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Series Preface

In my career I’ve found that ‘‘thinking outside the box’’
works better if I know what’s ‘‘inside the box.’’

Dave Grusin, composer and jazz musician

Different people think in different time frames: scientists
think in decades, engineers think in years, and investors
think in quarters.
Stan Williams, Director of Quantum Science Research,
Hewlett Packard Laboratories

Everything can be made smaller, never mind physics;
Everything can be made more efficient, never mind
thermodynamics;
Everything will be more expensive, never mind common sense.

Tomas Hirschfeld, pioneer of industrial spectroscopy

Integrated Analytical Systems

Series Editor: Dr. Radislav A. Potyrailo, GE Global Research, Niskayuna, NY

The book series Integrated Analytical Systems offers the most recent advances in

all key aspects of development and applications of modern instrumentation for

chemical and biological analysis. The key development aspects include (i) innova-

tions in sample introduction through micro- and nanofluidic designs, (ii) new types

and methods of fabrication of physical transducers and ion detectors, (iii) materials

for sensors that became available due to the breakthroughs in biology, combinato-

rial materials science, and nanotechnology, and (iv) innovative data processing and

mining methodologies that provide dramatically reduced rates of false alarms.

A multidisciplinary effort is required to design and build instruments with

previously unavailable capabilities for demanding new applications. Instruments

with more sensitivity are required today to analyze ultra-trace levels of environ-

mental pollutants, pathogens in water, and low vapor pressure energetic materials

in air. Sensor systems with faster response times are desired to monitor transient
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in vivo events and bedside patients. More selective instruments are sought to

analyze specific proteins in vitro and analyze ambient urban or battlefield air. For

these and many other applications, new analytical instrumentation is urgently

needed. This book series is intended to be a primary source on both fundamental

and practical information of where analytical instrumentation technologies are now

and where they are headed in the future.

Looking back over peer-reviewed technical articles from several decades ago,

one notices that the overwhelming majority of publications on chemical analysis

has been related to chemical and biological sensors and has originated from

Departments of Chemistry in universities and Divisions of Life Sciences of

governmental laboratories. Since then, the number of disciplines has dramatically

increased because of the ever-expanding needs for miniaturization (e.g., for

in vivo cell analysis, embedding into soldier uniforms), lower power consumption

(e.g., harvested power), and the ability to operate in complex environments

(e.g., whole blood, industrial water, or battlefield air) for more selective, sensitive,

and rapid determination of chemical and biological species. Compact analytical

systems that have a sensor as one of the system components are becoming more

important than individual sensors. Thus, in addition to traditional sensor

approaches, a variety of new themes have been introduced to achieve an attractive

goal of analyzing chemical and biological species on the micro- and nanoscale.
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Preface

Sensor arrays for chemical vapor sensing, frequently known as electronic noses,

have grown in popularity over the last two decades. The relative simplicity of

design and small size, leading to ease of use, make electronic noses very appealing

for applications such as process control monitoring, environmental monitoring and

medical diagnosis. Since the introduction of the concept of an electronic nose in the

1980s, starting with work on arrays of metal-oxide vapor sensors, there has been a

significant increase in research into sensing materials and the use of arrays. Today,

there are several journal articles a month discussing evaluation and selection of

sensing materials as well as associated work such as transduction methods, mea-

surement circuitry, data analysis, and sampling methods.

As approaches to designing and using sensing arrays have become more mature,

and as applications of the technology have grown, it has become increasingly

important to tailor the sensor materials in an array to the selected application.

From the early days of research and demonstration, work has moved to focused

applications, which require attention to selection of types of sensing materials as

well as to selection of specific sensors within a type. Empirically derived models

and first-principles computer simulations are playing an increasingly important role

in our understanding of the interactions between sensing material and analytes,

where the sensing materials may be polymers, metal oxides, self-assembled mono-

layers (SAMs), or biologically based materials.

In general, selection of sensors for a sensing array is a three-step process. First, a

transduction method and a class of sensing material appropriate to that method are

selected. Second, specific sensing materials within the selected class are evaluated

as candidates for inclusion in the array. Third the sensing materials which will make

up the array are selected. We have focused this volume on the second and third

steps, selecting and evaluating specific sensing materials in order to select the

elements in an array. This volume covers methods which have been used success-

fully in the construction of full sensing devices as well as emerging methods which

show promise, with a particular emphasis on computational and statistical

approaches to materials and array evaluation and selection.
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We begin this volume with an introductory chapter focused on experimental

methods for evaluation and development of chemical sensors and sensor arrays.

Chapter 1 begins with a discussion of the mammalian model of olfaction and how it

has inspired the array-based approach to chemical sensing. It goes on to establish

the issues that must be considered in developing sensing materials and sensing

arrays, such as sensor feature space, sensor orthogonality, geometries, and transdu-

cers. Chapter 1 also discusses the issues underlying the design of experiments and

sensor evaluation, and finally, the use of experimental data in arriving at an

endpoint in the evaluation process. This introductory chapter lays the groundwork

for all the approaches discussed in this volume; that is, it establishes an approach to

planning what to do once we have determined which sensors to test.

These computational approaches to sensor and array evaluation and selections

are divided into three parts (1) First-Principles Methods of Materials Evaluation

and Selection, (2) Multivariate and Statistical Methods of Materials Evaluation and

Selection, and (3) Methods for Array Selection and Optimization.

Part One, Chaps. 2–6, discusses First-Principles Methods of Materials Evalua-

tion and Selection. The general goal of developing a model of sensor performance

based on first principles is not to replace existing experimental methods or know-

ledge-based methods of sensing material selection, but to complement these by

providing quantitative approaches which can be used to prioritize the selection of

new materials. First-principles design methods are being developed which can be

used to plan rational modifications in the structure and function of a sensing

material. This design methodology allows us to develop a theoretical understanding

of the sensing material and analyte system and to predict their interactions. The

predictions can then be put to an experimental test.

First-principles calculations include quantum mechanical, molecular dynamic,

and structural approaches. These methods have focused primarily on developing

fundamental electronic and atomic level descriptions of materials to provide insight

into chemical interactions of materials with target analyte(s). Quantum mechanical

techniques are discussed in Chaps. 2, 3, and 6. Molecular dynamics or atomistic

techniques and statistical mechanical and multiscale approaches are discussed in

Chaps. 3, 4, and 6. Chapters 3 and 6 describe a method which relies on both

quantum mechanical and molecular dynamics approaches for screening sensors

for their response to specific analytes. De novo structure-based design of receptors

for selective chemical sensors as described in Chap. 5 applies fundamental infor-

mation about structure and bonding as a basis to search for host architectures that

are highly organized to form a complex with a guest molecule.

Chapter 2 uses application examples to illustrate the use of Density Functional

Theory and electronic transport modeling based on nonequilibrium Green’s Func-

tion in modeling carbon nanotube-based nano-electromechanical sensors and the

gas-sensing properties of carbon nanotubes and metal-oxide nanowires.

Chapters 3 and 6 show that a combination of quantum mechanics with first-

principles molecular dynamics can afford a great deal of information that is useful

in designing and selecting materials for specific analytes.
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Chapter 4 investigates the predictions of sensor responses using Grand

Canonical Monte Carlo simulations. This method is used to predict the degree of

sorption of analyte into polymers by calculating partition coefficients of alcohols,

aromatics, ketones, esters, alkanes, and perfumes for typical gas chromatography

films and compares predicted values with experimental values.

Chapter 5 presents an overview of a computer program, HostDesigner, that

has been created to allow the de novo structure-based design of receptors that

are structurally organized for complexation of small ionic and molecular guests.

The methodology applies fundamental information about structure and bonding

as a basis to search for host architectures that are highly organized for guest

complexation.

Part Two, Chaps. 7–9, discusses Statistical and Multivariate Methods for Mate-

rials Evaluation. In this section, the work of various laboratories that have taken a

combined theoretical and experimental approach to problems in vapor sensing and

identification is discussed. Statistical and multivariate methods include semiempir-

ical approaches, such as combinatorial approaches, Quantitative Structural Activity

Relationships and Quantitative Structure Property Relationships, and calculation of

solvation energy relationships. Many of these approaches have been developed to

elucidate mechanistic aspects of sensing material activity. These approaches can,

however, also be used to guide selection of materials. As array-based chemical

sensing is still a relatively young field, many of the computational methods for

sensor selection are still in a developmental phase.

Chapter 7 covers the experimental technique of high throughput (HT) screening,

which applies combinatorial strategies to screen large sets (tens and hundreds) of

sensing materials. This topic is discussed in greater detail in a companion volume in

this series.

Chapter 8 discusses a statistical and multivariate method for correlating sensor

response with molecular descriptors using a combination of Quantitative Structural

Activity Relationships and Quantitative Structure Property Relationships. This

approach develops statistically validated models of sensor response based on

experimentally developed data.

Chapter 9 shows how an understanding of solubility interactions informs the

selection of polymers to obtain chemical diversity in sensor arrays and obtain the

maximum amount of chemical information, using principle components analysis to

analyze array data. This chapter also discusses new chemometric methods which

have been developed to extract chemical information from array responses in terms

of solvation parameters serving as descriptors of the detected vapor.

Part Three, Chaps. 10–12, Designing Sensing Arrays, considers the computa-

tional and experimental methods that have been used together to select the compo-

nents of an array designed to detect a particular analyte set.

Statistical methods based on experimental data have been used successfully to

optimize an array; statistical methods may also be used with data simulated in the

computational approaches discussed in Part I or with sensing data analyzed by

methods discussed in Part II. The process of selecting the components of an array

considers both type and identity of sensing materials, the optimum number of

Preface ix



sensors to be used in an array for a particular set of analytes, and how the responses

of sensors will be treated in data analysis.

Chapter 10 presents a generic approach for designing sensor arrays for a given

chemical sensing task. This chapter describes a correlation-based metric used to

assess the analytical information obtained from chemiresistors as a function

of operating temperatures and material composition combined with a statistical

dimensionality-reduction algorithm to visualize the multivariate sensor response

obtained from sensor arrays.

Chapter 11 discusses an iterative approach to statistical evaluation of experi-

mental responses of candidate materials for a sensing array by developing para-

meters which are used to evaluate sensor performance. These three parameters are

used to compute a measure of sensor suitability for inclusion in an array designed to

detect a given set of analytes.

Chapter 12 discusses a hybrid sensor array, a multimodal system that incorpo-

rates several sensing elements and thus produces data that are multivariate in nature

and may be significantly increased in complexity compared with data provided by

single-sensor-type systems. In this chapter, various techniques for data preproces-

sing, feature extraction, feature selection, and modeling of sensor data are intro-

duced and illustrated with data fusion approaches that have been implemented in

applications involving data from hybrid arrays.

Finally, we close with some thoughts on future directions for work in developing

computational approaches to sensor evaluation. There are several computational

approaches, which have been used to design and evaluate select materials for

chemical sensors. Computational methods also include use of statistical and

computational approaches to characterize measured and experimentally observed

analyte-sensing material interactions and sensing material responses to the presence

of analyte. With the increasing use of sensing arrays, computational approaches

offer complementary information to that developed through experimental

approaches.
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Chapter 1

Introduction: Experimental Methods

in Chemical Sensor and Sensor Array

Evaluation and Development

Joseph R. Stetter

Abstract Sensors are devices, sensor arrays are collections of sensors, and it is

through experimentation and computation that we obtain the knowledge we need to

make useful analytical measurements. Gas and liquid chemical sensor arrays

provide a new multidimensional analytical technique not unlike Gas Chromato-

graphy, Liquid chromatography, orGC/MS [gas chromatographymass spectrometry].

Exciting possibilities for advanced analytical measurements are emerging with the

development and use of chemical sensor arrays. The multidisciplinary nature of

sensor development and the diversity of the types of sensors, analytes, and

applications provide a rich venue for research and development as well as the

complex issues that lead to lively debates. Progress in developing arrays for

analytical purposes is coming from applying new knowledge about biosystems

that use sensor arrays, advanced predictive chemical computational capabilities,

and significant increases in experimental materials and methods. The protocols

for the experimental understanding of sensor arrays provides the foundation for

present strategies and future models that will enable realization of the contribu-

tions of sensor arrays to analytical measurement science and technology.

Acronyms and Definitions

Analyte Substance or chemical constituent whose identity or quantity is

determined by conducting the analytical procedure

ANN Artificial neural network

Ar Argon

atm Atmosphere (pressure)

J.R. Stetter

Ecosensors TTD, KWJ Engineering Inc., 8440 Central Ave, Newark, CA, Suite 2D 94560, USA

e-mail: jrstetter@kwjengineering.com

M.A. Ryan et al. (eds.), Computational Methods for Sensor Material Selection,
Integrated Analytical Systems,

DOI 10.1007/978-0-387-73715-7_1, # Springer ScienceþBusiness Media, LLC 2009
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As Analytical sensitivity

BAW Bulk acoustic wave

C Capacitance

CGS Combustible gas sensor

Chembio Chemical–biological

CI Chemical interface

Cl2 Molecular chlorine

cm3 Cubic centimeter

CO Carbon monoxide

CO2 Carbon dioxide

CPS-100 Chemical Parameter Spectrometer – 100

E Electromotive Force or Voltage

GC Gas chromatography

H2 Hydrogen

HCN Hydrogen cyanide

H2S Hydrogen sulfide

I Current – charge per unit time

IMCS2 International Meeting on Chemical Sensors 2

IR Infrared

K or k Sensitivity – signal per unit concentration

KNN or k-NN k-nearest neighbor
L Liter

LOD Limit of detection

M Mass

mL Milliliter

MOSES II Laboratory electronic nose by Lennertz

MS Mass spectrometry

mV Millivolt

nA Nanoampere

N2 Nitrogen

Ne Neon

NH3 Ammonia

NO2 Nitrogen dioxide

O2 Oxygen

OR Olfactory Receptor – a G-receptor protein used in olfaction

pA Picoampere

ppb Parts per billion – by volume

ppq Parts per quadrillion

ppt Parts per trillion

R Resistance – ohms

S Sensor signal

SAW Surface acoustic wave

SPME Solid-phase microextraction

SSTUF Shared sensor testing user facility

4 J.R. Stetter



TAS Total analytical system

TCD Thermal conductivity sensor

TIC Toxic industrial chemical

TIM Toxic industrial material

VOC Volatile organic compound

Z Impedance

1.1 Introduction

At the turn of the nineteenth century, Lord Kelvin (Sir William Thompson) said,

“To measure is to know,” and “If you can not measure it, you can not improve it.”

These thoughts are timeless. For those of us developing sensors and sensor arrays

and applying them to new and increasingly difficult and complex analytical pro-

blems, these quotations exemplify the two reasons we make experimental measure-

ments with sensors and arrays. First, measurements allow us to understand the

sensor principles of operation and the mechanisms of their response to analytes so

that we can develop new sensors and improve the old ones. Second, experimental

measurements allow us to calibrate sensors, evaluate their performance, use them

effectively, and rely on them for quantitative results even in life-threatening and

critical health-monitoring situations. Sensors, arrays, and the measurements they

enable, help us work and improve our quality of life.

Every sensor array consists of individual sensor elements, either discreet or

integrated, and all the analytical information we obtain comes from the sensors’

signals. Therefore, all the information that characterizes either the concentration

and/or the molecular identity of the analyte, a situation, or a simple or complex

chemical environment is created by the experiment that generates the sensor data.

Sensory experiments thus demand stringent control and the specific experimental

setup and procedure are intricately tied to the data quality and hence the precision,

accuracy, and validity of the outcome or analysis.

The first law of analytical measurement is: “a measurement is useless without

a report of the error.” That is, every experimental result should be reported with

a quantitative statement of the uncertainty. To be fair, uncertainty boundaries are

frequently implied in experimental reports, but for the most precise work or for

accurate comparisons of sensors, specific error analysis is critical.

Constructing a workable sensor array and applying it with confidence are

extremely difficult if the sensors that make up the array have not been fully

characterized and understood. Not characterizing the sensors and yet building an

array is akin to an architect’s building a bridge without knowing the strength of his

materials. It is thus crucial that a sensor’s performance under probable use condi-

tions be known or anticipated. Understanding the signal(s) from the sensing system,

especially their error sources, drift characteristics, and failure modes is essential for

accurately interpreting the signals over short- and long-time intervals.

1 Experimental Methods in Chemical Sensor and Sensor Array Evaluation 5



In developing a focused analytical method, therefore, three issues need to be

addressed (1) the invention and development of new sensors, (2) the invention and

development of new sensor arrays, and (3) the application of the arrays. These three

issues are best addressed from three perspectives, each of which can constitute a

separate project (or a separate phase of a larger project). Integrating sensor techno-

logy, a sensor array, and an analytical method, constitutes both a challenging and a

complex systems problem.

What data are needed about sensors and arrays for a given problem? How

should the data be gathered and used experimentally in each case? Where does the

most critical information come from, and how is it created in the first place? These

questions are the topic of this chapter. In this regard, the “Edisonian” or experimental

approach to R&D will complement theory vis-à-vis chemical sensors. Experiments

are required to obtain the chemical sensor array data to improve on theory, create

models, and to guide the design of the experiments themselves.

1.2 Chemical Sensing: Inspiration from Biomimetics

and Biology

Natural sensing processes provide biology-inspired and biomimetic examples of the

use of sensor arrays and, of course, computation in chemical sensor array research.

In mammals, gas sensor arrays in the nose, liquid sensor arrays in the tongue, light

sensors in the eye, and mechanical sensors in the ear involve chemical transduction

processes that are part of a larger, intricate sensory system. Artificial sensors and

arrays, today often called electronic noses (e-noses), e-tongues, etc., mimic biologi-

cal organs, often relying on the actual biological molecules and the biological

processes of sensing. Understanding the mammalian sense of smell (Fig. 1.1)

provides a useful backdrop for chemical sensor array research – research that is

increasingly amalgamating knowledge and techniques derived from physics, math,

chemistry, biology, and engineering.

Our understanding of mammalian olfaction is expanding rapidly. Recent publica-

tions [1–3] illustrate this merging of the realms of biological and physical sciences

and indicate that creating the bionic or at least the cybernetic nose is not very far away

off. Additional research using authentic olfactory receptors or other bio-derived

molecules as elements in sensors for target analytes is also being conducted [4, 5].

Such work parallels the extensive R&D in immunosensors, where biological mole-

cules or fragments thereof are being used as molecular recognition elements [6, 7].

1.2.1 Understanding the Mammalian Model

Inspiration from biology has led to experimental models for sensing structures,

processes, and components, including those for gas sensor arrays. Studies of the
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characteristics of mammalian olfaction have provided background information for

experimental aspects of sensing with arrays. For example, the human nose contains

as many as 350 types of olfactory receptors (ORs), and dog, rat, and mouse noses

contain more than a 1,000 ORs. In this regard, throughout this chapter, we often use

the dog olfaction model in exemplifying various sensor aspects. Thousands of each

type of receptor are spatially dispersed over the olfactory epithelium in an inter-

mixed, albeit not random, fashion. However, signals from each type of OR all meet

at the same location in the olfactory bulb and from there, a “movie” of impulses

(more study is needed to resolve the temporal/spatial aspects of this signal) is sent to

the brain for interpretation. The nasal sampling system preconditions the tempera-

ture, humidity, and particulate matter in the gas sample.

A dog’s initial sniff brings the gas sample into the nose in about 0.2 seconds

through a channel to the back of the throat where it meets a larger chamber and

wafts slowly over the olfactory epithelium containing the ORs. The flow of the

sniffed sample over the mucus depletes mucus-soluble odorant molecules from

the sample and concentrates odorants using odorant-binding proteins. The binding

event of an odorant to an OR triggers a signal in the ON (olfactory neuron); these

neurons provide a nonlinear array of signals to the glomeruli (a cluster of nerve

fibers in the olfactory bulb) that has the spatial and temporal qualities to encode

the signals’ variations, representative of the original sample’s interactions. The

working of the dog’s mammalian olfactory system [8, 9] helps illustrate each of

three complex components in a sensor array: sampling (preparation/separation),
sensing (transport/binding/detection), and subsequent pattern analysis.

Fig. 1.1 Dog olfactory system
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In a bionic-, cybernetic-, or electronic-nose, the sampling component allows

for the separation, conditioning, and presentation of the sample to the detection

layer either in a constant or a variable manner. The detection process and

equipment can include filtration materials, such as is provided by the mucus in

the mammalian nose, and can be configured so as to geometrically and chemical-

ly bias the detection system for individual molecular or supramolecular target

analytes. We do not yet understand the entire role of the mucus layer in mamma-

lian olfaction, but we do know it is a complex mixture containing molecules like

the odorant-binding proteins that help in trapping, concentrating, or otherwise

facilitating transport or binding of the target odor molecules. We also know that

signal conditioning and chemical amplification occur in the detector layer of a

mammal’s nose and that the nose also contains multiple detectors or a sensor

array. The olfactory analysis in mammals includes the collection of the sensory

outputs into an odor record and the use of that record to identify and quantify the

currently sniffed molecular presentation or odor. The analysis of sensor array

patterns is performed by computers in an artificial nose but is, as yet, a poor

mimic of the mammalian brain.

Systems engineering aspects to the analysis of an odor with a “nose” is revealed

by consideration of the synergistic operation of the parts. Mammalian sensors

apparently have “off,” “on,” and “partially on” qualities in their levels of response

for a given molecular stimulus. “Off” is a particularly important experimental state,

and one that is often ignored in the construction of artificial sensor arrays [10].

Artificial sensors can also have several partially “on” states including “on positive”

and “on negative” states [11]. Sensory transmission to the brain is complex and

considered largely digital with temporal and spatial qualities [8]. Mechanically, the

nose contains a complex gas sampling system [11], and the sample changes

composition and temperature as it enters the nose and passes over the olfactory

epithelium (sensor array). In interpreting olfactory signals as odors, memory and

connections to other brain areas such as the limbic system are used. For example,

one way of training a dog to respond to a target odor entails using a reward to link

the target directly to a response from the limbic system. Moreover, results from

zoology experiments show that training a dog in odor recognition can result in a

sensitivity increase that is an order of magnitude greater [12] than that of an

untrained dog.

Where does this increase in sensitivity come from, given the sensor array is

thought to be similar and of the same sensitivity in both trained and untrained

animals? Possible answers include improved sensory feedback from the brain or a

more trained and efficient cerebral algorithm resulting from something akin to

weighting vectors. Alternatively, the number or activity of a certain specific OR

may change, or signals from certain types of samples may be suppressed. Thus,

whether the sensitivity increase from training is due to improvements in computa-

tional capability or to physical changes, or to both is still debated.

We can cite examples of physical and neuronal changes that affect odor

perception in mammals. Bodily influence on mammalian olfactory performance

is exemplified in the well-known heightened sense of smell for some odorants in
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pregnancy and the depressed sense of smell in people undergoing chemotherapy.

Accident victims with brain trauma can temporarily or permanently lose all or

some of their sense of smell. In any case, the sensory capability in the physical

hardware of the sensory system can be affected in many ways, and the brain’s

plastic computational capability can be changed to enhance or destroy the effec-

tive sensory experience. Hence, using the mammalian model affords us with

parallel choices in constructing artificial sensory arrays, and we should make

full use of our knowledge of these systems to create increased experimental

possibilities.

1.2.2 Extrapolating from the Mammalian Model

We can make experimental progress in sensory problems by examining biology in

two ways. First, we can create a hypothesis about the manner in which the

biological system works and then emulate it in engineered hardware and software,

with the resulting system evaluated and studied experimentally. If we achieve the

expected result, we may be on the way both to understanding the biological

system as well as to improving our own sensor array performance. Second, we

can continue to unravel the mechanism of cellular signaling and interconnections

at the molecular level. This second task is daunting, but progress has been and is

being made at a rapid pace in using receptors and cloning receptors for use in

artificial sensing.

We live in an odor-rich world in which an initial analog sensory interaction is

converted to a digital code both in mammals and artificial noses. Each sample is

characterized by a high degree of chemical or molecular variation, interactions of

different molecules with the sensors are often unique, and the signal information

created by the sensor(s) has the ability for extremely high and diverse information

content. We need to better understand each of these issues from the experimental

perspective. This issue of “richness” in sample and signal can be called the experi-
mental diversity, and we address it in Sect. 1.3.

1.3 Experimental Diversity in Chemical Sensors

and Sensor Arrays

In this section we examine the diversity or dimensionality of the problem and

experimental hardware and methodology. The sample has diversity and the array

of different signals create the dimensionality. Experimental sensor arrays are not

yet able to gather and use all available data, data features, and available signal

dimensions. However it is good to consider chemical sensor array experiments as

“imaging” in the various dimensions that are available: space (x, y, z), time,
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chemical and biochemical composition, and concentration dimensions. Feature

space for imaging purposes is an abstract space wherein each dimension can be

considered a coordinate and n-dimensions result in an n-dimensional feature

space. Thus, any property of an odor/molecule can be used as a dimension or

feature in n-dimensional feature space. A molecule can be sorted on the basis of

molecular weight, polarity or dipole moment, electrochemical activity, or other

chemical property in chemical feature space. Therefore, feature space; that is, an
abstract space where each sample or molecule (or “pattern/element” or “feature”)

is considered a point in n-dimensional space, with its dimension determined by

the number and value of “the patterns” or “the features” used to describe the

sample or molecule.” The importance of the chemical and biochemical dimen-

sions of sensors becomes more apparent when we consider that each molecule in

a sample that is different from another molecule contributes to the sample’s

molecular diversity and that each molecular property being measured by the

sensor–molecule interaction is considered a dimension – whether it is electro-

chemical activity, partitioning into a polymer matrix, or the molecular mass of

the analyte.

1.3.1 Sample Diversity

Let us consider sample diversity first (see Table 1.1). Although perfect analysis of

a gas sample is not yet possible, consideration of the molecular diversity of

Table 1.1 Molecular diversity in a single breath

Volume of a normal breath (L) 0.5

Molar volume at standard temperature and

pressure (L)

22.4

Moles in a breath 0.022321429

Molecules per mole 6.02E þ 23

(Avogadro’s number)

Molecules in a breath 1.34357E þ 22

Breath constituents Molecules Total molecules

78% N2 1.05E þ 22 1.04813E þ 22

20% O2 2.69E þ 21 1.31688E þ 22

1.9% H2O at about 80% relative humidity 2.55E þ 20 1.34241E þ 22

400 ppm CO2 (0.04%) 5.37500E þ 18 1.34294E þ 22

5 ppm CO (0.0005%) 6.71875E þ 16 1.34295E þ 22

500 ppb for 150 VOCs each 6.71875E þ 15 1.34295E þ 22

600 ppt for 100 unknowns 6.71875E þ 12 1.34295E þ 22

500 at femtomolar (10e�15) 6.71875E þ 09 1.34295E þ 22

X at attomolar (10e�18) 10,000 ?

X at zeptomolar (10e�21) 10 ?

Avogadro’s number is the number of molecules in a gram-mole of any chemical substance. In the

table entries E ¼ 10, and “ þ number” value following E ¼ the exponent of 10. That is, for

Molecules in a breath, 1.34375E þ 22 ¼ 1.34375 � 1022
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a single breath sample is instructive in order to consider analytical complexities.

In one normal human breath about 500 mL of air is exhaled from the lung,

which has about a 4.8-L capacity. If we knew the exact chemical composition

of this 500 mL sample at 1 atm and room temperature, we would need to specify

the number, identity, and position of about 1022 molecules in the 500 cm3 space.

Even though most of the molecules are oxygen and nitrogen, there are a dozen

other gases present at the ppm level, including CO2, Ar, and CO; and at least

150–1,200 common organic materials, which have been measured by gas chro-

matography and mass spectrometry (GC/MS) on breath samples at the ppm and

ppb level [13, 14]; plus possibly many more such as ammonia (NH3), hydrogen

cyanide (HCN), or hydrogen (H2) that are not easily chromatographed along

with breath volatile organic compounds (VOCs). A few techniques are able to

peer into the window below ppb levels, but literally thousands and thousands of

different compounds could be present at the ppt, femtomolar, and attomolar

levels, including those produced by human metabolic processes or from the

environment (e.g., some explosives have a vapor pressure of 10�14 atm and

such compounds could be present if the solid particles and their vapors are present

and inhaled and exhaled by humans). In Table 1.1, as we sum the molecules, when

we get to the attomolar level, there are only 10,000 molecules in our sample of

each type, and so even 10,000 types will only add 108 molecules to our total of

more than 1022 and so we would need 1011 types to bring our cumulative total to

account for each molecule in the breath. It is clear, current analysis of human

breath can still have many unreported compounds at the ppm, ppb, and lower

levels.

In fact, the true chemical diversity in one breath could easily be 1017 different types

of molecules illustrating the immense composition and concentration diversity in a

single breath. And 105molecules ormore of each of billions of different chemicals are

likely to be present. Even 10,000 molecules are clearly sufficient concentration to

measurewith today’s best analytical techniques andwith some sensors.When analysis

of a complexmixture, e.g., human breath, reports only a few hundred analytes present,

we are most assuredly missing much information! Sample diversity is a daunting

problem and immense opportunity for today’s sensor experimenters. How will we

achieve our “gedanken” experiment of perfect analysis, i.e., to specify the location and

identity of each molecule even in a single cc of sample?

1.3.2 Experimental Diversity in Sensor Arrays

From a statistical perspective, we need at least as many dimensions in our experi-

ment as we have in our real sample, otherwise the method may not have the

statistical capacity to perform an analysis. We now know how many dimensions

we might expect from our sample. The next question is how many dimensions can

we create with a sensor array experiment?
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The dimensionality or features of a sensor array experiment can be estimated by

considering its constituent parts of the sensor array and their function, according to

(1.1) [15]:

Materials � transducers � structures � methods ¼ features=dimensions

108 � 102 � 103 � 108 ¼ 1021
(1.1)

1.3.2.1 Types of Sensor Feature Space

Equation (1.1) is a bit like the Drake equation from astrophysics (an equation that

allows quantification of the factors that determine the number of extraterrestrial

civilizations in our galaxy with which we might come into contact) in which we can

only estimate each term to provide a gross indication of the dimensionality of

the imaging space that can be created by sensor arrays [15]. In (1.1), we estimate

that there are about 1021 features in sensor array space due to the four different

properties of materials, transducers, structures, and methods that produce differ-

entiating molecular interactions/signals in sensors. Material space includes the

elements from the periodic table that can be applied singularly or combined in

many organic, inorganic, and/or biochemical compounds and composites to make

sensors. Transducer space is divided into the different forms of energy used to

transduce each sensor signal, with each providing a different class of sensor (see

Fig. 1.2) for which there are many types. The classes of sensors are based on

transducers for light (radiant), heat (thermal), charge (electronic), chemical (elec-

trochemical), mechanical (mass and force), and magnetic energy. Combinations of

these classes provide for, conservatively, 100 types of sensor responses. The

structure and geometry of the sensor materials also profoundly influence the

sensory response of those materials (e.g., the material can consist of a thin or

thick film on a mechanical or optical transducer). Finally, the richest source of

diversity, limited only by the creative mind of the developer, is that created by

operational method. For example, a sensor can be heated to constant or variable

temperatures and with a high or low sample flow rate yielding differentiating

chemical responses. In addition, there are many electronic influences on sensor

signals. It is the interplay of all these diverse possibilities that results in the

immense number of features that exist in chemical or biochemical space and any

given sensor array can contain a large number of these features. The examples

shown in Fig. 1.2 summarize these aspects of sensor diversity organized by the

structure and the process used to create the dimension.

1.3.2.2 Orthogonal and Nonorthogonal Features

Not all features are “orthogonal” (i.e., not correlated with one another, strictly in

mathematics two vectors must be perpendicular to be orthogonal, but here we will use
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the term non-rigorously to infer a degree of non-relatedness). For example, electronic

conductivity and mass loading could have the same concentration dependence on a

given sensor and hence be correlated and thus not be orthogonal. If responses are not

correlated (i.e., if conductivity is exponential in concentration and mass loading is

linear in concentration), they would have at least some degree of orthogonality.

In an array experiment, the orthogonality of the sensory responses is important

because it implies a higher information content for the array of signals. Creating

orthogonal parameter space with sensors can be challenging, but is necessary for

effective analytical results. Experimentally, more often than not, a one-to-one relation-

ship does not exist between the number of sensors in an array and dimensionality in the

sense of independent noncorrelated or partly correlated responses of the data. A single

sensor can be operated by many methods, including cyclic heating, cyclic voltage

application, and pulsed current, and these combinations can produce multidimensional

data rapidly. Sensors can also combine transducer platforms as is done in spectro-

electrochemistry to produce multidimensional data from a single sensor/method.

An early heterogeneous gas sensor array [16, 17] used four sensors and a heated

catalytic combustible gas sensor (CGS) in a synergistic operation to detect virtually

all gaseous compounds at ppm to percent levels. The chemical parameter spectrom-

eter (CPS-100) instrument that implemented this early pre-electronic nose sensor

array era gathered 16 channels of data from four sensors operated in four modes.

These 16 channels were not totally independent (orthogonal) for all analytes as

Fig. 1.2 Sensor diversity comes from design, hardware, and processes
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shown by statistical analysis [17]. Later, a modulated concentration sensor was used

to provide added features in the data that reflected the chemical composition [18].

This example of forming multidimensional data by using different sensors and

processes is presented in more detail later to illustrate the impacts of experimental

work on sensor array research.

A classic GC/MS experiment illustrates another form of the sensor array experi-

ment. The GC separates hundreds of compounds in time, and the MS detects them

in sequence. In this case, one MS detector provides a multidimensional mass

spectrum of data for each compound, often doing so multiple times each second.

Collection of the entire data set can take more than an hour for each GC sample,

producing extremely large multidimensional data bases. Such data has been used to

derive structure-activity relationships for, among many other things, drugs and to

differentiate killer bees from European honey bees. Modern arrays, sensors, and

sensing systems use many dimensions as well as scientific and engineering meth-

ods/techniques [19].

1.3.2.3 The Experimental Matrix Surrounding a Single Sensor

To understand “sensor-created” feature space, we need to look at the experimental

matrix that can be obtained from a single sensor. A single sensor exposed to a step

change or pulse of gas produces signal-vs.-time data. These data, in turn, are

characterized by several features, including signal height, the area under the

signal–time curve, the response and decay times, and the ratios of the several

features. The many dimensions possible by combining just the material and trans-

ducer platforms and modes of operation are estimated at more than 108 combina-

tions, which, in fact, appear to be a conservative estimate.

1.3.2.4 Transducers

Transducers can manifest any of the six types of energy exchange – thermal,

mechanical, chemical, electronic, magnetic, and optical. Each transducer cate-

gory can be considered a sensor class; each class can consist of many sensor types,

with each type based on the parameter measured. Electronic transducers can

measure resistance (R), capacitance (C), or impedance (Z). Mechanical transdu-

cers may respond to and their signal may reflect change in mass (M) or elastic

properties or a combination thereof. Optical transducers measure a change in

optical properties (e.g., absorption or emission of a specific wavelength of specific

energy or the change in the refractive index). A conservative estimate of trans-

ducer parameter space is 102 dimensions because transducers can operate alone or

in combinations.
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1.3.2.5 Sensor Geometries and Structures

To produce differing responses, sensors can also be made with many geometries

and structures. On a mechanical platform, thick sensors may produce slower but

more sensitive responses per unit of analyte than do thin sensors. In addition, an

observed sensor response may be due to more that one effect (e.g., simultaneous

mass change and elasticity change in a polymer with increasing analyte concentra-

tion). Each of these effects can be the dominant response under a different set of

conditions (e.g., sensor thickness, geometry, or formulation, or at a different analyte

concentration). Such effects produce multidimensional data from sensor responses

and allow “imaging” in chemical space when combined with the other dimensions

of the structure.

1.3.2.6 Methods of Sensor Operation

By far the largest contribution to diversity in sensor response is the method of

operation. Methods include internal and external modulation of sensor responses,

combination of sensors into homogenous or heterogeneous arrays, and the produc-

tion of hyphenated, multidimensional sensor responses from sensor systems of all

kinds, various qualities, and any number of sensors [19]. Examples include hetero-

geneous arrays [17], modulation of input concentrations [18]; modulation of sensor

operational variables like electrochemical bias [16], operation in nonsteady-state

modes [20]; and discontinuous, cyclic, or pulse modes of operation. The highest

information content is acquired when the sensor or sensor array can obtain para-

meters that contain noncorrelated (orthogonal) responses to the same analyte, the

concentrations, or the target matrix. For example in spectroelectrochemistry, the

data from electrochemistry can relate to the reaction of one functional group in a

molecule [e.g., nitrogen dioxide (NO2) reduction] and the spectroscopic informa-

tion can relate to another part of that molecule (e.g., light absorption of the aromatic

side chain). Both signals provide information about the molecular identity, and

signal intensity relates to concentration. Differing concentration dependence of the

two responses can add significant data dimensionality for example, if one parameter

measurement functionality is linear and the other logarithmic and the method

involves changes in concentration.

Experimental parameter space for sensors is extremely large and difficult to

navigate, but can yield an enormous number of features in an array’s sensory

responses. The prospect of working in such a space experimentally with so many

possibilities is daunting but also leads to the richness of this research and the

possibility of significant analytical power from sensors. The important role of

experimentation is thus to quickly screen choices and select promising practical

approaches from the many possibilities. Combining experimentation with theory

helps narrow choices for achieving different sensor responses by forming hypoth-

eses about those responses. These hypotheses can guide and simplify experimental
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work. In sensor array development, a powerful paradigm for analytical advances is

created when theory and experiment work together.

1.4 Experimentation to Create New Sensors

1.4.1 New Tasks for Sensors

Today, chemical and biochemical sensors are being tasked with providing informa-

tion about more and more analytically-complex endpoints. We not only ask of the

sensor/instrument how much substance in general is present (quantitative analysis),

but also ask how much of a particular substance A is present (qualitative analysis).

Instruments that contain sensor arrays are also tasked with answering other complex

questions about product quality and environmental situations: Has this coffee been

roasted? Has this cheese been adequately aged? Does this plastic have an off odor?

Where does this toxic spill come from? Is this situation hazardous or toxic? What

“type” of fire is beginning and in what “stage” is it? The endpoints desired are

often chemically or biochemically complex, and demand a great deal, analytically

from the sensory system.

We assume that the answers to these questions are contained in a sample’s

molecular diversity. The complex endpoint analyses needed are often analogous

to finding a needle in a haystack (e.g., a ppb-level of benzene in air or does this

package contain TNT?). Can a chemical sensor array conduct these analyses? We

know that the analytical task is possible because a dog can do it, often astounding us

by performing such experimental feats in only a few seconds with a sniffer, a

biosensor array, and just a few ounces of gray-matter as its “computer.” We know

that the airborne information is transmitted in the molecular diversity of the sample

and all we need is a suitable sampler, sensor array, and computational capability to

answer such complex analytical questions. However, the performance of all sensor

array systems is not equal and artificial noses have not been able to duplicate the

feats of mother nature yet, although the gap is closing today between artificial and

natural approaches.

Clearly, we have much more to learn from natural systems, particularly verte-

brate and invertebrate, and even from insect olfactory organs. We can find the

answers only through experiment. This last statement may be controversial. For

example, what can we learn from theory and what can we learn from experiment? In

many cases, doing the experiment and creating a device is the only way to

understand something. In the early days of electricity, Michael Faraday sent a

copy of his electric motor to his colleagues, not a paper about it, because the action

of the device transmitted more information than could be written at the time. There

is knowledge and information in the experiment itself. We shall not further argue

here the merits of experiment vs. theory. As we know, they are complementary and
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valuable. However, experiment is the final arbiter and herein, we are emphasizing

the role of experimentation.

1.4.2 Defining the Approach for Creating Sensors and Arrays

Chemical sensor array instruments (like the e-nose or e-tongue) have been created

primarily to perform experiments. To understand these devices, we must break

them down into their components, just as the experimental process itself can be

divided into instructional steps. We need to follow specific steps to progress toward

achieving a goal and, whether they are formal or informal, building an effective

sensor array instrument that needs to include several distinct steps.

1.4.2.1 Step 1: Seek to Understand, from a Fundamental Viewpoint,

the Problem/Goal

For any sensor array experiment, it is important to articulate as clearly as possible

its specific goal or objective; otherwise, we cannot tell when we have achieved that

which is wanted. Conducting a comprehensive literature search about the topic is

typically required, and clearly stated goals with a specific and focused application

in mind will narrow the often vast possibilities.

1.4.2.2 Step 2: Isolate and Identify Major Issues in Reaching the Goal

All available information on the topic needs to be distilled to isolate and identify

relevant gaps in knowledge or technology. The major issues/problems that prevent

the immediate design and implementation of a complete solution to the problem at

hand should be listed. Step 2 can be conducted concurrently with Step 1, with the

ongoing literature search and theoretical analysis used to identify and quantify the

major issues as they are defined. Those issues will most likely consist of which of

the materials, structures, components, processes, and algorithms need to be chosen,

as well as a list of systems and interface problems.

1.4.2.3 Step 3: Develop a Strategy

A strategy consists of creative thought and conclusions about the possible

approaches that will be required to reach the goal and overcome the major pro-

blems. A strategy should seek to bring typically disparate or often conflicting

requirements into harmony. Sometimes, for instance, a solution may require both

a fast sensor and an extremely sensitive sensor; if so, compromises will be required

in which more sensitivity will require more time for sample collection. In this case,
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the strategy would need to incorporate anticipatory response time algorithms to

meet the speed goals for sensitive, but slow sensors. This is but one simple example

of strategy development.

1.4.2.4 Step 4: Prepare a Workable Plan

A workable, efficient, and effective experimental plan that outlines the best experi-

mental path for implementing the strategy and getting to the goal is needed next.

The experimental plan should be viewed as a living document that will change as

execution of the experiment proceeds. What is learned along the way will be used

iteratively to refine Steps 1–3 and update the plan. Careful design of experiments

can save immense time and effort.

In an ideal world, budget and time would be unlimited; in the real world, the

challenge is to frame the solution to the problem into a feasible plan. Doing so is

often accomplished in a reality feedback session that makes up part of the strategy

discussions. It always helps to get feedback from skilled colleagues.

1.4.3 Carrying out the Approach

During implementation, when an impasse is reached, and when we truly do not

know what is the best experiment to do, the best advice is often to do something.

Virtually any relevant and well-crafted experiment is better than no experiment and

will provide guidance and direction so that progress can resume.

Scientists have developed chemical sensor array systems that produce complex

data sets to detect or monitor specific target endpoints. The experimental work

draws on two major sources:

1. The physical world of hardware consisting of components and devices.

2. The myriad methods the hardware uses to generate data.

Figure 1.3 illustrates the gaseous chemical sensor array experiment, showing the order

of the hardware components and implementation of a simple method. Shown are:

Fig. 1.3 Sampling system, sensor array, signal processing algorithm/display
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1. The sample and sampling procedure.

2. The sensors and the sensing process that generate the raw data about the

endpoint.

3. The analysis of the sensory data using a computational and/or pattern-

recognition method with display of the result.

Of course, many creative systems of components can be used experimentally to

implement the e-nose method. From the perspective of sensor R&D, it is helpful to

clearly divide the parameter space being investigated into hardware and process

components (see Fig. 1.4). This is especially true when trying to design experiments

and then explain and interpret the resulting sensory data. We return to this theme of

the division of issues later in the chapter. It is important to note that where division
of issues is required for understanding data and experimental design, it is also

imperative to integrate components as quickly as possible in the instrument devel-

opment cycle in order to uncover interface issues and deal with them expeditiously.

1.4.3.1 Sampling and Samples

Samples can be gases or the gases above solids or liquids. Often, for the gas sensor

or sensor array, all three phases exist together because the air is laden with particles

of micrometer and sub micrometer size, as well as aerosols, molecules, and

supramolecular clusters. The target for the sensor(s) analysis could be a specific

Fig. 1.4 The e-nose is a device that implements an analytical process
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chemical analyte (e.g., gaseous chlorine [Cl2(g)] or hydrogen sulfide [H2S]) or

a more complex endpoint or situation such as gasoline vapors, a fire, an explosive

hazard, or diagnostic marker(s) for a disease we wish to detect.

The sampling cube shown in Fig. 1.5 illustrates the major dimensions of

sampling. The sampling method is the experimentalist’s first chance to purposively

direct the sensing system toward the desired goal by eliminating interferences and

enhancing sensitivity or other performance variables. Typical gas sensor arrays are

designed to continuously sample an environment at a point, with the sample either

actively drawn into the sensors or allowed to passively diffuse to the sensors. The

sensor array can be portable, wearable, or installed at a fixed site. Fixed-site

analyzers typically have more power available to them, and hence more sampling

options for the instrumentation are possible using pumps. The sampling process can

take place either in real time and/or be designed to collect sample over time

(integrating). A real-time sensory readout can be integrated into the instrument,

but a sampler that collects a specimen cannot provide time resolved data shorter

than the collection interval.

Several types of samplers are commonly used, and together with sensors, can be

utilized to implement a wide variety of methods targeted to include everything from

finding clandestine burial sites [21, 22] or determination of environmental contam-

ination [23, 24] to early diagnosis of lung cancer using human breath samples [25].

Samplers include the following types:

l Auto samplers
l Solid phase microextraction (SPME)
l Sorbent tubes
l Passive badges
l Canisters

Fig. 1.5 Sampling methods are diverse because of the demands of applications
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l Bags
l Active pumps

The MOSES II is a sensor array instrument designed as a modular electronic nose

[26] and was often used with an auto sampler capable of controlling the exposure of

the array to precise aliquots of headspace vapors. The auto sampler was designed to

hold a number of sample vials into which a sample of the materials is placed. The

auto sampler robotically extracts an exact volume (e.g., 3 mL of air or headspace air

at 35�C and 1 atm) for introduction into the sensor array. The auto sampler’s robotic

implementation allows significant sampling precision over manual methods. The

SPME method involves collection of the sample by absorption into a polymer layer

like a GC stationary phase with a retractable syringe needle coated with the

absorbent. SPME is most often used with GC/MS analysis, but can also provide a

repeatable method for collecting adsorbable organic materials in any analytical

scheme. Sorbent tubes of variable size and shape and passive badges can be filled

with a suitable sorbent that either adsorbs or absorbs chemicals of interest. Canis-

ters and bags are evacuated vessels that can collect an entire sample, not just the

part that is “sorbable”; however, the sample can decay or react before analysis can

take place in the sensor array, and this is a limitation of any method involving

significant time for sample transport between collection and analysis. Pumps or

gaseous diffusion barriers provide real-time sampling systems and, if interfaced

properly, let the sensor “see” the entire sample before it is degraded by the passage

of time. The precision of the sampling method is important since it can limit the

precision of the overall analytical method. Similarly, the accuracy of the method

will be affected by the fidelity of the sampling scheme.

Appropriate sample collection and preconcentration can increase sensitivity by a

factor of 100–1,000, can improve selectivity by biased collection of the relevant

fraction of the sampled composition, and can improve the precision of the method

through auto samplers and auto-injectors. Samplers separate a sample into sub-

groups of molecular interest and reject those that are interferences or of no interest,

which can vastly increase the selectivity of the overall analytical system.

For each application, therefore, the developer must consider the advantages and

disadvantages of sampling systems that can be interfaced with the sensor array.

Applications are quite varied: consider the Scent Transfer UnitTM (STU 100),

which was designed to obtain a scent pattern and impart it to the “live” dog’s

olfactory sensor array [27]. Such a sampler could be used with any sensor or sensor

array and impart similar operational advantages. The examples provided here

reflect only a small part of the art of chemical sampling, and although working on

the sampling often lacks the glamour of sensors, experimentally sampling provides

the first chance and a most significant chance to endow the resulting sensor array

instrument with advanced analytical prowess.

As with sensors, it is instructive to learn about sampling and about the interface

of sampling with sensor arrays from nature, and in particular the dog [8, 9]. The

dog’s nose contains a “bio” sampler system and provides an example of an

effective sampler interface with a sensor array system. A bloodhound’s nose
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takes air into the center of the nose, and expels it through a slit at the side of the

nose. The air sample is drawn in straight and fast through a channel that condi-

tions both the temperature and relative humidity of the sample, and then follows a

tortuous path in which it passes over the sensors in the olfactory epithelium. These

sensory receptors lie beneath a soup of nasal mucus. As the sample is sniffed

rapidly [0.2 s per sniff] and conditioned by the nasal cavity, a relatively slow and

repeated exposure to the olfactory sensor array occurs. The sample, as it first

enters the olfactory epithelium, is intact and homogenous, but as it progresses

along the epithelium, materials soluble in mucus are depleted. This process results

in a sample that is richer in insoluble material and light gases for the latter part of

the epithelium. One would expect changes in the sensor response to vary as well,

in such a system.

The entire canine sampling process produces a time- and location-dependent

sensory response to an increasingly fractionated sample. The olfactory epithelium

contains millions of receptors of thousands of different types interspersed in the

epithelium in a spatially non-random manner. Each receptor type sends its signal to

the same neuron, thereby gathering the signals from many ORs over time into a

fewer number of nerve impulses that in turn are transmitted to the brain for

processing. Although much of the olfactory process remains to be understood,

observation indicates that the dog’s brain, which weighs only a few ounces and

uses much less power than the 250-W processor in our PCs, can perform enviable

feats of detection and identification. The dog model teaches that it is possible to

sniff an air sample and isolate and identify markers for specific and even complex

endpoints, including a specific person’s identity in the presence of many (but not

all) interferences.

Experimentally a sampling system must be selected and designed using the

parameter space that is appropriate for the analytes, endpoint, and sensor array

hardware and software. The systems engineering and component interface issues

surrounding sampling are important as well, as discussed in the next section.

1.4.3.2 Sensing, Sensors, and Sensor Arrays

Each of the three generic types of sensors – chemical, physical, and analytical

systems - can be placed in an array to produce multidimensional data. Chemical

sensors (see part 1 of Fig. 1.6) use a chemically reactive layer to interact with the

analyte and produce an analytically useful response. Physical sensors (see part 2 of

Fig. 1.6) can also be used for chemical analysis by measurement of a physical

interaction of energy and the molecule. And sensor systems can be built (see part 3

of Fig. 1.6) that implement an analytical sensing process as may be represented by

the lab-on-a-chip GC example illustrated or by a complex instrument like a mass

spectrometer or ion mobility spectrometer. Each type of sensor requires the devel-

oper to approach the experimental research differently.

Chemical-biological (chembio) sensors can use optical, magnetic, electroche-

mical, electronic, mechanical, thermal, or magnetic transducers to produce the
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electronic signal that is proportional to molecular identity and concentration. The

chemical interface consists of a coating or detection layer that chemically reacts

with the analyte in some manner (Fig. 1.7).

The physical sensor [e.g., an infrared (IR) spectrometer or a thermal conduc-

tivity sensor (TCD), see part 2 of Fig. 1.6], does not chemically react as a part of the

sensor with the analyte, but instead senses a change in energy transduction as the

analyte absorbs, emits, or scatters energy. The IR spectrometer and TCD sensors

Fig. 1.6 The three designs for sensing that can be used to produce multidimensional data

Fig. 1.7 What is a chemical sensor?
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are physical sensors that can respond to chemical changes in the environment.

Chembio-sensors are fundamentally different from physical sensors because the

sensor coating changes chemically, i.e., the coating actually is a different chemi-

cal or composite during sensing and after sensing because of its reaction with the

analyte. A chembio-sensor’s coating is a different material form during each

phase of the sensing process, but must then return to prior conditions chemically

for reversibility to be observed. In fact, virtually all of the analytically relevant

performance characteristics of the chembio-sensor (e.g., sensitivity, selectivity,

speed of response, stability) are determined by the thermodynamic and kinetic

reaction characteristics of the chemical reaction between the coating and the

analyte.

In a physical sensor (part 2 of Fig. 1.6), physical processes and fundamental

transducer performances limit sensor performances in contrast to the chembio-

sensor (part 1 of Fig. 1.6) wherein reaction with the coating often limits sensor

response. While this process/mechanism of detection is not always relevant to the

end user, it must clearly be understood by the sensor developer in order to tailor the

sensor response to the sensing objective.

To address complex analytical problems in small sensor systems, total analytical

systems (part 3 of Fig. 1.6) have been developed that combine sampling, separation,

and sensing operations. Miniaturized instruments, including MS, IR, and other

types of spectrometry and spectroscopy, are also widely developing as sensors.

Such approaches to sensing can be considered sensing systems like the lab on a chip

because they include a sample introduction and processing as well as the detection

of some property of the processed molecular material. In MS, for example, the

sample is introduced, ionized to create charged molecules or fragments, accelerated

through an electric and/or magnetic field and then the charge is detected. In

addition, because systems like GC/MS have become the “gold” standard for

many analytical measurements, they are being miniaturized in order to be useful

in tiny portable sensing systems.

All three types of sensors and sensor systems shown in Fig. 1.6 can be used to

generate multidimensional data. Sensor arrays, single sensors operated under dif-

ferent conditions, or combinations of similar or different sensors and/or operating

conditions produce the multidimensional data needed for solving chemical identifi-

cation and quantification problems.

1.5 Sensor Evaluation and Information Content Generation

All of the information we eventually learn about a sample comes from the signals

that the sensor(s) generate. Experimentally, our sensor or array needs to have three

properties: precision, accuracy [28, 29], and validity [30]. Precision is needed to get

the same response from the same stimulus each time, accuracy is needed so that the

true values of the response are produced within the error bounds of the precision,

and validity is needed to insure that the method measures the endpoint of interest in
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the situation required. Of these three analytical qualities, the first two are addressed

as a matter of course in analytical work, but validity is often overlooked. Nonethe-

less, validity is critical because it assures us that the analytical method is measuring

what is intended to be measured in the application without ambiguity or interfer-

ence [30].

The parameters important in the evaluation of sensors can be thought of as the

“five S’s” of sensor characterization (see Fig. 1.8), and include Sensitivity,

Selectivity, Speed of response, Stability, and Size/shape/cost. Sensor performance

parameters, those that provide quantitative boundaries for the analytical capabili-

ty, all derive their measured value from the sensor signal. These parameters are

required and used to develop and compare sensors, and to interpret sensor results.

Comparison of these parameters provides the tool for understanding the failure

modes, knowing when sensor performance needs to be improved, and indicating

the method by which it can be improved. We are essentially blind during sensor

development without accurate determination of these sensor characteristics.

Sensitivity, k, is often confused with the sensor signal, S, or the limit of

detection. Sensitivity is defined as the slope of the calibration curve, i.e., the

slope of the signal vs. the concentration curve and has the units of signal per unit

concentration. Figure 1.9, to be discussed later, provides an example of a linear

calibration curve for S vs. [X]. If sensitivity is reported for a nonlinear sensor, the

concentration at which the sensitivity was determined must also be reported.

Analytical sensitivity, As, an analytically useful but less often used measure of

sensitivity, is the sensitivity at a given concentration, divided by noise, s (also in

signal units). Noise is measured in the same units as the signal and, if the sensitivity

Fig. 1.8 Characterization of Chemical Sensors
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is in mV ppm–1, and noise is in mV, the analytical sensitivity is in ppm�1 units.

Analytical sensitivity measures the amount a signal must change before that change

can be “sensed” by the sensor system at the analytical level the sensitivity is

measured. Analytical sensitivity is useful for comparing the performance of sensors

with different mechanisms such as comparing electrochemical sensors with heated

metal oxide (HMOx) CO sensors [31]. In this example, the electrochemical sensor

has a linear response and sensitivity is constant all the way to the detection limit

while the HMOx response is a power law and increases at lower concentration.

Comparison of the analytical sensitivity over a range of concentrations illustrates

that the electrochemical sensor is more sensitive at higher concentrations, but the

HMOx is more sensitive at lower concentrations [31]. The limit of detection (LOD)

is typically taken as three times the noise expressed in concentration units. If the

response is nonlinear, analytical sensitivity at a certain concentration can be used to

determine which sensor is more sensitive to changes at the LOD concentration [31].

If a calibration curve is generated for more than one target analyte, selectivity can

be calculated as a ratio of sensitivities. Again, it is important to report the concen-

tration at which the selectivity is determined.

Sensor response and recovery times are often difficult to estimate, given that the

exposure experiment must be able to produce virtually instantaneous changes in

analyte concentration without causing other system upsets (e.g., changes in pres-

sure, relative humidity, temperature) that may influence the sensor signal. It is often

convenient to choose a time of response from 10–90% or 5–95% of the signal when

comparing several sensors or analytes since these times can often be easily deter-

mined during an experiment.

Fig. 1.9 Quantitative sensor evaluation
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Stability has many dimensions, and each must be evaluated independently.

Under constant conditions of exposure, the temperature or the pressure can be

varied to obtain the temperature coefficient of response or pressure coefficient of

response, respectively. This concept can be expressed as a partial differential

equation for the change in signal due to the analyte, SA, and each influencing

parameter where observed signal change, DS, is expressed in (1.2):

DS ¼ k½A� þ ½DS=DT�DT þ ½DS=DP�DPþ ½DS=DRH�DRH þ etc:þ . . . ; (1.2)

where DT is the change in temperature, DP is the change in pressure, DRH is the

change in relative humidity, and so on. The total effect on the analyte signal is the

sum of, to a first approximation, independent effects that must be compensated

for in order to accurately determine the change in signal due only from the

analyte concentration change. The effects of temperature and other variables

must either be compensated for electronically, or this variable must be kept

constant during measurement (e.g., DT ¼ 0). Sometimes it is possible to equip

the sensor with a thermostat or to reduce temperature dependence by limiting the

sensor signal by diffusion of the analyte. For diffusion-controlled signals, depen-

dence on temperature follows a square root, T�1/2, dependence rather than the

exponential T dependence of reaction kinetics. The above equation is, of course,

simplistic because it does not include the possibility that the temperature depen-

dence of the signal might also be concentration dependent. Furthermore, the

sensitivity, k, includes effects due to many experimental aspects of the sensor

system including sensor design and structure as well as flow rate, electronics, and

other operational parameters.

1.5.1 Protocols for Sensor Evaluation: Tiered Tests

The analytical characterization of a sensor or array can require many measure-

ments. To expedite the evaluation process, a practical and tiered test system can

be used (see Fig. 1.9) with testing implemented in the detail required by the goal

of the experiment or particular sensor application. Although many test

methods are possible and vary in their degree of efficiency, we have selected

the following example to illustrate a typical protocol for evaluation of sensor

performance. A simple reversible sensor for a simple molecular analyte is used as

the example.

1.5.1.1 Tier 1 Testing

In first-tier testing (see Fig. 1.9) the sensor is exposed over time to a series of

different controlled concentrations, selected to cover the range of interest, with

periods of zero concentration in between each controlled concentration. This simple
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experiment generates what analytical chemists call the working curve for the

sensor, more often called the calibration curve, and is obtained from the recorded

data. From this simple calibration experiment, response and decay times, sensitivity,

noise, and hence LOD, as well as short-term zero stability and span stability, can also

be derived. We have assumed that the method of exposure of the sensor

allows accurate determination of these parameters, i.e., the flow rate effects,

temperature, rapid sensor chamber purge, and other experimental issues that have

been dealt with and considered in setting up the apparatus for the calibration of the

sensor.

The sensor calibration test is extremely valuable and useful. It can be used to

screen sensor coatings and compare their performance, as well as to compare

different formulations of the same sensor to select the “best” formulation as defined

by any analytical objective such as the “most” sensitive, the “fastest” responding,

etc. Moreover, this test allows comparison of different sensor classes vis-à-vis the

same analyte [32] or mixture of analytes.

When this test is used for screening, the initial results quantitatively indicate if a

sensor is “good” enough as is, for the intended application and whether a more

thorough evaluation is warranted. Of course, to compute more accurate statistics

from the calibration curve, seven or more points over the concentration range of

interest would be preferred, but the complexity and time needed for doing so have

to be balanced against the intended use of the resulting data (e.g., quick comparison

screening of sensors, detailed quantitative characterization and calculation of

engineering specifications, and/or a comparison of analytical techniques). The

developer also needs to take into account that a parameter like “noise” in a

measurement is a “system” property and not exclusively a property of the sensor.

“Noise” types include sensor noise, electronic or pneumatic instrument noise, or

even noise in the gas sampling system. Noting which type of noise is occurring is

often important, especially when defining a sensor’s LOD. For example, typical

amperometric gas sensors [33–35] detect ppb levels with a signal of about 10 nA

ppb–1. If we look at the theoretical limit of current measurement, pA or lower, ppt or

ppq concentrations would easily be measured with modern electronics. However,

electrochemical systems with low enough background currents to allow ppq detec-

tion have yet to be developed.

Each of the variables in the experiment (even when temperature, pressure, and

relative humidity of the sample are held constant), and each component in the

experimental apparatus must also be considered in the overall error analysis. The

formal treatment of systems with variable temperature, relative humidity, pressure,

and composition during the recording of the sensor signal (e.g. the real world) is

more complex and beyond the scope of this chapter, but is addressed in a similar

manner to every other evaluation of sensor performance. The major point we

emphasize here is that the tier 1 experiment must be well controlled to provide

adequate accuracy of information on which to build our sensor characterization.

