
Developing Bots
with Microsoft
Bots Framework

Create Intelligent Bots using
MS Bot Framework and Azure
Cognitive Services
—
Srikanth Machiraju
Ritesh Modi

Developing Bots
with Microsoft Bots

Framework
Create Intelligent Bots using MS

Bot Framework and Azure
Cognitive Services

Srikanth Machiraju

Ritesh Modi

Developing Bots with Microsoft Bots Framework

Srikanth Machiraju Ritesh Modi
Hyderabad, Andhra Pradesh, India Hyderabad, Andhra Pradesh, India

ISBN-13 (pbk): 978-1-4842-3311-5 ISBN-13 (electronic): 978-1-4842-3312-2
https://doi.org/10.1007/978-1-4842-3312-2

Library of Congress Control Number: 2017962439

Copyright © 2018 by Srikanth Machiraju and Ritesh Modi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Nikhil Karkal
Development Editor: James Markham
Technical Reviewer: Puneet Jindal
Coordinating Editor: Sanchita Mandal
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-3311-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3312-2
www.freepik.com
orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-3311-5
www.apress.com/978-1-4842-3311-5
http://www.apress.com/source-code
http://www.apress.com/source-code

iii

Contents

About the Authors ��� ix

About the Technical Reviewer �� xi

Introduction �� xiii

Target Audience ��� xv

 ■Chapter 1: Conversations as Platforms �� 1

Types of User Interfaces �� 2

Drawbacks of Conventional UI �� 3

Conversations as Platform �� 5

Introduction to Microsoft Bot Framework ��� 7

Meet a Few Bots ��� 9

Summarize ��� 9

Your Face �� 10

Azure Bot Service �� 11

LUIS Bot �� 13

QnA Bot ��� 13

Proactive Bot �� 14

Direct Line ��� 15

IOT and Bots �� 16

Other Bot Frameworks �� 16

Bot Abuse �� 17

Summary ��� 17

■ Contents

iv

 ■Chapter 2: Develop Bots Using �NET Core ������������������������������������� 19

Designing Bot Applications �� 20

Setting Up the Development Environment �� 23

Testing the Bot �� 26

Debugging the Bot Application ��� 27

Bot Application Life Cycle �� 28

Bot Architecture ��� 31

Bot Authentication ��� 32

Building a Bot �� 33

Deploy Bot to Azure ��� 38

Register the Bot ��� 42

Configure Channels ��� 45

Configuring Skype Bot �� 47

Configuring Web Chat ��� 50

Summary ��� 52

 ■Chapter 3: Develop Bots Using Node�js �� 53

Setting Up a Development Environment �� 54

Build Hello World Bot Using VS Code ��� 54

Debugging Using VS Code ��� 60

Building Bots with Conversations �� 61

Dialogs �� 61

Prompts �� 62

Messages ��� 67

State ��� 68

Deploying to Azure �� 69

Summary ��� 73

■ Contents

v

 ■Chapter 4: Channels ��� 75

Channels and Channel Data �� 75

Channel Data �� 78

Build a Chat Bot Using an Email Client �� 80

Build a Chat Bot Using Slack Channel and API �������������������������������������� 87

Multi-dialog Bot Using Slack and Slack Channel Data ��� 89

Onboarding a Slack Bot �� 95

Remote Debugging Slack Bot on Development Machine ��������������������������������������� 96

Summary ��� 97

 ■Chapter 5: Bot Conversations ��� 99

Understanding Conversations ��� 100

Messages ��� 100

Activity �� 101

Relationship Between Channels, Conversation, User, and Bot������������������������������ 102

Message Under the Hood ��� 103

Conversation Under the Hood ��� 104

Building Bots with Conversations �� 105

Attachments ��� 105

Hero Card �� 111

Thumbnail Card �� 113

Carousal �� 114

Buttons ��� 116

Prompts �� 116

Summary ��� 121

■ Contents

vi

 ■Chapter 6: Skype Calling Bot �� 123

Introducing Skype Calling Bots ��� 124

Use Cases for Skype Calling Bots �� 124

Enabling Calling for Your Bot ��� 125

Building a Skype Calling Bot ��� 126

Sequence of Events ��� 130

Debugging Skype Calling Locally Using Ngrok ������������������������������������ 139

Speech-to-Text Using Bing Speech API ��� 141

Summary ��� 149

 ■Chapter 7: Storing State ��� 151

Stores for Bot State ��� 152

State Service ��� 153

Storing and Retrieving State Using StateClient ����������������������������������� 155

Storing and Retrieving State with Dialogs��� 158

More Control over State with Dialogs �� 162

Custom State Data Store ��� 165

Overview of Cosmos DB ��� 166

Cosmos DB as Custom State Data Store �� 166

Table Storage as Custom State Data Store ��� 173

Summary ��� 180

 ■Chapter 8: Dialogs �� 181

The Dialog Model ��� 181

IBotData �� 182

IBotTouser ��� 182

IDialogStack �� 182

IBotContext ��� 183

■ Contents

vii

Dialog Stack �� 183

Dialog Context ��� 183

Root Dialog �� 183

Building a Simple Dialog Bot ��� 184

SimpleDialog�cs �� 184

MessagesController�cs �� 188

Creating Multi-Dialog Bots �� 189
Scenario ��� 190

Solution��� 191

RootDialog�cs �� 192

Synonym�cs �� 194

Antonym�cs ��� 194

Support�cs �� 194

MessagesController�cs �� 195

FormFlow �� 195

Building a Simple FormFlow Bot �� 196

FormBuilder ��� 199

Customizing the Prompts ��� 199

Customizing the Order of Prompts ��� 200

Conditional Fields ��� 200

Summary ��� 202

 ■Chapter 9: Natural Language Processing ����������������������������������� 203

Cognitive Services ��� 204

LUIS ��� 204
Intents ��� 204

Entities �� 205

Utterances �� 205

Features �� 206

LUIS Development Lifecycle ��� 206

■ Contents

viii

Sample Application �� 211

Creating Intelligent Bots �� 215

Creating Intelligent Bots Without Dialogs ��� 215

Summary ��� 232

 ■Chapter 10: Azure Cognitive Services �� 233

Introduction to Microsoft Cognitive Services �������������������������������������� 234

Getting Started �� 238

Building Smart Bots with Bing Web Search �� 244

Query Parameters ��� 247

Bing Search Request �� 249

Handling Errors ��� 253

Optical Character Recognition with Computer Vision API ������������������������������������� 256

Summary ��� 260

 ■Chapter 11: Bot Operations �� 261

Application Insights ��� 261

Getting Started �� 262

Enable Bot Analytics �� 271

Advanced Analytics ��� 277

Summary ��� 278

Index �� 279

ix

About the Authors

Srikanth Machiraju has over nine years of experience as a developer, architect, technical
trainer, and community speaker. He is currently working with Microsoft Hyderabad
designing and preaching modern application development using cutting-edge platforms
and technologies. Prior to Microsoft, he worked with BrainScale as a corporate trainer
and senior technical analyst on application design, development, and migration to cloud.
He is a tech-savvy developer who is passionate about embracing new technologies and
sharing his learning via blogs or community engagements. He has also authored Learned
Windows Server Containers, blogs at https://vishwanathsrikanth.wordpress.com, and
is active on LinkedIn at https://www.linkedin.com/in/vishsrik/.

Ritesh Modi is an ex-Microsoft Commercial software engineering senior technology
evangelist. He is an architect, senior evangelist, cloud architect, published author,
speaker, and a leader known for his contributions to Datacenter, Azure, Bots, Blockchain,
cognitive services, DevOps, artificial intelligence, and automation. Currently, he is
working as principle consultant with Infront Consulting. He is the author of multiple
books, including Azure for Architects and DevOps with Windows Server 2016—
both available on Amazon and B&N. He co-authored another book titled Introducing
Windows Server 2016 Technical Preview with the Windows Server team. He has
spoken at more than 15 conferences, including TechEd and PowerShell Asia conference,
and is a published author for MSDN magazine.

He has more than a decade of experience in building and deploying enterprise
solutions for customers. He has more than 25 technical certifications. His interests and
hobbies include writing books, playing with his daughter, watching movies, and learning
new technologies. His blog is available at https://automationnext.wordpress.com and
his Twitter handle is @automationnext. He is based out of Hyderabad, India.

https://vishwanathsrikanth.wordpress.com/
https://www.linkedin.com/in/vishsrik/
https://automationnext.wordpress.com/

xi

About the Technical
Reviewer

Yogesh Sharma is an IT consultant based in Pune,
India. He specializes in helping organizations with
quality and cost improvement via migration and
automation to various cloud offerings. His recent
interest lies in collaborative learning. He would like to
acknowledge Prachi, Celestin, and the entire editorial
team for the opportunity and support.

xiii

Introduction

Bots are the new face of the user experience. Conversational user interfaces (CUI) provide
a plethora of options to make the user experience richer, innovative, and appealing with
Email, SMS, Image, Voice, or Video to communicate with the application. Modern web or
desktop applications will soon be replace or augmented with intelligent bots that can be
connected from anywhere using any device. Bots can use artificial intelligence and user
data to provide richer insights and a personalized experience.

The Microsoft Bot framework has made the bot-building experience easy, and
by using this framework we can build rich, scalable, and intelligent bots that can be
connected from anywhere using an impressively vast list of platforms like Email, Skype,
SMS, Facebook Chat and so on. This book explains how to develop intelligent bots using
the Microsoft BOT framework, Visual Studio, Microsoft Azure, and Microsoft Cognitive
Services. The preliminary chapters of the book deal with helping developers learn the
basics of bot development using Visual Studio, .Net, C#, and Node.js. You will learn basic
development and debugging skills, publishing to Azure, and configuring bots using the
bot developer portal. The advanced section of the book deals with building intelligent
bots using scalable storage, conversation flows, Microsoft Cognitive Services like LUIS,
Bing Search, Vision and Voice API. This section also explains configuring analytics and
other common Bot Operations.

The book is divided into the following sections:

Part 1 focuses on the need for a new communication
platform and how conversation user interfaces (CUIs) break
the barriers of building user interfaces; it also describes the
current trends and future focus of this upcoming CUI and bot
platform. This part also focuses on salient features of the MS
Bot framework, available versions and features, and how the
industry is embracing the change, and compares it with other
competitive technologies and roadmap.

Part 2 teaches how to design and develop simple Skype bots
on the Windows platform using the MS Bot framework, Skype,
Visual Studio, .NET, and Azure.

In this part, the readers will also learn how to build bots using
open source platforms like Node JS and VS Code. Readers
will be shown how to manage the complete lifecycle of a
Skype bot, like design, development, testing, and pushing to
production.

■ IntroduCtIon

xiv

Part 3 goes into prospective features of the Microsoft Bot
framework, like channels and channel data and using rich
text, buttons, media, and actions in chat messages. It also
explains building a bot using the Skype Calling API and
speech-to-text conversion, managing user data using Bot
State Service, and using different conversation flows, like
dialog model and form-flow model.

Part 4 delves into the details of building bots by integrating
with Azure Cognitive Services, like Bing Search, OCR,
and LUIS. We also focus on how to perform common
operations, analytics, and diagnostics on bots in production
environments.

xv

Target Audience

The target audience for this book is C#/Node.js developers and architects who design and
build modern applications using a Microsoft stack like Azure Cloud, Visual Studio, and
code. Developers who want to get up to speed by learning the cutting-edge technologies
that enrich the user experience and cater to multiple form factors. Architects/developers
who wish to learn to build and design scalable and reliable messaging platforms that
offer rich conversation experiences with the use of attachments, rich text, and voice for
communication with enterprise applications. Developers can learn to integrate bots
with machine learning and Cognitive Services offered by Azure. Business analysts and
UX specialists can also learn to design trendy user interfaces by using bots and Azure
ML that can be connected using any device and provide an enriched user experience
to end customers. The target audience of this book do not need any prior bot-building
experience.

1© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_1

CHAPTER 1

Conversations as Platforms

Have you ever had the experience of ordering pizza using an application that remembers
your favorite pizza and orders to your current location automatically? Or have you ever
booked a cab just by typing in a chat window or by using voice inputs and had a cab show
up at your door step? If you have seen either of those, what you have experienced is the
new generation of smart applications called bots (a short form of robots). Bots provide
richer and more personalized experiences in our day-to-day activities, thereby making
our lives much better. If you have not experienced this firsthand, you have yet to witness
the next revolution in IT after the worldwide web, mobile, and data. Bots are much
smarter than mobile applications; in some cases they can be smarter than you. Bots are
designed to perform human-like interactions and exhibit human-like intelligence. Chat
bots are not new; we have had platforms that help build chat-based applications for quite
a few years (like Skype SDK), but what makes the new generation of bots special is their
integration with artificial intelligence.

Over the years, smart devices and smart phones have become such an integral
part of our life that they now hold lots of useful personalized information, like your
favorite color, calendar, contacts, favorite restaurants, and so on. New-generation bots
are designed to use the data and context surrounding the data with machine-learning
(ML) and deep-learning technologies to give you a richer experience. A few decades
ago, using ML or deep-learning technologies in a commercial application was highly
complicated because they involve lots of new learnings and come with heavy computing
and memory requirements. With the advent of cloud and serverless computing, the use
of machine learning, data analytics, and advanced algorithms like facial recognition,
voice recognition, and search is just a click away. The focus of this chapter will be on
introducing the benefits of building conversations as a platform for all kinds of business
needs; the Microsoft Bot framework, one of the top-class, end-to-end suites for building
smarter, richer bots; and the various bot intelligence services and platforms available.

The following topics will be discussed in this chapter:

•	 Types of user interfaces

•	 Drawbacks of conventional user interface

•	 Conversations as platform

•	 Introduction to Microsoft Bot framework

•	 Meet a few bots

http://dx.doi.org/10.1007/978-1-4842-3312-2_1

Chapter 1 ■ Conversations as platforms

2

•	 Azure Bot Service

•	 Direct Line

•	 IOT and bot scenarios

•	 Other bot frameworks

•	 Bot abuse

Types of User Interfaces
User interfaces represent the face of any application. They should describe what the
application can do and should be easy to use. It can be as simple as a command line
where the customer interacts via commands or much more sophisticated, like a mobile
application that can accept voice inputs from the user. Historically, user interfaces were
more command-line or custom-input devices with a pre-defined set of commands
printed on them; they could only perform a limited set of operations, like the interface
shown in Figure 1-1. These types of interfaces had a limited set of responses and were
not designed with the intelligence to respond to an unexpected random request. Some of
them do not even retain any context of the user’s previous conversations, which could be
used to improve conversations with the returning user.

The most common user interface that we see today is called a graphical user
interface (GUI), which was popularized by Xerox, Apple, and Microsoft during the 1980s.

Figure 1-2 shows the first GUI with a bitmapped screen. It was developed by
Xerox in the year 1973 and was called Xerox PARC. In 1981, Xerox introduced Star and
Workstation, which adapted Xerox PARC and influenced future innovations.

Figure 1-1. WarGames: David Lightman talking with Joshua

Chapter 1 ■ Conversations as platforms

3

GUIs have evolved over the past few decades and are more sophisticated and easy
to develop today. Modern applications are based on GUI, which are designed for desktop
operating systems, web browsers, mobile, or kiosks. This, so far, is the easiest and most
user-friendly form of interface, where the user interacts via button clicks (or touch) on
a clickable element and uses an alpha-numeric keyboard, which can be used to input
text, numbers, or symbols. Users are accustomed to these types of user interfaces, but
haven’t they become monotonous? Why would you want to ask the user to enter personal
information like address, phone number, or favorite color every time; why would you
need a call-center operator to answer the same questions from different customers?
Why would you want to ask the user to install a mobile application or log in to your web
application to perform a daily task like booking a cab, ordering your favorite food etc?
Bots help you bring in a customized experience with natural language recognition
and artificial intelligence—like voice-, image-, or video-based communication—to an
application you are already using.

Drawbacks of Conventional UI
There was a reason we moved away from command-based interfaces to GUI, but
what made us shift back to the old way? GUIs have their own shortcomings, and it is a
challenge to build an effective user interface, be it for mobile or desktop. Not every
GUI-based application makes optimum use of the screen space. For example, the GUIs
in Figure 1-3 try to show all the available features or options on one screen, and for a
first time user this can be overwhelming. It takes a while to figure out where to click and
how to get the work done. These types of user interfaces force the business to include a
readme document or 24/7 customer service, which can help users with queries about the
portal’s usage.

Figure 1-2. Xerox Star user interface

Chapter 1 ■ Conversations as platforms

4

Mobile applications are constrained by screen space. The small screen size poses a
challenge to building an effective application that is self-explanatory and covers all the
operational aspects of the business. This restriction forces the stakeholders to design
the application with only a few features on mobile and in parallel run a web version
with a full feature set. It is also difficult to go through 20 clicks and a form-filling process
on mobile for a few kinds of businesses. Web-based GUIs also have their limitations.
Normally, the team involved in building these applications is huge and involves a
UX designer, who works on the HTML + CSS, a development team, which builds the
application logic, and database teams, which design the database schema. Bots, on the
other hand, gel into existing chat interfaces like Skype, Slack, or Facebook chat, thus
reducing the effort put into the application UI design so that the team can focus on
building the application logic. For desktop applications, there is the additional challenge
of the underlying software; this could be Java runtime, .NET, or node.js, which needs
to be installed on the user’s machine for the application to run. Desktop applications
always target a specific operating system and version of runtime. It is highly difficult to
build an application that works across a multitude of operating systems. Also, in a typical
GUI application, the user moves from one screen to another; sometimes this makes it
difficult for the user to understand and accept the flow and structure of the application
(Figure 1-4). The infrastructure costs that are incurred when setting up the machines
that run these applications or backend support systems is also huge. Chat bots do not
need an enormous machine that hosts the interface; they can be designed to use existing
applications to interact with business, reducing the application’s running costs.

Figure 1-3. Example of suboptimal screen design in a web and mobile application

Chapter 1 ■ Conversations as platforms

5

The processing capabilities of today’s computers have increased, most of the
computations can be done at a large scale in real-time, and almost every task is
achievable just by using a mobile phone or device. Why not change the way we interact
with applications? Can we interact with these applications in a completely different way
just by providing voice or text as inputs in a chat window, like you are talking to a friend?
Can we build intelligent application interfaces that can use the context of my location,
history, and personal preferences to finish tasks on my behalf; for example, a smart
application that can track the upcoming football games of my favorite team and reserve
a seat for me based on how my calendar is scheduled. Modern chat-based applications
called bots are the key to the preceding questions. Bots are intelligent, context aware, and
can hold more human-like conversations with the user.

