz and Y. Ishikawa (eds.), Relativistic Methods for Chemists,
Challenges and Advances in Computational Chemistry and Physics 10,
DOI 10.1007/978-1-4020-9975-5 5, c� Springer Science+Business Media B.V. 2010
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A variational principle holds for the energy functional, such that the exact ground
state density is obtained by minimizing the energy functional. This is of little prac-
tical use since the evaluation of this energy functional is as difficult as solving the
Schrödinger equation. DFT becomes a computational method through the introduc-
tion of approximate energy functionals for which one is able to find the density
which minimizes this functional. This contrasts with wave function based methods
where one strives for approximate solutions to the exact Hamiltonian.

For a given electron density �.r/, one can easily separate off the interaction with
the external potential and the electrostatic Coulomb energy of the electronic charge
distribution and thus rewrites the energy functionalEŒ�� as

EŒ�� D
Z

v.r/�.r/dr C 1

2

Z Z
�.r1/�.r2/

jr1 � r2j dr1dr2 CGŒ�� (5-1)

The second term is usually called the Hartree energy, and we will follow this nomen-
clature although it is not quite correct – the self-interaction present here is excluded
in Hartree’s method. The functionalGŒ�� is universal as it no longer depends on the
external potential, and for the exact ground state density its value contains, as the
largest part, the kinetic energy of the system. Any attempts to express the kinetic
energy of an atomic or molecular system as an explicit functional of the density
have been unsuccessful until today, and the breakthrough came with the sugges-
tion by Kohn and Sham [2] of an implicit functional for the kinetic energy which
is the kinetic energy TS of a fictious system of noninteracting electrons having the
same density:

EŒ�� D TS Œ��C
Z

v.r/�.r/dr C 1

2

Z Z
�.r1/�.r2/

jr1 � r2j dr1dr2 C ExcŒ�� (5-2)

The exchange-correlation functional Exc thus defined is now what one has to
approximate as accurately as possible while keeping a form that makes the determi-
nation of the minimizing density computationally tractable. Note that Exc not only
contains the difference between the (true) electron interaction energy and the elec-
trostatic Coulomb energy, but also the difference between the true kinetic energy
and the kinetic energy of the noninteracting reference system. The Kohn–Sham
procedure was a dramatic step forward: even when neglecting Exc altogether, this
method applied to atoms yields a density which decays exponentially and shows
the atomic shell structure, important properties which the Thomas–Fermi model
and all its elaborations fail to reproduce. To evaluate TS , a set of single-particle
Schrödinger equations have to be solved self-consistently, yielding the Kohn–Sham
orbitals, such that the Kohn–Sham and Hartree–Fock methods result in very similar
computational schemes. Note that while TS is only quite indirectly (or: implicitly)
a functional of the electron density, it can of course easily and explicitly be written
down as a functional of the orbitals.
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Because the complete neglect of Exc already gives answers that are physically
reasonable, one can hope to get useful results from approximate exchange-
correlation functionals with quite simple mathematical forms. The simplest one is
the local density approximation (LDA)

Exc Œ�� D
Z
�.r/�xc.�.r//dr (5-3)

where �xc.�/ is the exchange-correlation energy per electron of a homogeneous
electron gas with constant density �. Let us stress that no matter how difficult accu-
rate calculations for a homogeneous electron gas might be, these have to be done
once and for ever for a set of densities such that a reliable fit of the resulting one-
parameter function �xc.�/ can be constructed. From then on, the evaluation of Exc

for any system merely involves a three-dimensional (numerical) integration. The
resulting method is exact (by construction) for a homogeneous electron gas, but
also gave surprisingly good results for atomic and molecular systems despite their
electron density being strongly inhomogeneous. LDA quickly became a standard
method in solid state physics but was also quite successful for atomic and molec-
ular systems [3]. LDA is uniquely defined. Based on quantum calculations of the
homogeneous electron gas [4], there are two different but essentially equivalent
parametrizations of the function �xc.�/ [5, 6].

In an attempt to improve upon LDA, in the next step one requires that Exc is
exact for an inhomogeneous electron gas with a (very) slowly varying density. This
approximation is called gradient expansion approximation (GEA). The lowest order
gradient expansion is problematic for the correlation part [7] and brings no improve-
ment over LDA. The origin of this failure lies in the fact that LDA, being exact for at
least one system (the homogeneous electron gas) fulfills all the (surprisingly many
known [8]) scaling properties and sum rules exact functionals do obey, and which
are violated by GEA. So one gave up the requirement that a gradient-corrected
functional should be asymptotically correct for a system with very slowly varying
density, but rather kept the functional form of the lowest-order gradient expansion

Exc Œ�� D
Z
Fxc.�.r/; jr�.r/j/dr (5-4)

which involves a two-parameter function Fxc that depends on the density as well as
its gradient. Rotational invariance implies that only the length of the gradient should
enter the working equation. A good reason for keeping such a functional form is, of
course, that it generates no extra computational effort compared to LDA. Construc-
tions of such functionsFxc have been described starting from purely first-principles
considerations, but there are also quite successful semi-empirical approaches [9].
This so called generalized gradient approximation (GGA) was pioneered in Ref.
[10] and from then on, a large number of different GGAs have been proposed. In
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this chapter, we will not be concerned with a discussion of various GGAs. While
the introduction of GGAs was certainly an important step and increased the accu-
racy such that DFT was also accepted as a standard tool in quantum chemistry, it
is disappointing that there are so many GGAs around without a clear answer which
one is the best. More recently, extensions have been introduced which use part of
the Hartree–Fock exchange energy [11, 12] or add the kinetic energy density as an
additional variable [13–15]. In both cases, the exchange-correlation energy can no
longer be written as an explicit functional of the density but rather of the orbitals.
These are however implicitly a functional of the density through the Kohn–Sham
procedure. There are also attempts to construct orbital-dependent correlation func-
tionals [16], but these have not yet had much influence on the mainstream of DFT
applications.

A magnetic field couples to the charge current and the spin of the electrons, and
therefore the Hohenberg–Kohn theorems are no longer valid if there is an exter-
nal magnetic field. The density as the basic variable is not enough, one has to add
the current density and the spin density. A current-density functional theory has
been formulated [17, 18] targeted at systems in strong magnetic fields, but usually
only the coupling of the magnetic field to the electron spin is taken into account.
This yields spin density functional theory, in which the spin-up and spin-down
densities are treated as two independent variables. The local approximation anal-
ogous to Eq. (5-3) is called the local spin density approximation (LSDA). Since the
exchange energy of a spin-polarized electron gas of a given density is larger (in abso-
lute value) than of a spin-unpolarized electron gas of the same density, it is easily
seen that LSDA will give a different (usually: lower) energy for a molecular system
with unpaired electrons (i.e., uncompensated spins) than LDA in the limit of a van-
ishing magnetic field. The Hohenberg–Kohn theorem states that the electron density
is “sufficient” in the absence of magnetic fields, but if there it are uncompensated
spins, then approximate functionals work much better if they “look” not only at the
density but also at the spin density (difference between spin-up and spin-down den-
sity) [19]. The reason is, that a working functional has to extract information on the
two-particle density from �.r/. While for example an open-shell singlet and a triplet
from the same electron configuration have quite similar densities �.r/, their two-
particle densities are different because the Pauli exclusion principle (antisymmetry
of the wave function) reduces the probability of finding two same-spin electrons
close to each other beyond of what results from their Coulombic repulsion. While
LSDA can easily “detect” such a situation (singlet and triplet have different spin
densities), LDA fails to do so. The same holds if one goes beyond the local (spin)
density approximation: open shell systems require GGAs that depend on the spin-up
and spin-down densities as well as their gradients.

5.2. RELATIVISTIC EXTENSION OF DFT

For systems containing heavy elements (elements with nuclear charge Z > 36),
the Schrödinger equation (even if it could be solved exactly) does not give the
“right” answer (that is, it differs from results obtained experimentally) because its
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classical limit is nonrelativistic mechanics. Therefore, the Schrödinger equation is
not compatible with Einstein’s special relativity, and from classical mechanics we
know that this gives rise to noticeable discrepancies if velocities v are no longer
small compared to the speed of light (c), the leading (relative) error being of the
order v2

c2 . In a quantum mechanical treatment of an atom, the leading error of a
nonrelativistic treatment is .Z˛/2, ˛ begin the dimensionless fine structure con-
stant (˛ � 1

137
). Nonrelativistic calculations on heavy-element compounds thus

produce errors that cannot be accepted, and an relativistic extension of DFT is
required. Such an extension is not straightforward as there is no relativistic Hamil-
tonian for many-electron systems, one rather has to use a quantum field theory for
electrons, positrons and photons (which mediate the interaction between charged
particles). The basics of relativistic density functional theory were laid out by
Rajagopal and Callaway [20], Rajagopal [21], MacDonald and Vosko [22], and
Ramana and Rajagopal [23]. Leaving aside the issue of renormalization which is
necessary in quantum field theories to get finite expressions for charge, energy,
etc., the main message here is that there is a relativistic generalization of the
Hohenberg–Kohn theorem, and that the basic variable in the relativistic case is
the four-current. Moreover, in the so-called electrostatic limit where the external
potential is time-independent and purely electrostatic, the time component of the
four-current (essentially: the charge density) alone is sufficient as the basic variable.
Within the Born–Oppenheimer approximation, the nuclei are at rest and are the
sources of the external potential, such that we are in the electrostatic limit (unless
there is an external magnetic field). We note in passing that the Born–Oppenheimer
approximation also singles out a specific Lorentz frame (that where the nuclei are
at rest), such that the question of relativistic invariance does not play a central role.
However, as in the nonrelativistic case, also in the electrostatic limit the three spatial
components of the four-current are non-zero if there are unpaired electrons, such as
in open-shell atoms or molecules. We should thus expect that for systems in which
the spatial parts of the four-current do not vanish, an approximate energy func-
tional of the four-current is more accurate than a functional of the charge density
alone. In this chapter we will not use four-vectors and covariant notation, and use �
and j D .jx; jy ; jz/ for the charge density and the spatial part of the four-current.
Note that j still contains contributions both from displacement currents and spin.
The Kohn–Sham procedure can also be generalized to the relativistic case, and thus
we have in analogy to Eq. (5-2)

EŒ�; j� D TS Œ�; j�C
Z

v.r/�.r/dr

C1

2

Z Z
�.r1/�.r2/

jr1 � r2j dr1dr2 � 1

2c2

Z Z
j.r1/ � j.r2/

jr1 � r2j dr1dr2

CExc Œ�; j� (5-5)
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Some remarks are in order here. TS is the kinetic energy of a reference system of
noninteracting Dirac particles, therefore the Kohn–Sham procedure leads to the self-
consistent solution of a one-particle Dirac equation, and the Kohn–Sham orbitals are
(four-component) Dirac spinors  i

�
mc2 C veff c� � .p C Aeff/

c� � .p C Aeff/ �mc2 C veff

��

i

	i

�
D �i

�

i

	i

�
;  i D

�

i

	i

�
(5-6)

Here, m is the mass of the electron, c the speed of light, p D �ir the operator
of the linear momentum, � D .�x ; �y ; �z/ the vector of the Pauli spin matrices.
Many texts substitute � D ges in the final equations, with s the electron spin and
the electron g value (ge D 2 in Dirac theory). Atomic (Hartree) units are used
throughout, in which „, m, the elementary charge e and 4�0 assume unit value
although we keep the electron mass m in some of the equations for convenience.
There is still an ambiguity for the unit of the magnetic field strength, and we adopt
the convention followed by the SI, where there is no factor 1

c
in the Lorentz force.

In these units, the value of the speed of light is c � 137 and the value of the Bohr
magneton is �B D 1

2
, while that of the vacuum permeability is �0 D 4�

c2 . The
effective Kohn–Sham scalar and vector potentials veff;Aeff are

veff.r/ D v.r/C
Z

�.s/

jr � sjd s C ıExc

ı�
.r/

Aeff.r/ D � 1

c2

Z
j.s/

jr � sjd s C ıExc

ıj
.r/ (5-7)

The three terms in veff are the external potential (usually, the electrostatic potential
generated by the nuclear framework, multiplied by the electron charge), the Hartree
potential vH (second term) and the scalar exchange-correlation potential vxc which
is a functional derivative of the exchange-correlation energy. In the absence of exter-
nal magnetic fields, Aeff only contains two terms, arising from the current–current
part of the Hartree energy and a vector exchange-correlation part which is again a
functional derivative ofExc . The first question is what are the occupied Kohn–Sham
orbitals  i that are needed to evaluate the kinetic energy, the density and the current
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since the Dirac operator has both positive and negative energy eigenfunctions.
Somewhat in the line of Dirac’s original interpretation that the negative-energy
levels are completely filled (“Dirac sea”) the negative-energy states are reinter-
preted in a field-theoretical approach which leads to the definition of a physical
vacuum. While we cannot go into the details here, it should be noted that there
are non-vanishing vacuum contributions to the expectation values of the kinetic
energy and the four-current which are neglected in the above expression, where
the summation over the occupied orbitals goes over positive-energy spinors only.
Such vacuum effects are present even in a one-electron system and are the origin
of the Lamb shift, that is the removal of the degeneracy of the 2s and 2p 1

2
energy

levels in hydrogenlike ions. In many-electron systems, vacuum effects also arise
from the electron-electron interaction. To get a computationally feasible scheme for
many-electron systems, we will ignore vacuum effects although they could be incor-
porated by perturbational methods after self-consistency has been achieved. Such
calculations or even estimations for many-electron systems are rare (e.g., Refs.
[24–27]). Operationally, and from the physics contained, the Dirac–Kohn–Sham
(DKS) scheme Eqs. (5-5–5-8) relates to the Dirac–Fock–Breit method in the same
manner nonrelativistic Kohn–Sham relates to Hartree–Fock.

If there were additionally an external magnetic field, it would not make much
difference: the vector potential A.r/ describing the external magnetic field must be
added to Aeff. In other words, the absence of an external magnetic field does not
simplify the formulation. If we restrict ourselves to exchange-correlation function-
als that only depend on the charge density and neglect the current–current term of the
Hartree energy (second term in the second line of Eq. (5-5)) then Aeff will disappear
from the DKS equation. In (nearly) neutral systems, the current–current contribution
to the Hartee term is usually small (unpaired electrons only in the valence shell) so
this term is neglected in most cases. For stationary closed shell systems, it vanishes
exactly since j D 0 everywhere. To a good approximation, it can be evaluated after
self-consistency has been achieved. Although this contribution may be negligible for
a single molecule it is not unimportant in physics: it is the origin of the magnetocrys-
talline shape anisotropy (through the spin-dipolar interaction contained therein) and
the magnetic force between two (macroscopic) wires where an electric current is
passed through. The prefactor c�2 D �0

4�
comes from the Biot–Savart law and shows

that the current–current interaction vanishes in the nonrelativistic limit:1 it arises

1 In a nonrelativistic (Galilei-invariant) world, the Lorentz force (exerted by a magnetic field on a mov-
ing charge) and the Biot–Savart law (the generation of a magnetic field through currents of moving
charges) cannot coexist. In the nonrelativistic limit, we have to choose which one survives, the other
being a “relativistic effect”. We follow the SI such that the Lorentz force is independent of the speed

of light, and absorb the factor 4�0 in the definition of the charge, but then �0 � c�
2
, the prefactor

in the Biot–Savart law, vanishes in the nonrelativistic limit. Whatever choice is made, the current–
current interaction, which involves both laws, is of order O.c�2). In the c.g.s. unit system, frequently
used in theoretical physics, this apparent asymmetry is removed and a factor c�1 is found both in the
Lorentz force and in the Biot–Savart law. This causes a lot of confusion when comparing equations
from different texts.
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from the transverse part of the electron interaction which we (loosely speaking)
identify with the Breit interaction in wave function based methods, which consid-
ers magnetic interactions and retardation. Actually, the Hartree term only involves
the magnetic (Gaunt) part. Note that Breit contributions to the exchange-correlation
energy also arise for closed shell systems. Therefore the Breit contributions to Exc

are much more substantial than to the Hartree energy. Given the success of the
Dirac–Coulomb operator in wave function based methods, it is legitimate to use a
relativistic density functional scheme that consistently neglects the Breit interaction
and will be related to the Dirac–Fock–Coulomb method. In this case, it is even justi-
fied to use exchange-correlation functionals known from nonrelativistic theory since
the relativistic corrections to the exchange-correlation functional are dominated by
the transverse terms.

5.3. RELATIVISTIC SPIN DENSITY FUNCTIONAL THEORY:
COLLINEAR AND NONCOLLINEAR APPROXIMATION

We postpone the discussion of relativistic corrections to the exchange correlation
functional until the next section. From nonrelativistic theory we know that the accu-
racy of a functional depending on the density only will be quite limited if the system
under consideration is not closed shell. On the other hand, current-dependent func-
tionals have not met great success even in nonrelativistic theories [28–30]. Although
in principle one could obtain current-dependent functionals from spin-dependent
functionals [31] since a relativistic framework establishes a connection between
them, much effort has been made to take over spin density functional theory in a
straightforward way into the relativistic regime. To this end, one uses a Gordon
decomposition of the current density [20, 32, 33] and obtains in the absence of an
external magnetic field

j.r/ D jorb.r/C 1

2m
r � m.r/ (5-9)

where jorb is an orbital current which we will not discuss further, and m.r/ the spin
(magnetization) density2
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2 Spin and magnetization density is not the same. The magnetization density contains an additional
prefactor, the Bohr magneton. However, this distinction is not always made in the literature. The two
minus signs in Eq. (5-10) imply that not even a one-electron system can be fully spin polarized except
in the nonrelativistic limit. While the minus signs follow from the Gordon decomposition, some authors
define the spin densities with plus signs here. Numerically, it seems to make little difference.
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Neglecting orbital currents, one gets for the interaction with a magnetic field
B D r � A

�
Z

j � A dr � � 1

2m

Z
.r � m/ � Adr D ��B

Z
m � B dr (5-11)

(the minus signs come from the negative charge of the electron). After neglecting the
transverse Hartree energy one rewrites the energy functional for vanishing external
magnetic fields in terms of � and m

EŒ�;m� D TS Œ�;m�C
Z

v.r/�.r/dr C 1

2

Z Z
�.r1/�.r2/

jr1 � r2j dr1dr2

CExc Œ�;m� (5-12)

and re-derives the Kohn–Sham single-particle equations within this approximation
as

�
mc2 C veff � �B � � Bxc c� � p

c� � p �mc2 C veff C �B � � Bxc
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with an exchange-correlation magnetic field as a functional derivative of Exc

Bxc D ���1
B

ıExc

ım
(5-14)

A local approximation toExcŒ�;m�would require a four-parameter function �xc .
In practice, only two parameters are used like in the nonrelativistic case, where one
has the density and the spin density. The reason is twofold. First, this reduction
allows that one uses the functionals known from nonrelativistic DFT in relativistic
calculations. Second, all or a large part of the functional is derived from the homoge-
neous electron gas where there is no directional dependence. There are two different
variants to perform this reduction, called the collinear and the noncollinear approx-
imation. Some consequences of these approximations have been analyzed by the
present author [34]. In the collinear approximation, one uses, at each point in space,
the projection of m on to a fixed axis. Conventionally, one uses the z axis (although
one could use any direction) and has

ExcŒ�;m� D
Z
�.r/�xc

�
�.r/;mz.r/

	
dr (5-15)
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This generates an exchange-correlation magnetic field Bxc which is parallel to the z
axis in each point (i.e., collinear):

Bxc D ���1
B

ıExc

ım
D ���1

B

�
0; 0;

@Exc

@mz

�
D ���1

B

�
0; 0; �

@�xc

@mz

�
(5-16)

The spinor potential, that is, the terms � � Bxc in the Kohn–Sham equation, exert a
driving force for the (open shell) orbitals to align their spins along the collinear axis,
because any component of m perpendicular to it remains unnoticed by the func-
tional. Since a nonvanishing spin density usually increases the exchange-correlation
energy density, aligning the spins is favourable (energy-lowering). In the non-
collinear approximation, one uses the length of the magnetization density vector
m.r/ as variable:

Exc Œ�;m� D
Z
�.r/�xc

�
�.r/; jm.r/j	dr (5-17)

which generates a field Bxc.r/ that is no longer aligned but parallel to m at each
point in space:

Bxc D ���1
B

ıExc

ım
D ���1

B �
@�xc

@jmj
m

jmj (5-18)

Even in the recent literature, it is stated that the noncollinear approximation is rather
involved (for a recent example, see [35]), but in my opinion this does not hold: the
spinor potential (� � Bxc terms) in Eq. (5-13) are diagonal 2 � 2 matrices in the
collinear approximation but full 2� 2 matrices in the noncollinear case. This makes
a factor of two (both in storage and in floating point operations) in the exchange-
correlation part of the computation. This can be considered immaterial since the
other parts of the computation (matrix elements of the Hartree potential, diagonal-
izations) usually require the largest part of the CPU time. Note that in the above
equations, any value for the electron spin magnetic moment (��B ) will give the
same final result (no external magnetic fields), thus this factor is often omitted.

If there is a single unpaired s electron outside a closed-shell atomic core, the
consequence of the collinear approximation is the alignment of the magnetization
along the z axis and that’s it. The situation is different for a singly occupied p 1

2

orbital: if no mixing with the p 3
2

orbitals is possible (large spin–orbit splitting),
then m will strongly deviate from the z axis in large regions of space, and there-
fore the collinear approximation will find a smaller amount (in absolute value) of
exchange-correlation energy than the noncollinear treatment. The energy difference
is �0.1 eV for heavy p-block elements like thallium and lead [32, 34] and trans-
lates into the same difference for computed ionization energies because there is
no difference between both approximations for closed-shell ionic cores. Another
consequence of the collinear approximation is that it breaks rotational invariance,
and the total energy of simple open-shell molecules like IC

2 or PbF vary by �0.1
eV depending on the orientation of the molecule [34]. This makes calculations
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of molecular interactions meaningless with the collinear approximation, at least
if one is interested in the orientational dependence of this interaction. The reason
for the dependence of the total energy on the orientation of the molecule is that
the Dirac energy (in DFT: TS ) is only invariant to simultaneous rotations in real
and spin space, and that a rotation in spin space changes the exchange-correlation
energy in the collinear approximation. In the noncollinear approximation, all energy
contributions remain unchanged by a Dirac rotation.

On the other hand, using the collinear approach is beneficial if one is interested in
magnetic anisotropy energies [36–38], that is, the variation of the total energy when
changing the direction of the magnetization. This quantity, related to zero field split-
ting, is important for the ability of a system to “store” information which has been
“written” by aligning the magnetization by an external magnetic field to a preferred
direction. If the “writing” is over, and the external magnetic field switched off, spin–
orbit coupling imposes a barrier for the magnetization to change its orientation. In
a recent application [37] the collinear approach was used to impose (partial) spin
alignment on the unpaired electrons and to investigate the dependence of the total
energy with respect to the direction of the collinear axis.

There is an alternative approach to define a relativistic spin density, namely the
moment polarization approach [39]. Unfortunately the present author has not under-
stood how it can uniquely be defined for multiple open shells and in the absence of
any symmetry in the molecule, so no details will be given here. We can only men-
tion here that this approach allows for a restricted version, in which the Dirac spinors
form Kramers pairs even in open-shell systems. If properly exploited, this constraint
leads to computational savings.

Non-collinear computational schemes have also been developed in the context of
nonrelativistic density functional theory [40–43]: while noncollinear magnetization
is usually a consequence of spin–orbit coupling, it can arise in nonrelativistic theory
as a consequence of spin frustration, leading to non-collinear magnetic structures.

5.4. RELATIVISTIC EXCHANGE-CORRELATION FUNCTIONALS

We start this chapter with a qualitative discussion. In classical mechanics, relativis-
tic corrections are of the order ˇ2 with ˇ D v

c
. In a nonrelativistic homogeneous

electron gas, the highest momentum encountered (the Fermi momentum kF ) is

kF D .32�/
1
3 (5-19)

and equals the highest “velocity” in atomic units, such that the parameter which
measures the importance of relativistic effects is (in atomic units)

ˇ D 1

mc
.32�/

1
3 � 0:0226 �

1
3 (5-20)
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Table 5-1 Critical ‘core’ radius rcrit (in Bohr)
and number of electrons Ne contained in the
critical region for various atoms (see text), from
four-component Dirac–Kohn–Sham calculations

Atom Z rcrit Ne

O 8 0.07 0.2
S 16 0.11 1.5
Pd 46 0.20 11.3
Hg 80 0.25 29.1
(114) 114 0.30 55.0

In the homogeneous electron gas, relativistic effects start to become non-negligible
if the density is � � 100 a�3

0 (that is, ˇ � 0:1) or higher. In the atomic cores,
the density exceeds this critical value. To which extent this affects the exchange-
correlation energy depends on the size of the critical region and how much charge is
contained therein. Table 5-1 displays for various atoms the radius rcrit below which
the density exceeds 100 a�3

0 , and the integrated charge density Ncrit

�.r/ > 100 a�3
0 for r < rcrit ; Ncrit D

Z rcrit

0

4r2�.r/dr (5-21)

The values have been obtained from four-component atomic Dirac–Kohn–Sham
calculations. While the size of the core region does not vary very much, the number
of electrons contained therein is quite large for heavy elements. This means, that
corrections to the exchange-correlation functional will have substantial impact on
the total energy of systems containing heavy elements. Of course, valence proper-
ties, that is, energy differences between states that have the same electronic structure
in the atomic cores, are much less affected by the Breit interaction. At high densities,
where relativistic effects are important, exchange dominates correlation, therefore
the most important correction (in terms of absolute energies) requires the calculation
of the exchange energy of a relativistic homogeneous electron gas. This calculation
has been reported several times (see Ref. [22] and the references cited there). Here
we give a plot of the exchange energy density �x.�/ for a nonrelativistic (dottet
line) and relativistic homogeneous electron gas (Figure 5-1): High-density regions
contribute less exchange energy (in absolute value) in a relativistic treatment. Note
that the relativistic ��x.�/ curve has a maximum at � � 91;776 a�3

0 and becomes
negative at � D 1:4 � 106 a�3

0 . One further sees that neglecting the Breit interaction,
one only gets a small correction (dashed line). Ellis [44] has calculated this quantity
(i.e., the exchange energy of an electron gas at Dirac–Fock–Coulomb level) and
erroneously concluded that relativistic corrections are unimportant – because he did
not realize that the dominant contribution comes indeed from the Breit interaction.
The correlation energy density of a relativistic gas is only known from the random
phase approximation (RPA) that is accurate for high densities, but since relativistic
corrections are not so important at low densities, this is not severe: a nonrelativistic
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Figure 5-1. Exchange energy density of a nonrelativistic (dotted line) and relativistic (thick line) homo-
geneous electron gas. The dashed line neglects the Breit interaction in the relativistic calculation. All
quantities are given in atomic (Hartree) units

correlation functional, augmented by a relativistic correction from RPA (that
vanishes for low densities) [45], is probably accurate enough. A plot of the relativis-
tic correlation potential can be found in Ref. [46]. However, the correlation energy
density is not uniquely defined and depends, for example, how the negative-energy
states are treated [47]. Extensions to spin-polarized systems are also available,
mostly for exchange [48–51]. The first results from relativistic LDA functionals
where rather disappointing: for neutral closed-shell atoms, the Breit contributions
to the total energy were overestimated by a factor of 1:5 � � � 2:0 (see the compilation
of results in Ref. [45], but this has been found much earlier, already in Ref. [22]). It
has been argued that this error is intrinsic to the local density approximation because
retardation effects are naturally much more important in an (infinite) electron gas
compared to an atom or small molecule.

Because gradient expansion did not result in useful functionals in the nonrel-
ativistic case, this can also not be expected in the relativistic case. Relativistic
GGA functionals have been proposed [52] based on a semiempirical approach: the
gradient-dependent part of a nonrelativistic GGA for exchange is multiplied by a
density-dependent relativistic correction factor, which is chosen such that exact rel-
ativistic corrections to atomic exchange energies can be reproduced. Because the
functional form of the nonrelativistic functional is maintained, relativistic effects
such as the spin-other-orbit interaction, which should be represented by the “true”
relativistic functional, are not recovered. Because the number of closed-shell atoms
is not much larger than the number of fitting parameters (8), it is not clear how
successful relativistic GGAs really are. Perhaps this issue is not yet fully settled.

The above considerations relate to total energies, and these are not too impor-
tant in “chemical” applications. Here it is of interest to which extent properties
like bond dissociation energies, valence ionization potentials, equilibrium bond
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lengths and vibrational frequencies are affected by relativistic corrections to Exc .
Some systematic comparisons are available [53–55]. From these studies it seems
that relativistic corrections to the exchange-correlation functional are not too impor-
tant: corrections to the exchange part may affect valence properties on the 1% level,
while relativistic corrections to the correlation functional can be neglected. In some
sense, this is the expected result, given the success of the Dirac–Coulomb operator
in wavefunction based quantum chemical methods. Furthermore, note that quan-
tum electrodynamical corrections (vacuum polarization, self energy, etc.), which
are neglected anyway in the Dirac–Kohn–Sham scheme, affect valence properties
by the same amount [24, 25]. For valence properties, relativistic effects are by no
means small, but they are almost completely recovered if the relativistic kinematics
of the electron is properly described, that is, if the calculation is based on the Dirac
equation. The relativistic corrections to the electron interaction (Breit operator in
wave function based methods, relativistic corrections to Exc in DFT) are much less
important. This is probably the reason why most “relativistic density functional cal-
culations” performed today are oblivious of relativistic density functional theory in
its proper sense. What is often termed “relativistic DFT” is a Dirac–Kohn–Sham
computational scheme with a nonrelativistic (spin-dependent) exchange-correlation
functional. The collinear or noncollinear approach (or the moment polarization
approach, see above) are used to define the spin density.

5.5. DIRAC–KOHN–SHAM IMPLEMENTATIONS

It is probably not worth the effort to compile a comprehensive list of Dirac–Kohn–
Sham programs that have been described in the literature, so the selection presented
here is strongly affected by my personal view. Nevertheless the reader may find it
useful to have the references to some Dirac–Kohn–Sham programs at hand, because
by searching those articles which cite these references, one may quickly locate
applications of these methods.

Probably the first molecular Kohn–Sham program was presented by Rosen and
Ellis [56] (there were earlier atomic programs, see Refs. [57,58]). The Ellis program
(see also Ref. [39]) used Slater’s exchange functional (X˛), that was later rela-
tivistically corrected [44]. Because this relativistic correction was obtained from a
Dirac–Fock–Coulomb treatment of the electron gas, the important Breit contribu-
tions were missing. The Ellis program has found widespread use: it was further
improved in the group of Fricke and applied to the chemistry of superheavy ele-
ments [59], with a relatively new extension to spin-density functionals [60, 61]. In
the last version, density fitting techniques are used to evaluate the matrix elements
of the Hartree potential[60].

A group in China also started from Ellis’ program but meanwhile the code
(“BDF”, for Beijing Density Functional program) seems to be largely rewritten
[62–65]. To evaluate the matrix elements of the Hartree potential, a multicenter
multipolar expansion of the density is used: first, the density is decomposed first
into disjoint atomic contributions, from which a multipolar (partial wave) expan-
sion is made. While the Hartree potential of each partial wave at each of the grid
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points can easily be evaluated quite accurately using a one-dimensional numerical
integration and possibly some sort of extrapolation, the multipolar expansion itself
has to be truncated. This truncation is the key parameter controlling the numerical
accuracy (see the discussion in Ref. [66]).

The computational procedure of Dirac–Kohn–Sham largely parallels that of
Dirac–Hartree–Fock. One difference is, that the nonlocal exchange operator present
in Hartree–Fock is absent in DFT (but only as long as one does not use hybrid
functionals!). On the other hand, the matrix elements of the exchange-correlation
potential involve a numerical integration that has to be added to a Dirac–Fock code
to enable it to do Dirac–Kohn–Sham calculations. How to do this is well known
from nonrelativistic methods. Therefore several Dirack–Fock programs have been
extended to include DFT as an option. Such codes do not have optimal efficiency
because there are faster ways to evaluate the matrix elements of the Hartree potential
than via four-center two-electron integrals, as done in Dirac–Fock methods. There,
one needs these integrals anyway for the nonlocal exchange part. Without Fock
exchange, one can use e.g. density fitting techniques to evaluate the matrix elements
of the Hartree potential, which are well known from nonrelativistic theory [67–71].
However, some of the most often exchange-correlation functions used today such as
B3LYP [72–75] are hybrid functionals that do include nonlocal Fock exchange.

Saue [76] presented such a Dirac–Kohn–Sham code which emerged from a
Dirac–Fock program, used later to calculate properties (in particular response
properties) at a relativistic level [77–84]. Similarly, Nakajima [85–87] coded
Dirac–Kohn–Sham derived from their Dirac–Fock program [88–90], and their
program was optimized later on for DFT adopting the pseudospectral approach
described by Friesner [91, 92] to Dirac–Kohn–Sham [93, 94]. This implementation
also features a treatment for relativistic double group symmetry for high symmetries
such as C6h [89].

The implementation by Quiney and Belpassi [95, 96] originally was also based
on a Dirac–Fock program, later density fitting techniques were added [97–100]. Few
applications have been reported so far [101–104].

5.6. QUASIRELATIVISTIC METHODS

Methods are termed quasirelativistic if they are conceptually based on Dirac
spinors, but do not (explicitly) deal neither with the negative-energy orbitals nor
with the small components of the orbitals of positive energy: hence the alternate
name two-component methods. There is an abundant literature on quasirelativistic
methods, some kind of overview can be found in Ref. [105], see also the preced-
ing chapter in this Book. This looks like a crude approximation only at first sight:
quasirelativistic methods can reproduce, in principle exactly, the positive-energy
branch of the Dirac spectrum. This contrasts with the so-called scalar-relativistic
(or one-component) approaches, which go one step further but then the spin–orbit
interaction is neglected, which is important in heavy-element compounds, and for
example determines the chemistry of the superheavy p-block elements (element
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113 through 118) [106]. We cannot discuss in detail effective core potential (ECP)
methods, in which electrons of the inner atomic cores are not explicitly treated but
replaced by the ECP. We only mention here that, although the vast majority of
ECP applications is scalar-relativistic, spin-dependent ECPs that cover also spin–
orbit effects have been successfully developed and tested [107], the coding of their
matrix elements is not difficult [108] and these techniques can be used in density
functional calculations [109, 110]. The discussions of quasirelativistic methods are
mostly restricted to one-particle systems, but the techniques can easily be used for
relativistic density functional calculations because the Dirac–Kohn–Sham equations
only involve a local effective potential veff and have therefore the same structure as
the Dirac equation one particle.

For about a decade, quasirelativistic density functional theory was dom-
inated by the zeroth-order regular approximation (ZORA) [111, 112] and
Douglas–Kroll–Hess (DKH) [113] methods. A two-component relativistic DKH
density functional method was first proposed by Rösch [114,115]: the initial imple-
mentation was scalar-relativistic [116] but later results from the full two-component
version were also reported [117–119]. Noteworthy is the treatment of relativis-
tic symmetry [120]. Rösch uses density fitting techniques to evaluate the matrix
elements of the Hartree potential. A similar implementation has been described,
with the application to solids in mind, by Boettger [121–123]. He suggested
the so-called screened nucleus spin–orbit (SNSO) approximation, which compen-
sates for the neglect of the Hartree-Potential in the Douglas–Kroll transformation.
The underlying problem is the following: taking the Douglas–Kroll method liter-
ally, one must construct the Douglas–Kroll Hamiltonian OHDK , which is an effective
one-particle operator in a DFT computational scheme, in each iteration of the self-
consistency loop because it depends, through the Hartree potential vH and the
exchange-correlation potential vxc on the density:

veff.r/ D v.r/C vH .r/C vxc.r/; OHDK D OHDK.veff/ (5-22)

Ignoring for a moment the problem that the density (and therefore, the effective
potential) cannot easily be calculated from the two-component orbitals, this means
that OHDK has to be re-constructed in each iteration. Arguing that the nuclear attrac-
tion potential dominates the effective potential in the vicinity of the nuclei, where
relativistic effects are important, one approximates

OHDK.veff/ � OHDK.v/C vH C vxc (5-23)

that is, one performs the Douglas–Kroll transformation using the nuclear potential
only and adds the Hartree and exchange-correlation potentials later. By virtue of
this approximation, the Douglas–Kroll transformation need only be done once and
not in each cycle of the iteration. While this approximation was more or less suc-
cessful in scalar-relativistic applications, two-component results showed that there
is a problem [117, 123]: spin–orbit splittings of high-angular-momentum atomic
shells were greatly overestimated, with a small error for p shells, a substantial error
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(�15%) for d shells and a large error (�50%) for f shells. In scalar relativistic
calculations, adding the Hartree potential later partly compensates for doing a
Douglas–Kroll transformation with the nuclear potential only. However, since the
Hartree potential is scalar (has no spin–orbit parts), the approximate Douglas–Kroll
operator is identical to the nuclear-only DK operator in its spin–orbit part, in other
words: the spin–orbit operator still contains the full (unscreened) nuclear potential.
Because there is a centrifugal potential which prevents electrons in high-angular-
momentum atomic orbitals coming close to the nucleus, electrons in these orbitals
do not “see” the naked but a screened nucleus, the screening being more impor-
tant the higher the angular momentum. In the SNSO approximation [119, 123] the
nuclear charge is empirically reduced to an effective nuclear charge when calculat-
ing the spin–orbit matrix elements, depending on the angular momentum of the
basis functions whose matrix element is to be calculated. Note that the SNSO
approximation, as originally presented, is somewhat inconsistent: only the first-
order spin–orbit contributions to the Douglas–Kroll operator are modified while
the second-order contributions remain unchanged. This cannot be generalized to
higher-order Douglas–Kroll operators. A better suggestion is to scale the spin–orbit
matrix elements before they go into the Douglas–Kroll “machine” [124]. Another
two-component implementation going up to fourth-order Douglas–Kroll has been
reported by Scuseria [125] and applied to heavy-element chemistry [126–128].

A more fundamental problem that potentially limits the accuracy of quasirela-
tivistic methods is the so-called picture change problem, which means that one has
to use properly transformed operators before one calculates expectation values using
the two-component spinors [129–131]. In this context, the problem is that the elec-
tron density, which is the central quantity in DFT, is not given by the sum of the
absolute squares of the two-component orbitals (“two-component density”). Rather,
one should back-transform the two-component spinors to four-component Dirac
spinors before one calculates the (“four-component” or “physical”) electron density.
Such a consistent treatment of the electron interaction in the DKH framework [132]
would of course spoil all the computational savings of the quasirelativistic approach
and is therefore of no practical use. What helps is the observation that at least for
certain quasirelativistic operators, the two- and four-component density differ only
in the atomic cores and are transferable from atoms to molecules, such that with a
density correction calculated once and for ever for each atom in the periodic table,
one can obtain, to a very good approximation, the four-component electron density
directly from the two-component orbitals [124]. Note that even an exact quasirela-
tivistic operator which reproduces the positive-energy branch of the Dirac spectrum
is only defined up to a unitary transformation. Such a transformation leaves the
energy spectrum invariant but may change the two-component density. Among the
manifold of (nearly) exact quasirelativistic operators, those which produce a two-
component density that is very similar to the “true” four-component density at least
outside the atomic cores are to be preferred. In this respect Foldy–Wouthuysen type
operators may be superior to methods which produce two-component orbitals that
are renormalized upper Dirac components.
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The ZORA method is in fact a re-derivation of a quasirelativistic Hamiltonian
discovered earlier by Chang et al. [111]. It has been derived by Baerends, van Lenthe
et al. [112, 133–135] as the leading contribution of a regular relativistic expansion,
hence the name ZORA. It is interesting that a four-component procedure fully equiv-
alent to ZORA can be derived applying perturbation theory directly to the Dirac
equation [136]. Two-component ZORA DFT calculations were reported soon there-
after [137,138]. The main problem with ZORA is that it is not gauge invariant [133].
Because the ZORA kinetic energy operator OTZORA

OTZORA D �p
c2

2mc2 � veff
�p; OHZORA D OTZORA C veff (5-24)

depends on the effective potential, a constant shift of this potential affects the total
energy in the wrong way (because OHZORA does not experience a constant shift).
Upon formation of a chemical bond, and more pronounced upon ionizing an atom,
such nearly constant potential shifts occur in the region of the atomic core, and one
can estimate that the error introduced by the gauge dependence of ZORA is much
too large to be acceptable. For example, the calculated first ionization potential of
gold with ZORA where the kinetic energy operator depends on the effective poten-
tial is 5.21 eV [139], far off the experimental value of 9.22 eV. All implementations
of ZORA work around this problem in one way or the other. Originally the elec-
trostatic shift approximation (ESA) was proposed [133]. Here, the total energy of
a molecule only defined as an atomization energy, that is, with respect to the con-
stituent atoms. These atoms are then calculated using ZORA where the effective
potential used to construct the kinetic energy operator OTZORA is fixed and taken
from the self-consistent molecular calculation. The ZORA(MP) method (MP stands
for model potential) works in some sense the other way round: To construct the
kinetic energy operator in the molecule, a superposition of the densities of the neu-
tral atoms constituting the molecule is used, and a Hartree and exchange-correlation
potential derived thereof [139]. The advantage is that it is somewhat easier to com-
pute forces [140] (i.e., geometry gradients), although gradients for ZORA(ESA)
have also been presented soon thereafter [141]. There is also a variant called strictly
atomic ZORA [140], where relativistic corrections to the matrix elements are only
considered if both basis functions “sit” on the same atom. Furthermore, only the
nuclear potential of that atom is used to construct OTZORA. This fixes the gauge and
removes unphysical contributions from the tails of the nuclear potential of the other
atoms. Likewise, no relativistic corrections enter the calculation of forces other than
implicitly through the shape of the orbitals and their energy. This way, a nonrelativis-
tic program can be used unmodified to compute the forces. Newer variants of ZORA
avoid the numerical integration to compute the matrix elements of OTZORA [142].
They rely on the resolution of the identity (RI).

In the last few years, many more quasirelativistic approaches have been pro-
posed, for example the so-called relativistic elimination of the small component
(RESC) [85,87,143]. Most likely, the development of new quasirelativistic operators
has come to an end through the advent of quasirelativistic infinite order operators
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that are exact within a given basis set. The first proposal in this direction came
probably from Barysz and coworkers [144–147]. The issue has been thoroughly dis-
cussed by Kutzelnigg and Liu [148–151] although computational schemes at least
very similar to theirs been in use elsewhere [152–154]. Two- and four-component
methods can be made fully equivalent, but then two-component methods offer no
advantages in terms of computational efficiency. However, one can invoke a hier-
archy of approximations [155] starting either from a two- or a four-component
formulation and restore computational efficiency.

The section on quasirelativistic Hamiltonians should not be closed without
emphasizing that there is a price to pay for the (possible) gain in computational
efficiency: two-component Hamiltonians are usually much more complicated than
the Dirac operator. This is especially true if it comes to the calculation of magnetic
properties like the chemical shift. It is perhaps not accidental that Kaupp, after some
experimentation with quasirelativistic schemes [156], finally gave preference to a
full four-component formulation [157]. So one can be somewhat pessimistic about
the future of quasirelativistic all electron methods. Possibly, the two-component
programs will only find applications when using spin-dependent ECPs, since this
is certainly much more efficient than all-electron methods, let it be four- or two-
component. At least for valence properties, two-component DFT calculations with
ECPs seem to give the same answers as two- and four-component all-electron
methods [109, 158]. Core properties like chemical shifts and electric field gradients
at the nucleus should of course not be calculated with ECPs.

5.7. THE PRESENCE, AND THE FUTURE

While four-component approaches have gained a lot in efficiency in the last decade,
the so-called infinite order two-component methods (at matrix level) get more and
more similar, at least from an operational point of view, to a four-component
treatment. The distinction between these methods, which sometimes went even
somewhat emotional,3 is fading away. Especially for properties that depend on the
wave function in the atomic core, four-component methods are superior simply
because too much effort has to be done to get this correct in a two-component for-
mulation. After all, there are aspects beyond accuracy and computational efficiency:
the development of two-component methods is (perhaps: has been) an intellectual
challenge and thus a rewarding research field in its own right. Note that the separa-
tion into scalar and spin–orbit effects, although not uniquely defined [160–162], is
important for qualitative discussion and understanding, and this separation is rooted
in a two-component formulation. My prediction is that we will see more and more
routine applications of the four-component Dirac–Kohn–Sham method in the not
too distant future.

3 In a speech (witnessed by the present author) given by W. Nieuwpoort at a conference dinner in
1999, the difference between four-component and two-component methods was characterized as the
difference between a four-course and a two-course dinner. See also the title of Ref. [159]!
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What surprises somewhat if one reviews “relativistic DFT” calculations is how
little impact relativistic density functional theory in its narrower sense (see the first
sections of this chapter) has had on these calculations. This will probably only
change if more physics, such as two-electron spin–orbit effects beyond the screening
of the nuclei (which comes from the Hartree term, not from the exchange-correlation
functional), is included in new relativistic functionals. These effects are especially
important in systems containing only light atoms, as the one-particle relativistic
effects are small here. Note that the same holds in wavefunction based quantum
chemistry, where the Breit interaction is an important contribution to the relativistic
effects only for light atoms, while it is often neglected for heavy-element com-
pounds where one-particle (kinematic) effects dominate. Quasirelativistic methods
have so often been combined with density functional theory because this is straight-
forward to formulate: only effective one-particle equations with a local potential
occur. This also means that it is only a small step from an implementation of
a quasirelativistic method for one-electron systems to a many-electron algorithm
based on DFT (see Ref. [163] which shows that ZORA becomes (much) more
complicated for Hartree–Fock than for DFT).

Most likely, Dirac–Kohn–Sham will become cornerstone of heavy-element
quantum chemistry, just as nonrelativistic Kohn–Sham is for compounds where
relativistic effects are still unimportant. It is well possible that on the long run, two-
component algorithms will only be of interest in conjunction with spin–orbit ECPs.
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Abstract: A brief overview over the foundations and modern variants of the relativistic effective
core potential method, i.e., energy-consistent and shape-consistent ab initio pseudopo-
tentials as well as ab initio model potentials, is given. The energy-consistent ab initio
pseudopotential approach is discussed in more detail, focussing on the uranium atom as
an example. The selection of appropriate relativistic reference data, the choice of the core
and the fitting procedure are discussed. Results of atomic and molecular test calculations,
e.g., for the low-lying electronic states of uranium hydride, are summarized. Whereas the
5f-in-core large-core approximation provides an efficient approximate treatment of larger
actinide systems without having to struggle with complexities arising from the open 5f
shell, the 5f-in-valence small-core approach allows to reach a similar accuracy as the best
available relativistic all-electron calculations.

Keywords: Effective core potentials, Model potentials, Pseudopotentials, Pseudo-valence
orbitals, Core-polarization potentials, Dirac–Coulomb–Hamiltonian, Breit interaction,
Wood–Boring–Hamiltonian, Frozen-core errors, Uranium, Uranium hydride, Electronic
structure, Excited states, Calibration

6.1. INTRODUCTION

The effective core potential (ECP) approach is one of the most successful
approximate methods in relativistic quantum chemistry with an almost uncount-
able number of applications in the field of computational chemistry for heavy
element systems. By means of restricting the explicitly treated electrons and orbitals
to those belonging to the valence shells of the constituting atoms of a system,
not only computational resources are saved, but also the major relativistic effects
can be included implicitly in the calculation. In the ECP approaches the atomic
cores, i.e., the nucleus and the electrons in the chemically inert inner shells of
each atom, are replaced by a suitably parametrized relatively simple one-electron
operator acting on the remaining valence electrons, the effective core ‘potential’.
Besides the modelling of core-valence Coulomb and exchange interactions as well
as core-valence orthogonality constraints the ECP can be designed to account for
relativistic corrections at essentially any computational level, for which accurate
atomic all-electron (AE) reference calculations are feasible.

M. Barysz and Y. Ishikawa (eds.), Relativistic Methods for Chemists,
Challenges and Advances in Computational Chemistry and Physics 10,
DOI 10.1007/978-1-4020-9975-5 6, c� Springer Science+Business Media B.V. 2010
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Essentially two main variants of the ECP method exist. The so-called model
potential (MP) approach can be viewed as an attempt to model as accurately as
possible the frozen-core (FC) Hartree–Fock (HF) operator acting on the valence
electron system, i.e., the radial nodal structure of the valence orbitals of an atom is
unchanged with respect to the AE case. The so-called pseudopotential (PP) approach
formally uses a transformation from the AE valence orbitals with the correct nodal
structure to pseudo-valence orbitals with a simplified radial nodal structure, i.e.,
a reduced number of radial nodes leading to smaller demands with respect to the
one-particle basis sets but also requiring a modified form of some operators acting
on the explicitly treated valence space. Clearly, ECPs are mainly constructed to
reproduce the results of AE calculations for properties determined by the spatial
valence region of a system. Properties related to the spatial core region are beyond
the original scope of the method, especially for the PP approach.

Although it should not be forgotten that ECPs are a tool for approximate
relativistic quantum chemical calculations, not necessarily every AE calculation,
also those using a formally better Hamiltonian than the one modelled by the ECP,
yield a superior result. This is due to the fact that ECPs allow to concentrate the
computational resources on the important parts of the system, e.g., they shift com-
putational effort from the chemically unimportant core region to the chemically
decisive valence region. This is not only related to the computational savings with
respect to the one-particle basis sets, but also due to the fact that, by choosing
appropriate, not necessarily identical, core definitions for a scalar-relativistic PP
and a related spin–orbit (SO) operator the expensive large-scale correlation treat-
ment may be essentially kept at the scalar-relativistic level, accounting for SO
effects only within the framework of an effective Hamiltonian built in the basis
of the LS or �S states. In addition, the explicit evaluation of core-valence corre-
lation effects, i.e., dynamic core polarization, can be avoided by augmenting the
ECP Hamiltonian by an effective core-polarization potential (CPP), correcting also
for static core-polarization contributions. Highly accurate ECPs can even implicitly
account for relativistic terms in the AE Hamiltonian which are difficult to deal with
in standard atomic and especially molecular AE calculations, e.g., the ‘full’ Breit
interaction, instead of merely the Gaunt term included frequently in molecular AE
Dirac–Hartree–Fock (DHF) calculations and subsequent correlation treatments, or
even higher corrections from quantum electrodynamics.

The present overview aims at computational chemists and is restricted to rel-
ativistic ECPs used in atomic and molecular ab initio electronic structure theory
using Gaussian basis sets, e.g., related methods originating from solids state physics
and applying plane wave expansions are not considered here. Moreover, the empha-
sis is put on PPs, especially those of the so-called energy-consistent variety. For
more detailed information about the other approaches the reader is referred to
review articles which appeared during the last decade, e.g., reviews focussing
on MPs by Klobukowski, Huzinaga and Sakai [74] as well as by Seijo and
Barandiáran [126], and on PPs by Pyykkö and Stoll [112] and by Schwerdtfeger
[122]. The recentreview papers of the current authors on PPs and partly also on
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MPs [20, 30, 31, 33, 60] provide a relatively complete list of older reviews, which
might be of interest for those who wish to learn more about the field and its devel-
opment. For a deeper discussion of relativistic effects or relativistic AE methods we
refer the reader to the other chapters in this book.

In the following we will first summarize the basic concepts underlying the PP
method and explain the most important equations. We will then describe in detail the
method of energy-consistent PPs and continue with a brief discussion of frequently
used alternative approaches developed by other groups, e.g., shape-consistent PPs
as well as MPs. At the end we will have a look at an example, i.e., various energy-
consistent PPs for the uranium atom and their applications.

6.2. THEORETICAL CONSIDERATIONS

The following sections give a brief overview over the basic equations underlying the
pseudopotential (PP) approach and discuss the commonly used analytical forms of
the valence-only (VO) model Hamiltonian.

6.2.1. Phillips–Kleinman Equation

In 1959 Phillips and Kleinman developed a rigorous formulation of the “empirical
potential” approach within an effective one-electron framework for the calculation
of wavefunctions in crystals and molecules [105]. The so-called Phillips–Kleinman
equation, which is described below, provided the first sound theoretical basis for all
PP methods.

Let us imagine an (effective) one-electron Hamiltonian OHeff with one upper
energy eigenfunction j'v >, that we will call valence (v) eigenfunction, and several
lower energy eigenfunctions j'c >, that we will call core (c) eigenfunctions.

OHeff j'a >D "aj'a >; a 2 fv; cg (6-1)

We assume that all eigenfunctions are orthonormal.

< 'aj'a0 >D ıaa0 ; a; a0 2 fv; cg (6-2)

Due to the orthogonality requirements the valence orbital j'v > will have radial
nodes, if core orbitals j'c > of the same symmetry are present. In order to
derive a scheme with which we can save computational effort by treating only
the valence electron(s) in the field of the core(s) and further by reducing the basis
set requirements for the description of the valence space by reducing the number
of radial nodes, we define an arbitrary, unnormalized function j'p > as a linear
combination of valence and core eigenfunctions:

j'p >D j'v > C
X

c

ac j'c > (6-3)
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Using the orthogonality constraints between the j'c > and j'v > in Eq. (6-2) we
can easily get the coefficients ac by acting on Eq. (6-3) from the left with < 'c j

ac D< 'cj'p > (6-4)

Using this result one can solve Eq. (6-3) for the valence eigenfunction:

j'v >D j'p > �
X

c

< 'c j'p > j'c > (6-5)

Substituting j'v> in Eq. (6-1) by this expression and using Eq. (6-1) for j'c > yields

OHeff j'p > �
X

c

"c j'c >< 'c j'p >D "vŒj'p > �
X

c

j'c >< 'c j'p >� (6-6)

If we define the so-called Phillips–Kleinman (PK) ‘potential’ OV PK as

OV PK D
X

c

."v � "c/j'c >< 'c j (6-7)

we can rearrange Eq. (6-6) to give the so-called Phillips–Kleinman equation:

. OHeff C OV PK/j'p >D "vj'p > (6-8)

Since OV PK is not a usual potential, i.e., a function depending on a position r, it
is called pseudopotential (PP). It is important to note that the operator OV PK is
energy-dependent because it depends on "v, and it is nonlocal because it depends
on j'v >. Now both the core functions j'c > and the valence function j'v >, as
well as any linear combination j'p > defined by Eq. (6-3), are eigenfunctions of
the PK equation (6-8) with an eigenvalue "v. Note that the PK Hamiltonian implic-
itly takes care of core-valence orthogonality conditions and that one can use any
arbitrary trial wavefunction j Q'p > in a variational procedure to approach "v from
above, without danger to collapse to the core energy levels. The linear combination
Eq. (6-3) may e.g., be used to eliminate from j'v> the nodal structure arising from
core-valence orthogonality, yielding a smooth and nodeless pseudo-valence func-
tion j'p >. Unfortunately, the construction of the PK potential would require the
knowledge of j'a > and "a (a 2 v; c), i.e., the full problem still has to be solved
and no computational savings arise so far. In addition the pseudo-valence function
j'p > constructed according to Eq. (6-3) is neither the single solution with the
eigenvalue "v nor is it unique. It also could have the undesirable property that it
shows significantdeviations from j'v > in the chemically important spatial valence
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region. For a recent attempt to explicitly apply PK theory as well as additional
references to previous work in this field we refer the reader to articles by Schwartz
and coworkers [129, 130].

The Phillips–Kleinman pseudopotential formalism was generalized in 1968 by
Weeks and Rice [145] to cases, where j'v > is eigenfunction of the (effective) one-
electron Hamiltonian, whereas the j'c > are not, as well as to cases where more than
one valence electron is present. The extension of Eq. (6-8) for the many-electron
pseudo-valence eigenfunction j˚p > is

. OHv C OV GPK/j˚p >D Evj˚p > (6-9)

where the so-called generalized Phillips–Kleinman (GPK) PP OV GPK is a nonlocal,
energy-dependent many-electron operator

OV GPK D � OHv OP � OP OHv C OP OHv OP C Ev OP (6-10)

constructed from the Hamiltonian for the valence electrons OHv, the total valence
energy Ev and a projection operator OP , which projects out from the many-electron
pseudo-valence eigenfunction j˚p> any core components, thus yielding the original
valence eigenfunction j˚v > of OHv for the eigenvalueEv, i.e.,

j˚v >D .1 � OP /j˚p > (6-11)

Equations (6-9) to (6-11) are formidable, and no computational savings would
result compared to a standard all-electron (AE) treatment since the derivation merely
corresponds to a rewriting of the original problem in a quite complicated form. How-
ever, the PK and GPK methods provide a formal theoretical basis for the subsequent
development of PPs applied nowadays in quantum chemical calculations. Weeks
and Rice state: “... it seems to us that the advantage of a pseudopotential formal-
ism lies not in the formal exact solution but in the physical insights it gives and the
models it suggests.” Thus we keep in mind that in principle it is possible to find
a ‘potential’ which, when added to a valence Hamiltonian, allows the variational
solution of the corresponding Schrödinger equation without variational collapse by
using a pseudo-valence wavefunction without explicit orthogonality requirements to
the wavefunction describing the core system. We note here, that by getting rid of the
core electron system we formally perform a core-valence separation and apply the
frozen-core (FC) approximation. The former means that from now on we neglect
core- and core-valence correlation effects, and the latter requires that we assume the
core electron system to be unaffected by any changes the rest of the system may
undergo. We now continue and discuss in the next sections how a suitable valence-
only model Hamiltonian yielding such a pseudo-valence wavefunction for an atom
could look like.
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6.2.2. Valence Electron Model Hamiltonian for an Atom

For an atom with nv valence electrons the valence-only HamiltonianHv is given by

OHv D �1
2

nvX
i

r2
i C

nvX
i

nvX
j >i

Og.i; j / �
nvX
i

Q

ri
C

nvX
i

OV 0
cv.i/ (6-12)

Here Og.i; j / stands for the electron-electron interaction, e.g., in the simplest case
Og.i; j / D 1=rij for the Coulomb interaction.Q is the core charge, i.e.,Q D Z�nc

when nc electrons and a nucleus of charge Z form the core, and OV 0
cv.i/ denotes the

core-valence interactions for the electron i not represented by the leading �Q=ri
Coulomb attraction. The GPK equation (6-9) tells us, that when a pseudo-valence
wavefunction as solution is sought OHv has to be supplemented with the GPK
pseudopotential OV GPK equation (6-10)

OHGPK
v D �1

2

nvX
i

r2
i C

nvX
i

nvX
j >i

Og.i; j / �
nvX
i

Q

ri
C

nvX
i

OV 0
cv.i/C OV GPK (6-13)

We define an effective one-electron potential for valence electron i

OVcv.i/ D �Q
ri

C� OVcv.i/ (6-14)

using the approximation that OV GPK can be written as a sum over one-electron
contributions OV GPK.i/

� OVcv.i/ D OV 0
cv.i/C OV GPK .i/ (6-15)

The atomic valence-only Hamiltonian Eq. (6-13) for pseudo-valence wavefunction
calculations is now simplified to:

OHPP
v D �1

2

nvX
i

r2
i C

nvX
i

nvX
j >i

Og.i; j /C
nvX
i

OVcv.i/ (6-16)

Here OVcv .i/ has to account for all interactions of the valence electron i with the
nucleus and the (removed) core electron system, as well as for the neglect of explicit
core-valence orthogonality constraints. In the following we will refer to � OVcv .i/ as
a pseudopotential (PP). The analytical form and the construction of � OVcv .i/ for
practical calculations will be discussed in the next section.
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6.2.3. Analytical Form of Non-relativistic Pseudopotentials

The first PP was proposed by Hellmann in 1935 [59]. For treating potassium as
a one-valence electron atom he assumed a simple local functional form for the
complete potential acting on the valence electron:

OVcv.r/ D Vcv.r/ D �1
r

C 2:74

r
e�1:16r (6-17)

Later it was found that simple r-dependent spherical PPs are not accurate enough
for atoms containing valence orbitals of various angular symmetries, especially
for first-row atoms [7]. Starting with the work of Abarenkov and Heine in
1965 [1] an increasing number of researchers took besides the r-dependency also a
l-dependency into account, i.e., a dependency of the PP on the angular momentum
quantum number l . We note that such a r and l dependency is already suggested in
the PK pseudopotential Eq. (6-7), e.g., when core orbitals of different l are present.
Kahn and Goddard [69] suggested unified PPs � OVcv.ri /

� OVcv.ri / D
X
l;m

Vl.ri /jlm >< lmj D
lD1X
lD0

Vl.ri / OPl.i/ (6-18)

with the angular momentum projection operator based on spherical harmonics
jlm >:

OPl.i/ D
mDlX

mD�l

jlm >< lmj (6-19)

For l 
 L, where typically .L � 1/ is the largest angular momentum used by the
core orbitals, the PPs Vl.ri / are only slightly different [69], i.e.,

Vl.ri / Š VL.ri / for l 
 L (6-20)

In general, if we assume Vl.ri / D VL.ri / for l 
 L, we can use the closure property
of the projection operators to write the expression [69]

� OVcv.ri / Š VL.ri /C
L�1X
lD0

ŒVl .ri /� VL.ri /� OPl .i/ (6-21)

The operator� OVcv.ri / in Eq. (6-21) is a so-called semilocal PP, i.e., it mainly con-
sists of a sum of local potentials Vl.ri /� VL.ri / acting on each angular momentum
symmetry 0 � l � L � 1 separately up to a maximum angular momentum L � 1

present in the core, beyond which a common local potential VL.ri / acts on all
angular momentum symmetries l 
 L.
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The potentials Vl.ri / and VL.ri / were written by Kahn et al. [70] as linear
combinations of Gaussian type functions ri multiplied by powers of ri ,

Vm.ri / D
X

k

Akmr
nkm

i e�akmr2
i with m D l; L (6-22)

where ri denotes the electron-core distance. The choice was made mainly because
of computational convenience and efficiency for the further calculations, i.e., the
matrix elements over the PP operators may then be readily evaluated in a cartesian
Gaussian basis [8, 70, 84, 108].

In 1976 Kahn et al. [70] proposed a prescription for obtaining ab initio PPs
from finite-difference HF atomic orbitals. The basic idea is to construct accord-
ing to Eq. (6-3) a pseudo-valence orbital 'p for each angular symmetry l as a linear
combination of the AE valence and core orbitals, plug it in the radial Fock equation
together with the appropriate orbital energy "v and to solve the resulting expres-
sion for the unknown potential Vm.ri / (m D l; L). Three conditions were imposed
in addition to Eq. (6-3) on the pseudo-valence orbital 'p:

1. The (energetically lowest) pseudo-valence orbital 'p (in each angular symmetry)
should have no radial nodes (a node or zero at r D 0 is not considered a radial
node).

2. The pseudo-valence orbital 'p should be as close as possible to the original
valence orbital 'v.

3. The pseudo-valence orbital 'p should have a minimal number of spatial undula-
tions.

These conditions mainly arise from the wish that the basis set used to represent the
pseudo-valence orbital 'p can be reduced comparing to the original basis set used to
describe the true valence orbital 'v. In order to impose these conditions in practice,
Kahn et al. constructed a functional which had to be minimized with respect to the
expansion coefficients ac in Eq. (6-3). After the potentials were numerically gener-
ated on a grid, they were fitted to the expansion Eq. (6-22) in a least-squares sense.
The powers nkl of the electron-core distance ri were restricted to the values �2,
�1, and 0, because these values were found to adequately cover of the behavior
of � OVcv.ri / at the origin [70]. The work of Kahn et al. was a very important step
forward in the development of ab initio PPs, however the pseudo-valence orbitals
generated with their prescription often deviated too much from the AE valence
orbitals in the chemically relevant spatial valence region and thus lead to defects
of the PPs derived from them. This defect was actually already overcome by the
work of Durand and Barthelat [40] as well as thereafter of Christansen et al. [24]
evolving in the shape-consistent PP approach (cf. Section 6.4.1).
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6.2.4. Analytical Form of Scalar-Relativistic Pseudopotentials

As reader may have noticed relativistic effects have not been taken into account
so far. One distinguishes direct and indirect relativistic effects. The direct effects
arise from substituting the non-relativistic Hamiltonian by a relativistic one and have
been shown to originate in the spatial core region, i.e., near the nucleus, and to act
on all orbitals which have a significant amplitude in this region. They always lead to
a contraction and stabilization, as well as for angular momentum symmetry l > 0

to a spin–orbit (SO) splitting yielding states with total angular momentum quan-
tum number j D l � 1=2 and j D l C 1=2. In a many-electron atom the direct
effects are especially strong for the innermost shells of mainly s and p symmetry,
which are strongly contracted and thus shield the nuclear charge for more diffuse
orbitals more efficiently. The reduced effective nuclear charge acting on all fur-
ther out orbitals leads for these to an expansion and destabilization. For the valence
orbitals of a many-electron atom one finds usually that the valence s and p shells are
stabilized and contracted, mainly by dominating direct relativistic effects, whereas
the d and f shells are destabilized and expanded, mainly by dominating indirect
relativistic effects.

In a PP approach, where the pseudo-valence orbitals have as low function val-
ues in the spatial core region as possible, it is not possible to generate accurately
direct relativistic contributions by an operator acting in this region. Since electron
density is shifted from the spatial core region towards the valence region, a modified
relativistic operator has to be constructed anyhow. The indirect effects cause so to
say a modification of the core charge seen by the valence orbitals, an effect which
easily can be accommodated by the ansatz used in the non-relativistic case so far.
Thus, PPs taking into account relativistic effects are constructed essentially along
the same lines as in the non-relativistic case, however SO interaction causes some
modifications of the analytical form, if it is taken into account. In case that only
so-called scalar-relativistic contributions are to be incorporated in the PP, i.e., SO
effects are neglected or averaged out, the so far described non-relativistic formal-
ism can be kept and only the reference data for parametrization has to be adapted
accordingly. Kahn et al. described in 1978 the first derivation of scalar-relativistic
ab initio PPs [71] based on atomic Cowan–Griffin AE calculations [25]. Relativis-
tic, e.g., two-component, PPs were first published at the same time by Hafner and
Schwarz [55] at a semiempirical level and independently by Lee et al. [79] at the ab
initio level. The analytical form of such relativistic PPs will be described in the next
section.

6.2.5. Analytical Form of Relativistic Pseudopotentials

In a description of an atom at the non-relativistic Hartree–Fock level (HF) all orbitals
belonging to a shell with main quantum number n and angular momentum quantum
number l are degenerate, thus leading to a semilocal PP with a l-dependence by
means of a projection operator OPl based on spherical harmonics. At the relativistic
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Dirac–Hartree–Fock (DHF) level the degeneracy is reduced and depends in addition
to n and l also on the total angular momentum j of the orbital (or spinor), implying
a semilocal PP with a lj -dependence by means of a projection operator OPlj set up
with spinor-spherical harmonics jljm >:

� OVcv.ri / D
X
l;j;m

Vlj .ri /jljm >< ljmj D
lD1X
lD0

j DlC 1
2X

j Djl� 1
2

j
Vlj .ri / OPlj .i/ (6-23)

with

OPlj .i/ D
mDjX

mD�j

jljm >< ljmj (6-24)

By using the same strategy as Kahn and Goddard [69] did for the non-relativistic
case (cf. Section 6.2.3),�Vcv.ri / may be written as

� OVcv.ri / Š VL C
lDL�1X

lD0

j DlC 1
2X

j Djl� 1
2

j
ŒVlj .ri / � VL.ri /� OPlj (6-25)

Note that

OPl .i/ D
X

j

OPlj .i/ D OPl;jl� 1
2

j.i/C OPl;lC 1
2
.i/ (6-26)

and

Vl.ri / D 1

2l C 1
ŒlVl;jl� 1

2 j.ri /C .l C 1/Vl;lC 1
2
.ri /� (6-27)

The relativistic PP in Eq. (6-25) may thus be rewritten as the sum of a spin-free
averaged (av) and a spin-dependent (so) term [42]

� OVcv.ri / D � OVcv;av.ri /C� OVcv;so.ri / (6-28)

where

� OVcv;so.ri / D
L�1X
lD1

�Vl.ri /

2l C 1
Œl OPl;lC1=2.i/� .l C 1/ OPl;l�1=2.i/� (6-29)

� OVcv;av.ri / is a scalar-relativistic PP, i.e., without inclusion of SO coupling, and it
corresponds to� OVcv.ri / defined in Eq. (6-21) if the difference between VLJ .ri / and
VL.ri / is neglected [42]. The� OVcv;so.ri / is called SO PP. A simpler form especially
suited for use in SO configuration interaction (CI) calculations following s scalar-
relativistic HF solution was derived by Pitzer and Winter [108]

� OVcv;so.ri / D
L�1X
lD1

2�Vl.ri /

2l C 1
OPl .i/Oli � Osi

OPl .i/: (6-30)
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Here Ol�i D Or�i � Opi and Osi stand for the operators of orbital angular momentum and
spin, respectively. We note here in passing that relativistic (two-component) PPs can
be averaged and thus also used in scalar-relativistic (one-component) calculations,
whereas the usage of a scalar-relativistic PP together with a SO term optimized
only for the valence orbitals, and not for the semi-core orbitals, in variational two-
component calculations usually leads to errors.

6.2.6. Molecular Pseudopotentials

By using steps similar to the ones described in Section 6.2.2 for an atom one can
obtain a corresponding molecular valence electron model Hamiltonian (cf. Eqs.
6-14–6-16)

OHv D �1
2

nvX
i

r2
i C

nvX
i

nvX
j >i

Og.i; j /C
nvX
i

OVcv.i/C Vcc (6-31)

where

OVcv.i/ D �
X

�

Q�

r�i

C� OVcv.i/ (6-32)

and

Vcc D
X
�<�

Œ
Q�Q�

r��

C�V ��
cc .r��/� (6-33)

The sums in Eqs. (6-32) and (6-33) run over all nuclei �, � with the core charge
Q�,Q�. In principle one obtains the molecular PP as a superposition of atomic PPs

OVcv.i/ D
X

�

OV �
cv.i/ D

X
�

Œ�Q�

r�i

C� OV �
cv.i/� (6-34)

plus some non-additive correction Vcc . This new term Vcc compared to the case
of one atom (cf. 6-16) denotes the interaction between nuclei and/or cores, written
as the point charge approximation for the leading term and additional pair-wise
corrections�Vcc for deviations from the Coulomb repulsion, e.g., for mutually pen-
etrating cores, where besides modified electrostatic contributions also orthogonality
constraints and the Pauli-repulsion between the electron shells localized on different
cores has to be taken into account. It is hoped that a suitable parametrization of� OV �

cv

and �V ��
cc is able to compensate for all errors resulting from the simplifications of

the original valence Hamiltonian.

6.2.7. Core-Polarization Potentials

The derivation of the valence electron model Hamiltonian for an atom as well
as a molecule sketched above has been done at the independent-particle level,
i.e., using HF-type determinant wavefunctions built from orbitals. Thus electron
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correlation effects are not considered. When the cores are actually replaced by local
or semi-local potentials the contributions of core and core-valence correlation neces-
sarily have to be neglected, whereas an explicit correlated treatment of the valence
electrons is still possible. We note that the leading contribution for core-valence
correlation in an AE CI treatment would be single excitations from the core orbitals
coupled to single and higher excitations from the occupied valence orbitals to the
virtual ones.

If we suppose that the (spherically symmetric) core of an atom will not be
affected when the atom bonds to the other atoms, i.e., the FC approximation is
valid, one can just take the PPs determined for each atom in the system (cf. 6.2.5) to
construct the molecular PP by means of their superposition (cf. Eq. 6-34). Contri-
butions arising from the deformation of the atomic cores under the field of the other
cores and all valence electrons in the system, i.e., static core-polarization effects,
are thus neglected. The induced error may become especially significant for sys-
tems with large, easily polarizable cores and only a few valence electrons, e.g., for
large-core PPs in case of group 1 and 2 or 11 and 12 elements. At the AE level,
starting with spherical mutually orthogonalized cores, the static core-polarization
could be accounted for in a CI treatment by single excitations from the core orbitals
to the virtual ones.

Since in the ECP approximation the core electrons have been removed from the
system, the above mentioned single excitations cannot be performed explicitly, but
only taken into account in form of an effective operator acting on the valence elec-
trons. Therefore, a so-called core-polarization potential (CPP) OVcpp is frequently
added to the valence electron model Hamiltonian.

OHv D �1
2

nvX
i

r2
i C

nvX
i

nvX
j >i

Og.i; j /C
nvX
i

OVcv.i/C Vcc C OVcpp (6-35)

The OVcpp accounts for both static core-polarization, i.e., polarization of the core at
the HF level, as well as dynamic core polarization, i.e., core-valence correlation. It
has been demonstrated in PP calculations that by including the dipole polarization of
the core charge density one can also takes care of the largest part of the core-valence
correlation contributions [53].

For a core � the dipole moment O�� induced by an external electric field Of�.r/
generated by all other cores and nuclei as well as all valence electrons in the system
at a core � with dipole polarizability ˛� amounts to

O�� D ˛�
Of� (6-36)

We note here in passing that the application of a CPP will also contribute to
the dipole moment of a system. The interaction of such induced dipoles with the
external electric field yields an expression for the CPP

OVcpp D �1
2

X
�

Ō� � Of� D �1
2

X
�

˛�
Of2

� (6-37)
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Equation (6-37) strictly applies only to large distance(s) of the polarizing charge(s)
from the polarized core(s) and even diverges in the limit vanishing distances. There-
fore Müller et al. [94] have suggested to multiply the field f� with a cut-off functions
F removing the singularities. The field at a core � then reads as

Of� D �
X

i

ri�

r3
i�

F.ri�; ı
�
e /C

X
�¤�

Q�

r��

r3
��

F.r��; ı
�
c / (6-38)

where the cut-off functions can be chosen, e.g., as follows

F.ri�; ı
�
e / D Œ1 � exp.�ı�

e r
2
i�/�

ne (6-39)

F.r��; ı
�
c / D Œ1 � exp.�ı�

c r
2
��/�

nc : (6-40)

The exponents ne and nc for the electronic and nuclear contributions are usually
1 or 2, and the corresponding cut-off parameters ı�

e and ı�
c can be used for the

adjustment to suitable reference data. We note that the CPP is not a simple one-
electron operator as the usual ECPs, but contains one- and two-particle contributions
arising from the valence electrons as well as the cores/nuclei. The integral evaluation
over Cartesian Gaussian functions is quite complex [123,120] and energy gradients
for geometry optimizations are still missing. CPPs of the type described here often
accompany large-core PPs for main group elements [67,68] as well as group 11 and
12 transition metals [66, 133]. For the latter systems quadrupole corrections have
also been developed [134].

6.2.8. Core–Core/Nucleus Repulsion Corrections

For small cores, where the overlap effects between cores are not significant, the
point-charge repulsion model is often a good approximation for the core–core inter-
action Vcc (cf. the first term in Eq. (6-33)). However if the large cores are used the
core–core repulsion (CCRC) correction for “verlapping” or “Mutually penetrating”
cores, i.e., the second term in Eq. (6-33), is necessary. A similar core-nucleus repul-
sion correction (CNRC) has to be applied for the interaction between nuclei of atoms
treated without PPs and centers with large-core PPs. A Born–Mayer-type ansatz
proved to be quite successful to model the pairwise repulsive correction [66, 133]

�V ��
cc .r��/ D B��exp.�b��r��/ : (6-41)

The parameters can be derived, e.g., from FC HF calculations on pairs of
atomic cores.

6.3. ENERGY-CONSISTENT PSEUDOPOTENTIALS

In the following we will describe in more detail the methodology of energy-
consistent ab initio pseudopotentials (PPs). Although a few hints to earlier work in
this field are given, including also semiempirical parametrizations, we will focus on
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the currently mainly used Wood–Boring (WB) adjusted scalar-relativistic ab initio
PPs as well as the recently developed, presumably more accurate relativistic ab ini-
tio PPs adjusted to multi-configuration (MC) Dirac–Hartree–Fock (DHF) reference
data obtained by using the Dirac–Coulomb (DC) Hamiltonian self-consistently and
the Breit term in first-order perturbation theory (+B). We refer to these potentials as
multi-configuration Dirac–Hartree–Fock/Dirac–Coulomb–Breit (MCDHF/DC+B)
adjusted relativistic ab initio PPs. At the end of this chapter we describe these two
types of PPs, their adjustment and some selected applications in more detail for the
uranium atom.

6.3.1. Some Historical Aspects

The development of the energy-consistent PPs, previously called energy-adjusted
PPs, originated from the early work of Preuss in 1955 [109] and thus initially mainly
energy-adjusted semiempirical large-core PPs were derived [110]. Since about
1982, starting with the work of Fuentealba, the PPs were often supplemented by
core-polarization potentials (CPPs) [52,53] of the type Meyer and coworkers applied
in all-electron (AE) calculations [94]. The adjustment was usually performed for a
multitude of one-valence electron states (SEFIT, single electron fit) using experi-
mental reference data. Parametrizations are available for most of the main group
elements [67, 68] as well as group 11 and 12 transition metals [66, 133, 134].
Schwerdtfeger developed besides semiempirical also several relativistic ab initio
PPs for heavy main group elements by taking the reference data from relativistic
single-configuration DHF calculations using the DC Hamiltonian [121, 124, 125].

Initial adjustments of ab initio PPs for transition metal elements at the non-
relativistic Hartree–Fock (HF) level by Wedig soon revealed that a large-core
approximation, e.g., a Ar-core in case of Ti, leads to too large frozen-core (FC)
errors and a non-satisfactory transferability of the PPs [144]. However, in addition
it was found for a small core that FC errors introduced in the SEFIT adjustment for
a highly charged ion lead to unacceptably large errors when the PP was used for a
neutral atom. Thus an adjustment of small-core PPs to ab initio HF data for a multi-
tude of many-valence electron states (MEFIT, many electron fit) of the neutral atom
and the low-charged ions became the method of choice [35, 144]. Relativistic con-
tributions have been included initially by adding correction terms to the PP obtained
at the one-valence electron level from single configuration DHF calculations using
the DC Hamiltonian for the highly charged single valence electron ion.

Motivated mainly by the work of Hay and Wadt on shape-consistent relativistic
ab initio PPs [57, 58, 142], who applied the Cowan–Griffin (CG) scalar-relativistic
HF approach [25] to generate the reference orbitals and orbital energies, the
related Wood–Boring (WB) scalar-relativistic Hamiltonian [150] was implemented
in the HF method [36, 37] and from there on used routinely to generate relativis-
tic reference energies for many-valence electron states within the LS coupling
scheme. Energy-consistent PPs relying on this approximate relativistic approach
were derived for main group elements [11,76,96], 4d and 5d transition metals [3] as
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well as lanthanides [36, 37, 39] and actinides [77, 88, 90, 91], thus together with
the previously derived parametrization for the 3d transition metals [35] covering
essentially the whole periodic table. For transition metals as well as lanthanides and
actinides an accurate small-core approach has been adapted, however for both lan-
thanides and actinides a computationally efficient albeit quite approximate and, for
inexperienced users, possibly even dangerous large-core parametrization attributing
the open f shell to the PP core is also available. Some of the small-core PPs are
accompanied by spin–orbit (SO) operators, either parametrized on the basis of one-
electron splittings calculated with the spin-dependent WB Hamiltonian [3] or by
using reference data obtained at the DHF level [18, 36].

Most of the WB-adjusted PPs are accompanied by energy-optimized valence
basis sets, however usually only one basis set size and contraction pattern was
supplied in the original publications. Additional systematic correlation-consistent
valence basis sets of augmented valence triple- and quadruple-zeta quality were
published by Martin and Sundermann for the main group element PPs for Ga–Kr
and In–Xe [83]. For the small-core f-in-valence lanthanide and actinide PPs gen-
eralized contracted atomic natural orbital (ANO) basis sets of polarized valence
double- to quadruple-zeta quality as well as related segmented contracted basis sets
of polarized valence quadruple-zeta quality are available [17–19, 21].

Recently, scalar-relativistic PPs, especially adapted for use in quantum Monte-
Carlo (QMC) calculations due to a removed Coulomb singularity at the nucleus,
based on the WB HF approach were presented by Burkatzki et al. for main group
elements as well as 3d transition elements [14, 15]. These potentials are accompa-
nied by correlation-consistent valence basis sets of valence double- to quintupel-zeta
quality for the first and second row main group elements, double- and triple-
zeta quality for the third to fifth row main group elements as well as triple- and
quadruple-zeta quality for the 3d transition metals. Although primarily designed for
the use within the QMC approach, these PPs and valence basis sets can also be used
in standard wavefunction-based quantum chemical calculations and possibly also in
density functional theory (DFT) computations.

The PPs originating from the WB scalar-relativistic HF approach are up to now
the most widely used energy-consistent PPs. Their main deficiency is probably the
absence of a similarly consistent set of accompanying SO operators. Especially in
view of the various recent developments of two-component HF and Kohn–Sham
(KS) density functional (DF) codes as well as large-scale configuration interac-
tion (CI) codes allowing for SO terms in the Hamiltonian, it became necessary to
extend the energy-adjustment to a two-component formalism. After an initial study
of the super-heavy transition metal element hahnium Ha (now named dubnium Db)
in 1993 [38], the direct adjustment to MCDHF reference data for a multitude of
many-electron states obtained with the DC or DCB Hamiltonian in the intermedi-
ate coupling scheme has been applied to main group elements [80, 81, 85, 86, 135],
the group 11 and 12 elements [47, 127] as well as the 3d and 4d transition metals
[32, 104, 128]. Ongoing work in the groups of Stoll (Stuttgart), Dolg (Cologne)as
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well as Schwerdtfeger (Auckland) deals with energy-consistent ab initio PPs for
5d transition metals, lanthanides and actinides as well as superheavy elements.
These new sets of PPs are often accompanied by sequences of correlation-consistent
atomic natural orbital (ANO) basis sets of the Dunning type systematically converg-
ing to the basis set limit [47, 101–104]. In a number of calibration studies it was
shown, that the PPs and accompanying valence basis sets yield results of similar
quality to the best currently feasible relativistic AE calculations [48].

6.3.2. Method of Parametrization

The parametrization of energy-consistent PPs requires three steps, i.e., a decision on
the size of the core, the generation of the reference data and the actual adjustment
of the PP parameters.

Step 1 As a first step of a PP parametrization a decision with respect to the sep-
aration between valence and core space has to be made. Let us take the scandium
atom, i.e., the lightest transition metal, as an example. Here one essentially has two
choices: a computationally very attractive although not very accurate large-core PP
(LPP) and a computationally more demanding and more accurate small-core PP
(SPP). These options are illustrated in Figure 6-1. The orbital energies " exhibit a
clear separation between the 3d,4s valence orbitals (the chemical valence shells) and
the 3s,3p semi-core orbitals ("3p="3d � 4:6), i.e., from an energetic point of view
the large-core approach appears to be a reasonable choice. However, when looking
at the radial expectation values < r > it becomes obvious that the 3d shell is very
compact and has a much more similar radial extension with 3s,3p shells than with

AE
−21/r

SPP
−11/r+VNe

LPP
−3/r+VAr

1s

2s

3s
3p

2p

3d
4s

ε

−167; 0.07

−19.3; 0.34

−15.7; 0.31

−1.57; 1.17

−0.34; 1.69
−0.21; 3.94

;<r>ε

−2.59; 0.97

Figure 6-1. Schematic plot of the ground state orbital energy levels for Sc for an all-electron (AE;
nuclear charge Z D 21) approach as well as a small-core pseudopotential (SPP; [Ne]-core; core charge
Q D 11) and large-core pseudopotential (LPP; [Ar]-core; core charge Q D 3). The orbital energies "
(Hartree) and radial expectation values < r > (Bohr) were taken from scalar-relativistic Wood–Boring
all-electron calculations
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the 4s shell (< r >3d = < r >3p� 1:4). Thus from a spatial point of view the
3s,3p shells should be included in the valence space together with 3d and 4s. Since
both energetically and spatially a clear separation is visible between the 1s,2s,2p
core shells and the 3s,3p,3d,4s semi-core/valence shells, a small-core approach is
implied ("2p="3s � 6:1, < r >3s = < r >2p� 3:1). In fact experience for transi-
tion metals shows so far, that the small-core PP approach is more reliable than the
large-core one. This aspect is discussed in more detail for uranium below, where
additional options for the size of the core come into play (cf. Section 6.5).

Step 2 Having decided on the size of the core the necessary reference data has
to be derived. The energy-consistent ab initio PP approach relies only on quantum
mechanical observables in the determination of the adjustable parameters in the PP,
i.e., total valence energies. Since no quantities such as orbitals and orbital energies
defined only in an effective one-particle model, e.g., the HF or DHF scheme, are
used, the reference calculations could in principle also be carried out at the corre-
lated level. In general the total valence energies used here can always be written
as sums of observable contributions, e.g., the electron affinity, ionization potentials
and excitation energies of the atom/ion. For an atom/ion a set of configurations, LS
states or J levels is selected. The selection should cover all charge states and electron
configurations which are relevant for the species which should be treated with the
resulting PP. Usually the ground state of the neutral atom, of the anion if it exists,
as well as the low-charged cations are included. In addition to the ground states the
easily accessible low-energy excited states should also be included. Usually such a
selection, which may be also motivated by the experimentally observed low-lying
states [97], leads to about 10–30 reference configurations or LS states, correspond-
ing to a few hundred or thousand J levels. Recent parametrizations also included
reference configurations or states with higher energy, e.g., with ionizations or exci-
tations from semi-core orbitals or excitation into higher virtual orbitals. The most
extensive parametrization for uranium discussed below comprised 100 reference
configurations and more than 30,000 J levels (cf. Section 6.5).

For the selected configurations, LS states or J levels as well as for the core sys-
tem AE reference calculations have to be carried out and the total valence reference
energies have to be calculated by building the appropriate differences. In case of the
energy-consistent ab initio PPs besides the non-relativistic HF method essentially
only the scalar-relativistic HF scheme using the WB Hamiltonian [150], similar to
the CG HF approach [25] applied by other groups, was used for the calculation of
energies for configurations or LS states. An extensively modified version of the finite
difference atomic HF code MCHF77 of Froese Fischer [51] was applied in order to
avoid any finite basis set effects in the reference data. In principle other scalar-
relativistic schemes such as the Douglas–Kroll–Hess (DKH) Hamiltonian [60]
could also be used to generate reference data for one-component relativistic PPs,
however to our knowledge a corresponding finite difference code is not at hand.
In case of two-component relativistic PPs we applied the four-component finite-
difference MCDHF code GRASP1 [41] to generate referencedata for the J levels in
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the intermediate coupling scheme. Usually the DC or the DCB Hamiltonian and a
finite nucleus model, e.g., a Fermi charge distribution, was applied.

Step 3 In order to determine the free parameters in the valence-only model
Hamiltonian we perform for a given set of initially guessed parameters atomic finite-
difference PP calculations for all reference configurations, LS states or J levels using
essentially the same machinery as for the AE calculations. Accordingly modified
versions of MCHF77 [51] and GRASP1 [41] are used for this purpose. The sum
over squared deviations of the PP total valence energiesEPP

I from the AE reference
values EAE

I is evaluated,

S D
X

I

wI .E
PP
I �EAE

I C�Eshift /
2 WD min; (6-42)

and the first and second derivatives (or approximations for them) with respect to
the free parameters are determined. The least-squares minimization with respect
to the free parameters is then achieved iteratively with various standard optimization
methods. Due to the high speed of the atomic structure codes involved a few hundred
or thousand optimization steps can be performed if needed.

The achieved accuracy depends critically on the size of the core as well as within
the limits of accuracy of the semilocal ansatz also on the number of adjustable
parameters. Typical requirements for the accuracy are 0.1 eV for the total valence
energies of many-electron configurations or LS states with one or two Gaussian
functions per radial potential of each l- or lj -value included in the projection opera-
tors. For a reasonable choices of the cores PP adjustments for single-electron cases
reach an accuracy in the valence energies of 0.001 eV or better.

The procedure described so far requires that, e.g., the total valence energy of
the ground state of an atom corresponds to the sum of all ionization potentials
when going from the neutral atom to the highly charged core. Especially for small-
core PPs, the quantitatively correct description of the complete removal of electrons
from the semi-core orbitals is not a necessary requirement for a reliable PP, espe-
cially since the core of the neutral atom will be considerably different from the
free highly charged core and thus FC errors in the sum of the ionization poten-
tials are unavoidable. It was found that a global shift of the AE reference energies
�Eshift , typically of the order of 1% or less of the ground state total valence energy,
can improve the accuracy of the fit by one or two orders of magnitude. �Eshift

can also be viewed as a shift of the AE core energy, as illustrated schematically in
Figure 6-2 for the Sc atom in case of a small-core ([Ne]-core) parametrization. It is
obvious that the quantities of interest in this context, i.e., all possible energy differ-
ences between configurations, LS states of J levels included as references, remain
unchanged. Recent adjustments with up to four Gaussian functions in each radial
potential for uranium apply such a global shift and achieve an accuracy of better
than 0.01 eV for configurational averages (cf. Section 6.5).
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Sc(11+)

Sc(2+)

Sc(1+)

Sc(0)

Sc(1−)

Sc(3+)
........

2G

4F

2D

........

3/2

7/2
5/2

conf. LS J

E

s2d1

s1d2

d3

shift

new PPold PP

quantity of interest

reference data

Figure 6-2. Schematic presentation of the selected reference data (vertical double-sided arrows) as well
as the data usually of interest, i.e., electron affinity, ionization potentials (and excitation energies) (verti-
cal bars), in the multi-electron multi-state adjustment of a Sc small core pseudopotential. The reference
energies can be obtained for configurational averages (conf.), LS states or J levels. The shift of the core
energy �Eshift included in newer pseudopotential adjustments (amounting typically to � 1% of the total
valence energy) changes the reference data, but not the actual quantities of interest

6.3.3. Availability of Pseudopotentials and Valence Basis Sets

The primary source for energy-consistent PPs and the corresponding valence basis
sets is, besides the original publications, the www-pages of the Stuttgart group of
H. Stoll [136]. These offer input formats for different standard quantum chemistry
codes such as MOLPRO [147], GAUSSIAN [50] and TURBOMOLE [2] and should
be fairly complete, except for the SO terms. Similarly, energy-consistent PPs form
QMC calculations are available from the www-pages of the Cologne group [16].
PP parameters and corresponding valence basis sets are also partly available from
the data bases included in the above mentioned as well as other computer programs,
although maybe not in the most up-to-date versions. In addition, due to the different
acronyms and names used in programs and publications (e.g., Stuttgart–Dresden
PPs (SDD) [50]; Stuttgart–Dresden-Bonn PPs (SDB) [83], Stuttgart–Bonn PPs [17,
21]; Stuttgart–Cologne PPs [19, 147]) it might be difficult for the user/reader to
realize that identical approaches are used.

For convenience the most frequently used energy-consistent ab initio PPs and
the corresponding valence basis sets are summarized in Table 6-1 for main group
elements and Table 6-2 for transition metals, lanthanides and actinides. The groups
in Stuttgart (Stoll), Cologne (Dolg) and also Auckland (Schwerdtfeger) are cur-
rently adjusting further small-core two-component relativistic energy-consistent PPs
modelling DHF/DCCB data and try to fill the gaps for the heavierelements in
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the periodic table, including the lanthanides and actinides. It is hoped that these
potentials are useful in quantum chemical calculations including SO effects from
the outset, i.e., already at the HF level.

6.4. OTHER EFFECTIVE CORE POTENTIAL METHODS

In the following we briefly outline some other effective core potential (ECP)
approaches which are in use besides the energy-consistent pseudopotential
(PP) method.

6.4.1. Shape-Consistent Pseudopotentials

In contrast to the method of energy-consistent pseudopotentials (PPs) where
quantum mechanical observables such as all-electron (AE) total valence energies
are used as reference data for the adjustment, quantities defined within an effective
one-electron picture, i.e., AE valence orbitals and orbital energies, are taken as ref-
erence data for the method of shape-consistent PPs [24,40]. In the shape-consistent
PP approach the pseudo-valence orbital 'p is required to retain the correct radial
distribution of charge given by the AE valence orbital 'v in the valence region out-
side a critical radius rc and the corresponding PP pseudo-valence orbital energy "p

is set equal to the AE valence orbital energy "v, i.e., for a given lj one requires that

'p;lj .r/ D
�
'v;lj .r/ for r 
 rc
flj .r/ for r < rc

and "p;lj D "v;lj (6-43)

The auxiliary function flj is required to be radially nodeless and smooth in the
core region (r < rc). Except for the normalization and continuity conditions for the
'p;lj .r/ the choice of rc as well as the choice of flj is in certain limits arbitrary and
a matter of experience.

For the 'p;lj defined in Eq. (6-43) the shape-consistent PP � OVcv has to be con-
structed which, when inserted into the valence Hamiltonian OHv, Eq. (6-16), should
yield the 'p;lj as HF orbitals for the chosen atomic reference state. By using the
semi-local PPs defined in Eq. (6-23), i.e., restricting the � OVcv to the form of a radi-
ally multiplicative potential Vlj .r/ for each lj-set, a radial Fock equation can be
set up

Œ�1
2

d 2

dr2
C l.l C 1/

2r2
C V PP

lj .r/C OWp;lj .f'p0;l 0j 0g/�j'p;lj .r/ >D "v;lj j'p;lj .r/ >

(6-44)

The first two terms in the parentheses are the radial kinetic energy operator,
the term OWp;lj stands for an effective valence Coulomb and exchange potential
for 'p;lj . With a given 'p;lj and "v;lj , V PP

lj .r/ can be determined pointwise by

inversion. Relativistic effects are implicitly included in V PP
lj since the AE refer-

ence calculation explicitly describes these effects. Repeating this procedure for each
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lj -set, the resulting potentials V PP
lj are tabulated on a grid and are usually fitted by

means of a least-squares criterion to a linear combination of Gaussian functions
according to

OQV
PP

.ri / D �Q
r

C
X
lj

 X
k

Alj;kr
nlj;k�2e�˛lj;kr2

!
OPlj : (6-45)

The separation into scalar-relativistic and spin–orbit (SO) potentials, � OVcv;av

and � OVcv;so, according to Eq. (6-28) is the same as we have discussed in
Section 6.2.3 and 6.2.5. Shape-consistent PPs including SO operators based
on single-configuration Dirac–Hartree–Fock (DHF) AE calculations using the
Dirac–Coulomb (DC) Hamiltonian have been generated by Christiansen, Ermler
and coworkers [12, 43, 44, 61, 78, 98, 95, 115, 116, 149].

A very popular set for main group and transition elements based on scalar-
relativistic Cowan–Griffin (CG) AE calculations [25] was published by Hay and
Wadt [57, 58, 142]. Their recently revised basis sets [117] are especially suitable
for density functional theory (DFT) investigations. In their procedure for obtaining
PPs the rc is chosen to be near the outermost maximum of the 'l and the following
radial function fl is adopted for r < rc

fl.r/ D rb.a0 C a1r C a2r
2 C a3r

3 C a4r
4/ (6-46)

b D l C 3 in the non-relativistic case, and b D �C 2 in the relativistic case, where

�C 1 D 1

2
.1 � ı0;l/C

r
l.l C 1/C 1

4
.1C ıl;0/2 C .˛Z/2 (6-47)

and ˛ is the fine structure constant. For relativistic s orbitals the choices of b D �C3
and f as 6th degree polynomial have been found to lead to smoother s pseudo-
orbitals. The five coefficients ai are determined by requiring that

1. 'p.r/ remains normalized.
2. fl .r/ and its first three derivatives match 'v and its first three derivatives at rc .

For subsequent usage in molecular valence-only calculations compact valence basis
sets were generated, i.e., the pseudo-valence orbitals were fitted by using a nonlinear
least-squares procedure, similar to the one for fitting the potentials, to a linear
combination of Gaussian functions, i.e.,

'p;l D
X

i

Cir
le�˛i r2

(6-48)

In order to arrive at more compact Gaussian expansions for OQV
PP

the Toulouse
group [8] proposed a quite useful criterion, i.e., the minimization of the following
operator norm
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jj OOjj D< 'p;lj j OO2j'p;lj >
1=2 with (6-49)

OO D Q"v;lj j Q'p;lj >< Q'p;lj j � "v;lj j'p;lj >< 'p;lj j : (6-50)

Here the quantities without tilde are obtained with the exact V PP
lj tabulated on a grid

from the radial Fock equation (6-44), whereas those with tilde are calculated with
the analytical potential QV PP

lj . Typically only three or less terms per lj combination
are needed, the overlap < Q'p;lj j'p;lj > deviates from 1 by less than 10�5 and the
eigenvalue difference Q"v;lj � "v;lj is less than 10�3 Hartree. An almost complete set
of shape-consistent PPs using this prescription, based also on DHF AE calculations
applying the DC Hamiltonian for the heavier atoms, has been published by Stevens
and coworkers [26, 131, 132].

Small cores have to be used in case of transition metals, lanthanides and actinides
in order to keep frozen-core errors in PP calculations below a required accuracy.
For small cores, however, more than a single occupied pseudo-valence orbital of the
same lj combination may be present in suitable reference states. Therefore one or
more pseudo-valence orbitals may have a radial node, which leads to singularities
in the PP if it is determined by inversion of the Fock equation (6-44). Most shape-
consistent PPs are derived for positive ions, which are chosen in such a way that
this problem can not occur. If the ions are sufficiently highly charged this has the
disadvantage that frozen-core (FC) errors arise for the derived PP when transferring
it from the ions to the neutral atom or molecule. A possible solution to this problem
is attempted in the so-called generalized relativistic ECP (GRECP) approach of
Titov, Mosyagin, and coworkers [92, 138–140]. The GRECPs combine the stan-
dard semilocal form of the PPs with additional nonlocal terms to take into account
the difference between the effective potentials acting on the outer core and valence
electrons with the same l and j quantum numbers. A number of GRECPs account-
ing also for contributions of the Breit interaction have been published recently for
U, Pu, and the superheavy elements 112, 113, 114 [93]. Since the GRECP ansatz
is at present not supported by most of the standard quantum chemistry codes, it is
interesting to check if the addition of a nonlocal term to the standard semilocal PP
ansatz will yield clear benefits with respect to accuracy (see also Section 6.5 for a
comparison).

6.4.2. Model Potential Method

Another important category of ECP methods is called the model potential (MP)
method and was originally proposed by Bonifacic and Huzinaga [13]. It originated
from the so-called Huzinaga–Cantu equation [63, 64]

Œ OHeff C
X

c

.�2"c/j'c >< 'cj�j'v >D "vj'v > (6-51)
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Here OHeff again denotes an (effective) one-electron Hamiltonian, e.g., a Fock
operator, and the valence function j'v> and the core functions j'c> fulfill the
conditions defined in Eqs. (6-1) and (6-2). The sum over projection operators
guarantees that the eigenvalues of the core orbitals j'c > appear at an energy
�"c>0 in the spectrum, i.e., at higher energies than the valence orbital eigenvalues.
The Huzinaga–Cantu equation is very similar to the Phillips–Kleinman equation,
Eqs. (6-7) and (6-8), but one must observe that the pseudo-orbital j'p> in the
Phillips–Kleinmann equation does not necessarily have radial nodes (cf. Section
6.2.2), whereas the valence orbital j'v > in the Huzinaga–Cantu equation keeps
its correct nodal structure. Of course valence basis sets applied in MP calculations
should be able to represent the nodal structure correctly and thus are usually larger
than those used in PP calculations.

For an atom with core chargeQ and nv valence electrons (Q D Z � nv, with Z
being the nuclear charge) the valence-electron model Hamiltonian is given by

OHv D �1
2

nvX
i

r2
i C

nvX
i

nvX
j >i

Og.i; j / �
nvX
i

Q

ri
C

nvX
i

Œ� OVC .i/C� OVX .i/� (6-52)

with � OVC .i/ being the Coulomb (C ) interaction between the core and the valence
electrons

� OVC .i/ D �nc

ri
C 2

X
c

OJc.i/ (6-53)

and � OVX .i/ representing the core-valence exchange (X ) interaction

� OVX .i/ D �
X

c

OKc.i/ (6-54)

OJc.i/ and OKc.i/ stand for the usual Coulomb and exchange operators related to the
core orbital j'c >. In order to prevent the valence electrons from collapsing into
the core the projection/shift operator OP .i/ has to be included in the last sum of the
Hamiltonian OHv of Eq. (6-52)

OP.i/ D
X

c

.�2"c/j'c.i/ >< 'c.i/j (6-55)

Defining the model potential (MP) OVMP .i/ for electron i as

OVMP .i/ D � OVC .i/C� OVX .i/C OP .i/ (6-56)

one obtains the atomic valence-electron model Hamiltonian

OHMP
v D �1

2

nvX
i

r2
i C

nvX
i

nvX
j >i

Og.i; j / �
nvX
i

Q

ri
C

nvX
i

OVMP .i/ (6-57)
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A molecular MP is considered to contain an assembly of non-overlapping core
levels, and thus the molecular valence-electron model Hamiltonian may be written
as [74]

OHMP
v D�1

2

nvX
i

r2
i C

nvX
i

nvX
j >i

Og.i; j /C
X
�<�

Q�Q�

r��

C
X

i

X
�

Œ�Q
�

r�i

C OVMP;�.i/�

(6-58)

where the terms in OVMP;�.i/ are the analogues for the core � of the corresponding
terms in Eqs. (6-56) and (6-55).

Due to the different choices of the analytical form of OVMP;�.i/ there are three
versions of the MP approach in current use [65, 73, 118, 119]. Readers interested in
further details are recommended to read the review articles written by Klobukowski,
Huzinaga and Sakai [74] as well as by Seijo and Barandiarán [126].

Probably the most successful and widely used variant of the MP method are
the “ab initio model potentials” (AIMP) of Huzinaga, Seijo, Barandiarán and
coworkers [65]. These authors have suggested a linear combination of Gaussians
with prefactors 1=r , i.e., a local spherically symmetric model potential, to represent
the Coulomb core-valence interaction,� OV �

C .ri /

� OV �
C .ri / D �V �

C .r�i / D 1

r�i

X
k

C �
k e

�˛�
k

r2
�i (6-59)

The exponents ˛�
k

and coefficientsC �
k

are adjusted to the all-electron (AE) potential
in a least-squares sense under the constraint that

P
k C

�
k

D Z� � Q� D n�
c in

order to enforce the correct asymptotic behavior of the MP. Since the evaluation of
integrals over such a local potential is not costly, essentially any desired accuracy
can be easily achieved by using a sufficiently long expansion.

The nonlocal exchange part � OV �
X .i/ is substituted by its spectral representation

in the space defined by a set of functions 	�
p centered on core �

� OV �
X .ri / D

X
p;q

j	�
p.i/ > A

�
pq < 	

�
q .i/j (6-60)

It should be noted that this model potential operator yields the same one-center
integrals as the true AE core-exchange operator as long as the basis functions can be
represented by the set of the 	�

p . Two- and three-center integrals are approximated.
Since, in contrast to the Coulomb part, the exchange part is short-ranged, only a
moderate number of functions 	�

p is needed and the one-center approximation is
expected to be very good, at least for not too large cores. In practical applications
the basis used in the spectral representation is chosen to be identical to the primitive
functions of the valence basis set used for the atom under consideration and the A�

pq

are calculated during the input processing of each AIMP calculation.
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The core shifting operator OP .i/ is kept as it stands in Eq. (6-55). For practical
calculations the core orbitals j'c> are represented by sufficiently large (AE)
basis sets.

For taking into account SO coupling a one-electron SO operator, which is a
representation of the AE WB SO operator [150], is added to the AIMPs [126]

� OV �
cv;so.ri / D

X
l

.
X

k

B�
lk

r2
�i

e�ˇ�
lk

r2
�i / OP �

l .i/
Ol�i � Osi

OP �
l .i/ (6-61)

where Ol�i = Or�i � Opi and Osi denote the operators of orbital angular momentum and
spin, respectively. OP �

l
stands for the projection operator onto the subspace of angu-

lar quantum number l with respect to core �. The coefficients B�
lk

and exponents
ˇ�

lk
are determined by means of a least-squares fit to the radial components of the

WB SO term.
Recently AIMPs for explicit usage of the second- and third-order

Douglas–Kroll–Hess (DKH) approximation in the valence have been developed
for transition metals [113, 114] and lanthanides as well as actinides [99, 141],
respectively. A corresponding SO treatment using the DKH-type atomic mean-field
approximation in a state-interaction method was also proposed [100].

6.4.3. DFT-Based Effective Core Potentials

Although the ab initio ECPs introduced above were adjusted to wavefunction-based
AE HF or DHF reference data, they also perform quite well when combined with
various DFT methods, especially when a small core is used. Nevertheless several
DFT-based ECP sets have been worked out too [4–6, 27, 54].

We start with a brief introduction to the DFT-based MP method advocated by
Andzelm et al. [4] for usage in combination with the LSD-VWN approach. Start-
ing from the Kohn–Sham (KS) equations for a spin-polarized system of nv valence
electrons and assuming orthogonality between valence '	

v and core orbitals '	
c of

spin � (� D C;�), one can rewrite the Huzinaga–Cantu equation (6-51) as

Œ OF 	 C
X

c

.�2"	
c /j'	

c >< '
	
c j�j'	

v >D "	
v j'	

v > (6-62)

where

OF 	 D OF 	
v C� OV 	;MP (6-63)

and

OF 	
v .r/ D �1

2
r2 �

X
�

Q�

r�
C
Z
�v.r

0/dr0

jr � r0j C vxc Œ�C;v; ��;v� (6-64)
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Q� is the charge of core �, �C;v and ��;v denote the spin-up and spin-down
densities for the valence orbitals, �v D �C;v C��;v, and vxc represents the exchange-
correlation potential. The density �	;v is defined in terms of the valence orbitals '	

i

�	;v.r/ D
nvX
i

f 	
i j'	

i .r/j2 (6-65)

where f 	
i is an occupation number. The model potential OV 	;MP is defined as

OV 	;MP D � OV 	;MP C OP (6-66)

OP D
X

c

.�2"	
c /j'	

c >< '
	
c j (6-67)

We suppose that the frozen-core approximation is valid here, i.e., the core orbitals
of the atoms do not overlap with each other and that cross terms in the exchange and
correlation potentials can be neglected. Then OV 	;MP may be written as a sum over
the atomic MPs OV 	;MP

�

OV 	;MP D
X

�

OV 	;MP

�
D
X

�

.� OV 	;MP

�
C OP�/ (6-68)

where

� OV 	;MP
�

D �n
�
c

r�
C
Z
��

c .r
0/dr0

jr � r0j C vxcŒ�
�C;c ; �

��;c � (6-69)

The analytical expression for � OV 	;MP
�

may be written as [4]

� OV 	;MP
�

D
X

k

A�
k

e�˛�
k

r2

r
(6-70)

with the constraint
P

k A
�
k

D Z� � Q� D n�
c enforcing the correct asymptotic

behavior. The core orbitals for the projection operator OP� are approximated by a
least squares fit procedure using an expansion of Gaussian functions. The reference
atomic orbitals were obtained from CG/WB-type [25] LSD-VWN finite-difference
atomic calculations.

Similarly, one can apply the ab initio shape-consistent PP generation procedure
to derive DFT-based PPs. For a prototype atomic configuration the method yields
the 'p;lj as radial KS orbitals, at the original AE orbital energies "v;lj . When both
scattering-type partial waves and bound states are considered Hamann, Schlüter,
and Chiang (HSC) required that pseudo partial waves have to exhibit the so-called
norm-conserving properties [56], i.e.,
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1. The AE and pseudo valence eigenvalues agree.
2. The AE and pseudo valence wavefunctions agree for r > rc .
3. The integrals from 0 to r of the AE and pseudo valence charge densities agree

for r > rc .
4. The logarithmic derivatives of the AE and pseudo valence partial waves and their

first energy derivatives agree for r > rc .

In the local density functional framework Bachelet, Hamann and Schlüter have
published relativistic PPs for H through Pu [5, 6]. When only bound states are
considered the norm-conservation requirements are related and can be replaced
by a simplified set of conditions essentially corresponding to the ones for shape-
consistency defined in Eq. (6-43). Considering only bound states Delley presented
so-called density functional semi-core PPs (DSPP) for all elements from H to Am
for use with local orbital methods [27]. The DSPPs are based on a minimization
of errors with respect to the norm conservation conditions for two to three rele-
vant ionic configurations of the atom (hardness conservation). The primary density
functional used to define the AE reference data was the Perdew–Burke–Ernzerhof
(PBE) gradient corrected functional, but DSPPs optimized for both the PBE func-
tional as well as the local density approximation (LDA) using the Perdew–Wang
local correlation were also generated. In order to improve the numerical stability and
transferability a model core density is added (non-linear core correction) [27, 82].
Delley concludes that the PP approximation is less severe than the approximations
made in DFT, however his results shed some doubt on the common practise to use
ab initio adjusted ECPs also within DFT.