Tier 1 is designed to be rapid and low cost but provide the information essential as a

first level characterization for making the decision as to when and how to move

forward with development of a sensor.
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1.5.1.2 Tier 2 Testing

Tier 2 testing focuses on additional operational variables, including the sensor’s

analytical sensitivity and short-term stability. At some level, sensor performance

becomes demanding for most applications. For example, an alarm may be wanted

when 50 ppm of CO or 2 ppm of H2S are reached - levels where toxic effects

become significant. In these cases, analytical sensitivity and the short-term stability

measurement can be designed to provide that information at the concentration of

most interest. Tier 2 tests create a sensor response profile for exposure to the

concentration of interest and then vary that profile by a chosen amount up, down,

and back to the concentration of interest, and/or expose the sensor to a constant

concentration for an extended period. These tier 2 tests allow calculation of

analytical sensitivity, noise, and short-term stability. The tier 2 tests provide a

second level of characterization for sensors that operate over the entire range of

interest (tier 1) and allow screening of the sensors that will now perform at the

critical levels of one or more critical functions. Also, short term stability is required

before long term stability is considered. Furthermore, many variations of such tests

are possible in order to suit testing to a particular sensing objective we might have

for a sensor.

1.5.1.3 Tier 3 Testing

Finally, if a sensor can satisfy tier 1 and tier 2 basic needs, Tier 3 tests can be

constructed to gather the tier 1 and tier 2 measurements for all of the variables

relevant to the sensor’s application, including temperature, pressure, time, relative

humidity, matrix changes, and/or flow rate. When measurements are made over a

period of time (e.g., once a day for 2 weeks, once a week for 12 months or more),

we can compute the long-term drift/stability for an individual sensor or compare

two sensors with one another [31]. A test over a temperature range allows compu-

tation of the temperature coefficient for span (the sensor’s analytical signal to the

analyte), background (the sensor’s output or signal with no target analyte present),

and response time variables, and, similarly, indicates the coefficient for any of these

possible influences on sensor signal. The more measurements that are made, the

more is known about the sensor’s analytical characteristics and the easier it is to

assess performance in a given application.

Using a tiered approach to sensor characterization, we can make important

quantitative comparisons of sensor designs, structures, materials, and/or operating

protocols with a cost-effective and time-efficient approach. The tiered approach

also offers the advantage of being easily customized for the development project.

Automation of the various steps also allows many sensors to be screened in a

combinatorial approach. And if many sensors of the same type are evaluated, this

approach can be used to assess yield in sensor manufacture and therefore aid in

process or product development. In all cases, the measurement precision and

accuracy should be reported along with the results.
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Before a sensor can be introduced into any critical application such as a safety

application on which life depends, acquiring tier 3 type data is a necessity. For

example, a set of tier 3 tests that are made using sensors made from (1) different

batches of the construction materials in order to span material variations, (2)

different process batches or runs of the process to span process variations, and (3)

multiple days of processing to span other variables in time such as different

operators, tools or environmental variations can be used to assess a sensor produc-

tion method and determine QA/QC requirements. In this case, the average perfor-

mance of sensor to be provided by this process is characterized and understood

completely. The characterized set of sensors also can undergo tier 1 and tier

2 testing each day for a week, then once a week for 3 months, and finally once a

month for up to several years to determine specification over the sensor lifetime. In

addition, sensor specifications need to be written to serve as boundaries for each

material, part, assembly process, and, finally, the resulting anticipated responses

under expected user conditions.

Severe environmental testing or accelerated lifetime testing may also be war-

ranted, and a subgroup of sensors could be used to make Tier 1 measurements at

different temperatures, pressures, and relative humidity. In the end, a complete data

set for the intended purpose should exist in order to specify performance for the

sensor in quantitative terms for variables such as sensitivity over short and long

terms (i.e., short-term and long-term drift), and to specify a temperature compensa-

tion curve that can be implemented in hardware or software.

In summary, the key measurement in all sensor evaluations is the calibration

curve, and its measurement over all of the variables, one at a time, provides the

data for calculation of the analytical performance specifications. This approach

may sound tedious, but even such a thorough evaluation of the sensor may be

insufficient if the sensor has multiple degradation mechanisms or response

properties that are not functionally independent. At any rate, the evaluation

and characterization of a sensor should take the form required by the objective

and be as comprehensive as required. The above is a discussion of a viable means

for approaching the requirements for sensor characterization, comparison, and

development.

1.5.2 Measuring Equipment

Specialized experimental equipment is needed to measure sensor signals under the

many differing conditions. Of the many experimental setups that can be used to

evaluate sensors, one example is the Shared Sensor Technology User Facility

(SSTUF), designed and built by the Sensor Research Group of the International

Center for Sensor Science and Engineering [36] and illustrated in Fig. 1.10. We

here describe the SSTUF apparatus which is one of many sensor characterization

systems that have been built. The SSTUF was designed in order that many types of

user groups could test different chemical sensors and so that virtually all chem-

30 J.R. Stetter



sensor characterization requirements could be met. Of course, it is not practical to

design a system for characterization of “all” sensors under “all” possible practical

conditions. However, the SSTUF is a good example of a versatile sensor evaluation

and characterization tool.

The SSTUF has a sampling system whose gas-mixing system provides different

concentrations of target analytes(s) in a matrix of background gases to the sensor.

SSTUF operates over wide temperature ranges for studies ranging from sub-

ambient to about 450�C or more. The sensor test chamber is sealed and can operate

from sub-atmospheric to several atmospheres of pressure and has relative humidity

control. The measurement of response time requires the design of a special interface

that is designed specifically to hold each sensor within the SSTUF chamber. This

holder for the sensors is sealed inside the chamber so that the inflowing gas rapidly

purges the area around the sensor to allow fast sensor response times to be

measured. Sub-millisecond response times can be measured in a separate chamber

inside the SSTUF chamber. The computer-controlled SSTUF automatically gathers

all of the data from the sensor with multiple feed-throughs that are pneumatic for

gas changes and electronic for sensor reading, power, and control. The matrix gas

mixture, pressure, temperature, relative humidity, and data logging for the sensors

are computer-controlled [36].

If all that is needed is a signal-vs.-concentration curve, simpler systems can

obviously be used, but the SSTUF is a good example of a sensor evaluation system

that can complete virtually any performance test on any chemical sensor or series

of sensors in a short time and implement a tiered sensor characterization scheme.

1 2

3

4

Heated Pressure Chamber

Fig. 1.10 SSTUF apparatus illustrating chamber for evaluation of chemical sensors and arrays
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The SSTUF has been used to provide quick experimental answers to important

sensor performance questions for many sensors in many collaborations to date.

Once sensor performance data has been obtained, we can combine the sensors

into arrays and obtain sensor array data.

1.6 Experimentation, Artificial Intelligence,

and Sensor Arrays

Gathering and interpreting sensor array data can be done in many ways. In principle,

a sensor array experiment gathers data simultaneously from many sensors. And it

should be possible to use the same principles that were used to characterize

individual sensors to characterize sensor arrays and to determine an equivalent

sensitivity, selectivity, stability, and response time performance characteristics for

arrays. However, this task is not so straightforward. Consider the property of “signal

drift” in the more complex dimensions of chemical imaging space associated with

arrays. It is often difficult to understand intuitively and often difficult to handle

multidimensional drift and/or noise, experimentally. Calculating the limit of detec-

tion for a sensor array when sensors have differing sensitivity to the target analyte

or to a mixture is a case in point and has been discussed in the literature [37, 38].

In such cases, it is the pattern of responses that is sinking into the noise and elements

of the pattern disappear with different detection limits. It is, therefore, important to

specify the data set in which the pattern exists in order to specify the detection limit.

In retrieving both qualitative and quantitative information from patterns pro-

duced by sensor arrays, we need to make four assumptions related to the analytical

result. We make these assumptions explicitly or implicitly when we use pattern

recognition methods with sensor array data to achieve an analytical result. We

assume that:

1. The measured response is related analytically to the endpoint we seek.

2. The endpoint can be uniquely represented by a set of responses.

3. The quantitative relationship of the response and endpoint can be discovered or

quantified by the method we use.

4. The relationship can be extrapolated to unknowns and additional situations with

a statement of the analytical uncertainty.

Assumption 1 seems obvious, but must be tested experimentally. Assumption

2 assumes that the sensors have a unique response compared to everything else

that is possible for this application. Assumption 3 deals with the differing effec-

tiveness of the various pattern recognition or AI methods and we know they differ

because relative effectiveness has been demonstrated in numerous cases and im-

provement continues to be made in pattern recognition algorithms. Assumption 4 is

the most frequently violated assumption in practice. There must be proof that the

unknown, within some statistical uncertainty, belongs to the data set. Assumption 4

best works for comparative studies, i.e., we have a coffee that has been roasted to
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perfection, and then the unknown coffee is analyzed in exactly the same manner,

and compared to the known pattern to determine similarity within some confidence

interval. But it is not necessarily sufficient to calibrate the sensor array with

standards in a lab and then use these responses to determine patterns for the same

molecules as they are sampled in environmental or process stream samples. The

environmental or process samples could contain compounds that interfere with the

observation of the pattern either directly or indirectly.

1.6.1 Arriving at Complex Endpoints: Experimental Tests

As discussed above, people have long marveled at the feats the dog nose and

brain sensory system can accomplish. Recent reports indicate that some trained

dogs can detect bladder cancer by sniffing urine samples [39]. What the dog

responds to is not known, however, it may simply be to trace nicotine in the

subject’s urine. If that is the case, the dog is not really analyzing the urine for

bladder cancer per se, but indicating whether the subject is a smoker or not

(the incidence of bladder cancer is, in fact, higher in smokers than nonsmo-

kers). Such an indication would be an association with, not direct detection of
a marker of the disease. Determining associations is not useless, but this

example is given to highlight that we must test our assumptions experimentally

and quantitatively to give them the appropriate scientific credibility. Anthro-

pomorphic sensor arrays produce patterns, and we need to understand if the

pattern matching with an analytical endpoint is a statistical association or a

deductive fact.

A simple model is helpful here in understanding how to evaluate such complex

systems experimentally and to obtain important performance insights from only a

few targeted experiments. The model can be stated as shown in (1.3):

A ! B ! C or A ! B and A ! C or A ! C and B is present; (1.3)

where A ¼ agent/event; B ¼ cancer/endpoint; and C ¼ a marker compound.

If exposure to agent/event A causes cancer B, and the cancer causes marker

compound C, then the detection of that marker is an indication of cancer. On the

other hand, if A causes B but also causes C to appear, C is not directly related

causally to the cancer we want to detect, B, but rather to the presence of A. And in

the third case, A can cause C without any relation to endpoint B, which can still be

present and there is no relationship between C and B.

In designing our experiment, therefore, we have to understand the situation at

hand and clearly determine the exact associations of the variables and the desired

endpoint. For a sensor array, this means determining the relationship of the array of

sensory signals to the complex endpoint under study. In this regard, too much of the

published literature in the electronic-nose field fails to clearly demonstrate
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associative or causative relationships in the data; as a result, much of e-nose

capability is misguided and misapplied for its intended applications [10, 40].

The literature on pattern recognition is extensive, as are algorithms for different

kinds - from vector machines [41] to simple KNN (i.e., k-nearest neighbor) statisti-
cal algorithms [42], to the construction of models as done using the net analyte

signal approach [43]. Other chapters in this book discuss these algorithms for data

treatment in more detail as does the open literature, and these topics are not covered

here. However, we need to bear in mind that experimentation plays a vital role in

the elucidation of the pattern recognition method to use, determination of how well

it works (i.e., quantitation of error), and the discovery of potential pitfalls in data

interpretation. These issues are addressed in Sect. 1.6.2.

1.6.2 Experimental Aspects of Pattern Recognition

The history of sensor arrays and pattern recognition consists of significant experi-

mental work, perhaps much more experimental than theoretical work. Computa-

tional guidance was very much needed in the early days of this field. Early work

conducted in 1980 by the author, addressed a complex analytical problem posed by

the US Coast Guard. The USCG was, at that time, in charge of dealing with oil

spills in the US coastal waters and hazardous chemical spills anywhere. The Coast

Guard needed a portable instrument to use in detecting and identifying each of the

more common 1,000 toxic, flammable, and otherwise hazardous chemicals shipped

in US trade and commerce. Any of these could be involved in a spill or accident.

These are the same toxic industrial materials (TIMs) and toxic industrial chemicals

(TICs) that yet concern us today. Portable instruments for gas detection in health

and safety [44] were available for compounds like combustibles, CO, and H2S.

However, the goals of detecting and identifying virtually every kind of chemical

over a range that spanned ppb to percent levels were seemingly impossible tasks for

a single low cost, portable, easy to use instrument package [42].

We assembled a team and began experimenting with sensor arrays that com-

bined different kinds of sensors (e.g., a CGS in front of a CO and H2S sensor), and

made a surprising discovery: the combined sensors not only produced a distinct

signal, but also a unique pattern of responses were obtained for the different

molecular analytes. Furthermore, these different sensors constructively and dest-

ructively interfered with each other’s signals. For example, by placing a CGS in the

front of four electrochemical sensors, we created a sensor array that could detect

ppb to percent levels of all types of gaseous analytes. The CGS, itself, could detect

percent levels of virtually all vapor phase hydrocarbons, but the very low ppm level

signal was too weak to be observed. However, even at ppm levels, the CGS reacted

with the hydrocarbons to produce CO and other products that the electrochemical

sensors readily detected at very low ppm and sub-ppm levels. This sensor array

proved sensitive to virtually all gases/vapors of chemical compounds except inert

gases (e.g., Ar, Ne) [11, 16, 42, 45–48]. Moreover, because the sensory responses
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differed for virtually all of the compounds, a compound could be identified by its

“fingerprint” [16, 49–56]. The fingerprint or pattern was akin to a mass spectrum or

IR spectrum for the molecule, and we developed a library of responses and we

called this technique “chemical parameter spectrometry” or CPS because the

fingerprints were the array of chemical sensor responses for the analyte on each

of the different sensors in the sensor array.

This early 1980s experimentation created a heterogeneous sensor array that

provided orthogonal and complementary sensor responses, and demonstrated the

synergy within arrays of sensors that result in an entirely new information content

in its combined signals – the signal from the electrochemical sensor due to a

reaction taking place at a previous sensor. We later optimized this sensor array

into one or more reactive filaments followed by portable low-cost sensors [10, 11,

16, 17, 42]. A homogenous array, e.g., use of just the electrochemical sensors,

would allow sensing a variety of target analytes, including any oxidants and/or

reductants, but not have the added possibilities of a synergistically operating sensor

array with high information content.

This early 1980s experimental sensor array began the exploration of the multi-

dimensional feature space that Göpel [15] described almost 20 years later. A similar

technique was used years later for detection of chlorinated hydrocarbons [20, 57].

This early experimental work led to a patented instrument, demonstrated to the

Coast Guard in 1984, called the chemical parameter spectrometer (CPS-100) that

detected and identified more than 100 compounds [55, 58]. This work led to the

fabrication of the world’s first instrument with a sampling system, heterogeneous

sensor array, and pattern recognition algorithm for the purpose of identifying and

quantifying unknown compounds in the environment with a portable instrument

[45, 47–49, 51–56]. The ensuing demonstrations and experiments led to a patent

and spin-off instrument that employed this unique approach for field analytical

detection and identification of chemicals. The experiments were later extended to

liquids and solid materials [58, 59] to allow identification of fertilizers and plastics,

as well as energetic materials like explosives [57, 60–63]. In this early work,

examples of creating the chemical imaging space were evident long before formal

discussions of chemical imaging and the work predated even the term “electronic

nose” clearly illustrating the powerful synergy among sensors and the high

dimensionality of the feature space that can be created by sensors [64, 65]. All of

this work was performed experimentally before the data existed upon which the

theory began to be developed.

Formal pattern recognition methods were in their early stages at this time, but

application of what will now seem simple statistical methods to the sensor array data

led to additional surprising results. Chemometrics was just being developed and

immediately began to provide powerful methods for visualizing the multidimen-

sional data created by sensors. Chemometrics and chemical sensor arrays seemed

a natural combination. The chemometrics of the day made it possible to visualize

some of the chemical feature space produced by sensor arrays, and we could

begin to appreciate the “imaging” power of a sensor array that is only being

quantified now.
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In this early experimental work, it was also important to begin to understand the

surprising power of comparison of the complex chemical space that these sensor

arrays created. Experiments to gauge selectivity occurred well before any theore-

tical input into array design could be developed, and the experimental findings led

to an immediate understanding of the additional “dimensions” we could explore in

the sensor array space [66].

The sensor array line of experimentation proved exciting in the early 1980s

because we found both computational methods [66] as well as new sensors could

improve analytical performance. In fact, one of the earliest attempts to improve

identification capabilities entailed altering the computational system. Every sensor

array had a library; that is, the array was calibrated in the laboratory by exposing it

to known chemicals at known concentrations, and the array of signals was recorded.

In this way, when an array encountered an unknown in the field, the unknown’s

pattern could be compared with, in the library; and, if a close match was made, the

unknown could be identified as the matching library entry. However, the library

generated when the sensor array was calibrated needed improvement because, as

more and more patterns were added to it, the library contained more and more

close “chemical” or “molecular” neighbors, i.e., similar patterns. In this regard, a

surprising result came from a simple manipulation of the library. We presorted the

library into groups defined by the generic nature of the sensor responses. For

example, some compounds responded slowly or with negative signals in certain

sensor output channels. When the library was presorted according to the “type” of

the sensor responses (slow, fast, positive, negative), then the unknown could also be

presorted and in effect, compared to just a subgroup of its own “type” in the library.

If the unknown had a negative signal in one or more specific sensor response

channels, it belonged to a subgroup of the library with “negative” responses in

channel X. Applying the pattern recognition algorithm to a subgroup with fewer

compounds resulted in many fewer errors in identification [66]. This example leads

to the issue of how experimental evidence, not always theory, can lead the way to

discover the “easily useable” dimensions of the sensor space (positive, negative,

slow responses), and then use them in practical computations to statistically com-

pare responses and obtain improved results within that space. The method eluci-

dated by experiment, drew on knowledge about the compound’s response character,

experimentally demonstrating improved identification as evidenced by a reduction

in misidentifications. The technique, first reported in 1986, showed how segregation

of signals into groups as defined by the sensors’ responses - that is, in the sensory

space created by the specific array being used - could enhance performance.

Additional methods can improve the results by experimentally disregarding noise,

and it has been demonstrated that noise weighting also aids sensor array accuracy

[47, 54, 62, 66].

It follows from this initial work that the specific sensors chosen for inclusion in

the array will define the space that is able to be mapped, i.e., the chemical space

dimensions. One must choose a class and type of sensor(s) that can provide

response and separation of the target analyte(s) by virtue of the responses being

able to define a large enough feature space. Experimental work is required in order
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to both define the appropriate set of sensors for a given task and then validate

response analytical characteristics, e.g., if you wish to separate a polar compound

from a nonpolar compound, choose sensors that respond differently to the property

of molecular polarity. All sensor arrays are not created equal and cannot address all

problems. And it has been shown that the most versatile arrays are heterogenous

(i.e., contain more than one class of sensor and have a “high” information content).

In the end, organization of this field has led to powerful theoretical methods to

approach analytical problems with sensor arrays, but it is still best to use both

theory and experiment to traverse the complex parameter space of sensor arrays and

analysis.

1.6.3 The Use of Pattern Recognition

The computational methods of library sorting and weighting improve sensor array

analytical performance (more correct identifications) for good reasons. First, the

mathematics of a good pattern recognition method can utilize sufficient unique

features that are included in the data base to sort and separate and thereby identify

the constituents. Using a presorted library allows manipulating the sensor

feature space characteristics experimentally and adds information content that is

knowledge-based. Second, experimentally, the best data channels have the best

signal-to-noise ratio, and making decisions based on the experimental production

of the best data provides signal processing that is likely to improve the quality of

input to any algorithm. In addition, the sorting of the library into subgroups that

contain specific features and eliminating others from consideration permits the

remaining feature space to spread out along stretched dimensions. Thus, to arrive

at an improved pattern recognition algorithm, a developer needs to consider

weightings for (1) dimensions that are uniquely expressed by the sensor array

and are important to analyte classification, (2) sensory channels that have the best

signal-to-noise ratios for decision making, and (3) libraries that divide the feature

space into categories that the sensor array system preferentially expresses. In this

way, we are able to add the knowledge of the lab analytical chemist to bias the

pattern recognition system and improve results.

For the same set of sensors, different algorithm and library design affect the

analytical outcome. An experiment performed in 1993 illustrates that choice of a

specific pattern recognition method can improve the performance of a sensor

array using the same sensor data: the same sensor array headspace vapor data set,

in this case data used to identify bacterial activity in grain [67], was analyzed by

an artificial neural network (ANN) and by a k-NN pattern recognition algorithm

method. Although the k-NN and the ANN are virtually identical in their ability to

identify an unknown signal pattern when trained on about half the data set, the

ANN outperformed the k-NN when error was introduced (via random noise

generation) into the array sensors’ signals that were being used for identification

[67]. This experiment illustrates an important aspect of pattern recognition
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techniques - just as we said that all sensor arrays are not created equal, above all

pattern recognition techniques are not equally effective – the ANN outperformed

k-NN and was analytically more robust.

The experiment also raised a question: What specific feature created by the

sensory system did the ANN consider and use that the k-NN did not use?

Answering this last question specifically would allow us to design sensor arrays

with more robust, unique identifying chemical parameters and thereby improve

the analytical performance of the system. A further observation is that an opti-

mum “system” can be found with an experimental approach in which the system

of pattern recognition method and sensor array is matched to provide optimum

analytical capability for the specific problem to be addressed by the array. In any

case, the choice of sensor array and pattern recognition together can be important

to system performance. It is no accident that the mammalian nose sensor array

and brain pair evolved as it did. The data is provided in temporal and spatial

digital patterns and the brain is an expert pattern recognition storing and analyz-

ing system for these data streams.

1.6.4 Selectivity and Time-Dependent Signals

An experimental method for exploring the origin of selectivity involves the use of

time-dependent chemical sensor signals. Such approaches invariably extend the

options for creating information, enlarging feature space, and enabling effective

analytical data treatment. In an early work with heterogeneous sensor arrays and

synergistic signal generation, the time-dependent modulation of the analyte con-

centration entering a sensor [68–72] was found to significantly increase informa-

tion in the recorded signal. The information can be related to important chemical

reaction parameters like the activation energy for the oxidation of the analyte.

Thus, the kinetic characteristics of analyte reactions with the chemical sensor’s

sensing layer can influence the selectivity of the sensor and/or sensor array. Since

the origin of selectivity in the chembio-sensor is either from the kinetics or the

thermodynamics of the analyte reaction(s) with the sensor’s reacting layer, any

modulation of this interaction will allow the value of the thermodynamic and

kinetic constants to influence the recorded sensor response and be reflected in the

data collected. If we can understand the specific reaction chemistry in a sensor

system, the responses can be understood in terms of fundamental experimentally

determined reaction constants (e.g., Arrhenius rate constants, thermodynamic

equilibrium constants). Such knowledge can be used in creating a sensing system

that can be understood theoretically and then optimized from theoretical knowl-

edge for specific applications. Data treatment [47, 49, 69, 73, 74] using Fourier

transform is also possible with time-dependent data, thereby allowing additional

mathematical methods to store and extract large quantities of the sensor-generated

information content.
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1.6.5 The Use of “Learning Surfaces”

One can use many known algorithms to display differences in data sets generated

by a chemical sensor array. But the above examples begin to show how very

important it is to add a “learning surface” concept to the data analysis process. To

advance the experimental design of sensors or arrays, they must be examined from

the perspective of what knowledge is created in each experimental module of the

sensor array instrument and what knowledge is uniquely created by the collective

system. The first use of a branched library reported in 1985 [66], illustrated that

dividing a library into subgroups, based on the dimensions being produced by the

sensory system, could significantly improve the identification performance of the

array when using the same algorithm. As this grouping was derived from knowl-

edge of the sensory data, and not from an analytical table, we could refer to it as a

learned surface. Each sensor array produces a unique set of “features” that represent

the knowledge related to the molecular nature of the sample. Finding this knowl-

edge and using it to maximize analytical utility should be more common in sensor

array development than it is today.

The converse of this situation has important experimental consequences; that is,

to ask what is the fewest sensors that can be used to define a feature space that will

solve a given problem? Using fewer sensors significantly reduces instrumentation

systems problems, simplifies design and calibration, lowers instrument costs, and

improves user features such as weight, size, and reliability. Recently, an experiment

using an array of 20 sensors for experimental fire detection under different condi-

tions demonstrated that a subset of just 3 of the 20 sensors in the array could solve

the entire fire detection problem, indicating both the kind of electrical fire and its

stage of progress [75]. Simplifying a fielded sensor array from 20 to 3 sensors offers

enormous economic and operational benefits.

A simple way to visualize the feature space created by sensor arrays is as a tree

with many branches. The branches are the chemical dimensions, created by the

sensors and can be treated like filtering questions (see Fig. 1.11) we use. The answer

to the question allows one to select a specific branch over another because it

provides characteristic information about the target compounds or endpoint

(which is the fruit at the end of the smallest branch). After we ask the appropriate

questions experimentally, we can realize the appropriate answers and eventually

narrow down the possibilities such that only one answer or endpoint is possible

among the many starting possibilities. Figure 1.11 illustrates some of the types of

questions that a chemical sensor array is capable of answering about a given

sample. Sorbent-based sensors ask/answer the question as to whether the target

analyte absorbs or not on a specific polar/nonpolar coating. Electrochemical sensors

ask/answer the question about the presence or absence of specific functional groups

that can be electrooxidized or electroreduced. Each class and type of sensor asks/

answers specific chemical questions about the sampled material. After we record

enough sensory responses of the appropriate type, we know enough about our

endpoint analyte to differentiate it within our data and we have solved the analytical
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problem. The key is to solve the problem with precision, accuracy, and validity. The

exemplary Fig. 1.11 provides yet another way to express the idea that the array

needs to be designed to solve the problem at hand. The challenge for the array

experiment is to ask the most important distinguishing questions and with the

minimum complexity (i.e., the fewest sensors and the fewest modes) so that

low cost, speedy, and reliable information is produced. This “learning surface”

approach provides an insightful way to examine biosensory systems, like the

mammalian nose. In this way we can eventually understand how to mimic the

brain’s remarkable learning plasticity, as well as finally achieve the dog’s legendary

sensitivity and selectivity for analyte tracking.

1.7 Concluding Remarks: Future Directions

Despite the helpful analogy and experimental guidance of prior work and despite

the proliferation of the types and styles of micro sensor arrays, it is apparent that

acquiring the ability to discriminate a molecular analyte quantity and identity in a

mixture or to determine a complex endpoint like quality (e.g., toxicity, hazard level,

fire, or disease presence) with chemical sensor arrays often remains a difficult and

unsolved experimental problem. The most successful application of sensor arrays

Fig. 1.11 All systems can be combined with a learning surface
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has been in comparative analysis, i.e., wherein we have a standard material and

want to determine if the sample is the same or different. Examples of successful

applications can be found [76].

Information content in chemical sensor arrays can be created by a multitude of

combinations of materials, structures and methods, and that variety is only now

coming to be appreciated. Just as important, computational methods to arrange,

store and analyze complex data sets are making significant impact on progress in

this field of research and in applications. Experimental work in sensor arrays has

shed light on the richness of this field of research.

The future will see the biological, physical, and chemical disciplines merge.

New sensing performance based on new materials and structures will reach ever

improving resolution of the “gedanken” experiment to completely analyze a single

cc of gas. The new sensors will be able to gain discerning power because their

signals represent fundamental thermodynamic and kinetic aspects of the molecules

and molecule-sensor interactions. The merging of biological mechanisms and

microsystems will produce cybernetic sensors of the type found in mammalian

sensory organs. Improved sensor sensitivity, as well as selectivity will result.

Applications will reach every fabric of society as sensory data will be generated

and shared wirelessly. Hopefully, all this will be used for the common good to

improve lifestyle, health, and environmental quality (Fig. 1.12).

Combinations of sensors of all types, computational theories, and experimental

protocols will produce exciting discoveries. In fact, after 30 years of research, we

are just beginning. The author’s vision for the future of sensor array research is

exemplified by the following quotations:

Fig. 1.12 Future directions for Chem/Bio-sensors
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“The significant problems we face cannot be solved at the same level of thinking we were at

when we created them.”

– Albert Einstein

“There will come a time when you believe everything is finished. That will be the

beginning.”

– Louis L’Amour
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15. Göpel, W., Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses,

Sensors Actuat. B 1998, 52, 125–142

16. Stetter, J. R.; Zaromb, S.; Penrose, W. R.; Findlay, M.W.; Otagawa, T.; Sincali, A. J., Portable

device for detecting and identifying hazardous vapors, In Journal: Hazardous Materials Spills

Conference Proceedings, Prevention Behaviour Control Cleanup Spills Waste Sites, Paper

116; Ludwigson, J., Ed.; Government Institutes Inc., Rockville, MD, 1984, 183–190

17. Stetter, J. R.; Jurs, P. C.; Rose, S. L., Detection of hazardous gases and vapors: Pattern

recognition analysis of data from an electrochemical sensor arrays, Anal. Chem. 1986, 58,
860–866

18. Stetter, J. R.; Otagawa, T., A chemical concentration – Modulation sensor for the selective

detection of airborne chemicals, Sensors Actuat. 1987, 11, 251–264
19. Janata, J., Modern topics in chemical sensing, Chem. Rev. 2008, 108, 327–844
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Chapter 2

Electromechanical and Chemical Sensing at the

Nanoscale: DFT and Transport Modeling

Amitesh Maiti

Abstract Of the many nanoelectronic applications proposed for near to medium-

term commercial deployment, sensors based on carbon nanotubes (CNT) and

metal-oxide nanowires are receiving significant attention from researchers. Such

devices typically operate on the basis of the changes of electrical response char-

acteristics of the active component (CNT or nanowire) when subjected to an

externally applied mechanical stress or the adsorption of a chemical or bio-mole-

cule. Practical development of such technologies can greatly benefit from quantum

chemical modeling based on density functional theory (DFT), and from electronic

transport modeling based on non-equilibrium Green’s function (NEGF). DFT can

compute useful quantities like possible bond-rearrangements, binding energy,

charge transfer, and changes to the electronic structure, while NEGF can predict

changes in electronic transport behavior and contact resistance. Effects of surround-

ing medium and intrinsic structural defects can also be taken into account. In this

work we review some recent DFT and transport investigations on (1) CNT-based

nano-electromechanical sensors (NEMS) and (2) gas-sensing properties of CNTs

and metal-oxide nanowires. We also briefly discuss our current understanding of

CNT–metal contacts which, depending upon the metal, the deposition technique,

and the masking method can have a significant effect on device performance.

2.1 Carbon Nanotube Basics

A carbon nanotube (CNT) is geometrically equivalent to a single sheet of graphite

sheet rolled into a seamless cylinder in which a graphene lattice point (n1, n2)
coincides with the origin (0, 0). Thus, if a1 and a2 are the two lattice vectors of
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graphene, the CNT circumference is equal to the length of the vector (n1a1 þ n2a2),
while the CNT chiral angle y is defined as the angle between vectors (n1a1 þ n2a2)
and a1. With the choice of lattice vectors as in Fig. 2.1a, the chiral angle and

diameter of a CNT are given respectively by the following formulas:

y ¼ tan�1
ffiffiffi
3

p
n2=ð2n1 þ n2Þ

h i
(2.1)

and

d ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n1n2 þ n22
� �q

=p; (2.2)

where a¼ |a1|¼ |a2|� 2.45 Å is the lattice constant of graphene. The CNT diameter

and chirality, and therefore its atomic geometry, are completely specified by the

two integers (n1, n2), which are referred to as the chiral indices of the CNT. Because
of the symmetry of the graphene lattice, a nanotube of any arbitrary chirality can be

defined in the range n1� n2� 0 and n1> 0, which implies that the chiral angle y for
all CNTs lies between 0 and 30�. CNTs with the extreme chiral angles of 0 and 30�

have special names: a CNT with y ¼ 0 (i.e., n2 ¼ 0) is called zigzag, while a CNT
with y ¼ 30� (n1 ¼ n2) is called armchair. The names armchair and zigzag simply

reflect the shape of the open edges of these CNTs (Fig. 2.1b, c). CNTs with any

other chiral angles (i.e., 0 < y < 30�) are called chiral.
As a CNT is just a rolled-up graphene sheet, one can obtain a good approxima-

tion to the CNT electronic structure simply by applying an appropriate boundary

condition to the electronic structure of a graphene sheet, with a small perturbation

due to the finite cylindrical curvature of the CNT surface. The boundary condition

for a CNT with chiral indices (n1, n2) corresponds to the coincidence of the (n1, n2)
lattice point of graphene with the origin (0, 0). Taking into account small effects

due to curvature, such boundary conditions lead to the following important result

[1–6]: all armchair tubes are metallic; CNTs with n1�n2 ¼ 3n (n ¼ any positive

integer), which include the (3n, 0) zigzag tubes as a special class, are quasimetallic

(small bandgap �10 meV or less, arising from curvature effects); and CNTs with

n1�n2 6¼ 3n are semiconducting, with a bandgap decreasing as 1/d as a function of

tube diameter d (thereby converging to the zero bandgap of graphite in the limit d
! 1). The presence of contact resistance and thermal effects often makes it

difficult to experimentally distinguish between metallic and quasimetallic tubes.

Thus for simplicity, experimentalists often classify CNTs as either metallic or

semiconducting, and we follow the same convention in the discussion below. In

spite of significant efforts, researchers have so far been unable to control the chiral

indices of the synthesized CNTs (except, perhaps some control on the diameter).

Therefore, given the preceding condition for metallic and semiconducting tubes,

one could expect a random mix with roughly one-third metallic and two-third

semiconducting CNTs. In our discussion so far it has been implied that the CNTs

consist of only a single graphitic layer. Interestingly, such tubes, commonly called
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single-walled nanotubes (SWNTs), were discovered 2 years after the initial discov-

ery of CNTs that consisted of several concentric layers. Such objects, now called

multiwalled nanotubes (MWNTs), usually exhibit metallic characteristics.

More than 15 years after its initial discovery, CNTs continue to be one of the

hottest research areas in all of science and engineering. The interest is driven by the

possibility of several commercial applications [7–11], including field emission-

based flat panel displays, transistors, quantum dots, hydrogen storage devices,

structural reinforcement agents, chemical and electromechanical sensors, nanoscale

manipulators, probes, and tweezers. At the same time, the highly regular atomic

structure of CNTs and the large degree of structural purity make them accessible to

accurate computer modeling using a variety of theoretical techniques. In fact, ever

since the discovery of the CNT it has provided a fertile ground for theoretical

simulations and analysis. The prediction of the dependence of CNT’s electronic

structure on its chirality [1–3] came within a year of the initial experimental

discovery [12]. Since then, there have been a significant number of theoretical

investigations [13–18] of growth mechanisms, structure and energetics of topo-

logical defects, mechanical and electrical response to various kinds physical

perturbation, field-emission from tips of metallic CNTs, electronic effects of

doping and gas adsorption, chemical reactivity, interaction with polymers, capil-

lary effects, CNT–metal contacts, H- and Li-storage, thermal conductivity,

encapsulation of organic and inorganic material, optical properties, as well as

intrinsic quantum effects like quantized conductance, Coulomb Blockade,

Aharonov–Bohm effect, Kondo effect, and so on. Computational approaches

used in the above work include solving diffusion equations, quantum-mechanical

(QM) simulations (DFT, tight-binding, and semiempirical methods), classical

molecular dynamics, kinetic Monte Carlo, Genetic algorithms, and Green’s-

function-based electronic transport theory.

Focusing on electronics applications of CNTs, the areas that have received the

most attention have been displays, transistors, and sensors. Displays require

metallic CNTs, and naturally involve MWNTs. Although single-SWNT-based

transistors have been demonstrated for a few years now, there are a number of

serious challenges to be overcome for CNT-based integrated chips to become

practical. Much of the recent work has therefore focused on sensor applications.

Two types of sensors that have received the most attention are the electromecha-

nical sensors and gas/chemical/bio sensors. Both of these operate on the basis of

changes in electrical conductance upon either an external mechanical stimulus

or the adsorption of an analyte. The electrical conductance changes can be

directly related to either changes in the electronic band structure due to mechani-

cal perturbation, or partial electron transfer between the analyte and the nanotube.

Such studies can be carried out efficiently by the present-day DFT codes

(in addition to semiempirical methods, which have also been employed in situa-

tions where parameters exist). As transport through nanotubes is essentially

ballistic, one could use electronic transport calculations based on nonequili-

brium Green’s function (NEGF) to compute intrinsic conductance of the device

(assuming “ideal” contacts).
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2.1.1 SWNTs as Nanoelectromechanical Sensors

In a pioneering experiment Tombler et al. [19] demonstrated that when the middle

part of a segment of a metallic SWNT suspended over a trench is pushed with an

atomic force microscope (AFM) tip, the electrical conductance of the tube dropped

by more than two orders of magnitude beyond a deformation angle of �14�. The
effect was found to be completely reversible; i.e., through repeated cycles of AFM-

deformation and tip removal, the electrical conductance displayed a cyclical varia-

tion with constant amplitude.

The drop in conductance in the AFM-deformed tube was much higher than the

computationally predicted values for tubes bent under mechanical duress. Both

tight-binding [20] and semiempirical extended-Hückel type calculations [21] con-

cluded that even under large bending angles the reduction in electrical conductance

was less than an order of magnitude. For AFM-deformed nanotubes, in contrast,

O(N) tight-binding calculations [22] show that beyond a critical deformation several

C-atoms close to the AFM tip become sp3-coordinated. The sp3 coordination ties up
delocalized p-electrons into localized s-states. This would naturally explain the

large drop in electrical conductivity, as verified by explicit transport calculations.

Realizing that an AFM-deformed tube also undergoes tensile stretching, and a

stretched tube belonging to certain chirality class can undergo significant changes

in electrical conductance upon stretching, we carried out independent calculations

to check the above sp3 coordination idea. The smallest models of CNTs necessary

in such simulations typically involve a few thousand atoms, which makes first-

principles quantum mechanics simulations unfeasible. Therefore, as described

below, we carried out a combination of first-principles DFT [23–25] and classical

molecular mechanics [26, 27] to investigate structural changes in a CNT under

AFM-deformation. Bond reconstruction, if any, is likely to occur only in the highly

deformed, nonstraight part of the tube close to the AFM-tip. For such atoms, we

used a DFT-based quantum mechanical description (�150 atoms including AFM-

tip atoms), while the long and essentially straight part away from the middle was

described accurately using the universal force field (UFF) [28]. For DFT calcula-

tions we employed the code DMol3 [3, 29–32] distributed by Accelrys, Inc. The

electronic wave functions were expanded in a double-numeric polarized (DNP)

basis set with a real-space cutoff of 4.0 Å. Such a cutoff reduces computational

requirements without significantly sacrificing accuracy, as has been explicitly

verified in this and many other numerical experiments. An all-electron calculation

was carried out on a “medium” integration grid using a gradient-corrected

exchange-correlation functional due to Perdew, Burke, and Ernzerhof [33]. For

calculations with periodic supercells (as described in Sects. 2.1.2, 2.1.3, and 2.2.1)

we performed accurate Brillouin zone integration by a careful sampling of k-points
[34]. Also, in order to estimate charge transfer to adatoms, the partial charge on

each atom was computed using the Mulliken population analysis [35].

Because of known differences in electronic responses of zigzag and armchair

tubes to mechanical deformation, we studied a (12, 0) zigzag and a (6, 6) armchair
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tube, each consisting of 2,400 atoms. The AFM tip was modeled by a 6-layer deep

15-atom Li-needle normal to the (100) direction, terminating in an atomically sharp

tip (see Fig. 2.2) [36]. To simulate AFM-tip-deformation, the Li-needle was

initially aimed at the center of a hexagon on the bottom-side of the middle part of

the tube. The Li-needle tip was then displaced by an amount d toward the tube along
the needle-axis, resulting in a deformation angle y ¼ tan�1(2d/L), L being the

nonstretched length of the tube. At each end of the tube, a contact region was

defined by a unit cell plus one atomic ring (a total of 36 and 60 atoms for the

armchair and the zigzag tube, respectively). The whole tube was then relaxed by

UFF keeping the needle atoms and the end contact regions of the tube fixed. The

contact region atoms were fixed in order to simulate an ideal nondeformed semi-

infinite CNT lead, and to ensure that all possible contact modes were coupled to the

deformed part of the tube. Following the UFF relaxation, a cluster of 132 C-atoms

for the (6, 6) tube, and a cluster of 144 C-atoms for the (12, 0) tube were cut out

from the middle of the tubes. These clusters (plus the AFM-tip atoms), referred to

below as the QM clusters, were further relaxed with the DFT-code DMol3 [3, 29]

with the end atoms of the cluster plus the Li-tip atoms fixed at their respective

classical positions.

Figure 2.2b displays the tip-deformed QM-cluster for the (6, 6) tubes at the

highest deformation angle of 25� considered in these simulations. Even under such

large deformations, there is no indication of sp3 bonding [the same is true for a

(12, 0) tube], and the structure is very similar to what was previously observed for a

(5, 5) tube [36]. The absence of sp3 coordination is inferred on the basis of an

analysis of nearest-neighbor distances of the atoms with the highest displacements,

i.e., the ones closest to the Li-tip. Although for each of these atoms the three nearest

neighbor C-C bonds are stretched to a length between 1.45 and1.75 Å, the distance

of the fourth neighbor, required to induce sp3 coordination is greater than 2.2 Å for

all tubes in our simulations. The electronic charge density in the region between a

C-atom and its fourth nearest neighbor is negligibly small, and none of the C-C-C

angles between bonded atoms in the vicinity of the tip deviates by more than a few

degrees from 120�, suggesting that the C-atoms near the AFM-tip essentially

remain sp2-coordinated. In order to test any possible dependence on the choice of

Fig. 2.2 (a) AFM deformation of a (6, 6) tube by a Li-needle. Respective deformation angles are

indicated. (b) QM clusters at 25� of deformation showing no signs of sp3 coordination
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our tip, we also performed limited calculations with a close-capped (5, 5) CNT as

the AFM tip, and the results were very similar to that obtained with a Li-tip.

2.1.1.1 Transport Calculations

Following structural relaxation of the CNTs as described above, we computed the

transmission and conductance through the deformed CNT using NEGF formalism.

A brief description of the method is provided below.

Electron transport through molecular wires like SWNTs is essentially ballistic,

i.e., highly coherent with little scattering and very long mean free paths. Ohm’s law

completely breaks down in this regime. Such transport is best described by an

energy-dependent transmission function T(E), which strongly depends on the

(discrete) electronic levels of the molecular wire (in our case, a nanotube), the

levels in the (usually metallic) leads or electrodes, and broadening of the electronic

levels in the wire because of chemical coupling to the electrodes [37–42]. Such

physics is most conveniently described by the NEGF formalism. The starting point

is the Green’s function of an isolated system at an energy E, which is defined by the
following equation:

ðE � Sij � HijÞGR; jk ¼ dki ; (2.3)

where dki is the Kronecker delta, and Sij ¼ <i|j> and Hij ¼ <i |H |j> are the overlap

and Hamiltonian matrix elements between electronic states i and j, respectively.
However, we are interested in systems in which a nanoscale region is coupled with

two semi-infinite electrodes at the two ends (the so called two-probe system). In

such a system, the coupling to the electrodes (mathematically expressed in terms of

the so-called self-energy matrices S) modifies (2.1) to the form

ðE � Sij � Hij � SL;ij � SR;ijÞGR; jk ¼ dki : (2.4)

In the above equation SL,R are the retarded self-energies of the left and the right

semi-infinite contacts. The transmission at energy E is then found from the follow-

ing equation:

TðEÞ ¼ GR;ijGL;jkG
A;klGR; li; (2.5)

where GL;R ¼ i SR
L;R � SA

L;R

� �
are the couplings to the left and right leads and the

superscripts R and A represent retarded and advanced quantities, respectively.

Finally, the total conductance of the tube is computed using the Landauer-Büttiker

formula [43, 44]:

G ¼ 2e2

h

Z1

�1
TðEÞ � @f0

@E

� �
dE; (2.6)
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f0(E) being the Fermi-Dirac function. The electronic states in the system, and more

specifically the various matrix elements can be obtained either from first-principles

or semi-empirical (e.g., tight-binding) quantum mechanical treatments. Also, if the

interest is to investigate changes to the intrinsic electrical conductance of the

nanotube, a common trick is to define “ideal” semi-infinite contacts on the basis

of defect-free unstrained pieces of the pristine CNT. Such a procedure bypasses the

necessity to model explicit metallic contacts, which is likely to involve additional

chemical complexities on the top of extra computational burden.

The electrons in our model were described using a nearest-neighbor sp3-tight-
binding Hamiltonian in a nonorthogonal basis. The parameterization scheme

explicitly accounts for effects of strain in the system through a bond-length-

dependence of the Hamiltonian and the overlap matrices Hij and Sij [45].
Our results indicate that the conductance remains essentially constant for the

(6, 6) armchair tube up to deformation as large as 25�. However, for the (12, 0) tube
the conductance drops by a factor of �0.3 at 15�, two orders of magnitude at 20�,
and four orders of magnitude at y¼ 25�. As sp3 coordination could be ruled out, the
only logical explanation of the observed behavior could be due to stretching. We

verified that by computing conductance changes due to pure tensile stretching and

comparing the results with that of AFM-deformed tubes (Fig. 2.3). It should also be

noted that the (12, 0) tube displays only a 70% drop in electrical conductance at y¼
15�, while the experimental tube in Tombler et al. [19] underwent more than two

orders of magnitude drop. This can be explained by the fact that the (12, 0) tube has

a diameter of only �1 nm, while the experimental tube was of diameter �3 nm.

A (36, 0) CNT, with diameter similar to the experimental tube, indeed displays a

much higher drop in electrical conductance (Fig. 2.3).

In order to explain the differences in conductance drops of the armchair (6, 6)

and the zigzag (12, 0) tubes as a function of strain, we turn to the literature where a

considerable amount of theoretical work already exists [46–51]. An important result

[50] is that the rate of change of bandgap as a function of strain depends on the CNT

chiral angle y, more precisely as proportional to cos(3y). Thus, stretched armchair

tubes (y ¼ 30�) do not open any bandgap, and always remain metallic. On the

other hand, a metallic (3n, 0) zigzag tube (y¼ 0) can open a bandgap of �100 meV

when stretched by only 1%. This bandgap increases linearly with strain, thus

transforming the CNT into a semiconductor at a strain of only a few percent.

In general, all metallic tubes with n1�n2 ¼ 3n (n > 0) will undergo the above

metal-to-semiconductor transition, the effect being the most pronounced in metallic

zigzag tubes. An experiment as in Tombler et al. [19] is therefore expected to show

a decrease in conductance upon AFM-deformation for all nanotubes except the

armchair tubes. Researchers are also beginning to explore electrical response of

squashed CNTs [52–54] where sp3 coordination is a possibility.

In addition to the above results for metallic CNTs, theory also predicts that [50]

for semiconducting tubes (n1�n2 6¼ 3n), the bandgap can either increase (for

n1�n2 ¼ 3n�2) or decrease (for n1�n2 ¼ 3n�1) with strain. These results have

prompted more detailed experiments on a set of metallic and semiconducting CNTs

deformed with an AFM-tip [55], as well as on CNTs under experimental tensile
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stretch [56]. Commercial applications from such work could lead to novel pressure

sensors, transducers, amplifiers, and logic devices [57].

Finally, progress is also being made in the application of CNTs as actuators

[58, 59], where an externally applied small electric voltage, heat, or optical signal is

transduced in the form of mechanical deformation of oscillations. Significant

insight for the working of such devices can be provided through a theoretical

understanding of the mode of electromechanical coupling in a CNT. A few such

attempts using both DFT and tight-binding have appeared in the theoretical litera-

ture [60].

2.1.2 CNT–Metal Contacts

Conductance through a nanodevice depends strongly on the contact resistance of

the metal electrodes, and CNT-based electronic devices are no exception. Besides,

Fig. 2.3 Computed electrical conductance for (12, 0) CNT – comparison between AFM-deformed

and uniformly stretched tubes. Inset displays density of states plot for the (12, 0) tube at the largest
deformations, showing opening of a bandgap at the Fermi energy. The figure also displays the

conductance of a (36, 0) tube subjected to a uniform stretch
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CNTs interacting with metal nanoparticles are gaining considerable interest as

sensing materials, catalysts, in the synthesis of metallic nanowires, as well as in

nanoelectronics applications as field-effect-transistor (FET) devices. A systematic

study of electron-beam-evaporation-coating of suspended CNT with various metals

reveals that the nature of the coating can vary significantly depending upon the

metal [61]. Thus, Ti, Ni, and Pd form continuous and quasicontinuous coating,

while Au, Al, and Fe form only discrete particles on the CNT surface. In fact, Pd is a

unique metal in that it consistently yields ohmic contacts to metallic nanotubes [62]

and zero or even negative Schottky barrier at junctions [63] with semiconducting

CNTs for FET applications. The Schottky barrier (for p-channel conductance)

could, in principle, be made even lower if a higher work function metal, e.g.,

Pt is used. Unfortunately, Pt appears to form nonohmic contacts to both metallic

and semiconducting CNTs with lower p-channel conductance than Pd-contacted

junctions.

The computed interaction energy of a single metal atom on a CNT [64]

follows the trend Eb(Ti)>> Eb(Pt)> Eb(Pd)> Eb(Au). These trends would suggest

that Ti sticks the best to the CNT and Au the worst, in good agreement with

experiment. However, it does not explain why Pt consistently makes worse contacts

than Pd, and why Ti, in spite of its good wetting of a CNT surface, yields Ohmic

contacts only rarely [62]. A detailed investigation of the metal–CNT contact at full

atomistic detail is a significant undertaking, and is likely beyond the realm of

today’s first-principles quantum mechanics codes. Nevertheless, as a first attempt,

it is instructive to look into the interactions of CNTs with metallic entities beyond

single atoms.

We carried out binding energy calculations of metallic monolayers, multilayers,

and 13-atom clusters with a sheet of graphene, which is a representative of wide-

diameter CNTs. In addition, the interaction of a semiconducting (8, 0) tube with flat

metallic surfaces was also studied. Three metals were considered for concreteness –

Au, Pt, and Pd. Calculations were performed with the DFT code DMol3 [3, 29]

Details are given in Ref. [65]. We only summarize the main results below:

1. For isolated Au, Pd, and Pt atoms on a sheet of graphene, the respective binding

energies are 0.30, 0.94, and 1.65 eV, respectively, i.e., in the same order as

previous computed values on a (8, 0) CNT [64]. The binding sites are also quite

similar, although the binding energies to graphene are�40% smaller than that to

the CNT, whose finite curvature imparts higher reactivity.

2. For monolayer or multilayer of metal atoms on graphene, most of the metal

binding arises from metal–metal interaction rather than metal–graphene interac-

tion. This is due to high cohesive energies of the metals in the bulk crystalline

state. If only the metal–graphene part of the interaction is considered, the binding

for Pt falls rapidly with layer thickness, and is less than that of Pd for three-layer

films, perhaps indicating possible instability of Pt films beyond a certain thick-

ness. This is likely due to much higher cohesive energy of Pt as compared to that

of Pd. For Au, isolated atoms as well as films interact very weakly with graphene,

in agreement with experimentally observed poor wetting properties.
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3. A 13-atom Pd cluster binds more strongly to the graphene surface than a 13-

atom Pt cluster. The Pd cluster, in particular, gets significantly distorted from its

ideal icosahedral geometry (see Fig. 2.4). Spin might play an important role in

such binding calculations, and requires a more careful analysis.

4. We predict a critical cluster size of a few tens of metal atoms below which the

metal should wet a graphene (and therefore CNT) surface uniformly, and above

which nonuniform clustering is likely. Using a simple model we show that the

critical cluster size for Pt is �23, which is smaller than that for Pd (�30),

implying higher propensity of Pt to form a nonuniform coating unless it is

deposited in the form of ultrafine nanoparticles.

5. Finally, CNTs placed on flat Pt or Pd surface can form direct covalent bonds to

the metal, which, along with the resulting deformation in tube cross-section

might alter its electronic properties and impact performance of electronic

devices based on such geometry. Interaction with an Au surface is weak, and

the CNT cross-section remains circular.

Our emphasis has been on the structure and chemistry of metal–CNT contacts. In

order to characterize the contact resistance one needs to investigate electronic

transport across the contact. We would like to mention a few contributions that

shed important light into various aspects of this problem: effect of contact geometry

and oxide thickness on Schottky barrier [66], effect of tube diameter and gate

dielectric constant on current–voltage (I–V) characteristics [67], dependence of

Fig. 2.4 Relaxed structures of (a) a 13-atom Pd cluster; and (b) a 13-atom Pt cluster on a (6 � 6)

graphene surface. The binding energies (for the whole cluster) are 1.2 eV and 0.7 eV, respectively.

Smaller Pd–Pd bond strength leads to a more open structure of the Pd-13 cluster and a higher

binding energy to the graphene surface
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Schottky barrier for various metals and surfaces [68], dependence of contact quality

on charge distribution across the contact [69], and controlled lowering of Schottky

barrier with chemical treatment [70]. For other theoretical aspects, including a

discussion on electron–phonon scattering and effect of disorder on transport, we

refer the reader to a recent review by Charlier et al. [71].

2.1.3 SWNTs as Chemical Sensors

Of the projected electronics-based application areas of CNTs, chemical/gas sensors

appear to show a lot of commercial promise. Detection of gas molecules such as Ar,

NO2, O2, NH3, N2, CO2, H2, CH4, CO, or even water is important for monitoring

environmental, medical, or industrial conditions. It has been reported [72–75] that

the measured electrical conductance of semiconducting SWNTs at room tempera-

ture can increase or decrease upon the adsorption of different gas molecules.

In particular, it was found that [72] the electrical conductance of a p-doped

SWNT increases by three orders of magnitude upon exposure to 0.2% of NO2,

and decreases by two orders of magnitude upon exposure to 1% of NH3. Amine

containing molecules have been observed to significantly alter the doping type and

the I–V characteristics of CNT-based transistors [76]. Exposure to O2 also appears

to consistently increase the electrical conductance, although the effect is not as

dramatic as for NO2. In addition to the above mentioned changes in electrical

conductance, physisorption of molecules on CNTs has led to measurable modula-

tions in capacitance [77] and thermopower [78]. Also, the selectivity and sensitivity

of detection can be increased significantly by using appropriate functionalization,

e.g., nanotubes coated by polymer [79] and single-stranded DNA [80]. Researchers

have also extended nanotube-based sensors to the detection and immobilization of

biomolecules and other biorelated applications [81–85].

Measured I–V characteristics of the CNT used in the experiment of Kong et al.

[72] identified it to be effectively p-type (i.e. holes were the majority carriers).

Thus, the observed behavior of conductance changes can be rationalized through a

simple charge transfer model in which NO2 molecules accept electrons from the

CNT, thereby increasing the hole population, while the NH3 molecules donate

electrons, thereby depleting the hole population and the conductance. For NO2

the computed binding energy has varied between 0.4 and 0.9 kcal mol�1 [81], and

could be enhanced even more through the formation of NO3 groups [86–88].

However, such a conclusion for NH3 is inconsistent with theoretical results

[89, 90] showing that NH3 molecules interact very weakly with pure CNTs,

which would make charge transfer very difficult to explain.

A possible explanation could be the presence of topological defects on the CNT

incorporated either thermally or during high-temperature growth conditions.

Evidence of the importance of defects has appeared in the experimental literature

[91, 92]. Also, the nanotubes are not in isolation, and surrounding environment

(oxygen, water vapor), or the substrate, or metal contacts at the ends might directly
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or indirectly provide a mechanism of binding of the gas molecules [66, 93].

Recently we performed DMol3 [3] calculations on the chemisorption of a NH3

molecule on structural defects on a semiconducting SWNT [94]. Figure 2.5 displays

dissociated NH2 and H fragments chemisorbed on a (8, 0) CNT containing various

types of defects: (a) pristine CNT; (b) a vacancy (V); (c) an interstitial (I); (d) a

Stone-Wales (SW) defect [95]; and (e) an O2 molecule pre-dissociated into a SW

defect (SW_O_O). Table 2.1 displays the reaction energetics (DEreac), activation

barrier (DEact), and net electron transfer (Dq) from NH2 and H groups to the CNT

for the five structures described by Fig. 2.5a-e. We follow the convention that

DEreac < 0 for an exothermic process. The important results can be summarized

as follows:

1. Chemisorption to a defect-free CNT is an endothermic process with a large

activation barrier, and therefore highly unlikely even at elevated temperatures.

Table 2.1 NH3 dissociation (into NH2 and H) on a (8, 0) CNT: reaction energetics (DEreac),

activation barrier (DEact), and net electron transfer (Dq) from NH2 and H groups to the CNT

Substrate Resulting bonding configuration

on CNT surface

DEreac (eV) DEact (eV) Dq from

NH3 (el)

CNT (defect-free) C3–NH2 þ C3–H (Fig. 2.5a) þ0.77 2.38 0.025

V C2–NH2 þ C2–H (Fig. 2.5b) �2.49 0.35 0.063

I NH2–C2, bridge–H (Fig. 2.5c) �2.26 1.13 0.036

SW C3, 577–NH2 þ C3, 577–H

(Fig. 2.5d)

�0.17 1.50 0.044

SW_O_O C3, 577, O–NH2 þ C3,577–O–H

(Fig. 2.5e)

�2.77 0.25 0.176

Negative values of (DEreac) denote an exothermic process

C3¼ Regular threefold coordinated sp2 carbon on a defect-free CNT; C2¼ C3 atom with a missing

C neighbor; C3, 577 ¼ sp2 carbon at a SW site shared by two heptagons and a pentagon; C3, 577, O¼
C3, 577 atom with a bridging O separating it from one of its C neighbors

Fig. 2.5 NH3 dissociated at various defects on a (8, 0) CNT: (a) defect-free tube; (b) vacancy; (c)

interstitial; (d) a Stone–Wales (SW) defect; and (e) an O2 molecule predissociated at a SW defect

(SW_O_O). Dissociated NH2 and H fragments are shown in ball representation. In (e), the second
O breaks an O–C bond and creates a OH group single-bonded to the other C atom
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2. At both V and I the dissociation becomes exothermic with energy gains of 2.49

and 2.26 eV, respectively. The activation barrier for dissociation is rather low

at V, and dissociation should happen readily at room temperature, while that at I
is also possible, although at a slower rate.

3. At SW the dissociation is marginally exothermic, and the activation barrier is

lower than that for a defect-free tube, although a bit high for chemisorption to

happen readily at room temperatures. However, the presence of pre-dissociated

O (SW_O_O) significantly enhances the stability of chemisorbed NH3 and

makes the NH3 dissociation process nearly spontaneous.

4. In all cases there is net electron transfer from the chemisorbed NH3 to the CNT.

As compared to the defect-free tube, the amount of charge transfer to V increases

almost two-and-a-half fold, while that to SW_O_O is enhanced nearly seven-

fold. It is also to be noted here that multiple O2 molecules could potentially

dissociate on the same SW defect, thus providing dissociation sites for multiple

NH3 molecules, leading to much higher net charge transfer to the SWNT.

5. Computed infrared (IR) spectrum of some of the defect structures of Fig. 2.5

provides proper interpretation of experimental FTIR data [96]. See Andzelm

et al. [94] for more details.

Large charge transfer should qualitatively explain the observed drops in electrical

conductance, although a quantitative comparison would require explicit electronic

transport calculations [97]. An important part of that problem is an analysis of the

electronic density of states (DOS), which has been carried out for several different

adsorbates on nanotubes, both physisorbed and chemisorbed [94, 98, 99]. Most

important to transport are the changes in DOS that occur close to the Fermi surface.

In addition, most of the theoretical analyses have been performed on molecules

adsorbing on the external surface of single isolated nanotubes. In reality, the sensor

design often involves nanotube networks, bundles, and films. For such systems,

one needs to analyze the effect of binding and diffusion in the intertube space

within bundles, which could lead to more delayed desorption [100] than for the

isolated tubes.

2.2 Metal-Oxide Nanowires

In spite of tremendous advances in carbon nanotube research, there remain some

practical difficulties that hinder many applications. Cheap mass-production remains

one of the biggest hurdles. Other technological challenges involve controlling CNT

diameter, chirality, and doping levels, isolating/separating CNTs from bundles,

alignment in nanocomposites, and so on. Chemical inertness of the CNT often

poses big problems in sensor applications and adhesion to structural materials,

although some of it is being overcome through chemical functionalization. The

above deficiencies prompted researchers to explore other types of one-dimensional

nanostructures, and led to the synthesis of nanowires and nanoribbons. Nanowires
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are typically solid (i.e., not hollow) cylindrical objects with a nearly uniform

diameter of a few tens of nanometers or less. Most nanowires [101] have so far

been synthesized from standard semiconductors: Si, Ge, GaAs, GaP, GaN, InAs,

InP, ZnS, ZnSe, CdS, CdSe, and mixed compounds. Semiconducting nanowires

have great potential in electronic and optoelectronic applications at the nanoscale.