Conversations as Platform
A conversational user interface (CUI) is any user interface that allows you to perform
human-like interactions (Figure 1-5). What exactly is a human-like interaction? Human-
like interactions use more natural language, which can be text, image, voice, or a
combination of those. Human-like interactions are a conversational approach in which
the application can understand and respond to what the user is saying regardless of the
language used in the input; it can be in your own regional language in the most natural
way, like the one shown in Figure 1-5. Conversation-based user interfaces make us realize
that it is rather easy to book a flight or buy a shoe using more human-like interactions
with a bot that is aware of my preferences and can even complete the payment on
my behalf. It is also easier to build a conversation-based application because it does
not contain any rich text, styling, or images to woo the user; all we need is to build an
intelligent and simple conversation pattern that resembles a human.

Figure 1-4. Example of user experience in a typical GUI-based application

Source: https://yourstory.com/2016/12/2017-year-conversational-user-interface/

https://yourstory.com/2016/12/2017-year-conversational-user-interface/

Chapter 1 ■ Conversations as platforms

6

The most selling feature of CUIs is that everything happens right in front of you. You
do not have to switch screens, navigate, or even scroll up and down to figure out a way to
interact with the application. A simple gesture like Yes, No, or OK can get things done for
you. CUIs are expected to be intelligent and context aware, and it makes no or less sense
to have a CUI with limited set of responses.

A bot is a CUI-based software application that is automated to do a predefined set
of tasks using human interactions (text and voice) through any medium, like a browser,
desktop application, or phone. Bots are here to stay and are going to replace mobile apps.
Like mobile applications replaced a lot of web-based applications, bots might replace
mobile applications in the future with applications that can be interacted with using
voice, text, or image. There are two categories of bots that are being built today: chat bots
and AI bots. Chat bots are generally rule based. It is easier to build chat bots than AI bots,
and they also consume less infrastructure and have lower costs. Most chat bots serve
a single purpose, like a bot that imitates a pizza-ordering helpline with a limited set of
menus.

The second type of bots are the artificial intelligence or AI bots. These bots are like
chat bots, with the only difference being that they are backed by an artificial intelligence
algorithm(s) that can predict your next action in an application based on usage pattern,
or can recommend a similar item based on current selection and by analyzing what other
users have bought together. Imagine just saying, “Repeat pizza order,” and having a pizza
delivered to your current location from your favorite pizza store. Most AI bots contain
natural language processing and deep-learning capabilities. AI bots can sense the tone
of the conversation and respond accordingly, which chat bots cannot do, as they are
programmed with default responses irrespective of the tone and context. If you ask a chat
bot an unrelated or random question, it might just deny the request or not respond at
all, but an AI bot would try to analyze the question and answer as human. It would learn
from the interactions so that it could respond to similar random questions. One more key
distinguishing feature of AI bots is the source of data that drives decision making. Let us
say you have a meeting scheduled for tomorrow 9 a.m. at Place A and you received an
invite for lunch at Place B, which is about 10 miles away. An AI bot should be intelligent

Figure 1-5. Example of typical conversation-based user interface

Chapter 1 ■ Conversations as platforms

7

enough to reject the invite because the traffic conditions will prevent you from reaching
the lunch on time. It should also be able to auto-respond on your behalf based on the
decision taken by the bot.

Bots are still emerging. As of today, there are only a few bots, which mimic web
applications or mobile apps. The beauty of bots is that we do not have to build something
from scratch or worry about installing it on a client’s machine. Bots can be integrated
into existing message platforms like Skype, Facebook Messenger, Slack, and so on. A
few years ago, technologies like artificial intelligence and machine learning were out of
reach to most developers because of the effort involved in learning the language and the
semantics. Microsoft Cognitive Services has helped us overcome these challenges by
introducing a multitude of intelligence-based APIs that are effective and easy to consume.

Introduction to Microsoft Bot Framework
The Microsoft Bot framework is a complete suite to build intelligent and intuitive
bots that will be reachable via familiar communication tools like Skype, Slack, Teams,
Office 365 Email, and other popular ones without any additional effort required.
Communicating with a bot resembles a human-to-human communication and occurs in
various forms, like sending a text or an email. The framework consists of a powerful Bot
Builder SDK, Bot connector service, a developer portal, and a bot directory. The Microsoft
Bot SDK is available for both Node.js and C# developers; for other languages, developers
can use the REST API to build intelligent bots. The framework provides support for user
management, session management, state management, authentication, and conversation
models like dialogs, activities, cards, or attachments. The Bot SDK is open source.

To add more human-like conversation features to your bot, you can integrate with
Microsoft Cognitive Services, which provides vision APIs for image processing, speech
APIs for voice-to-text translation and vice versa, language APIs for language conversation,
Search APIs for including Bing search in the results, and knowledge APIs for building
recommendations based on a user’s previous usage.

When you are done building your bot, you register it with the Bot registry and
configure connectivity with a variety of channels before you finally publish. Figure 1-6
shows a few channels currently supported by the Microsoft Bot framework.

Chapter 1 ■ Conversations as platforms

8

Microsoft provides a bot developer portal to connect your bot to various channels
and test on those channels. The Bot Connector service uses the REST API and JSON
schema to communicate with the Bot API. Once you have configured your channels
and published your bot for testing, the bot ends up in a bot directory (Figure 1-7). A bot
directory is a list of bots published by developers from across the globe. You can search
for and connect to any bot available in the directory by using your favorite channel.

Every bot in a directory is configured with supported channels, so you can just click
on any bot and connect using the configured channel. For example, the UNO Bot only
contains Skype as a channel, so you can click on UNO Bot and then click on Add to Skype
to add the bot to your Skype bot contacts list. The latest version of Skype, called Skype
Preview, isolates the bots into a separate bot contacts category. You can also search

Figure 1-7. Bot directory

Figure 1-6. Bot channels

Chapter 1 ■ Conversations as platforms

9

for bots using the Skype Search feature like any other user. The latest version of Skype
Preview can be downloaded from the Windows App Store.

Meet a Few Bots
The bot directory consists of many featured bots that are designed for a specific cause—
and some bots are just fun to chat with (specially the AI bots)! In this section, let us meet a
few interesting bots and get a feel for the arena before we start designing bot applications.
The bot directory is available under the Bot Directory tab in the Bot Developer Portal,
found at https://bots.botframework.com/.

Summarize
If you are feeling too lazy or could not find the time to read a lengthy blog, Summarize Bot
can help by providing a summary of the blog or any web page. The user can paste the link
of the blog, and Summarize Bot will summarize the blog and list the important points.
There are a couple of ways you can interact with Summarize Bot. From Skype Preview,
you can search for Summarize Bot and add it to the contacts list, or you can visit the bot
directory and use the web chat window. Figure 1-8 shows a sample conversation with
Summarize Bot using Skype Preview.

Figure 1-8. Summarize Bot

https://bots.botframework.com/

Chapter 1 ■ Conversations as platforms

10

Figure 1-9 shows the response from Summarize Bot when any link—for example,
https://docs.botframework.com/en-us/azure-bot-service—is sent as a request.

Feedback from users is critical if an application is to be improved. Summarize Bot
follows best practices by seeking information from the user as to whether it did well.

Your Face
Your Face is an AI-powered bot that uses Microsoft Cognitive Services to assess the face
in the image and predict the age. Your Face is available on a variety of channels, like
Skype, Telegram, Kik, email, GroupMe, and Facebook Messenger. Figure 1-10 shows an
interaction with the bot using Microsoft Outlook. You can send any picture with a face as
an attachment to yourface_bot@outlook.com.

Figure 1-9. Summarize Bot response

https://docs.botframework.com/en-us/azure-bot-service—is

Chapter 1 ■ Conversations as platforms

11

Within a couple of minutes, the bot responds with an email. As you can see in
Figure 1-11, the bot puts a name to the face since it is a familiar one; at the same time,
it predicts the age of the face. You can try with any of your personal images and have
some fun.

Azure Bot Service
Azure Bot Service is a PaaS (Platform as a Service) offering from Microsoft that is
available as part of the Azure subscription. Azure Bot Service enables rapid application
development powered by the Microsoft Bot framework and runs in a serverless
environment on Azure. Azure Bot Service allows your bots to scale on demand and pay
only for resources you consume. To create an Azure Bot Service, one would need an
Azure subscription. You can buy one or create a free trial account for learning purpose
from here: https://azure.microsoft.com/en-us/free.

Azure Bot Service provides an integrated development environment that helps you
register the bot right from the Azure portal and allows you to author code with boilerplate
templates. Figure 1-12 shows the bot configuration on Azure Bot Service.

Figure 1-10. Interacting with Your Face AI bot using email client

Figure 1-11. Sample response from Your Face AI bot

https://azure.microsoft.com/en-us/free

Chapter 1 ■ Conversations as platforms

12

You can select your favorite language and start developing bots by choosing any
existing template. Azure Bot Service offers boilerplate templates, from simple bots
to intelligent ones like those with natural language processing, proactive bots, and
question and answer bots. Since it is on Azure, there is no overhead when managing
servers or even patching. The bot can be scheduled to scale based on events powered
by Azure Functions. By using Azure Functions, your bot runs on a completely serverless
environment that scales on demand. Azure Bot Service provides in one place all the
required resources for development, channel configuration, bot settings, a web-chat
interface for testing, and a publishing service for publishing, as shown in Figure 1-13.

Figure 1-12. Azure Bot Service

Chapter 1 ■ Conversations as platforms

13

From Azure Portal, we can set up Continuous Integration from GitHub, Visual Studio
Team Services, and many more. We can use the code from the web interface as a start,
but remember that we cannot modify the code in Azure after setting up Continuous
Integration. Continuous Integration and Delivery options let you deliver the application
code at a rapid pace so the code gets built and deployment for every commit from the
developer.

The following are a few intelligent bot templates available on Azure Bot Service.

LUIS Bot
For an intelligent bot, it is important to understand the user’s conversation in the natural
language. LUIS, which stands for Language Understand Intelligent Service, helps you
identify the intent and entities in the conversation and map them to pre-defined HTTP
endpoints. For example, in a statement like “get score about India versus England cricket,”
the bot should be able to get the intent, which is “get score” and the entities which are
India, England, and Cricket LUIS enables you to design HTTP endpoints and map the
user conversation to HTTP endpoints. For more information on integrating with LUIS,
please visit https://www.microsoft.com/cognitive-services/en-us/luis-api/
documentation/home. You will learn more about building bots with LUIS integration in
Chapter 9.

QnA Bot
Most businesses have a QnA or FAQ section that helps users find answers to repetitive
questions on the business model or on how to use the application. The bot template
for QnA allows you to quickly create a FAQ or QnA bot that can answer a user’s queries
about your business via various channels using existing FAQ content as the knowledge
base. QnA Maker (https://qnamaker.ai/) lets you ingest your existing FAQ content and

Figure 1-13. Azure Bot Service development experience

https://www.microsoft.com/cognitive-services/en-us/luis-api/documentation/home
https://www.microsoft.com/cognitive-services/en-us/luis-api/documentation/home
http://dx.doi.org/10.1007/978-1-4842-3312-2_9
https://qnamaker.ai/

Chapter 1 ■ Conversations as platforms

14

expose it as an HTTP endpoint. You can also build a new bot with an empty knowledge
base. Figure 1-14 shows a sample QnA bot made from a FAQ URL knowledge base.

Proactive Bot
The Proactive Bot template helps you in scenarios where you want the bot to initiate a
conversation. The bot can initiate a conversation based on some triggered event, lengthy
job, or external event like updating a cricket score on completion of a bowler’s over. The
Proactive Bot template uses Azure Functions to trigger an event when there is a message
in the queue. Azure Functions then alerts the bot via the Direct Line API. The proactive
bot template creates all the Azure resources you need for enabling the scenario.
Figure 1-15 shows an overview of how multiple Azure resources communicate to trigger
an proactive conversation.

Figure 1-14. Sample QnA bot

Chapter 1 ■ Conversations as platforms

15

Direct Line
The Direct Line API is a simple REST API that allows you to initiate a conversation
with a Bot. This helps developers write their own client applications for web, mobile,
or service-to-service. The API has the ability to authenticate using secret tokens or token
patterns. Using the Direct Line API, you can send messages from your client to your bot
via HTTP post messages. In addition, you can receive messages from the bot using Web
Socket Stream or by polling mechanism. If you are planning to build any custom smart
device that responds to a user’s voice inputs or gestures, you can use the Direct Line API
to send and receive messages from the bot, backed up by AI services from a custom IOT
device (Figure 1-16).

Figure 1-15. Proactive Bot design

Chapter 1 ■ Conversations as platforms

16

IOT and Bots
Bots can integrate with IOT (Internet of Things) devices to make our lives much more
sophisticated. Microsoft Azure provides services for building smart IOT devices, like
Azure IOT hubs that can process millions of IOT assets. For example, imagine you are
running a restaurant. A bot can proactively ping you with an image of a guest with the
details like name, gender, age, recurring customer, favorite food (by using the Bing Search
API and facial-recognition APIs) using a IOT device installed at the entrance. This model
can be further extended by using the Azure ML, Stream Analytics, and Power BI to build
a recommendations-based menu for recurring guests. Such is the power of Azure and the
services provided by Microsoft as part of Azure.

Microsoft Cortana, Apple Siri, and Amazon Echo are a few examples of smartness
being built into your handheld devices using various sources of information. With the
Azure Bots framework and IOT hubs, you can use any existing device to build smart
apps that accept voice input and respond with a voice or text response that includes
information from a wide variety of sources.

Other Bot Frameworks
It is worth mentioning the other bot frameworks that are like the MS Bot framework and
provide a similar feature set; for example, Wit.ai, API.ai, and Viv. The April 2016 Facebook
Bot engine release is based on Wit.ai, which it acquired in 2015. Wit.ai runs on a server
hosted on the cloud. The Facebook Bot engine is a wrapper that helps developers build
bots for Facebook Messenger only. Wit.ai works like LUIS, as it helps extract intents and
entities and it also comes with few pre-defined entities. API.ai also works along the lines
of defining entities and intents, though the defining feature of API.ai is its reachability.
API.ai bots can be exported as modules and integrated in Facebook, Kik, Slack, Alexa, and
even Cortana. Viv.ai is from the authors of Apple Siri, and its focus is to process complex
queries using a flexible mechanism. Viv follows the SQL query-processing approach as
application logic, which involves breaking the request into constituents and combining
them into an execution plan. Viv, as claimed by the makers, is more suitable for building
virtual assistants than an enterprise bot.

Figure 1-16. High-level design for designing bots with custom clients

Chapter 1 ■ Conversations as platforms

17

Bot Abuse
Bots are aimed at replacing the mobile applications with interactions which are more
human like. Some of these bots focus on delivering simple models, like QnA bots or
an ordering system. But some bots are built using complex conversation pattern, and
those bot responses are completely based on artificial intelligence, like Microsoft Tay
(https://en.wikipedia.org/wiki/Tay_(bot)). Microsoft Tay is a Twitter-based bot
that created controversy immediately after launch when it began to respond with
inflammatory and offensive tweets over Twitter. This made Microsoft shut down the bot
within 16 hours of launch. It was evident from the experience that artificial intelligence
bots are prone to be attacked like any other application and are trained to respond in a
derogatory way. It is the bot designer’s responsibility to make sure the bot is tried and
tested with all sorts of conversation patterns and that it responds safely when abused.
Bot technology is still new, and it may take some time to define, practice, and standardize
the best security standards or patterns to follow in order to avoid such circumstances.
But it is undoubtedly a powerful platform that can enrich the life of every individual and
organization if adapted appropriately.

Summary
GUI interfaces are restricted by screen space and often involve large teams that are
responsible for designing better-looking apps, which is quite a challenge. Bots let your
team focus on business logic and conversation design rather than a look and feel. User
conversations with bots are intended to be more like human-to-human conversation.
For a bot to respond in a more human-like way, it should be integrated with artificial
intelligence or machine-learning algorithms. The Microsoft Bot framework allows you to
build smart bot applications with voice, knowledge, and search-based intelligence in just
a few steps. Microsoft offers the Bot Builder SDK for languages like C# and Node.js, Bot
Connector Service, Bot developer portal, emulator, and bot directory to aid design, build,
test, and manage bot-based applications. It also provides a REST API that can be used to
build bots using other languages. Microsoft Cognitive Services provides a multitude of
intelligence APIs that can be easily integrated with the MS Bot framework to add the
necessary intelligence to bots. Azure Bot Service is a PaaS service that provides a singular
platform with which to design, code, and deploy bots with artificial intelligence and
infinite scalability from the Azure portal. Azure Bot Service can be a quick-start guide to
quickly set up a bot application using existing boilerplate templates and set up CI and
CD right from the Azure portal. Developers can also build their own smart clients or IOT
devices that can communicate with bots directly using the Direct Line API.

https://en.wikipedia.org/wiki/Tay_(bot

19© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_2

CHAPTER 2

Develop Bots Using
.NET Core

Building a bot is no different from building any other typical web application. You start
by defining the user scenarios, then you design the user interface (UI) screens, where you
capture the required information that flows from screen to screen. Building a bot falls
along the same lines, except that the scenarios are implemented as conversations. The
scenarios can be implemented in various ways in a bot application. User information
can also be captured in various ways, like speech, text, image, or any form of gesture. The
emphasis when designing a bot should be on making the intent discoverable and simple.
The Microsoft Bot framework offers everything that is required to make a conversation
intuitive and appealing. It is a complete suite that helps you build high-quality bots using
existing tools like Visual Studio, VS Code, and programming languages like C#, Node.js,
Java, PHP, and so on. As described in the previous chapter, building a bot consists of four
main stages: designing and developing your bot using the Bot Builder SDK; configuring
channels using Bot Connector; registering your bot via the Developer Portal, and making
it discoverable via a bot directory. Microsoft provides bot framework libraries in C# and
Node.js; for the rest of the languages, developers can use the HTTP Rest API. This chapter
will focus on introducing bot-building strategies for C#/.Net developers, publishing to
Azure, using the pre-built tools, testing your bots, and configuring channels using the MS
Bot framework.