6.5. EXAMPLE: URANIUM

After the previous discussion of the effective core potential (ECP) approaches in
general, we want to go through one example for the generation of relativistic energy-
consistent ab initio pseudopotentials (PPs) and the accompanying energy-optimized
valence basis sets explicitly. For this purpose we selected one of the most interesting
elements for a theoretician, i.e., the uranium atom. This choice is motivated mainly
by the large relativistic effects observed for this heavy atom, the high complexity
of its electronic structure due to the presence of open d and f shells already in the
atomic ground state and the possibility to adjust PPs with entirely different core
definitions as well as different ranges of applicability, i.e., 5f-in-valence as well
as 5f-in-core PPs. We hope that the detailed description given here will provide the
reader with a deeper understanding of the previous sections of this contribution. Our
discussion is concluded by a brief summary of selected recent applications using
the described PPs and basis sets, highlighting their reliability but also stating their
limitations.
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6.5.1. Choice of the Reference Data

We begin with a discussion of the reference data to be used in the PP adjustment, i.e.,
the relativistic computational model we want to parametrize. We restrict ourselves
to multi-configuration (MC) Dirac–Hartree–Fock/Dirac–Coulomb (DHF/DC) and
Dirac–Coulomb–Breit (DHF/DC+B) as well as Wood–Boring (WB) all-electron
(AE) reference data. In Table 6-3 results from relativistic AE DHF calculations
applying the DC Hamiltonian for the neutral to sixfold positively charged uranium
atom are listed in the first data column. The DC Hamiltonian is a standard approx-
imation used in four-component relativistic AE calculations for atoms, molecules
and solids which captures the most important relativistic contributions for chemical
investigations and thus it is a convenient starting point for our discussion. Several
sets of PPs, e.g., the shape-consistent PPs by Christiansen and coworkers [24, 43],
have been adjusted to DHF/DC reference data. The energy differences in Table 6-3
refer to the averages over all J-levels (included in the MC treatment) of the listed
non-relativistic configurations. Only the energetically lowest configuration of each
charge state and possible 5f occupation is listed. Note that the entries are ordered
according to increasing 5f occupation, and for each 5f occupation according to
increasing 6d occupation.

The second data column gives the deviations of non-relativistic Hartree–Fock
(HF) results [51] from the MCDHF/DC reference data [41], i.e., differential ‘non-
relativistic’ contributions. We note that states with high 5f occupancy are lowered
and those with lower 5f occupancy are raised in energy when going from a relativis-
tic to a non-relativistic description. The reason are dominating indirect relativistic
effects which destabilize and expand the 5f shell when relativity is switched on. For
a given 5f occupation a similar albeit less pronounced behavior is observed for the
6d shell, which is less affected by dominating indirect relativistic effects. Finally,
for a given 5f and 6d occupation the configurations with a lower 7s occupation are
more lowered in energy than those with a high one when going from a relativistic to
a non-relativistic description. Here direct relativistic effects dominate, stabilize and
contract the 7s shell when relativity is switched on. A closer look at the table reveals
that uranium would probably have a [Rn] 5f4 7s2 ground state configuration, i.e., in a
non-relativistic world uranium would be preferably divalent (as also the lanthanides
and the other actinides), with low-lying mono- and trivalent oxidation states.

In the third data column the deviations of scalar-relativistic one-component WB
results from the MCDHF/DC reference data are listed. The WB approach [150],
as well as the closely related Cowan–Griffin (CG) approach [25], was used for a
large number of PPs and model potentials (MPs) as reference data, e.g., PPs of Hay
and Wadt [57, 58, 142] or the ‘Stuttgart’ group [30, 135] as well as MPs of Seijo
and coworkers [126]. In contrast to the four-component MCDHF scheme the WB
approach allows to extract reference data for scalar-relativistic ECPs in the LS cou-
pling scheme. Analyzing the data listed in Table 6-3 we learn that although the
method captures to a large extent the relativistic contributions, it introduces some
inaccuracies especially when the 5f occupation is changed and leads to smaller
errors when for a fixed 5f occupation the charge state is changed.
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Table 6-3 Relative point nucleus (pn) Dirac–Hartree–Fock/Dirac–Coulomb (DHF/DC) ener-
gies �E (eV) of the 2J+1-weighted average of all J levels belonging to a nonrelativistic
configuration with respect to the energy of the U [Rn] 5f36d17s2 ground state configuration.
For each 5f occupation number only the energetically lowest configuration for each ioniza-
tion level is listed. Deviations (eV) from the DHF/DC pn data are given for nonrelativistic
Hartree–Fock (HF) and scalar-relativistic Wood-Boring (WB) pn calculations. Contributions
of the Breit interaction (!B) at the DHF/DC pn level as well as of a finite nucleus (!fn)
with a Fermi charge distribution at the DHF/DC+B level are also listed

Charge Configuration �E Deviation Contribution
5f 6d 7s DHF HF WB DHF DHF

DC,pn pn pn DC,pn DCCB
!B !fn

6C 167:9498 22:6562 1:1844 0:3263 0:0246

5C 1 118:1617 20:5056 1:0225 0:3208 0:0179

4C 2 78:6962 18:5789 0:8886 0:3138 0:0124

3C 3 49:0026 16:9078 0:7795 0:3061 0:0079

2C 4 28:4542 15:5332 0:6999 0:2984 0:0045

1C 4 1 16:0181 17:6511 0:7258 0:3111 0:0217

0 4 2 9:7540 19:0413 0:7549 0:3200 0:0337

5C 1 107:4044 13:7992 0:7393 0:1997 0:0084

4C 1 1 69:4125 11:9319 0:6044 0:1942 0:0030

3C 1 2 41:0364 10:3181 0:4994 0:1878 �0:0014
2C 1 3 21:6260 9:0010 0:4226 0:1812 �0:0046
1C 1 3 1 9:6394 10:9340 0:4456 0:1929 0:0111

0 1 3 2 3:6701 12:1736 0:4714 0:2007 0:0218

4C 2 62:9423 5:7708 0:3564 0:0850 �0:0058
3C 2 1 35:8785 4:2312 0:2524 0:0804 �0:0100
2C 2 1 1 17:5395 6:3608 0:2596 0:0938 0:0071

1C 2 1 2 5:7548 7:8467 0:2722 0:1031 0:0194

0 2 2 2 0:4682 5:8033 0:2236 0:0933 0:0105

3C 3 33:3768 �1:2986 0:0278 �0:0147 �0:0178
2C 3 1 15:7154 0:6234 0:0334 �0:0015 �0:0023
1C 3 2 4:4832 1:9041 0:0435 0:0073 0:0084

0 3 1 2 0:0000 0:0000 0:0000 0:0000 0:0000

2C 4 17:2536 �7:1634 �0:2183 �0:0932 �0:0268
1C 4 1 6:8681 �5:8095 �0:1977 �0:0817 �0:0156
0 4 2 2:0435 �5:1113 �0:1784 �0:0749 �0:0094

1C 5 12:5023 �11:2231 �0:3303 �0:1358 �0:0313
0 5 1 8:1022 �10:2666 �0:2698 �0:1171 �0:0231
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The fourth data column lists the contributions of the Breit interaction, in its
frequency-dependent form as implemented in the GRASP1 [41] atomic structure
package, evaluated in first-order perturbation theory based on a MCDHF solution
obtained with the DC Hamiltonian (denoted as DC+B). We see that these contri-
butions, which are often omitted or only partly taken into account in molecular
AE calculations, i.e., in form of the Gaunt interaction (accounting for the mag-
netic interaction, but neglecting retardation terms), are non-negligible if a good
accuracy is aimed at. In fact the WB (and probably also the CG) approach acci-
dentally agree better with results obtained with the DCB Hamiltonian than with the
DC Hamiltonian. Test calculations on U and UC revealed that the self-consistent
treatment of the Breit term (denoted as DCB) makes only contributions to relative
energies as listed in Table 6-3 of at most 0.0005 eV [93], i.e., a perturbative treat-
ment (denoted as DCCB) is sufficiently accurate to generate AE reference data for
PP adjustments.

Finally, in the fifth data column the contributions of a finite nuclear model, i.e.,
a Fermi nuclear charge distribution, are listed. These contributions are quite small
and possibly the effect of the nuclear model is of little importance for studies of the
valence electronic structure, which is the goal of ECP methods. For the time being
we assume that contributions arising from quantum electrodynamics are smaller
than those of the nuclear model and thus can be neglected when constructing a
valence model Hamiltonian aiming at chemical accuracy, i.e., 1 kcal/mol (0.04 eV).
The more recent so-called ‘Stuttgart’ energy-consistent relativistic PPs rely on
reference data obtained at the MCDHF/DCCB level applying a finite nuclear model.

6.5.2. Choice of the Core

Let us continue the discussion with the choice of the core, where in case of uranium
we essentially have three possibilities: small, medium and large. Since the frozen-
core (FC) approximation is underlying the PP approach, one might expect that the
choice of the PP core can be guided by relativistic atomic FC AE calculations.
In case of uranium results of such calculations, carried out at the state-averaged
MCDHF/DC level, are available from literature [20]. Here we present in Table 6-4
a slightly extended tabulation for the same configurations as listed in Table 6-3.

We tacitly assume that the conclusions about FC errors arrived for the DC
Hamiltonian will essentially be valid for other Hamiltonians too.

The frozen core in our example was taken from a state-averaged MCDHF/DC
calculation for the U [Rn] 5f36d17s2 ground state configuration, i.e., our conclu-
sions with respect to FC errors will have to take into account a bias favoring
configurations of the neutral atom with a 5f3 occupation. Clearly, in order to achieve
computational savings one desires to have a core as large as possible. If we look at
Table 6-4 we observe that treating U with only 6 valence electrons (Q D 6), i.e.,
assuming a large core (1s-5d, 6s, 6p) in line with qualitative chemical models, quan-
titatively leads to FC errors of up to 0.35 eV when staying within configurations with
a 5f3 occupation. In comparison to this a medium-sized core (1s-5d), attributing the
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Table 6-4 Relative energies (eV) of the 2J+1-weighted average of all J levels belonging
to a nonrelativistic configuration of U with respect to the U [Rn] 5f36d17s2 ground state
configuration from all-electron (AE) point nucleus (pn) state-averaged multi-configuration
Dirac–Hartree–Fock (DHF) calculations using the Dirac–Coulomb (DC) Hamiltonian.
Frozen-core errors (eV) are listed for three choices of the core (core charges Q D 32,
14, 6) treating the 5f shell in the valence adapted from the neutral U atom in its [Rn]
5f36d17s2 ground state configuration. The last column lists frozen-core errors for a core
including the partially occupied 5f shell taken from the lowest energy configuration with
the same 5f occupancy (core charge Q D 14 � n5f , with the 5f occupation number n5f )

Charge Configuration AE DHF Frozen-core error
5f 6d 7s DC,pn Q D 32 Q D 14 Q D 6 Q D 14� n5f

6C 167.9498 0.0077 1.2479 15.4283 0.0059
5C 1 118.1617 0.0058 1.0291 11.3885 0.0129
4C 2 78.6962 0.0048 0.8850 8.2895 0.0040
3C 3 49.0026 0.0043 0.7963 6.0066 0.0013
2C 4 28.4542 0.0040 0.7488 4.4237 0.0010
1C 4 1 16.0181 0.0039 0.7379 3.8610 0.0002
0 4 2 9.7540 0.0038 0.7365 3.5686 0.0000

5C 1 107.4044 0.0021 0.4545 7.1973 0.1523
4C 1 1 69.4125 0.0014 0.3779 4.8002 0.0626
3C 1 2 41.0364 0.0014 0.3359 3.1180 0.0175
2C 1 3 21.6260 0.0013 0.3179 2.0282 0.0023
1C 1 3 1 9.6394 0.0013 0.3082 1.6778 0.0003
0 1 3 2 3.6701 0.0013 0.3046 1.5126 0.0000

4C 2 62.9423 0.0003 0.0886 2.3845 0.1796
3C 2 1 35.8785 0.0002 0.0765 1.2558 0.0535
2C 2 1 1 17.5395 0.0002 0.0682 0.8277 0.0260
1C 2 1 2 5.7548 0.0001 0.0636 0.5841 0.0126
0 2 2 2 0.4682 0.0002 0.0678 0.3493 0.0000

3C 3 33.3768 0.0000 0.0006 0.3479 0.1458
2C 3 1 15.7154 0.0000 0.0006 0.1366 0.0698
1C 3 2 4.4832 0.0000 0.0009 0.0412 0.0306
0 3 1 2 0.0000 0.0000 0.0000 0.0000 0.0000

2C 4 17.2536 0.0002 0.0467 0.2082 �0.0399
1C 4 1 6.8681 0.0001 0.0450 0.2224 �0.0193
0 4 2 2.0435 0.0002 0.0426 0.2430 0.0000

1C 5 12.5023 0.0004 0.0945 0.6651 0.1921
0 5 1 8.1022 0.0004 0.0761 0.5418 0.0000

Frozen cores: U Q D 6: 1s-5d, 6s, 6p; Q D 14: 1s-5d; Q D 32: 1s-4d; Q D 14 � n5f : 1s-5f.
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6s and 6p semi-core orbitals to the valence shell, which now comprises 14 valence
electrons (Q D 14), yields negligible FC errors below 0.001 eV as does a small core
(1s-4f) treating 32 electrons in the valence (Q D 32).

Clearly, if we stay within configurations with a U 5f3 occupation the medium-
core approximation or even the large-core approximation will be sufficiently accu-
rate, as judged from these results. One of the chemically interesting features of the
early actinides however is their ability to adopt various oxidation states, which cor-
respond to different 5f occupation numbers in the independent particle picture such
as the DHF approach. Decreasing the 5f occupation by one to 5f2 or increasing it
by one to 5f4 shows that the chemically motivated choice of a large core leads to
FC errors of up to 2.4 eV, i.e., this approximation is more or less useless for quanti-
tative investigations and ECPs using it are probably bound to fail. Especially large
errors occur for the chemically interesting differences between tri- and tetravalent
uranium. For the medium-core case the FC errors are clearly below 0.1 eV and still
might be acceptable for studies aiming at chemical accuracy. If an accuracy better
than 0.1 eV is desired, the small-core approximation leading to errors smaller than
0.001 eV has to be used.

The conclusions drawn for a comparison of the 5f3, 5f2 and 5f4 occupied configu-
rations are supported by the results for the configurations with two or three electrons
removed from the 5f shell, i.e., 5f1 or 5f0, or two electrons added to the 5f shell, i.e.,
5f5, with respect to the ground state configuration. Especially in the chemically
important cases corresponding to penta- and hexavalent uranium the FC errors for
the chemically motivated large-core approximation are huge and amount to several
electron volts. Even the medium-core approximation exhibits 5f occupation depen-
dent errors of up to about 1.25 eV. Thus, the whole variety of uranium oxidation
states and configurations with corresponding 5f occupation can only be accurately
described by the small-core approximation, where an accuracy of 0.008 eV or better
is achieved. We note that the findings obtained with regard to the FC errors for the
approximately 30 configurations listed in Table 6-4 remain valid when looking at an
extended set of over 60 configurations (18, 15, 12, 9, 6, and 3 with 5f0, 5f1, 5f2, 5f3,
5f4 and 5f5, respectively), which contains for each 5f occupation several different
6d occupations. From the extended set for a given 5f occupation a small dependency
of the FC errors on the 6d occupation can be observed especially for the medium-
and large-core case, however the dependency is less strong than the one on the 5f
occupancy apparent from Table 6-4.

One might argue that 32 valence electrons are too many and one could possibly
include e.g., the 5s and 5p shells into the core, i.e., treat only 24 valence elec-
trons explicitly. However one has to keep in mind that the savings arising from
the eliminated 5s and 5p shells are not very large and that at the correlated level,
when pseudo-valence orbitals are used, larger errors in correlation energies may
arise due to the larger number of eliminated radial nodes in the 6s and 6p semi-
core orbitals as well as the 7s and 7p valence orbitals. No detailed investigation of
these effects exists for the uranium atom, however studies of main group elements
[28, 29, 106, 137] point to a possible overestimation of exchange integrals between,
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e.g., the (5f, 6d) and (7s, 7p) shells and thus a possible overestimation of related
correlation contributions as well as multiplet splittings.

In the following we try to give a simple explanation of the observed behavior of
the FC errors. In Figures 6-3 and 6-4 the uranium orbital energies as well as the cor-
responding radial orbital densities and core densities are displayed. First, it is clear
from a comparison of the non-relativistic and relativistic one-particle energies that
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relativistic effects are significant and cannot be neglected. Whereas the 5f shell is
energetically well separated from the other valence shells, i.e., 6d and 7s, it becomes
almost degenerate with them at the relativistic level due to a dominant indirect rela-
tivistic destabilization. Similarly, the 6d shell is slightly destabilized whereas the 7s
shell is slightly stabilized due to dominating direct relativistic effects. A very large
relativistic stabilization and a large spin–orbit (SO) splitting is observed for the 6s
and 6p shell, respectively, which have to be included in the valence as discussed
above. The core-valence separation based only on energetic arguments, indicated by
the dotted line in Figure 6-3, attributes 5f, 6d and 7s to the valence space and 1s-6s,
2p-6p, 3d-5d as well as 4f to the core space. However Figure 6-4 indicates, that from
a spatial point of view the 6d shell is more compact than the U6C core density and 5f
is even more compact than the U14C core density. Any change in the 5f occupation
will change the effective nuclear charge acting on the more diffuse 6s and 6p ‘core’
orbitals by a corresponding amount and thus lead to the concomitant stabilization
and contraction or destabilization and expansion of these shells, i.e., the shape and
energy of the 6s and 6p is 5f occupation number dependent, indicating that these
orbitals are not really core-like. In order to remind of the energetic core and spa-
tial valence character the term semi-core shells is frequently used. Although the 6d
shell is more diffuse than 5f, it has its density maximum in the same spatial region
as 6s and 6p. Therefore the 6d occupation also influences the 6s and 6p semi-core
orbitals, but to a lesser extent than the 5f occupation. Similarly, the 5f shell has its
density maximum in the same spatial region as the 4s, 4p and 4d shells and a change
in the 5f occupation will change the effective nuclear charge acting on these shells,
although not as much as for the 6s and 6p shells. Thus, from a spatial point of view it
is clear that for accurate calculations all orbitals with main quantum number n > 4

have to be treated in the valence space. The currently available small-core PPs for
the actinides use this core definition [77] and an analogous core-valence separation
is made for the corresponding small-core lanthanide PPs [17,36], i.e., all shells with
main quantum number n > 3 are treated in the valence space. However, both sets
of PPs have been adjusted to relativistic AE data obtained with the WB relativistic
HF approach and deviations between the WB and MCDHF/DC or MCDHF/DC+B
reference energies are usually larger than the FC errors. The generation and perfor-
mance of a uranium small-core PP adjusted directly to MCDHF/DC+B reference
data [34] will be discussed below.

The results summarized in Table 6-4 for the medium core imply that FC errors
for energy differences are smaller when calculated only between configurations with
the same 5f occupation as compared to errors for configurations with different 5f
occupation. In view of the high complexity of the electronic structure arising from
open f shells and the fact that for many questions the individual electronic state
arising from a specific coupling of the open shell electrons is not of high impor-
tance, one might be tempted to construct PPs modelling an uranium atom with a
specific valency, corresponding to a specific 5f occupation number, and attributing
the corresponding partially occupied 5f shell to the PP core. Thus, one does not
only have one PP for every atom, but one for every valency of every atom. The
rightmost column in Table 6-4 presents FC errors for configurations of each of the
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listed 5f occupation numbers, where the frozen core always has been taken from
the lowest energy configuration with the specific 5f occupation number. Thus for a
uranium 5f occupation of n5f electrons only 14 � n5f electrons are treated explic-
itly in the valence shell. It is apparent that the FC errors amount to at most 0.2 eV
for all choices of the core and the valency. In case of a 5f0 occupation the errors
for intra-configurational energy differences are smaller than for the medium-core
case, adopting the core from the neutral uranium atom in its [Rn] 5f36d17s2 ground
state. In case of the 5f1 configurations the corresponding errors for the 5f-in-core
and medium-core 5f-in-valence cases are very similar, whereas for the higher 5fn

occupations (n > 1) they are somewhat larger for the 5f-in-core case than for the
medium-core 5f-in-valence case. A clear dependency of the 5f-in-core FC errors on
the 6d occupation number is observed.

We note that when attributing the partially occupied 5f shell to the PP core, the
computational effort of calculations of actinides is essentially reduced to the one for
treating an early transition metal. In case of uranium and other actinides 5f-in-core
PPs for trivalent [90], di- and tetravalent [91] as well as penta- and hexavalent [89]
situations have been generated and tested in molecular calculations, including stud-
ies of actinocenes [88], the hydration of trivalent actinide ions [148] or extended
porphyrin complexes such as actinide (III) texaphyrins and motexafins [22]. Cor-
responding 4f-in-core PPs for di- and trivalent [37] as well as tetravalent [62]
lanthanides are available too.

Clearly any information which depends on the details of the electronic structure
of the open shell attributed to the PP core is lost, however the computational savings
in cases where the open f shell remains core-like in a molecular or solid environment
are quite large. Trends along the lanthanide and actinide series can be studied on
equal footing, although only for an average over all states having the same valence
substate and the same f subconfiguration, i.e., a so-called superconfiguration. The
concept of a superconfiguration was proposed by Field more than two decades ago
in order to rationalize the extremely complex spectra of lanthanide diatomics [46].

6.5.3. Pseudopotential Adjustment

Let us now turn to the generation of the relativistic energy-consistent uranium PPs.
We briefly discuss the WB-adjusted (small-core) 5f-in-valence [77] and (large-core)
5f-in-core [89–91] PPs as well as a MCDHF/DC+B-adjusted (small-core) 5f-in-
valence PP [34]. The latter PP is adjusted according to the most recent developments
[32, 38, 135].

6.5.3.1. Wood–Boring-Adjusted 5f-in-Valence Pseudopotential

The discussion of FC errors listed in Table 6-4 yielded the result that for accu-
rate calculations of energy differences between states with different 5f occupation
a small-core PP, i.e., 60 core electrons (in shells with n < 5) and 32 valence elec-
trons (in shells with n 
 5), has to be generated. The WB-adjusted PP [77] uses
in Eq. (6-22) one Gaussian term with nm D 0 for each of the angular symmetries
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l D 0 to 4, i.e., a total of ten adjustable parameters. The eight parameters up to f
symmetry were adjusted to 12 energetically low-lying LS states of U and UC with
varying 5f, 6d, 7s and 7p occupation in a multi-state multi-electron adjustment. The
parameters were adjusted in a least-squares fit according to Eq. (6-42) so that the
total valence energies obtained in finite difference PP calculations [51] agree best
with corresponding scalar-relativistic AE WB reference energies. The parameters
for g symmetry were adjusted in a multi-state single-electron adjustment to g1 states
of U31C with virtually no errors. Atomic test calculations for 21 LS states of U and
15 LS states of UC (occupation numbers 5f: 2 - 6, 6d: 0 - 4, 7s: 0 - 2, 7p: 0 - 1)
gave errors of at most 0.06 eV compared to the AE WB reference data. In Table 6-5
we compile results for a different test, i.e., for relative average energies of configu-
rations of U - U6C as used in Tables 6-3 and 6-4 . The accuracy obtained in the fit
for LS states of U and UC is retained in the corresponding test calculations of con-
figurational averages. For all listed configurations of U - U4C an absolute (relative)
accuracy of better than 0.09 eV (0.8%) is achieved. The absolute errors are signif-
icantly larger for U5C and U6C, i.e., up to 0.43 eV, but the relative errors remain
quite small, i.e., below 0.3%. In total the mean absolute error with respect to the
WB AE data is 0.07 eV, whereas with respect to MCDHF AE data using the DC and
DCB Hamiltonian it is 0.50 eV and 0.33 eV, respectively.

The SO operators of the WB-adjusted PP were originally derived from pertur-
batively determined WB orbital SO splittings [77]. Later MCDHF/DC-adjusted SO
terms for the 5f, 6d and 7p shell were derived from multi-state multi-electron SO
splittings for use in first-order perturbation theory based on the scalar-relativistic
solution as well as for two-component variational calculations keeping a 5s, 5p, 5d,
6s, 6p core frozen at the scalar-relativistic level [21]. The latter operators should
also be used in large-scale SO configuration interaction (CI) calculations with exci-
tations from the 5f, 6d (, 7s) and 7p valence shells. It is important to use the SO
operators in the correct framework: whereas the former parametrization accounts
implicitly for the orbital relaxation of the 5f, 6d and 7p valence shells under the SO
term, the latter one assumes that this effect is explicitly considered in the calcula-
tions. Both operators assume the 5s, 5p, 5d, 6s, 6p core/semi-core shells to remain
at the scalar-relativistic level. Large errors may result, when the valence SO terms
are allowed to act on these shells.

Although the performance of the original small-core WB-adjusted PP was found
to be quite satisfactory in numerous molecular studies, e.g., [9, 10], both the dis-
agreements with the WB AE data for the higher oxidation states U5C and U6C not
included in the adjustment as well as the deviations of the WB AE data itself from
results obtained with the best available method, i.e., MCDHF calculations based
on the DCB Hamiltonian, motivated a readjustment of the PP [34]. The main rea-
son, however, was the fact that only valence SO operators were available, which are
allowed to act on the 5f, 6d, 7p actual valence shells, but not on the 5d, 5p and 6p
semi-core shells included in the valence space of the small-core PP. Thus no two-
component HF calculations or SO CI calculations allowing excitations from these
inner shells were possible.
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Table 6-5 As Table 6-3, but for all-electron point nucleus (pn) Wood–Boring and finite
Fermi nucleus (fn) Dirac–Hartree–Fock/Dirac–Coulomb–Breit (DHF/DC+B) energy dif-
ferences �E (eV) with respect to the uranium ground state. The errors ��E (eV)
are listed for a Wood–Boring (WB) adjusted (old) [77] as well as a Dirac–Hartree–
Fock/Dirac–Coulomb–Breit adjusted (new) [34] small-core pseudopotential (SPP). For
comparison available data from literature for a generalized relativistic effective core
potential (GRECP) adjusted to fn DHF/DCB data is listed too [93]

Charge Configuration �E ��E �E ��E
5f 6d 7s WB SPP DHF SPP

pn old DCCB,fn new GRECP

6C 169.1342 0.4290 168.3200 0.0045
5C 1 119.1842 0.2071 118.5177 0.0025
4C 2 79.5848 0.0491 79.0378 0.0010
3C 3 49.7821 �0.0468 49.3303 �0.0010
2C 4 29.1540 �0.0913 28.7693 �0.0039
1C 4 1 16.7440 �0.0173 16.3620 �0.0045
0 4 2 10.5089 0.0404 10.1180 �0.0038

5C 1 108.1437 0.2395 107.6258 0.0020
4C 1 1 70.0169 0.0820 69.6211 0.0032
3C 1 2 41.5358 �0.0181 41.2325 0.0032
2C 1 3 22.0486 �0.0653 21.8109 0.0018
1C 1 3 1 10.0850 �0.0093 9.8506 0.0009 0.0843
0 1 3 2 4.1415 0.0344 3.8992 0.0012 0.0843

4C 2 63.2986 0.0826 63.0292 �0.0014
3C 2 1 36.1309 �0.0139 35.9551 0.0013
2C 2 1 1 17.7842 0.0184 17.6451 0.0005
1C 2 1 2 6.0270 0.0453 5.8808 0.0012 0.0467
0 2 2 2 0.6918 0.0095 0.5751 0.0014 0.0449

3C 3 33.4046 �0.0047 33.3473 �0.0038
2C 3 1 15.7488 0.0129 15.7131 �0.0033
1C 3 2 4.5267 0.0273 4.4993 �0.0017 0.0011
0 3 1 2 0.0000 0.0000 0.0000 0.0000 0.0000

2C 4 17.0353 �0.0169 17.1327 �0.0026
1C 4 1 6.6705 0.0010 6.7689 �0.0011 �0.0454
0 4 2 1.8651 0.0129 1.9568 0.0005 �0.0450

1C 5 12.1721 0.0459 12.3320 0.0034 �0.0832
0 5 1 7.8323 0.0617 7.9585 0.0043

6.5.3.2. Dirac–Hartree–Fock-Adjusted 5f-in-Valence Pseudopotential

The newest uranium PP is directly adjusted to MCDHF data using the DCB
Hamiltonian and a Fermi nuclear charge distribution [34]. Two-component finite
difference MCHF PP calculations applying the same (intermediate) coupling



Relativistic Pseudopotentials 255

scheme are performed in order to eliminate possible errors due to the use of finite
basis sets. The reference data set used to determine the PP up to f symmetry com-
prised now 100 non-relativistic configurations yielding a total of 30,190 J levels.
The reference data was obtained for U - U7C and included a wider spectrum of
occupations in the 5f, 6d, 7s and 7p valence shell (occupation numbers 5f: 0 - 5,
6d: 0 - 4, 7s: 0 - 2, 7p: 0 - 1), but also additional configurations with holes in the
core/semi-core shells 5s, 5p, 5d, 6s, 6p as well as configurations with electrons
in the 6f - 9f, 7d - 9d, 8p - 9p and 8s - 9s shells. A global shift was applied to
all reference energies, cf. Eq. (6-42), and treated as an additional parameter to be
optimized. For g symmetry the adjustment was analogous to the scalar-relativistic
case, i.e., a multi-state single-electron adjustment to g1

7=2
and g1

9=2
states of U31C

was performed.
Due to the SO splitting of the shells with angular quantum number l > 0 Vl is

divided into two components: Vl;j Dl�1=2 and Vl;j DlC1=2. Therefore the minimum
number of parameters for a PP up to f symmetry with one Gaussian per lj term
is now 14 instead of 8 and a selection of m Gaussians per lj value leads to 14m
parameters. However, test calculations revealed that for the reference states included
in the adjustment at least two Gaussians have to be used in s symmetry in order to
get a satisfactory accuracy, i.e., at least 16 adjustable parameters were used.

Since the number of reference energies is now significantly higher than in the WB
case (30,190 vs. 12), higher accuracy can now be achieved by using more adjustable
parameters. Figure 6-5 shows the development of the root mean squared errors of
the energies of the non-relativistic configurations as well as of the individual J levels
when the number of adjustable parameters increases. Whereas the error with respect
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to the individual J levels seems to be converged already with two Gaussians per lj
term to about 300 cm�1 (0.037 eV), the one for the averages of the configurations
can be further reduced to 16 cm�1 (0.002 eV) by applying four Gaussians per lj
value. Figure 6-6 gives an overview of the errors for the configurational averages
for the most extensive parametrization with 4 Gaussians per lj term (56 parame-
ters). One can see that in contrast to the AE FC errors listed in Table 6-4 the PP
errors exhibit a less systematic behavior with respect to the 5f occupancy, however
their magnitude is comparable and stays below 0.012 eV for any energy difference
between two of the configurations in a total energy interval of approximately 600 eV.

Table 6-5 compares PP relative energies to corresponding AE data. It should
be noted that the configurations listed there form a subset of the reference con-
figurations used in the PP adjustment. For comparison results published for a
shape-consistent (generalized) relativistic effective core potential (GRECP) are also
listed [93]. This PP was also adjusted to DHF/DCB reference data, however not at
the MC level. It combines the traditional semilocal with a nonlocal ansatz. PPs of
this school exhibit a fairly high accuracy, but the number of adjustable parameters
is significantly larger than for the energy-consistent case and the additional nonlo-
cal term cannot be handled by most quantum chemistry codes, including the ones
accessible to us. Thus our conclusions are only based on the data available from the
original publication. It can be seen that a characteristic pattern of errors, i.e., a clear
dependency on the f occupancy n with roughly .3 � n/ � 0:043 eV, results.

The behavior of the errors for the individual J levels is displayed in Figure 6-7 for
the MCDHF/DCCB-adjusted PP. The root mean squared error is 0.038 eV, whereas
the largest error is 0.27 eV and occurs for a very high-lying J level of a chemically
probably not too important configuration with a 5f4 occupation. If only J levels with
a relative energy of 5 eV with respect to the lowest J level of the configuration
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Figure 6-7. Percentage (%) of J levels with errors in the total valence energies below the threshold (eV)
indicated on the abscissa for the multi-configuration Dirac–Hartree–Fock/Dirac–Coulomb–Breit Fermi
nucleus adjusted small-core pseudopotential for uranium [34]

Table 6-6 Relative energies �E (cm�1) for single-determinant J levels calculated at
the Dirac–Hartree–Fock/Dirac–Coulomb–Breit (DHF/DCCB,DCB) level using a Fermi
charge distribution for the finite nucleus and errors ��E (cm�1) of calculations with
a small-core energy-consistent pseudopotential (SPP) [34] and a generalized relativis-
tic effective core potential (GRECP) [93] modelling such all-electron calculations. Mean
absolute errors (cm�1) are listed in the last line

J 5f3
�

6d1
�

7s2
C

5f2
�

6d2
�

7s2
C

�E ��E �E ��E �E ��E �E ��E

DHF SPP DHF GRECP DHF SPP DHF GRECP
DCCB DCB DC+B DCB

0 10,767.4 366.0 10,767 416 39,561.1 422.6 39,562 724
1 29,342.5 311.6 29,343 553 20,452.5 101.2 20,453 292
2 20,477.0 413.4 20,477 556 24,250.8 228.8 24,252 422
3 18,515.7 208.6 18,516 359 15,905.0 �38.9 15,906 126
4 17,458.4 194.0 17,458 339 13,548.7 �20.7 13,549 86
5 2,762.4 �55.4 2,762 �23 7,017.3 �116.5 7,018 �30
6 0.0 0.0 0 0 0.0 0.0 0 0

m.a.e. 258.2 374.3 158.4 280.0

are considered, the maximum error is below 0.1 eV, and if only the lowest J levels
of each configuration are considered, it is at most 0.036 eV. Again we compare to
the GRECP, restricting ourselves to two data sets out of three taken from the orig-
inal publication [93]. It can be seen from Table 6-6 that for the individual J levels,
when described as a single determinant in the jj coupling scheme, the errors of the
energy-consistent PP are slightly smaller than the ones obtained for the GRECP.
The same is true for the third data set not shown here.
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Figure 6-8. Radial orbital densities of uranium in the [Rn] 5f36d17s2 ground state configuration from
state-averaged multi-configuration Dirac–Hartree–Fock/Dirac–Coulomb calculations [41] in comparison
to pseudo-valence functions obtained from corresponding valence-only calculations with a scalar-
relativistic Wood–Boring adjusted small-core pseudopotential [77] and a spin–orbit term designed to
act on the 5f and 6d shells [21]

It is interesting to have a look at the shape of the radial functions, especially
for energy-consistent PPs, where the agreement with corresponding AE orbitals is
not enforced for a specific electronic state. In Figure 6-8 radial densities for the
5f, 6d and 7s shells obtained with the scalar-relativistic WB PP supplemented by
a SO term designed for a variational treatment of the 5f, 6d (, 7s) and 7p shells
in the field of a 5s, 5p, 5d, 6s and 6p scalar-relativistic core [21, 77] are compared
for the neutral uranium atom ground state to corresponding radial densities of the
large components evaluated at the MCDHF/DC level. The simplified radial struc-
ture (lower number of radial nodes) is clearly obvious in case of the 5f and 6d
shells, whereas the differences for the 7s shell are virtually invisible, including the
different nodal structure for abscissa values smaller than � �0:3. It is apparent that
in the valence region the pseudo-valence orbitals reproduce the AE orbitals fairly
well. Figure 6-9 shows the same comparison for the MCDHF/DC+B Fermi nucleus
adjusted PP [34], where an even better agreement is observed. In this context we
want to note that in the shape-consistent formalism the exact agreement between
pseudo-valence orbitals and all-electron orbitals in the spatial valence region is only
guaranteed for a single reference state.

6.5.3.3. 5f-in-Core Pseudopotentials

Let us now turn to a much more approximate treatment of uranium in molecules
or solids. The rightmost column in Table 6-3 indicates, that it might be possible to
include the open 5f shell as well as all other shells with main quantum number n < 6
into the PP core. Similar sets of such PPs attributing the 4f shell to the core have been
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Figure 6-9. As Fig. 6-8 but for a two-component Dirac–Hartree–Fock/Dirac–Coulomb–Breit adjusted
small-core pseudopotential [34]

in use for almost two decades for the lanthanides [37,39] and fit into the concept of
a superconfiguration advocated by Field [46]. The adjustment and application of 5f-
in-core PPs for the actinides has only been attempted recently [22, 89–91]. In case
of uranium PPs for tri-, tetra-, penta- and hexavalent situations corresponding to a
5f occupation with 3, 2, 1 and 0 electrons, respectively, are available. The reference
data has been obtained for configurational averages at the WB scalar-relativistic AE
level using a extensively modified version of the finite difference HF code MCHF77
of Froese-Fischer in order to avoid basis set errors [51]. The PPs were adjusted using
the same code, i.e., again errors due to finite basis sets or differences in the coupling
schemes at the AE and PP level were avoided.

For the terms up to d symmetry two Gaussians per l value were applied in the
expansion of the radial PP. Thus 12 parameters were adjusted to up to 18 refer-
ence energies for each given 5f occupation. Despite that fact that the 5f shell was
attributed to the core and instead of LS states the configurational average was taken
into account, the adjustment procedure is equivalent to the 5f-in-valence WB small-
core PP described above. The accuracy of the adjustment was better than 0.1 eV
for all reference energies, cf. e.g., Table 6-7 for the 5f3-in-core PP of (trivalent)
uranium. The rightmost column in this table shows that this accuracy not only
holds for a comparison to WB AE reference data but also for one to corresponding
MCDHF/DC data.

Special care had to be taken for the f symmetry. For a given 5f occupation of m
electrons a potential V1 was adjusted to reference energies of the 5fmC1, 5fm 6f1,
5fm 7f1 and 5fm 8f1 configurations. Form D 0, i.e., the element at the beginning of
a set of actinides with a given valency, the adjustment of V1 corresponds to a multi-
state single-electron fit similar to the one performed for the g potentials in the 5f-in-
valence case. A second potential V2 was adjusted to the 5fm 6f1, 5fm 7f1 and 5fm
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Table 6-7 Relative energies (eV) of U configurations with a 5f3 occupation with respect
to the U [Rn] 5f36d17s2 ground state configuration from all-electron state-averaged multi-
configuration Dirac–Hartree–Fock calculations using the Dirac–Coulomb Hamiltonian (AE
DHF/DC). Frozen-core errors (eV) are listed for a 1s-5f3 core adapted from the neutral U
atom [Rn] 5f36d17s2 ground state configuration (Q D 11). All-electron Wood–Boring (AE
WB) average energy differences (eV) with respect to the U [Rn] 5f36d17s2 ground state
configuration and corresponding errors (eV) of 5f3-in-core pseudopotential values with
respect to the all-electron Wood–Boring (LPP) as well as to the Dirac–Hartree–Fock/Dirac–
Coulomb (LPP0) data

Charge Configuration DHF/DC WB
5f 6d 7s AE Q D 11 AE LPP LPPa

3C 3 33.3768 0.1458 33.4046 �0.0296 �0.0018
2C 3 1 15.7154 0.0698 15.7488 �0.0445 �0.0111
1C 3 2 4.4832 0.0306 4.5267 �0.0342 0.0093
2C 3 1 16.2232 0.0194 16.1849 �0.0670 �0.1053
1C 3 1 1 5.2615 0.0029 5.2419 �0.0309 �0.0505
0 3 1 2 0.0000 0.0000 0.0000 0.0000 0.0000
1C 3 2 6.8058 0.0075 6.7365 0.0004 �0.0689
0 3 2 1 1.6538 0.0049 1.6090 0.0360 �0.0088
0 3 3 3.8822 0.0264 3.8072 0.0766 0.0005

Frozen cores: U Q D 11: 1s-5f.

8f1 configurations. Form D 14, i.e., the element at the end of a set of actinides/post-
actinides with a given valency, the adjustment of V2 also corresponds to a multi-state
single-electron fit. In contrast to V1 the occupation of the 5f shell with an additional
electron is explicitly forbidden when using V2. In order to get a smooth transition
from V1 to V2 when moving along a hypothetical series of elements with a fixed
valency, the actually used f term of the PP was obtained as a superposition

V D


1 � m

14

�
V1 C m

14
V2: (6-71)

It is clear that the superconfiguration model of Field [46] applied to the actinides
would require an integral 5f occupation, i.e., the use of V2. However, due to the
diffuse character of the 5f shell, it is accessible to the chemical environment and in
fact the 5f shell might accept electron density from neighboring atoms, i.e., 5fmCım

occupations may arise. The purpose of the linear combination of potentials above is
to allow, by means of mixing in of V1, also 5f occupancies slightly larger than the
integral value m intended to be modelled by the 5f-in-core PP. Of course ım has to
be sufficiently small for this approximation to be valid, e.g., 0 � ım � 1. Various
molecular test calculations (vide infra) in fact show that ım can deviate from zero
by several tenths of an electron when counted in a Mulliken population without a
breakdown of the model. Clearly the approach is not designed for 5f occupations
less than the one attributed to the PP core, i.e., ım < 0, and thus a charge transfer
from the actinide 5f shell into other orbitals is not covered by the approximation.
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6.5.4. Valence Basis Set Optimization

As important as the PP parametrization itself is the optimization of reliable valence
basis sets. It should be noted that due to the different radial shape of the pseudo-
valence orbitals in the core region valence basis sets cannot be transferred from one
PP to another, even for the same element and the same core size, i.e., PPs should
only be used in connection with valence basis sets optimized specifically for them.
This is especially true for contracted basis sets, but significant errors might also
already arise for not too large uncontracted basis sets.

6.5.4.1. 5f-in-Valence Pseudopotentials

For the uranium example described here (14s13p10d8f6g)/[6s6p5d4f3g] basis sets
exist for both WB- and MCDHF/DC+B-adjusted 5f-in-valence small-core PPs
[21,34]. Since 5s, 6s, 5p, 6p and 5d have to be attributed to the semi-core orbitals and
are described with one contraction each, a [4s4p4d4f ] set is left for the description
of the 5f, 6d, 7s and 7p valence shells, i.e., a set of overall valence quadruple-zeta
quality arises. The basis sets for uranium and the other actinides were generated
as described in the following. First a (14s11p8d8f ) set of exponents was energy-
optimized in atomic PP HF calculations [107] for the [Rn] 5f47s2 5I state of the
neutral uranium atom. In the second step two diffuse d functions for the descrip-
tion of the 6d shell were HF energy-optimized for the [Rn] 5f36d17s2 5L state.
In order to describe the 7p shell two diffuse p functions obtained in case of the
WB PPs by linear interpolation from HF energy-optimized functions for the [Rn]
5f07s27p1 2P and [Rn] 5f147s27p1 2P states of Ac and Lr, respectively, were added
in the third step. In case of the MCDHF/DCCB-adjusted PP the two exponents
were optimized for the [Rn] 5f37s27p1 5I state. In order to guarantee an unbiased
description of states with different 5f occupation, the contraction coefficients for
the resulting (14s13p10d8f )/[6s6p5d4f ] sets were obtained in the fourth step from
averaged density matrices for the lowest LS states of the [Rn] 5f36d17s2 and [Rn]
5f47s2 configurations. Symmetry-breaking at the CASSCF level was avoided by
averaging over all components of each LS state. Whereas it was feasible to perform
CASSCF/MRCI calculations for the [Rn] 5f47s2 5I state, the [Rn] 5f36d17s2 5L
state was only treated at the CASSCF level. In the MRCI calculations the 5s, 5p and
5d shells were kept frozen, i.e., the sets are suitable for correlating the 5f and n > 5
shells, whereas additional functions should be added when a correlation of the 5s,
5p and 5d shells is also desired. Finally, as the fifth and last step six g exponents
were chosen identically to the six largest f exponents, reflecting their importance in
the g ANOs obtained from MRCI calculations for the [Rn] 5f47s2 5I state using the
(14s13p10d8f )/[6s6p5d4f ] ANO basis set augmented by eight g functions identical
to the f set. A generalized ANO contraction was derived as described above for the
[Rn] 5f47s2 5I state, yielding the final (14s13p10d8f6g)/[6s6p5d4f3g] set of roughly
polarized valence quadruple-zeta quality. [5s5p4d3f2g] and [4s4p3d2f1g] sets of
polarized triple- and double-zeta quality as well as a [3s3p2d1f ] minimal basis
set can be created by omitting contractions with small ANO occupation numbers.
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Table 6-8 Basis set errors (milli-Hartree) in total valence energies for the
generalized contracted (14s13p10d8f)/[6s6p5d4f] and segmented contracted
(14s13p10d8f6g)/[10s9p5d4f3g] ANO valence basis sets for the uranium small-
core pseudopotentials (SPP) [77, 21, 34]

SPP WB SPP DCCB
State Uncontr. Gen. contr. Seg. contr. Uncontr. Fen. contr.
5f3 6d1 7s2 5L 2.31 2.32 4.11 0.72 0.73
5f4 7s2 5I 1.59 1.59 2.82 0.46 0.46

The basis set errors in the total valence energies at the HF level amount to less than
3 milli-Hartree for all these basis sets, cf. Table 6-8.

Since a generalized contraction pattern cannot be efficiently dealt with in several
commonly used quantum chemistry codes, segmented contracted (14s13p10d8f6g)/
[10s9p5d4f3g] basis sets have been derived from the generalized contracted sets.
Note that the number of contracted functions of the computationally expensive d, f
and g sets is the same as for the generalized contracted sets, however for the less
demanding s and p sets a larger number of contracted functions had to be used to
achieve roughly the same accuracy. The basis set errors in the total valence ener-
gies at the HF level amount to less than 5 milli-Hartree for all these basis sets, cf.
Table 6-8.

6.5.4.2. 5f-in-Core Pseudopotentials

For the 5f-in-core PPs for the trivalent actinides first (4s4p3d), (5s5p5d) and
(6s6p6d) primitive sets have been HF optimized for the An2C [Rn 5f n] 6s26p26d1

superconfiguration (n D 0�14 for Ac - Lr). For usage in solid state calculations the
most diffuse exponent in each angular symmetry was restricted to 0.15 in order to
avoid linear dependencies. An additional diffuse 2s1p1d set was then HF optimized
for the An [Rn 5fn] 6s26p26d17s2 superconfiguration and segmented contractions
of VXZ (XDD,T,Q) quality were derived. The errors in the HF energies were at
most 0.2 eV and 0.1 eV for the VDZ and VTZ, VQZ basis sets, respectively. Finally
a 2f1g set CI optimized for the An [Rn 5f n] 6s26p26d17s2 was added [90].

6.5.5. Calibration and Application

6.5.5.1. 5f-in-Valence Pseudopotentials

Recent studies compared results obtained with the WB [77] and MCDHF/DC+B
[34] adjusted relativistic small-core PPs and AE data derived with the scalar-
relativistic Douglas–Kroll–Hess Hamiltonian (DKH) [60] augmented by the Breit-
Pauli (BP) SO Hamiltonian for uranium monohydride UH [23, 34]. Due to the dif-
ferent AE approaches modelled by the PPs an exact agreement cannot be expected.
Table 6-9 shows selected data for the 4I9=2 ground state. We note that the selection
of the active space used in the CASSCF reference calculations has noticeable effects
on the equilibrium distance Re and the vibrational constant !e. For the compromise
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Table 6-9 Selected results for the UH 5f3 �2 �2 4I (˝ D 9=2) ground
state [23, 34]

Method Re (Å) !e (cm�1) De (eV)

SPP WB/CASSCFa 2.159 1,330
SPP WB/CASSCFb 2.076 1,442
SPP WB/CASSCFc 2.073 1,431

SPP WB/MRCICQ 2.008 1,501 3.06e

SPP MCDF/DCCB/MRCICQ 2.021 1,499 3.04e

DKH/MRCICQ 2.019 1,495 2.99e

SPP WB/MRCICQ/SO 2.011 1,497 2.85
SPP MCDF/DCCB/MRCICQ/SO 2.025 1,505 2.82
DKH/MRCICQ/SO 2.021 1,483 2.79

exp.d 1,424

aMinimum active space in CASSCF: 3 electrons in 7 orbitals (U 5f).
bApplied active space in CASSCF: 5 electrons in 12 orbitals.
cIdeal active space in CASSCF: 7 electrons in 17 orbitals (U 5f, 6d, 7s, 7p, H 1s).
dAndrews and coworkers (1997), UH in Argon matrix.
eDe (UH) D El (UH,R D 50 Bohr)-El (UH,Re); El (UH,R D 50 Bohr)�Es (UCH� ,R D 50
Bohr)CEl (U)-Es (UC)CE(H)-E(H�)C1/50; U: 5f36d17s2 5L, UC: 5f37s2 4I; s: small active
spaceb , l : large active spacec .

active space CASSCF/MRCI calculations for UH at the equilibrium distance were
feasible, however not for the separated neutral atoms at large distance. Thus an
approximation had to be used to evaluate the binding energies (cf. footnote f in
Table 6-9). At the correlated level, without taking into consideration SO coupling,
the deviations of the WB PP (�Re D –0.011 Å, �!e D 6 cm�1, �De D 0.07 eV)
and the MCDHF/DCCB PP (�Re D 0.002 Å, �!e D 4 cm�1, �De D 0.05 eV)
results from the DKH data are quite small.

Table 6-10 lists vertical excitation energies for the ground state internuclear
equilibrium distance. For the lowest five states the PP term energies agree within
0.003 eV with the AE DKH/BP data and the �S state contributions deviate by at
most 1%. For the next group of states the agreement is somewhat worse with at
most 0.09 eV and 2%. Finally, the largest disagreement with up to 0.15 eV and
5% is observed for the last group of states. Here the agreement is better for the
MCDHF/DC+B PP than for the WB PP, probably due to the improved adjustment of
the SO term in a two-component manner. The high accuracy of the MCDHF/DC+B
PP was also demonstrated in intermediate Hamiltonian Fock-space coupled clus-
ter calculations, in which the experimental fine structure splitting of U5C 5f1 was
exactly reproduced and the term energies of the J levels of U4C 5f2 reaching up to
�44,000 cm�1 were obtained with a mean absolute error of 420 cm�1 [146].

Besides applications in a larger number of molecular calculations, cf. the com-
pilation listed in a recent review [20], the WB-adjusted small-core PPs for uranium
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Table 6-10 Term energies (eV) of UH from calculations with spin–orbit coupling
(state interaction approach) [23, 34]

SPP SPP AE DKH
WB WB DC+B CBP

No. ˝ LS(%) �E �E �E

1. 4.5 4I(80) C 4H(17)+4� (3) 0.000 0.000 0.000
2. 3.5 4H(60) C 4� (30) C 4˚ (9) C 4�(1) 0.032 0.029 0.032
3. 2.5 4� (43) C 4˚ (38) C 4�(16) C 4˘(3) 0.046 0.046 0.049
4. 1.5 4�(40) C 4˚ (31) C 4˘(23) C 4˙ (6) 0.057 0.058 0.060
5. 0.5 4˘(49) C 4˙ (30) C 4�(21) 0.068 0.070 0.071

6. 5.5 4I(72) C 4H(22) C 6�(3) C 4� (1) C 4K(1) 0.336 0.380 0.419
8. 4.5 4H(38) C 4� (36) C 4I(18) C 4˚ (8) 0.363 0.405 0.447
9. 3.5 4˚ (39) C 4H(32) C 4�(16) C 4� (13) 0.378 0.424 0.464
10. 2.5 4� (40) C 4�(35) C 4˘(23) C 4˚ (2) 0.392 0.436 0.480
11. 1.5 4˚ (43) C 4˙ (30) C 4˘(27) 0.402 0.454 0.491
12. 0.5 4˘(43) C 4�(42) C 4˙ (15) 0.404 0.452 0.494

7. 5.5 6�(83) C 6K(13) C 4I(3) C 4H(1) 0.341 0.271 0.190
13. 4.5 6K(100) 0.463 0.412 0.353
14. 6.5 6�(79) C 6K(21) 0.579 0.562 0.517

AE DKH C BP basis set: U (30s26p18d14f7g)/[10s9p7d5f3g]; H aug-cc-pVQZ.

and plutonium were also applied in scalar-relativistic density functional (DF)
calculations of crystalline UO2, PuO2 and Pu2O3 [75,111]. The Mott insulator UO2

has a CaF2-like structure, characterized by U4C 5f2 triplet-coupled centers, with an
antiferromagnetic coupling between nearest neighbor U4C 5f2 ions. It was found
that the screened hybrid DF of Heyd, Scuseria and Ernzerhof (HSE) yields results
superior to other hybrid DFs as well as those of the generalized gradient approxima-
tion and local density approximation (LDA) type. The uranium small-core PP was
accompanied by a (8s8p6d5f ) uncontracted valence basis set, which was obtained
from the original atomic basis set by omitting some of the most tight and the most
diffuse functions. Oxygen was treated at the AE level and described by a 6-31G
basis set. For other technical details of these calculations, further references as well
as a broader discussion of the results cf. the original papers [75,111]. A summary of
the various DF results is given in Table 6-11: the experimentally observed antifer-
romagnetic ordering is correctly reproduced in the HSE calculations, the calculated
result for the lattice constant a0 is only 0.007 Å (0.1%) larger than the experimental
value, and the band gap � and the bulk modulus B0 are overestimated by 0.2 eV
(13.8%) and 11 GPa (5.3%), respectively.

6.5.5.2. 5f-in-Core Pseudopotentials

Next we want to discuss the performance of the 5f-in-core PP approach for ura-
nium as well as the other actinides in molecular calculations. Clearly, the underlying
approximation is only valid if the 5f shell stays core-like and does not participate
in bonding in the MO-LCAO sense. For AnFn (n D 2, 3, 4, 5, 6) the accuracy of
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Table 6-11 Calculated and experimental properties of UO2 [111]
obtained with the scalar-relativistic Wood–Boring adjusted pseu-
dopotential for uranium [77]: band gap � (eV), equilibrium lattice
constant a0 (Å), bulk modulus B0 (GPa) and energy difference
�E (meV) between the ferromagnetic (FM) and antiferromagnetic
(AFM) solutions per formula unit. A null for � indicates a metal

Method � a0 B0 �E

FM AFM FM AFM FM AFM

LSDA 0 0 5.317 5.289 239 216 �98
PBE 0 0 5.425 5.445 206 186 �123
TPSS 0 0 5.437 5.445 202 191 �124
PBE0 2.23 3.13 5.455 5.454 220 219 C2
HSE 1.56 2.39 5.463 5.463 226 218 C7
Exp. 2.1 5.470 207 >0

Table 6-12 U–F bond distances Re (Å), binding energies De

(eV) and Mulliken f populations nf from 5f-in-core pseudopo-
tential (large-core pseudopotential, LPP) Hartre-Fock calculations
of uranium polyfluorides UFm in comparison to corresponding
5f-in-valence pseudopotential (small-core pseudopotential, SPP)
multi-configuration self-consistent field calculations modelling an
average over all states arising from the open U 5f shell [90]. The
number m indicates the number of fluorine atoms, whereas 6 � m

denotes the number of 5f electrons attributed to the uranium core
(LPP) or explicitly treated in the valence space (SPP)

m Re De nf

LPP SPP LPP SPP LPP SPP

3 2.17 2.12 4.94 5.05 3C0.08 3.02
4 2.09 2.07 5.31 5.38 2C0.16 2.22
5 2.03 2.03 5.26 5.39 1C0.42 1.55
6 1.98 1.98 5.36 5.65 0C0.96 1.16

the 5f-in-core PP approach has been demonstrated by comparison to correspond-
ing 5f-in-valence PP results and its limitations have been discussed, e.g., cases for
which the actual 5f occupation in 5f-in-valence calculations is either below or sig-
nificantly higher than the integral value modelled by the 5f-in-core PP [89–91]. The
corresponding results for the uranium fluorides UFn (nD 3, 4, 5, 6) are summarized
in Table 6-12. In HF test calculations the mean absolute (relative) errors of 5f-in-
core results with respect to 5f-in-valence reference values for the three series AnF2

(An D Pu - No; divalent actinides), AnF3 (An D Ac - Lr; trivalent actinides) and
AnF4 (An D Th - Cf; tetravalent actinides) for the bond lengths are at most 0.03 Å
(1.0%), those for the binding energies at most 0.09 eV (2.5%). For AnF5 (An D Pa -
Am; pentavalent actinides) the errors are at most 0.04 Å (1.8%) and 0.09 eV (1.7%),
i.e., still acceptable, whereas for AnF6 (An D U - Am; hexavalent actinides) the 5f-
in-core approach obviously reaches its limitations and only yields reasonable results
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for UF6. Here the errors in the bond length and in the binding energy are only 0.001
Å (< 0.1%) and –0.29 eV (–5.1%), respectively. The 5f-in-core f population of 0.96
electrons still agrees quite well with the corresponding 5f-in-valence result of 1.16
electrons, however the large deviation of about one electron from the 5f0 occupa-
tion modelled by the 5f-in-core PP indicates already a potential source of error.
These deviations become even larger for the heavier actinides and much larger dis-
crepancies between both sets of calculations arise. We note here that the 5f-in-core
PP modelling hexavalent uranium corresponds simply to a uranium medium-core
PP (Q D 14 in Table 6-4) with a usage restriction to formally hexavalent uranium
compounds, motivated mainly by its adjustment of the s-, p- and d-projectors to
configurations with a 5f 0 occupation only.

An interesting field of application of 5f-in-core PPs is the hydration of actinides,
e.g., actinide (III) ions [148]. Calibration calculations for actinide(III) mono-water
complexes at the HF level using valence triple-zeta basis sets show quite satisfac-
tory agreement between 5f-in-core and 5f-in-valence PP results [90]. The trends for
actinide-oxygen bond lengths and actinide(III)-water binding energies are displayed
in Figures 6-10 and 6-11, respectively.

The PP results agree also reasonably well with AE DHF results of Mochizuki and
Tatewaki using the DC Hamiltonian and large basis sets for the actinides, but only
double-zeta basis sets for hydrogen and oxygen [87]. We note that the agreement
becomes even better, when double-zeta instead of triple-zeta basis sets are applied
in the PP calculations. Mochizuki and Tatewaki estimated a basis set superposi-
tion error of 0.2 eV in the metal(III)-water binding energies of the corresponding
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Figure 6-10. Actinide-oxygen distances (Å) of actinide ion water complexes An3CH2O (An D
Ac - Lr) calculated at the Hartree–Fock level with 5f-in-core (LPP) and 5f-in-valence (SPP) pseu-
dopotentials using standard basis sets of An pVTZ and O, H cc-pVTZ quality. The all-electron
Dirac–Hartree-Fock/Dirac–Coulomb results [87] use An (30s25p19d13f2g) and H, O cc-pVDZ basis
sets
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Figure 6-11. Binding energies (eV) of actinide ion water complexes An3CH2O (An D Ac � Lr) cal-
culated at the Hartree–Fock level with 5f-in-core (LPP) and 5f-in-valence (SPP) pseudopotentials using
standard basis sets of An pVTZ and O, H cc-pVTZ quality. The all-electron Dirac–Hartree–Fock/Dirac–
Coulomb results [87] use An (30s25p19d13f2g) and H, O cc-pVDZ basis sets and are most likely affected
by basis set superposition errors of 0.2 eV or more (cf. text). The effect of reducing the H, O basis sets
from cc-pVTZ to cc-pVDZ quality is indicated by the arrows

lanthanide(III) mono-water complexes, but did not report corresponding numbers in
case of the actinide systems. Their total energies for the actinides obtained in the
finite basis set deviate twice as much as for the lanthanides from finite difference
DHF/DC limit values, i.e., the basis set superposition errors might even be slightly
larger in the actinide systems than in the lanthanide systems.

Besides the above systems the 5f-in-core PP approach was also tested for ac-
tinocenes An(C8H8)2 [88]. The stability of these systems arises from both the
involvement of the actinide 6d and 5f orbitals in metal-ring bonding. Whereas the
former is explicitly accounted for in the 5f-in-core PP approach, the latter is only
taken into account implicitly. For a partially occupied 5fn shell (n < 14 and inte-
gral) implicitly included in the PP core, the f projector of a 5f-in-core PP allows
by construction to accommodate explicitly a small additional fraction of ın elec-
trons in the 5f shell, i.e., a 5fnCın occupation. In case of uranocene U(C8H8)2 the
central U4C 5f2-in-core ion can accept some additional charge from the two aro-
matic C8H2�

8 ligands explicitly in e2g symmetry and implicitly in e2u symmetry
in the D2h point group. At the HF level 5f-in-core and 5f-in-valence PP results for
An(C8H8)2 (An D Th - Pu) deviate on average by 0.025 Å (1.2%) for the metal-ring
distances and 0.92 eV (1.1%) for the ionic metal-ring binding energies. These dif-
ferences could be even decreased when adding a core-polarization potential (CPP)
to the 5f-in-core pseudopotential. At the coupled cluster level using basis sets of
polarized double-zeta quality for carbon and hydrogen the metal-ring distances of
thorocene and uranocene agree within 0.012 and 0.042 Å, respectively, with the
experimental results.
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A borderline case for the application of 5f-in-core PPs are uranyl UO2C
2 as well

as the related ion UOC
2 [89]. In the former case the hexavalent uranium 5f-in-core

PP was found to work reasonably well, however as explained above, it is merely a
uranium medium-core PP which has been adjusted exclusively for the description of
situations with a hexavalent uranium with a formal 5f 0 occupation. Due to the large
structural differences of the individual states (linear 2�u and 2˚u as well as bent
2A1, 2B1 and 2B2 states) belonging to the modelled superconfiguration as well as
the fact that the 5f occupation in small-core PP calculations for some of these states
is clearly below the value of one modelled by a PP for a pentavalent uranium, the
5f-in-core PP approach clearly fails for UOC

2 . The molecular 5f-in-core PP results
reveal that the danger of failure increases with an increasing oxidation number of the
actinide. 5f-in-valence PP or AE test calculations at the HF level are recommended
for checking if the assumption of a near-integral 5f occupation made in the 5f-in-
core PP approach is fulfilled.

We want to end our brief survey of selected applications with the application of
the 5f-in-core PP modelling trivalent uranium to the NaCl-structured UN crystal.
Evarestov et al. applied the Perdew–Wang (PW) exchange-correlation parametriza-
tion of the generalized-gradient approximation and used various scalar-relativistic
uranium PPs [45]. The chemical bonding in UN was found to be of metallic-covalent
nature, i.e., the uranium 5f orbitals contribute noticeably to the top of the valence
band as well as to the bottom of the conduction band, whereas the uranium 6d and
7s orbitals are involved in covalent interactions with the nitrogen 2p orbitals. For
various 5f-in-valence medium-core PPs binding energies in the range of 8.6–9.3 eV
were found, in strong contrast to the experimental value of 13.6 eV. The 5f-in-core
PP modelling trivalent uranium with a 5f3 occupation gives a value of 9.9 eV and
yields very similar results for the charge distribution as the 5f-in-valence medium-
core PPs. Significantly better agreement with the experimental cohesive energy was
obtained for the WB-adjusted small-core PP [77] as well as an approximation to
the GRECP of Mosyagin and Titov [93] (cf. Table 6-5 for an atomic comparison
of the WB-adjusted small-core PP and the full GRECP), i.e., 12.8 eV and 14.9 eV,
respectively. The authors attribute the worse performance of the medium-core PPs
to large relaxation and polarization effects of the [Rn] 5s25p65d10 semi-core shells,
which are only included explicitly in the calculations when a small core is chosen.
In addition errors arise most likely from the PW DFT approach, which yields a ura-
nium [Rn] 5f47s2 instead of the experimentally observed [Rn] 5f36d17s2 ground
state configuration. Additional smaller errors are due to the applied truncated ura-
nium basis sets as well as the neglect of SO coupling. We note that for crystalline
GdN a 4f-in-core PP modelling a trivalent Gd atom with a 4f7 occupation yielded
results within a few percent of the experimental values for the lattice constant and
the cohesive energy, when a wavefunction-based coupled cluster correlation treat-
ment using the so-called incremental scheme was performed following the periodic
HF calculations [72].

All 5f occupations calculated by medium-core PPs were between 3.25 and 3.36
electrons, whereas those obtained from the WB-adjusted small-core PP and the
approximate GRECP were 2.77 and 3.07 electrons, respectively. Especially the
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former value points to a possible reason for a failure of the 5f-in-core PP, which
only can model 5f occupations of three electrons and slightly more, but not less.
Further theoretical studies are needed to clarify if a system like crystalline UN with
relatively itinerant 5f orbitals is still within the scope of a 5f-in-core PP approach.

6.6. CONCLUSIONS

The present introductory article gave a brief overview of currently used effective
core potential (ECP) methods, focussing especially on the energy-consistent pseu-
dopotential (PP) approach. With the development of efficient relativistic all-electron
(AE) approaches at the four-, two- and also one-component level and the design of
the corresponding computer codes, one might think that ECPs soon will become
an outdated approximate computational scheme. It may well be true that the time
is gone when ECP ab initio studies of diatomic molecules containing one heavy
atom were state-of-the-art in relativistic quantum chemistry, however the accurate
treatment of systems with two or more heavy atoms still appears to be a field where
ECPs can be very useful. Thus, after almost 75 years of development since the initial
work of Hellmann there is still ongoing research by several groups. The emphasis
today seems to be mainly on accurate small-core ab initio ECPs modelling rigorous
AE calculations, e.g., Dirac–Hartree–Fock (DHF) using the Dirac–Coulomb (DC)
or Dirac–Coulomb–Breit (DCB) Hamiltonian, or also Hartree–Fock with the more
approximate Douglas–Kroll–Hess Hamiltonian. Since it will become more routine
to include spin–orbit (SO) coupling already at the self-consistent field level, or at
least in large-scale SO configuration interaction calculations, corresponding reliable
two-component instead of merely the scalar-relativistic ECPs are now more fre-
quently developed. During the last decades the accuracy of most ECP approaches
has been further increased, so that besides the inclusion of the relativistic effects
arising from the DC Hamiltonian also smaller contributions like the Breit interac-
tion or, for heavy elements, the finite nucleus can be taken into account. Thus, in
very accurate ECP parametrizations even some effects, which can not be routinely
taken into account in AE calculations, can be implicitly included.

In the energy-consistent PP approach a new parametrization of small-core two-
component PPs directly adjusted to MCDHF/DC+B finite nucleus reference data
is currently performed. The recent development of systematic series of correlation-
consistent valence basis sets for these PPs is very beneficial. Although the accuracy
of these PPs is higher than the perviously derived Wood–Boring (WB) adjusted PPs,
some deficiencies inherent to all PP methods still remain. For example, the overes-
timation of (some) exchange integrals due to the usage of pseudo-valence orbitals
with a simplified radial nodal structure can lead to small errors, which are now
nevertheless noticeable, e.g., in some fine-structure splittings, due to the improved
overall accuracy of the fit. It remains to be explored in the future, how this small
defect can be corrected in a way which does not destroy the computational simplicity
of the method.



270 X. Cao and M. Dolg

ACKNOWLEDGEMENTS

The authors are grateful to the German Research Foundation (Deutsche
Forschungsgemeinschaft) for support. M.D. thanks H. Stoll as well as
P. Schwerdtfeger for long-standing collaborations on the field of energy-consistent
relativistic pseudopotentials.

REFERENCES

1. Abarenkov, I.V., Heine, V.: The model potential for positive ions. Phil. Mag. 12, 529–537 (1965)
2. Ahlrichs, R., et al.: TURBOMOLE, quantum chemistry program system. http://www.turbomole.

com
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Abstract: Four-component relativistic methods are the most accurate available for heavy atoms
and molecules. Their history, current status and perspectives for further development are
reviewed. Their main application is for benchmark calculations of heavy element com-
pounds. Benchmarking requires continued improvement of the relativistic Hamiltonian
towards the goal of fully covariant description, as well as development of high level
correlation methods suitable for general open shell systems. One of the best relativistic
many-body approaches available for the purpose is the multi-root, multi-reference Fock
space coupled cluster (FSCC) method. It is size extensive, and usually gives the most
precise results within the four-component no-virtual-pair approximation (NVPA). The
relativistic FSCC method and its recent applications are described. Relativistic effects
beyond NVPA may be studied using quantum electrodynamics (QED). We discuss the
challenges of introducing covariant many-body QED methods suitable for use in quantum
chemistry. Mathematical and physical foundations for merging many-body relativistic
approaches, in particular FSCC, with QED theory are presented. A promising technique
is Lindgren’s covariant evolution operator (CEO) method, in combination with the gen-
eralized Fock space with variable numbers of electrons and uncontracted virtual photons.
The relationship of the CEO approach to the Bethe-Salpeter covariant equation and other
QED schemes is discussed. Size-consistent computational schemes, combining varia-
tional treatment of first order QED effects (Lamb shifts) at the SCF step with infinite
order treatment of QED and correlation, are under development. For cases of quaside-
generate levels, common in heavy systems, multireference approaches must be used.
Double (electronic and photonic) Fock-space CC, a covariant multireference multi-root
many-body-QED approach, is presented.

Keywords: Four-component relativistic methods, Coupled cluster, Fock-space methods, Quantum
electrodynamics

7.1. INTRODUCTION

Notation and Units All mathematical expressions appearing in this chapter are
in atomic units, unless otherwise stated. In these units, the electron mass m and the
elementary charge e are unity. However, we retain their symbols in equations in
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order to demonstrate how the fundamental characteristics of the electrons enter the
equations and clearly distinguish equations describing electrons from those describ-
ing its antiparticle, the positron. Operators carry operator hats, and three-component
vectors appear in bold characters. The Einstein summation convention or implicit
summation is used, so that a repeated index is summed over.

The chapter starts with an overview of relativistic four-component methodology
(Section 7.2). We then proceed to describe the relativistic Fock-space coupled
cluster (Section 7.3.1) and intermediate Hamiltonian approaches (Section 7.3.2),
followed by applications to heavy (Section 7.4) and superheavy (Section 7.5) atoms.
The methods described have also been used to study heavy molecules such as
UO2 (Section 7.4), nuclear quadrupole moments (Section 7.4.6) and adsorption
behavior of superheavy elements produced in accelerators, crucial for their sep-
aration and identification (Section 7.5.6). The last part (Section 7.6) delineates
directions under development which promise, in our opinion, exciting progress in
the foreseeable future.

7.2. FOUR-COMPONENT METHODOLOGY

The building blocks of the four-component methods are described in this Section.
We start with the Dirac equation, then discuss the many-body QED Hamiltonian
and its no-virtual-pair approximation. The later subsections describe the ways and
means of applying this formalism to atomic and molecular systems.

7.2.1. Dirac Equation – Historical Overview

The revolution in physics at the beginning of the twentieth century revealed two
fundamental facts, namely that our reality is quantum and relativistic. Theoretical
chemistry was one of the first sciences to recognize the overwhelming importance
of the first fact, namely the quantum nature of matter, and adopt non-relativistic
quantum theory in the form of the many-body Schrödinger equation (SE) for cal-
culation of atomic and molecular systems. Since then, a whole arsenal of powerful
many-body approaches and efficient computer codes has been developed by the
quantum chemical community, with the aim of solving the non-relativistic sta-
tionary Schrödinger equation with the highest precision possible. Many high-level
quantum-chemical methods used to solve the SE, including configuration interaction
(CI), many-body perturbation theory (MBPT), multi-configuration self consistent
field (MCSCF) and coupled cluster (CC), became standard; they are available in
off-the-shelf, user-friendly chemical software, and are used routinely in high-quality
or even benchmark calculations of many systems. Properties of small molecules
composed of first- and second-row atoms, with states having single-reference
character, can now be obtained with accuracy rivaling that of experiment, as demon-
strated, e.g., in the recent book of Helgaker et al. [1]. All the standard many-body
approaches exploit the fact that interactions in non-relativistic Hamiltonians can be
expressed in closed analytical form and are at most two-body and instantaneous
(e.g., the classical Coulomb potential). The most precise and systematic of these
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approaches are based on many-body perturbation theory. Advanced MBPT schemes
can treat electron correlation effects to essentially all orders, using methods of the
coupled cluster type. CC approaches are based on exponential parameterization of
the wave operator, which leads to coupled nonlinear equation, solved iteratively.
The Rayleigh–Schrödinger formulations of MBPT and CC benefit from being size-
consistent (giving correct dissociation limits for the energy and wave function) and
size-extensive (have linear energy scaling with the size of the system). Using a
time-independent diagrammatic technique of the Goldstone type in the MBPT/CC
methods [2] permits direct summation of the size-extensive energy contributions
(expressed by connected diagrams) of instantaneous electron–electron interactions
to infinite order. The MBPT and CC methods also have multireference variants,
capable of treating difficult to calculate quasi-degenerate atomic and molecular
structures. Among the multireference MBPT/CC approaches, the multi-root meth-
ods, based on effective Hamiltonians and “extended model-spaces technique” [2],
are probably the most efficient, universal and precise, due to balanced treatment of
non-dynamic (quasi-degeneracy) and dynamic correlation effects.

Relativity has been introduced to the realm of physics, including the micro
scale, even before quantum theory. In fact, Schrödinger himself derived a relativistic
equation prior to publishing his famous nonrelativistic wave equation. The relativis-
tic equation was found in his notebooks from late 1925, and he appears to have
prepared a manuscript applying it to the hydrogen atom [3]. However, he later dis-
carded the relativistic equation, because it yielded incorrect fine structure levels for
the hydrogen atom. It was also plagued by some strange features, very difficult
for physical interpretation: the equation appeared to give negative probabilities and
allow negative energy states. The equation Schrödinger discarded was rederived
independently in 1926 by several physicists, including Klein, Fock, and de Broglie
(for an exciting historical review see [4] and references therein), and has later proved
to describe spinless bosonic particles. This equation is known as the Klein–Gordon
equation, and may be written in the following covariant (independent of Lorentz
frame transformations) form [5]:

�
�2 Cm2c2

	
 D 0; where �2 D @�@

� D @2=c2@t2 � r2: (7-1)

The relativistic quantum equation for fermionic particles with spin 1
2

, which
serve as the building blocks of atoms and molecules, has been proposed by Dirac in
1928 [6], just two years after publication of the Schrödinger and Klein–Gordon
equations. Dirac’s celebrated equation constitutes the foundation of relativistic
quantum mechanics. Detailed accounts of the mathematical properties and physi-
cal interpretation of the Dirac equation, important for quantum chemistry, may be
found in several recently published books [7–13], and will not be repeated here.
Some important points will be addressed below, closely following [14].

It is convenient to write the Dirac equation in covariant form,

�
i��@

� �mc	 D 0; (7-2)
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where �� are related to the Dirac matrices,
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� are the Pauli spin matrices. The four-gradient @� is
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This equation resolves some of the problems of the Klein–Gordon equation, but still
allows for negative energy states. A more familiar form of the free-particle Dirac
equation is obtained upon multiplication by ˇc from the left,

�
OhDI0 � i

@

@t

�
 D 0; OhDI0 D ˇmc2 C c .˛ � p/ (7-5)

External fields are introduced through the principle of minimal electromagnetic
action [15],

p� ! � D p� � qA�; (7-6)

in which the 4-momentum p� D �i@� and the 4-potential A� D .A; i
c

/ appear.

For electrons, the particles of interest here, the charge is q D �e; for positrons it
would be q D Ce. The electronic Dirac equation is then

OD D
�

OhDIA�
� i

@

@t

�
 D 0; (7-7)

where OhDIA� is the Dirac Hamiltonian of a single electron in an external field,

OhDIA� D ˇmc2 C c .˛ � �/� e
: (7-8)

The operators appearing in the Dirac equation (7-7) are 4 � 4 matrix operators,
and the corresponding wave function is therefore a four-component vector function,

 D
�
 L

 S

�
I  X D

�
 X˛

 Xˇ

�
; X D L; S: (7-9)

The four degrees of freedom reflect the fact that the Dirac equation describes both
electrons and positrons and explicitly includes spin. For a given external poten-
tial and the chosen charge q D �e, both the positive energy and negative energy
solutions correspond to the electronic states. In the non-relativistic limit, the lower
two components of the positive energy solutions go to zero, whereas the upper
two components reduce to a spin orbital in which the spatial part solves the non-
relativistic electronic Schrödinger equation. The upper and lower two components
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are therefore generally referred to as the large (marked ‘L’ in (7-9)) and small
components (‘S’ in (7-9)), respectively. For the same potential, the negative energy
branch of the spectrum gives the positronic solutions indirectly, either by charge
conjugation of the electronic solutions (see, e.g., [13, 14]) or, following the original
idea of Dirac, by filling all negative energy continuum states with electrons using
the Pauli principle (so called Dirac’s filled sea) and then regarding the positrons as
hole states in this electron-filled continuum. Looking at the positronic solutions in
the non-relativistic limit, the large components are those going to zero. It is there-
fore more logical to speak about upper and lower components rather than large and
small ones [16]. However, since the focus in chemistry is on electronic solutions,
the common terminology will be used. It is important to note that the large compo-
nents of the positive energy solutions of the Dirac equation are large by a factor c
only in an average sense; there may be regions in space where the small components
dominate [14].

While relativity became a fundamental working concept and tool in quantum
physics, it was not until the 1970s that quantum chemists realized the importance
of relativity in chemistry and applied relativistic quantum chemistry to many-
electron atomic and molecular systems. Some of the reasons for this delay are
discussed below.

At the early stages of the development of fundamental quantum theory, many out-
standing scientists, including Dirac himself, believed that relativity cannot play any
substantial role in describing atomic and molecular systems (see [17] for relevant
quotations). The triumphal success of non-relativistic quantum chemical methodol-
ogy has been reached in describing systems composed of light elements (including
many organic compounds) and initially confirmed those beliefs. Compounds of
light elements were the only systems computationally treatable during the first
three decades of quantum chemistry. Not until the mid-1970s did computers become
powerful enough to produce quantitative calculations of heavy species, and more
precise calculations of light systems revealed deviations from experiment in many
cases. Attempts to understand some discrepancies led to realizing the importance
of relativity in chemistry and to the eventual development of relativistic many-body
methodology. It is now well established and illustrated by many calculations and
experiments that the structure, spectroscopy and chemical activity of heavy atoms
and molecules exhibit large relativistic effects. These effects play an important role
in lighter element compounds too, showing up in phenomena such as fine or hyper-
fine structure of electronic states. Relativistic effects in chemistry are described in
the books listed above [7–13]. A comprehensive catalog of relativistic quantum
chemistry literature has been compiled by Pyykkö [18–20]; a regularly updated
version may be found online [21].

Another reason for the relatively late (and still uncompleted) development of the
many-body relativistic methodology are the theoretical difficulties and inconsisten-
cies encountered when trying to combine the principles of relativity and quantum
many-body theory in a consistent and usable scheme. Soon after the development of
Dirac’s electronic theory it became obvious that a relativistically covariant and con-
sistent quantum description of many-body micro-world phenomena is possible only
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if matter (electrons), radiation field (photons) and their interactions are described
on equal footing. Fundaments of the theory based on the principles formulated
above were introduced by Feynman, Dyson, Schwinger, Tomonaga and others in
the late 1940s [22–25]. The theory is commonly dubbed quantum electrodynam-
ics (QED), a relativistically consistent quantum description of all electromagnetic
processes, neglecting other fundamental interactions, i.e., weak, strong and gravi-
tational forces. This neglect is supported by many low- and high-energy scattering
experiments of elementary particles and photons as well as spectral analysis. QED
is probably the most successful fundamental physical theory developed to date. It
can describe almost all observed microscopic events of size greater than 10�13 cm,
and may thus be regarded as a natural basis for the development of relativistic
quantum chemistry. However, for reasons discussed below, the impact of QED
on the development of quantum chemistry till now has been rather limited. The
physical interpretation of wave functions described by relativistic equations and,
consequently, the methodology of solving these equations in QED, is substantially
different from the many-body technique used in quantum chemistry. The QED is,
in principle, an infinite-body theory, or, more precisely, it describes systems with
infinite numbers of degrees of freedom, namely fields, which are relativistically
and gauge invariant. Quantum field theory, a whole system of mathematical tools
developed especially for solving QED and other gauge theory problems, must thus
be adapted to the objects of quantum chemistry, which are finite size atomic and
molecular systems in stationary states. It would be logical to carry out this adapta-
tion, which is still far from complete, using the Hamiltonian formalism, widespread
in quantum chemistry but less popular in QED. The next subsection shows a very
brief derivation of the QED Hamiltonian in a form suitable for developing a covari-
ant many-body procedure, with the aim of applying this procedure later in molecular
electronic structure calculations.

7.2.2. QED Hamiltonian

The QED Hamiltonian is usually derived by a quantization procedure of the classical
electrodynamic (CED) counterpart. The CED theory describes the classical radia-
tion (electromagnetic) and matter (fermionic) fields, as well as their interactions,
in covariant manner. The quantization, as shown below, leads to a form identical
with the CED equations, but the interpretation of the QED fields differs substan-
tially from both the CED and Dirac’s theory. Thus, Dirac’s four-component spinor
 does not describe in QED a single electronic state, but is rather interpreted as
an electronic field operator, which can create and destroy particles. The number of
particles is not conserved in a QED system, contrary to the situation in an isolated
molecular system; only the electric charge is a constant of motion.

The starting point for CED, and therefore also for QED field theory, is
the Lagrangian formalism, which allows the correct identification of conjugate
momenta appearing in the Hamiltonian [26]. Below we present a very brief introduc-
tion of the QED Lagrangian and Hamiltonian formalisms, following Labzowsky’s



Four-Component Electronic Structure Methods 285

book [27] and two more recent reviews [14, 28]. The classical Lagrangian density
for interacting electromagnetic and fermionic fields has the form

LQED D Lrad C Lmat C Lint : (7-10)

The first term describes the electromagnetic degrees of freedom,

Lrad D � 1

16
F �
F�
 ; (7-11)

where F �
 D @�A
 � @
A� is the antisymmetric electromagnetic field tensor. The
second term Lmat is the Dirac 4-spinor matter (fermionic) field  ,

Lmat D  
�
i��@

� � mc
	
 ; (7-12)

where  D  C�0 D . �
1 ;  

�
2 ;� �

3 ;� �
4 / is the adjoint spinor. Note that

the minimal substitution, used in (7-6), follows from the last term Lint in the
Lagrangian, which describes the interaction between the fermionic and electro-
magnetic fields as the product of the 4-current j� D .j; ic�/ and the 4-potential
A� D �

A; i '
c

	
,

Lint D j�A
�: (7-13)

This term was first proposed by Schwarzschild [29] to satisfy Lorentz covariance,
and is employed on an ad hoc basis in the non-relativistic domain, even though
it does not represent the proper non-relativistic limit, which is electrostatics (see
[30] and references therein). Comparing (7-7), regarded now as a classical covariant
equation of motion for the fermionic field (see also (7-23) below), and (7-13), we
can identify the 4-current as

j� D �ec �ˇ�� I � D �e �I4 I j D �ec �˛ : (7-14)

The scalar 
 and vector A potentials define the electric (E) and magnetic (B)
fields,

E D �r
 � @A

@t
I B D r � A: (7-15)

The freedom of gauge [31] allows the coice of the most convenient form of the
potentials. Usually, a uniform electric field is represented by A� D �

0;� i
c
E � r	,

since it can be handled by time-independent theory [32]. The most popular gauge
in quantum chemistry is the Coulomb gauge r � A D 0. From Maxwell’s equations
and the definitions (7-15), the field equations in the presence of a density � and a
current j can then be expressed as [33]

r2
 D �4� (7-16)�
r2A � ˛2 @

2A

@t2

�
� r˛2 @


@t
D �4˛2j; (7-17)
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where ˛ is the fine-structure constant. The equation for the scalar potential is simply
the Poisson equation with the solution


.r; t/ D
Z
�.r0; t/
jr � r0jd�

0: (7-18)

The scalar potential is given in the Coulomb gauge by the instantaneous charge
density. The effects of retardation, as well as magnetic interactions, enter through
the vector potential as higher-order terms in a perturbation expansion of the total
interaction in terms of the fine-structure constant ˛ [34]. Thus, the interaction
between two point charges q1 and q2 with velocities v1 and v2 is given to second
order in Coulomb gauge by [31, 35, 36]

Lint D q1q2

r12

�
�1C 1

2c2

�
.v1 � v2/C 1

r2
12

.r12 � v1/ .r12 � v2/

�
: (7-19)

The first term may be identified as a charge-charge interaction, whereas the second
term is a current-current interaction.

In electronic structure theory we employ OhDIV , the Dirac operator in the
molecular field. It corresponds to the introduction of the 4-potential


.ri / D
X

A

ZAe

jri � RAj I A.ri/ D 0; (7-20)

where ZAe and RA are the charge and position, respectively, of nucleus A.
The nuclei are treated as sources of external scalar potentials, and nuclear spins
are ignored. This “clamped nucleus” approximation is essentially the same as
the one introduced by Born and Oppenheimer [37] in non-relativistic theory, in
which the main assumption is that electrons follow the slower movements of nuclei
adiabatically.

The Lagrangian LQED describes both the electromagnetic and fermionic degrees
of freedom, as well as interactions between them, simultaneously and on equal foot-
ing as dynamic variables. The Lagrangian has all necessary symmetry properties for
correctly formulated one dimensional gauge-field theory: it is Lorentz covariant and
gauge invariant, since local gauge transformations of the form

A�.x/ ! A0
�.x/ D A�.x/C @��.x/ (7-21)

 .x/ !  0.x/ D expŒ�i�.x/� .x/; (7-22)

with �.x/ an arbitrary gauge function, leave the Lagrangian (7-10) invariant.
The gauge transformation of the fermionic field spinor  .x/ describes rota-
tions in the complex plane, which is the reason for calling QED an Abelian
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U(1) gauge theory. The least action principle, ıS D ı
R
d 4x LQED D 0, under

arbitrary infinitesimal variations of the dynamic field variablesA� and , yields the
coupled equations of motion

@�F
�
 D 4j 


�
i��@

� �mc	 D e��A
� : (7-23)

The first of these equations is the most general covariant form of the inhomogeneous
Maxwell equations, written previously in the more standard form (7-16) and (7-17).
It implies immediately the continuity equation @�j

� D 0. The second equation in
(7-23) is the covariant Dirac equation in the presence of an external electromagnetic
field. This equation has been presented earlier in slightly different form (7-7) as the
relativistic quantum mechanical one electron equation. Note that the Dirac equation
has now been derived from the classical least action principle, and is thus interpreted
as an Euler–Lagrange classical equation for the spinor field  rather than a quantum
mechanical wave equation.

The quantization procedure is usually done in the Hamiltonian formulation. Our
next step is therefore the transition of the QED theory from the Lagrangian to the
Hamiltonian formulation, using the Legendre transformation. This step requires the
definition of the conjugate momenta

 D @LQED
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:
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D 1

4
F�0: (7-24)

After some tedious mathematical manipulations, the final classical Hamiltonian
density is given by
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This expression for the Hamiltonian density is no longer manifestly Lorentz or
gauge invariant. However, all physical observables, including energies, field gra-
dients, transition amplitudes, etc., which can be deduced from this Hamiltonian
density, are Lorentz and gauge invariant. After integration over all space, using
partial integration in the second term of (7-25) and the Gauss law, the classical
Hamiltonian is obtained,

HQED D
Z
dr3<QED

D
Z
dr3

�
1

8
.E2 C B2/C  C Œ˛ � .�ir � eA/C ˇmc C e'�  


: (7-26)
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Dirac’s ˛ matrices have been introduced here for convenience, ˛ D �0� .
Expression (7-26) is the classical Hamiltonian of the U(1) gauge field theory of
interacting dynamical electromagnetic and fermionic fields, written in a particular
gauge independent form. This Hamiltonian is now ready to be quantized, although
this is not technically simple, and is gauge dependent. Consistent quantization of this
field theory may be achieved by a constrained canonical procedure [38] or the man-
ifestly covariant Gupta–Bleuler formalism [39, 40]. The resulting quantum field
theory of QED properly describes the structure and interactions of the quanta of
fermionic fields (e.g., electrons and positrons) with quanta of electromagnetic fields
(e.g., photons). The second quantized quantum mechanical Hamiltonian in QED
has exactly the same form as (7-26), but all fields have now been upgraded to field
operators, acting on occupation number vectors in an appropriate Fock space with
variable numbers of electrons/positrons and photons. One of the options in this
canonical formalism is to express all physical observables by particle-antiparticle
creation/destruction operators arranged in normal order, renormalizing the vacuum
energy to zero. The problem of negative energy states is completely removed,
since both electrons and positrons have positive energies due to normal ordering.
QED approaches are time-dependent, due to the retarded character of interactions.
Standard QED methods, such as Green functions and S-matrix, are based on the
time-dependent Feynman diagrams technique. These methods suffer from some
methodological problems, described at the end of the current subsection, which
prevent their use in quantum chemical calculations of stationary states. A novel
powerful QED method, with structure resembling that of stationary many-body
approaches, has been developed recently by Lindgren and coworkers [41–46]. It
offers the possibility of being merged with quantum chemical machinery based
on the Bloch equation to provide a unified tool suitable for application to gen-
eral quasidegenerate atomic and molecular configurations. This so-called covariant
evolution operator (CEO) method is described in Section 7.6.2.

The total number of particles in QED is not conserved, and electron–positron
pair creation processes are included in calculations. The number of photons is also
variable, depending on the particular process. The CEO method has a particularly
simple form when formulated in generalized Fock space with variable numbers of
fermions and so-called uncontracted virtual photons. This is why we consider it
a natural framework for implementing Fock-space many-body quantum chemical
approaches, capable of describing systems with a variable number of particles. In
particular, the relativistic Fock-space coupled cluster (FSCC) approach, which is an
all-order, size extensive, multi-root, multi-reference method (for a recent review see
[47]), is an ideal candidate for merging with CEO. The relativistic FSCC method
and its recent applications in the effective and intermediate Hamiltonian formu-
lations are described in Section 7.3–7.5. In the last Section we present briefly a
double Fock-space CC method, based on CEO-QED. Another promising option,
which can be applied within the algebraic approximation, is to use (at least at the
SCF step) the so-called variational QED procedure [14]: the explicitly filled Dirac
negativeenergy sea is included in the system core states, thus defining the HF state
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formally as having large but finite charge and mass. The renormalization procedure
is then included in the SCF iterations explicitly. A modification of this procedure,
described in Section 7.6.1 below, is based on using negative energy states of the
free electron as well as single retarded photon exchange effective potential. This
will incorporate the leading radiation effects (Lamb shifts) in the renormalized HF
energy and wave function self-consistently, so that the appropriate reducible multi-
photonic part of the vacuum polarization and the self energy will be included in the
direct and exchange SCF terms, respectively,

There are still fundamental problems which make the merging of QED and quan-
tum chemistry a difficult theoretical task. These problems, which have been solved
only partially, fall in two categories, interpretational and methodological:

(1) Interpretational Problems A second quantization approach based on
electron–positron operators invalidates the direct interpretation of the field oper-
ators b as the usual quantum mechanical wave functions, since superposition of
states with variable numbers of particles is not compatible with simple probabilis-
tic interpretation of the wave function. In interpreting the field operators b several
other serious problems are encountered, as discussed early on by Dyson [48], Wick
[49], and Goldstein [50]. Dyson was particularly concerned about the meaning of
the wave function in relativistic quantum mechanics, characterizing this as a sub-
ject “full of obscurities and unsolved problems”. Solving the QED many-particle
problem leads to a description with individual times for the different particles. This
description is manifestly relativistically covariant, but is not in accordance with
the standard quantum mechanical picture, where we have a common time for all
particles. The divergence from the “normal” quantum mechanical picture leads to
“spurious” or “abnormal” solutions in QED without physical significance or nonrel-
ativistic counterpart [51]. Another fundamental problem, discussed by Gross [52],
is that the QED equations do not reduce to the correct “one-body limit” when one
of the particles becomes infinitely heavy, which is important for proper implemen-
tation of the Born–Oppenheimer approximation. However, it was later found that
problems of this kind are most pronounced in the scattering of strongly interacting
particles, and not as important for bound-state systems in weak coupling [53–57].

(2) Methodological Problems The traditional QED techniques, such as
S-matrix, are very different from many-body methods used in quantum chem-
istry for describing stationary states. The main computational drawback of existing
QED methods from the point of view of quantum chemistry is their concentra-
tion on calculating the energy shifts while not including the QED effects in the
wave function in a consistent and clear manner. Another important point is that
most QED methods (with a few exceptions, see [41, 58]) cannot treat degenerate or
quasi-degenerate configurations, which are common in open shell heavy species. In
quantum chemistry, the derivation of the Hamiltonian is distinct from solving for its
eigenvalues; in contrast, the same QED approach is often used both for deriving the
potential and calculating the energy shift caused by it.
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7.2.3. Particle–Particle Interaction and the No-Virtual-Pair
approximation

Due to the theoretical problems enumerated above, and the long-going practice
(justified in many cases) of ignoring many-body relativistic and QED effects,
the evolution of quantum chemical tools for calculating relativistic effects has
been historically directed more by the well developed non-relativistic many-body
methodology than by QED. QED was used post factum, if at all, e.g., for jus-
tifying already developed relativistic methodology. The very “philosophy” and
structure of relativistic quantum chemistry methods, mostly adopted from the non-
relativistic realm, are different from those of QED. Atomic and molecular systems
are described in chemistry as systems with a finite number of particles interacting
via instantaneous, energy independent two-body potentials. This picture ignores par-
tially or fully some fundamental phenomena, such as the existence of the negative
energy states continuum, radiative effects and retardation of the inter particle inter-
actions, which are important for a fully covariant description. Fortunately, many
of these QED corrections are numerically small for real atomic and molecular
systems, explaining the relative success of “naive” and direct schemes of con-
structing relativistic many-body Hamiltonians by simple summation of one-electron
Dirac Hamiltonians and inter-particle two-body “classical” instantaneous potentials.
The most rigorous of such four-component Hamiltonians is the Dirac–Coulomb
(DC) Hamiltonian, which uses the non-relativistic Coulomb form of interparticle
interactions,

OH D
X

i

OhDIV .i/C 1

2

X
i¤j

OgCoulomb.i; j /C OVnnI OVnn D 1

2

X
A¤B

ZAZBe
2

jRA � RB j ;

(7-27)

where OhDIV .i/ are the one-electron four-component Dirac operators in the molecu-
lar field, and OVnn is the classical internuclear potential. The inter-electronic potential
OgCoulomb.i; j / is the Coulomb term

OgCoulomb.i; j / D e2 I4 � I4

rij
; (7-28)

where the 4 � 4 identity matrices I4 have been inserted to stress that, although
the Coulomb term looks like the non-relativistic electron–electron interaction,
its physical content is different. Upon reduction to non-relativistic form [59–63]
through a Foldy–Wouthuysen transformation, one finds that the relativistic opera-
tor contains for instance spin-own orbit interaction in addition to the instantaneous
Coulomb interaction. The first scheme based on the DC Hamiltonian was developed
in 1935 by Swirles [64], who generalized the SCF approach of her scientific adviser
Hartree to the relativistic realm. However, as pointed out above, practical relativistic
quantum chemical calculations did not appear until the 1970s.
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The transformation of the inter-electronic interaction to covariant form may
be made by adding the missing effects of retardation and magnetic interaction to
the non-relativistic limit represented by the instantaneous Coulomb interaction.
The necessary correction terms can be obtained rigorously by invoking the full
machinery of QED, where the interactions are described in terms of the exchange of
virtual photons. However, the first derivations of such corrections were done in the
semiclassical limit, using continuous electromagnetic fields. The lowest order rel-
ativistic corrections to the Coulomb electrostatic interaction between the electrons
were considered for the first time in the Feynman (Lorentz) gauge (@�A� D 0) by
Gaunt in 1929 [65], when a magnetic interaction of order ˛2 was added to the DC
Hamiltonian (7-27). This magnetostatic term is called the Gaunt interaction and has
the form

OgGaunt .1; 2/ D �e2 c˛1 � c˛2

c2r12

: (7-29)

The Gaunt interaction is instantaneous, similar to the Coulomb term. One can fur-
thermore show by reduction to the non-relativistic form that the Gaunt term carries
all spin-other orbit interactions [66]. It was later shown by Breit [67] that the retar-
dation of the Coulomb interaction gives rise to effects of the same order, ˛2. This
leads, together with the magnetic interaction, to the so-called Breit interaction [67]

OgBreit .1; 2/ D � e2

2c2r12
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.c˛1 � r12/ .c˛2 � r12/

�
: (7-30)

The Breit term is written here in a slightly unusual form [14], using explicitly the
relativistic velocity operator c˛. It is thus shown to be the quantum mechanical
analogue of the classical expression (7-19). While the Breit term can be derived
as the low-frequency limit of the single virtual photon exchange interaction in the
Coulomb gauge as described by QED (see Section 7.6.2), it can equally well [61] be
derived from the quantization of (7-19), which is essentially the way used by Breit.
The final form of the Dirac–Coulomb–Breit (DCB) Hamiltonian is
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The Breit interaction (7-30) is instantaneous, although it compensates for the
leading effect of the retardation of the Coulomb interaction. In a full QED treatment
(see Section 7.6.2) there is an additional time/energy dependent retardation effect
of the Breit interaction of order ˛3. If energy is conserved, the exchange of a single
transverse retarded photon (Figure 7-1) yields the following form of the frequency
dependent Breit interaction for the case of “on shell” interactions,

OgBreit
! .1; 2/D � e2

2c2r12

�
.c˛1 � c˛2/ � .c˛1 � r1/ .c˛2 � r2/ .exp.i j!jr12/�1/

!2

�
:

(7-32)
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Figure 7-1. The exchange of a single photon between two electrons can be simulated by an effective
potential g!.1; 2/. The heavy lines represent the electronic states in the bound-interaction SCF picture

In the SCF approximation, the photon frequency ! is defined by the orbital energy
difference! D ."a �"c/=c D ."d �"b/=c (see Figure 7-1 for notation). In the zero-
frequency or energy independent limit ! ! 0, the expression (7-32) transforms into
(7-30).

In the alternative Feynman gauge, the frequency dependent Gaunt interaction has
the form

OgGaunt
! .1; 2/ D �e2 c˛1 � c˛2 exp.i j!jr12/

c2r12

: (7-33)

In the zero frequency (energy independent) limit this interaction is transformed into
the instantaneous Gaunt interaction (7-29). As we saw before, the instantaneous
Gaunt interaction does not contain any retardation, and therefore the retardation cor-
rection to this interaction is of the order ˛2, an order of magnitude larger than energy
independent interaction in the Coulomb gauge, which is the Breit term (7-30). This
implies that when the frequency independent Gaunt potential (Feynman gauge) is
used in the quantum chemical calculations of heavy element compounds, consider-
able errors may be introduced [68–71]. In QED calculations, on the other hand,
when the retardation is properly taken care of, this error is eliminated, and the
Feynman gauge is often used due to its simplicity.

The first quantum chemists to implement four-component calculations regarded
the DCB Hamiltonian as the best theoretical framework for relativistic many-
body methods. Most of the approaches implemented were adapted from the non-
relativistic realm by using special relativistically invariant double point groups, as
well as Kramers (time-reversal) symmetry when applicable. In the atomic case,
the high symmetry allows the separation of radial and angular degrees of free-
dom. The angular part can be solved analytically with the help of Racah algebra
[72], whereas the radial equations can be solved by finite difference methods. In
molecular calculations one has to resort to the algebraic approximation, the use
of finite basis set expansions. This approximation is often used for atoms too. The
first basis set calculations led to rather disastrous results (see [73] for references),
caused by the fact that the relativistic four-component Hamiltonian (7-27) is not
bounded from below. This is due to the existence of the negative energy continuum,
which in the usual quantum chemical practice is kept unfilled and may be used
for relaxation of occupied atomic/molecular electronic levels. Special caremust be
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taken for correct formulation of the SCF and correlation methods based on such a
Hamiltonian. The main numerical problems of the DCB Hamiltonian, with possible
solutions, are listed below, sorted by the steps of solving the four-component
relativistic equation.

1. SCF and Orbital Generation Step The standard SCF procedure used in non-
relativistic calculations is based on a Hamiltonian bounded from below and
directed by the variational theorem toward reaching the energy minimum. This
standard procedure cannot be applied to four-component Hartree–Fock calcula-
tions, because the states of interest are electron-like and therefore excited states
in the spectrum of the relativistic Hamiltonian. However, variational theory is
also applicable to stationary states, so it may be used in the relativistic Hartree–
Fock theory. Talman [74] and LaJohn and Talman [75] pointed out that it is
feasible to find the electron-like positive energy solutions by using a minimax
principle, where the energy is minimized with respect to rotations in the virtual
positive energy spinor space (the optimization process used in the non-relativistic
approach) and maximized with respect to rotations in the negative energy spinor
space. The positive and negative energy parts of the spectrum are well sepa-
rated energetically, and the optimization procedure is feasible. The coupling of
the large and small components of the Dirac equation leads to a difference in
parity of the two components, and thus requires separate basis set expansions
for each component. However, the small and large component basis sets should
not be chosen independently. In order to make the minimax variational proce-
dure stable, one has to impose a special condition, known as “kinetic balance”,
connecting the small and large component basis sets, or else face the so called
“variational collapse” [73] or “basis set disease” [76] (see Section 7.2.5).

2. Electron Correlation Step There has been considerable discussion as to the
stability of the Dirac–Coulomb–(Breit) Hamiltonian in the correlation step,
particularly in variational procedures. The discussion originated from an argu-
ment put forward by Brown and Ravenhall [77], who considered the interaction
of two electrons described by this Hamiltonian. In a perturbation treatment
of the He atom, one may start with the non-interacting system and form a
Slater determinant consisting of the 1s orbitals obtained by solving the hydro-
genic atom with Z D 2. This Slater determinant is, however, degenerate with
an (in principle) infinite number of Slater determinants built of one orbital
from the positive continuum and one from the negative continuum. When the
electron–electron interaction is turned on in the correlation step, all these deter-
minants will mix in and lead to what has been called a continuum dissolution
or “Brown–Ravenhall disease”, meaning that no bound state is obtained. Brown
and Ravenhall proposed to put the interelectronic interactions between projection
operators onto the positive energy spectrum,�C , to avoid the mixing in of these
continuum determinants. This proposal has beenfurther explored by Sucher and
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others (see [78] for a review), on the basis of QED theory. The final projected
Dirac–Coulomb–(Breit) Hamiltonian has the form
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HC
DCB is correct to second order in the fine-structure constant ˛, but is not

covariant. This Hamiltonian is expected to be highly accurate for most neutral
and weakly ionized atoms and molecules [79]. Higher quantum electrodynamic
(QED) terms are required for benchmark calculations of multiply ionized species
of heavy-element compounds; they will be considered in the last Section of this
chapter. If one constructs the projection operators from the same independent
particle basis used in the expansion of the second quantized form of HC

DCB,
which is almost always the case, the effect of the projection operators is sim-
ply to limit the eigenfunction of HC

DCB to configurations with positive energy
spinors only. In practice, the continuum dissolution problem was solved in the
algebraic approximation by simply ignoring the negative energy branch in the
correlation step, and four-component relativistic molecular calculations are rou-
tinely carried out today. When the finite difference method is used for atoms,
the two problems listed above are solved by imposing the electron-like boundary
conditions at r D 0 and r ! 1 for bound solutions [80]. The approxima-
tion based on HC

DCB is called no-virtual pair approximation (NVPA), since the
virtual electron–positron pairs which cause the Brown–Ravenhall disease are
eliminated.

TheHC
DCB Hamiltonian is not unique, since the distinction between electron and

positron creation and annihilation operators, as well as the operators �C, depend
on the orbital set in which the field operators are expanded. One possible choice is
the eigenorbitals of the free-particle Dirac equation (7-5), giving the “free” picture.
Another choice is the solutions of the Dirac equation in the molecular field (7-20),
leading to the Furry picture [81]. A third possibility is to continuously update the
projection operators in each SCF iteration, so that they correspond at convergence to
the solutions of the combined molecular and mean-field potentials of the Hartree–
Fock equations. This “fuzzy” picture, proposed by Mittleman [82], corresponds to
the standard four-component approach. Some authors do not distinguish between
the “fuzzy” and “Furry” pictures (see, for instance [27]). The optimal choice of the
projection operators is discussed in [83].

Properly designed four-component many-electron NVPA methods are currently
the most elaborate and precise approaches for molecules and most atoms, and
are used for benchmark calculations. The separate basis set expansion of the
large and small components used in NVPA leads to higher computational cost
compared with non-relativistic or more approximate relativistic methods. Careful
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analysis shows that the cost difference between four-component NVPA schemes
and non-relativistic methods is in the prefactor, not in the scaling [14]. Still,
this difference is large enough to encourage the use of more cost-efficient rel-
ativistic approximations, which replace four-component approaches by two- or
one-component schemes. One-component methods include only the so-called scalar
(or kinematic) relativistic effects. Two-component approaches incorporate, in addi-
tion, electron spin effects. Exact (or infinite order) two-component (X2C) methods
have been developed recently ([84–89] and references therein). Most X2C methods
are iterative and based on either elimination techniques for the small component
or special unitary transformations which decouple the NVPA Hamiltonian. They
are capable of reproducing the energies of four-component NVPA in the iterative
numerical limit if the same projection operators are used in the NVPA Hamiltonian.
This condition is not trivial to satisfy. Four-component methods usually allow the
continuous update of the NVPA Hamiltonian, and therefore the complete relaxation
of the electronic wave function, whereas in most X2C approaches this relaxation is
absent, due to the use of predefined projection operators before performing an
approximate decoupling of the electronic and positronic degrees of freedom. X2C
may lead to excellent approximations and allow relativistic calculations at reduced
computational cost, but it is incorrect to state that it provides complete equivalence
with the four-component methods. It should also be noted that the reduction of com-
putational cost relative to four-component NVPA occurs only at the SCF and integral
transformation steps; the correlation step has the same computational scaling in two-
and four-component methods [14].

A different approach to computational cost saving retains the four-component
framework and seeks savings by the reduction or elimination of intermediate quanti-
ties (e.g., two-electron integrals) appearing in the calculations, exploiting the atomic
nature of the small component density. The current status and perspectives of this
approach are discussed in [14].

The four-component approach is mandatory if one wishes to go beyond the
NVPA approximating and formulate a strictly covariant many-body theory. Such
formulations, which may have a fundamental character and impact quantum chem-
istry science, are not available as yet. This is mainly due to the impossibility
of expressing covariant particle-particle interactions in closed analytical energy-
independent form, of the type used in building quantum mechanical Hamiltonians
for stationary atomic and molecular states. As stated before, deriving a covariant rel-
ativistic many-body method requires switching to the QED framework instead of the
quantum mechanics basis. The QED description includes four-component fermionic
quantum fields and explicit treatment of photons. The evident drawback is that the
already high computational scaling with system size of four-component methods
becomes even worse, due to the photonic degrees of freedom. This would make
many-body-QED methods applicable to benchmark calculations of small systems
only. The rapidly increasing computational resources and algorithm improvements
make it, however, feasible to follow this rather uncompromising route.

It will be demonstrated in Sections 7.6.1 and 7.6.2 that the recently developed
covariant evolution operator method of Lindgren [41–44], in combination with the
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modified variational QED–SCF procedure [14], which includes the leading radiation
effects self-consistently, makes possible the development of rigorous and feasi-
ble many-body QED methodology with updatable WF. The QED methods under
development have a structure similar to all-order effective Hamiltonian many-body
NVPA approaches, and are suitable for use in quantum chemistry, including the
most complicated quasi-degenerate situations. Not all many-body NVPA methods
should be considered for merging with novel QED methodology, but only those
with the appropriate structure and properties. In the next subsection we overview
high-level relativistic many-body NVPA approaches, emphasizing all-order Fock-
space methods which are suitable for merging with QED. Recent methodological
developments and applications of relativistic FSCC within NVPA are presented
in Section 7.3. A plan is then drawn for going beyond NVPA and incorporating
the QED effects in consistent and systematic manner, using the covariant evolution
operator approach and generalized Fock space with variable numbers of electrons
and photons. In Section 7.6.2 we present a short review of the CEO method, and
then discuss an efficient way of simultaneously including the most important corre-
lation and QED effects in “all-order” and size-extensive fashion, using summation
of the many electron and photon contributions in a double (electronic and photonic)
Fock space coupled cluster procedure.