In addition, conducting nanowires made of transition and noble metals, silicides

(ErSi2), and polymeric materials have also been investigated in connection with

interconnect applications.

Nanoribbons are a special type of nanowires. As the name suggests, they possess

a uniform rectangular cross-section with well-defined crystal structure, exposed

planes, and growth direction (see Fig. 2.6). So far, nanoribbons have primarily been

synthesized from the oxides of metals and semiconductors. In particular, SnO2

and ZnO nanoribbons [102–104] have been material systems of great current

interest because of potential applications as catalysts, in optoelectronic devices,

and as chemical sensors for pollutant gas species and biomolecules [105–107].

Although they grow to tens of microns long, the nanoribbons are remarkably single-

crystalline and essentially free of dislocations. Thus they provide an ideal model for

the systematic study of electrical, thermal, optical, and transport processes in one-

dimensional semiconducting nanostructures, and their response to various external

process conditions.

2.2.1 SnO2 Nanoribbons as Gas Sensor

SnO2 nanoribbons are usually synthesized by evaporating SnO or SnO2 powder at

high temperature, followed by deposition on an alumina substrate in the down-

stream of an Ar-gas flow [102]. Field-emission scanning electron microscopy

(FE-SEM) and transmission electron microscopy revealed that the ribbons (1)

possess a highly crystalline rutile structure; (2) grow tens of microns long in the

<1 0 1> direction; (3) display a uniform quasirectangular cross-section

Fig. 2.6 Schematic diagram of a SnO2 nanoribbon, showing typical dimensions, exposed planes,

and growth direction
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perpendicular to the growth direction; and (4) present the (1 0 �1) and (0 1 0) rutile

planes as surface facets along the growth axis, with dimensions ranging from 80 to

120 nm by 10 to 30 nm (Fig. 2.6). Rutile SnO2 is a wide-bandgap (3.6 eV) n-doped

semiconductor, with the intrinsic carrier density determined by the deviation from

stoichiometry, primarily in the form of oxygen vacancies [108]. Experiments with

SnO2 nanoribbons [109] indicate that these are highly effective in detecting even

very small amounts of harmful gases like NO2. Upon adsorption of these gases, the

electrical conductance of the sample decreases by several orders of magnitude.

More interestingly, it is possible to get rid of the adsorbates by shining UV light,

and the electrical conductance is completely restored to its original value. Such

single-crystalline sensing elements have several advantages over conventional thin-

film oxide sensors: low operating temperatures, no ill-defined coarse grain bound-

aries, and high active surface-to-volume ratio.

Electron withdrawing groups like NO2 and O2 are expected to deplete the

conduction electron population in the nanoribbon, thereby leading to a decrease

in electrical conductance. To investigate this, we performed DMol3 calculations of

the adsorption process of NO2, O2 and CO on the exposed (1 0 �1) and (0 1 0)

surfaces, as well as the edge atoms of a SnO2 nanoribbon [110]. The nanoribbon

surfaces were represented in periodic supercells (Fig. 2.7).

In bulk rutile SnO2, the Sn atoms are octahedrally coordinated with six O

neighbors, while each O atom is a threefold bridge between neighboring Sn centers.

At both (1 0 �1) and (0 1 0) surfaces the Sn atoms lose an O neighbor, thereby

becoming fivefold coordinated (Fig. 2.7a, b). The surface O atoms become twofold-

coordinated bridges connecting neighboring surface Sn atoms (Fig. 2.7a, b). Both

surfaces were represented by three layers of Sn, each layer being sandwiched

between two O layers. The bottom SnO2 layer was fixed in order to simulate the

presence of several bulk-like layers in the actual sample. In order to reduce

interaction with periodic images, the surface unit cell was doubled in the direction

Fig. 2.7 Simulation supercells representing exposed surfaces of a SnO2 nanoribbon: (a) (1 0 �1)
surface; (b) (0 1 0) surface; and (c) nanoribbon edge. For clarity, the periodic cell is not shown in

(c), and the interior atoms are represented by polyhedra. Surface atoms in (a) and (b), and edge

atoms in (c) are shown in ball representation. Larger balls and smaller balls represent Sn and O

atoms, respectively. Sn1 and Sn2 are neighboring Sn atoms connected with a bridging O. Reprinted

with permission from Ref. [110]. Copyright (2005) from the American Chemical Society
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of the smaller surface lattice constant, and a vacuum of 15 Å was placed normal to

the surface. To simulate nanoribbon edges [i.e., lines of intersection of (1 0 �1) and
(0 1 0) planes], a structure as in Fig. 2.7c was embedded in a periodic supercell with

the smallest repeat period (5.71 Å) along the length of the ribbon, and a vacuum of

15 Å normal to both the (1 0 �1) surface (y-axis) and the (0 1 0) surface (x-axis). At
the nanoribbon edges the Sn atoms can be either threefold- or fourfold-coordinated

(Fig. 2.7c).

Details of the results on binding energy and charge transfer are discussed

elsewhere [110]. The important results are summarized below.

All adsorbate structures involve one or more bonds to surface Sn atoms. The

binding energy on different surfaces and edges increases in the sequence (0 1 0) <
(1 0 �1) < threefold edge < fourfold edge.

NO2 adsorption displays a very rich chemistry because it can either form a single

bond to a surface Sn, or can adsorb in the bidented form through two single bonds to

neighboring Sn atoms. The doubly bonded NO2 is 2–3 kcal mol�1 more stable than

the single-bonded NO2, and the binding energies are in general 4–5 kcal mol�1

higher on the (1 0 �1) surface than on the (0 1 0). Activation barrier between the

doubly-bonded and single-bonded structures is expected to be low, which should

make the NO2 species mobile on the exposed faces by performing a series of

random walk steps along well-defined rows of Sn atoms on the surface.

When two NO2 molecules meet on the surface, either through random walk as

described above, or through the incidence of a second NO2 from gas phase in the

vicinity of an already chemisorbed NO2, there is a transfer of an O atom from one

NO2 to the other, thus converting it to a surface NO3 species. The net dispropor-

tionation reaction NO2 þ NO2 ! NO3 þ NO is well known in chemistry. The

bidented NO3 group has a substantially higher binding energy, especially on the

(1 0 �1) surface, and should not therefore be mobile. The resulting NO species is only

weakly bound to the surface and should desorb easily. Synchrotron measurements

using X-ray absorption near-edge spectroscopy (XANES) confirmed the abundance

of NO3 species on the nanoribbon surface following NO2 adsorption.

On a defect-free surface (i.e., surface with no O-vacancies), the O2 molecules

can only weakly physisorb. In this configuration, there is no charge transfer to the

O2, and therefore, a nanoribbon surface without surface O-vacancies should be

insensitive to atmospheric oxygen. However, at O-vacancy sites, the O2 molecule

has a strongly bound chemisorbed structure in the form of a peroxide bridge.

Both NO3 groups and chemisorbed O2 (at O-vacancy sites) accept significant

amount of electronic charge from the surface. Therefore, such adsorbates should

lead to the lowering of electrical conductance of the effectively n-doped sample.

CO, on the other hand, donates a moderate amount of electrons to the surface, and

is therefore expected to increase the electrical conductance. All these results are

consistent with direct experimental measurements of sample conductance

[105, 109, 111]. Charge transfer between molecular species (donor or acceptor

alike) and the nanoribbon surface could thus serve as a general mechanism for

ultrasensitive chemical and biological sensing using single crystalline semiconductor

nanowires.
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A CO likes to adsorb in the following manner: the C forms two single bonds to

the surface – one with a surface Sn and another with a bridging O, while the O of the

CO forms a double bond to the C and sticks out of the surface. This way, the C

atoms attains its preferred 4-valency and the O has its bivalency satisfied.

To end this section, we would like to note that pioneering work by Lieber and his

network of collaborators has led to the synthesis and exploration of many different

configurations of nanowires, including core-shell structures, cross-bar architecture,

heterostructures, and so on. Versatility in materials choice and architectural flexi-

bility are enabling a vast array of potential applications including optical wave-

guides, nanophotonics, nanomedicine, NEMS, biosensing, biomedicine, flexible

electronics, and smart materials. For a recent review see Ref. [112]. Some of the

previous work has been reviewed by Law et al. [113].

2.3 Conclusions

Through a few application examples we have illustrated the use of a variety of

theoretical techniques spanning a wide spectrum of length and time-scales. As

better synthesis and experimental manipulation methods emerge, and more com-

plex and newer applications are proposed, they open up exciting opportunities for

theory, modeling, and simulations. However, several challenges, both experimental

and theoretical, remain as a roadblock to successful commercial deployment of

most technologies. As with any nanosystem, contact remains a critical issue. Small

atomic-level changes in the structure of the contact can have a significant impact on

the contact resistance, and very little characterization data exists on most experi-

mental contacts. Besides, even though DFT-based NEGF codes are becoming faster

and more accurate, they are still too limited in realistically representing metal–CNT

contacts. Standard DFT or tight-binding treatments, as described here, also do not

take into account complex many-body electron-correlation effects that may arise at

low temperatures, or Coulomb blockade effects when electrons in CNTs get highly

localized because of large mechanical deformation or highly resistive contacts.
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Chapter 3

Quantum Mechanics and First-Principles

Molecular Dynamics Selection of Polymer

Sensing Materials

Mario Blanco, Abhijit V. Shevade, and Margaret A. Ryan

Abstract We present two first-principles methods, density functional theory (DFT)

and a molecular dynamics (MD) computer simulation protocol, as computational

means for the selection of polymer sensing materials. The DFT methods can yield

binding energies of polymer moieties to specific vapor bound compounds, quan-

tities that were found useful in materials selection for sensing of organic and

inorganic compounds for designing sensors for the electronic nose (ENose) that

flew on the International Space Station (ISS) in 2008–2009. Similarly, we present

an MD protocol that offers high consistency in the estimation of Hildebrand and

Hansen solubility parameters (HSP) for vapor bound compounds and amorphous

polymers. HSP are useful for fitting measured polymer sensor responses with

physically rooted analytical models. We apply the method to the JPL electronic

nose (ENose), an array of sensors with conducting leads connected through thin

film polymers loaded with carbon black. Detection relies on a change in electric

resistivity of the polymer film as function of the amount of swelling caused by the

presence of the analyte chemical compound. The amount of swelling depends upon

the chemical composition of the polymer and the analyte molecule. The pattern is

unique and it unambiguously identifies the compound. Experimentally determined

changes in relative resistivity of fifteen polymer sensor materials upon exposure to

ten vapors were modeled with the first-principles HSP model.
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3.1 Introduction

In the context of sensor development work, the main objective of molecular

modeling is to provide theoretical support for sensor material selection. Material

selection for the JPL electronic nose (ENose) made use of computer modeling. The

JPL (ENose) is an array of polymer–carbon composite sensors designed to monitor

breathing air quality for chemical contaminants aboard space shuttles/space stations

[1–6]. The JPL ENose is under development as an array–based sensing system,

which can run continuously and monitor for the presence of toxic chemicals in the

air in near real time. The sensing array in the JPL ENose is made from polymer–

carbon composite sensing films. The previous two generations of the JPL ENose

have successfully detected organic contaminants at parts-per-million (ppm) to sub

ppm concentration levels. In general, the methods outlined here are applicable to

amorphous materials principally made of individual monomer units, synthetic or of

biological origin.

Methods that correlate polymer–carbon composite sensor response with molec-

ular descriptors [4, 6] are quite helpful. These quantitative structure property

relationships (QSPR) models require experimental measurements to create a pre-

dictive model. In addition, there are limitations regarding predictions outside the

initial training set.

Ideally, a first principles approach can be used to predict the interactions

between any vapor bound analyte and individual or collective organic moieties

built into a polymer sensor, without the need to perform experiments. These

predictions can then be fed back into the experimental effort to optimize the

material selection process. This is the approach we take in this chapter.

Although direct computational estimates of the energetics of analyte/polymer

interactions with simulated bulk samples of the full polymer environment could

eventually become quite useful in this field [7], we have chosen to focus on

a methodology that involves calculating binding energies for individual organics-

analyte binary systems, including common classes of organic compounds such as

alkanes, alkenes, aromatics, primary, secondary and tertiary amines, aldehydes,

carboxylic acids, and esters. We have also found useful to model the physical

properties of the polymer, particularly Hansen and Hildebrand solubility para-

meters (HSP) as critical factors in creating predictive algebraic models [8]. How-

ever, the direct estimates of the free energy of binding of analytes in simulated

polymer bulk samples await the application of more advanced methods [9].

3.1.1 First Principles Modeling

First-principles modeling refers to the estimation of physical properties without

the use of experimental information. Typically this involves the solution of the

Schrödinger equation (quantum mechanics) or if a suitable force field (an algebraic

representation of the energy of the molecules involved as a function of geometry)
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is available it might also involve solutions to Hamilton’s equations of motion

(Newtonian classical molecular dynamics). First principle properties that are now

available for computation include electronic energies, binding or interaction ener-

gies and entropies, electronic charge distributions, dipole moments, dielectric

properties, swelling, densities, free volume distributions, solubility parameters,

surface tension, and diffusion coefficients.

Quantum interaction energies are typically calculated using quantum mechanics

(QM) density functional theory (DFT) to solve the Schrödinger equation for all

electrons in the system:

HC ¼ EC (3.1)

where H is the Hamiltonian of the electronic degrees of freedom (all atoms in the

system).

H ¼ �
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k
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Here, k, l run over all the nuclei, and i, j over all electrons. The first two terms give

the kinetic energy of the nuclei and electrons, respectively, and the third term yields

the repulsion between the atomic nuclei, while the fourth and fifth terms are the

most difficult terms to solve, representing the repulsion of all electrons and the

attraction between electrons and nuclei, respectively.

We recommend B3LYP for routine calculations [10, 11]. For DFT methods that

might offer advantages in estimating dispersion (van der Waals) interactions

we refer the reader to the X3LYP method [12] or to the most current M06 suite

of DFT functionals [13–16]. Often it is necessary to use basis superposition error

(BSSE) corrections in these calculations. Superposition errors arise from the use of

a finite basis set. The number of functions that represent the electron densities must

be manageable, an unavoidable process in estimating numerical solutions of the

Schrödinger equation. The polymer moiety and the analyte are represented with

different basis sets; particularly the locations of the centers of these basis functions

are different. To avoid errors coming from these differing basis sets we include in

the calculation of the polymer moiety the basis functions (as ghost functions, not the

electrons or nuclei, just the numerical basis functions) for the analyte and vice

versa. Thus, both energy calculations use exactly the same basis set for the

combined polymer/analyte calculation and the error is avoided.

The quantum calculations yield mainly three types of sensor useful information:

1. The relative energies of polymer/analyte together vs. polymer and analyte

(separately), which measure the binding energy of the pair

2. The atomic charges (typically Mulliken population charges) for each atom

3. The energy as a function of polymer/analyte distance at various orientations
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These results are useful in evaluating the potential use of a given material for

detection of a particular analyte. In addition, these results are also of practical

importance in creating an accurate “force field” that can be employed to represent

the energies, forces, and molecular dynamics of analyte/polymer interactions using

classical (Newtonian) dynamics. We refer to the process of using quantum mechan-

ically derived information to build a suitable force field for molecular dynamics

also as first principles modeling because no experimental data are required.

3.2 Identifying Chemical Functionalities in Polymers

for Analyte Detection: SO2 Polymer Sensor Example

The target compound list for the third generation JPL ENose, now undergoing

deployment in the International Space Station (ISS), included a set of inorganic

compounds (notably mercury, Hg, and sulfur dioxide, SO2) in addition to a subset

of previously detected organics (Table 3.1).

We use B3LYP DFT calculations [10, 11] to estimate binding energies of typical

organic functionalities present in homo- and copolymers of interest (see Table 3.2)

with these analytes. Subsequently the QM results were used to develop a first

principles force field for use in the calculation of interaction energies of SO2

molecules with various organic functional groups. As an example, the quantum

binding energies for methylamine/SO2 system at various scan distances, measured

between the sulfur atom in SO2 and the nitrogen atom in methylamine are shown in

Table 3.1. Scan distances from 1.5 to 6 Å in increments of 0.1 Å were chosen in all

cases. In most cases the molecular orientation was fixed around the most optimal

approach found with a generic force field [17], using Mulliken population quantum

charges, and a docking algorithm previously developed by one of the authors [18].

The QM binding energy for the methylamine/SO2 system is �10.7 kcal mol�1. In

this case BSSE error corrections are quite small, on the order of 0.1 kcal mol�1.

Nonetheless, we included them in all energy calculations. The molecules are shown

in the optimal, fixed, molecular approach orientation (Fig. 3.1).

Table 3.1 Calculated analyte properties for third generation JPL ENose

Hansen Solubilities (cal cm�3)1/2 Molecular volume (Å3)

Electrostatics Dispersion H-bond

Acetone 4.79 7.53 0 65.7

Ammonia 6.66 3.83 8.31 22.2

Dichloromethane 2.31 8.75 0 57.8

Ethanol 5.72 6.82 4.33 53.2

Freon 218 (C3F8) 1.5 5.18 0 104.1

Mercury 0 20.11 0 15.5

Methanol 7.33 6.16 5.2 35.9

2-Propanol 4.42 7.14 3.53 71.9

Sulfur Dioxide 19.07 6.95 0 40.7

Toluene 0.99 8.92 0 98.98
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Figure 3.2 shows B3LYP DFT results for a variety of other moieties of interest

and SO2. Binding energies range between 0.0 and 15.0 kcal mol�1 (customarily we

drop the sign when referring to these energies as “binding” energies). PL1 refers to

an approach from above the plane of the molecule, parallel to the plane of

symmetry, which appeared more stable than an in plane approach for both benzene

and ethylene (not shown). An axial approach to ethylene was also tried and found

even less favorable. We note that aliphatic moieties (ethane, ethylene) as well as

aromatics (benzene) are nonbinding. These results exclude polymers that contain

ethylene and styrene as their main constituents for the detection of SO2. On the

other hand, amine-containing polymers, particularly secondary and tertiary amines,

are predicted to have good binding energies (ca. 10–15 kcal mol�1), suitable for

their reversible detection. Secondary cyclic amines, such as methylpyrrolidone, and

carboxylate moieties, including formic acid, formaldehyde, and formamide, are

predicted to be intermediate in binding (between 4 and 8 kcal mol�1).

The fundamental understanding on the basis of the quantum mechanical molecu-

lar interactions between various organic moieties/SO2 systems was useful to priori-

tize the selection of polymers sensor materials for the JPL ENose for SO2 detection.

Two polymers were selected and made into polymer carbon black composite

sensors [19]. These two polymers are both poly-4-vinyl pyridine derivatives with

a quaternary and a primary amine. The polymers were designated EYN2 and

EYN7; the structures are shown in Fig. 3.3. The polymers were synthesized from

poly-4-vinyl pyridine and made into polymer-carbon composite sensing films using

Fig. 3.1 Binding energy as a function of the distance between analyte (SO2) and a potential

polymer moiety (methylamine). Insert shows the varied distance (white arrow) between the

nitrogen in methylamine and sulfur in SO2
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protocols which have been previously described [1, 2]. These films were loaded

with 8–10% carbon by weight and solution deposited onto micro-hotplate sensor

substrates with a sensor area of 200 mm by 200 mm (4 � 10–8 cm2). The baseline

resistance of each sensor was �10 kO.
Previously tested polymers, shown in Fig. 3.4, yielded less optimal changes in

resistance, on the order of less than 2% at higher (e.g.,15 ppm) concentrations. The

molecular level predictions (weak/strong binding) when compared to experimental

sensor responses follow closely the same order:

Tertiary amine > primary amine > carboxylate > aliphatic polyimide > poly-

amide resin > polycaprolactone > ethylene–propylene.

New sensor responses are shown in Fig. 3.5. Primary and cyclic amines provide

sufficient binding energy for the detection of SO2 in the gas phase, as predicted.

Changes in base line resistance are on the order of 6% at 9 ppm SO2 concentrations.

On the basis of the quantum binding energy predictions, even higher sensitivities

would have been obtained if secondary and/or pure tertiary amines (without sur-

rounding carbonyl moieties as is the case in polyimide) had been used in the

polymer sensor synthesis.

Fig. 3.2 Binding energy as a function of distance between analyte (SO2) and a host of potential

polymer moieties
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Fig. 3.3 Monomer structures for the preparation of polymers and co-polymers selected for SO2

detection

Fig. 3.4 Sulfur dioxide response of six polymer sensors: 1 polyimide, 2 polyamide resin,

3 polycaprolactone, 4 ethylene-propylene, 5 poly 4-vinylphenol, and 6 polyvinyl acetate
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3.3 Molecular Dynamics Principles for Modeling Polymer

and Analyte Bulk Properties

Following the quantum mechanical calculations, which often yield enough data to

make informed decisions for sensing materials, we pursue the modeling of the prop-

erties of the polymer in the bulk. We hope to achieve a first-principles understand-

ing of the interactions that give rise to the full gamut of molecular interactions with

the analyte. We use molecular dynamics (MD), solving the classical Hamilton’s

equations of motion. Beginning with the Lagrangian,

L ¼ T � VðqÞ: (3.3)

H ¼
X
j

pi _qi � L;
@H

@qi
¼ � _pi;

@H

@pi
¼ _qi; pi ¼ @L

@ _qi
: (3.4)

Here q represents the atomic coordinates p their momenta, and T the kinetic energy

of all the atoms (here we no longer deal with individual electrons). V(q) is the

potential energy function, an algebraic expression often referred to as the “force

field”, giving the energy of the molecules for a given set of geometric positions of

their constituent atoms. V(q) should be on the basis of solutions to the Schrödinger

equation, as much as possible. In practice a generic force field is used for valence

terms (covalently bound atoms) while the nonbond interactions (electrostatics,

Fig. 3.5 Response of two sensors, both made from polymer EYN2, to 0.2–9 ppm SO2 in air
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hydrogen bonds, and van der Waals or dispersion interactions) are calculated from

quantum mechanical scans as those shown in Sect. 3.2. If the state (coordinates and

momenta) of the system is well known at time t, we can find the position and

velocity of all atoms at time t + dt by integration of the partial differential (3.4). For
this we typically use the Verlet algorithm:

qðtþ DtÞ ¼ 2qðtÞ � qðt� DtÞ � _pðtÞ
m

Dt2: (3.5)

It gives accurate results to O (Dt4). For a full description of MD the reader is

referred to standard molecular dynamics textbooks [21, 22].

The experimentally determined changes in relative resistivity, DR/R, of the

polymer sensors upon exposure to vapors have been correlated with computer

calculated Hansen solubility parameters [9].

DR=R ¼ R0expð�gVsÞexp
X3
i¼1

bi d
s
i � dpi

� �" #
: (3.6)

gVs is the activation energy of diffusion of the solute in the polymer, proportional to

the molar volume of the odorant, Vs. The exponential factor g is a best-fit parameter.

We base this relation on the experimental observation that the diffusion coefficient

of various molecules is linearly related to the molar volume of the solute above the

glass transition temperature (Tg) of the polymer [22]. dsi are the Hansen solubility

parameters (HSP) of the solvent s, where i = 1, 2, and 3 and refer to the electrostatic,

dispersion, and hydrogen bond components, respectively. Similarly, dpi is the ith
HSP component of the polymer sensor p. The exponential coefficients bi are treated
as best fit parameters and so is the pre-exponential term R0. It should be noted that

we preserve the sign of the energy components in (3.6), which is usually lost in the

definition of Hansen and Hildebrand parameters. This is important because such

interactions can be attractive or repulsive, depending on the polymer/odorant

mixture in question.

The Hildebrand solubility parameter for a pure liquid substance is defined as the

square root of the cohesive energy density.

d ¼ ½ðDHv � RTÞ=Vm�1=2; (3.7)

DHv is the heat of vaporization and Vm the molar volume. RT is the ideal gas pV
term and it is subtracted from the heat of vaporization to obtain the energy of

vaporization. Typical units are as follows:

1 hildebrand = 1 cal1/2 cm�3/2 = 0.48888 � MPa1/2 = 2.4542 � 10–2 (kcal

mol�1)1/2 A�3/2

Hansen [23] proposed an extension of the Hildebrand parameter to estimate the

relative miscibility of polar and hydrogen bonding systems:

d2 ¼ d2d þ d2p þ d2h; (3.8)
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where, dd, dp, and dh are the dispersion, electrostatic, and hydrogen bond compo-

nents of d, respectively. For molecules whose heats of vaporization can be

measured, or calculated, one can easily determine the value of d. The Hansen

solubility parameters in (3.8) are typically determined empirically on the basis of

multiple experimental solubility observations, including observed solubility or

swelling with a series of solvents, NMR and IR signals, elution times in chro-

matographic columns, etc. The reported values in the literature can vary over a large

range, however, owing to the multiple experiments used to determine these com-

ponents. Instead, we rely on a MD protocol to estimate the HSPs.

3.4 First-Principles Force Field

The MD protocol is defined as a sequence of individual modeling tasks which begin

with the proper selection of a force field. The energy of the polymers, V(q) in (3.3),
is represented as a sum of valence and non-bond terms as follows:

VðqÞ ¼
X
bonds

Vr þ
X
angles

Vy þ
X

torsions

V’ þ
X

charges

VcoulðRij; qijÞ

þ
X

charges

VcoulðRij; qijÞ þ
X
O;N;S

VHbondðRijÞ: (3.9)

Valence force field: we use a generic force field, Dreiding [17] to estimate valence

terms. Bond stretch terms are given by

Vr ¼ 1

2
KrðR� R0Þ2: (3.10)

Bond angle distortions are given by

Vy ¼ 1

2

Ky

sin2y0
ðcosy� cosy0Þ2 (3.11)

and dihedral angle torsions by

V’ ¼ 1

2
Vð1� d cos3fÞ: (3.12)

We also approximate the noncovalent hydrogen bond term, which runs over

heteroatoms such as O, N, and S, using the published Dreiding Lennard-Jones

12–10 potential form

VHbondðRijÞ ¼ D0

R0

Rij

� �12

� R0

Rij

� �10
" #

: (3.13)
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We employ D0 ¼ 3.2 kcal mol�1 and R0 ¼ 2.5 Å, which give better agreement with

the heat of vaporization of water (580 cal cm�3) than the published Dreiding

hydrogen bond values whenMP2/6 – 31g** atomic charges are used for the isolated

water molecule [q(O) ¼ �0.72866, q(H) ¼ 0.36433].

Electrostatics: all electrostatics interaction pairs were included in the calculation

without the use of cutoffs or spline functions.

VcoulðRijÞ ¼ c
X
j

X
i>j

qiqj
Rij

: (3.14)

Quantum charges, qi, were calculated at the quantum optimized (minimum energy)

geometry of each molecule (polymer segment and analytes) using polarized

Mulliken charges at the minimum conformation. We use the Jaguar suite of

programs [24], B3LYP DFT with a good (6 – 31g**) basis set. e¼ 1 is the dielectric

constant, qi and qj are the atomic charges in electron units, and Rij is the distance

in Å; c ¼ 322.0637 converts the electrostatic energy to kcal mol�1. For SO2,

the Mulliken population charges are q(S) ¼ 0.83914 and q(O1, O2) ¼ �0.41957

electrons.

The noncovalent terms in (3.9) play a crucial role in determining the structure of

the polymer and the HSP values for both polymer and analyte. Thus, the force field

is further refined for the dispersion (van der Waals) noncovalent interactions.

3.4.1 Refinement of van der Waal Interactions

The van der Waals interactions can be as important in determining the binding

energetics of analyte/polymer sensor as much as the electrostatics, particularly

when nonpolar chemical groups are involved at either end.

The binding energies for molecular pairs in Fig. 3.2, typical organic molecules

interacting with SO2, were calculated as follows:

Ebind ¼ EAB � ðE�
AB � E�

BAÞ: (3.15)

Here Ebind is the calculated energy of the AB pair, and EAB* and EBA* are the

energies of molecules A and B. These energies are calculated with the basis set of B

and A present (B*, A*, respectively); the process described above is basis set

superposition error correction (BSSE). As mentioned above we carried out a

distance sweep between the organic molecule and SO2 calculating the quantum

energy of interaction between 1.5 and 6 Å in increments of 0.1 Å. In some cases,

e.g., ethane, ethylene, and benzene we used various directions for the sulfur dioxide

approach to the organic compounds, such as parallel (PL) or perpendicular (PR) to

the molecular axis of symmetry. The binding energies exclude all covalent inter-

actions (as the individual molecular energies have been subtracted) but include all
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nonbond terms, i.e., electrostatics, hydrogen bond, and dispersion. After subtraction

of the electrostatic terms we fit the remaining binding energy with a Morse potential:

VðRijÞ ¼ Deð1� e�xðRij�ReÞÞ2 � De; (3.16)

where De represents the van der Waals contribution to the total binding energy at

the equilibrium distance Re and x is related to the harmonic force constant k
associated with the noncovalent binding mode by

x ¼
ffiffiffiffiffiffiffiffiffiffi
k

2De

:

r
(3.17)

Rij is the distance between the two atom centers. Because elements have different

environments we need to estimate a set of van der Waals dispersion parameters for

each atom type pair. Thus, an sp2 carbon, such as a carbon in ethylene, will have its
own specific set of values (De, Re, and x). The process is somewhat involved, but for

each geometry present in the distance sweep between the analyte and the organic

moiety all the interatomic distances are recorded and used to fit the Morse para-

meters after subtraction of the electrostatic Coulomb energy. A full least square

procedure on all Morse parameters combined is carried out.

The force field represents the calculated quantum binding energies quite well.We

obtained the force-field energy curves shown in Fig. 3.6 for the secondary amine

with SO2. Small open circles are the quantum binding energies given by (3.15)

Tables 3.3a and 3.3b contain the set of (De, Re, and x) for each type of atom pairs

involving SO2 and for the atom types present in the organic functionalities included

Fig. 3.6 Quantum binding energies and the force field van der Waals and Coulomb components

for dimethylamine interacting with SO2
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in this study. A brief glance at this table shows that the sp3 Nitrogen atom in the amine

interacts the strongest (De = 8.25 kcal mol�1) with the sulfur in sulfur dioxide.

3.5 Molecular Dynamics Protocol for Polymer Sensor Responses

As shown in the previous section quantum mechanics can provide sufficient infor-

mation to guide material sensor selection successfully. A wealth of information is

generated in the process, which includes the force field parameters in Tables 3.3a

Table 3.3a van der Waals force field parameters determined from DFT (B3LYP) binding ener-

getics. Morse parameters for sulfur (S_3) Dreiding atom type in SO2 with other atom types present

in ten organic compounds

Atom types Hybridization Re De x
C_3 sp3 3.132617 0.749458 11.99488

C_2 sp2 2.737065 1.340003 13.17681

C_R sp2 aromatic 5.344190 0.002262 14.72481

H_$ sp3 3.973471 0.029141 12.00958

H_$ sp2 2.961596 2.245861 13.49589

H_Aa 3.499816 0 11.99997

H_Ab 3.954983 0.000694 12.00027

H_R sp2 aromatic 3.077340 0.193491 13.22020

N_3 sp3 2.230163 8.252832 11.92240

N_R sp2 aromatic 3.498603 0 11.91701

O_2 sp2 3.459701 0.000602 11.81915

O_R sp2 aromatic 5.089213 0.167158 12.62331
aAttached to heteroatoms (e.g., O)
bAttached to N atom only

Table 3.3b Morse parameters for oxygen atoms of SO2 (O_2) with common Dreiding atom types

present in ten organic compounds

Atom types Hybridization Re De x
C_3 sp3 3.450184 0.000471 11.99898

C_2 sp2 4.053726 0 11.07503

C_R sp2 aromatic 3.485616 0 12.00207

H_$ sp3 3.900214 0.013218 12.03888

H_$ sp2 2.822144 0 12.03854

H_Aa 4.001108 0 13.15887

H_Ab 3.969541 0.296846 11.84432

H_R sp2 aromatic 3.028448 0.427043 12.66140

N_3 sp3 3.345748 0.846320 11.87265

N_R sp2 aromatic 3.499287 0 13.63104

O_2 sp2 3.728343 0.106303 15.86427

O_R sp2 aromatic 2.999365 0 12.37445
aAttached to hetero-atoms (e.g., O)
bAttached to N atom only
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and 3.3b. These parameters can be used to estimate polymer and analyte material

properties that can provide the basis for developing predictive models of sensor

responses, such as the model given by (3.6). Thus, in this section we aim at

estimating without experimental input Hansen solubility parameters. The most

common problem in computer simulations of polymers is the long time required

to obtain an equilibrated simulated sample. This is a common problem with

amorphous condensed phases. We have developed a method that overcomes the

common equilibration problems with condensed phase molecular dynamics, i.e.,

how to choose initial molecular configurations not far from equilibrium at normal

densities. Significant amounts of simulation time are usually required to equilibrate

the initially random packed molecules often generated with Monte Carlo methods.

In particular, densely packed simulated polymers often lead to highly nonequili-

brated dihedral populations. Thus, care must be taken to generate an ensemble of

thermally accessible conformations not far from equilibrium. These two require-

ments, condensed phase densities and equilibrated molecular conformations, are

satisfied through the following MD protocol:

1. A cubic periodic unit cell containing a given number of molecules is built at

a low density, rlow, typically 50% of the target density. Generally four

polymer chains are sufficient, although for very high molecular weights

even one chain can be adequate. For solvents 16–64 solvent molecules are

adequate. We find that for packing the structure, it is useful to scale van der

Waals radii by a factor of 0.30 to get initial structures that will eventually lead

to a good ensemble. In cases where the compounds are polymers, or a

molecule with a large number of torsional degrees of freedom, we use the

Amorphous Builder in Cerius2 [25] to create the initial low-density sample.

The initial polymer amorphous structures are constructed using the rotational

isomeric state (RIS) table [26] and a suitable Monte Carlo procedure to

achieve a correct distribution of conformational states in the low-density

sample. The Amorphous Builder converts an existing model into an amor-

phous structure by manipulating the model’s rotatable bonds. Each unique

torsion can be defined using a Monte Carlo procedure with statistical weights

given by a previously built rotational isomeric state table determined with

well established molecular mechanics dihedral sampling procedures. Confor-

mations are rejected if two or more atoms come closer than a van der Waals

scale distance. In polymer calculations, the number of monomers in each

chain is usually determined such that the total volume of the four chains is

at least 6,000 Å [3]. Alternatively, a degree of polymerization of 30 suffices to

give values comparable to those from experiment. In such polymer samples,

the minimum number of atoms is at least 1,000. Larger samples are recom-

mended whenever possible.

2. For convenience we used the experimental densities of the solvents and

polymers as target values as these are commonly available in the literature.

For liquid systems with unknown densities we typically run a preliminary MD

calculation with a rough “trial” density, such as that predicted from group
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additivity methods, to obtain a good initial estimate. The procedure below will

increase the density to a maximum, rhigh, typically 125% of the target density.

The resulting amorphous structure is then relaxed, resulting in a predicted

target density for the start of the definitive MD calculation.

3. The charges of the isolated solvent or polymer molecules are defined using

those obtained from quantum mechanical calculations (Mulliken population

charges) as previously explained.

4. The force field parameters are taken from a generic force field, such as the

generic Dreiding force field with modifications of the van der Waals para-

meters for higher accuracy.

5. Minimization: The potential energy of the bulk system is minimized for M
steps, typically M = 5,000 steps, or until the atom rms force converges to 0.10

kcal (mol Å)�1, whichever comes first.

6. Annealing dynamics to allow the structures to equilibrate typically 750 steps of

MD (1 fs per step) at high temperature (typically between 400 and 800 K, with

700 K generally adequate) using canonical fixed volume dynamics (NVT) are

carried out to anneal the sample.

7. Compression: The reduced cell coordinates are shrunk such that the density is

increased by (rhigh�rlow)/N, where N is typically 5.

8. The atomic coordinates are minimized and dynamics run on the system with

the previously described procedure holding the cell fixed (steps 5–6).

9. A total of N compression, minimization, and dynamics cycles are performed

until the density reaches rhigh, typically 125% of the target density, steps 5–8.

10. The cell parameters are then increased in N cycles of expansion, minimization,

and dynamics, until the target density is reached

11. The sample is allowed to relax in M steps of minimization allowing both the

cell and the atomic coordinates to relax.

12. Molecular dynamics are performed for a time to thermalize and then to

measure properties. Typically we perform these for as few as 20 ps but longer

times are recommended for high molecular weight compounds. The first 10 ps

are used for thermalization of the sample at the desired temperature. The last 10

ps are used for averaging of cell volume and potential energy components: van

der Waals (dispersion), electrostatic (polar), and hydrogen bonding.

13. The Hansen enthalpy components are calculated by subtracting the potential

energy of the bulk system from the sum of the potential energies of the

individual molecules in vacuum.

d2k ¼
Xn
i¼1

Ek
i � Ek

c

� �
=N0hVc=ni: (3.18)

14. Here < > indicates a time average over the duration of the dynamics, n the

number of molecules, k ¼ 1,2,3 for coulomb (polar), van der Waals (disper-

sion), and hydrogen bond components, and N0 is Avogadro’s number.

15. This process is repeated P times with different initial random conformations

and packing. Typically P¼ 10 is adequate but higher values are recommended.
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16. Hansen solubility parameters and molar volumes are computed as well as their

standard deviations. We use the 95% confidence limit of an F statistical

distribution test, with two standard deviations from the average value, to

identify outliers. Typically a P ¼ 10 sample run will have no outliers; more

than two outliers are rare.

The overall procedure is schematically illustrated in Fig. 3.7. Tables 3.1 and 3.2

show the results of this procedure, the Hansen solubility parameters for analytes,

and polymer candidates for the JPL ENose.

At this point we introduce experimental information to complete the model

in (3.6). Once these free parameters in (3.6) are determined we can employ this

expression to make sensor response predictions for new analytes, not initially

included in the training set. Tables 3.1 and 3.2 contain the calculated (using

the MD protocol outlined above) Hansen solubilities for analytes and polymers,

respectively. Figure 3.8 shows the experimental vs. predicted sensor responses for

some typical polymers. Figure 3.9 shows the model predictions vs. experimental

data for some of the polymer sensors.

We next tested the predictive power of (3.6) by calculating the responses of the

JPL ENose sensor array to an analyte not originally included in the training set. The

results are shown in Fig. 3.10. There is good agreement between the model’s

prediction and the measured JPL ENose responses to Freon113. This is an impor-

tant test because it shows that these model have true predictive power, beyond

simple data regression or statistical correlations.

3.6 Discussion and Conclusions

We have presented a first-principles approach to materials selection for polymer

sensors for specific analytes. The quantum (B3LYP/DFT) binding energies

of analyte with a few representative organic moieties can yield a great deal

Fig. 3.7 A polymer or solvent sample is put through a series of compression and expansion steps

until the proper density and packing are obtained. On the left the initial density is 40% of the target

density. After compression, second step, the sample is overcompressed by 20%. Finally the sample

is allowed to relax. Through NPT molecular dynamics a final prediction of the density and

cohesive energy of the sample is obtained. The process is repeated for several samples and

statistics are gathered
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of information. The quantum binding energies, as shown in the sulfur dioxide

example, are strongly correlated with the measured responses, and therefore, the

quantum calculated energy data can significantly aid the selection of sensing

materials. Furthermore, the data can be employed to successfully model the self-

interactions, in the form of Hansen solubility parameters, of analytes and polymers.

These first-principles MD-derived solubilities can be used to model the responses

of an array of polymer sensors to a wide variety of analytes and provide the basis

for extrapolations outside the original training set.

Table 3.4 shows the values of the fitting parameters in (3.6), obtained using

a least square fit of the experimental data and the calculated Hansen parameters in

Tables 3.1 and 3.2 for each of analyte and polymer sensor pairs in the study. Over

half of the polymer sensors follow (3.6), with a Pearson’s correlation coefficient

above 0.75. Clearly there are some sensors that deviate significantly from this

equation, particularly copolymers such as methyl vinyl ether/maleic acid (50/50)

and ethyl cellulose. Overall, the model represents the data with an average

Pearson’s correlation coefficient of R2 ¼ 0.73. In a previous study, the experimental

responses of a different set of polymer sensors for the ENose had been fitted with

the same expression and methodology [8]. Comparison between theory, (3.6), and

experimental changes in resistivity of seven polymer sensors exposed to 24 solvents

Fig. 3.8 Calculated (3.6) vs. experimental sensor responses to four analytes in the third generation

JPL ENose compound list
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gave a correlation coefficient R2 ¼ 0.89. The model was used to predict the response

of Freon 113, an analyte not present in the training set. The predicted pattern of

changes in resistivity agrees quite well with the measured polymer responses.
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Fig. 3.9 Calculated (3.6) vs. experimental sensor responses of four polymer sensors to ten analytes

in the third generation JPL ENose compound list

Fig. 3.10 Calculated (dark) vs. experimental (light) pattern of changes in resistivity by Freon113

on the JPL ENose array. Hansen solubility parameters for Freon113 are 2.82, 8.54, and 0 (cal per

cm3)1/2 for electrostatic, dispersion, and hydrogen bonding respectively. The molar volume is

110.91 Å3
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Ideally, one might wish to predict directly the swelling of polymer sensors,

loaded with carbon black, and transform this into a change in resistivity. This is

however a great challenge for various reasons, from the ability to estimate the free

energy of mixing analytes and polymers, to good knowledge of the true chemical

composition of carbon black and how adsorbed molecules change its intrinsic

conductivity. Nonetheless, we have shown that a combination of quantum mechan-

ics with first-principles MD can afford a great deal of information that it is useful in

designing and selecting materials for specific analytes. Future work involves the use

of a newly developed MD method for the direct estimation of free energies [9].
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Chapter 4

Prediction of Quartz Crystal Microbalance Gas

Sensor Responses Using Grand Canonical

Monte Carlo Method

Takamichi Nakamoto

Abstract Our group has studied an odor sensing system using an array of Quartz

Crystal Microbalance (QCM) gas sensors and neural-network pattern recognition.

In this odor sensing system, it is important to know the properties of sensing films

coated on Quartz Crystal Microbalance electrodes. These sensing films have not

been experimentally characterized well enough to predict the sensor response. We

have investigated the predictions of sensor responses using a computational chem-

istry method, Grand Canonical Monte Carlo (GCMC) simulations. We have suc-

cessfully predicted the amount of sorption using this method. The GCMC method

requires no empirical parameters, unlike many other prediction methods used for

QCM based sensor response modeling. In this chapter, the Grand Canonical Monte

Carlo method is reviewed to predict the response of QCM gas sensor, and the

modeling results are compared with experiments.

4.1 Introduction

An odor sensing system is required in fields such as food, beverage, cosmetics,

environmental testing, and medical diagnostics, to evaluate smells objectively. A

variety of odor sensing systems that use non-specific sensors, often called electronic

noses, have been studied [1, 2]. In our study, we have used multiple sensors with

partially overlapping specificities and a pattern recognition technique similar to

that of the olfactory system. The sensing devices used in this work are Quartz

Crystal Microbalance (QCM) gas sensors [3]. A QCM gas sensor consists of a

resonator coated with a sensing film. We must select the optimum combinations of

sensing films to discriminate among target odors. A statistical method based upon

T. Nakamoto
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discrimination analysis has been used to determine the combination of sensors [4];

this method requires experimental data from all the sensors for all the target odors,

prior to selection. As a great deal of effort is required to collect the large amount of

sensor data, prediction of the sensor response without experiment is essential.

Although several methods have been proposed to predict the response of an

acoustic wave gas sensor, these methods require empirical parameters and there-

fore, experiments to obtain them. We report here, a method based on computational

chemistry [5] to predict sensor responses without the use of an experimentally

obtained database. As the method enables the calculation of a number of sensor

responses, sensing film characterization may proceed quickly. Moreover, it may be

easier to design the sensor array in an odor sensing system using this approach.

Another advantage of this computational chemistry approach is that we can evalu-

ate which forces are dominant in the sorption process. The contributions of electro-

static and van der Waals forces can also be evaluated in the sorption simulation.

In this chapter, we first discuss the principle of a quartz crystal microbalance gas

sensor, including sorption characteristics, and then derive an expression for the

relationship between the partition coefficient and the sensor response. This is follo-

wed by a review of previously proposed methods of sensor response prediction for a

Quartz CrystalMicrobalance sensor and SAW (SurfaceAcousticWave) gas sensors.

Although the predictions are achieved using these prior methods, experiments are

required to develop the model for prediction. Following this discussion, the simula-

tion principles and methods using the Grand Canonical Monte Carlo (GCMC)

approach are explained. The methodology involves using optimized chemical struc-

tures of gas and sensing film and performing sorption simulations. Measured sensor

responses to evaluate the simulation result are reported at the end of the chapter. The

simulation results agree with the corresponding experiments. During the GCMC

simulations, we evaluated the electrostatic force contributions, which cannot be

measured during experiments. A summary of the work is provided at the end.

4.2 Principle of Quartz Crystal Microbalance Gas Sensors

A Quartz Crystal Microbalance is a device sensitive to mass changes at its surface.

This mass change causes a shift in the resonance frequency of the quartz resonator.

The amount of the frequency shift is proportional to the mass change and this

phenomenon is called mass loading effect [6]. The QCM mass loading effect had

been initially utilized to monitor the metal thickness in an evaporator and was later

applied to chemical sensors both in the gas and liquid phases [3, 7–9]. The QCM

behavior can be analyzed using a one-dimensional model based on an equivalent

circuit. The simplified model consists of a series of LCR (an inductor, a capacitor

and a resistor) and a parallel parasitic capacitor between the electrodes. The

acoustic load, such as mass loading and viscous loading, can be expressed as

a circuit parameter, with mass loading expressed as an inductance change in the

equivalent circuit [10].
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The structure of a Quartz Crystal Microbalance gas sensor is shown in Fig. 4.1.

The quartz resonator consists of a quartz plate and electrodes deposited on both

sides. The electrodes are deposited by evaporating or sputtering. The quartz reso-

nator itself is typically used as an oscillator with its stable frequency. It works as a

gas sensor when a sensing film is coated over the electrodes.

The quartz resonator is connected to an oscillator circuit, and the shift in oscilla-

tion frequency is measured using a frequency counter. When vapor is sorbed in the

sensing film, the oscillation frequency decreases because of mass loading effects.

When the vapor is replaced by air, the gas desorbs, and the oscillation frequency

returns to the original frequency. Thus, the sensor can be used repetitively. The

methods to coat sensing films are casting, painting, spin coating, spray coating, dip

coating, plasma [11], Langmuir Blodgett [12] and atomizer [13]. In most methods,

the sensing film material is dissolved in an organic solvent that evaporates quickly,

such as chloroform. After solution deposition and evaporation of the solvent, only

the sensing film remains on the electrode surface. The amount of coating is evaluated

from the shift in resonance frequency due to deposited film. Although the sensitivity

is governed by the film thickness, Q (Quality factor) of the resonator [14] decreases

due to viscoelastic effect when the film is too thick. The deterioration of theQ causes

the instability of the oscillation frequency. In the worst case, the oscillation stops.

The Q factor is typically monitored by an impedance analyzer.

The sensing films can be characterized using a parameter called partition

coefficient K, which is defined as:

K ¼ Cs

Cv

; (4.1)

where Cs (g/ml) is the gas concentration in the film and Cv (g/ml) is that in air in the

equilibrium. Here the natural logarithm of K, ln K, is used as an index of the amount

of gas molecules sorbed into a sensing film.

The frequency shift Df due to mass loading DM is

Df ¼ �fr
DM
M

; (4.2)

Fig. 4.1 Structure of Quartz Crystal Microbalance gas sensor
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where M and fr are the mass of the quartz plate and the resonant frequency,

respectively. If ms is the mass of coating, the frequency shift due to film coating

Dfs is

Dfs ¼ �fr
ms

M
: (4.3)

The frequency shift due to sorption Dfv is:

Dfv ¼ �fr
mv

M
¼ �mv

ms

Dfs; (4.4)

where mv is the amount of the gas sorption. Using the volume of the sensing film V
and the film density rs,

ms ¼ rsV; (4.5)

and

mv ¼ CsV ¼ KCvV: (4.6)

Using (4.4)–(4.6),

Dfv ¼ mv

ms

Dfs ¼ KCvV

rsV
Dfs ¼ KCv

rs
Dfs: (4.7)

Thus,

K ¼ Dfv
Dfs

rs
Cv

: (4.8)

In this work, ln K, the natural logarithm of K, was calculated using the Grand

Canonical Monte Carlo (GCMC) method and it was compared with the experimen-

tally obtained ln K.

4.3 Previously Proposed Prediction Methods for Sensor

Responses

Although several researchers have reported methods for predicting sensor

responses, they require empirical parameters determined by experimentation.

Grate et al. proposed Linear Solvation Energy Relationships (LSER) to characterize

the sorption characteristics of a sensing film and applied it to the prediction of SAW
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gas sensor response [15, 16]. In LSER the natural logarithm of K is expressed as a

linear combination of the effective hydrogen-bond acidity, the effective hydrogen-

bond basicity, dipolarity/polarization parameters and dispersion parameter.

Although this relationship is used by many researchers, the coefficients of those

parameters must be obtained experimentally, prior to the prediction. This method is

described in a chapter by Grate in this book volume.

A method similar to LSER is to use the Hansh-Fujita equation [17]. The

parameters in this equation are hydrophobicity, electronic property and steric

effects; this method is known as SQAR (Structure-Activity Relationship) and is

often used for developing medicine. Ohnishi applied this method to predict SAW

gas sensor response [18].

A method for utilizing Gas Chromatograph (GC) database was proposed

[19]. McReynolds has published a GC retention-volume database [20]; these

data are useful for sensing films of GC stationary phases. The partition coeffi-

cient of the sensing film can be calculated from the retention data at high

temperature after they are converted to room temperature. Moreover, a database

of parameters of gas/liquid equilibrium, the Wilson parameter [21], is available

to predict sensor response if the sensing film is the liquid phase [22]. However,

experiments are necessary if there are no data of specified gas-sensing film

combination in the database. Okahata proposed a prediction method using the

parameter of slenderness of a vapor molecule [23], with the claim that the

slenderness in addition to hydrophobicity parameter was effective in character-

izing QCM sensor response. Kurosawa et al. also proposed a method using the

Small number [24, 25].

All the above proposed methods have used extracted parameters to explain the

sensor response. Even if the extracted parameters are different from method to

method, they all require a coefficient for each parameter, which must be empirically

determined. Thus, there has been no method for predicting sensor responses without

experimentation. The method of computational chemistry is promising from this

view point. However, the reports of sensor response prediction using computational

chemistry are few. Hehl et al. evaluated the interaction between the sensing film and

nitrobenzene-derivative vapor using the semi-empirical molecular orbital method,

AM1 [26]. Fujimoto et al. did the simulation of the surface reaction of SnO2 gas

sensor to aminic and carboxylic vapors using molecular orbital calculation

(MOPAC 97) [27]. Those researches are at a preliminary stage of sensor response

prediction.

Sorption simulation was reported in 1987, where the sorption of methane gas

into zeolite was calculated using Molecular Dynamics (MD) and GCMC methods.

In the case of zeolite, the simulation might be easy because of its rigid and regular

structure [28].

It is possible to predict the QCM gas sensor response without experiment. The

first report of the application of sorption simulation to sensor response prediction

using computational chemistry was in 1999 [29]. The following sections explain the

method of sorption simulation using the Grand Canonical Monte Carlo method

(GCMC) and its results in detail.
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4.4 Grand Canonical Monte Carlo Method

4.4.1 Monte Carlo Simulation

There are two methods for evaluating sorption. One is Molecular Dynamics (MD)

and the other is the Monte Carlo (MC) method. In case of MD calculation, an

equation of motion of N molecular system is directly solved. It can be used to

describe the transient phenomenon dependent upon time. In the Monte Carlo

method, the configuration of the molecules is generated using random numbers.

Only the quantities at equilibrium are obtained but temporal information is lost.

4.4.2 Sensing Film Model

The model of a sensing film was prepared according to the procedure below:

(a) Sketching a sensing-film molecule

(b) Preliminary molecular structure optimization

(c) Molecular structure optimization by Molecular Mechanics (MM) calcula-

tions [30]

(d) Random placement of film molecules in the unit cell

(e) Periodical and three-dimensional replication of a unit cell throughout space to

form the model of a bulk sensing film

(f) Optimization of the sensing film model by MD and MM calculation

Preliminary molecular structure optimization in (b) is a simplified MM calculation

to approach the convergence point rapidly. We assume that the gas molecules are

not adsorbed at the sensing film surface but are in the bulk to start the simulation.

Since the number of molecules placed in the simulation is limited by the computer

performance, the three-dimensional periodic boundary condition was used in the

step (e) above. Since these methods are computationally intensive, reduction in the

amount of calculation is important, as discussed below.

Figure 4.2 shows the periodic boundary condition. Although a three-dimensional

periodic boundary condition is actually used, the two-dimensional condition is

shown for simplicity. The box, a unit cell is replicated throughout space to form

an infinite lattice. As a molecule moves in the original box in the simulation, its

periodic image in each of the neighbouring boxes moves exactly in the same

manner. There are no walls at the boundary of the central box, and no surface

molecules.

The computation time may be reduced by potential truncation. As the calculation

of the potential between the two atoms needs a long time, it is impossible

to calculate the interactions of one molecule with all other molecules. Thus,
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a spherical cutoff for short-range forces is normally applied. It means that the pair

potential v(r) is set to zero for r > rc, where rc is the cutoff distance. In Fig. 4.2, the
interaction forces acting as molecule 1 are effective only within the dashed box. In

case of molecule 1, only interactions with molecules 4, 5 and the periodic images 20,
30 are considered because they are located within the distance of r, where rc is

typically set to a half length of a unit-cell side.

There is a tradeoff between the number of sensing-film molecules in the unit cell

and the calculation time. First we investigated the minimum number of those

molecules accompanied with the tolerable error. In our simulation, five molecules

were put in each unit cell and the sensing-film density was set to be 0.3 g/ml. The

initial position and orientation of these molecules were determined by random

number.

Then, the structure optimization was performed to reduce the energy of the

system and to make the structure of the system more stable. In this simulation, we

used Dreiding2.21 force field, used extensively in modeling organic molecules. In

this step, bond stretching, bond angle bending, dihedral angle torsion, inversion,

van der Waals, coulomb and hydrogen bond energy terms were considered. After

the optimization, we confirmed that the molecules were uniformly placed in the unit

cell by plotting its radial distribution function.

Fig. 4.2 Periodic boundary condition and cutoff distance
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4.4.3 Gas Molecule Model

The model for gas molecule was prepared according to the following procedure:

(a) Sketching the gas molecule

(b) Preliminary molecular structure optimization

(c) Molecular structure optimization by MM calculation

Preliminary molecular structure optimization in (b) was done in the same manner as

that in Sect. 4.4.2. After the optimization, the conformation of the gas molecule was

set to be all trans. We used this model in the sorption simulation. Since sensors were

used in air, nitrogen and oxygen molecules were also taken into account.

4.4.4 Sorption Simulation

The Grand Canonical Monte Carlo (GCMC) method was used for the sorption

simulation. The simulation uses the grand canonical statistical ensemble. In this

ensemble, the number of the molecules in the system is not fixed, whereas the

chemical potential of each species in the gas phase, and the volume and the

temperature of the system are fixed. This ensemble agrees with the environment

of the static measurement system described in the next section. The probability of a

certain microscopic state given by the grand canonical ensemble is

rð p; r;NÞ ¼
exp � Hðp; rÞ�mN

kBT

� �
N!h3NX

; (4.9)

where N is the number of molecules in the system, and r and p are the positions and
momenta of the N molecules. H(p, r) is the Hamiltonian and represents the total

energy of the system. kB is the Boltzmann constant, m the chemical potential and T
the temperature. X is the Grand Partition Function and is expressed as

X ¼
X
N

1

N!h3N
exp

mN
kBT

� �ZZ
exp �Hðp; rÞ

KBT

� �
; (4.10)

where h is Planck’s constant.

The Monte Carlo simulation in the film model is performed according to the

following procedure as illustrated in Fig. 4.3.

(a) Create a gas molecule

(b) Destroy a gas molecule

(c) Translate a gas molecule

(d) Rotate a gas molecule
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The acceptance or rejection of the configuration is determined by the probability of

a certain microscopic state given by the grand canonical ensemble in (4.9). Let

rp and rn be the probabilities of the previous and the new configurations, respec-

tively. If rn/rp is greater than 1, the new configuration is accepted. When rn/rp is
less than 1, it is compared with a random number, and the new configuration

is accepted only if it is greater than the random number. Equilibrium of gas sorption

is achieved when the chemical potential of the gas inside the bulk model of the

sensing film is equal to that of the free gas outside the film.

We used Dreiding 2.21 force field for the sorption simulation. The number of

parameters is much smaller than that of configurations of gas and sensing film

molecules, and we can determine sorption equilibrium of those molecules, only

using these parameters. Moreover, we considered only the intermolecular interac-

tions, van der Waals, hydrogen bonding and coulomb for elements such as C, H

and O. We used approximately ten parameters for energy terms in all. For example,

van der Waals energy term is expressed by the Lennard Jones potential function,

EðRÞ ¼ D0

R0

R

� �6

� R0

R

� �12
( )

; (4.11)

and the parameters in this function are D0 and R0. All the parameters were fixed

during the entire simulation and default values were generally used.

Fig. 4.3 Sorption simulation procedure

4 Prediction of Quartz Crystal Microbalance Gas Sensor Responses 101



The sorption simulation of the ternary mixture of gas, nitrogen, oxygen and the

sample gas was also performed. In this simulation, we assumed that the interactions

between gas and film molecules were too weak to change the structure of gas

molecule. The partial pressures of nitrogen, oxygen and the sample gas were 80, 20

and 0.1 kPa, respectively, and the temperature was 300K. The partial pressures of

almost all sample gases are very low, compared with these saturated pressures.

4.5 Experiment on Gas Sensor Measurement

4.5.1 Measurement System

The measurement system in this study is a static measurement system for obtaining

the steady-state sensor responses of QCM gas sensors. A schematic diagram of the

system is shown in Fig. 4.4. A small amount of the sample liquid is injected into the

closed chamber and the sensor steady-state response is obtained after the complete

evaporation of the sample liquid. The sample concentration can be accurately

determined because the amount of the injected sample and the chamber volume

are fixed. Moreover, in this system the temperatures of the gas and the sensor are

kept constant, in contrast to a flow measurement system, where the temperature of

the sensor is sometimes different from that of the gas.

Fig. 4.4 Schematic diagram of static measurement system
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A chamber made of Teflon with a volume of 1,300 ml was placed in a thermal

bath. Eight QCM gas sensors and oscillation circuits are attached on the inner and

outer sides of the chamber lid, respectively. The thermal bath with the chamber is

placed in a heat-insulated box (not shown in Fig. 4.4) to keep the temperature at

27�C. The oscillation frequency shift due to gas sorption is measured using a

frequency counter and data transferred to a computer.

Samples are automatically injected into the chamber through a sample dispenser

(Bunchu-kun, BLSQ) and an SPV automatic valve (SPV-N-6A, GL Science), both

controlled by a single computer. The injected volume of the liquid sample is

determined from the volume of the sample loop (7 ml) attached to the SPV

automatic valve. After the sample is injected and is evaporated in the chamber,

the frequency shift is measured at the equilibrium point. Subsequent samples are

injected in the same way. The dead volume of the sample path should be minimized

in the automatic system using the SPV automatic valve; there is little dead volume

in a manual injection.

As it takes a long time for the liquid sample in the chamber to evaporate, a teflon

tube connecting the SPV automatic valve and the chamber is heated by a ribbon

heater to force rapid evaporation. The liquid samples are sucked into the dispenser

through the sample distributor as shown in Fig. 4.4. We can select the sample by

opening the appropriate solenoid valve under the distributor. Since these processes

are controlled by computer, we can measure seven samples automatically and

continuously.

4.5.2 QCM Gas Sensors

We used quartz crystals (20 MHz, AT-CUT) with silver electrodes. The sensing

films were squalane and polyethyleneglycol-400 (PEG400). The molecular struc-

tures of the sensing films are shown in Fig. 4.5. The molecular weights of squalane

and PEG400 are 423 and 415, respectively. It was difficult to use molecules heavier

than 1,000 as sensing film material in the simulation of the current computational

environment. These materials were dissolved in chloroform and deposited by spin

coating. Squalane and PEG400 are typical GC stationary phase materials without

and with polarity, respectively. They are not solid but liquid phases at room

temperature. In addition, a solid sensing film of PEG1000 was used.

Gas samples of alcohols, aromatics, ketones, esters, alkanes and perfumes were

tested. The samples in each group have the same functional group but differ in the

number of carbon atoms. When we measure a low-volatility sample, it takes a long

time for the response to reach equilibrium even if it is heated using the ribbon

heater. Therefore, we diluted the liquid samples with diethyl ether. We confirmed in

advance that the sensor responses to those solvents were negligible.