The following topics will be discussed in this chapter:

•	 Designing bot applications

•	 Setting up a development environment

•	 Understanding the bot life cycle and components

•	 Running and testing using Bot Emulator

•	 Deploying bot to Azure

•	 Registering bot using the Developer Portal

•	 Testing the use of bot channels like Skype and embedded web
controls

http://dx.doi.org/10.1007/978-1-4842-3312-2_2

Chapter 2 ■ Develop Bots Using .net Core

20

Designing Bot Applications
How do we design a smart bot that stands out from alternative applications? It is very
critical to learn the basic etiquette behind building a successful bot, but let us first review
what makes a bot smart and successful. Every bot that is built using smart features
like speech to text, natural language processing, or image processing need not be
acknowledged as smart. A bot can still be liked by many if it can solve the user’s problem
in a few easy steps, is amicable to communicate with, and is reachable by all means used
by your target audience. It need not always integrate with sophisticated features like
Azure machine learning.

Here are a few best practices you should follow when designing a bot:

•	 A bot makes its intent clear in the first impression. Unlike web or
mobile applications, there is not much surface area for a bot to
explain its primary feature set, which makes it both difficult and
important to let the user know what the bot can do.

•	 A bot should let the user navigate in a non-linear fashion. As in
any type of application, users do not always navigate from Step
1 to Step N in a linear fashion; they might jump back and forth.
Although it is difficult to achieve the same thing in a conversation,
you should design your bot to allow the user to navigate in a non-
linear fashion.

•	 Always provide help so that at any point the user can seek
information on the current state and the next steps. Bot-style
applications are new, so novice users might not understand how a
bot operates. Providing timely help is very important to make the
bot discoverable.

•	 Respond to the user’s input immediately if there is any
background processing involved. Provide an immediate
acknowledgement and respond with an update on the
background process later.

•	 A bot should always try to seek as little information as possible
from the user. You can use the user’s past conversations or
personal data to fill in basic queries. For example, when searching
for restaurants, you can show the restaurants near to the user’s
current location.

•	 A bot should always seek the user’s permission before storing
or accessing personal information. If requested by the user, the
bot should permanently remove all the personal information
belonging to the user.

What you should not do when designing a bot? See the following list:

•	 Do not force the user to provide a specific input for proceeding
further. If you are expecting a specific input from the user, set
maximum retries and fall back.

Chapter 2 ■ Develop Bots Using .net Core

21

•	 Do not provide obvious responses to the user; for example: “Hi,
Jack. Looks like you are driving back home; have a safe journey.”
Always provide information that is useful.

•	 Do not enforce natural language processing for every scenario
that might impact the performance of the application. Whenever
possible, ask specific questions and use regular expressions for
parsing the message instead of AI APIs like LUIS.

•	 Do not use past conversation to confuse the user. For example, if
the user is trying to book a flight, his past bookings might or might
not help him. Using the conversation history in the context of
current conversation is a conscious decision to make.

These items are only a few do’s and don’ts to keep in mind while designing a bot.
The areas where the bot type of application makes sense are varied; in most of cases, the
designs vary by the scenario at hand. Use the preceding points as basic building blocks
and improvise as required.

Now that we know what a smart bot should contain, let us learn the designing
methodology. In any web application, we would start by building the screens. Let us say,
for example, I want to build a bot that helps in setting doctor’s appointments. I would
design a screen something like that shown in Figure 2-1.

Figure 2-1. Sample GUI for scheduling an appointment with a doctor

Chapter 2 ■ Develop Bots Using .net Core

22

In a bot application, we design conversations, or dialogs. Every bot application
starts with a root dialog, where we introduce the features of the bot and show a menu
of possible things the user can do. The subsequent dialogs are added one by one to the
dialog stack. The dialog at the top of the stack is in control of the conversation until it exits
the stack. The root dialog never exits the stack. This process is shown in Figure 2-2. Let us
see how we can seek some of the information seen in the form in Figure 2-1 from the user
via a series of questions.

The preceding conversation captures basic information required for booking an
appointment.

Let us now design the navigation for the bot application. As shown in Figure 2-3,
each step seeks information from the user and provides a way to navigate back in a non-
linear fashion. At every step, the user can seek help regarding the current state. There can
be any number of steps in a conversation; at the same time, it is important to keep it to
a minimum in consideration of the user experience. Remember, this is one of the many
ways of designing a bot. You can let the user provide voice input, upload images, or select
from list of options, or you can extract more information from a user’s input. For example,
the statement “I want to book a General Physician for myself on June 2nd at 9 p.m.”
contains all the information required to book an appointment. It can be parsed using
LUIS to extract user intent, as marked in bold.

Figure 2-2. Designing a conversation flow using dialogs

Chapter 2 ■ Develop Bots Using .net Core

23

The following sections teach the basic development aspects involved in building a
bot application.

Setting Up the Development Environment
For developers who have invested time in learning .NET methodologies for building
RESTful web APIs using C# and Visual Studio IDE, the development experience
will be very familiar. You can continue using your favorite .NET IDEs, like Visual
Studio (Community, Professional, or Enterprise), and Visual Studio code to build bot
applications. If you are coming with no prior development experience, do not worry. This
chapter teaches everything from scratch. To develop bots using .NET technologies, the
following set of tools and SDKs are required:

•	 Visual Studio 2015/2017 (Community, Professional, or Enterprise)

•	 Visual Studio Template for C#

Figure 2-3. Sample bot conversation flow chart

Chapter 2 ■ Develop Bots Using .net Core

24

•	 Bot Builder SDK

•	 Bot framework emulator for testing

The following steps show how to set up the development environment for building
bot applications:

•	 Download and install the Visual Studio Community version
from https://www.visualstudio.com/downloads/. Since the
MS Bot framework is still in the preview phase, the project
template required for building bots is not part of the Visual Studio
installation.

•	 Download the bot application template from http://aka.ms/
bf-bc-vstemplate; the download contains a zip file named
BotApplication.zip.

•	 Copy the zip to the Visual Studio Templates folder for C#. The
default location for templates is %USERPROFIE%\Documents\
Visual Studio 2015\Templates\ProjectTemplates\Visual C#\. (This
path is for VS 2015; for other version like VS 2017, use the Visual
Studio 2017 Templates folder).

•	 Open Visual Studio as Administrator and click on New Project.
Search for “Bot Application” using the search section at the top
right corner. You should now be able to see the project template
for bots in the Templates section, as shown in Figure 2-4.

The template creates a fully functional sample bot called EchoBot, which can be
used to test the basic development approach. The sample application simply echoes the
number of characters in any text entered by the user. Go through the following steps to
understand how a bot application functions.

Figure 2-4. Visual Studio bot application template

https://www.visualstudio.com/downloads/
http://aka.ms/bf-bc-vstemplate
http://aka.ms/bf-bc-vstemplate

Chapter 2 ■ Develop Bots Using .net Core

25

•	 Name the sample EchoBot and click OK to create your first
sample bot application.

•	 Ensure the project builds successfully using Ctrl + Shift + B. Press
Ctrl + F5 to run the bot (without debugging).

•	 Ensure Visual Studio automatically invokes page http://
localhost:3979/ using your default browser; the port number
may vary from machine to machine.

•	 Ensure the landing page for EchoBot looks like the one in
Figure 2-5.

There are a couple of ways to interact with bots; one way is by installing Bot Emulator
and the other is by building a custom client application to interact with the bot. Testing
the bot application with an emulator is the easiest and most recommended approach. Bot
Emulator is a desktop application that is built to interact with and test bots. It is available
for both Mac and Windows machines.

Download and install Bot Emulator from https://emulator.botframework.com/. If
you encounter a security alert asking for permission (as shown in Figure 2-6) to allow Bot
Emulator access to localhost, go ahead and approve by clicking on Allow Access.

Figure 2-5. Bot application start-up page

Figure 2-6. Windows Firewall security alert for Bot Emulator

https://emulator.botframework.com/

Chapter 2 ■ Develop Bots Using .net Core

26

Figure 2-7 shows Bot Emulator’s interface for testing and debugging bot applications
during development.

Testing the Bot
To interact with EchoBot using Bot Emulator ensure the application is running. If you are
using Windows Machine and IIS Express, you can check for running applications from
the system tray.

Copy the endpoint URL of our API to the emulator in the “Enter your endpoint URL”
section. The endpoint URL is a combination of the base URL assigned to the API—for
example, http://localhost:3979 appended with api/messages. The complete endpoint
URL, in this case, will be http://localhost:3979/api/messages, where api is part of
the default route and messages is the name of the controller that contains the default
endpoint that accepts the messages sent by the user. All of this is provided by the sample
template.

Enter “Hello Echo Bot” in the conversation window and observe that the bot
immediately responds with, “You sent Hello Echo Bot which was 13 characters.”

The Log section on the emulator shows the communication log between the
emulator and the bot (Figure 2-8). When you enter the bot endpoint URL in the URL
section and hit Enter, the emulator tries to perform an initial handshake with our bot. The
Log section shows the details of the communication between your bot and the emulator
at this step.

Figure 2-7. Bot Emulator interface

Chapter 2 ■ Develop Bots Using .net Core

27

Clicking on the HTTP response code, like 200, shows the payload sent/received
during the conversation in JSON format.

Clicking on an HTTP header like POST on the Log section of the emulator shows the
HTTP post request and response. We can also debug bot applications from Visual Studio
like any other web API application.

Debugging the Bot Application
The application should be running in debug mode (Figure 2-9).

•	 Run the bot application in debug mode (press F5).

•	 Switch to Visual Studio and create a breakpoint on
MessageController at Line 21.

•	 Use Bot Emulator to initiate a conversation.

•	 The process should now stop at the debug point when invoked
from the emulator. Visual Studio also shows the exact message
received by the application, as shown in Figure 2-9.

Figure 2-8. Bot Emulator with communication logs

Chapter 2 ■ Develop Bots Using .net Core

28

We have successfully set up our development environment to build, develop, and
test bot applications. Now, let us dig deeper into the project template and learn the life
cycle of the bot.

Bot Application Life Cycle
The bot application is a simple web service that responds to messages posted by the
client targeting the bot’s endpoint, which means the life cycle of a bot application is very
similar to that of a web API application. The application receives and responds to HTTP
POST requests using the JSON message format. The JSON-to-object serialization is taken
care of by the framework. Like any.NET web application, Global.asax.cs drives the bot
life cycle. The following code shows the default code of Global.asax.cs:

public class WebApiApplication: System.Web.HttpApplication
 {
 protected void Application_Start()
 {
 GlobalConfiguration.Configure(WebApiConfig.Register);
 }

 }

During the life cycle of a bot, the preceding class gets instantiated. This class
provides a variety of events that can be used to handle any critical tasks before or after the
life-cycle event (Figure 2-10).

Figure 2-9. Debugging bot application from Visual Studio

Chapter 2 ■ Develop Bots Using .net Core

29

In the preceding example, an Application_Start event is used to load the
application configuration by invoking the GlobalConfiguration.Configure() method,
which loads the configuration from the WebApiConfig class under the App_Start folder.
The register method of the WebApiConfig class is used to configure the routes, services,
handlers, formatters, and so on. The following excerpt from WebApiConfig configures the
default routing for the bot application using HTTP attributes like POST and GET (these are
the most commonly used HTTP attributes or verbs. For a full list of HTTP verbs, please
visit https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html). This method can
be used for registering handlers, configuring IoC containers, or for any bootstrapping
activities.

// Web API routes
config.MapHttpAttributeRoutes();

config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

The preceding code configures the server to forward the incoming messages from
bot clients to the Controllers class. For example, if a user makes a POST request to
http://localhost:3979/api/messages, forward the request to a method tagged as
POST on MessagesController, and optionally the user can pass the Id parameter to the
method (Figure 2-11). In a bot application, requests from any clients are always POST
calls (unless a custom client is implemented). For POST-type calls, the request body is not
included in the header; instead, the request body contains the complete request payload.

Figure 2-10. Life cycle events of bot application

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Chapter 2 ■ Develop Bots Using .net Core

30

Controllers are endpoints or receivers of a user’s message. There can be more than
one controller in a bot application, and every controller should extend from System.Web.
Http.ApiController. For bot applications using the default channels like Skype, Teams,
and so on, there will always be one controller that accepts all types of messages from
the user. The following code shows the POST method added by the project template by
default.

public async Task<HttpResponseMessage> Post([FromBody]Activity activity)
 {
 if (activity.Type == ActivityTypes.Message)
 {
 ConnectorClient connector = new ConnectorClient(new

Uri(activity.ServiceUrl));
 // calculate something for us to return
 int length = (activity.Text ?? string.Empty).Length;

 // return our reply to the user
 Activity reply = activity.CreateReply($"You sent {activity.

Text} which was {length} characters");
 await connector.Conversations.ReplyToActivityAsync(reply);
 }
 else
 {
 HandleSystemMessage(activity);
 }
 var response = Request.CreateResponse(HttpStatusCode.OK);
 return response;
 }

The bot application instance constructs the activity parameter from the details of
the HTTP request. The activity object contains the following details:

•	 Channel type, like Skype, emulator, email, or SMS

•	 Unique ID for the request

•	 Activity type, which classifies message as a conversation update,
typing type, or ping type, depending on the type of message the
response from the Bot can be constructed.

Figure 2-11. Post request to bot application

Chapter 2 ■ Develop Bots Using .net Core

31

The details of this object are used to construct a response to the user, which is
returned as System.Net.Http.HttpResponseMessage. The response can be anything from
simple text or a hyperlink to an image or initiating an audio call. The bot responds to the
user’s POST requests infinitely until the application is terminated. The responses from the
bot can be a reply or a prompt response seeking more information from the user.

Bot Builder SDK is the underlying framework that is used to build custom bots.
The SDK is available as a NuGet package and can be added to the solution as shown
next. It is a powerful framework for constructing bots that can be used to create freestyle
interactions like the one we saw earlier and more guided ones like Dr.Bot, which we
will build soon. The following entry in the packages.config section installs the NuGet
package to the solution:

<package id="Microsoft.Bot.Builder" version="3.5.1" targetFramework="net46" />

You can also run the following NuGet command to install Bot Builder SDK from the
package-manager console:

Install-Package Microsoft.Bot.Builder

Bot Builder SDK takes care of constructing a channel object to send constructive
responses to the client(s). For example, the following code creates a connection back to
the client using the service URL (the address of the client) and sends a simple string using
the pre-built method provided by the framework.

ConnectorClient connector = new ConnectorClient(new Uri(activity.
ServiceUrl));
 // calculate something for us to return
 int length = (activity.Text ?? string.Empty).Length;

 // return our reply to the user
 Activity reply = activity.CreateReply($"You sent {activity.

Text} which was {length} characters");
 await connector.Conversations.ReplyToActivityAsync(reply);

Bot Architecture
Bots are designed to solve common business problems using a natural, conversation-
style approach combined with machine learning for advanced intelligence. Microsoft’s
vision in introducing the bot framework is to allow developers to design applications
that provide a personalized experience and texture of talking to human intelligence. To
facilitate this, Microsoft has pooled a stream of existing technologies that are already
familiar and available on most devices. Microsoft Cloud platform offers a multitude of
opportunities, like Azure Active Directory, Logic apps, Big Data, IoT hubs, and Microsoft
Cognitive Services, for integration with bots; these applications have the potential to
provide a rich, reliable, and consistent conversation style experience to the users.

Chapter 2 ■ Develop Bots Using .net Core

32

Microsoft Bot framework’s architecture is quite simple: the basic building blocks
are the channels, Bot Connector, bot application, and the optional artificial intelligence
component, like Microsoft Cognitive Services (Figure 2-12).

Channels are what a client’s application uses to connect to the bot; for example,
Skype for Business. Bot Connector acts as an adapter between the various channels
and your bot application, taking care of bot authentication, serialization with the wide
variety of channels shown in Figure 2-12, conversation state, user-state management,
and automatic language translation (nearly 30-plus languages). Bot Builder SDK is a free
and open source framework that helps you build your bot using .Net/Node.js. The MS
Bot framework provides built-in classes that provide a rich user experience, like clickable
buttons, hero cards with image and text, custom dialogs, form flows, and audio-style
conversations. Bot applications can be hosted anywhere on the web, although Azure is
preferable because of the integration and monitoring capabilities provided out of the box.

Bot Authentication
When you create a bot application, the template adds an attribute to the controller
class called BotAuthentication. Adding the BotAuthentication attribute to the
controller enforces security and makes sure only authenticated and registered bots

Figure 2-12. Bot architecture

Chapter 2 ■ Develop Bots Using .net Core

33

can communicate with the bot application. The authentication is enforced using the
attributes MicrosoftAppId and MicrosoftAppPassword. These two attributes are typically
stored in the Web.config file of the bot application.

 ■ Note the attributes can be left blank during development, or you can also remove the
BotAuthentication attribute from the Controller class(es), but before we publish the bot
to the Developer portal, the values should be replaced with the actual ones.

Every bot should be registered at the Developer Portal in order to obtain the
authentication credentials. Once registered, the values should be replaced in the Web.
config and republished to allow connections from bot clients. If you have configured
dummy values during development, remember to add the same values in the web.config
while connecting from the emulator, as shown in Figure 2-13. MicrosoftAppId acts as a
unique identifier for the bot application, and MicrosoftAppPassword is autogenerated by
the Developer Portal (Figure 2-13).

Building a Bot
We earlier discussed the design methodologies for building a bot. In this section, we
will implement the doctor’s appointment bot using the form-flow feature provided
by the MS Bot framework. You can create a new bot application and name it
DockerAppointmentBot or use the EchoBot template we created earlier.

In a form flow–based bot application, the bot framework starts organizing dialogs in
a stack. The stack starts with a root dialog, which will never exit. Replace the contents of
MessageController with the following code to instantiate RootDialog.

Figure 2-13. Bot authentication using app ID and password

Chapter 2 ■ Develop Bots Using .net Core

34

[BotAuthentication]
public class MessagesController : ApiController
{
 internal static IDialog<Appointment> MakeRootDialog()
 {
 return Chain.From(() => FormDialog.FromForm(Appointment.BuildForm));
 }

 /// <summary>
 /// POST: api/Messages
 /// Receive a message from a user and reply to it
 /// </summary>
 public async Task<HttpResponseMessage> Post([FromBody]Activity activity)
 {
 if (activity != null)
 {
 // one of these will have an interface and process it
 switch (activity.GetActivityType())
 {
 case ActivityTypes.Message:
 await Conversation.SendAsync(activity, MakeRootDialog);
 break;

 case ActivityTypes.ConversationUpdate:
 case ActivityTypes.ContactRelationUpdate:
 case ActivityTypes.Typing:
 case ActivityTypes.DeleteUserData:
 default:
 Trace.TraceError($"Unknown activity type ignored:

{activity.GetActivityType()}");
 break;
 }
 }
 return new HttpResponseMessage(System.Net.HttpStatusCode.Accepted);
 }
}

The below code creates the root dialog and adds it to the conversation stack.
The dialog gets created when the user initiates the first conversation. You can also
choose to start the initial conversation by subscribing to a suitable activity type, like
conversationUpdate.

internal static IDialog<Appointment> MakeRootDialog()
{
 return Chain.From(() => FormDialog.FromForm(Appointment.BuildForm));
}

Chapter 2 ■ Develop Bots Using .net Core

35

The below code creates a new dialog from the Appointment class. The following are
the contents of the Appointment class.

public enum Specialty { Dentist, GeneralPhysician, Psychiatist,
Cardiologist, PhysioTherapist }

 // Appointment is the simple form you will fill out to set up an
appointment with Doctor.