7.2.4. The NVPA Hamiltonian and Benchmarking of Four-Component
Methods

The general form of the molecular many-electron Hamiltonian is

OH D
X

i

Oh.i/C 1

2

X
i¤j

Og.i; j /C OVnn ; (7-35)

where Oh.i/ are one-electron operators, Og.i ; j / represents the two-electron interac-
tion, and OVnn is the classical repulsion of fixed nuclei. This form is valid in both
the relativistic and non-relativistic domains, to the extent that three-particle and
higher interactions can be ignored, together with the negative energy spectrum and
radiative corrections. The last two demands are applicable to the four-component
relativistic case, when the one-electron part Oh.i/ is represented by the Dirac oper-
ator. The negative energy branch of the spectrum is treated as a virtual subspace
in the SCF minimax procedure and is eliminated later in the correlation step, using
NVPA. The NVPA is realized by “surrounding” the Og.i; j / potential with projection
operators �C, which project out the positive energy spinors. For the development
of quantum chemistry methods it is rarely necessary to be more specific regard-
ing the form of the many-electron Hamiltonian. This holds particularly true if
the operator is recast in second quantized form. As noted above, all interparti-
cle potential energy terms in the Hamiltonian are expressed in closed analytical
time/energy independent form in both the non-relativistic and relativistic NVPA for-
malism. This is very different from the situation in QED, where the potential can
be expressed approximately as an infinite sum of energy/time dependent many-body
terms, usually evaluated numerically.
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Four-component methods are the most precise and expensive quantum-chemical
techniques, and are mostly used for benchmark calculations. Benchmarking these
methods includes convergence studies, involving in some cases extrapolation
techniques, of three aspects of the application:

(1) Quality of Hamiltonian It includes higher order nuclear and QED effects.
We shall discuss the possibility of increasing the level of the QED treatment of
interelectron interactions towards the fully covariant description. Consideration of
different nuclear corrections may be found in [90].

(2) Quality of the Hamiltonian Eigenvalues and Eigenfunctions This involves
mainly the treatment of electron correlation, including higher orders of the dynamic
correlation effects, always treated approximately, as well as increasing the size of the
active space, treated “exactly” by diagonalization, which is particularly important
when quasidegeneracy is significant. Correlation methods used in the relativistic
domain are similar to those of nonrelativistic quantum chemistry. A short list, with
representative references to atomic and molecular applications, is given here:

	 Density Functional Theory (DFT) [91–96]
	 Multi-Configuration Self Consistent Field (MCSCF): atoms [97–103], molecules

[104–106]
	 CI: atoms [99, 107, 108], molecules [106, 109, 110]
	 MBPT: atoms [111–114], molecules [115, 116]
	 Coupled Cluster (CC): atoms [117–123], molecules [124–130]

The history, benefits, drawbacks, technical features and suitability to the QED
framework of those methods in their four-component implementation are discussed
briefly below.

(3) Quality of Algebraic Approximation This involves mainly the development
and application of better and more complete one-electron basis sets. Some aspects of
the use of basis sets are presented in Section 7.2.5. A recent review of basis sets suit-
able for four-component atomic and molecular electronic structure calculations may
be found in [13].

The quality and usefulness of specific computational schemes is largely deter-
mined by these three aspects, but also by what may seem of technical nature, the
quality of algorithms and software used in the implementation. Highly efficient
algorithms must be developed and coded, including parallelization and distribu-
tion procedures. The most advanced four-component computer programs, together
with some of their important features, are listed here for atoms (Table 7-1) and
molecules (Table 7-2).

The first method used extensively to include correlation in relativistic four-
component calculations was the numerical atomic multiconfiguration Dirac–Fock
(MCDF) scheme [97–99]. This method gives, in general, good atomic term ener-
gies and transition probabilities. It is particularly successful in treating nondynamic
correlation, where a few hundred configuration state functions are sufficient; the
many thousands of CSFs required for accurate description of dynamic correlation
are sometimes beyond its reach (see, e.g., the recent calculation of Rodrigues et al.
[138] for atomic Cs, where the MCDF results could not be converged with respect
to configuration space). Atomic MCSCF has been implemented in a Gaussian basis
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Table 7-1 Atomic four-component programs

Program name fmain authorsg Methods Basis sets Ref.

GRASP fGrant, Quiney, Dyall, Parpia, MCSCF, CI Numerical [98–100]
Froese-Fischer, Fritzscheg
MCDFGME fDesclaux, Indelicatog MCSCF Numerical [131]
fIshikawa, Koc, Vilkasg MCSCF, MRMP2 GTO, STO [103, 113]
fJohnson, Sapirstein, Blundell, Derevyanko, MBPT, CC B-splines [112, 118]
Safronovag
fLindgren, Salomonson, Lindroth, MBPT, CC Numerical [117, 120]
Mårtensson-Pendrillg
fEliav, Kaldor, Ishikawag FSCC GTO, STO [121]
fDas, Sahoo, Chaudhuri, Mukherjeeg FSCC GTO [123]
fFlambaum, Sushkov, Dzuba, Kozlovg MBPT, CC, CI Numerical [114]

Table 7-2 Molecular four-component programs

Program name Hamiltonian Methods Ref.

MOLFDIR DC, DCG CI, CCSD(T), MP2 [132]
DIRAC DC, DCG CI, CC, FSCC, MP2, MCSCF, DFT [133]
UTCHEM DC CC,CI [134]
DREAMS DC MP2 [135]
BERTHA DC, DCB MBPT, CC [136]
PROPHET4R DC CI [137]
BDF DC DFT [92]

by Vilkas et al. [103]. Four-component molecular MCSCF has been developed
and implemented recently [104–106]. Four-component CI approaches in atomic
[99, 107, 108] and molecular [106, 109, 110] versions are available in many codes
(see Tables 7-1 and 7-2) and used routinely. Both MCSCF and CI methods are
not size-extensive and require corrections when used in benchmark calculations for
many electron systems.

Another class of methods, which have the advantage of size-extensivity, goes
under the heading “many-body (perturbation) methods”, reviewed recently by
Sapirstein [139] for atoms and by Saue and Visscher [14] for molecules. For highly
ionized atoms, second-order many-body perturbation theory (2nd-order MBPT, bet-
ter known to chemists as Mller–Plesset or MP2 theory) is accurate enough to see
QED effects from differences between calculated and experimental values for highly
ionized atoms. Neutral or weakly ionized atoms and molecules, on the other hand,
require higher order treatment of correlation. One approach to the problem is rela-
tivistic multireference MBPT, implemented recently in a Gaussian basis for atoms
by Ishikawa and coworkers [113]. An alternative scheme involves infinite-order
summation of perturbation terms, accomplished by the coupled cluster method
[140–142]. A numerical procedure for solving the relativistic many-body Dirac–
Coulomb equation, based on the pair approximation of the CC approach, has been
developed by Lindgren and coworkers [117]. A different approach employs discrete
basis sets of local or global functions. Summation over an infinite set of bound states
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and integration over the positive energy continuum are replaced by finite summation
over the pseudospectrum. The implementation of the projection operators is made
easy by the clean separation of positive and negative energy states; it amounts to lim-
iting summations to the positive energy branch of the one-electron pseudospectrum.
A relativistic CC technique based on local splines (piecewise polynomial fitting)
has been developed and implemented to a number of atoms [118, 119]. Another
kind of local basis sets has been introduced to relativistic CC by Salomonson and
ster [120], who discretized the radial space. This technique is similar in spirit to
the spline method and may be regarded as its limiting case (single-point represen-
tation rather than polynomial fitting). Single reference relativistic four-component
methods for molecules were introduced in the 1990s [124, 125].

A particularly powerful, multi-root multireference variant of the coupled cluster
method, called Fock-space or valence-universal [143, 144], gave remarkable agree-
ment with experiment for many transition energies of heavy atoms (see review in
[122]) and molecules [126–129]. This success makes the scheme a useful tool for
reliable prediction of the structure and spectrum of superheavy elements, which are
difficult to access experimentally. The FSCC method is the only quantum chemical
approach suitable for treatment of systems with a variable number of particles. This
and other methodological benefits of the FSCC approach make it an ideal candidate
for merging with QED theory to create an infinite order size-extensive covariant
many-body method.

A brief description of the relativistic NVPA FSCC method is given in
Section 7.3.1. A more flexible and general scheme with higher accuracy and
extended applicability, the intermediate Hamiltonian Fock-space coupled cluster
approach, is shown in Section 7.3.2, followed by representative applications. The
novel double Fock space coupled cluster method, still under development, is pre-
sented briefly in Section 7.6.3. This approach is based on the covariant evolution
operator approach of Lindgren [41], and is a further step on the way to a covariant
many-body technique suitable for benchmark electronic structure calculations.

7.2.5. Standard Four-Component SCF Procedure for Atoms
and Molecules

The no-pair DCB Hamiltonian (7-34) is used to solve the one-electron SCF
equations and get orbitals and orbital energies, as a starting point for relativistic
many-body correlation calculations [82]. The energy functional used in the SCF
procedure is the expectation value of the N -electron Slater determinant j˚i, given
in the second quantized form

j˚i D a
�
1a

�
2 � � �a�

N j0i ; (7-36)

where the vacuum state is defined by

ai j0i D 0I 8ai : (7-37)
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The SCF energy is

E D
D
˚
ˇ̌
ˇ OH
ˇ̌
ˇ˚E D hi i C 1

2
hji jjjii; (7-38)

where

hpq D
Z
'�

p.r1/ OhDIV .1/'q.r1/d�1 (7-39)

and the two electron integrals are

hpr jjsqi D hpr jsqi � hpr jqsi; (7-40)

hpr jsqi D
Z
dr1dr2'

�
p.r1/'

�
r .r2/ Og.1; 2/'s.r1/'q.r2/: (7-41)

In the algebraic approximation, orbitals are spanned in a set of basis functions 'p D
	�c�p, where Greek indices are used for the AO-basis. The energy (7-38) can then
be expressed as

E D D�
h
� C 1

2
D�
h�kjj��iD��I D�� D c�ic

�
�i ; (7-42)

in which the AO-density matrix D appears. The Hartree–Fock SCF equations may
be derived from (7-38) or (7-42) using the variational principle. The final form of
the SCF equations is

bF
q D "q
q ; (7-43)

where there is no summation on the right hand side. The Fock matrix is defined in
the algebraic approximation as a basis set representation of the Fock operator bF ,

Fpq D hpq C hp�jjqkiD�� : (7-44)

The standard relativistic SCF procedure is similar to the nonrelativistic case,
with the Hartree–Fock orbitals replaced by the four-component Dirac–Fock–Breit
(DFB) functions. The spherical symmetry of atoms leads to the separation of the
one-electron equation into radial and spin-angular parts [145], with the latter solved
analytically. The SCF equation for the radial part of one-electron spinors is solved
either numerically or in a basis. In the case of molecules, the algebraic approxima-
tion must be used. Here we discuss briefly the features of atomic SCF. The radial
four-spinor has the large component Pn� in the upper two places and the small
component Qn� in the lower two. The quantum number � (with j�j D j C 1=2)
comes from the spin-angular equation, and n is the principal quantum number,
which counts the solutions of the radial equation with the same �. Defining


n� D
�
Pn�.r/

Qn�.r/

�
; (7-45)
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the radial SCF equation has the form

F�
n� D "n�
n� ; (7-46)

where the one-electron Hartree–Fock operator F� is [112, 146–149]

F� D
�
Vnuc C ULL c˘� C ULS

c˘C
� C U SL Vnuc C U SS � 2c2

�
; (7-47)

with

˘� D �d=dr C �=r (7-48)

and

˘C
� D d=dr C �=r: (7-49)

Three types of two-electron integrals over the Coulomb operator (7-28) appear,
ULL  hLLjjLLi, U SL  hSLjjSLi and U SS  hSS jjSSi. There are also
integrals over the Breit term (7-30), e.g., U SL

B  hSS jjLLi. Vnuc is the nuclear
attraction potential. The point-charge model employed in light atom calculations
gives significant errors for heavy elements, and the finite extent of the nucleus
must be considered. Several models for the distribution of the nuclear charge are
commonly used [150, 151]. In the uniform charge distribution model, the charge
of a nucleus of atomic mass A is distributed uniformly over a sphere with radius
R D 2:2677�10�5A�1=3. The nuclear potential for a nucleus with chargeZ is then

Vnuc D
� �Z=r for r > R

�.Z=2R/.3� r2=R2/ for r � R:
(7-50)

Two other commonly used potentials employ Fermi or Gaussian charge distribu-
tions. Dirac–Fock calculations for all elements up to Mt (E109) [151] found that
significant differences exist between point-charge and finite nuclei, while the three
finite nuclei models give very close values. A finite nucleus should therefore be
used, but the choice of the exact model is secondary.

The termsULL, etc. in (7-47) represent the one-body mean-field potential, which
approximates the two-electron interaction in the Hamiltonian, as is the practice in
SCF schemes. In the DFB equations this interaction includes the Breit term (7-30)
in addition to the electron repulsion 1=rij . The radial functions Pn�.r/ andQn�.r/

may be obtained by numerical integration [152, 153] or by expansion in a basis
(for more details see [154, 155]). Since the Dirac Hamiltonian is not bound from
below, failure to observe correct boundary conditions leads to “variational collapse”
[156, 157], where admixture of negative energy solutions may yield energies below
experimental. To avoid this failure, the basis sets used for expanding the large and
small components must maintain “kinetic balance” [158–160]. In the nonrelativistic
limit (c ! 1), the small component is related to the large component by (see below
and [156])

Qn�.r/ D .2c/�1˘C
� Pn�.r/; (7-51)
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where ˘C
� is defined in (7-49). In the case of numerical solution of the radial SCF

equation, the relationship (7-51) serves as asymptotic boundary conditions.
Molecules cannot be solved by separating the radial from the angular-spin coor-

dinates. Instead, basis sets f	�g are used, and the large and small components are
expanded by

 X
p D 	X

� c
X
�pI X D L; S: (7-52)

The SCF equations are then [14]

�
V LL C ULL c˘LS C ULS

c˘SL C U SL V SS C U SS � 2mc2SSS

� 
cL

p

cS
p

!
D
�
SLL 0

0 SSS

� 
cL

p

cS
p

!
�p

(7-53)

with the matrix elements

SXY
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� j.� � p/j	Y



E
:

(7-54)

To satisfy kinetic balance, the small component basis must span the functions

	S
�.r/ D .� � p/	L

�.r/: (7-55)

More details may be found in [14].

7.3. THE NVPA MULTI-ROOT MULTI-REFERENCE FOCK-SPACE
COUPLED CLUSTER METHOD

Here we describe the FSCC method, followed by the more recent and stronger
intermediate Hamiltonian approach. The latter is illustrated by representative
applications demonstrating its capabilities.

7.3.1. Basic FSCC Method

The NVPA Dirac–Coulomb–Breit Hamiltonian HC
DCB may be rewritten in second-

quantized form [149, 161] in terms of normal-ordered products of spinor cre-
ation and annihilation operators faC

r asg and faC
r a

C
s auat g, corresponding to the

“fuzzy” picture,

H DHC
DCB � h0jHC

DCBj0iD
X
rs

frsfaC
r asg C 1

4

X
rstu

hrsjjtuifaC
r a

C
s auat g: (7-56)

Here frs and hrsjjtui are, respectively, elements of the one-electron Dirac–Fock–
Breit and antisymmetrized two-electron Coulomb–Breit interaction matrices over
Dirac four-component spinors. The effect of the projection operators �C is now
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taken over by normal ordering, denoted by the curly braces in (7-56), which requires
annihilation operators to be moved to the right of creation operators as if all anticom-
mutation relations vanish. The Fermi level is set at the top of the highest occupied
positive energy state, and the negative energy states are ignored.

The development of a general multi-root multireference scheme for treating elec-
tron correlation effects usually starts from consideration of the Schrödinger equation
for a number (d ) of target states,

H�˛ D E˛�˛ ; ˛ D 1; :::; d : (7-57)

The physical Hamiltonian is divided into two parts,

H D H0 C V; (7-58)

so that V is a small perturbation to the zero-order HamiltonianH0, which has known
eigenvalues and eigenvectors,

H0j�i D E
�
0 j�i: (7-59)

The case of exact or quasi-degeneracy, occurring in many open shell heavy com-
pound systems, involves the equality or near equality of some energy valuesE˛

0 . By
adopting the NVPA approximation, a natural and straightforward extension of the
nonrelativistic open-shell CC theory emerges. The multireference valence-universal
Fock-space coupled-cluster approach is presented here briefly; a fuller description
may be found in [143, 144]. FSCC defines and calculates an effective Hamiltonian
in a d -dimensional model space P D P j�i h�j ; � D 1; ::; d , comprising the most
strongly interacting zero order many electron wave functions. All other functions
are in the complementaryQ-space, so that P C Q D 1. All d eigenvalues of Heff

coincide with the relevant eigenvalues of the physical Hamiltonian,

Heff�
˛
0 D E˛�˛

0 ; ˛ D 1; :::; d : (7-60)

There is no summation over the index ˛, and

�˛
0 D C a

� j�i; ˛ D 1; :::; d . (7-61)

�˛
0 describes the major part of �˛ for all ˛ D 1; :::; d ,

P�˛ D �˛
0 ; ˛ D 1; :::; d: (7-62)

The effective Hamiltonian has the form [2, 117]

Heff D PH˝P; Heff D H0 C Veff: (7-63)
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˝ is the normal-ordered wave operator, mapping the eigenfunctions of the effective
Hamiltonian onto the exact ones,˝�˛

0 D �˛ , ˛ D 1; :::; d . It satisfies intermediate
normalization,

P˝P D P: (7-64)

The effective Hamiltonian and wave operator are connected by the generalized
Bloch equation, which for a complete model space P may be written in the compact
linked form [2]

QŒ˝;H0�P D Q.V˝ �˝Heff /linkedP: (7-65)

˝ is parameterized exponentially in the coupled cluster method. A particularly
compact form is obtained by using the normal ordered form,

˝ D fexp.S/g: (7-66)

The Fock-space approach starts from a reference state (closed-shell in our appli-
cations, but other single-determinant functions may also be used), correlates it, then
adds and/or removes electrons one at a time, recorrelating the whole system at each
stage. The sector .m; n/ of the Fock space includes all states obtained from the
reference determinant by removingm electrons from designated occupied orbitals,
called valence holes, and adding n electrons in designated virtual orbitals, called
valence particles. The practical limit ismCn � 2, although higher sectors have also
been tried [162]. The excitation operator S , serving as the variable of exponential
parameterization of the wave operator˝; is partitioned into sector operators

S D
X
m�0

X
n�0

S .m;n/: (7-67)

This partitioning allows for partial decoupling of the open-shell CC equations
according to the so called subsystem embedding condition [143]. The equations
for the (m; n) sector involve only S elements from sectors .k; l/ with k � m and
l � n, so that the very large system of coupled nonlinear equations is separated into
smaller subsystems, which are solved consecutively: first, the equations for S .0;0/

are iterated to convergence; the S .1;0/ (or S .0;1/) equations are then solved using
the known S .0;0/, and so on. This separation, which does not involve any approx-
imation, reduces the computational effort significantly. The effective Hamiltonian
(7-63) is also partitioned by sectors. An important advantage of the method is the
simultaneous calculation of a large number of states.

Each sector excitation operator is, in the usual way, a sum of virtual excitations
of one, two, . . . , electrons,

S .m;n/ D
X

l

S
.m;n/

l
; (7-68)

with l going, in principle, to the total number of electrons. In practice, l has to be
truncated. The level of truncation reflects the quality of the approximation, i.e., the



Four-Component Electronic Structure Methods 305

extent to which the complementaryQ space is taken into account in the evaluation
of the effective Hamiltonian. The series (7-68) is truncated at l D 2 in the applica-
tions described below. The resulting CCSD (coupled cluster with single and double
excitations) scheme involves the fully self-consistent, iterative calculation of all one-
and two-body virtual excitation amplitudes, and sums all diagrams with these exci-
tations to infinite order. These FSCC equations for a particular .m; n/ sector of the
Fock space are derived by inserting the normal-ordered wave operator (7-66) with
Fock space exponential parameterization of the excitation operator (7-68) into the
Bloch equation (7-65). The final form of the FSCC equation for a complete model
space includes only connected terms [2, 117],

QŒS
.m;n/

l
;H0�P D Qf.V˝ �˝Heff /

.m;n/

l
gconnP; (7-69)

H
.m;n/
eff D P.H˝/.m;n/

conn P : (7-70)

As negative energy states are excluded from theQ space, the diagrammatic sum-
mations in the CC equations are carried out only within the subspace of the positive
energy branch of the DF spectrum. After converging the FSCC equation (7-69),
the effective Hamiltonian (7-70) is diagonalized, yielding directly transition ener-
gies. The effective Hamiltonian in the FSCC approach has “diagonal” structure
with respect to the different Fock-space sectors. From (7-70) it follows that two
Fock space sectors belonging to a common Hilbert space (with the same number of
particles) do not mix even if they have strongly interacting states. This means that
important nondynamic correlation effects are approximated. The mixed-sector CC
presented below avoids this problem.

The FSCC equation (7-69) is solved iteratively, usually by the Jacobi algo-
rithm. As in other CC approaches, denominators of the form .EP

0 � E
Q
0 / appear,

originating in the left-hand side of the equation. The well-known intruder state prob-
lem, appearing when some Q states are close to and strongly interacting with P
states, may lead to divergence of the CC iterations. The intermediate Hamiltonian
method solves this problem in many cases and allows much larger and more flexible
P spaces.

7.3.2. The Intermediate Hamiltonian CC Method

7.3.2.1. Need and Formulation

The accuracy and convergence of the Fock-space coupled cluster method depends
on an appropriate partitioning of the function space intoP andQ subspaces. Ideally,
the P space should include all functions important to the states considered, since
the effective Hamiltonian is diagonalized in P , whereas Q-space contributions are
included approximately. On the other hand, convergence of the coupled cluster itera-
tions is enhanced by maximal separation and minimal interaction betweenP andQ.
These requirements are not always easy to reconcile. Relatively high P functions
have often strong interaction with or are energetically close to Q states, making



306 E. Eliav and U. Kaldor

convergence slow or impossible. The offending functions are usually included in
P because of their significant contribution to the lower P states, and we may not
be particularly interested in the correlated states generated from them by the wave
operator; however, the FSCC is an all-or-nothing method, and lack of convergence
means that no states at all are obtained. The intermediate Hamiltonian coupled clus-
ter method developed recently [163] addresses this problem, making possible larger
and more flexible P spaces, thereby extending the scope of the coupled cluster
method and increasing its precision.

An additional advantage of the ability to use extended model spaces may be
reducing the need for including high excitation levels in the formalism. The need
for high excitations (triple and higher) is usually limited to a small group of vir-
tual orbitals. If such orbitals are brought into P , all excitations involving them
are included to infinite order by diagonalizing the effective Hamiltonian, avoiding
the need for the (usually expensive) treatment of their contribution to dynamical
correlation.

The intermediate Hamiltonian method has been proposed by Malrieu [164] in the
framework of degenerate perturbation theory. The P space is partitioned into the
main Pm subspace, which includes all the states of interest, and the intermediate Pi

subspace, serving as a buffer between Pm and the rest of the functional space Q.
The corresponding operators satisfy the equations

Pm C Pi D P ; P CQ D 1 : (7-71)

The rationale for this partitioning is the following: the relatively high states in
P contribute significantly to the states of interest, which evolve from the lower P
states, but couple strongly with intruders from Q and spoil the convergence of the
iterations; they should therefore be treated differently from the lower states. This
goal is achieved by partitioning P and allowing more approximate treatment of Pi

states. The intermediate HamiltonianHI is constructed in P according to the same
rules as the effective Hamiltonian,

HI D PH˝P; (7-72)

but only j�mi states with their largest part in Pm are required to have energies Em

closely approximating those of the physical Hamiltonian,

HIP j�mi D EmP j�mi : (7-73)

The other eigenvalues, which correspond to states j�ii with the largest components
in Pi , may be more or less accurate. This leads to some freedom in defining the rele-
vant eigenfunctions and eigenvalues, and, therefore, in the evaluation of problematic
QSP i matrix elements. To limit this freedom and make the approach more general
and flexible, we also use the partitioning

Q D Qi CQm: (7-74)
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Figure 7-2. Model spaces in the modified intermediate Hamiltonian method

This additional partitioning narrows the overlap of the P and Q energies, and only
Pi and Qi subspaces can now overlap (see Figure 7-2) The number of problematic
amplitudes, now QiSP i , is thus reduced.

Partitioning the P and Q projectors of the FSCC equation (7-69) into the main
and intermediate parts by formulas (7-71,7-74) yields four coupled CC equations,

QmŒS;H0�Pm D QmfV˝ �˝Heff gconnPm (7-75)

Qi ŒS;H0�Pm D QifV˝ �˝Heff gconnPm (7-76)

QmŒS;H0�Pi D QmfV˝ �˝Heff gconnPi (7-77)

Qi ŒS;H0�Pi D QifV˝ �˝Heff gconnPi : (7-78)

Only the last of these can cause convergence problems. Successful replacement of
this equation by another, based on physical considerations, is the central point of
the IH method. The new equation to be used instead of (7-78) will be called the IH
condition (IHC). Ideally, it should satisfy the following demands:

	 Be free of convergence problems.
	 Have minimal impact on the other coupled equations (7-75–7-77).

Subject to these demands, we would like the IHC to be as close to (7-78) as possible.
Several IH FSCC methods have been developed and applied recently, based

on different IH conditions. The first such approach [163], denoted IH1, uses
the condition

Qi˝PmH˝Pi D QiH˝Pi ; (7-79)

which is similar to the equation proposed by Malrieu and applied up to the 3rd
order of degenerate perturbation theory [164]. While Malrieu’s scheme could not
go beyond 3rd order because terms with small denominators appear, the IH CC
variants developed in our group are all-order and may be used in the framework of
any multireference CC formulation.

The next IH FSCC scheme (IH2) is based on the perturbation theory expansion
of the problematicQiSP i amplitudes. In the lowest order we simply take

QiSP i D 0: (7-80)
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This type of IH condition has also been used for developing a new type of hybrid
multireference coupled cluster schemes, including the mixed sector CC presented
below.

Another IH condition leads to the most flexible and useful scheme, the extrap-
olated IH (XIH) [165, 166], which can yield correct solutions both for Pm and Pi ,
thus recovering the whole effective Hamiltonian spectrum in the extended model
space P . This can be accomplished even when the standard FSCC approach using
the same model space P has intruder states leading to divergence. The IH condition
for the XIH approach has the form

Qi ŒS;H0 C Pi�Pi �Pi D Qifˇ�S C V˝ �˝Heff gconnPi : (7-81)

� is an energy shift parameter, correcting small energy denominators for the prob-
lematic intruder states. A compensation term with the multiplicative parameter ˇ
(ˇ � 1) is added on the right-hand side. For ˇ D 1, the Pi�Pi term on the left-
hand side is fully compensated, so that (7-81) is equivalent to (7-78). Proper choice
of the two parameters makes it possible to reach convergence in (7-81) and thus in
the non-problematic equations (7-75–7-77). Several calculations with different val-
ues of the parameters allow extrapolation of both Pm and Pi level energies to the
limit � ! 0 or ˇ ! 1. This extrapolation was found to be robust, in most cases
linear for Pm states and quadratic for states in Pi . In the extrapolation limit the IH
method transforms into the effective Hamiltonian approach. The XIH approach is
asymptotically size extensive and in many cases size consistent, even for incomplete
Pm, requiring only that the entire model space P is complete. A somewhat similar
IH FSCC scheme has been proposed by Mukhopadhyay et al. in 1992 [167], but to
the best of our knowledge has never been implemented.

The intermediate Hamiltonian approaches presented here may be applied within
any multi-root multireference infinite order method. Recently [168] we imple-
mented the XIH scheme to another all-order relativistic multi-root multireference
approach, the Hilbert space or state universal CC, which is the main alternative to
and competitor of Fock-space CC. The HSCC is based on the Jeziorsky–Monkhorst
parameterization of the wave operator [169],

˝ D
dX

�D1

˝� D
dX

�D1

fexp.S�/gP�; P� D j�i h�j : (7-82)

Here every determinant � belonging to the P space serves as a reference state
(Fermi vacuum), and the excitation operators S� are vacuum dependent. The nature
of the determinants in the model space may be general; the only requirement is that
all determinants belong to the same Hilbert space. The most useful scheme is proba-
bly the HSCC approach with a model space built of general MCSCF solutions. This
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will make the HSCC method suitable for global potential surface calculations. The
XIH-HSCC equation in the case of complete model space P is

ŒS�;H0 C Pi�Pi �P
� D fˇ�S�PiP

� C V fexp.S�/gP�

�fexp.S
/gP 
HeffP
�gconn

P 
HeffP
� D P 
.H fexp.S�/g/connP

�: (7-83)

The HSCC effective Hamiltonian (7-83), unlike the FSCC effective Hamiltonian,
has non-diagonal structure, coupling different Fock-space sectors belonging to the
same Hilbert space. This leads to better treatment of nondynamic correlation. A
mixed sector coupled cluster (MSCC), which may be regarded as a hybrid approach
combining the advantages of FSCC and HSCC, has recently been derived [170]
within the IH2 method based on IHC (7-80). The MSCC exponential parameter-
ization of the wave operator ˝ and the working equation are formally similar to
those of FSCC (see (7-66)–(7-69)), but the subsystem embedding condition is now
relaxed and several sectors of Fock space belonging to the same Hilbert space mix
and are diagonalized together. MSCC may thus yield the most balanced inclusion of
dynamic and nondynamic correlation effects. Implementation of the XIH method to
higher sectors (up to six valence electrons/holes [162]) of the Fock space is also in
progress [171]. All the multireference multiroot CC methods described above may
be used for the challenging task of benchmark calculations for heavy quasidegener-
ate systems with more than two electrons/holes in the valence open shell. Another
challenging, long-term project is to apply the IH method within the double FSCC,
a covariant MRCC based on QED, presented in Section 7.6.3. This method can be
applied to highly charged heavy ions, which exhibit large QED effects.

Summing up, we conclude that the IH method is an efficient and universal tool,
applicable to all multi-root multireference methods. It avoids intruder states, while
at the same time allowing the use of large, complete model spaces, improving
significantly the accuracy of the calculation.

7.3.2.2. Selection of Pm and Pi Model Spaces

A major advantage of the intermediate Hamiltonian approach is the flexibility in
selecting the model space. This has been a major problem in applying the Fock-
space scheme, as noted at the beginning of this section. While in the Fock-space
coupled cluster method one may feel lucky to find any partitioning of the function
space into P and Q with convergent CC iterations, the intermediate Hamiltonian
method makes it possible for the first time to vary the model space systematically
and study the effect upon calculated properties. An example is given in Table 7-3,
which shows the dependence of the calculated electron affinity of Cs on the model
spaces Pm and Pi [172]. The calculations used the IH1 method, based on the IH
condition (7-79).

Orbitals defining Pm and Pi are selected largely in order of increasing orbital
energies. The electron affinities in Table 7-3 show that Pm reaches optimal size and
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Table 7-3 Electron affinity of Cs with different model spaces (meV)
[172]. The experimental value is 472 meV (Ref. [173])

Model space Pm orbitals Pi orbitals EA

A 6s �a 516
B 6s,6p,5d 7-11s,7-10p,6-9d ,4-6f 511
C 6-7s,6-7p,5-6d 8-11s,8-10p,7-9d ,4-6f 490
D 6-9s,6-8p,5-7d ,4f 10-12s,9-11p,8-9d ,5-6f 481
E 6-10s,6-9p,5-7d ,4-5f 11-12s,10-11p,8-9d ,6f 480
F 6-9s,6-8p,5-7d ,4f 10-13s,9-12p,8-9d ,5-6f 475
G 6-9s,6-8p,5-7d ,4f 10-12s,9-11p,8-10d ,5-7f 480
aFSCC, no Pi space.

convergence with set D, and further increase (set E) has little effect. Augmenting
Pi by s and p orbitals (set F) leads to further change, whereas adding d and f
functions (set G) has little effect, as do other attempts to augment set F. The model
spaces of set F are therefore used in the calculation. Note that the model spaces are
not determined by agreement with experiment; they are extended until the relevant
physical properties converge.

7.3.2.3. Atomic Excitation Energies Not Accessible by FSCC

The selection of the model space P determines the states calculated. The effective
Hamiltonian in the .m; n/ sector is constructed and diagonalized in the correspond-
ing P .m;n/, giving correlated energies of P .m;n/ states relative to the correlated
reference state. A more flexible model space leads to greatly extended range of
applicability, as demonstrated by the two examples below.

	 Excited states of Ba and Ra were calculated by FSCC in the (0,2) sector, starting
from M2C as reference [174]. The model space in the 2-electron sector for Ba
included all states with two electrons in the 5d , 6s and 6p orbitals, except the
6p2 states; inclusion of the latter led to intruder states and divergence, so that
incomplete model spaces had to be employed. The IH method made possible
larger model spaces, giving many more states as well as higher accuracy [175].
We could put all states the states used in FSCC, plus 6p2, in Pm; Pi was defined
by adding states with occupied 7s–10s, 7p–10p, 6d–9d , and 4f –6f orbitals,
yielding a very large P (D Pm C Pi ) space. The average error in states accessi-
ble to both methods was reduced from 742 cm�1 (relative error 3.11%) for FSCC
to 139 cm�1 (relative error 0.69%) for IH. In addition, many more states, includ-
ing those belonging to the 6p2 term, were obtained [175]. Similar results were
obtained for Ra.

	 In the rare gases Xe and Ar, the neutral closed-shell atoms provide a natural
choice for reference state, and the excited states are therefore in the (1,1) sector.
The excitation energies are relatively high and not too far apart, and we could not
find any partitioning leading to convergence of the Fock-space coupled cluster
iterations. The improved convergence properties of the intermediate Hamiltonian
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approach solved this problem [176]. Over 20 excitation energies of each atom
were obtained, with an average error of 0.06 eV (0.6%). The original publication
may be consulted for details.

7.4. APPLICATIONS: HEAVY ELEMENTS

High-level inclusion of both relativity and correlation is essential if a quantitative
description of a heavy atom is desired. It should be emphasized that correlation and
relativistic effects (by the latter we mean the difference between results of relativis-
tic and equivalent nonrelativistic formulations) are non-additive for heavy atoms.
The cause is clear: since the relativistic spatial distribution of the orbitals differs
significantly from that of nonrelativistic counterparts (s and p orbitals undergo
contraction, whereas d and f orbitals expand), correlation energy changes. This
affects in particular inner shells, but more diffuse orbitals are not exempt. This is
demonstrated in Section 7.4.2 for the gold atom [121].

Representative applications of the Fock-space coupled cluster method to heavy
atoms are presented below. The spherical symmetry of atoms, which leads to angu-
lar decomposition of the wave function and coupled-cluster equations, is used at
both the Dirac–Fock–Breit [149] and CC [121, 177] stages of the calculation. The
energy integrals and CC amplitudes, which appear in the Goldstone-type diagrams
defining the CC equations, are decomposed in terms of vector-coupling coeffi-
cients, expressed by angular-momentum diagrams, and reduced Coulomb–Breit or
S matrix elements, respectively. The reduced equations for single and double excita-
tion amplitudes are derived using the Jucys–Levinson–Vanagas theorem [117] and
solved iteratively. This technique makes possible the use of large basis sets with
high l values, as a basis orbital gives rise to two functions at most, with j D l˙1=2,
whereas in Cartesian coordinates the number of functions increases rapidly with l .
Typically we go up to h (l D 5) or i (l D 6) orbitals, but higher orbitals (up
to l D 8) have been used. To account for core-polarization effects, which may be
important for many systems, we correlate at least the two outer shells, usually 20–40
electrons. Finally, uncontracted Gaussians are used, since contraction leads to prob-
lems in satisfying kinetic balance and correctly representing the small components.
On the other hand, it has been found that high-energy virtual orbitals have little
effect on the transition energies we calculate, since these orbitals have nodes in the
inner regions of the atom and correlate mostly the inner-shell electrons, which we do
not correlate anyway. These virtual orbitals, with energies above 80 or 100 hartree,
are therefore eliminated from the CC calculation, constituting in effect a post-SCF
contraction.

The Fock-space coupled cluster and its intermediate Hamiltonian extension have
been incorporated into the DIRAC package [133], opening the way to molecular
applications. The heavy species NpOC

2 , NpO2C
2 , and PuO2C

2 were calculated, giving
access to the ground and many excited states and leading to reassignment of some
of the observed spectroscopic peaks [128]. A later application addressed UO2 and
UOC

2 [129], with less conclusive results, due to the highly complicated open-shell
character of these species.
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Most of the applications involved heavy atomic systems, and proved the power
of the method. Some examples are described in the current Section. These successes
make the FSCC and IH approaches a useful tool for predicting properties of super-
heavy elements, not easy to access experimentally. Applications to these elements
may be found in Section 7.5.

7.4.1. When Is an Atom “Heavy”? Ionization Potentials of Alkali Atoms

An obvious question is when do atoms start to be “heavy”, requiring relativistic
treatment for accurate description of their energy levels. An indicative criterion
may be derived by comparing high-level relativistic and nonrelativistic calculations
with experimental values. Such a comparison is given in Table 7-4, where errors
in the first ionization potentials of alkali atoms, calculated by the Fock-space cou-
pled cluster scheme within the four-component Dirac–Coulomb or the Schrödinger
framework, are collected [177]. While the errors in the IPs calculated relativistically
are small and do not change much with the atomic number, the nonrelativistic values
become progressively worse as the atom gets heavier.

Alkali atoms are basically one-valence-electron systems, and correlation would
therefore not be expected to play a major role in the determination of properties
such as ionization potentials. Nevertheless, a Hartree–Fock (or, for the heavier alkali
atoms, a Dirac–Fock) calculation gives sizable errors for this property. In particular,
if accuracy below the one percent level is desired, as would be needed, for example,
in studies of parity nonconservation effects [178], high-level treatment of correla-
tion is essential. Large basis set calculations of several IPs were carried out by the
Notre Dame group in second-order MBPT for Li to Cs [179] and in CCSD for
Cs [180], using large B-spline basis sets. The Fock-space CC method in an exten-
sive Gaussian-type basis was applied to all atoms by Eliav et al. [177]. Results for
atomic cesium, collected in Table 7-5, show that all-order summation is indeed nec-
essary to obtain highly accurate ionization potentials. The better values obtained
by Eliav et al. are probably due to the superiority of Gaussian-type orbitals over

Table 7-4 Experimental and FSCC
ionization potentials of alkali atoms
(cm�1). Errors of calculated values with
respect to experiment are given

Calc. error

Atom Z Expt. Rel. Nonrel.

Li 3 43,487 �3 �6
K 19 35,010 18 �26
Rb 37 33,691 30 535

Cs 55 31,407 36 1163

Fr 87 32,849 �10 2780
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Table 7-5 Comparison of Cs ionization potentials calculated by different methods
(hartree). Percent error in parentheses

6s1=2 6p1=2 6p3=2 7s1=2

DF [179] 0.12737 (11%) 0.08562 (7.1%) 0.08378 (6.5%) 0.05519 (5.9%)
MBPT-2 [179] 0.14511 (1.4%) 0.09253 (0.4%) 0.08996 (0.4%) 0.05939 (1.3%)
CC [180] 0.14257 (0.4%) 0.09198 (0.2%) 0.08951 (0.15%) 0.05845 (0.3%)
FSCC [177] 0.14326 (0.11%) 0.09212 (0.05%) 0.08962 (0.02%) 0.05867 (0.03%)
Expt. [184] 0.14310 0.09217 0.08964 0.05865

B-spline functions. The Fock-space CC values are within 0.02–0.11% of experi-
ment. Fine structure splittings are also reproduced well: 548 cm�1 for the 6p level
(experimental 554) and 96.5 cm�1 for 5d (experimental 97.6).

7.4.2. Gold Atom: Local Maximum of Relativistic Effects

The gold atom exhibits very large relativistic effects on its chemical and physical
properties, due to the contraction and stabilization of the 6s orbital. The compact-
ness of the atom relative to its neighbors leads to a local maximum in relativistic
effects, called by Pyykkö the “gold maximum” [181]. Nonrelativistic calculations
lead to large errors, including the reversal of the two lowest excited states [182,183].
Gold serves therefore as a stringent test for methods aspiring to provide accurate
values for heavy elements, and was one of the first atoms tested by the relativis-
tic coupled cluster scheme [121]. Two closed-shell states can be used as starting
points for the Fock-space treatment, defining the (0,0) sector, namely AuC or Au�.
Electrons are then added or removed according to the schemes

AuC.0; 0/ ! Au.0; 1/ ! Au�.0; 2/; (7-84)

or

Au�.0; 0/ ! Au.1; 0/ ! AuC.2; 0/: (7-85)

The basis consisted of 21s17p11d7f Gaussian spinors [183], and correlated shells
included 4spdf 5spd6s. Table 7.6 shows the nonrelativistic, Dirac–Coulomb, and
Dirac–Coulomb–Breit total energies of the two ions. As expected, relativistic effects
are very large, over 1100 hartree. The nonadditivity of relativistic and correlation
corrections to the energy, apparent in Table 7-6, has been noted above.

The various transition energies of the gold atom and its ions are shown and com-
pared with experiment [184] in Table 7-7. The nonrelativistic results have errors of
several eV. The relativistic CC values, on the other hand, are highly accurate, with an
average error of 0.06 eV. More recent (unpublished) values, obtained with a larger
31s26p21d17f14g11h8i basis, are even closer to experiment, giving 9.21 eV for
the IP and 2.29 eV for the EA. The inclusion of the Breit effect does not change the
results by much, except for some improvement of the fine-structure splittings.
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Table 7-6 CCSD transition energies in Au (eV). IP is the ionization
potential, EA denotes electron affinity, and EE – excitation energy
relative to the ground state. FS denotes fine-structure splittings

NR DC DCB Expt.[184]

IP 5d106s 2S1=2 6.981 9.101 9.086 9.226
EE 5d96s2 2D3=2 5.301 2.661 2.669 2.658

5d96s2 2D5=2 5.301 1.115 1.150 1.136
5d106p1=2

2P1=2 3.313 4.723 4.720 4.632
5d106p3=2

2P3=2 3.313 5.193 5.184 5.105
FS 2D 0 1.546 1.519 1.522

2P 0 0.470 0.466 0.473
EA 5d106s2 1S0 1.267 2.278 2.269 2.31

Table 7-7 Total energies of the closed-shell systems AuC
and Au� (hartree), with nonrelativistic, DC, and DCB
Hamiltonians. Correlation includes 4s and higher shells

AuC Au�

Uncorrelated Correlation Uncorrelated Correlation

NR �17863.46301 �1.29756 �17863.68392 �1.37018
DC �19029.01322 �1.36150 �19029.32077 �1.46436
DCB �19007.42385 �1.36430 �19007.73063 �1.46690

7.4.3. The f 2 Levels of Pr3C: Importance of Dynamic Correlation

Lanthanides and actinides possess open f shells, which give rise to large manifolds
of closely spaced states. As an example of these systems we discuss the energy levels
of the Pr3C ion, which has an f 2 ground state configuration. The spectrum is well
characterized experimentally [185] and provides a good test for high-accuracy meth-
ods incorporating relativity and correlation. The system has been studied by both
MCDF and Fock-space CC, and comparison between these methods can therefore
be made.

The MCDF calculations [186] involved between 354 and 1708 CSFs for the dif-
ferent J states. The number of CSFs was much larger in the CC calculations [187],
since all excitations from the 4spdf 5sp orbitals to virtual orbitals with energies up
to 100 hartree, as well as excitations from 4spd5sp to the partially filled 4f , were
included. Thus, a much larger part of dynamic correlation was accounted for. The
Pr5C closed shell state served as reference, and two electrons were added in the 4f
shell to obtain the levels of interest. Three basis sets were used, with l going up to
4, 5 and 6. The calculated excitation energies are compared with experiment [185]
in Table 7-8.

The Fock-space CC excitation energies are in better agreement with experiment
than MCDF values, and improve with the size of the basis. All 13 levels appear in
the correct order (in MCDF the 3P2 level appears 1200 cm�1 below the 1I6 instead
of 950 cm�1 above it). Convergence with respect to the l value in the virtual space
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Table 7-8 Excitation energies of Pr3C 4f 2 levels (cm�1). The
ground state is 3H4

CCSD [187]
Level Expt. [185] MCDF [186] l � 4 l � 5 l � 6

3H5 2;152:09 2;337 2,273 2,273 2,270
3H6 4;389:09 4;733 4,645 4,641 4,635
3F2 4;996:61 4;984 4,749 4,832 4,843
3F3 6;415:24 6;517 6,266 6,345 6,354
3F4 6;854:75 6;950 6,808 6,844 6,843
1G4 9;921:24 10;207 10,019 10,014 10,001
1D2 17;334:39 18;153 16,803 16,961 16,998
3P0 21;389:81 22;776 20,802 21,109 21,155
3P1 22;007:46 23;450 21,443 21,747 21,791
1I6 22;211:54 25;854 22,267 22,061 22,010
3P2 23;160:61 24;653 22,719 23,009 23,051
1S0 50;090:29 50;517 48,448 49,072 49,194

Avrg. error 853 394 245 222

Table 7-9 Fine structure in Pr3C (cm�1)

DC DC DCB DC
Expt. [185] MCDF l � 4 l � 5 l � 5 l � 6

3H5 �3H4 2;152 2;337 2,273 2,273 2,081 2,270
3H6 �3H5 2;237 2;396 2,369 2,368 2,169 2,365

3F3 �3F2 1;419 1;533 1,517 1,513 1,373 1,511
3F4 �3F3 440 433 542 499 465 489

3P1 �3P0 618 674 631 638 585 636
3P2 �3P1 1;153 1;203 1,276 1,262 1,090 1,260
Avrg. error 95 98 89 51 86

seems good, and the best basis gives an average error of 222 cm�1 for the excitation
energies. A full half of the total error is due to the high 1S0 state; these states are
notoriously difficult to calculate. While inclusion of the Breit term has a rather small
effect on the excitation energies of Pr3C, it improves the fine-structure splittings
(Table 7-9). This is a general phenomenon, and may be traced to the spin-other-spin
interaction in the two-electron Breit term [188]. Fine-structure splittings are less
sensitive to the amount of correlation retrieved.

7.4.4. Electron Affinities of Alkali Atoms – Accuracy at the 1 meV Level

Alkali atoms are conceptually simple one-valence-electron systems, and have conse-
quently attracted many experimental and theoretical studies. The electron affinities
of the atoms up to Cs are known with great precision [173]; only a semiempirical
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value of 492 meV (with an uncertainty of 2.2%) is available for Fr [189]. An inter-
esting aspect of these systems is the suggestion made some years ago [190–192] that
Cs� might have bound excited states, an idea refuted by more recent experimental
[193] and theoretical [189] work. One of the first applications of the relativistic
Fock-space coupled cluster (FSCC) method described above has been to transition
energies of alkali atoms [177]. Excellent agreement with experiment was obtained
for ionization potentials (an average error of 0.09%) and excitation energies (0.2%
error), but electron affinities, particularly those of the heavier elements in the group,
were less satisfactory, with errors of 4–9% for K, Rb, and Cs. The newly developed
intermediate Hamiltonian method made possible more extensive calculations with
much larger P spaces, and the problem was therefore revisited [172].

The effect of the model space upon the calculated EA was studied as described
above (Section 7.3.2, Table 7-3). The model spaces employed are believed to con-
verge to within a few meV; they are listed in Table 7-10. The number of correlated
electrons in the cation reference states varied from 8 in NaC to 50 in E119C (see
Table 7-10); corresponding anions have two additional correlated electrons.

Calculated electron affinities are collected and compared with experiment in
Table 7-11. The power of the intermediate Hamiltonian method is demonstrated by
the excellent agreement with experiment. The Fock space values start well for Na,
but errors increase to 5%, 7% and 9% for the heavier K, Rb and Cs, respectively.
IHFSCC values, on the other hand, are all within 5 meV or 1% of experiment. It

Table 7-10 Correlated electrons in the reference cations and structure of model spaces

Correlated electrons
Atom Number Orbitals Pm orbitals Pi orbitals

Na 8 2s2p 3-6s,3-5p,3-5d ,4f 7-10s,6-9p,6-7d ,5-7f
K 16 2s2p3s3p 4-7s,4-6p,3-5d ,4f 8-11s,7-10p,6-7d ,5-6f
Rb 26 3s3p3d4s4p 5-8s,5-7p,4-6d ,4f 9-12s,8-11p,7-8d ,5-6f
Cs 26 4s4p4d5s5p 6-9s,6-8p,5-7d ,4f 10-13s,9-12p,8-9d ,5-6f
Fr 40 4f 5s5p5d6s6p 7-10s,7-9p,6-8d ,5f 11-14s,10-13p,9-10d ,6-7f
E119 50 4f 5d6s6p6d7s7p 8-11s,8-10p,7-9d ,5-6f 12-15s,11-13p,10-11d ,7-8f

Table 7-11 Electron affinities of the alkali atoms (meV). Fock-space (FS), interme-
diate Hamiltonian (IH) and extrapolated intermediate Hamiltonian (XIH) compared
with experimental [173] (semiempirical [189] for Fr) values

XIH
FSCC IH1 � D 8 � D 6 � D 4 � D 0 CQED Expt.

Li – – 618.38 618.28 618.19 618.01 617.84 618.05(2)
Na 549.1 549.9 549.02 548.87 548.72 548.42 548.04 547.93(3)
K 525.4 506.8 503.94 503.85 503.77 503.60 503.08 501.46(1)
Rb 519.3 490.8 487.39 487.34 487.29 487.19 485.90 485.92(2)
Cs 516.0 474.6 473.07 473.02 472.96 472.85 470.75 471.63(3)
Fr 542.2 491.3 490.34 490.26 490.17 490.00 486.03 492(10)
119 717.1 662.5 661.97 661.75 661.51 661.05 648.70 �
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should be noted that the FSCC function of the anions includes only one determi-
nant in the P space, whereas the IHFSCC P space includes several thousand. The
importance of these additional determinants (and of excitations from them to Q)
increases with the size of the alkali anion.

Even higher accuracy became possible with the development of the extrapo-
lated intermediate Hamiltonian method [165]. Whereas some of the matrix elements
belonging to the Pi space are “fudged” in the IH1 scheme and affect the energies,
the XIH approach recovers the energies of the exact Heff in the full, extended P
space. Eq. (7-81) was used with the parameter� only, and the energies were calcu-
lated for � D 8; 6; 4 and extrapolated to � D 0, which gives the full Heff results.
As the table shows, energies vary linearly with � and the extrapolation is robust.
Adding QED corrections, the mean absolute error of the calculated EAs is 0.6 meV,
with the largest error 1.6 meV. Similar accuracy was obtained for the IPs of alkali
atoms, with 45 IPs of Rb, Cs and Fr giving a mean absolute error of 1.4 meV [166].

7.4.5. Electron Affinities in Group 13

The Hotop and Lineberger tables [173], a standard source for electron affinities,
show reliable values for the two lightest elements, B and Al; other values have error
limits of 50–100%. High-precision measurements for all five elements were reported
in 1998–2000 [194–198]. Few calculations have appeared for the latter atoms before
1997. These include the multireference configuration interaction (MRCI) of Arnau
et al. using pseudopotentials [199], the Fock-space coupled cluster work on Tl [200],
and the multiconfiguration Dirac–Fock computation of Wijesundera [201].

MRCI values for Al (0.45 eV) and MCDF results for B (0.26 eV) and Al (0.43
eV) are in good agreement with experimental values. MRCI and MCDF EAs for
the other atoms agree with each other (0.29 and 0.30 eV for Ga, 0.38 and 0.39 eV
for In, 0.27 and 0.29 eV for Tl). The CC EA of Tl is much higher at 0.40(5) eV.
A major difference between the CC and the other two methods lies in the number
of electrons correlated. While Arnau and Eliav et al. [199, 201] correlate valence
electrons only, three for the neutral atom and four for the anion, Eliav et al. [200]
correlated 35 electrons in Tl and 36 in Tl�. A FSCC study of all five elements was
undertaken [202], with the aim of determining their EAs and, in particular, the effect
of inner-shell correlation and virtual space used on the calculated values.

Large basis sets of Gaussian-type orbitals (up to 35s27p21d9g6h4i ) were used,
taken from the universal basis set of Malli et al. [203]. Many electrons were cor-
related (5 in B, 11 in Al, 27 in Ga, 21 in In, and 35 in Tl), to account for core
polarization. The calculated EAs are shown in Table 7-12 and compared with
experiment [194–198]. Agreement with experimental values for B, Al and In is
very good, but a significant deviation is observed for Ga. A detailed analysis of
the calculation [204] did not come up with an acceptable explanation for this dis-
agreement. When the EA of Tl was measured with high precision it was found to be
0.377(13) eV [198], in good agreement with the FSCC value but not with the sig-
nificantly lower MRCI and MCDF results. The advantage of the FSCC calculation
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Table 7-12 Group 13 electron affinities (eV)

Atom Expt. CCSD [202]

B 0.279 723(25) [194] 0.279
Al 0.432 83(5) [195] 0.427
Ga 0.43(3) [196] 0.301
In 0.404(9) [197] 0.419
Tl 0.377(13) [198] 0.40(5)

lies in correlating both valence and inner shells, so that core polarization and corre-
lation are included properly, while only valence electrons are correlated in the other
applications. Results show that inner-shell correlation contributes about one quar-
ter or 0.1 eV of the total affinity. The rather large error limit quoted in the FSCC
result appears because two Fock-space schemes, starting from TlC and Tl� respec-
tively, give significant differences. The remaining disagreement between FSCC and
measured values for Ga is still a puzzle [204].

7.4.6. Properties Other Than Energy: Nuclear Quadrupole Moments

The knowledge of nuclear quadrupole moments (NQM) is of considerable interest in
chemical spectroscopy. They are also required in nuclear physics for testing nuclear
models. One of the best ways to determine the nuclear quadrupole momentQ is by
combining the experimental nuclear quadrupole coupling constantB , also known as
the electric quadrupole hyperfine interaction constant, with accurate calculations of
the electric field gradient (EFG) at the nucleus, q. The nuclear quadrupole coupling
constant is given by the relation

B D �eqQ=h; (7-86)

where e is the absolute value of the electron charge and h is Planck’s constant.
Atomic and molecular properties, such as the nuclear quadrupole moment, are

usually observed via the energy shifts generated by coupling to an external field.
The desired property is the derivative of the energy with respect to the external field.
We used the finite field method [205] to calculate the EFG at the relevant nuclei. The
interaction with an arbitrary NQM Q is added to the Hamiltonian OH0, giving

OH.Q/ D OH0 � eqQ=h: (7-87)

The Dirac–Coulomb Hamiltonian for the atom served as OH0. The energy, which is
the expectation value of OH.Q/, may be expanded as

E.Q/Dh�.Q/j OH.Q/j�.Q/iDE0CQ
�

dE .Q/
dQ

�
0

CQ2

2

�
d 2E.Q/

dQ2

�
0

C � � � :
(7-88)
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Differentiating and invoking the Hellmann–Feynman theorem, one obtains

dE .Q/
dQ

ˇ̌
ˇ̌
QD0

D � e
h

h�0j Oqzz j�0i: (7-89)

Conflicting considerations determine the value ofQ used in practice. The energy
change must be large enough not to disappear in the precision of the calculations,
but too large a perturbation may go beyond the linear regime and introduce errors in
the derivative. Linearity is therefore monitored throughout the application.

The calculations were carried out using the DIRAC relativistic ab initio elec-
tronic structure program [133]. Nuclei were described by the Gaussian finite nucleus
model, and the uncontracted well tempered basis set of Huzinaga and Klobukowski
[206] was employed. The Hamiltonian used includes the external field from the start,
so that the Dirac–Hartree–Fock orbitals already see it. Previous attempts of adding
the field at the perturbative (coupled cluster) step were less satisfactory.

The first application addressed the halogen atoms Cl, Br and I [207]. The electric
field splits the P3=2 atomic levels into two sublevels separated by 2B , and the size of
the splitting as function of Q gives the required derivative, from which the electric
field gradient is calculated. Using the splitting rather than the energy shift of indi-
vidual levels has the advantage that the second-derivative term in Eq. (7-88) cancels
out, and deviation from linearity starts with the cubic term. An additional advantage
is that the splitting vanishes identically forQ D 0. The effect of the Gaunt term, the
major part of the Breit interaction, is obtained at the Dirac–Hartree–Fock level by
taking the expectation value of the relevant operator. The total size of the effect is
small, well below 1%, and the neglect of interaction between Gaunt and correlation
contributions is not significant.

The basis sets were extended until the EFG values converged. Table 7-13 shows
EFG values obtained for the larger iodine basis sets. We believe convergence is
better than 1%. The final EFG values were determined from calculations using the
last basis sets listed in the Table with Q D 1:25 � 10�5 a.u., and nonlinearity
was estimated by comparing with Q D 2:5 � 10�5. Deviation from linearity was
below 0.5% in all cases. Considering all sources of error, we estimate the total error
at 1.5%.

Using the calculated EFG values and the experimental B values [208–210], the
following NQM values are obtained: Q.35Cl/ D �81:1.1:2/ mb, Q.79Br/ D
302.5/ mb, and Q.127I/ D �680.10/ mb. The Q of Cl agrees with the previ-
ous reference value of �81:65.80/ mb [211], while that of Br differs somewhat
from the accepted 313(3) mb. Iodine shows the largest correction to the previous
�710.10/ mb, in line with the �696.12/ mb obtained from molecular calculations
[212]. A more detailed discussion may be found in [207].

An even more interesting case is that of 179Au, where the long accepted muonic
value of 547(16) mb [211] has been challenged [213]. Gold presents a particularly
tough case, possibly because of relatively small EFG at its nucleus. Experimentally,
the EFG is highly sensitive to the molecular environment, as shown by the large
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Table 7-13 Dependence of the EFG at the iodine nucleus on the basis set and number ncorr
of correlated electrons in I�

Basis s p d f g h ncorr EFG(a.u.)

28s23p18d8f 4g 1–28 6–28 9–26 18–25 22–25 26 7.10439
28s23p18d8f 5g 1–28 6–28 9–26 18–25 21–25 26 7.10402
28s23p18d9f 5g 1–28 6–28 9–26 18–26 22–26 26 7.09632
28s23p19d9f 5g 1–28 6–28 9–27 18–26 22–26 26 7.08905
28s23p18d8f 4g2h 1–28 6–28 9–26 18–25 22–25 23–24 26 7.13261
28s23p18d8f 4g2h 1–28 6–28 9–26 18–25 22–25 23–24 44 7.17009
28s23p18d8f 4g2h 1–28 6–28 9–26 18–25 22–25 23–24 54 7.17104
28s23p19d8f 4g2h 1–28 6–28 9–27 18–25 22–25 23–24 54 7.16368
28s23p20d8f 4g2h 1–28 6–28 9–28 18–25 22–25 23–24 54 7.16368
28s23p20d9f 4g2h 1–28 6–28 9–27 18–26 22–25 23–24 54 7.15757
28s24p20d9f 4g2h 1–28 5–28 9–27 18–26 22–25 23–24 54 7.15905
28s24p21d9f 4g2h 1–28 5–28 8–27 18–26 22–25 23–24 54 7.15917

NQCC differences between AuCl (9.6 MHz) and its noble gas complexes (�259.8
for Ar-AuCl, �349.9 MHz for Kr-AuCl) [214]. Computationally, very strong depen-
dence on the gold-containing molecule and the particular method used has been
observed [215], with the EFG varying between �0.374 and C0.746 a.u. for the
AuX molecules (X=F,Cl,Br,I) calculated with the Dirac–Coulomb and Douglas–
Kroll Hamiltonians at the CCSD(T) level, yielding NQM values from �1.51 to
C0.65 b. A recent molecular calculation [216] obtained 510(15) mb.

The method described above was applied [217], using both the well-tempered
[206] and universal [203] basis sets. An intrinsic check is provided by the avail-
ability of two independent sets of quadrupole coupling constants for the 2D5=2 and
2D3=2 states [218]. Indeed we found that medium size basis sets gave a difference
of �1% between the NQMs calculated for the two states, going down to 0.1% for
the largest basis sets. Our final result isQ.197Au/ D 521.7/mb, in good agreement
with the molecular 510(15) mb [216].

7.5. APPLICATIONS: SUPERHEAVY ELEMENTS

As can be expected, the effect of relativity increases when we go to superheavy
elements. This term is usually applied to elements with atomic number above 100
(trans-fermium elements). The chemistry of some of these elements has been studied
[219, 220]. An important relativistic effect involves changes in the level ordering,
leading sometimes to a ground state configuration which differs from that of lighter
atoms in the same group and, consequently, to different chemistry.

7.5.1. Ground State Configuration of Roentgenium (E111)

A major relativistic effect in the gold atom is the stabilization of the 6s orbital. This
is manifested by the energy separation between the 5d 106s 2S ground state and
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the 5d 96s2 2D excited state. Looking at group 11 (coinage metal) atoms, the 2D

excitation energies of Cu are 1.389 (J D 5=2) and 1.642 (J D 3=2) eV, increasing
to 3.749 and 4.304 eV for Ag [184]. Were it not for relativity, one would expect even
higher energies for Au. Indeed, nonrelativistic CCSD (Table 7-6) puts the 2D energy
at 5.301 eV above the 2S ground state, in line with expectations. Relativistic effects
reduce this value radically, giving 1.150 and 2.669 eV for the excited 2D sublevels,
within 0.015 eV of experiment [184]. Even larger stabilization may be expected
for the next member of the group, element 111. The question arose whether this
stabilization would be sufficient to push the 2D level below the 2S and make it the
ground state of the atom.

The calculations were carried out as for gold above, starting with the E111�
anion as reference [221]. As expected, very large relativistic effects are observed,
demonstrated by the large contraction of the 7s orbital of neutral E111 (Figure 7-3).
The 7s orbital energy of the anion goes down from �0.018 to �0.136 hartree, while
the 6d goes up from �0.355 to �0.186 (j D 3=2) and �0.080 (j D 5=2) hartree.
Atomic energies also show dramatic changes (see Table 7-14). Of particular inter-
est to us is the 6d 97s2 2D5=2 state, predicted by nonrelativistic CCSD to lie 5.43
eV above the 6d 107s 2S state, but reduced relativistically to 3 eV below the 2S ,
thus becoming the ground state. Ionization potentials of the atom show relativistic
effects of 12–15 eV! Similar effects were observed in eka-mercury (E112) [222]
and eka-thallium (E113) [200].
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Figure 7-3. Relativistic and nonrelativistic densities of element 111 7s orbital
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Table 7-14 CCSD excitation energies, electron affinity and
ionization potentials of element 111 (eV)

Transition DC DCB NR

EE 6d97s2 2D5=2 ! 6d97s2 2D3=2 2.719 2.687 0

6d97s2 2D5=2 ! 6d107s 2S1=2 3.006 2.953 �5:430
EA 6d97s2 2D5=2 ! 6d107s2 1S0 1.542 1.565 6:484

IP 6d97s2 2D5=2 ! 6d87s2 3D4 10.57 10.60 22:98

6d97s2 2D5=2 ! 6d97s 3D3 12.36 12.33 0:92

6d97s2 2D5=2 ! 6d10 1S0 15.30 15.23 �0:44

7.5.2. Ground State of Rutherfordium – Relativity vs. Correlation

The nature of the rutherfordium ground state has been a subject of interest for a
long time. Rutherfordium is the first atom after the actinide series, and in anal-
ogy with the lighter group-4 elements it should have the ground-state configuration
[Rn]5f 146d 27s2. Keller [223] suggested that the relativistic stabilization of the
7p1=2 orbital would yield a 7s27p2

1=2
ground state. MCDF calculations [224, 225]

found that the 7p2 state was rather high; they indicated a 6d7s27p ground state, with
the lowest state of the 6d 27s2 configuration higher by 0.5 [224] or 0.24 eV [225].
The two calculations are similar, using numerical MCDF [97] in a space including
all possible distributions of the four external electrons in the 6d , 7s and 7p orbitals,
and the difference may be due to the different programs used or to minor computa-
tional details. These MCDF calculations take into account nondynamic correlation
only, which is due to near-degeneracy effects and can be included by using a small
number of configurations. A similar approach by Desclaux and Fricke [226] gave
errors of 0.4–0.5 eV for the energy differences between .n � 1/d and np config-
urations of Y, La and Lu, with the calculated np energy being too low. Desclaux
and Fricke corrected the corresponding energy difference in Lr by a similar amount
[226]. If a shift of similar magnitude is applied to the MCDF results for Rf, the
order of the two lowest states may be reversed. It should also be noted that dynamic
correlation, largely omitted from MCDF, has been shown to play a significant role
in determining atomic excitation energies, reducing the average error in calculating
Pr3C excitation energies by a factor of four relative to MCDF results. The FSCC
method was therefore applied to Rf [227]. Starting from Rf2C with the closed-
shell configuration [Rn]5f 147s2, two electrons were added, one at a time, in the
6d and 7p orbitals, to form the low-lying states of RfC and Rf. A large basis set of
34s24p19d13f 8g5h4i G-spinors was used, and the external 36 electrons were cor-
related, leaving only the [Xe]4f 14 core uncorrelated. A series of calculations, with
increasing l values in the virtual space, was performed to assess the convergence
of the results. Some of the calculated transition energies are shown in Table 7-15.
Others may be found in the original publication [227].

The salient feature of the calculated transition energies is their monotonic behav-
ior with the amount of correlation accounted for. The correlation of the 5f electrons
and the gradual inclusion of higher l spaces all increase the four transition energies
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Table 7-15 Transition energies in RfC and Rf (eV)

RfC Rf

7s26d3=2 7s26d5=2 7s26d2 7s27p6d
2D3=2 IP 2D5=2 EE 3F2 IP 3D2 EE

MCDF [225] 13.47 5.30 �0:24
MCDF [224] �0:50
CCSD
l � 2a 13.37 0.79 5.15 �0:60
l � 3a 13.95 0.82 5.65 �0:11
l � 3 14.05 0.87 5.76 0:03

l � 4 14.20 0.90 5.90 0:17

l � 5 14.34 0.92 5.99 0:25

l � 6 14.37 0.92 6.01 0:27

l � 5b 14.34 0.87 5.99 0:27

a5f electrons not correlated.
b With Breit interaction.

in Table 7-15, as well as those not shown here. The MCDF results fall invariably
between the d and f limits. This makes sense, since the MCDF function optimizes
the orbitals and CI coefficients in a space including configuration state functions
which correspond to all possible distributions of the four external electrons in the
6d , 7s and 7p orbitals. Nondynamic correlation, resulting from interactions of
configurations relatively close in energy, is thus described very well; the dynamic
correlation, which is more difficult to include and requires many thousands of con-
figurations, is not described as well, leading to an error in the identification of the Rf
ground state. The latter is determined by the sign of the excitation energy in the last
column of Table 7-15. A negative energy means that the 7s27p6d configuration is
lower than 7s26d 2, and is therefore the ground state. From the calculations reported,
we estimate the CCSD converged value for this energy at 0.30–0.35 eV, making the
7s26d 2 state the ground state of atomic Rf. Recent state-of-the-art experiments with
Rf confirmed [228] that the chemistry of the atom is similar to that of Hf, which has
a 6s25d 2 ground state.

This example shows the intricate interplay of relativity and correlation. It is well
known that relativity stabilizes p vs. d orbitals, and correlation has the opposite
effect. When both effects are important and the result not obvious a priori, one
must apply methods, such as relativistic CC, which treat relativity and correlation
simultaneously to high order.

7.5.3. Eka-Lead (Element 114) – How Inert Is It?

Great progress has been made in recent years in creating new superheavy elements.
After the synthesis of elements 110–112 in 1994–96 [229–232], elements 114 and
116 were reported in 1999 and 2000 [233–235]. The latter atoms are the subject
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of great interest, as they fall within the “island of stability” predicted by nuclear
physics. The exact location of this island is not certain. There seems to be general
agreement that the next neutron magic number is 184, but the proton magic num-
ber (which determines the atomic number of the element) is variously predicted at
114 [236], 120 [237], or 126 [238]. Current technology produces isotopes with too
few neutrons to get maximum stability; nevertheless, longer lifetimes than for other
superheavy elements have been reported. One reason for studying these elements,
apart from the nuclear physics involved, is the hope that the strong relativistic effects
for the heavier elements would lend them exotic chemical properties, unknown for
their lighter homologues. The discussion of roentgenium above provides an exam-
ple where the ground-state configuration of a superheavy element differs from that
of the lighter atoms in the group; another case of unusual behavior of a superheavy
element is given in the next Subsection. Here we compare the properties of eka-lead
with those of lead and lighter group-4 elements. The IHFSCC method is used to
obtain high accuracy.

Two series of calculations were carried out [239]. The first started from the
closed-shell M4C ion, adding two electrons in the Fock-space scheme

M4C.sector 0/ ! M3C.sector 1/ ! M2C.sector 2/: (7-90)

Thirty two electrons [.n� 1/s2.n� 1/p6.n� 1/d 10.n� 2/f 14, with n D 6 for Pb
and 7 for E114] are correlated in the reference state. We were interested in the few
lowest states only for these sectors, so a relatively small Pm was taken, including
only states with ns and np electrons added to the reference. The P space was con-
siderably larger, including in addition the next four s, four p, four d , three f and
two g orbitals. In this case, the traditional FSCC converges with a model space con-
structed from the ns and np orbitals, and the advantage of IHFSCC lies in enhancing
accuracy by allowing a larger P space.

The closed-shell M2C ns2 state is taken as reference in the second Fock-space
sequence,

M2C.sector 0/ ! MC.sector 1/ ! M.sector 2/: (7-91)

Here 34 electrons are correlated in the reference state. Basis sets going to l D 8

were used, with 35s26p21d16f11g9h9i7k7l Gaussian orbitals. The FSCC itera-
tions converge only when the np orbitals serve as the sole valence particles, i.e., only
ns2np2 states could be obtained. The IHFSCC method allows many more valence
orbitals and, consequently, many more states. The Pm for lead included all states
constructed from the 7s, 8s, 6p, 7p, and 6d orbitals; P included, in addition, states
with occupied 9s�12s, 8p�11p, 7d �9d , 5f �7f , and 5g orbitals. For E114 we
were interested in fewer states, so that Pm was smaller, with 8s, 7p, and 8p orbitals;
9s � 13s, 9p � 12p, 7d � 10d , 6f � 8f , and 5g orbitals complete the P space.

The ionization potentials and low excitation energies of the lead and eka-lead
cations are reported, together with Pb experimental values [184], in Table 7-16.
For easy comparison, terms are listed in the LS coupling as in Moore’s Tables
[184], although the validity of this coupling scheme for Pb, and even more so for
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Table 7-16 Ionization potentials (IP) and excitation energies (EE) of lead and
eka-lead cations (cm�1). n D 6 for Pb, 7 for E114

Pb E114
Transition Expt. [184] Calc. Calc.

M3C. Ground state .n� 1/d10ns 2S1=2

IP ! .n� 1/d10 1S0 341;350 341;748 373;208

EE ! .n� 1/d10np1=2
2P1=2 76;158 76;839 86;676

! .n� 1/d10np3=2
2P3=2 97;219 97;803 138;047

M2C. Ground state .n� 1/d10ns2 1S0

IP ! .n� 1/d10ns 2S1=2 257;592 257;617 288;256

EE ! .n� 1/d10nsnp1=2
3P0 60;397 60;396 73;135

! 3P1 64;391 64;451 79;832

! .n� 1/d10nsnp3=2
3P2 78;985 78;964 119;597

! 1P1 95;340 95;716 135;170

! .n� 1/d10np21=2
3P0 142;551 143;412 166;645

MC. Ground state .n� 1/d10ns2np1=2
2P1=2

IP ! .n� 1/d10ns2 1S0 121;243 121;077 136;074

EE ! .n� 1/d10ns2np3=2
2P3=2 14;081 13;885 39;355

! .n� 1/d10ns2.nC 1/s 2S0 59;448 59;253 71;993

E114, is questionable; the only good quantum number in the reported levels (and the
calculation procedures) is J . The average deviation of the Pb results from experi-
ment is 334 cm�1, and the largest error is 861 cm�1. This close agreement indicates
that the eka-lead values provide good predictions for the electronic spectrum of this
superheavy element. Table 7-17 gives the transition energies of the neutral atoms.
It is noteworthy that many Pb states can be obtained accurately by the IHFSCC
method (the average error for the 22 Pm excitations is 602 cm�1 or 1.6%), while
only the 6s26p2 states are accessible by traditional FSCC. There are many Pi states
above 51,000 cm�1; these come out less well, as expected from theory. In contrast,
the higher Pm states are roughly as accurate as the lower levels. The predicted tran-
sition energies of E114 given in the same table show ionization potentials higher by
0.2–0.3 eV than those reported by Seth et al. [240]. Our values are probably more
accurate, due to the inclusion of the Breit term and the use of a larger basis and
a much extended model space, which more than compensates for the perturbative
inclusion of triples. The transition energies reported here should be roughly as accu-
rate as those of Pb, with errors of a few hundredths of an eV, and provide therefore
good predictions for future experimental values.

The prominent feature of the energies collected in Tables 7-16 and 7-17 is that
ionization potentials and excitation energies of E114 are much higher than analo-
gous Pb values. Table 7-18 collects the first four ionization potentials of all group-14
elements (experimental values [241] for C–Pb, calculated for Pb and E114), and
Figure 7-4 shows the first IP for these elements. The usual trend of IPs decreas-
ing for heavier atoms holds from C to Sn; reversal of this trend begins in Pb and
increases greatly for E114, with IPs surpassing those of Si. This reversal is due to
relativistic stabilization of the valence s and p1=2 orbitals, which becomes stronger



326 E. Eliav and U. Kaldor

Table 7-17 Ionization potential (IP) and excitation energies (EE)
of neutral lead and eka-lead (cm�1). States belong to Pm, unless
noted otherwise. The ground state is .n�1/d10ns2np2

1=2
3P0, with

n D 6 for Pb, 7 for E114

Pb E114
Transition Expt. [184] Calc. Calc.

IP ! ns2np1=2
2P1=2 59,821 59,276 68,868

EE ! ns2np2 3P1 7,819 7,531 26,342
! 3P2 10,650 10,307 28,983
! 1D2 21,458 20,853 60,956
! 1S0 29,467 29,259 67,817
! ns2np1=2.nC 1/s 3P0 34,960 34,405 43,111
! 3P1 35,287 34,711 43,441
! ns2np1=2.nC 1/p 3P0 42,919 42,255 52,487
! 3P1 44,401 43,655 54,647
! 3D1 44,675 43,969 51,302
! 3D2 44,809 44,089 54,814
! ns2np1=2nd

3F2 45,443 44,525 56,026a

! 3F3 46,328 45,627 56,494a

! 3D2 46,060 45,173 56,418a

! 3D1 46,068 45,165 56,456a

! ns2np3=2.nC 1/s 3P2 48,188 47,414 79,473
! 1P1 49,439 48,682 80,455
! ns2np1=2.nC 2/s 3P1 48,687 47,988
! 3P0 48,726 48,031
! ns2np3=2.nC 1/p 3D3 57,372 57,336 92205
! ns2np3=2nd

3D3 58,518 58,080 95,851a

! 3P1 59,427 59,291
! ns2np3=2.nC 2/s 3P2 62,621 61,728

aPi state.

Table 7-18 Ionization potentials of group 14 ele-
ments (eV). Experimental data from the Handbook [241],
calculated data: present work

Experimental Calculated

C Si Ge Sn Pb Pb E114

IP1 11.260 8.152 7.900 7.344 7.417 7.484 8.539
IP2 24.383 16.346 15.935 14.632 15.032 15.012 16.871
IP3 47.888 33.493 34.224 30.503 31.937 31.941 35.739
IP4 64.494 45.142 45.713 40.735 42.322 42.372 46.272

in the superheavy elements. The higher IPs of eka-lead, together with the closed
shell character of its 7p2

1=2
configuration, indicate it will be more inert and less

metallic than lead.



Four-Component Electronic Structure Methods 327

C Si Ge Sn Pb 114

8

10

12

IP
1 

(e
V

)

Figure 7-4. First ionization potentials of group 14 elements

7.5.4. Electronic Spectrum of Nobelium (Z D 102) and Lawrencium
(Z D 103)

The spectroscopic study of superheavy atoms (Z & 100) presents a severe challenge
to the experimentalist. While certain chemical properties of these elements may be
elucidated in single-atom experiments [219, 220], spectra can be measured only in
sizable samples. The first such study of a superheavy atom [242] used 2:7 � 1010

atoms of 255Fm with a half life of 20.1 h, long enough to make possible shipment of
the sample from Oak Ridge, Tennessee, where it was produced, to the Max-Planck-
Institut für Kernphysik in Heidelberg, where the spectrum was taken. Spectroscopic
measurements are planned for No and Lr, which have shorter lifetimes, by a col-
laboration based at GSI [243], with production and measurement taking place in
the same site. Such measurements must be accompanied by high-level calculations.
The low production rates of the atoms in nuclear fusion reactions, below 10 per
second, and short lifetimes, on the order of seconds, necessitate reliable prediction
of the position of transition lines, to avoid the need for broad wavelength scans. In
addition, theoretical studies are crucial for identifying the lines. Indeed, the Fm mea-
surements [242] were accompanied and guided by multiconfiguration Dirac–Fock
(MCDF) calculations. Four-component FSCC calculations were undertaken for No
[244] and Lr [245]. The accuracy of the predicted spectra for these elements was
estimated by applying the same method to ytterbium [244] and lutetium [245], their
lighter homologues, where experimental transition energies are available.

Large, converged basis sets (37s31p26d21f16g11h6i ) and P spaces (up to
8s6p6d4f 2g1h) were used in the framework of the IH-FSCC method. Many elec-
trons (42 for No, 43 for Lr) were correlated, so that any core polarizations effects
were included. The mean absolute error for the twenty lowest excitation energies
was 0.04 eV for Yb, 0.05 eV for Lu. The calculated IP of No was 6.632 eV, in
agreement with the semiempirically extrapolated value of 6.65(7) eV [246].

The transition energies and amplitudes of No are shown in Table 7-19. The ener-
gies were obtained by IH-FSCC, and their expected accuracy is �800 cm�1. The
amplitudes were calculated by relativistic CI and have lower accuracy, which is,
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Table 7-19 RCI electric dipole transition
amplitudes of the strongest transitions of nobelium.
� is the lifetime of the upper level

�(Å) Upper state � (s) Lower state A(s�1)

2,365 7s8p 1P1 2.9�10�8 7s2 1S0 3.2�107
2,457 7s8p 3P1 2.9�10�8 7s2 1S0 1.0�107
3,327 7s7p 1P1 2.0�10�9 7s2 1S0 5.0�108
4,103 7s9s 3S1 1.2�10�8 7s7p 3P1 1.8�107
4,484 7s7d 3D2 4.5�10�8 7s7p 3P1 1.4�107
5,140 7s9s 3S1 1.2�10�8 7s7p 3P2 4.2�107
5,663 7s7d 3D3 6.1�10�8 7s7p 3P2 1.7�107
6,168 7s8s 3S1 1.4�10�8 7s7p 3P0 1.1�107
6,832 7s8s 3S1 1.4�10�8 7s7p 3P1 3.3�107
7,679 7s7d 1D2 8.0�10�8 7s7p 3P1 1.2�107
8,171 7s8p 3P0 3.7�10�8 7s6d 3D1 1.6�107

10,290 7s8s 3S1 1.4�10�8 7s7p 3P2 2.8�107
15,427 7s8s 1S0 8.9�10�8 7s7p 1P1 1.1�107
18,235 7s8p 3P0 3.7�10�8 7s8s 3S1 1.1�107

however, sufficient for the purpose of identifying the strongest lines. The simulated
spectrum is shown in Figure 7-5. The salient feature of the spectrum is a strong line
at 30,100 ˙ 800 cm�1, with an amplitude ofA D 5�108 s�1. There are other lines,
with amplitudes at least one order of magnitude lower.

Table 7-20 shows the transition energies of lawrencium. Its ground state (7s27p
2P1=2) is different from that of lutetium (6s25d 2D3=2), as relativity pushes the
7p orbital below the 6d . The QED corrections to the transition energies are small,
below 30 cm�1. This small contribution reflects the fact that the 7s population does
not change for the transitions reported. Some excitations involving holes in the 7s
shell were calculated by the RCI method; they exhibit larger QED effects, between
200 and 400 cm�1. The prime region for observing transitions in the planned
experiment is between 20,000 and 30,000 cm�1. Our calculations predict several
excitations with large transition amplitudes in this region. The strongest lines in the
range of the experiment will correspond to 7p ! 8s at 20,100 cm�1 and 7p ! 7d

at 28,100 cm�1. The 7p ! 9s transition at 30,100 cm�1 is also dipole allowed,
but the very different spatial distribution of the two orbitals is expected to make it
weaker than the other two. The transition amplitudes are shown in Table 7-20. Note
that some excited states, in particular those with a single 7s electron, have large con-
tributions from several configurations. Thus, the first two states in Table 7-20 have
RCI coefficients between 0.4–0.5 for each of the 7s7p1=27p3=2, 6d3=26d5=27s, and
7s6d 2

5=2
configurations, and their assignment is somewhat arbitrary. The simulated

spectrum, obtained by convolution with a Gaussian function with 20 Å full width at
half maximum, is shown in Figure 7-6. The two states with the largest RCI transition
amplitudes are outside the range of the planned experiment. They are dominated by
the 6d 27s and 7s7p2 configurations, which cannot at present be included in the P
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Figure 7-5. Simulated E1 spectrum of No, assuming equal population of all excited levels. The lower
panel is corrected for the total lifetime of the levels

Table 7-20 RCI amplitudes of E1 transitions to the
7s27p1=2 ground state of Lr. The upper levels are
designated by the dominant electron configurations;
other configurations may contribute substantially

� (Å) Upper level J A(s�1)

2,637.7 6d3=26d5=27s 1/2 3.6�108
2,911.3 6d25=27s 3/2 2.2�108
2,988.9 7s28d3=2 3/2 9.4�106
3,151.8 6d23=27s 3/2 8.6�106
3,319.5 7s29s 1/2 6.0�105
3,559.2 7s27d3=2 3/2 3.5�107
3,616.2 7s7p1=27p3=2 1/2 2.7�106
4,306.4 7s7p21=2 1/2 1.4�107
4,967.5 7s28s 1/2 2.7�107



330 E. Eliav and U. Kaldor

Wavelength (A)

2000 2500 3000 3500 4000 4500 5000 5500

S
im

ul
at

ed
 in

te
ns

ity
 (

s–
1 )

0.0

2.0e+6

4.0e+6

6.0e+6

8.0e+6

Figure 7-6. Simulated E1 spectrum of Lr

space. Consequently, these states do not appear in the FSCC calculations, and their
energies may have larger errors than states obtained by FSCC. The transitions at
20,100 and 28,100 cm�1 carry the next highest amplitudes, and are the most likely
to be observed.

7.5.5. Can a Rare Gas Atom Bind an Electron?

One of the most dramatic effects of relativity is the contraction and concomitant sta-
bilization of s orbitals. An intriguing question is whether the 8s orbital of element
118, the next rare gas, would be stabilized sufficiently to give the atom a positive
electron affinity. Using the neutral atom Dirac–Fock orbitals as a starting point raises
a problem, since the 8s orbital has positive energy and tends to “escape” to the most
diffuse basis functions. This may be avoided by calculating the unoccupied orbitals
in an artificial field, obtained by assigning partial charges to some of the occupied
shells. The nonphysical fields are compensated by including an appropriate correc-
tion in the perturbation operator. A series of calculations with a variety of fields
gave electron affinities differing by a few wave numbers [247], from which an elec-
tron affinity of �0.056(10) eV was deduced. More recently, the issue of possible
quantum electrodynamic effects on this quantity was raised. The impetus was a cal-
culation of QED effects on the ionization potential of E119, which was estimated at
0.0173 eV [248], of the same order as the calculated EA of 118. Thus, QED effects
could change the EA significantly, and their treatment has been undertaken [249].

An improved basis set with 36s32p24d22f10g7h6i uncontracted Gaussian-
type orbitals was used and all 119 electrons were correlated, leading to a better
estimate of the electron affinity within the Dirac–Coulomb–Breit Hamiltonian,
0.064(2) eV [249]. Since the method for calculating the QED corrections [248] is
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based on the one-electron orbital picture, the 8s orbital of E118 was extracted from
the correlated wave functions �CC

118 and �CC
118� by


8s.r/ D h�CC
118j�CC

118�i�h�CC
118j�CC

118ih�CC
118� j�CC

118�i	1=2
: (7-92)

The integration in the numerator is over 118 electrons, giving a one electron orbital;
the normalization integrals in the denominator are over all electrons. Using 
8s

and the total electron density, the self-energy and vacuum polarization terms were
calculated, giving a total Lamb shift of 0.0059(5) eV, reducing the electron affinity
by 9% (for details see Ref. [249]). This is the largest QED effect found so far for
neutral or weakly ionized species, confirming the importance of QED corrections
for superheavy elements.

It should be emphasized that correlated nonrelativistic or relativistic uncorrelated
calculations yield no electron affinity for element 118. The Rn atom does not show
a bound state of the anion even at the relativistic CC level.

7.5.6. Adsorption of Superheavy Atoms on Surfaces – Identifying
and Characterizing New Elements

One of the exciting fields in nuclear physics is the production of new superheavy ele-
ments. The newly produced atoms coming out of the accelerator must be separated
from other reaction products and identified to establish their atomic number. Identi-
fication is relatively easy if the nucleus decays by a series of ˛ emissions. However,
many of the neutron rich isotopes, which have relatively long lifetimes and may
therefore be amenable to chemical studies, decay by spontaneous fission to unknown
products. This is the case for the recently produced 283112 (t1=2D3.8 s), 287114 (t1=2

D 0.5 s), and 288114 (t1=2D0.5 s) [250], as well as 284113 (t1=2D0.48 s) [251]. Ele-
ments 112 and higher are expected to be volatile, and their adsorption behavior can
be used by gas-phase chromatography, whereby atoms are deposited on detectors
located along a chromatography column according to their volatility. The deposition
temperatures are measured and associated with the adsorption enthalpies �Hads.
Transition metals, mainly gold, are generally used as detector surfaces, since they
stay clean of oxide layers.

The volatility of element 112 relative to that of Hg was studied by this
technique [252]. The two elements showed similar behavior on gold-covered detec-
tors. The adsorption behavior of element 114 relative to Pb is currently being
studied, and similar experiments may be expected for element 113 and others. Pre-
diction of the adsorption behavior of these elements and their lighter homologues on
different surfaces is important in designing the experiments, choosing appropriate
adsorption surfaces, etc. Calculations pertaining to elements 112–114 and118 have
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recently been carried out [253–255]. Required atomic properties, in particular polar-
izabilities, were calculated by the finite field method (see Section 7.4.6). Adding a
static uniform electric field F to the Hamiltonian gives the energy

E.F/ D E.0/C F � @E.F/
@F

ˇ̌̌
ˇ
FD0

C 1

2
� F2 @

2E.F/

@2F

ˇ̌̌
ˇ
FD0

C � � � : (7-93)

The first derivative is the atomic dipole moment, which vanishes, and the polariz-
ability is obtained by

˛ij D � @2E.F/

@Fi@Fj

ˇ̌
ˇ̌
FD0

; i; j D x; y; z: (7-94)

For a uniform electric field F D Fz in the z direction,

˛ D � @2E.F /

@2F

ˇ̌
ˇ̌
F D0

: (7-95)

The ground state energies of the atoms, E.F /, were calculated for F D
0; 0:001; 0:002 a.u., and the derivative with respect to F 2, multiplied by 2, gave the
polarizability. The calculated values are shown in Table 7-21. Good agreement with
experimental polarizabilities of the lighter elements was obtained. The values in the
last column of the table were obtained by correcting the calculated polarizability of
the superheavy atom by the (small) error for the corresponding lighter homologue.

These values were used in a physisorption model to obtain adsorption enthalpies.
It was found that the �Hads values of Hg and 112 on inert surfaces (quartz, ice,
Teflon) were too close (�2 kJ/mol differences) to distinguish between the two ele-
ments experimentally. The differences between Pb and 114 are somewhat larger,
7 kJ/mol on quartz and ice, 3 kJ/mol on Teflon. Element 118 is also problematic,
giving adsorption enthalpies very close to those of Rn both on noble metals and
inert surfaces. A possible candidate for separating these two elements is charcoal;
further studies are needed to explore this possibility.

Table 7-21 Experimental [241, 256] and calculated
[253–255] polarizabilities (a.u.)

Atom Expt. DF MP2 CCSD CCSD(T) Correcteda

Hg 33.91 44.90 27.47 35.31 34.15
112 29.46 25.11 27.66 27.64 27.40
Pb 45.89 49.91 46.75 46.98 46.96
114 29.78 30.72 30.28 30.59 29.52
Rn 34.99 34.96 34.78 35.04
118 50.01 44.45 46.64 46.33

aSee text.
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7.6. DIRECTIONS FOR FUTURE DEVELOPMENT

The methods and applications described above show that much progress has taken
place in the field. Still, there are many open problems, and we are far from being
able to apply relativistic quantum chemistry routinely to large classes of systems
and states. Recent developments by Saue and Visscher [14] and by Lindgren and
coworkers [41–46] show great promise for overcoming at least some of these
problems. These developments are described briefly in the current Section; the full
details may be found in the original publications. Based on these novel schemes, we
propose in Section 7.6.3 a new double Fock-space formalism, with variable numbers
of electrons and photons.

7.6.1. Beyond Standard Four-Component Hartree–Fock Method:
the QED–SCF Procedure

Here we discuss steps beyond the standard four-component Hartree–Fock approach,
towards a practical variational QED SCF formulation [14]. This will allow us to
consider the extension of the one electron picture to the correlated level of many-
body QED theory in the next subsection.

According to Dirac’s theory, the excitation of an electron from the Dirac sea to a
positive energy orbital, requiring an energy on the order of 2mc2, leaves a hole with
opposite charge, identified later as the positron. Creation of electron–positron pairs
out of the vacuum is thus allowed at sufficiently high energies. Such processes do
not conserve particle number, but do conserve charge. The energies of interaction
in chemistry are generally too low for real pair creation processes, but the Dirac sea
manifests itself in the calculation of heavy elements through vacuum polarization
(VP) and, together with retardation effect, self energy (SE) shifts of the energy lev-
els. If the Dirac sea is regarded as filled core and the interparticle interactions are
in covariant form, the Lamb shift (the sum of the VP and SE) may be understood,
at least in the leading order, via the single particle SCF picture. As shown in [14],
the variational QED procedure corresponds to a true minimum of the ground energy
at the closed-shell Hartree–Fock level. In contrast, the electronic ground state in the
standard approach is characterized by a minimax principle. The standard approach
vacuum is then empty, and the negative-energy orbitals are treated as an orthogo-
nal complement to the electron orbitals. This orthogonal complement, which is an
additional (positronic) degree of freedom, allows nearly complete relaxation of the
electronic ground state. This relaxation procedure in the standard SCF approach
missed the SE and VP terms.

Let us consider the variatianal QED–SCF procedure with the explicitly filled
Dirac sea in more detail. It is convenient to define the reference bare vacuum as
filled with all the negative-energy solutions of the free-particle Dirac equation,

ˇ̌
ˇ0.ref /

E
D a

�

Œ�1�
a

�

Œ�2�
: : : a

�

Œ�1�
jemptyi : (7-96)
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The empty state jemptyi corresponds to the vacuum of the standard approach of
the four-component relativistic molecular theory. Square brackets around indices
(e.g., a�

Œ�l�
) are used to indicate negative energy solutions of the free-particle Dirac

equation. We consider the description of bound electronic states in terms of a single
Slater determinant with all the negative-energy orbitals included explicitly among
the occupied orbitals,

j˚i D a��1 � � �a�
�2a

�
�1a

�
1a

�
2 � � �a�

N jemptyi (7-97)

This form of determinant is convenient to implement in the algebraic approximation,
where the continuum spectrum becomes a quasi-continuum. What we lose by this
approach is the physical picture of electron–positron pair creation provided by the
particle-hole formalism. Following [14], the total SCF energy and Fock matrix of
the standard approach are replaced by their renormalized QED counterparts EQED

and F QED,

EQED D h˚ jH j˚i �
D
0.ref/ jH j 0.ref /

E

D DQED
�
 h
� C 1

2
DQED

�
 h��jj��iDQED
��

(7-98)

F QED
pq D hpq C hp�jjq�iDQED

��
(7-99)

Here the AO density matrix of QED appears,

D
QED
��

D D�� CDLS
��I D�� D

.C/X
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�i � c�Œi �c

�
�Œi �

�
:

(7-100)

Comparing with (7-42) and (7-44), one sees that the standard AO density matrix D
has been replaced by the renormalized QED counterpartDQED, obtained by adding
the Lamb shift density DLS; this reflects the modification of the vacuum density
relative to the reference vacuum upon the introduction of the actual potential. If the
potential includes only the unretarded Coulomb interaction, as in [14], then DLS 
Dpol; where Dpol is pure vacuum polarization density, corresponding to the core
polarization part in electronic structure calculations. If the potential includes, in
addition to the Coulomb term, an effective interaction corresponding to covariant
exchange with a single transverse photon, e.g., energy dependent Breit interaction,
the radiative self-energy correction densityDse is added to the vacuum polarization
term givingDLS  Dpol CDse :

Going from the standard approach to QED means that the negative-energy
orbitals count as core orbitals, and are therefore included in the summation in (7-99).
The HF equations in the variational QED have the same form as in (7-53), but
with the substitution F ! F QED. The first order irreducible self energy and vac-
uum polarization corrections are automatically included in the exchange and direct
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(Coulomb) parts, respectively, of the HF energy in every SCF iteration. This reflects
the topological equivalence of the direct and exchange HF diagrams to the VP and
SE Feynman diagrams, respectively.

7.6.2. Beyond NVPA: QED Many-Body Description and the Covariant
Evolution Operator Approach

The QED description is fully covariant and, in principle, time dependent. To make
connection between stationary infinite order many-body NVPA and QED, let us
consider a time dependent perturbation theory approach, which provides a conve-
nient way to get rid of time dependence in a rigorous and elegant manner, following
[41–46]. The figures below are taken from [46].

The QED Hamiltonian may be written as bHQED D cH0 C bV : Here bH 0 includes
the sum of the noninteracting quantized electronic and photonic field densities,

bH 0 D 1

8
.E2 C B2/�  

�
i��@

� �mc
	
 ; (7-101)

and the perturbation

bV D �e ��A� (7-102)

represents the electron interaction with the electromagnetic field A�.
The basic tool in time-dependent perturbation theory is the time-evolution

operator, which in the interaction picture defines the evolution of the field operators,

j�.t/i D bU.t; t0/ j�.t0/i ; .t > t0/: (7-103)

Perturbative description of the evolution operator bU.t; t0/ leads to the expansion

bU .t; t0/ D
1X

nD0

.�i/n
nŠ

tZ
t
0

dx
1

� � �
tZ
t
0

dx
n
T ŒbV .x

1
/ � � �bV .x

n
/�: (7-104)

T is the time-ordering operator. The contraction of two bV interactions using Wick’s
theorem [257] corresponds to the exchange of a single retarded photon. The opera-
tor (7-104) is non-covariant, since only positive energy states are involved, and time
moves only in the positive direction (Figure 7-7, left). It can be made covariant by
inserting electron propagators on the in- and outgoing lines. By definition, opera-
tors act to the right on unperturbed model states, which implies that with adiabatic
damping we can set the initial time t0 D �1, so that no propagators on incom-
ing lines are needed. Time can then flow in both directions on outgoing lines, and
both positive and negative energy states are accounted for (Figure 7-7, right). The
covariant evolution operator for single-photon exchange is now expressed by
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Figure 7-7. The non-covariant and covariant evolution operators for single-photon exchange

bU Cov.t;�1/ D �
Z Z

d 3xd 3x0b �.x/b �.x0/ (7-105)
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The energy-dependent single photon potential Vsp is given in the Fourier trans-
form by

˝
rs
ˇ̌
Vsp.E/

ˇ̌
tu
˛ D

�
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ˇ̌
ˇ̌

1Z
0

dkf .k/

 1

E � "t � "u � sgn."t /.k � i�/

C 1

E � "s � "r � sgn."s/.k � i�/
�ˇ̌ˇ̌tu

�
; (7-106)

where " is the orbital energy. Orbitals are generated by the Dirac equation in
the nuclear field (Furry picture) or by the SCF procedure described in the pre-
vious subsection (fuzzy picture). k is the photon momentum, and f .k/ is a
known gauge-dependent function [41]. The important point is that the expres-
sion for the interaction potential Vsp is valid even when energy is not conserved
between initial and final states. This feature is needed for treating quasi-degeneracy
with the extended model space technique, based on the effective or intermediate
Hamiltonians described in Sections 7.3.1 and 7.3.2. If energy is conserved,

"r C "s D "t C "u; (7-107)

(7-106) becomes the standard S-matrix result (7-32,7-33).
The covariant evolution operator is generally singular, due to intermediate model

space states. Eliminating the singularities leads to the Green’s operator bG [43].
Green’s operator is closely related to the field theoretical Green’s function, used
extensively in QED (see for instance [58]). The Green’s function is nothing but the
zero-body term in the second-quantized representation of the Green’s operator.

The Green’s operator is separated into open and closed parts, bG D 1CQbGopPC
PbGclP , where bGop operates outside and bGcl inside the model space, as indicated
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by the projection operators P and Q. bGop is essentially the wave operator, used in
the many-body approaches in quantum chemistry and presented in Section 7.3.1,
and bGcl yields the effective Hamiltonian [41, 43]

˝ D P CQbGopP (7-108)

bV eff D P.i
@

@t
bGcl.t//tD0P : (7-109)

The Green’s operator can be applied also to energy-dependent interactions of
the QED type, and forms therefore a link between many-body electronic structure
and quantum field theory. Eliminating the singularity from the covariant evolution
operator leaves some finite residuals [41–43],

bG.t/ D bG0.t/C
X ınbG0.t/

ıEn
.bV eff/

n; (7-110)

where bG0.t/ represents the Green’s operator without any intermediate model-space
states,

bG0 D 1C RQ
bW C RQ

bW RQ
bW C � � � I RQ D Q

E0 �H0

: (7-111)

bW is the sum of all irreducible multi-photon interactions (Figure 7-8), and RQ

is the zero order resolvent operator. The difference ratios transform into deriva-
tives in the case of complete degeneracy. These terms represent the model space
contributions and are analogous to the folded diagrams of open-shell FSCC (see
Section 7.3.1), but also contain energy derivatives (difference ratios) of the energy-
dependent interaction. Summing the contributions to all orders gives the generalized
Bethe–Salpeter (BS) equation in the form of the Schrödinger equation with energy
dependent potential,

.E � bH 0/ j� i D bW .E/ j� i : (7-112)

A similar covariant equation has been derived in 1951 by Bethe and Salpeter
for the complete solution of the two-body relativistic problem [258]. The BS equa-
tion may be solved self-consistently, using, e.g., the Brillouin–Wigner perturbation

W2
= + + + + + ....

^

Figure 7-8. The two-body part of the effective potential bW in the Bethe–Salpeter–Bloch equation
(7-113) contains all irreducible two-body potential diagrams, including the Coulomb interaction as well
as all retardation and radiative effects
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theory. For many-body considerations, such as size-extensivity [2], we prefer to
work with the Rayleigh–Schrdinger theory and the linked-diagram representation,
as in standard MBPT. This may be achieved by transforming the BS equation to the
corresponding Bloch equation (7-65)

.E0 � bH 0/b̋P D .bW .E/b̋ � b̋ bW eff .E//linkedP; bW eff D P bW b̋P; (7-113)

referred to as the generalized Bethe–Salpeter–Bloch (BSB) equation. Note that the
energy parameter of the BS potential bW and the BS effective interaction bW eff

is the target state energy E , and not the model state energy E0, as one might
have expected. This shift is due to the derivative terms in the expansion (7-110).
The Bloch equation (7-113) may be used to generate a perturbative expansion
of the wave operator for energy-dependent interactions. The difficulty here is in
evaluating the energy derivatives of the (multi-photon) perturbation bW .E/, which
is itself calculated numerically. This difficulty may be overcome by working in
the extended Fock space with variable numbers of so called uncontracted virtual
photons (Figure 7-9). These photons may be described by Feynman diagrams cor-
responding to the time after they have been radiated by one electron but not yet
absorbed by another (or the same) electron. Matrix elements describing these dia-
grams are derived using CEO. These matrix elements are energy independent [41],
and the standard many-body machinery may therefore be used. After the absorption
(or contraction) of the virtual photons, the exchange interactions become energy-
dependent (see, e.g., (7-106)). If the virtual photon is absorbed by the same electron
it has been radiated from, we get radiative effects, which should be properly renor-
malized. The renormalization procedure for radiative multiphoton diagrams is not
fully developed yet [41].

The photonic Fock space treatment may be combined with consideration of
electron (and positron) processes and interactions, using the fermionic Fock space
formalism presented in Section 7.3.1. A generalized (“double”) Fock space CC
approach, which treats the electronic and photonic degrees of freedom on equal
footing, thus ensuring covariance, is presented below.

7.6.3. Generalized Fock Space. Double Fock-Space CC

With the uncontracted interactions (7-102), the wave function lies in an extended
Fock space with a variable number of (virtual) photons or photonic Fock-space
sectors (Figure 7-9). The Bloch equation (7-65) will have a particularly simple
structure,

Figure 7-9. The wave function with uncontracted photons lies in an extended Fock space
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Œb̋ ;H0�P D .bV b̋ � b̋bV eff /linkedP; (7-114)

bV eff D PbV b̋P: (7-115)

bV is the energy-independent perturbation (7-102), which may be divided in parts
according to the number of uncontracted virtual photons,

bV D
X
��0

.�/bV .k1l1; :::; k�l�/: (7-116)

.�/ is the number of retarded uncontracted photons, k
 and l
 stand for the energy
and momentum of photon �. Expressions for .�/bV .k1l1; :::; k�l�/ were derived
using CEO [41], and are not shown here.

We consider here explicitly for the first time the exponential form of the wave
operator b̋ D fexp.bS/g in the generalized Fock space with a variable number of
uncontracted virtual photons and electrons/positrons. This parametrization leads
to the double Fock-space CC method, presented below. The double Fock-space
excitation amplitudes have the structure

bS D
X
m�0

X
n�0

X
��0

.�/bS .m;n/.k1l1; :::; k�l�/; (7-117)

where .m; n/ is the electronic valence sector, and .�/ is the number of retarded
uncontracted photons (photonic sectors). The double FSCC equation is

QŒ.�/S
.m;n/

l
;H0�P D Qf.�/.V˝ �˝Veff /

.m;n/

l
gconnP: (7-118)

Note that only connected diagrams appear on the right-hand side of (7-118),
whereas the Bloch equation (7-114) includes all linked diagrams, both connected
and disconnected.

The Fock-space excitation operator .�/S
.m;n/

l
and resolvent .�/RQ are divided

into components acting in the subspaces with zero, one, . . . uncontracted photons
.� D 0; 1; : : :/. The generalized double FSCC equation (for � going up to 2) may
then be separated into

.0/S
.m;n/

l
D (7-119)

.0/R
.m;n/

l;Q
f.0/V .0/˝ C

‚ …„ ƒ
.1/V .1/˝C

‚ …„ ƒ‚ …„ ƒ
.2/V .2/˝ �.0/˝Veff /

.m;n/

l
gconnP;

.1/S
.m;n/

l
D

.1/R
.m;n/

l;Q
f.1/V .0/˝ C.0/ V .1/˝ C

‚ …„ ƒ
.2/V .1/˝C

‚ …„ ƒ
.1/V .2/˝ �.1/˝Veff /

.m;n/

l
gconnP;

.2/S
.m;n/

l
D

.2/R
.m;n/

l;Q
f.2/V .0/˝ C.0/ V .2/˝ C.1/ V .1/˝ C

‚ …„ ƒ
.2/V .2/˝ �.2/˝Veff /

.m;n/

l
gconnP:
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The upper curly brackets stand for numerical integration over the photonic energy k
and momentum l . Thus, multi-photonic retarded energy-dependent interactions are
evaluated numerically in the generalized Fock-space by contraction of the photonic
uncontracted lines of .�/bV with those of .�/bS .m;n/ in all possible ways. Note that an
exponential form of b̋ will introduce powers ofbS in (7-119); the integration (unlike
the more familiar contraction) is carried out over V and the first S in the term. Mul-
tiphotonic terms describing the interelectronic potential are evaluated by an efficient
all-order CC procedure. The effective potential derived by iterative solution of the
FSCC equations in the photonic sectors is used in the equation for the electronic sec-
tors. The energy dependence is introduced either by the energy denominators or by
the folded diagrams with a double energy denominator. After reaching convergence
in the double FSCC equations (7-119), the effective (or intermediate) Hamiltonian
in the pure electronic valence sectors, Heff D H0 C Veff , is diagonalized to yield
directly electronic transition energies.

An example of applying the method with the Bloch equation, without an explicit
exponential parametrization of ˝ , has been given by Lindgren and coworkers
[43–45]. The truncation to single and double excitations gives the so called all order
pair equation. It is convenient to describe the scheme using the diagrammatic rep-
resentation. Starting by iterating the Coulomb interaction in the Furry picture leads
to the standard (relativistic) pair-correlation (˝2) function (Figure 7-10a). A new
pair function with one uncontracted photon (b) is then generated, and additional
Coulomb interactions may be added before and after closing the photon (c-e). This
leads to one retarded Breit interaction with any number of Coulomb interactions.
Absorbing the photon on the same electron leads instead, after proper renormal-
ization, to the electron self energy and vertex corrections (f). The whole procedure
can then be repeated (g). In principle, it is possible to create a second photon before
the first in absorbed (Figure 7-9), which would generate irreducible multi-retarded
photon exchange. This would rapidly exceed currently available computational
capabilities, but the effect may be estimated analytically.

The double Fock-space CC approach presented here is under development. In
addition to the Furry picture, we implemented the fuzzy picture, based on the
variational QED–SCF procedure described in Section 7.6.1. In the fuzzy picture
approach, single electronic spinors are “radiatively dressed”; they include first order
VP and SE diagrams, as well as higher order reducible diagrams generated from

a b c d e f g

Figure 7-10. Single- and double-photon exchange
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them by the SCF procedure. This makes it possible to avoid highly complicated cal-
culations of renormalized contributions to radiative terms at the correlation stage.
Another feature is that the exchange with one transverse photon is added to the
instantaneous Coulomb interaction in the photonic Fock-space 0-sector (with no
uncontracted virtual photons). This way, many irreducible two-photon diagrams
may be evaluated numerically in a single uncontracted photonic sector. This and
some other recent developments of covariant many-body methods will be reported
in a future publication [259].

7.7. SUMMARY AND CONCLUSION

The no-virtual-pair Dirac–Coulomb–Breit Hamiltonian, correct to second order
in the fine-structure constant ˛, provides the framework for four-component meth-
ods, the most accurate approximations in electronic structure calculations. The
status, features and perspectives for further development of benchmark NVPA
many-body methods have been reviewed. Infinite order many-body methods, in
particular the coupled cluster scheme, are the most successful approaches to the
treatment of electron correlation within the NVPA framework. When applied within
the effective or intermediate Hamiltonian technique, these methods give remarkably
high-quality results for the most complicated cases of dense quasidegenerate open
shell levels in heavy atomic and molecular systems. The IH Fock-space coupled
cluster method has structure and features highly suitable for benchmark calcula-
tion within NVPA, as well as for extrapolation transcending NVPA towards proper
merging with QED theory. Representative calculations included in this review
demonstrate the power and reliability of the FSCC method. Transition energies of
heavy atoms calculated by NVPA FSCC, including ionization potentials, excitation
energies and electron affinities, usually agree with experiment within a few hun-
dredths of an eV. The frequency independent Breit term must be included in the
Hamiltonian for this level of accuracy; it is particularly important for hyperfine split-
tings [121, 187] and for transitions affecting the occupancy of f shells [260]. The
latter transitions also require high l basis functions, with i (l D 6) orbitals contribut-
ing up to 0.1 eV in the case of La. The ability of these methods to reproduce available
spectroscopic data lends credence to predictions made regarding the structure and
spectroscopy of superheavy elements, which are gradually becoming accessible to
experimental study. Among the elements with chemistry expected to be different
from that of the lighter homologues are roentgenium (E111), with a ground state
electron configuration unlike that of the lighter coinage metals; eka-lead (E114),
with an ionization potential higher than any group-14 atom except carbon; and eka-
radon (E118), which is the first rare gas to bind an electron. Four-component NVPA
molecular calculations, while not reaching the accuracy obtained for atoms, are the
most precise available for schemes with similar scaling and computational cost.