The actual simulation was performed using commercially available software

(Cerius2, BIOSYSM/MSI) on an Indigo2 computer (Silicon Graphics).
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4.6 Results

4.6.1 Evaluation of Sensing Film Model

The sensing film structure is optimized after initial placement of the sensing-film

molecules according to step (f) in the procedure in the Sect. 4.4.2. Since the

placement of the sensing film molecules is complicated, molecular mechanics

calculation is insufficient due to possible trapping at local minima. Thus, MD

calculation is performed to do the annealing in the sensing film simulation. As

the temperature of the sensing film increases, the structure of the sensing film model

is relaxed. Each sensing film molecule can move freely at high temperature. After

an increase in temperature, it is decreased to room temperature. The sensing film is

expected to be more stable after the annealing process. In the annealing simulations,

the temperature is raised from 300 to 700�C in steps of 50�C and then decreased to

300�C with the same temperature step. In case of squalane, the energy in the unit

cell was decreased from 233.1 (kcal/cell) to 57.5 (kcal/cell) due to the annealing

process in MD calculation.

The uniformity of the sensing-film structure was evaluated using the radial

distribution function g(r). The function g(r) gives the probability of finding a pair

of atoms a distance r apart, relative to the probability expected for a completely

random distribution at the same density. The value of g(r) approaches 1 when r is
large, a case of uniform distribution. Moreover, it is preferable for g(r) to converge
to 1 at the point within the cutoff distance. Figure 4.6 shows the radial distribution

function of squalane. As the cutoff distance of the squalane model was 11.35 Å, that

requirement was sufficiently satisfied. A uniform structure of the sensing film

model was obtained in this simulation.

4.6.2 Evaluation of Sorption Simulation

In the sorption simulations, the value of the number of sorbed gas molecules in the

unit cell was obtained and converted into the partition coefficient only if

Fig. 4.5 Molecular structure of sensing film
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convergence was achieved. One example of convergence characteristics is shown in

Fig. 4.7. The relationship between the number of configurations and the total energy

of the gas molecules in the film structure is depicted when the film material is

squalane and the gas molecule is geranial.

As the number of configurations increases, that energy decreases and converges

to a constant value around two million configurations. The number of sorbed gas

molecules in the unit cell also converges around two million configurations. The

convergences were achieved in case of other gases.

As a result of sorption simulation, a distribution of gas molecules is obtained.

The distribution in the unit cell is shown in Fig. 4.8. The stick structure represents

the squalane molecule and the cloud represents the sorbed gas molecules. Higher

cloud density represents more sorbed gas molecules. This analysis method might

Fig. 4.6 Radial distribution function of squalane

Fig. 4.7 Relationship between number of configurations and total energy of gas molecules in film

(sensing film: squalane, gas: geranial)
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provide us with information about the interaction between the gas molecule and the

sensing film molecule, e.g., the functional group dominant in the sorption.

4.6.3 Comparison of Predicted Results with Experiment

The calculated ln K values of ketones and perfumes for squalane and PEG400 are

compared with experimental values, as in Fig. 4.9a, b. If the data plot falls on the

solid diagonal line, the simulation results agree with the experimental one. As can

be seen in Fig. 4.9a, b, the simulation data are in close agreement with the

experimental values.

It is important to consider parameters which reflect the difference between

squalane and PEG400 sensing films. The effect of parameter values in the force

field is related to the contributions of each energy term. Although we have not

rigorously studied contributions from van der Waals forces that might influence the

results, Coulomb and hydrogen bond energy also influence the results since the

difference between squalane and PEG400 films is also due to different film polarity.

Fig. 4.8 Distribution of sorbed gas molecules in a unit cell
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In Fig. 4.9a, b, it can be seen that the simulation results are in good agreement

with the experimental results over a wide range of odor intensities, from acetone to

citral. PEG1000 was also used to do both simulation and measurement. The

prediction of the sensor response over a wide range of odor intensity could be

achieved in the same manner as those of squalane and PEG400 although its data are

shown elsewhere [31]. This simulation was also effective for a solid-sensing film.

Fig. 4.9 Comparison of experimental and calculated ln K values for (a) squalane and (b) for

PEG400. Reprint with permission from ref. 31. Copyright 2000 Elsevier Science
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Although further detailed study is required, it was found that GCMC calculation is

useful for the most film-gas combinations.

4.6.4 Contributions of Electrostatic Interactions to Sorption

Understanding the contributions of the electrostatic and van der Waals forces to

vapor sorption in the sensing film is important in order to understand the sorption

characteristics of the sensing films, and also to elucidate the dominant interaction in

the gas sorption. Although it is not possible for a single energy term to work in the

actual environment, the contributions of these energy terms to the sorption can be

estimated using the simulations. Since Dreiding 2.21 was used as the force field,

van der Waals and electrostatic (coulomb and hydrogen bond) interactions are

considered as nonbonding interactions in the simulation.

The number of sorbed gas molecules NvdW without electrostatic interaction

terms, are compared with Nall calculated using all the interaction terms. The relative

contribution of electrostatic interaction is expressed by defining the percentage of

the amount of sorbed gas molecules Relec as

Relec ¼ 1� NvdW

Nall

� �
: (4.12)

Relec of alkanes, alcohols, ketones, esters and aromatics for PEG400 are shown

in Fig. 4.10. The sample numbers are tabulated in Table 4.1. It can be seen that the

Fig. 4.10 Electrostatic contribution of various kinds of VOCs, for sensing film PEG400. Reprint

with permission from ref. 31. Copyright 2000 Elsevier Science
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electrostatic interaction term is dominant in the case of alcohols sorbed into the

polar film PEG400. Relec of ketones and esters are a little smaller than those of

alcohols. Relec for aromatics and alkanes are the smallest among the samples.

Moreover, in the case of alcohols and ketones, Relec decreases in the ascending

order of carbon atoms. Relec for PEG400 differ among sample groups, whereas the

variation of Relec among those groups is small for the nonpolar squalane film.

The tendency of Relec was in good agreement with our expectations. This

simulation method is considered to be useful for understanding sorption mechan-

isms of sensing films. For examining further usefulness, Relec for perfumes were

calculated [31]. Even if it is hard to predict the contribution of the electrostatic force

due to the complicated structure of perfume compound, the simulation enables us to

understand it more easily.

4.7 Summary

A computational chemistry method, based on GCMC simulations was used for

predicting QCM gas sensor responses. The predicted partition coefficients of

alcohol, aromatics, ketones, esters, alkanes and perfumes for typical GC films

agreed with the experimental ones. It was found that QCM sensor responses

could be roughly predicted over a wide range of odor intensity, and the influence

of the film polarity on the gas sorption was revealed in the simulation. Therefore,

this method shows merit in predicting sensor response without experiment.

Table 4.1 Sample numbers

and names used in Fig. 4.9
Sample No Group Gas sample

1 Alkane Hexane

2 Heptane

3 Octane

4 Nonane

5 Decane

6 Alcohol Ethanol

7 1-Propanol

8 1-Butanol

9 1-Pentanol

10 1-Hexanol

11 Ketone Acetone

12 2-Butanone

13 2-Pentanone

14 2-Hexanone

15 Ester Ethyl formate

16 Butyl acetate

17 Propyl acetate

18 Ethyl propionate

19 Ethyl butyrate

20 Aromatic Benzene

21 Toluene

22 Ethyl benzene
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Moreover, the contributions of electrostatic interactions can be obtained using

this simulation method. This would be helpful to characterize sensing film proper-

ties. However, the problem still remains when the hydrogen bond energy term was

dominant. The evaluation method of conformation change due to hydrogen bonding

should be further improved.
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Chapter 5

Computer-Aided Design of Organic Host

Architectures for Selective Chemosensors

Benjamin P. Hay and Vyacheslav S. Bryantsev

Abstract Selective organic hosts provide the foundation for the development of

many types of sensors. The deliberate design of host molecules with predetermined

selectivity, however, remains a challenge in supramolecular chemistry. To address

this issue, we have developed a de novo structure-based design approach for the

unbiased construction of complementary host architectures. This chapter sum-

marizes recent progress including improvements on a computer software program,

HostDesigner, specifically tailored to discover host architectures for small guest

molecules. HostDesigner is capable of generating and evaluating millions of candi-

date structures in minutes on a desktop personal computer, allowing a user to

rapidly identify three-dimensional architectures that are structurally organized for

binding a targeted guest species. The efficacy of this computational methodology is

illustrated with a search for cation hosts containing aliphatic ether oxygen groups

and anion hosts containing urea groups.

5.1 Introduction

The search for highly functional sensor materials is of considerable importance in

various areas including food control, medical monitoring, biotechnology, environ-

mental sciences, and nuclear industry. A general strategy for the development of

molecular signaling or sensing systems is the coupling of at least two equally

important functional components: the receptor site and the indicator subunit

[1–8]. The latter should be able to change a physical property of the system that
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is monitored in response to a binding event. Technological advances in polymer

chemistry, material science, and analytical instrumentations combined with appli-

cation of various transduction principles (optical, thermal, electrical, mechanical,

and chemical) have led to development of many types of chemical sensor devices

exhibiting high robustness and sensitivity [9–15]. Other characteristics, such as

selectivity and reversibility, depend mainly on the molecular mechanism of binding

between a receptor and a target analyte. Nonspecific physical adsorption is revers-

ible but suffers from poor selectivity [11]. Covalent chemical bonding, in contrast,

might be highly selective but will result in poor reversibility [4, 11, 17]. Therefore,

molecular recognition process that involves strong and specific interaction between

a host and a guest without forming or breaking covalent bonds is preferable in most

cases [18–20].

There has been a large body of research in coordination and supramolecular

chemistry [21, 22] aimed toward the development of organic receptors that specifi-

cally recognize various metal ions, anions, and organic molecules in competitive

media (see, for example [2–6, 23–40]. A relatively new approach for the solution-

based molecular recognition is to use several receptors in array formats for differ-

ential sensing of complex analytes and mixtures [41]. Nevertheless, achieving

selective recognition remains a difficult challenge, and in this chapter, we system-

atically address this problem from the viewpoint of electronic, size, and shape

complementarity using rational design and combinatorial screening tools.

A common approach for preparing host structures is to add several binding sites

to an organic scaffold to yield receptors that interact with ligands by virtue of

incorporated functionalities, for example, through hydrogen bonding, metal –

ligand electrostatic interaction, p–p stacking interaction, van der Waal forces, etc.

[21, 22]. Once a group of binding sites has been selected, a key challenge of rational

host design is the structural organization of the binding sites about the guest. An

optimal host will exhibit two structural properties. First, the host must be able to

adopt a conformation in which all binding sites are positioned to structurally

complement the guest [23]. Information on optimal arrangement of host binding

sites about the guest can be obtained from electronic structure calculations and,

when available, from crystallographic data. Second, the host should exhibit a

limited number of stable conformations, and the binding conformation should be

low in energy relative to other possible forms [24–28]. In the ideal case, the host

would be preorganized such that the binding conformation is the most stable form.

The deliberate design of host structures by assembling sets of disconnected

binding sites in three dimensions is not a trivial task. One approach is to generate

trial structures by hand with a graphical user interface, an extremely time-consum-

ing process. Often, it is not readily obvious which linkage structures might be best

used to connect the binding sites to obtain a host cavity that compliments the guest.

To attain a high degree of structural organization within the host–guest system, one

needs a tool to go beyond just informed guess or chemical intuition.

Drug designers have developed computational approaches to address the inverse

of the problem, in other words, how to identify molecular structures (guests) that

will complement the binding site of a protein (host) [42–47]. These approaches
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include de novo structure-based design strategies which couple molecule building

algorithms with scoring functions that are used to prioritize the candidate structures.

The building algorithms assemble guest molecule structures that can physically

interact with a known protein structure from pieces which are either atoms [48–53]

or larger, chemically reasonable fragments [54–63]. The ability to generate large

numbers of potential guest structures necessitates the use of simple scoring func-

tions to prioritize the output. To this end, methods have been developed to estimate

the binding free energy by summing free energy increments for hydrogen bond

interactions, ionic interactions, lipophilic interactions, the number of rotatable

bonds in the guest molecule, etc. [45–47, 64–67]. After an initial prioritization of

the results, computational demand of evaluations of the host-guest complex may be

made to achieve a more accurate ranking for the best candidates.

Computer programs that have been developed to perform de novo structure-

based drug design are, in general, not applicable to the design of host molecules.

These programs require input of the atomic coordinates of a protein binding site, are

highly specialized to address protein–organic interactions, and do not contain

scoring functions to address other types of host-guest interactions. To bring the

powerful concepts embodied in de novo structure-based drug design to the field of

supramolecular chemistry, we devised computer algorithms for building structures

from host components and rapid methods for scoring the resulting structures with

respect to their degree of organization for a guest species. The result is HostDe-

signer, the first structure-based design software that is specifically created for the

discovery of host architectures for the complexation of small ions and molecules

[68, 69]. Since the initial release of HostDesigner in 2002, there have been signifi-

cant modifications both to enhance performance and extend its application. In this

chapter we will review how the building and scoring algorithms work. Several

examples are provided to illustrate how the de novo design approach can be used to

identify host architectures organized for small ionic guests.

5.2 The LINKER Algorithm

5.2.1 Complex Fragments

Amultidentate host can be dissected into two or more simpler host components. For

example, the well-known 18-crown-6 macrocycle can be broken down into two

triglyme components, three diglyme components, or six dimethylether components.

It is possible to define the structure of a complex fragment, in other words, a piece

of a host–guest complex, by combining a host component with a guest. In con-

structing the complex fragment, the guest is positioned relative to the host compo-

nent to define a complementary geometry, that is, a geometry that would give the

strongest interaction between the binding sites of the host component and the guest

in an actual complex. The complementary geometry for one or more binding sites
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interacting with a guest can be obtained from examination of experimental geome-

tries of host–guest complexes or through the careful application of electronic

structure calculations. Examples of complex fragments are shown in Fig. 5.1.

5.2.2 Assembling the Pieces

LINKER builds new host structures by forming bonds between two complex

fragments provided by the user and linking fragments taken from a library (vide
infra). The user must create an input file for each complex fragment that specifies

the coordinates for all the atoms, atom connectivity, and attachment vectors.

Attachment vectors are indicated by listing the hydrogen atoms that can be removed

from the complex fragment. Finally, the input file can contain a specification of

structural degrees of freedom, in other words, distances, angles, and dihedral angles

that can be varied during the building process.

The process used by LINKER to construct a new host molecule is illustrated in

Fig. 5.2. In this example, two identical lithium-dimethylether complex fragments

are attached to a methylene linkage. The steps are as follows:

(a) two complex fragments are defined with attachment vectors indicated

(b) linking fragment containing two attachment vectors is selected from the library

(c) bond is formed between the first complex fragment and the linking fragment by

aligning the attachment vectors and setting the bond distance to an appropriate

value on the basis of the identity of the bonded atoms

(d) dihedral angle about the new bond is adjusted to a specific value on the basis of

hybridization and degree of substitution of the bonded atoms

Fig. 5.1 Examples of complex fragments
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(e) bond is formed between the second complex fragment and the remaining

attachment vector on the linking fragment by aligning the attachment vectors

and setting the bond distance to an appropriate value on the basis of the identity

of the bonded atoms

(f) dihedral angle about the new bond is adjusted to a specific value on the basis of

hybridization and degree of substitution of the bonded atoms.

Each bond formed by LINKER requires the assignment of a length and a dihedral

angle. The parameters used to make these assignments are stored in a lookup table.

Because these parameters depend on the identity of the fragments that are being

bonded to one another, the types of bonds that can be made are limited. At this time

the list includes C–C, C–N(amide), C–N(amine), C–O(ether), and C–S(thioether)

bonds. Bond distances were taken from default MM3 parameters [70]. Dihedral

angles values used for these rotations are on the basis of an examination of MM3

potential energy surfaces for rotation about the bonds that can be formed by all

chemically reasonable combinations of the 20 prototype rotors shown in Fig. 5.3.

It is generally possible to build a large number of host structures from a single

linking fragment. The ability to define multiple attachment vectors on each com-

plex fragment gives rise to the potential for different connectivities. The presence of

chirality in either the complex fragments or in the linking fragment gives rise to the

potential for stereoisomers. Finally, the presence of multiple rotational minima for

the bonds formed between complex fragments and linking fragments gives rise to

multiple conformers for each connectivity. LINKER has been designed to build

every possible connectivity that can be made from the two complex fragments with

Fig. 5.2 The process of assembling fragments with the LINKER algorithm
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a given linking fragment including linkage isomers. In addition, when either the

complex fragments or the linkage fragment is chiral, LINKER will examine all

possible stereoisomers that can be made by inverting each chiral fragment. LINK-

ER also examines every conformation that can be generated for each connectivity

by rotation about the bonds that are formed between the linking fragment and the

complex fragments.

Consider the simple example shown in Fig. 5.2. If we define the three C–H bonds

on one of the methyl groups in each complex fragment as attachment vectors and

we consider each of the three rotamers for the two C(sp[3)]–C(sp[3)] bonds that are

formed, there are potentially 81 host structures that can be made with the methylene

linkage. In this case, all of these host structures are conformers of the same

molecule as the connectivity remains constant. LINKER generates all 81 structures,

but will retain only the first 9 structures shown in Fig. 5.4. Some of the potential

structures are rejected because of close contacts between nonbonded atoms, which

indicates a physically unreasonable collision or superposition of atoms (see

Fig. 5.4). In addition, some of the structures are rejected because they are dupli-

cates, structures that are either identical to or nonsuperimposable mirror images of

previously generated structures. In other words, LINKER will retain only one

member of a pair of enantiomers.

Fig. 5.3 Prototype rotors used to generate rotational potential surfaces for dihedral angle assignments
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5.2.3 Scoring the Results

Two scoring methods are used to prioritize the structures produced from a LINKER

run. The first method ranks the structures in terms of complementarity estimated

using geometric parameters. The second method ranks the structures in terms of

preorganization, on the basis of an estimate of the conformational energy of the host

structure.

During the construction of each complex fragment, a guest is positioned relative

to a host component to define a complementary geometry with the binding sites in

that host component. When two complex fragments are combined, the degree of

superposition of the two guests provides a simple criterion for the rapid evaluation

of the degree of complementarity in the new host. This is measured by the root-

mean-squared deviation, RMSD, of the distances between equivalent pairs of atoms

in the two guests. Optimal complementarity would be obtained when the RMSD is

zero, in other words, when the two guests representing the optimal bonding

orientation with each host component are exactly superimposed. When the guest

is a single atom, as in the example given in Fig. 5.4, the RMSD is simply the

distance between the two guest atoms. As this example illustrates, the host structure

with the smallest RMSD clearly gives the most complementary placement of the

Fig. 5.4 Nine unique configurations can be generated from the fragments shown in Fig. 5.2. The

RMSD for guest superposition, given below each structure, is used to prioritize the structures in

terms of complementarity
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two ether binding sites. LINKER uses RMSD to score the generated host structures

and outputs Cartesian coordinates for each structure in the order of increasing

RMSD, in other words, in the order of decreasing complementarity for the guest.

In the example given in Fig. 5.4 each of the guests is a single lithium ion and the

RMSD is simply the distance between them. These distances range from 0.50 to

8.20 Å; the host structure with the shortest Li-Li distance clearly gives the most

complementary placement of the two ether binding sites. LINKER would use the

Li-Li distance to score the generated host structures and output Cartesian coordi-

nates for each structure in the order of increasing distance, in other words, in the

order of decreasing complementarity for the guest. In the case of multiatom guests,

the determination of RMSD requires HostDesigner to decide how the atoms from

one guest should be paired with the atoms from the other guest for the superposi-

tion. This is done automatically by the code. If the guest has symmetry, there may

be more than one way to pair the atoms. In such cases, LINKER will try every

symmetry equivalent pairing of the atoms and report the minimal RMSD result.

After the results have been sorted by RMSD, a second prioritization is performed

to rank the structures in terms of preorganization, on the basis of an estimate of the

relative conformational free energy of the host structure. The conformational free

energy is estimated using the following equation:

DGconf ¼ DHlink þ DHbondA þ DHbondB þ Nrot � DGrot:

The first three terms are enthalpic. A DHlink value is stored for each linking

fragment. When the linking fragment has only one conformer, this value is zero.

However, when the linking fragment has more than one conformer, the DHlink value

is the relative enthalpy for that conformer with two methyl groups bound to the

attachment vectors, obtained from MM3 calculations. The DHbondA and DHbondB

terms are the relative rotamer energies associated with the first and second bond

formed during the building process. The values assigned to each rotamer are on the

basis of MM3 potential surfaces for the groups shown in Fig. 5.3. The final term,

Nrot � DGrot, is an estimate of the entropic penalty associated with restricted rotation

of single bonds. TheNrot value is the sum of the rotatable bonds in the link, read from

the LIBRARY, plus user-defined values for the attachment points in the complex

fragments. The free energy per rotatable bond is set to a default value of 0.31 kcal/

mol per restricted rotation [71–74]. After LINKER sorts the output by RMSD, the

list of structures is sorted again, to yield a second output file prioritized by DGconf.

5.2.4 The Linking Fragment Library

The linking fragment library is a file from which LINKER reads the Cartesian

coordinates and attributes of linking fragments that are used to connect the two

complex fragments. Each linking fragment is a three-dimensional molecular struc-

ture with two specified binding vectors. In building the initial library, we decided
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to (1) limit the entries to molecules containing hydrogen and up to six carbon atoms,

(2) limit carbon hybridization to sp[2] and sp[3], and (3) exclude three- and four-

membered rings. This gave a total of 81 hydrocarbon connectivities. Subsequently,

66 additional connectivities representing all dimethylated five and six-membered

rings and 59 additional bi and tri-cyclic connectivities have been added. These

connectivities, Fig. 5.5, include the null case, which is used when the first complex

fragment is directly bonded to the second complex fragment.

Fig. 5.5 (Continued)
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A number of linking fragments were generated from each hydrocarbon connec-

tivity by using the process illustrated in Fig. 5.6. The steps are as follows:

(a) select a connectivity

(b) perform a search to locate all stable conformers using the MM3 program

(c) choose one conformer and remove a pair of hydrogen atoms to generate a pair

of bonding vectors

(d) place methyl groups at the ends of the bonding vectors

(e) optimize the structure with MM3

(f) remove the methyl groups to obtain the final linking fragment with two bonding

vectors.

Steps (c)–(f) are repeated for all conformers and for all possible hydrogen atom

pairs. By optimizing each structure with methyl groups attached to the bonding

vectors, the linking fragments more accurately reflect the geometries that should

result when attached to a substituent. Each new linking fragment is retained if it is

unique or rejected if it is a duplicate of a previously generated linking fragment.

In the example shown in Fig. 5.6, n-butane has two conformers and there are

45 hydrogen pairs per conformer. Thus, a total of 90 structures were processed

for this connectivity yielding 41 unique linking fragments after removal of dupli-

cates. A total of 11,251 linking fragments were prepared by performing this process

on all 206 connectivities shown in Fig. 5.5.

HostDesigner contains a number of filters that can be invoked to limit the linking

fragments that are selected during the building process. The choice of linking

fragments can be limited by specifying a minimum length of the shortest

Fig. 5.5 Hydrocarbon connectivities used to generate linking fragments
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connecting chain, a maximum length for the longest connecting chain, and the

valence of the bonding carbon atoms. When a linking fragment derives from a

connectivity with more than one conformation, the selection can be limited to only

those linkages made from the lowest energy conformer. In addition, it is possible to

exclude fragments on the basis of chirality, prochirality, or asymmetry.

5.2.5 Examples of LINKER Applications

We now present two examples to illustrate the use of LINKER. In the first example,

HostDesigner was used to search for improved building blocks for macrocylic

ethers. One complex fragment used in this study, Fig. 5.7, was derived from an

optimized geometry for dimethylether in which (a) one of the methyl groups was

removed to define a bonding vector and (b) a metal ion was placed along the dipole

moment of the ether to yield an optimal orientation [75]. The metal oxygen distance

was set to 2.0 Å to complement a small metal ion such as Li+ or Mg2+. In order to

account for known flexibility, two degrees of freedom were specified to vary the

position of the metal ion relative to the ether. These were bending of the in-plane

Fig. 5.6 The process used to generate a linking fragment (see text)

Fig. 5.7 (a) Complex fragment formed from dimethylether and a metal ion. Attachment vector

comes off the oxygen atom. Two degrees of freedom, in-plane bending (b) and out-of-plane

bending (c), were varied during the building process
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M-O-C angle and the out-of-plane angle (see Fig. 5.7). The extent of the variation in

each degree of freedom, based on the displacement on potential energy surfaces that

would result in a 1 kcal mol�1 rise in energy, was �10� for the M–O–C angle and

�20� for the out-of-plane angle.
In the initial run using the entire linking fragment library, HostDesigner con-

structed and evaluated a total of 143,985,540 geometries in less than 7 min.

Subsequently, constraints were applied to exclude links that were asymmetric and

to limit the size of the chelate rings formed to five or six atoms. The resulting hits

were subjected to more accurate scoring methods, using molecular mechanics

energies to rank them on the basis of their degree of organization for the metal

ion. The best bidentate ether structures were used as building blocks for macro-

cycles, yielding hosts that give significantly higher binding affinities for alkali

cations when compared with prototype crown ethers that contain poorly organized

ethylene-bridged building blocks [75].

In a second example, HostDesigner was used to search for bis-urea podands that

were organized for complexation with tetrahedral oxoanions [76]. N-methylurea

was used as a starting binding unit for a perchlorate guest. The N-H group cis to the
carbonyl oxygen was used as the attachment point to a hydrocarbon spacer. Initial

structures were obtained from previous MP2 calculations on urea - anion complexes

[77, 78]. Two examples of edge and vertex binding configurations and specified

structural degrees of freedom are shown in Fig. 5.8. They include variation of the

distance between the host and guest (�0.2 Å), rotation about the H-axis (�20�),
rotation about the O-axis (�60� for edge forms or þ10 to �40� for vertex form),

and, in the case of the vertex form, rotation about the Cl-Overtex bond (�60�) that
results in approximately a 1 kcal mol�1 decrease in binding energy from the

equilibrium geometry. To enhance synthetic accessibility of the hits, a screening

option to consider only symmetrical links was imposed.

With this input several HD runs were performed to sample all possible combina-

tions of host–guest fragments. In a typical run, HD constructed and scored 300

million geometries within 40 min – a rate of 7.5 million geometries per minute. The

Fig. 5.8 Complex fragments formed from methylurea and perchlorate anion. Attachment vectors

emanate from the nitrogen atoms. Three degrees of freedom, distance between the host and guest,

rotation about the H-axis, and rotation about the O-axis are illustrated
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final ranking of the host structures was on the basis of molecular mechanics

calculations of conformational and host-guest interaction energies. Examples of

the top bis-urea podands generated by HD are shown in Fig. 5.9. While some of the

spacers suggested by HD have been previously used to bridge urea and thiourea

units and shown to provide organization of the binding sites for selective complex-

ation with tetrahedral anions [79–88], there are a number of novel architectures that

might possess promising complexation properties.

5.3 The OVERLAY Algorithm

5.3.1 Assembling the Pieces

OVERLAY builds new host structures by superimposing two attachment vectors on

a single complex fragment with two attachment vectors on a linking fragment taken

from the library (vide supra). This method is identical to that used in the program

CAVEAT [89]. The user must provide an input file for a single complex fragment

that specifies the coordinates for all the atoms, atom connectivity, and pairs of

attachment vectors. As with LINKER, the attachment vectors are indicated by a list

of hydrogen atoms that can be replaced and variation of structural degrees of

freedom can be specified.

The steps used by OVERLAY to construct a new host molecule are as follows:

(a) select a linking fragment from the library

(b) adjust the lengths of the attachment vectors on the complex fragment and the

linking fragment to the ideal length for the type of bond that would be formed

(c) compare geometries of the linking fragment vectors and the complex fragment

vectors

Fig. 5.9 Linking fragments that spatially arrange two urea groups, X, to complement a tetrahedral

oxoanion guest
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(d) if the vector geometry is similar, then superimpose the attachment vectors of

the linking fragment on the attachment vectors of the complex fragment to give

the best overlay possible

(e) form bonds between the attaching atoms on the complex fragment and the

linking fragment.

Comparison of vector geometries in step (c) involves taking the difference in three

geometric parameters shown in Fig. 5.10. These are the distances, d1 and d2, and
the dihedral angle, F. All three differences must be within user-defined tolerance

limits. Smaller tolerance values give fewer results of higher quality. Larger toler-

ance limits give more results, but many of the structures may have distorted

geometries.

The resulting structure may still be rejected even if the attachment vectors of the

linking fragment are perfectly superimposed on the attachment vectors of the

complex fragment. Although a perfect superposition ensures optimal distances

and bond angles, the dihedral angles about each of the new bonds could have any

value. Thus, after a new structure has been built, OVERLAY checks the difference

between the actual dihedral angles and the dihedral angles corresponding to the

nearest local minima (vide supra). If the rotational periodicity is >4, all structures

are accepted. Otherwise, the structure will be rejected if the difference in dihedral

angles is greater than a threshold value that depends on the periodicity of the

rotational potential: twofold, 45�; threefold or fourfold 30�. Finally, the structure

will be rejected if there are any close contacts between nonbonded atoms in the

linking fragment and the complex fragment.

When pairs of attachment vectors in the complex fragment are related by

symmetry, OVERLAY is able to build hosts by combining one complex fragment

with two or more identical linking fragments. In such cases, specification of

structural degrees of freedom within the complex fragment must be done in a

way that the symmetry of is maintained. This is achieved by having an option to

link several degrees of freedom such that they have the identical values at all

times. This feature allows HostDesigner to generate symmetrical tripods and

macrocycles.

Fig. 5.10 Geometric parameters used to compare attachment vectors in the OVERLAY algorithm
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5.3.2 Scoring the Results

Two scoring methods are used to prioritize the structures produced from an

OVERLAY run. The first method ranks the structures in terms of how well the

linking fragment fits onto the complex fragment. The second method ranks the

structures in terms of preorganization, on the basis of an estimate of the conforma-

tional energy of the host structure. The degree–of–fit is measured by the RMSD of

four points on the complex fragment with four points on the linking fragment, where

in each case, the four points are the ends of the bonding vectors. In addition to ranking

the structures by RMSD, a second method is used to rank the structures in terms of

preorganization, on the basis of an estimate of the relative conformational free energy

of the host structure. This estimate is obtained as described above for LINKER.

5.3.3 Example of OVERLAY Application

In the preceding examples, we used the LINKER algorithm to build simple open

chain molecules from three separate pieces. However, it is not possible to build

Fig. 5.11 Complex fragment formed from three urea donor groups and one sulfate anion guest has

C3 symmetry. One pair of attachment vectors, shown emanating from adjacent urea nitrogen

atoms, is related by symmetry to two other pairs (not shown). Two degrees of freedom were

specified for each urea group, distance between the urea and the anion and rotation about the H-

axis, and linked to maintain symmetry
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more elaborate structures, such as macrocycles or macrobicycles with this

approach. To illustrate the use of the OVERLAY algorithm, consider the molecular

design of a tris-urea macrocycle having C3 symmetry. Cartesian coordinates for the

complex fragment, Fig. 5.11, were taken from a 3:1 urea-sulfate C3 symmetric

structure optimized at the B3LYP/DZVP2 level of theory [77]. The N-H hydrogen

atoms that are not involved in the interaction with sulfate specify the positions of

three pairs of symmetrical attachment vectors to the structure. In order to allow for

known flexibility, two degrees of freedom were specified to vary the position of

each urea group relative to the anion (see Fig. 5.11). These were variation of the

distance between the urea and the anion (�0.2 Å) and rotation about the axis

passing through the bound hydrogen atoms (�20�). Variation in these degrees of

freedom was linked to maintain C3 symmetry.

With linking fragment library filters set to discard all asymmetric linkages,

HostDesigner examined nearly 28,000 potential macrocyclic structures and stored

338 hits in just 6 s. Three of the architectures generated by the code, Fig. 5.12,

Fig. 5.12 Three tris-urea macrocycles generated with the OVERLAY algorithm

128 B.P. Hay and V.S. Bryantsev



contain links with five carbon atom chains spanning the two urea nitrogen groups. It

is interesting to note that the thiourea analog of 1, with three pentane links, has been

studied as a nitrate receptor [90]. The guanidinium analog of 1 also has been

prepared and shown to bind phosphate in highly competitive methanol:water

media [91]. Although they have the same macrocyclic conformation, structures

2 and 3, which have not yet been studied, are conformationally constrained and may

provide more organized cavities.

5.4 Summary

This chapter has presented an overview of a computer program, HostDesigner, that

has been created to allow the de novo structure-based design of receptors that are

structurally organized for complexation of small ionic and molecular guests. The

methodology applies fundamental information about structure and bonding as a

basis to search for host architectures that are highly organized for guest complexa-

tion. This software provides an efficient tool for virtual designing and screening of

novel scaffolds to assist synthetic chemists in the identification of potential candi-

date structures before starting the experiment.
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Chapter 6

First Principles Molecular Modeling of Sensing

Material Selection for Hybrid Biomimetic

Nanosensors

Mario Blanco, Michael C. McAlpine, and James R. Heath

Abstract Hybrid biomimetic nanosensors use selective polymeric and biological

materials that integrate flexible recognition moieties with nanometer size transdu-

cers. These sensors have the potential to offer the building blocks for a universal

sensing platform. Their vast range of chemistries and high conformational flexi-

bility present both a problem and an opportunity. Nonetheless, it has been shown

that oligopeptide aptamers from sequenced genes can be robust substrates for the

selective recognition of specific chemical species. Here we present first principles

molecular modeling approaches tailored to peptide sequences suitable for the

selective discrimination of small molecules on nanowire arrays. The modeling

strategy is fully atomistic. The excellent performance of these sensors, their

potential biocompatibility combined with advanced mechanistic modeling studies,

could potentially lead to applications such as: unobtrusive implantable medical

sensors for disease diagnostics, light weight multi-purpose sensing devices for

aerospace applications, ubiquitous environmental monitoring devices in urban and

rural areas, and inexpensive smart packaging materials for active in-situ food

safety labeling.
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6.1 Hybrid Biomimetic Nanosensors: A Universal Sensing

Platform

The development of a universal sensing platform for selective and sensitive dis-

crimination of chemical and biochemical compounds could stimulate exciting

opportunities in fundamental research and a revolution in technological applica-

tions. We envisioned such a platform as a series of technologies whereby a given

target compound is physically provided at the start of such sequence of steps,

followed by some automated (combinatorial) process for sensing material optimi-

zation (synthetic or biological) to produce a highly sensitive, highly selective

device that can detect sub-parts per billion concentrations of the input compound.

The whole process should take place without major human intervention, within

costs constraints, and in less than 24 h.

Semiconducting nanowire arrays, such as doped silicon nanowires (SiNW) offer

some promise as an element of this universal sensing platform. Doped SiNW can

provide very high sensitivity due to their large surface-to-volume ratios and the

unique electronic properties of these nanodevices. The doped nanowires act as

field-effect transistors (FET), their resistivity is sensitive to changes on their surface

charge distribution as a result of molecules or ions present in the environment.

SiNW arrays are fabricated through established methods [1]. All fabrication is done

within a class 1000 or class 100 clean room environment. A typical array of

nanowires fabricated by this technique is shown in Fig. 6.1.

Fig. 6.1 Optical image of microfluidic functionalization channels (vertical conduits) intersecting

nanowire sensor devices. The nanowire islands (horizontal bars) are electrically contacted by

metal leads (white lines). (Inset) Scanning electron micrograph of the nanowire film
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Dopants are diffused into the silicon film using rapid thermal processing (RTP)

at 800�C for 3 min. Four-point resistivity measurements, correlated with tabulated

values, yield a doping level of�1018/cm3. The finished nanosensor is schematically

shown in Fig. 6.2.

Without further modification these nanowire arrays are not chemically selective.

A specific amount of surface charge density will result in the same electrical

resistivity change regardless of the type of molecule binding to the surface. To

add selectivity to these devices, one needs to incorporate synthetic polymers or

biopolymer monolayer to trap the target compound on the surface of the nanowire

array and nothing else if possible. This process has already provided nanosensor

arrays for small vapor bound molecules [2]. The surface of the SiNW array is

modified with peptides synthesized on Fmoc-Rink Amide MBHA resin (0.67

mmol/g, Anaspec) using conventional solid-phase synthesis strategy with Fmoc

protection chemistry [3].

A general scheme for achieving a high degree of binding specificity, to a target

molecule of interest, has been an elusive goal. The problem is due in part to the high

degree of molecular flexibility that these sensing materials possess. Peptide

sequences were selected from encoding regions of the P30953 human olfactory

receptor [6], without any guarantees that these sequences were selective towards the

compounds of interest. However, (MacAlpine 2008) found that, depending on the

peptide sequence used, these hybrid materials exhibit orthogonal sensing to signifi-

cantly different compounds, such as acetic acid and ammonia vapors, and can even

detect traces of these gases in complex, “chemically camouflaged” mixtures.

A peptide modeling protocol was developed to help explain the measurements

and level of selectivity of these hybrid nanosensors [14].

Fig. 6.2 Schematic representation of silicon nanowire (SiNW) array. The resulting device acts as a

p-type field-effect transistor
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6.2 Modeling Peptide/Analyte Molecular Interactions

The observed selective changes in resistivity, upon exposure to various analytes,

require a theoretical explanation. A first principles model to explain the sensitivity

of synthetic amorphous polymers to vapor bound compounds has been previously

developed [4]. Molecular Dynamics protocols for modeling of small molecule

interactions with polymer sensing materials rely on statistical mechanical distribu-

tions of molecular structural features [5]. The 3D structure of peptide sensing

material and the presence of tertiary structure, offers new challenges. We first

focus on the molecular interactions between the chosen peptide sequence and a

specific analyte. We use fully atomistic simulations with a few parameters (particu-

larly atomic charges) calculated using quantum mechanics. The objective is to

model the system from first principles, in a general way such that we can apply the

method, after validation, to any arbitrary peptide sequence and analyte without the

need for experimental information. This is in contrast with QSAR approaches that by

necessity require a significant number of experimental input data to make predic-

tions. Typically QSAR predictions apply only within a short excursion outside the

initial training set. The process begins by modeling the aminoacid sequences of the

peptides used in the experiment. These and the composition of the analyte compound

are the only two pieces of experimental information that enter the modeling.

6.2.1 Modeling Protocol for 3D Structure Peptide Sequence
Determination

The two peptide sequences, using single letter aminoacid identification, are

DLESFLD and RVNEWVID. As it is customary the sequences are given from

the N to the C terminus. With the exception of the D residue in the C terminus

(Aspartic acid was added as coupling agent to covalently bind the residue to the

SiNW array), both the sequences belong to the trans-membrane region of the

P30953 G-protein coupled human olfactory receptor. These are believed to be in

the binding region of the GPCR receptor 6.

To obtain a predicted 3D structure for these two peptides we designed the

following protocol:

1. Force Field: We use a general force field, Dreiding [7] in all searches of the

global minimum, the stable 3D peptide conformations, as well as the binding

geometries of analyte and peptide.

2. Electrostatics: All electrostatic interaction pairs were included in the calculation

without the use of cutoffs or spline functions. As customary, nearest neighbor

and next nearest neighbor coulomb terms, so called 1-2 and 1-2-3 interactions,

were excluded.

3. Atomic charges: from Mulliken populations were obtained using full geometry

minimization of the primary peptide structure using the Becke-Lee-Yang-Par
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[8, 9] hybrid density functional method (B3LYP). We employed the 6-31g**

basis set, 1160 and 1450 basis functions for DLESFLD and RVNEWVID

respectively.

4. Net charges: With the exception of ARG1 and GLU4 in RVNEWVID all other

aminoacids were modeled with a net molecular charge of zero because there is

no solvent present in the gas phase to stabilize the acid/base side-chains of some

aminoacids as it occurs in solution. This choice was further validated when we

observed proton transfer occurring freely during quantum mechanical geometry

minimization of DLEFSLD from the positively charged amino-terminus and the

deprotonated aspartic acid.

5. Salt-Bridges: One exception to the neutral charge rule in step 4 is the ARG1(+)-

GLU4(�) salt-bridge, which was calculated by B3LYP DFT to be 11.5 Kcal/mol

more stable in vacuum than compared to the neutral forms of these two ami-

noacids in RVNEWVID.

6. Boltzmann-Jump Conformational Search: quantum mechanically optimized

geometries and charges were used as input for a Boltzmann-Jump search [10].

The search was done over all f and c angles on the peptide’s backbone as well

as all side chain rotatable bonds o. The protocol for finding the lowest energy

peptide conformation consisted of a hybrid procedure involving two steps:

7. Annealed molecular dynamics: 10 anneal cycles, each starting from 200 to 500

K in steps of 100 K, followed by quenching minimization, with an anneal period

of 1,000 time steps, each 1fs, followed by 2,000 Boltzmann Jump sequences,

with an average of 30 perturbations per sequence, an adjustable dihedral window

of 10� for all rotatable bonds, and an acceptance maximum temperature of 5,000

K relative to the current minimum. The lowest 100 energy conformations were

examined and a cluster analysis showed that these were all virtually identical,

within the expected window room mean square difference of 10�.

Further details of the Boltzmann Jump sequence procedure are described below:

7.1. Minimize the energy of the current conformation. This minimized confor-

mation is referred to as the Reference Conformation.

7.2. The Reference conformation is made the Working Conformation.

7.3. The Working Conformation is perturbed by randomly altering each VARI-

ABLE torsion angle randomly within a specified window. The energy of the

perturbed conformation is computed. If the change in Energy, DE, is

negative, the perturbed conformation is selected and retained as the new

Working Conformation. If, on the other hand, the energy increases, the

Boltzmann factor F ¼ exp(�DE/RT) is computed. A random number N
(0,1) between 0 and 1 is then generated. If N < F, the perturbed conforma-

tion is selected making it the new Working conformation; otherwise the

perturbed conformation is rejected retaining the Working conformation.

7.4. Step 7.5 is repeated a specified number of times (10), keeping track of the

number of selections and the number rejections.

7.5. The working conformation is then energy minimized and stored into the

specified output file. The RMS difference between this conformation and
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the Reference conformation is computed for plotting purposes. Then this

minimized conformation is made the new Reference conformation.

7.6. Optionally at this step, the angular window employed is adjusted to give on

an average a roughly 50% rate of acceptance.

7.7. Steps 7.4–7.6 are repeated a specified number of times (2,000).

Figure 6.3 shows the results of the Boltzmann Jump search protocol. The lowest 20

conformations for RVNEWVID are superimposed. Figure 6.4 shows the energy

progression during the conformational search using simulated annealing and the

Boltzmann Jump method. The Boltzmann Jump method is about 9 times faster in

searching conformational space than simulated annealing (80 vs. 9 conformations

found per cpu hour), as well as more effective in lowering the energy of the original

reference conformation (�174 kcal/mol/cpu-hour versus �47 kcal/mol/cpu-hour).

However, simulated annealing is much more efficient in the first few iterations, as

shown in Fig. 6.4. After this tests case we employed a combination of the two

methods with 2 steps of simulated annealing prior to a full Boltzmann Jump search

with a maximum of 2000 conformations. This was the final protocol used with the

remaining peptide sequence DLESFLD.

The lowest, most stable, conformation of RVNEWVID is shown on the right

side of Fig. 6.4. It includes a very stable salt-bridge. Surprisingly the salt-bridge is

stable at temperatures well above room temperature in vacuum (see Fig. 6.5).

Figure 6.6 shows the most stable conformation for DLESFLD. In this case the

sequence shows a strong preference for hydrophobic aminoacid residues (LFL)

lining up on the opposite site of hydrophilic residues (DESD).

Fig. 6.3 The twenty lowest energy conformations of RVNEWVID peptide are shown super-

imposed. The most stable conformation is shown to the right
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6.2.2 Modeling Protocol for Analyte/Peptide Non-Reactive
Interactions

The two peptide sequences were used to fabricate SiNW sensors and tested for their

specificity to acetic acid and ammonia. At this stage we use atomistic simulations to

predict the degree of association, assuming no reactions take place, of these two gas

phase analytes with the low energy conformations of the peptide sequences chemi-

cally bound to the SiNW arrays.

The 3D modeled peptide structures as determined with the previous protocol are

simulated in the presence of ammonia and acetic acid. These two small molecules

could potentially bind into a large number of exposed sites on the surface of these

peptides in a variety of molecular orientations. We need a method to sample these

–210

–230

–250

–270

–290

–310

–330

–350
0 20 40 60 80 100 120 140 160

Time (ps)

Time (ps)

AA–Peptide Conformation
E

n
er

g
y 

(K
ca

l /
 m

o
l)

–210

–230

–250

–270

–290

–310

–330

–350

E
n

er
g

y 
(K

ca
l /

 m
o

l)

0 200 400 600 800 1000 1200

Boltzman Jump Iteration

Fig. 6.4 Energy progression in the simulated annealing method (top) and the Boltzmann Jump

method (bottom) for low energy conformations of RVNEWVID
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dynamics simulations of peptide sequence RVNEWVID. The GLU4-ARG1 distances are stable,
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Fig. 6.6 Lowest energy conformation for DLESFLD. Hydrophobic and hydrophilic residues line

up on opposite sides of the peptide
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efficiently, more efficiently than molecular dynamics methods, which might get

trapped into local minima or the wrong analyte orientation for long periods of time.

We employ a Monte Carlo method, the Molecular Silverware algorithm [11], to

sample up to 180 points on the surfaces of the peptides. For each of these points we

sample the binding energy of these molecules with 120 distinct Euler orientations of

the analyte compound. Because of the concave topology of the peptides, multiple

solutions exist for most binding orientations and the total number of sampled

peptide/analyte pairs exceeded 47,000.

Figure 6.7 shows an example of the binding energetics obtained with the

Molecular Silverware method in the form of a histogram.

The average binding energy was calculated using Boltzmann factors

Ebinding ¼
PN
i¼1

Eie
� Ei=RT

� �

PN
i¼1

e
� Ei=RT

� � : (6.1)

The non-reactive binding energy values for ammonia and acetic acid with the

modeled peptides calculated in this manner are reported in the results section.

Molecular dynamics, Molecular Silverware Monte Carlo and Boltzmann

Jump searches were conducted with the Software Developer’s Kit of the Cerius2

package [12].
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Fig. 6.7 Frequency histogram of the non-reactive binding energies of over 47,000 configurations

of ammonia (NH3) on the surface of DLESFLD peptide
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6.2.3 Analyte/Peptide Reactive Interactions

Because the experiments employed rather reactive analytes, and given the presence

of acid and basic groups in the peptide sequences, we investigated the possibility of

acid/base reactions as part of the detection mechanism. We sought to calculate the

energy of the following reactions:

DLESFLDþ NH3 ! DLESFLD½ ��þNH4
þ

DLESFLD þ CH3COOH ! DLESFLD½ �þþCH3COO
�

and

RVNEWVIDþ NH3 ! RVNEWVID½ ��þNH4
þ

RVNEWVIDþ CH3COOH ! RVNEWVID½ �þþCH3COO
�

The size of the peptides makes a full quantum mechanical calculation exceed most

computer resources and is not necessary. Instead we looked for models that could

be employed to represent the full peptide. For example, the non-reactive binding

energetics of each peptide/analyte pair were sorted and the strongest binding

configurations were chosen for quantum mechanical B3LYP DFT calculations

using a local motif, a shorter version of the peptide. For RVNEWVID the

N-terminus ARG1-GLU4 motif was found to be most strongly bound to ammonia

and acetic acid and for DLESFLD the ASP1-GLU3 motif was selected. These

motifs are shown in Fig. 6.8.

Whenever needed, internal constraint coordinates were employed to keep reac-

tants apart while the minimization proceeded to find a local energy minimum

geometry, but once the minimized geometry was found, these constraints were set

free. The difference in energy between the neutral and the charge/transfer products

of the acid/base reactions are reported in the following section for the fully mini-

mized geometries using the same level of theory as that used to compute atomic

charges (B3LYP/6-31g**). Figure 6.9 shows the non-reactive (classical, full pep-

tide) and the reactive (quantum motif) analyte/peptide most stable geometries. All

quantum calculations were performed using Jaguar quantum program suite [13].

6.3 Results and Discussion

Table 6.1 presents the non-reactive binding energies and the reaction energies for

the various combinations of peptides and analytes. Negative values indicate exo-

thermic favorable interactions.
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Figure 6.10 shows the experimental resistivities for the same combinations in the

same order. Negative changes in resistivity mean that the charge density on the

surface of the SiNW array is such that it increases the conductivity of the field effect

transistor. This is dependent on the dipole orientation of the generated charge

distribution upon binding. To know precisely this orientation one would need to

model an entire monolayer of the peptide on the SiNW surface and predict the

molecular axis alignment at the experimental surface coverage values. We have not

attempted to look at dipole orientations in the present work. Instead we focus solely

on the magnitude of the resistivity changes and not their sign.

We note that the non-reactive binding energies for RVNEWVID are not corre-

lated with the experimental findings. In particular, the favorable interaction with

ammonia (�3.14 Kcal/mol) is comparable to the favorable interaction with acetic

acid (�3.29 Kcal/mol) indicating that the magnitude of the response should be

somewhat the same. However, the RVNEWVID is unresponsive to ammonia.

On the other hand the reaction energetics are well correlated with the resistivity

measurements. For example, for RVNEWVID the highly endothermic reaction

(15.1 Kcal/mol) with ammonia will indicate that this peptide is unresponsive to

the presence of ammonia, while the favorable (�5.54 Kcal/mol) exothermic

reaction with acetic acid will predict good selectivity towards this analyte.

These predictions match well with the <1% and >6% changes in SiNW array

resistivity for ammonia and acetic acid with RVNEWVID respectively. For

DLESFLD a favorable reaction energy (�7.4 kcal/mol) with ammonia correlates

well with the observed + 125% in resistivity. The slightly endothermic (0.45 Kcal/

mol) reaction of DLESFLD with acetic acid leads to 1/3 reacted and 2/3 unreacted

ASP
ASP

LEU

Fig. 6.8 Quantummechanical reaction energy calculations of DLESFLD (left figure) proceed with
the use of a shorter N-terminus motif (right figure), shown here with the initial un- reacted most

stable geometry with ammonia
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peptide at room temperature, predicting a moderate response to acetic acid. The

change in resistivity is indeed moderate (�2.5%) as predicted by the acid/base

equilibrium.

Fig. 6.9 (a) This panel shows the lowest conformation of RVNEWVID peptide, which contains a

GLU4-ARG1 salt bridge (dashed lines). The right panel shows preferential binding of acetic acid

to the ARG1 N-terminus. (Inset) The reaction products: neutral GLU4 and protonated ARG1,

stabilized by acetate. (b) The left panel shows the lowest conformation of the DLESFLD peptide.

The polar and non-polar amino acids align on opposing sides. The right panel shows ammonia

binding at the neutral N-terminus ASP1. (Inset) Ammonium stabilized by hydrogen bonds to the

deprotonated aspartic acid and the N-terminus
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6.4 Conclusions

Doped semiconducting nanowire arrays offer high sensitivity (ppb) to small com-

pounds in the gas phase due to their field-effect transistor characteristics. Without

surface chemical modification these devices are not selective. Surface modifica-

tions by peptides offer the opportunity of a large space of possibilities. Given the

extraordinary choice of potential peptides, with say, less than twenty aminoacids, as

Table 6.1 Calculated values for non-reactive (average binding energies) and reactive (reaction

energies) of analytes with the putative sensing peptides

Analyte peptide Ammonia

DLESFLD

Ammonia

RVNEWVID

Acetic Acid

DLESFLD

Acetic Acid

RVNEWVID

Non-reactive �8.17 �3.14 �6.79 �3.29

Reactive �7.4 �15.1 0.42 �5.54

All energies are in Kcal/mol

NH3 Acetic Acid

Acetic Acid peptide

NH3 peptide
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Fig. 6.10 Conductance responses of the peptide-nanowire hybrid sensors, averaged over a 5-min

time window of target vapor exposure (starting 10 min after the analyte gas exposure), and

normalized to an amine-terminated sensor. The abscissa is labeled with the analyte vapors [2]
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well as the existing chemistry to prepare them with state-of-the-art, fully automatic,

solid state peptide synthesis, these hybrid materials could form the basis for a

universal sensing platform, capable of adapting to a variety of analytes in a highly

automated way. Of course, the search space is too large to be explored by brute

force alone, although combinatorial chemistry and high throughput screening could

provide an empirical answer. Here we investigate the use of molecular modeling,

both using classical mechanics as well as quantum mechanics, to provide an

effective sensing material selection procedure. The protocol presented here was

capable of yielding theoretical rationalizations of observed chemical selectivity in

these nanosensors. It was found that acid/base reactions correlate closely with the

observed changes in resistivity. Strategies to identify non-reactive materials capa-

ble of high selectivity towards specific analytes are underway.
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Chapter 7

Development of New Sensing Materials Using

Combinatorial and High-Throughput

Experimentation

Radislav A. Potyrailo and Vladimir M. Mirsky

Abstract New sensors with improved performance characteristics are needed for

applications as diverse as bedside continuous monitoring, tracking of environmental

pollutants, monitoring of food and water quality, monitoring of chemical processes,

and safety in industrial, consumer, and automotive settings. Typical requirements in

sensor improvement are selectivity, long-term stability, sensitivity, response time,

reversibility, and reproducibility. Design of new sensing materials is the important

cornerstone in the effort to develop new sensors. Often, sensing materials are

too complex to predict their performance quantitatively in the design stage. Thus,

combinatorial and high-throughput experimentation methodologies provide an

opportunity to generate new required data to discover new sensing materials and/or

to optimize existing material compositions. The goal of this chapter is to provide an

overview of the key concepts of experimental development of sensingmaterials using

combinatorial and high-throughput experimentation tools, and to promote additional

fruitful interactions between computational scientists and experimentalists.

7.1 Introduction

While basic concepts of design of sensing materials are understood, the quantitative

details of materials performance on both, short- and long-term scales remain

difficult to predict using existing knowledge. Here are several examples of perfor-

mance of sensing materials that are, at present, difficult to quantitatively predict:
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l How will the gas-selectivity pattern change upon doping of mixed metal oxides?
l How will the analyte sensitivity and selectivity of nanowires and nanofibers vary

upon aging?
l What is a common solvent for all components for a formulated sensing coating?
l What is the shelf- and operation-lifetime of a polymeric sensing film on a micro-

or nano-transducer in the presence or absence of dewetting?
l How will the ion response of optical sensors or ion-selective electrodes be

affected by different additives?
l What is the optimal ratio of different polymerizable monomers, cross-linker, and

template for synthesis of molecularly imprinted polymers?

Despite essential progress in understanding the physics and chemistry of sensing

processes and development of corresponding theoretical approaches, these and

many other questions are still being answered by careful experiments. For example,

an “extensive systematic study” of more that 500 compositions to optimize vapor

sensing polymeric materials was performed by Cammann and co-workers [1]. Walt

and co-workers [2] reported screening over 100 polymer candidates in a search for

“their ability to serve as sensing matrices” for solvatochromic reagents. Seitz and

co-workers [3] have investigated the influence of multicomponent compositions on

the properties of pH-swellable polymers by designing 3 � 3 � 3 � 2 factorial

experiments.

Combinatorial and high-throughput materials screening technologies have been

introduced to make the search for new materials more intellectually rewarding [4].

Numerous academic groups that were involved in the development of new sensing

materials turned to combinatorial methodologies to speed up knowledge discovery

[5–11]. From results achieved using combinatorial and high-throughput methods,

the most successful have been in the areas of molecular imprinting, polymeric

compositions, catalytic metals for field-effect devices, and metal oxides for con-

ductometric sensors. In those materials, the desired selectivity and sensitivity have

been achieved by the exploration of multidimensional chemical composition and

process parameters space at a previously unavailable level of detail, at a fraction of

time required for conventional one-at-a-time experiments. These new tools

provided the opportunity for the more challenging, yet more rewarding explorations

that previously were too time-consuming to pursue.

As the amount and depth of knowledge related to the development of sensing

materials are expanding, so are the capabilities to compute certain properties of

materials, based on developed empirical structure-function relationships or on

advances in molecular modeling. The goal of this chapter is to provide an

overview of the key concepts of experimental development of sensing materials

using combinatorial and high-throughput experimentation tools and to promote

additional fruitful interactions between computational scientists and experimen-

talists. A much more detailed treatise of the development of new sensing materials

using combinatorial and high-throughput experimentation is provided in the book

“Combinatorial methods for chemical and biological sensors”, included in this

book series [12].
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7.2 Basics of Combinatorial and High-Throughput

Screening of Sensing Materials

Sensing materials can be categorized into three general groups that include inorganic,

organic, and biological materials. We define inorganic sensing materials as materials

that have inorganic receptor- or signal-generation components (e.g., metals, metal

oxides, semiconductor nanocrystals) that may or may not be further incorporated into

a matrix. Organic sensing materials include molecular artificial receptors, chemo-

sensitive indicator dyes, polymer/reagent compositions, conjugated polymers and

molecularly imprinted polymers. Biological sensing materials include such receptors

as aptamers, peptides, antibodies, enzymes, etc. Rational design of sensing materials

based on prior knowledge is a very attractive approach because it could avoid time-

consuming synthesis and testing of numerous materials candidates [13–15].

However, to provide quantitative prediction, rational design [16–21] requires

detailed knowledge regarding not only the relation of intrinsic properties of sensing

materials to their performance properties (e.g., affinity to an analyte and interfer-

ences, kinetic constants of analyte binding and dissociation, long term stability,

shelf life, resistance to poisoning, best operation temperature, decrease of reagent

performance after immobilization, etc.) but also regarding changes of these proper-

ties due to interaction of different components of sensing materials with one

another. This knowledge is often obtained from extensive experiments which are

difficult to perform using traditional approaches or from theoretical models which

should also be validated in extensive experiments. Conventionally, detailed experi-

mentation with sensing materials candidates for their screening and optimization

consumes tremendous amount of time without adding to “intellectual satisfaction”.

Fortunately, new synthetic and measurement principles and instrumentation signif-

icantly accelerate the development of new materials. The practical challenges in

rational design of sensor materials also provide tremendous prospects for combina-

torial materials research.

In materials development including sensing materials, the materials’ properties

depend not only on composition, but also on morphology, microstructure and other

parameters related to the material-preparation conditions, and on the end-use

environment. As a result of this complexity, true combinatorial experimentation

is rarely performed with a complete set of materials and process variables rarely

explored. Instead, carefully selected subsets of the parameters are often explored in

an automated parallel or rapid sequential fashion using high-throughput experimen-

tation (HTE). Nevertheless, the terms “combinatorial chemistry” and “combinato-

rial materials science” are often applied for all types of automated parallel and rapid

sequential materials and process parameters evaluation processes. Thus, an ade-

quate definition of combinatorial and high-throughput materials science is a process

that couples the capability for parallel production of large arrays of diverse materials

together with different high-throughput measurement techniques for various intrin-

sic and performance properties followed by navigation in the collected data for

identifying “lead” materials [22–30].
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A typical combinatorial materials development cycle is outlined in Fig. 7.1. This

workflow has several important aspects such as planning of experiments, data

mining, and scale up. In combinatorial screening of materials, concepts originally

thought to be highly automated have been recently refined to have more human

input, with only an appropriate level of automation. For the throughput of 50–100

materials formulations per day, it is acceptable to perform certain aspects of the

process manually [31, 32]. To address numerous materials-specific properties, a

variety of high-throughput characterization tools are required. Characterization

tools are used for rapid and automated assessment of single or multiple properties

of the large number of samples fabricated together as a combinatorial array or

“library” [26, 33, 34].

In addition to the parallel synthesis and high-throughput characterization instru-

mentation that significantly differ from conventional equipment, the data manage-

ment approaches also differ from conventional data evaluation [30]. In an ideal

combinatorial workflow, one should “analyze in a day what is made in a day” [35].

This requires significant computational assistance. In the combinatorial workflow,

design and syntheses protocols for materials libraries are computer assisted, mate-

rials synthesis and library preparation are carried out with computer-controlled

manipulators, and property screening and materials characterization are also soft-

ware controlled. Further, materials synthesis data as well as property and charac-

terization data are collected into a materials database. This database contains

information on starting components, their descriptors, process conditions, materials

testing algorithms, and performance properties of libraries of sensing materials.

Lead 
sensing materials

for scale-up

Fabrication of
libraries of

sensing materials

Measurement of
performance

Data
analysis/mining

Design of
experiments

Database
system

Bank of 
sensing materials

New knowledge
for rational

sensing materials
design

Fig. 7.1 Typical cycle in combinatorial and high-throughput approach for sensing materials

development
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Data in such a database is not just stored, but is also processed with the proper

statistical analysis, visualization, modeling, and data-mining tools. Combinatorial

synthesis of materials provides a good opportunity for formation of banks of

combinatorial materials. Such banks can be used, for example, for the further

investigation of materials of interest for some new applications or as reference

materials. However, this approach has not yet found wide application in combina-

torial materials science.