 // It must be serializable so that the bot can be stateless. The order
of fields defines the default order in which questions will be asked.

 // Enumerations shows the legal options for each field in the
SandwichOrder, and the order is the order values will be presented

 // in a conversation.
 [Serializable]
 public class Appointment
 {
 [Prompt("When would you like to book your {&}?")]
 public DateTime AppointmentDate { get; set; }

 [Prompt("What is the {&}")]
 public string PatientName { get; set; }

[Prompt("What are the {&} you are looking for? {||}")]
 public Specialty? Specialties;

 [Prompt("Any {&} to the Doctor?")]
 public string SpecialInstructions { get; set; }

 public static IForm<Appointment> BuildForm()
 {
 OnCompletionAsyncDelegate<Appointment> processAppointment =

async (context, state) =>
 {
 IMessageActivity reply = context.MakeMessage();
 reply.Text = $"We are confirming your appointment

for {state.PatientName} at {state.AppointmentDate.
ToShortTimeString()}, please be on time. " +

 " Reference ID: " + Guid.NewGuid().ToString().
Substring(0, 5);

 // Save State to database here...

 await context.PostAsync(reply);
 };

Chapter 2 ■ Develop Bots Using .net Core

36

 return new FormBuilder<Appointment>()
 .Message("Welcome, I'm Dr.Bot ! I can help with fix an

appointment with Doctor.")
 .OnCompletion(processAppointment)
 .Build();
 }
 };

The Appointment class acts as a template for building the form. Each property of the
class is converted into a form parameter that the user is expected to fill in, like with any
web or mobile application. The prompt statement with every property is bound using the
prompt attribute, as shown here:

 [Prompt("What are the {&} you are looking for? {||}")]
public Specialty? Specialties;

When presented to the user, {&} is replaced by the name of the property and {||} is
replaced by possible options for the property. The values for the property Specialties
are of enum type, like a drop-down of values. The user should select one before
proceeding further. For primitive types like date, string, or number, the user can simply
enter the text. Figure 2-14 shows the bot’s conversation with a user.

Chapter 2 ■ Develop Bots Using .net Core

37

You will notice that we have followed all the best practices for the bot and achieved
the required level of functionality with very little code. All the UI and navigation logic is
automatically handled by the framework. We will learn more about the form flow in the
next few chapters. Let us now learn how to deploy the bot to Azure so that our users can
start interacting with it.

Figure 2-14. Conversation with doctor appointment bot using Bot Emulator

Chapter 2 ■ Develop Bots Using .net Core

38

Deploy Bot to Azure
A bot application is a simple web service. To make your bot reachable by your users, it
should be hosted somewhere. It could be any public cloud hosting platform, like Azure
or AWS, or any machine on your network that is accessible to the internet. In this section,
we will learn to publish our bot to Azure and test it using Bot Emulator, provided by the
developer portal. Deploying applications on Azure requires an Azure subscription; for
learning purposes Microsoft offers a free Azure subscription that can be used to develop
and test bots. You can subscribe to this free subscription by visiting https://azure.
microsoft.com/en-in/free/. This free subscription allows you to explore Azure by
deploying anything for a period of 30 days, and you get $200 of free credit.

Azure App Service is a web application–hosting platform offered as part of the Azure
subscription. App Service can be used to host any web, mobile, or web API application
written in any language and targeting any device. App Service comes with instant
scalability and built-in monitoring capabilities, and it’s the most preferred platform for
hosting web applications. Applications deployed on Azure App Service are managed by
Azure. By running them in a managed environment unlike a virtual machine (VM), each
application instance is isolated from the others and is instantly scalable.

Follow the below steps to deploy a bot application to Azure App Service (shown in
Figure 2-15).

 1. Sign up for a free Azure account using your Live or Hotmail ID
at the link provided earlier.

 2. Right-click on the bot application and click on the Publish
option.

 3. Choose Microsoft App Service as the publish target.

 4. You will be prompted to log in to your Azure account. Login
with the credentials associated with your Azure account.

Figure 2-15. Publishing bot application to Azure App Service

https://azure.microsoft.com/en-in/free/
https://azure.microsoft.com/en-in/free/

Chapter 2 ■ Develop Bots Using .net Core

39

 5. Select your subscription and then set Resource Group
as View. Azure Resource Group deployment is a logical
combination of one or more related resources that together
form a product. Azure uses the term Resource Group to
manage a set of resources together.

 6. Click on New to create a new Resource Group.

 7. The Create App Service window allows us to create an Azure
App Service account, as shown in Figure 2-16.

 8. Select an existing Resource Group or create a group by just
typing in the name of the resource group.

 9. Click New to create a new App Service plan. An App Service
plan allows us to choose the size and cost of managed
computing resources that will be used by Azure. We can also
select the Free size during development; you will not be
charged for computing resources and storage if the free size is
selected, which makes it an ideal option while the application
is still under development.

Figure 2-16. Create an Azure App Service account

Chapter 2 ■ Develop Bots Using .net Core

40

 10. Press OK to confirm the App Service plan.

 11. Click Create on the Create App Service window to start
creating the required resources on Azure.

 12. The Create App Service window shows the progress of
deployment at the bottom left corner.

 13. After successful creation of the required resources, Visual
Studio opens the Publish window, as in Figure 2-17.

 14. The window contains properties already filled in that
automatically connect to the resources we created in the
previous steps. Click on Validate Connection to ensure the
connection to the Azure App Service is successful. A green
check mark confirms the connection is successful

. Click Next.

 15. Select Release as configuration. We can also select Debug to
remote-debug the deployed application. (Remote debugging
will be covered in subsequent chapters). Click Next to
continue.

 16. Click on Preview to preview the files that will be published to
Azure App Service, as shown in Figure 2-18.

Figure 2-17. Using Visual Studio Web Deploy to deploy bot application to Azure App
Service

Chapter 2 ■ Develop Bots Using .net Core

41

 17. Click on Publish to publish the binaries to Azure App Service.

 18. Visual Studio shows the progress of Web Publish in the Web
Publish Activity window. Click on View ➤ Other Windows
➤ Web Publish Activity to open the window if not visible
automatically. Visual Studio also opens the published website
http://mydoctorappointmentbot.azurewebsites.net/ (the
URL might vary based on the name you have chosen for the
application) in your default browser.

 19. Notice azurewebsites.net is the default suffix for every App
Service. Azure also allows you to map a custom domain name
to App Service; please visit https://docs.microsoft.com/
en-us/azure/app-service-web/web-sites-custom-domain-
name for more details.

We have successfully published the bot to Azure App Service. We can manage the
bot application from Azure Portal (https://portal.azure.com). Log in to the portal and
navigate to App Services. Click on the App Service name selected during deployment. In this
case, the name is mydoctorappointmentbot. The portal shows the application’s dashboard,
with options to manage the application, like stop, delete, or restart the application. The
portal also shows diagnostics and logging details by default (Figure 2-19).

Figure 2-18. Visual Studio Web Deploy or Publish preview

http://mydoctorappointmentbot.azurewebsites.net/
https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-custom-domain-name
https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-custom-domain-name
https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-custom-domain-name
https://portal.azure.com/

Chapter 2 ■ Develop Bots Using .net Core

42

We cannot yet test the application using an emulator because the MicrosoftAppId
and MicrosoftAppPassword attributes should be the actual ones in order to connect
to the bot remotely. These two attributes can be created by registering our bot at the
Developer Portal at https://dev.botframework.com.

Register the Bot
The Bot Developer Portal is for registering our bot and configuring Bot Connector Service
channels so that users can communicate with our service using different platforms. Bot
Connector Service works as an adapter between the channels we enable for users and
the Azure-hosted bot application. Applications that the users can choose to connect
to our bot can be configured using the Channels section on the Developer Portal.
When the bot is registered with Microsoft Bot Connector Service, the portal provides
the MicrosoftAppId and MicrosoftAppPassword, which are used to authenticate the
conversation. The bot configuration (web.config for C# applications) also contains a
property called BotId, which is used to store the URL in both the directory and the
Developer Portal.

 1. Log in to the Bot Developer Portal at https://dev.
botframework.com using your Microsoft account.

 2. Click on Register Bot.

Figure 2-19. Azure App Service dashboard for doctor appointment bot

https://dev.botframework.com/
https://dev.botframework.com/
https://dev.botframework.com/

Chapter 2 ■ Develop Bots Using .net Core

43

 3. Fill in the details about your bot, as shown in Figure 2-20.
You can also upload an icon here. The details filled in here,
including the icon, will show up in the bot directory. A bot
directory is a contact list of all bots developed using the
MS Bot framework. Remember: the bot handle should be a
unique string across all bot registrations.

 4. In the Configuration section, enter the messaging endpoint,
as shown in Figure 2-21. The endpoint should be reachable
from the internet, so we cannot use development URLs like
http://localhost:3979 while registering the bot. The bot’s
messaging endpoint should always be a valid HTTPS URL.
Azure App Service offers SSL security for free, so we do not
have to worry about configuring HTTPS for our bot.

Figure 2-20. Bot registration

Chapter 2 ■ Develop Bots Using .net Core

44

 5. Click on Create Microsoft App Id and Password; you will be
redirected to a different page (https://apps.dev.microsoft.
com), which shows the app ID and app name, as shown in
Figure 2-22. Click on Generate app password to continue to
generate an app password.

 6. Copy the password and paste it into your configuration file.
This is the only time the app password is shown, so make sure
you have a copy. If you lose it, you will be forced to regenerate
the password, replace the old password in the configuration
file, and republish the bot application.

 7. Click on Finish and go back to Bot Framework.

 8. Copy the app ID and paste it in the configuration file. The
configuration file should be updated, as shown in Figure 2-23.

Figure 2-21. Messaging endpoint configuration while registering a bot

Figure 2-22. Bot app ID and password

https://apps.dev.microsoft.com/
https://apps.dev.microsoft.com/

Chapter 2 ■ Develop Bots Using .net Core

45

 9. Configure the Owners field with your Microsoft Account. We
can ignore the Instrumentation key (we will learn to configure
application insights later). Select the checkbox to confirm
acceptance of the privacy statement, terms of use, and
business conduct.

 10. Finally, click Register to register the bot. The website greets
you with a “Bot created” confirmation; click OK to proceed.

 11. Before we configure channels for our bot, we should
republish it with the updated Microsoft app ID and password.
Switch back to Visual Studio, right-click on bot project, and
click Publish; then, click Publish again to ensure the app
published successfully.

Configure Channels
Now we have our bot service up and running on Azure and have registered our bot in the
Developer Portal so that the connector service can relay messages to our service. It is now
time to register the various channels by which the users will connect to our bot.

 1. To configure a channel, Login again to the Developer Portal
(https://dev.botframework.com/).

 2. Navigate to the My Bots section.

 3. Click on Bot we just created.

 4. We can always test the connection to our bot using the Test
section. Click on Test and try communicating with the bot, as
shown in Figure 2-24.

Figure 2-23. Updating Web.config with bot app ID and password

https://dev.botframework.com/

Chapter 2 ■ Develop Bots Using .net Core

46

 5. Click on the Channels section; notice that Skype and Web
Chat come pre-configured and enabled by default. In preview
mode, Skype Bot is limited to 100 subscribers. We should
publish the bot to remove the limit.

Figure 2-24. Test the registered bot using built-in web-chat control in developer portal

Chapter 2 ■ Develop Bots Using .net Core

47

Configuring Skype Bot
 1. Figure 2-25 shows the list of channels or users applications

available. All these applications are able to communicate with
our bot. You can select any channel here to allow users to
discover your bot via that channel.

 2. Click on Skype, for example, to configure it as a channel for
our bot. You will be redirected to a new page, where you
will be presented with a consent form like the one shown in
Figure 2-26. The consent page shows the bot’s description and
the different permissions and access levels our bot will have
access to.

Figure 2-25. Channel configuration in Bot Developer Portal

Chapter 2 ■ Develop Bots Using .net Core

48

 3. Click on Add to Contacts to add this to your Skype contacts.
The site might further ask you to download Skype Preview.

 4. Download and install Skype Preview if you do not have it
installed on your machine yet.

 5. Log in to Skype account to start using the bot we just
developed and published. Figure 2-27 shows a conversation
with our bot using Skype for Windows.

Figure 2-26. Enable Skype channel for doctor appointment bot

Chapter 2 ■ Develop Bots Using .net Core

49

 6. The Developer Portal allows you to reconfigure Skype settings
whenever you like. Click on the Edit button next to the Skype
channel configuration to go to a different page where you can
configure what the user can do with your bot, like enabling
text and pictures, enabling cards, enabling group messaging
or calls, or even disabling the Skype-compatible bot entirely.

 7. Click on Bot embed codes to see the embedded code that can
be shared with others; in the pre-published state, the bot’s
embed code can be shared with 100 users only.

Figure 2-27. Conversation with doctor appointment bot using Skype on Windows 10

Chapter 2 ■ Develop Bots Using .net Core

50

Configuring Web Chat
A web chat is a chat widget you can embed in your website. Click on Edit next to the web
chat to configure a web chat. Name the site; this option can be changed later. The page
shows you a couple of hidden secret keys and an HTML iframe tag. Now, there are two
ways you can embed web-chat controls in your web page. The easiest way is to paste the
iframe tag into your website with the secret. This might just work, but it is not secure,
because anyone can just reuse your web-chat bot by copying the iframe tag from your
HTML page when it renders. The second way, which stops others from stealing your web
bot, is by making an HTTP GET request to https://webchat.botframework.com/api/
tokens by passing the secret in the HTTP header, this call returns an authorization token,
which can only be used for one conversation. You can further style your embedded web
chat by applying the style on the iframe tag directly.

You can add any other channel from the following list by just clicking on Add. Each
of the channels has its own custom channel-configuration page, which can be used to
configure settings specific for that channel. Figure 2-29 is the configuration page for
Microsoft Teams.

Figure 2-28. Skype bot embed code

https://webchat.botframework.com/api/tokens
https://webchat.botframework.com/api/tokens

Chapter 2 ■ Develop Bots Using .net Core

51

Figure 2-29. Configuring Microsoft Teams channel

Click on Add to Teams once you finish configuring the channel. The website opens
Microsoft Teams for desktop, if available, or prompts you to download it, as we saw for
Skype. As you can see in Figure 2-30, once the bot is published and tested, it is quite easy
to configure multiple channels and increase its reachability.

Chapter 2 ■ Develop Bots Using .net Core

52

If you are not finding any of your favorite channels, you need not worry; Microsoft
offers a channel called Direct Line API, which can be used to write custom client
applications. The Direct Line API is a REST API that allows developers to write their own
client applications, web-chat controls, mobile apps, or service-service applications that
will talk to the bot.

Summary
A bot application is a simple web service. There are three main parts of the bot
framework: the Bot Builder SDK, Bot Connector Service, and Bot Developer Portal. The
Bot Builder SDK is an open source free framework available in both C# and Node.js. The
project template for building bots using C# is available as a separate download. Bots can
be tested using Bot Emulator during development; it is a cross-platform tool. Bots can
be deployed to any web-hosting platforms, like Azure or AWS. Bots should be registered
on the Bot Developer Portal for authentication and to configure various channels for
communication, like Skype, Teams, Slack, or Facebook. Microsoft Cognitive Services
provides necessary intelligence to bots so they can understand and respond in more
human-like ways using vision-, search-, knowledge-, speech-, language-, and location-
processing capabilities.

Figure 2-30. Conversation with doctor appointment bot using Microsoft Teams

53© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_3

CHAPTER 3

Develop Bots Using Node.js

Microsoft offers the Bot Builder SDK not just for the .Net framework but also for Node.js
developers. Bot Builder for Node.js is an equally powerful framework for building interactive
bots. The SDK can be used to build simple interactive and sophisticated bots with dialog
prompts and artificial intelligence capabilities, like LUIS or Azure Cognitive Services. This
chapter will focus on explaining the core concepts of Bot Builder for Node.js and help you
get started with building, debugging, and deploying bots using VS Code on a Windows
environment. The following points summarize the topics for this chapter:

•	 Setting up the development environment

•	 Build Hello World using VS Code

•	 Debugging using VS Code

•	 Building advanced bots with:

•	 Dialogs

•	 Prompts

•	 Choice

•	 Text

•	 Confirmation

•	 Number

•	 Attachments

•	 Deploying to Azure from VS Code

•	 Setting up monitoring

http://dx.doi.org/10.1007/978-1-4842-3312-2_3

Chapter 3 ■ Develop Bots Using noDe.js

54

Setting Up a Development Environment
The following items should be set up in order to start developing bots:

•	 Node Package Manager Console

•	 VS Code or any Node.js code editor

•	 Bot Builder SDK

•	 Bot Emulator

First things first: to install the node modules required for building a bot we
would need Node Package Manager, or NPM. NPM helps you download and install
dependencies for building any application. To install the latest version, go to https://
nodejs.org/en/. For authoring Node.js code, you can use any editor, like Cloud 9,
Eclipse, Web Matrix, or any other tool. In this chapter, we will be using VS Code, a free,
powerful, and lightweight editor from Microsoft that runs on Windows, MacOS, and
Linux. VS Code comes with built-in support for authoring code in multiple languages, like
JavaScript, TypeScript, Node.js, C#, and so on. It also comes pre-built with Intellisense
support, debugging, and source control (Git) capabilities. You can download and install
VS Code from https://code.visualstudio.com/. To aid developers in the authoring
process, VS contains many extensions, which can be installed from VS Code.

Build Hello World Bot Using VS Code
In this section, we will build a simple bot that greets the user with “Hello World.” Open
NPM’s command line in Administrator mode. Run the commands shown in Figure 3-1 to
create a folder to store code artifacts.