While NVPA correlated four-component methods provide excellent results
where applicable, they are less accurate for highly ionized heavy and super-
heavy systems, due to large QED effects. Most current QED approaches can
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only be applied in single-particle approximations, and cannot incorporate electron
correlation and quasidegeneracy effects to high order. The recently developed
covariant evolution operator method of Lindgren [41] is free of these drawbacks,
and opens new perspectives for deriving truly covariant many-body methods. As an
example of such methods, we presented a double Fock-space CC method, which
couples electronic and photonic degrees of freedom in rigorous manner. Less com-
putationally demanding methods can be derived from this many-body QED theory.
These approximations are expected to be similar to the NVPA and other, less expen-
sive relativistic methods, which have proved to be of great value in the study
of atomic and molecular systems, as shown in the present and other chapters of
this book. Nevertheless, QED four-component benchmark calculations for carefully
selected systems will be necessary to test and calibrate the less expensive and more
widely applicable schemes, currently available or developed in the future.
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Abstract: Core electron spectroscopies like X-ray photo-electron spectroscopy, X-ray absorption
spectroscopy and electron energy loss spectroscopy are powerful tools to investigate the
electronic structure of transition metal, lanthanide and rare earth materials. On the other
hand, the interpretation of the spectra is often not straightforward. Relativistic effects
and in particular spin-orbit interactions, electron-electron interaction in the valence shell
and between core and valence electrons, solid state effects may all play a role in the
core electron spectra. Dynamical and non-dynamical electron correlation effects may
also be non-negligible. The spectra can be interpreted and predicted using first princi-
ples computational methods that take into account both relativity and electron correlation.
Furthermore, such approaches enable the interpretation of the complex processes in terms
of physical mechanisms. This chapter discusses the effects of relativity on the core spec-
tra of transition metal, lanthanide and actinide materials and a number of much used
computational approaches to describe and interpret the spectra.

Keywords: X-ray photo-electron spectra, X-ray absorption spectra, Electron energy loss spectra, Ab
initio relativistic quantum chemical methods, Spin-orbit effects, Branching ratios

8.1. INTRODUCTION

In many cases the consequences of relativity in materials manifest themselves
clearly in the electronic, magnetic and optical and properties. In this chapter we
focus on the interpretation of relativistic effects on spectroscopic properties, in par-
ticular on core and deep valence excitation and ionization spectra of transition metal,
lanthanide and actinide materials. For excitation from p, d,. . . shells spin-orbit angu-
lar momentum coupling is a prominent relativistic effect. Core spectroscopies like
X-ray Photo-electron Spectroscopy (XPS), X-ray absorption spectroscopy (XAS)
and Electron Energy Loss Spectroscopy (EELS) can nowadays in many cases give
very accurate information on the electronic structure of matter. On the other hand,
the interpretation of the spectra is often rather complicated, especially in materials
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that contain open shell ions. For example, the relative intensities of spin-orbit split
peaks in electron energy-loss spectroscopy and near edge X-ray absorption spec-
troscopy can only in special cases be roughly deduced from the statistical weights
of the core levels. In most cases the angular momentum couplings of the open shell
valence electrons, the external crystal field and covalent effects strongly affect these
ratios [1–3]. A quantitative estimate of these effects on the branching ratios cannot
be found without the aid of computational results.

The shifts of core electron binding energies as observed in X-ray photo-electron
spectra (XPS) of an ion in a particular chemical environment with respect to a cho-
sen reference can also provide detailed information about the ground state electronic
structure of the materials. Especially in the case of XPS the effects of charge trans-
fer (CT) present a complication for the interpretation of the spectra. The creation
of a hole in one of the core orbitals of an atom lowers the excitation energy of so-
called charge transfer states, in which an electron is transferred from the neighboring
atoms to the core-ionized atom. Hence, the hole may become screened through CT,
depending on the electron affinity of the ionized atom.

It is clear that a definite interpretation of X-ray spectra is often not possible
without the aid of computational results. Semi-empirical methods using effective
integrals and Hamilton matrix elements have been quite successful in reproducing
experimental spectra, see for example the reviews [4,5] and references therein. How-
ever, semi-empirical approaches cannot be used for an independent prediction of the
excitation spectra, because essential parameters are adjusted to fit experimental data.
Standard density functional theory (DFT) has the problem that it is a ground state
theory. Time-dependent DFT is only recently being explored as a possible tool for
the analysis of spin-orbit-split core excitations [6] in materials. The availability of
ab initio methods that are able to include relativistic as well as atomic and solid-state
many-electron effects from the outset is therefore of great importance.

In recent years first principles four-component methods based on solving the
Dirac-Fock configuration interaction (CI) equations and applied to embedded clus-
ters of adequate size have been shown to be well suited for the study of core
electron spectra [3, 7, 8]. The four-component CI methods allows for a balanced
treatment of relativistic and electron correlation effects. Traditionally the severe
computational demands have formed an important drawback for using these four-
components methods, but with the increased availability of massive compute power
and the increased efficiency of the program packages built for these methods [9],
Dirac-Fock-CI studies for clusters of moderate size have come within reach.

A more economic approach is to start with non-relativistic orbitals and wavefunc-
tions [10–12] and add scalar relativistic corrections (the mass-velocity and Darwin
terms) by modifying the one-electron Hamiltonian before [12] or after [10, 11]
orbital optimization, while spin-orbit effects are included in a second step via a spin-
orbit-coupling CI treatment. These approximate approaches to include relativistic
effects have the important practical advantage that standard quantum chemical pro-
gram packages can be used. A disadvantage is that the orbitals are determined
without taking the spin-orbit effects into account.
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The need for accurate computational investigations to complement experimental
studies can be further illustrated by two examples, both concerning XPS data. The
spectra for metallic Zn show that the Zn 2s and 2p binding energies are quite sim-
ilar to those in ZnO, although Zn is in its oxidation state zero in the metal and
two in ZnO. The experimental 2p3=2 binding energy values are close to 1,021.8 eV
for both compounds [13, 14]. With the aid of quantum chemical ab initio cluster
calculations Rössler et al. [10, 11] were able to find an explanation: although the
initial state effects, which represent the chemical bonding situation of the Zn atoms
(ions) before ionization, and the final state effects, which account for relaxation and
screening effects after ionization, are quite different in metal and oxide, they acci-
dentally add up to practically identical binding energy shifts with respect to a free
Zn atom [10, 11]. The second example concerns the 3s XPS of NiO and MnO: both
spectra show a secondary peak at about 6 eV higher binding energy than the main
peak and it is tempting to assume that the secondary peaks are of common origin.
First principles many-electron studies of embedded clusters revealed however that in
the case of NiO both peaks are associated with high spin final states, which both have
considerable CT character, while in the case of MnO the contribution of CT effects is
much smaller and the secondary peak corresponds to a lower spin final state [15,16].

The importance of many-electron theories for electronic transition processes in
materials science is also emphasized in a recent review by Adachi and Ogasawara
[17]. A discussion using ab initio Green’s function results for the XPS of several
levels of atoms from calcium to uranium, with the emphasis on the effects of Coster-
Kronig processes, can be found in a review paper by Ohno [18]. Moore, Van der
Laan and co-workers [19–21] combined relativistic atomic many-electron calcula-
tions [22], theoretical spin-orbit sum rules derived by Thole and Van der Laan [1,2]
with branching ratios observed in XAS and EELS to obtain valence spin-orbit inter-
actions in transition metal, lanthanide and actinide materials. An extended review
of this approach, with applications to actinides, is given in [21].

In atomic systems there are two standard ways to interpret relativistic angular
momentum couplings, Russell-Saunders coupling and j-j coupling. If the spin-orbit
coupling is weak compared to the electron-electron interactions, the Russell-
Saunders scheme is used, in which first the orbital momenta l of the individual
electrons are coupled to a total angular momentum L and the spin momenta s of the
individual electron are coupled to a total spin S. Then L and S are coupled to a total
angular momentum J. The j-j coupling scheme is used in cases where the spin-orbit
coupling is strong compared to the electron-electron interactions. Here the angular
momentum l and the spin s of each electron are coupled to give an individual angu-
lar momentum for each electron. The individual j for each electron are then coupled
to give a total angular momentum J. Relativistic many-electron calculations are able
to treat the entire range of angular momentum couplings, from negligible spin-orbit
coupling to dominant spin-orbit coupling. The results, often said to be obtained in
“intermediate coupling” [20] can be expressed in terms of Russell-Saunders states
or in j-j coupled states, whatever representation gives better insight [4, 7]. When
the core spin-orbit coupling is large, but the valence spin-orbit coupling is small, it
may be useful to use a mixed coupling scheme, in which an open core shell is j-j
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coupled and the open valence shell is Russell-Saunders coupled. Examples of all
three schemes, Russell-Saunders, j-j and mixed coupling, appear in Section 8.3 and
8.4, where we discuss a few representative examples of core ionization spectra and
core excitation spectra. Section 8.2 gives a concise description of four-component
computational methods that enable accurate treatment of the relativistic effects in
initial and final states of core electron spectra.

8.2. COMPUTATIONAL METHODS

The preferred material model for the prediction and interpretation of core excita-
tion spectra in crystalline materials is the embedded cluster model. In the embedded
cluster approximation a small part of the crystal is represented by atoms at lattice
positions. This cluster is embedded in an effective potential accounting for the rest
of the crystal. Since the cluster model enables the use of many-electron quantum
chemical methods, it allows for an accurate account of the local electronic response,
i.e. of the differential electron correlation and relaxation effects that accompany
the excitation and ionization processes. The most straightforward way to treat rel-
ativistic effects is to use a four-component relativistic many-electron method. The
four-component Dirac-Fock-CI method has the advantage that it can treat relativis-
tic effects, electron correlation effects and relaxation effects from the outset and on
the same footing. The method is used in various examples given in the next two sec-
tions. We start therefore with a very brief review of this method, following Visscher,
Visser and co-workers [23, 24].

The one-electron Dirac equation describes the motion of an electron in an elec-
tromagnetic field in accordance with the theory of special relativity as well as the
theory of quantum mechanics. The time-independent version of this equation reads

.c˛ � p C ˇmc2/ D " (8-1)

The ˛ and ˇ matrices are 4 � 4 matrices given by
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The �’s are 2 � 2 Pauli matrices, I2 and O2 are �2 identity and null matrices. The
spectrum of the four-component free electron Dirac Eq. (8-1) is unbounded from
above, as well as from below, so there is no state of lowest energy. Solutions occur
with eigenvalues above mc2 (the electron solutions) as well as with eigenvalues
below �mc2 (the positron solutions). The existence of the negative eigenvalue
solutions gives rise to conceptual difficulties, but fortunately the problems con-
nected with the negative eigenvalue solutions are in practice not very prominent
[23, 24]. The Dirac equation is often written as a two-component equation for
two-component spinors (single particle functions),
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This equation clearly shows the different character of the electron and positron
solutions. It can be shown that for the positive energy solutions the two-component
spinor §L has an amplitude of order c larger than the two-component spinor
§S [23, 24]. In the Born-Oppenheimer approximation, the Dirac equation for an
electron in the static field 
 due to nuclei is then
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The positive potential due to the nuclei leads to bound electron states. Finally we
shift all energies in this one-particle Dirac equation by �mc2 to ease comparison
of the electron eigenvalues with the values found in nonrelativistic theory [23, 24]
giving:
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The above equations are valid for one particle, so the next step is to find a many-
particle equation that can be used for many-electron systems. This means that we
have to define an appropriate electron-electron interaction operator. The Coulomb
operator by it self has the problem that it is not invariant under Lorentz operations.
Therefore approximate invariance corrections, like the Breit term [25] or the Gaunt
term [26] are often added. We can then formulate a many-electron Hamiltonian

H D
nX
i

hi C
nX

j >i

gij (8-6)

in which hi is the Dirac operator of Eq. (8-5) for electron i and gij is the electron-
electron interaction operator. The corresponding many-electron equation of motion

H‰ D E‰ (8-7)

is called the Dirac-(Gaunt/Breit) equation, depending on which operator gij is
used [23]. In the Dirac-Fock-CI approach the many-electron wavefunction is
approximated by a sum of Slater-determinants built from orthonormal spinors §:

‰ D
X

I

ˆICI (8-8)

ˆI D .nŠ/�1=2 det j I1.1/ I2.2/ : : :  ln.n/j (8-9)

The spinors § are commonly optimized in restricted open shell Dirac-Fock calcu-
lations. For the description of core electron spectra it is important to use optimized
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spinors not only for the initial state but also for the final states. This final state
orbital optimization allows for a compact representation of the orbital relaxation
after core excitation. This orbital relaxation is especially important for the outer
shell spinors, which become more contracted in the presence of a core hole.

Often the orbitals are not optimized for each state separately, but instead for a
weighted average (WA) over all states of a particular configuration. Having one
common orbital set for all states of a configuration has important computational
and conceptual advances, while the energy increase with respect to fully optimized
orbitals for each state is usually only minor. Whether the WA approach is can be
used, depends on the case at hand.

The energies of the various angular momentum coupled states of each electronic
configuration can be obtained from a complete open shell CI (COS-CI) calculation:
a full CI in the space of the open shell orbitals [23]. In a ground state COS-CI
calculation the valence electrons are distributed in all possible ways over the open
valence orbitals, while all other electrons are in doubly occupied orbitals. Core ion-
ized or core excited states have not only open shell valence electrons, but also open
shell core electrons. In a COS-CI calculation of such states the core hole is also
distributed in all possible ways over the open core orbitals. Depending on the prob-
lem at hand, the core hole may also be kept fixed in one particular core orbital. The
COS-CI allows accounting for the electron-electron interactions of the valence shell
electrons and, for the final states, also for the electron-electron interactions amongst
the open shell core electrons as well as the electron-electron interactions between
core and valence electrons. The COS-CI accounts for the electron correlation within
the valence shell, it does not include dynamical electron correlation. This dynamical
correlation is in most cases predominantly an atomic effect and the consequences of
neglecting this correlation can be estimated from accurate free ion/atom studies.

In order to obtain theoretical spectra, not only relative energies but also rela-
tive intensities have to be computed. This implies that overlap matrix elements (for
XPS) or dipole matrix elements (for XAS and EELS) between initial and final wave-
functions need to be evaluated. The non-orthogonality between the spinors of the
initial and final states makes that these computations are non-trivial. Moreover, the
matrix elements have to be calculated for a large number of final states, that are
each expanded in many Slater-determinants. With the aid of the cofactor method of
Prosser and Hagström [27] the computations of relative intensities become feasible.

Since the core electrons have their density close to the nuclei, we also need to
consider the model to be used for the nuclei. In non-relativistic theory it is com-
mon to take a simple point charge model. The radial solutions of the Schrödinger
equation for the point-charge potential can be exactly represented by Slater type
functions rne��r . In relativistic theory one can also find exact solutions of the Dirac
equation for the point-nucleus potential. For example, the radial part of the 1s1=2

solution for a point nucleus is given by

R.r/ D r�1e��r with � D
r
1 � Z2

c2
(8-10)
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where Z is the charge of the nucleus [24]. We see that the finite speed of light
gives rise to a non-integer power of r. This causes a weak singularity at the origin.
Because this singularity is just an artifact of the point-charge model, the use of the
point-charge model in Dirac-Fock calculations is not recommendable. Moreover,
such singularities are hard to describe with Slater type basis functions and even
harder with Gaussian type functions. Therefore, the choice of a finite nuclear model
is also computationally favourable [23, 24, 28]. A slight disadvantage is that there
is no agreement yet on a standard finite nuclear model, so that different models and
parameterisations are in use, such as a uniform nuclear charge distribution over a
finite sphere or a charge distribution over a narrow Gaussian function. Careful Dirac-
Fock studies [28] showed that for properties that do not directly involve the nuclei,
the choice of a particular nuclear model has no important consequences, except that
finite nucleus models give a higher total energy than the point-charge model. This is
mostly due to an increase in energy of the innermost s-spinors. Differences between
different popular finite size models are only minor. The influence of the chosen
nuclear model on the spin-orbit splitting of the one-electron levels is small [28]. For
example, for uranium (Z D 92) the average energy of the 2p levels is unaffected and
the 2p spin-orbit splitting decreases by 3.1 eV from 3,834.5 to 3,831.4 eV, when a
finite nucleus model is chosen instead of a point nucleus. The 4f levels are stabilized
by 0.08 eV, while the spin-orbit splitting is unchanged. In the 3d transition metal
manganese both 2p-levels are stabilized by 0.0004 eV with a finite nucleus model
as compared to a point nucleus, the 10.62 eV spin-orbit splitting is unaffected.

Presently only a few computer packages are well suited to perform four-
component calculations for molecules and embedded clusters. The first is the
MOLFDIR suite for relativistic Dirac-Fock-CI calculations, developed at the
University of Groningen [23]. The generation of one and two electron integrals over
basis functions, a necessary step in all wavefunction based ab initio calculations, is
rather slow in MOLFDIR. The package is capable of handling up to the Dirac-Fock
level all double groups that are subgroups of the Oh double group. At the CI level
the highest Abelian subgroup of the point group under consideration is used. For
systems with high symmetry exploiting this symmetry is helpful to keep the calcu-
lations feasible. Moreover the point group representations may be used to label the
different states and to clarify the interpretation. The DIRAC program suite can also
perform relativistic Dirac-Fock-CI calculations [29]. It is capable of handling only
Abelian symmetry groups, but on the other hand it has a much faster integral gen-
erator. Four-component multi-reference methods have been developed by Ishikawa
et al. [30].

Van der Laan and co-workers [2, 4, 19, 20] make use of the relativistic atomic
program package of Cowan [22]. They combine the results of relativistic Hartree-
Fock calculations with branching ratios observed in near-edge XAS or EELS data.
With the aid of a spin-orbit sum rule [1], information is obtained for the valence shell
spin-orbit splittings. This procedure is further outlined and illustrated in Section 8.4.
Recently a DFT-CI method has been developed [31, 32] in which Kohn-Sham
(or Dirac-Kohn-Sham) orbitals instead of Hartree-Fock (or Dirac-Fock) orbitals
form the one-electron basis for the CI calculations. In this approach electronic
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correlations among selected orbitals are “explicitly correlated”, i.e. taken into
account by the CI scheme, while correlations amongst other orbitals are treated
within the framework of DFT. Clearly the quality of the DFT-CI results depends on
the exchange-correlation potentials used in the calculations as well as on the choice
of the orbitals to be correlated through CI [16]. The CI results discussed in the
next sections are obtained from calculations in the conventional (four-component)
wavefunction based CI approach, where the spinors are determined in Hartree-Fock
(Dirac-Fock) self-consistent field (SCF) or multi-configuration SCF calculations.

8.3. X-RAY PHOTOELECTRON SPECTRA

The X-ray spectra of transition metal, lanthanide and actinide materials are quite
complex. Most of these materials are open shell compounds: they contain atoms
or ions with incompletely filled electron shells. Atomic many-body effects, many-
body effects relating to inter-atomic charge-transfer and relativistic effects all play
a role. Spin-orbit interactions must be included in the treatment of ionization from
shells with non-zero orbital angular momentum. Even in 3p XPS of 3d-transition
metal compounds, spin-orbit couplings determine the spectra to some extent. For
sufficiently large core-spin-orbit splittings the X-ray spectra show doublets that
correspond to excitations from different spin-orbit-split core levels.

To analyze this in more detail we consider the Mn 2p and 3p XPS of MnO, fol-
lowing Freeman et al. [15] and Bagus et al. [7, 8]. MnO is an ionic material, which
crystallizes in a simple rock salt crystal structure. Each Mn ion is coordinated by six
oxygen ligands and has octahedral (Oh) site symmetry, likewise each oxygen ion is
surrounded by an octahedron consisting of six Mn ions. Bagus and co-workers ana-
lyzed the spectra using ab initio four-component relativistic CI wavefunctions for
embedded cluster models of MnO. The simplest model for representing Mn in MnO
consists of a single Mn2C ion embedded in a point charge array that reproduces
the Madelung potential of an ideal MnO crystal. This purely ionic model allows the
testing of the importance of atomic relativistic and electron correlation effects. Of
course, in compounds that are less ionic than MnO, such as rock salt NiO, core exci-
tations cannot be treated without accounting also for ligand-to-metal charge transfer
effects (see [16] and references therein). In MnO, however, the atomic relativistic
and correlation effects are dominant over the charge transfer effects and therefore
the single embedded ion is a reasonable first approximation.

The ground state of Mn2C is dominated by the 1s22s22p63s23p63d 5 configura-
tion, which is often abbreviated as KLM 3d 5, here we use the shorthand notation
3d 5. Likewise, the leading configurations of the 2p and 3p hole states are denoted
2p53d 5 and 2p53d 5, respectively. We use atomic symmetry notations that neglect
the covalent mixing of the Mn orbitals and the crystal-field splitting of the orbital
levels. However, the calculations quoted below [7, 8, 15] take account of the appro-
priate double group symmetry representations. The 2p XPS spectra in MnO are
qualitatively different from the 3p spectra. The 3p3=2–3p1=2 spin-orbit splitting is
only �1:4 eV in Mn2C, so the 3p hole spectra can well be analyzed in terms of
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spin-orbit-split Russell-Saunders (RS) multiplets 2SC1L. The 2p hole spectra cannot
be analyzed in this way because the 2p3=2–2p1=2 spin-orbit splitting is much larger,
�10:6 eV. The high spin initial state of Mn2C is 6S while the allowed final states
are 5P and 7P , arising from p5.2P/d5.6S). In order to determine the relative XPS
intensities Irel the sudden approximation (SA) [33] can be used. The SA assumes
that at the instant of photo-ionization, the ionized state is described by a “frozen”
wavefunction ‰F that results from annihilating one electron from the initial state
wavefunction. The transition probability towards a final wavefunction‰k is consid-
ered to be proportional to the square of the many electron overlap integral between
the ‰k and the “frozen” wavefunction,

Pk �
D
‰k

ˇ̌
ˇ ‰F

E2
(8-11)

We consider first Mn 3p ionization in MnO. The 3p XPS shows an intense first peak
at �47:5 eV binding energy, a shoulder at �2:5 eV higher binding energy and a
very broad, about 20 eV wide, peak centered at �20 eV above the first peak [8, 35].
Nonrelativistic results for Mn2C have already been obtained over 30 years ago by
Freeman et al. [15], who performed Hartree-Fock calculations followed by COS-CI:
a full CI in the space of the five 3d valence orbitals. In this configuration space the
final 7P state can only be built from 3p5.2P/3d 5.6S/. The leading configuration
of the final 5P state is also 3p5.2P/3d 5.6S/, but two other valence shell angular
momentum couplings, 3p5.2P/3d 5.4P/ and 3p5.2P/3d 5.4D/ also give terms of
5P symmetry. These last two terms, whose angular momentum coupling within the
3d shell is different from that of the initial state, are not “allowed”: they do not carry
intensity. However, these configurations do have the same total symmetry as the
allowed 3p5.2P/3d 5.6S/ configuration and therefore they can mix with the allowed
configuration. This mixing of configurations yields states, which “steal” intensity
from the allowed configurations and this leads to the distribution of intensities over
various final states and therefore over a range of energies.

The four-component Dirac-Fock-CI results were obtained by Bagus et al. [7]
with the MOLFDIR program system [29]. Table 8-1 shows the nonrelativistic ener-
gies and intensities [15] with the corresponding relativistic results [7] for 3p-hole
states of Mn2C. The Mn orbitals were optimized separately for the initial 3d 5 and
for the final 3p53d 5 configurations. The CI was a COS-CI with the 3d-orbitals as
active valence orbitals. The SA relative intensities are normalized so that the Irel of
the final state of lowest energy is equal to its degeneracy. The lowest 7P multiplet
has a degeneracy of 7� 3 and it is split into J D jS C Lj: : :jS–Lj levels, in this case
into J D 4, 3, 2, each with degeneracy 2JC1 D 9, 7, 5. The three 5P states resulting
from the COS-CI mentioned above each have a degeneracy of 5 � 3 D 15. The J
values corresponding to each of these multiplets are 3, 2 and 1. Each of the three
5P states carries intensity, since the “allowed” 5P configuration originating from
3p5.2P/3d 5.6S/ contributes to each of the three CI wavefunctions. The nonrela-
tivistic results in Table 8-1 show that the lowest 5P final state at about 4 eV carries
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Table 8-1 Comparison of nonrelativistic Hartree-Fock-CI results [15] and relativistic Dirac-
Fock-CI results [7] for 3p-hole states of Mn2C. Relative energies (eV) and relative intensities

Nonrelativistic Relativistic
Erel.eV/ Nr. of states Irel Erel.eV/ Nr. of states Irel

7P 0 21 21 0 9 9
0.50 7 7.0
0.93 5 5.0

5P 4.0 15 4.9 4.0–4.5 52 4.8
5P 9.4 15 0.2 9.3–9.5 49 0.2
5P 23.8 15 10.0 23.1–24.4 25 9.9

�25% of Irel.
7P/ and the state at �24 eV gets �50%. Of course, other 3p5d 5 states

are also present in this energy region, but due to their symmetries they carry zero
intensity. The computed 7P �5P energy splitting is about 1.5 eV larger than the
experimental splitting of about 2.5 eV. This error is well understood: the energies of
d 5 multiplets with respect to the lowest 6S multiplet are overestimated due to the
approximate treatment of the atomic electron correlation in the calculations shown
here.

Turning now to the relativistic calculations [7], we observe that the lowest
Russell-Saunders multiplet is split into three different levels, with intensities that
are consistent with the degeneracies of the J D 4, 3, 2 levels. Their energy separa-
tions are in reasonable agreement with the Landé-interval rule [36,37], which states
that the energy separations between three J levels corresponding to one RS multiplet
are approximately given by

EJ �EJ �1

EJ �1 �EJ �2

D J

J � 1
(8-12)

In the energy range from 4 to 4.5 eV about 50 relativistic final states are present,
whose intensities sum to roughly that of the non-relativistic 4P multiplet at 4 eV.
These states are best described as a mixing of different occupations of the 3p and
3d spinors, rather then as pure J D 2, 1 and 0 levels [7]. Likewise, there are also
about 50 different relativistic states around 9.5 eV and 25 relativistic states around
24.8 eV. Comparing the nonrelativistic and relativistic results reveals that not only
the relative energies and but also the relative intensities Irel are quite similar in the
two cases. Of course, J can be only a good quantum number in an isolated ion. There
the states of a given J level are degenerate. In a crystal, the crystalline environment
lowers the site symmetry and the energies of the states are split by ligand and crystal
field effects so J is only an approximate quantum number. Moreover, a real crystal is
never purely ionic, there are always effects of covalency. Accurate four-component
calculations for an embedded ŒMnO6� cluster model [8] showed splittings of only
�0:1 eV within the three approximate J-levels of the 7P state .T1u in the Oh site
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Figure 8-1. Experimental 2p level XPS spectra of MnO taken from [35] and theoretical spectra taken
from [7]. The spectra were aligned so that the first experimental peak and the first theoretical peak with
J D 4 are at zero energy

symmetry). This is not surprising since the 3p electrons are quite localized. The
conclusion is that the Mn 3p XPS of MnO can be well interpreted in terms of spin-
orbit-split atomic Russell-Saunders terms. It is clear that the origin of the structure
of the 3p XPS of MnO is the angular momentum recoupling of the 3d shell. In
particular, the shoulder at �2:5 eV in the spectrum can be viewed as a 3d angular
momentum recoupled low spin atomic peak.

The interpretation for the 2p XPS of MnO is quite different. Single crystal Al �
K˛ spectra taken by Parmigiani and Sangaletti [35] are shown in Figure 8-1. The
spectrum shows four main features. The main peak and the feature at Erel � 7 eV
are ascribed to 2p hole states where the 2p5 shell is j-j coupled to j D 3=2; the two
features above 10 eV are ascribed to j D 1=2 coupling of the 2p5 shell.

Clearly, it is not possible to make an analysis of the 2p hole spectra in terms
of spin-orbit-split RS multiplets 2SC1L. This is because the 2p1=2–2p3=2 spin-orbit
splitting is large. It is, however, possible to use a mixed coupling scheme, in which
the 2p5 core shell is j-j coupled and the 3d5 valence shell is Russell-Saunders cou-
pled. In the 2p hole states of lowest energy the 2p5 shell is j-j coupled to j D 3=2

and the 3d5 shell is coupled to 6S5=2. This leads to four levels with J D 4, 3, 2, 1.
The computed energies of the four lowest 2p hole states, calculated with the same
four-component full valence CI model as used above for the 3p hole states, have
indeed J D 4, 3, 2, 1. These energies are shown as a line spectrum in Figure 8-1.
The relative intensities of the three higher states, with J D 3, 2, 1, are somewhat
lower than expected from the degeneracies corresponding to their J values. This is
due to configuration mixing with other d5 multiplets with the same J values.

It is customary to construct a theoretical spectrum from the theoretical energies
and SA intensities, by convoluting the intensities to take account of the core-hole
lifetimes and of the experimental resolution. In the present case, the lifetime broad-
ening has been represented by a Lorentzian function with a half width at half
maximum of 0.35 eV; the experimental broadening by a Gaussian function with
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0.5 eV half width at half maximum. In the so obtained theoretical spectrum the four
main features in the MnO spectra are reproduced with roughly the correct width and
intensity, see Figure 8-1. The main difference is that the theoretical Erel are �2 eV
higher than observed. As for the 3p-hole states, this error is due, at least in part,
to the use of a formalism that overestimates the width of the d5 multiplet energies.
It is important that all four main features of the 2p XPS spectra are present in the
theoretical spectrum [7] that was obtained for a single Mn2C ion embedded in point
charges. In earlier semi-empirical studies [38] the second and fourth feature were
assigned as arising from solid state effects, in particular from mixing of d5 with
ligand-to-metal charge transfer configurations. A recent ab initio four-component
study in the same spirit as shown here, but for a larger MnO6 cluster [8] confirmed
that all main features of the Mn 2p and 3p XPS in MnO can be understood by
considering relativistic and electron correlation effects of the Mn ions.

So far we have considered relative electron binding energies, taking the position
of the first peak as Erel D 0. In materials science it is quite useful to discuss binding
energy shifts, for example with respect to the binding energies of the correspond-
ing levels in the free atom or ion. In order to facilitate the physical interpretation
of the various energy effects contributing to the binding energy shifts, it is helpful
to separate the various contributions to the binding energy into initial state effects
and final state effects. Initial state effects can be said to be due to the environ-
ment of the electron to be excited or ionized, while final state effects are due to
changes of the environment in response to the core excitation or ionization. Rössler
et al. [10, 11] considered Zn 2s and 2p core level binding energies in atomic Zn, a
series of Zn containing compounds and ZnO. The 2s binding energies were studied
within Hartree-Fock theory. The 2p binding energies were computed with a small
multi-configuration expansion. Scalar relativistic relativistic corrections and spin-
orbit coupling were included in a “spin-orbit coupling configuration interaction”,
SOC-CI. The 2p3=2–2p1=2 splitting is 23.3 eV both for atomic Zn and ZnO. For
atomic Zn the non-relativistic Koopman’s value (i.e. with all orbitals frozen) for the
2s ionization energy is 1,206.36 eV. In this value the electronic relaxation energy,
i.e. the energy gain obtained when all orbitals are allowed to adapt to the new sit-
uation is neglected. This relaxation energy is large, �25 eV. Yet the Koopman 2s
binding energy is very close to the best theoretical result of 1,206.51 eV [10]. This
is because the scalar relativistic shift is as large as the relaxation energy but oppo-
site in sign. While the relaxation energy lowers the 2s binding energy, the scalar
relativistic effect increases the binding energy by about the same amount. Similar
compensating effects are seen for the 2p binding energies. At the Koopman level a
shift of �9 eV towards higher binding energy was found between Zn and ZnC and a
further shift of about 11 eV between ZnC and Zn2C, quite independent of the state
under consideration, 2s; 2p1=2 or 2p3=2. After inclusion of electron relaxation and
relativistic corrections the shifts are slightly larger, 10.5 and 12 eV, respectively.

For the study of ZnO, which crystallizes in the wurtzite structure in which each
ion is tetrahedrally coordinated, Rössler et al. [11] used similar wavefunction expan-
sions, but now for embedded clusters of various radii. This approach enabled an
extrapolation towards extremely large clusters. At the Koopman level a decrease in
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the binding energy of �2:1 ˙ 0:1 eV with respect to atomic Zn is obtained. This
negative shift is at first sight surprising, since it occurs despite the ionic character
of ZnO. The reason for this negative initial state shift is the strong Madelung field
generated by the crystalline environment of the ionized Zn atom, which destabilizes
the Zn 2s and 2p levels. In other words, the increase in binding energy due to the
decrease in number of Zn valence electrons is overcompensated by the Madelung
field. After accounting for relaxation the decrease is reduced to �1:0˙0:1 eV. Inclu-
sion of relativistic effects brings the decrease in binding energy with respect to the
free atom at �3:1˙ 0:2 eV, in good agreement with the experimental values. These
examples make clear that scalar relativistic effects on absolute core electron bind-
ing energies and binding energy shifts are non-negligible. Yet, the most prominent
effects of relativity on the spectra are due the spin-orbit splitting of core hole levels
with non-zero orbital angular momentum.

8.4. X-RAY ABSORPTION AND ELECTRON ENERGY
LOSS SPECTRA

X-ray absorption spectroscopy (XAS) and Electron Energy Loss Spectroscopy
(EELS) can give very accurate information on the electronic structure of condensed
matter. In transition metal, lanthanide and actinide materials the excitation of an
electron from a core level with non-zero angular momentum into the valence band
gives rise to complicated spectra with a set of high-intensity peaks, the so-called
“white lines”, at the threshold of the absorption edges. Spin-orbit coupling plays a
central role in the appearance of these spectra. For sufficiently large core-spin-orbit
splittings the spectra show doublets corresponding to excitations from different spin-
orbit-split core levels. For example, the two transition metal 2p absorption edges
in 3d transition metal materials are due to transitions from 3dn to 2p5

3=2
3dnC1

and to 2p5
1=2
3dnC1. Just as in transition metal 2p XPS, the two features are well

separated in energy. The fractions of the total intensity going into either of these
two spin-orbit-split manifolds are called “branching ratios”. Different from XPS,
these branching ratios can in most cases not be estimated simply from the fraction
of final state levels in that branch. Due to the dipole selection rules the branching
ratios depend also on the valence spin-orbit interactions and on the electron-electron
interactions in the final state [2]. If solid state effects like covalency and crystal
field splitting are small compared to these interactions, J is a good quantum number
and the transition probabilities are determined by atomic dipole selection rules and
hence by the final state core-valence angular momentum couplings. When covalency
increases J ceases to be a good quantum number and the branching ratio will change
towards the statistical value [1]. The influence of the valence shell on the branching
ratio can be nicely illustrated for the simple case of L2;3 (i.e. 2p ! 5d) absorption in
Pt with a final KLMN5d9 configuration [1]. For Pt the valence spin-orbit splitting is
so large that j-j coupling is appropriate. If the character of the 5d-holes in platinum
is 5d5=2, then dipole transitions are forbidden for 2p1=2 hole states but allowed for
2p3=2 hole states. However, the more 5d3=2 character is mixed in, the more Irel for
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2p1=2 hole states increases. Hence the absence of a 2p1=2 edge indicates the absence
of 5d3=2 holes in the valence shell.

Thole and van der Laan [1] showed that the branching ratios in XAS and EELS
can serve as local probes of the valence spin-orbit interactions of a material [20].
Assuming that large core spin-orbit interactions divide the spectra into two branches,
then the branching ratio’s for transitions from the two core levels jC D cC 1=2 and
j� D c � 1=2 are defined by the area’s of the white-line peaks:B D Aj C=.Aj C C
Aj �/. Thole and van der Laan [1, 2] derived for dipole transitions from the core
shell c to a valence shell l, ln ! clnC1, a linear relation between the theoretical
branching ratio Bj and the expectation value of the angular part of the valence spin-
orbit operator

˝
w110

˛
in the initial state ‰:

B D B0 � c

2c C 1

˝
w110

˛
nh

: (8-13)

Here nh is the number of holes in the valence shell l . B0 is the branching ratio
in the absence of valence spin-orbit interaction. B0 depends on the core-valence
electron-electron interactions, but if these interactions are neglected B0 is equal to
the statistical value cC1

2cC1
. For example, for p5 final states the statistical value for

B0 is 2=3 and for d 9 final states it is 3=5. A simple relation for
˝
w110

˛
in terms of

the occupations numbers nj1 and nj1 of the j1 D l � 1=2 and j2 D l C 1=2 valence
shell levels was also derived [20]:

˝
w110

˛ D nj2
� l C 1

l
nj1

(8-14)

Table 8-2 shows the branching ratios and spin-orbit expectation values
˝
w110

˛
for

N4;5 actinide transitions, obtained from relativistic atomic Hartree-Fock calcula-
tions in a study by Moore et al. [20] with the code of Cowan [22]. It is clear from
Table 8-2 that the deviation of B0 from the statistical value 3/5 is only minor, but
the deviation of B from 3/5 is considerable. Experimental values for

˝
w110

˛
may

be obtained from the sum rule Eq. (8-13) by substitution of the measured B values.

Table 8-2 The number of 5f electrons (n), branching ratio (B) of the actinide N4;5 edge
spectra, 5f spin–orbit expectation value

˝
w110

˛
, electron occupation numbers of the 5f5=2

level (n5=2) and the 5f7=2 level .n7=2/, in intermediate coupling, branching ratio without 5f
spin–orbit interaction .B0/ (Taken from Moore et al. [20])

n B hw 110
˛

n5=2 n7=2 B0

0 0.592 0 0 0 0.592
1 0.634 �1.33 1 0 0.583
2 0.680 �2.57 1.96 0.04 0.594
3 0.723 �3.50 2.79 0.21 0.596
4 0.760 �4.04 3.45 0.55 0.598
5 0.817 �4.88 4.23 0.77 0.600
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Next, values for the occupations nj1 and nj2 can be deduced by using Eq. (8-14).
Moore et al. [20] used the computational results of Table 8-2 with the experimental
branching ratio’s for U, Th and Pu to show that the f5=2 and f7=2 occupation num-
bers of Th and Pu are consistent with intermediate coupling, while those of U are
consistent with Russell-Saunders coupling.

In this approach the differences in the radial character of the c � 1/2 and c C 1/2
core levels are neglected. We will see later that this is not fully justified, especially
for heavy atoms. Nevertheless, the branching ratios observed in X-ray absorption
and electron energy loss spectra have with the spin-orbit sum rules of Thole and van
der Laan been used successfully to determine the valence shell spin-orbital inter-
actions of transition metal, rare earth and actinide compounds [1, 2, 4, 19–21]. For
the L2;3 edge in 3d transition metals the application of the sum rules is hampered
by the large 2p-3d exchange interaction that is of similar size as the 2p spin-orbit
interaction [2]. The same problem occurs for the M4;5 edge of the lanthanides where
the 3d-4f exchange interaction is strong compared to the 3d spin-orbit interaction.
Still, even in the case of lanthanides the trend in the branching ratios can be used to
obtain the relative population of the spin-orbit split states [20]. For the L2;3 edges
in 4d and 5d transition metals the sum rule should hold quite well, just like for the
M4;5 and N4;5 edges of the light actinides discussed above [20].

Bagus et al. [3] also used atomic models for their four-component Dirac-Fock-
CI studies of near-edge XAS. They discussed the results of relativistic CI studies
for two different closed shell ions: V5C, modeling V2O5, and U6C. Following this
work we consider three different cases. The first is the 2p edge of V5C, where the
2p53d 1 final states involve significant p3=2–p1=2 mixing due to the 2p-3d multiplet
splitting. The second case is the 4d edge of U6C, where the 4d spin–orbit splitting
of �40 eV is so large that the 4d 95f 1 excited states are almost pure d5=2 and d3=2

hole states. The third case is for the 5d edge of U6C where Russell-Saunders cou-
pling dominates the character of the 5d 95f 1 excited states leading to one single
peak rather than a doublet. Relativistic wavefunctions for the initial and final states
were calculated with the DIRAC program package [29]. The spinors were optimized
with Dirac-Fock calculations for ground and excited state wavefunctions separately.
Both V5C and U6C have a closed shell 1S0 ground state. For the excited states the
Dirac-Fock spinors were used in a CI calculation with the core-hole distributed in all
possible ways over the spinors of the core shell and the excited electron distributed
in all possible ways over the spinors of the initially empty valence shell, details
of the calculations can be found in [3]. The relative intensities Irel were obtained
by calculating transition dipole matrix elements between the initial and final state
wavefunctions.

The dipole selection rules for J levels are �J D 0;˙1, with J D 0 ! J D 0

forbidden. The ground state of both V5C and U6C is a closed shell J D 0 level,
therefore the allowed final states have J D 1. In the case of V5C the 2p53d 1 final
configuration has the following RS multiplets: 3F4;3;2; 1F3; 3D3;2;1; 1D2; 3P2;1;0

and 1P1. The allowed final states have J D 1 and are hence linear combinations
of only 3D1, 3P1 and 1P1. Likewise, the nd 95f 1 final configurations of U6C have
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Table 8-3 Properties of the three J D 1 levels of the 2p53d1 configuration of V5C
(Reproduced from [3])

Weight of j–j Configurations Multiplet Character (%)

Level Erel.eV/ Irel 2p1=2
�13d3=21 2p3=2

�13d3=21 2p3=2
�13d5=21 1P 3P 3D

1 0 0.02 0.02 0.74 0.24 0:5.0:02/ 91:0 8:5

2 4:8 1 0.13 0.25 0.62 28:3.1/ 4:4 69:3

3 11:9 2.44 0.85 0.00 0.15 71:2.2:52/ 4:6 24:2

The relative energy, Erel, is set to zero for the first level and the relative intensity, Irel , is arbitrarily normalized to one
for the second level. The weights of the j–j coupled J D 1 configurations and the projections, in percentage, of the
Russell–Saunders multiplets on the relativistic CI wavefunctions are also given
The 1P multiplet projections normalized to one for the second level are given in parenthesis

many RS multiplets, but again only the multiplets 3D1, 3P1 and 1P1 contribute to
the J D 1 final states. The selection rules in terms of RS multiplets are �S D 0,
and �L D 0;˙1. Since the ground state is a 1S0 state, the only allowed excited
Russell-Saunders multiplet is 1P1. This multiplet can contribute to each of the three
final J D 1 levels, and it is this contribution that can give intensity to the levels. The
final J D 1 levels can also be analysed in terms of j-j coupled configurations. In the
case of V5C the final configurations that can couple to J D 1 are 2p1=2

�13d3=2
1,

2p3=2
�13d3=2

1 and 2p3=2
�13d5=2

1, the three J D 1 final wavefunctions can be
written as linear combinations of these three j-j configurations. The 2p1=2

�13d5=2
1

final configuration cannot be coupled to J D 1. Analogously, for U6C the three
final configurations that can couple to J D 1 are nd3=2

�15f1
5=2, nd5=2

�15f5=2
1 and

nd5=2
�15f7=2

1 but the nd3=2
�15f7=2

1 final configuration cannot be coupled to J D 1.
The properties of the three lowest final J D 1 levels resulting from the 2p ! 3d

transitions of V5C are summarized in Table 8-3. The first column labels the three
levels, the second column shows the relative energies Erel and the third column
shows the relative intensities Irel. In the next three columns the relativistic wave-
functions are analysed in terms of j-j coupled configurations. The last three columns
show the analysis through a projection of the RS multiplets 1P;3 P and 3D on these
relativistic wavefunctions. The wavefunctions corresponding to the RS multiplets
were obtained from a non-relativistic calculation, i.e. a Dirac-Fock-CI calculation
with extremely large light speed. The projections are normalized to give a total of
100% for each J level, for a detailed description of the projections, see ref. [3].

The relative energy,Erel, is set to zero for the first level and the relative intensity,
Irel, is arbitrarily normalized to one for the second level. The weights of the j–j
coupled J D 1 configurations and the projections, in %, of the Russell–Saunders
multiplets on the relativistic CI wavefunctions are also given.

The 1P multiplet projections normalized to one for the second level are given in
parenthesis.

The first level at Erel D 0 has very little intensity. It is an almost pure 2p3=2 level.
The reason for the weak intensity becomes clear from the analysis in terms of RS
multiplets: this level is dominated by the 3P level and the dipole allowed 1P multiplet
contributes less than 1%. The second level at 4.8 eV has significant 1P character and
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Table 8-4 Properties of the three J D 1 levels of the 4d95f1 configuration of U6C; see the
caption to Table 8-3 (Reproduced from [3])

Weight of j–j Configurations Multiplet Character .%/

Level Erel.eV/ Irel 4d3=2�15f5=21 4d5=2�15f5=21 4d5=2�15f7=21 1P 3P 3D

1 0 0.01 0.00 0.90 0.10 0:5.0:01/ 73:2 26:4

2 2:3 1 0.00 0.10 0.90 57:7.1/ 8:1 34:1

3 44:4 0.55 1.00 0.00 0.00 41:7.0:72/ 18:5 39:7

the third level at 11.9 eV even more. This explains the large Irel for these two levels.
It is interesting to compare the 1P contributions of the three levels to their relative
intensities Irel. To facilitate this comparison these contributions were renormalized
to one for the second level (the renormalized values are given in parenthesis). If
the radial parts of the spinors for the different j values were identical, as assumed
in the sum rules of Thole and Van der Laan [1, 2], then the relative contributions
of the 1P multiplet would be the same as the relative intensities [3]. For V5C this
is nearly true. We will see below that this approximation holds less well for U6C.
It is clear from the projections that the excited state wavefunctions do not simply
correspond to RS coupled states. On the other hand, the analysis in terms of j-j
coupled configurations shows that it is also not reasonable to associate each of the
two levels that carry intensity with one particular j-j coupling. This is obviously
a case where intermediate coupling is appropriate. The energy difference of 7.1 eV
between the two levels with significant Irel compares well with the energy separation
of �7 eV between two structures with large intensities that have been associated
with V 2p – 3d transitions in near edge XAS spectra of V2O3 [3]. Obviously, the
results for the atomic model cannot reproduce the details of an experiment for V2O3,
because solid-state effects are neglected. Nevertheless, the results do explain the
existence of two intense peaks.

Table 8-4 shows the same properties as given for the 2p ! 3d transitions of V5C,
but now for the three lowest final J D 1 levels resulting from the 4d ! 5f transitions
of U6C. Again the first level has little intensity, but in this case the second level at 2.3
eV higher energy carries most of the intensity. The weights of the j-j configurations
show that there is almost no 4d3=2–4d5=2 mixing. The energy difference of 42.1 eV
between the two intense peaks reflects the large 4d3=2–4d5=2 spin-orbit splitting.
There is some mixing of the 5f5=2 and 5f7=2 occupations, driven by the electrostatic
integrals between 4d and 5f spinors, but the states can be considered as almost pure
j-j coupled states [3,36]. The nearly pure j-j coupling implies that all wavefunctions
show significant mixing of the three RS multiplets. The deviation between the Irel

and the normalized 1P contributions is substantially larger than in the case of V5C.
The reason is that the spatial extent of the 4d3=2 is appreciably smaller than that
of 4d5=2. Bagus et al. [3] used the hr2i of the initial state spinors as a convenient
measure: hr2i for 4d3=2 is over 6% smaller than hr2i for 4d5=2.

The branching ratio obtained from the relative intensities in Table 8-4, B D
I5=2=.I5=2 C I3=2/ D 0:64, deviates more from the statistical value of 0.6 than
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Table 8-5 Properties of the three J D 1 levels of the 5d95f1 configuration of U6C
(Reproduced from [3])

Weight of j–j Configurations Multiplet Character (%)

Level Erel.eV/ Irel 5d3=2�15f5=21 5d5=2�15f5=21 5d5=2�15f7=21 1P 3P 3D

1 0 0.00 0.03 0.83 0.14 0:1.0:00/ 86:5 13:5

2 6:9 0.03 0.42 0.15 0.43 2:2.0:02/ 12:9 84:8

3 31:2 1 0.55 0.02 0.43 97:8.1/ 0:6 1:7

The relative energy, Erel, is set to zero for the first level and the relative intensity, Irel , is normalized to one for the third
level. The weights of the j–j coupled J = 1 configurations and the projections, in percentage, of the Russell–Saunders
multiplets on the relativistic CI wavefunctions are also given. The 1P multiplet projections normalized to one for the
third level are given in parenthesis

the value obtained from projection, B D 0:58, and the value B D 0:59 obtained
from the sum rule analysis of van der Laan et al. [19, 20] (see Table 8-2). This
shows that not considering the dipole integrals, either by using projection or by
using sum rules, introduces a significant error in the branching ratio for the 4d ! 5f
transitions of U6C.

The results for the 5d ! 5f transitions of U6C, reproduced from Ref. [3] in
Table 8-5, are very different from the 4d ! 5f results. The only transition that
carries significant intensity is to the third level, which is predominantly 1P, at 31 eV
higher energy than the first level which is mainly 3P. The energy difference between
them is largely due to 3P �1 P exchange splitting. The level at 7 eV is mainly 3D. It
is not a pure Russell-Saunders state, some 1P character is mixed in, giving the level
some intensity. The near edge X-ray absorption fine structure for the O4;5 edge of
the formally hexavalent UO3 show indeed one strong peak with a very weak satellite
at lower energy [3,39]. This analysis for the three different cases, which is based on
the work of Bagus et al. [3], shows that the relative energies and intensities of X-ray
absorption peaks at core-level edges can be well understood by examining the final
state RS multiplets.

Of course, the atomic models as used by Thole et al. and Bagus et al. are ade-
quate only for those systems where solid-state effects like covalency and crystal
field splitting are weak enough to enable an interpretation in terms of atomic-like
orbitals. Furthermore, CT effects cannot be included in an atomic model. In the
introduction we noted that in the case of XPS screening through CT might be espe-
cially important in the final states, because the core hole causes a strong potential
that lowers the excitation energy of states, in which an electron is transferred from
the neighboring atoms to the core-ionized atom. In near edge XAS and EELS final
states the effects of such CT states are much less prominent, because the excited
electron is transferred to a local valence shell, so that a strong electron attracting
potential is avoided.
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8.5. SUMMARY

XPS, XAS and EELS core spectra of some transition metal, lanthanide and actinide
materials have been discussed, with emphasis on effects of relativity. The spectra
can give detailed information on the electronic structure of the materials, but the
interpretation of the spectra is often complicated. Relativistic effects, core-valence
electrostatic interactions, valence electrostatic interactions and solid-state effects
may all play a role. Transitions from core levels with non-zero angular momen-
tum and large core-spin-orbit splittings lead to branched spectra, which cannot be
explained without explicitly considering the core and valence spin-orbit interactions.
Accurate first principle methods that are able to take all these effects into account
are in most cases needed for a proper interpretation of the complicated spectra.

The relativistic four component Dirac-Fock-CI method [23,24] is well suited for
this purpose, because the effects of relativity and electron correlation are treated
from the outset, in a well-balanced way. With the increased availability of massive
compute power and the increased efficiency of the program packages built for these
methods, Dirac-Fock-CI studies for clusters of moderate size are nowadays feasi-
ble. A brief description of the Dirac-Fock-CI has been included and it is argued
that finite-size nuclear models are better suited for Dirac-Fock studies than the point
charge model. A more economic but also more approximate approach is to start with
non-relativistic orbitals and wavefunctions and add scalar relativistic corrections
by modifying the one-electron Hamiltonian, while spin-orbit effects are included
via a spin-orbit-coupling CI treatment [10–12]. This approach to include relativis-
tic effects has the important practical advantage that standard quantum chemical
program packages can be used.

The effects of relativity on X-ray photoelectron spectra have been discussed
using the Dirac-Fock-CI results of Bagus and coworkers [7, 8] for MnO as a guide.
It was shown that all main features of the Mn 2p and 3p XPS in MnO can be
understood by considering relativistic and electron correlation effects of a single
embedded Mn ion. The most prominent relativistic effects are the effect due to spin-
orbit coupling in transitions from core levels with non-zero angular momentum. The
work of Rössler et al. [10,11] showed that scalar relativistic effects on absolute core
electron binding energies and on binding energy shifts due to different chemical
environments are also non-negligible.

In transition metal, lanthanide and actinide materials the excitation of an elec-
tron from a core level with non-zero angular momentum into the valence band gives
rise to complicated near-edge XAS and EELS spectra with a set of high-intensity
peaks, the so-called “white lines”, at the threshold of the absorption edges. For
sufficiently large core-spin-orbit splittings the spectra show doublets (branches) cor-
responding to excitations from different spin-orbit-split core levels. Different from
XPS, the relative intensities of the individual branches cannot be estimated sim-
ply from the statistical value (the fraction of final state levels in the branch). Due
to the dipole selection rules the branching ratios depend also on the valence spin-
orbit interactions and on the electron-electron interactions in the final state. Moore,
Van der Laan and co-workers [2, 20, 21] demonstrated that the deviation of the
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experimental branching ratio from the statistical value, combined with relativistic
Hartree-Fock results, may be used in the sum rules of Thole and Van der Laan
[1] to give information on the valence-spin-orbit coupling. This work was briefly
discussed.

The results of relativistic many-electron calculations can in principle be
expressed either in terms of Russell-Saunders states or in j-j coupled states, what-
ever representation gives better insight. A new analysis of branching ratios by Bagus
et al. [34] is discussed. With the aid of Dirac-Fock-CI results for near edge XAS for
V5C and U6C it was shown that the relative energies and intensities of X-ray absorp-
tion peaks at core-level edges can be well understood by examining the final state
Russell-Saunders multiplets.
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RELATIVISTIC SYMMETRIES IN THE ELECTRONIC
STRUCTURE AND PROPERTIES OF MOLECULES
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Abstract: Double groups and time reversals are finding increasing attention in recent years to
calculate molecular electronic properties including relativistic effects. In the present
review we have initially developed the concept of double groups for diatomic and
polyatomic systems and demonstrated the use of double groups in diverse molecular
properties. The concept of time reversal has been introduced as a symmetry property
to mitigate the problem of CP (C: charge conjugation; P: parity) violation. The applica-
tions of time reversal in explaining molecular electronic properties have been collected
together with a discussion on its role in double group symmetry.

Keywords: Double groups, Spin-orbit coupling, Relativistic configuration interaction, Correlation
group table, Crystal field theory, Ligand field theory, Iodine oxide, MRSDCI, SnTe, Au2,
Pb3, Pb3C, Pt(thpy)2 , MCSCF, SOCI, Time reversal, Parity, Charge conjugation, CPT
theorem

Abbreviations

C Charge conjugation
C2 Twofold axis of symmetry
C3 Threefold axis of symmetry
C4 Fourfold axis of symmetry
CASMCSCF Complete active space multiconfiguration self-consistent

field
CFT Crystal field theory
Ds Spin multiplet
Dj Rotational state of a spherical top molecule according to the

j value
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E Identity operation in point group
E New operation corresponding to E in the double group
OE Identity operator

EPR Electron paramagnetic resonance
ESR Electron spin resonance
g Any irreducible representation in point or double group
H Hamiltonian
H.l/ Magnetic perturbation energy
I Identity matrix
J Total angular momentum
L Total spatial angular momentum
l Orbital angular momentum
lx , ly , lz x, y, z components of l
ƒ Spatial angular momentum for a diatomic
	.®/ Character of rotation through an angle ®
LFT Ligand field theory
LST Linear synchronous transit
MJi

.I D 1; 2/ Projection of j quantum number to two atoms in a diatomic
MCSCF Multiconfiguration self-consistent field
MRSDCI Multireference singles and doubles configuration interaction
� Electric dipole moment
m Magnetic dipole moment
NMR Nuclear magnetic resonance
OLED Organic light emitting diode
� Angular momentum for a diatomic
P Parity operator
Pt(thpy)2 Bis-[2-(2-thienyl)-pyridine] platinum
q Sum of the orbital quantum number of electrons in an atom
R New group element R (in a double group) representing

rotation by 2
RCI Relativistic configuration interaction
Rh(3) Three-dimensional rotation-reflection group
S Total spin momentum
SO Spin-orbit
SOCI Second-order configuration interaction
SM Spin-mixed
s Spin momentum
¢ Reflection operator in a point group
T Time reversal
U Unit operator
V(r) Potential
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9.1. INTRODUCTION

Symmetry arguments are quite popular among chemists to elucidate the structure
and reactivity of molecular systems. The arguments are not only systematic in their
approach to understand the molecular properties but also they have some aesthetic
appeal. These symmetry considerations are mostly based on the spatial point groups.
However, such point group-based arguments have several limitations. It may lead to
wrong or less accurate information of molecular properties, which depend on the
orbital and spin motions of the constituent atoms. Such properties of the molecules
come under the purview of relativistic theory and are treated in a way, which is not
very conventional in classical chemical problems.

The spin of an electron gives rise to a magnetic dipole. The movement of elec-
trons in its orbit, on the other hand, also produces the magnetic dipole. Thus an
interaction between these two magnetic dipoles is possible and the effect is called
spin-orbit interaction. These orbital and spin motions could further be influenced
by an external magnetic field. An example is represented by molecular magnetism.
This property is dependent on the orbital and spin motions of the constituent electron
and nuclei and the external magnetic field generated by the motion of the electrons
through a coil. Thus there could be two motion-dependent properties of a molecule.
The former case, where no external field effect is present, influences the stability
and spectroscopic behavior of the molecule. This relativistic effect generates a sym-
metry property known as double group symmetry [1–8]. Spatial symmetry must be
augmented with arguments based on time reversal to deal with the later kind of prop-
erty [3, 7, 9, 10]. The purpose of the present review is not to describe the details of
double group characteristics or the time reversal effects. These are available in sev-
eral books and publications [1–10]. We intend to define only the basic points related
to these properties and then discuss the use of these two special relativistic features
in diverse chemical problems with a special emphasis on the properties explained
under double group framework.

9.2. SPIN-ORBIT INTERACTION AND DOUBLE GROUP

The spin-orbit effect arises due to the interaction of the magnetic dipole of the elec-
tronic spin and the movement of electron in its orbit. This feature is connected with
relativistic effect and Dirac showed [8] that the magnetic perturbation energy (H .1/)
of a spin in a central field could be expressed as

H .1/ D %.r/ l:s; with %.r/ D „2

2m2c2r

@V.r/

@.r/
(9-1)

Here l and s are the orbital and spin momentum respectively and V(r) is the potential
in which the electron moves. If more than one electron is involved H .1/ turns out
to be

H .1/ D
X

i

%.ri / l i :si (9-2)
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In this expression the interaction of spins with orbits other than their own is
neglected. This is a valid approximation as long as the central field is stronger than
the interelectronic interactions. It could be proved without much difficulty that the
matrix elements of H.1/ is proportional to L.S (L: total spatial angular momentum
D l 1 C l 2 C : : :C l i ; S: total spin momentum D s1 Cs2 C : : :Csi /. The L.S terms
could be obtained from the total angular momentum J from the relation

J D L C S (9-3)

The above expressions are central in all relativistic calculations of atoms and
molecules. The energy expressions and their implementations for the single and
multiple electronic systems, in this context, have already been discussed in several
articles of this book and elsewhere [8, 11, 12]. Here our motivation is to review the
information regarding the use of double group in such calculations.

The atomic wavefunctions are, in general, made up of both orbital and spin part.
Whereas the orbital part is always characterized by having integer values of l, this
is not the case for the spin part. Coming back to the last expression (9-3) where J
characterizes the state system, the two possible spin states are ’ (1/2, 1/2) and “ (1/2,
�1/2) states. The spin of an electron can always be described as linear combination
of these two functions ’ and “, and it is independent of the choice of the axis of
quantization. Since s D 1=2 for an electron, J is a half-integer in systems with an
odd number of electrons. The transformation properties of systems with half-integer
angular momentum should be treated in a special way.

Let us consider the expression for the character of rotation through an angle 
.

	.
/ D sin.j C 1=2/


sin 1=2


	.
/ D 	.
 C 2/.when j is an integer/

D �	.
 C 2/.when j is half-integer/ (9-4)

Thus a rotation of 2 brings any physical system back to itself and so the transfor-
mation matrix and characters for the rotation of 
 and 
C2 ought to be equal. But
when j is half-integer, the signs of representation is double-valued in the rotation
group and thus they are not true representations. Every character changes sign when
one performs a rotation of 2 . On the other hand, rotation by 4 is equivalent to the
identity operator OE .

For; 
 D 0; 	.0/ D .j C 1=2/ cos.j C 1=2/0

1=2: cos1=2:0
D 2j C 1I

and;when 
 D 2; 	.2/ D .j C 1=2/ cos.j C 1=2/2

1=2 cos

D 2j C 1.when j is integer/

D – .2j C 1/.when j is half-integer/: (9-5)
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The only character with unique value is the character for rotation by  for j
half-integer.

	./ D 	.3/ D 0 (9-6)

In order to obtain the double-valued representation, we introduce that the molecule
is to go into itself not upon a rotation by 2 around an axis, but only upon a rotation
by 4 . This, of course, makes no difference in physical sense and is to be considered
a mathematical device. A new group element R, the rotation by 2 , is now defined
and the elements of single-valued groups are expanded by means of multiplication
be R. The double group thus contains more classes than single group but not twice
as many.

The double groups are usually denoted in terms of the respective point group
symmetry with some specific superscripts. For example double-groups of C2v and
D2h symmetries could either be denotes as C2v2, D2

2h
[8], or C2v.M/2, D2h.M/2

[3] or C 0
2v, D

0
2h

[2]. Throughout the manuscript we will use the first convention.
The purpose of this review is to show how these double groups are actually used in
relativistic treatments of molecules. Explicit treatments on the generation of double
group character tables are available in literature [2, 3, 8]. A brief discussion on this
topic is available in Appendix to show that the above discussion could be extended
to generate double group character tables of different symmetries.

9.3. DOUBLE GROUPS AND RELATIVISTIC TREATMENT
OF MOLECULES

9.3.1. Diatomic Systems

The formation of a diatomic molecule leads to the lowering of the spherical sym-
metry of individual atoms to cylindrical and hence any angular momentum of a
diatomic along the internuclear axis is meaningful. This angular momentum along
the internuclear axis is defined as ƒ and for given L quantum number, ƒ D 0, 1,
2, 3. . . L. The electronic states of a diatomic molecule are determined by these ƒ
values and are designated as †, …, �, ˆ : : : etc. The spin-orbit coupling changes
the symmetry of the relativistic problem to the double group. The coupling of the
spin angular momentum (S ) and the spatial angular momentum (ƒ) along the inter-
nuclear axis leads to a net angular momentum (�), which is given by (analogous to
Eq. (9-3)):

� D jƒC S j (9-7)

The possible � states could be obtained by combiningƒ with spin or directly from
the individual j states.

� D jMJ1
CMJ2

j (9-8)

The MJ values are the individual projection of the j quantum numbers of the two
atoms.

In order to assign the relativistic states and the nature of wavefunction of a
diatomic system, we need to introduce several terminologies regarding the nature



378 D. Majumdar et al.

of the spin-orbit states, direct product correlation of both single and double valued
representation of the double groups and the corresponding� states, and the correla-
tion of spin multiplets .Ds/ with double groups. Detailed discussion of these topics
is out of the scope of this review. We will present here only a brief account of them
for the interest of this review. Interested readers should use the available literatures
[1, 3, 8] to have complete account of these topics.

As it could be seen from any C 21v double group character table [2–4, 8] of a
diatomic, the irreducible representations are †C, †�, …, �; : : :, E1=2, E3=2,. . . ,
En=2.The †C, †�, …, �,. . . are single valued irreducible representations while
E1=2, E3=2,. . . , En=2 are double-valued. The � states corresponding to these non-
relativistic states are represented as 0C, 0�, 1, 2,. . . , 1/2, 3/2,. . . , n/2 [1] respectively.
Thus using these notations of the � states, one can represent the direct product cor-
relations of a diatomic double group in terms of relativistic states. For example, the
†C ˝†C direct product of a C 21v-symmetry has irreducible representation of †C
and hence the corresponding � state is 0C. Similarly, the direct product of � and
… states in C 21v double group generatesˆ˝… irreducible representations and the
corresponding� states are 3 and 1. These states could also be derived from vecto-
rial coupling scheme [1, 8]. In the case of two-valued representations, let consider
the product of E1=2 ˝ E1=2 states in C 21v double group. The direct product would
produce†C,†�, and… irreducible representations and the corresponding� states
are 0C, 0�, and 1. Similarly, E1=2 ˝ E3=2 product yields 2 and 1 � states. The
next thing one needs to establish is how the spin multiplets (Ds) correlate with the
irreducible representation of a double group. The transformation of Ds is isomor-
phic with the transformation of the rotation state j (Dj) in molecular spectroscopy.
The irreducible representations spanned by the Ds representation of the spin mul-
tiplets with quantum number s, are determined once the characters of the various
operations of the double group are obtained. These are given by:

	s.
/ D sin.s C 1=2/'

sin.
=2/
; if® ¤ 0;

	s.0/ D 2s C 1; if® D 0;

	s.CnR/ D 	s.Cn/; if s is an integer;

	s.CnR/ D �	s.Cn/; if s is a half-integer (9-9)

Thus D0.s D 0/ corresponds to †C irreducible representation of the C 21v double
group. Similarly use of Eq. (9-9) shows that D1=2 and D3 correspond to E1=2 and
†� ˚…˚�˚ ˆ irreducible representations of the C 21v double group. Thus any
transformation of Ds could be determined with respect to the irreducible representa-
tions of theC 21v double group (these are also valid forD2

1h
double group). It should

be further noted that although the Ds and Dj transformations are isomorphic, there is
a notable difference. The spin states can contain only g (gerade) representation for
a homonuclear diatomic. Thus if l (angular momentum) is odd, all u representations
appearing in spherical harmonics should be changed to g in correlating electronic
spin states.
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The determination of a relativistic state arising from a given non-relativistic state
involves two steps. Firstly, the irreducible representations spanned by the spin mul-
tiplets using double group correlation (as discussed above) are found out. These
irreducible representations are then multiplied with the spatial symmetry of the non-
relativistic state in the next step. The resulting set of the irreducible representations
is then transformed to the � state. As an example, for the 3… non-relativistic state
of diatomic molecule, s D 1 and hence D1 corresponds to †� and … irreducible
representations. Now,

†�.spin/˝….spatial/ D …

….spin/˝….spatial/ D †� C†C C�

Thus the 3… non-relativistic state yields …, †�, †C, and � relativistic states and
their assignments according to � quantum numbers are 1, 0C, 0�, and 2. In the case
of homonuclear diatomics the non-relativistic states are characterized by either g or
u parities. Thus the assignments should be made according to these parities.

The above background gives us a basis to analyze the wavefunctions of the rel-
ativistic electronic states. The discussion here would be on the basis of Cartesian
representation of orbitals, which means real representation of   and • orbitals. A
 orbital of a diatomic molecule could have either C1 (notation:  C) or –1 (nota-
tion:  �) angular momentum projection along the internuclear axis. These orbitals
are actually complex, analogous to l D 1 and l D –1 complex representation of
p orbitals of an atom [12]. Like the conversion of p orbital to px , py , and pz,  C
and  � orbitals could be converted to  x and  y orbitals through the following
transformations:

x D 1p
2
.C C �/Iy D �ip

2
.C C �/ (9-10)

The d  and d• orbitals can also be transformed into real orbitals through analogous
transformations. Since most of the electronic structure computations are done in
real representation, the spin-orbit matrix elements should be treated as complex.
The matrix elements, which are usually encountered, are shown below along with
their characteristics (using appropriate representations of the terms ˛, ˇ, sx , sy , and
sz; lx , ly and lz represent components of l):

h�˛jlxsx jyˇi D
*
�

 
1

0

! ˇ̌ˇ̌
ˇlx
1

2

 
0 1

1 0

! ˇ̌ˇ̌
ˇy

 
0

1

! +
D1

2
h� jlxjyi.Real/;

h�˛jlysy jxˇi D
*
�

 
1

0

! ˇ̌̌
ˇ̌lx 1
2

 
0 i

�i 0
! ˇ̌̌
ˇ̌x

 
0

1

! +
D �i
2

h� jly jxi.Imaginary/;

hx˛jlzszjy˛i D
*
x

 
1

0

! ˇ̌ˇ̌
ˇlz
1

2

 
1 0

0 �1
! ˇ̌ˇ̌
ˇy

 
1

0

! +
D1

2
hxjlzjyi.Real/ (9-11)
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Let us consider 2… electronic state of heteronuclear diatomic system. It yields 1/2
and 3/2 � states. The 1/2 state can be expressed as [13]:

1

2
D Cˇ D �

xˇ C iyˇ
	

Thus there are two states with “ spin of which  x“ is real and  y“ is imaginary.
They have the same sign and hence represent a 1/2 angular momentum state. This
1/2 state is doubly degenerate as it belongs to E1=2 two-dimensional representation
of the C 21v double group. Thus there is one more representation, which corresponds
to �1=2 projection.

�1
2

D �˛ D .x˛ � iy˛/

A degenerate state is thus obtained for the 1/2 state through spin flipping and
changing the sign of the imaginary wavefunction.

The 3/2 state is higher in energy compared to 1/2 state although their spin-
orbit components originate from the same non-relativistic state. The relativistic
wavefunction of the 3/2 state is determined as follows:

3

2
D C˛ D .x˛ C iy˛/

Thus the 3/2 state arising from the 2… state consists of two configurations — both
with ’ spins and same signs and the second one is imaginary. Hence both signs
and spins are important in deciding the assignment of relativistic electronic states.
The difference between the various electronic states is thus dependent on the spin
of the wavefunction and sign of both real and imaginary configuration. A detailed
account of these features is available in ref [8]. Balasubramanian and coworkers [14]
have further extended these ideas of characterizing the wave functions in relativistic
configuration interaction (RCI) as flexible correlation group table (CGT) method to
deal with more complex nature of relativistic states.

9.3.2. Polyatomic Systems

The analysis of the relativistic wavefunction of a polyatomic molecule primarily
needs the correlation of the spin states in the double group and the determination of
the relativistic states. The basic operations are more or less similar to the diatomics.
The essential steps are as follows:

(a) Correlation of the spin multiplets .Ds/ of the electronic states into the double
group of the molecular point group.

(b) Multiplication of the spatial symmetry of the non-relativistic electronic state by
the irreducible representations spanned by the spin multiplets in a direct product
relation.
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Table 9-1 C 2
2v Double group character table with correlation of spin functions

C2 �yz �xz E

C2
1v E C2 ¢yz ¢xz

A1 1 1 1 1 1 z, ’“� “’

A2 1 1 �1 �1 1 lz, sz, ’“� “’

B1 1 �1 �1 1 1 x, ly , sy , ’’C ““

B2 1 �1 1 �1 1 y, lx , sx ,’’� ““

E1=2 2 0 0 0 �2 (’; “/

(c) The decomposition of the representation thus obtained into irreducible
components using standard direct product relations for the irreducible
representations.

Let us exemplify the above discussion using the case of an open shell triatomic
system with C2v symmetry (e.g. PbH2). Let us consider the 3B1 state (S D 1).
The character values for the various members of C2v group are obtained by using
standard procedure for any Dj representation.

C 2
2v

D1

E

3

C2

�1
�xz

�1
�yz

�1
E

3

Thus from C 2
2v character table (Table 9-1) it is obvious that D1 D A2 C B1 C B2.

Now .A2 C B1 C B2/ ˝ B1 D B2 C A1 C A2. As a consequence, the spin orbit
coupling term splits 3B1 into B2, A1 and A2 components. This example required
only single-valued representations as the triplet state has integral spin multiplicity.
Let us consider a half-integral spin multiplicity such as 2A1:

C 2
2v

D1=2

E

2

C2

0

�xz

0

�yz

0

E

�2

Thus D1=2 correlates with E1=2 representation and E1=2 ˝A1 D E1=2. Since in the
double group ofC 2

2v, there is only one two-valued irreducible representation, all spin
multiplets correlate into one or more E1=2 representations.

The above discussion provides the basis of correlating a spin state in a double
group. The method could be extended to any double group with the primary knowl-
edge of Ds of the electronic states into the double group. A complete form of such
correlations for various double groups is available in references [3,8]. The relativis-
tic computation of polyatomic systems further needs, like the diatomic case, a set
of spin functions for a given spatial and spin-orbit state. We will present a brief dis-
cussion of this subject here. Complete discussions with all the necessary results are
available in reference [8].

First we consider the case of even number of electrons. The state could be sin-
glet, triplet, quintet or higher. The spin correlation function corresponding to a
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singlet state for two electrons is 1
.p

2 .˛ˇ � ˇ˛/ ; for the triplet states these spin

functions could be1
.p

2˛˛,1
.p

2ˇˇ, and 1=2 .˛ˇ C ˇ˛/ . As discussed earlier in

connection with the C 2
2v double group, the triplet state correlates with one or more

single valued representation of the double group. For the C 2
2v double group, one can

summarize the results in the following Table 9-1 [8, 15].
From the C 2

2v double group Table 9-1, the spin function for a single open shell,
viz. ’ and “, transforms as degenerate E1=2 representation. The spin function of the
two open shells thus transform as:

E1=2 ˝ E1=2 D A1 ˚ A2 ˚ B1 ˚ B2

The A1 representation corresponds to singlet, while the A2, B1, and B2 representa-
tions are for triplets. The symmetry-adapted spin function A2.’“ C “’/ transform
in the same way as lz operator, while B2.’’ � ““/ and B1.’’ C ““/ transforms as
lx and ly operator respectively.

All of the odd number of electrons transform as E1=2 degenerate representation.
Since E1=2 representation is two-dimensional, there should be two degenerate spin-
orbit states with same energy. If one represents ’ spin as EC and “ spin as E�, all the
spin-functions with total Ms values given by 2k C 1=2, k D 0, ˙1, ˙2; : : : would
transform as EC, while spin-functions obtained by flipping the spin function would
yield E�. Thus, as an example, the quartet spin functions with ’’“, ’“’, “’’, and
“““ would transform as EC, while ““’, “’“, ’““, and ’’’ will transform as E�.

The following direct product rules are useful to determine the spatial symmetries
and spin contributions that will mix in either EC or E�.

A1 ˝EC D EC A2 ˝ EC D EC
B1 ˝ EC D E� B2 ˝ EC D E�
A1 ˝E� D E� A2 ˝ E� D E�
B1 ˝ E� D EC B2 ˝ E� D EC

Thus, for example, a 2A1 state with an open spin yields EC representation and
this mix with 2B1.“/, 2A2.’/, 4A1.“’’; ’“’; ’’“; “““/, 4A2.“’’; ’“’; ’’“; “““/,
4B1.’““; “’“; ““’; ’’’/, 4B2.’““; “’“; ““’; ’’’/ states, and so on. It is to be
noted that B1 and B2 spatial symmetries represent E� functions and thus are flipped
relative to the A1 and A2 spin functions. However, the total symmetry of the spin-
orbit state, thus obtained, is EC. This distinction is necessary as the spin-orbit states
EC and E�, although are degenerate, do not mix with other because of their mutual
orthogonal nature.

The above brief discussions give a background to analyze and interpret the spin-
orbit calculation results in any relativistic configuration interaction (RCI), and any
other multireference calculations. The results are also helpful to understand the
basic inputs for codes (where explicit inclusion of double group characteristic is not
available) to calculate spin-orbit effects in molecular systems using double group
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symmetry. For all these purposes it would be quite handy to have all these results
in tabular forms. There are lots of articles available at present, where these results
are explicitly tabulated [3, 8]. With this background of double group symmetry it
is now worthwhile to discuss several applications of the double group symmetry in
spin-orbit calculations of diatomic and polyatomic systems.

9.4. APPLICATIONS OF DOUBLE GROUP SYMMETRY
IN CALCULATING MOLECULAR PROPERTIES

The results of the inclusion of spin-orbit effect in the calculation of the electronic
properties of transition metal are available since 1950s. The effect was included in
crystal field theory (CFT) and later in ligand field theory (LFT) to study the elec-
tronic structure and properties of high-spin and low-spin transition metal complexes
and double group symmetry was included for the assignment and splitting pattern
of the electronic states [16]. The method is still used in specific cases to interpret
the spectral characteristics of the heavy transition metal complexes [17]. The litera-
ture in this filed is quite extensive and we will not discuss the details in this review.
The discussions presented here are mostly on diatomic and polyatomic clusters with
substantial spin-orbit effects. Multi-reference relativistic calculations were used in
the framework of double group symmetry to interpret the electronic properties of
such systems. We will present also the case of coordination complexes, where dou-
ble group symmetry has been successfully used in the framework multireference
calculations to interpret the splitting pattern of the observed spectra.

9.4.1. Diatomics

An extensive literature is available on the application of relativistic calculations on
diatomics including double group symmetry to assign the� states. These molecules
are either M-X (C1v point group) or M-M (D1h point group) types. Balasub-
ramanian and co-workers, Roszak, Das and others [8, 18–30] have theoretically
investigated a large number of such systems. Most of the studies focus on the spin-
orbit stabilization of the systems and interpretation of their observed photoelectron
spectra. Here we intend to show how our previous discussions on the use of double
group symmetry are being used to assign � states of such molecules and interpret
the nature of the diatomic relativistic states. For this purpose we will select a few
systems with C1v and D1h symmetries.

9.4.1.1. Diatomics of C1v Symmetry

(a) Iodine oxide (IO): Iodine oxide is formed in the troposphere through the reac-
tion of iodine with ozone. This molecule can absorb ultraviolet light and display
a rich excited state properties. More importantly, the presence of the heavy atom
(I) in the diatomic molecule complicates the excited state spectrum of such
molecules due to spin-orbit effect. This is an example of a molecule with odd
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Figure 9-1. Potential energy curves of the low-lying ƒ-S states of the IO radical calculated without
including spin-orbit coupling

number of electrons with C1v symmetry. Roszak and coworkers [19] carried
out an extensive analysis of the ground and excited state energy surfaces of this
molecule using multireference single and double-excitation configuration inter-
action (MRSDCI) including spin-orbit effect. Figure 9-1 represents the energy
surfaces of several ground and excited states of this molecule without spin-orbit
effect.

Let us consider the cases of first three low-lying states 2…, 4†�, and 2�. The
corresponding Ds for these states are D1=2, D3=2, and D1=2 and they represent
E1=2, E1=2 ˚ E3=2, E1=2 irreducible representations of the C 21vdouble group. Now
following our previous discussions:

E1=2.spin/˝….spatial/ D E1=2 ˝ E1=2

E1=2.spin/˝†�.spatial / D E1=2

E3=2.spin/˝†�.spatial / D E3=2

E1=2.spin/˝�.spatial / D E5=2 ˝ E3=2
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Figure 9-2. Potential energy curves for (a) the lowest electronic states of the IO radical calculated
including spin-orbit coupling (solid lines for � D 3=2 states, dashed lines for � D 1=2, dotted lines for
� D 5=2, and a dot-dashed line for � D 7=2) and (b) for � D 3=2 states

Thus the � states corresponding to the 2…, 4†�, and 2�ƒ-S states are (1/2, 3/2),
(1/2, 3/2), and (3/2, 5/2). This also represents the splitting patterns of the corre-
spondingƒ-S states. The splitting patterns of the other states could also be similarly
worked out. Thus there could be numerous� states and the energy surfaces of 1/2,
5/2, and 7/2 are shown in Figure 9-2a. The energy surfaces of the 3/2 states are
shown in Figure 9-2b.

The results of the calculations showed that …3=2� ground state is 1; 683 cm�1

more stable than the nearest low-lying …1=2.�/ state and it is supported by exper-
imental observations (2; 091 cm�1) [19]. If we qualitatively analyze the nature of
the wave functions using the configuration ( 3) of the 2… state (already discussed
in Section 3.1) we can get an idea of the relative stabilities of the …3=2 and …1=2�

states. The …3=2 state could be represented as (x˛ � iy˛) and the …1=2 state
as (yˇ � iyˇ). Now we have shown in Section 3.1 that this …3=2 wave function
corresponds to �1=2.…/ state, which is degenerate with…1=2 state arising from the
2… state with  1 configuration. The …1=2 state wavefunction likewise represents
the �3=2 degenerate state of the 3/2-state with  1 configuration. Since 1/2 state
is lower in energy than 3/2 with  1 configuration (Section 3.1), the energy situa-
tion is flipped in the present case of …3=2 state with higher stability. This argument
is valid here since the …3=2 and …1=2 is not mixed with other states [18]. It is to
be mentioned in this connection, that the � D 3=2 energy surfaces show lots of
avoided crossings (Figure 9-2b). This feature of the 3/2 state is attributed to the dif-
ferent compositions of these� states at different I-O bond distances [18]. Since our
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concern here is to confine the discussion only to the application of double group for-
malism in the framework of relativistic calculations, we will not discuss any other
results related to the relative energies and frequencies of the various states and their
other calculated physical properties here. The details are available in the published
work [18].

(b) SnTe: This particular example of C1v system is representative of diatomic sys-
tems with even number of electrons. The binary SnTe systems find technological
importance to detect infrared and visible radiations. Barrow and coworkers have
experimentally analyzed the band systems of SnTe in both absorption and emis-
sion cases [31, 32]. Das and coworkers [26] have carried out the theoretical
calculations of this diatomic molecule at the MRSDCI level including spin-orbit
effect. The calculatedƒ-S states of SnTe are shown in Figure 9-3. The combina-
tion of the ground states (3Pg) of both Sn and Te gives rise to 18 singlet, triplet
and quintet states. The first excited states of Sn and Te are both 1Dg. The com-
bination of Sn .1Dg/ C Te.3Pg/ or Sn .3Pg/ C Te.1Dg/ correlate nine triplets
of †C, †�(2), …(3), �(2), and ˆ symmetries. Figure 9-3 represents only the
low-lying electronic states.
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If we use our previous scheme (Section 3.1) we can find that X1†C.¢2 4/,
1†�.¢2 2 �2/, 3†� .¢2 2 �2/, and E1†C. 3 �1/ states as well as the 1… and
the 3….¢1 4 �1/ states produce 0C� states. Actually there are as many as 50 �
states possible and all of them were taken into account for spin-orbit calculations.
The potential energy curves of the � D 0C states are shown in Figure 9-4a and
b represent � D 1 and 3 states. The origin of 1 and 3 states in Figure 9-4b could
also be explained following the above analysis of the correspondingƒ-S states. The
X1†C

0C
� state has a small imaginary part contribution in the wave function due to

3….� W �˛�˛ C �ˇCˇ D �˛.x–iy/’ C �ˇ.x C iy/ˇ/ as it is com-
posed through mixing of X1†C (98%; all real) and 3… 2% ƒ-S states. The other
� states are always mixed with high-energyƒ-S states and so they form the higher
electronic states in energy spectrum.

9.4.1.2. Systems with D1h Symmetry: The Case of Au2

Au2 dimer is an even electron system. The gas-phase absorption spectra of Au2

showed spin-obit stabilization of the ground state and this state was assigned as
X0C

g . Das and Balasubramanian [20] have calculated 24 electronic states of Au2

using relativistic configuration interaction (RCI) technique. The energy surfaces of
the singlet and tripletƒ-S states of Au2 are shown in Figure 9-5a and b respectively.
The complete description of these states is available in the original paper [20]. We
will discuss here only the formation of a few spin-orbit states (from theseƒ-S states)
using double group technique.
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The ground state X1†C
g .¢g

2/, and 3†C
g .1¢u

12¢u
1/, 3†C

u .¢g
1¢1

u /,
3…u.¢u

1 g
3/,

1†C
u .¢g

1¢u
1/ are the first few low-lying electronic states (Figure 9-5a and b). The

low-lying excited states are within 20; 000 cm�1 energy separation (�E) with
respect to the ground X1†C

g state. These states represent (using the procedure
described in Section 3.1) 0g

C, 0g
�, 1g, 0u

�, 1u, 0u
C, 0g

C, 1g, and 2g � states. The
other � states arising from the higher ƒ-S states [20] could be similarly worked
out. All of these � states have been computed, but only three of them have been
experimentally detected [33]. Figure 9-6 represents the energy surfaces of these
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three states and the corresponding configuration of the atoms at the dissociation
limit. The results tally quite well with the experiment in terms of the energy sep-
aration of the respective states. The X0g

C state is made up of 96% 1†C
g .¢g

2/, and
2% 1†C

g .¢u
2/ƒ-S states, while A0u

C (49% 3…u.¢u
1 g

3/, 8% 3…u.¢g
1 u

3/, 21%
1†C

u .2¢g1¢u/, 12% 1†C
u .1¢g1¢u/, 7% 1†C

u .1¢g2¢u// and B0u
C (49% 1†C

u .¢g¢u/,
33% 3…u.¢u

1 g
3/, 3% 3…u.¢g

1 3
u// � states have substantial mixing with the

higher ƒ-S states. Thus one can qualitatively predict the nature of �E between
these spin-orbit states through consideration of the mixing of the different ƒ-S
states in a particular� state.

9.4.2. Polyatomic Systems

Polyatomic systems showing spin-orbit stabilization of the ground and higher elec-
tronic states cover a large group of clusters/molecules. To name a few are the heavy
transition metal clusters [18, 34–36], the carbides, oxides, halides of such metals
[37–41] and their metal-ligand complexes [42, 43]. Substantial theoretical investi-
gations have been carried out on such systems to study the relativistic effect on the
different electronic states and to help in turn to interpret their observed electronic
spectra. In this section we will illustrate a few cases where interesting electronic
properties have been explained through inclusion of double group formalism in
relativistic calculations.

9.4.2.1. Enhancement and Quenching of Jahn-Teller Distortion due
to Spin-Orbit Effect: Pb3 and PbC

3

The Pb3 and Pb3
C clusters represent even and odd electron systems respectively

and are ideal systems to demonstrate the relativistic effect on the various electronic
states using the formalism of double group theory. When the calculations are carried
out without spin-orbit effect, both of these clusters show Jahn-Teller distortion of
different electronic states. Inclusion of spin-orbit effect enhances the Jahn-Teller
effect in the case of Pb3 and quenching effect is observed for Pb3

C [36].
Pb3: Figure 9-7a shows the energy surfaces of the various electronic states of

Pb3.C2v/ as a function of Pb-Pb-Pb angle (™) at the complete active space multi-
configuration self-consistent field (CASMCSCF) level [36]. Thus the energetics
of both angular as well as linear structures of Pb3 is taken care of. The potential
energy curves of these states in Figure 9-7a indicate that the 1A1 and 1B2 curves
cross each other around ™ D 60:0ı. The 3A2 and 3B1 potential energy curves also
exhibit the same feature. Both the 1A1 and 1B2 states in the D3h symmetry corre-
late into 1E 0.1a1

022a1
021a2

0021e042e02/, whereas the 3B1 and 3A2 states correlate
into 3E 0.1a1

022a1
021a2

0011e042e03/. As a result one can infer that the 1A1 and 1B2

states are the Jahn–Teller components of the 1E 0 doubly degenerate state, whereas
the 3B1 and 3A2 states are the Jahn–Teller components of the 3E 0 state. All of these
states distorts to a significant extent throughE ˝ e Jahn–Teller coupling [44] when
spin-orbit effect is not taken into account (Figure 9-7a).
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Figure 9-7. (a) Potential energy curves for the low-lying electronic states of Pb3 (CASMCSCF level).
The curves are drawn as a function of the Pb-Pb-Pb bond-angle (™). (b) Potential energy curves
(as a function of ™) for the low-lying relativistic states of Pb3 using relativistic configuration interaction
(RCI) calculations

Figure 9-7b shows the potential energy surfaces for the relativistic states of Pb3

(C 2
2v double group) as a function of ™ using RCI calculations. All the low-lying states

with appropriate spin combinations yielding the state of desired double group sym-
metry were included. Following our previous discussion in Section 9.3.2, the 1A1

state yields the A1 state in C 2
2v double group. The lowest 3B2 (D1 spin multiplet)

state yields (A2 C B1 C B2) ˝B2 D B1 C A2 C A1 states in the double group. Thus
an A1 component of 3B2, which has the spin combination ˛ˇ – ˇ˛, mixes with the
1A1 state.

The bending potential energy surfaces of these relativistic states reveal several
interesting features. First, when compared with the energy surfaces of the electronic
states of Pb3 without SO effect (Figure 9-7a), it is obvious that the spin–orbit effect
completely changes the energy surface’s profile. Most of the potential energy curves
have multiple minima due to avoided crossings induced by the spin–orbit coupling.
This difference of the energy profiles of relativistic states with respect to the nonrela-
tivistic states is comprehensible in view of the nonadiabatic nature of the surface due
to strong SO coupling. The lowest two relativistic states, A1(I) and A1(II) exhibit
avoided crossings. In fact these two states are so interesting in that they are allowed
to cross nonrelativistically, as one is a dominant 1A1 state and the other is a 3B2

state. However, from our previous discussion, one of the spin–orbit components of
the 3B2 state is A1 in the C 2

2v double group and thus the A1 component of the 3B2

state mixes with the A1 component of the 1A1 state when SO effects are included.
It has been reveled from the analysis of the composition of these states [36] that
they have varying compositions at different & values through the mixing of the 1A1

and 3B2 states. Thus although these states compete for ground state in nonrela-
tivistic domain, the mixing separates them relativistically. As a result both of these
potential energy surfaces look like asymmetric double well due to several avoided
crossings.
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The interplay between the Jan-Teller distortion and the spin-orbit coupling gives
rise to more than one potential minimum in the curves in Figure 9-7b. Figure 9-7a
shows that the 3B2 state has D3h symmetry at the potential minimum and correlates
with the 3A2

0 state. This state correlates into A1
0 ˚ E 00 states in the D3h

2 double
group. The 1A1

0 state on the other hand, correlates into A1
0 state of the D3h

2 double
group. Consequently at the D3h geometry, the A1

0 states arising from the 3A2
0 and

the 1A1
0 states can mix. In the C2v group this is manifested as spin–orbit mixing in

the A1 and B2 components and it is quite substantial [36]. Thus the first minimum
in the A1(I) curve is due to the mixing of these triplet and single states through
spin–orbit coupling. The second minimum in the A1(I) curve is due to the inter-
play between Jahn–Teller distortion and spin–orbit coupling. Many other electronic
states behave in a similar manner due to the strong interplay between the Jahn–
Teller and spin–orbit couplings and thus giving rise to unusual shapes in the bending
potential energy curves of the excited electronic states in Figure 9-7b. Although rig-
orous theoretical argument cannot be given at present for the enhancement of the
Jahn-Teller distortion, the avoided crossing of the A1(I) and A1(II) due to mixing of
the 1A1 and 3B2 states could be considered as a key factor for this phenomenon.

PbC
3 : Figure 9-8a shows the energy surfaces of the various electronic states of

Pb3
C.C2v) as a function of ™ at the CASMCSCF level [36]. It is evident from the

potential energy curves, that the 2B2 and 2A1 states have almost the same energy at
™ D 60ı. This situation is also true for the 2B1 and 2A2 states. The 2A1 and 2B2

state correlate into 2E 0 in the D3h symmetry .1a1
022a02

1 1a2
0021e042e01/, whereas

the 2B1 and 2A2 states become 2E 00.1a1
022a1

021a2
0011e042e02/. As a result one can

infer that the 2A1 and 2B2 states are the Jahn–Teller components of the 2E 0 state,
while the 2B1 and 2A2 states are the Jahn–Teller components of the 2E 00 state in
D3h group.

The bending potential energy curves of Pb3
C with SO effects are presented in

Figure 9-8b. The first ten roots of the relativistic E state are plotted as a function
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of ™) for the low-lying relativistic states of Pb3C using RCI calculations



392 D. Majumdar et al.

of the apex angle ™ of the triangular geometry. The calculated compositions showed
that the spin states of different multiplicities are mixed to generate these states [36].
All the states presented here have minimum at ™ D 60ı. The E(I) state at ™ D 60ı
is formed through mixing of the 2A1, 2B2, 4B1, and 4A2 (with major contribution
from 2A1) states, whereas the E(II) state (at ™ D 60ı) is formed through mixing of
the 4A2, 2B1, 4A1, and 6B2 (with major contribution from 4A2) states. As a result
their minima are within 0.1 eV energy separations (Figure 9-8b).

The Pb3
C ion is very interesting in that the Jahn–Teller distortion is completely

quenched by the spin–orbit coupling. When two states are degenerate at ™ D 60ı,
they undergo avoided crossing at ™ D 60ı due to spin–orbit mixing. The spin–
orbit stabilization becomes larger and thus overcomes the Jahn–Teller stabilization.
The ground state of Pb3

C is a 4A1
00 state (correlates with the minima 4A2 state in

Figure 9-8a) in the absence of spin–orbit coupling. It has been found that the first
excited 2E 0 and 4A2

0 states in D3h structure [36] are virtually degenerate and close
to the ground state. The 2E 0 state undergoes Jahn–Teller distortion into the 2A1

and 2B2 C2v pairs in the absence of spin–orbit coupling. However, when spin–
orbit effects are included the 4A1

00 state can be expressed as the direct product
.E1=2 ˚ E3=2/ ˝ A1

00, which correlates into E5=2 ˚ E3=2 spin–orbit states. The
spin–orbit states of the 2E 0 state are obtained as the direct product E1=2 ˝ E 0,
which correlates into E3=2 ˚ E5=2. Thus the spin–orbit states arising from the 2E 0
state have identical symmetries to the spin–orbit states arising from the 4A1

00 state.
The other 4A2

00 state can be expressed as the direct product .E1=2 ˚ E3=2/˝ A2
00,

which correlates intoE1=2 ˚E3=2 spin–orbit states. Therefore theE3=2 components
of all three states can strongly couple, thereby quenching the Jahn–Teller distortion
completely. Likewise the E5=2 state of the 2E 0 state can interact strongly with the
5/2 state of the 4A1

00 state. The calculated stabilization due to Jahn–Teller distor-
tion is only about 0.5–1 kcal/mol for the 2E 0 state. But the spin–orbit stabilization is
substantially larger (9 kcal/mol), and thus overcomes the Jahn–Teller stabilization.
Consequently all of the electronic states of Pb3

C retain their D3h structures due to
strong spin–orbit coupling in the electronic states.

9.4.2.2. Emission Properties of Metal Complexes

Cyclometalated Pt(II) complexes might be phosphorescent, since, for instance, bis-
[2-(2-thienyl)-pyridine] platinum (Pt(thpy)2) has a strong emission from the triplet
states at 580 nm in both the photoluminescence and electroluminescence spectra
[45, 46]. Such properties of the organic ligand coordinated transition metal com-
plexes are important in the fields of organic light emitting diodes (OLED) [46].
Strong spin-orbit coupling among the low-lying states is the key factor of an effi-
cient OLED, as the spin-orbit coupling provides a fast intersystem crossing between
states of different multiplicities. Pt(thpy)2 (Figure 9-9) is such a model system and
was investigated at the MCSCF and second-order configuration interaction (SOCI)
level of theories to study the spin-orbit coupling [43].

The Pt(thpy)2 complex has a C2 point group symmetry. Thus the spin-orbit cal-
culations are to be carried out under C 2

2 double group formalism. In absence of
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Figure 9-9. The schematic structure of Pt(thpy)2

spin-orbit effect the ground state of this molecule is singlet, S0.
1A/. The lowest

excited state triplet, T1.
3A/, is 2.36 eV above the ground state. The other low lying

states T2.
3B/, T3.

3B/, S1.
1A/, S2.

1B/, and S3.
1B/ are respectively 2.55, 2.70,

2.73, 2.97, and 3.24 eV above the ground state [43]. Thus these low-lying states are
quite closely spaced with respect to the low-lying T1 and can mix through spin-orbit
coupling.

The D0.S D 0/ and D1.S D 1/ correlates respectively with the A and A + 2B
irreducible representations of the C 2

2 double group. Therefore the relativistic states
constructed from 1A and 1B are A or B respectively. For the triplet states (3A or
3B) the splitting patterns will be either A C 2B (for 3A) or B C 2A (for 3B). The
appropriate spin combinations for the singlet and triplet states could be derived as
in case of C 2

2v double group (Table 9-1). Considering the correlation between the
irreducible representations of the C2v and C2 group, the job could be simplified
further. Since the irreducible representation A in C2 correlates with A1 or A2 in C2v

point group, the appropriate spin function for the singlet should be (’“–“’/. The
triplet combinations should be (’“ C “’/ for A and (’’ C ““) or (’’–““) for B
irreducible representation of the C 2

2 double group.
Figure 9-10 shows the energy surfaces of the first ground and first 12 low-

lying spin orbit states of Pt(thpy)2 along the linear synchronous transit (LST) path
(between a C2 and C2v structures). For simplicity, the spin-mixed (SM) states are
named by their energetic order at the energy minimum of the adiabatic S0 state,
such as SM0, SM1, SM2, and so on. As mentioned in the previous section, the low-
est spin-mixed state SM0 consists of the adiabatic ground state S0.1AŒA�/ with the

weight of 99%, where the spin function 1
.p

2 .˛ˇ � ˇ˛/ belongs to the A repre-

sentation of C 2
2 double group indicated by [A]. The lowest excited state SM1 has

T1.
3AŒA�/ as a main configuration, where the spin function 1

.p
2 .˛ˇ C ˇ˛/

also belongs to the A representation of C 2
2 double group symmetry. Since this state

does not have a large singlet component, the transition dipole moment (TDM) is
very small (0.0007 eÅ), and as a result, the transition probability is considerably
small. The second lowest state SM2 also has T1.

3AŒB�/, where its spin function is
1
.p

2 .˛˛ C ˇˇ/ and is only 21 cm�1 higher than SM1. The TDM between SM0

and SM2 (0.0904 eÅ) is larger than that between SM0 and SM1, as SM2 has a small
component of S3.

1BŒA�/ and the adiabatic TDM (1.4 eÅ) between S0.1AŒA�/ and
S3.

1BŒA�/ is remarkably larger than the others. As a result, the transition probability
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Figure 9-10. Potential energy curves for 13 low-lying spin-mixed states in Pt(thpy)2 obtained at the
MCSCF+SOCI/SBKJC+p level of theory. The main adiabatic component in each spin-mixed state is
shown in parentheses

between SM2 and SM0 is higher that that between AM1 and SM2 [43]. SM1 and
SM2 should be recognized as the sublevels of T1 as both of the states contain irre-
ducible components of 3A-state (A C 2B, as discussed earlier). The third sublevel of
T1 appears as SM3 (containing the B component of 3A). Using the similar argument
of the splitting patterns of the triplet state, SM4, SM5, and SM6 are the sublevels
of T2 (3B[B]), and SM7, SM8, and SM9 are the sublevels of T3 (3B[A]). SM8 has
a large TDM to the ground state SM0 (0.6652 eÅ), but it may be possible that the
nonradiative transition from these states to lower excited spin-mixed states would
be very fast because the state is high in energy, so that the emission from these
states would not be observed. Thus the outcome of the theoretical investigations
is that the emission from SM2 would be observed rather than from SM1, and the
main peak of the emission would appear at the energy of 2.18 eV [43]. In addition,
because SM2 has large adiabatic triplet components, this emission should be recog-
nized as phosphorescence. SM10, SM11, and SM12 have adiabatic S1 (1A[A]), S2

(1B[A]), and S3 (1B[A]) components as a main configuration, respectively. These
states have large TDMs to the ground state, but fast nonradiative relaxation (or inter-
system crossings) is expected to occur from these states to low-lying excited states
(the Kasha rule) and, as a result, no emission would be observed from these states.



Relativistic Symmetries in the Electronic Structure and Properties 395

This conclusion was supported by several experiments. A strong emission was
observed at �max D 580 nm (2.13 eV) in both the photoluminescence and electro-
luminescence spectra of Pt(thpy)2 [45, 46]. Yersin et al. also reported that the
transition between the lowest triplet sublevel, and the ground state is forbidden, and
that the radiative transition from the next low-lying triplet sublevel is faster, when
the complex was dissolved in Shpolskii matrix [47].

9.4.2.3. More Recent Developments in the Applications
of Double Group Theory

Recently Balasubramanian [48] has developed the character theory of relativistic
double group spinor representations in order to represent the total rovibronic states
of nonrigid molecules. It is shown that the double groups can be represented in
terms of wreath products and powerful matrix cycle type generators that are used to
construct their character tables. It is shown that these tables are of use when spin–
orbit coupling is included in the Hamiltonian even for molecules containing lighter
atoms. Several examples of double groups of wreath products such as fS2ŒS2�� Ig2,
fS2ŒS3�g2, fS4ŒS2�g2, etc., were considered as representatives of nonrigid Tl2H4,
Pb2.CH3/6, .PoH2/4, etc. molecules (Sn: symmetric permutation group; I: iso-
dynamic group; see ref. [4] for their definitions). It is shown that the tunneling
splittings and the nuclear spin statistical weights can be obtained for such species
using the character tables thus constructed.

9.5. TIME REVERSAL

In quantum mechanics, the invariance of physical laws under an associated trans-
formation often generates conservation laws or selection rules that follow from the
invariance of the Hamiltonian H under transformation. The idea of time reversal
occurs in order to conserve certain properties, which is occurring due to a phe-
nomenon called CP violation (C: charge conjugation operator; P: parity operator).
Thus it is worthwhile to introduce the definitions of these terminologies first before
discussing time reversal.

9.5.1. Parity

Let V be a potential, which is symmetric about the origin (i.e. V.–x/ D V.x//.
This implies that if  .x/ is a solution of the Schrödinger equation so is  .–x/. For
one-dimensional case, it could be written,

� „2

2m

d 2  .�x/
dx2

C V.�x/ .�x/ D E .�x/ (9-12)

And for V.�x/ D V.x/,

� „2

2m

d 2  .�x/
dx2

C V.x/ .�x/ D E .�x/ (9-13)
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If both  .x/ and  .–x/ solve the Schrödinger equation with the same eigenvalue
E, they must be related to each other as,

 .x/ D ˛ .�x/ (9-14)

Letting x ! –x generates  .�x/ D ˛ .x/, and insertion of it in Eq. (9-14) gives,
 .x/ D ˛ .�x/ D ˛.˛ .x// D ˛2 .x/ which leads to ˛ D ˙1. Then either
 .�x/ D  .x/ (wavefunction of even parity) or  .�x/ D � .x/ (wavefunction
of odd parity), and this leads to the concept of parity operator P. It causes change in
sign when x ! –x in the wave function.

P .x/ D  .�x/ (9-15)

Generally even powers lead to a function with even parity, while the odd powers
lead to odd parity. Some of the properties of P are as follows.

1. Applying the parity operator twice in succession brings the original wave
function back.

P 2 .x/ D P .�x/ D  .x/ (9-16)

2. Reflection through y-axis brings back the original state. If  is even, one sees
same function values through y-axis reflection and for odd , the negative of the
function values is observed under the same operation. It follows that P 2 D I

(identity matrix), and the eigenstates of the parity are ˙1.P j i D ˙j i/.
3. If j i is an angular momentum state with angular momentum L.i:e:j i D

jL; mzi/ (mz is the component of the magnetic quantum number), then

P jL; mzi D .�1/LjL; mzi (9-17)

Since if ˛ D ˙1, both .x/ and .–x/ solve the Schrödinger equation with same
eigenvalue, the generalization is if P and H commute (i.e. [P,H] D PH – HP D 0),
the parity is conserved. Thus a state with parity ˛ cannot evolve into a state with
parity –’, since the Hamiltonian governs the true evolution of the states.
P.H j i/ D P.Ej i/ D EP j i if j i is a non-degenerate eigenstate of H with
eigenvalue E and for the commutation of P and H, P.H j i/ D H.P j i/ D
E.P j i/. So the eigenstates of H are also the eigenstates of the parity operator
and the eigenvalues of P are ˛ D ˙1. This precludes states of mixed or infinite
parity and physically this mathematical constraints means that particles are either
fermions or bosons.

4. In the case of fermions, particles with spin 1/2 have positive parity, while par-
ticles with spin –1=2 have negative parity. Thus electrons have ’ D C1 while
positrons have ’ D –1. Bosons have same intrinsic parity for both particles and
anti-particles.

5. Parity is a multiplicative quantum number. If j i D jaijbi defines a composite
system and if the parities of the individual states are Pa and Pb respectively, the
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parity of the composite state (P§/ is given by PaPb. Parity is conserved in elec-
tromagnetic and strong interactions but is not conserved for weak interactions.

9.5.2. Charge Conjugation

Charge conjugation, represented by an operator C, converts particles into antiparti-
cles. If j i represents a particle and j i an antiparticle state, then C j i D j i, and
C j i D j i. It thus follows that,

C 2j i D CCj i D C j i D j i (9-18)

This implies C D ˙1. The charge conjugation is also like a parity operator in that
it is multiplicative quantum number. Since charge conjugation converters particles
into antiparticles and vice versa, it reverses the sign of all quantum numbers (also
changes the sign of magnetic moment). It has also conservation properties similar
to the parity i.e. C is not conserved for weak interactions and conserved for strong
interactions.

The individual violation of charge conjugation and parity in weak interactions
led to the hope that combination of them would be conserved. It is almost a rigorous
rule, but there is a slight violation and it is known as CP violation. An example is
the case of long-lived ‘K’ meson state. It has been observed [49] that the amount of
CP violation is of the order of 2:3� 10�3. This CP violation happens because, for a
small fraction of time, the long-lived neutral ‘K’ meson state jKLi is found to be in
jK1i, giving the unexpected decay.

9.5.3. CPT Theorem and Concept of Time Reversal

The concept of time reversal symmetry was needed to restore the invariance due to
CP violation. This is another discrete transformation that changes a state j i into
j 0i, which evolves with time in the negative direction. Momentums change sign i.e.
linear momentum p ! –p and angular momentum L ! –L, but all other quantities
retain the same sign. The time reversal operator T acts to transform the state as

T j i D j 0i (9-19)

The operator T is antiunitary and antilinear, which means

T .˛j i C ˇj'i/ D ˛�j 0i C ˇ�j' 0i (9-20)

and hT 'jT i D h'j i� (9-21)

The operator T could be written as product of an operator � (that converts states
into their complex conjugates, � D  �) and a unitary operator U (defined as
hU'jU i D h'j i) as,

T D U� (9-22)
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If the T commutes with H ([T, H] D 0) and if j i satisfies the Schrödinger equation,
T j i will also satisfy Schrödinger equation when t ! –t (hence the name time
reversal operator). If the laws of physics are unchanged under time reversal, then
they are symmetry of the system. It is to be further noted that for a spinless particle
U is the unit operator in Eq. (9-22) and for a particle with spin T D i¢y� (in the
Pauli matrix representation).

Now according to CPT theorem, if C, P and T are taken together, we have an
exact symmetry and so the laws of physics are invariant. This means that if matter
is replaced by antimatter (charge conjugation), momentum is reversed with spatial
inversion (parity conjugation) and time is reversed, the result would be universe
indistinguishable for one we live in. For CPT theorem to be valid, all three sym-
metries must be valid. If one or two symmetries are violated, the third must also be
violated. For example, in the case of weak interactions there is CP violation and to
compensate it there must be T violation.