It is difficult to predict quantitatively, numerous sensor material parameters using

rational approaches [7, 8, 36–43]. Table 7.1 provides examples of parameters relevant

to sensor applications, which are difficult or impossible to quantitatively predict and

calculate using existing knowledge and rational approaches. Relevant descriptors

must be determined to understand the details of sensor materials design and to

establish quantitative structure-function relationships. While the application of com-

binatorial and high-throughput screening tools can accelerate this process, the num-

ber of purely serendipitous combinations of sensor materials components is simply

too large to handle even with the “ultra-high-throughput screening” in a time- and

cost-effective manner. It is not feasible to synthesize all possible molecules and apply

all possible process conditions to characterize materials function. In this case, a

methodology that allows the most promising candidates to be shortlisted should be

applied. In materials science, focused libraries are often designed, produced, and

tested in a high-throughput mode for a subset of a truly “combinatorial” space where

the initial subset selection is performed using rational and intuitive approaches.

In drug discovery, a binding or inhibition test is performed as a secondary

screening with a much while a functional investigation of biological effects is

performed as a secondary screening with a much smaller library of selected

Table 7.1 Parameters relevant to sensor applications, which are difficult or impossible to quanti-

tatively predict and calculate using existing knowledge and rational approaches

Group of sensing

materials

Parameter Ref.

Inorganic Fundamental effects of volume dopants on base metal oxide materials [44]

Inorganic Hot spots in surface-enhanced Raman scattering [45]

Inorganic Room-temperature gas response of nanomaterials [46]

Organic Selectivity of prospective ionophores [38]

Organic Design of polymers for selective complexation with desired metal ions [37]

Organic Collective effects of preparation method of conducting polymers,

polymer morphology, properties of the substrate/film interface

[41]

Organic Surface ratio of different types of molecules in mixed self-assembled

monolayers formed in quasi-equilibrium conditions

[47]

Biological Oligonucleotide sequence in aptamers for specific and sensitive target

binding

[48]

Biological Activity of immobilized bioreceptors [7]

Biological Selection of chemical coupling reagents for immobilization of

antibodies

[49]

Biological Long-term stability of enzyme-containing polymer films [42]

Biological Affinity properties of antibodies (kinetic association and dissociation

constants, binding constant)

[50]
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compounds; this replacement of biological experiments by biochemical ones allows

minimization of process costs. In the case of materials screening for development of

sensor materials, a primary binding assay is typical only in the development of

biological sensing materials. This is probably the only way because biological

sensing materials possess only receptor properties and require a separate transducing

system. Many organic and inorganic materials (except artificial monomolecular

receptors and molecularly imprinted polymers) have intrinsic transducing properties;

therefore, a functional screening including a characterization of both receptor and

transducer properties is performed as the primary screening.

Variations of individual parameters of sensing materials result in a modification

of a number of response parameters. Thus, the goal of combinatorial and high-

throughput development of sensing materials is to determine the structure-function

relationships in sensing materials. In combinatorial screening, discrete [51, 52] and

gradient [53–57] arrays (libraries) of sensing materials are employed. Selected

examples of discrete and gradient sensing materials arrays are presented in

Fig. 7.2. A specific type of library layout will depend on the required density of

space to be explored, available library-fabrication capabilities, and capabilities of

high-throughput characterization techniques.

Discrete or gradient sensor regions are attractive for a variety of different

specific applications and can be produced with a variety of tools. Discrete sensor

regions can be produced using a variety of approaches, for example chemical vapor

deposition, pulsed-laser deposition, dip coating, spin coating, electropolymerization,

slurry dispensing, liquid dispensing, screen printing, and others. Sensor material

optimization can be performed using gradient sensor materials. Spatial gradients in

sensing materials can be generated by varying the nature and concentration of starting

components, processing conditions, thickness, and so on. Gradient sensor regions can

be produced using a variety of approaches, for example, in situ photopolymerization,

microextrusion, solvent casting, self-assembly, temperature-gradient chemical vapor

deposition, thickness-gradient chemical vapor deposition, 2-D thickness gradient

evaporation of metals, gradient surface coverage and gradient particle size, and

some others. Once the gradient or discrete sensing materials array is fabricated, it

a b c 110 mmd

Fig. 7.2 Examples of discrete (a, b) and gradient (c, d) sensing materials arrays: (a) Electro-

polymerized conductive polymers on a 96-element interdigital electrode array; (b) Formulated

solid polymer electrolyte compositions on a 48-element array of radio-frequency identification

sensors; (c) Gradient thickness sensing films with three concentrations of a colorimetric indicator;

(d) Ternary combination of gradient concentrations of fluorescent reagents in a formulated optical

sensor film
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is exposed to an environment of interest, and steady-state or dynamic measurements

are acquired. Serial scanning mode of analysis (e.g., optical or impedance spectro-

scopies), rather than parallel analysis (e.g., imaging) is often performed to provide

more detailed information about the materials’ property.

7.3 Diversity in Needs for Combinatorial Development

of Sensing Materials

A typical sensing material is based on a successful combination of two somewhat

contradictory material requirements. The first requirement is to have the desired

material response to the changes in the concentration of species of interest in a

sample. It is desirable for most applications that the response is fast and selective;

this entails that the kinetic association constant and the binding constant (the ratio

of the kinetic association and kinetic dissociation constants) should be high. The

second requirement is to have a reversible sensor response; therefore, the kinetic

dissociation constant should also be high. Thus, development of sensing materials

needs knowledge on how to fulfill these controversial requirements or to find a

suitable compromise.

For diverse applications, specifications on sensing materials are often weighted

differently according to the application. High reliability, adequate long-term stabil-

ity, and resolution top the priority list for industrial sensor users, while often the size

and maturity of the technology are the least important factors [58–60]. The low

false positive rate is very critical for the first responders [61]. In contrast, medical

users focus on cost for disposable sensors. Specific requirements for medical in vivo

sensors include blood compatibility and minute size [62]. Resistance to gamma

radiation during sterilization, drift-free performance, and cost are the most critical

specific requirements for sensors in disposable bioprocess components [63]. The

importance of continuous monitoring also differs from application to application.

For instance, glucose sensing should be performed 2–4 times a day using home

blood glucose biosensors, while blood-gas sensors for use in intensive care should

be capable of continuous monitoring with sub-second time resolution [64, 65].

Table 7.2 illustrates parameters that should be optimized and controlled for

successful development of inorganic, organic, and biological sensing materials.

Inorganic sensing materials include catalytic metals for field-effect devices

[5, 66, 67], metal oxides for conductometric [9, 10, 44, 68–82] and cataluminescent

[83, 84] sensors, plasmonic [85–93], and semiconductor nanocrystal [94–96]materials.

Organic sensing materials include indicator dyes (free, polymer immobilized,

and surface-confined) [97–111], polymeric compositions [6, 8, 36, 112–114],

homo- and copolymers [115–121], conjugated polymers [11, 122–125], and

molecularly-imprinted polymers [47, 126–129]. Biological materials include

surface- and matrix-immobilized bioreceptors [7, 122, 130].
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Table 7.2 Parameters that should be optimized and controlled for successful development of

inorganic, organic, and biological sensing materials

Group of sensing

materials

Type of sensing material Optimized and controlled material

parameters

Inorganic Catalytic metals Surface additives

Porosity

Layered structure

Grain size

Alloying

Deposition method

Inorganic Metal oxide materials Base single or mixed metal oxides

Deposition method and conditions of base

metal oxide(s)

Annealing method and conditions

Dopant(s)

Doping method and conditions

Purity of materials

Inorganic Plasmonic nanostructures and

nanoparticles

Substrate type

Nanoparticle material

Nanoparticle shape, size, morphology

Nanoparticles arrangement

Surface functionality

Inorganic Plasmonic nanoparticles in

polymers

Size of nanoparticle

Strength of polymer/particle interaction

Polymer grafting density

Polymer chain length

Organic Indicators Binding constant

pH-influence

Redox state

Selectivity

Toxicity

Poisoning agents

Organic Polymeric compositions Analyte- responsive reagent

Polymer matrix

Analyte specific ligand

Plasticizer

Other agents (stabilizing, phase transfer,

etc.)

Common solvent

Organic Conjugated polymers Polymerization conditions

Types of heterocycles

Additive(s)

Side groups

Dopant

Oxidation state

Electrode material

Thickness

Morphology

(continued)
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7.4 Outlook

The future advances in combinatorial development of sensing materials will be

related to several key remaining unmet needs that prevent researchers from

having a complete combinatorial workflow and to “analyze in a day what is made

in a day” [35].

First, new fabrication methods of combinatorial libraries of sensing materials

will be implemented including those adapted from other materials synthesis and

fabrication approaches [131, 132] and those developed specifically for sensing

applications [133].

Second, new screening tools will be developed for high-throughput characteri-

zation of intrinsic materials’ properties in order to keep up with the rates of

performance screening of sensing materials candidates.

Third, applications of data mining in sensing materials [118, 134–136] will

expand. Designing the high-throughput experiments to discover relevant descrip-

tors will become more attractive [137].

Fourth, predictive models of behavior of sensing materials under realistic con-

ditions over long periods of time will be proposed. These modeling efforts will

require inputs not only from screening of the performance and intrinsic properties

of sensing materials but also from screening of the effects of interfaces between

sensing materials and transducers.

Table 7.2 (continued)

Group of sensing

materials

Type of sensing material Optimized and controlled material

parameters

Organic Molecularly imprinted

polymers

Functional monomer(s)

Template concentration

Cross-linker

Porogen

Monomer(s)/template ratio

Physical conditions during polymerization

Biological Surface-immobilized

bioreceptors

Immobilization technique

Receptor-surface spacer

Receptor surface density

Material between bioreceptors

Biological Matrix-immobilized

bioreceptors

Immobilization technique

Receptor density

Matrix hydrophilicity

Matrix charge

Matrix chemical content

Matrix thickness
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Chapter 8

Chemical Sensor Array Response Modeling

Using Quantitative Structure-Activity

Relationships Technique

Abhijit V. Shevade, Margaret A. Ryan, Margie L. Homer, Hanying Zhou,

Allison M. Manfreda, Liana M. Lara, Shiao -Pin S. Yen, April D. Jewell,

Kenneth S. Manatt, and Adam K. Kisor

Abstract We have developed a Quantitative Structure-Activity Relationships

(QSAR) based approach to correlate the response of chemical sensors in an array

with molecular descriptors. A novel molecular descriptor set has been developed;

this set combines descriptors of sensing film-analyte interactions, representing

sensor response, with a basic analyte descriptor set commonly used in QSAR

studies. The descriptors are obtained using a combination of molecular modeling

tools and empirical and semi-empirical Quantitative Structure-Property Relation-

ships (QSPR) methods. The sensors under investigation are polymer-carbon sens-

ing films which have been exposed to analyte vapors at parts-per-million (ppm)

concentrations; response is measured as change in film resistance. Statistically

validated QSAR models have been developed using Genetic Function Approxima-

tions (GFA) for a sensor array for a given training data set. The applicability of the

sensor response models has been tested by using it to predict the sensor activities for

test analytes not considered in the training set for the model development. The

validated QSAR sensor response models show good predictive ability. The QSAR

approach is a promising computational tool for sensing materials evaluation and

selection. It can also be used to predict response of an existing sensing film to new

target analytes.

8.1 Introduction

The ability to predict sensor responses accurately is of great help in characterizing

and selecting sensing materials. Typically, sensor arrays use response libraries to

develop signal processing algorithms in order to identify and quantify chemical
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species; these response libraries consist of laboratory data cataloguing individual

sensor responses to analytes of interest. Developing a response library for a sensor

array with a set of analytes and under a set of environmental conditions (tempera-

ture, pressure, and humidity) is time consuming; in addition, developing response

libraries and calibration information may impinge on the useful lifetime of the

sensors. Sensor response models that provide such predictive ability would be of

great help in sensing materials evaluation and selection prior to experiments.

Sensor response modeling for polymer-carbon composite systems is of interest

to us. Sensor response modeling in polymer films exposed to chemical vapors has

been investigated using solubility parameters [1], Linear Solvation Energy Rela-

tionships (LSER) [2, 3] and sorption described by Monte Carlo molecular modeling

approach [4]. Good correlations between calculated and measured responses have

been reported with these approaches. In the case of polymer composite sensing

films, such as polymer-carbon films previous molecular modeling approaches [5, 6]

have taken into account only the effect of polymer-analyte interactions and as-

sumed that neither the carbon or the carbon-analyte interactions in the film plays a

role in sorbing analyte molecules or contributes to the sensing film response. This

sensor response model may not represent a complete picture of response in poly-

mer-carbon composite sensors, especially at concentrations of single to tens of

parts-per-million (ppm) or sub-ppm analyte in air. Some of these approaches for

sensor response modeling are discussed in detail in other chapters in this book

volume such as the LSER (Chap. 9), solubility parameter based (Chap. 3) and

sorption described by Monte Carlo molecular modeling approach (Chap. 4).

Recently we have developed a multivariate statistical approach [7] based on

Quantitative Structure-Activity Relationships (QSAR) using Genetic Function

Approximation (GFA) to correlate sensor activity with molecular descriptors that

describe the physical and chemical properties of sensing film components, analytes

and interactions of the two. The sensors considered were polymer-carbon sensing

films in the JPL Electronic Nose (ENose) sensing array [8–19]; these sensors were

exposed to several target vapors at ppm to sub-ppm concentrations and response

measured as change in film resistance. The methodology for the QSAR sensor

activity model will be discussed in detail in subsequent sections. In short, the

approach for the development of the QSAR sensor response model for a given

polymer-carbon sensor begins with the creation of molecular structures for

the polymer, carbon black, water and analytes. This is followed by creating a

QSAR study table that consists of experimental inputs to be correlated to molecular

descriptors that consist of analyte properties as well as various interaction

energies of the target molecules with polymer-carbon sensing film components.

These QSAR study table descriptors are calculated using empirical methods, semi-

empirical predictive methods and molecular simulation methods. Once the QSAR

table is ready, GFA is used to generate sensor activity models by correlating

experimental inputs with molecular descriptors, with different number of terms

and functionality (linear, quadratic, spline or combination etc). Among the several

equations developed, the statistically most significant equation that contains the

polymer-analyte interaction energy term is chosen to represent the sensor response.
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The QSAR technique that we have used for developing our sensor activity

models has been used extensively in biochemical, medical and environmental

remediation fields for drug-receptor screening and in evaluating phenomenological

models [20–27]. In the development of QSAR models, a set of experimental data

that is used to develop the model is commonly referred as the training set, while a

subset of the data which is used to compare model predictions are called the test set.

The training sets for QSAR studies in pharmaceutical and biological systems

typically include more than 100 compounds. These larger training sets produce,

in general, more robust models. As a result of the application of the JPL ENose,

which has been developed as an event monitor for spacecraft air, the target analyte

set of the QSAR model developed for the JPL ENose polymer-carbon composite

sensors is small, 20–25 analytes. Developing a statistically significant and validated

QSAR model that has predictive capability is a challenge for these scenarios of

limited training data set applications.

QSAR methodology as described in this chapter is used not only to characterize

materials for chemical sensing but also to select sensing materials prior to experi-

mentation. Our goal is to develop one representative equation for each polymer-

carbon sensing film in the array. The development of “n” equations to describe the

ENose sensing array will facilitate the generation of virtual response libraries for

any given sensor array for analytes that may not be easily tested, such as highly

toxic or explosive compounds. The predictions can also be used to generate para-

meters for the identification and quantification software. Subsequently, fewer

experimental tests will need to be run on any given sensor array. QSAR is a

powerful tool that can help us to achieve our goal.

Statistical methods available with QSAR include data and regression analysis

methods [28]. Regression methods include simple and Multiple Linear Regression

methods (MLR), stepwise multiple linear regression using Genetic Function Ap-

proximation (GFA) methods, and Partial Least Square methods (PLS). Methods

such as cluster analysis methods (e.g., hierarchical cluster analysis) and Principal

Component Analysis (PCA) are included in data analysis. Cluster analysis methods

are aimed towards partitioning a data set into classes or categories consisting of

elements of comparable similarity. PCA aims at representing large amounts of

multi-dimensional data as a more intuitive, low-dimensional representation [28].

GFA is widely used to develop QSAR models. Like genetic evolution, during

GFA thousands of candidate models are created and tested, and only the superior

models survive [24]. These models are then used as “parents” for the creation of the

next generation candidate models. GFA can thus select the optimum number of

descriptors in linear regression analysis automatically; it also constructs multiple

linear regression models with any possible combinations of terms (linear, higher

order polynomials, splines and gaussians). The advantage of using GFA is that

multiple models are produced and subsequently analyzed by GFA, in contrast to

other common statistical methods, such as MLR and PLS, that focus on a single

“best statistical” model.

The basic descriptors commonly used in QSAR studies describe the intrinsic

analyte properties. These default descriptors are predicted using empirical and
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semi-empirical predictive methods such as Quantitative Structure-Property Rela-

tionships (QSPR) [28, 29]. In applying QSAR to sensor response modeling, the

default descriptors alone may not be sufficient to describe sensor response; there-

fore, understanding the sensing mechanism is important to determine descriptors

that would describe it. In polymer-carbon sensing films, sensor responses are

measured as a change in resistance, and the response can be attributed to the

swelling of the polymer film [30]; other mechanisms may also contribute to the

sensor response. So the polymer-carbon sensing film response to a given analyte

molecule is based on the understanding of how the sensing film components

(polymer and carbon black) in the polymer-carbon composite film interacts with

the analyte molecules. The QSAR equation that we have chosen to represent a given

sensor is selected from a set of cross-validated equations generated by the GFA

algorithm. The selected equation is the statistically most significant one (largest r2

value) of the equation set which also contains the polymer-analyte term. The

selection of the QSAR equation containing the polymer-analyte term is not only

based on the above discussion of the sensing mechanism in polymer-carbon sensing

films, but also on the fact that the sensing array used in our study consists of

different polymer-carbon composite films; the selection of QSAR equation contain-

ing polymer-analyte term, would provide us with a equation for each polymer-

carbon sensor type. We performed initial QSAR runs to determine whether we

could use only basic descriptors, consisting of analyte properties, to describe the

sensor activity. Although the intrinsic analyte descriptors provide a statistically

significant fit, the QSAR sensor response model developed using the default

descriptors would not be representative of the different polymer types used in the

JPL ENose polymer-carbon sensing films.

We have previously investigated LSER methods to model responses of three

polymer-composite sensors to six different analytes [10]. Comparison to experi-

mental data showed LSER to be a poor predictor for sensor response. This is not

surprising as the equation considers only polymer-analyte interactions and does not

account for the adsorption of analyte on the carbon conductive medium dispersed in

the film, for the analyte molecule diffusion within the film, the film thickness, or the

hydration of the film. As described in the previous discussion, the sensor response

for polymer based sensors to target analytes is a function of its ability to interact

with the sensors. By using only descriptors of analyte properties, a good statistical

fit is possible, but not in terms of representing a sensor response. The analyte

descriptors are constant in value and will not change with the sensor type, but the

sensor-analyte interactions change. So, interaction energy terms are needed in the

descriptor set to distinguish between the sensor responses of different sensor

materials types. Accordingly, the descriptor sets developed in our QSAR study

combine descriptors for analyte properties as well as those that describe interactions

between the sensing film and the analytes.

In the following sections, we use polyethylene oxide-carbon sensing film as an

example to describe the approaches for molecular descriptor calculations and

demonstrate QSAR methodology for sensor activity model development for the

polymer-carbon composite sensing film. The terms used in the QSAR model for
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polyethylene oxide-carbon sensing film will be discussed in detail. The approach

will be extended to other polymer-carbon sensing films used in the JPL ENose array

and discussed in the results and discussion section. The promise of using QSAR

sensor response models for sensing materials evaluation and selection will be

demonstrated and discussed in the sections following this.

8.2 Experimental Data

8.2.1 Sensor Response Measurements and QSAR Conditions

Experimental data for QSAR studies to develop sensor response models for the JPL

ENose polymer-carbon composite sensors was obtained by delivering measured

analyte concentrations with controlled constant humidity to the sensors. The

experiments were repeated several times, over a range of analyte concentrations

[8–13, 18]. The investigated analytes and concentration ranges considered for this

QSAR study are shown in Table 8.1.

Sensor response is expressed as a normalized change in sensor resistance and is

plotted against delivered concentration. Response data for each analyte and each

sensor are fit to an equation of the form y ¼ A1x þ A2x
2, where x is the analyte

Table 8.1 Analyte list and

concentration range tested in

parts-per-million (ppm) for

the JPL Electronic Nose

operation (760 Torr, 23�C)

Analyte Concentration tested

Low - High (ppm)

1. Acetone 64–600

2. Ammonia 6–60

3. Chlorobenzene 3–30

4. Dichloromethane 10–150

5. Ethanol 200–6000

6. Isopropanol 30–400

7. Xylenes (mixed) 33–300

8. Tetrahydrofuran 13–120

9. Trichloroethane 7–200

10. Acetonitrile 1–25

11. Ethylbenzene 20–180

12. Freon113 15–500

13. Hexane 15–150

14. Methyl ethyl ketone 15–150

15. Methane 1,600–50,000

16. Methanol 6–100

17. Toluene 5–50

18. Benzene 10–100

19. Indole 25–450

20. Dichloroethane 10–100

The experimental data was taken at a constant humidity of 5,000

ppm water (�18% relative humidity). Reproduced by permis-

sion of ECS – The Electrochemical Society. Ref. [7]
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concentration and y is the normalized change in resistance [8, 9, 19]. Figure 8.1

shows experimental data and the fitted concentration-response equations for poly-

ethylene oxide-carbon sensing films and two representative analytes. As can be seen

in the figure, the coefficient for the quadratic term, A2, is generally three orders of

magnitude smaller than the coefficient of the linear term, A1. For this investigation,

we have focused mainly on the linear term coefficient. Using only the linear term

will necessarily mean that there is some error introduced into the measure of sensor

response. The purposes of this study is to determine whether an adequate model can

be developed using QSAR, for which the linear term alone is sufficient.

It is important to develop a single sensor activity correlation that is independent

of analyte concentrations for a given sensor type (e.g., polymer-carbon composite),
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Fig. 8.1 Shows the JPL ENose experimental data and fitted concentration-response equation (y ¼
A1x þ A2x

2) for the polyethylene oxide carbon sensing film. The lines are drawn to guide the eye
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to avoid multiple correlations for a single sensor. By selecting coefficient A1 from

the sensor response equation as the activity to be used in QSAR studies, we can

develop an approach to calculate a concentration independent sensor response.

Analytes# 1–17 (Table 8.1) are used as the training set to develop the QSAR

equations, and the remaining analytes (#18–20) are used as the test set.

In addition, because the sensor response is expressed as a quadratic equation

(y ¼ A1x þ A2x
2), and this study does not consider the coefficient A2 there will

necessarily be some degree of error in the calculated A1. As the coefficient A2 is

generally three orders of magnitude smaller than A1, the quadratic term does not

contribute strongly to sensor response at low concentration. We are trying to

provide a methodology to develop sensor response models that are concentration

independent and which can provide us an ability to screen sensors by predicting

sensor responses to new untested analytes prior to experiments.

8.3 QSAR

8.3.1 QSAR Descriptors: Analyte Properties and Sensing
Film-Analyte Interactions

The default analyte property descriptors in QSAR studies fall into electronic,

thermodynamic, spatial, structural, and topological categories, as shown in

Table 8.2. Descriptors for the polymer-carbon sensing film response include inter-

action energies of the sensing film components, polymer and carbon-black, with

analyte molecules and water. The physical descriptors that are considered for our

QSAR study include those that describe intrinsic analyte properties as well as

sensor-analyte interactions. The goal is to correlate coefficient A1 of a polymer-

carbon composite sensor response with these combined physio-chemical molecular

descriptors, consisting of analyte properties and sensing film-analyte interactions.

8.3.1.1 Approaches to Calculating Sensing Film-Analyte Interactions

Sensing film-analyte interactions for organic (e.g. polymer based) or inorganic (e.g.
metal, metal oxide) sensing elements can be calculated using two approaches that

require non-periodic (cluster) or periodic calculations. Descriptors calculated using

cluster or a non-periodic approach, Approach I, are pair interaction or binding

energy. The descriptor calculated using a periodic approach, Approach II, is heat of

sorption. The contributions to the interactions between the sensing film components

and analyte come from van der Waals, electrostatic, and hydrogen bonding forces.

We will discuss these approaches for a polymer-carbon sensing film and its inter-

actions with an analyte.
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In cluster model calculations (Approach I) for polymer-carbon sensing films, the

individual components of the polymer-carbon composite system, polymer and

carbon black, are used to calculate the binding energies between two analyte

molecules and between an analyte molecule and the polymer-carbon composite

sensing film components. In Approach I, the pair interaction energies [31] which

represent the polymer-carbon composite sensor response descriptors include: poly-

mer-analyte, carbon black-analyte, polymer-water, carbon black-water, analyte-

analyte, and analyte-water. Van der Waals, coulombic and hydrogen bonding

forces contribute to these energies. The general notation used here to represent

these descriptors is of the form Exy. The suffixes x and y could be polymer (p),

carbon black (cb), analyte (a), or water (w). For example, the interaction energy

between the polymer (p) and the target analyte (a) is denoted Epa. The sensor

response descriptor set using Approach I for polyethylene oxide-carbon sensing

film is shown in Table 8.3. It includes the sensing film-analyte descriptors Epa, Epw,

Ep-cb, Ecb-a, Ecb-cb, Eaa, and Eaw. Cluster based calculations for polymer-carbon

sensor response descriptors is a rapid approach that takes into account the chemical

nature of the individual components, i.e. electronic and thermodynamic character-

istics of the monomer, carbon black and the analyte.

In periodic model calculations, Approach II, the interaction of the analyte with

the polymer-carbon composite film is described by calculating the isosteric heat of

sorption of analyte molecules in the polymer-carbon composite. Heat of sorption

(Hsorpt) calculations need a 3-D periodic model of the polymer-carbon composite

film. We developed such a model based on the sensing film formulation process

[32]. Heat of sorption calculations give a more complete representation of sensing

film-analyte interactions, taking into account the structural aspect of the polymer

composite film as well as the sorption process that occur. This approach mimics the

Table 8.2 Default analyte

descriptor set used in QSAR.

Reproduced by permission of

ECS - The Electrochemical

Society. Ref. [7]

Default analyte descriptors Description

Apol Sum of atomic polarizabilities

Dipole-mag, Dipole-X, Y, Z Dipole moment magnitude and

X, Y, and Z components

RG Radius of Gyration

Area Molecular surface area

MW Molecular weight

Vm Molecular volume

Density Density

PMI-mag, PMI-X, Y, Z Principal moment of inertia

magnitude and X, Y, and Z
components

Rotlbonds Number of rotatable bonds

HBA Number of hydrogen bond

acceptors

HBD Number of hydrogen bond

donors

AlogP Log of the octanol/water

partition coefficient

MR Molar refractivity
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process that happens when an analyte is sorbed by a sensor. The heat of sorption

represents the total interaction of the analyte with the polymer and carbon black

components.

The molecular models used in Approaches I and II for polyethylene oxide-carbon

are shown in Figs. 8.2 and 8.3. A combined descriptor set that includes the default

analyte descriptors along with sensor response descriptors calculated was used for

QSAR studies to correlate the sensor coefficients A1 with the molecular descriptors.

8.3.2 Methodology

8.3.2.1 QSAR Descriptors: Calculations

Default QSAR analyte descriptors were predicted by empirical and semi-empirical

Quantitative Structure Property Relationships (QSPR) using the commercial soft-

ware [33] Cerius2 on a Silicon Graphics O2 workstation.

Polyethylene oxide monomer carbon black

ammonia

tail

heada

b

c

Fig. 8.2 Molecular models to calculate sensing film–analyte interactions using the cluster (non-

periodic) approach for polyethylene oxide-carbon sensing film. Shown (a) polyethylene oxide

monomer unit (oxygen atom shaded), (b) carbon black and (c) ammonia molecule (representative

model). These models are used to calculate sensing film–analyte interaction energy Exy, polymer

(p), carbon black (cb), analyte (a), or water (w)
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Polymer-analyte interactions have been calculated using Quantum Mechanical

(QM) and atomistic level calculations [5]. Quantum mechanical calculations are

the more accurate; however, the time needed for QM simulation generally scales as

N3–N5 for characteristic methods, where N is the system size. Information derived

from QM is used to develop a force field, an empirical functional form, for atomistic

level simulations for use in Molecular Dynamics (MD) techniques. Atomistic level

simulations are faster than QM calculations and are the choice for our descriptor

calculations. Chapter 3 in this volume describes the use of QM for rapid screening

of chemical sensing materials.

For Approach I, cluster calculations, the polymer was modeled using its basic

unit, the monomer, as shown in Fig. 8.2. Carbon black was modeled as naphthalene

rings with no hydrogen (small graphite sheets) and zero charge on the carbon atom

[32]. A cluster of 32 naphthalenes was used to represent the carbon black. Analyte

models, except for water, were constructed using the drawing tools provided in the

software, and all atoms were assigned charges and equilibrated according to the

methodology discussed below. The Single Point Charge (SPC) model was used for

water [34]. Charges on the monomer and analyte atoms were assigned by the charge

equilibration method (Qeq) [35]. The Dreiding force field [36] was used for

polymer and analyte molecules, and graphite parameters were assigned to carbon

black atoms [37]. Equilibration was achieved by molecular mechanics and then by

molecular dynamics simulations at 300 K. Molecular models used were developed

using the Cerius2 software.

To calculate sensor response descriptors in Approach I, sensing film-analyte

interaction energies were calculated using Monte Carlo simulation techniques.

Interaction energy between the polymer and analyte molecule, Epa, was calculat-

ed by fixing the polymer structure in space and sampling the analyte molecule

Fig. 8.3 Molecular model to calculate sensing film-analyte interactions using the periodic

approach for polyethylene oxide-carbon sensing film. Seen is the three dimensional molecular

model of polyethylene oxide-carbon composite sensing film (density ¼ 0.90 g/cm3). The cylindri-

cal chains represent the polymer chains and the clusters represents the carbon black. This model is

used to calculate sensing film-analyte interactions, by calculating heat of sorption (Hsorpt) of the

analyte
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around the polymer, then averaging the energy calculated over all the random

analyte configurations generated around the polymer. In this study we used 105

configurations. Similarly Epw, Ep-cb, Ecb-a, Ecb-cb, Eaa, and Eaw descriptors were

calculated. The BLENDS module in the Cerius2 software performs the calcula-

tions based on the methodology described above. The sensor response descriptor

set using Approach I for the QSAR study includes, Epw, Ep-cb, Ecb-a, Ecb-cb, Eaa,

and Eaw descriptors. The Exy values calculated using this approach for polyeth-

ylene oxide-carbon sensing film with various analytes is shown in Table 8.3.

For Approach II, periodic calculations, the isosteric heat of sorption (Hsorpt) [38]

of the analyte in the polymer-carbon composite is the descriptor that represents the

combined interactions of the analyte with the polymer and carbon components. This

term incorporates the combined effect of the separate terms used in Approach I, Epa

and Ecb-a. Hsorpt values of analyte molecules in the polyethylene oxide-carbon

sensing film are shown in Table 8.3. As discussed in our previous work [7], the

sorption simulations for this work were performed at constant analyte loading of

one molecule. The SORPTION module in the Cerius2 software was used to

accomplish the task. The program generates random points in the polymer and

tries to insert an analyte molecule. Insertion attempts that involve the overlapping

of the analyte molecule with the polymer structure are discarded. After the insertion

step, each subsequent configuration is generated by either a random translation or

rotation of the analyte molecule in the polymer matrix, taken in the usual Metropo-

lis Monte Carlo manner. The isosteric heat of sorption value is calculated at the end

of the run. The sensor response descriptor set using Approach II for the QSAR study

includes, Hsorpt, Eaa, and Eaw.

Approach I is computationally less expensive than Approach II; thus, Approach I

was used to calculate the sensing film-analyte interaction for the polymers under

consideration. The performance of the QSAR sensor response models obtained by

the combined descriptors (sensor response and default analyte properties) devel-

oped in this work and default analyte properties were found to be similar.

8.3.2.2 QSAR Equation: Term Selection and Functional Form

QSAR model development begins with investigating the number of terms (Nterm)

and the functional forms. The functional form used to form the model can be linear

or linear-quadratic. Spline terms are not considered for small training sets owing to

the possibility of over-fitting, as in our case where the training set is fewer than 20

data points.

The reliability and significance of QSAR models can be determined using

statistical parameters such as F [28] and the correlation coefficient (r2). The F

value is a ratio of explained to unexplained variance. The significance of the QSAR

equation becomes greater as the F value increases. The r2 value describes the

goodness of fit of the data to the QSAR model. The prediction ability of the

QSAR equations can be estimated using the leave-one out cross-validation tech-

nique. In this procedure, new regression coefficients are generated for a given
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model after systematically removing one analyte sample at a time from the training

data set. This new regression model is then used to predict the activity of the

removed sample.

As an example, we describe a QSAR sensor activity model for polyethylene

oxide-carbon composite films. The QSAR term and functional form selection for

polyethylene oxide-carbon sensing films was made using a training set made up of

analytes# 1–17. The QSAR studies were performed with no constant by varying the

number of terms from 1 to 5, with linear and quadratic functionality using 5,000

crossovers. The leave-one out cross-validation was performed for each of the 17

analytes. The series of predictions was then used to calculate a new value for the

cross-validated r2 (CV�r2). To determine the number of terms and equation type

for the model, CV�r2 is plotted against the number of terms for both linear and

linear-quadratic equation types as shown in Fig. 8.4. As seen in the figure, the

linear-quadratic terms have a greater CV�r2 compared to the linear terms. It can

also be seen from the figure that, for the linear-quadratic equation, no substantial

increase inCV�r2 is achieved by increasing the number of terms from 3 to 4. Since

the training data set is limited to 17 analytes, any increase in the number of terms in

the model would be an over-fit to the data.

8.3.2.3 QSAR Equation: Representation of Sensor Activity

The polymer carbon sensing film response to a given analyte molecule is based on

how the sensing film components (polymer and carbon black) in the polymer-

carbon composite film interacts with the analyte molecules. The QSAR equation

that we have chosen to represent a given sensor is selected from a set of cross-
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Fig. 8.4 Number of QSAR terms and functionality to be used in the model, by plotting cross-

validated r2 (CV�r
2) vs. number of descriptor (Nterm) for the training analyte set for the

polyethylene oxide-carbon sensing film models. The QSAR runs were performed using

complete descriptor set (analyte and sensor response)
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validated equations generated by the GFA algorithm. The selected equation is the

statistically most significant one (largest r2 value) of the equation set which also

contains the polymer-analyte (Epa) term, as discussed in the previous section. The

objective of this modeling effort is to develop an equation for each sensor in the

ENose array, each equation describing the response of that particular sensor to

analytes. For a given polymer-carbon composite sensing film, it should be noted

that the interaction descriptors Ep-cb, Epw, and Ecb-cb do not vary with analyte types

and hence will not appear in the QSAR equations.

8.4 Results and Discussion

The general methodology for QSAR sensor response model development using

GFA is shown in Fig. 8.5. As discussed in the previous sections, the QSAR sensor

response models with the basic analyte descriptors only would not take into account

the interactions between analyte and polymer and carbon black; these interactions

play an important role in the sensing process in the polymer-carbon sensing film.

Thus, a combined descriptor set that consists of analyte properties and sensing film-

analyte interactions was used to formulate the QSAR sensor activity relationships.

Generate molecular models for polymer-carbon sensing film

Calculate interaction energies among components
in polymer-carbon sensing film  (polymer, carbon, water, analyte)

Generate QSAR table of molecular descriptors
(analyte intrinsic properties and interaction energies for sensor response)

Correlate measure of sensor activity (sensor coefficient A1) with molecular descriptors
Generate QSAR equations using genetic algorithms, 

Select the statistically most significant equation containing the polymer-analyte interaction term

Use selected equation to predict sensor response to test analytes

Fig. 8.5 Flow chart showing the QSAR methodology used for the polymer-carbon composite

sensor response modeling
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In the following section, we describe the QSAR model results for polyethylene

oxide-carbon sensing film using the combined descriptor set. Following this, we

will discuss the results for this approach when extended to other polymer sensors in

the JPL ENose array. We also provide an example of the prediction capabilities of

the QSAR model; such predictions could be used in sensor evaluation leading to

selection prior to experimentation.

8.4.1 QSAR Sensor Activity Model: Polyethylene Oxide-Carbon
Sensing Film

As discussed in the QSAR methodology section, for the polyethylene-oxide poly-

mer carbon sensing film case, we have used a three term linear-quadratic equation

form. A QSAR study table showing the sensing film-analyte interaction energy

descriptors calculated using various approaches is shown in Table 8.3. A compari-

son of QSAR generated partial equation sets for the two approaches used for

calculating the sensor response descriptors for polyethylene oxide-carbon sensing

film is shown in Table 8.4. As described previously, Approaches I and II, cluster or

non-periodic and periodic, represent different ways of calculating polymer-analyte

interaction energy descriptors. The equation selected to represent the sensor activity

in both approaches is the statistically significant equations with the term Epa for

Approach I and the term Hsorpt for Approach II.

8.4.1.1 Approach I

The calculated activity for the polyethylene-oxide polymer carbon sensing film,

coefficient A1; using Approach I is plotted versus experimental values as seen in

Fig. 8.6. The statistically most significant equation containing the descriptor Epa is:

Table 8.4 QSAR generated partial equation set for the two approaches used for polymer-analyte

descriptor calculations: Approach I (cluster or non-periodic) and Approach II (periodic), contain-

ing Epa and Hsorp terms, respectively. The statistically significant equation is the one chosen to

represent the sensor activity

Calculated Activity (A1) ¼ r2 F

Approach-I (non-periodic or cluster calculations)

0.15207 Epa þ 0.116727 HB2
D þ 0.000241 MR2 0.86 40.6

�0.283563 E2
pa þ 0.114330 HB2

D þ 0.000256 MR2 0.86 38.7

0.286937 E2
pa þ 0.182699 HB2

D � 0.200424 HBD 0.84 34.6

Approach-II (periodic calculations)

�0.008856 Hsorp þ 0.118308 HB2
D þ 0.000264 MR2 0.87 44.4

�0.000801 H2
sorp þ 0.115485 HB2

D þ 0.000284 MR2 0.87 43.1

�0.022602 Hsorp þ 0.120321HB2
D þ 0.013894 MR 0.86 40.3
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Calculated activityðA1Þ ¼ 0:15207Epa þ 0:116727 HB2
D þ 0:000241 MR2 (8.1)

(r2 ¼ 0.86, F ¼ 40.6).

The QSAR sensor activity equation (8.1) was developed using the training set.

It was further used to predict the sensor coefficients for test analytes (analytes#

18–20): benzene, dichloroethane and indole, that were not a part of the training set

(analytes# 1–17) of Table 8.1. The aim of this exercise is to determine whether the
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Fig. 8.6 Comparison of QSAR models for two approaches used to calculate sensor response

descriptors for polyethylene oxide-carbon sensing film. QSAR studies were performed using the

combined descriptor set (analyte and sensor response). Plots shows calculated vs. experimental

sensor activity for training and test analyte set. The approaches are different ways to calculate

polymer-carbon sensing film-analyte interactions: cluster (Approach I) and periodic (Approach II)
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equation can be used to predict sensor activity without performing exhaustive and

time-consuming experiments if, for example, new analytes are added to the target

list. It can be seen that the model works satisfactorily for benzene and dichloroeth-

ane but over predicts the activity for indole. Indole is the least volatile analyte on

our list. It is also the only aromatic that has a hydrogen bond donor site among our

analytes.

In QSAR sensor activity (8.1), we observe that the analyte descriptors that

appear along with the polymer-analyte interaction term (Epa) are hydrogen bond

donor site (HBD) and molar refractivity (MR). The polyethylene oxide monomer

(Fig. 8.7) has one hydrogen bond acceptor site, thus it is logical that a descriptor that

represents the hydrogen bond donor nature of the analyte may appear in the

equation. The analyte descriptor MR is a combined measure of molecule size and

polarizability. The descriptor MR is calculated from the refractive index, molecular

weight and density of the analyte. As swelling in the polymer-carbon composite

film is one mechanism of sensor response, it is logical that the molecular size of the

analyte will appear in the equation describing the sensor response.

8.4.1.2 Approach II

The statistically most significant equation containing the descriptor Hsorpt, calcul-

ated using Approach II is:

CH2Cl

( CH – CH2 – O ) ( CH2 – CH2 – O ) 

epichlorohydrin ethylene oxide

(c)

– –

maleic acid

( CH2 – CH ) ( CH – CH )

HOOC COOH

styrene

( CH2 – CH2 – O ) 

(a) (b)

ethylene oxide

(d)

2-vinyl pyridine

( CH2 – CH) 

N

( CH2 – CH) ( CH2 – CH) 

N

Fig. 8.7 Chemical structures of polymer monomer units for (a) Polyethylene oxide, (b) Poly

(styrene-co-maleic acid), (c) Poly (epichlorohydrin-co-ethylene oxide), and (d) Poly (2-vinyl

pyridine)
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Calculated activity ðA1Þ ¼ �0:008856Hsorpt þ 0:118308 HB2
D

þ 0:000264 MR2: (8.2)

The r2 value of the calculated vs. experimental fit using Approach II for the training

set is not significantly different than Approach I, as seen Fig. 8.6. On comparing

statistically most significant equations of the QSAR sensor activity models for these

approaches, (8.1) and (8.2); we see similarity in the descriptors that have appeared

in the equations and as well as the functional form. There is quadratic dependence

on the hydrogen bond donor (HBD) and molar refractivity (MR) terms, and a linear

dependence on the sensor response descriptor that appears in the selected equation,

Epa for Approach I and Hsorpt for Approach II.

8.4.1.3 Comparison of QSAR with Other Multivariate Sensor Response

Approaches

The QSAR models for polyethylene oxide-carbon black show analyte descriptor

terms MR and HBD; similar terms also appear in the LSER approach [2, 39]. LSER

is discussed in detail in Chap. 9 of this volume. In addition, the sensing film

partition coefficient, K, is correlated in LSER with a linear combination of analyte

solubility descriptors (solvation parameters). The regression coefficients obtained

for the LSER models characterize the properties of the sensing film. The analyte

property terms that appear in LSER are the excess molar refractivity, dipolarity/

polarizability, hydrogen bond acidity and basicity parameters, and the gas/liquid

partition coefficient. The LSER approach has been used for sorption studies of

vapors in a polymer film only [39] and also for sorption in graphite/fullerene

coatings [40]. The sensing film used in our studies is a polymer-carbon composite

film; our earlier efforts [10] to use LSER to model response to analyte in polymer-

carbon composites has resulted in poor correlation between calculated and

measured sensor response. The QSAR approach used in this work is different

from LSER, as it includes the polymer-analyte and carbon black-analyte interac-

tions, as well as contributions from analyte-water interactions that represent experi-

mentation conditions in the descriptor set.

8.4.1.4 Additional Considerations: QSAR Descriptors in Sensor Activity

Model Development

Previous investigations have recognized that the partition coefficient of an analyte

in a polymer correlates to polymer-carbon black sensor response [41, 42]. For gas

phase detection of a target analyte molecule, the sensing film response is a function

of the equilibrium partition coefficient, K, of the analyte molecule in the sensing

film [39, 43, 44]. This equilibrium constant is defined as the ratio of the equilibrium
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concentrations of the analyte in the sensing film (Cs) to the bulk analyte concentration

(Cv) to which the sensing film is exposed. The concentration of analyte in the sensing

film, Cs, is normally measured using piezoelectric techniques. The bulk analyte

concentration in a carrier gas (air or nitrogen) depends on the vapor pressure of the

target analyte at a given temperature. Evaluating partition coefficients by measuring

experiments for mass uptake by the polymer-carbon composite film is time consum-

ing and elaborate, so to include the partition coefficient functionality in our QSAR

study, analyte vapor pressure [45] calculated at 300 K was added to the descriptor list.

We have shown in our previous work [7] that, the A1 coefficient for indole may be

better predicted with the inclusion of vapor pressure in the molecular descriptor set.

8.4.2 QSAR Models for Sensor Arrays

The polymers used in the JPL ENose polymer-carbon composite sensing film array

fall into different categories of chemical functionalities [9]. These include: hydro-

gen-bond acidic (HBA), hydrogen bond basic (HBB), dipolar and hydrogen bond,

weak H-bond basic or acidic (MD-HB), and weakly dipolar with weak or no

hydrogen-bond properties (WD).

The QSAR sensor activity models for selected polymer-carbon sensors using the

combined descriptor set (analyte and sensor response) in the JPL ENose sensor

array is summarized in Table 8.5 and the chemical structures of the polymer

monomer units shown in Fig. 8.7. These equations in Table 8.5 are statistically

most significant in a set of equations containing the polymer-analyte descriptor Epa.

Table 8.5 QSAR sensor activity equations for selected polymer-carbon sensing films of the JPL

ENose array The polymer chemical functional classification is: hydrogen-bond acidic (HBA),

hydrogen bond basic (HBB), moderately dipolar and weakly H-bond basic or acidic (MD-HB),

and weakly dipolar with weak or no hydrogen-bond properties (WD)

Polymer (in polymer-carbon

sensing films

used in JPL ENose)

Polymer chemical

functional

classification

QSAR sensor

activity equation

Statistical

parameters

Polyethylene oxide WD 0.15207 Epa r2 ¼ 0.86

þ0.116727 HB2
D F ¼ 40.60

þ0.000241 MR2

Poly (styrene-co-maleic acid) HBA �0.094 Epa r2 ¼ 0.92

þ0.102 HB2
D F ¼ 121.51

þ0.021 Dipole-Y2

�0.079 Dipole-Y

Poly (epichlorohydrin-

co-ethylene oxide)

MD-HB �0.02432 E2
pa r2 ¼ 0.99

þ0.130288 E2
aa F ¼ 1350.77

þ2.00E-06 VP2

Poly (2-vinyl pyridine) HBB �0.293916 Eaa r2 ¼ 0.70

þ0.714156 E2
pa F ¼ 15.49

�0.000341 VP

�0.000171 Apol
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A good fit is achieved for the training data set and test data as seen in Fig. 8.8. It can

also be seen that the QSAR model shows good predictions of the test analyte

activities, as seen from the close proximity of the test data points around the

diagonal line.

The polyethylene oxide polymer described above fits in the category WD,

weakly dipolar with weak or no hydrogen-bonding, based on its carbon backbone

with oxygen linkages. Poly(styrene-co-maleic acid) is categorized as HBA, hydro-

gen bond acidic, based on the two carboxylic groups. As seen in the QSAR sensor

activity equation of the poly(styrene-co-maleic acid)-carbon sensing film, along

with the polymer-analyte interaction term (Epa), the analyte properties that appear

are the number of hydrogen donor sites (HBD) and the components of the dipole

moment. Poly(epichlorohydrin-co-ethylene oxide) is a copolymer that has ethylene

oxide monomer units (same as polyethylene oxide) in combination with the epi-

chlorohydrin monomer units, which contains a chlorine atom. The combination of

Polyethylene oxide
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Fig. 8.8 QSAR modeled array response for 4 JPL ENose polymer-carbon sensing films. The plot

shows QSAR calculated versus experimental sensor activity (coefficients A1) for the training and

test analyte set using combined descriptor set (analyte and sensor response). QSAR equations in

Table 8.5 were used to determine calculated values for both the training and test analyte set. The r2

value is for the training data set and reflects the correlation between the calculated vs. the

experimental values obtained
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these monomer units makes the polymer weakly dipolar. The QSAR sensor activity

model for poly(epichlorohydrin-co-ethylene oxide) contains terms related to ana-

lyte-analyte interactions (Eaa) and vapor pressure (VP) terms with the polymer-

analyte interaction. Poly(2-vinyl pyridine), based on the nitrogen atom present in

the side chain of the monomer unit, is categorized as HBB, hydrogen bond basic

category. The term Apol that appeares in the poly(2-vinyl pyridine) QSAR sensor

activity equation is the sum of atomic polarizabilities that is calculated from

molecular mechanics inputs.

As described in the earlier sections, the QSAR sensor response models in this

work were developed by correlating experimental data of the training analyte set

with molecular descriptors. Fig. 8.8 shows a fit of QSAR model calculated versus
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Fig. 8.9 QSAR modeled array response for the training analytes: ammonia and chlorobenzene,

for the JPL ENose polymer-carbon composite sensors. Shown are a comparison of the calcu-

lated A1 coefficients (using QSAR model) and experimental values for the sensors. From left
to right are polymer-carbon composite sensors of: poly(2-vinyl pyridine), poly(styrene-co-

maleic acid), poly(epichlorohydrin-co-ethylene oxide), polyethylene oxide and poly(4-vinyl

pyridine)
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experimental A1 coefficients values for analytes for the polymer-carbon composite

sensors, consisting of polymers: poly(2-vinyl pyridine), poly(styrene-co-maleic

acid), poly(epichlorohydrin-co-ethylene oxide), and polyethylene oxide. A good

fit is seen for all these sensors. The r2 value corresponds to the fit the training

analyte data set and the diagonal line fit corresponds to the condition where the

calculated value is equal to the experimental value.

It would be interesting to consider some individual analytes from the training set

and do a comparison between the calculated and experimental A1 coefficients

values for these sensors. The QSAR calculated and the experimental A1 coefficients

values for ammonia and chlorobenzene of the training set is shown in Fig. 8.9.

The plot also includes data from an additional sensing film of poly(4-vinyl

pyridine)-carbon composite, in-addition to the four polymer-carbon sensing films

discussed above. Overall, there is a good match between these calculated and

experimental values over the entire sensor array.

Dichloroethane

0.0

0.1

0.05

0.2

0.15

0.3

0.25

0.35

0.4

0.45

0.5

C
oe

ffi
ci

en
t A

1

Experiment

Calculated

Benzene

0

0.05

0.1

0.15

0.2

0.25

0.3

C
oe

ffi
ci

en
t A

1

Experiment

Calculated

Fig. 8.10 QSAR modeled array response for test analytes: benzene and dichloroethane, for the
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Next, to investigate is the prediction ability of the QSAR models for these

polymer-carbon sensing films. As previously discussed, the test analytes are not a

part of the training analyte set that is used in forming the QSAR models using

GFA. Figure 8.8 shows how the activity of the test analytes is in close proximity

of the diagonal line, which reflects a condition of the calculated coefficient value

equal to the experimental value. We have plotted QSAR calculated and the

experimental coefficients A1 for test analytes benzene and dichloroethane in

Fig. 8.10. It can be seen that a good prediction is observed for all the sensors

which have different chemical functionalities. Furthermore, the above exercise

suggests that we can use this prediction ability of QSAR sensor models, as a tool

to predict the sensor response of untested analytes molecules to gauge the

response of various sensors. This further suggests the applicability of the QSAR

approach as a promising computational tool for sensing materials evaluation and

selection [11].

8.5 Conclusions

The approach of developing validated sensor response models by correlating

sensor response to analyte and sensor response descriptors using QSAR is a

promising one. These validated QSAR sensor response models have shown

good prediction capabilities. For a given sensing material, the validated model

can be used to predict sensor responses to new analytes prior to experimentation.

This can be expanded to other sensors in the array and an understanding of

whether the existing set of sensors in an array will respond to the new analyte

(s). Thus, QSAR sensor models can help in evaluation and selection, by allowing

us to determine whether an analyte is likely to induce a weak or strong response

in selected sensors. Subsequently, fewer experimental tests will need to be run on

any given sensor array. The development of sensor response models for individ-

ual sensors in the array will provide a tool for generating virtual training sets

for analytes that may not be easily tested, such as explosive or highly toxic or

compounds.

In order to develop a model which will provide predictions of sensor response

sufficient to use the calculated parameters in identification and quantification

software it will be necessary to go beyond calculating the linear term of a quadratic

equation. Further work on incorporating both terms is ongoing.
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Chapter 9

Design and Information Content of Arrays of

Sorption-Based Vapor Sensors Using Solubility

Interactions and Linear Solvation Energy

Relationships

Jay W. Grate, Michael H. Abraham, and Barry M. Wise

Abstract The sorption of vapors by the selective polymeric layer on a chemical

vapor sensor is described in detail and dissected into fundamental solubility inter-

actions. The sorption process is modeled in terms of solvation parameters for vapor

solubility properties and linear solvation energy relationships. The latter relation-

ships model the log of the partition coefficient as the sum of terms related to specific

types of interactions. The approaches are particularly applicable to the design and

understanding of acoustic wave chemical vapor sensors such as those based on

surface acoustic wave devices. It is shown how an understanding of solubility inter-

actions informs the selection of polymers to obtain chemical diversity in sensor arrays

and obtain the maximum amount of chemical information. The inherent dimension-

ality of the array data, as analyzed by principal components analysis, is consistent with

this formulation. Furthermore, it is shown how new chemometric methods have been

developed to extract the chemical information from array responses in terms of

solvation parameters serving as descriptors of the detected vapor.

9.1 Introduction

A sorption-based sensor for vapor sensing, as defined in this chapter, consists of a

microfabricated device with a thin layer of a selectively sorbent material on the

surface, as shown in Fig. 9.1. The sensor’s response arises from the quantity of
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vapor absorbed in the selective layer and the method by which the device trans-

duces this quantity of vapor into an analytical signal. The prototypical sorption

sensor is a gravimetric acoustic wave device that transduces the amount of sorbed

vapor as a mass into a change in resonant frequency. In this case, the sensor’s signal

is not dependent on specific analyte molecule properties except to the extent that

they affect the amount of vapor absorbed.

The sorption of neutral vapor molecules into a selective layer entails transfer of

vapor molecules from the gas phase where they have no interactions to a liquid or

solid phase where new interactions occur. There are a defined number of funda-

mental interactions in this process.

The influences of these fundamental interactions on vapor absorption, by sor-

bents such as polymers, can be modeled systematically using Linear Solvation

Energy Relationships (LSERs), as we shall describe below.

Because of the number and types of reversible interactions involved, and the

great number of vapors with similar interactive properties, a sensor based on

reversible absorption alone can never be perfectly selective. Accordingly, such

sensors are typically used in arrays, where the collective responses of all the sensors

give rise to a pattern that can be recognized using multivariate pattern recognition

methods. On the other hand, the limited dimensionality, or rank, of the data from

such arrays, and the fact that they can be modeled by LSERs, enables the extraction

of chemical information from array responses as vapor solvation parameters, as we

shall also describe below.

These approaches enable one to address basic issues with regard to the chemical

information associated with arrays of sorption-based sensors, including: (1) what

governs the selectivity of a sorbent layer on a sensor and how can you design or

select a layer for a specific detection application; (2) what type of information and

how much such information can be encoded in the responses of a sorption-based

sensor array; (3) how you design a sensor array so that the multivariate response

Fig. 9.1 The absorption of vapor molecules into the bulk of a selective layer on the surface of a

chemical microsensor
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provide the most complete and selective information achievable; and (4) how you

extract that information from the array data.

This chapter will be concerned with understanding the sorptive properties of

selective layers, focusing on polymers, using solubility interactions and LSERs.

Examples used in this chapter will come primarily from the use of polymer-coated

surface acoustic wave (SAW) devices as sensor and sensor array platforms [1–6].

However, many of the concepts are relevant to any sensor using a selective layer for

vapor absorption. Polymers are particularly useful as selective layers on sensors

because they offer rapid reversible absorption for organic vapors; their selectivities

are influenced by their chemical structures which can in turn be designed and

synthesized, and can be readily applied to sensor surfaces as adherent thin films.

9.2 Vapor Sorption and Sensor Responses

The sorption of a vapor is characterized by the thermodynamic partition coefficient,

K, which is the equilibrium distribution coefficient of the vapor between the gas phase

at concentration Cv and the sorbent phase at concentration Cs, as given in (9.1).

K ¼ Cs=Cv; (9.1)

R ¼ f Csð Þ; (9.2)

R ¼ f CvKð Þ: (9.3)

The response, R, of a sorption-based chemical sensor is a function of the amount of

vapor sorbed into the film, Cs, as indicated in Fig. 9.1 and (9.2). Since the partition

coefficient relates Cs to Cv, the response can be related to the partition coefficient

and the gas phase vapor concentration as shown in (9.3). If the function in (9.2) and

(9.3) is a simple linear relationship, then these equations can be rewritten as (9.4)

and (9.5) where S is a sensitivity factor.

R ¼ SCs; (9.4)

R ¼ SCvK: (9.5)

In these relationships, it is evident that the sensor response is dependent on the value

of K; therefore interactions that promote sorption and raise the value of K will favor-

ably influence the response of the sensor. The significance of K to vapor sorption and

detection using coated acoustic wave sensors has been noted especially in the case of

the quartz crystal microbalance (QCM) [7–9] and SAW sensors [10, 11].

Depending on the transduction mechanism of the sensor device, the sensitivity

factor or function may depend only on the characteristics of the coated device, or it

may also include factors that are specific to the particular vapor molecules that are
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absorbed. For an acoustic wave sensor acting as a purely gravimetric transducer,

there are no vapor molecule specific sensitivity factors, and the response can be

expressed as shown in (9.6) [11].

Dfv ¼ DfsCvK=rs: (9.6)

The response is a frequency shift denoted by Dfv. The parameter Dfs is a measure of

the amount of polymer on the sensor surface given by the frequency shift due to the

deposition of the film material onto the bare sensor. The parameter rs is the density
of the sorbent layer material. The quotient Dfs/rs in (9.6) then represents the

sensitivity factor S in (9.5); it only contains factors related to the characteristics

of the coated device.

The QCM is a purely gravimetric sensor given sufficiently thin polymer films

that move synchronously with the device surface [2, 3]. The SAW device can be a

gravimetric device but polymer-coated SAW sensors often have an additional

sensitivity to changes in the modulus of the polymer upon vapor sorption. The

modulus change is related to the volume of the sorbed molecules through their

influence on polymer film free volume [2, 12–18].

It is also possible to have a sorption-based sensor that responds to the amount of

vapor as a volume rather than the amount as a mass. For example, a carbon particle/

polymer composite can respond by this mechanism [12, 14, 19]. The response of a

volume-transducing sensor can be expressed as given in (9.7)

R ¼ vvS
0CvK: (9.7)

In this case the sensitivity factor S from (9.4) and (9.5) has been split into the

sensitivity parameter S0 and the vapor specific volume, vv. The latter factor is related
to the volume fraction of vapor in the polymer/vapor solution, fv = vvCvK and it

represents a vapor molecule specific factor in the sensitivity [12, 14].

If a polymer-coated SAW sensor does respond to both the mass of sorbed vapor

and its influence on polymer modulus via volume effects, then it acts as a mass-

plus-volume-transducing device whose response can be expressed by (9.8). The

first term has no vapor molecule-specific sensitivity factors while the second term

has vv, which will vary from vapor to vapor.

Dfv ¼ DfsCvK=rsð Þ þ vvS
0CvK: (9.8)

These relationships involving K relate to the steady state response of the sensor once

the vapor phase concentration has equilibrated with the sorbent phase. In most

sensor applications, it is desirable to reach this equilibration rapidly in order to

obtain a fast sensor response. Accordingly it is important that vapors diffuse rapidly

in the selective layer material. For polymers, the key parameter is the glass-

to-rubber transition temperature, Tg, which should be below the operating tempera-

ture of the sensor. Vapor diffusion is typically slow in glassy polymers below this

transition temperature, but can be much more rapid above the transition temperature

where the polymer is rubbery.
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9.3 Solubility Interactions and LSERs

9.3.1 Solubility Interactions in Vapor Absorption

The absorption of a vapor from the gas phase entails the dissolution of the vapor

into the bulk of the layer material, where the vapor molecule is the solute and the

layer material is the solvent. Conceptually, the dissolution step can be broken down

into the formation of a cavity within the material, occupation of that cavity by the

solute, and the development of favorable interactions between the solute and the

solvent. These interactions are, by definition, solubility interactions, including

dispersion interactions, dipole-induced dipole interactions, dipole-dipole interac-

tions, and hydrogen-bonding interactions [1]. These are the primary interactions

that can occur between a neutral vapor molecule and an uncharged polymer

material. The first three are often grouped together under the term van der Waals

interactions.

Dispersion interactions are also known as London forces and could be charac-

terized as instantaneous-dipole/instantaneous-dipole interactions. They are quite

general and can occur in the absence of permanent dipoles, since momentary or

“instantaneous” dipoles can exist due to the mobility of electrons around the

nucleus. Dispersion interactions, for example, occur between a nonpolar alkane

molecular solute and a nonpolar alkane solvent or simple aliphatic polymer. They

also occur in the interactions between all other organic molecules and polymers,

including those that may have additional heteroatoms and functional groups, and

thus may participate in additional interactions at the same time.

Dipole induced-dipole interactions, also called induction interactions, occur

between permanent dipoles and polarizable regions of a molecule or polymer.

The nearby charge of the permanent dipole induces a dipole in the polarizable

region, and hence the strength of this interaction depends on the strength of the

perturbing dipole and the polarizability of the perturbed region. Dipole-dipole

interactions are electrostatic interactions between the positively and negatively

charged regions of permanent dipoles. The strength of the interaction depends on

the dipole strengths and their orientations.