Figure 3-1. Node Package Manager command prompt

https://nodejs.org/en/
https://nodejs.org/en/
https://code.visualstudio.com/

Chapter 3 ■ Develop Bots Using noDe.js

55

Run the following command to initialize the folder with a basic Node.js artifact
(Figure 3-2):

npm init

npm init initializes the folder with the package.json file, which contains the
application metadata. The next step is to install the dependencies required to build the
sample bot. Run the following commands to install the Bot Builder and Restify modules
using NPM.

Figure 3-2. Initialize folder using NPM init

Chapter 3 ■ Develop Bots Using noDe.js

56

npm install - -save botbuilder
npm install - -save restify

BotBuilder is the name of the Node.js module for building MS bots. Restify is a
node.js module that helps you build or interact with RESTful web services. The preceding
commands download and install the required dependencies in the current folder. Run
the following command in the command prompt to open the current folder in VS Code:

code .

Notice in Figure 3-3 that there is a folder called node_modules that contains several
open source modules. The subfolder named botbuilder contains the necessary code
to help you build dialogs, cards, and buttons or add storage capabilities to bots. There
is also a file named package.json, which contains the application’s metadata and also
dependencies required for the application. The contents of this file are added as part of
the npm init command.

Click on Add New File on the left side of the HelloWorld bar and name the file app.js.
Add the following lines of code to the app.js file to include the modules:

var restify = require('restify');
var builder = require('botbuilder');

Bot Builder allows you to build bots for a variety of platforms. For example, you can
build a bot that can be called from a command line or by using Bot Emulator. We should
create a connector that will be used to interact with the bot. In the following code, we are
creating a console connector:

var connector = new builder.ConsoleConnector().listen();

Figure 3-3. Visual Studio Code

Chapter 3 ■ Develop Bots Using noDe.js

57

The logic to manage the bots lies within the UniversalBot class, which accepts a
variety of connectors. In the following code, we pass the console connector just created to
the UniversalBot:

var bot = new builder.UniversalBot(connector);

Now that we have the bot and the connector set up, we should be able to wire up
the bot conversation. Bot conversations can be done in multiple styles, one of which is
dialogs. In a typical web application, the user navigates through the application using the
routing pattern defined by the application. Dialogs follow the same pattern; each dialog
can be thought of as a route within the conversational approach. When the user sends
a message, the framework takes care of routing the message to the active dialog. For
example, the following code creates a dialog at the root of the conversation:

bot.dialog('/', function (session) {
 session.send('Hello World');
});

Run the command in Figure 3-4 from the command promt to run the bot. The bot
waits for a gesture from the user and greets with “Hello World” (no matter what the user
types), as that is the only active dialog.

Now, let us plug in a different connector to this bot application. Replace the contents
of app.js with this code:

var restify = require('restify');
var builder = require('botbuilder');

//===
// Bot Setup
//===
// Setup Restify Server
var server = restify.createServer();
server.listen(process.env.port || process.env.PORT || 3978, function () {
 console.log('%s listening to %s', server.name, server.url);
});

Figure 3-4. Hello World bot application using Node.js

Chapter 3 ■ Develop Bots Using noDe.js

58

// Create chat bot
var connector = new builder.ChatConnector({
 appId: process.env.MICROSOFT_APP_ID,
 appPassword: process.env.MICROSOFT_APP_PASSWORD
});
var bot = new builder.UniversalBot(connector);
server.post('/api/messages', connector.listen());
//===
// Bots Dialogs
//===
bot.dialog('/', function (session) {
 session.send("Hello World");
});

Notice that we have registered Restify to listen on port 3978 and the console
connector is replaced with the ChatConnector class. Unlike the console client, the
server will be listening on 3978 for post messages arriving at api/messages. To start the
application, run the following command. The application starts listening for messages on
port 3978 as shown in Figure 3-5.

To connect to the chat connector bot, we would need an emulator; you can
download and install the Bot Emulator for different types of operating systems from
https://docs.botframework.com/en-us/tools/bot-framework-emulator/.

Open Bot Emulator and connect to https://localhost:3978/api/messages as
shown in Figure 3-6. Click on Connect to confirm the connection. The Log window
(Figure 3-6) shows the status of the connection to the application.

Figure 3-5. Start bot application built using Node.js

Figure 3-6. Using Bot Emulator to connect to bot built using Node.js

https://docs.botframework.com/en-us/tools/bot-framework-emulator/

Chapter 3 ■ Develop Bots Using noDe.js

59

We can type any message in the text window at the bottom, and the application
responds based on the routing logic, as shown in Figure 3-7. Bot Emulator also shows the
details of the request response in the Log window. Click on the links for each request/
response to see the JSON body.

Additionaly, the node command window also shows logs of the coversations, as in
Figure 3-8.

Figure 3-7. Bot communications logs captured by Bot Emulator

Figure 3-8. Bot communication logs captured by Node.js

Chapter 3 ■ Develop Bots Using noDe.js

60

Debugging Using VS Code
VS Code provides smart Intellisense and debugging capabilities. To start debugging
Node.js code within VS Code we need a launch configuration. Click on the Debug icon
in VS Code and then select Add Configuration to select a launch configuration for our
application, as in Figure 3-9.

Press F5 or click on the Run button to start the application in Debug mode.
Alternatively, you can also run the application in Debug mode by running the following
command:

Node –debug-brk app.js

You should be able to set up breakpoints and inspect objects within VS Code
(Figure 3-10). You can see a vscode folder has been added to your project; it contains the
launch configuration.

Figure 3-9. VS Code launch configuration

Chapter 3 ■ Develop Bots Using noDe.js

61

Building Bots with Conversations
Understanding how to create conversations is a critical piece of the Bot Builder
framework. Bots use conversations to engage with the user, asking a sequence of
questions or a continuous conversation until a logical conclusion is reached. In this
section, we will learn to use dialogs and prompts to manage bot conversations with
a user. As part of this section, we will also build a Pizza Bot that lets the user build his
favorite pizza using dialogs and prompts.

Dialogs
Dialogs are like routes. For example, if we have to reach index.html on any website, like
http://fabrikamstore.com, we invoke it in a browser, like http://fabrikamstore.com/
index or just http://fabrikamstore.com/, which by default routes to the default page.
Similarly, bots have a default route, like '/'. When the framework receives a message, it
will be routed to the root for processing.

In the following code, the application routes the message to a route named
routeMenu:

var bot = new builder.UniversalBot(connector, [
 function (session) {
 session.send("Hello... I'm a pizza bot.");
 session.beginDialog('rootMenu');
 },

Figure 3-10. Debugging bot applications using VS Code

http://fabrikamstore.com/
http://fabrikamstore.com/index
http://fabrikamstore.com/index
http://fabrikamstore.com/

Chapter 3 ■ Develop Bots Using noDe.js

62

 function (session, results) {
 session.endConversation("Goodbye until next time...");
 }
]);

Here, we are passing a series of functions to the UniversalBot connector. Each
function receives a Session object, which can be used to inspect the user details, send
a reply to the user, or save data related to the user. Session objects can also be used to
redirect the user to a different dialog. Within a dialog, we can create subconversations
by using session.beginDialog(), which will search for other dialogs in the application
using the string input (rootMenu in this case). The remaining functions in this series are
called when each of the previous dialog calls with session.endDialog(). In this case, the
result of the first function will be passed to the second function in the series. This style
of conversation is called the Waterfall model. The Waterfall model is the most common
form of dialog we will be using while building bots. But what if you want to collect inputs
from the user to continue your conversation? Bot Builder framework contains a property
called Prompts that helps you collect information from the user in a variety of forms.

Prompts
Bot Builder comes with a variety of built-in forms that can be used to collect input from
the user. These prompts are implemented as dialogs, so responses to the prompts will be
returned using the session.endDialog() or session.endDialogWithresult() methods.
The framework maintains a stack of dialogs (or prompts, since prompts are also a type
of dialog) that help the framework route the reply. Each dialog or prompt in the series
receives the results or user responses from previous conversations. The following code
shows a sample prompt that prompts the user to select one option from the menu to start
a subconversation using session.beginDialog():

// Add root menu dialog
bot.dialog('rootMenu', [
 function (session) {
 builder.Prompts.choice(session, "Choose an option:", 'Select

Base|Select Toppings|Select Sides|Order Summary');
 },
 function (session, results) {
 switch (results.response.index) {
 case 0:
 session.beginDialog('basedialog');
 break;
 case 1:
 session.beginDialog('toppingsdialog');
 break;
 case 2:
 session.beginDialog('sidesdialog');
 break;
 case 3:

Chapter 3 ■ Develop Bots Using noDe.js

63

 session.beginDialog('ordersummary');
 break;
 default:
 session.endDialog();
 break;
 }
 },
 function (session) {
 // Reload menu
 session.replaceDialog('rootMenu');
 }
]).reloadAction('showMenu', null, { matches: /^(menu|back)/i });
server.post('/api/messages', connector.listen());

In the below code, we are using prompts. These show the user a list of menu options
and seek an input from the user. Figure 3-11 shows how the menu is displayed to the user.

The user’s response can be any one of the preceding options. The response is passed
to the second function in the series. The option selected by the user will be available at
results.response.index. Based on the option selected by the user, we can start a new
conversation. If the user selects an option that is not present in the list, the framework is
intelligent enough to respond with a default message, as shown in Figure 3-12.

Figure 3-11. Pizza Bot built using Node.js

Chapter 3 ■ Develop Bots Using noDe.js

64

Prompts come in a variety of styles and can be presented to the user in different
ways. The user interface (UI) of a prompt also depends on the channel being used.

Input Choice
Prompt.choice() asks the user to pick an option from a list. The user response will be
returned as an IPromptChoiceResult. The list of choices can be presented to the user in
a variety of styles using the IPromptOptions.listStyle property. The user can express
their choice by entering either the number or its name. Bot Builder is smart enough to
capture the menu option even if the user’s response partially matches a menu’s option.
The following code shows a sample prompt that presents the pizza base options to the
user using a button style:

// select base
bot.dialog('basedialog', [
 function (session, args) {
 builder.Prompts.choice(session, "Choose Thin Crust, Cheese Burst or

Classic Hand Tossed", "thincrust|cheeseburst|classichandtossed", {
listStyle: builder.ListStyle.button })

 },
 function (session, results) {
 session.endDialog("It's %s.", results.response.entity);
 }
]);

The options are presented to the user using buttons as defined in the choice
method. If you are using a touch-enabled device to connect with the bot, you will notice
that these options are clickable. The options in a menu can be separated by pipe symbol
(|) as shown or declared as a string of arrays, such as thincrust, cheeseburst, and
classichandtossed (Figure 3-13). Users can also choose by the number of the name of
the option.

Figure 3-12. Bot response for invalid option selected by user

https://docs.botframework.com/en-us/node/builder/chat-reference/interfaces/_botbuilder_d_.ipromptoptions.html#liststyle

Chapter 3 ■ Develop Bots Using noDe.js

65

Text Input
The user’s input is not always a choice; sometimes you might want the user to enter
free-form text like their name, phone number, or email address. Prompt.text can be used
to prompt the user to enter any text as input. The following code shows a code sample
where the user can select any toppings for the selected pizza base:

// select toppings
bot.dialog('toppingsdialog', [
 function (session, args) {
 builder.Prompts.text(session, "Choose your toppings from Olives,

Jalapeno, Onion, Bell Pepper, Corn");
 },
 function (session, results) {
 session.endDialog("It's %s.", results.response);
 }
]);

Confirm
The prompts.confirm() method can be used to confirm an action, like yes/no, from the
user. The user’s response will be returned as IPromptConfirmResult. The following code
shows how to create a confirmation prompt:

// confirm order
bot.dialog('confirmorder', [
 function (session, args) {
 builder.Prompts.confirm(session, "Can I confirm your order?");
 },

Figure 3-13. Clickable menu created using choice style

Chapter 3 ■ Develop Bots Using noDe.js

66

 function (session, results) {
 session.endDialog("It's %s.", results.response);
 }
]);

The prompt looks like that shown in Figure 3-14.

Users can respond using yes, y, or 1 for true and no, n, or 0 for false.

Number
The number prompt asks the user to enter a number. The following is sample code that
does so:

builder.Prompts.number(session, "How many would you like to order?");

Time
The time prompt will ask the user to enter a time. The response can be relative, like “in 2
minutes,” or absolute, like “June 5th 12 am.” The MS Bot framework uses a library called
Chronos to parse the user’s response. The following code shows a sample prompt for
asking for a time:

builder.Prompts.time(session, "What time would you want the order?");

The result returned by the entity is a prompt that should be parsed into a JavaScript
object using EntityRecognizer.resolveTime() as shown here:

builder.EntityRecognizer.resolveTime([results.response]);

Attachment
The attachment prompt asks the user to upload a file attachment, like an image or video.
The response will be of type IPromptAttachmentResult.

builder.Prompts.attachment(session, "Upload a picture for me to
transform.");

Figure 3-14. Confirmation dialog created using prompt style

Chapter 3 ■ Develop Bots Using noDe.js

67

Messages
Bot Builder contains a Message builder class that can be used to send messages to the
user using the Session object. A Session object is passed to every dialog whenever a
bot receives a message and contains all the information required to send any number of
messages to the user.

Session.send() can be used to send simple text messages, attachments, or cards to
the user. The bot can call Session.send() any number of times before the user responds.
If the bot sends multiple replies, the replies are grouped into a batch and sent to the
user at once, thus preserving the order of the messages. The message can also contain
template parameters like the one shown here:

session.send("hello there %s", name)

Bots can send simple text or much more sophisticated messages, like images, videos,
or any other file attachments, to the user. The following sample shows how to send an
attachment to the user in the response:

bot.dialog('/picture', [
 function (session) {
 session.send("You can easily send pictures to a user...");
 var msg = new builder.Message(session)
 .attachments([{
 contentType: "image/jpeg",
 contentUrl: " http://images.clipartpanda.com/pizza-clipart-

pizza-clipart-1.jpg"
 }]);
 session.endDialog(msg);
 }
]);

Sometimes, in order to provide your user with a rich experience, the response sent
to them should look attractive, actionable, and informative. Bot Builder allows you to
design rich responses using cards, which are a combination of image, video, button, and
text. The Bot Builder SDK contains helper methods to render cards to the user in a cross-
platform way. A few helper card types provided by the SDK are Hero Card, Thumbnail
Card, Receipt Card, and Sign-in Card. Remember that since these cards are UI rich, not
all channels will support them in the same way. To determine the channel and customize
the message schema based on the channel, we can use the Message.sourceEvent()
method. The following code shows a Hero Card with a pizza-order summary:

// order summary - bot state
bot.dialog('ordersummary', [
 function (session, args) {
 var msg = new builder.Message()
 .address(session.message.address)

Chapter 3 ■ Develop Bots Using noDe.js

68

 .attachments([
 new builder.HeroCard(session)
 .title("Pizza Bot")
 .subtitle("Order Summary")
 .text("Pizza Base: " + session.userData.base + "

Pizza Toppings: " + session.userData.toppings + "
Sides: " + session.userData.sides)

 .images([
 builder.CardImage.create(session,

"http://images.clipartpanda.com/pizza-clipart-
pizza-clipart-1.jpg")

])
 .tap(builder.CardAction.openUrl(session,

"https://docs.botframework.com/en-us/node/builder/
overview/#navtitle"))]);

 // Send message through chat bot
 bot.send(msg);
 },
 function (session, results) {
 session.endDialog();
 }
]);

While the bot is busy composing a response, the user is unaware of the background
processing, so it is our responsibility to show a progress indicator like we do in other types
of applications. This is particularly important when you are starting an asynchronous
operation to fetch data from a far resource that might take few seconds. session.
sendTyping() shows an indicator to the user about the background processing. The
amount of time the indicator stays visible depends on the channel; for example, it is three
seconds for Slack and twenty seconds for Facebook. If you want to show an indicator
periodically, a custom logic should be written.

State
While the bot is interacting with the user, there should be some means to store the
conversation data or user-profile information to be reused later. Bot Builder SDK contains
a built-in storage system. There are several ways of persisting data relative to the user or
conversation. The following are properties of the Session object that allow you to store
data at different levels.

Chapter 3 ■ Develop Bots Using noDe.js

69

•	 User Data: session.userData can be used to store information
globally for the user across all conversations.

•	 Conversations Data: session.conversationsData stores
information globally for a single conversation across the users.
This data is visible to anyone who is part of the conversation, so
we should be extra cautious with what we store here. This option
is disabled by default and should be enabled using the bot’s
persistConversationsData setting.

•	 Private Conversations Data: sessions.
privateConversationsData saves the user’s conversation
data. Since this data stores information across different dialogs
in the stack, it is a nice option for saving anything related to a
conversation and is organized per conversation per user.

•	 Dialog Data: session.dialogData persists data within a single
dialog instance. This is essential for storing information in-between
the steps of a Waterfall model.

The following code example shows the storing of a user response using the session.
userData object so that we can reuse it when building the order summary:

// select toppings
bot.dialog('toppingsdialog', [
 function (session, args) {
 builder.Prompts.text(session, "Choose your toppings from Olives,

Jalapeno, Onion, Bell Pepper, Corn");
 },
 function (session, results) {
 session.userData.toppings = results.response;
 session.endDialog("It's %s.", results.response);
 }
]);

Deploying to Azure
The completed sample for Pizza Bot is available under the code samples. In this section,
we will learn how to deploy the Pizza Bot to Azure and test it using Bot Emulator. To
complete the samples in this section, you will need an Azure Subscription; you might get
a temporary one for free from https://azure.microsoft.com/en-in/free/.

A bot gets deployed as an Azure website. There are many ways to create an Azure
website, such as from the portal (https://portal.azure.com). Use PowerShell if you are
on a Windows machine. In this section, we will create an Azure website using Azure CLI,
which is a cross-platform tool to manage Azure resources. The following steps show you
how to deploy a bot on Azure using the command line.

https://azure.microsoft.com/en-in/free/
https://portal.azure.com/

Chapter 3 ■ Develop Bots Using noDe.js

70

Open the Node Package Manager console as Administrator and run the following
command to install Azure CLI:

npm install azure-cli -g

To create a website, we must log in to Azure, so run the following command to log in
using your subscription’s credentials:

azure login

Run the following command to switch to Azure ARM mode:

azure config mode asm

Type the following command to create a new site and configure it for Node.js and Git:

azure site create - -git simplepizzabot

The below command creates an Azure website. Login to the Azure portal and set up
the Git credentials so you can set up the continuous publish feature. Figure 3-15 shows
how to set up deployment credentials.