9.5.4. Properties of T and Its Implication in Molecular Properties

T does not have eigenvalues, so it is not possible to classify a quantum state as
being even or odd under time reversal. An illustration is the effect of T on the
atomic state jJ;M i, where the total angular momentum is specified by the usual
quantum numbers J andM and can have both orbital and spin contributions. Using
a particular phase convention, it is found that,

T jJ;M i D .�1/J �MCqjJ;�M i (9-23)

where q is the sum of the orbital quantum numbers of all the electrons in the atom.
For the special case of the spin states ˛ D j.1=2/ ; .1=2/i and ˇ D j.1=2/ ;� .1=2/i
for a single electron (9-23) gives

T˛ D ˇ

Tˇ D �˛ (9-24)

Hence, T interconverts the two spin states (within an essential phase factor ˙1).
Unlike states, quantum-mechanical operators can be classified as even or odd

under time reversal. Time-even .C/ and time-odd .�/ operators are defined by

TA.C/T �1 D A.C/�
TA.�/T �1 D �A.�/� (9-25)

Operators usually have the same behavior under time reversal as the associated
observables. From (9-25), the expectation values of a time-even operator have the
same magnitude and sign in  and T , whereas those of a time-odd operator have
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the same magnitude but opposite sign. Hence, the expectation value of a time-odd
operator is zero in a non-degenerate state since  and T must be the same state in
this case.

Although T does not have eigenvalues, the operator T 2 has the eigenvalue
© D ˙1 for a system with an even number of electrons and –1 for an odd number.
This leads to Kramers theorem [3, 7]. According to this theorem, in the presence
of any static electric potential, but in the absence of an external magnetic field,
the energy levels of a system with an odd number of electrons (or half odd-integral
angular momentum) must have even-fold degeneracy. Pairs of such degenerate states
are interconverted by T , with T called the Kramer’s conjugate of  . Equation
(9-23) is an example. The time reversal converts jJ;M i into the new state jJ;�M i,
which is orthogonal to and degenerate with the original one and corresponds to a
reversal of the angular momentum.

As we have seen in Eq. (9-17), parity does not convert jJ;M i into a new state
as P, unlike T and has eigenvalues of ˙1. If two states of opposite parity, such
as  2s and  2p0

in atomic hydrogen, are degenerate, or nearly so, the system can
exist in a state of mixed parity and as such can support odd-parity observables such
as the electric dipole moment. Since pairs of mixed parity states such as  ˙ D
1
.p

2
�
 2s ˙  2p0

	
are interconverted by P , it suggests a loose analogy, where

states such as jJ;M i and jJ;�M i could be thought of having mixed time parity
because of their interconversion by time reversal (even though associated states of
definite time parity do not exist). Mixed time parity is an essential requirement for a
state to support time-odd observables.

This distinct behavior of general angular momentum states under P and T lies at
the heart of the different behavior of atoms and molecules in electric and magnetic
fields, exemplified by the Stark and Zeeman effects. In the Stark phenomena, the first
order effects require a permanent electric dipole moment, which has odd parity but
is time-even. In the Zeeman case it requires a permanent magnetic dipole moment,
which has even parity but is time-odd. Time reversal finds application in the behavior
of molecules in electric and magnetic field, antisymmetric light scattering, Raman
EPR, optical activity and related degeneracy, magneto-chiral phenomena, optical
NMR and ESR, spin-dependent intermolecular forces, velocity-dependent property
surfaces and vibrational circular dichroism, true and false chirality and photon static
magnetic field. A comprehensive review of such applications is available in an ear-
lier article of Barron and Buckingham [10]. We will not go into the details of them.
Our main interest here is the symmetry related use of time reversal. We thus intend
to conclude our present review with a brief discussion on the relation of time reversal
with group theory.

9.5.5. Time Reversal in Group Theory

Spatial symmetry operations could be augmented with time reversal to encompass
some of the more subtle aspects of molecular behavior. Permanent electric (�) and
magnetic (m) dipole moments provide an example. As far as spatial symmetry is
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concerned, the difference between electric and magnetic dipole moments is that �

is a polar vector and so transforms like a translation, whereas m is an axial (pseudo)
vector and so transforms like a rotation. In the elementary theory, if the integrand in
h nj�aj ni contains the totally symmetric irreducible representation, the molecule
in the quantum state  n is able to support the ’-component of an electric dipole
moment. Because the operator � is time-even, this gives the correct answer, but
because m is time-odd, the same argument applied to h njmaj ni can give the
wrong answer because it only has nonzero expectation values in degenerate states.

The usual selection rules for transition matrix elements between states of different
levels are unchanged whatever the behavior under time reversal of the operators
and wave functions, but for matrix elements between component states of the same
degenerate level, the group-theoretical background to the selection rules must be
modified. From the discussions of the previous section (Section 9.5.4),

hT j jV j ki D "�hT kjV j j i (9-26)

where ", the eigenvalue of T 2, equals C1 or �1, depending on whether there is an
even or odd number of electrons, and � equals C1 or �1, depending on whether the
operator V is time-even or time-odd. Hence, depending on whether "� is positive or
negative, hT j jV j ki, and therefore also h j jV j ki belong to the representation
ŒR2�˝RV or fR2g˝RV [3,10]. The R terms represent the irreducible representations
and the square and curly brackets denote the symmetrized and antisymmetrized
parts of the direct product, respectively. In the odd-electron case, the representation
refers to the appropriate double group. Formalisms are available for the construction
of relativistic symmetry-adapted molecular basis functions under consideration of
time reversal invariance. The theory is applicable to the finite double point groups
Cn

2, Cnh
2, Sn

2, Cnv
2,Dn

2, Dnd
2,Dnh

2, T2, Th
2, Td

2, O2, and Oh
2. It is based on the

linear combination of atomic orbital (LCAO) method and projection operator tech-
nique is employed to construct molecular symmetry orbitals from atomic orbitals
[50, 51].

9.6. CONCLUDING REMARKS

The present review is primarily motivated to introduce the concept of double groups
in the calculations and interpretation of relativistic properties of molecules. After
a brief introduction to the basic concepts of double groups and the ways to char-
acterize the spin-mixed molecular states using the double group concept, several
illustrative cases have been discussed, which included diatomic and polyatomic
systems with diverse electronic properties. The use of time reversal in studying
molecular properties and related spectra is relatively new. In the present article we
have briefly discussed the concept and use of this relativistic property. The concept
of time reversal has been introduced by considering it as a symmetry property to
mitigate the problem due to CP violation. The special fields of applications of time
reversal have been indicated with the relation of it to the double group concept.
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Although not very popular yet, the applications of these relativistic symmetries to
explain diverse molecular electronic properties are drawing attention in recent times
and we believe that this article would be useful to the readers (especially beginners)
to cope up with the basic concepts of this increasing developing field.
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APPENDIX

Construction of a double group: The definition of a double group and its basic
characteristics has already been discussed in Section 9.2. Here we will make a
brief discussion on the procedure for generation of the character table of a dou-
ble group taking illustrations of D3

2 and D4
2 double groups. The character table

could be derived from the corresponding point group. The procedure involves
determination of the number of elements, the number of classes and the number
of irreducible representations. The dimension of the irreducible representation is
obtained by requiring that the sum of the squares of the irreducible representations
(g) is equal to the order of the double group. Once the dimension is known, the
characters can be obtained from a mapping of the corresponding representations of
the three-dimensional rotation-reflection (Rh(3)) group (for definition of such group
see, e.g. [4]) on to the elements in question.

If a set of elements R forms a class in an ordinary point group, there is a class
R and class R in the double group. If, of course, R corresponds to C2, and if there
is C2

0 perpendicular to original C2, then C2 and C2
0 belong to the same class of

C2 and C2
0. For a two-dimensional representation, the relation C2 D SC 2S

�1 is
satisfied if S is a rotation by 180ı about an axis perpendicular to C2. If there are no
such orthogonal sets of C2’s, then the double group will have twice as many classes
as well as irreducible representations as the ordinary group. If there are such sets
of C2’s, then the double group will have correspondingly fewer classes and irre-
ducible representations. For example the D3 point group has classes fE; 2C3; 3C2g
and since there are no C2

0’s orthogonal to C2’s, the D3
2 double group will have

classes fE; 2C3; 3C2; E; 2C3; 3C2g. The D4 group on the other hand has classes
fE; 2C4; C2.C4

2/; 2C2
0; 2C2

00g. The class structure of the double group is,

8<
:

C2; 2C2
0; 2C2

00; E; 2C4;

E; 2C4; C2; 2C2
0; 2C2

00

9=
;

Concerning the dimensionalities, we have for D3
2

6X
iD1

g2
i D 12 (9-27)
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For the D3 point group there are three irreducible representations and the group
order is 6. Consequently, for the new representations we have

3X
iD1

g2
i D 6 (9-28)

The only solution of this gives us two one-dimensional and one two-dimensional
.12 C 12 C 22/ representation.

The D4
2 group has seven irreducible representations. The D4 point group has

order 8 with five irreducible representations. This means that for representation we
have

2X
iD1

g2
i D 8 (9-29)

This leads to two two-dimensional representations.
All the other proper groups and proper groups with inversion can be treated sim-

ilarly. The last thing remains the generation of the characters of the double groups.
The procedure could be summarized as follows.

1. The characters for the original elements in the new even dimensional irreducible
representations can be obtained by substituting the proper angles in to the char-
acter of C(®) etc. in the even dimensional representation of Rh(3) [4]. The
characters for the new elements have opposite sign.

2. If more than one representation of given dimension occurs, the angle is
increased by successive increment of 2=n until all irreducible representations
are accounted for. This is equivalent to increasing the multiple of ® along the half
integer series 1/2, 3/2, 5/2, and so on.

3. The notation for the two-dimensional representation is E, four-dimensional G
and six-dimensional H (Herzberg notation [2]). The letters are subscripted by
half integer that was used to derive it.

The new two-dimensional irreducible representations of D4 are E1=2 and E3=2. The
characters could be written as follows.

E1=2 W
n
E W 2; 2C4 W 2 cos

90ı

2
D p

2;

�
C2

0
C2

W 2 cos
180ı

2
D 0;

�
2C2

0
2C2

0 W 2 cos
180ı

2
D 0;

�
2C2

00
2C 00

2

W 2 cos
180ı

2
D 0;E W �2; 2C4 W �2 cos

90ı

2
D � p

2
o
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E3=2 W
n
E W 2; 2C4 W 2 cos

3 � 90ı

2
D �p

2;

�
C2

0
C2

W 2 cos
3 � 180ı

2
D 0;

�
2C2

0
2C2

0 W 2 cos
3 � 180ı

2
D 0;

�
2C2

00
2C 00

2

W 2 cos
3 � 180ı

2
D 0;E W �2; 2C4 W �2 cos

3 � 90ı

2
D p

2
o

The new one-dimensional representations that appear in D3
2 double group occur in

pair, since there is an even number of them. The characters of the two components
can be taken directly from the diagonal forms of the two-dimensional transformation
matrices corresponding to various symmetry elements. Thu for j = 3/2 in D3

2 we
have,

R.E/ D
�
1 0

0 0

�
(9-30)

R.C3/ D
�
ei.3=2/.2�=3/ 0

0 e�i.3=2/.2�=3/

�
D
��1 0

0 �1
�

(9-31)

R.C2/ D
�
ei.3=2/.2�=2/ 0

0 e�i.3=2/.2�=2/

�
D
��i 0

0 i

�
(9-32)

The treatment of two-dimensional E1=2 representation of D3
2 is just as in D4

2. This
generates the characters of the new irreducible representations of D3

2 as follows.

E1=2 W ˚E W 2; 2C3 W 1; 3C2 W 0;E W �2; 2C3 W �1; 3C2 W 0g

E3=2 W
�
E W 1

1
; 2C3 W �1

�1 ; 3C2 W �i
i
; E W �1

�1 ; 2C3 W 1
1
; 3C2 W i�i



(The two numbers in this case indicates the double values of the irreducible repre-
sentations). The methods described here could be used to other double groups also.
The detailed analysis could be found in refs [3, 4, 8].
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Abstract: Highly-accurate relativistic electronic-structure studies on heavy elements require general
and efficient many-body methods. In order to achieve spectroscopic accuracy, the descrip-
tion of in particular dynamic electron correlation is of crucial importance. Modern
wavefunction-based electron correlation approaches of high efficiency are typically
based on a string representation of many-particle quantities. The focus in this chap-
ter lies on the introduction to a suite of new relativistic electronic-structure methods
which treat electron correlation and relativistic effects on the same footing and to a
number of concepts of importance for relativistic many-body methods. Several appli-
cations to small heavy-element systems are discussed where the presented methods are
put to critical tests in direct comparison with other modern approaches of relativistic
electronic-structure theory.

Keywords: Relativistic many-body theory, time-reversal symmetry, multi-reference theory, spin–
orbit interaction, configuration interaction, multi-configuration self-consistent-field, cou-
pled cluster, heavy-element properties

10.1. INTRODUCTION

The majority of all published results in quantum chemistry is today obtained by
application of density functional theory (DFT). The reason lies in the great effi-
ciency of DFT in the treatment of electron correlation which makes it applicable
even to very large molecules. Quantum chemical models based on the electronic
wave function, on the other side, allow for a systematic improvement of the level of
sophistication and therefore a more complete understanding of electronic structure
in general. This naturally comes with an increased computational expense of wave-
function based methods, and highly accurate electronic-structure studies are often
only feasible for comparatively small molecules.

The rigorous treatment of special relativity and electron correlation in
wave-function based quantum-chemical methods applied to heavy-element systems
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comprises a central topic of this chapter. From a modern point of view the essence
of these two aspects may be somewhat rephrased: The central problem lies in an
accurate and at the same time efficient treatment of dynamic electron correlation
in a rigorously relativistic framework. With the advent of ever more advanced
relativistic Hamiltonian operators for the electronic-structure problem (such as
infinite-order/exact two-component operators [1–3]) the focus has shifted toward
improving the less-developed technology for the treatment of electron correlation.

The furthering of relativistic electron correlation methods faces various difficul-
ties. The most prominent is the reduction of non-relativistic symmetries (spatial
and spin symmetries) in the relativistic framework due to magnetic couplings,
the most important of which is the spin–orbit interaction. Beside further con-
traction/expansion effects of orbitals it partially lifts the non-relativistic energetic
degeneracies of states. Second, particularly d and f elements and their compounds
often exhibit states, even ground states, which are characterized by several unpaired
electrons, i.e., open shells. The treatment of such states surpasses the use of a single
Hartree–Fock determinant as a reference function for the correlation step of the cal-
culations. Instead, the multi-reference character of the states must be accounted for,
and this calls for methods going beyond standard single-reference implementations
(this applies in particular to coupled cluster approaches).

Many electronic-structure approaches are based on the assumption that spin–
orbit interaction may be included in an approximate fashion. This is sometimes
reasonable, but restricts those methods in their applicability. The separation is car-
ried out in more or less rigorous ways and may take place at different stages of
the calculation. In most instances, orbital optimizations neglect spin–orbit cou-
pling [4–7]. In this case the polarization of electronic shells due to the presence
of spin–orbit interaction has to be described by the correlation expansion since
it is not incorporated into the orbitals. The use of real-valued (spin-) orbitals is
indeed a computational advantage in relativistic correlation methods. For molecules
with certain symmetries, however, the use of real-valued integrals is possible by
construction (see Section 10.2.4) which makes the entire calculation real-valued
not only the orbitals. Since usually the computational cost is much higher at the
correlation step of a calculation, the more costly orbital optimization using a spin-
dependent Hamiltonian is in these cases well justified. In general, spinors from such
a calculation form a significantly improved one-particle basis in heavy-element
calculations [8] and facilitate as well as improve the subsequent correlation treat-
ment. Regarding four-component methods in this respect, the explicit treatment of
the small component degrees of freedom can become too inefficient here. Two-
component Hamiltonians are then a favorable choice. Another (additional) place
to separate off spin–orbit coupling is at the later stage of the calculation, the post-
Hartree–Fock step. There exist a number of different “shadings” of how rigorous
the separation is carried out, e.g., in references [9, 10]. The models seem to work
well in many cases where the coupling between correlation and spin–orbit inter-
action is not decisive in the description of a given property of the system. To
name one example, the spin–orbit-(SO-) CASPT2 method [11, 9] draws advan-
tage from its efficient (perturbative) treatment of electron correlation, but spin–orbit
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interaction is considered only after the orbital optimization and not simultaneously
with (dynamic) electron correlation. A rigorous assessment of its accuracy remains
an open issue and relies on the direct comparison with non-separating methods
(an example is presented in Section 10.5.3).

Spin–orbit interaction effects in heavy elements, however, may be as drastic as
to give rise to the change of a ground state (PtH, [12]), the qualitatively different
description of a dissociation process (Tl2, [13], see Section 10.5.1), or the variance
of an atomic electric polarizability on the order of 35% (Tl, [14]). In general, there-
fore, it is desirable to treat spin–orbit interaction and electron correlation on the
same footing.

The emphasis in this chapter lies on the discussion of wave-function based cor-
relation approaches which incorporate spin–orbit interaction a priori, i.e., already
in the Hartree–Fock or Multi-Configuration (MC) SCF optimization. With respect
to the latter method, a certain distinction should be made: Liu and Kutzelnigg
published in 2000 a “relativistic MCSCF by means of quasidegenerate direct per-
turbation theory” [15, 16]. However this is not relativistic MCSCF in the present
sense as relativistic effects in their approach are added on top of a non-relativistic
MCSCF optimization. Regarding relativistic methods treating dynamic electron
correlation (post-HF or -MCSCF step) the discussion focusses on spinor-based
approaches. These methods have all been developed from non-relativistic precur-
sor implementations which allow for the highest-level treatment of correlation,
i.e., approaching the exact solution of the relevant many-particle equations with a
given one-particle basis set (Full Configuration Interaction, General-Order Coupled
Cluster), if desired and computationally feasible. This is seldomly done in prac-
tice, but these wave-function based methods allow for a systematic improvement
of the correlation level and therefore a detailed assessment of electron correlation
contributions typically via benchmark studies.

The chapter is organized as follows: In the following section principles of cru-
cial importance to the understanding of a number of relativistic electron correlation
approaches are reviewed. A short section introducing many-particle wave functions
touches on strings representing relativistic wave functions. The purpose of these
introductory presentations is also to make the following sections accessible in a self-
contained manner. These elaborate on essentials of string-based relativistic electron
correlation methods without going into great detail. In the final section some sample
applications are presented including a critical comparison with other approaches.

10.2. GENERAL PRINCIPLES

10.2.1. Time-Reversal Symmetry

In the absence of external magnetic fields the time-reversal operation comprises a
symmetry in the quantum-mechanical description of many-particle systems such as
atoms and molecules. Time-reversal or Kramers symmetry (TRS) is often exploited
in relativistic many-particle theory where spin-dependent Hamiltonian operators
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are employed. It may be implemented for significant reductions of the number of
independent parameters and, therefore, the ensuing computational effort. Since the
following methodological elaborations are based on the use of TRS, a brief introduc-
tion to the concept and the notation shall be given in advance. Further background
information and details can be found in the literature, e.g. [17–19].

The time-reversal operator OK is defined as an antiunitary operator, i.e., it is
unitary, OK� D OK�1, implying

OK OK� D OK� OK D 1 (10-1)

and moreover satisfies

OKc D c� OK (10-2)

where c is a complex number. For the general case of the four-component Dirac
equation, it may be conveniently defined as

OK WD �{˙ y
OK0 (10-3)

with OK0 a complex conjugation operator, ˙ y D 12 ˝� y a four-component operator
and � y a (two-dimensional) spin–Pauli matrix.

Using this definition, it may be shown [20,21] that, for instance, the free-particle
Dirac operator OhD , the one-particle Dirac operator including an external electric
potential (such as that of a nucleus) OHD , or the Dirac–Coulomb operator OHDC are
invariant under unitary transformation according to

OK� OhD
OK D OhD (10-4)

and equivalently for the other operators. This means that such Hamiltonian operators

commute with the Kramers operator,
h OK; OH

i
D 0, and thus TR is consequently a

fundamental symmetry that can be exploited in the respective eigenvalue equations.

10.2.2. Kramers-Paired Spinors

In order to understand the implications of TRS, it suffices to consider two-
component functions such as non-relativistic spin-orbitals. If we define “unbarred”
and “barred” spin-orbitals, respectively, as
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the Kramers operator in two-component form, �{� y
OK0, is seen to relate the

functions to each other, according to

OK˚i D �{
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{ 0
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0
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i

�
0 �1
1 0
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1
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OK˚ i D �
i˛ D �˚i (10-6)

here assuming real spatial parts 
i , and thus for the action on a fermionic function
OK2 D � 1. The physical interpretation of this behavior is that a reversal of time

affects the direction of velocities, and therefore angular momenta, which is reflected
by the above spin flips. We introduce an auxiliary quantityMK which takes the value
MK D 1

2
for the spin-orbital ˚i and MK D � 1

2
for the spin-orbital ˚i . Obviously,

MK corresponds to the spin projection MS in the non-relativistic case and will
therefore be called Kramers projection in the general case.

In relativistic theory, where due to the spin–orbit interaction neither the orbital
angular momentum nor the spin comprise good quantum numbers and instead the
total angular momentum j is relevant, the one-particle functions are generalized and
replaced by either 2- or 4-spinors. These are the solutions of the ensuing relativistic
equations and appear as some (complex) linear combinations of the above spin-
orbitals, e.g., in the case of atomic p 2-spinors as
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and correspondingly for other quantum numbers j;mj . Applying Eqs. 10-6,
OK2 D � 1 is seen to be satisfied, and OK relates functions of equal j and princi-

pal quantum number n, but flips the sign of mj . We therefore have established
a one-particle basis of Kramers-paired spinors for the relativistic description of
many-electron atoms. The Kramers projection remainsMK D 1

2
for a spinormj and

MK D � 1
2

for the corresponding spinor �mj , but the correspondence toMS is lost.
In the case of molecules where j is no longer valid, one may still conserve

the Kramers pairing of relativistic molecular spinors by resorting to a Kramers-
restricted formalism [22]. A molecular Kramers pair now consists of two functions
which are related by OK , the unbarred function˚i havingMK D 1

2
, the barred func-

tion ˚i having MK D � 1
2

. The relevance of MK will be discussed in greater depth
in the section on many-particle states (Section 10.3).
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10.2.3. Integrals Over Kramers-Paired Spinors

The computational demand of spinor-based relativistic electronic structure methods
is increased compared to their non-relativistic counterparts. This is for one part
due to the spin-dependence of the relativistic Hamiltonian and the consequences
discussed in Section 10.4, for the other due to additional classes of non-vanishing
integrals which must be considered. For example, the one-particle integral hij van-
ishes due to spin integration in the non-relativistic case where i and j refer to
spin-orbitals, but not in general in the relativistic case where i and j refer to spinors.

Without the use of symmetries, all blocks in Figure 10-1 would have to be calcu-
lated and stored. However, the introduction of a Kramers-restricted formalism which
implies the use of Kramers-paired one-particle functions allows for exploiting TRS.
The upper left and lower right blocks are related to each other by virtue of

hij D
D
˚i j Ohj˚j

E
D
D OK˚i j Ohj OK˚j

E
D
D
˚i j OK� Oh OKj˚j

E� D
D
˚i j Ohj˚j

E�

D
D Oh˚j j˚i

E
D
D
˚j j Oh�j˚i

E
D
D
˚j j Ohj˚i

E
D hj i (10-8)

where Eqs. (10-2), (10-4), and the hermiticity of the Hamiltonian have been used.
The lower left and upper right blocks are related if complex conjugation and time-
reversal symmetries are taken into account, according to

hij D
D OK˚i j Ohj˚j

E
D �

D
˚i j OK� Oh OK OKj˚j

E� D �
D
˚i j Ohj˚j

E� D �h�
ij

(10-9)

hij hij

hij hij

i

i

j j.... ....

....
....

K
c.c.
K

K

non−redundant integral block

c.c.: complex conjugation

K: time−reversal symmetry

Figure 10-1. Reduction to non-redundant set of one-particle integrals by exploiting time-reversal and
complex conjugation symmetry in a Kramers-paired spinor basis
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where in addition OK� D OK�1 has been used. Finally, Kramers symmetry reduces
the upper right block to triangle form:

hij D
D
˚i j Oh OKj˚j

E
D
D
˚i j OK� Oh OK OKj˚j

E

D �
D
˚i j OK� Ohj˚j

E
D �

D OK˚i j Ohj˚j

E� D �
D
˚i j Ohj˚j

E�

D �
D
˚j j Ohj˚i

E
D �hj i (10-10)

Hence, we have shown that the unique types of one-particle integrals in a Kramers
basis reduce to

hij hij : (10-11)

Likewise, the original set of classes of two-particle integrals can be reduced to the
following unique set by applying the same principles

.ij jkl/ .ij jkl/ .ij jkl/ .ij jkl/ (10-12)

and in addition particle exchange symmetry. Naturally, the computational savings
are much more important in the case of two-body integrals.

TRS has been used in a variety of different many-particle models, e.g., Dirac-
Hartree-Fock theory [22], relativistic Multi-Configuration Self-Consistent-Field
theory (MCSCF) [23–25] and approaches accounting for dynamic particle corre-
lations such as relativistic density-functional theory (DFT) [26, 27], configuration
interaction (CI) methods [28, 21], and coupled-cluster (CC) approaches [29].

10.2.4. Double Group Symmetry

A rigorously relativistic implementation of many-body methods requires the use
of double point groups if molecular symmetry is to be exploited. Most often, the
binary groups are implemented, i.e., D�

2h
and its subgroups [30]. The most sophis-

ticated implementation of double point group symmetry is possible when the units
of quaternion numbers are used in the representation of basis functions. The details
which are to be found in the literature [22, 31] are beyond the scope of this presen-
tation. However, the implications for integrals over Kramers-paired spinors shall be
discussed in an exemplifying case.

As expounded in reference [31], the double group of C�
2h

is a complex-valued
group, i.e., matrix elements over basis functions classified according to the sym-
metry representations of this group remain complex-valued, despite the use of
quaternion algebra. The character table of C�

2h
reads as [32] (Table 10.1).

Any spinor now transforms as to one of the fermion-type irreducible repre-
sentations E . Moreover, in a basis of Kramers-paired spinors the functions of a
given pair are related by time-reversal and span 1E and 2E , either gerade or
ungerade which is also obvious from the relationship of the respective characters,
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Table 10-1 Character table of the double point group C�
2h

E C2 �h I E C2 �h I

Ag 1 1 1 1 1 1 1 1
Bg 1 �1 �1 1 1 �1 �1 1
Au 1 1 �1 �1 1 1 �1 �1
Bu 1 �1 1 �1 1 �1 1 �1
1Eg 1 i i 1 �1 �i �i �1
2Eg 1 �i �i 1 �1 i i �1
1Eu 1 i �i �1 �1 �i i 1
2Eu 1 �i i �1 �1 i �i 1

which is given by complex conjugation. Since also in the case of double groups
the relativistic Hamiltonian transforms as to the totally symmetric representation,
the above-identified unique type of one-particle integrals hij vanishes due to dou-
ble group and time-reversal symmetries, as 1Eg ˝Ag ˝1Eg D Bg . The remaining
set of two-particle integrals is in this case given as .ij jkl/; .ij jkl/; .ij jkl/. Cor-
responding considerations are valid for the other complex-valued double groups,
C�

2 , and C�
s .

The described savings are in the same way achieved for the real-valued binary
double groups, D�

2h
, D�

2 , and C�
2v, but here it can be shown [22] that matrix ele-

ments can be constructed being purely real. These considerations are, however, not
valid for the so-called quaternionic matrix groups, C�

i and C�
1 , where the spinors

of a Kramers pair span the same symmetry irrep and the matrix elements remain
complex valued.

Double group symmetry has been implemented in a large number of relativistic
electronic-structure methods. A detailed discussion can be found in the textbook by
Dyall and Fægri [33], and a complete set of character tables in the monograph by
Koster et al. [32].

10.2.5. Generalized Active Spaces

A powerful concept to construct the electronic wave function is to introduce an arbi-
trary number of orbital spaces and to group the orbitals of a given system into these
spaces in accord with physical and chemical arguments. This makes is possible to
restrict the electronic occupation of the subspaces in constructing the wave func-
tion such that the expansion is limited to those terms which are considered most
important for properly describing the physical/chemical properties of the system.
The procedure of Generalized Active Spaces (GAS) has been introduced by Olsen
in the context of non-relativistic quantum chemistry [34] and can be regarded as the
complete generalization of the Restricted Active Space (RAS) concept [35] used for
instance in the MOLCAS program package [36] both with respect to the number of
subspaces as well as the electronic occupation of these.
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Figure 10-2. Subdivision of atomic or molecular orbitals into Generalized Active Spaces. Left-hand
side: General case. Right-hand side: Example for an actinide atom. n is the number of electrons in
the 5f shell of the atom, min./max. acc. el. specifies the minimum/maximum number of accumulated
electrons after consideration of this subspace. The ‘Frozen Core’ space can be omitted when a core Fock
matrix is generated for these orbitals

Heavy elements and their compounds often exhibit a complicated electronic
structure even in their electronic ground state. Here the GAS concept offers the
flexibility to account for the typical near-degeneracies of atomic orbital shells of dif-
ferent angular momenta and the frequently encountered large number of unpaired
electrons in ground and excited states. Figure 10-2 displays the basic ideas and
shows the particular subdivision and occupation constraints for an actinide atom.
The present example is a showcase for calculations on heavy-element compounds.
It comprises all Slater determinants (or a reference state plus all excitations in the
case of a coupled cluster calculation) meeting the occupation restraints given for the
various active spaces. One or zero holes are allowed in the space of the 5d orbitals;
zero, one or two holes are allowed in the combined spaces of the 5d , 6s, and 6p
orbitals, etc. The specification ‘18 C n � 4’ denotes that up to four particles may
be excited from the combined spaces II–IV into the following spaces. Accordingly,
‘18 C n � 2’ denotes that up to two particles may be excited from the combined
spaces II–V into the external space, yielding a typical Multi-Reference (MR) setup
with up to two particles in the external space.

In physical terms, this model space accounts for the following effects and
interactions: The reference space takes into consideration that for actinide atoms
commonly various 5f � 6d mixed configurations are important for describing the
low-lying electronic states. In the present example, all configurations ranging from
5f n; 6d 0 up to 5f n�4; 6d 4 are accounted for in the reference space. Since there
may be up to two holes in the 6s, 6p shells, the dynamic electron correlation effects
(which are treated since double excitations into the external space are allowed)
among these electrons and among them and those of the valence shells are con-
sidered. Thus, electron correlation effects are treated in a Core-Core (C-C) type
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fashion in the case of the 6s, 6p electrons and in a Core-Valence (C-V) type fashion
in the case of the 5d electrons, which may also be regarded as a core polarization
model for the latter shells.

Clearly, certain qualitative knowledge of the electronic structure of a system in
question is required prior to the construction of appropriate spaces and constraints.
The generality of the GAS approach, however, allows for its application in a number
of wave-function based (relativistic) electronic-structure methods such as Configu-
ration Interaction (CI), MCSCF, and CC models which will be described in Section
10.4. Its power unfolds in a variety of applications to electronic-structure problems
and the determination of atomic and molecular properties. Some examples will be
shown in Section 10.5.

10.3. MANY-PARTICLE WAVEFUNCTIONS

10.3.1. Spinor Strings

Many modern quantum-chemical methods capable of performing large-scale many-
body calculations are based on a representation of the many-particle wavefunctions
in terms of strings of creation operators in second quantization (string-based meth-
ods), e.g. [37–42]. The advantages of string-based approaches are manifold. First
and foremost, they allow for an efficient evaluation of coupling coefficients in CI
theory or of connections in CC theory. Moreover, methods implementing higher-
order excitations (such as triple (T), quadruple (Q) replacements etc.) are more
easily obtained, and they do not suffer from a reduced efficiency in the treat-
ment of these higher excitations. Furthermore, multi-reference approaches are more
straightforwardly accessible as demonstrated e.g. in references [43,44]. All of these
issues are of importance in the treatment of heavy-element systems due to the typ-
ically large number of electrons to be correlated and the ubiquity of open-shell
electronic structures.

The rigorous generalization of string-based approaches to the relativistic domain
is, e.g., described in references [21,45,46]. Two sets of strings are defined, a set com-
posed of Kramers-unbarred spinors and a set composed of Kramers-barred spinors

S� j i D a
�
i a

�
j : : : a

�
n j i

S� j i D a
�

i
a

�

j
: : : a

�
n j i (10-13)

where i; j; : : : denote indices of Kramers pairs. Since the individual operators can
be labelled according to their symmetry in the double group and furthermore the
active (GAS) space they refer to, strings are blocked into symmetry groups and
symmetry-occupation groups.

The graphical representation of such creator strings is akin to an ordering
algorithm for the individual strings and therefore the key to an efficient implemen-
tation of a many-body method. One possibility of employing graphical techniques
is to invoke group theoretical approaches such as the Symmetric Group Approach
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Figure 10-3. Sample string graph for Kramers unbarred spinor strings, 4 electrons in 6 Kramers pairs
subdivided into three active spaces (GAS); numbers in circles correspond to vertex weights, numbers
along paths to arc weights

(SGA) or the Unitary Group Approach (GUGA) as has been done for the case of
a spin-adapted basis within the spin–orbit configuration interaction method [47] in
the COLUMBUS program suite [4]. Alternatively, the graphical approach intro-
duced in reference [35] can be generalized to the relativistic case and a basis of
Kramers-paired spinors [8]. A sample string graph for a subset of strings with one
particle in GAS I (one Kramers pair), two particles in GAS II (three Kramers pairs)
and one particle in GAS III (two Kramers pairs) is shown in Figure 10-3 (an arbi-
trary number of active spaces and their respective occupations may be introduced).
The vertex weights indicate how many unique strings originate from a given ver-
tex. The arc weights define an ordering of the individual strings such that a string
index is given by the sum of weights of the arcs it passes. In the example in
Figure 10-3 six Kramers unbarred strings are obtained, where the first one is repre-
sented by a�

1a
�
2a

�
3a

�
5 j i. In a corresponding fashion Kramers barred spinor strings

are obtained. Since relativistic Hamiltonian operators may couple alpha and beta
spin-orbitals or, concomitantly, Kramers unbarred and barred spinors, the unbarred
and barred sets of strings are generated and stored separately.

In CI-type models [21, 8] a Kramers-unbarred and a Kramers-barred string are
combined to form a Slater determinant according to

S�
I S�

J j i (10-14)

where I and J denote individual strings. In (general-order) CC-type of models the
individual strings are combined to form excitation operators acting on a reference
state (Fermi vacuum) according to

��
� D S�

I S�

J SKSL (10-15)
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where S is a corresponding string of annihilation operators. The essentials of
the relativistic string-based implementations of these many-body methods will be
discussed in Sections 10.4.2 and 10.4.4.

For a given combination of strings, the Kramers projection may now be given as

MK WD Np �Np

2
(10-16)

with Np the number of creation operators of electrons in Kramers unbarred spinors.
As an example, the state a�

1a
�
2a

�
3a

�

5
j i has an associated Kramers projection of

MK D C1. Correspondingly, the string operator itself a�
1a

�
2a

�
3a

�

5
changes the

Kramers projection by �MK D C1. With the definitions in Eqs. (10-3) and (10-6)
it is readily shown that OK2 D .�1/n for the action of OK on a many-particle state,
where n is the number of fermions.

10.3.2. Relativistic Excitation Classes

The creation of excitation manifolds based on a reference state - be it single- or
multi-reference – is a substantial issue both in CC and CI theory. The concept of
excitation classes applies to both the wave function, where the type of excitation
relative to the reference state is characterized, as well as the Hamiltonian which
in second quantization carries out one- and two-particle displacements. The intro-
duction of GA spaces calls for an efficient and transparent handling of the arising
excitation types because the excitation level is linked to the chosen occupations
of the active spaces. In the second quantization picture this is ideally achieved
by labelling all unique excitation types and bookkeeping the number of creation
and annihilation operators referring to that excitation type. As a simple example,
consider Table 10-2.

Table 10-2 Two exemplifying excitation classes of a one-
and a two-particle operator

GAS
Exc. class Elementary operator I II III

Oa(i Creation of unbarred spinor 0 0 1

Oa(
j

Creation of barred spinor 0 0 0

Oak Annihilation of unbarred spinor 1 0 0
A

Oal Annihilation of barred spinor 0 0 0
:
:
:

Oa(i Creation of unbarred spinor 0 1 1

Oa(
j

Creation of barred spinor 0 0 0

Oak Annihilation of unbarred spinor 1 0 0
E

Oal Annihilation of barred spinor 1 0 0
:
:
:
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Excitation class A represents an annihilation of an electron in GAS I and a
creation in GAS III, where both operators refer to the Kramers unbarred set of one-
particle functions. The type of excitation therefore generates determinants (in the
CI case) with an occupation lowered by one spinor in the first space and increased
by one spinor in the third space and the same Kramers projection MK as the
reference state.

An excitation class for a two-particle operator is shown in the lower half of
Table 10-2. Two electrons in an unbarred and a barred spinor of space I – not neces-
sarily forming a Kramers pair! – are annihilated and created in two unbarred spinors
of spaces II and III, respectively. The complete operator in normal ordering and the
associated integral read

Oa�

i II
Oa�

j III OakI Oa
l

I .i l jjk/: (10-17)

Therefore, this operator may be classified as flipping the Kramers projection by one
unit, according to �MK D C1. The information given by �MK , the number of
particles and their occupation of active spaces may now be compiled to define an
excitation class.

Excitation classes become an important means of classifying quantities occur-
ring in relativistic many-particle theory. In CI theory the value of a CI coupling
coefficient (deciding whether a matrix element of the Hamiltonian vanishes or not)
is determined by the excitation class of the left-hand and right-hand string com-
binations and the excitation class of the Hamiltonian operator. In relativistic CC
theory, correspondingly, connections can be determined by the excitation classes
of the involved strings for the excitation/deexcitation operators and the Hamiltonian
[44]. It becomes obvious that there is no essential distinction between various excita-
tion levels such as the singles and doubles excitations which are typically employed
in second-order methods, and higher excitations. Due to the treatment of all excita-
tion levels on the same footing, the implementation of general excitation level (or
general-order) methods is facilitated. Further implications of the excitation-class
formalism will be addressed in the following sections.

10.4. WAVEFUNCTION-BASED ELECTRON CORRELATION
METHODS

10.4.1. Hamiltonian Operators

10.4.1.1. General Considerations

We shall at first focus on the applicability of the electron correlation methods dis-
cussed here and the use of various relativistic Hamiltonian operators which define
the physical framework of a given method. Particular attention will be paid to the
distinction between four- and two-component Hamiltonians used at the correlation
stage, since this issue persists to be a source of some confusion.
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Four-component electronic-structure theory is very often based on the so-called
“empty Dirac” picture [33], e.g., as the implementations in the DIRAC quantum-
chemistry program package [48] where the Dirac–Coulomb Hamiltonian is fre-
quently used. This means that the states of negative energy, described by some
finite basis set, are treated as virtual orbitals in the Hartree–Fock optimization
[22] and a minmax variation principle is employed [49]. Here the energy is min-
imized with respect to spinor transformations among positive-energy spinors and
maximized with respect to spinor transformations involving positive- and negative-
energy spinors. After this step, the negative-energy states may be discarded which
can be viewed as a no-pair approximation a posteriori [50] since a coupling between
negative- and positive-energy states is now explicitly ruled out. The positive-energy
states (+), however, are nonetheless described by four-component spinors which in
general have a non-vanishing small (S) component

 C
i D

�
 L

i

 S
i

�
; (10-18)

where  L
i is a two-component spinor (bi-spinor). The other common approach to

no-pair theories is to invoke the decoupling of positive- and negative-energy states
a priori, i.e., to transform the four-component operators to a two-component form
with an action only on positive-energy states. Examples are the Infinite-Order Two-
Component (IOTC) [1, 3], Exact Two-Component (X2C) [2], or the widely-known
Douglas–Kroll–Hess (DKH) theory [51, 52] .

The point to be made in the present context is that electron correlation methods
based on spinors optimized with any of the above (spin-dependent) Hamiltonians are
structurally entirely independent of the choice of this Hamiltonian. This is for exam-
ple understood by considering the ensuing integral transformation into the basis of
atomic or molecular spinors after a four-component Hartree–Fock (or MCSCF) cal-
culation. The positive-energy spinors in Eq. (10-18) are then expanded into some
one-particle basis set 
 according to

 L
i D

N LX
J D1

cL
iJ


L
J

 S
i D

N SX
J D1

cS
iJ


S
J (10-19)

where NL is the number of Large-component basis functions. The set of integrals
transformed into the atomic or molecular basis required to describe the positive-
energy states is then cast as (sampling only one-particle integrals)
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Therefore, contributions from the Large and Small component parts of the spinors
are summed up in the transformation step. In any two-component approach, now,
the terms involving the small component functions in Eq. (10.20) are obsolete and
one obtains a transformed integral h0C

mn which may be numerically different from
hC

mn. However, the obtained set of integrals has exactly the same size in both cases
which essentially is due to the no-pair approximation, be it a priori or a poste-
riori. From Kramers-restricted optimizations we thus obtain a set of transformed
(non-redundant) integrals hC

mn, hC
mn, .kl jmn/C : : : as given in Eqs. (10-11) and

(10-12), both in the four- and two-component case. The relativistic electron correla-
tion approaches presented here may therefore be used with four- and two-component
Hamiltonians without modification, which opens the way for direct comparison.

10.4.1.2. Relativistic Formulations

The generality of the excitation class formalism introduced in Section 10.3.2
allows for the definition of different relativistic frameworks, both with respect to
the Hamiltonian used in the orbital/spinor optimization step as well as the step
accounting for dynamic electron correlation. We may envisage five commonly
occurring cases, labelled by the excitation class manifold M, which are displayed
in Table 10-3. Notably, there is no distinction between four- and two-component
Hamiltonians. M = 1 refers to a non-relativistic Hamiltonian or a scalar relativistic
Hamiltonian which does not include spin-dependent terms and therefore disallows
for a change in the Kramers projection. As this environment always implies the use
of (restricted) spin-orbitals, the Kramers pairs are simply comprised by a pair of

Table 10-3 Manifolds of excitation classes depending on the relativistic Hamiltonian and
framework

Excitation classes

M 1-Particle terms 2-Particle terms Relativistic framework

1 �MK D 0 �MK D 0 Non-relativistic or “scalar” relativistic
2 �MK D 0;˙1 �MK D 0 Orbitals, mean-field spin–orbit
3 �MK D 0;˙1 �MK D 0;˙1;˙2 Orbitals, full spin–orbit
4 �MK D 0 �MK D 0;˙2 Spinors, real/complex double groups
5 �MK D 0;˙1 �MK D 0;˙1;˙2 Spinors, quaternion double groups
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˛ and ˇ spin functions and a common spatial function. M = 2 defines a widely-used
type of operators where the spin-dependent two-particle terms are approximated by
an atomic mean-field (AMFI) [53]. This approach has proven to be reliable both
for heavy [54] and also light elements [8, 55]. M = 3 comprises the generalization
of M = 2 to a fully spin-dependent Hamiltonian, especially its two-particle terms,
but still referring to a scalar one-particle basis. This type of approach has disadvan-
tages compared to the formalism designated by M = 4 and M = 5 where a spinor
basis is used. It is less efficient than the mean-field approach defined by M = 2 and
less accurate than the spinor-based methods. In fact, in considering the discussion
on the distinction between four- and two-component Hamiltonians (above) we may
state that it is to a larger degree a question of when (i.e., at which stage of the calcula-
tion) spin–orbit interactions are introduced into relativistic methodology rather than
how. In the framework of orbitals the relaxation of the wave function due to spin–
orbit interaction has to be described by the correlation expansion. This is certainly
viable and has been implemented in a number of quantum-chemical approaches,
e.g., in references [5,4,21]. It has, however, been shown that in the case of CI mod-
els results at a given excitation level for the wave function are significantly more
accurate if a spinor basis is used from the outset [8]. The latter of course comes with
the price of having to deal with an extended set of transformed integrals (compared
with approaches of type M = 2), even if these can be brought to (quaternion) real
form. The problem of relaxation due to spin–orbit interaction at the correlated stage
appears to be less pronounced in CC methods [7].

10.4.1.3. Hamiltonian in Kramers-Adapted Form

For the following discussions we shall focus on the four-component Dirac–
Coulomb Hamiltonian OHDC which is the most exact representative of the types
of Hamiltonians in the present context. Further formal elaborations on the Breit
interaction giving rise to the spin and other orbit interaction in a two-component
framework are presented in complete form elsewhere [33, 56].

In order to preserve the time-reversal property given by Eq. (10-4) for the indi-
vidual terms of OHDC in second quantization, two possible operator bases will be
discussed here. The basis introduced by Aucar et al. [19]

OXC
pq D a�

paq C a
�
qap

OX�
pq D a�

paq � a
�
qap (10-21)

OXCC
pqrs D OXC

pq
OXC
rs � ıqra

�
pas � ıpra

�
qas � ıqsa

�
par � ıpsaq�ar (10-22)

etc:;

meets the requirements and has been used in relativistic MCSCF [23,45,24] and CI
theory [21,8]. The corresponding operators for Kramers-barred spinors are obtained
by applying the Kramers replacement operator

OKpq a
�
paq WD a

�
paq : (10-23)
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For a consistent representation of the formalism, it is desirable to cast all occurring
operators in terms of this basis, i.e., also the operators manipulating states such
as orbital transformation and excitation operators with respect to a reference state.
Since the OX operators comprise combinations of excitations and deexcitations, an
alternative representation purely in terms of excitation operators

OEv
pq D {f .v/


O1C v OKpq

�
a�

paq (10-24)

with

f .v/ D 3

2
v C 5

2
v2 (10-25)

for expressing the prefactor may be preferred for the case of relativistic CC theory.
This is discussed in reference [57].

For most purposes OHDC may now be reformulated [33, 21] in the basis given by
Eqs. (10-21) and (10-22) yielding

OHDC D
X
pq

�
hpq

OXC
pq C 1

2



hpq
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pq C hpq
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��
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h
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i
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4

X
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.pqjrs/ OxCC
pqrs

C1

8

X
pqrs

h
.pqjrs/ OxCC

pqrs C .pqjrs/ OxCC
pqrs

i
: (10-26)

In a non-relativistic framework – due to spin integration – only the terms given
in boldface symbols would be non-vanishing. It is clear from the discussion in
Section 10.2.3 that the operator in this form contains redundant types of integrals
over Kramers-paired spinors. Also in order to describe the advantages of string-
based implementations in the present framework, the operator in the above form
will undergo further modification as discussed in Section 10.4.2.2.

10.4.2. Configuration Interaction

10.4.2.1. Matrix Representations

Given a basis of Kramers-restricted optimized spinors we may first discuss gen-
eral structural properties of the Hamiltonian matrix [23]. A matrix representation
of the relativistic Hamiltonian using determinants formed from the spinor strings
introduced in Section 10.3.1 is displayed schematically for a six-particle system in
Figure 10-4. For all types of double groups discussed in Section 10.2.4 the unshaded
blocks are zero as the Hamiltonian is at most a two-particle operator. The plain
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Figure 10-4. Hamiltonian matrix for a 6-particle system. Np is the number of electrons in unbarred
Kramers pairs, Np the number of electrons in barred Kramers pairs (from reference [23]; reprinted by
permission of the publisher.)

grey shaded blocks are zero for real-valued and complex valued groups, essentially
because here the spinors of a Kramers pair transform according to different fermion
irreducible representations of the double group. The different types of striped blocks
represent non-vanishing but disjoint sections. Finally, time-reversal symmetry may
be exploited also at the many-particle level to reduce the Hamiltonian matrix to
the non-redundant part in the box in the upper left corner. This applies to an even
total number of electrons. For systems with an odd total number of electrons, time-
reversal symmetry is exploited since the wave function transforms according to a
fermion irreducible representation of the double group.

10.4.2.2. String-Based Relativistic CI

Before turning to the actual algorithms and implementations of relativistic config-
uration interaction it is appropriate to highlight the essential differences between
non-relativistic and relativistic approaches. This will make the extensive use of
available symmetries and the need for highly efficient algorithms obvious.

10.4.2.2.1. Computational Demand Due to the loss of non-relativistic sym-
metries like spatial and spin symmetry, rigorously relativistic electron correlation
calculations are significantly more demanding than their non-relativistic counter-
parts [50]. This increase in computational cost is best illustrated by virtue of a
representative example featuring a typical multi-reference CI calculation.

We may again consider the CI expansion for an actinide atom with the valence
electronic configuration 5f 7 in a basis set comprising 67 and 68 virtual Kramers
pairs in symmetries g and u, respectively. Using the highest abelian subgroup of
the binary double point groupD�

2h
which is C �

2h
, the various states arising from the

ground electronic configuration 5f 7 are obtained in the irreducible representation
1Eu, see Table 10-4.
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Table 10-4 Typical multi-reference singles and doubles CI expansion in the non-relativistic
and relativistic frameworks for an actinide atom. The sum of all determinants in the non-
relativistic case (counting n D 1 : : : 3) equals the number of determinants in the relativistic
case

Non-relativistic Relativistic

State # of dets. Symmetry State # of dets. Symmetry
8Xu 23.433 Au (all states) 18.315.011 1Eu

23.771 Bnu
6Xu 324.314 Au

325.795 Bnu
4Xu 1.419.874 Au

1.422.304 Bnu
2Xu 2.804.408 Au

2.809.124 Bnu

The reference space in this example is given by all determinants which can
be formed from distributing seven to five electrons among the 5f Kramers pairs
and zero to two electrons among the virtual Kramers pairs, respectively. All states
of octet through doublet symmetry are obtained by at most eight distinct calcula-
tions in the non-relativistic case, the largest of which comprises roughly 2:8 million
Slater determinants. In the relativistic case all states are obtained in a single calcu-
lation, however comprising more than 18 million Slater determinants. Calculations
of this size are still two orders of magnitude smaller than what is feasible today
with modern implementations of string-driven relativistic CI [24, 58, 59]. The rela-
tivistic calculation in symmetry 2Eu is not required since it is degenerate with 1Eu.
Double group and time-reversal symmetries therefore lead to important computa-
tional savings which must be exploited in efficient rigorous relativistic computer
implementations. Beside the reduction of symmetry which makes relativistic calcu-
lations more demanding, a second factor comes into play: Due to the increased
couplings of relativistic states among each other (caused by spin–orbit interac-
tion) the CI Hamiltonian matrix is significantly more dense in the relativistic case
(see Figure 10-4), i.e., it contains less zero-valued matrix elements. This struc-
tural change of the Hamiltonian matrix adds to the computational demand beside
the actual size of the calculation, because the determination of projected vectors
becomes more time-consuming.

10.4.2.2.2. Large-Scale Relativistic CI Algorithms The treatment of large CI
expansions where at the same time only a few (lowest) eigensolutions are required
has become a standard problem in non-relativistic frameworks. For example, for
large sparse matrices modern variants [60, 42] of the Davidson algorithm [61] can
be used which are also straightforwardly adapted for the treatment of complex
matrix eigenvalue problems [45]. By virtue of the use of quaternion algebra and
double group symmetry (as indicated in Section 10.2.4) the real-valued optimization
algorithms can be used without modification also in the relativistic framework which
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applies to atoms, all linear molecules, and to non-linear molecules of at least C2v or
D2 symmetry. In all other cases, the formalism remains algebraically complex.

10.4.2.2.3. Sigma-Vector Fragmentation When it comes to computational
efficiency in large-scale applications the decisive step in all types of above-
mentioned algorithms is the determination of projected (sigma) vectors from a set
of trial (C) vectors in a given iteration:

� D HC:

where H is the Hamiltonian in matrix representation. It is the appearance of
a wider class of integrals in the relativistic spinor basis beside the implemen-
tation of relativistic symmetries which comprise the essential changes requiring
special attention.

Since the sigma vector can also be written in the fashion

� D
C2X

�MK D�2

� �MK (10-27)

it is convenient to split the Hamiltonian operator (10-26) into five corresponding
fractions:
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Before turning to the algorithm, we may with the help of Figure 10-4 summarize
the properties of the iterative procedure in the relativistic case. The first CI itera-
tion yields the Hartree–Fock determinant in the closed shell case or a simple linear
combination of a few determinants in the open-shell case. Assuming that the initial
wave function corresponds to a non-relativistic or scalar relativistic Hamiltonian,
this initial wave function has a well-defined Kramers projection value MK . In the
second iteration, all possible couplings from the initial determinants to all singly
and doubly excited determinants are included, necessarily having Kramers projec-
tion values from MK to MK ˙ 2. This step can be viewed as a first order coupling
in terms of perturbation theory. The third iteration includes all the determinants that
can be obtained from the initial wave function with up to quadruple excitations and
Kramers projection from MK to MK ˙ 4. In the case depicted in Figure 10-4 this
comprises the full determinant space, but in cases with more open-shell orbitals, a
larger number of iterations may be required to include the full determinant space.

10.4.2.2.4. Excitation-Class-Driven Algorithm Using the concept of excita-
tion classes introduced in Section 10.3.2 the connections between right-hand and
left-hand string types may now be determined by their corresponding excitation
types and those of the Hamiltonian (respectively its fragment in question). Due to
the generality of this approach, the evaluation of structurally similar quantities is
straightforwardly possible, in particular linearly transformed vectors (sigma vectors)
and CI density matrices.

Labelled withMK and a real/imaginary index as �
MK
r a specific element (T ; T ;

string indices are dropped for convenience1) of the sigma vector fragment reads

�C2
r .T ; T / D

X
ijkl

X
S;S

.pqjrs/r=i
A

T T ;SS
pqrs C

r=i

S;S (10-33)

1 Therefore, OKT is in general NOT equal to T in the present context.
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where SS denote unbarred and barred strings as defined in Eq. (10-13).AT T ;SS
pqrs D

h j T T p�r�sqS�S� j i is the CI coupling coefficient for the bra (T T ) and
ket (SS) determinant. The actual evaluation of the coupling coefficient and the
ensuing contractions can be implemented in a very general fashion based on the
manipulation of the involved spinor strings [8].

CI density matrices are likewise obtained by replacing the integrals .pqjrs/r=i

used in the contraction for the sigma vector (10-33) with expansion coefficients of
the left-hand determinants CT ;T , for example according to

�r.2/ .pqrs/ D
X
S;S

X
T ;T

C
r=i

T ;T A
T T ;SS
pqrs C

r=i

S;S : (10-34)

We may now turn to the essential question of how the coupling coefficients are
determined in an efficient manner, since this issue is decisive for the large-scale
applicability of the methods presented in this chapter.

10.4.2.2.5. Coupling Coefficients Via Strings For simplicity we drop the
indexing of real and imaginary parts and restrict the summations in Eq. (10-33)
to obtain
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X
SS

h jT T p�r�sq S�S� j i � Œ.pqjrs/� .rqjps/� � C.T T /
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(10-35)

We may now insert a resolution of the identity in the spinor string basis

1 D
X
UU

U�U� j i h jUU (10-36)

into the matrix element for the coupling coefficient and obtain for this part of the
expression
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The string of annihilation operators T can now be permuted to the right of the
spinor creation operators, whereby a sign .�1/2N arises, N being the length of the
barred/unbarred string:
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This manipulation becomes possible due to the use of a Kramers-restricted spinor
basis. We perform the same permutations with the string U� and obtain for
Eq. (10-37)
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Here we have exploited that the sign from the permutation of U�U�
is reproduced by

the permutation of UU . Executing the sums over resolution strings UU finally yields
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Using this expression the partition of the sigma vector becomes
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(10.41)

which exhibits the principal form required to understand string-graphical
approaches to evaluating coupling coefficients or connections. By inserting a res-
olution of the identity the coupling coefficients have been split into two disjoint
matrix elements which only involve unbarred or barred spinors, respectively. In an
analogous manner the other sigma vector partitions may be treated, yielding disjoint
coupling coefficients over spinor operator strings of individual lengths between zero
and two, respectively. The two-particle creation mappings for the above element
h j T p�r� S� j i and the two-particle annihilation mappings for the element

h j T sq S� j i are now obtained separately by exploiting the organization of
n-particle strings for active subspaces as introduced in Section 10.3.1. It is thus pos-
sible to exploit the same efficiency gain in relativistic CI as has been obtained in the
case of non-relativistic CI approaches by splitting Slater determinants into ordered
strings of alpha/beta (unbarred/barred) types [62,35,42]. This will be demonstrated
for sample applications discussed in Section 10.5.

10.4.3. Multi-Configuration SCF

Theory and formalism of truly relativistic molecular (or atomic) MCSCF for
application in both the four-component (empty-Dirac picture) and two-component
frameworks have been presented already in the mid 1990s [23]. In 2003 Kim
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and Lee published a partial implementation of a genuine second-order Kramers
restricted MCSCF method for two-component spinors and relativistic effective core
potentials (RECP) including spin–orbit interactions [25]. Their work documents
some of the benefits of a fully variational KR-MCSCF method for static correlation.
In the present the first full implementation of a Kramers-restricted second-order
relativistic four-component MCSCF model for molecules is described.

The implementation of this method [45] has made it possible to optimize
molecular Kramers-paired spinors under full account of spin–orbit interaction. The
advantages of such an approach are twofold: (1) Due to the treatment of spin–orbit
coupling a priori the determination of potential energy curves/surfaces includes the
most important relativistic effects already in the orbital optimization, which is for
instance of importance in the qualitatively correct description of many dissocia-
tion processes where heavy elements are involved. (2) In general, MCSCF spinors
represent a much better wave function approximation for subsequent treatments
of dynamic electron correlation than Hartree–Fock spinors. In particular for the
description of electronically excited states of heavy-element compounds with com-
plicated electronic structure, state-specific MCSCF wave functions may be of great
advantage in the process of obtaining a quantitatively correct picture of these states.

Since the MCSCF method [63] is a multi-configurational approach, a CI module
of preferrably large-scale applicability is highly desirable. Calculations on heavy-
element compounds often necessitate the use of large active spaces, which is due
to the frequently occurring energetic near-degeneracy of orbitals in heavy elements
and the also often occurring large number of unpaired electrons, especially in elec-
tronically excited states. It is for these reasons that string-driven relativistic CI is
of importance for an efficient and widely applicable relativistic MCSCF method,
as well as for a subsequent treatment of dynamic electron correlation. The cen-
tral features of the approaches presented in references [23,45,24] shall therefore be
summarized here. An emphasis will be put on those features relevant to string-based
relativistic CI.

10.4.3.1. MCSCF Algorithm

In order to achieve a good approximation to the exact energy functionalE.�/ energy
variations are expressed through a second-order Taylor expansion around the current
expansion point in the parameter space (� D 0),

E.2/.�/ D E.0/C ��EŒ1� C 1

2
��EŒ2�� (10-42)

with the energy gradient EŒ1� and the energy Hessian matrix EŒ2�. The opti-
mal second-order step for minimization is the step giving the lowest predicted
energy value from the second-order expansion, yielding a modified Newton type
of equation

�
 D �.EŒ2� � �I/�1EŒ1� (10-43)

with a level shift parameter �. The solution of this equation defines one macro
iteration.
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In order to allow for large relativistic MCSCF expansions with millions of
configurations and hundreds of basis functions, the energy Hessian matrix E Œ2 � is
never calculated explicitly [64]. The solution vector is instead found by an itera-
tive algorithm, where the solution vector is approximately expanded in a set of trial
vectors fbng

�j D
N

j

bX
n

aj
nbn (10-44)

whereN j

b
is the dimension of the trial vector space in micro iteration j . The solution

�
 to the full linear equation in Eq. (10-43) is found to the required accuracy by
means of successive linear transformations

� n D E Œ2�bn (10-45)

for each bn. The optimal coefficients faj
ng in Eq. (10-44) are found by solving the

projected linear equations, where Eq. (10-43) is projected onto the reduced vector
space of trial vectors

aj D �.E Œ2j � � �j I /
�1E Œ1j �: (10-46)

The reduced Hessian and gradient elements are thus

E Œ2j �
mn D b�

mE
Œ2�bn D b�

m�n (10-47)

E Œ1j �
n D b�

nE
Œ1�: (10-48)

All sigma vectors � n have configurational and orbital contributions, as the Hessian
couples all subspaces. This separation of configurational and orbital rotations is not
necessary, but it has been shown to be advantageous with respect to computation
time [65].

10.4.3.2. Electronic Gradient and Hessian

The configurational part of Eq. (10-48) for a determinant
ˇ̌
˚�

˛
reads

E Œ1�c
� D

D
˚�

ˇ̌̌
OH
ˇ̌̌
c.k/

E
� E Œ0�c.k/

� (10-49)

and the expression OH ˇ̌
c.k/

˛
needs to be determined from the current expansion point

vector
ˇ̌
c.k/

˛
. For the orbital part one obtains expressions of the type

E Œ1�o
rs D �

D
ck
ˇ̌
ˇh OX�

sr ;
OH
iˇ̌ˇ ck

E
(10-50)

where OX�
sr is defined by Eq. (10-21).
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Likewise, writing Eq. (10-45) in terms of configurational and orbital parts, one
obtains

0
BB@
�c

�o

�c�

�o�

1
CCA D

0
BB@
E Œ2�c�;c E Œ2�c�;o E Œ2�c�;c�

E Œ2�c�;o�

E Œ2�o�;c E Œ2�o�;o E Œ2�o�;c�

E Œ2�o�;o�

E Œ2�c;c E Œ2�c;o E Œ2�c;c�

E Œ2�c;o�

E Œ2�o;c E Œ2�o;o E Œ2�o;c�

E Œ2�o;o�

1
CCA �

0
BB@
bc

bo

bc�

bo�

1
CCA ; (10-51)

The configurational parts of the sigma vectors comprise the contributions

� c
� D ˝

˚�

ˇ̌ OH jBi C ˝
˚�

ˇ̌ QOH
ˇ̌̌
ck
E
; (10-52)

where jBi D P
�

b�

ˇ̌
˚�

˛
is a configurational trial vector and QOH is a one-index

transformed Hamiltonian [23, 45]. For the orbital parts one obtains [23, 45]

� ors D �
nD

ck
ˇ̌
ˇh OX�

sr ; OH
iˇ̌ˇBEC

D
B

ˇ̌
ˇh OX�

sr ; OH
iˇ̌ˇ ckEo�

D
ck
ˇ̌
ˇh OX�

sr ;
QOH
iˇ̌ˇ ckE : (10.53)

It is therefore obvious that the applicability of relativistic (as well as non-relativistic)
MCSCF crucially depends on the direct CI technique employed to evaluate these
expressions. The configuration space vectors, both current expansion point or CI
trial vectors, which are required in the linear transformations (sigma vectors) and
the density matrices may have very large dimensions. Table 10-5 summarizes the
quantities evaluated by string-driven direct CI and relates them to their origin in the
MCSCF equations. The evaluation of sigma vectors, density and transition density
matrices proceeds as expounded in Section 10.4.2.2.4.

As an efficient option, integrals with two indices referring to negative-energy
states may be neglected in the calculation of sigma vectors. Although this is then
consequently not a fully second-order optimization, it gives satisfactory conver-
gence at a significantly lower cost in the integral transformation [45,23] which needs
to be carried out once for every macro iteration.

The MCSCF approach is its current form [45] is directly applicable using
the four-component or two-component Hamiltonian operators implemented in
the DIRAC program system [48]. In contrast to the methods presented here

Table 10-5 Direct CI contributions to the MCSCF gradient and Hessian

Gradient EŒ1� Config. part EŒ1�c CI sigma vector OH ˇ̌
c.k/

˛
Gradient EŒ1� Orbital part EŒ1�o CI density matrices

˝
c.k/

ˇ̌ h OX�

sr ; OH
i ˇ̌
c.k/

˛
Hessian EŒ2� Config. part EŒ2�c;c=o CI sigma vector OH ˇ̌

c.k/
˛

CI sigma vector OH jBi
Hessian EŒ2� Orbital part EŒ2�o;c=o CI density matrices

˝
c.k/

ˇ̌ h OX�

sr ; OH
i ˇ̌
c.k/

˛
CI transition densities

˝
c.k/

ˇ̌ h OX�

sr ; OH
i

jBi
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which treat dynamic electron correlation, two-component approximations lead to
significant computational savings in relativistic MCSCF applications since the
(computationally expensive) integral transformations only include integrals over the
large-component parts of spinors.

10.4.4. Coupled Cluster

Relativistic CC calculations for molecules containing heavy elements can presently
not attain the same accuracy as non-relativistic CC calculations for molecules con-
taining light elements. The limiting factors are the number of electrons which
need to be correlated, the size of the required one-particle basis sets, the more
complicated electronic structure of many heavy-element compounds, and the less-
developed methodology for relativistic CC calculations. Also and especially in
the relativistic domain, general-order and multi-reference approaches are highly
desirable. This pertains to the occurrence of unpaired electrons, not only when disso-
ciation processes are to be described but very often in the ground- and excited-state
electronic structures close to equilibrium geometries. General-order and multi-
reference implementations are therefore related, and advances in relativistic CC
methodology are likely to touch upon both these issues.

There is still no general consensus on how a multi-reference coupled cluster
theory should be formulated. Modern developments including iterative excitation
levels higher than CC doubles, e.g., [37, 44, 66–68] and various multi-reference
(MR) approaches [44, 43, 69, 70] have been presented in the non-relativistic frame-
work. Generalizations to a relativistic formalism, which is here to be understood as
also including spin–orbit interaction terms, remain rare. Hirata et al. [71] describe
higher-order electron correlation methods including coupled cluster approaches
where spin–orbit interaction is introduced by means of relativistic effective core
potentials with spin–orbit effective potentials. The four-component implementations
by Visscher et al., Kramers-restricted [29] and unrestricted [72], respectively, are
not generally applicable to open-shell/multi-reference states. The only genuinely
relativistic multi-reference approaches for molecules reported to the date are the
Fock-Space CC implementations by Landau et al. [73] and Visscher et al. [74].
These methods, as the Fock-space approach in general, use a common orbital basis
for all of the occurring ionized systems. Relativistic FSCC approaches have been
applied to systems with few unpaired electrons and in this domain are likely to be
the most accurate relativistic molecular many-body methods currently available.

Alternatively, the multi-reference problem may be approached by exploiting the
GAS concept in the construction of CC model spaces [44,75], leading to variants of
so-called state-specific MRCC. This formulation retains the advantages of single-
reference approaches such as the commutativity of cluster operators and allows
for a flexible definition and robust treatment of open-shell and multi-reference
problems [76].
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10.4.4.1. Active-Space Coupled Cluster

The original idea for the type of multi-reference CC approach presented here is
ascribed to Oliphant and Adamowicz [77,78]. The present approach is based on the
generalized implementation of these ideas by Olsen [44, 76] where the projection
manifold is extended to simulate excitations from additional reference functions
beside those from the Fermi vacuum state. Figure 10-5 gives an illustration of how
the CC model spaces are constructed. We resort to a simple case with undefined
number of Kramers pairs in GAS I, one valence (e.g., bonding) Kramers pair in
GAS II, another Kramers pair, e.g., of antibonding character, in GAS III, and an
undefined number of Kramers pairs in the external space GAS IV. The arising model
space is best understood by explicitly considering the CC excitation manifold h�j
obtained by these definitions. Since the number of holes in GAS I is restricted to
two, the excitation manifold can be written as

h�j D
D
�S.III1/

ˇ̌
ˇC

D
�S.IV1/

ˇ̌
ˇC

D
�D.III2/

ˇ̌
ˇC

D
�D.IV2/

ˇ̌
ˇC

D
�D.III1CIV1/

ˇ̌
ˇ

C
D
�T.III1CIV2/

ˇ̌
ˇC

D
�T .III2CIV1/

ˇ̌
ˇC

D
�Q.III2CIV2/

ˇ̌
ˇ: (10-54)

The term
D
�S.III1/

ˇ̌̌
now indicates that relative to the (in this case) closed-shell refer-

ence state, where GAS I and GAS II are fully occupied, Single (S) replacements with
one electron occupying GAS III have been included. Likewise, the other terms of
the extended excitation manifold are interpreted. Particular attention should be paid

to the two terms given in boldface symbols:
D
�T.III1CIV2/

ˇ̌
ˇ denotes triple excitations

min
acc. el.

max
acc. el.

GAS I

GAS IV

GAS III

GAS II

External

Outer Core

1 Valence

1 Valence*

n           n

n−4         n−2

n−2         n

n−4         n

Figure 10-5. Generalized Active Space model for a CC wave function. n is the total number of electrons,
min./max. acc. el. specifies the minimum/maximum number of accumulated electrons after consideration
of this subspace
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with respect to the reference state where two particles reside in the external space.

Compared with the term
D
�D.IV2/

ˇ̌̌
which “correlates” the reference state it is seen

that in the Triples term a single excitation is “correlated”, as Double excitations
into the external space are combined with these Single excitations. In an analogous

manner, the term
D
�Q.III2CIV2/

ˇ̌
ˇ describes the correlation of the one doubly-excited

state within spaces II and III. Essentially, GAS CC therefore simulates a genuine
multi-reference CC treatment by including a selected set of higher excitations in the
excitation manifold. In the same way the cluster operators are constructed such that
they include all excitations defined by the active space constraints. A description of
this CC Ansatz is presented in reference [81].

The drawback of this formalism – in contrast to FSCC or the state-universal
Ansatz [69, 79] or a new multi-reference exponential ansatz by Hanrath [80] –
is the variance with respect to the choice of the Fermi vacuum since the vari-
ous conceivable reference functions are not strictly treated on the same footing.
The straightforward remedy, a separate cluster expansion for every reference func-
tion, leads to the state-universal Hilbert-space CC theory which is far less efficient
[79]. The loss of Fermi vacuum invariance, however, does not appear to be of cru-
cial importance in application and problems can be avoided by proper choices of
reference spaces [40].

10.4.4.2. Relativistic Cluster Operators

The cluster operators OT D P
m

OTm are now generalized to the relativistic frame-

work, which entails the possibility of flipping the Kramers projection along with the
excitation [46]:
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In the case of spin orbitals, the Kramers flipping would correspond to the intro-
duction of terms accounting for spin–orbit interaction. In the present, this special
case is generalized to be applicable with any kind of one-particle space of Kramers-
paired spinors. As here no restrictions on the amplitudes regarding time-reversal
symmetry in the many-particle space are introduced, this approach is termed
Kramers-unrestricted relativistic CC, referring to the many-particle but not the
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one-particle space. The excitations are categorized according to the change in the
Kramers projectionMK , e.g., O�a

i corresponds to �MK D �1, O�ab
ij

to �MK D C1,

O�ab
ij

to �MK D 0, etc.

10.4.4.3. Coupled Cluster Vector Function

The central quantity to be evaluated in the course of a coupled cluster optimization
is the coupled cluster vector function ˝� for a given element � of the excitation
manifold:

˝� D
D
�
ˇ̌
ˇe� OT OHe OT

ˇ̌
ˇRef

E
(10-56)

The evaluation of the CC vector function proceeds in an analogous fashion as
described in reference [44], where the CC vector function is obtained in four
steps which are based on CI expansions and string manipulations. Some care has
to be taken regarding the term “string-based” in this context. Strictly speaking,
the presented approach is string-based because the CI expansions are performed
in a string-based manner, as expounded in Section 10.4.2.2. However, genuinely
string-based CC is usually understood as determining connections and performing
contractions based directy on the manipulation of (spinor) strings, not intermediate
CI expansions. An approach of the latter type is currently under development [81].
Although the CI-based formalism is not very efficient, it is generally applicable and
exploits the advantages of string-based relativistic CI.

Based on relativistic CI expansions the CC vector function may be constructed
in essentially four steps.

Step 1: jai D e
OT jRefi, expansion of the reference vector

jai D
 X

nD0

1

nŠ
OT n

!
jRefi

D jRefi C OT jRefi C 1

2
OT
n OT jRefi

o
C 1

6
� � � (10-57)

The expansion is carried out by calculating a CI sigma vector repeatedly, i.e. once
for each term OT jRefi, as described in Section 10.4.2.2.4. In this step, the contrac-
tion is not performed with integrals, however, but with the CC amplitudes of the
current iteration.

A restricted set of excitations may be defined by reducing the range of allowed
MK values for the construction of excitations. This leads to approximate CC cal-
culations within a reduced coupling scheme. The expansion in step 1 is otherwise
truncated when the highest excitation level has been reached which may couple to
the excitation manifold.
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Step 2: jbi D OH jai: linear transformation of the expanded reference vector This
step again corresponds to the calculation of a CI sigma vector of the expanded
reference vector jai. The contraction is now carried out with integrals over Kramers-
paired spinors which are classified according to excitation classes and the associated
change of MK , as discussed in Section 10.3.2. As demonstrated in reference [46],

the vector OHe OT jRef i should be in the space of atmost n-fold excitations whereas

e
OT jRef i may be in the space of nC 2-fold excitations. The operation count of this

step thus scales as OnC2V nC2, where O is the number of occupied Kramers pairs,
V is the number of virtual Kramers pairs, and n is the maximum excitation level.

Step 3: jci D e� OT jbi, expansion of the transformed reference vector

jci D
 X

nD0

.�1/n
nŠ

OT n

!
jbi

D jbi � OT jbi C 1

2
OT
n OT jbi

o
� 1

6
: : : (10-58)

The expansion is carried out in complete analogy with step 1. It is assured that the
expansion is restricted to the excitation manifold h�j.

Step 4: ˝� D h�jci, evaluation of transition density matrix elements

˝� D
D
Ref

ˇ̌
ˇ O��

�

ˇ̌
ˇ cE

The projection of the excitation manifold h�j against the expanded transformed
reference vector jci corresponds to the calculation of transition density matrix ele-
ments and yields the CC vector function. Employing the concise implementation
presented in Section 10.4.2.2.4 the evaluation becomes equivalent to the calcula-
tion of CI sigma vectors, where instead of a contraction with integrals a contraction
with expansion coefficients is performed. For the present case, the left-hand vector
of expansion coefficients is a unit vector. As this step is carried out in the space of
atmost n-fold excitations, it scales as OnV nC2 and is therefore significantly faster
than step 2.

Due to the computational limitations imposed by the scaling of step 2, the method
in its current form is not applicable on a large scale. Although general electronic
structures can be treated and the efficiency of the CI steps makes expansions on the
order of hundreds of millions of terms possible, the steep increase in computational
cost with the number of correlated electrons limits the applicability to roughly 15
active electrons. Approaches ameliorating the computational scaling are currently
under development [82, 81].
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10.5. SAMPLE APPLICATIONS

10.5.1. Tl2 Ground and Excited States

For the dithallium molecule the inclusion of spin–orbit interaction is imperative for
a qualitatively correct description of bonding and dissociation [13]. The reasons
for this are a weakening of the bond through �- mixing and a drastic ener-
getic lowering of the atomic limit due to the strong spin–orbit splitting of the Tl
6p1=2 and 6p3=2 spinors. Both these effects can be described by relativistic MCSCF
approaches [45].

The results in Figure 10-6 have been obtained with Dyall’s uncontracted
triple-zeta basis set [83] augmented with all valence-correlating functions and the
infinite-order two-component Barysz–Sadlej–Snijders (BSS) Hamiltonian [84,3,85]
including the one- and two-electron spin–orbit interaction terms for Hartree–Fock
and relativistic MCSCF calculations through the atomic mean-field approxima-
tion [53, 86]. Since for this Hamiltonian only integrals over Large-component
functions are included, the computational effort is greatly reduced in relativistic
MCSCF calculations.

The potential-energy curves of the 0C
g molecular state obtained from a closed-

shell Hartree–Fock (csHF) calculation and two types of MCSCF calculations, one
with a minimal (GAS1) and one with a larger active space (GAS2), are shown in
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Figure 10-6. Potential energy curves of Tl2 using the BSS Hamiltonian including one- and two-electron
spin–orbit terms. BSS HF denotes a closed-shell Hartree–Fock calculation (shifted by �0:09 EH for
better comparison), BSS MCSCF are generalized active space Kramers-Restricted (KR)-MCSCF cal-
culations. GAS1 is a static correlation calculation with 6 valence electrons, where single and double
excitations are allowed out of space 1 holding the 6s electrons into a CAS space with two electrons
consisting of the 6p molecular orbitals. GAS2 allows some dynamic electron correlation by adding an
orbital space 3 with up to to two electrons in 9 gerade and 9 ungerade Kramers pairs. All energy offsets
are �40530:0 EH (from reference [45]; reprinted by permission of the publisher)
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Table 10-6 (from reference [45]; reprinted by permission of
the publisher)

State and method Re [Å] !e [cm�1] De [eV]

0C

g BSS KR-MCSCF GAS1 4:04 16:8 0:03

0C

g BSS KR-MCSCF GAS2 3:59 35:5 0:11

0C

g DC-CASPT2 [87] 2:90 79 0:36

1u BSS KR-MCSCF GAS2 3:32 51:8 0:14

1u DC-CASPT2 [87] 3:07 79 0:37

0�

u BSS KR-MCSCF GAS2 3:27 59:3 0:25

0�

u DC-CASPT2 [87] 3:04 84 0:51

0�

u CASPT2-SO [11] 3:09 75 0:43

0�

u AREP CCSD(T) [88] 2:84 109 0:97

0�

u REP KRCCSD(T) [88] 3:16 64 0:28

0�

u Experiment [89] 3:00 80 0:43

Figure 10-6, and the derived spectral constants are compiled in Table 10-6 along
with a selection of results from the literature. The GAS2 calculation has in addition
been carried out also for states of ungerade symmetry with 0�

u as the molecular
ground state, in accord with previous CASPT2 calculations [11, 87]. The small-
space MCSCF gives a well which is much too shallow, resulting in too small
a harmonic frequency and dissociation energy. The curve from the large-space
MCSCF shows how an inclusion of (some) dynamic electron correlation greatly
improves the results, as the occupation of antibonding Kramers pairs becomes
more realistic (i.e., smaller) compared to the small-space calculation. The trend of
dynamic electron correlation to be important in obtaining spectroscopic accuracy
for Tl2 is substantiated by comparison with results obtained from multi-reference
perturbative (DC-CASPT2, CASPT2-SO) and coupled cluster treatments in Table
10-6. It is interesting to note that the overall deviation from experimental values is
larger in the highly correlated – but spin–orbit free – AREP CCSD(T) calculation
than in the present GAS2 MCSCF calculation which includes spin–orbit interaction
rigorously. The inadequacy of a spin–orbit free treatment is particularly obvious
in the much too large dissociation energy in the AREP CCSD(T) treatment (from
reference [88]). The different relativistic CASPT2 approaches perform well for
the spectral constants of this system. In view of the relativistic CC results, how-
ever, the CASPT2-SO [11] values appear to be somewhat fortuitous and are likely
to be due to error cancellations of spin–orbit stabilizations.

Although spectroscopic accuracy is not achieved in most relativistic MCSCF
calculations, the resulting MCSCF wave function is a significantly improved start-
ing point for highly correlated relativistic calculations as demonstrated, e.g., in
reference [24].
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10.5.2. Br2C
2

The theoretical and experimental study [90] of double photoionization of molec-
ular bromine comprises a sample application to a large number of electronically
excited states where spectroscopic accuracy is imperative. Relativistic GASCI based
on configuration-averaged DCHF has in the present case been employed. This type
of configuration averaging is very often a good option when many electronically
excited states (or all) of interest are derived from a set of electronic configurations
involving energetically close-lying orbitals. This is the case in Br2C

2 and also in the
following sample applications.

The lowest electronic states are shown in Table 10-7 along with an analysis of
the essential part of the corresponding relativistic CI wave functions in terms of
Kramers-paired molecular spinors. On the basis of these results it has been possible
to assign the main part of the double photoionization spectrum of Br2 as shown in
Figure 10-7. It should be noted that many more electronically excited states come
to lie between the assigned peaks, but only those are shown in the figure which
are experimentally accessible, i.e., which result from the removal of two electrons
from the ground-state electronic configuration of neutral Br2. This type of study
combines the difficulties of electron correlation effects in excited states, high density
of states, and the need for a treatment of special relativity on the same footing.
This becomes particularly obvious in the vertical excitation spectra where spin–orbit
coupling is seen to have the same order of magnitude as state separations within an

Table 10-7 Lowest vertical excitation energies of Br2C
2 from relativistic GASCI

calculations. Dirac–Coulomb Hamiltonian, CI CAS8in6 SD8, distance 2.22 Å

Tv [eV] Omega/symmetry Corresp. term(s) Configuration(s)

3.702 3g 3˚3, 1˚3, 5˘3 0:961u
1
g

1
g�

1
u

3.393 2u 3˘2 0:891g.2/�
1
u

3.174 1u 3˘1, 1˘1 0:711g.1/�
1
u

3.044 0u 3˘0 .0:63C 0:63/1g.1/�
1
u

3.041 0u 3˘0 .�0:62C 0:62/1g.1/�
1
u

2.410 1u 3˙1, 3�1 0:961u.1/
1
g.1/

2.395 0u 1˙0 .0:67C 0:67/1u.1/
1
g.1/

2.139 1u 3�1, 3˙1 �0:671u.2/1g.1/ C 0:681u.1/
1
g.2/

2.050 2u 3�2, 1�2 0:681u.1/
1
g.2/ � 0:681u.2/

1
g.1/

1.693 3u 3�3 0:961u.2/
1
g.2/

1.644 0u 3˙0 .0:67C 0:67/1u.2/
1
g.2/

1.128 0g 1˙0 0:352g.1/ C 0:822g.2/
0.661 2g 1�2 0:911g.1/

1
g.2/

0.141 1g 3˙1 0:931g.1/
1
g.2/

0.000 0g 3˙0 0:842g.1/ � 0:392g.2/
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Figure 10-7. Double photoionization spectrum of Br2 . The assignments of the bands are given in terms
of the final electronic states in the dication. The theoretical values have been adjusted so that the lowest
2g state corresponds to the strong peak at 28:91 eV. (from reference [90]; reprinted by permission of the
publisher.)

electronic configuration which are predominantly due to electron correlation effects.
First-order splittings are on the order of 0.5 eV, and even second-order splittings may
be as large as 0.2 eV.

10.5.3. I3 and I�
3

As a more rigorous example for the comparison [91] of different modern rel-
ativistic electron correlation methods the lowest electronic excitation for the I3

molecule are shown in Figure 10-8. All three presented methods, SO-CASPT2
[9, 11], GASCI [8, 24], and IHFSCC [74, 92, 93], yield excitation energies in good
agreement with gas phase experiments [94, 95], with absolute errors smaller than
0:1 eV (with one exception, 3

2
g state, IHFSCC). Time-Dependent Density Func-

tional Theory (TDDFT) has not been applicable to this open-shell species. For
IHFSCC the adiabatic excitation energies are given in addition where the deviations
are seen to diminish significantly. Whereas SO-CASPT2 shows some unsystematic
behavior, GASCI tends to overshoot the experimental energies by roughly equal
amounts. The similarity between GASCI and IHFSCC arises from the fact that for
the .1h; 0p/ Fock-space sector used the exponential parametrization of IHFSCC for
the excited states is truncated after the linear term and is therefore essentially the
same as in MRCI. Given these similarities in error trends for IHFSCC and GASCI
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Figure 10-8. Comparison of excitation energies Tv and Te (in eV) for different methods CASPT2/TZP,
IHFSCC/aVTZ/Q1 , GASCI/aCVTZ/CAS SD15 for I3 at r1 D r2 D 2:84 Å

approaches and accounting for the downward shift of excitation energies by the
adiabatic correction, GASCI is expected to yield very accurate adiabatic excitation
energies, with errors on the order of only a few hundred wavenumbers.

For the triiodide ion the comparison included in addition relativistic TDDFT [96].
Vertical excitation energies are compiled in Table 10-8 and shown in graphical form
in Figure 10-9.

In the figure, IHFSCC results are taken as reference values for the respective
states, and the deviations of the other methods from IHFSCC are given. The GASCI
calculations tend to yield higher excitation energies than the corresponding IHFSCC
ones, with an average deviation of 0.18 eV which, in absolute terms, is rather similar
to the difference between SO-CASPT2 and IHFSCC. The discrepancies between
GASCI and IHFSCC vary in a similar fashion to that between SO-CASPT2 and
IHFSCC, particularly for excited states 6–17. While TDDFT seems to capture the
essential trends of the other, more sophisticated methods, it is seen to be significantly
less reliable from a quantitative point of view.

The differences between IHFSCC and GASCI can likely be understood on the
basis of a comparison with Linear Response Coupled Cluster (LRCC) [97] method
which like the CI method is based upon a linear parameterization for the descrip-
tion of excited states. In contrast to LRCC (or equivalently the Equation-of-Motion
(EOM) CC approach), IHFSCC is fully size-extensive also for excited states due
to the inclusion of higher-order connected diagrams [98, 99] for Fock-space sectors
with more than one quasiparticle. With respect to the trend of the differences there
is evidence [100] that LRCC excitation energies are systematically shifted upwards
compared to IHFSCC ones, in line with what is observed here for the difference
between IHFSCC and GASCI results.
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Table 10-8 Comparison of vertical excitation energies Tv (in eV) obtained with
different methods (TDDFT/TZ2P, SO-CASPT2/TZP, IHFSCC(aVTZ/Q1), GASCI
(aCVTZ/SD6 CAS SD22); Three active spaces are used in the GASCI setup: SD exci-
tations from GAS I (iodine 5s spinors), a CAS space for GAS II with 16 electrons
in nine Kramers pairs, and up to two particles in the external GAS III) for I�3 at
r1 D r2 D 2:93 Å. States of the same symmetry as those for the optically active
excited states are shown in boldface

TDDFT GASCI SO-CASPT2 IHFSCC
State ˝ Tv ˝ Tv ˝ Tv ˝ Tv

1 2g 1.92 2g 2.30 2g 2.03 2g 2.10
2 1g 2.04 0�

u 2.40 1g 2.14 1g 2.23
3 0�

u 2.42 1u 2.41 0�

u 2.28 0�

u 2.26
4 1u 2.43 1g 2.41 1u 2.29 1u 2.27
5 0�

g 2.50 0�

g 2.91 0�

g 2.54 0�

g 2.68

6 0C

g 2.56 0C

g 2.95 0C

g 2.61 0C

g 2.73

7 1g 2.70 1g 3.08 1g 2.72 1g 2.90
8 2u 2.61 2u 3.21 2u 2.94 2u 3.22
9 1u 2.72 1u 3.25 1u 2.98 1u 3.30

10 0C

u 3.14 0C

u 3.66 0C

u 3.34 0C

u 3.52

11 2g 3.50 0�

u 3.98 0�

u 3.62 0�

u 3.95
12 0�

u 3.42 1u 4.02 1u 3.66 2g 3.96
13 1g 3.63 2g 4.16 2g 3.82 1u 4.03
14 1u 3.56 1g 4.25 1g 3.93 1g 4.07
15 0C

u 4.46 0C

u 4.75 0C

u 4.29 0C

u 4.33
16 0�

g 4.10 0�

g 4.77 0�

g 4.37 0�

g 4.54

17 0C

g 4.11 0C

g 4.78 0C

g 4.38 0C

g 4.54

10.6. CONCLUDING REMARKS

For the treatment of smaller molecules containing heavy elements, relativistic
wavefunction-based methods are tools of high reliability. Perturbative approaches
such as SO-CASPT2 are very efficient, especially in the treatment of dynamic
electron correlation. Since this is a problem of crucial importance also and par-
ticularly in heavy-element chemistry, approaches of these types are the method of
choice for many applications. Similar and more rigorous new developments are, e.g.,
four-component CASPT2 [87], but their applicability and performance still require
more testing. Relativistic CI models such as the presented GASCI approach have
advantages since they treat spin–orbit interaction a priori and in a rigorous man-
ner. They are very generally applicable and flexible due to the active space concept.
For systems containing three or more heavy elements, relativistic GASCI studies
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Figure 10-9. Plot of the differences in excitation energies in Table 10-8 between IHFSCCSD (reference
values) and SO-CASPT2, GASCI (MRCI), and TDDFT at R D 2:93 Å, as a function of the different
excited states

are quite costly and are therefore often only applied at selected nuclear geometries.
Recent improvements including efficient parallelization [58,59] have enhanced their
competitiveness.

Regarding relativistic CC approaches general applicability remains an essential
problem. Fock-space approaches are probably the most accurate methods for rel-
ativistic electonic-structure studies to the date, but molecules with a large number
of unpaired electrons in the reference system are still out of reach. Other multi-
reference CC approaches such as the GASCC method introduced here have the
potential of being generally applicable, but have yet to prove that they can also
successfully treat complicated open-shell problems. The same is true for a recent
real-orbital based implementation by Wang et al. [7] and the approaches by Hirata
et al. [71]. Despite the remaining difficulties, relativistic wavefunction-based quan-
tum chemistry has recently made progress at a good pace and has continued to close
the methodological gap between the treatment of molecules with light atoms and
the treatment of molecules with heavy atoms.
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7. Wang, F., Gauss, J., van Wüllen, C.: Closed-shell coupled cluster theory with spin-orbit coupling.
J. Chem. Phys. 129, 064113 (2008)

8. Fleig, T., Olsen, J., Visscher, L.: The generalized active space concept for the relativistic treat-
ment of electron correlation. II: Large-scale configuration interaction implementation based on
relativistic 2- and 4-spinors and its application. J. Chem. Phys. 119, 2963 (2003)
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Abstract: Investigations of chemical properties of the heaviest elements are among the most
fundamental in all of chemistry. They seek to probe the uppermost reaches of the peri-
odic table of the elements where the nuclei are unstable and relativistic effects on the
electronic shells are very strong. Theoretical research in this area is extremely important.
It is often the only source of useful chemical information. It also enables one to predict
behaviour of the heaviest elements in the sophisticated and expensive experiments with
single atoms. Spectacular developments in the relativistic quantum theory and computa-
tional algorithms allowed for accurate predictions of properties of the heaviest elements
and their experimental behaviour. The works on the relativistic electronic structure calcu-
lations for the heaviest elements are overviewed. Preference is given to those related to
the experimental research. Role of relativistic effects is discussed.

Keywords: Heaviest elements, Relativistic effects, Electronic structure, Chemical properties,
Volatility, Complex formation

11.1. INTRODUCTION

Elements considered in this chapter are those with Z D 104 and heavier. They are
called transactinides, since they are located after the actinide element series which
ends with element 103, Lr. The heaviest among them, whose production was con-
firmed by the IUPAC and IUPAP, is element 112. Observation of even heavier
elements, 113 through 118 with the exception of 117, has been claimed but not
yet confirmed and approved by the commissions.

The heaviest elements are very special: Located at the bottom of the periodic
table of the elements, their nuclei are extremely unstable and electronic shells are
influenced by strong relativistic effects [1–10].

Due to the instability of isotopes of these elements and low production rates,
experimental chemical research in this area is very complex: Special techniques
had to be developed that allow for studying macrochemical properties on the basis

M. Barysz and Y. Ishikawa (eds.), Relativistic Methods for Chemists,
Challenges and Advances in Computational Chemistry and Physics 10,
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of single atom events. Not less challenging is the theoretical chemical research in
this area. It should be based on the most accurate relativistic atomic and molecular
calculations in order to reliably predict properties and experimental behaviour of
the new elements. It needs also development of special approaches which bridge
calculations with quantities that cannot be predicted in a straightforward way via
quantum-chemical calculations.

Due to recent developments in the relativistic quantum theory, calculational
algorithms and computer techniques, very accurate calculations of heavy element
properties became possible. In this chapter, we will overview advances in the the-
oretical studies of chemical properties of the heaviest elements and predictions of
their experimental behaviour. We will pay particular attention to the influence of
relativistic effects on chemical properties and trends in the periodic table.

11.2. PRODUCTION AND IDENTIFICATION OF THE HEAVIEST
ELEMENTS

Elements heavier than U .Z D 92/ are all produced by man-made nuclear reactions.
The first members of the transactinides series, Z D 104 through 106 were discovered
(in 1969 through 1974) in heavy-ion accelerators by bombardment of heavy actinide
(Pu-Cf) targets with light ions (carbon, boron, neon, oxygen), so called “hot-fusion”
reactions. The institutions involved in the production of these elements were the
LBNL (USA) and the JINR (Russia) (see [11–13] for reviews).

In the 1970s, a different type of fusion reaction was discovered and later used in
the discovery of elements with Z larger than 106. These so called “cold-fusion” reac-
tions were based on targets in the vicinity of doubly-magic 208Pb (mainly lead and
bismuth) and beams of the complementary medium-mass projectiles with Z 
 24.
Elements with Z D 107 through 112 were produced and identified in this way
between 1981 and 1996 at the GSI in Darmstadt (see [14,15] for reviews). Recently,
the RIKEN laboratory (Japan) has announced the production of element 113 in the
reaction of the 70Zn beams with a 209Bi target [16].

The lifetime of the heaviest elements was found to be very short, for example,
the half-life of 277112 is only 0.7 ms (Figure 11-1). The cross-section was also found
to decrease rapidly with increasing Z. It is, for example, only �0:5 pb for 277112.
It was, therefore, concluded that it would be very difficult to reach even heavier
elements in this way.

More recently, production of the superheavy elements 112 through 118 (except
for 117) using “hot” fusion reactions between 48Ca ions and 238U, 242;244Pu,
243Am, 245;248Cm, and 249Cf targets was reported by a Dubna/Livermore collabo-
ration working at the JINR (see [17] for a review). These results are of considerable
interest for chemical studies because the reported half-lives are much longer (many
orders of magnitude) than those of the isotopes produced by “cold” fusion reac-
tions which lead to more neutron-deficient isotopes. Thus, e.g., t1=2.

283112/D 3:8 s,
and t1=2.

287114/ D 0:48 s. The first chemistry experiments have already been per-
formed with this isotope of element 112 (see below) and experiments for the heavier
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Figure 11-2. The periodic table of the elements 2008

elements 113 and 114 are scheduled. The modern chart of nuclides at its upper end
is shown in Figure 11-1. The periodic table as of 2008 is shown in Figure 11-2.

The names and symbols for the transactinide elements approved by the IUPAC
are: rutherfordium (Rf) for Z D 104, dubnium (Db) for Z D 105, seaborgium (Sg)
for Z D 106, bohrium (Bh) for Z D 107, hassium (Hs) for Z D 108, meitnerium (Mt)
for Z D 109, darmstadtium (Ds) for Z D 110, and röntgenium (Rg) for Z D 111 [18].
As discovery claims on elements with Z 
 112 are under review, these elements are
still awaiting naming.

In order to positively identify a new element and place it in its proper position
in the periodic table, its atomic number, Z, must be determined or deduced in some
way. The elements beyond 101 have been identified first by “physical” techniques
because of their very small production rates and short half-lives. One widely used
technique is that of ’� ’ correlation of the element’s ’-decay to a known daughter
and/or granddaughter nucleus that also decays by ’-emission. For example, ele-
ments 111 and 112 produced in “cold-fusion” reactions were identified in this way.
Positive identification becomes even more difficult for species that decay predom-
inantly by spontaneous fission (SF). Although detection of SF is a very sensitive
technique, it is to date impossible to determine what the nuclear charge Z of the fis-
sioning species might have been since only the fission fragments are detected. The
nuclear charge Z of both primary fragments would have to be identified in coinci-
dence in order to obtain the total Z of the new element. For example, the claimed
’-decay chain associated with 292116 produced in the 248Cm.48Ca; 4n/ reaction
and its daughters goes through 288114 and 284112, which undergoes SF. In this case
the ’ chain ends up at an unknown isotope, so that a firm assignment is not possible.
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Thus, chemical experiments designed so that the behavior of the unknown isotope
will be compared to that of a lighter homolog in a chemical group will help to
identify Z (see [11–15] for reviews on experimental techniques for the transactinide
elements synthesis and characterization).

The possibility of discovery of even heavier elements is presently a matter of
theoretical discussions, and predictions of centers of stabilities in the superheavy
element region depend on the model used and are often in disagreement with each
other. About 50 years ago it was assumed that the periodic table would end at about
Z D 100, since the attractive strong interactions can no longer counter-balance
the Coulomb repulsion between the many protons. It was then realized that shell-
closing effects would increase the nuclear stability substantially. It was, indeed,
shown that the stability of nuclei with Z>102 is due to quantum shell effects. Con-
sequently, calculations based on shell correction method (macroscopic-microscopic
models, which depend on a large number of parameters, since the form of the
potential for strong attractive interactions is not known) predicted the peak of an
island of stability at Z D 114, N D 184 (298114) due to both, proton- as well as
neutron-shell closures at these numbers [19, 20]. Only in the 1990s, this point of
view was challenged by calculations based on more refined models such as self-
consistent-field theory and realistic effective nucleon-nucleon interactions. Most of
the self-consistent calculations suggest that the center of the proton shell stability
should be around higher proton numbers, Z D 120, 124, or 126. For the neutrons,
relativistic mean-field theory predicts N D 172, in contrast to the nonrelativistic pre-
diction for Z D 184, which neglects spin-orbit interaction. For reviews on those
theoretical works, see [21,22]. It will be a matter of future investigations to confirm
or contradict these theoretical predictions by experiment.

11.3. EXPERIMENTAL CHEMICAL STUDIES

Even though the atomic number can be positively assigned by ’-decay chains, no
knowledge is obtained about electronic configurations or chemical properties of
a new element from these physical methods. The elements are just placed in the
periodic table in corresponding chemical groups or periods according to its atomic
number and the calculated electronic structures. Thus, it is a matter of experimental
chemistry to attempt to validate or contradict these predictions: By assessing sim-
ilarity in the chemical behaviour with that of lighter homologs a unique position
of the new element in a chemical group can be confirmed. It is also essential to
establish whether trends in the chemical groups observed for the lighter elements
is continued with the transactinides, or whether deviations occur due to the strong
relativistic effects. Fundamental properties which enable one to decide about such
similarity are oxidation states, ionic radii and complex formation.

Experimental studies of the heaviest elements require use of isotope with a half-
life long enough to permit chemical separation and a reasonable production and
detection rate. This may range for the heaviest elements from a few atoms per
minute for Rf to only an atom per week in the case of element 112. The chemical
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procedures used in atom-at-a-time studies must be fast enough to be accomplished
in times comparable to the half-lives of the isotopes used in those studies and must
give the same results as for macro amounts.

Chemical methods in which a single atom rapidly participates in many identical
chemical interactions to two-phase systems with fast kinetics that reach equilibrium
quickly have proven to be valid. Thus, it is sufficient to combine the results of many
separate one-atom-at-a-time experiments, or identical experiments with only one
atom, in order to get statistically significant results [23]. The two main types — gas
phase and liquid chemistry — of separations are based on this principle.

11.3.1. Gas-Phase Chemistry

Gas-phase chromatography experiments allow for studying volatility of single
chemical species. The measure of this property of macroamounts is the sublimation
enthalpy, �Hsub. A pioneer experiment that allowed an approximation to the subli-
mation process by adsorption of single species on metallic columns was designed
in Dubna [24]. Many assumptions are involved in this approach allowing for a
loose correlation between the heat of adsorption and the heat of sublimation. In
this method, a longitudinal, negative temperature gradient is established along the
chromatography column through which a gas stream is conducted. It contains the
volatile species of interest (atoms or molecules) that deposit on the surface of the
chromatography column according to their volatilities. The deposition zones are
registered by detectors along the column, which are associated with specific deposi-
tion (adsorption) temperatures, Tads. The obtained Tads are then used to deduce the
adsorption enthalpy�Hads using adsorption models and a Monte Carlo simulation.

The first investigations of volatility of the heaviest element compounds were per-
formed in Dubna for Rf (kurchatovium, Ku, in the Russian works at that time), in
the form of a chloride, RfCl4 (since it is impossible to stabilize the heaviest 6d ele-
ments in the atomic state) using this chromatography technique [25]. Later, volatility
of HsO4 [26] and of element 112 [27], which is stable in the elemental state, was
studied in this way. Volatile elements 113 and 114 are to be studied next.

In another technique, isothermal chromatography, the entire column is kept at a
constant temperature. Volatile species pass through the column undergoing numer-
ous adsorption-desorption steps. Their retention time is indicative of the volatility
at a given temperature. A series of temperatures is run and the chemical yield of the
species is studied as a function of the temperature. The temperature, T50%, at which
50% of the species pass through the column, i.e. 50% of the chemical yield, is taken
as a measure of volatility in a comparative study. A Monte Carlo program is used
to deduce�Hads from the measured T50% using a thermodynamic model of adsorp-
tion. The volatility of the Rf, Db, Sg and Bh compounds was successfully studied
using this technique [28–31]. Reviews of the gas-phase experimental techniques and
applications can be found in [8, 32, 33].
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11.3.2. Liquid-Phase Chemistry

Liquid-liquid or ion (cation, CIX, or anion, AIX) exchange chromatography
experiments are used to study the complex formation of the heaviest elements and
their homologs in aqueous solutions.

An anionic complex MLi
z�i is formed according to the reaction

MzC C iL� D MLi
z�i ; (11-1)

with the complex formation constant ˇi D ŒMLi �ŒM��1ŒL��i . It is extracted from
aqueous solutions by an anion-exchanger according to the following reaction

pRBCL�.org/C MLi
�p D .RBC/p.MLi /

p�.org/C pL�; (11-2)

with the equilibrium constant KDM. The distribution coefficient is then

Kd D KDMŒRBCL��porgˇi ŒL��i�p

NP
0

ˇnŒL��n
; (11-3)

where p D i � z, z is the metal formal charge and N is the maximum coordination
number. Obtained distribution coefficients Kd (usually plots of Kd values (vs.) acid
concentration) are used to judge stabilities of the formed complexes. Also, knowing
the Kd values, the complex formation ˇi can be obtained.

In experiments with radioactive species, Kd is measured as a ratio of the activity
of a studied species in the organic phase to that in the aqueous phase [34–36]. It is
closely related to the key observable, the retention time, tr , in the chromatography
column

Kd D .tr � t0/ V
M
; (11-4)

where t0 – column hold-up time due to the free column volume, V – flow rate of
the mobile phase, and M is the mass of the ion exchanger. In this way, complex
formation of Rf, Db and Sg in various acidic solutions has been studied using the
AIX and CIX separations [34, 35].

A promising method of separation of the heaviest elements is the electrochemical
deposition from aqueous solutions. Electrochemical deposition produces an almost
ideal sample for ’-spectrometry and at the same time, as least a partial separation
from interfering nuclides is achieved. It is presently tested for the homologs of ele-
ments 108 and 112 and heavier, e.g., Os, Hg, Pb, Bi and Po. The measured quantities
in this method are Ecri and E50% which are the critical potential and the electrode
potential when 50% of the atoms are deposited. They both are a measure of the sta-
bility of a specific oxidation state and the strength of the metal-metal interaction of
the studied metal atom with the electrode material [34, 35]. Reviews of the aqueous
chemistry experimental studies can be found in [8, 9, 33–36].
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11.4. THEORETICAL STUDIES

11.4.1. Role of Theoretical Studies

Except for the few properties, like volatility or complex formation, many others can-
not be directly measured for the heaviest element. They can only be evaluated. For
example, chemical composition of compounds can only be assumed on the basis
of analogy in the experimental behaviour with that of the lighter congeners in the
chemical groups. Ionisation potentials (IP), electron affinities (EA), dissociation
energies (De/ or geometrical structures (e.g., bond lengths, Re/ can not presently
be measured at all. They can only be calculated. Thus, in the area of the heaviest
elements, theory becomes extremely important and is often the only source of useful
chemical information. Finally, it is only the theory that can reveal relativistic effects
influence on chemical properties and experimental behaviour: only by comparing
the observed behaviour with that predicted on the basis of relativistic (vs.) non-
relativistic calculations, can the importance and magnitude of relativistic effects be
established.

Earlier predictions of chemical properties of the heaviest elements were based on
results of the relativistic Dirac-Slater (DS) and Dirac-Fock (DF) atomic calculations
and extrapolations of periodic trends (see reviews [5,37–40]). These and later works
have revealed that use of the relativistic quantum theory and most advanced rela-
tivistic methods is mandatory for calculations of properties of the heaviest elements
where relativistic effects become most important. Early molecular calculations have
shown that trends in properties in the chemical groups can be predicted in an erro-
neous way for the heaviest elements by using nonrelativistic codes. Some simple
extrapolations of the periodic trends, though sometimes useful, must also be made
cautiously. Previous reviews of the theoretical works on molecular calculations for
the heaviest elements are those of [6–10, 41–43].

11.4.2. Relativistic and QED Effects on Atomic Electronic Shells
of the Heaviest Elements

Relativistic effects on atomic orbitals (AOs) are well known: this is the contraction
and stabilization of the s and p1=2 AOs, the destabilisation and expansion of the p3=2,
d and f AOs, and the spin-orbit (SO) splitting of the AOs with l > 0. All the three
effects change approximately as Z2 for valence shells down a column of the peri-
odic table. For the heaviest elements with large Z, these effects are of paramount
importance. Figure 11-3 shows, e.g., the relativistic stabilization of the ns and np1=2

AO and the SO splitting of the np AOs of the group 14 elements, with the latter
amounting to 50 eV for element 164 [5].

Figure 11-4 shows the relativistic contraction �Rhri7s D .hrinr � hrirel/=hrinr

D 25% of the 7s AO in Db. (See also Figure 7-3 in the Chapter of E. Eliav and
U. Kaldor for the relativistic contraction of the 7s(Rg) AO.)

The relativistic contraction and stabilization of the ns AO reach the maximum
in the seventh row at element 112 [6] (Figure 11-5). The shift of the maximum to
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Figure 11-3. DS eigenvalues of the valence electrons of group 14 elements in the sp2p configuration
(Re-drawn from [5])

Figure 11-4. Relativistic (solid line) and nonrelativistic (dashed line) radial distribution of the 7s valence
electrons in element 105, Db (From [43])

element 112 in the seventh row in contrast to gold in the sixth row [44] is due to
the fact that in both elements 111 and 112 the ground state electronic configuration
is dqs2, while the electronic configuration changes from Au.d10s1/ to Hg.d10s2/.
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Figure 11-5. The relativistic stabilization of the 6s and 7s orbitals in the sixth and seventh row of the
periodic table (Re-drawn from [6]). The DF data are from [45]

Figure 11-6. Relativistic DF (full lines) and non-relativistic HF (dashed lines) AO energies, E, and
radii of the maximum electronic charge density, Rmax, of the valence AO of group 12 elements [6, 45]
(From [46])

The 7s(112) AO stabilization is �10 eV, according to the DF calculations [6, 45]
(Figure 11-6).

The relativistic destabilization of the 6d AOs increases along the 6d series and
reaches its maximum at element 112 with the SO splitting of 3.3 eV (Figure 11-6).
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Together with the stabilization of the 7s AOs, this results in the inversion of the 7s
and 6d energy levels, so that the first ionized electron of element 112 is 6d5=2 and not
7s as in Hg. (An inversion of the 7s and 6d levels in the seventh row starts already at
Hs.) Figure 11-6 also shows that trends in the relativistic and non-relativistic ener-
gies of the ns AOs (the same is valid for the np1=2 AOs) become opposite as one
proceeds from the sixth to the seventh row of the periodic table, which will result in
opposite trends in relativistic and nonrelativistic properties defined by those AOs.

In the 7p series of the elements, the stabilization of the 7s2 is so large that it
becomes practically an inert pair. The stabilization of the 7p1=2 AO and the SO
splitting of the 7p AOs is also very large for these elements reaching 11.8 eV for
element 118. For the heavier elements, relativistic effects on their valence orbitals
are even more pronounced and could lead to properties which are very different to
those of the lighter homologs. The periodic table up to element 172 and relativistic
effects on properties of these elements are discussed in [5].

Breit effects (accounting for magnetostatic interaction) on valence orbital ener-
gies and IP of the heaviest elements are small, for example, only 0.02 eV for element
121 [47]. They can, however, reach few % for the fine structure level splitting in the
7p elements and are of the order of correlation effects there. In element 121, they can
be as large as 0.1 eV for transition energies between states including f orbitals [47].

Quantum electrodynamic (QED) effects are known to be very important for
inner-shells, for example, in accurate calculations of X-ray spectra [48]. For highly
charged few electron atoms they were found to be of similar size as the Breit cor-
rection to the electron-electron interaction [49]. Importance of the QED effects was
also shown for valence ns electrons of neutral alkali-metal and coinage metal atoms:
They are of the order of 1–2% of the kinetic relativistic effects there [50]. The result
for the valence ns electron is a destabilization, while for (n � 1)d electron is an
indirect stabilization. In the middle range (Z D 30–80) both the valence-shell Breit
and the Lamb-shift terms behave similarly to the kinetic relativistic effects scal-
ing as Z2. For the highest Z values the increase is faster. Nuclear volume effects
grow even faster with Z. Consequently, for the superheavy elements its contribu-
tion to the orbital energy will be the second important one after the relativistic
contribution.