Hydrogen bonding interactions occur between the hydrogen atoms from the

“hydrogen-bond acid” and basic heteroatoms of a “hydrogen-bond base”. Hydrogen

bonding acidity (A) and basicity (B) must be distinguished from proton transfer

acidity and basicity. All references to acidity and basicity in this chapter refer to the

former and not to proton transfer.

Proton transfer is a reaction between an acid and a base leading to the conjugate
base and conjugate acid. Hydrogen bonding entails an interaction between a

hydrogen-bond acid and a hydrogen-bond base without proton transfer. Although

simple correlations between hydrogen bonding and proton transfer parameters can

be made within chemical families, such correlations do not hold up across all

different chemical families. There is no general relationship between proton trans-

fer pKa values and hydrogen-bond acidity, for example [20–22]. Resonance
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stabilization of a conjugate base can be quite significant in influencing proton

dissociation but is not so relevant to hydrogen-bonding interactions.

Table 9.1 provides solvation parameter values A and B for the hydrogen bonding

acidity and basicity, respectively, for selected compounds as solutes. Although

phenol and acetic acid have similar hydrogen bond acidities as indicated by their

A values of 0.60 and 0.62 respectively, acetic acid is a stronger proton dissociation

acid in water by five orders of magnitude. Urea is a stronger hydrogen bond base

than triethylamine as indicated by their B values, but urea is actually a weaker

proton acceptor base than triethylamine.

9.3.2 The LSER Model for Vapor Absorption

Solubility-dependent phenomena, such as partitioning of a vapor molecule between

the gas phase and a sorbent polymer, can be systematically modeled in terms of

solubility interactions using LSERs. These models are semi-empirical models

expressing a measure of the solubility-dependent phenomenon as a linear combina-

tion of terms related to the fundamental interactions. LSERs have been successful

in correlating a vast amount of solubility-dependent phenomena, often to the

precision of the available data [21, 23–26]. The application of LSERs to the

study of polymer-coated chemical sensors was introduced in 1988 [11] and has

been described in detail in a number of articles and reviews [1, 3, 4, 22, 27, 28].

Abraham developed the general form of the LSER equation, and the scales of sol-

vation parameters that are used to model vapor absorption. The LSER equation for

vapor sorption is given in (9.9), where K is the partition coefficient as defined in (9.1)

[1, 22, 24]. Recently the notation in (9.9a) has been simplified as shown in (9.9b) [26].

logK ¼ cþ rR2 þ spH2 þ a
X

aH2 þ b
X

bH2 þ 1 log L16; (9.9a)

logK ¼ cþ eEþ sSþ aAþ bBþ lL: (9.9b)

The independent variables in (9.9) are the solvation parameters serving as solute

descriptors: E is the solute excess molar refractivity in units of (cm3 mol�1)/10, S is

the solute dipolarity/polarizability, A and B are the overall or summation hydrogen

bond acidity and basicity, and L is the logarithm of the gas-hexadecane partition

coefficient at 298 K.

Table 9.1 Parameters for

hydrogen-bond acidity and

basicity for selected solutes

A B

Hexane 0.00 0.00

Methanol 0.43 0.47

Phenol 0.60 0.30

Acetic acid 0.61 0.44

Urea 0.50 0.90

Triethylamine 0.00 0.79
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Each term other than the constant contains a solute descriptor related to the

vapor’s solubility properties (E, S, A, B, L) and a coefficient (e, s, a, b, or l)
representing the complementary solubility properties of the sorbent phase acting as

the solvent (typically a polymer in the present context) [24, 26, 29]. Thus, log K is

modeled as a linear combination of terms related to particular types of interactions,

where e E is a polarizability term, s S is a dipolarity/polarizability term, a A is a

hydrogen-bonding term in which the vapor is the hydrogen-bond acid, b B is

a hydrogen-bonding term in which the vapor is the hydrogen-bond base, and l L
is a combined dispersion interaction and cavity term.

The solute descriptor E is a calculated excess molar refraction parameter that

provides a quantitative measure of polarizable n and p electrons. The solute

descriptor S measures a solute molecule’s ability to stabilize a neighboring charge

or dipole through dipole-dipole or dipole-induced dipole interactions. The hydro-

gen bonding parameters A and B measure effective hydrogen-bond acidity and

basicity, respectively, of the solute molecule. The L parameter, mostly determined

by gas-liquid chromatography, is a combined measure of exoergic dispersion

interactions that increase L and the endoergic cost of creating a cavity in hexade-

cane leading to a decrease in L. All of these parameters are free energy related. The

parameter scales were derived from measurements of complexation or partitioning

equilibria [26, 30–34]. The E parameter can be obtained from an experimental

refractive index of the liquid solute at 293 K, or can be obtained by an arithmetic

calculation from group contributions [35]. A recent review sets out in detail the

construction of the various solute parameters [26].

The l-coefficient is related to dispersion interactions and the cost of cavity

formation in the solvent phase. The s-coefficient is related to the solvent phase

dipolarity and polarizability. Similarly, the e-coefficient is related to polarizability.

The a- and b-coefficients, being complementary to the vapor hydrogen-bond acidity

and basicity, represent the solvent phase hydrogen-bond basicity and acidity, res-

pectively. The coefficients and the constant c are obtained by regressing the mea-

sured partition coefficients of a series of diverse solute vapors against the known

vapor solvation parameters using multiple linear regression. Typically the parti-

tion coefficients are determined by gas chromatographic measurements where the

solutes are injected on a column where the sorbent material of interest is the

stationary phase [36]. These partition coefficients represent the distribution coeffi-

cient with the vapor at infinite dilution.

LSER models have also been used to correlate the responses of polymer-coated

acoustic wave sensors with the vapor solvation parameters. This approach is most

rigorously correct if the sensor response is purely gravimetric and thus directly

proportional to the partition coefficient as given in (9.6). For an acoustic wave sensor

where the modulus contributes to the observed responses, as can be the case with

polymer-coated SAW devices, the responses remain proportional to partition coeffi-

cients, however the proportionality is affected by an analyte specific sensitivity factor

in the form of the vapor specific volume (see (9.8)) Nevertheless this is not a large

perturbation and good correlations can be obtained. This approach was first shown by

Zellers in 1993 for four polymers on SAW sensors [37]. In 2001, Grate et al. reported
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LSER equations determined from SAW sensor responses for fourteen polymers

that were “well-behaved” as sensor coatings and six less well-behaved materials,

obtained from sensor responses to eighteen diverse vapors [27]. The first use of QCM

devices to obtain data for the determination of LSER coefficients was reported in

2001 by Hierleman et al. [38] LSER modes were determined for six polysiloxanes.

9.3.3 Application to Polymeric Sensing Materials

The use of LSER models to understand polymer properties and the interactions

involved in vapor absorption can be illustrated by examining some specific poly-

mers. Figure 9.2 shows the structures of some polymers that have been

Fig. 9.2 The chemical structures of the repeat units of some diverse polymers used as sensing

layers. The top three are low polarity or polarizable polymers. The middle three are basic and

dipolar. The lower two polymers are strong hydrogen bond acids
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characterized by LSER methods or used as absorbent polymers on chemical vapor

sensors (or both) [27, 36]. Table 9.2 provides the LSER coefficients for several

polymers, as determined by using gas chromatographic methods to obtain the

required partition coefficients [36]. The first four polymers in Table 9.2 illustrate

structures with differing solubility properties as follows.

Poly(isobutylene) (PIB) is an aliphatic hydrocarbon polymer that can only

interact by dispersion interactions. Such polymers are useful for absorbing aliphatic

hydrocarbon vapors and are characterized by large l-coefficients. Another polymer

with similar properties is poly(dimethylsiloxane) (PDMS).

The addition of aromatic groups to a polymer can increase the polarizability, as

is the case with SXPH, a polysiloxane with 75% phenyl substituents and 25%

methyl substituents. The gas chromatography phase OV-25 has the same composi-

tion [39]. Such materials are good for sensitivity to chlorinated hydrocarbons, and

in combination with aliphatic materials (such as PIB), they help to distinguish

between various low polarity vapors such as aliphatic hydrocarbons, aromatic

hydrocarbons, and chlorinated hydrocarbons.

The nitrile groups of SXCN are highly dipolar and also basic, which can be seen

in the high s-coefficient for dipolarity and the high a-coefficient for basicity.

Another polymer with similar properties is poly(ethylene maleate)(PEM). Poly

(epichlorohydrin)(PECH), which has also been a useful sensor material, has weaker

dipolarity and basicity. Other basic polymers include polyethyleneimine (PEI) and

a pyridine-substituted polysiloxane (SXPYR).

On the other hand, the fluoroalcohol groups of SXFA are strongly hydrogen

bond acidic giving rise to a high b-coefficient for acidity [36, 40]. The latter

polymer is excellent for the absorption of basic vapors, such as organophosphorus

compounds, and has also been used in explosives detection [12, 27, 41–50].

A number of other polymers with strong hydrogen bond acidity such as BSP3,

have been designed and synthesized [5, 6, 51, 52], and these were recently reviewed

[53]. BSP3 has also been used in detection of organophosphorus compounds and in

sensor arrays [5, 6, 27, 42, 51, 54–57]. Prior to the development of SXFA and BSP3,

fluoropolyol (FPOL) was the sensing polymer most frequently used for its hydro-

gen-bond acidic properties [1, 5, 6, 11, 12, 18, 27, 36, 41–43, 48, 51, 58–70].

Table 9.2 LSER coefficients for selected polymers

Polymer Polarizability Dipolarity/

polarizability

Hydrogen

bond basicity

Hydrogen

bond acidity

Dispersion/cavity

e s a b l

PIB �0.077 0.366 0.180 0.000 1.016

SXPH 0.177 1.287 0.556 0.440 0.885

SXCN 0.000 2.283 3.032 0.516 0.773

SXFA �0.417 0.602 0.698 4.25 0.718

PEM �1.032 2.754 4.226 0.000 0.865

PECH 0.096 1.628 1.450 0.707 0.831

PEI 0.495 1.516 7.018 0.000 0.770

SXPYR �0.189 2.425 6.780 0.000 1.016

FPOL �0.672 1.446 1.494 4.086 0.810

9 Design and Information Content of Arrays of Sorption-Based Vapor Sensor 201



Given the solvation parameters for a vapor, and the LSER coefficients for a

polymer, the interaction terms can be calculated. Examining interaction terms

provides insights into the interactions that are most important in contributing to

the log of the partition coefficient, and hence sensor selectivity and sensitivity.

Table 9.3 illustrates the calculation of interaction terms for three polymers and

four vapors. Polarizability and dipolarity interactions can be taken as the sum of

(e E þ s S) where the e E term acts as a correction to the overall dipolarity/

polarizability interaction indicated by s S. The hydrogen bonding terms aA and bB
represent hydrogen-bonding interactions where the polymer is a base in the first

case and an acid in the second. Dispersion interactions favoring sorption can be

difficult to separate from the cost of forming a cavity. These effects can be

represented as the sum of the regression constant c and the l L term [71]. The

interactions in Table 9.3 have been calculated according to these combinations.

With hexane, only dispersion interactions are possible with any of the polymers.

Ethylamine is basic but only weakly dipolar, so one sees a strong hydrogen bonding

interaction with acidic SXFA. Dimethylformamide is strongly dipolar and strongly

basic. Accordingly, one sees a strong dipolar interaction with SXCN, and a strong

hydrogen bonding interaction with acidic SXFA. Ethanol is the only hydrogen

bond acidic vapor in this set, so one sees a significant hydrogen bonding interaction

with basic SXCN polymer. As ethanol is also basic, it also hydrogen bonds with

acidic SXFA.

In general, dispersion interactions are nearly always important in the sorption of

vapors from condensable liquids. If the vapor has the solubility properties to

interact by dipolar or hydrogen bonding interactions, then the polymer can be

selected to set up such interactions. These polar interactions can make a significant

contribution to the overall sorption and influence the selectivity of the sensor [22].

The discussion in this section has primarily addressed the use of LSERs to

understand polymer properties and vapor absorption. LSERs can also be used for

Table 9.3 Calculated interaction termsa for four vaporsb on three polymers

Polymer Vapor Dipolarity/

polarizability

Hydrogen

bonding

Hydrogen

bonding

Dispersion/

cavity

(eE + sS) aA bB (c þ l L)
PIB Hexane 0 – – 1.94

Et3N 0.04 – – 2.32

DMF 0.45 – – 2.45

EtOH 0.13 0.07 – 0.74

SXCN Hexane 0 – – 0.43

Et3N 0.34 – 0.41 0.72

DMF 2.99 – 0.38 0.82

EtOH 0.96 1.12 0.25 –0.48

SXFA Hexane – – – 1.84

Et3N 0.05 – 3.36 2.10

DMF 0.64 – 3.15 2.20

EtOH 0.15 0.26 2.04 0.99
aDashes indicate terms calculated to be zero
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the purposes of prediction. Log K values can be predicted for known vapors on

polymers whose LSER coefficients have been determined, according to (9.9), and

then gravimetric acoustic wave sensor responses can be predicted according to

(9.6). Such predictions have been used to assess the likely sensitivity and detection

limits for a variety of toxic volatile organic compounds [41]. These results pre-

dicted that SAW sensor arrays should be effective at achieving detection at or

below regulatory limits for many such compounds.

Many of the above topics have also been discussed in a review on gas chroma-

tography stationary phases [25]. LSER coefficients are given for a wide variety of

phases, including polymers, and are examined in terms of solute-phase interactions.

9.4 Chemical Diversity in Sensor Arrays

9.4.1 Chemical Diversity in Terms of Solubility Interactions

The purpose of any chemical analysis device or instrument is to determine chemical

information about the sample. Using a sensor array, the collective response of the

array must collect sufficient chemical information to distinguish responses from the

analyte(s) of interest from responses due to potentially interfering vapors. Accord-

ingly, the sensors in the array will ideally provide as much chemical information as

possible about the vapor sample so as to enable successful discrimination. Given an

array based on one type of transducer, such as a SAW array, the selection of

coatings for the array determines the type of chemical information that the sensor

responses will encode. Since the mechanism of the sensor response depends on the

amount of vapor absorbed, and the mechanism of vapor sorption depends on

fundamental solubility interactions, it follows that the chemical information

encoded by the sensor responses are related to these solubility interactions.

To maximize the chemical information that such an array encodes, the array

coatings must be selected so that all the relevant solubility interactions that a vapor

molecule can participate in are set up in the array. For example, if the array lacked a

hydrogen bond acidic coating, the array would collect no information about vapor

basicity properties.

Thus the overall objective is to create an array where each sorbent material

emphasizes a different solubility interaction or a combination of solubility interac-

tions, while ensuring the whole array probes all the available interactions [1, 4, 22].

Ideally, the sensors would produce completely orthogonal responses, although this is

not rigorously achievable using real materials and real absorption processes. Disper-

sion interactions, for example, will occur in all sorbent materials. Nevertheless, it is

possible to maximize particular solubility interactions in a given material while

minimizing others, in order to vary the selectivity of the materials within the array.

This strategy for varying the selectivities of the materials within a sorptive

sensor array was originally set out in 1991 by Grate and Abraham [1]. A sensor
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array with diverse properties could be designed by including a hydrogen-bond

acidic material with minimal basicity and modest dipolarity, a hydrogen-bond

basic material with no acidity and minimal dipolarity, a dipolar material minimiz-

ing basicity and having no acidity and a nonpolar polarizable material. This type of

array would thus include the full range of solubility properties discussed above, and

when used in combination with pattern recognition methods, they provide good

selectivity. Such an array could be called a chemically diverse array, and its

responses would encode chemical information about vapor solubility properties.

For vapor sensing applications, arrays would also include one or more materials

that have combinations of properties in order to maximize sensitivity to particular

vapors of interest.

The benefits of including sensingmaterialswith diverse properties, andmaximizing

these properties, can be further understood in terms of how the array responses spread

out the data for different vapors in the ‘feature’ space. Given n sensors, feature space

can be defined by n axes, each corresponding to the response of one of the sensors.

The response to each vapor exposure can be plotted in this n-dimensional feature

space. If several test vapors have similar properties, they will plot near each other in

the feature space. If these vapors are different, and the sensor coatings can respond to

these different properties, then they will plot out in different regions of the feature

space, and they will be distinguishable. Thus a sensor array with the most chemically

diverse set of coatings will best spread out a diverse set of vapors in the feature space,

and thus facilitate discrimination. A sensor material that interacts strongly by a

particular interaction will result in a sensor signal to an interacting vapor that plots

farther out on the axis representing that sensor. Thus it is desirable not only to include

all potential interactions in the array, but also tomaximize them in particularmaterials,

in order to best spread out the sensor responses in the feature space.

9.4.2 Dimensionality of Array Data

It is possible to create array systems with tens or hundreds of devices. Will an array

with one hundred different sensors provide more types of chemical information

than an array with ten different sensors?

Principal components analysis is a chemometric technique used to explore the

variance in a data set. It determines a set of principal components that are com-

pletely orthogonal which can describe the variance in the data.

If n-dimensional feature space is defined by n-sensors that are cross-correlated,

then the number of orthogonal principal components will be less than n. Many sensor

array studies have taken large data sets and performed principal components analysis.

For example, Kowalski and Carey analyzed data from 27 coated QCM sensors

exposed to 14 different vapors. Seven principal components could account for 95%

of the variance in the data set. Thus, seven coatings could be selected with the goal

to “span the space of all coatings using the fewest number of individual coatings

while retaining analyte discrimination” [72].
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Figure 9.3 illustrates principal components analysis of data from twenty coated

SAW sensors in response to eighteen chemically-diverse organic vapors [27].

Among the twenty coatings, fourteen were observed to be well-behaved sensors

without anomalous response behaviors. In the analysis, the number of coatings was

reduced from twenty, to fourteen, to seven, and finally to five, making certain to

include a diverse set of coatings according to the criteria noted above. The results

show that whether there are twenty coated sensors or just five diverse coated

sensors, there are at most four or five orthogonal principal components.

Therefore, it follows that more coatings does not necessarily provide more types

of chemical information. In addition, the dimensionality observed is consistent with

the discussion of solubility interactions and LSERs above.

9.4.3 Polymer Selection Approaches

A coating for a chemical sensor in an array needs to meet several criteria. All the

materials in the array should form thin films that result in sensors with rapid

responses that are sensitive, reversible, and reproducible over time. The set of

sensors for an array must provide a chemically diverse array. Given the large

number of potential polymer coatings for sensors, methods are required for

Fig. 9.3 Principal components plot from a data set of the responses of coated SAW sensors to

eighteen organic vapors, pattern normalized and autoscaled, showing the effect of reducing the

number of polymers on the spread of data in feature space, taking care to maintain chemical

diversity in the array as the number of polymers is decreased
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polymer selection. Many papers in the field of acoustic wave sensor arrays have

described down selection of materials for arrays [42, 58, 60, 69, 72–86]. The

effects of environmental factors such as temperature and humidity on sensor per-

formancewhich can influence polymer selection have also been noted [18, 75, 87, 88].

Screening materials for stability and reproducibility as thin films on sensors is often a

prerequisite to selection for a sensor array.

Several approaches can be used to select polymers for arrays and often some of

them are used in combination. In one approach, a diverse set of polymers can be

selected by considering how their structures will give rise to particular solubility

properties, and by selecting a set that will give the full range of solubility properties

described above.

Alternatively, a set of polymers could be characterized for their fundamental

sorptive properties by LSERs. A set of fourteen polymers and sorbents was so cha-

racterized on the basis of gas chromatographic measurements [36], and another

large set of polymers were modeled with LSERs using SAW sensor responses [27].

Then the LSER coefficients can be examined to select a set of polymers that span all

the interactions represented in the LSER equation and maximize the solubility

properties for particular interactions. In comparing coefficient values, it should be

noted that the solvation parameters, and hence their corresponding coefficients,

do not all scale with free energy equivalently. Free energy contributions can be

calculated for particular solvent/solute pairs for comparison, as illustrated above in

Table 9.3.

Additionally, the LSER coefficients for a large set of polymers can be examined

using unsupervised learning methods to examine distances and clustering in feature

space. Linear distances, and angular distances in pattern-normalized feature space,

can be used to assess similarities and differences. Clustering of similar materials

can be visualized from principal components plots and dendrograms [36]. Informa-

tion from these approaches can be used to select dissimilar polymers to obtain

chemical diversity.

Sensor response data can also be analyzed to select coatings. A diverse and large

set of coatings can be used to generate a data set of vapor responses, using a diverse

set of test vapors. These can be explored by unsupervised learning methods as just

discussed, again using principal components plots and dendrograms for visualiza-

tion. A set of coatings including one from each major group in a dendrogram, for

example, can be selected to obtain a diverse array. This approach was described in

the earliest papers on acoustic wave sensor arrays [4, 58, 60, 72].

Finally, polymer sets may be selected on the basis of the analytical purpose of

the array, comparing different sets of coatings for their success at a particular

analytical task the array has been designed to accomplish [4, 42, 60].

These various methods are not so different and typically they will all provide

similar options for polymer selection and array design. Polymer-coated acoustic

wave sensors and selection approaches have been reviewed previously [4]. A

variety of array studies have recognized or used the principles of polymer solubility

interactions to help guide selection of coatings for arrays [42, 74, 85, 89, 90].
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9.5 Extracting Chemical Information from Sensor Arrays

in Terms of Solvation Parameters

9.5.1 Information Content of Array Data

The responses of a gravimetric sorption-based sensor array are related to the

sorption of vapors by the polymer coatings. Accordingly, the chemical information

encoded by the array data is related to solubility interactions. The sorption of vapors

and hence sensor responses can be modeled using LSERs. The original intent of

applying LSERs to sorption-based sensors was to understand sorption and selecti-

vity, and convert empirical sensor development to a predictive science. However,

given that fact the data fit these models, which have a limited number of parameters,

it follows that the information content of the array data have limited dimensionality.

The limited dimensionality is confirmed in practice by PCA as described above.

While the limited dimensionality represents a drawback in terms of selectivity, it

can be an advantage in terms of being able to extract understandable information

from the array data.

Consider that given vapor solvation parameters and polymer LSER coeffi-

cients, partition coefficients can be predicted, which can in turn be used to cal-

culate sensor responses. If one knew the polymer parameters, and the partition

coefficients or sensor responses, it should be possible to calculate the vapor

solvation parameters. In this way, the responses of a well characterized array

might be used to determine the properties of the detected vapor as solvation

parameters, where these solvation parameters can then be regarded as descriptors

[12–14, 27, 43].

Conventionally, sensor array data are processed using neural networks or statis-

tical pattern recognition after a period of training, during which patterns to known

vapors are determined. After training, the array can classify unknown samples that

contain the known ones that were in the training. However, when confronted with

an unknown one that was not in the training, the array may be unable to classify it or

may misclassify it.

The use of array data to determine the descriptors of an unknown vapor has the

potential to provide useful chemical information about samples even if they were

not in the training set. This concept is shown in Fig. 9.4. The response vector, or

pattern, is converted to descriptors in terms of the solvation parameters from

LSERs. These descriptors could then be compared with the descriptors of known

vapors in a data base to determine the unknown vapor’s chemical identity or at least

its chemical class.

Two approaches, to be described below, can be envisioned. In one approach, the

response vector would be mathematically transformed into another vector contain-

ing all the descriptor values. In the second approach, models would be developed to

convert a pattern vector to a single descriptor, and a set of such models would be

developed to predict all the descriptors, one at a time.

9 Design and Information Content of Arrays of Sorption-Based Vapor Sensor 207



9.5.2 Classical Least Squares Approach

The transformation of the pattern vector into values for all the descriptors simulta-

neously can be carried out by a novel variant of classical least squares (CLS)

methods. In conventional CLS approaches, as commonly used in absorbance spec-

troscopy, the response matrix R (samples by channels), containing the responses of

the spectrometer, is modeled according to (9.10).

R ¼ CS: (9.10)

Here, C is a matrix of concentrations (samples by analytes). The matrix S contains

the pure component spectra (analytes by channels) and if these are known, the

Fig. 9.4 The concept of converting a sensor array pattern vector to the five solvation parameters,

using either a modified CLS approach or a set of ILS models
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concentrations C can be determined from R according to (9.11). (The superscript T

denotes the transpose of a matrix and the superscript of �1 denotes the inverse of a

matrix.)

C ¼ RST SST
� ��1

: (9.11)

The LSER equation can be expressed in matrix algebra according to (9.12), which

represents a collection of LSER relationships.

L ¼ VP: (9.12)

Matrix L, containing log K values, is related to matrix V containing the vapor

solvation parameters, and matrix P containing the polymer parameters. Matrix V is

defined so that each vector contains the five vapor solvation parameters and a vector

of ones (number of vapors by six), and similarly P is defined to contain the polymer

parameters including the constants (six by number of polymers).

Given an array of gravimetric sensors that respond according to (9.6), the

responses can be expressed in matrix algebra according to (9.13).

R ¼ C10 VPð ÞD�1F: (9.13)

Matrix R (vapors by polymers) contains the frequency shift values for the polymer-

coated sensors in response to single component vapor samples. The matrix C
(number of vapors by number of vapors) is a diagonal matrix of the concentrations

of the vapors, and F (number of sensors by number of sensors) is a diagonal matrix

of the Dfs values of the sensors. Similarly, the matrix D (number of polymers by

number of polymers) is a diagonal matrix of the densities of polymer materials on

the sensors.

Given the responses, R, the polymer parameters, P, and the sensitivity factors,

D�1 F, it is possible to solve for the vapor descriptors in V. However, the

concentrations in C must also be known, which is unlikely since the concentration

of an unknown vapor is not normally known.

Fortunately, the response model can be rearranged so that one solves for the log

of the concentration simultaneously with determining the descriptor values [43].

Augmentation of the V matrix (to Va) to contain the log of the vapor concentration

in addition to the descriptors for each vapor, and augmentation of the P matrix (to

Pa) with a vector of ones (see Table 9.1) yields the response model in (9.14).

R ¼ 10 VaPað ÞD�1F: (9.14)

Solutions for obtaining descriptors from array pattern vectors are then given by

(9.15a) and (9.15b).

flog RDF�1
� �gPT

a PaP
T
a

� ��1¼ Va; (9.15a)

flog rDF�1
� �gPT

a PaP
T
a

� ��1¼ va: (9.15b)

9 Design and Information Content of Arrays of Sorption-Based Vapor Sensor 209



This solution in (9.15a) is shown for an entire matrix of responses, R, where Va gives

the values of the descriptors E, S, A, B, and L, as well as the log of the concentration.
Alternatively, if the solution is expressed for a single sample as in (9.15b), the vector

of descriptors within va is obtained from a single response vector, r.
Similar equations and solutions have been developed for volume-transducing

sensors (see (9.7)) [14]. For mass-plus-volume-transducing sensors (see (9.8)) the

mathematics are more complicated, but estimation and optimization approaches

have been developed [12]. In general, studies have shown that these methods can be

applied to mass-plus-volume transducing arrays such as polymer-coated SAW

vapor sensor arrays in much the same way the approach is applied to purely

mass-transducing sensor arrays. The quality of the results depends to some extent

on the amount of variation in the extent to which modulus effects contribute to

sensor sensitivities across the polymers in the array.

The potential for using these CLS approaches to classify array responses has

been explored on large data sets using simulation methods [12, 14, 43]. Noise

models were applied to synthetic sensor array data. The precision with which the

solvation parameter descriptors can be obtained from array responses were deter-

mined as a function of the added noise. It was found that at 10% imposed noise,

most descriptors were obtained back at near the precision to which they are known.

Compared to the overall range of the descriptor values, the root mean square error

of prediction even at 20% noise is rather small. These results for a simulation of a

gravimetric sensor array are shown in Fig. 9.5.

One column is shown for each descriptor, with descriptor values on the left axis

for all but the log L16 descriptor, which is referenced to the right axis. The black

bars show the range of descriptor values. The small bars rising from zero on the

Fig. 9.5 Simulation results for obtaining descriptor values from array response data, comparing

prediction errors at various noise levels to the overall descriptor value ranges
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y-axis show the root mean square error of predictions for each descriptor at various

imposed noise levels [12]. These bars are all clearly quite small compared to the

overall range of descriptor values.

Once the descriptors for the unknown are obtained (found), they can be com-

pared with tables of descriptor values for the known compounds. Using prediction

errors to define an uncertainty around a descriptor value, matches can be deter-

mined in the data base where all five descriptors match, the found descriptors within

this uncertainty, and are returned as matches to the unknown. It was observed in the

simulations that at 10% noise, the vast majority of compounds were correctly

matched, and where there were multiple possible matches, most were within the

correct compound class [43].

The use of this modified CLS approach applies to array responses to single

compounds. While conventional CLS returns the concentration of each vapor in a

mixture, this modified approach treats the single detected vapor as a mixture of five

“pure components” corresponding to the solvation parameters, yielding five

descriptors for the vapor.

9.5.3 Inverse Least Squares Approach

The CLS approach just described determines the values of all the vapor descriptors

simultaneously by converting the array pattern vector to a vector containing the

descriptors and the log of the concentration. This approach requires that the

interactive properties of the sorbent sensing layers be known and quantified as

LSER-coefficients (polymer parameters), however the array need not have been

trained on a specific vapor in order to determine its descriptor values.

Inverse least squares (ILS) methods can also be used to obtain vapor descriptors

from array responses, in which case models are developed to determine each vapor

descriptor individually [27, 43]. This approach does not require advance knowledge

of polymer parameters, but it does require that an adequate calibration data set be

created to derive the ILS models, which constitutes a form of training. Once ILS

models are developed, however, an array could, in principle, be used to characterize

an unknown vapor in terms of its descriptor values, even if the specific unknown

vapor had not been in the training set used to develop the models.

The ILS method involves developing separate models for each vapor parameter,

y, as a weighted sum of the responses according to (9.16).

y ¼ Xb: (9.16)

Here, X is the measured response and b is a vector of weights, generally determined

by regression according to (9.17).

b ¼ Xþy: (9.17)
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In (9.17), Xþ is the pseudo inverse of X, which is defined differently depending

upon the type of regression to be used [91, 92]. In the case of polymer-coated

acoustic wave sensors, y corresponds to one of the 5 vapor solvation parameters and

X is the array response as the log of the measured responses, as suggested by (9.6)

and (9.9). Thus, the sensor responses (predictor variables) are related to the vapor

parameters (predicted variables).

Multiple linear regression (MLR) is the simplest ILS approach, where each

descriptor is modeled as the linear combination of sensor responses. Principal

components regression (PCR) and partial least squares (PLS) regression represent

Fig. 9.6 Calibration results for two solvation parameters using six-factor PCR models to process

SAW sensor array data into parameter values
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additional ILS methods, which can be more effective at making predictive models.

PCR and PLS model the parameter of interest as a linear combination of factors,

where the factors are themselves linear combinations of sensor responses (i.e.,

principal components or latent variables). MLR maximizes correlation with the

predicted variable (y), PCR captures maximum variance in the predictor variables

(X), and PLS tries to do both by maximizing covariance.

In processing sensor array data to obtain descriptors, the objective is to be able to

characterize the properties of the samples not in the training set, that is, to do

prediction. MLR is generally not as effective in creating predictive models because

it tends to overfit the data, modeling the noise as well as the meaningful chemical

information. However, it does produce very good correlations, and the correlation

of vapor descriptor values with array responses using MLR has been demonstrated

successfully [27]. These correlations look very good compared to typical correla-

tions in physical organic chemistry. The correlations developed by fitting using six

factor PCR models are shown for two solvation parameters in Fig. 9.6.

In developing predictive models with PCR and PLS, selection of an appropriate

number of factors is important; the factors should contain the chemical information

while filtering out noise. Principal components analysis (PCA) and cross-validation

techniques have been used in factor selection in analyzing a data set with twenty

diverse polymers tested against 18 diverse vapors. For both PCR and PLS methods,

the results supported the selection of six factors. Six factors were required, whereas

more than six did not help. These results are consistent with models and studies

described above. Principal components analysis (see Fig. 9.3) suggests that there

are not more than five orthogonal components in pattern normalized data. There are

5 solvation parameters used to model vapor sorption, and concentration is also a

separate factor in the log transformed data. Thus, the inherent dimensionality and

structure of the experimental data were consistent with the models that were the

basis of the approach.

9.6 Conclusions

This chapter has set out the basics of vapor sorption, modeling with LSERs, and the

applications of this knowledge to acoustic wave sensor arrays. Although other

sensor types may respond with different transduction mechanisms, and these

transduction mechanisms may contain analyte specific sensitivity factors, the un-

derstanding of vapor sorption is still fundamental to understanding sensor response,

and may actually be necessary for investigating transduction mechanisms. There-

fore, the knowledge of vapor sorption as systematically set out in terms of solubility

interactions and LSERs provides a foundation for understanding selectivity in

vapor sensing.

In the field of acoustic wave sensors, the approach is particularly applicable,

enabling understanding, prediction of sensor responses, and more recently,

providing a new means to extract chemical information from the array data.

9 Design and Information Content of Arrays of Sorption-Based Vapor Sensor 213



Acknowledgments JWG would especially like to acknowledge the many former coworkers and

collaborators who played key roles in the development of polymer-coated acoustic wave sensors.

He gratefully acknowledges funding from US Department of Energy, National Nuclear Security

Administration, Office of Nonproliferation Research and Development (NA-22) for past funding

and Laboratory Directed Research and Development funds of the US DOE, administered by the

Pacific Northwest National Laboratory, for current funding. The William R. Wiley Environmental

Molecular Sciences Laboratory, a US DOE scientific user facility operated for the DOE by PNNL

is also acknowledged. The Pacific Northwest National Laboratory is a multiprogram national

laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute.

References

1. Grate, J. W.; Abraham, M. H., Solubility interactions and the selection of sorbent coating

materials for chemical sensors and sensor arrays, Sens. Actuators B 1991, 3, 85–111

2. Grate, J. W.; Martin, S. J.; White, R. M., Acoustic wave microsensors, Anal. Chem. 1993, 65,
940A–948A, 987A–996A

3. Grate, J. W.; Frye, G. C., Acoustic Wave Sensors, In Sensors Update; Baltes, H.; Goepel, W.;

Hesse, J., Eds.; VSH, Weinheim, 1996, Vol. 2, 37–83

4. Grate, J. W., Acoustic wave microsensor arrays for vapor sensing, Chem. Rev. 2000, 100,
2627–2648

5. Grate, J. W.; Kaganove, S. N.; Nelson, D. A., Carbosiloxane polymers for chemical sensors,

Chem. Innovations 2000, 30(11), 29–37
6. Grate, J. W.; Nelson, D. A., Sorptive polymeric materials and photopatterned films for gas

phase chemical microsensors, Proc IEEE 2003, 91, 881–889

7. Janghorbani, M.; Freund, H., Application of a piezoelectric quartz crystal as a partition

detector: Development of a digital sensor, Anal. Chem. 1973, 45, 325–332
8. Edmunds, T. E.; West, T. S., A quartz crystal piezoelectric device for monitoring organic

gaseous pollutants, Anal. Chim. Acta 1980, 117, 147–157

9. McCallum, J. J.; Fielden, P. R.; Volkan, M.; Alder, J. F., Detection of toluene diisocyanate

with a coated quartz piezoelectric crystal, Anal. Chim. Acta 1984, 162, 75–83

10. Snow, A.; Wohltjen, H., Poly(ethylene maleate)-cyclopentadiene: A model reactive polymer-

vapor system for evaluation of a saw microsensor, Anal. Chem. 1984, 56, 1411–1416
11. Grate, J. W.; Snow, A.; Ballantine, D. S.; Wohltjen, H.; Abraham, M. H.; McGill, R. A.;

Sasson, P., Determination of partition coefficients from surface acoustic wave vapor sensor

responses and correlation with gas-liquid chromatographic partition coefficients, Anal. Chem.
1988, 60, 869–875

12. Grate, J. W.; Wise, B. M.; Gallagher, N. B., Classical least squares transformations of sensor

array pattern vectors into vapor descriptors. Simulation of arrays of polymer-coated surface

acoustic wave sensors with mass-plus-volume transduction mechanisms, Anal. Chim. Acta
2003, 490, 169–184

13. Wise, B. M.; Gallagher, N. B.; Grate, J. W., Analysis of combined mass and volume

transducing sensors arrays, J. Chemometr 2002, 17, 463–469
14. Grate, J. W.; Wise, B. M., A method for chemometric classification of unknown vapors from

the responses of an array of volume-transducing sensors, Anal. Chem. 2001, 73, 2239–2244
15. Grate, J. W.; Zellers, E. T., The fractional free volume of the sorbed vapor in modeling the

viscoelastic contribution to polymer-coated surface acoustic wave vapor sensor responses,

Anal. Chem. 2000, 72, 2861–2868
16. Grate, J. W.; Kaganove, S. N.; Bhethanabotla, V. R., Examination of mass and modulus

contributions to thickness shear mode and surface acoustic wave vapour sensor responses

using partition coefficients, Faraday Discuss. 1997, 107, 259–283

214 J.W. Grate et al.



17. Grate, J. W., Sensing glass transitions in thin polymer films on acoustic wave microsensors, In

Assignment of the Glass Transition, ASTM STP 1249; Seylor, R. J., Ed.; ASTM, Philadel-

phia, 1994, 153–164

18. Grate, J. W.; Klusty, M.; McGill, R. A.; Abraham, M. H.; Whiting, G.; Andonian-Haftvan, J.,

The predominant role of swelling-induced modulus changes of the sorbent phase in determin-

ing the responses of polymer-coated surface acoustic wave vapor sensors, Anal. Chem. 1992,
64, 610–624

19. Severin, E. J.; Lewis, N. S., Relationships among resonant freqency changes on a coated

quartz crystal microbalance, thickness changes, and resistance responses of polymer-carbon

black composite chemiresistors, Anal. Chem. 2000, 72, 2008–2015
20. Abraham, M. H.; Doherty, R. M.; Kamlet, M. J.; Taft, R. W., A new look at acids and bases,

Chem. Br. 1986, 22 551–554

21. Kamlet, M. J.; Doherty, R. M.; Abboud, J.-L. M.; Abraham, M. H.; Taft, R. W., Solubility: A

new look, CHEMTECH 1986, 16, 566–576

22. Grate, J. W.; Abraham, M. H.; McGill, R. A., Sorbent polymer coatings for chemical sensors

and arrays, In Handbook of Biosensors: Medicine, Food, and the Environment; Kress-Rogers,

E.; Nicklin, S., Eds.; CRC Press, Boca Raton, FL, 1996, 593–612

23. Kamlet, M. J.; Taft, R. W., Linear solvation energy relationships. Local empirical rules - or

fundamental laws of chemistry? A reply to the chemometricians, Acta Chem. Scandinavica B
1985, 39, 611–628

24. Abraham, M. H., Scales of hydrogen-bonding: Their construction and application to physico-

chemical and biochemical processes, Chem. Soc. Rev. 1993, 22, 73–83
25. Abraham, M. H.; Poole, C. F.; Poole, S. K., Classification of stationary phases and other

materials by gas chromatography, J. Chromatogr. A 1999, 842, 79–114

26. Abraham, M. H.; Ibrahim, A.; Zissimos, A. M., Determination of sets of solute descriptors

from chromatographic measurements, J. Chromatogr. A 2004, 1037, 29–47

27. Grate, J. W.; Patrash, S. J.; Kaganove, S. N.; Abraham, M. H.; Wise, B. M.; Gallagher, N. B.,

Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic

wave sensor array responses, Anal. Chem. 2001, 73, 5247–5259
28. McGill, R. A.; Abraham, M. H.; Grate, J. W., Choosing polymer coatings for chemical

sensors, CHEMTECH 1994, 24, 27–37

29. Abraham, M. H.; Andonian-Haftvan, J.; Whiting, G.; Leo, A.; Taft, R. W., Hydrogen bonding.

Part 34. The factors that influence the solubility of gases and vapours in water at 298 K, and a

new method for its determination, J. Chem. Soc. Perkin Trans. 1994, 2, 1777–1791
30. Abraham, M. H.; Grellier, P. L.; Prior, D. V.; Duce, P. P.; Morris, J. J.; Taylor, P. J., Hydrogen

bonding. Part 7. A scale of solute hydrogen-bond acidity based on log K values for complex-

ation in tetrachloromethane, J. Chem. Soc. Perkin Trans. II 1989, 699–711
31. Abraham, M. H.; Grellier, P. L.; Prior, D. V.; Morris, J. J.; Taylor, P. J., Hydrogen bonding.

Part 10. A scale of solute hydrogen-bond basicity using log K values for complexation in

tetrachloromethane, J. Chem. Soc. Perkin Trans. 1990, 2, 521–529
32. Abraham, M. H.; Whiting, G. S.; Doherty, R. M.; Shuely, W. J., Hydrogen bonding. XVI. A

new solute solvation parameter, pi2h, from gas chromatographic data, J. Chromatogr. 1991,
587, 213–228

33. Abraham, M. H.; Fuchs, R., Correlation and prediction of gas-liquid partition coefficients in

hexadecane and olive oil, J. Chem. Soc. Perkin Trans. II 1988, 523–527
34. Abraham, M. H.; Grellier, P. L.; McGill, R. A., Determinatin of olive oil-gas and hexadecane-

gas partition coefficients, and caculation of the corresponding olive oil-water and hexadecane-

water partition coefficients, J. Chem. Soc., Perkin Trans. II 1987, 797–803
35. Abraham, M. H.; Whiting, G. S.; Doherty, R. M.; Shuely, W. J., Hydrogen bonding. Part 13. A

new method for the characterisation of glc stationary phases - The laffort data set, J. Chem.
Soc. Perkin Trans. 2 1990, 1451–1460

36. Abraham, M. H.; Andonian-Haftvan, J.; Du, C. M.; Diart, V.; Whiting, G.; Grate, J. W.;

McGill, R. A., Hydrogen bonding. XXIX. The characterisation of fourteen sorbent coatings

9 Design and Information Content of Arrays of Sorption-Based Vapor Sensor 215



for chemical microsensors using a new solvation equation, J. Chem. Soc. Perkin Trans. 1995,
2, 369–378

37. Patrash, S. J.; Zellers, E. T., Characterization of polymeric surface acoustic wave sensor

coatings and semiempirical models of sensor responses to organic vapors, Anal. Chem. 1993,
65, 2055–2066

38. Hierlemann, A.; Zellers, E. T.; Ricco, A. J., Use of linear solvation energy relationships for

modeling responses from polymer-coated acoustic-wave vapor sensors, Anal. Chem. 2001, 73,
3458–3466

39. Abraham, M. H.; Whiting, G. S.; Andonian-Haftvan, J.; Steed, J. W.; Grate, J. W., Hydrogen

bonding XIX. The characterization of two poly(methylphenylsiloxane)s, J. Chromatogr 1991,
588, 361–364

40. Grate, J. W., Siloxanes with strongly hydrogen bond donating functionalities, US Patent

5,756,631: 1998

41. Grate, J. W.; Patrash, S. J.; Abraham, M. H., Method for estimating polymer-coated acoustic

wave vapor sensor responses, Anal. Chem. 1995, 67, 2162–2169
42. Grate, J. W.; Kaganove, S. N.; Patrash, S. J., Hydrogen-bond acidic polymers for surface

acoustic wave vapor sensors and arrays, Anal. Chem. 1999, 71, 1033–1040
43. Grate, J. W.; Wise, B. M.; Abraham, M. H., Method for unknown vapor characterization and

classification using a multivariate sorption detector. Initial derivation and modeling based on

polymer-coated acoustic wave sensor arrays and linear solvation energy relationships, Anal.
Chem. 1999, 71, 4544–4553

44. McGill, R. A.; Chung, R.; Chrisey, D. B.; Dorsey, P. C.; Matthews, P.; Pique, A.; Mlsna, T. E.;

Stepnowski, J. L., Performance optimization of surface acoustic wave chemical sensors, IEEE
Trans. Ultrason. Ferroelec. Freq. Contr. 1998, 45, 1370–1379

45. Pinnaduwage, L. A.; Thundat, T.; Hawk, J. E.; Hedden, D. L.; Britt, R.; Houser, E. J.;

Stepnowski, S.; McGill, R. A.; Bubb, D., Detection of 2,4-dinitrotoluene using microcanti-

lever sensors, Sens. Actuators B 2004, 99, 223–229

46. Patel, S. V.; Mlsna, T. E.; Fruhberger, B.; Klaassen, E.; Cemalovic, S.; Baselt, D. R.,

Chemicapacitive microsensors for volatile organic compound detection, Sens. Actuators B
2003, B96, 541–553

47. Cunningham, B. T.; Kant, R.; Daly, C.; Weinberg, M. S.; Pepper, J. W.; Clapp, C.; Bousquet,

R.; Hugh, B., Chemical vapor detection using microfabricated flexural plate silicon resonator

arrays, Proc. SPIE-Int. Soc. Opt. Eng. 2000, 4036, 151–162
48. Houser, E. J.; Mlsna, T. E.; Nguyen, V. K.; Chung, R.; Mowery, R. L.; Andrew McGill, R.,

Rational materials design of sorbent coatings for explosives: Applications with chemical

sensors, Talanta 2001, 54, 469–485

49. Mlsna, T. E.; Cemalovic, S.; Warburton, M.; Hobson, S. T.; Mlsna, D. A.; Patel, S. V.,

Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical

detection, Sens. Actuators B 2006, 116, 192–201

50. Patel, S. V.; Hobson, S. T.; Cemalovic, S.; Mlsna, T. E., Chemicapacitive microsensors for de-

tection of explosives and tics,Proc. SPIE-Int. Soc. Opt. Eng. 2005, 5986, 59860M/1–59860M/10

51. Grate, J. W.; Kaganove, S. N.; Patrash, S. J.; Craig, R.; Bliss, M., Hybrid organic/inorganic

copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical

sensors, Chem. Mater. 1997, 9, 1201–1207
52. Grate, J. W.; Kaganove, S. N., Hydrosilylation: A versatile reaction for polymer synthesis,

Polymer News 1999, 24, 149–155
53. Grate, J. W., Hydrogen-bond acidic polymers for chemical vapor sensing, Chem. Rev. 2008,

108, 726–745

54. Lu, C. J.; Zellers, E. T., Multi-adsorbent preconcentration/focusing module for portable-gc/

microsensor-array analysis of complex vapor mixtures, Analyst 2002, 127, 1061–1068
55. Lewis, P. R.; Manginell, R. P.; Adkins, D. R.; Kottenstette, R. J.; Wheeler, D. R.; Sokolowski,

S. S.; Trudell, D. E.; Byrnes, J. E.; Okandan, M.; Bauer, J. M.; Manley, R. G.; Frye-Mason, G.

C., Recent advancements in the gas-phase microchemlab, IEEE Sensors J. 2006, 6, 784–795

216 J.W. Grate et al.



56. Lu, C. J.; Whiting, J.; Sacks, R. D.; Zellers, E. T., Portable gas chromatograph with tunable

retention and sensor array detection for determination of complex vapor mixtures, Anal.
Chem. 2003, 75, 1400–1409

57. Hsieh, M. D.; Zellers, E. T., Adaptation and evaluation of a personal electronic nose for

selective multivapor analysis, J. Occup. Environ. Hyg. 2004, 1, 149–160
58. Ballantine, D. S.; Rose, S. L.; Grate, J. W.; Wohltjen, H., Correlation of surface acoustic wave

device coating responses with solubility properties and chemical structure using pattern

recognition, Anal. Chem. 1986, 58, 3058–3066
59. Wohltjen, H.; Snow, A. W.; Barger, W. R.; Ballantine, D. S., Trace chemical vapor detection

using saw delay line oscillators, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1987, UFFC-
34, 172–177

60. Rose-Pehrsson, S. L.; Grate, J. W.; Ballantine, D. S.; Jurs, P. C., Detection of hazardous

vapors including mixtures using pattern recognition analysis of responses from surface

acoustic wave devices, Anal. Chem. 1988, 60, 2801–2811
61. Grate, J. W.; Klusty, M.; Barger, W. R.; Snow, A. W., Role of selective sorption in chemir-

esistor sensors for organophosphorous detection, Anal. Chem. 1990, 62, 1927–1924
62. Fox, C. G.; Alder, J. F., Development of humidity correction algorithm for surface acoustic

wave sensors. Part 1. Water adsorption isotherms on coated surface acoustic wave sensors,

Anal. Chim. Acta 1991, 248, 337–44

63. Snow, A. W.; Sprague, L. G.; Soulen, R. L.; Grate, J. W.; Wohltjen, H., Synthesis and

evaluation of hexafluorodimethylcarbinol functionalized polymers as microsensor coatings,

J. Appl. Poly. Sci. 1991, 43, 1659–1671
64. Grate, J. W.; Rose-Pehrsson, S. L.; Venezky, D. L.; Klusty, M.; Wohltjen, H., Smart sensor

system for trace organophosphorus and organosulfur vapor detection employing a tempera-

ture-controlled array of surface acoustic wave sensors, automated sample preconcentration,

and pattern recognition, Anal. Chem. 1993, 65, 1868–1881
65. Collins, G. E.; Rose-Pehrsson, S. L., Chemiluminescent chemical sensors for oxygen and

nitrogen dioxide, Anal. Chem. 1995, 67, 2224–30
66. Collins, G. E.; Buckley, L. J., Conductive polymer-coated fabrics for chemical sensing,

Synthetic Metals 1996, 78, 93–101
67. Grate, J. W.; Kaganove, S. N., Hybrid organic/inorganic copolymers films with strongly

hydrogen-bond acidic properties for vapor sensing, Polymer Preprints 1997, 38, 955
68. Zellers, E. T.; Park, J.; Tsu, T.; Groves, W. J., Establishing a limit of recognition for a vapor

sensor array, Anal. Chem. 1998, 70, 4191–4201
69. Park, J.; Groves, W. A.; Zellers, E. T., Vapor recognition with small arrays of polymer-coated

microsensors. A comprehensive analysis, Anal. Chem. 1999, 71, 3877–3886
70. Cai, Q.-Y.; Park, J.; Heldsinger, D.; Hsieh, M.-D.; Zellers, E. T., Vapor recognition with an

integrated array of polymer-coated flexural plate wave sensors, Sens. Actuators 2000, B62,
121–130

71. Martin, S. D.; Poole, C. F.; Abraham, M. H., Synthesis and gas chromatographic evaluation of a

high temperature hydrogen bond acid stationary phase, J. Chromatogr. A 1998, 805, 217–235

72. Carey, W. P.; Beebe, K. R.; Kowalski, B. R.; Illman, D. L.; Hirschfeld, T., Selection of

adsorbates for chemical sensor arrays by pattern recognition, Anal. Chem. 1986, 58, 149–153
73. Zellers, E. T.; Batterman, S. A.; Han, M.; Patrash, S. J., Optimal coating selection for the

analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays,

Anal. Chem. 1995, 67, 1092–1106
74. Rapp, M.; Boss, B.; Voigt, A.; Bemmeke, H.; Ache, H. J., Development of an analytical

microsystem for organic gas detection based on surface acoustic wave resonators, Fresenius J.
Anal. Chem. 1995, 352, 699–704

75. Zellers, E. T.; Han, M., Effects of temperature and humidity on the performance of polymer-

coated surface acoustic wave vapor sensor arrays, Anal. Chem. 1996, 68, 2409–2418
76. Barie, N.; Rapp, M.; Ache, H. J., Uv crosslinked polysiloxanes as new coating materials for

saw devices with high long-term stability, Sens. Actuators, B 1998, B46, 97–103

9 Design and Information Content of Arrays of Sorption-Based Vapor Sensor 217



77. Avila, F.; Myers, D. E.; Palmer, C., Correspondence analysis and adsorbate selection for

chemical sensor arrays, J. Chemom. 1991, 5, 455–65
78. Nakamoto, T.; Sasaki, S.; Fukuda, A.; Moriizumi, T., Selection method of sensing membranes

in an odor sensing system, Sens. Mater. 1992, 4, 111–119
79. Yokoyama, K.; Ebisawa, F., Detection and evaluation of fragrances by human reactions using

a chemical sensor based on adsorbate detection, Anal. Chem. 1993, 65, 673–7
80. Cao, Z.; Lin, H.-G.; Wang, B.-F.; Wang, K.-M.; Yu, R.-Q., Piezoelectric crystal sensor array

used as an organic vapor sensing system, Microchem. J. 1995, 52, 174–80
81. Eda, Y.; Takisawa, N.; Shirahama, K., Responses of polymer-coated piezoelectric crystals to

organic vapors, Sens. Mater. 1995, 7, 405–14
82. Cao, Z.; Lin, H.-G.; Wang, B.-F.; Chen, Z.-Z.; Ma, F.-L.; Wang, K.-M.; Yu, R.-Q., Discrimi-

nation of vapors of alcohols and beverage samples using piezoelectric crystal sensor array,

Anal. Lett. 1995, 28, 451–66
83. Deng, Z.; Stone, D. C.; Thompson, M., Selective detection of aroma components by acoustic

wave sensors coated with conducting polymer films, Analyst 1996, 121, 671–679
84. Cao, Z.; Lin, H.-G.; Wang, B.-F.; Xu, D.; Yu, R.-Q., A perfume odor-sensing system using an

array of piezoelectric crystal sensors with plasticized pvc coatings, Fresenius’ J. Anal. Chem.
1996, 355, 194–199

85. Lau, K.-T.; Micklefield, J.; Slater, J. M., The optimisation of sorption sensor arrays for use in

ambient conditions, Sens. Actuators B 1998, B50, 69–79
86. Hoyt, A. E.; Ricco, A. J.; Bartholomew, J. W.; Osbourn, G. C., Saw sensors for the room-

temperature measurement of co2 and relative humidity, Anal. Chem. 1998, 70, 2137–2145
87. Liron, Z.; Greenblatt, J.; Frishman, G.; Gratziani, N., Temperature effect and chemical

response of surface acoustic wave (saw) single-delay-line chemosensors, Sens. Actuators B
1993, 12, 115–122

88. Hierlemann, A.; Wiemar, U.; Kraus, G.; Schweizer-Berberich, M.; Goepel, W., Polymer-

based sensor arrays and multicomponent analysis for the detection of hazardous organic

vapours in the environment, Sens. Actuators B 1995, 26–27, 126–134
89. Hierlemann, A.; Wiemar, U.; Kraus, G.; Gauglitz, G.; Goepel, W., Environmental chemical

sensing using quartz microbalance sensor arrays: Application of multicomponent analysis

techniques, Sens. Mater. 1995, 7, 179–189
90. Park, J.; Zhang, G.-Z.; Zellers, E. T., Personal monitoring instrument for the selective

measurement of multiple organic vapors, Am. Ind. Hyg. Assoc. J. 2000, 61, 192–204
91. Beebe, K. R.; Pell, R. J.; Seasholtz, M. B., Chemometrics: A practical guide; Wiley, New

York, 1998

92. Wise, B. M.; Gallagher, N. B., The process chemometrics approach to process monitoring and

fault detection, J. Process Control 1996, 6, 329–348

218 J.W. Grate et al.



Part III

Designing Sensing Arrays



Chapter 10

A Statistical Approach to Materials Evaluation

and Selection for Chemical Sensor Arrays

Baranidharan Raman, Douglas C. Meier, and Steve Semancik

Abstract We present a generic approach for designing sensor arrays for a given

chemical sensing task. First, we present a correlation-based metric to systematically

assess the analytical information obtained from the conductometric responses of

chemiresistive films as a function of their operating temperatures and material

composition. We illustrate how this measure can also be used to test the reproduci-

bility of signals obtained from sensors of equal manufacture. Next, complementing

the correlation-based analysis, we employ a statistical dimensionality-reduction

algorithm to visualize the multivariate sensor response obtained from sensor arrays.

We adapt this method to quantify the discriminability of chemical fingerprints.

Finally, we show how to determine an optimal set of material compositions to be

incorporated within an array for individual species’ recognition when practical

constraints/tradeoffs on fabrication are also considered. We validate our approach

by designing a microsensor array for the task of recognizing a chemical hazard at

sub-lethal concentrations in complex environments.

10.1 Introduction

How is a chemical sensor array designed for a specific application? Determining

appropriate sensing materials with which to populate a sensor array is a key step

that critically influences the device’s performance. While an approach based on first

principles may be applicable for tasks involving a few simple analytes in well-

controlled background conditions, such studies become infeasible for broad-

spectrum applications involving several complex targets in a wide variety of

ambient conditions and in the possible presence of interfering gases. In this chapter,
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we present a generic computational approach to this combinatorial problem.

Our approach incorporates statistical methods for processing multivariate sensor

responses to assess their similarity, test reproducibility, and to determine their

analytical content. Furthermore, practical tradeoffs on manufacturability such as

array size and the number of materials used, etc., can also be easily incorporated

into our approach. We demonstrate this methodology for the illustrative problem

of recognizing a target chemical hazard (ammonia, NH3) at sub-lethal concen-

trations, under varying ambient conditions, and in the presence of interfering

chemicals. To approximate relevant real-world conditions, NH3 at immediate

danger to life and health (IDLH; around 300 mmol/mol for NH3) concentrations

are introduced individually into synthetic air at three different relative humidi-

ties (10%, 30% and 70%) and/or infused with the vapors of any one of the

following common products: bleach (Clorox [1]), interior house paint, window

cleaner (Windex [1]) and floor stripper (ZEP [1]) (see Fig. 10.1). The challenge

here is to evaluate different chemiresistive sensing materials, as well as their

temperature-dependent responses, and to determine how to populate and operate

a microsensor array for detecting and recognizing NH3 in these well defined

backgrounds and ambient conditions.

We note that a number of approaches have been proposed to optimize the

composition of a chemical sensor array; readers are referred to [2–4] for a

detailed review on this topic. In this chapter, we present specialized operational

schemes to enhance the analytical content of sensor response, and adopt standard

statistical algorithms to create qualitative and quantitative methods for designing

and evaluating array-based solutions for a wide variety of detection problems.

0 60 120 180 240 300 360 420 480 540 600

Time (min)

NH3

Relative
Humidity

ZEP

30 % 
RH

70 % 
RH

10 % 
RH

Paint Clorox Windex

Fig. 10.1 Analyte delivery protocol used for data collection. The solid continuous bar in the

bottom row indicates the humidity levels (10% RH, 30% RH and 70% RH) at different time

periods during a cycle. Four common, commercially available interferences (middle row) each at

1% of their saturated vapor concentration were used to simulate realistic scenarios. The periods of

NH3 introduction are shown in the top row. The last three target analyte introductions were graded

such that the concentrations gradually changed from zero to maximum and then returned in a

similar fashion. Reprinted with permission from ref [21]. Copyright 2009 Elsevier
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10.2 The Sensing Platform

A suitable platform to meet the analytical requirements of this task that provides

considerable benefits with respect to its cost, speed, size and power consumption is

the MEMS-based microhotplate array [5]. An optical micrograph of a single

microhotplate array element is shown in Fig. 10.2a. Each array element contains

three functional components (see layered schematic in Fig. 10.2b): a polycrystalline

silicon resistor for heating, a chemically sensitive film, and interdigitated platinum

electrodes that enable measurement of the conductance of the sensing film that is

deposited onto the array element. The lateral dimensions of this miniaturized device

are in the order of�100 mm, with a mass of�250 ng. The device has a thermal time

constant of a few milliseconds, and an operating temperature range from ambient to

500�C. The localized temperature control offered by microhotplates, along with

their fast heating/cooling characteristics, makes them ideal both for self-lithographic,

thermally activated chemical vapor deposition (CVD) processes [6] and for device

operation with temperature programming, wherein each element is independently

cycled through multiple temperatures during sensor measurements [7]. Each

microsensor array consists of a collection of individually addressable temperature-

controlled elements as shown in Fig. 10.2c. A 40-pin dual in-line packaged device is

shown in Fig. 10.2d.

Fig. 10.2 Microsensor array platforms. (a) An optical microscopy image of a single microhotplate

microsensor element. (b) A layered schematic showing the three primary components of the

microsensor elements: polycrystalline silicon heater, interdigitated platinum electrodes, and

metal oxide sensing film. (c) A microsensor array with 16 individually addressable, temperature-

controlled elements. (d) A 40-pin dual in-line packaged microsensor device
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Typically, selectivity is imparted to these sensor arrays by employing diverse

sensing materials that ideally generate non-redundant information about the target

chemical species (Fig. 10.3). However, for sensing tasks with complex analytical

requirements, the selectivity of the device can be further enhanced by modulating

an operating parameter of each sensor element (e.g. temperature of a chemiresistive

sensor) and capturing the responses for a wide range of parameter values. For the

ammonia detection and recognition problem, we will use four different materials

and capture their responses at 32 different temperatures.

10.2.1 Sensing Materials

In general, elements in a sensor array can be populated with materials from

different classes, including for example, metal oxides [8–13], conducting polymers

[14], and others [2, 15]. Metal oxide semiconductor films were chosen as the

chemically sensitive component in the devices used here, for a variety of reasons.