Figure 3-15. Setting up deployment credentials for continuous publish

Run the following commands to push the source code to the Git repository just created:

git add .
git commit -m "first commit"
git push azure master

Chapter 3 ■ Develop Bots Using noDe.js

71

You will be prompted to enter the deployment credentials—the username and the
password chosen while setting up deployment credentials.

We should now be able to remotely test the application deployed on Azure using Bot
Emulator. For bot applications deployed remotely, we should secure the communication
channel so that only authentic clients can invoke the web endpoints; this happens via the
MS Bot framework’s Developer Portal. Let us quickly register the bot on Bot Developer
Portal at https://dev.botframework.com. Login to Bot Developer Portal using a
Windows Live Account or Hotmail account and register the bot as shown in Figure 3-16.
For information on registering a bot on Developer Portal, see Chapter 2.

Figure 3-16. Bot registration on Developer Portal

https://dev.botframework.com/
http://dx.doi.org/10.1007/978-1-4842-3312-2_2

Chapter 3 ■ Develop Bots Using noDe.js

72

Microsoft App ID and password serve as the credentials we need to connect to the
Pizza Bot. The Node.js bot application deployed to Azure should be updated with the
App ID and password so client applications can connect. Login to Azure Portal and add
the relevant application settings to the Azure App Service, as shown in Figure 3-17.

We should now be able to test the bot using the embedded chat control on the Bot
Developer Portal, or we could add it to Skype. Figure 3-18 shows the conversation with
the bot, which is using Skype’s interface remotely.

Figure 3-17. Update Microsoft app ID and password in App Service settings

Figure 3-18. Communicating with Pizza Bot via Skype

Chapter 3 ■ Develop Bots Using noDe.js

73

You can now connect to the bot application using various channels, which are shown
in Figure 3-19.

Summary
Microsoft offers a Bot Builder SDK so Node.js developers can build smart and intelligent
bots. Bots can be authored using any Node.js editor; however, VS Code is the preferred
one given its Intellisense, cross-platform, debugging, and built-in source-control
capabilities. Bots have dialogs, which are like routes in a web application. A message
from the user is routed to a dialog and then rerouted based on the result or return type
of the dialog. The user’s input can be collected using bot prompts. The appearance
of the dialogs or prompts differs from channel to channel. The SDK offers a variety of
options to save state using the Session object. The data can be saved globally or per user/
conversation. Azure offers a cross-platform command-line tool call Azure CLI, which can
be used to create and manage resources on Azure. VS Code contains built-in Git source
control capabilities, which can be used to set up the continuous publish feature.

Figure 3-19. Bot channels

75© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_4

CHAPTER 4

Channels

Channels are the medium through which the conversation happens between your bot
API and the client. There are numerous channels that a conversation can pass through.
Though most of them implement the basic text-based conversation styles, like request/
reply, there are a few characteristics that are specific to each channel. Bot developers
can use the channel-specific characteristics via the underlying platform and provide an
enriched experience to bot users. In this chapter, we will learn how to use the channels
and channel data that exist in the Microsoft Bot framework’s vast ecosystem. We will
build a bot that uses the personalized features of the underlying channels by customizing
the payload.

The following topics will be discussed in this chapter:

•	 Channels overview

•	 Build a chat bot using email client

•	 Build a chat bot using Slack channel and API:

•	 Multi-dialog bot using Slack and Slack channel data

•	 Onboard bot application to Slack

•	 Remotely debug Slack bot on development machine

Channels and Channel Data
A bot’s channel can be configured from the Bot Developer Portal (https://dev.
botframework.com). The bot channels Web Chat and Skype are enabled for you by
default. A few other channels available for you to explore are the following:

•	 Bing

•	 Cortana

•	 Facebook Messenger

•	 Kik

•	 Skype for Business

http://dx.doi.org/10.1007/978-1-4842-3312-2_4
https://dev.botframework.com/
https://dev.botframework.com/

Chapter 4 ■ Channels

76

•	 Outlook

•	 Microsoft Teams

•	 Slack

•	 Telegram

•	 Direct Line

•	 Group Me

•	 Twilio (SMS)

To enable any of these channels, you should register your bot on the Developer
Portal. Any of these channels can be enabled for your bot by clicking on the Add Channel
buttonz in the Channels section of the Developer Portal, as shown in Figure 4-1.

Bot channel configurations are different from one another. Most of the bots’
registrations need an account per channel; for example, to register with an email client
we would need an Office 365 email ID. A few other channels, like Slack (which we will
see in the next section), require an application to be onboarded with the channel so that
the channel can monitor the usage. The onboarding details provided by the channel are
used to register the bot on the Developer Portal. Registering a channel for your bot should
make your bot discoverable on the corresponding channel.

 ■ Note to enable a skype for Business bot, you should be a tenant administrator on the
skype for Business online environment. For more details on enabling the skype for Business
channel, please visit https://msdn.microsoft.com/en-us/skype/Skype-For-Business-
Bot-Framework/docs/overview.

Once a bot channel has been enabled, it shows up in the Connect to Channels
section, as shown in Figure 4-2. The Developer Portal also allows you to update the
channel configuration after enabling. If you find your bot misbehaving or hacked, you
can disable the channel by clicking on the Disable button on the Channel Configuration
page.

Figure 4-1. Bot channels

https://msdn.microsoft.com/en-us/skype/Skype-For-Business-Bot-Framework/docs/overview
https://msdn.microsoft.com/en-us/skype/Skype-For-Business-Bot-Framework/docs/overview

Chapter 4 ■ Channels

77

The Health column in Figure 4-2 shows the recent issues discovered while the bot
was running. Clicking on the issues shows more-detailed information on the failed
scenarios, as shown in Figure 4-3. This can be used to troubleshoot channel-related
issues in real-time.

Clicking the Get bot embed codes link provides HTML snippets that can be
embedded in any application host. Invoking the embedded code invokes the bot. There
is no limit on the number of channels you can enable a bot on. You can also create
your custom client for the bot by implementing the Direct Line API. Direct Line API is
a REST API that can be used to send/receive messages with custom channel data to the
bot application. There are also client libraries available for C# and Node.js. For more
details on building a custom client using Direct Line API, please visit https://docs.
microsoft.com/en-us/bot-framework/rest-api/bot-framework-rest-direct-line-3-
0-concepts.

Figure 4-2. List of channels configured for a bot

Figure 4-3. Issues discovered by channel connector

https://docs.microsoft.com/en-us/bot-framework/rest-api/bot-framework-rest-direct-line-3-0-concepts
https://docs.microsoft.com/en-us/bot-framework/rest-api/bot-framework-rest-direct-line-3-0-concepts
https://docs.microsoft.com/en-us/bot-framework/rest-api/bot-framework-rest-direct-line-3-0-concepts

Chapter 4 ■ Channels

78

Channel Data
ChannelData is a special property of the activity object that is passed between the client
and the bot API. The channel data is a dynamic object that can carry data in any schema.
Channel data contains channel-specific information, and it can also be used to pass
special information to the channel. The ChannelData property contains the data in the
form of a JSON serialized string.

For example, Figure 4-4 shows the channel data coming from the Slack channel.

Figure 4-5 shows the schema for the Slack channel data.

To implement channel-specific functionality, you can use the ChannelId property.
The value shows the channel name, as shown in the Figure 4-5 (for example, slack). When
replying to the user, you can use the channel-specific schema to implement custom
features. The channel data can be sent in the response by designing a JSON-serializable
class as shown in Figure 4-6.

Figure 4-4. Channel data from Slack

Figure 4-5. JSON schema for Slack channel data

Chapter 4 ■ Channels

79

Assign the value to the activity object’s channel data property as follows:

Var emailChannelData = new EmailChannelData()
{
 htmlBody = $"<html><body style=\"font-family: Calibri; font-size:
 11pt;\">{weatherHTML}</body></html>",
 subject = $"Weather at {location}",
 importance = "normal"
};

Figure 4-6. C# class for Email channel data matching the JSON schema

Chapter 4 ■ Channels

80

if (activity.ChannelId != "email")
{
 reply.Text = emailChannelData.ToString();
}

Alternatively, you can build a JSON object by using the Newtonsoft.JSON library, as
explained in the following code:

reply.Text = new JObject(
 new JProperty("htmlBody", $"<html><body style=\"font-

family: Calibri; font-size: 11pt;\">{weatherHTML}
</body></html>"),

 new JProperty("subject", $"Weather at {location}"),
 new JProperty("importance", "normal")).ToString();

Similarly, you can read the channel data by using the Newtonsoft.JSON library, as
shown here:

// Read by path within JSON string
emailChannelData.SelectToken("htmlBody")?.ToString();

Build a Chat Bot Using an Email Client
Unlike other bot channels, which exercise standard conversation patterns through a chat
window, the Email channel allows bots to send automated emails as per the business logic.
An email client is one of the MS Bot framework’s list of channels. The bot application is
invoked when an email is sent to the email address used during channel configuration.

The following steps explain the process of building a bot application and configuring
it for the Email channel. In this sample application, we will build a bot that responds to
emails with weather information. Follow these steps:

 1. Open Visual Studio as Administrator and create a new bot
application; name it email channel.

 2. Add the following class for serializing the Email channel data:

[JsonObject]
 public class EmailChannelData
 {
 /// <summary>
 /// Gets or sets the HTML body.
 /// </summary>
 /// <value>
 /// The HTML body.
 /// </value>
 [JsonProperty("htmlBody")]
 public string htmlBody { get; set; }

Chapter 4 ■ Channels

81

 /// <summary>
 /// Gets or sets the subject.
 /// </summary>
 /// <value>
 /// The subject.
 /// </value>
 [JsonProperty("subject")]
 public string subject { get; set; }

 /// <summary>
 /// Gets or sets the importance.
 /// </summary>
 /// <value>
 /// The importance.
 /// </value>
 [JsonProperty("importance")]
 public string importance { get; set; }
 }

 3. Update the MessageReceivedAsync function in RootDialog.cs
with the following code. The code creates a message with custom
channel data in response to the message from the bot client. The
code also identifies the channel before responding to the request
using the activity.ChannelId property.

/// <summary>
/// Messages the received asynchronous.
/// </summary>
/// <param name="context">The context.</param>
/// <param name="result">The result.</param>
/// <returns></returns>
private async Task MessageReceivedAsync(IDialogContext
context, IAwaitable<object> result)
{
 var activity = await result as Activity;
 var reply = context.MakeMessage();
 string location = (activity.Text ?? string.Empty);
 var weatherHTML = this.getWeatherDetails(location);
 var emailChannelData = new EmailChannelData()
 {
 htmlBody = $"<html><body style=\"font-family: Calibri;

font-size: 11pt;\">{weatherHTML}</body></html>",
 subject = $"Weather at {location}",
 importance = "normal"
 };

Chapter 4 ■ Channels

82

 if (activity.ChannelId != "email")
 {
 reply.Text = emailChannelData.ToString();
 }
 else
 {
 reply.ChannelData = emailChannelData;
 }
 // return our reply to the user
 await context.PostAsync(reply);
 context.Wait(MessageReceivedAsync);
}

 4. Add the following getWeatherdetails helper function to
the RootDialog.cs. The function is used to get weather
information from http://api.openweathermap.org.

/// <summary>
/// Gets the weather details.
/// </summary>
/// <param name="location">The location.</param>
/// <returns></returns>
private string getWeatherDetails(string location)
{
 string htmlResponse = string.Empty;
 string response = string.Empty;
 try
 {
 using (var client = new HttpClient())
 {
 response = client.GetStringAsync($"http://

api.openweathermap.org/data/2.5/weather?q={
location}&appid=9aeafb54eb98a3b63804af59320
66f8c&units=metric&mode=html").Result;

 htmlResponse += response;
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.ToString());
 htmlResponse = $"Invalid location, please only

location in Email. For Ex: New Delhi, Current
Location Passed: {location}, API Response:
{response}";

 }
 return htmlResponse;
}

http://api.openweathermap.org/

Chapter 4 ■ Channels

83

 5. Build and run the application. The application can be tested
by using Bot Emulator.

 6. Publish the application to Azure Portal (Figure 4-7).

 7. Onboard the bot application to the Bot Developer Portal by
filling in the details shown in Figure 4-8 on the bot’s profile
page.

Figure 4-7. Publish Email bot from Visual Studio

Chapter 4 ■ Channels

84

 8. Replace the messaging endpoint with the bot application’s
endpoint, provided by Azure, followed by api/messages.

Figure 4-8. Email bot registration

Chapter 4 ■ Channels

85

 ■ Note During the onboarding process, you will be provided with a Microsoft app ID and
password unique to your bot, which is required for authentication. ensure you update the
app ID and password in the web.config of the application and republish to azure.

 9. Click on Email in the Channels section and configure the
email and password as shown in Figure 4-9. The email
configured here will be used by your bot to listen for incoming
messages.

 ■ Note email channel can only be used with Office 365 accounts; other email services
are not currently supported.

 10. Let us send an email to this address with the details of the
location for which we seek weather information (Figure 4-10).
Notice that we are not including any data other than location
here.

Figure 4-9. Email (Office 365) channel configuration

Chapter 4 ■ Channels

86

 ■ Note to build complex bots using the email channel, we can use lUIs for processing
the email body and to respond accordingly.

 11. In no time you would receive an email with weather information
from openweathermap.org, as shown in Figure 4-11.

Figure 4-10. Draft email to Weather email bot

Figure 4-11. Email response from Weather email bot

Chapter 4 ■ Channels

87

While building email bots, ensure you’re not spamming or sending bulk emails by
adhering to the code of conduct laid out at https://www.botframework.com/Content/
Microsoft-Bot-Framework-Preview-Online-Services-Agreement.htm. Ensure the
Email channel is disabled when the application is taken offline.

Build a Chat Bot Using Slack Channel and API
Slack (www.slack.com) is a team collaboration tool built by Stewart Butterfield. It is available
on most of the desktop and mobile operating systems. Slack offers lots of collaboration
features, like persistent chat rooms or channels organized by topic (not to be confused with
bot channels), private groups, and direct messaging. All the content shared in the Slack tool
is searchable; in fact, SLACK stands for Searchable Logs of All Conversation and Knowledge.
Figure 4-12 shows a Slack desktop application on Windows 10.

Slack is one of the supported channels on the MS Bot framework. We can build a
Slack bot by using the Slack API (https://api.slack.com) for formatting messages,
linking attachments, and embedding images, action buttons, confirmation dialogs, and
so on.

To enable a Slack bot in Developer Portal, we need an Application Client ID,
Client Secret, and Verification Token, as shown in Figure 4-13. The following details are
provided by Slack when the application is onboarded to their portal, but before this step
we should onboard the bot to the MS Bot Developer Portal. This is because the Slack
onboarding depends on the bot handle to uniquely identify our bot.

Figure 4-12. Slack application on Windows OS

https://www.botframework.com/Content/Microsoft-Bot-Framework-Preview-Online-Services-Agreement.htm
https://www.botframework.com/Content/Microsoft-Bot-Framework-Preview-Online-Services-Agreement.htm
http://www.slack.com/
https://api.slack.com/

Chapter 4 ■ Channels

88

In this section, we will build a Slack bot that helps us book a reservation in one
of the famous hotels of Las Vegas. The application goes through a series of dialogs to
ensure all the information is captured. The user is asked to choose a hotel from the list of
destinations and to enter name, age, check-in date, and check-out date, and finally the
bot responds with a hotel confirmation, as shown in Figure 4-14.

Figure 4-14. Sample response from Slack Bot

Figure 4-13. Slack configuration in Bot Developer Portal

Chapter 4 ■ Channels

89

Multi-dialog Bot Using Slack and Slack Channel Data
Let us get started with building a Slack bot by going through the following steps. Open
Visual Studio as Administrator and create a new bot application, naming it Slack
channel.

In this section, we are going a build a series of dialogs. Rename the RootDialog.cs to
SlackDialog and replace the MessageReceivedAsync method with the following code.

private async Task MessageReceivedAsync(IDialogContext context,
IAwaitable<object> result)
{
 var validDestinations = new List<string> { "palazzo", "bellagio",

"mirage" };
 var activity = await result as Activity;
 var slackChannelData = JObject.FromObject(activity.ChannelData);
 var destination = slackChannelData.SelectToken("Payload.actions[0].

value")?.ToString();
 if (!string.IsNullOrEmpty(destination) &&validDestinations.
Contains(destination))

 {
 this.destination = destination;
 context.Call(new NameDialog(), this.NameDialogResumeAfter);
 }
 else
 {
 var reply = context.MakeMessage();
 reply.ChannelData = new SlackMessage
 {
 Text = "Hi Welcome to *Vegas tours Bot*, _book your Las Vegas

stay from anywhere using Slack_ :hotel:",
 Attachments = new System.Collections.Generic.List<Models.

Attachment>
 {
 new Models.Attachment()
 {
 Title = "Which hotel do you want to stay at?",
 Text = "Choose a Hotel",
 Color = "#3AA3E3",
 Callback = "wopr_hotel",
 Actions = new List<Models.Action>()
 {
 new Models.Action()
 {
 Text = "The Palazzo (min. $350 per night)",
 Name = "destination",
 Type = "button",
 Value = "palazzo"
 },

Chapter 4 ■ Channels

90

 new Models.Action()
 {
 Text = "Bellagio Hotel and Casino (min. $300 per

night)",
 Name = "destination",
 Type = "button",
 Value = "bellagio"
 },
 new Models.Action()
 {
 Text = "The Mirage (min. $280 per night)",
 Name = "destination",
 Type = "button",
 Value = "mirage",
 Style = "Danger",
 Confirm = new JObject(
 new JProperty("confirm",
 new JObject(
 new JProperty("title",

"Are you sure, you may
want to check the events at
Palazzo?"),

 new JProperty("text",
"You may want to check
events, restaurants at
the Palazzo?"),

 new JProperty("ok_
text", "Yes"),

 new JProperty("dismiss_
text", "No")

)))}
 }
 }
 }
 };
 await context.PostAsync(reply);
 context.Wait(MessageReceivedAsync);
 }
 }

The above code greets the user with formatted text, a stylish menu, and a smiley
icon, as shown in Figure 4-15. The formatting is done using the Slack API; more
details on basic formatting can be found at https://api.slack.com/docs/message-
formatting#message_formatting.

https://api.slack.com/docs/message-formatting#message_formatting
https://api.slack.com/docs/message-formatting#message_formatting

Chapter 4 ■ Channels

91

We can also build confirmation popups that will show up upon the selection of a
button, as shown for The Mirage in the below code. The confirmation popup looks like
Figure 4-16 and appears when you click on The Mirage.