For element 118, QED effects (self-energy and vacuum polarization corrections
to the binding energy of the 8s electron) were found to amount to 9% reduction
(0.0059 eV) of the EA [51].

11.5. RELATIVISTIC QUANTUM CHEMICAL METHODS

The most appropriate quantum chemistry methods for the heaviest elements are
those which treat both relativity and correlation at the highest level of theory. Most
of them are described in this volume, as well as they were overviewed recently [52].
Thus, only those which were applied to the heaviest elements and their compounds
will be mentioned here.
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11.5.1. Atomic Codes

The best theoretical level for the many-body methods if the Dirac-Coulomb-Breit
(DCB) Hamiltonian

hDCB D hDC C
X
i<j

Bij : (11-5)

It contains the one-electron Dirac Hamiltonian hD plus the nuclear potential, V n,
and the operator Vij D 1=rij for the instantaneous Coulomb interaction between
electrons

hDC D
X

i

.c’i¡i C .ˇi � 1//C V n C
X
i<j

1=rij : (11-6)

Bij is the Breit term

Bij D �1=2Œ.˛i ˛j /rij
�1 C .˛i rij /.˛j rij /rij

�3�: (11-7)

The V n includes the effect of the finite nuclear size, while some finer effects,
like QED, can be added to hDCB perturbatively. The DCB Hamiltonian in this
form contains all effects through the second order in ’, the fine-structure con-
stant. Correlation effects are taken into account by the configuration interaction (CI),
many-body perturbation theory (MBPT) and, presently at the highest level of theory,
the coupled cluster single double excitations (CCSD) technique.

The Fock-space (FS) DCB CC method [53] is presently the most powerful
method which was applied to heavy and the heaviest elements (see the Chapter
of E. Eliav and U. Kaldor in this issue). The method has an accuracy of few hun-
dredths of an eV for excitation energies in heavy elements, since it takes into account
most of the dynamic correlation (states with high l). Calculations using this method
have shown, for example, a principally different ground state electronic configura-
tion of Rf (7s26d2/ [54] in contrast to the multiconfiguration (MC) DF calculations
(6d27s7p1=2/ [55, 56]. The heaviest element treated by this method is 122 [57].
Due to the present limitation of the FS CCSD method in treating electronic con-
figurations with no more than two electrons (holes) beyond the closed shell, the
calculations for the middle of the 6d-series (elements 105 through 110) have not yet
been performed.

Further developments are under way to remove this limitation. Thus, high-sectors
FSCC code is under development which will allow for treating systems with up to
six valence electrons/holes in an open shell. Relativistic Hilbert space CC (HSCC)
method is also worked on, which could be used for systems with more than a couple
of electrons/holes in the active valence shell. The mixed sector CC (MSCC) method
will be a generalization of the previous two (FSCC and HSCC) and will combine
their advantages.

The DC FS CCSD and CCSD(T) methods incorporated in the DIRAC package
[58] have a slightly lower accuracy than the DCB FSCC one. They were used for
calculations of properties of the heaviest elements 112 through 118 (see below). The
used basis sets are the universal ones [59], those of Visscher [60], and Faegri [61].
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The latter proved to be the most suitable for the heaviest elements. The prolapse-free
relativistic Gaussian basis sets for the superheavy elements up to Z D 119 suitable
for four-component (4c) molecular calculations were also published recently [62].

A practical instrument for many-electron open-shell system is the MCDF method
[63, 64]. Based on the CI technique, it accounts for most of the correlation effects
while retaining a relatively small number of configurations. It omits, however,
dynamic correlation which makes it less accurate than the DC(B) CCSD one. Cal-
culations of multiple IPs for Lr through Hs, and of elements 112 and 114 and their
homologs were performed with its use [55,56,65–69]. Results are discussed below.

Atomic calculations for the heaviest elements were also performed using other
approaches. Thus, e.g., the electronic states of element 114 were calculated using
the relativistic complete active space MCSCF (CASMCSCF) CI method [70]. Also,
many atomic calculations were performed while calculating molecular properties
with the use of molecular codes (see below).

Overall, results of the modern accurate atomic calculations agree rather well with
predictions made with the use of the earlier DF and DS methods, where the calcu-
lated energy terms were corrected by the difference with experiment for the lighter
homologs [5]. Elements up to Z D 172 were treated with the use of the latter meth-
ods [71]. Element 184 was also considered in [5], as an example of an even heavier
element.

11.5.2. Molecular Methods

The most accurate way to solve the Dirac many-electron Eq. (11-5) is that with-
out approximation. Nevertheless, the problems of electron correlation and proper
basis sets make the use of ab initio DF methods very limited with respect to the
heavy-element systems. Most of the molecular ab initio DF calculations account
for correlation via the CI, Møller-Plesset, MP2, or CCSD(T) techniques [72]. The
DC method suitable for molecular calculations is also implemented in the DIRAC
package [58]. The basis sets are described in [61].

The ab initio DF methods are still too computer time intensive and not suffi-
ciently economic to be applied to the heaviest element systems in a routine manner,
especially to the complex systems studied experimentally. Mostly small molecules,
like hydrides or fluorides, were studied at this level of theory [73–78]. The main
aim of those calculations was to study relativistic and correlation effects on model
systems. The DF calculations without correlation were performed for some heaviest
element molecules, like RfCl4, SgBr6 or HsO4 [79,80], though binding energies are
up to 50% inaccurate. Pioneer calculations of Pyykkö and Desclaux for RfH4 and
SgH6 using the DF one center expansion method should also be mentioned [81].

Effective core potentials (ECP) were successfully applied to the heaviest ele-
ment systems (see the Chapter of M. Dolg in this issue): the energy-adjusted pseudo
potentials (PP) [82] known as Stuttgart ones and the relativistic ECP (RECP) [83].
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The PPs were used for calculations of the electronic structures and properties of
compounds of elements 111 through 114 [75, 84–87]. Performed at different lev-
els of theory for relativity (HF, spin-average relativistic effective core potentials,
AREP, AREP C SO) and correlation (MP2, CCSD(T)), they enabled one to estab-
lish the influence of relativistic and correlation effects on properties of chemically
interesting molecules and complexes.

The RECP at different levels of theory for correlation (MP2, complete active
space MSCF (CAS-MCSCF), CCSD(T)), were also used for a number of chemi-
cally interesting gas-phase chlorides and oxychlorides of elements Rf through Sg,
as well as for some hydrides and fluorides of the 7p elements including element 118
[88–97]. The RECPs are published by Nash [98]. Generalized RECPs accounting
for Breit effects were developed for elements 112, 113 and 114 [99].

The density functional theory (DFT) was applied at most for the heaviest element
compounds, complexes in solutions and solid state. Due to its overall simplicity
and efficiency of the calculational algorithms, the DFT methods are well suited
for treating chemically interesting large systems, adsorption processes, solid state
and solutions. (Thus, e.g., the computing time in the DFT for a system of many
atoms grows as Nat

2 or Nat
3, while in traditional methods as exp.Nat/.) The modern

DFT theory is exact [100] and the accuracy depends on the adequate choice of the
exchange-correlation potential [101].

The Dirac-Slater Discrete Variational (DS-DV) method [102] was extensively
used in the past for calculations of ground state properties of the heaviest element
compounds — gas-phases molecules and complexes in solutions (see [10] for a
review). Even though it was inaccurate with respect to binding energies, it allowed
for reliable predictions of ionization energies and character of chemical bonding.

Introduction of the RGGA approximation for the exchange-correlation poten-
tial, improvement in the integration scheme and basis set technique [103] allowed
for accurate calculations of binding energies and geometry optimization. The most
recent version used nowadays for the heaviest element compounds is the 4c-DFT
one combined with the noncollinear spin-polarized formalism [104] (see examples
below). According to this method, the total energy of a molecular system is given
by the following expression

ED
MX

iD1

ni h
i jOt j
i i C
Z
V N�d 3Er C 1

2

Z
V H�d 3Er C ExcŒ�; Em�C

X
p>q

ZpZq

j ERp � ERqj
(11-8)

with the electronic density, �
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i
C.Er/
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and the magnetization density,m

Em.Er/ D ��B

MX
iD1

ni

C
i .Er/ˇ Ė
i .Er/: (11-10)

Here, ni are the occupation numbers, Er is the electronic coordinates, respectively,
and �B is the Bohr-magneton. The index i runs over all occupied molecular orbitals
M , which are four-component Dirac spinors. The four-component spin operator
!P D .

P
x ;
P

y ;
P

z/ is built from two-component Pauli matrix ¢ . The Dirac kinetic
energy operator has the form

Ot D c Ę � Ep C c2.ˇ � I /; (11-11)

where Ę D .˛x˛y˛z/ and ˇ are the four-component Dirac matrices in the standard
representation, and I is the four-component unit matrix. V N is the nuclear potential,
Exc is the exchange correlation energy functional and V H is the electronic Hartree
potential

V H .Er/ D
Z

�. Er 0/
jEr � Er 0j

d3
Er 0: (11-12)

Application of the variational principle with the constraint that the number of elec-
trons in the system should be conserved leads to the single particle Kohn-Sham
equations in their non-collinear form

�
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ı Em
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i D "i
i
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(11-13)

Here QV H is the Hartree potentials from the model-density and M 0 
 M is the
number of molecular orbitals.

Self-consistent, all-electron calculations are performed within the relativistic
local density approximation (LDA). The nonlocal corrections (i.e., the generalized
gradient approximation, GGA) are then included perturbatively using the Becke
1988 [105] functional for exchange and the Perdew 1986 [106] functional for corre-
lation. Many other functionals are also included in the method, though the B88/P86
one was found to be the most appropriate. (In the following, results of the 4c-DFT
calculations will be given for this potential.)

The non-collinear approximation allows the magnetization density to point at
any direction at any point of the system under consideration. Accordingly, nearly
each electron is treated by its own wavefunction with a quantum number j and
magnetic number mj . This permits treatment of open shell system. (The collinear
approximation is also implemented in the method.)

The method uses numerical wave-functions. The basis set optimization procedure
is described in [104]. It is developed for very large systems, e.g., clusters with up to
more than 100 atoms and is, therefore, suitable for treatment of adsorption process
and complex formation.
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Figure 11-7. Embedded M-M14 system

A possibility to treat even a larger number of atoms economically is achieved via
the embedded cluster procedure [107] (Figure 11-7).

According to the embedding technique, the total density of a system can be
divided into two parts

Q�.Er/ D Q�cl C Q�env.Er/: (11-14)

The action of the environment on the cluster can be treated as an external potential
due to the external charge density Q�env .Er/: The external potential V ext is

V ext D V n
ext C V C

ext C V ex
ext ; (11-15)

where V n
ext is the Coulomb potential of the nuclei, V C

ext is the Coulomb potential
of the electronic charge density of the environment, and V xc

ext is the exchange-
correlation potential. The original KS-equation then reads
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This equation is solved self-consistently with respect to �cl given by Eq. (11-9)
where i runs over all cluster electrons. The embedded cluster method was used,
e.g., for studying adsorption of Hg and element 112 on gold (see Section 11.7.3.3).

Another 4c-DFT method used for some heaviest element compounds is the
Beijing one (BDF) [108–111]. It differs from the 4c-DFT method [104] by the basis
set technique: 4c-numerical atomic spinors obtained by finite-difference atomic cal-
culations are used for cores, while basis sets for valence spinors are a combination
of numerical atomic spinors and kinetically balanced Slater-type functions. The
non-relativistic GGA for the exchange-correlation potentials is used. Results for
the same systems, like e.g. .114/2, obtained with the use of the 4c-DFT [104] and
BDF [111] methods are very similar.

Several quasi-relativistic approximations, e.g., 2c-DFT using Douglas-Kroll
(DK) approach [112], or zero-order regular approximation (ZORA) [108], also
implemented in the Amsterdam density functional (ADF) method [113], were used
for the heaviest element compounds as well. The SO ZORA demonstrated very good
agreement with the 4c-DFT results, as is shown in [108].

Some other methods like, e.g., Douglas-Kroll-Hess [114], were also applied to
small heaviest element species. Examples of the calculations with the use of the
various methods are considered in the following sections.
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11.6. ATOMIC PROPERTIES OF THE HEAVIEST ELEMENTS
AND RELATIVISTIC EFFECTS

11.6.1. Electronic Configurations

Results of the atomic relativistic calculations have shown that the relativistic
stabilization of the 7s-AO in the seventh row results in the availability of the 7s2

electron pair in the ground state of the 6d and 7p elements, 7s26dq and the 7s27pq,
respectively. This is in contrast to the sixth row, where Pt and Au have different,
5d96s and 5d106s, ground states, respectively (Table 11-1). The first excited states
also differ for the two series: those for the 6d-elements contain the 7s2 pair all. Rel-
ativistic stabilization of the 7p1=2 AO results in the ground state of Lr different to
that of the lighter homolog Lu (Table 11-1).

It is remarkable that the controversy about ground states of Lr and Rf was finally
solved with the use of the DCB FS CCSD method. The DCB CCSD calculations
for Lr [115] confirmed the MCDF 7s27p1=2 state [116], but corrected the MCDF
7s27p6d one for Rf [55, 56] giving the 7s26d2 state as ground [54]. A very high
level of correlation with the l D 6 was needed to reach this accuracy. The DF calcu-
lations [45] have revealed that element 120 has the 7p68s2 relativistic ground state
in difference to the non-relativistic 7p67d8s state [6]. According to the DCB CCSD
result [47], element 121 should have a 8s28p1=2 ground state (in agreement with ear-
lier DF results [5]) which is 0.4 eV lower in energy than the 8s27d state, which is the
ground state for the lighter group-3 homologs. Element 122 should have the 8s27d8p
state in contrast to the 7s26d2 state of Th [57]. Thus, the relativistic stabilization of
the 8p1=2 is responsible for this unusual configuration.

For the heavier elements, the older DS and DF [5] data are available. The
DFT C QED calculations were recently performed for elements 121–131 [117].
The proximity of the 7d, 6f and 5g levels, and their partial filling makes the
usual classification on the basis of a simple electronic configuration difficult, so
that the placement of these elements in the periodic table becomes problematic. It
will be a challenge for theoreticians to accurately predict electronic states of those
superheavy elements.

Table 11-1 Ground state electronic configurations of the 5d and 6d elements. Lu and Lr are
also included

Lu Hf Ta W Re Os Ir Pt Au Hg

5d6s2 5d26s2 5d36s2 5d46s2 5d56s2 5d66s2 5d76s2 5d96s 5d106s 5d106s2

Lr Rf Db Sg Bh Hs Mt Ds Rg 112

7s27p1=2 6d27s2 6d37s2 6d47s2 6d57s2 6d67s2 6d77s2 6d87s2 6d97s2 6d107s2
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11.6.2. Ionization Potentials, Electron Affinities and Stable
Oxidation States

The first IPs of elements 104 through 166 were calculated using the DF and DS
methods (see [5] for a review). The multiple IPs of Rf through Hs, and of elements
112 and 114, as well as the first IPs for elements 113–119 were calculated using the
MCDF method [56, 65–69, 118]. The DCB CCSD results were reported for IPs of
elements 104, 111–115, 121 and 122 [47, 54, 57, 119–123].

The IPs for the seventh row of the elements in comparison with those for the
sixth row are shown in Figure 11-8. The values can be found in [8].

Relativistic effects on IPs reflect those on the valence AOs responsible for the
ionisation. Thus, the relativistic destabilization of the 6d-AOs is a reason for the first
IPs of Rf through Mt being lower compared to the 5d homologs. In elements 110
through 112, the first ionized electron is also 6d in contrast to the lighter homologs
Pt through Hg, though the ionisation energies are higher. In elements 113 through
118, the first ionized electron is 7p as expected. A large 7p AO SO splitting explains
a drastic decrease in the IP from element 114 to 115 due to the filling of the 7p3=2

shell for element 115, which is more destabilized than the 6p3=2 shell of Bi. A large
7p AO SO splitting also explains the smaller IPs of elements 115 through 118 in
comparison with their homologs Bi through Rn.

Element 118 is expected to be the most electronegative in the group of the noble
gases: Its outer 8s orbital is relativistically stabilized to give the atom a positive EA
of 0.058 eV according to DCB CCSD C QED calculations [51, 125]. The inclusion
of both relativistic and correlation effects was required to obtain this result. Similar
calculations did not give a 2S bound state for Rn�. The DC CCSD(T) IP(118) is
8.92 eV [126], the smallest in group 18.

Figure 11-8. Ionization potentials of the sixth row elements (dashed line, experimental values [124])
and the seventh row (solid line, calculated values)
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Figure 11-9. Electron affinities, EA, and ionisation potentials, IP, for alkali and alkaline-earth elements.
The data for Na through Fr and Mg through Ra are experimental [124]

The relativistic stabilization of the np1=2 AOs in group 13 and 14 is also respon-
sible for a trend reversal in the decreasing IPs beyond In and Sn, respectively.
Similarly, an upturn in the IPs is observed from Sc to element 119 and Ba to ele-
ment 120 in group 1 and 2 due to the relativistic stabilization of the outer ns1=2

electrons. The IP of element 119 is relativistically increased from 3.31 to 4.53 eV,
as DK CCSD calculations show [127].

The decreasing trend in EA in the group of alkali elements from Na to Cs
(Figure 11-9) is reversed beyond Cs due to the relativistic stabilization of the 7s(Fr)
and 8s(119) AOs.

Due to the relativistic stabilization of the 8s AO, EA(119) is 662 meV, being
also the highest in group 1, according to DCB CCSD calculations [128]. The CCSD
IP(121) D 4.45 eV and EA(121) D 0.57 eV, the highest in group 3 [47]. The DCB
CCSD IP(122) D 5.59 eV [57] as compared to the IP(Th) D 6.52 eV: this relative
decrease is due to the relativistically stabilized 8p1=2 electron of element 122. The
DF and DS IPs of even heavier elements can be found in [5].

IPs of internal conversion electrons (1s and 2s) for the element 112, 114, 116
and 118 are predicted to an accuracy of a few 10 eV using DHF theory and taking
into account QED and nuclear-size effects [48]. The K’1 transition energies for
different ionization states of Mt were accurately predicted using the same approach
and compared with recent experiments in the ’-decay of 272Rg [129].

The relativistic stabilization of the 7s AO and destabilization of the 6d AOs over
the 6d series of the elements results in the increased stability of higher oxidation
states, in agreement with the observed trends in the chemical groups. The MCDF
calculations of the multiple IPs for elements Rf through Hs [56,65–67] have, indeed,
shown a decrease in IP.0 ! ZC

max/, as illustrated in Figure 11-10. Due to the same
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Figure 11-10. Multiple ionization potentials: IP.0 ! 4C/ for group-4, IP.0 ! 5C/ for group-5,
IP.0 ! 6C/ for group-6, IP.0 ! 7C/ for group-7, and IP.0 ! 8C/ for group-8 elements, as
well as ionic radii, IR, for these elements in their maximum oxidation states obtained from the MCDF
calculations [56, 65–67] (From [43])

reason, lower oxidation states at the beginning of the 6d series will be unstable:
the step-wise ionization process results, for example, in the 6d2 and not in the 7s2

configurations for Db3C or Sg4C. Since the 6d orbitals of the 6d elements are more
destabilized than the (n � 1)d orbitals of the 4d and 5d elements, Db3C and Sg4C
will even be less stable than Ta3C and W4C, respectively.

A trend to an increase in the stability of the 3C and 5C oxidation states of Rg
was also attributed to relativistic effects. Due to a relatively high EA of Rg, the
1� oxidation state may be accessible with appropriate ligands. The 4C state of
element 112 should also be more stable than those of Au and Hg, respectively. The
0 oxidation state will dominate for element 112 due to its closed shell (the EA is 0
[120]).

The large relativistic stabilization of the 7s2 electrons and, hence, a large 7s-7p
gap hindering hybridization, is the reason for enhanced stability of lower oxidation
states at the beginning of the 7p-series. Thus, the 1C oxidation state will be more
important than the 3C state for element 113. Due to the relativistic stabilization of
the 7p1=2 electrons of element 114, the 2C state should predominate over the 4C
state to a greater extent than in the case of Pb. The 6d AOs should be still accessible
for hybridization for elements 113 and 114 and should take part in bonding leading
to the formation of compounds of these elements in higher oxidation states like,
e.g., 113F6

� [78] or 114F6
2� [77]. For elements 115 through 118, on the contrary,

lower oxidation states should be more stable than those of the lighter homologs due
to the inaccessibility of the relativistically stabilized 7p1=2 AO for bonding. For ele-
ment 115, the 1C state should be more important due to the SO destabilized 7p3=2

electron. The 3C state should also be possible, while 5C not. For element 116,
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a decrease in the stability of the 4C oxidation state is expected due to a large SO
splitting of the 7p AOs, and the 2C state should be important due to the two desta-
bilized 7p3=2 electrons. For element 117, the 1C and 3C oxidation states should be
the most important, while 5C and 7C are less. The 1- state of element 117 having
one electron hole on the 7p3=2 AO should therefore be less important (its EA is the
smallest in the group). For element 118, 2C and 4C states are possible, while the
6C one will be less important, because of the strong binding of the 7p1=2 electrons.
Oxidation states of heavier elements are discussed in [5].

11.6.3. Atomic/Ionic/Covalent Radii and Polarizability

Atomic (AR) and ionic radii (IR) are defined by the maximum of the radial charge
density, Rmax, of the outer valence AO. The DF Rmax values for elements up to
Z D 120 were tabulated by Desclaux [45]. The MCDF Rmax for Rf through Hs
and their lighter homologs in the chemical groups in various oxidation states were
calculated by Johnson, Fricke et al. [56, 65–67]. In those works, IR of the transac-
tinides were obtained via a linear correlation between Rmax and known IR [130]
in the chemical groups. The IR of elements Rf through Hs in the highest oxidation
states are shown in Figure 11-10.

Figure 11-10 shows that the IR of the 4d and 5d elements are almost equal due
to the lanthanide contraction (of 0.020 Å) which is roughly 86% a nonrelativistic
effect: The diminished shielding of the nucleus charge by the 4f electrons causes
the contraction of the valence shells. The IR of the transactinides are about 0.05
Å larger than the IR of the 5d elements. This is due to an orbital expansion of the
outer 6p3=2 orbitals responsible for the size of the ions. The IR of the transactinides
are, however, still smaller than the IR of the actinides due to the actinide contraction
(0.030 Å), being larger than the lanthanide contraction, which is mostly a relativistic
effect: The 5f shells are more diffuse than the 4f shells, so that the contraction of the
outermore valence shells is increased by relativity to a larger extent in the case of
the 6d elements as compared to the 5d elements. The DF and HF calculations [85]
for the 5d and 6d elements with and without the 4f and 5f shells, respectively, have
shown that the shell-structure contraction is, indeed, enhanced by relativistic effects
and that the orbital and relativistic effects are not additive.

A set of atomic single and triple bond covalent radii (CR) for most of the elements
of the periodic table including the heaviest ones till Z D 118 and 112, respectively,
are given in [131, 132]. They were deduced from the calculated molecular bond
lengths of various covalent compounds. The obtained single bond CR for the group
4 through 8 6d-elements are consistent with their IR: they are about 0.06 Å on the
average larger than the CR of the 5d elements (Figure 11-11). (The triple bond CR
are slightly larger, i.e., 0.08 Å on the average.) An important finding of those works
is a decrease in the CR6d-CR5d difference starting from group 9, reaching negative
values in groups 11 and 12, as a result of the relativistic bond contraction. This was
called a “transactinide break” [132].
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Thus, the calculations for elements 111 and 112 have shown that they should
have the smallest AR and CR in the respective chemical groups due to the relativistic
contraction of the 7s AO.

The DS/DF calculations [5] have also shown that within the alkaline and alka-
line earth series of elements a reversal of increasing AR occurs beyond Cs and
Ba, respectively (Figure 11-12). The shell-contraction effects are, however, much
smaller in the group-1 series of elements compared to the group-11 ones.

The static dipole polarizabilities ’ were calculated most accurately at the DC
CCSD(T) level for elements 112 through 118 [126, 134–136]. As a comparison of
results of several calculations for Hg and element 112 shows (Table 11-2), relativis-
tic effects significantly decrease ˛ of both species, with the effect being much more
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Table 11-2 Polarizabilities, ’ (in a.u.), of Hg and element 112 calculated within different
approximations

Atom Method ’ Ref.

HF MP2 CCSD CCSD(T)

Hg NR 82.25 – – 37.83 [86]
PP
AR 44.78 28.33 35.26 34.42 [86]
PP
ECP 32.46 27.13 28.82 28.48 [95]
DC 44.90 27.47 35.31 34.15 [134]
Exp. – – – 33.91 [137]

112 NR 107.85 – – 74.66 [86]
PP
AR 29.19 23.57 25.84 25.82 [86]
PP
ECP 30.30 27.67 28.61 28.68 [95]
DC 29.46 25.11 27.66 27.64 [134]

pronounced for the heavier element (a relativistic decreased from 74.7 to 25.8 a.u.,
as was shown by the PP CCSD(T) calculations [86]). Correlation also decreases ’
in both cases much more at the nonrelativistic level.

According to the calculations, ’ of element 112 should be the smallest in group
12 due to the relativistic contraction of the outer 7s AO. Polarizabilities of elements
113 and 114 are also smaller than those of In and Tl, and Sn and Pb, respectively,
which is due to the relativistic stabilization of the outer 7p1=2 AO (see below). A
reversal of the trends in ’ is observed in group 13 and 14 beyond In and Sn, respec-
tively, similarly to those in AR, or Rmax.np1=2/-AO. Correlation effects on ’ of
group 13 and 14 elements are similar to those of group 12 elements. For elements
115 through 118, ’ are the largest in the respective chemical groups [136] due to
the largest Rmax.np3=2/-AO [45]. The polarizability of element 118 is the largest
among all the rare gases [126]. For element 119, ’ is also relativistically decreased
from 693.9 to 184.8 a.u., as calculated at the DK CCSD(T) level. An improved basis
set has given l65.98 a.u. for the latter [127].

11.7. GAS-PHASE CHEMISTRY

11.7.1. Rf Through Hs

11.7.1.1. Electronic Structures and Properties of Group 4
Through 8 Compounds

The 4c-DFT electronic structure calculations were performed for MF4, MCl4,
MBr4.M D Zr, Hf and Rf), MCl5, MBr5, MOCl3 (M D Nb, Ta and Db), MCl6,
MO3, MOCl4, MO2Cl2 and M.CO/6 (M D Mo, W and Sg), MO3Cl (M D Tc, Re
and Bh), and MO4 (M D Ru, Os and Hs) (see [7,43] for reviews) and the RECP ones
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for some group 4 through 6 halides and oxyhalides [83, 88]. Covalent compounds
of the type MX (X D H, N, B and C) and some others were also considered in
various studies (see [131, 132] for a summary). One of the aims of these works was
clarifying role of relativistic and correlation effects.

The calculations have shown that the compounds of the heaviest elements are,
indeed, homologs of the lighter elements in the chemical groups and that bonding
is defined by the valence (n � 1)d AOs. An important finding was an increase in the
stability of the maximum oxidation state in the chemical groups. A comparison of
the relativistic with non-relativistic results for MCl5 (M D Nb, Ta and Db) [138,
139], for example, has shown that this is a pure relativistic effect. Relativistic effects
increase the energy gap �E between the bonding MO of the ligand character and
antibonding MO of the (n � 1)d character due to the relativistic destabilization of
the (n � 1)d AOs. This results in an increase in the energies of the electron charge-
transitions which are associated with the reduction of the metal [139].

The calculations have also shown that relativistic effects are responsible for an
increase in covalence of the group 4 through 8 compounds. Figure 11-13 shows rel-
ativistic and non-relativistic values of the effective metal charges, QM, and overlap
populations (OP) obtained from a Mulliken analysis of the electronic density distri-
bution in MCl5 (M D V, Nb, Ta and Db), as an example [138]. One can see that the
relativistic and non-relativistic values are opposite from Ta to Db.

A partial OP analysis shows that this behaviour is due to the opposite relativistic
and orbital effects on the ns and np1=2 AOs, while in the case of the (n � 1)d AO,
relativistic effects enhances the orbital one (Figure 11-14).

Figure 11-13. Relativistic (solid lines) and nonrelativistic (dashed lines) effective charges, QM, and
overlap populations, OP, for MCl5 (M D V, Nb, Ta and Db) [138]. L denotes the ligand (From [43])
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Figure 11-14. Relativistic (solid lines) and nonrelativistic (dashed lines) partial overlap populations
in MCl5 (M D Nb, Ta and Db). L denotes valence orbitals of the ligand. The data are from [138]
(From [43])

Table 11-3 Atomization energies of WO2Cl2 and SgO2Cl2 calculated at various levels
of approximation using the RECP method [88]. The additional SO effect is shown in the
parentheses

Molecule HF (AREP) MP2 CCSD CCSD(T) Exp.a

WO2Cl2 11.7 24.4 20.9 22.1 23.5
SgO2Cl2 14.6 (�0.4) 24.8 (�1.3) 21.6 (�1.4) 22.5 (�1.6) –
aCalculated via a Born-Haber cycle

The RECP CCSD(T) calculations for the group 6 oxyhalides [88] without and
with SO coupling have shown that a slight decrease in De of the 6d compounds
with respect to the 5d ones occurs due to the SO splitting of the 6d-AOs. A compar-
ison of the average relativistic HF (AREP) and CCSD values has also demonstrated
importance of electron correlation, accounting for about 65% in the De of SgO2Cl2
(Table 11-3).

Both the 4c-DFT [140] and RECP [88] calculations agreed on the most sta-
ble type of compound among the group 6 oxychlorides, MO2Cl2 (M D Mo, W
and Sg). Gas-phase chromatography experiments were then conducted with these
species [30]. The DS-DV calculations were performed for M.CO/6 (M D Mo, W,
Sg and U) [141]. Sg.CO/6 was found to be very similar to W.CO/6 and different
from U.CO/6.

Geometry optimization calculations for various group 4–8 halides, oxyhalides,
oxides and other compounds [88, 131, 132, 142–146] have shown that Re of the 4d
and 5d compounds are almost equal as a result of the lanthanide contraction, while
those of the 6d compounds are about 0.05–0.06 Å larger (Figures 11-11 and 11-15).
The latter is due to the both orbital and relativistic effects on the (n-1)d AOs.
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Figure 11-15. The 4c-DFT [142–146] and RECP [88] atomization energies, De, and optimized bond
lengths, Re, for various gas-phase compounds of group-4 through 8 elements (From [43])

11.7.1.2. Predictions of Experimental Behaviour

Prediction of �Hads of a heavy-element molecule on a surface is presently still a
formidable task for first principle calculations. A way was, therefore, suggested in
[143–146] to obtain it with the use of physisorption models and accurately calcu-
lated molecular properties. The models are based on a principle of the molecule-slab
interaction, where the interaction is subdivided into usual types for the long-range
forces: dipole-dipole, dipole-induced dipole and van der Waals (dispersion) one.
Thus, e.g., for a molecule with a dipole moment interacting with a (metal) surface
chargeQ, the interaction energy is [143]

E.x/ D �2Qe�mol
2

x2
� Q2e2˛mol

2x4
� 3

2

˛mol˛slab

1

IPmol
C 1

IPslab

�
x6
; (11-17)

where the electric dipole moment, �mol , IPmol and ˛mol belong to the molecule,
while those with the index “slab” to the surface atom, and x is the molecule-surface
separation distance. The latter is well approximated by the van der Waals radius,
RvdW.

For a molecule without dipole moment interacting with a dielectric surface, the
energy is [144]

E.x/ D � 3

16

�
" � 1

"C 2

�
˛mol


1
IPslab

C 1
IPmol

�
x3
; (11-18)
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where " is the dielectric constant of the adsorbent material. All the molecular
properties except of x can be accurately calculated using relativistic codes. The x
can be deduced from the measured �Hads for the lighter compounds using equa-
tions of the types (11-17) and (11-18) and the calculated molecular properties.
The unknown x values for the heaviest element compounds are then evaluated
with respect to the x for the lighter homologs using molecular RvdW. The latter is
obtained from the calculated Re values and radii of the ligand spheres. As an exam-
ple, the 4c-DFT calculated energy contributions to �Hads for the group 7 MO3Cl
(M D Tc, Re and Bh) [143] are given in Table 11-4.

On their basis, ��Hads of 78.5 kJ/mol and of 48.2 kJ/mol were calculated for
BhO3Cl and TcO3Cl, respectively, relative to the measured 61 kJ/mol for ReO3Cl.
This gives a trend in volatility as TcO3Cl > ReO3Cl > BhO3Cl. The calculations
have shown that this trend is defined by the trend in the dipole moments of these
molecules.

Experimental investigations of volatility of the group 7 oxychlorides performed
using the isothermal gas-phase chromatography [31] has, indeed, confirmed the
theoretically predicted trend (Figure 11-16). Also, the deduced by a Monte Carlo
simulation ��Hads of 75 and 51 kJ/mol for BhO3Cl and TcO3Cl, respectively, are
in perfect agreement with the theoretical values.

Table 11-4 Contributions to the interaction energy, E.x/, between the MO3Cl molecules (M
D Tc, Re, and Bh) and ClQ (surface) for Q D �0:4 (From [143])

Molecule

�-Qe ’-Qe ’-’.Cl/

E1016x2; eV cm2 E1032x
4
; eV cm3 E1048x

6
; eV cm6

TcO3Cl 2.23 5.69 379.1
ReO3Cl 3.10 6.81 460.6
BhO3Cl 4.67 8.64 591.2
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Figure 11-16. The relative yields of TcO3Cl (filled black circles), ReO3Cl (open circles) and BhO3Cl
(filled black squares) as a function of the isothermal temperatures, Tiso (From [31])
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Prediction of the energy of weak interactions of the very similar MO4 (M D Ru,
Os, and Hs) species with an inert surface required, however, a much higher level
of accuracy of the calculated properties than in the case of relatively strong dipole-
dipole interactions of MO3Cl (M D Tc, Re and Bh). Thus, the 4c-DFT calculations
with extremely extended basis sets (e.g., a minimal set plus the 7p7d6f8s8p5g one
for Hs) had to be performed to achieve the required accuracy [146] (see Table 11-5
for the calculated and experimental values).

The obtained IP and ’ for MO4 (M D Ru, Os and Hs), in perfect agreement with
experimental data for the Ru and Os oxides, show a reversal of the trend in group 8,
while Re increases steadily in the group (Figure 11-17).

Table 11-5 Ionization potentials, I (in eV), polarizabilities, ’ (in a.u.), bond lengths, Re
(in Å), vibrational frequencies, �, of the M-O bond (in cm�1/, molecule-surface separation
distances, x (in Å), and adsorption enthalpies, ��Hads (in kJ/mol) on quartz for MO4 (M D
Ru, Os, and Hs)

Property Method RuO4 OsO4 HsO4 Ref.

I Calc. 12.21 12.35 12.29 [146]
Exp. 12.19 12.35 – [147]

’ Calc. 58.07 55.28 65.99 [146]
Exp. 58.64 55.13 – [137]

Re Calc. 1.712 1.719 1.779 [146]
Exp. 1.706 1.711 – [148]

� Calc. 851 900 989 [146]
Exp. 880 965 – [148]

x Calc. 2.23 2.23 2.25 [146]
–�Hads Calc. 41:0˙ 1 39:0˙ 1 45:4˙ 1 [146]

Exp. – 39˙ 1 46˙ 2 [26]
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Figure 11-17. Relativistic (rel.) and nonrelativistic (non-rel.) bond lengths, Re, ionization potentials, IP,
and polarizabilities, ’, in MO4 (M D Ru, Os, and Hs) (From [146])
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Figure 11-18. Relativistic (solid line) and nonrelativistic (dashed line) adsorption enthalpies of MO4

(M D Ru, Os, and Hs) on quartz [146]

The trends in these properties proved to be in agreement with the trends in the
energies and Rmax of the (n � 1)d AO in group 8, respectively.

Using the calculated molecular properties and the physisorption model
(Eq. 11-18), �Hads on quartz (silicon nitride) were calculated for RuO4 and HsO4

with respect to OsO4 (see Table 11-5 and Figure 11-18). They have indicated the
same reversal of the trend in group 8 as that in ’ (Figure 11-17).

Thermochromatography experiments on volatility of OsO4 and HsO4 revealed
that HsO4 is, indeed, about 6 kJ/mol stronger adsorbed on the silicon nitride sur-
face of detectors than OsO4 [26]. (RuO4 was not experimentally studied due to its
decomposition). Also, the measured �Hads of HsO4 is very close to the calculated
one (Table 11-5). The experimentally observed adsorption positions of the tetroxides
is shown in Figure 11-19.

Thus, both theoretical and experimental studies have established a reversal of
the trend in volatility of the group 8 tetroxides in line with the trend in the polar-
izabilities of these molecules. This remarkable case demonstrates importance of
both accurate calculations and statistically meaningful experiments. It also shows
that straightforward extrapolations of properties in the chemical groups can be
unreliable.

In the same work [146], influence of relativistic effects on spectroscopic prop-
erties and volatility of the MO4 species was studied with the help of additional
non-relativistic calculations (Figure 11-17). The non-relativistic values revealed
the same trends in group 8 as relativistic, since the orbital and relativistic effects on
the (n-1)d-AO act in the same direction. Relativistic effects on�Hads were shown to
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Figure 11-19. Observed adsorption behaviour of OsO4 and HsO4 in the gas-phase thermochromatogra-
phy experiments [26]

be negligible (Figure 11-18). There were some other attempts to interpret volatility
of HsO4 [80,149]. These works reveal, however, some deficiency of the calculations,
as discussed in [145].

11.7.2. Rg

In group 11, relativistic stabilization of the ns AO results in the change of the ground
state electronic configuration from d10s1 for Cu, Ag and Au to d9s2 for Rg [119],
which should influence dissociation energies of compounds of these elements. The
maximum of relativistic effects on the 7s-shell of Rg in group 11 is also a reason
to observe anomalous properties of its low coordination compounds. The large rel-
ativistic destabilization and expansion of the 6d AOs is expected to enhance the
stability of higher coordination compounds of this element.

A number of molecular relativistic calculations were performed for simple com-
pounds of Rg at various levels of theory. The electronic structure of the simplest
molecule RgH, used as a test system for benchmark calculations as AuH, was stud-
ied in detail with the use of various methods, DF, DK, PP, and DFT (see Table 11-6).
A comparison of the relativistic (ARPP) with the nonrelativistic (NRPP) calcula-
tions shows that scalar relativistic effects doubleDe, though the SO splitting for the
Rg atom (7s26d9/ diminishes it by 0.7 eV (the ARPP CCSD – SOPP CCSD differ-
ence) [75]. Thus, the trend to an increase in De from AgH to AuH turned out to be
inversed from AuH to RgH (Figure 11-20).

The PP CCSD calculations [75] have also shown that the bond in RgH is sub-
stantially shortened by relativity (�Re D �0:4 Å) and it is the shortest in the series
AgH, AuH and RgH, so that the trend to a decrease in Re is continued with RgH.
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Table 11-6 Bond lengths (in Å) in AuH and RgH

Molecule Re Method Ref.

AuH 1.5236 Experiment [150]
RgH 1.499 SO PP CCSD(T) [75]

1.523 DHF CCST(T) [75]
1.503 SO PP-CCSD(T) [75]
1.529 PP CCSD(T) [151]
1.506 SC-PP CCSD(T)a [152]
1.543 ADF ZORA [131]
1.546 BDF [110]
1.520 4c-DFT [153]

aShape-consistent (SC)
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Figure 11-20. Nonrelativistic and relativistic bond lengths, re (see also Table 11-6 for various values for
RgH), dissociation energies, De, and force constants, ke, of the group-11 hydrides (From [75])

The BDF calculations [110] have, however, revealed that Re(RgH) is slightly larger
than Re(AuH). The different trends in Re obtained in these two types of the calcu-
lations are obviously connected to a different contribution of the contracted 7s and
expanded 6d AOs to bonding (though the 6d contribution was found to be predom-
inant in both cases). Results of various calculations for Re(RgH) are summarized
in Table 11-6 (see also [75, 131]). They indicate that Re(RgH) should be similar to
Re(AuH).

Both the PP and DFT calculations established that the trend to an increase in ke

is continued with RgH having the largest value of all known diatomic molecules
(Figure 11-20).
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The �e was shown to decrease relativistically from AgH to AuH and to RgH,
indicating that RgH is more covalent and element Rg(I) is more electronegative than
Au(I). Large SO effects were found on Re (SO increased) and ke (SO decreased)
[110].

Results of the 4c-BDF [110] and 4c-DFT calculations [153] for other dimers,
AuX and RgX (X D F, Cl, Br, O, Au, Rg), indicate that relativistic effects follow
a similar pattern to that for RgH except for RgF and RgO, where the SO split-
ting increasesDe. The PP calculations for RgH, RgLi and RgF [75] have, however,
shown that the SO effects onRe are very small, but they are large forDe, decreasing
it in all the cases, in difference to the BDF calculations for RgF [110]. The scalar
relativistic effects increase De(RgLi), but decrease De(RgF). They decrease Re by
about 0.4 Å in all the cases. The singlet state was found to be the ground for Rg2 in
comparison to the triplet [153]. The dissociation energy was found to change in the
following order: Au2 > RgAu > Rg2.

To study the stability of higher oxidation states, energies of the MF6
� !

MF4
� C F2 and MF4

� ! MF2
� C F2 (M D Cu, Ag, Au and Rg) decompo-

sition reactions were calculated at the PP MP2 and CCSD levels of the theory
[84, 87]. Relativistic effects were shown to stabilize higher oxidation states in
the high-coordination compounds of Rg due to a destabilization of the 6d AOs
and their larger involvement in bonding. RgF6

� was shown to be the most sta-
ble in this group. SO coupling stabilizes the molecules in the following order:
RgF6

� > RgF4
� > RgF2

�. This order is consistent with the relative involvement
of the 6d electrons in bonding for each type of molecule.

11.7.3. Element 112

It is known that with increasing relativistic stabilization and contraction of the ns AO
in group 12, elements become more inert. Thus, bulk Hg is known to be a liquid,
however, very different from the condensed noble gases. In the case of element 112,
relativistic effects are expected to be further amplified.

Earlier, Pitzer [154] suggested that the very high excitation energy 6d107s2 !
6d107s7p1=2 of about 8.6 eV of element 112 into the configuration of the metallic
state will not be compensated by the energy gain of the metal-metal bond formation.
An extrapolation of �Hsub of metals in group 12 has given 22.2 kJ/mol for element
112, which is the lowest in group 12 [155]. The questions to the electronic structure
theory, therefore, were: Is element 112 metallic in the solid state, or is it more like
a solid noble gas? How volatile and reactive is the element 112 atom in comparison
with Hg and Rn?

11.7.3.1. Relativistic Effects on Atomic Properties

Atomic properties of Hg and element 112 were calculated at various levels of theory:
4c-BDF with the Perdew-Burke-Ernzerhof (PBE) functionals, and the PB self-
interaction correction (PBESIC) [156], QR-PP CCSD(T), ARPP CCSD(T) [86],
ECP CCSD(T) [95] and DC(B) CCSD(T) [120,134]. The results are summarized in
Tables 11-7 and 11-8.
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Table 11-7 Polarizabilities, ’ (in a.u.), and ionization potentials,
IP (in eV), of Hg and element 112

Method

Hg 112

Ref.
’ IP ’ IP

4c-BDF PBE 35.1 10.61 29.0 11.78 [156]
4c-BDF PBESIC 36.4 10.40 29.8 11.40 [156]
QR-PP CCSD(T) 34.2 10.37 28.0 13.17 [156]
AR-PP CCSD(T) 34.42 – 25.82 – [86]
ECP CCSD(T) 28.48 10.39 28.68 11.675 [95]
DC CCSD(T) 34.15 – 27.64 – [134]
DCB CCSD – 10.445 – 11.97 [120]
Exp. 33.919 10.4375 – – [137]

Table 11-8 Spectroscopic properties: bond lengths, Re (in Å), and
dissociation energies, De (in eV), of Hg2 and .112/2

Method

Hg2 .112/2

Ref.
Re De Re De

4c-BDF PBE 3.439 0.053 3.089 0.156 [156]
4c-BDF PBESIC 3.904 0.025 3.363 0.075 [156]
QR-PP CCSD(T) 3.769 0.044 3.386 0.097 [156]
4c-DFT(B88/P86) 3.63 0.01 3.45 0.05 [153]
Exp. 3.63 0.043 – – [158, 159]

AR was obtained as a half of ReŒ.112/2� (see below) [46, 153]. RvdW.112/ D
3:76˙ 0:03 a.u. was estimated with respect to RvdW.Hg/ D 3:95˙ 0.02 a.u. [157]
using a ratio of their Rmax(ns)-AOs [45].

Additional non-relativistic calculations [46, 84, 86] have shown that relativistic
IP(112) is 4 eV larger than the non-relativistic one, because relativistically, the first
ionized electron is 6d5=2, while nonrelativistically, it is the destabilized 7s one. The
’ is 45 a.u. decreased due to the relativistic contraction of the 7s AOs. Thus, IP(112)
is the largest in group 12, while ’ is the smallest [46] reflecting the AO energies and
Rmax, respectively (Figure 11-6). Due to the same reason, AR(112) is 0.5 a.u. rela-
tivistically contracted and it is the smallest in group 12. The CR show the same trend
in the group [131, 132]. The non-relativistic values have opposite trends beyond Cd
(Figure 11-21).

11.7.3.2. Volatility as Sublimation: Van der Waals Systems

Homonuclear dimers. The first step to treat the sublimation process of the ele-
ment 112 “macroamount” is to find out how strong element 112 is bound to itself.
Accordingly, calculations of the spectroscopic properties of Hg2 and .112/2 were
performed with the use of various methods: 4c-BDF PBE, ECP CCSD(T), QP-PP
CCSD(T) [156] and 4c-DFT [46, 153]. The results are summarized in Table 11-8.
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Figure 11-21. Relativistic (solid lines) and non-relativistic (dashed lines) ionization potentials, IP,
atomic radii, AR, and polarizabilities, ’, of group 12 element [46]

The 4c-DFT calculations for .112/2 [153] have shown that the 6d(112)-AOs are
active and mixing up with the 7s-AOs in the highest occupied MOs. The 4c-DFT
Re.Hg2/ perfectly agrees with the experimental value [158], though ReŒ.112/2� is
larger than that of the PP calculations [156]. De.Hg2/ is better reproduced by the
PP calculations [156], as is expected for the preferentially van der Waals type of
bonding. Both the DFT and PP calculations agree on an increase in De of about
0.04 eV from the Hg to element 112 dimer with shortening of the bond, in line with
the smaller RmaxŒ7s.112/� AO with respect to RmaxŒ6s.Hg/� AO (Figures 11-22
and 11-6). Thus, due to the relativistic 7s AO contraction .112/2 should be more
bound than Hg2. The PP calculations for Hg2 [160] have shown that bonding in this
molecule is not of pure van der Waals type, and a partial overlap occurs. The same
was found for .112/2 [153]. Thus, a half of the Re.M/2 (M = Hg and element 112)
gives, therefore, rather AR than RvdW.

Solid state. The LDA DFT (non-relativistic, scalar relativistic, SR, and 4c-
relativistic) band structure calculations were performed on the element 112 solid
state [161]. It was found that element 112 prefers the hcp structure (as that of Zn
and Cd) in difference to Hg (fcc). Thus, it should differ from its lighter homolog Hg
on a structural level and resemble the solid state noble gases. A cohesive energy of
1.13 eV was obtained for element 112 at the SR-level of theory, which is larger than
that of Hg (0.64 eV) and is an order of magnitude larger than those of the solid noble
gases. This result is consistent with the larger DeŒ.112/2] with respect to De.Hg2/

(see Table 11-8). It was concluded that element 112 is not a metal, but rather a semi-
conductor with a band gap of at least 0.2 eV. (The results of the LDA calculations
were considered as a lower bound.) In this sense, element 112 resembles the group
12 metals more closely than it does the noble gases.

Adsorption on inert surfaces. Knowledge of �Hads of element 112 on inert sur-
faces such as quartz and ice was desired for designing gas-phase chromatography
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experiments. With this aim in view,�Hads of Hg and element 112, as well as Rn for
comparison purposes, on quartz and ice were calculated using the adsorption model
(Eq. (11-18)) and calculated atomic properties [46, 134] (Table 11-7). Since bond-
ing of Hg and element 112 with inert surfaces was assumed to be similar to that in
M2(M D Hg and element 112), x was taken as half of the bond length in M2; and not
as RvdW. The obtained ��Hads D 40:5 kJ=mol for Hg on quartz and 25.20 kJ/mol
on ice are in very good agreement with the experimental values of 42 ˙ 2 and
25:5˙2 kJ=mol, respectively [162]. For element 112, ��Hads D 43:2˙0:2 kJ=mol
(for AR) on quartz and ��Hads D 26:3˙ 0:1 kJ=mol on ice were predicted. Thus,
element 112 was expected to be somewhat stronger adsorbed on inert surfaces than
Hg, i.e., it was expected to be deposited on ice in the thermochromatography column
at slightly higher temperatures than Hg.

By using relativistic (vs.) non-relativistic values of the atomic properties
(Figure 11-21), influence of relativistic effects on �Hads and its trend in group
12 was elucidated [46]. Since ’ is proportional to 1/IP, the different trends in the
relativistic (vs.) nonrelativistic values in the group (Figure 11-21) cancel in the
product ’IP, so that the trends in the relativistic (vs.) non-relativistic E.x/ are
finally determined by trends in the relativistic (vs.) non-relativistic x, or AR val-
ues. Consequently, the relativistic contraction of the AR (due to the contraction of
the 7s(112) AO) results in an increase in ��Hads from Hg to element 112, while
non-relativistically, it is the other way around.

An important conclusion for the chemistry is that element 112 is stronger bound
by van der Waals forces than Hg both in the homonuclear dimer, solid state and
adsorbed state on an inert surface, and this is a relativistic effect caused by the
contraction of the 7s AO (see Figure 11-26 below).
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11.7.3.3. Volatility as Measured in the Gas-Phase Experiments: Interaction
with Metals

In the gas-phase thermochromatography experiments, volatility of element 112, as
well as of Hg and Rn, for comparison purposes, was studied as adsorption on gold
plated silicon detectors of the chromatography column [27]. Prediction of �Hads of
these elements on a gold surface was, therefore, desirable.

Heteronuclear dimers. As a first step to study adsorption of Hg and element 112
on noble metal surfaces, electronic structure calculations were performed for HgM
and 112M, where M D Ag, Au, Pt, Pd and Cu using the 4c-DFT [163]. It was
demonstrated that element 112 forms chemical bond with Au primarily due to the
interaction between the double occupied 7s(112) AO and the single occupied 6s(Au)
AO (see Figure 11-23).

The ground state of 112Au is 2˙C dAu
10¢Au

2¢ �
112

1. A Mulliken analysis indi-
cates that the ¢� HOMO is a mixture of the 7s(112) and 6s(Au) AOs. Below are
two non-bonding   MOs of the 5d5=2(Au) AOs. The composition of the bonding ¢
MO lying at �6:76 eV is (in %): .1:2/7s.112/C .4/6d5=2.112/C .87/5d5=2.Au/C
.4/6s.Au/. Thus, one can see that the 6d(112)AOs are also active in 112Au. A com-
parison of De(112M) with De(HgM) shows that element 112 is about 0.1–0.2 eV
weaker bound with a transition metal atom M, depending on the metal, than Hg and
the bonds are longer.

Relativistic effects influence on the properties of HgAu and 112Au was investi-
gated via additional nonrelativistic calculations [46]. The results are presented in
Table 11-9. Relativistic effects were shown to increase De in HgAu by 0.13 eV,
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Figure 11-23. Bond formation (principal MOs) of the 112Au molecule
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Table 11-9 Nonrelativistic and relativistic spectroscopic properties of AuHg and 112Au:
dissociation energies, De (in eV), bond lengths, Re (in a.u.), vibrational frequencies, we
(in cm�1), effective charges, QM, and overlap populations, OP [46]

Molecule Case Re De we QM OP

HgAu Nr 5.44 0.36 75:89 0.05 0.44
Rel 5.04 0.49 102:96 0.10 0.34

112Au Nr 5.65 0.47 77:19 0.08 0.48
Rel 5.15 0.36 81:74 0.01 0.24

but decrease it by about the same value (0.12 eV) in 112Au. This makes trends
in the nonrelativistic (vs.) relativistic De values opposite from HgAu to 112Au,
so that De

nr.112Au/ > De
nr(HgAu), while De

rel.112Au/ < De
rel(HgAu). Re is

decreased by relativistic effects in both systems. The trends are, however, the same
both for the non-relativistic and relativistic Re. Relativistic effects increase vibra-
tional frequencies we in each compound, but to a much lesser extent in 112Au than
in HgAu, which makes trends in the relativistic and non-relativistic values opposite
from HgAu to 112Au. Trends in the relativistic and non-relativistic values of QM

and OP are also different from HgAu to 112Au: QHg
rel.HgAu/ > Q112

rel.112Au/
and OPrel.HgAu/ > OPrel.112Au/, while QHg

nr.HgAu/ < Q112
nr.112Au/ and

OPnr.HgAu/ < OPnr.112Au/.
A partial OP analysis shows that such a decrease in both the ionic and covalent

contributions of element 112 to bonding is a result of a decreasing involvement of
the relativistically stabilized 7s AO.

Interaction with gold clusters. To proceed further to the description of the adsorp-
tion of Hg and element 112 on a gold surface, calculations for metal atom — gold
cluster systems were performed using the 4c-DFT method [46,164,165,168]. Since
the structure of the gold layers covering the silicon detectors is not known, two types
of the ideal surface were considered: Au(100) and Au(111). Accordingly, clusters
of various size, from very small ones of nine and 14 atoms to very large once of
more than 100 atoms (in order to reach the convergence for binding energies with
the cluster size), were constructed to simulate these types of surfaces.

For the Au(100) surface, results of the calculations for the M-Aun and embedded
M-AunAum (M D Hg and element 112, nmax D 36 and m D 156) systems [165]
have shown that element 112 is 0.1–0.3 eV weaker bound with gold than Hg depend-
ing on the adsorption position, and that the bridge position should be preferential
(Table 11-10). Potential energy curves are shown in Figure 11-24. Using the differ-
ence between the calculated Eb D 1:52 eV and experimental ��Hads D 1:03 eV
for Hg on gold [166], ��Hads.112/ D 0:65 eV of element 112 was given as an early
prediction (Table 11-10).

The absolute value of Eb.Hg/ in the bridge position on the AunAum clus-
ter obtained in this way is, however, about 0.5 eV larger than the experimentally
observed ��Hads.Hg/ on gold evidencing that the Au(100) surface is obviously not
the one used in the experiments. The LDA DFT calculations [167] demonstrated that



488 V. Pershina

Table 11-10 Calculated binding energies, Eb (in eV), for the M-Aun and M-AunAum
systems (m D 156), where M D Hg and element 112 [165]

M Eb.M-Aun/ Eb.M-AunAu156/ ��Hads

Top Bridge Hollow Top Bridge Hollow Exp.
n D 14 n D 14 n D 9 n D 34 n D 36 n D 29

Hg 0.86 1.00 0.85 1.02 1.52 0.84 1:03a

112 0.71 0.82 0.79 0.65 1:14.0:65/b 0.74 0:54c

aRef. [166]
bPredicted value of ��Hads
cRef. [27]
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Figure 11-24. The 4c-DFT calculated potential energy curves for M-AunAu156 clusters (M D Hg and
element 112) in the three adsorption positions: top, hollow and bridge [165]

Au(111) surface should be about 0.4 eV more stabilized than the Au(100) one. Con-
sequently, ��Hads(M) on the Au(111) surface should be about this value smaller,
which fits better to the experimental ��Hads(Hg) [166].

The 4c-DFT calculations for Hg and element 112 interacting with large gold
clusters (n D 95 for the top, n D 94 for the bridge, n D 120 for the hollow1 and
n D 107 for the hollow2 positions) simulating the Au(111) surface have also been
completed [168]. Results show the same relation betweenEb of Hg and element 112
as for the Au(100) surface: element 112 is about 0.1–0.2 eV weaker bound to gold
than Hg. Overall, Eb with the clusters simulating the Au(111) surface are smaller
than those with clusters simulating the Au(100) surface. Eb.112/ D 0:46 eV.

In the first thermochromatography experiment with element 112 [27], two decay
chains attributed to the 112 isotope were observed in two separate experiments with
difference temperature gradients. (Earlier, experiments using a slightly different
technique were performed, showing that element 112 is very volatile [169].) Later,
four more events were observed attributed to element 112 [170]. From the observed
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Tads, ��Hads D 52C4�3 kJ/mol was deduced using a Monte Carlo simulation. Rn
was deposited at the last detectors in the column giving ��Hads D 20 kJ=mol.
Thus, the experiments demonstrated that element 112 does not behave like Rn.
It obviously forms chemical bonding with gold similarly, though weaker than, to
Hg. (The deposition of Hg took place right on the first detectors in the column,
at the highest temperatures.) This finding was in agreement with the theoretical
predictions [163–165, 168] indicating that element 112 is not a rare gas-like, but a
6d-metal-like. Also, the observed and calculated [168]�Hads are very close to each
other.

In [46], influence of relativistic effects on the adsorption process of Hg and
element 112 on metal surfaces was investigated on the example of small metal-
gold cluster systems. Two extreme cases were considered: the ad-atom in the top
position and in the hollow one: In the first case, the ns and np1=2 AOs of the
adsorbed atom should be active, while in the second case, the (n-1)d ones. Accord-
ingly, additional non-relativistic calculations were performed for the M-Au14 and
M-Au9 systems (Figure 11-25). Results are presented in Table 11-11. They indi-
cate that upon adsorption in the top position, relativistic effects increase Eb by
0.22 eV in HgAu14, while they do not increase Eb in 112Au14 due to the rela-
tivistic stabilization of the 7s(112) AO. This is similar to the case of the dimers
HgAu and 112Au (Table 11-9). Relations between Eb.HgAu14/ and Eb.112Au14/

Figure 11-25. The M-Au14 and M-Au9 systems simulating adsorption of M in the top and hollow
positions on the Au(100) surface, respectively

Table 11-11 Relativistic and non-relativistic binding energies, Eb (in eV), and the M-Aun
separation distance, Re (in a.u.), in the M-Au14 and M-Au9 systems [46]

System Case M-Au14.top/ M-Au9 (hollow)

Re De Re De

HgAun Nr 5.5 0.64 4.6 0.41
Rel 5.0 0.86 3.8 0.85

112Aun Nr 5.8 0.70 4.9 0.52
Rel 5.2 0.71 4.2 0.79
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for non-relativistic and relativistic cases are also similar to those for the dimers:
Eb

rel.HgAu14/ > Eb
rel.112Au14/, while Eb

nr.HgAu14/ < Eb
nr.112Au14/.

For adsorption in the hollow position, even though the trends in Eb are the same
as for the top position, e.g. Eb

rel.HgAu9/ > Eb
rel.112Au9/ and Eb

nr.HgAu9/ <

Eb
nr.112Au9/, relativistic effects increase Eb in both HgAu9 and 112Au9. This

makes the difference in Eb between HgAu9 and 112Au9 (0.06 eV) smaller than
for the top position case (0.15 eV). Such a relative small decrease in bonding from
Hg to element 112 is connected with the larger involvement of the relativistically
destabilized 6d(112) AOs in the hollow position. Relativistic effects were shown to
decrease the distance of the ad-atom to the surface, Re, in all the systems.

To conclude, the relativistic calculations for various M–Aun (M D Hg and ele-
ment 112) systems demonstrated that bonding of element 112 with gold is about
20–40 kJ/mol weaker than that of Hg. This is a relativistic effect caused by the con-
traction and stabilization of the 7s AOs, which is less accessible for bonding than the
6s(Hg) AO. This case is different to the case where element 112 is bound by van der
Waals forces, e.g., in the homonuclear dimer, solid state and adsorbed state on an
inert surface. There, element 112 is stronger bound than Hg due to the relativistically
contracted AR.

Plots summarising all the cases are shown in Figure 11-26. One can see that
a linear correlation between �Hsub and ��Hads (as that used in [170]) is not
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generally valid, since bonding between atoms of the same type and atoms of various
types may be different. Also, �Hsub of element 112 obtained via a straightforward
extrapolation in group 12 is obviously underestimated [155].

The RECP C DFT (SO corrected) calculations for the Hg and element 112 inter-
acting with small gold clusters (n D 1 till 4, and 10) were also reported [171].
Performed at a lower level of theory, they have overall confirmed the earlier 4c-
DFT results [46,163,164]: element 112 should be less bound than Hg with the gold
clusters.

11.7.3.4. Other Compounds

The relativistic contraction of the 7s AO is expected to manifest itself also in prop-
erties of other element 112 compounds. The PP calculations [86] have shown that
the relativistic bond length contraction in 112HC is similar to that in RgH, and
that Re.112HC/ is the smallest among all others, CdHC, HgHC and 112HC, and
is similar to Re.ZnHC/, in agreement with the GRECP calculations [172]. (The
RECP CCSD(T) calculations [95] for HgHC and 112HC have, however, given a
larger Re for the latter compound.) Another interesting point is that, in contrast
to the group-11 hydrides, the trend in the dissociation energies from Cd to Hg is
continued with element 112, i.e. De.CdHC/ < De.HgHC/ < De.112HC/, but
De.AgH/ < De.AuH/ > De(RgH) [85, 95, 172]. The reason for this difference is
greater relativistic effects in 112HC than in RgH.

The second (DK2) and third-order DK (DK3) method was also applied to 112H,
112HC and 112H� [173]. It was shown that scalar relativistic effects on the prop-
erties of 112H� are similar to those on 113H and are smaller than those on 112HC
and 112H. The DK results for 112H differ, however, from the GRECP ones [172]:
according to the former,Re.HgH/ < Re(112H), and De.HgH/ > De(112H), while
the latter give Re.HgH/ > Re(112H), and De.HgM/ � De(112H) (see discussions
in [172]).

The destabilization of the 6d AOs should result in their larger involvement in
bonding in high-coordination compounds of element 112. Thus, higher oxidation
states of element 112 should also be observed. The PP CCSD(T) calculations of the
energies of the MF4 ! MF2 C F2 and MF2 ! M C F2 (M D Zn, Cd, Hg and
element 112) decomposition reactions supported this assumption [86]. The results
are presented in Table 11-12 and depicted in Figure 11-27.

Thus, the 2C state is important for all three molecules, ZnF2, CdF2 and HgF2,
though the first two are more stable than HgF2. The latter decomposes at 645ıC.
The small energy of the decomposition reaction of MF2 into M and F2 confirms
the prediction that element 112 will be more inert than Hg, though the difference
to Hg is not that large. Comparison with non-relativistic results shows that this is
a pure relativistic effect: non-relativistically, 112F2 would be by far more stable
(comparable to CdF2/ with decomposition energy of 509.8 kJ/mol.

The 4C oxidation state is not known for Zn, Cd and Hg. Results of the PP calcu-
lations suggested that HgF4 should be thermodynamically stable [174]. The energy
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Figure 11-27. Relativistic (solid lines) and nonrelativistic (dashed lines) energies of the decomposition
reactions MF4 ! MF2 C F2 and MF2 ! M C F2 (M D Zn, Cd, Hg and element 112) (Re-drawn from
the data of [86])

Table 11-12 Decomposition reaction energies for the
element 112 fluorides (in kJ/mol) obtained in the PP calcu-
lations [84, 86]

MF4 ! MF2 C F2 MF2 ! M C F2
Method ARPP NRPP ARPP NRPP

CCSD(T) C SO 129.5 – 315.2 –
CCSD(T) 95.0 �93:9 250.1 509.8
HF 66.4 �334:7 248.8 556.5

of the decomposition reaction of 112F4 of 129:5 kJ=mol indicates that the molecule
should be thermodynamically more stable than HgF4 (Figure 11-27). However, no
definite conclusion about the existence of 112F4 can be drawn, since its decom-
position energy is between 100 and 200 kJ/mol: experimentally, few compounds
with the energy below 100 kJ/mol are known in the solid state. Nonrelativistically,
112F4 would be definitely unstable with the energy of the decomposition reac-
tion of �93:9 kJ/mol. SO coupling increases energies of both reactions significantly
(Table 11-12).

A Mulliken population analysis for MF2 and MF4 (M D Hg and 112) suggests
that the 6d AOs of element 112 are involved in bonding to a larger extent than the
5d AOs of Hg [84,86]. It was also found that the addition of F� ions to HgF2 and to
HgF4 is energetically favorable [174]. By analogy, it is assumed that in combination
with appropriate polar solvent, 112F5

� and/or 112F3
� may be formed [86].
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11.7.4. Element 113

11.7.4.1. Atomic Properties and Volatility

The ground electronic state of element 113 is 7s27p1=2. The 7s AO is relativistically
stabilized to such an extent that it becomes inaccessible for bonding. Properties of
element 113 will, therefore, be defined by the 7p1=2 AO, which is also relativistically
stabilized and contracted, not therefore favoring strong covalent bonds.

The best DCB FSCC calculated IP and EA of element 113 are 7.306 and 0.68 eV,
respectively [121]. Both quantities are relativistically stabilized and larger than those
of Tl of 6.11 and 0.4 eV, respectively (Figure 11-28). The best calculated ˛ of Tl
and element 113 are those via the DC FS CCSD method [135] (Table 11-13). The
atomic properties were shown to exhibit a reversal of the trend in group 13 beyond
In (Figure 11-28). This is caused by the strong contraction and stabilization of the
outer np1=2 AOs of Tl and element 113. The effect is strongest for element 113,

Figure 11-28. Ionization potentials, IP, and polarizabilities, ’, of group 13 elements. The data for
element 113 are from the DC(B) FSCC calculations [121, 135]

Table 11-13 Selected values of the Tl and element 113 properties: ionization potentials, IP
(in eV), electron affinities, EA (in eV), polarizabilities, ’ (in a.u.), atomic radii, AR, and van
der Waals radii, RvdW (in Å)

Element Method IP EA ’ AR RvdW Ref.

Tl Calc. 6:108a 0:40.5/a 51.29 1.38 1.90 [135]
Exp. 6.110 0.377(13) 51(7) � [137]

113 Calc. 7:306a 0:68.5/a 29.85 1.22 1:84˙ 0:01 [135]
aDCB RCC [121]
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resulting in the smallest ’, AR and RvdW in group 13 (except for B), while the IP
and EA are the largest. RvdW of Tl and element 113 were also obtained in [135] via
a correlation of the knownRvdW in group 13 with Rmax.np1=2/-AO [45].

Results of the best calculations for the properties of Tl and element 113 are
summarized in Table 11-13. A comparison with other calculations is given in [135].

As the other 7p-elements, element 113 is expected to be volatile. Its adsorption on
quartz and gold is, therefore, to be studied using the same gas-phase thermochro-
matography technique as that used for element 112 [27]. Test experiments have
already been conducted on its nearest homolog, Tl [175]. Knowledge of �Hads of
element 113 and Tl on gold and ice was, therefore, required. Besides, �Hads on
Teflon or polyethylene (PE), of which the transport capillaries are made, should be
known to guarantee its delivery from the target chamber to the chemistry set up.

In [135], �Hads of group 13 elements Al through element 113 on Teflon and PE
were predicted with the use of the adsorption model (Eq. (11-18)) and calculated
atomic properties (Table 11-13). The obtained �Hads are shown in Figure 11-29
where ��Hads.113/ D 14 kJ=mol on Teflon and 16 kJ/mol on PE. These ��Hads

are about 6 kJ/mol smaller than the corresponding Tl values, making possible the
separation and identification of the heavier element by the use of these surfaces.

The obtained �Hads (Figure 11-29) exhibit a trend reversal beyond In in group
13, as that in the atomic properties (Figure 11-28). The extremely small ’ of element
113 is the main reason for its very low �Hads on inert surfaces. This will allow for
easy transport of element 113 through the Teflon capillaries.
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polyethylene (dashed line) (From [135])
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11.7.4.2. Properties of Compounds

A very large SO splitting of the 7p AOs is expected to influence properties of
compounds of all the 7p elements, 113 through 118. The DFC, PP, RECP and 2c-
and 4c-DFT calculations [78, 89, 91–93, 97, 111, 153, 176] were performed for MH
(M D 113–118) and their lighter homologs in the chemical group. One of the aims
of the studies was investigation of the influence of relativistic effects on molecular
spectroscopic properties.

The 2c- and 4c-DFT results for 113H [176] are almost identical, and both are
similar to the ECP CCSD(T) SO ones [97], as a comparison in [89, 108] shows.
According to them, the 6d and 7s AOs participate little in bonding and all the effects
are defined by the 7p1=2 shell. A large relativistic contraction of the 7p1=2 AO results
in a large contraction of the 113-H bond:�Re.SO/ D �0:206 Å according to RECP
CCSD(T) calculations [91] and �Re.SO/ D �0:16 Å according to DFC CCSD(T)
and PP SO CCSD(T) calculations [78] (Figure 11-30). The RECP CI calculations
[93, 97] show similar values. Such a bond contraction is not found in the other MH
(M D elements 113–118): For 114H through 118H, both the relativistically con-
tracted 7p1=2 and expanded 7p3=2 AOs take part in bonding, with the contribution
of the 7p1=2 AO gradually decreasing along the 7p series, as expected.

In the series of the group-13 hydrides, a reversal of the trend in increasing Re

and �e was predicted from TlH to 113H [78, 91]. Element 113 was found to be
more electronegative than Ga, In, Tl and even Al.De(113H) was shown to be desta-
bilized by the large atomic SO splitting: RECP �De.SO/ D �0:93 eV [91] and PP
�De.SO/ D �0:97 eV [78], in good agreement with each other. A decreasing trend
in De and ke from BH to 113H was predicted.

Figure 11-30. Bond lengths, Re, and dissociation energies, De, for the 6p (Tl through At) and 7p
(elements 113 through 117) element hydrides, MH [91–93, 111]
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The dimer .113/2 should also be weakly bound, as the DF calculations indicated
[177]: the 7p1=2 electron yields a weak bond having 2=3  bonding and 1=3¢ anti-
bonding character. More recent, the 2c- and 4c-DFT calculations [176] have also
shown that the binding energy is very small (De D 0:08 eV and Re D 3:51 a.u. for
the ground 1u state for the BP potential, though the PBESCC result gives the 0g

C
state as a ground with De D 0:11 eV and Re D 3:744 a.u.).

The PP, DCB, RECP and 4c-DFT calculations [78,84,89,153] for MF (M stands
for all group 13 metals) have given increasing Re and �e from TlF to 113F, in
contrast to the decreasing values from TlH to 113H. These different trends in Re

and �e for the MF compounds as compared to MH are explained by a more ionic
nature of the MF molecules.

An interesting case of the (113)(117) molecule was studied at the DF level [76].
There, both the low lying 7p1=2;1=2(113) AO and the destabilized 7p3=2;1=2(117)
AO contribute to electron transfer to the group 13 atom. Thus, rather than the sin-
gle electron of the group 13 atom completing the valence p shell of the group 17
atom, the electron flow is more the other way around: the high-lying 7p3=2;1=2 shell
donates into the low-lying 7p1=2;1=2 shell of the group 13 atom. This results in a
reversal of the dipole direction and a change of the sign of the dipole moment.

As was mentioned earlier, the relativistic destabilization of the 6d AOs is
expected to influence properties of high-coordination compounds of element 113.
This was confirmed by the PP and RECP calculations [78, 89, 92] for 113X3

(X D H, F, Cl, Br and I). As a consequence of the involvement of the 6d AOs, a
T-shaped rather than trigonal planar geometric configuration was predicted for these
molecules showing that the valence shell electron pair repulsion (VSERP) theory is
not applicable to the heaviest elements. Relativistic effects on bond angles were
assumed to be small. However, if Jahn-Teller distortions are involved, relativistic
effects may significantly change bond angles, as was shown for AtF3 [178].

The stable high-coordination compound 113F6
� with the metal in the 5C oxi-

dation state is also foreseen. 113F5 will probably be unstable since the energy of
the reaction 113F5 ! 113F3 C F2 is less than �100 kJ/mol [78]. The calculated
energies of the decomposition reaction MX3 ! MX C X2 (from M D B, Al, Ga,
In, Tl to element 113) suggest a decrease in the stability of the 3C oxidation state
in this group.

11.7.5. Element 114

11.7.5.1. Atomic Properties and Volatility

The electronic ground state of element 114 is a quasi-closed shell 7s27p1=2
2 being a

result of the strong relativistic stabilization of the 7p1=2 AO and a large SO splitting
of the 7p AOs (Figure 11-3). Properties of element 114 and its compounds should,
therefore, be determined by the relativistically stabilized and contracted, doubly
occupied 7p1=2 AO. It is, therefore, expected to be rather inert and volatile.

Unusual properties of element 114 were predicted as early as in 1970 via an
extrapolation in the periodic table [179]: A correlation of �Hf of gaseous atoms,
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equal to �Hsub of metals, in group 14 (vs.) a raw of the periodic table has given
41.8 kJ/mol for element 114. A more grounded correlation of�Hf (vs.) Z has given
a larger value of 71:5 ˙ 15 kJ=mol [155]. Both values are, however, the smallest
among the group 14 elements.

Properties of element 114 predicted on the basis of atomic relativistic calcu-
lations also indicate its relative inertness. The DCB CCSD IP(114) D 8.539 eV
[122] is in very good agreement with the predicted earlier DF value of 8.5 eV [5].
Polarizabilities of Pb and element 114 were calculated at various levels of theory
[95, 134, 180]. The best results [134, 180], in agreement with each other, are shown
in Table 11-14 (a more detailed comparison in given in [180]). The DC CCSD(T)
value [134] (obtained with an additional 2h function in the basis set) for Pb is in very
good agreement with experiment [180] and that for element 114 is recommended.

The SO coupling was shown to lead to a significant reduction of the polarizability
of element 114 from 47.9 a.u. at the scalar-relativistic DK level to 31.5 a.u. at the
DC level [180].

The data of Table 11-14 demonstrate that the influence of correlation on ’ of the
group 14 elements with the outer np1=2 AOs is much smaller than on ’ of the group
12 elements Hg and element 112 with the outer ns AO (Table 11-2), i.e., �3 a.u. for
Pb and C1 a.u for element 114; again, the change is less negative for the heavier
atom similarly to Hg and element 112. The polarizability of element 114 proved to
be the smallest in group 14 due to the relativistic stabilization and contraction of the
outer 7p1=2 AO (Figures 11-3 and 11-31).
RvdW of element 114 was obtained via a correlation of known RvdW in group

14 with Rmax.np1=2/-AO [134]. The best calculated atomic properties for Pb and
element 114 are given in Table 11-15.

Using the data of Table 11-15 and the adsorption model (Eq. (11-18)), �Hads

of group 14 elements on Teflon and PE were predicted [134]. The calculated
��Hads for Pb and element 114 are 27.34 and 20.97 kJ/mol on PE, and 13.65 and
10.41 kJ/mol on Teflon, respectively. The enthalpies show the same reversal of the

Table 11-14 Electronic configurations, basis sets and polarizabilities, ’ (in a.u.), for Pb and
element 114

Atom Method Basis set ’ Ref.

HF MP2 CCSD CCSD(T)

Pb DC CCSD.T/a 26s24p18d13f5g2h 49.91 46.75 46.98 46:96c [134]
KR CCSD.T/b 37s33p25d19f2g 49.71 47.63 47.36 47:34d [180]
Calc. � � � 45.89 [137]
Exp. � � � 47:1˙ 7 [180]

114 DC CCSD.T/a 26s24p18d13f5g2h 29.78 30.72 30.28 30:59e [134]
KR CCSD.T/b 32s31p24d18f3g 30.13 32.02 31.05 31:49f [180]

aDIRAC04 code
bDC with Kramers symmetry in the CC procedure
c;d;e;fThe values with Gaunt contribution are: 47.7; 47.3; 31.87; 31.0, respectively
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Figure 11-31. The DC CCSD(T) calculated polarizabilities, ’, and adsorption enthalpies, ��Hads, of
the group 14 elements on polyethylene (solid line) and Teflon (dashed line) [134]

Table 11-15 Selected values of the Pb and element 114 properties: ionization potentials, IP
(in eV), electron affinities, EA (in eV), polarizabilities, ’ (in a.u.), atomic radii, AR, and van
der Waals radii, RvdW (in a.u.)

Element Method IP ’ AR RvdW Ref.

Pb Calc. 7:349a 46:96b 3:40c 4:06c [134]
Exp. 7.417 47:1˙ 7 3.40 4.16 [137, 180]

114 Calc. 8:539a 30:59b 3:30c 3:94c [134]
aDCB CCSD [122]
bDC CCSD(T)
cVia correlation with Rmax.np1=2/

trend as that for the Rmax.np1=2/-AO and ’ of group 14 elements (Figure 11-31).
According to these values, element 114 should be well transported from the target
chamber to the chemistry set up through the Teflon capillary.

11.7.5.2. Homonuclear Dimers

Keeping in mind that bonding in the homonuclear dimers is a first indication about
bonding in the solid state, the calculations of the electronic structures of M2 (M D
Ge, Sn, Pb and element 114) were performed with the use of various methods: 4c-
BDF [111], 4c-DFT [181] and RECP CCSD(T) [95, 111]. The results for Pb and
element 114 are summarized in Table 11-16. Re and De for M2 (M D Ge, Sn,
Pb and element 114) are also depicted in Figure 11-32. Except for the calculations
[95], performed with insufficiently large basis sets, where .114/2 was obtained too
bound, the other calculations agree with each other (see discussion in [181]). All the
calculations agree on the fact that .114/2 is stronger bound than a typical van der
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Table 11-16 Bond lengths, Re (in Å), dissociation energies, De (in eV), and vibrational
frequencies, we (in cm�1) of M2 (M D Pb and element 114)

Molecule Method Re De we Ref.

Pb2 ECP CCSD(T) 3.06 0.64 111 [111]
RECP CCSD(T) 2.98 0.68 � [95]
4c-BDF 2.98 1.14 108 [111]
2c-DFT SO ZORA 2.97 1.16 106 [108]
4c-DFT 2.97 1.18 107 [181]
Exp. 2.93 0.86 110 [182]
Exp. � 1.17 � [183]

.114/2 ECP CCSD(T) 3.73 0.07 26 [111]
RECP CCSD(T) 3.07 0.38 � [95]
4c-BDF 3.49 0.12 50 [111]
2c-DFT SO ZORA 3.46 0.12 40 [108]
4c-DFT 3.49 0.13 26 [181]

Figure 11-32. Dissociation energies, De.M2/ (experimental for Ge2 through Pb2: two points for Pb2
are two different experimental values [182, 183]; and calculated for .114/2: two points are two different
types of the calculations, 4c-DFT [181] and REC CCSD(T) [111]); sublimation enthalpies, �Hsub(M),
and calculated bond lengths, Re.M2/ [181], where M D Ge, Sn, Pb and element 114

Waals system. It is stronger bound than .112/2, but weaker than Pb2. A Mulliken
population analysis indicates that both the 7p1=2 and 7p3=2 AO take part in the bond
formation: the HOMO of ¢ character is composed of 98% (7p1=2) and 2%(7p3=2).
De and Re for the group 14 dimers and �Hsub of the corresponding metals are

shown in Figure 11-32.
One can see that the De.M2/ and �Hsub(M) (M D Ge, Sn, Pb and element 114)

plots are parallel (slightly better for the experimental De D 0:86 eV of Pb2 [182])
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and follow that of the energy of the np1=2(M)-AO (Figure 11-3). This in another
evidence that bonding in these species is, indeed, defined by the np1=2 AO and its
relativistic stabilization with increasing Z in group 14.

Using the correlation between De.M2/ and �Hsub(M), and the calculated
DeŒ.114/2�,�Hsub.114/ D 1:22 eV (118 kJ/mol) is predicted. (Using another exper-
imental De.Pb2/ value of 1.17 eV [183] for the correlation,�Hsub.114/ D 0:80 eV
is obtained.)

11.7.5.3. Intermetallic Systems

Volatility of element 114 as adsorption on a metal surface is supposed to be studied
using the same gas-phase thermochromatography column with gold covered detec-
tors, as that used for element 112. (The feasibility experiments with Pb have already
been conducted [184].) Accordingly, the 4c-DFT electronic structure calculations
were performed for the MM0 dimers, where M D Ge, Sn, Pb and element 114, and
M0 D Ni, Pb, Pt, Cu, Ag and Au [181]. (All these noble metals were considered,
because some of them will be used as electrode materials in the experiments on
the electrochemical deposition of element 114 from aqueous solution [34,35].) The
obtained spectroscopic properties of PbM0 and 114M0 (M0 D Ni, Pd and Pt; Cu, Ag
and Au) are summarized in Table 11-17.

Element 114 was shown to form a rather strong chemical bond with the group 10
and 11 metal atoms. In 114Au, the doubly occupied 7p1=2(114) and the single occu-
pied 6s(Au) AO form one double-occupied ¢ bonding MO and one single-occupied
¢� untibonding MO, so that the ground state is 2†C dAu

10¢Au
2¢ �

114
1. A Mulliken

Table 11-17 Calculated bond lengths, Re (in Å), disso-
ciation energies, De (in eV), and harmonic vibrational
frequencies, we (in cm�1), for PbM0 and 114M0 , where
M0 are group 10 and 11 elements [181]

Molecule Re De we

PbNi 2.37 1.84 238.9
PbPd 2.50 1.95 201.8
PbPt 2.45 3.53 213.5
PbCu 2.53 1.60 180.5
PbAg 2.67 1.22 231.8
PbAu 2.64 2.15 152.7

1:29a 158:6a

114Ni 2.47 0.30 245.7
114Pd 2.69 0.79 137.82
114Pt 2.56 1.11 157.37
114Cu 2.74 0.47 283.6
114Ag 2.95 0.30 151.5
114Au 2.88 0.73 96.70
aSpectroscopic measurements (a low limit) [185]



Electronic Structure and Chemistry of the Heaviest Elements 501

Figure 11-33. Dissociation energies, De (solid line – calculations [181], dashed line – experiment), and
calculated bond lengths, Re, in the MAu dimers (M D Ge, Sn, Pb and element 114). The measured
��Hads of Pb on gold [184] is shown with an open square

population analysis shows that both the 7p1=2(114) and 7p3=2(114) AOs overlap
with the 6d(Au) AOs. The type of bonding is similar to that of 112Au, though
De(114Au) is about 0.2 eV larger than De(112Au). Among all the considered met-
als, bonding with Pt should be the strongest, while with Ag and Ni the weakest. The
trends in the De and Re values of PbM0 and 114M0 as a function of M0 were shown
to be determined by the trends in the energies and Rmax of the valence (n-1)d AO
of the M0 atoms, respectively, and are similar for PbM0 and 114M0 (except for the
Ni dimers) [181].

Figure 11-33 shows De and Re for MAu as a function of Z(M), where M D
Ge, Sn, Pb and element 114. The De plot has a pattern – a decrease with Z(M)
– similar to that for De.M2/ (Figure 11-32). This means that in group 14 the type
of the M-M bonding is similar to the M-Au one (in difference to group 12): it is
defined preferentially by the np1=2(M) AO becoming less accessible for bonding
with increasing Z (Figure 11-3). The Re, however, increases with Z(M) due to the
involvement of also the np3=2(M) AO.

There is one measured value of ��Hads.Pb/ D 2:37 eV on gold [184]. Assum-
ing, that ��Hads(M) correlates with De(MAu), as �Hsub(M) does with De.M2/,
�Hads(114) D �0:95 eV on gold is predicted using the measured ��Hads(Pb) and
the calculatedDe(114Au). This value is in very good agreement with ��Hads(114)
D 0:97 eV obtained using semi-empirical models of adsorption on metals [186].

The 4c-DFT calculations for Pb and element 114 interacting with large gold
clusters simulating the Au(111) surface have also been performed [168]. Results for
M-Aun (M D Pb and element 114, and n D 95 for the top, n D 94 for the bridge,
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n D 120 for the hollow1 and n D 107 for the hollow2 positions) indicate that
element 114 is about 1.3 eV weaker bound with gold than Pb, similarly to the dimers.
A comparison with group 12 elements shows that bonding with gold should change
in the following order: 112 < Hg < 114 � Pb, as it was obtained for the gold
dimers of these elements. Thus, in the thermochromatography gas-phase experi-
ments, element 114 should be adsorbed at the very beginning of the chromatography
column with an entrance temperature of 35ıC, similarly to Hg.

At the end of this section, it is worth giving a summary of the predicted adsorp-
tion behaviour of elements 112 and 114 on different types of surfaces, since
chemical experiments are to be performed using the same chemistry set up and
nuclear production mode. Thus, on inert surfaces, element 112 should be 6 kJ=mol
stronger adsorbed by van der Waals forces than element 114, since RvdW.112/ <

RvdW.114/. On the contrary, on transition metal surfaces, element 112 should be
about 20 kJ=mol weaker adsorbed than element 114 by chemical forces, since the
7s(112) AO is more stabilized than the 7p1=2(114) AO.

11.7.5.4. Other Compounds

A decreased involvement of the 7p1=2 electrons of element 114 in bonding in com-
parison with lighter homologs in the group was also demonstrated by calculations
for other molecular systems.De(114H) of about 0.4 eV (0.40 eV for BDF [111] and
0.43 eV for RECP CI [93]) is the smallest in the considered MH series and the small-
est in group 14 (Figure 11-30).De(114H) was shown to be drastically decreased by
the SO interaction (�SO.De/ D �2:18 eV for RECP CCSD(T) [91, 92], �2:07 for
RECP CI [93] and �2:02 for BDF [111]). Thus, the small De(114H) is a result of
both the 7p SO splitting and the double occupancy of the 7p1=2 spinor. The influence
of the SO interaction on Re is relatively small (Figure 11-30) due to the contribu-
tion of both the contracted 7p1=2 and expanded 7p3=2 AOs. This is also, obviously,
the reason why Re(114H) D 1.96 Å is larger than Re(PbH) D 1.88 Å [91, 92]. The
RECP CCSD(T) calculations [95] for PbHC and 114HC have also given a 0.48 eV
stronger bond in the latter molecule, though 0.18 Å shorter. The CAS-SCF/SOCI
RECP calculations for 114H2 demonstrated breakdown of the conventional singlet
(X1A1) and triplet (3B1) states due to large relativistic effects including SO ones
[187]. The SO effects are shown to destabilize 114H2 by almost 2.6 eV.

Results of an earlier work [188] (based on atomic calculations) on the stability of
some 1142C and 1144C compounds also lead to the conclusion of a lower reactivity
of element 114. All tetravalent compounds were considered to be unstable towards
decomposition. Some divalent inorganic salts were predicted to be, however, stable.

The electronic structures of 114X (X D F, Cl, Br, I, O) and 114O2 were cal-
culated using the 2c-RECP CCSD(T), 2c-DFT SO ZORA and 4c-BDF methods
[108, 111]. Better agreement with experiment for the known compounds of Pb was
shown by the RECP CCSD(T) values. Trends in Re and De for the halides and
oxides from Pb to element 114 were found to be similar to those for the hydrides.
In contrast to PbO2.De D 5:60 eV/, 114O2.De D 1:64 eV/ was predicted to be
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Figure 11-34. Relativistic DFC (solid line) and nonrelativistic HF (dashed line) calculated energies of
the reaction MH4 ! MH2 C H2 (M D C, Si, Ge, Sn, Pb and element 114) (From [77])

thermodynamically unstable with respect to the decomposition into the metal atom
and O2. Using results of these calculations, it was shown that element 114 should
not react with O2 at the experimental conditions [134].

The ab initio DF and PP calculations [76,77,84] for the decomposition reactions
MX4 ! MX2 C X2 and MX2 ! M C X2 (M D Si, Ge, Sn, Pb and element 114;
X D H, F and Cl) also predicted a decrease in the stability of the 4C oxidation state
in agreement with earlier works [5]. The instability was shown to be a relativistic
effect (see Figure 11-34 for MH4, as an example). The neutral state was found to
be more stable for element 114 than that for Pb. As a consequence, element 114 is
expected to be less reactive than Pb, but about as reactive as Hg. This is similar to
the predicted adsorption behaviour of the elements on gold: element 114 should be
much weaker adsorbed than Pb, but slightly stronger than Hg. The possibility of the
existence of 114F6

2� was suggested [77].

11.7.6. Elements 115–118

11.7.6.1. Chemical Properties of Elements 115–117

Element 115 and 116. The chemistry of elements 115 and 116 has received little
attention so far, though it is expected to be very interesting due to strong SO effects
in the 7p AOs. Early studies based on extrapolations of properties and atomic DF
calculations are summarized in [5, 189].

The 4c-BDF and SO ZORA calculations were performed for 115H and .115/2 in
good agreement with each other [108, 176]. The same 0g

C ground state was found
for Bi2 and .115/2. The 115 dimer was found to be weaker bound than the Bi one:
De.1152/ D 0:83 eV and Re D 3:08 Å, while De.Bi2/ D 2:45 eV and Re D
2:69 Å. Bonding in .115/2 should be stronger than in .113/2 and .114/2.

Results of the RECP and BDF calculations [91, 93, 111] for Re and De of 116H
and PoH and influence of relativistic effects are shown in Figure 11-30. It was found
thatDe.PoH/ > De(116H), andRe.PoH/ < Re(116H). Relativistic effects increase
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Re(116H) and decreaseDe(116H), as discussed in Section 11.7.4.2. The RECP were
also applied to 116H2 [96]. The SO interaction was found to lengthen the 116-H
bond and lead to a significant H-116-H bond angle increase in comparison with
PoH2. It was suggested that the result is a rehybridization of the valence 7p AO
with a “supervalent” 8s AO of element 116.

A hypothesis of the decreasing stability of the 4C oxidation state of element
116 was supported by estimates of formation enthalpies of MX2 and MX4 (M D
Po and element 116; X D F, Cl, Br, I, SO4

2�, CO3
2�, NO3

� and PO4
3�/ using

results of the atomic MCDF calculations [188]. The chemistry of element 116 is
expected to be mainly cationic: an ease of formation of the divalent compounds
should approach that of Be or Mn, and tetravalent compounds should be formed
with the most electronegative atoms, e.g., 116F4.

Element 117. The DF and RECP molecular calculations have shown that element
117 forms H117 by analogy with the other group-17 halogens [74,92]. The bond in
H117 should be weaker than in the other HM compounds (M D group 17 elements)
in line with a decreasing trend in group 17. The bond length should be larger in
H117 than in HAt, also in line with the trend (Figure 11-30). The reason for that is a
decreasing contribution of the np1=2 AO with increasing Z(M) in the group: bonding
in H117 is formed predominantly by the 7p3=2 AO and is, therefore, 2/3 of the bond-
ing of the 7p AOs without SO splitting. The DHF [74] and RECP [92] calculations
for H117 have given the SO effects on Re as 0.13 and 0.17 Å, respectively.

Analogously to the lighter homologs, element 117 should also form the dimer
.117/2. The DCB CCSD(T) calculations for X2 (X D F through At) [190] found
a considerable antibonding ¢ character of the HOMO of At2 due to SO coupling
(without the SO coupling, it is an antibonding   orbital). Thus, bonding in .117/2
is predicted to have considerable   character. 117Cl is also predicted to be bound
by a single   bond with a SO increased bond length [191]. The IF, AtF and 117F
molecules were also considered at various levels of theory: DC and RECP plus
HF/MP2/CCSD/CCSD(T) [83]. De(117F) was shown to be the largest among the
group 17 fluorides. It was found that De(117F) is 0.1 eV increased by SO effects in
contrast to the other group 17 fluorides. The SO effects are opposite for all the three
spectroscopic constants for 113F and 117F. The RECP calculations have shown that
the D3h geometry is not the proper one for the 117F3 molecule, in difference from
the sixth period compound of At, thus again indicating that the VSERP theory is not
applicable to the heaviest elements.

11.7.6.2. Chemistry of Element 118

The chemistry of element 118 should be interesting due to the very large SO splitting
of the 7p AO of 11.8 eV [45]. The destabilization of the four 7p3=2 electrons suggests
that element 118 should be relatively reactive, in line with an increasing trend in the
reactivity in group 18. It should also be the most electronegative element among
the rare gases due to the relativistic stabilization of the 8s AO. (The DCB CCSD C
QED calculations has given EA(118) D 0.058 eV [51].) The DC CCSD(T) ’(118)
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D 46.3 a.u. is the largest in group 18, as also AR D 4.55 a.u., while IP D 8.92 eV
is the smallest [126]. (The RECP C CCSD(T) ’(118) D 52.43 a.u. is overestimated
due to the smaller basis set [95].) These extreme values reflect, in addition to the
general trends in the periodic table, the relativistic expansion and destabilization of
the outer valence 7p3=2 AO.

Volatility. Using calculated atomic properties and the adsorption model
(Eq. (11-18)), van der Waals coefficients C3 and �Hads of Ne through element 118
on noble metal and inert surfaces, such as quartz, ice, Teflon and graphite, were
calculated [126] (Figure 11-35).

The C3 coefficients were shown to steadily increase in group 18, while the
increase in ��Hads from Ne to Rn does not continue to element 118: The larger
AR of element 118 is responsible for its equal �Hads with Rn. It was, therefore,
predicted that experimental distinction between Rn and 118 by adsorption on these
types of surfaces will not be feasible. A possible candidate for separating the two
elements is charcoal; further study is needed to test this possibility.

Chemical compounds. As was mentioned above, the destabilization of the np3=2

AOs should also result in the increasing stability of the 2C and 4C oxidation states
in group 18. The RECP calculations for the reactions M C F2 ! MF2 and MF2 C
F2 ! MF4, where M D Xe, Rn and element 118, confirmed an increasing stability
of the fluorides in the raw, as a result of the increasing polarizability of the central
atom [83,89]. The SO effects were shown to stabilize 118F4 by a significant amount
of about 2 eV, though they elongateRe by 0.05 Å. Thus, the trends in increasingRe

and De are continued with element 118. Also, the following trends in the stability
of the fluorides were established: RnF2 < HgF2 < PbF2, while 112F2 < 114F2 <

118F2.
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Influence of the SO interaction on the geometry of MF4 was investigated by
the RECP-SOCI [94, 194] and RECP CCSD calculations [89]. It was shown that a
D4h geometrical configuration for XeF4 (calculated in agreement with experiment)
and for RnF4 (calculated) becomes slightly unstable for 118F4. A Td configuration
becomes more stable than the D4h one in 118F4 by 0.25 eV [94, 194] or 0.17 eV
[83, 89]. The reason for this unusual geometry was the availability of only the
stereochemically active 7p3=2 electrons for bonding. This is another example of
the inapplicability of the VSERP theory for the heaviest elements. An important
observation was made that the fluorides of element 118 will most probably be ionic
rather than covalent, as in the case of Xe. This prediction might be useful for future
gas-phase chromatography experiments.

The RECP calculations [92] for 118H have shown the van der Waals bond to be
stabilized by about 2.0 meV by SO effects with �Re(SO) D �0:019 Å. Trends in
the stability of hydrides was predicted as follows: RnH << HgH < PbH, 118H<<
114H < 112H. The RECP calculations for a single-charge ions give De.RnHC/ >
De.118HC/ and Re.RnHC/ < Re.118HC/ [95].

11.7.7. Elements with Z> 118

From element 122, a very long, unprecedented transition series that is character-
ized by the filling of not only 6f but also 5g AOs with partially filled 8p1=2 AO
begins. These elements were called “superactinides” by Seaborg in 1968 [13]. Quite
a number of theoretical calculations of the ground state electronic configurations
were performed for this region (see [5] for a review and a recent work [117]). At
the beginning of the superactinides, not only two but four electron shells, namely
8p1=2, 7d3=2, 6f5=2 and 5g7=2 are expected to complete simultaneously. These open
shells, together with the 8s electrons, will determine the chemistry. According to
the DS calculations, the g electrons appear in element 125 [5], while the relativistic
DFT with QED corrections (Breit interaction) [117] found that g electrons in the
atom first appear from element 126. It was also shown that the QED corrections are
important for studying electronic configurations of superheavy elements. Even more
accurate ab initio calculations are needed to accurately predict electronic states of
those elements.

Due to the very strong relativistic effects, the chemistry of those elements will
be much more different to anything known before. However, without relativistic
effects, it would also be very different due to the very large orbital effects. Until now,
no studies have been performed at the MO level for compounds of these elements,
except for DF calculations (without correlation) for fluorides of element 126 [195].
Accurate predictions of properties of specific compounds will be quite a challenging
task in this area. This may need inclusion of the QED effects to reach the desired
accuracy.

Experimental investigations are still a matter of a far future and are dependent
on discoveries of longer-lived isotopes. The evolution of the periodic table was
discussed by Seaborg last in 1996 [196].
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Table 11-18 Trends in volatility of the heaviest element compounds and their lighter
homologs in the chemical groups

Group Compounds
Theoretically
predicted Ref.

Experimentally
observed Ref.

4 MCl4, MBr4 Hf < Rf [139] Hf < Rf [28]
5 ML5 (L D Cl, Br) Nb < Ta < Db [197] (DbO3Br) [29]

DbCl5 > DbOCl3 [197] DbCl5 > DbOCl3 [29]
6 MO2Cl2 Mo > W > Sg [140] Mo > W > Sg [30]
7 MO3Cl Tc > Re > Bh [143] Tc > Re > Bh [31]
8 MO4 Ru < Os > Hs [146] Os > Hs [26]
12 M Hg < 112 [165, 168] Hg < 112 [27]
14 M Pb << 114 < 112 [168, 181] – –

11.7.8. Summary of Predictions of Volatility of the Heaviest Elements
and Their Compounds

Predicted trends in volatility of the heaviest elements and their compounds com-
pared to the experimental observations are summarized in Table 11-18. One can see
that all the predicted trends for group 4 through 8 and 12 were confirmed by the
experiments. Also, the absolute values of the adsorption enthalpies are in very good
agreement with the experimental ones, as discussed above. Predictions for element
114 are still awaiting experimental verification.

11.8. AQUEOUS CHEMISTRY

11.8.1. Redox Potentials and Reduction Experiments

The stability of oxidation states of the heaviest elements is tested by reduction
experiments. For that purpose, knowledge of the redox potentials Eı is of crucial
importance. For a reduction reaction

MzCn C ne $ MzC; (11-19)

the redox potential Eı is

Eı D ��Gı=nF ; (11-20)

where F is the Faraday constant and n in the number of the transferred electrons. In
reality, components of reaction (11-19) are high-coordinated hydrated, hydrolyzed
and complex species, so that calculations ofEı via the total energy differences may
not be sufficiently accurate. Another way to obtain Eı was, therefore, suggested in
[198] using a linear correlation between IP and Eı, since

�Gı D �EınF D �.IP C�Gı
hydr/: (11-21)
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Here, �Gı
hydr is a free energy of hydration, which is a smooth function of the

atomic number and can, therefore, be evaluated. In this way, Eı for Rf, Db and
Sg in various oxidation states were determined [198–200] using the MCDF multi-
ple IPs [55, 65, 66] and experimental Eı for lighter homologs [201]. One of those
correlations for the group-6 species is shown in Figure 11-36, as an example [200].

Results of those investigations have, indeed, shown that the stability of the
maximum oxidation state increases in group 4 through 6, while that of lower
oxidation states decreases. Along the 6d series, the stability of the maximum oxi-
dation state decreases: Eı.Lr3C=Lr2C/ D �2:6V, Eı.Rf4C=Rf3C/ D �1:5V,
Eı.Db5C=Db4C/ D �0:93V, and Eı.Sg6C=Sg5C/ D �0:05V. The redox
potentials for Lr, Rf, Db and Sg and their homologs are given in [8].

A comparison of the relativistic with nonrelativistic calculations shows that the
increasing stability of the maximum oxidation state is a relativistic effect due to the
destabilization of the 6d AOs. The estimates of redox potentials have also demon-
strated that the 3C and 4C states for Db and Sg, respectively, will not be stable: the
ionisation process results in the 6d2 and not the 7s2 state in Db3C and Sg4C [200].
Since the 6d AOs are more destabilized than the 4d and 5d ones, the 3C and 4C
states in Db and Sg, respectively, will even be less stable than those states in their
lighter homologs. Based on these predictions, experiments to attempt to reduce Sg
with a strongly reducing metal such as Al (Eı D �1:662V) are planned.

11.8.2. Complex Formation and Extraction by Liquid Chromatography

A number of aqueous chemistry separation experiments have been conducted for
Rf, Db and Sg and their homologs [202–211]. These experiments demonstrated
a basic similarity in the behaviour of the heaviest elements and their lighter
homologs, although they have revealed a number of controversies (see reviews
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[9,34,36]). Many theoretical works based on the 4c-DFT calculations were devoted
to predictions of the extraction behaviour of these elements [212–219]. The main
features of the method used in those works are given in the following.

A model to predict hydrolysis/complex formation. For a complex formation reac-
tion (11-1), the complex formation constantKi is

logKi D ��Gr=2:3RT ; (11-22)

where �Gr is a free energy change of the reaction. Since it is almost impos-
sible to calculate �Gr D �Gf (products) ��Gf (reagents) with sufficient
accuracy for large, highly coordinated aqueous species of the heavy-element com-
plexes, the following model has been used. The formation energy �Gf of the
MxOu.OH/v.H2O/w.z�2u�v/C species can be decomposed in the following way
[220]

��Gf .u; v;w/=2:3RT

D
X

ai C
X

aij C logP � log.uŠvŠwŠ2w/C .2u C v C 1/ log 55:5 (11-23)

The first term on the right hand side of Eq. (11-23),
P
ai , is the non-electrostatic

contribution from M, O, OH, and H2O, related to OP of the species. For a reaction,

�
X

ai D �EOP D k�OP; (11-24)

where k is an empirical coefficient. The next term,
P
aij , is a sum of each pairwise

electrostatic (Coulomb) interaction

EC D
X

aij D �B
X
ij

QiQj =dij ; (11-25)

where dij is the distance between the moieties i and j ; Qi and Qj are their effec-
tive charges and B D 2:3RTe2=©, where © is the dielectric constant. For a reaction,
�EC is the difference in EC for the species in the left hand and right hand parts.
P in Eq. (11-23) is the partition function representing the contribution of struc-
tural isomers if there are any. The last two terms are statistical: one is a correction
for the indistinguishable configurations of the species and the other is a conver-
sion to the molar scale of concentration for the entropy.

P
aij and

P
ai for each

compound are then calculated via Mulliken numbers obtained as a result of the elec-
tronic structure calculations of complexes on interest. To predict logKi or logˇi for
transactinide complexes, coefficients k and B should be defined by fitting logKi to
experimental values for the lighter homologs, as it is shown in [217]. Using the sug-
gested model in the combination with 4c-DFT calculations, hydrolysis and complex
formation constants were predicted for a large number of aqueous compounds of Rf,
Db, Sg and Hs and their group-4, 5, 6 and 8 lighter homologs [212–219].
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Figure 11-37. M.SO4/2.H2O/4 and M.SO4/44� complexes of Zr, Hf and Rf (From [213])

Table 11-19 Coulomb part of the free energy change,�EC (in eV) of the complex formation
reactions [213]

Reaction Zr Hf Rf Trend

M.H2O/84C , M.SO4/2.H2O/4 �35:72 �35:84 �33:60 Hf > Zr >> Rf
M.H2O/84C , M.SO4/3.H2O/22� �42:43 �42:43 �39:37 Zr D Hf >> Rf
M.H2O/84C , M.SO4/4

4� �45:14 �45:02 �41:38 Zr > Hf >> Rf
M.H2O/84C , R4M.SO4/4 �41:04 �40:78 �37:65 Zr > Hf >> Rf

As an example, a process of step-wise complexation of group-4 elements Zr, Hf,
and Rf in H2SO4 solutions is considered here. In [213], relative values of the free
energy change of the M.SO4/2.H2O/4, M.SO4/3.H2O/22� and M.SO4/4

4� (M D
Zr, Hf, and Rf) formation reactions from hydrated and partially hydrolyzed cations
have been calculated using the 4c-DFT method. (Figure 11-37 shows geometrical
configurations of two of these complexes.) The obtained �EC and trends for one
type of complex formation reaction starting from the hydrated species M.H2O/84C
are given in Table 11-19.

Analogously,�EC were obtained for a complex formation reaction starting from
hydrolyzed complexes, i.e., MOH.H2O/73C , M.SO4/n.H2O/8�2n. The results
have indicated the same trend in the complex formation, Zr > Hf >> Rf, as for the
former type of reaction (Table 11-19). The obtained on their basis logKd values for
extraction of Zr, Hf and Rf by amines are shown in Figure 11-38.

The experiments on the extraction of Zr, Hf and Rf from H2SO4 solutions by
amines confirmed the predicted trend Zr > Hf >> Rf in the complex formation and
have given the Kd(Rf) values closed to the predicted ones [207].
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Figure 11-38. Predicted logKd values for the extraction of Hf and Rf by amines with respect to the
measured one for Zr (From [213])

11.8.3. Summary of Predictions of the Complex Formation

A summary of the predicted trends in hydrolysis, complex formation and extraction
of the heaviest element complexes and their homologs as compared to the experi-
mental results is given in Table 11-20. As one can see there, most of the predictions
were confirmed by the experiments for the heaviest elements and their homologs,
while some of them are still awaiting confirmation, as in the case of Sg in HF
solutions.

The calculations have shown that the theory of hydrolysis [208] based on the
relation between the cation size and charge does not explain all the experimental
behaviour, like, e.g., the difference between Nb and Ta, or Mo and W. Only by
performing relativistic calculations for real equilibria in solutions, can the complex
formation or hydrolysis constants, Kd and their order in the chemical groups be
correctly predicted.

Results of the calculations have also shown the predominant contribution in
�Gr to be a change in the electrostatic metal-ligand interaction energy, �EC

(Eq. (11-25)). Thus, by calculating only this term trends in the complex formation
can be reliably predicted.

Experimental aqueous phase studies of chemical properties of elements heavier
than Sg have not yet been performed. They will depend on the development of
experimental techniques which cope with production rates of less than one atom per
hour and short half-lives.
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Table 11-20 Trends in hydrolysis and complex formation of the heaviest element compounds
and their lighter homologs in chemical groups

Group Complexes
Theoretically
predicted Ref.

Experimentally
observed Ref.

4 Hydrolysis of M4C Zr > Hf > Rf [212] Zr > Hf > Rf [202]
MFx.H2O/z�x

8�x.x � 4/ Zr > Hf > Rf [212] Zr > Hf > Rf [203, 204]
MF62� Rf � Zr > Hf [212] Rf � Zr > Hf [205]
MCl62� Zr > Hf > Rf [212] Rf > Zr > Hf [206]
M.SO4/44� Zr > Hf >> Rf [213] Zr > Hf >> Rf [207]

5 Hydrolysis of M5C Nb > Ta > Db [214] Nb > Ta [202]
MOCl4 �, MCl6 � Nb � Db > Ta [215] Nb � Db >Ta [209]
MF6 �, MBr6 � Nb > Db > Ta [216] Nb > Db > Ta [209]

6 Hydrolysis of M6C Mo > W > Sg [217] Mo > W > Sg [210]
Hydrolysis of MO2.OH/2 Mo > Sg > W [217] Mo > W [210]
MO2F2.H2O/2 Mo > Sg > W [218] Mo > W [221]
MOF5 � Mo < W < Sg [218] Mo < W [221]

8 MO4.OH/22� Os > Hs >> Ru [219] Os � Hs [211]

11.9. SUMMARY AND OUTLOOK

Many accurate calculations of atomic and molecular properties of the heaviest ele-
ments and their homologs have nowadays become available. The most accurate
atomic calculations for the heaviest elements up to Z D 122 were performed with
the use of the DC and DCB FSCC methods. Reliable electronic configurations were
obtained assuring the position of the superheavy elements in the periodic table.
Accurate ionization potentials, electron affinities and energies of electronic tran-
sitions are presently available and can be used to assess the similarity between the
heaviest elements and their lighter homologs in the chemical groups.

The most valuable information about molecular properties of the chemically
interesting compounds was obtained with the use of the 4c-DFT and RECP/PP
CCSD(T) methods. They proved to be complimentary, both conceptually and quan-
titatively in studies of molecular properties, and their combination is obviously the
best way to investigate properties of the heaviest elements. The calculations with the
use of these methods allowed for predicting valence states, geometries, and types
of stable compounds of the heaviest elements. They permitted the establishment
of important trends in chemical bonding, stabilities of oxidation states, crystal-field
and SO effects, complexing ability and other properties in the periodic table in going
over to the heaviest elements, as well as the role and magnitude of relativistic and
correlation effects.