They are known to undergo chemical interactions with gas species ranging from

surface-mediated oxidation of analyte gases to charge transfer upon analyte chemi-

sorption [8, 12, 15]. These interactions, as a result of electron transfers between

adsorbed gases and a surface-depletion layer, cause a repeatable change in the

electrical conductance of the film, thus yielding a measurable and recognizable

signal [16]. These conductance changes have been shown to be temperature depen-

dent, materials dependent, and most importantly, analyte dependent for compounds

from the simple (e.g., CO) to the complex (e.g., chemical warfare agent molecules)

[11, 16, 17]. The oxides are also robust materials capable of withstanding wide

excursions of temperature, which we can use to enhance the analytical content of

the signal stream.

For the purposes of broad-spectrum detection required by this task, we consider

the following four semiconducting metal oxide films: tin (IV) oxide (SnO2), tin (IV)

oxide coated with titanium (IV) oxide (SnO2/TiO2), titanium (IV) oxide (TiO2), and

Substrate

Materials Operating Temperature T(t)

Improving selectivity

T1 T2 T3

T6T5T4

Substrate

Fig. 10.3 Selectivity can be imparted through use of diverse materials each operated at a fixed

operating parameter (left panel). A more sophisticated approach to enhance the selectivity of the

array involves capturing the responses of each sensor element as a function of a chosen operating

parameter (e.g. temperature)
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titanium (IV) oxide coated with ruthenium oxide (TiO2/RuOx). Tin oxide (SnO2)

has been a widely used chemiresistive transduction material in thick-film sensors

[18], and has also been successfully employed in microhotplate arrays [19].

It provides sensitive detection responses for most hydrocarbons. Titanium oxide

(TiO2), while significantly more resistive than SnO2, exhibits a larger signal range

for water vapor [20]. Furthermore, the oxides of titanium and tin have different

suboxide states available to them, providing for the possibility of different reac-

tion pathways for incident analytes. It follows that these materials would be

expected to produce different conductance signatures for different analytes. In

this study, the electron-rich SnO2 and RuOx were combined with electron-poor

TiO2 films in order to increase the film baseline conductance and concomitantly

modify the surface chemistry.

Each of these films was deposited onto the array using a CVD process.

Briefly, vapor-phase precursors, tin(IV) nitrate anhydrous at 30�C, titanium

(IV) 2-propoxide at 30�C, and triruthenium dodecacarbonyl at 65�C, were

delivered sequentially at 7 standard cm3/min (sccm). Each precursor was given

a 10-min chamber equilibration period prior to film deposition. Furthermore,

after a deposition cycle was completed, clean Ar was delivered through all

delivery lines for 10 min prior to starting the next precursor, in an effort to

reduce cross-contamination. After the initial equilibration period, the target

microhotplate element(s) were heated to 375�C, decomposing the precursor to

form localized thin solid film(s). Since the microhotplate elements are individu-

ally addressable, different materials can be deposited on a selected subset of the

array. The deposition period for the SnO2 and TiO2 pure films was 20 s and 120

s, respectively. For the mixed metal oxide films, the two materials were depos-

ited in series: SnO2 for 5 s followed by TiO2 for 60 s and TiO2 for 60 s followed

by Ru for 90 s. The deposited films were subsequently annealed in zero-grade

dry air at 1 standard l/min (slm) for 30 min. A more detailed description of this

CVD processes is available elsewhere [21]. Figure 10.4a shows the optical

images of these different films, and the sensing film microstructures are shown

as SEM micrographs in Fig. 10.4b.

10.2.2 Temperature Programmed Sensing

The metal oxide sensing films themselves, while robust, are only partially selective

andwill respond tomany analytes. However, it can be expected that any given analyte/

sensing material pair will generate distinguishing characteristics in its electrical

conductance profile if one measures the effects of temperature-dependent variations

in chemical interactions at the surface, which can/will involve other co-adsorbed

species from the background. Hence, each sensing film within our microhotplate

array is programmed to cycle through many temperatures in a pulsed mode such

as that illustrated in Fig. 10.5, in order to capture a greater range information

on temperature-dependent interactions between analytes and sensing films.
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Fig. 10.5 Temperature Programmed Sensing. The temperature program used to operate the

sensing elements toggles the temperature between multiple (left: 28; right: 32) ramp values that

sample most of the temperature range of the device and different baseline temperature (left: 2;

right: 4) values to allow “relaxation” toward some initial state prior to each ramp temperature.

Moreover, different baselines also allow different film-analyte interactions (adsorption/desorption,

decomposition, and reaction) at the sensing surface prior to the ramp measurements. The dwell

time at each temperature (period of the pulse) was typically on the order of 200 ms. A conductance

measurement was made at each base and ramp temperature, but only the ramp values were used for

further analysis in this study

Fig. 10.4 Materials chosen for ammonia detection problem. (a) Optical microscopy images of the

four films used in this study (size of scale bar applies to all panels): tin oxide (SnO2), tin oxide

coated with titanium oxide (SnO2/TiO2), titanium oxide (TiO2) and titanium oxide coated with

ruthenium oxide (TiO2/RuOx). Four copies of each material were used in arrays for this work.

(b) Scanning electron microscopy images of the four films (scale bar applies to all panels).

Reprinted with permission from ref [21]. Copyright 2009 Elsevier
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This mode of operation, which is expected to greatly enhance the analytical content of

the microsensor signal over that of fixed-temperature sensing, is referred to as

temperature-programmed sensing (TPS) [7, 11].

10.3 Analyte Delivery

A custom gas delivery manifold was used to separately deliver four analyte stream

components: target-laden zero-grade dry air, interference-laden dry air, humid air, and

balance dry air. This manifold features non-reactive tubing for each input stream

connected to a central cell, where sample blending occurred. Metered concentrations

of NH3 were delivered from pre-blended commercial cylinders. Interference vapors

were introduced by bubbling metered quantities of dry air through vessels containing

the interference candidate, after which the saturated gas stream was delivered via

dedicated lines to the central cell (thus interferences are reported in percent satura-

tion). In order to reduce biases stemming from fractional evaporation of interference

mixtures, the liquid sources were replaced regularly. Interference introduction was

performed using this method for final concentrations of up to 1% saturation at room

temperature. Humid air was generated by metering zero-grade dry air through a dew

point generator. Test cell humidity could thus be varied between 0% relative humidity

(RH) and 90% RH at 25�C using this apparatus. The water vapor concentrations at

10% RH, 30% RH, and 70% RH were 2.8 mmol/mol, 8.4 mmol/mol, and 19.6 mmol/

mol, respectively. The balance dry air was adjusted such that at any point in time, the

sum total flow rate of these four “single-component” streams into the central cell was

1 slm. A sensor cell that housed the microsensor array was placed downstream from

the mixing manifold.

10.4 Statistical Methods for Sensor Material Selection

Capturing the conductance response of a variety of materials, each operated at

different temperatures, generates a large data set from the sensor array for any

analyte. Figure 10.6 illustrates the responses of a single tin oxide chemiresistor at

the 32 ramp temperatures. The quadratic, 4-base TPS (refer to Fig. 10.5) was used in

acquiring the data in Fig. 10.6. The top panel indicates the different analytes to which

the sensor was exposed during the corresponding measurement (same as Fig. 10.1).

The responses of the sensor with respect to the most recent baseline response are

shown along the y-axis. Each trace indicates a single isotherm, i.e. response of SnO2

at a specific temperatures. It is not clear from this multivariate sensor response (a)

whether the different temperatures are generating orthogonal or similar information

about the presence of ammonia, and (b) whether there is sufficient information to

detect and identify all ammonia introductions that would be made in a testing

sequence (refer to Fig. 10.1). In the remainder of this chapter, we will examine

statistical methods that allow us to analyze such multivariate sensor responses.
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10.4.1 Assessment of Material Similarity

To assess similarity/orthogonality of conductometric responses generated by sensor

materials and temperature programs, we present a measure based upon pair-wise

correlation. Suppose x is a one-dimensional vector of conductance measurements

made at each of the different training conditions using a material M1 at temperature

T1 (equivalent to one isotherm in Fig. 10.6), and y is a one-dimensional vector of

conductance measurements made using sensing material M2 at temperature T2,
then the correlation between responses of M1 at T1 and M2 at T2 is calculated as

Covðx; yÞ
sxsy

; (10.1)

where Cov(x,y) is the covariance of x and y, sx and sy are their respective standard
deviations. A simple example illustrating the distribution of two simulated sensor

responses for different degrees of correlations is provided in Fig. 10.7. It can be

clearly seen that as correlation increases, the data converge along the diagonal i.e.

given one sensor response the predictability of the other sensor behavior also
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Fig. 10.6 Multivariate sensor responses. The responses of a single tin oxide chemiresistor at 32

different temperatures are shown. The top panel identifies the different measurement conditions

over time (x-axis) to which the sensor was exposed during the measurement. The y-axis shows the
response of the sensor registered with respect to the most recent baseline response. Each trace

indicates a single isotherm, i.e. response of SnO2 at a specific temperature
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increases (indicates redundancy). An illustration of correlation analysis between

SnO2 isotherms at 60�C and 480�C is shown in Fig. 10.8.

10.4.1.1 Is Different Information Really Acquired at Different Temperatures?

In order to determine whether the TPS mode of operation generates additional infor-

mation from each film composition, we compute, for each film type, the correlation

between its responses to different conditions at different temperatures. A detailed plot

illustrating the correlation coefficients for the four films employed in the illustrative

NH3detectionproblem is shown inFig. 10.9. Eachpixel shows the correlation between

two isotherms of the same material. Only the absolute values of the significant

correlations (P< 0.001) are shown (the t-test is not valid for the diagonal elements,

which represent self-correlations, as the denominator becomes zero). Lighter pixels

indicate higher correlations and darker pixels represent lower correlations. The greater

the correlation, the more similar or redundant is the information generated.

The correlation plots shown in Fig. 10.9 reveal that in the case of the TiO2 films

with and without RuOx coating, the lower temperature responses correlate well

amongst themselves, but not with those obtained at higher temperatures. Similarly,

the high temperature responses correlate well only amongst themselves. This lack of

correlation between the two temperature bands indicates that different analytical

information is obtained from these bands. Interestingly, the TiO2/RuOx film shows

a lack of correlation between the low-temperature features on the upward vs. down-
ward portion of the temperature program, indicating a dependence on thermal history.

In the case of SnO2 films both with and without TiO2, all temperature features appear

Corr = 0.0 Corr = 0.25 Corr = 0.5

Corr = 0.75 Corr = 1.0

Sensor1, temp1

S
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, t
em
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Fig. 10.7 Illustration of the distribution of two sensor responses occurring for different degrees of

correlation between them
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to be well correlated (notice the change in the scale bar). However, as in the case

of TiO2 films, the high-temperature features and low-temperature features show a

greater degree of correlation only amongst themselves. Hence, for the four sensing

materials, different information is generated at low and high temperatures.

Correlation = 
0.9724
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Fig. 10.8 Demonstration of correlation analysis. (Top) SnO2 electrical conductance isotherms at

60�C and 480�C in response to different conditions indicated schematically at the top of the figure.

(Bottom) The responses at 60�C vs. 480�C to different conditions lie along the diagonal, showing a

greater degree of correlation between the two isotherms. Reprinted with permission from ref. [21].

Copyright 2009 Elsevier
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10.4.1.2 Is Different Information Generated by Different Film Types?

The self-correlations computed between temperature features within film types do

not provide any insights into the similarity/orthogonality across multiple materials.

To evaluate this, we compute cross-correlation across isotherms of different film

types. Figure 10.10 shows the cross-correlation plots for a single copy of the four

different metal oxides. The diagonal blocks show self-correlations and are essen-

tially the same as in Fig. 10.9. We observe lower correlations between different film

types, indicating that the four materials contribute non-redundant information

towards NH3 recognition.
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Fig. 10.9 Correlation analysis to assess similarity/orthogonality of material-temperature combi-

nations. Intensity-coded representation of the correlation coefficients between conductometric

responses of each of the four sensing materials at different temperatures. Note that light areas

indicate high correlation and dark areas show lower degrees of correlation. Only the absolute

values of correlations that are significant (P< 0.001) are shown. Reprinted with permission from

ref. [21]. Copyright 2009 Elsevier

10 A Statistical Approach to Materials Evaluation 231



10.4.2 Assessment of Material Reproducibility

To determine reproducibility of the chosen films, we fabricated four replicas of

each film type in a 16-element microsensor array. Figure 10.11 shows cross-

correlation across two copies of each material. A qualitative evaluation of the

reproducibility of the sensing materials can be made by visually comparing the

correlation patterns. Copies of a single film type (e.g., SnO2 vs. SnO2) show similar

correlation patterns across temperature features, indicating that the films produced

through the CVD process generate information that is highly reproducible between

devices of equivalent manufacture. However, amongst the four film types used, the

TiO2/RuOx films show the least-conserved cross-correlation patterns, especially at

lower temperatures, indicating lower reproducibility compared to the other three

film types used in these studies.

10.4.3 Dimensionality Reduction for Qualitative Analysis
of Analytical Information

The correlation analysis uncovers relationships between conductometric responses

of different materials at different operating temperatures, but does not provide

insights into what information is contributed by each film type and whether

the chosen materials and temperature programs provide sufficient analytical
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at different temperatures reveals that the chosen sensing materials contribute non-redundant infor-

mation for recognizing NH3. Reprinted with permission from ref. [21]. Copyright 2009 Elsevier
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information to allow species recognition. In order to determine this, we visualize

the multi-dimensional sensor array response using linear discriminant analysis

(LDA) [22]. LDA is a dimensionality reduction technique that finds a few principal

directions that maximize separation between classes and minimize variance within

a single class. This is done by finding the eigenvectors of S�1
W SBwhere SW and SB

are the within-cluster and between-cluster scatter matrices, respectively, defined

as follows:

SW ¼
XQ¼8

q¼1

X
x2oq

ðx� mqÞðx� mqÞT; (10.2)

SB ¼
XQ¼8

q¼1

ðmq � mÞðmq � mÞT; (10.3)

mq ¼
1

nq

X
x2oq

x and m ¼ 1

n

X
8x

x; (10.4)
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Fig. 10.11 Reproducibility analysis. Correlations across two copies of each sensing material

deposited onto a 16- element array for the NH3 detection problem. Reprinted with permission

from ref. [21]. Copyright 2009 Elsevier
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where x is a linear projection of sensor response along Q � 1 linear discriminant

axes, Q is the number of conditions (eight clusters corresponding to the following

conditions: NH3 at 30% RH, NH3 at 10% RH, NH3 at 70% RH, NH3þ ZEP, NH3þ
Clorox, NH3 þ Windex, NH3 þ Paint, and backgrounds without NH3), mq and nq
are the mean vector and number of examples for condition q, respectively, n is the

total number of examples in the dataset, and m is the mean vector of the entire

distribution. An illustration of the LDA dimensionality reduction where responses

from two sensors are projected onto a single dimensional space is shown in

Fig. 10.12.

Figures 10.13 and–10.16 show the scatter plot after dimensionality reduction

of the multi-dimensional sensor response obtained by concatenating the sensor

conductance values at the 32 ramp temperature of individual sensing films. Each

three-dimensional object indicates one of the eight possible conditions of inter-

est: NH3 at 30% RH (n), NH3 at 10% RH (3), NH3 at 70% RH ("), NH3 þ ZEP

(u), NH3 þ Clorox (V), NH3 þ Windex (s), NH3 þ Paint (t) and backgrounds

without NH3 (l; includes response to three humidity levels and four interferences

without the target analyte). From the LDA plots it is clear that all of the chosen films

can contribute, to varying degrees, to NH3 detection and recognition. The ability

to distinguish NH3 clusters from the background improves as additional materials

are included for this analysis (Figs. 10.17–10.19), and as the array size is systemati-

cally increased (Figs. 10.20–10.22).

10.5 Optimization of Array Configuration

To quantify the separability of the different analyte clusters and compare the films

performance for this analytical problem, we derive a measure from Fisher’s LDA

[22] that can be defined as follows:

J ¼ trace ðSBÞ
traceðSBÞ þ traceðSWÞ ; (10.5)

where SW and SB are the within-cluster and between-cluster scatter matrices

[see 10.2) and (10.3)], respectively. Being the ratio of the spread between classes

relative to the spread within each class, the measure J increases monotonically as

analyte clusters become increasingly more separable. Figure 10.23 compares

15 array configurations for NH3 cluster separability alone. It is clear that the

SnO2 films (pure and doped with TiO2) are better suited for fulfilling the analytical

requirements of this problem. We can also observe that the separability increases as

we add different materials (higher diversity – compare configurations 1, 5, 6, and 7)

or add multiple copies of the same material (higher redundancy - compare config-

urations 1, 11, 12, and 13).
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To determine the optimal material composition for the NH3 detection problem,

we define an objective function that takes into account the sufficiency of a solution

(i.e. NH3 cluster separability as defined in (10.5)), and a penalty term for incorpora-

tion of practical constraints/tradeoffs on manufacturability. For discussions here,
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Fisher’s linear discriminants
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we will consider the following two resources independently: array size and the

number of materials used.

Figure 10.24 shows the comparison of the same 15 configurations as in

Fig. 10.23 with an extra penalty term for the array size:
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Fig. 10.21 Dimensionality reduction analysis of 3 copies of SnO2 þ 3 copies of SnO2/TiO2 þ 3

copies of TiO2þ 3 copies of TiO2/RuOx responses. Scatter-plot of the conductometric responses at

different conditions (see legend) after dimensionality reduction using Fisher’s linear discriminants
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J1 ¼ trace ðSBÞ
traceðSBÞ þ traceðSWÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NH3 cluster separability

� g1
� # sensing elements|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

penalty term 1

: (10.6)

The penalty term imposes a constraint that each additional element added must

improve the overall NH cluster separability by g1 (¼0.02 in Fig. 10.24) in order to

improve the objective function (J1). Due to this additional constraint, note that

configuration # 10 (four copies of all four films), which provided maximum

chemical hazard separability (see Fig. 10.23), is no longer the best solution. We

find that the best array configuration with the fewest number of sensing elements to

be a three-element array with a copy of the following sensing materials: SnO2,

SnO2/TiO2, and TiO2.

Figure 10.25 shows the comparison of the same 15 configurations as in

Figs. 10.23 and 10.24 but now with an extra penalty term for the number of sensing

materials used:
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Fig. 10.23 Comparison of different combination of sensing materials for cluster separability

(see 10.5): 1 – SnO2; 2 – SnO2/TiO2; 3 – TiO2; 4 – SnO2/RuOx; 5 – SnO2 þ SnO2/TiO2; 6 – SnO2

þ SnO2/TiO2 þ TiO2; 7 – SnO2 þ SnO2/TiO2 þ TiO2 þ TiO2/RuOx; 8 – two copies of SnO2 þ
two copies of SnO2/TiO2 þ two copies of TiO2 þ two copies of TiO2/RuOx; 9 – three copies of

SnO2 þ three copies of SnO2/TiO2 þ three copies of TiO2 þ four copies of TiO2/RuOx; 10 – four

copies of SnO2 þ four copies of SnO2/TiO2 þ four copies of TiO2 þ four copies of TiO2/RuOx;

11 – two copies of SnO2; 12 – three copies of SnO2; 13 – four copies of SnO2; 14 – four copies of

SnO2 þ four copies of SnO2/TiO2; 15 – four copies of SnO2 þ four copies of SnO2/TiO2 þ four

copies of TiO2
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J2 ¼ trace ðSBÞ
traceðSBÞ þ traceðSWÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NH3 cluster separability

� g2
� # sensing materials|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

penalty term 2

: (10.7)

Note that the penalty term coefficient g2 (=0.1) was set at greater than g1. As array
configurations that employed all four sensing materials in consideration were

penalized more, we now find that the best array configuration employing the fewest

sensing materials to be a four-element array with four copies of SnO2 sensors alone.

10.6 Conclusions

We have presented statistical methods that provide a generalizable methodology for

designing and evaluating array-based solutions for a specific detection problem.

We demonstrated this approach and tuned a microsensor array for the problem of

identifying NH3 in the presence of interferences at fixed mixing-ratios and ambient

condition changes by controlling the sensor material composition within the array

and designing rapid temperature programs that enhance the analytical information
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Fig. 10.24 Comparison of different combination of sensing materials for cluster separability with

a penalty for the number of sensing elements used (see (10.6)): 1 – SnO2; 2 – SnO2/TiO2; 3 – TiO2;

4 – SnO2/RuOx; 5 – SnO2 þ SnO2/TiO2; 6 – SnO2 þ SnO2/TiO2 þ TiO2; 7 – SnO2 þ SnO2/

TiO2þTiO2 þ TiO2/RuOx; 8 – two copies of SnO2 þ two copies of SnO2/TiO2 þ two copies of

TiO2 þ two copies of TiO2/RuOx; 9 – three copies of SnO2 þ three copies of SnO2/TiO2 þ three

copies of TiO2 þ four copies of TiO2/RuOx; 10 – four copies of SnO2 þ four copies of SnO2/TiO2

þ four copies of TiO2 þ four copies of TiO2/RuOx; 11 – two copies of SnO2; 12 – three copies of

SnO2; 13 – four copies of SnO2; 14 – four copies of SnO2 þ four copies of SnO2/TiO2; 15 – four

copies of SnO2 þ four copies of SnO2/TiO2þfour copies of TiO2
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obtained from each element in the array as a function of time. These advances

are critical to the production of pre-programmed microsensors for non-invasive,

real-time, multi-species recognition relevant to homeland security and other appli-

cations involving trace analyte detection in complex chemical cocktails.
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Chapter 11

Statistical Methods for Selecting the Components

of a Sensing Array

Margie L. Homer, Hanying Zhou, April D. Jewell, and Margaret A. Ryan

Abstract An electronic nose which uses an array of conductometric chemical

sensors has been developed at the Jet Propulsion Laboratory; the JPL Electronic

Nose is to be used as an event monitor in human habitat in a spacecraft. This sensor

array is designed to identify and quantify 10–15 organic and inorganic species in

air. The earlier generation/version JPL electronic noses consisted of 32 polymer-

carbon black composite sensors; the target analytes included volatile organics as

well as ammonia. This third generation electronic nose has a new suite of target

analytes, and so, a new set of sensors was selected. In addition to volatile organic

chemicals, the target analytes include the inorganic species: ammonia, sulfur

dioxide and elemental mercury. The most recent array under development has 32

sensors; additional materials were selected in order to detect inorganic species and

polymer-carbon black composite sensors were reevaluated. In the development of

such a device, we must select sensors suitable for the detection of targeted analytes,

and we must be able to evaluate both the sensors and the array response. This

chapter will discuss the statistical tools and experimental criteria used to evaluate

and select materials in the sensing array.

11.1 Introduction

The JPL Electronic Nose (ENose) is a fully operational system designed to fill

the gap between an alarm which responds to the presence of chemical com-

pounds with little or no ability to distinguish among them, and an analytical
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instrument that is able to distinguish all the compounds present but with no real-

time or continuous event monitoring ability. The specific analysis scenario

targeted for this development is one of leaks or spills of specific compounds. It

has been shown in the analysis of samples taken from space shuttle flights and the

International Space Station (ISS) that, in general, the air is kept clean by the air

revitalization system and that the contaminants are present at levels significantly

lower than the Spacecraft Maximum Allowable Concentrations (SMACs) [1].

The JPL ENose has therefore been developed to detect targeted chemical species

released suddenly into the breathing environment; the sensing system in the JPL

ENose is a chemical sensing array made up of 32 semi-selective conductometric

sensors.

Two generations of the JPL ENose have previously been shown to be able to

detect, identify and quantify a variety of organic analytes, as well as the inorganic

species, ammonia and hydrazine [2–4]. The first generation ENose was tested in

the laboratory and subsequently on Space Shuttle flight STS-95 in 1998 for 6

days, and was shown to detect, identify and quantify nine volatile organic

compounds as well as ammonia and water against a breathing-air background

[2, 3]. The second generation ENose was tested in the laboratory and shown to

detect, identify and quantify 20 volatile organic compounds as well as ammonia

and water against an air background [4]. In these two generations of the JPL

ENose, the 32 sensors in the array were all polymer–carbon composite conducto-

metric sensors.

The third generation ENose has been developed for demonstration and testing on

board the ISS. For this application, the target analytes include eight organic and

three inorganic species; the species which are new to the JPL ENose are elemental

mercury and sulfur dioxide [5, 6]. As SO2 is toxic at parts-per-million (ppm) level

concentrations (the OSHA Time-Weighted Permissible Exposure Limit is 5 ppm),

and elemental mercury is toxic at parts-per-billion (ppb) levels, a system monitor-

ing cabin air quality should be able to rapidly identify and quantify these contami-

nants at these concentrations so that appropriate measures may be taken to protect

the health of the crew.

In developing the third generation ENose, we elected to use the same system

platform as the second generation device and to design and optimize a sensing array

which would be sensitive to both the organic and inorganic analytes. Key to this

design was the decision to maintain the platform, which meant maintaining 32

sensor elements; thus, we elected to study the existing array for its response to

organic analytes and then to determine which sensors could be replaced, either with

other polymer–carbon composite sensors or with other materials to provide ade-

quate response to inorganic analytes. Designing an array to include the detection of

inorganic analytes included the possibility of using new sensor platforms for the

new sensors as well as developing novel sensing films for the new target analytes.

Once selected, the new sensor array was evaluated for performance. The final test of

array suitability was the application of the Levenberg-Marquardt Non-Linear Least

Squares (LMNLS) identification and quantification algorithm developed for the

earlier generation ENoses [7].

246 M.L. Homer et al.



Table 11.1 shows the targeted analytes, which include volatile organic com-

pounds as well as inorganic species, and concentration ranges of interest. We have

previously reported the successful detection of SO2 for concentrations as low as 0.2

ppm (200 ppb) [5] and of elemental mercury at concentrations as low as 2 ppb [6]

by selection of specific materials for the task. The ability of ENose to detect

ammonia in the single ppm to sub-ppm range has been shown in the previous

generations [2, 3].

Selection and optimization of the ENose sensing array to detect the new set of

analytes was an iterative process which included a series of evaluations and

analyses of the sensors as individual elements and of the array as a whole. The

first round of analysis determined whether the existing array was adequate for

the set of analytes under consideration. Both experimental and statistical analysis

of the array determined that the array was not adequate for the detection of the third

generation set of analytes.

Based on analysis of the existing data and modeling, as described in Chaps. 3

and 8 of this volume, a preliminary set of sensors was selected for evaluation.

This chapter will focus on the evaluation of this preliminary set of sensors using

statistical evaluation of sensor responses and sensor reproducibility. The final

selection of sensors for the array includes the consideration of statistical analysis

as well as more practical considerations such as ease of sensor fabrication

and sensor reproducibility. We also present results from the final evaluation of

the array through the use of the LMNLS identification and quantification

algorithm.

11.2 Initial Sensor and Array Evaluation

11.2.1 Experimental Methods

The analysis of sensor arrays involves fabricating sensor arrays for testing and

exposing the arrays to a set of target analytes at the concentration ranges of interest.

Table 11.1 Analytes of interest, with target concentration ranges at 1 atm

Analyte Target Conc (ppm) Quantification range (ppm)

Ammonia 5 1.6–15

Mercury 0.01 0.003–0.03

Sulfur Dioxide 1 0.3–3

Acetone 270 90–810

Dichloromethane 10 3–30

Ethanol 500 166–1,500

Octafluoropropane 20 6–60

Methanol 10 3–30

2-Propanol 100 30–300

Toluene 16 5–50
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Details for fabricating polymer-carbon composite sensors are described elsewhere

[2, 3]. The ENose lab at JPL maintains three calibrated gas handling systems for

exposing sensors to measured concentrations of organic compounds, SO2, ammonia

and mercury in humidified air. These systems combine computer controlled gas

delivery and dilution in air with data acquisition. All systems include control of

background humidity and sensors can be exposed to analytes of interest in humidity

ranges of 0–90% RH at 20–25�C [8]. As the function of the JPL ENose is to be

used in crew habitat, all testing is done in air at or near 1 atm., in a temperature

range 20–30�C.

11.2.2 Selection of Sensors for Preliminary Evaluation

The initial selection of sensors for evaluation was based on several criteria along

with the analysis of sensors and sensor development from the two earlier genera-

tions of ENoses. In the first two generations of ENose, the arrays were selected by

consideration of polymer type and ligands, and how the polymers were predicted to

respond to analytes based on bonding. Polymer ligand types were classified as

hydrogen bond acidic (HBA), hydrogen bond basic (HBB), dipolar and hydrogen

bond basic (DBB), moderately dipolar (MD) and weakly dipolar (WD). Ligand

types were matched with analytes, and a distribution of sensor materials in appro-

priate classifications were selected. Arrays were selected based on experimental

data developed in the laboratory, using a combination of statistical and experimental

techniques. In the third generation, initial materials were based on materials used

in the first two generations; in addition, consideration was given to the concept of

“like dissolves like,” where, in looking for a polymer that would respond to

octafluoropropane, we evaluated halogenated polymers. Finally, materials to detect

SO2 and Hg were selected based on literature reports and on the results of modeling

sensor-analyte interaction, as described in Chap. 3 of this volume.

11.2.3 Initial Sensor Analysis

For evaluation, we took data for polymer-carbon composite sensor response devel-

oped in the Generation 1 and Generation 2 efforts as well as polymers added based

on preliminary analysis as described above. After these rounds of preliminary

evaluation, 16 sensor formulations were selected for further testing and four sets

of sensors were fabricated. The polymers used to make these sensors are shown in

Table 11.2. Each set included 32 sensors. Two array sets, the “organic sets”, were

tested only for response to nine compounds, acetone, ammonia, dichloromethane,

ethanol, formaldehyde, octafluoropropane, methanol, 2-propanol and toluene, at a

range of concentrations. Two additional sets were used, one for testing only SO2

and one for testing only mercury. The organic, SO2, and mercury sets were not
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cross-exposed in order to prevent potential poisoning to any given sensor set.

Testing the sensors against the analytes allows the development of response curves

for each sensor to each analyte. Development of response curves is critical to

identification and quantification of the analyte, and has been discussed in detail in

description of the LMNLS algorithm [7].

Figure 11.1 shows the sensor response of ethyl cellulose to ethanol as well as the

curve for sensor response across a range of concentrations. Sensor response is

expressed as normalized change in resistance, or dR/R0 where, in these plots, R0

is sensor resistance at time = zero. Ethyl cellulose is one of the most responsive

sensors and responds strongly to all of the analytes except ammonia and octafluor-

opropane; the figure shows strong, repeated response to ethanol; the same sensor

showed no significant response to ammonia. The response curve shows a linear

relationship between magnitude of response and ethanol concentration for this

polymer-carbon composite sensor.

These types of data, sensor resistance change as a function of analyte concentra-

tion and the response curve, can be used to make simple evaluations of each sensor

response and determine how many sensors are responding to each analyte, but

cannot be used to determine how well the array will perform in identifying and

quantifying analytes and in distinguishing one from another.

When we looked at the response curves, we saw that for most of the organic

analytes, either many sensors responded or few sensors responded. Acetone,

ethanol, 2-propanol and toluene all had many sensors that responded. In addition,

we could see that the sensors that responded to toluene were the same sensors that

responded to 2-propanol; this could pose a selectivity or identity problem. Ammo-

nia had a moderate number of responders. Dichloromethane, octafluoropropane and

methanol had very few responders. When we examined the polymers individually

we could see that EPDT responded to 2-propanol but not to ethanol or methanol

so it could play a role in distinguishing alcohols. Matrimid responded to

Table 11.2 Polymers used in third generation preliminary analysis

Polymer Abbreviation Classification

Poly(4-vinyl phenol) A HBA

Methyl vinyl ether/maleic acid 50/50 C22 HBA

Poly(styrene-co-maleic acid) PScMA HBA

Polyamide resin C38 HBB

Poly(N-vinyl pyrrolidone) F HBB

Vinyl alcohol/vinyl butyral, 20/80 C90 DBB

Ethyl cellulose EC1 DBB

Poly(2,4,6-tribromostyrene) C71 MD

Poly(vinyl acetate) E MD

Poly(caprolactone) E15 MD

Soluble polyimide, Matrimid 5218 Mat5218 MD

Poly(epichlorohydrin-co-ethylene oxide) PEC/EO MD

Poly(vinylbenzyl chloride) PVBC MD

Styrene/isoprene, 14/86 block copolymer C88 WD

Ethylene-propylene diene terpolymer EPDT WD

Polyethylene oxide (MW 100,000) PEO100/Q WD
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dichloromethane and acetone; in addition it responded to ethanol but not 2-propanol

or methanol, and so could also play a role in alcohol selectivity. Additional

preliminary analysis of the polymer responses is summarized in Table 11.3.

Clearly, application of a statistical method of array evaluation was necessary.

11.3 Statistical Array Analysis

To select better and more suitable sensor elements for an array designed to detect

the targeted analytes, statistical analyses were performed on the available data from

first and second generation sensor sets to guide selection of the sensor set described

in Sect. 11.2. We evaluated individual sensor performance in each sensor set in

Table 11.3 Summary of simple analysis of polymers

Polymer (abbrev.) Preliminary Analysis

PScMA 1. Toluene response is not consistently reproducible

2. Reproducible response for acetone, ammonia, ethanol and propanol

C38 Responds to all organic analytes except octafluoropropane and

dichloromethane

C90 Sensors reproducible

EC1 1. Responds to dichloromethane and somewhat to octafluoropropane

2. No response to ammonia or methanol

Matrimid 5218 1. Responds to dichloromethane and acetone

2. Responds to ethanol, but not propanol or methanol

3. Easy to fabricate reproducible sensors

C88 Responds to dichloromethane and all others except methanol and

octafluoropropane

EPDT 1. Responds to 2-propanol but not ethanol or methanol

2. Good for toluene
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terms of selectivity, reliability, and sensitivity with regard to analytes in Table 11.1.

We then scored each sensor’s “goodness” by these metrics individually and overall.

This provided good insight and a statistical basis for selecting sensor material from

each sensor set. Other methods such as (hierarchical) cluster analysis (CA) and

principal component analysis (PCA) were also performed but did not add signifi-

cant insight into sensor performance, and so results from these analyses were not

used in sensor selection.

11.3.1 Selectivity and Diversity

Selectivity is the ability of the array to distinguish one analyte from all the others. This

is naturally one of the most important criteria in selecting a sensing array. Quantifica-

tion of selectivity relies on calculating the relative distance between array fingerprints

for pairs of analytes. An array fingerprint or signature is a graphical representation of

the response of the entire array to an individual analyte. Array response to a single

analyte, as shown in Fig. 11.2, is a typical representation of a fingerprint.

Exposing the sensors to each analyte at a range of concentrations yields the

individual response curves for each sensor to each analyte; the array fingerprint for

each analyte is constructed by selecting a response magnitude in the middle of the

concentration range from the response curve and showing that as the single sensor

response to an analyte in a histogram.

Figure 11.2 shows the normalized fingerprints of the seven analytes used in

optimizing for response to organic compounds. The fingerprints alone do not,

however, tell us whether we will be able to distinguish one analyte from another,

or how reliable the sensors are. Statistical analysis of the array begins with

examining cross-analyte fingerprint distance. This distance sums the differences

between fitted fingerprints of mth and nth analytes, over 32 sensors, normalized by

the mean of their fingerprints.

Cross-analyte distance is defined as

DSmn ¼ 1

K

XK
i

X i;mð Þ � X i; nð Þj j; (11.1)

where X(i,m) is the ith sensor’s normalized resistance change for the mth gas and

the summation is over K sensors used [7].

In principal, a small value for DSmn implies poor distinguishability between

analytes, and a large value for DSmn implies good distinguishability. This was not

always the case when the LMNLS algorithm was applied to array response to

analytes; distances alone did not adequately predict whether the array, in combina-

tion with our analysis software, could distinguish similar analytes [6, 7].

Thus, an alternative approach to calculation of selectivity was adopted, where

we started by considering both array response, or selectivity, and individual sensor

response to all analytes, or diversity.
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In Selectivity Method 1, overall normalized analyte response X, found by

dividing the individual intensities by the maximum of absolute intensities across

all sensors for each analyte, was used to calculate a selectivity:

Selectivity 1 ¼
X

m;n
X i;mð Þ � X i; nð Þj j= X i;mð Þ þ X i; nð Þð Þ: (11.2)

Here the summation is over all the possible NðN � 1Þ=2 pairs of analyte combina-

tions (for N target analytes) for a given sensor s. X is the normalized analyte

response.

In Selectivity Method 2, comparing the normalized responses to the analytes

across a sensor can also give us a measure of an individual sensor’s role in the array

diversity.

Selectivity 2 ¼ Xði; : Þmax � Xði; : Þmin (11.3)

where X(i,:)max is the response of sensor i to the analyte it responds to most

strongly, and X(i,:)min is the response of sensor i to the analyte it responds to

most weakly. A large selectivity is preferred since it indicates a large range in

response magnitude for the analytes to which the sensor responds. A smaller

selectivity indicates that the sensor responds similarly to all the analytes and will

not contribute to distinguishability. Figure 11.3 shows this measure for the tested

array of 32 polymer–carbon composite sensors against seven analytes.

The two methods, Selectivity 1 and Selectivity 2, generally agree with each

other; the second method usually results in larger differences in number, and

therefore is better for visualization or visual inspection.

Diversity is another approach to determine whether an array is likely to show

selectivity toward analytes. We determine diversity by calculating the standard

deviation of a sensor’s response strength distribution across N analytes; this

approach ensures that selectivities as calculated in (11.2) and (11.3) are not

dominated by one or two very large separations:

Diversity ¼ std sortðXði; : Þð Þ; (11.4)

Numbered Sensors

5

0
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S
el

ec
ti
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ty

 2

Fig. 11.3 Selectivity 2 across preliminary array for seven analytes as calculated by (11.3)

11 Statistical Methods for Selecting the Components of a Sensing Array 253



where a given sensor’s response to N analytes is first sorted in the magnitude order

before calculating the standard deviation.

It is generally desirable to select sensors whose responses to analytes are more

diverse. Figure 11.4 shows the diversity of 32 sensors across nine analytes; the

numbers in each plot represent the sensor number followed by the diversity as

calculated by (11.4). The bars represent a normalized response to each analyte, but

are sorted from the weakest response to the strongest response so the analyte order

is not the same for each sensor. For example, in Fig. 11.4, sensors 1, 2, 10 and 11

show a triangular shape for sorted distribution of sensor response, showing good

diversity. Sensors 16, 17 and 21 show a flattened shape, where sensor response is

mostly the same, and so this sensor shows poor diversity. Similarly, sensor 31 has

poor diversity because there is one dominant analyte response, and the remaining

responses are similar. For individual sensors, it would be ideal to have sorted

(minimum to maximum) response to analytes as seen in Sensors 10 and 11. Sensing

materials for which the standard deviation shows that the large separation is

dominated by one or two strong responses, as in Sensor 31, may be eliminated

from the array.

This diversity is, however, by itself insufficient to select sensors for an array, as

this does not determine that there is adequate distinguishibility among analytes.

Although it might be unlikely, it is possible that each sensor has a similar magnitude

response to each analyte, making for poor distinguishibility, so diversity must

be taken together with other measures in drawing conclusions on the suitability of

an array.

11.3.2 Reliability/Variation

A further consideration in selecting elements in an array is Reliability, or the ability
of sensors and the array to repeat a response to the same stimulus over time.

Reliability is a measure of the individual sensor scatter, and is expressed as the

inverse of Reliability, or Variation. Although, in principle, selectivity can tell how

distinct a fingerprint for one analyte is from another, it alone is often not sufficient

to ensure good sensor material selection. As we search possible sensor materials to

detect new analytes or analytes at very low concentration ranges, it is apparent that

Reliability and Sensitivity can be major limiting factors in overall performance in

detecting and identifying target analytes.

We define the Variation or scatter as the inverse of reliability for a given sensor,

as the relative difference between actual vs. fitted analyte responses, where fitted

response is based on the response curve shown in Fig. 11.1 and used in constructing

the LMNLS algorithm for identification and quantification of analytes:

Variation Reliability�1
� � ¼ X

n

X
j
Xði; nÞ � xjði; nÞ
�� ��=Xði; nÞ: (11.5)
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In (11.5) xm is the mth actual normalized response of an analyte, the first summation

is overM test curves collected for an individual analyte, and the second summation

is over all N analytes.

Figure 11.5 shows a plot of calculated Variation for the 32 element polymer-

carbon composite array against seven analytes. We can see that Sensors 5, 13 and

16 have particularly large Variations; these sensors are noisy and thus do not repeat

response to a stimulus reliably. In selecting sensors for their Reliability, the smallest

possible relative Variation is desired. The large Diversity shown in Sensors 5 and

13 (see Fig. 11.4) is likely caused by sensor variation and not by true diversity,

whereas the large diversity in Sensors 1, 2, 10 and 11 is likely to be true diversity,

because the Variation is small. The large Variation seen for Sensor 16 is reflected in

the poor Diversity but large response seen in Fig. 11.4. Sensors with a Variation less

than 1 are preferred.

11.3.3 Sensitivity

Sensitivity of a sensor is a measure of the magnitude of response of that sensor to the

stimulus of the analyte set. The sensitivity of a sensor is important, particularly as

the JPL ENose is challenged to detect several analytes that are difficult to detect or

are expected to appear at very low concentration ranges.

We define the sensitivity as the mean of normalized response strength:

Sensitivity ¼
X

n
Xðs; nÞjj (11.6)

with the summation over all analytes for a given sensor s.
Figure 11.6 shows a plot of Sensitivity for the 32 element polymer–carbon

composite array, summed across all analytes.

We can see that Sensors 5 and 16 have large measures of Sensitivity, but, as with

Diversity, this large magnitude can be attributed to the large variation in response

and is not likely to be caused by a high sensitivity. Larger Sensitivities are
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Fig. 11.5 Variation of 32 sensors’ response to seven analytes as calculated by (11.5)
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preferred; there is no fixed value above which sensitivity must be acceptable for an

array; as a general rule, we prefer the Sensitivity to be greater than 1.

11.3.4 Analysis

When performed on individual analyte level, the evaluation of these metrics can

give us insight into which sensors are contributing to or undermining the identifi-

cation of specific analytes.

Using these statistical analysis tools, we evaluated all three sensor array sets we

have: first generation, second generation, and pre-third generation sensor data with

regard to the selected target analytes. The statistical measures described above were

taken on the pre-third generation set, from which we ranked the sensors in order of

best to worst by the three measures Diversity, Reliability and Sensitivity based on

their responses to seven analytes used for evaluation. Figures 11.3–11.6 show each

sensor’s performance in terms of reliability, selectivity, and sensitivity with regard

to these target analytes. The next step will be to rank sensors from the best to the

worst in terms of these individual metrics, then to calculate how suitable each

sensor is for the array to detect the analytes under consideration

Better sensors Poorer sensors

Selectivity 7 5 8 15 2 16 . . . 28 20 25 22 21 17

Reliability 31 23 22 21 18 30 . . . 20 6 2 13 16 5

Sensitivity 16 8 5 7 15 2 . . . 20 22 31 28 17 23

To score a sensor’s overall goodness, G, or suitability for inclusion in an array,

we first discarded sensors 5, 16, 13 and 2 for high variation (poor reliability), 17 for

poor selectivity and 23, 28, 31, 22, 20, 30 and 21 for poor sensitivity. We then used

the following combination of the above metrics on the remaining 20 sensors:

G ¼ ðSelectivity=VariationÞ � Sensitivity (11.7)

As a result, we ranked the sensors in order of suitability for an array to detect the

seven test analytes in the following order:
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Fig. 11.6 Sensitivity of 32 sensors’ response to seven analytes as calculated by (11.6)
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Better sensors Poorer sensors

7 15 8 11 4 6 27 19 24 18 1 14 3 32 12 10 9 26 29 25

Based on all of these analysis approaches of both the individual sensors and the

entire array, we selected eight sensor materials for further testing. The best sensor

materials, corresponding to the ranking above, were poly(4-vinyl phenol), poly

(styrene-co-maleic acid), polyamide resin, 20/80 vinyl alcohol/vinyl butyral, ethyl

cellulose, poly(caprolactone), Matrimid 5218, and ethylene-propylene diene terpoly-

mer. Materials that were removed from the array include poly(N-vinyl pyrrolidone),

poly (epichlorohydrin-co-ethylene oxide), polyethylene oxide, poly(vinylbenzyl

chloride), poly(2,4,6-tribromostyrene), and 50/50 methyl vinyl ether/maleic acid.

Two polymer materials, poly(vinyl acetate) and styrene/isoprene, 14/86 ABA block

polymer were in the middle region, and ultimately were retained in the array.

11.4 Selection of Sensors for Inorganic Analytes

In order to detect SO2 and elemental mercury it was necessary to develop additional

sensors to add in to the array. Materials to detect SO2 and Hg were selected based on

literature reports and on the results of modeling sensor–analyte interaction, as

described in Chap. 3 of this volume. Since this sensor development has been

discussed in other papers as well as in Chap. 3, the topic is covered briefly here.

11.4.1 Selection of SO2 Sensors

Prior work on SO2 detection has focused on fluorescence, chemiluminescence, or

electrochemical/amperometric methods, none of which are compatible with the

existing JPL ENose platform, where all of the sensors are chemiresistors [9].

Reversible SO2 sorption by polymers has been demonstrated [10], so it was

determined that this approach was likely to work for SO2 detection and to be

compatible with the JPL ENose.

In order to screen candidate materials efficiently, experiments were carried out

usingmicroarrays with interdigitated electrodes and embedded heaters. This approach

also assisted in the optimization of sensing parameters such as operating and regenera-

tion temperatures, and carbon-black loading. Polymers that were under investigation

are derivatives of linear and cross-linked poly-4-vinyl pyridine and vinyl benzyl

chloride functionalized with various free-amine containing substituents [5]. After

exposure to SO2 only, two polymers were selected and made into polymer-carbon

black composite sensors. These two polymers are both poly-4-vinyl pyridine deriva-

tives with a quaternary and a primary amine [5]; these polymers were predicted to

respond to SO2 by quantum mechanical modeling (see Chap. 3), and were found to

respond strongly in laboratory testing. These materials were not included in
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optimization experiments as described in Sect. 11.3, as the sensors selected in Sect.

11.3 had very small responses to SO2. In contrast, the strong responses of two poly-

4-vinyl pyridine derivatives, called EYN2 and EYN7, resulted in high selectivity of

these materials to this one analyte. Thus, these two poly-4-vinyl pyridine derivatives

were included in the JPL ENose Third Generation sensor array as selective sensors.

11.4.2 Development of Mercury Sensors

A literature review of the development of sensors for elemental mercury detection

showed that work had focused primarily on thin films of gold films and other noble

metals to form a metal-mercury amalgam, and reading the change in resistance with

amalgam formation [6, 9]. In addition, palladium chloride with tetrahydroxyethyl-

ethylenediamine (THEED) has been used in one study of Hg sensing [11].

For this array, we considered and tested several sensing materials for Hg

detection, including gold films, treated gold films, sintered palladium chloride

(PdCl2) thick films, polymer-carbon composite thick films, and thin gold films on

polymer-carbon composites. All materials were tested in flowing, humidified air at

20–25�C. Relative humidity in all the tests was �30%.

Thematerial selected for this arraywas thick sinteredPdCl2films [6].These sensing

films showed good sensitivity and reproducibility of response to Hg concentrations of

2–10ppb at 23�C in humidified air. PdCl2 sensor responsemagnitude does not increase

above 10 ppb Hg [6]. These sensing films also show partial regeneration under mild

conditions, temperatures<40�C, and good repeatability of response for concentrations
10 ppb and under [6]. As with the polymer sensors selected for detection of SO2, these

PdCl2 sensors had very small response to other analytes and so could be used as

selective sensors for Hg. They have moderate response to water and ammonia, but

are not needed to distinguish these analytes from other targeted analytes.

11.5 Final Selection of Array

The final selection of the array was an iterative process. This included further

statistical analysis of the array after exposure to all analytes of interest. Where

there were problems with reproducibility or distinguishability, additional sensors

were tested and analyzed. Different carbon loadings for certain polymers were

considered, and additional halogenated polymers were tested. As sensors were

swapped in and out, additional statistical analyses were performed. The final

consideration was, of course, performance of the data analysis program.

The sensing materials selected for the final array are shown in Table 11.4. As can

be seen in the table, some materials are in the array in duplicate, for redundant

sensors, and some are in the array with two or more different carbon loadings. Many

polymers show different behavior with different carbon loadings, and so are

considered to be separate sensors.
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11.6 Evaluation of Final Array

The ENose was tested for response and ability to identify and quantify ten chemical

species, shown in Table 11.1. A quantification is considered to be correct if the

concentration value reported by the ENose data analysis software is �50% of the

independently measured concentration of the species. The error range of �50% in

quantification is based on the approximate range with which the SMACs are set;

toxicities are not well known for most chemical species, and SMACs are set very

conservatively.

Success rate in analyte identification and quantification is the number of correctly

identified and quantified deliveries of analyte, minus the number of false negatives

and false positives, divided by the number of deliveries of the analyte. A false negative

is failure to detect the delivery and presence of a targeted chemical species. A false

positive is a report of the presence of a chemical species when it was not present.

Table 11.4 Sensing materials used in the 3rd Generation JPL ENose

Sensor Number Polymer Carbon/Polymer weight (%)

1 Poly(4-vinylphenol) 15

2 Poly(4-vinylphenol) 20

3 Poly(4-vinylphenol) 20

4 Poly(2,4,6-tribromostyrene) 10

5 Poly(2,4,6-tribromostyrene) 10

6 Poly(2,4,6-tribromostyrene) 15

7 Poly(styrene-co-maleic acid) 15

8 Poly(styrene-co-maleic acid) 15

9 Poly (2,2,2-trifluoroethyl methacrylate) 15

10 Poly (2,2,2-trifluoroethyl methacrylate) 20

11 Poly(t-butylaminoethyl methacrylate) 20

12 Poly(t-butylaminoethyl methacrylate) 20

13 Poly (ethylene-co-acrylic acid) 10

14 Polystyrene 12

15 Matrimid 5218 12

16 Ethyl cellulose 12

17 Polyamide resin 15

18 Styrene/isoprene, 14/86 block polymer 15

19 Vinyl alcohol/vinyl butyral, 20/80 12

20 Ethylene-propylene diene terpolymer 15

21 Poly(4-vinylphenol) 15

22 Poly(4-vinylphenol) 20

23 poly(t-butylaminoethyl methacrylate) 20

24 poly(t-butylaminoethyl methacrylate) 20

25 EYN2 15

26 EYN2 15

27 EYN7 15

28 EYN7 15

29 Carbon nanotubes NA

30 Carbon nanotubes NA

31 Sintered PdCl2 NA

32 Sintered PdCl2 NA
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Misidentification of a targeted species, for example identifying propanol as methanol,

or identifying a confounder as a targeted species, is considered to be a false positive.

11.6.1 Training Sets

As the ENose is an array-based chemical sensor device, before it can be used as an

air quality monitor, training sets must be acquired. Based on the training sets, the

patterns of array response to targeted analytes under specified conditions are

included in the data analysis algorithm.

Data from the ENose are recorded for each individual sensor as resistance versus

time. As the ENose is designed to function as an event monitor, the data are

analyzed as change in resistance vs. time. Individual sensor resistances are recorded

simultaneously, with a point being taken every 20 s. While it would be possible to

take data more or less frequently than three times a minute, this data rate has been

established as an optimum rate to show fairly rapid changes in the environment

without overwhelming computer memory with data. Our data analysis approach

defines an “event” as a change in the composition of the environment which lasts

longer than 10 min, or 30 points at the standard data rate, in part because events of

duration shorter than ten minutes cannot practically be addressed or mitigated using

either breathing apparatus or clean-up techniques. The data analysis algorithm

needs about ten points (� 3 min) to establish that resistance has changed signifi-

cantly. Based on the data rate and needs of the data analysis algorithm, training sets

are established using vapor deliveries, or events, of 30–45 min duration.

The data analysis algorithm is a Levenberg–Marquardt non–linear least squares

fitting approach to deconvolution of change in resistance across the sensing array

into identification and quantification of the analyte causing response in the sensors.

The analysis approach has been discussed in detail previously [7].

Training sets were established for the ten analytes in Table 11.1 as well as

formaldehyde. Tier 1 analytes are ammonia, sulfur dioxide and mercury. Tier 2 ana-

lytes are the remaining analytes in Table 11.1. Formadehyde is the Tier 3 analyte and

was a goal not a requirement for this project. The environmental conditions for the

training sets vary only in water content. As there is temperature control in the sensing

chamber in the ENose, the environmental temperature does not influence the temper-

ature at which analytes are detected, identified and quantified. The relative humidity

of the environment will be altered if the temperature of the sensing chamber is

different from the temperature of the environment, so for training sets, the humidity

is regulated as ppm water. Training sets were made in a background of filtered house

air with water concentrations of 5,000, 10,000, 15,000 and 20,000 ppm. These con-

centrations correspond roughly to 20%, 40%, 60% and 80% relative humidity at 21�C,
and cover the specified range of humidities for the specified range of temperatures.

In designing training sets, the range of analyte concentration to which sensors

are exposed is set at 1/3–3 times the target concentration. This range is divided

into 10–12 concentrations, and the sensor array exposed to those concentrations at
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each water content. A total of 1,599 different analyte exposures were made to

establish the training sets: 325 for Tier 1 compounds and 1,274 for Tiers 2 & 3. The

exposures were divided approximately equally among four humidity levels,

although there was a larger number at the two lowest humidities in both sets, Tier

1 and Tiers 2 & 3. Formaldehyde, the one Tier 3 compound, had the fewest

exposures as it was a goal rather than a requirement in this program.

Training sets give insight into the conditions under which the ENose operates best,

which conditions cause difficulties in identification and quantification, and allow

calculation of performance as accuracy of identification and quantification, number

of false negatives and number of false positives using a large number of trials.

Training sets can be used to judge the accuracy of the identification and quantifi-

cation algorithm even though they are used to establish the coefficients. Accuracy of

the algorithm has been computed using half the data to establish the algorithm and

coefficients and the other half to test the application, and using all the data for both

functions. The statistical difference in results is insignificant. In the success rates for

identification and quantification shown below, all the data are used for both functions.

11.6.2 Success Rates

Success rates for analyte detection, identification and quantification at a range of

environmental conditions have been discussed in detail [12]. In training set data,

success in detection signifies that the analyte was detected, identified correctly, and

quantified within �50% of the measured delivered concentration of the analyte. An

“event” is defined as a change in environment caused by the presence of a targeted

species. A false positive is detection of an “event,” where there was no event, or the

misidentification of an event (e.g. identification of toluene as methanol.) A false

negative is failure to identify that an event has happened, with no question of

identification or quantification.

Accuracy in identification of analytes was best at nominal humidity conditions,

approximately 10,000 ppm water (30–40% RH). The overall success rate for identi-

fication and quantification is better when the water content of the air is not at its

highest; for Tier 1 species, the overall success rate at nominal temperature and

humidity is 93%, and for Tier 2 the overall success rate at nominal conditions is 85%.

At conditions of 50–60% relative humidity with environmental temperature

above 21–22�C, the increased water absorbed by polymer based sensors lowers

the sensor responses to other vapors. In addition, high water content in polymer

based sensors can result in dissolution of some Tier 2 compounds, particularly

oxygen-containing compounds, which will result in a different type of capture of

analyte molecules in the sensing film. At high humidity, overall success rate for

Tier 1 species is 82% and to 74% for Tier 2 species. Sensors for mercury are

inorganic, and so are not significantly affected by humidity; the fall in success with

humidity for Tier 1 species is caused by a slight fall in success with ammonia and a

significant fall in success for SO2.
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11.6.3 Conclusion

In a total of 1599 exposures, the overall success rate for Tier 1 species was 89%, and

for Tiers 2 and 3, 80%, over all humidity and pressure conditions. Weighting the

success rates for number of chemical species in each category, the overall success

rate for identification and quantification of delivered species in training sets was

83% over all conditions.

Success rates at nominal conditions, with an environmental temperature of

21–22�C, with a sensing chamber temperature of 25�C and about 40% RH, the

success rate for Tier 1 species was 93%, and for Tiers 2 & 3 was 85%. The overall

success rate for all species under nominal conditions was 87%. This level of success

rate is a final assessment of whether the array has been optimized for this set of

analytes. A success rate approaching 90% is very good, although some further

improvement could be possible. Future work will consider whether it is possible to

optimize a sensor set over all environmental conditions, so that success rate does

not vary with water content of the background air.

This optimizationwork did not specifically consider sensor lifetime, although it has

been found that polymer-carbon composite sensors, not including those specifically

selected for SO2 detection, have a lifetime of more than 2 years under frequent

operation.
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Chapter 12

Hybrid Arrays for Chemical Sensing

Kirsten E. Kramer, Susan L. Rose-Pehrsson, Kevin J. Johnson,

and Christian P. Minor

Abstract In recent years, multisensory approaches to environment monitoring for

chemical detection as well as other forms of situational awareness have become

increasingly popular. A hybrid sensor is a multimodal system that incorporates

several sensing elements and thus produces data that are multivariate in nature and

may be significantly increased in complexity compared to data provided by single-

sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often

organized into more complex sensing systems through an assortment of network

topologies. Part of the reason for the shift to hybrid sensors is due to advancements

in sensor technology and computational power available for processing larger

amounts of data. There is also ample evidence to support the claim that a multivariate

analytical approach is generally superior to univariate measurements because it

provides additional redundant and complementary information (Hall, D. L.; Linas,

J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001).

However, the benefits of a multisensory approach are not automatically achieved.

Interpretation of data from hybrid arrays of sensors requires the analyst to develop an

application-specific methodology to optimally fuse the disparate sources of data

generated by the hybrid array into useful information characterizing the sample or

environment being observed. Consequently, multivariate data analysis techniques

such as those employed in the field of chemometrics have become more important

in analyzing sensor array data. Depending on the nature of the acquired data, a

number of chemometric algorithms may prove useful in the analysis and
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interpretation of data from hybrid sensor arrays. It is important to note, however, that

the challenges posed by the analysis of hybrid sensor array data are not unique to the

field of chemical sensing. Applications in electrical and process engineering, remote

sensing, medicine, and of course, artificial intelligence and robotics, all share the

same essential data fusion challenges. The design of a hybrid sensor array should

draw on this extended body of knowledge. In this chapter, various techniques for

data preprocessing, feature extraction, feature selection, andmodeling of sensor data

will be introduced and illustrated with data fusion approaches that have been

implemented in applications involving data from hybrid arrays. The example sys-

tems discussed in this chapter involve the development of prototype sensor networks

for damage control event detection aboard US Navy vessels and the development of

analysis algorithms to combine multiple sensing techniques for enhanced remote

detection of unexploded ordnance (UXO) in both ground surveys and wide area

assessments.

12.1 Introduction

Current trends in chemical sensing are geared toward the use of sensor arrays,

particularly for gas-phase analysis and head-space analysis of samples containing

volatile compounds [1–3]. Construction of a device comprised of an array of

sensing elements is most commonly motivated by the desire to detect and classify

multiple chemical species with a single measurement [4]. Vapor sensing has

widespread applications in environmental monitoring [5, 6], food analysis [7, 8],

as well as clinical [9] and industrial settings. There is much interest in producing

miniaturized, portable, cost-effective gas sensing devices that may serve as a

substitute for bulkier, more expensive analytical instrumentation [10].

The most common elements of gas sensor arrays are based on metal-oxide

semiconductors (MOS) [11, 12], metal-oxide semiconducting field effect transistors

(MOSFETs) [13], acoustic wave sensors [14–17], polymer-coated sensors [18–21],

and optical sensors [22]. In recent years, much research has been devoted to the use

of arrays based on the concept of mammalian olfactory sensing whereby a collec-

tion of semiselective sensors are used to produce a unique signature or “fingerprint”

for different compounds of interest [23–28]. Many of these electronic nose or enose
(EN) sensor arrays are commercially available and have found use in a variety of

applications. Based on a similar principle, the tasting mechanism, etongue (ET)

arrays have been constructed for liquid sampling [29]. The challenge in designing

an effective sensor is in choosing the elements of the array to produce unique

response profiles for each class of species under study and also to demonstrate

consistency over time. If the variance in the response between identical sensors

(i.e., sensor-to-sensor reproducibility) is higher than the variances that distinguish

one chemical fingerprint from another, then the sensors will not have the required

selectivity or reliability for multisensing [30]. Although extensive research has

been performed in the area of materials and coatings for gas sensors [31, 32],
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EN sensor arrays often lack the ability to discriminate between similar compounds,

making them unsuitable for many types of analyses [5, 33, 34].

If an array of semiselective sensors is not powerful enough for the analysis at

hand, one option is to investigate the use of hybrid sensing: in other words, the use

of an array that employs more than one kind of transducer, sensing principal, or

sampling procedure that acts to increase or expand the information content of the

data. Hybrid sensing schemes have yet to gain widespread usage in chemical

sensing applications; however, a number of sensor array reviews [3, 24, 35] and

publications [36–40] have characterized these approaches as cutting-edge techni-

ques that may gain more acceptance in the near future. Although the integration of

more than one kind of transducer may increase the complexity of the hardware, the

benefits of utilizing different transducers might well be worth the additional efforts

in the fabrication process.