The following code extracts the data from the callback once the user makes a
selection:

var slackChannelData = JObject.FromObject(activity.ChannelData);
var destination = slackChannelData.SelectToken("Payload.actions[0].value")?.
ToString();
if (!string.IsNullOrEmpty(destination) &&
validDestinations.Contains(destination))
 {
 this.destination = destination;
 context.Call(new NameDialog(), this.NameDialogResumeAfter);
 }

Figure 4-15. Sample response from Slack bot with buttons

Figure 4-16. Confirmation popup built using Slack API

Chapter 4 ■ Channels

92

Here, we are using Newtonsoft.Json to extract a value from a JSON serialized string
by crawling the path. Alternatively, you could design a C# class matching the schema of
the response and deserialize the JSON string using the activity.GetChannelData<T>
method on the activity object.

Upon successful extraction of the selection made by the user, the application directs
the user to the next dialog. For each subsequent dialog, the callback is registered on the
SlackRootDialog class to extract the selection made by the user. The following is the
content of the next dialog:

[Serializable]
 public class NameDialog : IDialog<string>
 {
 public async Task StartAsync(IDialogContext context)
 {
 await context.PostAsync("What is your name?");

 context.Wait(this.MessageReceivedAsync);
 }

 private async Task MessageReceivedAsync(IDialogContext context,
IAwaitable<IMessageActivity> result)

 {
 var message = await result;

 /* If the message returned is a valid name, return it to the
calling dialog. */

 if ((message.Text != null) && (message.Text.Trim().Length > 0))
 {
 /* Completes the dialog, removes it from the dialog stack,

and returns the result to the parent/calling
 dialog. */
 context.Done(message.Text);
 }
 }
 }

Figure 4-17 shows the conversations between the bot and the slack user.

Chapter 4 ■ Channels

93

The stint of conversations ends with a confirmation of the booking, as shown in
Figure 4-18.

Figure 4-17. Conversation with Slack bot

Figure 4-18. Final response from Slack bot

Chapter 4 ■ Channels

94

The following code shows the final response with embedded smiley, image, and link
in the response message:

// Sample Image embedded in Slack Message
 string imageUrl = "https://www.palazzo.com/content/dam/palazzo/Suites/
bella/Palazzo-Bella1-med_900x600.jpg.resize.0.0.474.316.jpg";
 // Sample Title URL
 string titleURL = "https://www.vegas.com/tours/";
 this.checkOutDate = await result;
 var reply = context.MakeMessage();
 reply.ChannelData = new SlackMessage
 {
 Text = $"Hi *{name}*, your stay is confirmed from \n Your stay

is from *{checkInDate.ToLongDateString()} to {checkOutDate.
ToLongDateString()}*. \n Have a pleasant stay :smiley:",

 Attachments = new System.Collections.Generic.List<Models.Attachment>
 {
 new Models.Attachment()
 {
 Title = "Here are few things you can do in Vegas !! :thumbsup_all:",
 Text = "Hotel Pics",
 ImageUrl = imageUrl,
 TitleLink = titleURL
 }
 }
 };
 await context.PostAsync(reply);

If you want to know the complete request/response schema, you can go to
https://api.slack.com/docs/messages. Slack API also gives you a message builder
that can help with the preview of a message for any given JSON response, as shown in
Figure 4-19. To use the message builder, navigate to the below link and click on Message
builder under the Messages section. The following link shows an example of the Slack
message schema: https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-
builder-dotnet-channeldata.

https://api.slack.com/docs/messages
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-channeldata
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-channeldata

Chapter 4 ■ Channels

95

Onboarding a Slack Bot
The steps for onboarding the Slack bot are quite different from the Email bot registration
we saw earlier. The following steps are common for any bot registration:

 1. Publish the bot application as an Azure App Service (or any
other website-hosting environment).

 2. Register the bot on the Developer Portal using the host name
of the bot application. Remember the bot handle used during
the registration process, as it will be used in the next steps.

 3. Update the Microsoft App ID and password in the web.config
and republish to the Developer Portal.

After completing the above steps for the sample project (just built), we should be
able to enable the Slack channel by clicking on the Slack icon in the Channels section.
But, before that, we should onboard our bot to Slack. The steps corresponding to
connecting the bot to Slack are detailed at https://docs.microsoft.com/en-us/bot-
framework/channel-connect-slack. Gather the credentials from the Slack portal and
update the same on the Bot Developer Portal accordingly (Figure 4-20).

Figure 4-19. Slack message builder

https://docs.microsoft.com/en-us/bot-framework/channel-connect-slack
https://docs.microsoft.com/en-us/bot-framework/channel-connect-slack

Chapter 4 ■ Channels

96

After completing the above steps, the bot application should be visible in your Slack
application under the Apps section.

Remote Debugging Slack Bot on Development Machine
In order to debug Slack bot conversations from Visual Studio, the calls from the bot
channels to the bot application running on Azure should be intercepted. Ngrok helps
us create secure tunnels that can be used to connect a program running on your local
machine (like Visual Studio) to a cloud service. You can download ngrok.exe from
https://ngrok.com/download or from the code samples linked to this chapter.

To debug the application from Visual Studio, follow these steps:

 1. Run the application in Debug mode from Visual Studio.

 2. Run the following command at the path where ngrok.exe is
placed. The bot should be running on port 3979; if not, change
the port accordingly.

ngrok.exe http 3979 -host-header="localhost:3979"

 3. Ngrok provides both an HTTP and an HTTPS tunnel, as
shown in Figure 4-21.

Figure 4-20. Applying configuration in Bot Developer Portal using information from Slack
API portal

Figure 4-21. Ngrok configuration for remote debugging

https://ngrok.com/download

Chapter 4 ■ Channels

97

 4. Copy the HTTPS forwarding address (https://a39e1f41.
ngrok.io).

 5. Update the configuration endpoint on the Bot Developer
Portal, as shown in Figure 4-22.

 6. Save changes.

 7. Open the Slack application and start a conversation with
your bot.

You should now be able to debug your application from Visual Studio in real-time
and inspect the channel data. The MS Bot framework provides several options for
customizing the conversation experience for channels like Facebook, Telegram, kik, and
so on.

Summary
Channels and channel data can be used to customize the conversation experience by
using the channel-specific features. For example, we can use the personalized features of
Slack, like smileys, attachments, and notifications, by responding to the user with custom
channel data. ChannelData is a property of the activity class that can be used to send data
that only the channel can understand and interpret. The ChannelData property contains
the data in the form of a JSON serialized string. Email is also a channel supported by MS
Bot framework. The bot responds via email when an email is sent on the registered email
ID. The Email channel can only be configured by using Office 365 accounts, as other
email services are not currently supported.

Figure 4-22. Ngrok configuration on Bot Developer Portal

https://a39e1f41.ngrok.io/
https://a39e1f41.ngrok.io/

99© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_5

CHAPTER 5

Bot Conversations

Conversations form the core of any bot implementation. Conversations refer to the
process of exchanging ideas and content between multiple parties. When two or more
people talk to each other, they have entered a conversation. Bot implementation is all
about conversations. A bot mimics and simulates conversation as two humans would
converse in their natural form. Bots are implemented to hear and talk to their users,
provide information, guide them, act on their behalf, and keep providing updates about
its current state. A conversation with a bot could be text or speech driven.

Conversations are the way to interact and stay engaged with a bot. MS Bot
framework provides a feature-rich framework that supports a variety of conversation
types. In this chapter, we will focus on the details of the messages that are exchanged
between a bot and a user as part of a conversation, deep dive into message internals, and
explore different types of conversation options available as part of MS Bot framework.
MS Bot provides cards that help when exchanging rich content with users as part of a
conversation. This chapter includes the following:

•	 Attachments

•	 Images

•	 Hero card

•	 Thumbnail card

•	 Adaptive card

•	 Carousel card

•	 Prompt dialogs

Microsoft offers these rich media conversations not just for .Net framework but also
for Node.js developers. The examples used in this chapter will use C# as the choice of
language; however, the code for Node.js will also be shown for each option.

http://dx.doi.org/10.1007/978-1-4842-3312-2_5

Chapter 5 ■ Bot Conversations

100

Understanding Conversations
Conversations are a series of messages passed between bots and users. A conversation
can take the following shapes:

•	 One-to-one conversation between a user and a Bot

•	 One-to-many conversations between a Bot and users

•	 Conversation between Bots

Almost all channels implement one-to-one conversation between a user and bot, but
not all channels implement group conversations. Documentation of individual channels
should be referred before implementing group conversation. Email is one of the channels
that implements group conversation.

Messages
Messages are the core to bot conversations. Messages are passed from a sender to a
recipient. Both user and bot are sender and recipient in a conversation.

There are multiple types of messages that can be transmitted between users and
bots, as shown in Table 5-1.

Table 5-1. List of Message Types in MS Bot Framework

Message Type Description

contactRelationUpdate The channel sends this message to indicate that the user
added or removed your bot from their contacts list in the
channel. If the user added your bot to their contacts list, the
message’s action property is set to add; otherwise, it’s set to
remove.

conversationUpdate The channel sends this message to indicate that one or more
users has joined or left the conversation, or the topic name
changed. For a list of users that joined the conversation,
see the message’s addedMembers property; otherwise, see
the removedMembers property. You can use this message to
welcome new users to the conversation.

deleteUserData The channel sends this message to indicate that the user
wants the bot to delete all of their personally identifiable
information (PII) that the bot may have saved using the User
State REST API. If you receive this message, you must delete
the user’s data. After you delete the user’s data, you should
send them a message indicating that it’s been deleted.

(continued)

https://docs.botframework.com/en-us/core-concepts/reference/#endpoints
https://docs.botframework.com/en-us/core-concepts/reference/#endpoints

Chapter 5 ■ Bot Conversations

101

The most important type of message in the shown list is message. All general
conversation between a user and bot happen using this type. Also, a bot can check for
message types that are part of its implementation using an Activity object.

Activity
Messages are represented as Activity objects within a bot. A bot interacts with a
message using an Activity object. This class is defined within the MS Bot framework.
When a user sends a message, the bot receives the message in the form of an Activity
object, and a bot in turn creates an Activity object to reply to the user. This object
contains the complete context under which the bot is executed. Some of the important
information encapsulated by Activity objects is shown in Table 5-2.

Message Type Description

message The bot or user sends this message to advance the
conversation; for example, the user sends a message asking
for information, and your bot replies with a message that
answers the user’s question. Most messages that you send
and receive will be of this type.

ping The bot is sent this message to verify that its URL is accessible.
The bot should respond with HTTP status code 200 OK, and
may respond with 401 Unauthorized or 403 Forbidden.

typing The channel or bot sends this message to indicate to the
other party that they’re working on a reply. Not all channels
support this message.

Table 5-1. (continued)

Table 5-2. Properties in an Activity Object

Property Description

conversation Conversation’s ID to which the message is related

from Sender’s ID of the message

locale Locale information of message origination

recipient Receiver’s ID of the message

ID Message identifier

replyToId When replying to a message, set this to the contents of the ID property
from the user’s message.

type Type of message. Could be any valid value from Table 5-1.

text The actual message content in the form of text passed to recipient

textformat Allows adding markdown to text messages

attachments Used for sending rich content in the form of audio, video, images, and
rich cards.

Chapter 5 ■ Bot Conversations

102

Relationship Between Channels, Conversation,
User, and Bot
Conversation happens over a channel. It is an absolute must for a conversation to
be hosted on a channel. Connectors provide multiple types of channels, like Skype,
Facebook, Slack, and more. Conversations, users and Bots can be identified using Bot
framework provided identifier. A channel can identify and weave these entities together
as a unit and enable conversation with the help of their IDs. Figure 5-1 shows the
hierarchal relationship between channels, conversations, and messages.

Figure 5-1. Channels, conversations, and messages are related in a hierarchical manner

The Conversation property shown earlier contains information about the
conversation ID. The From property of the Activity object contains the ID and name
of the message sender, the Recipient property contains the ID and name of message
recipient, and the ID property contains the message identifier. Replies are made to the
message using the replytoID property.

It is important to note that the conversation ID, Bot ID, and user ID remain constant
for the entire session between a user and bot; however, for every message sent, the MS
Bot framework generates a new message ID. A message ID is not generated when a reply
to previous message is sent. In short, a message ID is constant for a pair of responses and
not more.

Chapter 5 ■ Bot Conversations

103

Message Under the Hood
A message is sent from sender to recipient in JSON (JavaScript Object Notation) format.
A sample message in JSON format is shown in Figure 5-2.

This message in JSON format is deserialized into an Activity object when it reaches
a bot. The important properties are marked with numbers

 1. The type of message passed to the bot. It is of type message.

 2. The ID of the message. This ID is generated upon the
initiation of the message. If the bot wants to reply to this
message, it should use the ReplyToID property and set it to
this ID.

 3. Date and time of message.

 4. The originating URL

 5. Channel Account ID of user as sender of message

 6. Channel Account ID of conversation

 7. Channel Account ID of bot as recipient of message

 8. Text sent by user to the bot

Figure 5-2. Sample message in JSON format passed between a sender and a recipient.
In this case, it’s from a user to a bot.

Chapter 5 ■ Bot Conversations

104

Conversation Under the Hood
A bot is primarily a REST (Representational State transfer) endpoint. It provides an
endpoint through which users can interact with it. Typically, a conversation is initiated
by a user, although it is possible for even a bot to start a conversation. When a user
starts a conversation using a channel (Facebook, Skype, etc.), it sends an HTTPS POST
message to https://api.botframework.com/v3/conversations. The request reaches
the connector, and if the connector can establish the conversation with the bot as
specified in the URL, a new conversation ID is generated. A new channel account for
the conversation is created. By this time, a bot account, user account, and conversation
account are established on the channel. A request is sent to the bot using https://api.
botframework.com/v3/conversations/{ConversationID}/activities. This is the
same conversation ID shown as item 2 in Figure 5-2. This request contains the identical
message as shown in Figure x. The bot creates a new Activity object in response to
the request and replies using the same conversation ID. The bot uses https://api.
botframework.com/v3/conversations/{ConversationID}/activities/{activityID}.
The “From” and “Recipient” information are swapped, but the conversation ID remains
the same, as shown in the replyToID property in Figure 5-3.

ReplyToID contains the same conversation ID that was in the incoming message.
Now, if the user sends another message to the bot not in reply to their first message, a new
message ID is generated, and rest of the information remains the same. This is shown in
Figure 5-4.

Figure 5-3. Sample message in JSON format depicting a reply to an incoming message

https://api.botframework.com/v3/conversations
https://api.botframework.com/v3/conversations/{ConversationID}/activities
https://api.botframework.com/v3/conversations/{ConversationID}/activities
https://api.botframework.com/v3/conversations/{ConversationID}/activities
https://api.botframework.com/v3/conversations/{ConversationID}/activities

Chapter 5 ■ Bot Conversations

105

Building Bots with Conversations
It is quite easy to understand the concept of attachments with the help of an analogy. The
following sections discuss this.

Attachments
Think about an email and its contents. An email consists of content in the form of text. It
also at times contains rich content in the form of images, audio, video, and other formats,
including binary format. This rich content is added to the email as attachments. It is
part of the overall email content but is separated from the text content. Bots also provide
features to add rich content to the message exchange. Rich media like audio, video,
images, animation, and so forth can be added to the messages as attachments. Both the
text and attachments are part of the message (activity) payload and are transmitted to bot
and users.

Figure 5-4. Sample message consisting of different message ID for every new message

Chapter 5 ■ Bot Conversations

106

MS Bot framework provides the attachments object to easily send and receive
attachments, as shown in Figure 5-5.

Adding and sending an attachment in a message is quite simple. Follows these steps:

 1. Create an attachment object:

Attachment attach = new Attachment();

 2. Determine the content type of the attachment. The
ContentType property of attachment accepts valid MIME
(Multipurpose Internet Mail Extensions) types. If you’re
attaching an image, set the contentType property to the image
media type and its subtype to PNG, GIF, or JPEG (for example,
image/png):

attach.ContentType = "image/png";

 3. Set the ContentUrl or ThumbnailUrl property to the actual
location of the media based on type of media and channel used:

attach.ContentUrl = "https://upload.wikimedia.org/wikipedia/en/a/
a6/Bender_Rodriguez.png";

 4. Provide name for attachment:

attach.Name = "SampleAttachment";

Figure 5-5. Attachment object and its properties

Chapter 5 ■ Bot Conversations

107

 5. For channels that support inline images, you can set the
ContentUrl property to a base64 binary value of the image
(for example, …). The
channel will display the image or the image’s URL next to the
message’s text string:

attach.ContentUrl = "
AQ...."

 6. Add it to the message’s attachments array:

reply.Attachments = new List<Attachment> { attach };

After the attachment is attached, the message payload will correspond to the format,
as shown in Figure 5-6. In this case, the bot is sending out a .png image as an attachment
with some text associated with it.

Figure 5-6. Sample message in JSON format containing attachment details

Chapter 5 ■ Bot Conversations

108

An interaction with this bot using Bot Emulator to view the image as an attachment
is shown in Figure 5-7.

Receiving an attachment by bot in a message is also quite simple. Follow these steps:

 1. Declare variables to hold return values:

Attachment attachment = null;
 long? contentLenghtBytes = 0;

 2. Create ConnectorClient object to interact with channels:

ConnectorClient connector = new ConnectorClient (new Uri(activity.
ServiceUrl));

 3. Check if incoming message has attachments:

if (activity.Attachments != null && activity.Attachments.Any())

Figure 5-7. Using Bot Emulator for viewing an image as an attachment received from a bot

Chapter 5 ■ Bot Conversations

109

 4. It is possible that there are multiple attachments within
a single incoming message. If there is more than one
attachment, they can be looped through using the
attachments property of the incoming message. Here, it is
assumed that there is a single attachment within the incoming
message:

var attachment = activity.Attachments.First();

 5. When a user sends an attachment, the file is stored
temporarily and should be downloaded by the bot. The bot
should download the file using the classes available in the
System.Net namespace. In this case, HttpClient is used and
a new object of HttpClient is created:

HttpClient httpClient = new HttpClient ()

 6. As seen before, each attachment object has a ContentUrl
property. Using HttpClient and referring to the ContentUrl
property, the file is downloaded in the bot context:

var responseMessage = await httpClient.GetAsync(attachment.
ContentUrl);

 7. The downloaded file is read and can be stored in a Stream object:

Stream content1 = await responseMessage.Content.
ReadAsStreamAsync();

 8. When the attachment is an image, an in-memory
representation of it can be created:

Image img = System.Drawing.Image.FromStream(content1);

 9. Details about the attachment can be obtained from the
header. It is important to note that the content property
contains all details about the file downloaded:

var contentLenghtBytes = responseMessage.Content.Headers.
ContentLength;

The full code is shown here:

Attachment attachment = null;
long? contentLenghtBytes = 0;

 ConnectorClient connector = new ConnectorClient(new Uri(activity.
ServiceUrl));

Chapter 5 ■ Bot Conversations

110

if (activity.Attachments != null && activity.Attachments.Any())
 {
 attachment = activity.Attachments.First();
 using (HttpClient httpClient = new HttpClient())
 {
 var responseMessage = await httpClient.GetAsync(attachment.