It was shown that the heaviest elements are basically homologs of their lighter
congeners in the chemical groups, though their properties may be rather different
due to very large relativistic effects. This is also a reason why trends in atomic
and molecular properties may change in going over to the heaviest elements.
Thus, straightforward extrapolations in the chemical groups may result in erro-
neous predictions. Relativistic calculations also proved to be the most reliable tool
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in predicting the outcome of the gas-phase and aqueous phase experiments with Rf,
Db, Sg, Bh, Hs, and element 112. The synergism between theoretical and experi-
mental research in the last decade led to a better understanding of the chemistry of
these exotic species.

Although rich information has been collected, a number of open questions still
remain. For elements which were chemically identified, a more detailed study,
both theoretical and experimental, shall follow. New compounds of the chemically
identified elements, e.g., carbonyls of Sg, or organometallic ones of Hs, should
be synthesized and chemically investigated. For those elements, not yet studied,
like Mt, Ds, Rg and those 114 through 118, isotopes suitable for chemical studies
should be found, as well as their nuclear decay properties should be known, so that
they can be positively identified. Their separation will also need new technological
developments to cope with the very low production rates and short half-lives. In
this area, theoretical chemistry will have a number of exciting tasks to predict the
experimental behaviour in the chemical separation experiments.

For elements heavier than Z D 118, investigations of chemical properties is a
matter of future. They will be even more exciting than those which have already
been performed, since resemblance with their lighter homologues will be even less
pronounced. Some further methodical developments in the relativistic quantum the-
ory, like, e.g., inclusion of the QED effects on a SCF basis, may be needed to achieve
a required accuracy of the calculations.
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Trautmann, N., Vahle, A., Yakushev, A.B.: Angew. Chem. Int. Ed. Engl. 38, 2212 (1999)
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166. Niklaus, J.P., Eichler, R., Soverna, S., Gäggeler, H.W., Tobler, L.: PSI Annual Report, p. 8. (2000)
167. Boisvert, G., Lewis, L.J., Puska, M.J., Nieminen, R.M.: Phys. Rev. B 52, 9078 (1995)
168. Pershina, V., Anton, J., Jacob, T.: J. Chem. Phys. 131, 084713 (2009)
169. Yakushev, A.B., Buklanov, G.V., Chelnokov, M.L., Chepigin, V.I., Dmitriev, S.N., Gorshkov,
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Abstract: This chapter is concerned with relativistic effects on molecular properties other than
energy and structure. The chapter has two parts: The first part consists of a brief
overview of theoretical formalisms to calculate energy-derivative properties. In the sec-
ond part benchmark data and selected case studies are presented. The examples emphasize
inorganic and organometallic systems but data for some popular benchmark series of
molecules with main group atoms are also included. Molecular properties that are dis-
cussed in detail this chapter include NMR and EPR parameters, electric field gradients,
electronic spectra, and polarizabilities.

Keywords: Molecular response properties, Nuclear magnetic resonance, Electron paramagnetic res-
onance, Chemical shift, Electric field gradient, Nuclear quadrupole coupling, Hyperfine
tensor, g-tensor, Dipole moment, Polarizability, Absorption spectra, Relativistic effects,
Spin–orbit coupling

12.1. INTRODUCTION

Energy is central to the understanding of Chemistry. The potential energy surface
(PES) of a molecule or a set of molecules defines chemical structure and reac-
tivity. In other chapters the influence of relativity on the energy (the PES) and
therefore structure, reactivity, chemical bonding, and other chemical behavior, is
demonstrated by numerous examples.

Derivatives of the energy of a molecule or a set of molecules with respect to
suitably defined parameters are intimately related to a large number of impor-
tant molecular properties other than the energy. The derivative parameters can
be nuclear coordinates, or static and time-dependent electric and magnetic fields,
or nuclear spin magnetic moments, among others. For example, the fundamen-
tal parameters for electronic and vibrational spectroscopies (such as IR, Raman,
UV–Vis, along with their chiroptical counterparts), electric, magnetic, and mixed
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polarizabilities, nuclear and electron paramagnetic (spin) resonance (NMR and
EPR) parameters, nonlinear optical properties, and many others, can be conveniently
defined via energy or quasi-energy derivatives, and computed accordingly from first
principles using quantum chemical methods. We will also call these derivatives
“response properties”. Pure nuclear-position derivatives relate to the shape of the
PES (harmonic and higher order force constants) and will not be considered here.

The concept of a response property has to do with the the molecule respond-
ing to the influence of an external field. For instance, electric dipole moments or
linear and higher order polarizabilities can be defined and computed via deriva-
tives of the energy with respect to electric field strengths (field amplitudes). For
ordinary field strengths the most suitable approach is to consider the field as a
small perturbation of the molecule’s ground state and use perturbation theory to
compute static or frequency-dependent response. The properties of interest are then
given by first, second, and higher derivatives of the energy with respect to the field
strengths. Hence, the terms “response property” or “derivative property” may be
used interchangeably.1

Other molecular properties can be defined by differentiation with respect to suit-
ably defined parameters that are not necessarily the amplitudes of an actual electric
or magnetic field. For convenience, we may consider these perturbation parameters
as generalized field strengths.

Examples: The electric polarizability is proportional to the second derivative of
the energy with respect to the electric field amplitudes. The magnetizability is the
magnetic analog defined as the second derivative with respect to a magnetic field.
Although not observable, one may define relativistic effects on the binding energy of
a molecule via an expansion of the energy in powers of c�2 and consider the effects
in various orders as a molecular property. Instead of an electromagnetic field, it
is c�2 that plays a similar role as the derivative (perturbation) parameter. Another
example is the Raman absorption intensity where one of the derivative parameters is
a vibrational normal coordinate. In NMR, one of the perturbations used to compute
chemical shifts and nuclear spin–spin coupling is the nuclear spin magnetic moment,
not directly the magnetic field that is associated with this moment.

As long as the energy includes relativistic effects, so do these derivative/response
properties. That is, they can be derived and computed from a relativistic energy
expression. For heavy element compounds, reliable methods for computations of
molecular properties such as the ones mentioned above should be based on the
same relativistic quantum chemical methods that are now in widespread use for the
determination of molecular structure and bond energies. Alternatively, relativistic
correction terms of order c�2; c�4; : : : to a molecular property can be computed by
applying perturbation theory also for the “relativity” part of the energy. This chapter
will focus on the first approach where special relativity is already considered in the
unperturbed energy.

1 The orders differ by one, however, if “response” refers to a perturbation of a molecular property which
is in turn defined as a first-order energy derivative. Then a linear property response is a second-order
energy derivative, and so on.



Relativistic effects on NMR, EPR, and other properties 523

The leading order of relativistic effects on the properties is c�2 just like for the
energy, but their magnitude relative to the nonrelativistic property can be very large
in some cases. This tends to be the case in particular when the property of interest
is determined by features of the electronic structure near heavy atomic nuclei (we
will specify in more detail in Section 12.2.7 what is meant by “: : : the property is
determined by : : :”). If the property of interest is defined quantum-mechanically via
operators that are very large near the nuclei, the property may afford very large rel-
ativistic corrections, percentage-wise. As an example, relativistic effects on NMR
spin–spin coupling constants involving “relativistic” heavy nuclei such as Pt or Hg
can be as large as, or even larger than, their total magnitude computed from a non-
relativistic theory. In such a situation, one might want to abandon the notion of
a relativistic “correction” (which suggests that the relativistic effect is small) and
simply consider the relativistic versus nonrelativistic results as correct (or at least
approximately correct) versus deficient, as far as comparison with experiment is
concerned. Other “nuclear” properties can have large relativistic contributions as
well. For instance, nuclear quadrupole coupling constants or EPR nuclear hyper-
fine coupling constants for heavy elements are heavily influenced by relativity. The
EPR�g tensor might be considered a purely relativistic property in the same sense
that spin–orbit coupling is relativistic effect. Relativistic effects on other molecular
properties may not be quite as spectacular but some form of a relativistic formalism
is still required to obtain correct results for molecules with heavy atoms.

For the interested reader, in Section 12.2 the theoretical background for com-
putations of molecular response properties will be outlined. This section covers
some relativistic methods, variational perturbation theory for energy and quasi-
energy, derivations of some of the most important perturbation operators, and a list
of response properties that are of particular interest in chemistry (Table 12-1 on
page 543). Readers who are mainly interested in case studies may safely skip this
section, although the subsection on perturbation operators (12.2.5) and the subsec-
tion on analyses of properties (12.2.7) will be helpful to rationalize why relativistic
effects on some properties can be particularly large. In Section 12.3 a range of prop-
erties will be discussed in more detail, and benchmark data and some selected case
studies will be provided. This section is concerned mainly with NMR and EPR
parameters, electric field gradients, and polarizabilities. Brief concluding remarks
can be found in Section 12.4.

12.2. COMPUTING MOLECULAR PROPERTIES

In this section a brief overview of methods for computing molecular properties
in a relativistic framework will be provided. To render this chapter reasonably
self-contained Section, 12.2.1, provides a synopsis of (some) relativistic methods
that may be used to compute molecular energies, and wavefunctions or electron
densities, relativistically. Section 12.2.1 is not meant to cover all of the methods
that are currently popular to treat molecules within a relativistic framework since
this is covered in other chapters. However, it will facilitate the discussion about
properties that follows, while keeping the chapter somewhat self-contained. The
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zeroth-order regular approximation (ZORA) will often be used as an example for an
approximate variationally stable two-component relativistic method, mainly for two
reasons: First, the quantum mechanical operators needed to define properties can be
derived comparatively easily, and the connection of the relativistic formalism with
the nonrelativistic limit is very transparent. The author hopes that many of the typi-
cal features of a relativistic formalism will in this way be presented to the reader in a
straightforward and non technical manner. The second reason is that the calculation
of many molecular response properties within the ZORA–DFT framework has been
reported in the literature (this includes developments by the author and collabora-
tors). Examples for relativistic property-computation methods that were developed
within the ZORA framework are NMR chemical shifts [1–3] and spin–spin coupling
constants J [4, 5], EPR g- [6] and A-tensors [7], polarizabilities [8], electric field
gradients [9], or the calculation of excitation energies based on time-dependent DFT
[10]. This does not mean that the ZORA is necessarily the best method to use – after
all it is an approximate two-component method, and alternatives that may offer bet-
ter performance (in particular for core-orbital properties) are available. However,
for many properties the ZORA was shown to be a good approximation to the fully
relativistic treatment. Core orbitals of heavy atoms are not well described by an
unmodified ZORA scheme but fortunately this is of little consequence for many
of the aforementioned properties. Good performance can be expected in describing
valence orbitals and excitations, for instance, and properties that depend on such
excitations when formulated in a “sum-over-states” (SOS) approach, see Eq. (12-26)
below. Examples where an accurate treatment of the core orbitals would be vital are
core excitations, naturally, or computations of absolute shielding constants (but not
chemical shifts which should be considered valence shell properties).

Regarding units, in the theoretical section Hartree atomic units (au) are used. In
these units the electron massme D 1, unit of charge e D 1, the proportionality con-
stant in Coulomb’s law 1=.4"0/ D 1, Planck’s constant h D 2 , and speed of light
c � 137:036 atomic units. Factors of one (e;me; 1=.4"0/; h=.2/ will usually
be dropped. In a universe with an infinite speed of light there would be no differ-
ence between Einstein’s special relativity and Galilei relativity and the Schrödinger
equation would provide the correct description of chemical phenomena. Therefore,
the nonrelativistic limit of a particular equation will be obtained from letting the
speed of light c ! 1. For magnetic properties we follow the choice of McWeeny’s
textbook [11] here, based on equations in SI units that are converted to atomic units
using the conversion factors above. Factors of �0=.4/ appear in au as 1=c2.

The Born–Oppenheimer approximation is assumed throughout, i.e., the focus
will be on electronic properties. Corrections terms due to nuclear vibrations may be
computed separately. Moreover, electromagnetic fields are treated semi-classically,
not as quantized fields. Most program implementations that are presently available
to compute molecular properties for heavy element systems quantum mechanically
are based on these approximations.
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12.2.1. Relativistic Methods in Quantum Chemistry

Details of how to include relativistic effects into quantum chemistry are extensively
discussed in other chapters. For convenience, a brief overview will be given here
to facilitate the derivation of the molecular property operators in various relativistic
schemes and in the nonrelativistic limit (Section 12.2.5). Much of this discussion
has also been provided in [12a] and more recently in an updated form in [12b], but
with a restriction to frequency-independent properties.

“Ordinary” nonrelativistic quantum chemistry deals with the solution of the
nonrelativistic time-independent many-electron Schrödinger equation

OHnrel‰ D ‰E; (12-1)

or approximations thereof. Here, ‰ is the many-electron wavefunction of an atom
or molecule with fixed nuclei, and E is the total energy. Further,

OHnrel D
X

i

Op2
i

2
C VNe C Vee C VNN (12-2)

is the nonrelativistic Hamiltonian which contains the nonrelativistic kinetic energy
operator Op2

i =2 for each electron i , the electron–nucleus attraction potential VNe D
�PA;i ZA=rAi added up for for each electron–nucleus pair, the nonrelativistic
electron–electron Coulomb repulsion Vee D P

j >i 1=rij , and the internuclear
repulsion potential VNN D P

B>AZAZB=RAB . We use i; j for electron labels, r

for electron coordinates (absolute values r), labelsA;B for nuclei, and uppercase R

for nuclear coordinate vectors. Further, rAi indicates an electron–nucleus distance,
rij an electron–electron distance, and RAB and nucleus–nucleus distance. ZA is a
nuclear charge, and Op D �ir is the momentum operator in real-space representa-
tion. Since analytic solutions of Eq. (12-1) for many electron systems are not known,
approximations have to be made.

In relativistic quantum chemistry, OHnrel in Eq. (12-1) is replaced by its relativistic
counterpart and ‰ by a two- or four-component wavefunction. All of the problems
of the nonrelativistic many-electron theory are present in the relativistic formulation
as well. Hence, similar techniques are common in order to find approximate solu-
tions; in particular the use of orbital models, replacing the wave function calculation
by Density Functional Theory (DFT), treating the electron correlation problem by
perturbation theory or the coupled cluster ansatz, or other common methods. How-
ever, relativistic quantum chemistry has its own specific challenges associated with
it. To begin with, a relativistic many-particle Hamiltonian for general molecules
should be derived from quantum electrodynamics (QED) [13]. See, for instance,
[14, 15] for work on how to embed magnetic property calculations within a QED
framework. Relativistic many-electron atomic and molecular computations often
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rely on the use of the four-component no-pair Dirac–Coulomb–Breit Hamiltonian
(DCB) or some approximation obtained from it:

OHDCB D
NX

iD1

�
c Ę i Opi C ˇic

2
	C VNe C Vee C

NX
j >iD1

OHB
ij C VNN (12-3)

Here, Ę and ˇ are 4�4matrices introduced by Dirac in order to obtain a relativistic
wave equation for spin-1/2 particles from the “classical” relativistic Hamilton func-
tion. In its standard representation, Ę is written in terms of the well known Pauli
spin-matrices E�s (not to be confused with the symbol for the nuclear shielding ten-
sor). These matrices have x, y, and z components; we will use the vector arrow
to indicate this. Thus, Ę i Opi indicates the scalar product of the alpha matrix–
vector with the momentum vector operator for electron number i . The OHB

ij (Breit
interaction, see, e.g., [16]) represents relativistic corrections to Vee from magnetic
interactions and further accounts for the fact that the electron–electron interaction
is not instantaneous but is transmitted with a finite speed. Some of the problematic
features of the Dirac–Coulomb(–Breit) operator can be avoided by restricting its
solutions to the positive energy spectrum, the eigenfunctions of which are identified
with the desired electronic states (no-pair approximation [17, 18]). Although OHDCB

is in general not truly Lorentz-invariant, it “provides an excellent approximation
to the full theory” [19]. QED corrections may be added, e.g., based on perturbation
theory calculations. For simplicity of notation we will in the following not explicitly
consider the Breit-interaction. Its relative importance to, e.g., total atomic energies
was found to decrease with increasing nuclear charge from �50% in He to �2% in
Hg relative to the one-electron relativistic corrections [20].

As a starting point for practical computations, theN -electron equation is usually
separated into N effective one-electron equations for one-particle wavefunctions
 i (atomic or molecular orbitals (AOs, MOs). An explicit treatment of correlation
may follow in wavefunction based methods. In DFT correlation effects are included
via the effective potential. For simplicity, we will implicitly refer to one-electron
equations with an effective one-electron potential (or true one-electron systems) in
the following, and use the symbol  for a one-electron wavefunction or orbital.
Particular details of common approximations to treat the correlation problem will
not be discussed here.

One way of performing a relativistic molecular computation in order to obtain a
starting point for calculating energy-derivative properties is to use directly the Dirac
equation

OHD D D  DE (12-4)

with

OHD D c Ę Op C ˇc2 C V: (12-5)

Note that we have adopted here the aforementioned notation for (effective)
one-electron equations. Because of Ę and ˇ being 4�4 matrices, the orbital D has
to be a four-component object (a spinor) for which each component is in general a
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complex function of space. Due to the four components, such molecular computa-
tions tend to be quite expensive compared to nonrelativistic ones, and the explicit
inclusion of electron correlation is a formidable task.

Many attempts have been made to transform the four-component Eq. (12-4) into
two-component form, in order to keep interpretations more simple2 and to reduce
the computational effort. Here we will give an account of some of these methods
to illustrate the general idea. Writing Ę explicitly in terms of the 2 � 2 Pauli spin-
matrices E�s , the four component Dirac equation (12-4) reads

. OHD � E/ D D
�
V �E c E�s Op
c E�s Op V � E � 2c2

��
'

	

�
D 0: (12-6)

The zero of the energy scale has been shifted in Eq. (12-6) to Cmc2; m D 1, the rest
mass energy of the electron, so that bound states have negative energy as usual in
nonrelativistic quantum chemistry. Here, ' and 	 are the “upper” and “lower” com-
ponents of the four-component orbital  D. In turn, each of these two components is
itself made up of two components. The spinors ' and 	 are also frequently referred
to as the “large” and “small” components because of the 1=2c prefactor in Eq. (12-7)
below.3 Because of the c E�s Op terms the nonrelativistic limit of the Dirac equation is
not immediately obvious from Eq. (12-6) but it leads indeed to the nonrelativistic
limit for c ! 1 as will be seen shortly.

From the second row of the 2 � 2 matrix in Eq. (12-6) one obtains the equation

	 D X ' D 1

2c
k E�s Op '; (12-7)

where

k D
�
1 � V � E

2c2

��1

; X D 1

2c
k E�s Op (12-8)

Equation (12-7) provides the relation between the upper an the lower compo-
nent for an exact solution of the Dirac equation. It means that, in principle, the
knowledge of ' should be sufficient since 	 can be determined from it, or vice
versa. Hence, it ought to be possible to obtain a relativistic equation for ' or 	
alone, the solutions of which contain the same information as  D (i.e., no further
approximations). We may call this the fully relativistic two-component relativistic
approach as compared to the fully relativistic four-component approach based on
the Dirac equation.

2 However, so-called picture change effects occur which may complicate certain operators. See, e.g.,
[16, 21, 22].

3 Note however that, depending on the potential and the location, the “small component” can be much
larger than the “large” one, e.g., for p1=2 orbitals close to the nucleus and therefore the terms “upper”
and “lower” component will be used here.
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In the ESC scheme (elimination of the small component), Eq. (12-7) is directly
substituted in the equation obtained from the 1st row of the matrix in (12-6). This
yields the two-component ESC Hamiltonian:

OHESC D V C 1

2
.E�s Op/k.E�s Op/ (12-9)

with k being defined in Eq. (12-8). In the nonrelativistic limit, for c ! 1 one finds
that k ! 1. We also note that .E�s Op/2 D Op21, i.e., the nonrelativistic Schrödinger
Hamiltonian is recovered from the ESC operator (12-9) as

OHnrel D V C 1

2
.E�s Op/2: (12-10)

It is convenient to leave the spin-dependent terms in (12-10) for the derivation of cer-
tain nonrelativistic magnetic property operators where electron–spin interactions are
needed. Although the ESC equation is a fully relativistic two-component equation,
its Hamiltonian depends (via k) on the unknown energy E . It is therefore not suit-
able for linear variational calculations. For a description of alternative approaches to
construct an exact two-component operator see the chapter by Barysz and [23–25].

In order to arrive at an energy-independent two-component equation, a [Foldy-
Wouthuysen (FW)] transformation of OHD to block-diagonal form can be devised as

OHFW D U OHDU
�1: (12-11)

In the case that the transformation makes OHFW block-diagonal and does not intro-
duce an energy-dependence of the operator, this would completely uncouple the
equations for the upper and the lower component and yield the desired two-
component relativistic equation, along with 	 D X', an energy-independent
relation between upper and lower component (see Eqs. (12-7,12-8)).U can be writ-
ten in terms of X as shown in other chapters. For many-electron systems, the exact
form of X and U and therefore the exact form of OHFW are not known. Different
approximations for X yield different approximate two-component Hamiltonians in
which the decoupling of the two components is not complete but the lower com-
ponent is neglected anyway. These approximate two-component Hamiltonians are
sometimes collectively denoted as “quasi relativistic”.

A rather simple approach is to expand k in (12-7) to zeroth order in c�2.
The speed of light is large compared to velocities normally encountered in every-
day life and therefore an expansion in inverse powers of c or c2 may appear
straightforward.4 Letting k ! 1 yields X � c E�s Op=.2c2/, which results in
the famous Pauli Hamiltonian [26] after carrying out the transformation (12-11)
with U.X/:

4 However, c � 137 atomic units and the Bohr “velocity” of an electron in the field of a nucleus with
charge Z is equal to Z atomic units. Relativistic corrections, which are of order .Z=c/2, cannot be
expected to be small for atoms and molecules with heavy nuclei.
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OHPauli D OHnrel � Op4

8c2
� . Op2V /

8c2
C {

4c2
E�s

�
. OpV / � Op� (12-12)

(here and elsewhere {2 D �1). The second, third, and fourth term on the r.h.s.
of (12-12) are the mass–velocity (MV), Darwin (DAR), and spin–orbit (SO) term,
respectively. See, for instance, the chapter by Schwarz for further details. The MV,
DAR, and so operators represent corrections of order c�2 to the nonrelativistic
Hamiltonian. They modify the kinetic energy of the electron, the electron–nucleus
potential, and introduce the coupling between spin- and angular momentum of an
electron. Close to a nucleus the magnitude of the electron–nuclear attraction poten-
tial in V is very large (it goes to �1 for point-like nuclei). In this case the term
.V � E/=2c2 in k of Eq. (12-8) is not small and expanding k in Eq. (12-7) in
powers of c�2 is not justified. As a result, the Pauli operator affords undesirable sin-
gularities. Moreover, it is not variationally stable and permits only a perturbational
treatment to first order [27, 28]. Higher order contributions yield diverging terms.
Variational computations based on the Pauli operator have been carried out, by using
frozen cores and minimal basis sets in the core regions for valence orbitals, under
which circumstances the variational instability can be kept somewhat under con-
trol. Such pseudo variational procedures are now deprecated. A scalar relativistic
or spin-free relativistic approach is obtained by omitting the SO term in (12-12) and
other two-component methods. This yields a one-component formalism analogous
to the nonrelativistic scheme with pure ˛- and ˇ- spin orbitals.5

A better justified expansion of k is used to construct the ZORA (zeroth order
regular approximation) [29] or Chang–Pélissier–Durand [30] Hamiltonian. The
ZORA operator can be obtained from the zeroth-order term of an expansion of k

in Eq. (12-8) in powers of E=.2c2 � V /, or by letting X � c� Op
2c2�V

as the main
approximation when performing the transformation of Eq. (12-11). If we write k
from Eq. (12-8) as

k D
�
1 � V �E

2c2

��1

D 2c2

2c2 � V
�
1C E

2c2 � V
��1

(12-13)

the inverse .� � � /�1 may be expanded in a power series in E=.2c2 � V /. The two-
component ZORA Hamiltonian represents the zeroth-order term of this expansion,
i.e., one uses .1C small/�1 � 1, leading to the Hamiltonian

OHZORA D V C 1

2
.E�s Op/K.E�s Op/ (12-14a)

D V C 1

2
OpK Op C {

2
E�s

�
. OpK/ � Op� (12-14b)

5 It is also possible to separate off a spin–orbit part in the Dirac equation and in four-component
perturbation theories which leaves two components to be determined.
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where

K D 2c2

2c2 � V D 1

1 � V=.2c2/
: (12-15)

The third term in (12-14b) is the ZORA spin–orbit (SO) operator. The ZORA oper-
ator has the desirable feature of being variationally stable. The expansion of k in
terms of E=.2c2 � V / is justified not only in regions where V is small compared to
c2 but also where V is very large in magnitude and negative, as long as E remains
small. Therefore, the ZORA provides a good relativistic approximation for valence
orbitals and outer core orbitals with comparatively small energy, even in the near-
nucleus region of a heavy atom. For core orbitals of heavy atoms with very large E
the ZORA affords substantial errors. Note the formal similarity to the ESC Hamil-
tonian in (12-9), with k replaced by K. The nonrelativistic limit corresponds to
letting K ! 1 in which case we also have . OpK/ D 0 and the SO operator vanishes.
The ZORA operator affords contributions beyond c�2 in the relativistic perturba-
tion order, yet some other contributions of order c�2 and higher are missing due to
the approximate nature of the operator. For the limiting case of small V , one may
further expand K in Eq. (12-15) in terms of V=.2c2/ to obtain K � 1 C V=.2c2/.
I.e., in the valence regions in atoms and molecules where the potential is small,
OpK � OpV=2c2. By comparison with (12-12) one can see that in this case the
ZORA spin–orbit operator becomes identical to the Pauli spin–orbit operator. One
can further show that with OpK � OpV=.2c2/ the first-order relativistic correction to
the orbital energy, .1=2/h nrelj OpK Opj nreli � .1=4c2/h nrelj OpV Opj nreli is the same
as that of the scalar relativistic part of the Pauli operator (MV C DAR). Close to
a nucleus, the ZORA and Pauli operators differ substantially. Conceptually, the
ZORA operator has the disadvantage of not being invariant with respect to a change
of the origin of the energy scale (gauge invariance), as can be seen from the fact
that only V but not .V � E/ occurs in the operator. The standard choice for the
potential is V.r/ ! 0 for r ! 1. Some of the resulting problems can be circum-
vented by a “scaling” procedure or by the use of frozen core potentials or model
potentials for the construction of K. For example, the “sum-of-atomic-potentials
approximation” (SAPA) [31] was shown to be a good approximation. In the SAPA
one uses V D P

A V
A, where local atomic potentials V A are taken, for instance,

from density functional computations of the neutral atoms. It also simplifies ZORA
computations since the operator does not have to be updated during SCF iterations.

Improved regular approximations have been developed to cure certain deficien-
cies of ZORA. Dyall et al. [32] introduced an “infinite order regular approximation”
(IORA). IORA is not the same as an infinite-order expansion of Eq. (12-13). In con-
trast to ZORA, the IORA Hamiltonian includes all relativistic terms of order c�2

correctly. Unfortunately, the development effort in particular for magnetic properties
appears to be more involved than when using the simpler ZORA operator [33]. To
the author’s knowledge no full spin–orbit implementation of magnetic properties
has yet been reported at the IORA level.

A different way of transforming the Dirac Hamiltonian to two-component form
is used in the Douglas–Kroll (DKH) method. Here, U in Eq. (12-11) is obtained via
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subsequent transformations that uncouple the upper and lower components to some
order n in c�2 which can be written as

Un D
q
1CW 2

n CWn or Un D eWn (12-16)

or by using other possible parameterizations [34] for U , with Wn being anti-
hermitian. For U0, the FW transformation for the free electron is used. To higher
orders, equations for Wn have to be solved in order to achieve further uncoupling.
Already with U1 (the DKH1 level), a large fraction of the relativistic effects on
orbital energies is recovered. We refer the reader to, e.g., [19] for details and orig-
inal references. For molecular property calculations, mainly those that depend on
core orbitals or core tails of semi-core and valence orbitals it is better to go to
DKH2 or beyond. In particular due to the work of Hess and coworkers, the DKH
method has been established as a reliable tool in quantum chemistry for the com-
putation of heavy element compounds. To some extent, the ZORA and the DKH
method to lowest order yield quite comparable results for many molecular proper-
ties. As an advantage, the DKH method does not suffer from a gauge invariance
problem and it is significantly more accurate for core orbitals. The improved accu-
racy comes at the expense of a somewhat more complicated formalism in particular
when incorporating terms from external or internal magnetic fields. Fortunately, a
number of developments for magnetic properties within the DKH framework have
been reported in recent years [35–40].

In order to arrive at a relativistic perturbation theory that avoids the infinities
of the Pauli Hamiltonian to higher orders, so-called “direct” or “Dirac” four-
component perturbation theory (DPT) can be employed. By a change of metric
between upper and lower components in the Dirac-equation (12-6), an expansion of
the resulting four-component equation in powers of c�2 is straightforward and leads
to non singular first- and higher order expressions forE and  [41,42]. A treatment
of magnetic properties has been described in detail [43]. For an implementation of
magnetic properties see. e.g., [44]. Perturbation expansions tend to become com-
putationally rather expensive to evaluate in high order. At the same time first-order
relativistic perturbation theory may not be sufficient to describe relativistic effects
on properties of molecules with such “strongly relativistic” elements as, Au, Pt,
Hg, Pb, etc. A variational procedure (Dirac, regular approximations, DKH, etc.)
might be easier to implement and computationally less expensive than a higher-order
perturbational method for relativistic effects.

As an alternative to the aforementioned methods which incorporate special
relativity directly in the calculations, the use of relativistic effective core potentials
(ECPs) also allows for consideration of relativistic effects in molecular computa-
tions. Inclusion of spin–orbit coupling is also possible in these methods. Extensive
benchmark calculations [45] have shown that ECPs can yield very reliable prop-
erties of heavy element compounds. For genuine valence properties (see Section
12.2.7) where the core tails of the valence orbitals are not of concern pseudopoten-
tials are straightforward to apply in property computations. For magnetic properties
such as NMR shifts or spin–spin coupling the all-electron electronic structure near
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the nuclei needs to be reconstructed. Some authors have taken such an approach
in projector-augmented plane wave computations [46, 47]. In this chapter we will
not discuss the use of ECP methods but focus on computational approaches where
relativity is directly taken into consideration in the Hamiltonian.

As already mentioned, the potential V in the equations in this section might
not simply refer to the external potential (e.g., VNe) for one-electron systems but
to an effective many-electron potential. In this case, V appearing in the relativis-
tic operators accounts in a mean-field sense for some relativistic effects on the
electron–electron Coulomb repulsion 1=rij . For instance, the explicit transforma-
tion of 1=rij to two-component form yields in order c�2 a two-electron Breit–Pauli
spin–orbit and a two-electron Darwin operator. The transformation of the OHB

ij terms
of Eq. (12-3) to two-component form yields further two-electron terms. Use of an
effective (mean-field) electron-repulsion potential in V in the one-electron SO and
Darwin operators accounts, to some extent, for some of the two-electron terms.
Indeed, upon formal substitution of the potential VN in the Pauli spin–orbit oper-
ator (12-12) by the electrostatic potential Vij D 1=rij between two electrons, one
obtains the electron–electron SO operator

OHeeSO D {

4c2

X
i¤j

E�s.i/
�
. OpiVij / � Opi

�
(12-17)

(analogously for the two-electron Darwin operator). The correct derivation would
involve an order-c�2 transformation of the DCB Hamiltonian to two-component
form [16]. Using an effective potential in the one-electron kinetic energy and
SO operators of other two-component Hamiltonians (e.g., ZORA) also yields
mean-field approximations of their corresponding two-electron operators. Other
two-electron terms have to be added explicitly, i.e., their contributions are not cov-
ered in a mean-field sense when an effective potential is used in the one-electron
part of a two-component relativistic operator. For example the interaction of the
spin of one electron with the orbital angular momentum of another electron (the
spin–other orbit (SOO) interaction) is often considered in its Breit–Pauli form:

OHSOO D � i

2c2

X
i¤j

E�s.i/
�
. OpiVij / � Opj

�
(12-18)

Mean-field approximations to compute matrix elements of this operator efficiently
have been successfully applied in molecular property computations as well [48].

12.2.2. Molecular Response Properties: A Brief Survey. Energy
and Quasi-Energy Perturbations

Suppose that we have chosen a method to compute the energy of a molecule using
a relativistic Hamiltonian. For simplicity, assume that a variational approach was
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used, i.e., the energy is stationary with respect to small variations in the wave-
function (or the electron density in DFT). In practice, approximations have to be
employed in the computations, for instance for treating the electron correlation
problem. Moreover, the level of treating relativistic corrections has to be selected
e.g., by adopting one of the methods discussed in Section 12.2.1. The result is a
computed energyE incorporating relativistic effects, along with a relativistic wave-
function ‰ (for wavefunction based methods) or a set of relativistic molecular
orbitals  i (MOs) used to parameterize the electron density �.r/ in Kohn–Sham
DFT. The computations generally involve some type of discretization of the wave-
function or the MOs, typically by adopting basis sets such as atomic orbital (AO)
basis sets which are commonly used in quantum chemistry, or plane wave basis sets
which are more common in solid state physics. In this case a set of wavefunction
parameters or MO coefficients is computed.

We consider static (time independent) perturbations first. The following para-
graphs provide a brief summary of variational perturbation theory: Consider the
energy as a function of a set of perturbation parameters Fi . These are the general-
ized field amplitudes that were mentioned in the Introduction. They represent the
amplitudes of actual electric or magnetic fields perturbing the molecule, or they
may represent some other perturbation parameter. Vector notation will be used to
indicate a whole set of amplitudes simultaneously, i.e., F D .F1;F2; : : :/. The
wavefunction ‰ or the electron density �, as well as the Hamiltonian OH or the
Kohn–Sham Fock operator, in general also depend on the Fi . We will choose wave-
function notation from now on; similar derivative schemes can be devised within
density functional theory. The unperturbed ground state is obtained for F D 0. To
obtain the effects from the perturbations in various orders, the energy, wavefunc-
tion, and Hamiltonian are expanded in power series around the unperturbed ground
state, i.e.,

E.F/ D E.0/ C
X

i

E.Fi /Fi C 1

2

X
i;j

E.Fi ;Fj /FiFj C � � � (12-19a)

‰.F/ D ‰.0/ C
X

i

‰.Fi /Fi C 1

2

X
i;j

‰.Fi ;Fj /FiFj C � � � (12-19b)

OH.F/ D OH.0/ C
X

i

OH.Fi /Fi C 1

2

X
i;j

OH.Fi ;Fj /FiFj C � � � (12-19c)

For each of these quantities A D E , ‰, or OH, the notation

A.0/ D A.F/
ˇ̌̌
ˇ
F D0

W A.Fi / D @A.F/
@Fi

ˇ̌̌
ˇ
F D0

I A.Fi ;Fj / D @2A.F/
@Fi@Fj

ˇ̌̌
ˇ
F D0

(12-20)



534 J. Autschbach

etc. has been used to indicate the various derivatives at the expansion point needed
to construct the power series. For reasons of notational brevity a partial-derivative
notation was adopted [49]. It implies that in molecular properties defined as
energy derivatives any implicit dependencies on the perturbation via wavefunction
parameters are to be resolved. Some authors prefer to use a total-derivative notation
where necessary [50]. Another way of avoiding notational ambiguities in a varia-
tional formalism has been suggested by King and Komornicki [51] which allows to
retain a partial-derivative notation throughout.

The various energy derivatives in (12-19a) are the molecular response proper-
ties of interest here. Expressions to compute them can be obtained formally by
expanding the energy expectation value E.F/ D h‰.F/j OH.F/j‰.F/i (assuming
a normalized wavefunction) and collecting terms of various orders:

E.0/ D h‰.0/j OH.0/j‰.0/i [no perturbation present] (12-21a)

E.Fi / D h‰.0/j OH.Fi/j‰.0/i C h‰.Fi/j OH.0/j‰.0/i C h‰.0/j OH.0/j‰.Fi /i
(12-21b)

E.Fi ;Fj / D : : : higher order equations : : :

The equation by which the wavefunction and energy are determined (Schrödinger
equation, Dirac equation, ZORA or DKH equation, . . . , depending on the choice
of relativistic level in OH), may also be expanded in a similar way. I.e., taking
OH‰ D ‰ �E and substituting for each quantity the expansions (12-19) yields the

unperturbed wave equation and a set of response equations that determine the
wavefunctions to various orders:

OH.0/‰.0/ D ‰.0/ �E.0/ (12-22a)

OH.0/‰.Fi / C OH.Fi /‰.0/ D ‰.Fi / �E.0/ C‰.0/ �E.Fi / (12-22b)

: : : higher order equations : : :

The wavefunction is usually considered to be normalized at all levels of the per-
turbation treatment. Expanding ‰ in h‰.F/j‰.F/i D 1 leads to constraints that
needs to be considered when the response equations are solved:

h‰.0/j‰.0/i D 1 (12-23a)

h‰.0/j‰.Fi /i C h‰.Fi/j‰.0/i D 0 (12-23b)

: : : higher order equations : : :

For program developments of response solvers within a given approximation for
relativity and electron correlation such constraints are conveniently worked into
the formalism by setting up and minimizing a functional with Langrange multi-
pliers (the “Langrangian”). In a framework of a non-variational theory (such as
coupled-cluster methods or Moller–Plesset perturbation theory to treat the electron
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correlation) there is typically a set of auxiliary equations that need to be solved to
obtain the correct derivatives of a non-variational energy [50]. In DFT, the perturba-
tion expansion is formally carried out for the electron density, the DFT energy, and
the Kohn–Sham Fock operator. In practice, response equations are solved for the
Kohn–Sham MOs or the Kohn–Sham density matrix. For properties that require
the knowledge of the density matrix instead of the density (magnetic properties,
typically, or the ground state kinetic energy) one should keep in mind that the
Kohn–Sham DFT treatment represents an approximation as one does not know the
density matrix of the interacting electronic system, only that of the noninteract-
ing Kohn–Sham system. Presently not much attention is paid to this issue since
other approximations in DFT, for instance those that lead to incomplete treatment
of correlation and introduce self-interaction errors, remain major issues limiting the
accuracy of DFT response computations. It is possible that once the Kohn–Sham
noninteracting versus interacting kinetic energy becomes an accuracy bottleneck
for DFT this issue will also have to be addressed in response property computa-
tions. At the time of writing this article, it is fair to state that DFT and TD–DFT are
far from having reached that point.

The number of terms in the expressions of the energy derivatives in Eqs. (12-21)
can be reduced significantly. For instance, substituting (12-22a) into (12-21b) and
utilizing (12-23b) simplifies the equation for E.Fi / to

E.Fi / D h‰.0/j OH.Fi /j‰.0/i (12-24)

This is the famous Hellmann–Feynman theorem [52] for energy derivatives. The
first derivative has the form of a simple expectation value for a property B , i.e.,
B D h‰j OBj‰i. That is, the operator for property B can be obtained by considering
a first-order derivative of the Hamiltonian with respect to a suitably defined per-
turbation parameter Fi . Examples for such properties are the electric or magnetic
dipole moment of a molecule, or higher order moments, or the energy gradient with
respect to nuclear displacements (intramolecular force). Since the wavefunction in
(12-24) is the zeroth-order wavefunction, i.e., the electronic structure is unperturbed,
one may also call the property B D E.Fi/ a zeroth-order response property.6

Using similar substitutions that led to (12-24) considerably simplifies the
expression for the second energy derivatives. Consider two different perturbations.
Elimination of a number of terms that cancel each other or integrate to zero yields

E.Fi ;Fj / D h‰.0/j OH.Fi ;Fj /j‰.0/i C h‰.Fj /j OH.Fi /j‰.0/i C h‰.0/j OH.Fi/j‰.Fj /i
D h‰.0/j OH.Fi ;Fj /j‰.0/i C 2Reh‰.Fj /j OH.Fi/j‰.0/i (12-25)

6 A serious technical limitation of using Eq. (12-24) and its derivatives is that, generally, in an incomplete
basis the equation is only valid if the basis set is independent of the perturbation parameters. This is
the case for standard AO basis sets and electric fields or nuclear spins, but not for nuclear-position
derivatives if the AO basis is nucleus-centered as usual. We will keep using expressions that are valid
for complete basis sets but keep in mind that the computation might involve additional terms to account
for basis set incompleteness.
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The same expression is also obtained from (12-24) by now considering each term
to be a function of a second perturbation Fj , expanding in a power series in that
parameter, and collecting all terms of first order in Fj . I.e., the expression (12-25) is
also the first derivative of a molecular propertyB; described by an operator OB; with
respect to Fj , i.e., B.Fj / D E.Fi ;Fj /. This second energy derivative/first property
derivative requires the linear terms of the wavefunction in Fj , i.e., we may label
it as a double perturbation of the energy or the linear response of the property B .
Expressions for higher order derivatives can be derived in a similar way. The case
studies of Section 12.3 will focus on first- and second-order derivative properties.

Equation (12-25) can be rewritten as follows: By using the complete set of unper-
turbed wavefunctions for ground and excited states as a basis set, the first order
equation (12-22b) can be solved for ‰.Fj / in this basis. Substituting the result
back into (12-25) yields a “sum-over-states” (SOS) equation for the second-order
property:

E
.Fi ;Fj /
n Dh‰.0/

n j OH.Fi ;Fj /j‰.0/
n iC2Re

X
k¤n

h‰.0/
n j OH.Fj /j‰.0/

k
ih‰.0/

k
j OH.Fi/j‰.0/

n i
En � Ek

(12-26)

where the property is computed for state number n (usually the ground state) and the
sum runs over all other excited states. The Ramsey equation for NMR parameters
[53] is an example of such a SOS formulation of linear response.

The (2n C 1) theorem states that the availability of the nth order perturbation
of the wavefunction or electron density allows the calculation of the perturbed
energy up to order 2n C 1. The simplifications leading to (12-24) and (12-25) are
examples of this theorem where the nth order wavefunction derivative has been
eliminated. Another useful theorem states that the perturbation order is arbitrary.
For time-dependent perturbations as discussed below care must be taken to permu-
tate the frequencies along with the field if a particular ordering of perturbation is
desired [54].

In the case that relativistic effects on response properties are computed as a per-
turbation, this increases the required overall order of perturbation theory by one to
include effects of order c�2, by two to include effects of order c�4, and so on. For
literature on computations of relativistic effects on NMR parameters by perturbation
theory the reader is referred to [55–58] as representative examples.

Often the perturbations of a molecule are considered to be time-dependent per-
turbations of an otherwise stationary system (usually assumed to be in its ground
state). For example, the fields that are perturbing the molecule are oscillating with
frequencies !i , !j , : : : and one is interested in the derivative properties as functions
of the applied frequencies. A typical example is the polarizability (linear, and non-
linear) of a molecule where the frequency-dependence if often one of the prime
interests. In the presence of a time-dependent perturbation the energy is not well
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defined. One possible approach to computing properties within a derivative scheme
that is similar to the one outlined above for static properties is to consider the quasi-
energyQ as the basic quantity [54,59,60]. Writing the time-dependent ground state
wavefunction as a product of a time-dependent phase factor and a time-periodic
phase-free functionˆ,

‰ D ˆ � exp
�
�{
Z t

t0

dt 0 � hˆj OH � {
@

@t 0
jˆi

�
(12-27)

and substituting this ansatz into the time-dependent wave-equation

OH‰ D {
@

@t
‰ (12-28)

yields an equation (depending on OH) for ˆ,

�
OH � {

@

@t

�
ˆ D ˆ �Q.t/ (12-29)

that resembles an eigenvalue equation for the operator OH� {@=@t , and an expression
for the quasi-energy

Q.t/ D hˆj OH � {
@

@t
jˆi (12-30)

that resembles an energy expectation value integral. The quasi-energy plays an anal-
ogous role as the energy of a stationary system. It is assumed, that ˆ is normalized
and in the unperturbed limit it satisfies the unperturbed time-independent equation

OH.0/ˆ.0/ D ˆ.0/ �E.0/ (12-31)

(i.e., Q.0/ D E.0/ is static). Response properties can now be computed from the
time average of the quasi energy. The wavefunction normalization is typically taken
into consideration via a constraint .@=@t/hˆjˆi D 0I hˆ.0/jˆ.0/i D 1 which is
used along with (12-30) in a quasi-energy Lagrangian QQ to be minimized (assuming
variational methods, as already stated). If we imagine a periodic perturbation, the
quasi-energy is a periodic function which oscillates around its time-average. This
time-average is different from the ground state energy of the unperturbed system.
The difference can be expanded into powers of the applied field amplitudes, as pre-
viously done for the energy, to extract frequency-dependent derivatives/response
properties. The situation is illustrated qualitatively in Figure 12-1 for the situation
of a second-order change in the quasi-energy due to an applied oscillating field of
amplitude F . For a zero-frequency perturbation,Q.F2/ D E.F2/ would be static.



538 J. Autschbach

E (0)

t
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Figure 12-1. Stationary ground state energy of a system, E.0/, and the quasi-energy of the perturbed
system assuming a periodic perturbation to second order in the field strength F . The perturbation is

oscillating around the time average of Q.t/. For an electric field perturbation, fQ.F2/gT is the negative
dynamic polarizability

Suppose Q.t/ is periodic with a period of T . The time-average of the quasi-
energy Lagrangian f QQgT is then

f QQ.t/gT D 1

T

Z T=2

�T=2

dt � QQ.t/ (12-32)

and response functions, instead of defined as energy derivatives, are obtained via
computations of

@f QQgT

@Fi .!i /
I @2f QQgT

@Fi .!i /@Fj .!j /
I @3f QQgT

@Fi .!i /@Fj .!j /@Fk.!k/
I � � � (12-33)

which play a role analogous to the energy derivatives to various orders in (12-19a).
Again, a partial derivative notation is used here but we keep in mind that implicit
dependencies on the perturbation amplitudes, e.g., in the wavefunction parameters,
need to be resolved when the results are computed. The response of the wave-
function parameters can be obtained from perturbation expansions of (12-28) or
(12-29), collecting terms proportional to products of exp.˙{!i t/ and solving the
response equations as a function of the frequency/frequencies of the applied field(s).
It would be beyond the scope of this chapter to provide details on how these equa-
tions are set up and solved, but we point out that similar techniques to develop
response solvers for static properties can be applied to develop dynamic response
equation solvers. For second-order properties, equations similar to the SOS equation
(12-26) can be derived where in addition to energy differences the frequency also
enters the denominator (and causing singularities where ! D .En � Ek/). For fur-
ther details see [61,62]. Regarding the time averaging: its main purpose is to provide
a proper matching of frequencies for the applied fields to yield a nonzero response.
As a mathematical consequence of the time-averaging, in the response functions of
Eq. (12-33) the frequencies have to sum up to zero. The static limit is contained in
this derivative scheme for all !i ! 0.
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12.2.3. Resonance: Computation of Excitation Spectra

It can be shown that a dynamic response property, as a function of the frequency
! of the applied perturbation, has to be complex. The real and the imaginary part
form a Hilbert transform pair [63]. The imaginary part is associated with absorption
processes, i.e., it yields some kind of spectrum, while the real part describes the
dispersion of a refractive property.

As an example, consider the response of a molecule’s dipole moment to an
electric dipole field. The linear response is the (dynamic linear) dipole–dipole
polarizability. If only the electronic degrees of freedom are considered in a com-
putation one obtains the electronic dynamic polarizability of an atom or molecule,
˛.!/. See Figure 12-2 for an illustration. If no damping is considered in the
formalism, the frequency-dependent response is purely real except at the excita-
tion frequencies !k . The real part becomes singular at the excitations much like
a hypothetical undamped mechanical system such as a driven oscillator would
experience a resonance catastrophe at its vibrational eigenfrequency. Right at the
excitation frequencies, the response then switches from purely real to purely imag-
inary. The excitation spectrum would be obtained in form of ı-peaks. The singular
behavior makes it impractical to compute ˛.!/ and other dynamic response prop-
erties right at the excitations without using some form of damping. By introducing
damping in the formalism (formally, for example, via finite lifetimes for excited
states, or more pragmatically as a semi-empirical damping constant [65, 66]) one
obtains nonsingular complex response functions instead. This is also analogous to
a mechanical system such as a damped driven oscillator which shows large – but
finite – oscillation amplitudes near its eigenfrequency. The imaginary part of the

ω

ω

ω

ω
ωk

ωk

ωk

ωk

Re, undamped

Re, damped

Im, undamped

Im, damped

Figure 12-2. Qualitative behavior of a linear response function in the vicinity of an excitation with
frequency !k . Top: no damping. The imaginary part would be a line-spectrum (ı-functions) with singu-
larities in the real part at !k . Bottom: damped response corresponding to a Gaussian line shape of the
imaginary part
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Figure 12-3. Real and imaginary part of the isotropic dipole polarizability ˛.!/ of the Au2 molecule,
from ZORA spin–orbit DFT response computations with a local density functional and a damping
constant of 0.2 eV [241]. ImŒ˛� converted to molar absorption coefficient

electronic polarizability, ImŒ˛�, then describes the electronic absorption intensity
in form of broadened absorption lines. Their width is proportional to the damping.
Typically, the interest is in UV–Vis absorption but semi-core and core excitations
can in principle also be modeled. ImŒ˛.!/� may be converted to the usual molar
absorption coefficient used in spectroscopy. The case is illustrated in Figure 12-3 for
the Au2 molecule. DFT computations of the complex polarizability were performed
with a semi-empirical damping parameter [66] to obtain a nonsingular response
around the excitation energies and to obtain both the real and the imaginary part of
˛.!/. The absorption spectrum is obtained from ImŒ˛� as a function of frequency.
The real part shows the expected anomalous dispersion around the excitations, as
illustrated – qualitatively – in Figure 12-2.

The singular behavior of undamped response functions offers an attractive way
of computing excitation energies and transition moments directly. Of course, one
way to compute excitation energies is to compute the wavefunction and energy
for the ground state first, and next for a set of excited states, within a given
computational approximation. Transition moments can subsequently be computed
from these wavefunctions, and it is possible to compute excited states properties.
This approach presently requires a wavefunction-based method since a generally
applicable variational DFT method for excited states has not yet been developed.

Alternatively, one can take the following approach: An expression is derived for
a dynamic response property such as ˛.!/ within the desired formalism (Hartree–
Fock, correlated wavefunction-based, DFT, within a given relativistic treatment)
without considering damping terms. The equation is then transformed into a form
that makes it obvious where the property becomes singular as a function of fre-
quency. This is often accomplished by deriving the formal solution to the linear
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response equations with the help of the inverse of a matrix or operator of the type
ŒE � OA��1 (a Green’s function) with E D „! and OA being some operator. In a
follow-up step this inverse is written in the basis of the complete set of eigenfunc-
tions 
i with eigenvalues fi of the operator OA, which yields (for the discrete part
of the spectrum of OA) a term of the type ŒE � OA��1 D P

i Œ
i .	/

�
i .	

0/�=.E � fi /.
This expression becomes singular if E equals one of the eigenvalues of OA which
means the eigenvalue fi must be one of the excitation energies of the system. There-
fore the solution to an eigenvalue-type problem OA
i D 
i �fi may provide access to
the excitation energies. It is usually possible to obtain transition moments from the
eigenvectors 
i . Specific expressions for OA depend on the computational method
used and shall not be discussed here. It is important to keep in mind that, once
the problem has been discretized, taking the response-singularity route to compute
excitation energies offers computational advantages only in case the dimension of
the problem at hand is less than, say, solving for the eigenvalues and eigenvectors
of a Hamiltonian matrix directly. In exact theory different approaches are formally
equivalent. However, one or another approach might offer distinct advantages for
instance in the way how approximations can be introduced and how the solution
can be constructed in approximate discretized form.

To summarize: The singularities (poles) of a response function can often be com-
puted from an eigenvalue-type equation. In discretized form (basis set, numerical
grid, or alike) the equation yields all excitation frequencies that are possible within
a given basis set, as well as transition moments, at once. Implementations generally
make use of Lanczos- or Davidson-type algorithms to select a range of (usually low
lying) excitations to keep the computational effort manageable. This approach to
obtain an excitation spectrum does not yield excited states wavefunctions or excited
states densities. Properties of the excited states, or transition moments between
excited states can be accessed by considering higher-order response functions. This
route can also be used to obtain excitation energies and transition moments in DFT,
which is formally a theory for the ground state only. Since the singularities are
formally derived from considering where the response as a function of frequency
becomes singular this approach has generally been associated with time-dependent
DFT (TD–DFT). However, it should be kept in mind that the excitations are ulti-
mately computed as properties of the unperturbed system and do not depend on the
nature of the perturbation.

Presently, TD–DFT linear response excitation computations are the most suit-
able way to obtain first principles theory based spectra for larger molecules with
heavy metal atoms due to its attractive balance of efficiency and accuracy. We
note that the spectrum in Figure 12-3 which was obtained directly from ImŒ˛� on
a frequency-grid agrees with the spectrum that is obtained from such a TD–DFT
excitations computation with subsequent broadening of the absorption lines. For a
reasonably small number of low-lying lying excitations (currently less than roughly
a few hundred excitations in molecules with not more than a few hundred atoms)
the TD–DFT/excitations approach tends to be more efficient for computing spec-
tra. A frequency scan over ImŒ˛� might become more advantageous for very large
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molecules with many excited states within a frequency window of interest [66], and
it is also straightforward to apply to modeling core excitations. A combination of
these methods can be used to obtain well-resolved dispersion curves for the real
parts of a response function with a minimal number of frequency points [67].

For small heavy-atom molecules it is possible to apply very accurate
wavefunction-based correlated methods for computing excitation spectra and
excited states properties. Explicit computations of ground and excited states, as
well as response-based methods involving static and time-dependent perturbations
are in use here. For instance, equations-of-motion (EOM), propagator, and Green’s
function methods have been developed as general powerful tools in order to derive
explicit expressions for perturbed properties within ab-initio wavefunction meth-
ods. For details see, e.g., [11, 68–70]. Unfortunately, these methods tend to scale
unfavorably with system size.

The “singularity” route taken in DFT/TD–DFT for computations of excitation
spectra can also be followed in Hartree–Fock theory. I.e., one applies time-
dependent Hartree–Fock (TD–HF) perturbation theory and identifies singular terms
as a function of frequency. It was shown that the approach is very similar to
computing an excitation spectrum from singles – only configuration – interac-
tion (CI singles, or CIS [71]). In general, TD–DFT is favored over TD–HF or
CIS because it includes electron correlation so some extent. TD–DFT is formally
exact for electric-field perturbations, but in practice approximations are of course
made. Approximate TD–DFT with standard functionals is not without shortcom-
ings and care should be taken that the computed response properties do not suffer
from excessive self-interaction errors and problems that manifest in particular in
charge-transfer excitations. Problems such as these can also severely impact static
energy-derivative properties, in particular those of second and higher order. For a
concise overview of TD–DFT related problems and how to avoid them see, for
example, Ref [72].

12.2.4. Examples of Response Properties

Before investigating the various operators that are needed to compute energy deriva-
tive properties in relativistic and nonrelativistic theories, it is illustrative to take a
look at a list of representative molecular properties that may be computed depending
on the type and order of perturbation. In Table 12-1, various combinations of deriva-
tive parameters (generalized field amplitudes) are specified along with the type of
molecular properties that can be obtained as a result. In many cases, the fields can
be static or frequency dependent. Not all of the properties listed are observable.
In some cases the property is only an observable under certain conditions, for
example for a neutral molecule (dipole moment, etc.). The following notation is
used: RA; RB ; : : : D x; y, or z component of a nuclear position vector, nucleus
A, B , . . . ; E D electric field vector component (x; y, or z); B D magnetic field
vector component; mA; mB ; : : : D components of nuclear spin magnetic moment
vectors; S D component of an effective electron spin vector (see Section 12.3.2),
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Table 12-1 Some derivative properties that are of interest in
chemistry

Derivative Property that can be obtained from the derivative
parameter(s) of the energy or quasi-energy

First order derivatives
E Dipole moment
rE Quadrupole moment
Q Electric field gradient
B Magnetic moment
RA Intramolecular forces
c�2 First-order relativistic energy correction
B EPR g-tensor if SO coupling is included in ‰.0/

mA EPR A-tensor if SO coupling is included in ‰.0/

Second order derivatives
RA, RB Harmonic force constants

Harmonic vibrational frequencies
E , E Dipole polarizability,

Excitation energies, UV–VIS Intensities
C6 dispersion coefficients from imaginary !

E , RA Infrared intensities
E , B Optical rotation, excitation energies, circular dichroism
B , B Magnetizability, excitation energies,

Magnetic transition moments
B , mA NMR chemical shifts
mA , mB NMR spin-spin coupling constants
B , S EPR g-tensor if SO coupling not included in ‰.0/

mA , S EPR A-tensor if SO coupling not included in ‰.0/

Higher order derivatives

RA, RB , RC ,. . . Cubic and higher order force constants
E , E , E , . . . First and higher order hyperpolarizabilities,

Two- and multi-photon absorption cross sections
E , E , RA Raman intensities
E , E , B Magneto-optical rotation, magneto-circular dichroism
B , mA , c�2 Relativistic corrections to NMR chemical shifts to

first order

Q D quadrupole moment. In some cases it is also specified what type of prop-
erty can be obtained from studying the singularities of the response function (see
Section 12.2.3). The list is not complete. It obviously includes a range of very
important spectroscopic and optical properties.

12.2.5. Perturbation Operators

This section is intended to provide only a brief overview, mostly focussing on one-
electron terms. As mentioned earlier, the ZORA operator will be used as an example
to represent the class of approximate two-component methods. The usual way by
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which to derive the perturbation operators in (12-19c) related to electromagnetic
fields within a semi-classical treatment is to consider a scalar external potential 

and a vector potential A. The scalar potential enters the Hamiltonian as qi
.r i /

for each particle of charge qi with position r i . Further, one makes the “minimal
substitution” Opi ! Opi � qi A for the momentum operator for each particle. Here,
we will consider only the electronic degrees of freedom, with qi D �e. The relation
of 
 and A with the electric field E and the magnetic field B are

E D �r
 � @A=@t; (12-34a)

B D r � A: (12-34b)

For a time-dependent electromagnetic wave with its electric and a magnetic field
component the expressions for 
.r/ and A.r/ can be derived in closed form
under certain circumstances. They are usually expanded around the coordinate ori-
gin r D 0 to obtain perturbation operators of increasing powers of r (multipole
expansion). This leads to much simplified operators for electromagnetic fields with
optical, near IR, or larger wavelengths that are many times the dimension of the
molecule. In this case the curvature radius of the field is large compared to the
extension of the molecule and the multipole expansion can be truncated at low order.

For the properties of interest here, the fields arise from external time-dependent
or time-independent electric and magnetic fields and from the magnetic fields
associated with the spin magnetic moments of the nuclei and of the electrons. A mul-
titude of terms arise upon consideration of all these effects in a four-component
relativistic many-electron Hamiltonian after transformation to two-component form
[11, 16, 73]. We will not consider all of these terms but mainly list expres-
sions for some important one-electron operators and study the differences between
the four-component formalism, an approximate two-component method, and the
nonrelativistic limit.

Before proceeding, we note that a given magnetic field does not uniquely define
the vector potential: adding the gradient rf of any scalar function f .r/ to A does
not affect B, because r � rf .r/ D 0. Therefore A is undetermined up to adding
rf . Often, f is chosen such that rA D 0 (Coulomb gauge). A different gauge
of A can, e.g., be chosen implicitly by adopting a different origin for the coordi-
nate representation of A. For a range of variationally determined wavefunctions in
a complete basis the calculated properties would not depend on the chosen gauge.
This is not generally true for incomplete basis sets [11] and care needs to be taken
that origin independent results are computed. Presently, the standard remedy is to
adopt a “gauge including atomic orbital” (GIAO) basis set (also frequently referred
to as “London AOs”) [74, 75]. This eliminates the origin dependence in variational
methods such as Hartree–Fock, Kohn–Sham DFT or multiconfigurational SCF
(MCSCF), and often also leads to improved basis set convergence of the response
property. Other methods to cure the origin problem are also in use, among them
the “individual gauge of localized orbitals” (IGLO) [76], a “localized orbital/local
origin” (LORG) [77], or applying a “continuous set of gauge transformations”
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(CSGT) [78]. Magnetic properties computed with non-variational methods such as
coupled cluster theory do not in general become origin invariant in a GIAO basis
[79]. Typically, the origin problem alleviates when larger basis sets are employed.
Sometimes, an origin problem is eliminated by using the “velocity gauge” relation
between electronic momentum and electronic dipole operator. By using this trick,
nuclear magnetic shielding constants can be made origin-independent [80, 81] but
unfortunately the individual shielding tensor elements are still origin dependent. The
velocity gauge is also popular for computations of optical rotation [79].

Applying the minimal substitution in the nonrelativistic one-electron part of
the Schrödinger Hamiltonian of Eq. (12-2) and adding the external electric poten-
tial term yields the following perturbation terms in addition to OH.0/ (because the
Hamiltonian contains Op2 there are no terms higher than second order in A)

OHpert
nrel D 1

2

�
A Op C OpA C i E�sŒ Op � A C A � Op�C A2

�
� 
.r/: (12-35)

We point out that these are the one-electron terms only. When considering pertur-
bations by magnetic fields the expressions linear in A are usually called “para-
magnetic” terms, while those proportional to A2 are called “diamagnetic” terms.
The spin-dependent terms (terms containing E�s) are only obtained if the substitution
Op ! Op C A is made in the nonrelativistic limit written as in Eq. (12-10) using
.E�s Op/2 instead of Op2 [see the text following Eq. (12-9). The explicit form of the
operators depends on the type of perturbation; some frequently used expressions
will be given below.

Electric property operators for static fields are obtained from the �
 term and,
if needed, additional terms involving the gradient and higher derivatives of the
electric field. Due to the linearity only terms involving first-order operator deriva-
tives need to be considered when evaluating electric properties. Magnetic fields
or time-dependent electromagnetic waves involve the vectorpotential A. For first-
derivative magnetic properties only the Hamiltonian terms linear in A are required.
For second-derivative properties, one needs the linear terms in the Hamiltonian
to determine ‰.Fi / for one of the perturbations [see Eq. (12-22b) from which
the wavefunction is determined] and the pertubed Hamiltonian OH.Fi / is needed to
compute the 2Reh‰.Fj /j OH.Fi /j‰.0/i part of the response.7 Hamiltonian terms that
are bilinear in A enter the h‰.0/j OH.Fi ;Fj /j‰.0/i (diamagnetic) part of a second-
derivative property. Higher-order properties require linear and, if applicable, bilinear
Hamiltonian terms. Depending on the overall order of perturbation and the expres-
sion used to compute the result, higher-order wavefunction perturbations might need
to be computed as well.

7 For magnetic properties, this part is the paramagnetic term and h‰.0/j OH.Fi ;Fj /j‰.0/i which involves
the A2 contribution is the diamagnetic term.
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Now consider special relativity: Applying the minimal substitution in the one-
electron part of the Dirac Hamiltonian (12-3) yields the following perturbation terms
in addition to OH.0/

D :

OHpert
D D c Ę A.r/ � 
.r/ (12-36)

Note that there is no operator bilinear in A present. Consider a second-order mag-
netic perturbation: The nonrelativistic limit as well as relativistic two-component
Hamiltonians yield a diamagnetic term if standard gauges for A are chosen. This
term should be contained in order c0 in a four-component result obtained with
(12-36) but a corresponding bilinear operator is not present. It has been shown that a
diamagnetic contribution to a second-order derivative property is indeed contained
in the four-component scheme. It has been numerically traced back to the contribu-
tions from negative energy eigenfunctions of OHD if the complete spectrum of this
operator is used as a basis set to represent ‰.Fj / in Eq. (12-25) [82], even though
there is only a paramagnetic perturbation operator (12-36). The role of the nega-
tive energy states for diamagnetic shielding has also been emphasized by Pyykkö
in early theoretical work on NMR chemical shifts [83]. Recent work by Liu et al.
has aimed at ways to simplify the four-component treatment of nuclear magnetic
shielding [84,85]; the issue of diamagnetic terms has been addressed in some detail
in these works. See also [86]. When a matrix formulation in a basis set or transfor-
mations at the operator level are employed, diamagnetic terms may appear explicitly
if the formalism is suitably chosen [84, 85].

Spin-dependent terms arise via the action of the Dirac matrix Ę in (12-36)
on the four-component wavefunction. An example of how the nonrelativistic
spin-dependent terms are obtained from the c! 1 limit of the four-component
perturbation operator will be given below.

As it was shown in Section 12.2.1 the transformation from four- to two-
component form involves the momentum operator (see Eq. (12-7)). Minimal sub-
stitution Op ! Op C A in the Dirac equation yields operators upon transformation
to two-component form that include magnetic-field dependent terms (because of OA)
and sometimes the transformed magnetic perturbation operators can be identified
straightforwardly (e.g., in the ZORA case which will be discussed below). In two-
component formalisms, the effects of relativity in the perturbation operators tend to
show up in two ways: First, spin-dependent terms are obtained straightforwardly.
Second, compared to the nonrelativistic limit the operators are modified – some-
times severely – typically in the near-nucleus regions where these modifications take
care of mass–velocity and other effects. One might think of those relativistic mod-
ifications as “kinematic terms” that take care of special relativity in regions where
the electrons are very fast (near the nuclei). One may also conceptualize these mod-
ifications as picture change effects. The presence of �
 from external perturbing
fields in the Dirac Hamiltonian gives rise to additional terms upon transformation to
two-component form. Note that �
 appears both in the Dirac and in the nonrelativis-
tic Hamiltonian. In two-component formalisms, the leading term is also �
, with
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additional picture change corrections to the operator of order c�2 (which therefore
vanish again when c ! 1).

Consider the ZORA Hamiltonian as an example. Upon the substitution Op !
Op C A and consideration of a perturbing electric potential one obtains

OHZORA D V C 1

2
ŒE�s. Op C A/�KŒE�s. Op C A/� � 
 C p.c.t. (12-37)

where “p.c.t.” denotes additional picture change terms of order c�2 resulting from
the transformation of the electric potential to two component form (there is an elec-
tric field-dependence of K) [87]. Perturbations of the metric are neglected here for
brevity. By using .E�s

OA/.E�s
OB/ D OA OB C i E�s � OA � OB for general vector operators

OA; OB, Eq. (12-37) may be expanded as follows:

OHZORA D V C 1

2

�
OpK Op C i E�s. OpK/ � Op (12-38a)

C OpKA C AK Op C i E�s Œ Op � .KA/C A � .K Op/� (12-38b)

C KA2

�
� 
 C p.c.t. (12-38c)

The first row, (12-38a), is the field-free ZORA operator OH.0/
ZORA given in

Eq. (12-14b). The remain terms arise from the presence of a field are therefore the
ZORA perturbation terms:

OHpert
ZORA D 1

2

�
Œ OpKA C AK Op C i E�s Œ Op � .KA/C A � .K Op/�C KA2

�

�
 C p.c.t. (12-39)

Just like in the nonrelativistic formalism, when using standard gauge choices for
A the two-component method affords paramagnetic and diamagnetic terms when
magnetic properties are considered. We can also see that the nonrelativistic limit,
Eq. (12-35), is smoothly obtained from (12-39) when letting K ! 1 (p.c.t. are
of order c�2 and vanish in the nonrelativistic limit). The fact that the function
K acts as a “kinematic correction factor” in the vicinity of the nuclei is seen in
Figure 12-4 where K is plotted as a function of electron–nucleus distance for the
Coulomb potential of a Z D 50 point nucleus. In regions of weak potential K is
very close to unity but it drops to zero at the nucleus where the potential approaches
�1. It is there that the ZORA and the nonrelativistic operators differ the most. For
an extended nucleus K remains finite but it is very small at small r .

For many other types of variationally stable two-component relativistic
Hamiltonians the operators are obtained via a series of successive transformations
(typically implemented in discretized form as a series of matrix transformations),
not as a closed form expression. In the presence of fields, modified transformations



548 J. Autschbach

10–5 0.001 0.1 10

0.2

0.4

0.6

0.8

1.0

r

Figure 12-4. The function K of the ZORA operator plotted versus the electron–nucleus distance r for a
Coulomb potential of a bare point nucleus of charge Z D 50, in atomic units. Note the logarithmic scale
of the abscissa. For K ! 1 the perturbation operators of Eq. (12-39) become equal to the nonrelativistic
operators of Eq. (12-35)

have to be carried out to obtain the perturbation operators to account for the field
effects. For examples of such transformations that were implemented within the
DKH and IORA frameworks see, for example [33, 36–38, 40, 88]. We also point to
work by Fukui et al. [40, 89] who reported a NMR nuclear shielding implemen-
tation based on the infinite-order Foldy–Wouthuysen transformation proposed by
Barysz and Sadlej which is described in detail in another chapter. As an example,
for comparison with ZORA where the relativistic corrections in the operator show
up as relativistic “kinematic factors” K in the operators (which approach unity in
the nonrelativistic limit), it is interesting to take a look at the magnetic perturba-
tion operators in the DKH formalism. The discussion below closely follows the
derivation of Melo et al. [38]. Let (me D 1)

Ep D c
p
p2 C c2I K D

s
Ep C c2

2Ep

I R D c

Ep C c2
(12-40)

The perturbation operator in the DKH1 scheme (first-order DKH) is then [38]

Here, K and R can also be thought of kinematic factors modifying the opera-
tors compared to the nonrelativistic limit. Because of the frequent occurrence of
p2 the DKH operators are usually computed in a basis where the operator p2 is
diagonal and subsequently transformed back to the original basis representation.
A diamagnetic term of order A2 is not obtained at the DKH1 level. In the
nonrelativistic limit, Ep ! c2; K ! 1;R ! 1=.2c/, and the paramagnetic part
of OH pert

nrel is obtained. The expressions for DKH2 are lengthier but also contain sim-
ilar kinematic factors. At the DKH2 level a diamagnetic operator is obtained which

OH pert
DKH1 Dc

�
KŒR OpAC OpAR�KCi�KŒR Op � AC Op � AR�K

�
��Cp.c.t. (12-41)
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has the nonrelativistic operator A2 as its c ! 1 limit. See [36, 38] for explicit
expressions of the DKH2 perturbation operators and further details.

The Pauli operator affords severe singularities for Coulomb potentials (point
nuclei) and the magnetic perturbation operators associated with it are not so well-
behaved either. Within a first-order perturbation scheme to treat relativity, response
functions for molecular properties can still be calculated in many cases. The per-
turbation operators can be derived analogous to the ZORA case, i.e., after minimal
substitution in the Dirac Hamiltonian the resulting operator is transformed to the
approximate two-component form. Some of the operators that arise from this trans-
formation are obtained when substituting Op ! Op C A in the one-electron Pauli
Hamiltonian, Eq. (12-12). An extensive list of operators relevant for magnetic reso-
nance has been given by Manninen et al. [56]. See also the books by Moss [16] and
Harriman [73].

Specific forms of the operators needed for computations of response proper-
ties depend on the type of perturbation. For electromagnetic fields, a low-order
truncation of the multipole expansion yields for the scalar potential


.r/ D �F � r � 1

2
rT Gr (12-42)

where F and G are the electric field vector and the electric field gradient tensor
at the coordinate origin, and superscript T indicates vector/matrix transposition.
The electric field may be static or time dependent and characterized by an ampli-
tude parameter F (which is then chosen as the perturbation parameter), a frequency
!, a wave vector k, and a Jones vector which defines the wave’s polarization.
For a homogeneous static field there is only the dipole term present. As already
mentioned, the potential 
 enters the one-electron potential energy part of the
Hamiltonian by multiplying with the electron charge �e D �1 au. Often, even
for time-dependent fields only the first term, the electric dipole term, is retained
when electric properties are to be evaluated which is justified in the limit of long
wavelengths.

The vector potential for static or time-dependent electromagnetic fields may be
chosen as

A.r/ D �1
2

r � B (12-43)

which, for electromagnetic waves corresponds to the lowest-order term of the
multipole expansion of the vector potential around the origin. B is the static or
time-dependent magnetic field which may also be characterized by an amplitude
parameter F , a frequency !, a wave vector k, and a Jones vector. The vector
potential (12-43) is of the same order in the multipole expansion as (12-42). For
a homogeneous static field the higher order terms vanish.
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The vector potential associated with a point magnetic dipole m (e.g., a nuclear
spin magnetic dipole moment) is given by

A.r/ D 1

c2

m � r

r3
(12-44)

where the dipole is located at r D 0. For nuclear magnetic properties, for example,
one needs the vector potential associated with the set of nuclear magnetic dipoles,

Anuc D
NucleiX

A

Anuc
A .r/ D 1

c2

NucleiX
A

mA � rA

r3
A

(12-45)

From (12-43), the corresponding magnetic field is Bnuc D r � Anuc. If an extended
nucleus is considered one needs to adopt a model for the shape of the nucleus. For
instance, given its charge density %nuc

A , the vector potential is

Anuc
A .r/ D � 1

c2
mA � r

Z
d 3R � %

nuc
A .R/=ZA

jr � Rj (12-46)

We assume point nuclei later on for simplicity but keep in mind that finite-nucleus
correction terms may be included in computations of “nuclear” properties by adopt-
ing a nuclear charge model and using Eq. (12-46) instead of (12-45). Note that
(12-46) yields (12-45) for a point charge density %nuc

A D ZA � ı.R � RA/. The
consideration of effects from a finite nuclear volume on the hyperfine structure of
heavy atoms has a long history. Conceptually, one may distinguish between two
types of finite nucleus effects: One type stems from the change in the electronic
structure due to the finite nuclear volume [90, 91] which is greatly amplified by
relativistic effects. In DFT calculations, this concerns mainly the near nuclear tails
of the Kohn–Sham orbitals. In response property calculations another effect arises
from modifications of the perturbation operators due to the finite distribution of
the nuclear current density causing the nuclear magnetic moment. Finite nucleus
effects on hyperfine structure have been discussed in the literature as early as the
nineteen thirties [92–99]. Consideration of finite nuclear current–density distribu-
tions affecting the hyperfine structure of heavy elements dates back to early nineteen
fifties publications by A. Bohr and V. F. Weisskopf [95,96]. See also [97]. Recently,
there have been two publications specifically devoted to computations finite nucleus
effects in relativistic molecular property calculations, one on hyperfine coupling
constants [100] and one on NMR spin–spin coupling [64]. Both used a spherical
Gaussian nuclear model [44]

�Gauss
A .R/ D ZA

�
%A



�3=2

e��AjR�RAj2 (12-47)
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where the parameter %A defines the radial extension of the nucleus. The finite
nucleus magnetic vector potential is in this model

AGauss
A D 1

c2

�A � rA

r3
A

� P.3
2
; Qr2

A/ (12-48)

where QrA D p
%rA. Further, P is the lower incomplete gamma function ratio

P.a; x/ D 1

� .a/

Z x

0

dt ta�1e�t (12-49)

which has the effect of ‘damping’ the point nucleus vector potential at distances very
close to the nuclear radius [64]. At larger radii, P.3

2
; Qr2

A/ approaches one. Its effect
is qualitatively somewhat similar to how the function K in Figure 12-4 regularizes
the relativistic ZORA Hamiltonian.

We shall now provide expressions for some important operators that are relevant
for many computations of molecular response properties. We begin with their non-
relativistic form. The electronic Hamiltonian term due to a homogeneous electric
field F (or, for inhomogeneous fields, to first order in the multipole expansion) is
described by the one-electron operator �
 which therefore yields

OHelec
nrel D �F � Od ; (12-50)

where Od D �r is the electric dipole moment operator for an electron. Considering
magnetic fields from the nuclear spins (needed for NMR and for EPR hyperfine ten-
sors, for instance) and from an external field, upon substitution of A D Aext C Anuc

into (12-35), with Aext from Eq. (12-43) and Anuc from Eq. (12-45), yields the
magnetic perturbation operators

OHmag
nrel D OHDM C OHOZ C OHSZ C OHOP C OHDS C OHF C C OHSD C OHOD

(12-51)

with

OHDM D 1

4
.r � B/ � .r � B/ (12-52a)

OHOZ D � O�e � B D �1
2
.r � Op/ � B (12-52b)

OHSZ D � O�s � B D 1

2
E�s � B (12-52c)

OHOP D 1

c2

X
A

mA

�rA

r3
A

� Op	 (12-52d)
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OHDS D 1

2c2

X
A

�
.mA � B/.

rA

r3
A

� r/� .mA � r/.B � rA

r3
A

/

�
(12-52e)

OHF C C OHSD D 1

2
E�s � Bnuc D 1

2c2

X
A

E�s

�
mA.r � rA

r3
A

/ � .mA � r/rA

r3
A

�

(12-52f)

OHOD D 1

2c4

X
B¤A

.mA � mB /.rA � rB/ � .mA � rB /.mB � rA/

r3
Ar

3
B

:

(12-52g)

Here, (12-52a) is the operator for the diamagnetic magnetizability, (12-52b) is
the orbital Zeeman term, (12-52c) spin Zeeman, (12-52d) paramagnetic orbital,
(12-52e) diamagnetic shielding, (12-52f) Fermi-contact C spin-dipole, (12-52g)
diamagnetic orbital term, respectively. The terms (12-52d) to (12-52g) are the
nuclear hyperfine terms. The individual FC and SD operators, in particular the
well-known ı distribution term for FC, are obtained by explicitly carrying out
the differentiation of rA=r

3
A in (12-52f). The first term on the right hand side of

(12-52f), yields 3/2 of the FC operator, while the second term yields -1/2 FC plus
the SD operator. One obtains the more familiar expressions

OHF C D 8

6c2
ı.rA/mA � E�s (12-53a)

OHSD D 1

2c2
� 3.E�s � rA/.mA � rA/ � r2

AmA � E�s

r5
A

(12-53b)

In (12-52b), O�e D �.1=2/.r � Op/ is the magnetic moment operator for an electron’s
orbital motion. By comparison of (12-52b) with (12-52c) the magnetic moment
operator with respect to an electron spin degree of freedom is O�s D �E�s=2.
The nonrelativistic limit has been obtained from the Dirac equation where the
electronic g-factor is exactly 2 and not written explicitly. Experimental evidence
and more sophisticated theoretical treatments show that the correct value is rather
ge D 2:0023 : : : The electronic g-factor can be included via factors of .ge=2/ in the
spin-dependent operators where applicable. In the operator list the nuclear Zeeman
terms, �mA � B for each nucleus, were omitted because they do not contribute to
the electronic energy of the molecule.

In two-component theories one obtains relativistic analogs of these operators,
along with additional correction terms. The relativistic analogs of the FC term rep-
resent an extreme example for what might be called a picture change effect. With
point nuclei, the two-component orbitals diverge at the nuclei as shown elsewhere
in this book. Therefore, one must not use the nonrelativistic operators for rela-
tivistic computations of magnetic properties. The FC operator, for instance, would
simply yield diverging matrix elements as the basis set approaches completeness,
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and at best yield arbitrary results with a finite basis that does not include functions
with singularities at the nuclei. The problem would be somewhat less severe when
finite-nucleus models were used but there is still no justification for using the non-
relativistic magnetic perturbation operators with a relativistic set of orbitals or a
relativistic wavefunction.

As an example for how these operators are modified in a relativistic formalism
consider the ZORA: substituting A D Aext C Anuc in the ZORA perturbation terms
operators (12-39), with Aext from Eq. (12-43) and Anuc from Eq. (12-45) yields,
among other terms, the ZORA analog of the sum of FC and SD operators:

OHF C CSD
ZORA D 1

2c2

X
A

E�s

�
mA.r �

�
KrA

r3
A

�
/� .mA � r /

�
KrA

r3
A

��
(12-54)

The ZORA analog of the Fermi-contact term itself is given by (2/3) of the first
term in (12-54). For nuclear point-charge potentials with Z approximately 118
or less the factor of K in the ZORA hyperfine terms (see Figure 12-4) regular-
izes the operator and as a result there is no actual “contact” (delta-distribution
like) term for point nuclei. Even with a relativistically diverging set of orbitals
the matrix elements of these operators remain finite. The physical mechanism of
the ZORA FC/SD is nonetheless quite similar to the nonrelativistic analogs: the
operator induces/samples electronic spin density very close to the nuclei. Other
magnetic-field operators are in the ZORA also modified by the presence of K in per-
turbation operators that otherwise look quite similar to their nonrelativistic analogs.
As an example, using Coulomb gause the OP term (12-52d) appears in the ZORA
formalism as

OHOP
ZORA D 1

2c2

X
A

�
mA � K.rA

r3
A

� Op/C mA � .rA

r3
A

� Op/K
�

(12-55)

which also has a structure similar to the nonrelativistic operator except for the pres-
ence of K. For the ZORA analogs of other magnetic perturbation operators we refer
the reader to the original literature on ZORA NMR [1, 2, 4, 5].

In the four component formalism, using the standard gauge for the vector
potential and assuming point nuclei, the magnetic-field perturbation operators are
according to Eq. (12-36)

OHmag
Dirac D �c

2
Ę � .r � B/C 1

2c
Ę �

NucleiX
A

mA � rA

r3
A

(12-56)

As already mentioned, in this representation there are no perturbation operators
bilinear in A to be considered. As it is the case for the nonrelativistic and the two-
component methods, the nuclear hyperfine terms in the Dirac formalism heavily
weigh the near-nuclear region. The electric-field perturbation operator is the same
as in Eq. (12-50).
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We note in passing that additional magnetic perturbation operators are obtained
from making the minimal substitution in relativistic two-electron operators such as
the two-electron spin–orbit and Darwin terms, or in the SOO term (12-18).

For electric-field perturbations, the operator modifications due to the transfor-
mation to two-component form tend to be less dramatic. Since �
 is the leading
order one might use it directly as an approximation in two-component methods.
For external electric-field operators, which may be written in terms of real spheri-
cal harmonics, it can be shown that the spin-free Pauli-operator picture-change term
of order c�2 vanishes and only a spin–orbit correction term remains. Its presence
is expected to lead to comparatively small effects on dipole moments, polarizabili-
ties, and other electric-field related properties as long as a closed-shell molecule is
considered [87]. Electric-field gradients (EFGs) and higher field-derivatives evalu-
ated at the nuclear positions are an exception because of the large magnitude of the
operators at the nuclei.

Instead of correcting the picture-change in the operator, it is also possible to
reconstruct an approximate four-component density and its field-dependent per-
turbations. For example, for first-order derivative properties the four-component
density or density matrix can then be integrated with the untransformed operator.
This approach can eliminate picture-change effects of order c�2 and has been used,
for example, by van Lenthe et al. to compute EFG tensors using the ZORA [9]
(the method was termed ZORA-4). Recently, Mastalerz et al. have studied picture-
change effects on EFGs using higher order DKH transformations [101] of the EFG
operator. As an example, for the iodine EFG in the HI molecule scalar relativistic
DKH result dropped by 11% upon inclusion of picture-change effects. This change
amounted to about 39% of the total relativistic correction and is therefore highly
significant. For comparison, the picture-change corrections between ZORA and
ZORA-4 reported by van Lenthe et al. for the nuclear quadrupole coupling con-
stant of iodine in HI amounted to 5% of the total. Spin–orbit effects were on the
order of 3% in this case.

12.2.6. Hyperfine Operators: from Four to Two to One Component
and the Nonrelativistic Limit

It is interesting to see how the nonrelativistic limit and approximate two-component
versions for matrix elements of the magnetic perturbation operators are related.
The transition from the nonrelativistic Fermi-contact hyperfine operator to its “non-
contact” relativistic versions to its four-component version contained in (12-56)
is perhaps one of the most drastic examples of a relativistic operator change. We
therefore choose this operator for the following analysis. For simplicity, consider a
one-electron atom with a point nucleus at the coordinate origin (r D 0). The discus-
sion shall be restricted to s-orbitals (for all other orbitals the nonrelativistic FC term
yields vanishing matrix elements, and for s-orbitals one can ignore the other hyper-
fine operators). The following discussion has been adapted from [102]. See also
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[103, 104] where analytic expressions of four-component hyperfine integrals and
their nonrelativistic limits have been reported. Consider a hydrogen-like Dirac
s-orbital for a point nucleus:

 C
D D 1p

4

0
BB@

gD.r/

0

ifD.r/ � cos &
ifD.r/ � sin &ei�

1
CCA I  �

D D 1p
4

0
BB@

0

gD.r/

ifD.r/ � sin &e�i�

�ifD.r/ � cos &

1
CCA (12-57)

where the indices C and � denote the sign ofmj D ˙1=2 [16,105]. The real radial
functions for the upper (gD) and lower (fD) component are given by the coupled set
of radial equations for GD D r � gD and FD D r � fD:

d

dr
FD � k

r
� FD �

�
V � "D

c

�
�GD D 0 (12-58a)

d

dr
GD C k

r
�GD C

�
V � "D

c
� 2c

�
� FD D 0: (12-58b)

where k D �1;�2;�3; : : : for s1=2, p3=2, d5=2, . . . orbitals, and C1;C2;C3; : : :
for p1=2, d3=2, f5=2, . . . orbitals [106]. Further, "D D ED � c2, with ED being the
Dirac orbital energy that includes the rest-mass energy of mec

2. The normalization
is chosen in the usual way such thatZ 1

0

dr � r2.g2 C f 2/ D 1: (12-59)

The hyperfine perturbation operators relevant, for instance, for a computation of
nuclear spin–spin coupling or spin–orbit contributions to nuclear magnetic shielding
are obtained by differentiating the terms in OHmag with respect to a Cartesian com-
ponent of the nuclear spin moment mA (see the NMR Section 12.3.1). We select
the z-component for convenience. I.e., we have from (12-53a) the nonrelativistic
perturbation operator

OH.mz/
nrel D 4

3c2
�zı.r/ (12-60)

(letting rA D r for the nucleus in the coordinate origin). From (12-54) one obtains
for the isotropic part of the ZORA “contact” operator

OH.mz/

Z D 1

3c2

h
�zr



K r

r3

�i
; (12-61)

and in the four-component case

OH.mz/
D D �1

c

h
Ę � r

r3

i
z
; (12-62)
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In the nonrelativistic case, the expectation value of Ohz
nrel for s-orbitals is simply

h ṅrelj OH.mz/
nrel j ṅreli D ˙ 1

3c2
gnrel.0/

2 (12-63)

where gnrel.0/ is the value of the nonrelativistic (one-component) radial function
at the nucleus, and the ˙ signs refer to alpha or beta spin. The factor of 4 of
Eq. (12-60) is canceled by the normalization factor of  .r/ due to the integra-
tion over the angles & and 
. Equation (12-63) represents the well-known result
that the matrix elements of the FC operator are proportional to the integrand at the
point-nucleus and are therefore only nonzero for s-orbitals. For better comparison
with the relativistic case it is convenient to employ r.r=r3/ D 4ı.r/, apply par-
tial integration to move the derivatives from the operator to the orbital, and rewrite
(12-63) as

h ṅrelj OH.mz/
nrel j ṅreli D � 1

3c2

Z 1

0

dr �
�
dgnrel

dr
gnrel C gnrel

dgnrel

dr

�
(12-64)

For the ZORA case, also after partial integration to shift the derivative in the operator
to the orbital, we have for the matrix element of (12-61)

h ˙
Z j OH.mz/

Z j ˙
Z i D � 1

3c2

Z 1

0

dr �
�
dgZ

dr
KgZ C gZKdgZ

dr

�
: (12-65)

for mj D ˙1=2. Here, gZ is the ZORA radial function which, as mentioned previ-
ously, has a logarithmic divergence at r ! 0 for a point nucleus. The nonrelativistic
FC operator would therefore yield a diverging matrix element with gZ but the K
term in the ZORA operator regularizes the result (at the nucleus where gZ ! 1
we have K ! 0). The nonrelativistic limit is straightforward: with K ! 1 and
gZ ! gnrel the result is identical to (12-64).

In the four-component case, we use in (12-62)

. Ę � r/z D sin &
r2

0
B@

0 0 0 sin' C { cos '

0 0 sin' � { cos ' 0

0 sin' C { cos ' 0 0

sin' � { cos ' 0 0 0

1
CA

in spherical coordinates .r; '; &/. One obtains with the four-component orbitals
from Eq. (12-57) after integration over the angular variables

h Ḋ j OH.mz/
D j Ḋ i D � 2

3c

Z 1

0

dr � .gDf D C f DgD/ (12-66)

(the integrand has intentionally been written in this form to resemble the nonrela-
tivistic and ZORA result). There is no derivative term here but we will see shortly
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that the nonrelativistic limit with its derivative term arises from the product of the
upper and lower component in (12-66) which originates from the action of Ę in the
perturbation operator. Note that there is also a derivative term in the approximate
two-component form (ZORA) which indicates that the derivative term must enter
via the relationship between the upper and lower components of the Dirac orbital.
This is indeed the case as can be seen from Eq. (12-7) where the derivative enters
via Op D �{r . The nonrelativistic limit of (12-66) can be obtained from the nonrel-
ativistic limit for the coupled pair of radial equations for g and f , Eq. (12-58a,b).
For c ! 1, the .V � "D/=c term in (12-58b) can be neglected and thus

Fnrel D 1

2c

�
dGnrel

dr
C k

r
�Gnrel

�
: (12-67)

For s-orbitals, k D �1. One obtains the following relationship between upper and
lower component,

fnrel D 1

2c

dgnrel

dr
(12-68)

which indeed yields the derivative term. Substituting the last expression in the
hyperfine integral, Eq. (12-66) finally recovers the nonrelativistic result (12-64).

In summary, the perturbation operators in the four-component picture cannot
be directly compared to those arising from the two-component picture or in the
nonrelativistic limit because part of their action is hidden in the coupling between
the upper and lower components of the wavefunction or the orbitals, both at the
unperturbed level as well as regarding the coupling between upper and lower com-
ponents in the perturbed spinors. The apparent absence of derivative terms in the
four-component perturbation operators or the apparent absence of a diamagnetic
term is a manifestation of this situation.

12.2.7. Where in the Molecule Do the Properties “Originate” from?

In the Introduction and various other sections the “origin” of a property (energy,
response property) of a molecule was mentioned. It is sometimes helpful to know
which regions in a molecule contribute most to a given property in order to under-
stand, for example, why it affords or does not afford large relativistic corrections.
For this purpose, consider first the energy itself written as an expectation value in
space representation (� D 3N spatial electron coordinates, s D spin coordinates of
the electrons):

E D h‰j OHj‰i D
Z
d�ds �‰�.�; s/ OH‰�.�; s/ (12-69)

This result is of course a single number, but the fact that it is obtained from an inte-
gral over 3N dimensional space suggests that one can learn something about the
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origin of the energy in terms of spatial contributions.8 Extended regions of space
where the integrand is large will contribute more to the energy than regions where
the integrand is small. The partitioning of the energy is arbitrary: no particular par-
titioning is made compulsory by the fundamental axioms of quantum theory. This
allows a certain freedom of interpretation. However, for a property analysis to be
useful it should not yield completely arbitrary interpretations from various different
partitioning schemes. Some researchers reject energy and property analyses because
of this freedom of interpretation. However, most chemists probably find them useful
and quite intuitive as long as they are able to avoid strong elements of arbitrariness
in such analyses.

For the energy above one may use the fact that in exact theory OH‰ D ‰ �E and
therefore, after integrating (12-69) over all spin and all but one spatial coordinates,
we have

E D E

N

Z
d 3r � �.r/ (12-70)

where N is the number of electrons and �.r/ the electron density. Based on this
equation the main spatial contributions to the energy will be those where the
electron density provides the largest contributions to the integral (irrespective of
whether the energy expression is relativistic or nonrelativistic). The biggest contri-
butions come from the ourter atomic core shells and from the valence regions of the
molecule, not so much from spatial regions that are very close to the nucleus. The
function ".r/ D .E=N/�.r/may be called the energy density for the molecule, i.e.,

E D
Z
d 3r � ".r/: (12-71)

It must be emphasized again that the definition of the energy density is not unique.
The chapter by Schwarz illustrates how a perturbation theory based formalism
allows one to associate the core regions (where the electrons ‘are fast’) with the
relativistic changes of orbital and binding energies in atoms and molecules.

One can follow a similar approach for a molecular property. For instance, sup-
pose we have a first-derivative one-electron property P with operator OP.�/. The
expectation value is

P D h‰j OP j‰i D
Z
d�ds �‰�.�; s/ OP‰�.�; s/ D

Z
d 3r � P.r/ (12-72)

where, after integration over spin and all but one spatial coordinates, the integrand
of the remaining 3D integral may be called the “property density” function P.r/.
Property densities can also be derived for higher-order derivative properties such
as hyperpolarizabilities [107, 108]. Again, from (12-72) one can identify regions of

8 If the momentum representation is chosen one obtains contributions from different electron momenta
instead which can be useful, too, but may often be less intuitive for chemical applications.



Relativistic effects on NMR, EPR, and other properties 559

space that contribute the most to the property. Different property density functions
are obtained by manipulating the integrand without changing the integrated results.
For instance, transformations like

R
dx � f r2g D � R dx � .rf /.rg/ for square

integrable functions might be employed to obtain somewhat different property den-
sities. We also note that the integrand of the combined three terms in (12-21b) is
different than that of the simpler Hellmann–Feynman equation (12-25) which means
that spatial contributions to the first-derivative property will differ depending on
which equation is used.

Another intuitive way for partitioning expectation value integrals is obtained
in molecular orbital methods. Typically, in this case a property can be written
as a sum over integrals involving the occupied orbitals or products of occupied
with unoccupied orbitals. Instead of partitioning the total per spatial contributions
from the integral, one carries out the integration for each MO separately and parti-
tions the property per MO instead. For the MO basis, a localized or a delocalized
description may be chosen which often yield complementary (but usually not con-
tradictory) information about the origin of the property. In (Kohn–Sham) DFT an
orbital partitioning of energy and properties is essentially “built into” the formalism
since the electron density is constructed from the Kohn–Sham MOs. In corre-
lated wavefunction-based methods one can, for instance, express the density matrix
in terms of natural orbitals which would also lead to a convenient orbital-based
partitioning of one-electron properties.

An orbital partitioning can be complementary to a space partitioning. For
example, suppose the integrand in Eq. (12-72) indicates that a property has large
contributions from the core regions in the molecule (the regions very close to the
nuclei). An orbital analysis of the same property might indicate that the core orbitals
are the main, or among the main, contributors. In this case it would be reasonable to
identify the property as a core property. The NMR nuclear magnetic shielding is a
good example for such a property. On the other hand, an orbital partitioning might
determine instead that valence orbitals are the biggest contributors to a property for
which a spatial analysis finds that core regions play a big role. This appears contra-
dictory. We note, however, that valence orbitals have core tails. The two analyses
can be reconciled if the core tails of the valence orbitals near the nuclei determine
the major contributions to the property. In this case, the interpretation would rather
be that the property is a “chemical” one determined by the valence orbitals, but that
it strongly weighs the atomic core regions because the property operators are large
there. A prime example for such a valence property determined by the core tails of
the valence orbitals is the indirect NMR nuclear spin–spin coupling (J -coupling).
In Section 12.3.1 spatial and orbital contributions to the nuclear spin–spin cou-
pling in the PbH4 molecule will be used as an example for the types of analyses
discussed in this section. Another example is the NMR chemical shift for which
most of the core-region–core-orbital contributions cancel and only the core-region–
valence-orbital contributions are of importance (along with semi-core (outer core)
contributions). Electric-field gradients also fall into this category, as well as some of
the relativistic effects on molecular binding energies. A third, rather clear-cut sce-
nario is one where the spatial analysis indicates that the origin of the property is the
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valence region, and the orbital analysis finds that the valence orbitals are responsible
for the property. In this case the property would reasonably be identified as a valence
shell property. The electric polarizability is an example.

Core and valence orbitals are directly impacted by relativistic effects. For valence
shell properties, particularly large relativistic effects are obtained if the prop-
erty operators are large in the core regions of the heavy atoms. According to
Section 12.2.5, large relativistic effects should therefore be expected for heavy
nucleus chemical shifts or J -couplings of heavy nuclei or EFG tensors of heavy
nuclei. For such properties relativistic effects can be very large indeed – to the point
where relativistic “correction” becomes a questionable term, as already indicated
in the introduction. Genuine core properties may also afford very large relativistic
effects. For other valence properties, relativistic effects are often of similar rela-
tive magnitude as those on the binding energies. Examples are dipole moments,
polarizabilities, vibrational frequencies, or excited state properties.

12.3. BENCHMARK DATA AND CASE STUDIES

In this section we provide some more details about the computation of specific prop-
erties: NMR, EPR, and EFG tensors, and polarizabilities along with linear-response
based excitation spectra calculations. With the help of selected case studies, it will
be shown how relativity influences these energy-derivative properties for molecules
with heavy atoms. This section is not intended to provide a comprehensive coverage
of the literature in this field, which is vast. There are a number of review articles
available where the reader can find additional compilations of literature data and
detailed overviews of the computational methodology for many different response
properties which often include a survey of computational data obtained with rela-
tivistic methods. To list a selection of overview articles that include applications of
computational methods in inorganic chemistry: Rosa et al. have reviewed the com-
putation of excitation spectra of metal complexes [109]. Autschbach [61, 110], and
Autschbach and Ziegler [62, 111] have reviewed computations of energy and many
energy-derivative properties (NMR, EPR, optical, chiral, and others). We have also
compiled the first dedicated review of relativistic NMR computations which covers
the literature up to mid 2002 [12a], with a recent update covering literature up to
2009 [12b]. Bühl, Kaupp, et al. have reviewed the computation of NMR in metal
systems [112, 113]; a number of relativistic NMR studies by Bagno et al. were
summarized in [114]. Several researchers have reviewed computational work on
NMR and EPR parameters in [115]; see for instance Neese’s chapter on EPR appli-
cations in bioinorganic chemistry [116] and the EPR chapter by Patchkovskii and
Schreckenbach [117], or the author’s and Vaara et al.’s chapters on relativistic NMR
[118–120]. [115] also contains a chapter on EFG calculations by Schwerdtfeger et
al. [121]. NMR chemical shift computations using ab-initio methods were recently
reviewed by Casabianca and de Dios [122]. A selection of reviews on a variety of
topics including general aspects of transition metal complex modeling can be found,
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for example, in the February 2000 thematic issue of Chem. Rev. entitled “Com-
putational Transition Metal Chemistry” and in a “Theoretical and Computational
Chemistry” special issue of Coord. Chem. Rev. (Vol. 238/239, March 2003). The
“Chemist’s Guide to Density Functional Theory” by Koch and Holthausen [123]
provides numerous benchmark data for structure, energy, reactivity, and optical and
spectroscopic data obtained with DFT including some for heavy atom systems and
heavy metal complexes.

Because of the high computational cost of correlated wavefunction-based
relativistic methods, and because of the rather poor performance of Hartree–Fock
theory for many response properties other than first-derivative properties, there will
be a strong emphasis on computational data obtained with density functional theory
(DFT) in this section. DFT has become the major theoretical tool in this area which
is clearly reflected in the available reviews.

The discussion begins with NMR parameters. This section will be particularly
detailed because of the high importance of spin-free and spin–orbit relativis-
tic effects as well as an abundance of experimental data. The computation of
EPR parameters is conceptually related to those of NMR parameters and will be
discussed next. Electric polarizabilities and electric field gradients will serve as rep-
resentative examples of electric properties that have been studied extensively using
relativistic methods. Some examples for computations of excitation energies via the
TD–DFT response route will be included here as well.

Often, the (actual or generalized) fields perturbing the energy are 3-vectors, for
example external electric and magnetic field vectors, or spin-vectors and nuclear
magnetic moment vectors in 3D space. First derivative properties then have thre
components which transform as rank-1 tensors (vectors). Second derivatives trans-
form as rank-2 tensors, and so on. Often, for the rank-2 tensor properties we will
focus on the isotropic averages given by 1/3 of the sum of the diagonal elements
of the tensor. We will use the notation A for the tensor and A (math-italic) for
the isotropic value. Sometimes an anisotropy value �A will also be of interest.
Another property under consideration here is the electric field gradient which is a
first-order energy derivative and a rank-2 tensor. Here, we will focus on the principal
components, in particular on the one with the largest magnitude.

12.3.1. NMR Parameters

Two important NMR parameters, the nuclear magnetic shielding (tensor) and the
“indirect” electron-mediated nuclear spin–spin coupling (tensor), are among the
molecular properties that exhibit the most spectacular relativistic effects. We will
forgo a discussion of the direct dipolar coupling between nuclei since (i) it does not
involve the electronic structure and thus it is not affected by relativistic effects (other
than indirectly, via relativistic effects on molecular structure) and (ii) it averages to
zero for freely rotating molecules (gas phase and most solutions). As mentioned in
Section 12.2.7, the origin of a molecular property can be analyzed spatially or by
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orbital contributions. The NMR operators are large in the nuclear regions where rel-
ativistic effects on the electronic structure are strong, which helps to rationalize why
relativistic effects are particularly large for these properties.

Consider the presence of nuclear spin magnetic moments mA;mB ; : : : of nuclei
A;B; : : : in a molecule, and a static homogeneous external magnetic field B. The
nuclear shielding �A and the indirect spin–spin coupling KAB are rank-2 tensors
that can be defined via the phenomenological Hamiltonians

H D �mA.1 � �A/B (12-73a)

for the shielding tensor and

H D mAKABmB (12-73b)

for the spin–spin coupling. �A is dimensionless and usually reported in parts per
million (ppm). KAB is in SI units given in T2/J or kg/(m2C2) and tends to be on the
order of one to several thousand times 1019 SI units. The isotropic shielding �A and
the isotropic spin–spin coupling constant KAB are obtained from (1/3) of the sum
of the diagonal elements of the tensors. The chemical shift ı is defined with respect
to a reference (ref) nucleus. In terms of shielding constants the chemical shift is
given as

ı D � ref � �

1 � � ref
(12-74)

which is to a very good approximation equal to � ref � � for chemical shifts of
light nuclei where �; � ref are small. The latter equation is often also used for heavy
element shifts where shielding constants can be as large as 104 ppm thus leading
to deviations on the order of a percent compared to (12-74). The reference can also
be a hypothetical shielding related to a well-defined spectrometer frequency, as it is
customary, for example, for 103Rh NMR [124].

Computationally, the problem is approached as follows: The energy of the
molecule is considered in the presence of the external magnetic field and the nuclear
spins. The spin–spin coupling and shielding are then, according to Eq. (12-73),
given by the energy terms bilinear in the magnetic moments (KAB ) and bilinear in
one of the magnetic moments and the external field (�A). Therefore, if the energy is
expanded in a perturbation series in the magnetic moments and the external field, the
NMR parameters are given by second-order energy derivatives with respect to static
perturbations, Eq. (12-25). NMR parameters are double perturbation properties.

The nuclear Zeeman term �mA � B is not considered in the electronic energy. It
accounts for the “1” in .1 � �A/ of Eq. (12-73a). Thus,

�A D E .mA;B / D @2E

@mA@B

ˇ̌
ˇ̌
mAD0

BD0

(12-75)
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and

KAB D E .mA;mB / D @2E

@mA@mB

ˇ̌
ˇ̌
mAD0
mBD0

(12-76)

Both expressions are also in formal agreement with the phenomenological
Hamiltonians (12-73). Measured J -coupling contstants are related to the rotational
average of the K -coupling tensor as

JAB D „
2
�A�BKAB (12-77)

with magnitudes typically on the order of a few to a few thousand Hz. The �s are
the nuclear magneto-gyric ratios in units of radians/s.

It should be emphasized that chemical shifts � and indirect nuclear spin–
spin coupling constants K are response properties of the electronic system. Their
measurement by NMR obviously relies on the presence of nuclear spins but the
computational result is not dependent on the nuclear spins, or on the magneto-gyric
ratios. Therefore, in the “clamped nucleus” approximation chemical shifts calcu-
lated for different isotopes of the same element are identical. Isotope effects on
chemical shifts, spin–spin coupling, and other response properties can be obtained
computationally from considering vibrational corrections or by treating the system
dynamically. If calculated J -coupling constants are reported, then obviously the
value depends on the isotopes via the magneto-gyric ratios (Eq. 12-77) whereas
the indirect couplings K are not isotope-dependent (unless vibrational corrections
are included).

The operators that are relevant for NMR parameters are the magnetic perturba-
tion operators that depend on the nuclear spins and/or the external field B. The
nuclear magnetic moments mA and the external field B are used directly as the per-
turbation parameters. For nuclear shielding, the 2Reh‰.Fj /j OH.Fi /j‰.0/i term of
Eq. (12-25) involves operators that are linear in the external field and those linear
in the magnetic moment mA. In nonrelativistic and two-component theories, these
are for the B field the spin- and orbital-Zeeman terms, and for mA the paramag-
netic term (OP) and the FC + SC operators (or their two-component analogs). In
four-component theory, the operators of Eq. (12-56) are used. We remind the reader
that ‰.Fj / is computed from OH.Fj / [see Eq. (12-22b) and therefore both sets of
operators are needed. Any operator that is bilinear in mA and B will contribute to
the h‰.0/j OH.Fi ;Fj /j‰.0/i term of Eq. (12-25) for nuclear shielding. This is the “dia-
magnetic shielding” (DS) operator (12-52e) or its two-component analogs, while in
4-component theory these contributions are absorbed in the paramagnetic terms as
mentioned earlier. For spin–spin coupling, the operators linear in mA, i.e., OP and
FC + SD or their two-component analogs, contribute to the 2Reh‰.Fj /j OH.Fi /j‰.0/i
term, and the bilinear OD term (12-52g) or its relativistic analogs contribute to the
diamagnetic h‰.0/j OH.Fi ;Fj /j‰.0/i term. Again, in four-component theory there are
only the linear c Ę Anuc terms to consider.
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Relativistic effects may show up in the results in several ways: (i) Via spin-free
relativistic effects on ‰.0/ and ‰.mA/, ‰.B/ along with the relativistic modifica-
tions in the operators (the “kinematic terms” mentioned earlier). (ii) Via spin–orbit
coupling terms. For instance, for a closed-shell system all cross terms between spin-
free operators and spin-dependent operators cancel in the 2Reh‰.Fj /j OH.Fi /j‰.0/i
term in the absence of spin–orbit coupling. However, these cross terms can become
quite large if spin–orbit coupling is appreciable, such as for elements in the 5d block,
for actinides, or for heavy p-block elements. (iii) Relativistic effects may substan-
tially alter the geometry of the molecule. This may be considered an indirect effect
that shall not be analyzed further in this chapter. I.e., here and in the following we
assume that a comparison between relativistic and nonrelativistic results is made for
the same (experimental or relativistically optimized) geometry.

This section represents an abridged version of Ref. [12b] where many more
examples can be found. It is illustrative to first discuss a simple system to demon-
strate the influence of relativity on NMR parameters. The plumbane molecule,
PbH4, has often served as a benchmark molecule for computations because it con-
tains one of the heaviest NMR-active nuclei but does not have other electron-rich
ligands that would lead to overly CPU intensive computations. Consider the Pb–
H spin–spin coupling constant. Some benchmark data for the Pb–H coupling in
PbH4 and other plumbanes are listed in Table 12-2. In particular the more recent
DFT computations based on hybrid DFT and including spin-free and SO effects
reproduce the experimental data quite well. Regarding the overall significance of
the relativistic effects: nonrelativistic computations typically yield results of only
half the magnitude, i.e., with the nonrelativistic results as the reference the rela-
tivistic “corrections” are on the order of 100%. Spin–orbit effects on K(Pb–H) are
quite noticeable but much smaller than the scalar relativistic effects. The MCSCF
computation by Kirpekar and Sauer did not include scalar relativistic effects but it
reproduced the magnitude of the SO effect onK(Pb–H) very well.