In this chapter, the use of a hybrid array will be discussed as a way of increasing

the analytical potential of a sensor. The choice of sensing elements in a hybrid array

is not ruled by the cost or convenience of the manufacturing process, but by the aim

of maximizing the analytical capability of the system so that challenging sensing

tasks may be undertaken. There are numerous EN and ET sensors that employ

transducers identical in nature, but few that integrate more than one type of

transducer or response value. Combining more than one type of transducer, instru-

ment, or sampling parameter acts to increase the orthogonality (or uniqueness) of

the sensing mechanisms utilized by the array by increasing the likelihood that the

profiles or fingerprints produced by each compound will also be more unique in

character. In many reports involving the use of a hybrid sensor, the concept of

orthogonality is discussed in the introductory or theory section. The experimental

results can be used to gauge whether the theoretical benefits of hybrid sensing are

proven to work in practice and whether the increased hardware complexity is worth

the effort of a particular analysis.

An approach to data integration called multisensor data fusion [37] will be

discussed, as the terminology, data analysis architecture, theoretical premises, and

other such aspects largely overlap with the concept of hybrid sensing. For some

hybrid arrays, the fusion of data may be optimal after different levels of processing

or combined at different stages in the data analysis � issues that are commonly

addressed in data fusion approaches. Multi-element sensory data may be fused at a

“low abstraction level” whereby the responses are given relatively equal weight in the

analysis and can be combined side-by-side in their raw (or standardized) format.

A higher level of abstraction may be necessary for more complicated hybrid arrays or

when the analysis involves a more challenging classification such as mixture analysis.

A high abstraction level may perform an analysis [such as principal component

analysis (PCA)] of each system individually, then merge the most relevant pieces

of information; these pieces of information may be features extracted from the data,

known properties of the data, or the outputs of a more sophisticated (quantitative/

qualitative) analysis of the data. Fusion may occur at a variety of levels in a tiered

analysis, hierarchical network, or tree-based method. Most EN systems reported in

the literature use a low abstraction level, although examples of those using higher

abstraction levels will be discussed in this chapter.
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In the first part of this chapter, examples from the literature will be given in order to

illustrate that hybrid sensors are not only attractive from a theoretical standpoint, but

are also being successfully implemented in practice. Although the survey does not

claim to be an exhaustive review of hybrid sensing, it attempts to highlight some

preliminary studies wherein hybrid EN schemes have been employed. The results of

most studies indicate that a collection of hybrid sensory data is much superior to an

array employing only one type of transducer or measurement parameter. In the latter

sections of this chapter, we will present three studies conducted at the Naval Research

Laboratory in the areas of fire/hazardous event detection aboard naval vessels and the

detection of unexploded ordnance material beneath the ground. These studies employ

hybrid sensor arrays, chemometric data analysis, and multisensor data fusion techni-

ques. The first sectionwill discuss the development and initial testing of amulticriteria

sensor array for fire detection, the second project involves a “volume sensor” that

employs machine vision, spectral sensors and acoustic signatures for fire/hazardous

event detection, and the final study is the detection of unexploded ordnance (UXO)

materials using a combination of airborne magnetometer data and image analysis.

12.2 Hybrid Arrays Involving Low Level Data Fusion

The following section gives examples of hybrid sensing whereby the data are fused

at a relatively low abstraction level. Common configurations are arrays of colocated

sensing elements, which vary in terms of transduction mode.

12.2.1 Hybrid Array Composed of MOS-MOSFET-CO2 Sensors

Perhaps one of the first publications reporting a hybrid sensor array that served as an

enose was by Winquist et al. [38] An array of ten MOSFETs, four doped tin dioxide

(SnO2, also referred to as Taguchi or TGS) sensors, and a carbon dioxide (CO2)

detector based on infrared (IR) absorption was used to detect meat quality in ground

beef and pork samples. The MOSFET sensors were chosen because of their

response to hydrogen, hydrogen sulfide, amines, and alcohols, while the TGS

sensors were useful for detecting saturated hydrocarbons, alcohols, and humidity.

Microbial growth causes the evolution of CO2, so this sensor was also useful in the

array. For two types of classification algorithms, artificial neural network (ANN)

and abductory induction mechanism, all 15 sensors provided good predictions of

meat type as well as storage time. When the carbon dioxide sensor was omitted, the

prediction of storage time was less successful. The researchers demonstrated the

value of using a diverse array of sensors tailored to their particular application.

This hybrid array was also used to analyze paper quality [39]. In this study, only

four of the 15 sensors (twoMOSFET and two TGS) were necessary for distinguishing

five classes of paper when principal component analysis and cluster analysis

were used. This design was also used by Börjesson et al. for the classification of
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grain samples [40]. In this study, the researchers found that responses within each

sensor class (either MOSFET or TGS) were highly correlated, while essentially no

correlation existed between the two classes of transducers. Thus, the between-group

sensing capabilities were much higher and results were much improved when both

classes of sensors were used in the analysis rather than only one class. The

researchers concluded that the different classes of sensors were responding to

different groups of volatile species, and speculated that an even wider variety of

sensing mechanisms may improve the performance of the array.

This hybrid array was also tested for monitoring two biopharmaceutical processes,

the production of human growth hormone from Escherichia coli and the human

factor VIII from hamster cells [41]. The human growth hormone production was

monitored for 33 h and was categorized into three separate stages using the PCA.

Results improved when an additional sensor that measured dissolved oxygen was

combined with the PCA data, demonstrating the benefits of fusing different types of

data. The human factor VIII was categorized in four different production stages and a

reduced set of seven elements (the CO2 sensor, five MOSFET, and one SnO2) gave

comparable results to the full set of 15 sensors. The fact that the subset contained each

type of transducer indicated that the hybrid collection of data was valuable, while the

sensors of the same transducers may have produced redundant responses.

This same array was also used for the on-line monitoring of yeast production

[42] where fusion of the sensor array data with parameters such as reactor volume

and aeration rate enabled the prediction of cell mass and ethanol concentration

using ANN. In another study, this array was used to monitor a batch cultivation [43]

and the researchers found that a reduced sensor subset of three MOSFET, one TGS,

and the CO2 detector was useful for predicting ethanol concentration. The reduction

in the number of variables from 15 to 5 was much more amenable to the ANN

algorithm and since the four TGS sensors produced similar response patterns, only

one was used in the final analysis. Similar to the other studies mentioned above, the

researchers found that the most useful subset comprised at least one sensor from

each of the three transducer types, indicating that a richer profile was achieved

using a between-group set of transducers data rather than a within-group.

A similar sensor array composed of nine MOSFET, four TGS, one IR CO2

detector, and one electrochemical oxygen (O2) detector, was used for the classifi-

cation of bacteria [44]. The O2 detector was added because both CO2 and O2 are

important indicators of bacterial growth, as stated by the authors. In this study it was

found that only four of the features, two TGS, the CO2 and the O2, were necessary

for classification.

12.2.2 Hybrid Modular Sensing System

Mitrovics et al. developed a hybrid MOdular SEnsing System (MOSES) which

combined tin oxide gas sensors, polymer-coated quartz microbalances (QMBs), elec-

trochemical cells, andmetal-oxide semiconductor field effect (MOSFET) sensors into
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one device [45]. In the prototype, each type of sensingmechanismwas composed of an

eight-element array that was housed in a separate module, providing flexibility in the

samplingprocess,maintenance, and sensor configuration. The researchers recommend

improving performance of vapor sensor arrays by increasing the feature space of the

array in one of three ways (1) increasing the number of sensors in a single transducer

array, (2) using different transducers to measure various properties of each sensing

material, or (3) modulating the measurement conditions (i.e., temperature, voltage,

frequency, or reference gas delivery) [46]. The researchers advocate compiling

features that are more orthogonal or independent in nature, a task that is not always

achievable using the first approach (use of only one transducing principle). The

MOSES sensor contains separate modules of different classes of transducers that can

be modulated and optimized for the specific application of interest.

In preliminary studies, samples of volatile organic compounds (VOCs), plastic

materials, textiles, coffees, olive oil, and tobacco were tested, demonstrating the

usefulness of the hybrid array in a wide variety of applications [47]. The combination

of measurements from the different transducers was particularly useful for separating

coffee brands, where it was necessary to use responses from two SnO2 elements, five

MOSFET elements, three electrochemical cells, seven QMB sensors, as well as a

temperature, and a humidity sensor. Analysis was carried out using PCA and ANN.

TheMOSES design was also tested for the identification of ozone using an array of

conductivity sensors based on indium oxide (In2O3), SnO2 sensors, QMBs (referred to

in this publication as transversal shear mode resonators, TMSRs), and a module with

electrochemical sensors [48]. Although only the sensors based on indium oxides

showed correlationwith ozone concentration, the full arraywas useful for discriminat-

ing between the interfering gases tested. In another publication [49], the researchers

used PCA plots to show that a hybrid array consisting of eight MOS and eight QMB

can better separate homologous aldehydes in vegetable oil as well as textile materials

used in the automotive industry than an array composed of only one transducer type.

This array also demonstrated good reproducibility over several months in studies

involving the analysis of packing materials used by the food industry [50, 51].

In another study, an array containing seven QMBs, eight SnO2 sensors, and four

electrochemical cells, (called the Moses II), was tested to detect contraband food

products for potential use at US border points [52, 53]. The researchers found that as

fewas two sensing elements (oneQMBandone electrochemical cell) produced similar

or better results compared to the full set of 19 sensors. Similar to other researchers, the

authors found that a reduced sensor set that includedonly those relevant for the analysis

was superior to using the full set of sensors. The authors also reported that use of the

hybrid array gave better results than restricting the inputs to any single sensor class.

12.2.3 Other Hybrid Sensor Arrays

As mentioned previously, sensor arrays based on one type of transducer often yield

response profiles that are too similar in nature to act as unique “fingerprints” for

270 K.E. Kramer et al.



separating classes of compounds. In a recent study, analysis of honey was per-

formed using an array of 10 MOSFET and 12 MOS and it was found that only three

sensors (two MOSFET and one MOS) were needed for classification using ANN

[54]. In this case, the output from only one of the MOSFETS was just as effective as

the array of 10.

In another experiment, a hybrid EN composed of nine MOS and ten MOSFET

sensors were used to characterize car seat foammaterials [55]. A plot of the first two

principal components revealed that the two kinds of transducers were separated

along the two (orthogonal) axes and the authors noted that the two types of sensors

brought independent information to the response data.

12.2.4 Conclusions

The consensus of the studies highlighted in this section was that the incorporation

of multiple transducers was valuable and often at times necessary for successful

analysis. Data representing the full range of the transducers consistently produced

superior results compared to subsets of a single type. Feature selection techniques

nearly always produced a subset containing at least one element of each trans-

ducer type, suggesting that the hybrid profiles were richer in information content.

In most instances, the authors reported high within-group (transducers of the same

type) correlations while between-group (transducers that were different in nature)

responses showed little to no correlation. In most of the studies, the researchers

demonstrated the value of the hybrid array by comparing results of data com-

prising the entire scope of sensors to subsets of transducers of the same type.

Predictably, the results were consistently superior for the hybrid data. The high

redundancy of the within-group sensors demonstrates the lack of selectivity that is

often evidenced for the traditional EN array and the superior selectivity that can

be achieved using a hybrid.

12.3 Multiple Measurements from a Single Sensing Element

The goal of using a hybrid approach is to increase the information content of

the data and many researchers have found ways of increasing the dimensionality

of the data without greatly increasing the complexity of the instrumentation.

In terms of the hardware, these multidimensional sensors might not always be

considered hybrid arrays because often at times a single type of transducer is

used. Nevertheless, the desire to expand the richness of the data is in con-

cordance with the goals of hybrid sensing, therefore we shall report examples

of sensory data where multiple measurements were extracted from one sensor

element.
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12.3.1 Combination of Transient and Steady-State
Measurements

Perhaps one of the simplest ways to increase the dimensionality of a sensing

element without increasing the hardware complexity is to perform measurements

at different temperatures [56–59]. In Ref. [59], an eight-element SnO2 array was

used and the temperature was cycled incrementally from 250 to 500�C, recording
eight different parameters during each temperature change (maximum positive step

change, maximum negative step change, time to maximum value, time to minimum

value, maximum positive rate of change, time to maximum positive rate of change,

maximum negative rate of change, and time to maximum negative rate of change),

effectively increasing the dimensionality of the data from 8 to 208. For the analysis

of three types of tea leaves (Ceylon, Earl Grey, and Kenya), a correct classifica-

tion of 69% was achieved when using the eight-element steady-state array while

the expanded array using the transient measurements improved the classification

to 90%.

Use of both transient and steady-state measurements was also used for qualitative

and quantitative analysis of ethanol, toluene, and o-xylene, whereby the conductance
rise time and the overall change in conductance were measured from an array of four

SnO2 sensors [60]. Using ANN for classification, discrimination between the three

VOCs improved from 66% using just steady-state measurements to 100% when the

steady-state and transient measurements were combined. In another study, the kurto-

sis, variance, and skewness were extracted from the time-domain signal of a single

SnO2 sensor [61]. These variables, along with a human input variable, were used in a

neural network to track the fermentation process of dough.

12.3.2 Higher Order Sensors

A “higher order” sensor is realized when more than one transducer is applied to the

same sensing element, while a sensor (or sensor array) employing one transduction

principle is considered zero order [62]. Hence, the information content which can

be realized depends on the number of sensors used in the array and the order of each

sensor. Janata et al. state that the higher-order signals should be orthogonal in their

response [63].

Increasing the order of a sensor involves subjecting each sensing element to a

variety of different measurements. For example, in a study concerning methanol

vapor interaction with doped-polypyrrole thin films, changes in mass, work func-

tion, and optical absorbance were applied to each sensor [64]. In a different study

involving polysiloxane-coated QMB sensors, changes in sensor thickness, mass,

temperature, and capacitance were measured using an optical sensor, quartz micro-

balance oscillator, thermopile, and interdigital capacitor transducer, respectively

[65]. These approaches may be useful for not only increasing the orthogonality of
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the data, but also to simplify the hardware requirements in terms of the number of

sensing elements that are required in the array.

Extracting more than one type of measurement from each sensing element may

improve the selectivity of the analysis. This was demonstrated in a study where both

temperature and resistance were monitored for each element of a SnO2-based

sensor array for the identification of hydrogen (H2) and various gaseous carbon

compounds [66].

Another reason for increasing the order of a sensor is that different analytes may

be more responsive to particular modes of sensing. In a study involving poly (ether

urethane) coatings on quartz microbalances, changes in mass, capacitance, and

temperature were measured for a variety of volatile organic compounds [63].

Capacitance produced a strong signal for compounds such as alcohols and alkanes,

whose dielectric coefficients differed greatly from the polymer coatings, while

calorimetric measurements were useful for compounds with high heats of vapori-

zation, such as chlorinated hydrocarbons.

This approach was also taken in a recent study employing a multitransducer chip

that incorporated three different sensing mechanisms: a mass-sensitive resonant

cantilever, a capacitive sensor, and a calorimetric transducer [67]. Five such chips,

each with different polymer coatings, were used to measure a variety of VOCs. The

researchers noted the value of increasing the orthogonality of the array by providing

measurements that give complementary information. A compound such as metha-

nol produces a low response for a mass-sensitive transducer because of its low

molecular mass and high saturation vapor pressure, while having a high dielectric

constant responds highly to a capacitive measurement. Bar graphs for each of the

eight compounds indicated that the three transducers gave distinct responses while

the profiles between chips were similar for many cases. In other words, alterations

of the transducing principle produced a richer data profile than simply changing the

polymer coating.

12.3.3 Exploiting Higher Order Sensing Principles
to Simplify Chip Designs

The concept of higher order sensors was demonstrated by Langereis et al. who

constructed a multipurpose sensor-actuator structure consisting of platinum leads

connected in a fingerlike pattern with four points of contact [68]. The structure

operated in three different sensing modes (temperature, conductivity, or ampero-

metry) in addition to two actuator modes (local heating or pH gradient control) by

altering the connections of the leads and the type of stimulus applied to each contact

point. The three sensing modes and two actuator modes gave a potential of six

different measurement configurations that could be switched according to the

desired experiment or application at hand. The principles behind this approach

were used in a chip-based device that could be used to measure pH, penicillin

concentration, diffusion coefficients of ions, temperature, flow velocity, and flow
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direction [69, 70]. Although only one type of transducer (field effect) was utilized

as the sensing mechanism, the distinct ways of interrogating the sensing elements

allowed for the measurement of physical parameters quite different in nature. In a

micro-total analysis system (m-TAS) device, parameters such as flow rate, conduc-

tivity, temperature, or pH often need to be monitored, but the integration of several

types of transducers for these measurements is less practical and results in a higher

cost of chip fabrication.

12.3.4 Conclusions

Sensor fabrication cost and complexity are important issues when considering a

hybrid sensing scheme, however difficulties may be avoided by taking full advan-

tage of the sensing elements incorporated in the device. Utilizing both transient and

steady-state measurements, increasing the order of each sensor, or otherwise

extracting multiple measurements from each sensor are ways to increase the

information content of the data with only modest increases in the fabrication

complexity. Interrogating a single sensor with several types of measurements can

provide a richer data profile that can classify a wider range of compounds. This is

accomplished by increasing the sensor order rather than extending the number of

sensors used in the device.

12.4 Data Fusion Approaches

The concept of hybrid sensing is not new. Multisensory data fusion has long been

used for military, civilian, and medical applications [71–74]. For chemical sensing,

data fusion is slowly becoming an area of intrigue, but has yet to be widely accepted

as an attractive approach to vapor sensing, most likely due to the presumption of

complexity in the fabrication process and data analysis routines. Nevertheless, as

more researchers share their successful implementations of hybrid sensing and data

fusion in the area of chemical sensing, the use of such techniques is expected to

grow. For now, the most commonly used data fusion approaches for gas sensing

arrays involve use of more than one enose or an enose/etongue hybrid.

12.4.1 Examples of Basic Data Fusion Approaches

One example of a simple hybrid sensor involving data fusion was reported by

Huyberechts et al. where a three-sensor array composed of two SnO2 (one doped

and one undoped) sensors and a humidity sensor were used to classify carbon

monoxide and methane in humid air [75]. Although the authors did not use this

terminology to describe their system, the concept of using multiple pieces of
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information (data for compound type combined with data for humidity level) can be

seen as a data fusion approach. In theory, the confidence (and thus classification

ability) of the two-sensor array used for analyte detection should be improved with

the additional piece of information that the humidity sensor provides.

In another study, fusion of EN data with color and texture measurements was

used to grade the freshness of fish [76]. The authors found that the results improved

when more techniques were used in the analysis.

12.4.2 Enose-Enose Fusion

One simple way to implement data fusion is to analyze a vapor sample using more

than one EN placed side-by-side. If a low level of data fusion was used, this type of

hybrid could have been discussed in Sect. 12.2, however, we allow the EN-EN

sensors to be placed in the data fusion category because the idea of combining two

individual dedicated instruments in order to enrich the data profile is characteristic

of a data fusion approach.

In one study, a hybrid array involving two enose sensors placed in parallel was

used for the monitoring of hydrolyzates during wood fermentation [77]. The first

consisted of 32 conductive polymers while the second was made up of ten

MOSFET and six SnO2 sensors. The latter sensor used five transient measurements

for each sensor (response, on/off derivative, and on/off integral), producing in 112

of these, different response variables for the dual enose system. When sensor

selection studies were performed, the reduced sensor sets nearly always contained

elements from each type of transducer. For modeling ethanol production rate, one

SnO2 (off-derivative), four conductive polymer, and two MOSFET (response from

one and off-integral for the second) sensors were chosen. Thus the array of 112

values was reduced to seven sensors, but the final selection included elements of

each transducer type. Similarly, for ethanol concentration and sum of furfural and

5-(hydroxymethyl)furfural concentrations, the full range of transducers were repre-

sented in the reduced set of seven variables, but for furfural concentration only two

types (six conductive polymers and one MOSFET response) were chosen.

Di Natale et al. found that data fusion from two types of enoses, one based on

quartz resonators and another based on MOS sensors, was useful for the analysis of

olive oils [78]. The researchers tested the fusion of data from the auto scaled sensor

inputs (a low level abstraction) as well as fusion of the PCA scores (a higher level

abstraction), the latter technique giving slightly better class resolution when the

data was examined in bi-plots. The authors concluded that the integration of the two

types of data significantly improved the classification of olive oils.

In another study, the fusion of data from four different ENs was found to

improve the classification of the quality of pear juice compared to each system

individually [79]. Data was combined using a low level of fusion for 10 features of

INRA, 14 of Roma, 16 of UPM, and 32 ofWarwick (enose systems are described in

the reference). Using radial basis function neural networks, the combined inputs
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produced an 86.7% correct classification, while the individual systems produced

56.7, 40.0, 66.7, and 43.3% for INRA, Roma, UPM, and Warwick, respectively.
Using probabilistic neural network (PNN), the individual results were 53.3, 33.3,

53.3, and 43.3% for INRA, Roma, UPM, and Warwick, respectively, while the

fusion of all features produced 80.0% correct classification. The researchers

demonstrated the need for greater selectivity in many enose systems and the

improvements that can be realized when hybrid techniques are used.

12.4.3 Enose-Etongue fusion

Data fusion of EN and ET measurements has also been explored. Fusion of data

from an enose and an etongue was implemented by Winquist et al., who used a

combination of 14 enose and 18 etongue sensory outputs to classify age and type of

fruit juice samples [80, 81]. The fusion of data improved the classification results

compared to using the EN or ET systems separately.

Di Natale et al. combined data from an enose consisting of eight QMB sensors and

an etongue made up of seven porphyrin electrodes for the analysis of urine samples as

well as milk samples [82]. The researchers were interested in studying the appropriate

abstraction levels for analysis (the level of feature extraction or data processing as

well as the position in the classification scheme where each type of feature should be

fused). They found that low levels of abstraction worked for enose and etongue data

that was clearly distinct from each other (in other words, the variation between the two

types of sensors was greater than the intrasensor variation). For the analysis of urine,

the low abstraction level was found to be appropriate because PCA plots revealed the

enose data was found to lie along the first principal component while the etongue data

was well separated, lying along the second principal component axis. Scores of PCA

analysis were found to be correlated to properties such as pH, specific weight, and

blood cell concentration. For the analysis of milk, a higher level of abstraction was

needed for the distinction between fresh and spoiled milk as well as two different

pasteurization methods. The best clustering was found when PCA was performed

separately for the enose and etongue data, and the first principal component of the

enose was fused with the second principal component of the etongue.

Sensor fusion of data from an EN and ET has also been proposed for wine analysis

[83]. In preliminary experiments, the fusion of an array of five MOS gas sensors and

three liquid sensors was able to classify the alcohols into categories of beer, brandy,

and vodka at a 94.4% correct classification, while the gas sensors alone or the taste

sensors alone produced an 83.3% and 70.0% correct classification, respectively.

12.4.4 Conclusions

Relatively few examples concerning data fusion from multiple ENs or EN-ET

configurations exist in the literature; however, for the studies mentioned above,
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the fusion approach proved to be useful in a variety of measurement settings.

Reports of data fusion for gas sensors are expected to increase provided the

conclusions for the studies indicate that the use of multiple sensors is worth the

extra effort in the hardware cost and configuration. Naturally, this issue will depend

on the intended application and whether or not current technologies are sufficient

for the task at hand. There are several commercially available EN and ET sensors,

many of which incorporate more than one type of transducer. Many manufacturers

offer the hybrid and allow the user to decide which collection of sensory inputs is

appropriate for the application. One commercially available gas sensor array that

employs different types of hybrid instrumentation is the GDA 2 (Gas Detector

Array II) manufactured by Airsense Analytics. This instrument incorporates ion

mobility spectrometry, a photoionization detector, an electrochemical cell, and two

metal-oxide sensors for the detection of chemical warfare agents and other gases.

The signals from the various detectors are combined and pattern recognition

methods are used to detect and classify gas species from a standard database of

45 compounds. The HAZMATCAD Plus manufactured by Microsensor Systems,

Inc. uses surface acoustic wave sensors for blood and nerve agents and electro-

chemical sensors for toxic industrial chemicals, but a fusion of the two types of

inputs is not used in the analysis. These two devices illustrate the high number

of compounds that are able to be detected using a hybrid collection of sensors.

12.5 Conclusions and Prospects for Hybrid Array Sensing

Sections 12.2–12.4 introduced the concept of a hybrid array and the benefits it may

offer in chemical sensing applications. Arguably, a hybrid sensing scheme may be

seen as a data fusion approach. In Sect. 12.2 examples were given of EN sensors

that employed data fusion at a low level of processing. The sensor readings from the

hybrid array were able to be combined and analyzed in a fairly straightforward

manner. Results repeatedly pointed to the use of different transducers as a means of

enriching the data and improving classification of compounds. In Sect. 12.3, a

different approach to enhancing the data content was discussed. Using transient

measurements or interrogating each sensing element to measure more than one

parameter is a way to increase the dimensionality of the data. In this way, the array

can be exploited without increasing the number of sensing elements. Although

some of the techniques may not be considered hybrid sensing in the conventional

sense, the motivation for using a hybrid array is to increase the data content,

therefore these techniques were presented as a means of doing so. Also, issues of

sensor fabrication complexity (such as number of elements or hardware concerns)

may be addressed using some of the methods highlighted in Sect. 12.3. In Sect. 12.4

we introduce examples of vapor sensors that employ data fusion in a more conven-

tional sense. Sensing schemes utilizing ET-ET or ET-EN configurations were

presented and examples of data analysis at a higher abstraction levels were given.
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A common trend that was observed for all the research described in Sects. 12.2–

12.4 was that the use of different transducers created a more powerful sensing array.

An important aspect of hybrid sensing is the attempt to obtain measurements that

are orthogonal in nature. Arrays of semiselective sensors employing the same type

of transducer were often seen to be highly correlated in their responses. This

diminishes the potential of the array to produce unique fingerprints for various

classes of compounds. The general consensus of the research covered in Sects.

12.2–12.4 was that using a collection of different transducers greatly improved the

selectivity and sensing capabilities of the array. Although data fusion techniques

have yet to see widespread use in chemical sensing applications, their implementa-

tions are expected to grow as more researchers confirm their success. For challeng-

ing analyses, where conventional EN technologies may fail to give the desired

accuracy and reliability, hybrid sensing may provide an alternative that is cost-

effective and feasible. A dedicated sensor for a specific application may be con-

structed from an array of spot sensors or that are commercially available at a

reasonable cost. Sensors may be integrated onto a single platform or operate as

separate entities followed by off-line fusion of the data. Integration of data off-line

is often used in preliminary studies to select the appropriate array of sensors for a

dedicated instrument. In the latter sections of this chapter we highlight some of the

research conducted at the Naval Research Laboratory where hybrid sensing and

data fusion approaches have been used for stand-off sensing applications such as

situational assessment and target detection.

12.6 Implementations of Hybrid Array and Multisensor

Data Fusion for US Naval Applications

In recent years, there has been much interest in developing sensors that provide

automated monitoring and situational assessment of the surrounding environment.

These “smart” sensors are designed to detect hazardous occurrences such as toxic

chemical gas releases or liquid spills, flooding, fire, pipe ruptures, or other events

that require damage control measures to be implemented. Sensory data is fed into

mathematical algorithms that are modeled after a human-like thought processes

such as classifying the data into predetermined patterns and/or making a logical

decision about actions to be taken. To program a sensor to produce sophisticated

conclusions or decisions, a multi-criteria approach using multiple pieces of infor-

mation (i.e., an array of data) is generally necessary. Intuitively, it is expected that

as the complexity of the analysis increases, such as identification of multiple events

that are similar in nature, the selectivity of the array would need to be powerful.

Hybrid sensing techniques that incorporate an array of orthogonal sensors are a

powerful approach to passive situational assessment monitoring [84].

Studies conducted at the Naval Research Laboratory (NRL) have been geared

toward sensors for the detection of toxic gases [85] (air quality monitors) as well as
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intelligent sensors that could detect and implement automated responses to

hazardous events such as fires, pipe ruptures, gas leaks, or other occurrences that

require damage control measures. These sensors allow reduced manning aboard

naval vessels such as ships and submarines by providing automated response or

early detection. One area of interest to the US Navy is the development of fire alarm

systems that offer improved accuracy and reliability compared to traditional smoke

detectors. Another topic of interest is the detection of UXO material that is buried

beneath the ground at former bombing test sites [86]. Hybrid sensor arrays com-

bined with multisensory data fusion have proven useful for addressing each of these

concerns. Section 12.7 of this chapter describes a multicriteria sensor array called

an Early Warning Fire Detector (EWFD) which contains a hybrid of smoke

detectors and gas sensors. Section 12.8 describes a real-time, remote detection

system for shipboard situational awareness known as the Volume Sensor. Section

12.9 describes wide-area assessment (WAA) techniques (sensory data from air-

craft) for surveying potential UXO contamination. For all three projects, fusion of

various types of data was necessary to provide an accurate detection with a low

false alarm rate. Although the following sections describe research of interest to the

navy, the methods used for sensor array design and data analysis are expected to be

transferable to a wide range of applications.

12.7 Early Warning Multicriteria Fire Detector Based

on Hybrid Sensing

12.7.1 Background

The goal of reducing manning aboard naval vessels means that fire detection

capabilities must be accurate and reliable so that countermeasures such as sprin-

kler systems are not deployed due to false alarms. False alarms due to “nuisance”

sources such as welding, grinding, torch-cutting, cooking, or other fire-like events

are particularly problematic aboard naval vessels, where such activities are

routinely performed. Another issue is the importance of detecting a fire as early

as possible so that damage is minimized. Typical indoor fires may be characterized

as either “flaming” or “smoldering,” the latter of which may elude detection in

its early stages.

Typical commercial fire alarm systems are spot-type (univariate) sensors

designed to detect smoke. There are two common types, ionization and photoelec-

tric smoke detectors. In order for the sensor to respond, smoke must diffuse to the

chamber of the sensor. This may take many minutes, depending on the nature of the

fire, air drift, and sensor location. Ionization detectors respond faster to flaming fires

while photoelectric detectors respond faster to smoldering. In recent years, the

development of a multicriteria fire detector, containing both smoke and thermal

detectors has been advocated for decreasing nuisance alarms [87, 88].
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Research suggests that the sensing capabilities of the multi-criteria fire detectors

may be improved by adding gas sensors such as carbon monoxide (CO) and/or CO2

detectors [89–91]. Section 12.7.2 describes a hybrid sensor comprised of smoke

detectors and gas sensors for a fire alarm system that provides early warning

capabilities as well as low false alarm rates. Classification using a PNN will be

discussed as well as techniques utilizing multivariate statistical process control

(MSPC).

12.7.2 Sensor Selection Studies

The selection of sensors for a dedicated fire alarm involved a two-tiered approach.

First, a large collection of sensors were chosen based on the scientific knowledge

about the system (i.e., what types of gasses or biproducts are generated by a fire or

nuisance source) and which are the sensors that would be cost effective and easily

implemented into a hybrid array. Second, a down-selection of sensors was per-

formed based on experimental results of the full set.

Twenty sensors were selected based on a literature review, past experience, and

available technologies. The choice of gas sensors were based on the expected

effluents of a fire. Other detectors included temperature sensors, relative humidity

detectors, photoelectric and ionization smoke detectors. A series of 120 experiments

were conducted in a test compartment measuring 4.1� 6.5� 3.6 m (96 m3) wherein

the set of 20 sensors were exposed to a variety of fire and nuisance scenarios. The

fires included both flaming and smoldering fires using fuels such as a flammable

liquids (propane, heptane, jet fuel, alcohol) and materials such as mattresses, paper

(trash can fire), electrical cables, insulation, and wall panel materials. Nuisance

sources included use of a toaster, welding, torch cutting (steel), grinding (steel or

cinder block), cutting wood, burning popcorn in microwave, gasoline engine exhaust,

electrical heaters and halogen lamps, and cigarette smoke. More details about the

sensors and experiments can be found elsewhere [92, 93].

Response patterns were determined at discrete times corresponding to the high,

medium, and low sensitivity alarm setting of the photoelectric smoke detector.

Cross-validations using a PNN [94, 95] were used as the final measure of perfor-

mance. The PNN is a nonparametric, nonlinear classification algorithm that has

been successfully applied to a wide variety of multivariate data. In this study,

patterns were trained and classified as three categories: clean air, nuisance, and fire.

Exploratory data analysis included PCA, hierarchical cluster analysis, and linear

correlation coefficient analysis in order to visualize the natural clustering and

determine redundancy among sensors. In addition, two other methods were used

for sensor selection. First, a stepwise regression based on a chi-squared test of the

classification model goodness of the fit was performed. Second, a forward selection

that minimized the classification error of a PNN cross-validation was used to

select the best set of sensors. Using cluster analysis as a guide, the subsets were

further investigated by swapping sensors that were similar in nature, testing the
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consequences of leaving a sensor out or adding one in, and other ways of refining

the array based on human deduction and sensor construct issues. The goal was to

select a small subset of sensors that provided orthogonal content. A small subset

was also desired to lessen the computational burden of the PNN, resulting in faster

speed (important for real-time monitoring) and less memory requirements (impor-

tant when using a dedicated processing chip).

The results indicated that five sensors provided the best overall classification.

Increasing the number of sensors to eight did not improve the performance. The

best results (98% correct) were achieved using oxygen, hydrogen sulfide, relative

humidity, ionization, and photoelectric sensors at the response times that corre-

sponded to the medium and low sensitivity levels of the photoelectric smoke

detector. At the high sensitivity level, the same set of sensors provided 95% correct

classification. Various other subsets also produced 95% correct classification. The

classification results demonstrate an improvement over using one of the spot-type

smoke detectors alone. The correct classifications for the ionization detector at the

low, medium and high sensitivity alarm setting were 83%, 83%, and 76%, while the

correct classification was 76%, 74%, and 85% for the photoelectric detectors. In

addition, the cluster responses indicated that the gas sensors could be varied with

similar results. This is important when designing a fire detection system because

long-term stability of the sensors is critical.

Similar experiments using the full set of sensors were performed aboard the ex-

USS Shadwell (Mobile Bay, AL), where the sensors could be tested in a more

realistic setting (various room configurations, background air conditions, etc.).

After three test series involving 120 total fire or nuisance tests, the sensor array

was reduced to four sensors: ionization, photoelectric, CO, and CO2 detectors.

A prototype system, EWFD, was built using the four-sensor array with the

PNN classifier. The EWFD was evaluated in real time using full scale fire tests

on the ex-USS Shadwell.

12.7.3 Conclusions and Reflections

The EWFD prototype provided improved detection for both flaming and smolder-

ing fires. In general, the response times of the array were equal or better than the

commercial smoke detectors. Subsequent studies have been performed with this

hybrid array and the results are detailed elsewhere [96, 97]. Figure 12.1 shows a

typical trend for various (scaled) sensor responses (a) as well as the PNN proba-

bility trend (b) for a typical fire. The figure was taken from Ref. [96]. The experi-

ment involved a heptane pan fire and was performed aboard the ex-USS Shadwell.
The source was ignited at 385 s and the trend shows a sharp increase at roughly

420 s which later falls due to extinguishing the fire.

Although most studies employed PNN, one study used a process monitoring

approach to data evaluation [98]. MSPC is often used for fault detection, to identify

when a process is out of control. For the EWFD, statistical diagnostics were

12 Hybrid Arrays for Chemical Sensing 281



computed for ambient, steady-state conditions using a PCA model of clean air data.

Statistical parameters such as Hotelling’s T2-statistic (essentially the distance of a

data point to the PCA model) and the Q-residual (sum of squared residuals after

PCA projection) are commonly used to diagnose outliers or data that is statistically

different from model (training) data. Critical limits such as a 95% or 99% confi-

dence limit may be set as thresholds above which the data is considered to deviate

from normal process conditions. Typically, the Q-residual is a more sensitive

parameter. This was the case for the EWFD data collected aboard the ex-USS

Shadwell. The Q-statistic was typically the first indicator of fire, while the

T2-statistic (referred to in this publication as the D-statistic) lagged behind before

showing deviation above the critical threshold. The latter diagnostic was used for

Fig. 12.1 Sensor responses (a) and PNN probabilities (b) generated during a heptane pan fire

performed aboard the ex-USS Shadwell. The ignition time was 385 s. This figure was taken from

Ref. [96]
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confirmatory analysis, but the use of both statistics was considered essential for

accurate fire identification. Figure 12.2a shows a plot of the Q-statistic for a

smoldering fire experiment that involved burning laundry clothes while

Fig. 12.2b shows both the D- and Q-statistics for a welding experiment. These

plots were taken from Ref. [98]. In plot a the fire was set at 313 s and the Q-statistic
rose above the 99.9% upper confidence limit (UCL) at 782 s. The photoelectric

detector alarmed at 1,133 s. In plot (b), both the photoelectric and ionization

detectors alarmed for the nuisance source (welding) whereas theD- andQ- statistics
did not reach the 95.0% UCL threshold. In this study, contribution plots were used

Fig. 12.2 Trend of the Q-statistic during a smoldering fire experiment (a) and both D- and

Q-statistics during a nuisance test involving welding steel (b). The figure was taken from Ref. [98]
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to identify the source (location) of the fire and its rate of growth. This information is

useful for deployment of countermeasures which (such as sprinkler systems or

manpower) is targeted at the original source of the fire rather than adjacent

compartments where effluent smoke may have drifted. The MSPC approach allows

statistically meaningful diagnostics to be extracted from a time-domain data and

represents a complimentary technique to a pattern recognition algorithm such as

the PNN.

12.8 Data Fusion of Volume Sensor

In Sect. 12.8, a hybrid array called a Volume Sensor that uses a more sophisticated

level of data fusion than the EWFD described in Sect. 12.7 is presented.

12.8.1 Background

While the EWFD provided improved fire detection, there were some limitations.

Fire-like nuisances were still misclassified and the detection of smoldering fires was

delayed because the smoke had to diffuse to spot-type or point detectors. Therefore,

a new detection system was investigated based on real-time, remote detection

system for shipboard situational awareness known as the Volume Sensor. The

objective was to develop an affordable detection system that will identify shipboard

damage control conditions and provide an alarm for events such as flaming and

smoldering fires, explosions, pipe ruptures, and flooding. A multisensory approach

that took advantage of the existing and emerging technology in the rapidly growing

fields of optics, acoustics, image analysis, and computer processing was used.

In addition, this technology utilizes conventional surveillance cameras, which are

currently being incorporated into new ship designs, and therefore will provide

multiple system functions with minimal new hardware. Intelligent data fusion

algorithms were developed for event classification and situational assessment.

The volume sensor prototype (VSP) was subject to full-scale testing aboard the

ex-USS Shadwell and was evaluated by comparing its performance with two

commercial video image detection (VID) and three spot-type fire detection systems.

12.8.2 Sensor Selection

The first phase of sensor selection consisted of a literature review and an industry

review of current and emerging technologies for video, optical, and acoustic

methods for the detection of smoke and fire [99]. Based on the study, several

technologies were identified as having potential for meeting some of the objectives
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of the detection system development effort. A recent advance in fire detection is to

exploit the data from video cameras that have already been installed for surveil-

lance, employing special algorithms to detect smoke or fire. A full-scale laboratory

evaluation of three VID systems using a variety of fire and nuisance sources

indicated that the smoke alarm algorithms of these systems could provide fire

detection capabilities equivalent to spot-type smoke detectors for most of the

conditions evaluated [100]. However, nuisance rejection remained a problem,

mainly due to bright nuisance events such as welding, torch cutting, and grinding

that produce similar optical phenomenon in a VID image. Potential technologies

were assessed to augment the VID. These included spectral sensors [101, 102],

acoustic signatures [103], and long wavelength imaging [104, 105]. Each of the

sensing technologies was evaluated using damage control events including fire,

flooding and pipe ruptures, and against a variety of typical shipboard nuisance

sources. The results indicated that each sensing technology provides unique infor-

mation for use in the multisensory prototype. The VID systems were found to be

effective for detecting smoke, while long wavelength video detection (LWVD) and

spectral sensors successfully detected flame emission over the entire space without

requiring a large number of cameras. In addition, the acoustic detection was useful

for identifying pipe ruptures and flooding as well as for discriminating against

nuisance sources, such as grinding.

Two VSPs have been assembled and demonstrated [106]. The sensor compo-

nents were grouped into sensor suites, each of which contains a video camera, a

long wavelength filtered video camera, spectral sensors, and a microphone. Data

from multiple sensor suites were analyzed by the appropriate sensor systems.

Figure 12.3 shows the data fusion architecture and labels the hardware and software

components as “field monitoring” (the VSP), “sensor system computers,” and

“fusion system computer.” The “supervisory control system” represents an inter-

face to a higher level system. Each raw sensory output was subject to a specific

algorithm before being sent to the fusion machine. The processed data was

Fig. 12.3 Volume sensor system architecture and components
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translated into the extensible markup language (XML) and transferred in message

packets through a standard internet protocol (IP) network (i.e., Ethernet). The

fusion computer (fusion machine) was a PC-based unit that contained the XML

libraries used to encode and decode the message packets. The fusion machine also

performed the data analysis routine and a graphical user interface (GUI) was

developed to provide a visual aid and a human friendly interface.

12.8.3 Data Analysis

To build an event classifier, pattern recognition techniques such as PNN and

linear discriminant analysis (LDA) were initially explored, but were found to

produce higher than desired nuisance alarm rates and were less than successful

when performed in real time. Results improved when an intelligent decision

algorithm was written specifically for this application. Further improvements

were found when Bayesian inference [107, 108] was used to guide the decision

algorithm. For this approach, a set of training data was used to generate frequency

tables based on the response profiles of each of the nine classes of events: fire,

bright nuisance (i.e., welding or torch cutting), grinding, engine running, water

(flooding), fire suppression system (mist), gas release, background, and people

working/talking. The training data were gathered by picking event-specific signa-

tures at known scenario times from the full-scale pool of tests. Each response pro-

file consisted of 16 sensory outputs obtained from the preprocessing algorithms

of the raw VSP data. For simplicity, the responses of each sensory input were

binned into one of four states: low, mid/low, mid/high, and high. The states of the

bins formulated the event-specific signatures that underwent Bayesian analysis to

obtain a statistical probability that a certain event was occurring. The intelligent

decision algorithm was necessary to provide a more robust analysis and prevent

false alarms. For example, bright nuisance events (such as welding) may produce

high sensory outputs for optical detectors, indicating a fairly high probability

of fire. Using only spectral sensors, it is difficult to discern some of the bright

nuisance event from fires. However, with the VSP acoustic sensors and the

acoustic algorithm tailored to match welding, the Bayesian network may produce

a very high likelihood that a welding event is occurring. With this additional piece

of information, the likely conclusion is that the spectral phenomena are produced

by welding rather than by fire. The intelligent decision algorithm can be pro-

grammed to place the system at a “prealarm” state or a warning state, but wait for

further evidence of a fire. In this way, the decision algorithm was guided by the

outputs of the Bayesian network, but was built upon a more complex set of

instructions that modeled human inference. Both transient (past data that repre-

sented growth or trends) and current data from the Bayesian algorithm was used

in the final analysis. The decision algorithm was written for the application at

hand and was designed to provide accurate event detection with a minimum of

false alarms.
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12.8.4 Conclusion and Reflections

Performance of the VSP was compared to two commercial VID fire surveillance

systems as well as three types of smoke detectors. The volume sensors outper-

formed all commercial systems. In addition to classification of fire sources, the

volume sensors were able to categorize other events, correctly identifying most of

the gas releases, flooding, and pipe rupture sources [109, 110].

The steps taken for the development and implementation of the volume sensor are

applicable in many areas of chemical sensing. The approach to the problem of

situational assessment was addressed by combining a diverse array of sensory

elements that provided orthogonal information, producing event-specific data profiles

that were able to be interpreted by intelligent fusion machine algorithms. Although

microphones may not be the first detection mechanisms one would envision in a fire

detector, they proved to be a surprisingly helpful addition for minimizing false alarms

due to specific nuisance events. The VSPs were successful in fulfilling their goals for

real-time monitoring in a shipboard environment. The systems provided timely and

accurate detection of fires and other damage control events, outperforming a number

of commercially available systems. The VSP systems were also designed with

flexibility so that additional sensor components and software alterations could be

accommodated if necessary or desired. The components were commercially available

at a modest cost. The volume sensor demonstrated the performance gains that were

realized when the multicriteria/multisensory approach was compared to the tradition-

al univariate spot-type systems. Using a hybrid collection of sensors allowed for

detecting the capabilities that expanded beyond the traditional systems, incorporating

events such as gas releases, pipe ruptures, and flooding into the classification algo-

rithms. The initial successes of this project should encourage the use of hybrid arrays

as a feasible approach to addressing a host of challenging analytical problems.

12.9 UXO Analysis using a Data Fusion Approach

The following section describes some preliminary work performed at the Naval

Research Laboratory concerning data fusion techniques to enhance UXO detection.

The data fusion approach is similar to that described in Sect. 12.8 for the volume

sensor, however the implementation is more complicated because the available data

may be collected at different dates, contain different spatial resolutions, and be

incomplete to one degree or another. This makes data registration, interpolation,

and interpretation a much more involved task.

12.9.1 Background

An estimated 10 million acres of US land has been linked to former bombing test

sites and have the potential to contain buried ordnance materials, although findings
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reveal that about 80% of a typical site is actually UXO-free. The most common

method for detecting these materials is surface magnetometry which is slow and

plagued with false alarms, adding to the high cost of remediation. The use of

multiple sensing inputs combined with pattern recognition techniques has proven

to be more effective at target detection and false alarm reduction than the use of a

single sensing technology [111–113]. Recent efforts have been devoted to WAA

using remote sensing techniques to pinpoint areas that may receive further scrutiny

from close range methods. Preliminary results indicate that a data fusion approach

to target detection would allow for a more rapid and reliable assessment of

UXO-contaminated sites using WAA sensing technologies [114].

12.9.2 Data Fusion Architecture

For this preliminary investigation, low altitude (helicopter) airborne magneto-

metry (“Helimag”) and high-altitude airborne light detection and ranging

(LiDAR) and high resolution aerial photography were analyzed from a survey

taken at Pueblo Precision Bombing Range #2 in Colorado. In addition, auxiliary

information such as historical records of site usage, data from previous surveys,

information given by local residents, and other sources of expert knowledge were

also gathered to supplement the WAA data. Figure 12.4 depicts an example of

fusion architecture that is being implemented in this study. In a typical UXO

remediation survey, there may be various types of data available in the three

categories labeled “Wide Area,” “Local Area,” or “Auxiliary Information” and

each type may be incomplete or differ in terms of data quality. The first step is the

acquisition of sensory data and the second step is the data registration to a

common grid system. Step three is the data fusion engine where the processing,

fusion, and interpretation of the data occur. In this study, a Bayesian-based data

fusion algorithm was used to establish confidence levels for each pixel location

on the grid. In the fourth step, the probabilities are scaled and a color-coded map

is generated based on the likelihoods of UXO existence. Step five allows for the

refinement of the WAA map with additional survey scans that generate more

detailed data in the regions reflecting high UXO likelihoods. Newly acquired data

can be fed back into the fusion algorithm (steps 2–5) for a re-assessment of the

probabilities, increasing the reliability of the feature map and establishing a more

detailed and accurate dig sheet.

12.9.3 Data Analysis and Preliminary Findings

For the Pueblo site, the high resolution aerial photography data did not prove to be

useful for UXO analysis; however the data could potentially assist in data registra-

tion and interpretation of ground clutter or man-made artifacts. Geological survey

288 K.E. Kramer et al.



data indicated minimal magnetic geological features as well as little foliage and

other ground surface phenomena that may interfere with spectral or magnetometry

measurements. Such features, however, are expected to pose a more difficult

challenge for other sites. The principal feature of LiDAR data that may be corre-

lated with UXO contamination is cratering of the ground surface. Figure 12.5 shows

a grayscale feature map of LiDAR cratering side by side with a feature map based

on total magnetometer signal. The coordinates span UTM Northing 4,169,390 to

4,178,634 and UTM Easting 614,590 to 618,627, and represented a rectangular

survey area of approximately 37 km2. A combined feature map was generated using

both sources of data, as illustrated below. Taken individually, the results for each

data source (expert information, orthophotography, LiDAR, and magnetometry)

Fig. 12.4 Implementation of a data fusion framework for wide-area UXO assessment
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Fig. 12.5 Feature maps showing that a multisensory approach produces the most complete picture

for UXO target detection
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did not provide a complete and accurate profile of the Pueblo site. The combined

feature map, however, provided a more reliable assessment. For instance, the

crater-like feature density map generated with the LiDAR allowed for the gap to

be filled between the two peaks in the southern portion of the magnetometer signal

density map. This indicated that the target range known to be present in this area

was used more extensively than suggested by the historical accounts. The density

maps along with the combined map all confirmed the presence of a second, but less

affected region in the northern portion of the site. However, no evidence in these

maps supports the existence of the suspected 75-mm range. Ground truth data

excavated in all three of these regions affirmed these conclusions.

12.9.4 Conclusions and Prospects

Determination of UXO contamination is a daunting task and the acquisition of

sensory data is complicated by the diversities in terrain and ground cover of the

various regions that are affected. For a sensing task that is plagued by false alarms, a

multicriteria/multisensory approach using WAA techniques will ease the burden of

data acquisition as well as lend a measure of reliability to the analysis. The data

fusion architecture proposed above is flexible to accommodate a variety of data

sources which may vary in nature, quantity, and quality. After appropriate scaling

and transformation, the available pieces of information serve as inputs to a data

fusion algorithm. More reliable measurements may be given greater weight in the

analysis. For the Pueblo site, neither the magnetometry data nor the LiDAR alone

was able to flag all suspected ordnance. However, the combined feature map

revealed a more complete and accurate surveillance of UXO densities, confirmed

by the ground truth data.

12.10 Conclusions and Reflections

In this chapter, the benefits of hybrid detector arrays are illustrated. Chemical vapor

sensors, such as EN technologies, are typically comprised of semi-selective sensors

based on a single transducer. There is much evidentiary support that a hybrid array

can offer more a powerful detection capability than the more traditional designs.

Array detectors are commonly developed to be application-specific and often at

times, the desire to ease the manufacturing process, size, cost, or complexity

precludes the investigation into hybrid sensing techniques. Hybrid designs may

be deemed unworthy of the additional engineering efforts or overlooked due to the

lack of published research that has proven them effective.

In Sects. 12.2–12.4, published reports of vapor sensing that utilized a hybrid

array or higher order sensing principles were highlighted. Repeatedly, the authors

stressed the benefits that were gained from the combination of two or more
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sensing mechanisms. Feature selection algorithms generally pointed to the redun-

dancies among transducers of the same type and subsets based on a down-

selection of sensors nearly always spanned the entire range of transducer types.

The opening sections presented hybrid configurations where the sensory data was

able to be combined in a straightforward manner, while the latter sections

described more elaborate methods of data fusion. The current trend in hardware

implementation is a modular approach to allow for design flexibility and altera-

tions. Sensor elements of each class of transducer may be housed in a different

module that may be addressed individually in terms of data acquisition and

maintenance. The appropriate combination of data preprocessing, feature extrac-

tion, fusion architecture, and classification algorithm must be researched and

optimized according to application.

In the second half of the chapter we discussed hybrid arrays and multisensory

data fusion research conducted at the Naval Research Laboratory. Three projects

were chosen to illustrate examples of data fusion using a relatively simple architec-

ture (the EWFD) as well as those that were more complex (the VSP and UXO

fusion schemes). The EWFD represents a hybrid array that may be the most closely

associated with chemical vapor sensing. The VSP hybrid array was designed to

detect multiple types of events, therefore the hardware components and software

algorithms were correspondingly more complex. Nevertheless, the sensors were

collocated and the data acquisition, fusion, and analysis were able to be performed

in real time. The UXO analysis represents the most complicated system in terms of

the data interpretation and fusion architecture. To generalize the process, the data

fusion algorithms must be very flexible. It is expected that the ability to collect

various types of data will depend on the time, cost, and instrumentation available

and the fusion architecture may need to weight certain types of data according to

reliability or quality. Similarly, abstract types of data (such as interviews with local

residents or advisory reports from expert analysts) will need to be given a specific

credence and somehow converted to a numerical representation if it is to be used in

a fusion algorithm. Data registration to a common grid system (spatial alignment) is

an important part of the process.

This chapter was aimed at presenting the research findings of those who have

used hybrid arrays and data fusion for tasks such as chemical vapor sensing as well

as for ongoing research conducted at the Naval Research Laboratory. The multi-

criteria/multisensory approach is a powerful means of solving some challenging

analytical problems. Although the use of hybrid arrays in chemical vapor sensing

has not yet become commonplace, perhaps continuing research will encourage new

developments and bring about more widespread usage. Oftentimes, the analytical

benefits prove to be worthy of the modest increases in the hardware and software

complexities.
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56. Heilig, A.; Bârsan, N.; Weimar, U.; Schweizer-Berberich, M.; Gardner, J. W.; Göpel, W.,

Gas identification by modulating temperatures of SnO2-based thick film sensors, Sensors
Actuat. 1997, B43, 45–51

57. Sundgren, H.; Lundström, I.; Winquist, F.; Lukkari, I.; Carlsson, R.; Wold, S., Evaluation of

a multiple gas mixture with a simple MOSFET gas sensor array and pattern recognition,

Sensors Actuat. 1990, B2, 115–123
58. Wilson, D. M.; Roppel, T.; Kalim, R., Aggregation of sensory input for robust performance

in chemical sensing Microsystems, Sensors Actuat. 2000, B64, 107–117
59. Corcoran, P.; Lowery, P.; Anglesea, J., Optimal configuration of a thermally cycled gas

sensor array with neural network pattern recognition, Sensors Actuat. 1998, B48, 448–455
60. Llobet, E.; Brezmes, J.; Vilanova, X.; Sueiras, J. E.; Correig, X., Qualitative and quantitative

analysis of volatile organic compounds using transient and steady-state responses of a thick-

film tin oxide gas sensor array, Sensors Actuat. 1997, B41, 13–21
61. Wide, P., A human-knowledge-based sensor implemented in an intelligent fermentation-

sensor system, Sensors Actuat. 1996, B32, 227–231
62. Janata, J.; Josowicz, M.; Vanysek, P.; Devaney, D. M., Chemical sensors, Anal. Chem. 1998,

70, 179R–208R
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Chapter 13

Future Directions

Margaret A. Ryan and Abhijit V. Shevade

Abstract In this volume, several computational methods which may be used for

evaluation and selection of sensing materials have been discussed. These computa-

tional methods have ranged from first principles or de novo methods, such as those

discussed in Part 1, to semi-empirical and statistical methods as discussed in Parts

2 and 3. Some chapters have focused on designing sensing materials to respond to

specific analytes and some on combining sensors to create arrays to detect a suite of

chemical species. Nevertheless, challenges in computational evaluation of chemi-

cal sensing materials remain. We see two principal challenges. One challenge is in

refining the methods discussed to yield accurate prediction of sensor response

[1, 2]; methods as presented here may certainly be used to evaluate and rank

candidate materials and to determine which materials to test. The question is

whether these approaches can be used to discover new materials for sensing

applications and whether these approaches will be able to predict the response of

known sensing materials to new analytes accurately. The second challenge is in

constructing arrays, that is, selecting which combination of materials and sensor

types to use in an array. In this emerging field, the question is how to select a

suite of sensors for a suite of analytes and how to analyze and understand the

information gathered from the array.

Computationally, there are several approaches discussed here, which may be used

singly and in combination to develop new sensing materials, to design arrays, to

predict how an existing array will respond to particular stimuli, and to create a

database of sensor responses to analytes. New computational tools that provide a

more detailed understanding of the mechanisms and action of chemical sensing from

molecular to system level are required. Developing these tools involves scalable and
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robust computational algorithms to enable integration of materials modeling and

simulation approaches from the atomistic through the meso, to the continuum scale.

A validated approach based on these formulations would then provide tools with

which to evaluate sensing materials and their properties based on fundamental

understanding of sensing at the electronic, atomic, and molecular levels.

Advancement of validated computational approaches and tools will assist ex-

periments, as computational studies could be done prior to experiments to evaluate

sensing materials. A priori sensor response predictions using computational ap-

proaches can also be used to generate parameters for quantification and identifica-

tion algorithms. This will facilitate the generation of virtual response data sets for

any given sensor/sensor array for analytes that may not easily be tested, such as

highly explosive or toxic compounds. Subsequently, fewer experimental tests will

be needed. Sensing experiments are time consuming, owing to the need to measure

and catalog sensor responses for various target analytes at different concentrations

and under a variable set of environmental conditions (humidity, temperature, and

pressure). Only when these experiments are completed can data analysis algorithms

be tested.

Information content in chemical sensor arrays can be created by a multitude of

combinations of materials, structures and methods, and that variety is only now

coming to be appreciated. Chapters 10 and 11 discuss selecting different sensors of

a single type to construct an array; similar methods may be used to construct an array

for multiple sensor types. However, it is as important to develop computational

methods to arrange, store, and analyze complex data sets; such methods are making

a significant impact on progress in this field of research and in applications, and will

continue to do so. Future work will involve combining many of the aspects of

computation and arrays discussed throughout this volume. Hybrid Arrays as dis-

cussed in Chaps. 1 and 12 are, perhaps, the future of sensing arrays. The computa-

tional methods discussed here can be applied to development of such hybrid arrays.

Future computational research to design, select, and optimize sensing materials

will also focus on developing a prediction database for sensor materials to aid in

developing a discovery frame work of new sensing materials for desired applica-

tions. Such databases could be developed for organic, inorganic, and a combination

of material types. This calls for the development of novel, mathematical, statistical,

and optimization approaches and their integration with advanced computational

materials modeling approaches.

Combination of quantum mechanics with first-principles molecular dynamics

affords a great deal of information that it is useful in designing and selecting

materials for specific analytes, as shown in Chaps. 2 and 3. In future work, a

newly developed Molecular Dynamics method for the direct estimation of free

energies [3] may be applied to such computation. Computational methods such as

the Grand Canonical Monte Carlo method discussed in Chap. 4 may also lead to

estimation of energies involved in the sensing process, such as electrostatic forces.

Combinatorial and high-throughput experimentation methodologies, as dis-

cussed in Chap. 7, provide an opportunity to generate new experimental data to

discover new sensing materials and/or to optimize existing material compositions.
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Design of new sensing materials is the important cornerstone in the effort to

develop new sensors. Computer-aided design of materials, as discussed in Chap. 5,

is one approach to sensor design. However, it is often found that sensing materials

are too complex to predict their performance quantitatively in the design stage.

Applications of data mining approaches to sensing materials [4–7] will assist in

understanding prospective sensing material performance in the design stage. In

addition, new chemometric methods are under development to extract chemical

information from array responses in terms of solvation and other parameters, as

described in Chaps. 8 and 9, as descriptors of the detected vapor and of the sensing

materials.

Hybrid biomimetic nanosensors, discussed in Chap. 6, which use selective

polymeric and biological materials that integrate flexible recognition moieties

with nanometer size transducers, are new sensing approaches currently under

investigation. Their potential biocompatibility combined with advanced mechanis-

tic modeling studies could lead to applications such as unobtrusive implantable

medical sensors for disease diagnostics, light weight multi-purpose sensing devices

for aerospace applications, ubiquitous environmental monitoring devices in urban

and rural areas, and inexpensive smart packaging materials for active in situ food

safety labeling.

Inclusion of biomimetic influences into development of sensing materials and

signal processing for a sensor array is a rising area of research, and progress in this

area will result in improvement of the functionality and fidelity of sensor devices.

To strengthen pattern recognition capability of gas sensors, aggregating sensors

with overlapping specificities is an approach under study [8]. This process mimics

the biological olfaction process that is known to aggregate the raw sensory infor-

mation collected by large numbers of olfactory receptors into a smaller number of

aggregate inputs before these signals reach the olfactory bulb. Biologically inspired

models have been investigated to remove concentration effects from themultivariate

response of a chemical sensor array [9]. Chemosensory adaptation of sensing arrays

could be enhanced by using algorithms [10] that reduce array sensitivity to odors

previously detected in the environment. This approach is inspired by adaptation

in biological olfactory processes that remove constant noninformative stimuli,

so that new ones are detected.

Finally, it must be noted that the benefits of a multisensory or hybrid sensing

approach are not automatically achieved. Multivariate data analysis techniques

such as those employed in the field of chemometrics have become more important

in analyzing sensor array data. Depending on the nature of the acquired data, a

number of chemometric algorithms may prove useful in the analysis and interpre-

tation of data from hybrid sensor arrays. The multicriteria/multisensory approach is

a powerful means of solving some challenging analytical problems. Although the

use of hybrid arrays in chemical vapor sensing has not yet become commonplace,

perhaps continuing research will encourage new developments and bring about

more widespread usage. Often, the analytical benefits prove to be worthy of the

modest increases in the hardware and software complexities.
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