As we have seen, the “contact” operator (FC) is the one that samples the
electronic structure right at the nuclei. Its relativistic analogs sample the very near-
nuclear regions. This operator – because of its large prefactor – tends to dominate
most coupling constants, includingK(Pb–H) in PbH4, and it should also be the one
that samples relativistic effects most effectively. Figure 12-5 demonstrates the strong
influence of relativity and the importance of the core regions on the Pb–H spin–spin
coupling: In Figure 12-5 the FC-like contribution to the Pb–H coupling is partitioned
spatially, as in Eq. (12-72), and shown as a radial integral around the Pb nucleus.
We observe a number of details that are typical for spin–spin coupling involving
heavy elements: Overall, there is a huge relativistic increase in K(Pb–H) which,
percentage-wise, far exceeds relativistic effects usually found for structural param-
eters and bond energies of 6th row element compounds. Obviously, a bond will not
contract 100% due to relativity, and a molecule that is only very weakly bound non-
relativistically, but moderately strongly bound in the relativistic case, might afford
a very large percentage bond energy correction. But the large relativistic increase of
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Table 12-2 Reduced Pb–H spin–spin coupling constant in plumbanes, in 1020T2J�1

PbH4 Pb(CH3)2H2 Pb(CH3)3H

Spin-free ZORA
PBEa 118 95:9 86:1

PBE0a 134 112 103

BP86/X˛b 132 107 97:8

Spin–orbit ZORA
PBEa 110 88:0 78:6

PBE0a 126 104 95:0

BP86/X˛b 123 98:3 89:1

Selected other literature datag

IORA BLYPc 127 109

IORA B3LYPc 137 121

Dirac HFd 182 167

MCSCF C Pauli SOe 48
Nonrel. MCSCFe 56

Expt.f (112) 98:7 92:3

aAuthor’s DFT data with nonhybrid PBE and hybrid PBE0 functional [125].
bAuthor’s DFT data with nonhybrid BP86 potential and X˛ response kernel [5].
cSpin-free DFT calculations using an infinite-order regular approximation (IORA), Filatov and Cremer [33].
dFour-component basis Hartree–Fock computations, Enevoldsen et al. [126]. A scaled value for PBH4 to account for
electron correlation was given as 138.3.
eNonrelativistic MSCSF computations with first-order corrections from the Pauli SO operator, Kirpekar and Sauer [127].
fExperimental value for PbH4 extrapolated from the experimental data for the methyl derivatives Pb(CH3)3H and
Pb(CH3)2H2. Experimental data from [128]. An alternative experimental value for Pb(CH3)3H is 94.6, from [129].
gFor semiempirical data for PbH4 see [130] and [131]. For a DFT study with frozen cores using the scalar Pauli operator
variationally see [132].
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Figure 12-5. K(Pb–H) spin–spin coupling constant of PbH4 obtained from a radial integral of a “cou-
pling constant density” [cf. Eq. (12-72) around the Pb nucleus, from spin-free ZORA and nonrelativistic
(nrel) DFT computations with a local density functional [4]. The total computed coupling constant is
obtained as rPb ! 1. FC type mechanism only. ZORACsteep means that a range of high-exponent
(“steep”, “tight”) functions was added to the basis set in order to describe the relativistic effects near
the Pb nucleus better. A point nucleus was used for the computations. The radius of the Pb nucleus is
indicated in the figure
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the already large Pb–H coupling constant indeed nicely illustrates the very strong
effect that special relativity has on this NMR parameter.

Further note that most of the difference between ZORA and “nrel” results from
regions less than about 1/100 bohr radii around the Pb nucleus. The nonrelativistic
result is determined by this region to begin with, and most of the relativistic effects
also contribute in this region. This finding highlights the fact that the operators that
are involved are large near the nuclei. Another important finding is the large increase
observed for K(Pb–H) when high-exponent basis functions are added to the basis
set in order to describe the nuclear tails of the orbitals better. In general, comput-
ing relativistic NMR parameters requires basis sets that are particularly in the near
nuclear region. For a point nucleus, the analytic solutions of the one-electron Dirac
equation exhibit weak singularities for s1=2 and p1=2 orbitals. In a regular basis set
this behavior can be approximated by adding high-exponent basis functions, which
is necessary in particular if properties with “contact” -type operators are of inter-
est. In Figure 12-5 it is seen that the additional increase in K(Pb–H) indeed results
from regions very close to the nuclear radius. Although with finite nuclei no singular
terms arise, the importance of the near nuclear regions – and therefore basis sets to
describe the electronic structure there – is quite similar [64, 102].

The case is further illustrated in Figure 12-6 which shows the electron density
of the Hg atom obtained from numerical and basis set DFT computations. In a pre-
vious paper [4] we argued that adding too many “tight” functions to a basis set to
describe the strong increase of the density for radii less than the nuclear radius
is not particularly desirable. Treating the point nucleus correctly in this respect
would likely lead to an overestimation of the “contact” term magnitudes. The prob-
lem is somewhat alleviated if the basis set is restricted to provide good coverage
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Figure 12-6. Two component electron density of the Hg atom in the near nucleus region, from numerical
and basis set (markers) DFT computations [64]
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for regions outside the nuclear radius. Numerical evidence has been provided in
[64, 102]. Ultimately, though, when considering the data shown in Figure 12-5 it is
clear that for computations of nuclear spin–spin coupling it would be best to adopt a
finite-nucleus model. Such a study has very recently been undertaken [64] and con-
firmed that, when basis sets with many high exponent functions are used, one-bond
J -couplings between a 6th row NMR nucleus and a light elements can be reduced
on the order of 10% due to a finite nuclear volume (12% to 14% for Hg, Pb, and
somewhat below 10%, for example, for Pt, based on a Gaussian nuclear model),
mainly due to the modifications of the perturbation operators (see Eq. 12-48). Cou-
pling constants between two 6th row atoms were in some cases reduced by more
than 20%. Note, however, that most of the calculations presented here have been
obtained with a point nuclear model and basis sets as described above.

We have recently revisited the PbH4 case (along with other molecules) and
studied the coupling constant with an analysis method based on using spin-free
relativistic localized orbitals [133]. An analysis per canonical MO was also car-
ried out. The results are illustrated in Figure 12-7. Both spin-free and spin–orbit
results are provided. The important result from the orbital decomposition is that the
coupling constant is determined by the Pb–H bonding orbitals (i.e., by the valence
shell) along with sizeable contributions from the Pb 5s orbital. The result for this and
other molecules studied in [133], results from other relativistic analyses of spin–spin
coupling [135, 136], as well as, e.g., results from analyses of nonrelativistic spin–
spin couplings performed by Ziegler et al. [137, 138], therefore demonstrate that
spin–spin coupling is predominantly a valence-shell property [cf. Section 12.2.7].
Since the spatial analysis (Figure 12-5) yields most of the contributions from the
core region, the origin of the property can be traced back to the core-tails of the
valence orbitals. Indeed, very similar results are obtained for the spin–spin coupling

Figure 12-7. Pb–H spin–spin coupling in PbH4 analyzed in terms of spin-free localized orbitals (here:
natural localized MOs [134]). ZORA DFT computations from [133] with the PBE functional. Spin-
free/spin–orbit results reported in units of 1020T2J�1. Contributions from the Pb 5s orbital are: spin-
free 24, spin–orbit 24. The combined PBE results shown here differ slightly from those of Table 12-2
and Figure 12-5 because of a different basis set used for H and small differences in the geometries
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in PbH4 if a frozen core (1s–4d) is used (this was explicitly demonstrated in [4] for
Hg–C coupling constants, the corresponding Pb data are unpublished). The main
contribution is – as one might expect – from the Pb–H bonding orbital for the pair
of nuclei under consideration. The analysis also finds three equivalent negative con-
tributions from the other Pb–H bonds which are somewhat less intuitive and which
do not show up in the light atomic analog methane. The computations indicated that
the electronic structure in PbH4 is quite a bit more delocalized than methane. In
other words, each Pb–H bond is delocalized over the other three bonds. The loss of
localized charge density in the bond shows up as negative contributions toK(Pb–H)
from other orbitals as well as in a positive contribution from the Pb–H bonding
orbitals that is significantly higher than the total K .

Large relativistic effects on one-bond heavy-atom–ligand spin–spin coupling
constants have also consistently been calculated for other systems. Figure 12-8
shows a comparison of a number of tungsten–ligand coupling constants in com-
parison to their nonrelativistic counterparts and to experiment. Coupling constants
involving other elements from the 6th row of the periodic table, such as Hg and Pt,
are similarly strongly affected, mainly by spin-free relativistic effects [110].

Spin–orbit effects on one-bond couplings are often found to be relatively small
in comparison to the spin-free effects. An exception is the series of Tl-X where
X D F, Cl, Br, I. Figure 12-9 shows the isotropic K(Pb–X) as well as the coupling
tensor anisotropy �K for the series as computed with hybrid DFT and the ZORA
relativistic approach. Nonrelativistic data are not shown but were previously found
to be only about half the magnitude of the scalar relativistic results [5]. For the
isotropic coupling the spin-free relativistic computations only predict a weak trend
along the series (or no trend at all depending on the functional used), while a very
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strong trend is present in the SO results as well as the experiment. For Tl-I the
spin–orbit OP-FC cross term is the largest individual term in the coupling tensor
[5]. The available body of computational data indicates that SO effects on spin–spin
coupling tend to be important when coupling between two heavy p-block elements is
involved. We note in passing that nonhybrid functionals very strongly overestimate
the coupling anisotropy while the hybrid DFT data shown in Figure 12-9 agree well
with experiment.

Extremely large relativistic effects might be obtained for spin–spin coupling
between two heavy nuclei. We have in the past studied metal–metal spin–spin cou-
pling constants quite extensively, for instance for Pt–Pt [135], Pt–Tl [133,136,145–
147], or Hg–Hg couplings [148,149] and obtained good agreement with experiment
from relativistic DFT computations whereas nonrelativistic computations cannot be
meaningful for such couplings. For instance, Hg–Hg couplings can be as large as
several hundred kilo-Hz, with the large magnitude caused by the s-sigma charac-
ter of the Hg–Hg bonds and the fact that the hyperfine terms for the 6s Hg orbital
increase relativistically by about a factor of three [102,103]. For a pair of Hg nuclei,
this would result in an order of magnitude increase of the 6s–6s orbital contribu-
tions in the coupling tensor just from the atomic hyperfine integrals alone. These
and other studies on heavy metal–metal coupling constants [135,136,146,147] have
also shown that relativistic effects on the coupling constants tend to act as a magni-
fying glass for subtle effects in the metal–metal and metal–ligand bonds. This means
that NMR is a particularly sensitive tool to study details of bonding in these heavy
atomic systems.
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Two- or higher-bond coupling constants have not yet been extensively
investigated by relativistic computations. Kaupp has reported significant rela-
tivistic effects on the 31P–31P two-bond coupling constants in cis- and trans-
M(CO)4(PH3)2, M D Cr, Mo, W, leading to a reversal of the trend of increasing P–P
coupling for the W complex as the metal becomes heavier [150]. Noticeable spin–
orbit effects on a three-bond C–C coupling constant were reported by Autschbach
and Ziegler for the complex [(NC)5Pt–Tl(CN)]� [145]. It is likely that significant
relativistic corrections on multi-bond coupling constants between light atoms will
be obtained when the coupling path involves a heavy metal, as it is the case for
the two examples mentioned. In this context, we highlight a recent study by Bagno
and Saielli who computed nuclear spin–spin coupling constants between DNA base
pairs mediated by a heavy metal (Hg) [151].

Interestingly, SO effects on nuclear magnetic shielding constants have been
studied theoretically quite some time before scalar relativistic effects were consid-
ered. It has been known for a long time that the shielding of nuclei in the vicinity
of a halogen strongly increases as the halogen nuclear charge increases. This leads
to a decreasing shift of atoms neighboring X D F, Cl, Br, I, with increasing nuclear
charge of X which is called “normal halogen dependence” (NHD). An example is
the proton shift in the hydrogen halides H–X. It had been argued already in the late
1960s [153] that spin–orbit coupling must be responsible for the increasing shield-
ing of the proton along the series. Computational studies of the proton shieldings
in HX date back to the 1970s, when perturbation approaches employing the SO
part of the Pauli operator together with semiempirical LCAO wavefunctions have
been used [154–156]. Since then, numerous computations have confirmed that the
NHD is induced by spin–orbit coupling. As an example, Figure 12-10 shows data
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from MCSCF computations by Manninen et al. who included relativistic effects
perturbationally to first order in c�2 at the Breit–Pauli level [56]. The relativistic
results are in excellent agreement with experiment and demonstrate the large spin–
orbit effect in particular for HI. A compilation of literature data for the HX series
can be found in [118]. The physical mechanism of NHD is related to that of spin–
spin coupling in some sense [157,158]. Around a heavy atom where SO-coupling is
strong, the external magnetic field not only induces a paramagnetic current–density
but also a spin-density perturbation. This perturbation transfers through the chem-
ical bonds and causes non-vanishing spin-dependent terms in the shielding tensor
at light neighboring nuclei via the FC/SD mechanism. In computations of light-
nucleus shieldings in heavy atom compounds it is therefore safest to use a spin–orbit
relativistic method, although NHD-type effects may not always be present [159].

In transition metal chemistry, NHD-type effects have also been found. Several
groups have investigated the carbon shifts in heavy transition metal carbonyls.
Figure 12-11 shows a comparison of scalar and spin–orbit results obtained with
the Pauli-operator (using frozen cores to avoid variational collapse) [152, 160]. The
inclusion of SO coupling noticeably improves the agreement with experiment, in
particular for the metals with higher group numbers/complexes with smaller shifts.
Vaara et al. have also studied this series using a spin–orbit ECP for the metal and
obtained similarly good agreement with experiment [161]. The spin–orbit effect for
the shielding follows a somewhat unintuitive trend: like for all second-derivative
properties the HOMO–LUMO gaps�" and energy differences between other pairs
of occupied and unoccupied orbitals enter denominators in the shielding tensor
expression analogous to the energy differences in the denominator in Eq. (12-26).
�" increases from Hf to Ir, but so does the magnitude of SO term in the shielding.
As it was analyzed by Wolff et al. [152], as the metal’s oxidation state increases
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from Hf to Ir, ligand–metal �-bonding increases and -back donation decreases.9

The increase in � character of the metal–ligand bond is able to transfer the spin-
density more effectively from the metal to the carbon nucleus. This effect outweighs
the increase in the orbital energy gap in the shielding expression. Such a balance of
effects appears to be very typical in the NMR of transition metal complexes [110].
A balance between orbital gap trends and bonding characteristics was also noted,
for example, for Pt chemical shifts [162].

For the shielding constant of a heavy metal nucleus both scalar and spin–orbit
relativistic effects can be important [12, 118]. Relativistic effects on shielding con-
stants are quite noticeable already for 4d metals and the main group elements up
to around Xe. An increase of the scalar relativistic effects of the shielding of the
heavy nucleus X with �Z3:5 has been found for the HX series [163]. Other authors
found a scaling of Z2:3 for the metal shielding in the M-F series, where M D Cu,
Ag, Au [164]. Benchmark data for absolute shieldings of atoms [165], in particular
for the closed-shell are gas atoms [36, 40, 56, 84, 85, 166, 167], are available. One
reason is that single atoms are very useful for benchmarks. There is also some inter-
est in establishing absolute shielding scales for these systems. To this end, it should
be noted that it is far from trivial to fully converge such calculations, and for the
heavier nuclei it is also important to consider finite nucleus effects.

Often, large portions of the relativistic effects for shielding constants cancel
when the chemical shift is evaluated. This happens to be the case when the rela-
tivistic effects in the shielding tensor mainly originate from the core and semi core
orbitals. For 5d metals and the heaviest main group elements this is usually not the
case anymore. Sizeable spin-free and spin–orbit relativistic effects on the chemical
shifts of NMR nuclei such as W, Pt, Hg, Tl, or Pb are predicted in computations.
The relative magnitudes of scalar versus SO effects depend on the element and the
bonding environment. A selection of available computational studies of heavy metal
chemical shifts where significant relativistic corrections were reported, and where
results were compared with experimental data, is the following: [162, 168–172] for
Pt chemical shifts, [1, 37, 173] for Hg [174–176] for W [174, 177] for Pb shifts
[170, 136] for Tl chemical shifts. Metal NMR parameters in poly-oxo metallates
have received significant interest from computational chemists in recent years [178–
181]. Applications of relativistic DFT methods to model the NMR in these systems
successfully shows that existing program implementations can handle systems with
large numbers of electrons.

NMR tensor anisotropies are important in oriented samples (solid, partially
oriented solutions). The tensorial properties of nuclear shielding and spin–spin cou-
pling can be measured, for instance, in solid-state NMR experiments [182] or by
liquid–crystal NMR (LCNMR). As an example for a strongly “relativistic” system,
the LCNMR technique has been used by Jokisaari et al. to measure the anisotropy
of the 13C – 199Hg coupling tensor in methyl mercury halides and HgMe2 [183]

9 In a computational analysis such changes in bonding tend to show up in significantly increased or
reduced matrix elements in the numerator of the SOS expression, Eq. (12-26).
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(Me D methyl). ZORA DFT computations were also performed which reproduced
the experimental data within the rather large experimental error bars. Relativistic
spin–orbit effects were found to increase the relative anisotropy�K=K as was pre-
dicted by Pyykkö already in 1977 [103], mainly due to FC/OP cross terms. In a
related study, Jokisaari et al. investigated the 199Hg shielding tensor anisotropy in
these systems [184]. Scalar relativistic DFT computations predicted in this case the
opposite trend for �� than SO computations, with the latter being in agreement
with the trend found experimentally: �� decreases for Me–Hg–X along the series
X D Me, Cl, Br, I.

Before moving on to discussing other types of properties it should be pointed out
that the computational modeling of NMR parameters and other response properties
can be quite challenging if solvent effects or crystal environments significantly per-
turb the electronic structure of a molecule. Single-molecule computations may not
be sufficient in this case. For example, rather spectacular solvent effects on cou-
pling constants and chemical shifts have been computed for Pt–Tl bonded systems
[136,146,170], for Pt and Hg complexes [185], and more recently for the one-bond
coupling in [Hg–Hg–Hg]2C [149]. These solvent effects cannot be described fully
with a simple continuum model. For instance, in the Hg2C

3 case the computed gas-
phase coupling constant is on the order of 240 kHz while the experimental value
in the supposedly inert liquid SO2 solvent is 140 kHz. By using molecular dynam-
ics simulations it was shown that the presence of the solvent causes this difference.
In a series of related Pt–Tl bonded systems coordination of one of the metals by
water, along with bulk solvent effects, reversed the trend computed for K(Pt–Tl) in
gas phase and reconciled theory and experiment [146]. Recent work on Pt chemical
shifts has also indicated an importance of rather unspecific solvent effects which
may influence the shift directly via electronic effects and indirectly via the geom-
etry of the complex [149]. Computations can be very helpful in this respect to
uncover if experimental data are strongly affected by such external influences, or
if the observed trends are more of an intrinsic nature.

12.3.2. Electron Paramagnetic Resonance

In electron paramagnetic resonance two important molecular properties are the
electronic g-tensor and the nuclear hyperfine coupling tensor A. Both arise from the
interaction of a net electron–spin magnetic moment of the molecule with magnetic
fields. In the case of the electronic g-tensor the interaction is with an external mag-
netic field. Usually the interest is in the deviation from the free electron g-value, i.e.,
g D ge1C�g and one considers�g as a response property of the electronic struc-
ture in the molecule. The spin Zeeman term (12-52c) is is the interaction operator
related to the free electron g value and will be omitted from the discussion.10 In
some formal analogy to the NMR shielding tensor, the EPR �g-tensor can be
defined via an effective spin Hamiltonian that includes the interaction of a fictitious

10 This is analogous to the (non) treatment of the nuclear Zeeman operator in NMR computations.
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effective electron spin magnetic moment S with an external magnetic field and with
each other via [73, 186]

H D 1

2
B.ge C�g/S C SDS: (12-78)

Equation (12-78) follows the usual sign conventions for �g. Like the magnetic
shielding, �g is dimensionless and results are typically reported in parts per mil-
lion (ppm) or parts per thousand (ppt). The factor 1/2 in Eq. (12-78) stems from
the Bohr magneton converted to atomic units. It should also be noted that the “g-
tensor” and some other tensors related to magnetic properties do not necessarily
transform as proper tensors under spatial rotations, therefore the use of the word
“tensor” in this context can be somewhat misleading [186]. Some authors prefer
the term “g-matrix” instead [187]. The effective spin in Eq. (12-78) can be chosen
to reproduce the observed multiplet structure of the EPR signal. The eigenvalues
of the effective spin-Hamiltonian are intended to correspond to the experimen-
tally observed energy levels. D is responsible for a zero-field splitting caused by
electron–spin–electron–spin interactions It can be neglected from the discussion
for the limit of a strong external field. Recent computational work dealing with
zero-field splitting can be found in [188–192].

The hyperfine tensor A describes the interaction of a net electron–spin mag-
netic moment with the magnetic field from a nuclear spin. It can be defined by the
effective spin–Hamiltonian [73, 186]

HDSAIA: (12-79)

Here, IA is the nuclear spin vector, which is related to the spin magnetic moment
by E�A D �AIA. Equation (12-79) follows a common convention for the definition
of A. Values are typically given in SI units of MHz, or in c.g.s. units of G (Gauss,
with a conversion factor of approx. 2.8025 MHz/G [193]).

The �g term in (12-78) connects the electronic spin magnetic moment and the
external field with the response of the electronic system, which is somewhat anal-
ogous to the magnetic shielding tensor. Likewise, 12-79 describes the magnetic
electronic spin–nuclear spin interaction which has some analogy to the nuclear
spin–spin coupling. To rationalize the physical origin of the �g-tensor, it is use-
ful to recall that in a nonrelativistic theory there is no coupling between the electron
spin and orbital magnetic moment. Consider an orbital model. In a nonrelativistic
theory an orbital’s spin is either ˛ or ˇ, independent of the spatial function of the
orbital. However, when switching to a two-component relativistic formalism with
spin–orbit coupling, the relative magnitude of the ˛ and ˇ component in the orbital
varies as a function of position. In other words, the electron spin has now acquired
a “sense” of where in the molecule it is (i.e., the ˛=ˇ ratio depends on the potential
which varies in space). Only in this situation can there be a change of the elec-
tron’s g-tensor compared to the free-electron. It is therefore clear that spin–orbit
coupling is a prerequisite for �g calculations. In a sense, �g may be considered
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a purely relativistic property. The hyperfine coupling has a nonzero nonrelativis-
tic limit. Depending on the formalism used to compute A spin–orbit coupling can
be neglected in a first approximation but should be included for accurate results in
heavy element systems.

Taking derivatives of the quantum mechanical energy expression expanded as
a perturbation series in external field, nuclear spin, and the effective electron spin
is not as straightforward as in the case of the NMR parameters because the effec-
tive spin S of Eqs. (12-78) and 12-79 does not appear in the operators of Section
12.2.5. Various ways of approaching the �g-tensor problem were summarized in
an overview article by Patchkovskii and Schreckenbach [117]. For hyperfine ten-
sors see, e.g., the article by Eriksson [193]. See also the textbooks by Harriman and
Abragam [73, 186]. In a nutshell, if spin–orbit coupling is included in the ground
state computation then the EPR tensors can be computed from first derivatives of
the molecular energy with respect to B for the �g tensor and with respect to mA

(which is proportional to IA) for the A-tensor. See also [6, 7, 194, 195]. If spin–
orbit coupling is not included in the computation of E.0/ then relativity needs to
be treated as an additional perturbation. In this case, the EPR tensors are computed
from a double perturbation equation of the type (12-25) where perturbation opera-
tors depending on the external field B or the nuclear spin moment mA, along with
spin–orbit coupling operators and their field-dependent versions have to considered.
In either case, an expression needs to be derived that allows to identify the eigen-
values of the effective spin Hamiltonians with the energy levels of the molecule’s
electron spin projection in the presence of the external or nuclear magnetic field. A
“spin”-differentiation may also be conceptualized by considering a spin-dependent
one-electron operator for spin-component u in the form Oh D Oau.r/�u. Examples
are the spin–orbit operators in two-component formalisms, or the spin-dependent
hyperfine terms (FCCSD and their relativistic analogs of Section 12.2.5). Suppose
we start with a scalar relativistic reference system. The action of the spin-dependent
operator on the wavefunction, after integration over spin, yields terms of the form

Su Oau.r/Qu.
QEr; r/ˇ̌QErDr (12-80)

with Qu.
QEr; r/ being a normalized spin density [11] and Su the maximum value

of the projection of the spin onto the u-axis. A differentiation with respect to this
spin-projection can now be carried out, leaving as the perturbation operator Oau, the
spin-free part of Oh, acting on a normalized spin density. The OH.Fi ;Fj / operators
needed for the bilinear (“diamagnetic”) perturbation contributions can be derived in
an analogous way from operators bilinear in spin-terms and B or mA, respectively.
For the hyperfine coupling, the dominant term arises here from the FC operator and
its relativistic analogs.

We shall discuss g-tensors first. A comparison of different nonrelativistic
implementations reported up to 2001 can be found, e.g., [196]. Earlier work on
�g tensors with ab-initio (Hartree-Fock, MCSCF, CI) or semiempirical methods
can be found, e.g., in [194,197–202]. For further references on these approaches we
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refer to the literature cited in [196, 203]. Scalar relativistic corrections can in prin-
ciple be included in all these methods, either explicitly at the operator level or via
ECPs. A first-derivative approach with spin–orbit coupling included variationally
at the ZORA level has been implemented by van Lenthe et al. [6] (see also [194]).
Applications of this approach have so far employed a spin-restricted unperturbed
Kohn–Sham computation because of conceptual issues with the description of spin
density in a spin–orbit coupled context. More recently, Malkin et al. reported an
implementation within a two-component relativistic framework where the issue of
defining the spin-polarization in a two-component framework has been addressed
[39]. Four-component implementations have also been reported, for instance in
[204,205]. For a discussion of alternative ways to compute g-matrices, and applica-
tions to molecules containing metal atoms as heavy as uranium, we refer the reader
to [187, 195].

A scalar relativistic method employing the Pauli operator with frozen cores [206]
has been applied to d1 transition metal complexes of the type MEXn�

4 , with M D V,
Cr, Mo, W, Tc, and Re, E D O, N, and X D F, Cl, and Br [207]. The results are dis-
played in Figure 12-12. It can be seen that the correlation between the theoretically
predicted and the experimental values is quite reasonable for the 3d and 4d metals.
The�gk component of the tensor was systematically overestimated, though, in par-
ticular for the 5d metals, which unfavorably affected the isotropic averages shown in
Figure 12-12. Density functional computations appear to perform reasonably well
for EPR parameters of main group radicals. However, the performance of popular
nonhybrid density functionals appears to be less satisfactory for transition metal
complexes. This has been attributed in [207] to deficiencies of such functionals
leading to an overestimation of covalent bonding between the metal and the ligands.
This viewpoint has subsequently been corroborated by Malkina et al. [208]. Hybrid
density functionals appear to perform somewhat better in comparison [196, 209].
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EPR tensors of a series of diatomic radicals with heavy elements has been stud-
ied by various groups. Figure 12-13 gives an overview of some of the computational
results obtained with variational two-component DFT (nonhybrid BP86 functional,
DKH and ZORA) and a method where the Pauli operator was used in a second-
order derivative approach (i.e., only the leading-order relativistic corrections are
included). Data are shown for RhC, PdH, ZnH, CdH, HgH, ZnF, CdF, HgF, ZnAg,
CdAg, HgAg, LaO, ZnCN, CdCN, HgCN, and GaO. For the parallel tensor com-
ponent the Pauli perturbational approach fails to reproduce the negative�gk tensor
components which are particularly large in magnitude for PdH and HgH. This issue
has been discussed in [117, 210] and can be traced back to the following reason:
When using a spin–orbit free unperturbed wavefunction the leading-order paramag-
netic terms for the�gk component can be written in SOS form (Eq. 12.26) with the
help of matrix elements h‰0j OLkj‰ki multiplied by an effective spin–orbit coupling
constant. Here, OLk is the angular momentum operator along the molecule’s axis. In
the absence of spin–orbit coupling, the wavefunctions of a linear molecule are eigen-
functions of this operator and thus the leading paramagnetic contribution to �gk
essentially vanishes in this approach. In the methods that include SO coupling vari-
ationally the wavefunctions are not eigenfunctions of OLk and comparatively large
matrix elements for the perturbation may result. It can be seen from Figure 12-13
that both variational two-component methods reproduce the negative OLk reasonably
well. For the �g? component the situation is different. Here the leading-order con-
tributions are those of order c�2 and the Pauli perturbational approach performs just
as well as the variational methods [117]. The DKH implementation by Malkin et al.
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has included effects from spin-polarization, which improved results for light-atomic
systems. For the heavy-metal diatomics cases of Figure 12-13, the spin-restricted
ZORA and the spin-polarized DKH data do not seem to differ dramatically.

Van Lenthe et al. have investigated g-tensors in low spin Fe(I) and Fe(III) por-
phyrin complexes [211], using DFT and a ZORA implementation for the response
calculations. The computational results for these systems, some of which afford
very large g-tensor anisotropies and isotropic g-values that differ strongly from the
free-electron value, were in reasonable agreement with experiment. With the help
of the calculations the validity of a simple and widely used model for the g-tensor,
based on writing the Kramers pair in terms of the Fe dxy , dxz, and dyz orbitals, was
tested. It was found that the model is indeed compatible with the first-principles cal-
culations if one considers some amount of ligand orbital combinations of the same
symmetry mixing with the d orbitals used to describe the unpaired electron.

Belanzoni et al. have computed hyperfine tensors using a spin-unrestricted
scalar relativistic ZORA DFT approach as well as spin-restricted ZORA spin–orbit
computations with a nonhybrid functional [210]. The methods are somewhat com-
plementary, each neglecting some effects. The linear molecules of Figure 12-13
have been studied using the ZORA implementation of van Lenthe et al. [7]. The A
tensors were also analyzed in quite some detail, based on Mulliken populations of
the singly occupied molecular orbitals and semi-quantitative estimates of the orbital
mixing due to spin–orbit coupling. Overall, the agreement with experiment was
reasonable. In a recent article in which a modified four-component approach for
EPR parameters (DKS2-RI) was reported, Komorovsky et al. noted that in particu-
lar for the HgH molecule spin-polarization effects on the hyperfine coupling turned
out to be important [205]. Some isotropic 199Hg hyperfine couplings are shown
in Figure 12-14 for comparison of some of the theoretical methods mentioned in
this paragraph. The data have been obtained using point-nucleus models and are
therefore likely too high in magnitude. For comparison, the nonrelativistic isotropic
hyperfine couplings from the ZORA SC-U data set reported by Belanzoni et al. are
3,763, 7,121, and 8,841 MHz for HgH, HgCN, and HgF, respectively. The exper-
imental values were quoted as 7,002, 15,850, and 22,127 MHz, respectively. The
overall quite reasonable agreement of the relativistic results shown in Figure 12-14
with experiment, and the �100% or more relativistic increase, once more high-
lights the enormous impact that relativity can have on properties involving nuclear
hyperfine operators.

In the section on spin–spin coupling the finite size of nuclei was mentioned as a
source of error in particular for treating the relativistic analogs of the FC “contact”
operator. This operator is also an important ingredient for A-tensor computations.
Malkin et al. have calculated finite-nucleus effects for the related case of hyper-
fine coupling constants and found consistent improvement with experiment in DFT
computations of group 11 atoms and small molecules with group 12 atoms [100].
As indicated in Section 12.3.1, the magnitudes of the FC-type integrals decrease
when an extended nucleus is used. As an example for the impact on A-tensors, the
isotropic hyperfine coupling constant for 199Hg in the Hg–F diatomic was calculated
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Figure 12-14. Isotropic 199Hg EPR hyperfine coupling constants for HgH, HgCN and HgF. ZORA spin-
restricted spin–orbit (SO-R) and scalar unrestricted (SC-U) DFT results (BP86 functional) taken from
Belanzoni et al. [210]. Second-order DKH SC-U and four-component (DKS2-RI) DFT (LDA functional)
data from Komorovsky et al. [205]

as 25102 MHz with a point nucleus and 21490 MHz with an extended nucleus
(DFT, B3PW91 functional, second-order DKH). The experimental value is 22127
as already mentioned.

Regarding applications in coordination chemistry, Munzarová and Kaupp have
compared DFT and coupled-cluster ab-initio methods for the computation of A ten-
sors for 3d transition metal complexes [212]. A nonrelativistic formalism is often
sufficient for these rather light atoms. Unfortunately, the authors stated that “none
of the investigated functionals performs well for all complexes”, including hybrid
functionals. In comparison, coupled-cluster computations which were feasible for
the smaller molecules in the test set yielded very accurate results, with a tendency
to underestimate the experimental reference values. The problems with the den-
sity functionals have been attributed to difficulties obtaining the correct balance
between spin polarization in the metal core regions (which determines the hyperfine
coupling constants of the metals) and valence spin polarization, which causes prob-
lematic spin contamination [213]. Neese has subsequently also noted DFT-related
problems with computations of hyperfine couplings for 3d metal complexes using
an implementation where SO coupling terms were included to order c�2 [214].

The mechanism of ESR hyperfine coupling has been studied in detail in [215],
highlighting the leading role of overlap between the singly occupied orbital of a
doublet system with certain doubly occupied valence orbitals. Deviations between
calculated results and experiment were approximately within 10–15% for most of
the complexes and most of the functionals, allowing for a reliable interpretation
of the results in comparison with experiments. A comparison between different
program implementations for computations of EPR parameters by DFT has been
recently made by Saladino and Larsen [216] with a focus on catalysis applications.
Results for paramagnetic vanadium and copper model complexes were reported.
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The authors also noted the problem with modeling the spin polarization in the
metal 3d shell when calculating metal hyperfine couplings. On the positive side,
experimental trends for systems with similar electronic structures were successfully
reproduced.

12.3.3. Electric Field Gradients (EFGs)

The electronic and nuclear charges in a molecule create an electric field. We may
refer to it as the “intrinsic” electric field of the molecule, as opposed to the electric
field and field-gradient of an external perturbing field that was discussed in Section
12.2.5. The internal field’s inhomogeneity is to first order given by its first deriva-
tive, the electric field gradient (EFG). In Section 12.2.5 it was shown that electric
field gradients interact with electric quadrupole moments. To derive the expressions
of the internal field gradient, imagine a (hypothetical or actual) point quadrupole
with Cartesian quadrupole tensor elements Guv as in Eq. (12-42) which is placed
somewhere in the molecule as a probe. The quadrupole–electric field gradient inter-
action term has then to be added to the Hamiltonian analogous to the addition of
�
.r/ and higher-order multipole terms for an electric field. Consider the first-order
energy change E.Guv/Guv due to the quadrupole–EFG interaction. The derivative
E.Guv/ is then – according to first-order perturbation theory – given by Eq. (12-24)
with the unperturbed wavefunction, with OH.Guv/ being the molecule’s electric field
gradient operator at the position of the quadrupole. The electric field is given by
the (negative) derivative of the scalar potential caused by the nuclei and the elec-
trons. The electric field gradient operator for the quadrupole perturbation is defined
accordingly as the (negative) second derivative of the scalar potential operator for
the internal field,11 i.e.,

OV EFG
uv D @2


@ru@rv
u; v 2 fx; y; zg (12-81)

The internal EFG is then computed from an expectation value of the operator
(12-81) where the second derivative can be considered at any point in space.12 The
EFG is a rank-2 tensor which may be characterized by three principal components,
Vi i , and its principal axes. Important applications arise when considering the EFG
at the position of a quadrupolar nucleus, and evaluating the interaction energy of
the internal EFG with the nuclear quadrupolar charge distribution. This interaction

11 The EFG proper is � OVuv. We use the term ‘EFG’ but omit the negative sign here which is consistent
with the definition of the quadrupole coupling used here.

12 This is conceptually similar to the magnetic shielding tensor which may also be defined at any point
in space by considering a point magnetic dipole � at a position rX and using its vector potential
AX D 1

c2
��rX
r3X

instead of the nuclear vector potential (12-45) in the derivation of the NMR shielding.

In NMR the measurement relies on the presence of a nuclear spin and therefore the shielding tensor is
measured at the position of the nucleus.
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is important in NMR and Mössbauer spectroscopy, and it may be exploited directly
in nuclear quadrupole resonance (NQR) spectroscopy. For instance, spectroscopic
nuclear quadrupole coupling constants CQ are related to the EFG tensor via

CQ D eQV33

h
(12-82)

where V33 is the largest-magnitude component of the EFG tensor andQ the nuclear
quadrupole moment. Likewise, Mössbauer quadrupole splittings

�E D .1=2/eQV EFG (12-83)

are proportional to V EFG. The nuclear quadrupole-field gradient interaction is very
important in solid-state NMR [182] and, with modern ultra-high-field instruments,
measurements of NMR parameters and CQ of formerly inaccessible quadrupolar
nuclei are now possible. With reliable EFG tensor computations at hand, a fit to
experimental data might then in turn be used to obtain nuclear quadrupole moments.
A large set of quadrupole moments based on literature data up to 2001 has been
compiled by Pyykkö [217]. An updated compilation can be found in [218]. In these
articles the reader can find references to relativistic computational work for many
heavy nuclei including various actinides. We also point to an extensive review by
Schwerdtfeger et al. [121] covering the literature up to 2003.

Taking the expectation value of (12-81) in the sense of Eq. (12-24) for a point
quadrupole at a nuclear position RA yields for an N -electron system

Vuv.RA/ D �
Z
dr � �.r/

8<
: OVuv.r;RA/� 1

N

NucleiX
B¤A

OVuv.RB ;RA/

9=
; (12-84)

with

OVuv.x;y/ D 3.x � y/u.x � y/v � ıu;vjx � yj2
jx � yj5 (12-85)

There is an electronic and a nuclear contribution. Since the operator for the latter
is not dependent on the electron coordinates the density integration can be carried
out immediately to cancel the factor of 1=N , but for analysis purposes based on a
density decomposition it can be convenient to keep both terms together [219]. The
term for the electronic part is valid in the four-component and the nonrelativistic
regime. As already pointed out in Section 12.2.5, in two-component formalisms
the perturbation operator has additional picture-change corrections of order c�2.
Moreover, the electronic contribution is affected by relativistic effects in the electron
density. Given the large magnitude of the operator in the near-nucleus region from
its overall 1=r3

A behavior one should expect large relativistic effects on the EFG
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Figure 12-15. 127I nuclear quadrupole coupling constants in group-13 iodide diatomics. ZORA DFT
computations versus experiment. Data were taken from van Lenthe et al. [9]. The straight thick line
indicates where calc. D expt.

percentage-wise. However, any filled and perfectly spherical atomic shell around the
nucleus of interest does not contribute to the EFG.13 Therefore, small deformations
of the core orbitals in a molecular environment and the overall arrangement of the
chemical bonds determine the magnitude of V which makes it overall a very useful
“chemical” property.

The magnitude of relativistic effects on EFGs in heavy element systems is clearly
demonstrated in Figure 12-15 for the iodine EFG in group-13 iodides [9]. Similar
to the nuclear spin–spin coupling constants in TlX that were discussed earlier, both
spin free as well as spin–orbit relativistic effects can be important for heavy p-block
diatomics, in particular for TlI. If the bonding partner is not a heavy element, how-
ever, the scalar effects appear to be significantly more important which implies that
for semi-quantitative results spin–orbit effects might be neglected for such systems.
As an example, a range of 127I CQ results for iodine–halides reported in [9] agreed
well with experiment both at the spin-free and the spin–orbit level. Marked improve-
ments of iodine quadrupole coupling constants over nonrelativistic results were also
obtained by Malkin et al. from second-order DKH scalar relativistic computations
for the diatomics ICl, IBr, ICN, HI and IK [35].

The general (potential) importance of spin–orbit coupling for EFGs of heavy
element molecules was pointed out by Visscher et al. [204] who performed four-
component Hartree–Fock and correlated ab-initio computations for the H–X (X D
F, Cl, Br, I) series of diatomics. For HI, the iodine EFG increased from 9.65 to 11.59
au at the Dirac HF level. An orbital contribution analysis was also carried out for
HI and showed that most of the electronic contributions were due to valence-shell

13 The EFG is also vanishing in highly symmetric environments such as tetrahedral or octahedral.
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orbitals. The interpretation of the EFG mechanism was based on a model where a
bond is formed between HC and a spherically symmetric (zero EFG) I�. The bond
formation amounts to forming a nonspherical hole in the iodine valence shell caus-
ing most of the EFG. Some semi-core- and core-polarization contributions were
also seen in the EFG analysis for HI. Inclusion of spin–orbit coupling slightly low-
ered the magnitude of the EFG. This effect was attributed to the �– mixing in
the bond: the electron hole on the iodine side acquires partial  character which
is somewhat less asymmetric than the hole caused by a pure � bond. Overall, the
spin–orbit effect was small (�0:05 au) compared to the total relativistic increase.
The H–X series of molecules has been very popular for theoretical benchmarks and
has consequently been considered by many other authors as well. We cite reference
[21] as an early numerical study of picture change effects which were demonstrated
by computations of EFGs.

Picture-change effects on EFGs were studied by a number of researchers. As
already mentioned, in a recent paper Mastalerz et al. revisited the series H–X where
X D F, Cl, Br, I, At, and demonstrated that picture change effects can represent a
considerable fraction of the relativistic correction to the EFG [101]. It should be
noted that the bulk of the picture change effects were already obtained with the
lowest-order transformation of the operator. A comparison was made with data
obtained recently by other research groups, such as a study by Neese et al. [220]
(four-component and DKH Hartree–Fock), by Malkin et al. [35] (DFT and Hartree–
Fock with DKH), and Visscher et al. [204] (four-component Hartree–Fock, MP2,
CCSD, CCSD(T)). All these studies have highlighted the importance of relativistic
effects and of picture-change effects for this electric property.

The DKH method has recently been applied to calculate a large range of 119Sn
EFGs [221]. Scalar relativistic DFT calculations with the B3LYP functional were
performed for 34 Sn complexes for which experimental Mössbauer quadrupole
splitting parameters �E were available. The EFGs were in the range of �4 to C5
atomic units. It was noted that picture change effects entered the results as a system-
atic error of constant magnitude. Both picture-change corrected and picture-change
uncorrected results showed an excellent linear correlation with the experimen-
tal �E . Based on the linear fit, a quadrupole moment of 13:2 ˙ 0:1 fm2 was
obtained for the 119Sn nucleus, in good agreement with the 2001 reference value
of 12:8˙ 0:7 [217].

For metal atom EFGs, Schwerdtfeger et al. pointed out problems with DFT to
correctly describe the electron distribution in 3d transition metals [121]. As an
example, for the CuCl molecule the Cu EFG varies between C0.67 and C0.15 for
various functionals including hybrids while a CCSD(T) result of �0.34 au, likely
to be very accurate, agrees well with experiment. It is known that 3d metals pose
problems for many of the popular functionals and therefore it is no surprise that
this is reflected in a rather poor performance in EFG computations. DFT results for
heavier transition metal nuclei were not compared in this reference. Van Lenthe and
Baerends also considered Cu–X (X D halide) diatomics in their ZORA study of
EFGs cited earlier [9], along with Ag–X. The main focus has been on the halide
CQ; however, for the metal halides they did not agree as well with experiment
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as those for the main group diatomics which also points towards deficient charge
distributions for these systems obtained at the DFT level. Bast and Schwerdtfeger
performed a DFT benchmark study of EFGs in 2003 [222] with a test set comprising
various Sc, Cu, and Ga diatomics and concluded that “it is difficult (if not impos-
sible in some cases) to obtain accurate [EFGs] for transition elements”, while good
performance of DFT was found for the main group element gallium. Willians et
al. made a comparison between theory (ZORA DFT) and experiment for the 139La
CQ [223]. Experimental data were derived from solid-state NMR. The agreement
was poor irrespective whether SO coupling was included in the computations or
not. However, the authors noted that the crystal environment was not modeled in the
computations but might have a profound impact on the EFGs. Lanthanum chemical
shifts computed at the same level of theory agreed reasonably well with experiment.
Somewhat poor agreement with experiment for a Ru EFG both with hybrid and
nonhybrid DFT was noted by Ooms and Wasylishen [224], albeit for a single car-
bonyl complex. Recently, Thierfelder et al. proposed to apply Coulomb-attenuated
hybrid functionals for the computation of late transition metal EFGs [225]. The
authors concluded that computations on the molecules CuH, AuH, and CuX, AuX,
OC-CuX, OC-AuX, where X D H, F, Cl, Br, I, yielded reliable results with a CAM-
B3LYP functional. Linear fits of the EFGs computed at this level of theory versus
experimentalCQ yielded nuclear quadrupole moments that were in good agreement
with experimental data.

Lantto and Vaara investigated the interplay of relativistic and electron correlation
effects in a study of EFGs in noble gas (Ng) noble metal fluorides (Ng–M–F) [226].
Four-component MP2 calculations were performed to test the hypothesis whether
relativistic effects and correlation effects are additive. It was found that treating these
effects separately and adding them led to qualitatively correct noble gas quadrupole
coupling constants. On the other hand, for the noble metal coupling constants a
relativistic correlated treatment was found to be mandatory in order to get close to
quantitative agreement with experiment. It is likely that these conclusions hold more
generally as well. Relativistic effects in truly heavy metal atoms (with gold being
one of the iconic examples) change the qualitative aspects of bonding. Therefore,
one should expect that in such a situation correlation effects calculated at a non-
relativistic level of theory are not transferable to the bonding situation obtained at
the relativistic level. Similar behavior has also been noted explicitly, for example, in
calculations of heavy atom NMR chemical shifts and spin–spin couplings [118,119]
as discussed earlier.

12.3.4. Dipole Moments, Polarizabilities, and Linear-Response
Based Computations of Excitation Energies

The electronic contribution to the dipole moment of a molecule is given by a
first-order derivative property of the electronic energy with respect to an electric
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field.14 The classical physics Hamiltonian for a dipole (d)–electric field (F ) inter-
action is H D �d � F . Accordingly, in quantum chemistry the intrinsic dipole
moment of a molecule in the absence of a field (here: its electronic contribution) is

d D � @E

@F

ˇ̌
ˇ̌
F D0

(12-86)

Induced dipole moments are obtained if one considers the dipole moment as being
dependent on the electric field amplitudes, i.e.,

d.F / D d .0/ C @d

@F

ˇ̌̌
ˇ
F D0

F C � � � (12-87)

for a static electric field. The first derivative is the linear dipole polarizability ˛, i.e.,
the linear response of the dipole moment. In terms of energy derivatives,

˛ D � @2E

@F @F 0

ˇ̌
ˇ̌

F D0
F 0D0

(12-88)

is the static polarizability tensor, a double perturbation property. Using the quasi-
energy derivative formalism of Section 12.2.2, the approach may be generalized
to oscillating fields and the dynamic polarizability ˛.!/ may be computed as a
function of frequency. As in previous sections, ˛ denotes the isotropic average of
the polarizability tensor ˛. Higher-order derivatives give access to various nonlinear
optical (NLO) properties. The dynamic polarizability is a classic textbook example
for a frequency-dependent molecular property. Molecular polarizabilities are often
reported in atomic units, with a conversion factor to SI units of approximately 1:648�
10�41 C m (V/m)�1/au [227], or in terms of polarizability volumes ˛0 D ˛=.4"0/

in volume units of Å3 or cm3, respectively.
In Section 12.2.3 it was pointed out that the physical response is in general com-

plex, with the imaginary part being related to an absorption property. In the case of
the electronic dipole polarizability the imaginary part times the frequency is pro-
portional to the electronic absorption coefficient (or cross section) corresponding
to the dipole-allowed vertical transitions. A computation of the spectrum based on
the “singularity route” outlined in Section 12.2.3 yields the electronic excitation
energies, along with the nonzero or zero electric (and, if required, other) transition
dipole moments. An example for a combined computation of ReŒ˛� and ImŒ˛� for
the Au2 molecule has already been discussed in this previous section.

In Section 12.2.5 the dipole moment operator for an electron was shown to
be Od D �r in the four-component and nonrelativistic formalisms. This operator

14 According to the discussion of dynamic properties in Section 12.2.2 the only nonvanishing first
quasienergy derivative is obtained if the field’s frequency ! is zero, which is a consequence of the
time averaging procedure.
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does not have the inverse dependence on the nuclear distance like the ones relevant
for the properties considered in previous sections. The polarizability at optical and
lower frequencies is a valence shell–valence region property. As a consequence, the
effects of relativity on polarizabilities are, percentage-wise, more similar to those on
binding energies and other valence shell properties. Moreover, ECPs can be applied
straightforwardly to compute polarizabilities including relativistic effects. Picture-
change effects arising from the operator r are generally expected to be small for
closed-shell systems [87].

Because the static polarizability can be computed also with finite-field techniques
(i.e., analytical derivative techniques are not essential to obtain this property) liter-
ature data are abundant. To obtain accurate results for electric response properties
such as the polarizability, however, it is important to include electron correlation
in the computations. This is unlike its magnetic counterpart, the magnetizability,
which is rather insensitive to electron correlation [228–230] but demanding on the
basis set.

Static atomic polarizabilities have been computed already in the early days of rel-
ativistic quantum chemistry [231]. As an example, Desclaux et al. have studied static
dipole polarizabilities of atoms from groups 1, 2, and 12 of the periodic table using
numerical Dirac Hartree–Fock computations [232]. The authors noted that because
of the lack of electron correlation the results were “mainly of technical interest”.
However, regarding the relativistic effects it was observed that the nonrelativistic
trend of increasing polarizabilities with atom number reversed for the atom pairs
Ba/Ra and Cd/Hg at the relativistic level. Such reversals of trends have in fact been
found for many atomic properties; numerous examples were discussed by Pyykkö in
a seminal review paper [233]. The relative decrease of the polarizability due to rela-
tivistic effects was found to be 12% and 32% for Ba and Ra, respectively. A decade
later, Sadlej et al. have reinvestigated the polarizability of Ca, Sr, and Ba using cor-
related methods (MBPT and coupled cluster) [234]. The computed polarizabilities
of 152, 190, and 273 au were in good agreement with experiment. The relativistic
effect for Ba was largest, �12 au, and roughly comparable to the influence of elec-
tron correlation on the polarizability. In situations like this, one might also expect
sizeable correlation–relativity cross terms.

As an example for polarizability computations both for real and imaginary fre-
quencies, Hättig and Hess applied time-dependent scalar DKH computations with
electron correlation treated at the MP2 level to obtain dynamic multipole polariz-
abilities of the noble gas atoms Ar–Rn [235]. From an integration of polarizability
products along the imaginary frequency axis one can obtain dispersion coefficients
C6, C8, C10, and so forth. Relativistic effects on the static polarizabilities were
rather small for the atoms up to Xe. For this atom, the dipole polarizability was
calculated as 27.17 au with a relativistic correction of �0.22 (expt. quoted as 27.3).
For the Xe–Xe C6 coefficient the computation yielded 288.4 au with a relativistic
correction of �3.8 (expt. quoted as 285.9).

Small molecules, in particular heavy diatomics, have been studied extensively
since the advent of relativistic molecular methods. Computational data is abundant
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and we will only quote a few studies to demonstrate the magnitude of relativis-
tic effects on electric properties. Typically, sizeable relativistic effects both on
dipole moments and polarizabilities of molecules should be expected for small
molecules with heavy (6th row) atoms. As an example for relativistic effects on
dipole moments, Kellö and Sadlej reported nonrelativistic dipole moments of 1.13,
1.35, and 1.21 au for CuH, AgH, and AuH, respectively, computed at the CCSD(T)
level [236]. With relativistic corrections (MV C DAR) the dipole moments were
1.05, 1.14, and 0.64. Generally, for closed shell molecules and zero or low frequen-
cies spin–orbit effects on polarizabilities ˛ are considered to be very small [237].
Norman et al. compared four-component with scalar relativistic (DKH and ECP)
Hartree–Fock computations for group-16 dihydrides (O-Po) and group-17 monohy-
drides (FAt) and found only small overall relativistic corrections, less than a few
percent, which was attributed to the large excitation energies in these molecules
[237]. This becomes apparent from the SOS equation for a second-derivative prop-
erty, Eq. (12-26), which has the excitation energies in the denominator. However, it
was noted that higher-order electric properties (first and second order hyperpolar-
izabilities) afford significant relativistic effects for the systems studied. Very large
relativistic effects on quadratic response inm- and o-dihalobenzenes have also been
reported recently by Henrikssson et al. [238]. In a 2004 computational study of
the electric response of the Au20 cluster, Wu et al. reported remarkably large non-
linear polarizabilities which were obtained from DFT and TD–DFT computations
using the scalar relativistic ZORA operator [8]. A static first hyperpolarizability of
ˇxyz D 14:3 � 10�30 esu was obtained. Linear polarizabilities were also reported,
but a comparison with nonrelativistic results were not made. Although likely, it is
unclear if ˇ has been affected significantly by relativity.

The Hg dimer has received some attention because it is only very weakly bound
in its electronic ground state and accurate computations require the treatment of
relativity and correlation simultaneously. Accurate interatomic potentials between
Hg2 atoms used in simulations of bulk properties should help to better understand
why Hg is liquid at room temperature and the role that relativistic effects play
in the unique properties of mercury. Schwerdtfeger et al. have computed the Hg2

potential curve and the polarizability tensor as a function of interatomic distance
at the scalar relativistic coupled cluster level [239] (other correlation methods were
applied in this work, too). The unique tensor components ˛k and ˛? were both
found to decrease by about 50% due to scalar relativistic effects. This very strong
effect was attributed to a similarly strong relativistic reduction of the Hg atomic
polarizability due to the relativistic contraction of the Hg 6s orbital [240]. See also
the TD–DFT calculations [241] where the a reversal of the trend of increasing polar-
izability for Zn, Cd, Hg due to relativistic effects was explicitly noted. Gaston et al.
have computed the polarizability of the Hg dimer using four-component DFT [242].
The authors noted good performance of the functionals (B3LYP and in particular
VWN) to reproduce experimental data for the atomic and molecular polarizabili-
ties despite their rather poor performance for predicting the PES: VWN overbinds
strongly (as often) and B3LYP yields a repulsive potential curve for Hg2. Despite
these shortcomings, the polarizabilities were in good agreement with experiment,
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and the location of the first two poles of the linear response on the real frequency
axis also agreed reasonably well with experimental data for the two lowest excitation
energies. For relativistic benchmark data see also Lim et al. [243] who calculated
spectroscopic constants (Re; !e ;De, ionization potentials) and static polarizabilities
for neutral and positively charged alkali dimers, using coupled cluster and density
functional theory. Relativistic effects were dealt with by using pseudopotentials. The
coupled-cluster results were found to be in very good agreement with experiment,
while the DFT results showed quite a degree of variability. Among the functionals
that were applied PW91 performed best.

A four-component DFT approach was applied by Salek et al. to compute static
and dynamic polarizabilities of the isoelectronic series Hg, AuH, and PtH2 [244].
For the Hg polarizability the authors noted large correlation effects of about 25%
and an excellent performance of the VWN local density functional “superior to that
of the BLYP and B3LYP functionals”. The frequency range from 0 to 0.3 au was
scanned in undamped computations of ˛ for the Hg atom. The results exhibited very
clearly the singular behavior as shown earlier in Figure 12-2. The locations of the
poles at 0.20 and 0.24 au agreed quite well with experimental data of 0.18 and 0.25
au for the lowest 3P1 and 1P1 transitions, respectively. Atomic static and dynamic
polarizabilities were recently revisited by Bast et al. [245] using four-component
DFT with various functionals and including all closed-shell atoms up to Rn. The
authors pointed out that rare-gas atoms are not a fully representative test set when
calibrating functionals. Among the best performing functionals were asymptotically
corrected hybrid functionals.

The OsO4 molecule has been studied by a number of authors. Cundari et al.
reported computations for a series of MO4 and thiometalate species (M D 3d, 4d and
5d metal including Os) using ECPs [246, 247], with a focus on solvent effects and
nonlinear polarizabilities. Hohm and Maroulis recently reported revised experimen-
tal data and wavefunction-based (MBPT and coupled-cluster) and DFT benchmark
data for OsO4 [249]. A static electronic polarizability of 51 au was derived from
experimental data and estimated from computations as 52:2 ˙ 1:6 in the nonrel-
ativistic limit. Filatov and Cremer [248] implemented polarizability computations
using a modified IORA approach (IORAmm, Hartree–Fock and MP2) and reported
computations for noble gas atoms, Hg, and the MO4 series with M D Ru, Os, Hs.
The relativistic correction for the static polarizability of OsO4 was found to be rather
small, �2.3 au The relativistic effect on the polarizability of HsO4 was more pro-
nounced, �6.5 au Filatov and Cremer reported IORAmm/MP2 polarizabilities of
59.2. 56.6, and 51.04 au and quoted an experimental value of 55.1 for OsO4 from
the CRC Handbook, 76th ed. Cundari’s work indicated that medium effects on the
polarizability might be pronounced [246]. Our group implemented a spin–orbit DFT
and TD–DFT linear response program [241] and computed, inter alia, the static
and frequency dependent polarizability of RuO4 and OsO4. The static isotropic
polarizabilities computed with a local density approximation were 48.2 and 50.0
au, respectively. The value for OsO4 is in good agreement with experiment.

As a last example for polarizability calculations we shall discuss the series of
metallocenes, M(C5H5)2, with M D Fe, Ru, Os. Experimental data for the group
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Figure 12-16. Frequency dependent electric polarizability of Ferrocene and Osmocene. Experimental
data (points) and extrapolations (lines) extracted from figures published by Goebel and Hohm [250].
ZORA spin–orbit DFT computations, VWN functional [241]

8 metallocenes has been published in [250]. Figure 12-16 displays the frequency
dependent polarizability for two of the metallocenes together with computed data
that were published in [241]. The ferrocene data compare reasonably well with
calculations published earlier in [227] which were performed at a nonrelativistic
DFT level (B3LYP functional). The VWN polarizabilities shown in Figure 12-16
are roughly as much above the experimental values as the B3LYP values from
[227] lie below. Overall, both the relativistic and the nonrelativistic computations
for osmocene and ferrocene, respectively, appear to yield a good description of the
polarizability dispersion. The relativistic increase of ˛ from ferrocene to osmocene
is quite well reproduced by the computations at frequencies below 0.1 au. For
osmocene, the computations yield a stronger dispersion at higher energies which
might indicate an underestimation of the energy of a nearby dipole-allowed tran-
sition. The solid line for the experimental data in Figure 12-16 represents an
extrapolation from the measurements based on a Kramers–Heisenberg dispersion
relation for ˛ and its anisotropy, using a single effective excitation frequency and
oscillator strength [250]. Between! D 0:050 and 0.095 au the fit yields an excellent
match with a dispersion curve obtained by obtained by dispersive Fourier transform
spectroscopy [250]. Instead of a possible underestimation of the computed excita-
tion energies the computed results might alternatively indicate that the experimental
fit is not flexible enough to describe the dispersion at higher frequencies.

Wang et al. have used the two-component ZORA framework for an implemen-
tation of the “singularity” route to excitation energies within TD–DFT that was
discussed in Section 12.2.3 [10]. In the same year, Gao et al. reported a four-
component TD–DFT implementation for excitation energies based on the same
paradigm [251], and Peng et al. reported an alternative ZORA implementation
[252]. Both groups of authors have focused on the correct treatment of non-collinear
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spin-density perturbations in the perturbed exchange-correlation potential which is
needed to correctly treat magnetic moment (spin) flipped transitions [253]. Wang
et al. studied a number of systems, including various closed shell atoms (Zn, Cd,
Hg, CuC, Pd, AgC, AuC, noble gas atoms), and closed shell diatomics (AgI, Au2,
TlH, Bi2) and obtained reasonable agreement with experimental excitation energies
where available. It was also found that this TD–DFT approach can account for the
fine structure splitting of the atomic np6 to np5.nC1/s1 transitions, although it was
noted that for Xe and Rn some of the splittings involving transitions from the p1=2

orbitals were computed as too small [10]. This two-component ZORA implementa-
tion was recently applied to compute and analyze the excitation spectra of group-10
hexafluorides, MF6 with M D Pd, Pt, Ds, along with four-component Hartree–Fock
geometry optimizations which yielded octahedral structures in contrast to D4h sym-
metric nonrelativistic geometries [254]. Comparisons with experimental data were
made for PtF6. Both structural data and the energies of the ligand-field transitions
appeared to be in good agreement with experimental data.

Pierloot et al. recently computed the electronic spectra of uranyl UO2C
2 and

uranyl-tetrachloride [UO2Cl4]2� with the TD–DFT ZORA approach [255] and
compared to ab-initio CASPT2 data from [256]. TD–DFT computations with stan-
dard LDA and GGA XC potentials as well as the LB94 potential did not yield
good agreement with CASPT2 in spin-free benchmark computations on UOC

2 and
[UO2Cl4]2�. However, the shape-corrected SAOP potential performed very well,
prompting the authors to conclude that the comparison “convincingly proves the
quality of the DFT results”. The agreement of the TD–DFT results with experiment
and the CASPT2 results was indeed quite good, apart from the ordering of the first
two states which are very close in energy. A comparison between ab-initio methods
and TD–DFT for uranyl was also made by Réal et al. [257] who concluded that,
while most functionals did not yield very accurate excitation energies, the geome-
tries and relaxation energies of the excited states were reasonably well described.
A range-separated functional (CAM–B3LYP) was shown to yield improvements
for the excitation energies over the popular hybrid functional B3LYP. Ingram and
Kaltsoyannis benchmarked non-hybrid functionals for TD–DFT excitation energy
computations in three uranium compounds [258]. The researchers tested the PW91,
LB94, and SAOP XC potentials and six basis set combinations. It was concluded
that the use of large basis sets was not warranted for the systems studied and that
SAOP reproduced the experimental data best.

12.4. CONCLUDING REMARKS

Molecular properties can be computed from energy or quasi-energy derivatives.
Although much work remains to be done by method developers to improve the speed
and accuracy of such computational methods, and to extend the list of properties that
can be computed with two- or four-component relativistic methods, over the past 10
years a large number of publications have demonstrated the maturity and reliabil-
ity of available relativistic methods for property computations. Relativistic effects
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on “nuclear” properties can be very large. Examples are �100% or more relativis-
tic increases of heavy-atom–light–atom nuclear spin spin couplings or of heavy
nucleus EPR hyperfine couplings. NMR chemical shifts and nuclear quadrupole
coupling constants can also be very strongly affected by relativistic modifications
of the molecule’s electronic structure. Even for valence shell properties such as
polarizabilities, one might find very strong relativistic effects. A example is the
comparatively small polarizability of the Hg atom noted earlier. There are now
a number of program implementations available that researchers can use to com-
pute such properties efficiently at some level of approximation for the treatment of
relativistic kinematics, even for quite large molecules.
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157. Pyykkö, P., Görling, A., Rösch, N.: Mol. Phys. 61, 195 (1987)
158. Kaupp, M., Malkina, O.L., Malkin, V.G., Pyykkö, P.: Chem. Eur. J. 4, 118 (1998)
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M., Sundholm, D.: Phys. Chem. Chem. Phys. 6, 11 (2004)
177. Dmitrenko, O., Bai, S., Beckmann, P.A., van Bramer, S., Vega, C., Dybowski, A.J.: J. Phys. Chem.

A 112, 3046 (2008)
178. Bagno, A., Bonchio, M., Sartorel, A., Scorrano, G.: ChemPhysChem 4, 517 (2003)
179. Gracia, J., Poblet, J.M., Fernández, J.A., Autschbach, J., Kazansky, L.P.: Eur. J. Inorg. Chem.

pp. 1149–1154 (2006)
180. Gracia, J., Poblet, J.M., Autschbach, J., Kazansky, L.P.: Eur. J. Inorg. Chem. pp. 1139–1148 (2006)
181. Bagno, A., Bonchio, M., Autschbach, J.: Chem. Eur. J. 12, 8460 (2006)
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213. Schlegel, H.B.: In: P. von Ragué Schleyer (ed.) Encyclopedia of Computational Chemistry,

pp. 2665–2671. Wiley, Chichester (1998)
214. Neese, F.: J. Chem. Phys. 118, 3939 (2003)
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Breit correction, 125
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Charge conjugation (C), 397
Charge transfer states, 352
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Pt–Tl bonded systems, 573
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matrix representations, 423–424
string-based relativistic CI
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large-scale relativistic CI algorithms,
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Core electron spectra
charge transfer (CT), 352
computational methods

complete open shell CI (COS-CI)
calculation, 356

Dirac-(Gaunt/Breit) equation, 355
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embedded cluster model, 354
finite nucleus model, 357
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many-electron Hamiltonian, 355
MOLFDIR, 357
one-electron Dirac equation, 354
orbital relaxation, 356
orthonormal spinors, 355
point-charge model, 356–357
two-component spinor, 355
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density functional theory (DFT), 352
electronic transition processes, 353
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spectra
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4d95f1 configuration, 367
5d95f1 configuration, 368
dipole selection rules, 365
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2p53d1 configuration, J level properties, 365,
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relative energy, 366
spin-orbit expectation value, 364
transition metal, 363, 365
white lines, 363

X-ray photoelectron spectra (XPS)
binding energy shifts, 362
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initial and final state effects, 362
intensity, sudden approximation (SA), 359
ionic model, 358
Koopman level, 362
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2p hole spectra, 361
relative energies and relative intensities, 359,

360
relaxation energy, 362
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core-valence correlation, 226
cut-off functions, 227
dipole moment, 226
one-and two-particle contributions, 227
spherically symmetric core, 226

Correlation group table (CGT) method, 380
Coulomb electrostatic interaction, 291
Coupled cluster (CC), 280

active-space coupled cluster, 434–435
coupled cluster vector function, 436–437
relativistic cluster operators, 435–436

Coupled cluster vector function, 436–437
Coupled cluster with single and double (CCSD)

excitations scheme, 305
Cowan–Griffin (CG) AE calculations, 238
Crystal field theory (CFT), 383
C1vsymmetry, diatomic systems

iodine oxide (IO), 383–384
irreducible representations, 384
potential energy curves, 385
SnTe, 386–387
3/2 state and 1/2 state, 385

D
Density functional semi-core PPs (DSPP), 244
Density functional theory (DFT), 352, 464–467,

473, 475–485, 487, 491, 495, 496,
498–501, 506, 509, 510, 512, 525, 526,
561

4c-DFT. See Density functional theory (DFT)
D1h symmetry, Au2

gas-phase absorption spectra, 387
low-lying electronic states, 388
potential energy curves, 387, 388
three �-states, 388–389

Diatomic molecules
coinage metal molecules

calculated vs. experimental values, 104,
105

CCSD(T) level, 107
core-valence correlation effects, 106
covalent dissociation energy, 108
CuCs, AgCs and AuCs, 105, 107, 108
CuF, AgF and AuF, 104, 106
CuH, AgH and AuH, 103
5dn6s2 configurations, 102
electron correlation, 104
kinetic balance condition, 103
maximum for gold rule, 101
molecular orbitals (MO), 108–109

Mulliken population analysis, 109
projection coefficients, 108, 110
relativistic corrections, 104, 106, 108
6s orbital contraction, 102
spectroscopic properties, 103, 104

di-and inter-halogens
ASO approximation, 125
bond distance, 117, 118
Breit correction, 125
calculated vs. experimental values, 119, 122,

123
CCSD(T) method, 118
core-valence effects, 119
correlation-relativistic cross terms, 120, 121,

123
halogen diatomic molecule series, 115, 116
harmonic frequency and dissociation energy,

117, 119
homonuclear molecules, 117
HX molecular orbitals, 117, 118
molecular spinor, 117
relativistic corrections, 117, 120, 121,

123–125
spectroscopic constants, 123, 124
spectroscopic properties, 116, 120
X2 molecular orbitals, 116

hydrogen halides
bond length, 136, 140, 143
core-valence electron correlation, 130–132,

134, 136
correlation-relativistic cross terms, 129, 134
dissociation energy, 136, 142
electron correlation, 128
energetic structure, 126
halogen atoms subshells, 131, 136
harmonic frequency, 136, 141
relativistic and correlation effects, 125–126
relativistic corrections, 127, 132, 133
spectroscopic constants, 131, 137–138
spectroscopic properties, 126, 127, 131
spin-orbit coupling, 127
theoretical vs. experimental values, 130, 134,

135
super heavy molecules

CCSD(T) method, 140
core-valence correlation effect, 141
energy optimization, 139
HTl molecule, 140
nonunitary transformation, 144
nuclear synthesis reaction, 136
orbital stabilization and destabilization, 146
relativistic corrections, 139, 140, 143–145
scalar and spin-orbit relativistic effects, 142
spectroscopic properties, 139, 143–145
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spin-orbit splitting, 143
valence nsnp atomic energy levels, 144,

146
valence s and p orbital, 144

transition metal hydrides
calculated vs. experimental values, 115
CdH, CdHC and CdH� spectroscopic

parameters, 114
DC wave function, 113
5d participation, 111
Fock-space coupled cluster method, 113,

115
molecular properties, PtH, 111–112
Mulliken population analysis, 111
nondynamical and dynamic correlation, 109
nonrelativistic and relativistic electron

configurations, 110, 111
PdH bond distances and excitation energies,

113
platinum atom, 110
relativistic corrections, 114
static correlation, 112
¨¨ coupling, 111, 113

Dipole–dipole polarizability, 539. See also
Polarizability

Dipole moment, 522, 535, 539, 584, 585, 587
Dirac–Breit Hamiltonian, 188
Dirac–Coulomb–Breit (DCB) Hamiltonian, 99,

291, 462, 526, 532
Dirac–Coulomb (DC) Hamiltonian, 168, 186, 238
Dirac equation

Darwin effect, 26
electromagnetic fields, 15–16
gauge transformations, 21–22
Heisenberg’s uncertainty principle, 18
Lorentz transformation

force-field-free space, 12
formal velocity summation, 13–14
transformation coefficients, 13

multi-component wavefunctions, 19
non-relativistic wave equation without spin, 17
non-relativistic wave equation with spin, 21
particles and antiparticles, 25
picture changes

dipole moment and transition-dipole
moment, 22

direct Dirac perturbation theory, 24
effective-core potentials (ECP), 23
non-relativistic wavefunction, 24
picture transformation, 23
Schrödinger equation, 24
triviality, 25

relativistic mechanics, 14–15

relativistic wave equation without spin, 17–18
relativistic wave equation with spin, 19–21

Dirac–Fock–Breit method, 197
Dirac–Fock–Coulomb method, 198
Dirac-Fock (DF) equations, 100
Dirac-Fock-Roothan (DFR) equations, 100
Dirac four-component perturbation theory (DPT),

531
Dirac–Kohn–Sham (DKS) scheme, 197, 206, 209,

210
Dirac-Slater Discrete Variational (DS-DV)

method, 464, 475
Dirac solutions

electronic self-energy, 47
extended nuclei, 45–46
higher angular momenta

6d orbital, U atom, 40, 41
5f orbital, U atom, 40, 41
nuclear shielding, 40
spin-orbit splitting, 42

orbital radii, relativistic changes, 31
paradoxical relations

Bohr model, H atom, 32
covalent bond formation, 34
Dirac hydrogen atom, 33–34
singlet triplet splitting, 34
transparent model, 31

parity violation, 47
p3=2 valence orbital, 42–43
relativistic atomic spinors
p1=2 spinors, 30–31
p3=2 spinors, 29–30
s1=2 spinors, 28–29

relativistic orbital energy, H-atom model, 27
relativistic two-electron interaction

Breit operator, 44
Coulomb and Lorentz gauge, 43–44
Gaunt operator, 44
magnetic dipole orbit–orbit interaction, 45
magnetic Gaunt interaction, 44
spin–spin interaction, 45

small angular momenta
atomic orbital, 35, 36
fractional relativistic correction factors, 40
generalized virial theorem, 35
gold maximum, 40
hydrogenic orbitals, 35
hydrogen-like ion, 34
orbital radius contraction, 39
Pauli exclusion effect, 39
6p orbital, Pb atom, 36, 38
7p orbital, U atom, 36, 38
self-consistent field (SCF), 36
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6s orbital, Au atom, 36, 37
7s orbital, U atom, 36, 37
7s radial Dirac spinor, U atom, 36, 39

vacuum polarization, 46–47
Dissociation energy, 480–483, 485, 487, 491,

495, 498–501
Distribution coefficient, 457
Double groups

construction
characters, D3 and D4 group, 402, 403
character table generation, 401
class structure, 401
irreducible representations, 401–403
two-dimensional representations, 402

diatomic systems
angular momentum, 377
C1v symmetry, 383–387
degenerate state, 380
D1h symmetry, 387–389
direct product correlation, 378
heteronuclear, 2… electronic state, 380
irreducible representations, 379
  and • orbitals, 379
spin-orbit states, 378
3/2 state vs. 1/2 state, 380
transformation, spin multiplets (Ds/, 378

polyatomic systems
applications, 395
C2v

2 character table, 381, 382
direct product rules, 382
E1=2 degenerate representation, 382
emission properties, metal complexes,

392–395
Jahn-Teller distortion, spin-orbit effect,

389–392
relativistic computation, 381
spin correlation function, 381–382
spin-orbit calculations, 382, 383
spin state, 381

spin-orbit interaction
atomic wavefunctions, 376
C2v and D2h symmetries, 377

 and 
C2 rotation, 376
magnetic perturbation energy, 375
total angular momentum, 376

time reversal
charge conjugation, 397
CPT theorem, 397–398
group theory, 399–400
parity, 395–397
T properties, 398–399

Double group symmetry, 413–414
Douglas–Kroll approximation, 169

Douglas–Kroll–Hess (DKH) methods, 169, 182,
206, 530–531

Dynamic polarizability, 585, 588. See also
Polarizability

E
Effective core potentials (ECPs), 23, 531–532

DFT
density ¡¢ ; ¤, 243
DSPPs, 244
frozen-core approximation, 243
Huzinaga–Cantu equation, 242
norm-conserving properties, 243–244
prototype atomic configuration, 243

model potential (MP) method
ab initio model potentials (AIMP), 241, 242
core-valence exchange (X) interaction, 240
Coulomb core-valence interaction, 241
Coulomb .C / interaction, 240
DKH approximation, 242
nonlocal exchange part, 241
origin, Huzinaga–Cantu equation, 239–240
projection/shift operator, 240
valence basis sets, 240, 241
valence-electron model Hamiltonian, 240

shape-consistent pseudopotentials
AE valence orbital energy, 237
Breit interaction, 239
effective valence Coulomb and exchange

potential, 237
frozen-core errors, 239
main group and transition elements, 238
operator norm, 238–239
radial Fock equation, 237
radial function, 238

Eka-lead (element 114)
closed-shell M4C ion, 324
closed-shell M2C ns2 state, 324
group 14 elements, 325–327
IHFSCC method, 324
ionization potentials and excitation energies,

324–326
Electric field gradient and quadrupole moments

average absolute deviations (AAD), 156
closed-shell diatomic molecules, 157
electron correlation, 155
indium nucleus, 156
nuclear quadrupole moment (NQM), 154–155,

157, 158
Electric field gradients (EFGs)

DFT, gallium, 584
DKH method, 583
127I nuclear quadrupole coupling constants,

582
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lanthanum chemical shifts, 584
Mössbauer quadrupole splittings, 581
noble gas noble metal fluorides, 584
picture-change effects, 583
rank-2 tensor, 580
semi-core-and core-polarization contributions,

583
spin–orbit coupling, 582

Electric polarizability, 560. See also Polarizability
Electron affinities

alkali atoms
correlated electrons, 316
intermediate Hamiltonian method, 316, 317
model space, 316

group 13, 317–318
Electron correlation methods

Br2
2C

double photoionization spectrum, Br2 , 440,
441

lowest electronic states, 440
coupled cluster

active-space coupled cluster, 434–435
coupled cluster vector function, 436–437
relativistic cluster operators, 435–436

double group symmetry, 413–414
generalized active spaces, 414–416
Hamiltonian operators

empty Dirac picture, 420
Kramers-adapted form, 422–423
positive-and negative-energy states, 420
relativistic formulations, 421–422

I3 and I3�

excitation energies, 441–444
GASCI and IHFSCC, 441–442
Linear Response Coupled Cluster (LRCC),

442
SO-CASPT2, 441, 442

Kramers-paired spinors
integrals, 412–413
relativistic theory, spin–orbit interaction, 411
spin-orbitals, 410, 411

many-particle wavefunctions
relativistic excitation classes, 418–419
spinor strings, 416–418

matrix representations, 423–424
multi-configuration SCF

algorithm, 430–431
electronic gradient and Hessian, 431–433

spin–orbit interaction, 408, 409
string-based relativistic CI

computational demand, 424–425
coupling coefficients, strings, 428–429
excitation-class-driven algorithm, 427–428

large-scale relativistic CI algorithms,
425–426

sigma-vector fragmentation, 426–427
time-reversal symmetry, 409–410
Tl2 ground and excited states

AREP CCSD(T) treatment, 439
potential energy curves, 438
spectral constants, 439
spin–orbit interaction, 438
ungerade symmetry, 439

Electronic spectrum, nobelium and lawrencium
simulated E1 spectrum, 328–330
spectroscopic measurements, 327
transition energies, 327–329

Electronic structure, 216, 244, 251
atomic electronic shells, heaviest elements

Breit effects, 461
DS eigenvalues, valence electrons, 458, 459
nuclear volume effects, 461
quantum electrodynamic (QED) effects, 461
relativistic and nonrelativistic radial

distribution, valence electrons, 458, 459
relativistic DF and non-relativistic HF, 460,

461
relativistic stabilization, 6s and 7s orbitals,

458, 460
atomic/ionic/covalent radii and polarizability

alkali and alkaline earth elements, 472
Hg and element 112, 472–473
shell-contraction effects, 472
transactinide break, 471

complex formation and extraction, liquid
chromatography, 508–511

electron affinities, 468–470
electronic configurations, 467
experimental chemical studies

distribution coefficient, 457
electrochemical deposition, 457
gas-phase chromatography experiments, 456
isothermal chromatography, 456
liquid-liquid/ion exchange chromatography,

457
volatility, 456

gas-phase chemistry
element 112, 482–492
element 113, 493–496
element 114, 496–503
elements 115–118, 503–506
elements with Z > 118, 506
Rf through Hs, 473–480
Rg, 480–482
volatility predictions, heaviest elements and

compounds, 507
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heaviest elements, production and identification
cold-fusion reactions, 452, 454
doubly-magic 208Pb, 452
hot-fusion reactions, 452
lifetime, 452
nuclear charge, 454
nuclides, modern chart, 453–454
periodic table, 454
quantum shell effects, 455
transactinides series, 452

hydrolysis and complex formation, 511, 512
ionization potentials, 468–470
redox potentials and reduction experiments,

507–508
relativistic quantum chemical methods

atomic codes, 462–463
molecular methods, 463–466

stable oxidation states, 468–471
theoretical studies, role, 458

Electron paramagnetic resonance
DFT computations, 577
g-tensor, 573–575, 578
isotropic average, �g tensor, 576
isotropic 199Hg hyperfine coupling constant,

578, 579
Kohn–Sham computation, 576
scalar relativistic ZORA DFT approach, 578
spin-differentiation, 575
spin–orbit coupling, 575
spin-polarized DKH data, 578
spin-restricted ZORA, 578
spin Zeeman term, 573

Electron-repulsion potential, 532
Elements periodic system

atomic Rydberg orbitals, 56
hydrogenic energy-sequence, 56
nuclei lifetime, 58
orbital energy gaps, 57
primogenic valence orbital, 55
relativistic scalar and spin-orbit effects, 57
valence shells, 56, 57

Energy-consistent pseudopotentials
atomic natural orbit (ANO), 229, 230
availability and valence basis sets

main group elements, 233, 234
transition metals, lanthanides and actinides,

233, 235–236
core-polarization potentials (CPPs), 228
density functional (DF) codes, 229
frozen-core (FC) errors, 228
parametrization method, 228

core energy shift, �Eshift , 232, 233

ground state orbital energy levels,
scandium, 230

least-squares minimization, 232
MCHF77 and GRASP1, 232
reference data calculations, 231–232
valence shells, 230, 231

quantum Monte-Carlo (QMC) calculations,
229

superheavy elements, 230
transition metal elements, 228–229
two-component formalism, 229

Energy density, 558
ESC Hamiltonian, 528, 530

F
5f-in-core pseudopotentials

actinide-oxygen distances, 266
actinocenes, An(C8H8/2, 267
binding energies, actinide ion water complexes,

266, 267
borderline case, 268
fixed valency, 260
hexavalent uranium compounds, 266
linear combination, 260
reference data, 259
relative energies (eV), 259, 260
superconfiguration model, 260
uranium fluorides, 265
valence basis set optimization, 262
vs. 5f-in-valence PP, 265

5f-in-valence pseudopotential
calculated and experimental properties, UO2,

264, 265
Dirac–Hartree–Fock-adjusted PP

AE data vs. relative energies, 254, 256
coupling schemes, 254–255
errors, non-relativistic configurations, 256
J levels, MCDHF/DCCB-adjusted PP, 256,

257
parameters, 255
radial orbital densities, 258
reference data set, 255
relative energies, 248, 256
root mean squared errors, 255
shape-consistent formalism, 258, 259
single-determinant J levels, 257

4I9=2 ground state, 262, 263
valence basis set optimization, 261–262
vertical excitation energies, 263, 264
Wood–Boring-adjusted PP

configuration interaction (CI) calculations,
253
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f and g symmetry, 253
Gaussian term, 252
relative average energies, configurations,

253, 254
SO operators, 253

Fock-space coupled cluster (FSCC) method, 113,
115

accuracy and convergence, 305
atomic excitation energies, 310–311
Bloch equation, 304, 305
effective Hamiltonian, 304–306
excitation operator, S; 304
extrapolated intermediate Hamiltonian (XIH)

method, 308
HSCC and MSCC, 309
ionization potentials, alkali atoms, 312–313
model spaces, 307
multi-root multireference scheme, 303
perturbation theory expansion, 307
physical Hamiltonian, 303, 306
Pm and Pi model spaces selection, 309–310
valence holes and particles, 304

Foldy-Wouthuysen (FW) transformation, 528
Four-component electronic structure methods

Dirac equation
covariant form, 281
Dirac’s electronic theory, 283–284
Dirac’s filled sea, 283
electronic equation, 282
electrons and positrons, 282
free-particle form, 282
infinite-body theory, 284
Klein–Gordon equation, 281, 282
large relativistic effects, light elements, 283
4�4 matrix operators, 282
MBPT/CC approaches, 280, 281
positive energy solutions, 283
Rayleigh–Schrödinger formulations, 281
relativity, 281
Schrödinger equation (SE), atomic and

molecular systems, 280
double Fock-space CC

all order pair equation, 340
Bloch equation, 339, 340
effective potential, 340
energy-independent perturbation, 339
extended Fock space, 338
fuzzy picture approach, 340–341
single-and double-photon exchange, 340

Fock-space coupled cluster (FSCC) method
accuracy and convergence, 305
atomic excitation energies, 310–311
Bloch equation, 304, 305

effective Hamiltonian, 304–306
excitation operator, S; 304
extrapolated intermediate Hamiltonian

(XIH) method, 308
HSCC and MSCC, 309
model spaces, 307
multi-root multireference scheme, 303
perturbation theory expansion, 307
physical Hamiltonian, 303, 306
Pm and Pi model spaces selection, 309–310
valence holes and particles, 304

heavy elements
electron affinities, alkali atoms, 315–317
electron affinities, group 13, 317–318
gold atom, 313–314
high-energy virtual orbitals, 311
ionization potentials, alkali atoms, 312–313
f 2 levels of Pr3C, 314–315
nuclear quadrupole moments (NQM),

318–320
notation and units, 279–280
no-virtual-pair approximation (NVPA)

Hamiltonian and benchmarking, 296–299
particle–particle interaction, 290–296

QED–SCF procedure, 333–335
quantum electrodynamics (QED) Hamiltonian

antisymmetric electromagnetic field tensor,
285

“clamped nucleus” approximation, 286
classical electrodynamic (CED) theory, 284
classical Hamiltonian, 287, 288
Coulomb gauge, 285, 286
covariant evolution operator (CEO) method,

288
Dirac 4-spinor matter (fermionic) field, 285
electric (E) and magnetic (B) fields, 285
Euler–Lagrange classical equation, 287
field equations, 285
final classical Hamiltonian density, 287
gauge transformations, 286
interpretational problems, 289
Lagrangian formalism, 284–285
many-body approaches, 288
methodological problems, 289
quantization procedure, 284, 287
uniform electric field, 285

SCF procedure, atoms and molecules
algebraic approximation, 300
energy, 300
Hartree–Fock SCF equations, 300
kinetic balance, 301, 302
N-electron Slater determinant, 299
nuclear attraction potential, 301
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one-body mean-field potential, 301
one-electron Hartree–Fock operator, 301
radial four-spinors, 300, 301
vacuum state, 299

superheavy elements
atom adsorption, 331–332
eka-lead (element 114), 323–327
electronic spectrum, nobelium and

lawrencium, 327–330
ground state configuration, roentgenium,

320–322
rare gas atom, 330–331
rutherfordium–relativity vs. correlation,

322–323
Four-component methods, 159–162
Free-particle Fouldy–Wouthuyse (fpFW)

transformation, 174
Frequency dependent electric polarizability, 589

G
Gas-phase chemistry, 456

element 112
atomic properties, relativistic effects,

482–483
bond length contraction, 491
decomposition reaction energies, 491, 492
Mulliken population analysis, 492
second and third-order DK method, 491
Van der Waals systems, volatility, 483–485
volatility, metal interaction, 486–491
ZnF2, CdF2 and HgF2, 2C state, 491

element 113
atomic properties and volatility, 493–494
properties, compounds, 495–496

element 114
ab initio DF and pseudo potential (PP)

calculations, 503
atomic properties and volatility, 496–498
homonuclear dimers, 498–500
intermetallic systems, 500–502

elements 115–118
chemical compounds, element 118, 505–506
element 117, chemical properties, 504
elements 115 and 116, chemical properties,

503–504
volatility, element 118, 505

elements with Z > 118, 506
Rf through Hs

adsorption behaviour, OsO4 and HsO4, 479,
480

adsorption enthalpy, 478–479
atomization energies, 475–476
bond lengths, 478

4c-DFT electronic structure calculations,
473

effective metal charges, 474
interaction energy, 476, 477
ionization potential, 478
molecule-surface separation distance, 478
optimized bond lengths, 476
overlap population (OP) analysis, 474
partial overlap populations, MCl5 , 474, 475
polarizability, 478
relative yields, TcO3Cl, 477
SO effect, 475
vibrational frequencies, 478
volatility, 477, 479

Rg
bond lengths, 480, 481
decomposition reactions, 482
dissociation energies, 481
dissociation energy, 482
force constants, 481
PP CCSD calculations, 480
scalar relativistic effects, 480, 482
SO effects, 482

volatility predictions, heaviest elements and
compounds, 507

Gaussian finite nucleus model, 319
Generalized active spaces, 414–416
Generalized gradient approximation (GGA),

193–194
Generalized Phillips–Kleinman (GPK) operator,

219, 220
Generalized relativistic ECP (GRECP) approach,

239
Gold f5d106s1g, 313–314

auride salts and Au–Au bonds, 68–69
gold clusters and aurophilic interactions, 69–70
unusual gold compounds, 69

g-tensor, 573–575, 578

H
Heavier main group elements

chemical effects, 66
d-block elements

gold f5d106s1g, 68–70
mercury f5d106s2g, 70–72
platinum f5d3=245d5=256s1g, 67–68

intraatomic changes
orbital energy, 65
radial changes, 66
subshell splittings, 65

p-block elements
astatine f6s26p1=226p3=23g, 79
bismuth f6s26p1=226p3=21g, 76–77
lead f6s26p002g, 74–76
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oxidation states, 72
polonium f6s26p1=226p3=22g, 77–79
radon f6s26p1=226p3=24g, 80
stable compounds, 72–73
thallium f6s26p1=21g, 73–74

radioactive elements, 80
relativistic effects

Bohr model, 63
Einstein’s theory, 63
Group 11 maximum, 65
mass ratio, 63–64

s-block elements
seventh and eighth period elements, 81
sixth period elements, 66–67

superheavy elements
darmstadtium, 82
element 112 and 113, 82
element 114, 115 and 116, 83
element 117, 118, 119 and 120, 84
roentgenium, 82
transactinide/translawrencium elements,

81
Hellmann–Feynman force, 51, 52
Hellmann–Feynman theorem, 535
Hilbert space coupled cluster (HSCC) method,

308, 309
Hyperfine operators

hydrogen-like Dirac s-orbital, 555
rest-mass energy, 555
ZORA

contact operator, 555
radial function, 556
two-component form, 557

I
Infinite order regular approximation (IORA), 530
Interhalogens, 152–154
Ionization potential, 468–470, 478, 483, 484, 493,

498, 512

J
J-coupling, 559, 560, 563, 567
Johnson–Lippmann (JL) operator, 181

K
Kohn–Sham kinetic energy function, 191
Kramers–Heisenberg dispersion relation, 589
Kramers-paired spinors, 410–411

integrals, 412–413
relativistic theory, spin–orbit interaction, 411
spin-orbitals, 410, 411

Kramers-restricted-MCSCF (KR-MCSCF)
method, 430, 438

L
Lead f6s26p002g

organolead compounds, 75–76
plumbides and inorganic lead compounds,

74–75
Lienard–Wiechert potentials, 187
Ligand field theory (LFT), 383
Local density approximation (LDA), 193, 244
Local spin density approximation (LSDA),

194
Lorentz transformation

force-field-free space, 12
formal velocity summation, 13–14
transformation coefficients, 13

Low-energy excited states, 231

M
Magnetizability, 522
Many-body perturbation theory (MBPT),

280
Many-particle wavefunctions

relativistic excitation classes, 418–419
spinor strings, 416–418

Mercury f5d106s2g
clusters and amalgams, 72
first ionization energies, 70
higher oxidation states, 71–72
polyatomic cations, 71
s2–s2 interaction, 70

Mixed sector coupled cluster (MSCC) method,
309

Molecular response properties
DFT, 535
energy expectation value, 534
Hellmann–Feynman theorem, 535
molecular orbital (MO) coefficients, 533
Moller–Plesset perturbation theory, 534
polarizability, 536
quasi-energy, 537–538
response equations, 534–535
stationary ground state energy, 537–538

MOLFDIR program package, 100
Mulliken population analysis

coinage metal molecules, 109
transition metal hydrides, 111

Multiconfigurational Dirac–Fock (MCDF)
scheme, 100, 297

Multi-configuration self consistent field
(MCSCF), 280

algorithm, 430–431
electronic gradient and Hessian, 431–433

Multiple perturbation theory
bond energy correction, 53
bond length contraction, 52
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gauge-dependent expression, 51
Hellmann–Feynman force, 51, 52
interchange theorem, 52
relativistic Hamiltonian expansion, 51

Multireference configuration interaction (MRCI),
317

N
N-electron system, 99
Non-relativistic Schrödinger equation, 19, 173
Nonrelativistic time-independent many-electron

Schrödinger equation, 525
Non-symmetric algebraic Ricatti equation

(n-ARE), 179, 180
No-virtual-pair approximation (NVPA)

Hamiltonian and benchmarking
algebraic approximation, 297
atomic four-component programs, 297, 298
eigenvalues and eigenfunctions, 297
FSCC method, 299
MCSCF, 298
molecular four-component programs, 297,

298
negative energy spectrum, 296
QED level, 297
relativistic CC technique, 299
second-order many-body perturbation

theory, 298
particle–particle interaction

algebraic approximation, 292
Breit interaction, 291
Dirac–Coulomb (DC) Hamiltonian, 290
electron correlation, 293–294
exact two-component (X2C) methods, 295
Feynman gauge, 292
“fuzzy” and “Furry” pictures, 294
Gaunt interaction, 291, 292
inter-electronic potential, 290
QED, 290
scalar relativistic effects, 295
SCF and orbital generation, 293
single photon exchange, 291, 292

Nuclear magnetic resonance (NMR) parameters
anisotropies, 572
carbon chemical shifts, 571
chemical shift, 524, 546, 559, 560, 562, 563,

584, 591
coupling constant, 566–568, 570
coupling tensor anisotropy, 568
diamagnetic shielding (DS) operator, 563
isotope effects, 563
K-coupling tensor, 563
normal halogen dependence (NHD), 570, 571
nuclear magnetic shielding, 559, 561

nuclear spin–spin coupling, 559, 561, 567
phenomenological Hamiltonians, 562
plumbane molecule (PbH4/, 564, 565, 567
proton chemical shift, 570
scalar relativistic DFT, 573
spin-free relativistic effects, 564
spin–orbit effects, 568, 569
two component electron density, Hg atom, 566
ZORA DFT, 573

Nuclear quadrupole coupling constants (NQCC),
154, 155, 581, 582

Nuclear quadrupole moment (NQM), 154–155,
157, 158

coupling constant, 318
electric field gradient (EFG), 318–320
electric field splitting, 319
gold, 319–320
observation, energy shifts, 318

P
Parity, 395–397
Pauli principle, 283
Pauli spin-matrices, 526
Perdew–Burke–Ernzerhof (PBE) gradient

function, 244
Perdew–Wang local correlation, 244
Perturbation operators

diamagnetic terms, 545, 546
DKH formalism, 548
electric-field gradients (EFGs), 554
electric property operators, 545
electronic degrees of freedom, 544
electronic g-factor, 552
gamma function ratio, 551
gauge including atomic orbital (GIAO), 544
individual gauge of localized orbitals (IGLO),

544
kinematic correction factor, 547
multipole expansion, 544, 549
nuclear hyperfine terms, 552
paramagnetic terms, 545
Pauli operator, 549
scalar potential, 549
special relativity, 546
spin-dependent terms, 545, 546
vector potential, 549, 550
ZORA

analog, 553
electric field gradient (EFG) tensors, 554
FC/SD, 553
field-free operator, 547
Hamiltonian, 547, 551
perturbation terms, 547, 553
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Phillips–Kleinman equation
coefficients, 218
core-valence orthogonality, 218
empirical potential approach, 217
frozen-core (FC) approximation, 219
one-electron Hamiltonian, upper energy

eigenfunction, 217
pseudopotential (PP), 218
pseudo-valence eigenfunction, 219
unnormalized function, 217

Phillips–Kleinman (PK) potential, 218
Polarizability, 471–473, 478, 483, 484, 493, 497,

498, 505
Polonium f6s26p1=226p3=22g

organopolonium compounds, 78–79
positive oxidation states, 77–78
zero/negative oxidation states, 78

Polyatomic molecules
CUO, 150–151
PtCH2C, 147–148
UF6

bond length, atomization energy and electron
affinity, 150

DF and CISD methods, 148
HOMO orbital, 149
nonrelativistic HF spinors, 149
relativistic corrections, 150

Polyatomic systems
applications, 395
C2v

2 character table, 381, 382
direct product rules, 382
E1=2 degenerate representation, 382
emission properties, metal complexes

irreducible representation, C2v and C2
group, 393

organic light emitting diodes (OLED), 392
potential energy curves, low-lying

spin-mixed states, 393, 394
Pt(thpy)2 structure, 392, 393
transition dipole moment (TDM), 393

Jahn-Teller distortion, spin-orbit effect
Pb3 cluster, 389–391
Pb3C cluster, 391–392

relativistic computation, 381
spin correlation function, 381–382
spin-orbit calculations, 382, 383
spin state, 381

Potential energy surface (PES), 521, 522, 587
Property density function, 558
Pseudo-valence orbital, ®p , 222, 223

Q
Quantum chemical ab initio cluster method, 353
Quantum electrodynamics (QED)

Hamiltonian, 284–289
infinite-body theory, 284
many-body description, covariant approach

Bethe–Salpeter–Bloch (BSB) equation, 337,
338

Fock space, 338
Green’s operator, 336, 337
multi-photon interactions, 337
single-photon exchange, 335, 336
time-dependent perturbation theory, 335
uncontracted virtual photons, 338
zero order resolvent operator, 337

quantum field theory, 284
SCF procedure

Dirac sea, 333
free-particle Dirac equation, 333, 334
Lamb shift density, 334
minimax principle, 333
orthogonal complement, 333

Quantum field theory, 284
Quantum shell effects, 455

R
Random phase approximation (RPA), 100, 151,

152
Relativistic cluster operators, 435–436
Relativistic configuration interaction (RCI), 380,

382, 387
Relativistic density functional theory. See also

Density functional theory (DFT)
Born–Oppenheimer approximation, 195
Dirac–Fock–Breit method, 197
Dirac–Fock–Coulomb method, 198
Dirac–Kohn–Sham implementations, 204–205
Dirac spinors, 196
energy functional, 191–192
exchange-correlation functional, 192

Breit interaction, 202
collinear/noncollinear approach, 204
critical core radius, 202
Dirac–Coulomb operator, 204
Fermi momentum, 201
homogeneous electron gas, 201, 202
random phase approximation (RPA),

202–203
spin-polarized system, 203

generalized gradient approximation (GGA),
193–194

Hartree energy, 192, 198
Hohenberg–Kohn theorem, 191, 195
local density approximation (LDA), 193
local spin density approximation (LSDA), 194
lowest-order gradient expansion, 193
orbital-dependent correlation functionals, 194
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quasirelativistic methods
Douglas–Kroll–Hess (DKH) method, 206
Douglas–Kroll operator, 207
effective core potential (ECP), 206, 208
electrostatic shift approximation (ESA), 208
picture change, 207
relativistic elimination of small component

(RESC), 208
scalar-relativistic approach, 205
screened nucleus spin–orbit (SNSO)

approximation, 206–207
spin–orbit matrix elements, 207
zeroth-order regular approximation (ZORA),

206, 208
scalar and vector potentials, 196
Schrödinger equation, 194–195
spin density functional theory

collinear approximation, 199–201
current-dependent functionals, 198
Gordon decomposition, 198
Kohn–Sham single-particle equations, 199
magnetic field, 198–199
moment polarization approach, 201
non-collinear approximation, 200, 201

vacuum effects, 197
Relativistic effective core potential (RECP),

463–464, 475, 476, 491, 495, 496. See
also Effective core potentials (ECPs)

Relativistic heavy nuclei, 523
Relativistic pseudopotentials

all-electron (AE) reference calculations, 215,
216

effective core potential (ECP) methods
DFT, 242–244
model potential (MP) method, 239–242
shape-consistent pseudopotentials, 237–239

energy-consistent pseudopotentials
atomic natural orbital (ANO), 229, 230
availability and valence basis sets, 234–237
core-polarization potentials (CPPs), 228
density functional (DF) codes, 229
frozen-core (FC) errors, 228
parametrization method, 228, 230–233
quantum Monte-Carlo (QMC) calculations,

229
superheavy elements, 230
transition metal elements, 228–229
two-component formalism, 229

spin–orbit (SO) operator, 216
theoretical considerations

core–core/nucleus repulsion corrections, 227
core-polarization potentials (CPP), 225–227
Dirac–Hartree–Fock (DHF) level, 224

molecular pseudopotentials, 225
non-relativistic pseudopotentials, 221–222
Phillips–Kleinman equation, 217–219
projection operator, 224
scalar-relativistic pseudopotentials, 223–225
SO PP, 224
valence electron model Hamiltonian, atom,

220
uranium

calibration and application, 262–269
choice of core, 247–252
Dirac–Hartree–Fock-adjusted 5f-in-valence

pseudopotential, 254–258
5f-in-core pseudopotentials, 258–260
reference data, 245–247
valence basis set optimization, 261–262
Wood–Boring-adjusted 5f-in-valence

pseudopotential, 252–254
Relativistic quantum chemical methods

atomic codes
correlation effects, 462
Dirac-Coulomb-Breit (DCB) Hamiltonian,

462
element 114, electronic states, 463
Fock-space DCB CC method, 462
MCDF method, 463

molecular methods
density functional theory (DFT), 464
DF calculations, 463
Dirac kinetic energy operator, 465
Dirac-Slater Discrete Variational (DS-DV)

method, 464
Douglas-Kroll (DK) approach, 466
effective core potentials (ECP), 463
electronic density, 464
embedded M-M14 system, 466
external potential, 466
Hartree potential, 465
Kohn-Sham equations, 465
magnetization density, 465
pseudo potentials (PPs), 463–464
quasi-relativistic approximations, 466

Relativistic quantum chemistry
Dirac equation

Darwin effect, 26
electromagnetic fields, 15–16
gauge transformations, 21–22
Heisenberg’s uncertainty principle, 18
Lorentz transformation, 12–14
multi-component wavefunctions, 19
non-relativistic wave equation without spin,

17
non-relativistic wave equation with spin, 21
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particles and antiparticles, 25
picture changes, 22–25
relativistic mechanics, 14–15
relativistic wave equation without spin,

17–18
relativistic wave equation with spin, 19–21

Dirac solutions
electronic self-energy, 47
extended nuclei, 45–46
higher angular momenta, 40–42
orbital radii, relativistic changes, 31
paradoxical relations, 31–34
parity violation, 47
p3=2 valence orbital, 42–43
relativistic atomic spinors, 28–31
relativistic orbital energy, H-atom model,

27
relativistic two-electron interaction, 43–45
small angular momenta, 34–40
vacuum polarization, 46–47

motivation
Born–Oppenheimer (BO) approximation, 6,

7
fractional relativistic corrections, 7–8
historical development, 8–9
macroscopic chemistry, 2
periodic trends, 10–11
quantization, 3–4
relativistic quantum field theory, 5
relativity, 4–5
single quasi-particle model, 7
spin-forbidden process, 2
systematic and statistical errors, 6
targets, 10
units and numbers, 12

relativistic changes, molecules
atomic spinors and molecular quaternions,

53–55
bond energy, 50
continuum dissolution, 48
elements periodic system, 55–58
force constants, 50–51
geometric equilibrium structure, 47
molecular structures, 49–50
multiple perturbation theory, 51–53
non-relativistic approximation, 49
scalar and spinor approximation, 48

RELCCSD code, 151
Resonance, excitation spectra

dynamic response property, 539
Green’s function, 541
Hartree–Fock theory, 542
isotropic dipole polarizability, Au2 molecule,

540

linear response function, 539
time-dependent DFT (TD–DFT), 541

Response properties, 522, 535–537, 539, 540,
542, 549–551, 561, 573

electronic system, 563
EPR�g tensor, 523
examples, 542–543
polarizability, 586

Ricatti equation method
diagonalization, 179, 181
Douglas–Kroll methods, 181
eigenvalue problem, 180
non-symmetric algebraic Ricatti equation

(n-ARE), 179, 180
R-operator equation, 179

S
Scalar-relativistic contributions, 223
Scalar relativistic/spin-free relativistic approach,

529
Screened nucleus spin–orbit (SNSO)

approximation, 206–207
Self-consistent field (SCF), 36, 100
Self energy (SE), 333–335
Semilocal pseudopotential, 221
Seventh and eighth period elements

radioactive elements, 80
s-block elements, 81
superheavy elements

darmstadtium, 82
element 112 and 113, 82
element 114, 115 and 116, 83
element 117, 118, 119 and 120, 84
roentgenium, 82
transactinide/translawrencium elements, 81

Sixth period elements
d-block elements

gold f5d106s1g, 68–70
mercury f5d106s2g, 70–72
platinum f5d3=245d5=256s1g, 67–68

p-block elements
astatine f6s26p1=226p3=23g, 79
bismuth f6s26p1=226p3=21g, 76–77
lead f6s26p002g, 74–76
oxidation states, 72
polonium f6s26p1=226p3=22g, 77–79
radon f6s26p1=226p3=24g, 80
stable compounds, 72–73
thallium f6s26p1=21g, 73–74

s-block elements, 66–67
Spin-orbit coupling, 353, 358
Spin–orbit interaction, 408, 409, 411, 422, 430,

433, 435, 438, 439



612 Index

Spin–orbit stabilization, 392
Spinors, 527
Static polarizability, 586. See also Polarizability
Sum-of-atomic-potentials approximation (SAPA),

530
Sum-over-states (SOS) approach, 524, 536

T
Thomas–Fermi model, 192
Time reversal operator (T)

angular momentum and quantum numbers,
398, 399

antiunitary and antilinear, 397
even and odd operators, 398
Kramers theorem, 399
mixed time parity, 399
Schrödinger equation, 398
Stark and Zeeman effects, 399

Time-reversal symmetry, 409–410
Transactinide/translawrencium elements, 81
Two-component relativistic theories

Coulomb interaction, 166, 167
Dirac–Coulomb Hamiltonian, 168, 186
electron–electron interaction

Brown–Ravenhall disease, 186, 188
classical relativistic Hamilton function, 187
Dirac–Breit Hamiltonian, 188
field-theoretic formalism, 186
Gaunt interaction, 188
Lienard–Wiechert potentials, 187

electronic Schrödinger Hamiltonian, 165
elimination of small component (ESC) and

Pauli expansion
Darwin corrections, 170–171
Dirac equation, 169–170
mass-velocity correction, 170–171
scalar (spin-free) relativistic correction, 171
two-component Pauli equation, 170

first-order differential equations, 167
four-component relativistic Dirac wave

function, 169
infinite order two-component (IOTC) method

accidental degeneracy, 181–182
back-transformation, 184–186
Douglas–Kroll–Hess (DKH) scheme, 182
electronic solution separation, 178–179
fpFW-transformed Hamiltonian, 176
Johnson–Lippmann (JL) operator, 181
matrix approximation, 177–178
parameter ”, 181
picture effect, 183–184
positive-energy Dirac spectrum, 182

Ricatti equation method, 179–181
spin–orbit splittings, 182, 183
two-component electronic Hamiltonian, 177

Pauli Hamiltonian, 169
regular approximations (RA), 171–172
spin-restricted method, 166
two-dimensional column vectors, 168
unitary transformations

block-diagonalization, 174
electronic and positronic states, 172
free-particle Dirac Hamiltonian, 173–174
free-particle Fouldy–Wouthuyse (fpFW)

transformation, 174
non-relativistic Schrödinger equation, 173
van Vleck-type transformation, 172

U
Unbinilium, eka-radium, 84
Uncontracted virtual photons, 288
Ununbium, eka-mercury, 82
Ununenniun, eka-francium, 84
Ununhexium, eka-polonium, 83
Ununoctium, eka-radon, 84
Ununpentium, eka-bismuth, 83
Ununquadium, eka-lead, 83
Ununseptium, eka-astatine, 84
Ununtrium, eka-thallium, 82
Uranium

calibration and application, 262–269
choice of core

core-valence separation, 251
5f occupation number, 249, 251, 252
frozen-core (FC) approximation, 247
relative energies, nonrelativistic

configuration, 247–249
relativistic radial orbital densities, 250, 251
6s, 6p and 6d shells, 251
uranium orbital energies, 250, 251
valence electrons, 249

Dirac–Hartree–Fock-adjusted 5f-in-valence
pseudopotential

AE data vs. relative energies, 254, 256
coupling schemes, 254–255
errors, non-relativistic configurations, 256
J levels, MCDHF/DCCB-adjusted PP, 256,

257
parameters, 255
radial orbital densities, 258
reference data set, 255
relative energies (eV), 248, 256
root mean squared errors, 255
shape-consistent formalism, 258, 259
single-determinant J levels, 257
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5f-in-core pseudopotentials
fixed valency, 260
linear combination, 260
reference data, 259
relative energies (eV), 259, 260
superconfiguration model, 260

reference data
Breit interaction, 247
Cowan–Griffin (CG) approach, 245
Dirac–Hartree–Fock/Dirac–Coulomb

(DHF/DC) energies, 245–247
finite nuclear model, 247
5f occupancy, 245
Gaunt interaction, 247
‘Stuttgart’ energy-consistent relativistic PPs,

247
valence basis set optimization, 261–262
Wood–Boring-adjusted 5f-in-valence

pseudopotential
configuration interaction (CI) calculations,

253
f and g symmetry, 253
Gaussian term, 252
relative average energies, configurations,

253, 254
SO operators, 253

V
Vacuum polarization (VP), 333–335
Volatility, 456, 458, 480, 500

atomic properties
element 113, 493–494
element 114, 496–498

element 118, 505
metal interaction

gold clusters, 487–491
heteronuclear dimers, 486–487

predictions, heaviest elements and compounds,
507

Rf through Hs, 477, 479
sublimation; Van der Waals systems

adsorption, inert surfaces, 484–485
homonuclear dimers, 483–484
solid state, 484

W
Wood–Boring (WB) appraoch, 245

Z
Zeroth-order regular approximation (ZORA),

171–172, 206, 208, 524, 529–531
analog, 553
perturbation terms, 547
TD-DFT approach, 590
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