ContentUrl);

 contentLenghtBytes = responseMessage.Content.Headers.
ContentLength;

 Stream content1 = await responseMessage.Content.
ReadAsStreamAsync();

 Image img = System.Drawing.Image.FromStream(content1);

 }
}

 Activity reply = activity.CreateReply($"You sent {attachment.ContentType}
which was {contentLenghtBytes.ToString()} characters");

await connector.Conversations.ReplyToActivityAsync(reply);

An interaction with this bot using Bot Emulator to send an image as an attachment is
shown in Figure 5-8.

Chapter 5 ■ Bot Conversations

111

Hero Card
The Hero card is a multipurpose card; it primarily hosts a single large image, a button,
and a “tap action,” along with text content to display on the card.

The properties used to configure a Hero card are listed in Table 5-3.

Figure 5-8. Sending an image as an attachment using Bot Emulator

Table 5-3. Properties Supported by Hero Card

Property Description

Title Title of card

Subtitle Link for the title

Text Text of the card

Images[] For a hero card, a single image is supported

Buttons[] Hero cards support one or more buttons

Tap An action to take when tapping on the card

Chapter 5 ■ Bot Conversations

112

A sample output of a Hero card is shown in Figure 5-9 in an emulator.

The accompanying code has the complete project for a Hero card available:

 ConnectorClient connector = new ConnectorClient(new Uri(activity.
ServiceUrl));

 var heroCard = new HeroCard
 {
 Title = "Sample Hero Card",
 Subtitle = "Smart Cards — Learning Bot Framework",
 Text = "The Hero card is a multipurpose card; it primarily hosts a

single large image, a button, and a tap action.",
 Images = new List<CardImage> { new CardImage("https://

sec.ch9.ms/ch9/7ff5/e07cfef0-aa3b-40bb-9baa-7c9ef8ff7ff5/
buildreactionbotframework_960.jpg") },

 Buttons = new List<CardAction> { new CardAction(ActionTypes.OpenUrl,
"Get Started", value: "https://docs.botframework.com/en-us/") }

 };

 Activity reply = activity.CreateReply();
 Attachment attach = new Attachment();

 attach = heroCard.ToAttachment();
 reply.Attachments = new List<Attachment> { attach };

 await connector.Conversations.ReplyToActivityAsync(reply);
 var response = Request.CreateResponse(HttpStatusCode.OK);
return response;

Figure 5-9. Sample depicting Hero card in Bot Emulator

Chapter 5 ■ Bot Conversations

113

Thumbnail Card
The Thumbnail card is a multipurpose card; it primarily hosts a single small image, a
button, and a “tap action,” along with text content to display on the card. The difference
between the Hero and Thumbnail cards is the size of image displayed. Thumbnail has
smaller images compared to the Hero card.

The properties used to configure the Thumbnail card are listed in Table 5-4.

Table 5-4. Properties Supported by Thumbnail Card

Property Description

Title Title of card

Subtitle Link for the title

Text Text of the card

Images[] Multiple image is supported

Buttons[] Support one or more buttons

Tap An action to take when tapping on the card

A sample output of a Thumbnail card is shown in Figure 5-10 in an emulator.

Figure 5-10. Sample depicting Thumbnail card in Bot Emulator

The accompanying code has the complete project for a Thumbnail card available:

ConnectorClient connector = new ConnectorClient(new Uri(activity.
ServiceUrl));
 var thumbNail = new ThumbnailCard
 {

Chapter 5 ■ Bot Conversations

114

 Title = "Sample Thumbnail Card",
 Subtitle = "Smart Cards — Learning Bot Framework",
 Text = "The ThumbNail card is a multipurpose card; it

primarily hosts a single large image, a button, and a
tap action.",

 Images = new List<CardImage> { new CardImage("https://
sec.ch9.ms/ch9/7ff5/e07cfef0-aa3b-40bb-9baa-
7c9ef8ff7ff5/buildreactionbotframework_960.jpg") },

 Buttons = new List<CardAction> { new
CardAction(ActionTypes.OpenUrl, "Get Started", value:
"https://docs.botframework.com/en-us/") }

 };

 Activity reply = activity.CreateReply();
 Attachment attach = new Attachment();

 attach = thumbNail.ToAttachment();
 reply.Attachments = new List<Attachment> { attach };

 await connector.Conversations.ReplyToActivityAsync(reply);

 var response = Request.CreateResponse(HttpStatusCode.OK);
 return response;

Carousal
A Carousal has multiple cards or images that display in turn. A Carousel is composed of
other rich media cards, like Hero card, images, Thumbnail cards, and so on. Users can
navigate the individual cards in Carousal and perform actions on them.

A sample output of a Carousel in Bot Emulator is shown in Figure 5-11.

Figure 5-11. Sample depicting using Carousel in Bot Emulator

Chapter 5 ■ Bot Conversations

115

The accompanying code has the complete project for a Carousel available:

ConnectorClient connector = new ConnectorClient(new Uri(activity.
ServiceUrl));

 Activity reply = activity.CreateReply();
 reply.AttachmentLayout = AttachmentLayoutTypes.Carousel;
 reply.Attachments = new List<Attachment>()
 {
 new HeroCard
 {
 Title = "Computing",
 Subtitle = "paradigm shift",
 Text = "Cloud Computing",
 Images = new List<CardImage>() {new CardImage(url:

"https://en.wikipedia.org/wiki/Cloud_computing#/
media/File:Cloud_computing.svg") },

 Buttons = new List<CardAction>() { new
CardAction(ActionTypes.OpenUrl, "Get more info",
value: "https://en.wikipedia.org/wiki/Cloud_
computing/") },

 }.ToAttachment(),
 new ThumbnailCard
 {
 Title = "Azure",
 Subtitle = "Cloud Computing",
 Text = "Azure platform from Microsoft",
 Images = new List<CardImage>() { new CardImage(url:

"https://en.wikipedia.org/wiki/Microsoft_Azure#/
media/File:Microsoft_Azure_Logo.svg") },

 Buttons = new List<CardAction>() { new
CardAction(ActionTypes.OpenUrl, "Learn more", value:
"https://en.wikipedia.org/wiki/Microsoft_Azure/") },

 }.ToAttachment(),
 new HeroCard
 {
 Title = "Chat Bot",
 Subtitle = "Bot Framework",
 Text = "Bot framework from Microsoft",
 Images = new List<CardImage>() {new CardImage(url:

"https://en.wikipedia.org/wiki/Chatbot#/media/
File:Telegram_tourism_chatbot.png") },

 Buttons = new List<CardAction>() { new
CardAction(ActionTypes.OpenUrl, "Get Details",
value: "https://en.wikipedia.org/wiki/Chatbot") },

 }.ToAttachment(),
 };

 await connector.Conversations.ReplyToActivityAsync(reply);

Chapter 5 ■ Bot Conversations

116

Buttons
Buttons in media cards are the primary mechanism through which users interact with
the bot. MS Bot framework provides the flexibility to change the button action depending
on the requirements. Buttons can open a URL in a browser, post back the selection to
the bot, download a file, or call a phone number. Most of the examples use the openUrl
action for the buttons. For sending a response back to bot to take further action, the
imBack or postback actions should be used. Table 5-5 provides the entire list of properties
supported by this object.

Table 5-5. Propeties Supported by Button Object

CardAction.Type CardAction.Value

openUrl URL to be opened in the built-in browser

imBack Text of the message to send to the bot (from the user who clicked
the button or tapped the card). This message (from user to bot)
will be visible to all conversation participants via the client
application that is hosting the conversation.

postBack Text of the message to send to the bot (from the user who clicked
the button or tapped the card). Some client applications may
display this text in the message feed, where it will be visible to all
conversation participants.

call Destination for a phone call in this format: tel:123123123123

playAudio URL of audio to be played

playVideo URL of video to be played

showImage URL of image to be displayed

downloadFile URL of file to be downloaded

signin URL of OAuth flow to be initiated

Prompts
A prompt is a mechanism to get a quick answer from a user. It is a mechanism to
encourage users to provide information. MS Bot framework provides prompts for this
purpose. Prompts in MS Bot framework are implemented as dialogs, which is the main
subject of the next chapter. However, they also help form rich conversation with users,
and so it made sense to include prompts in this chapter. Users are encouraged to revisit
this section along with the chapter on dialogs.

Chapter 5 ■ Bot Conversations

117

Prompts provide various options for asking for different types of input from users.
These include the following:

 1. Choice – Users can click on an option to select and submit it.

 2. Confirm – Users are provided with Yes and No buttons, and
they can click on a button to select and submit their response.

 3. Text – Users are prompted to enter text content.

 4. Number – Users are encouraged to enter numerical content.

When a prompt is used, it asks users to provide an answer using buttons or raw text.
In both cases, MS Bot framework makes it easy for developers to accept the data and pass
it to the parent dialog. This helps the parent dialog take appropriate action based on the
user input. Prompts also provide a mechanism to ask users the same question multiple
times if the answer does not satisfy the bot.

Prompt dialogs are complete dialogs by themselves and have their own lifecycle.
They also encapsulate the logic to prompt questions, display buttons, and accept inputs,
then process and pass them to the parent dialog.

A Choice prompt needs multiple items that can be iterated using the IEnumerable
and IEnumerator interfaces. Enums and lists provide an easy way to group multiple items
together for this purpose. Custom collections can also be used for this. An enum named
Title is shown in the code example. This enum is used to generate the button that the user
can select as part of their interaction with the bot.

 public enum title
 {
 Mr,
 Mrs,
 others
 }
PromptDialog.Choice(
 context: context,
 resume: NameFromUserMethod,
 options: Enum.GetValues(typeof(title)).Cast<title>().ToArray(),
 prompt: "How would you like to be addressed ? (Mr, Mrs or

others):",
 retry: "I was clueless about this input! Please try again!!");

The output of running code listing is shown in Figure 5-12.

Figure 5-12. Example demonstrating using PromptDialog to accept user input

Chapter 5 ■ Bot Conversations

118

A Confirm prompt displays Boolean true/False, Yes/no buttons, and users can
select one of them as part of their selection. _salvation and _name are global class-level
variables.

PromptDialog.Confirm(
 context: context,
 resume: GetCityFromUserMethod,
 prompt: $"You entered {_salvation} {_name} !! Click yes to

confirm!!",
 retry: "I was clueless about this input! Please try again!!");

The output of running this code is shown in Figure 5-13.

Figure 5-13. Example demonstrating using PromptDialog to confirm user input

A text prompt, as the name suggests, prompts users to provide content as text:

PromptDialog.Text(
 context: context,
 resume: CityFromUserMethod,
 prompt: "Please provide your full name:",
 retry: "I was clueless about this input! Please try again!!");

Number prompts are used to provide numbers as content.
The complete code for understanding prompts is available as accompanying code

for this chapter. The sample code is implemented as a dialog and prompts users to select
their salutation through choices, prompts users to provide their full name through a
text prompt, and asks them to confirm their salutation and full name through a confirm
prompt.

Chapter 5 ■ Bot Conversations

119

Figure 5-14 shows an interaction with this bot using Bot Emulator to show prompts
being used.

Figure 5-14. Example showing usage of prompts for accepting input from user

The following code is for the prompt example:

public enum title
 {
 Mr,
 Mrs,
 others
 }

 [Serializable]
 public class ParentDialog : IDialog<object>
 {
 private title _salvation;
 private string _name;

Chapter 5 ■ Bot Conversations

120

 public async Task StartAsync(IDialogContext context)
 {
 await context.PostAsync("Hi There!! Lets get started !!");
 context.Wait(GetStarted);
 }

 public virtual async Task GetStarted(IDialogContext context,
IAwaitable<object> result)

 {
 var input = await result;
 PromptDialog.Choice(
 context: context,
 resume: NameFromUserMethod,
 options: Enum.GetValues(typeof(title)).Cast<title>().ToArray(),
 prompt: "How would you like to be addressed ? (Mr, Mrs or

others):",
 retry: "I was clueless about this input! Please try again!!");
 }

 public virtual async Task NameFromUserMethod(IDialogContext context,
IAwaitable<title> result)

 {
 _salvation = await result;
 PromptDialog.Text(
 context: context,
 resume: CityFromUserMethod,
 prompt: "Please provide your full name:",
 retry: "I was clueless about this input! Please try again!!");
 }

 public virtual async Task CityFromUserMethod(IDialogContext context,
IAwaitable<string> result)

 {
 string _name = await result;
 PromptDialog.Confirm(
 context: context,
 resume: GetCityFromUserMethod,
 prompt: $"You entered {_salvation} {_name} !! Click yes to

confirm!!",
 retry: "I was clueless about this input! Please try again!!");
 }

 public virtual async Task GetCityFromUserMethod(IDialogContext
context, IAwaitable<bool> result)

 {
 bool register = await result;
 if (register)
 {

Chapter 5 ■ Bot Conversations

121

 await context.PostAsync("Thanks for providing your details
about your name !! ");

 await context.PostAsync("bye bye !! you may close this
conversation !! ");

 }
 else
 {
 await context.PostAsync("please submit any key to get

started !! ");
 context.Wait(GetStarted);
 }

 }
 }

Summary
Conversations are the core of writing bots. Conversations as a platform is the
new phenomenon that is gaining traction, and bots are becoming the new face of
organizations instead of traditional web pages. Bots are based on conversations.
Conversations that are intuitive and intelligent are a must for any bot in order to keep
users engaged. MS Bot framework provides numerous features to make conversations
user friendly and intuitive. It provides facilities for sending and receiving attachments,
images, and files. It also helps in providing advanced user-interface elements like buttons,
Carousels, Hero cards, Thumbnail cards, and many others to ensure that bot authors can
write engaging bots.

123© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_6

CHAPTER 6

Skype Calling Bot

The advent of smartphones is a revolution, and with internet-based voice calling (VOIP)
available on all mobile phones, audio/video calling has become the cheapest, fastest,
and easiest method of communication. Businesses should adapt and evolve as per
the latest advances in technology and its application keeping in view the competition,
customer’s usage trends and expectations. Many businesses today have a mobile
application in addition to their website, like Flipkart, Zomato, Uber, and so on. Today,
businesses are embracing the next wave of revolution in the fields of application interface
or communication, which is virtual assistants. Soon, you will see all businesses being
operated by virtual assistants, accompanied by processes running top-notch, highly
scalable artificial intelligence platforms. We have been learning to build these virtual
assistants, which can communicate with the user using text, image, or touch inputs. Bots
can also use speech/voice for conversations.

Bots use conversation as a medium to interact with the user (Bot here is referred to
as an agent or interface between the user and the business, just like a website or a mobile
application), so why not let the user and bot talk to each other instead of typing into the chat
window? Imagine a user trying to log a service complaint; instead of typing in the whole
description, the user can speak into the microphone, describing the issue. The bot, on the other
hand, can respond by speaking to the user after interpreting the user’s voice. The user here is
communicating with a bot in real-time with an impression of human-to-human conversation.

Microsoft Bot framework provides the Skype Calling SDK, which can be used to
build bots with calling features. Skype Calling SDK allows developers to design bot
APIs with calling, DTMF input, intent recognition, and text input by using MS Bot
framework–supported languages like C# and Node.js. Skype calling is available only on
the Skype channel and is an opt-in feature. Skype calling bots are the new generation
of intelligent bots that reshape the user experience by allowing them to communicate
with applications using voice from any device, in any language, with ease. Bots can
also play pre-recorded audio to the user; for example, a welcome message or waiting
tone. Speaking to a bot is one side of the communication, but how do you make the bot
understand and respond? The inputs from a user can be simple Yes/No or choosing from
a given set of options, but for it to understand speech the Bot should be able to perform
textual analytics. Microsoft Cognitive Services provides an intelligent speech-recognition
API called Bing Speech API with which developers can build bots that can convert speech
to text and text to speech and perform voice recognition. In this chapter, we will learn to
build a next-generation, smart, callable IVR bot that can convert speech to text. The code
samples in this chapter are built using C#, but the concepts apply to Node.js as well.

http://dx.doi.org/10.1007/978-1-4842-3312-2_6

Chapter 6 ■ Skype Calling Bot

124

The following topics will be discussed in this chapter:

•	 Introducing Skype calling bots

•	 Use cases for building callable bots

•	 Enabling calling for your bot

•	 Building a Skype calling bot using C# and VS

•	 Subscribing and handling events in Skype calling bot

•	 Debugging Skype calling bot using Ngrok

•	 Speech-to-text conversion using Bing Speech API

Introducing Skype Calling Bots
The steps that help create a Skype calling bot are very much like those for any typical
bot. The most important aspect you need to understand while designing a Skype calling
bot is the sequence of events. Skype calling bot conversations are initiated by a caller by
calling a bot contact from the user’s contact list. The call is translated to an HTTP REST
call to our bot application by the Skype channel. The translation also embodies the user’s
input, like the DTMF option (option selected from dial pad), voice as stream of bytes, or
anything else. The Skype Bot API contains two callable endpoints, callback and call,
and the Skype channel ensures it calls the correct endpoint as per the lifecycle. For
example, when the bot-calling conversation is initiated by the caller, the call endpoint is
invoked first followed by the callback—this handling of lifecycle events is taken care of
by the framework, making development easy.

 ■ Note any bot application can also be invoked by using the MS Bot framework’s Direct
line api.

For the Skype calling option to be activated, it should be enabled on the Developer
Portal. This is usually done when you register the bot in the portal, and this is the only
means by which you can test your bot before publishing it to the wider audience.

Use Cases for Skype Calling Bots
The following are few use cases where Skype calling bots can be built:

•	 A typical use case for designing Skype calling bots is to automate
the customer-service system. In any customer-service system, the
user connects to a customer agent who is responsible for solving
the customer’s query, but over a period the queries and the
responses tend to follow a pattern, leaving the agent repeating the
same response again and again. For example, if the customer’s
query is related to performing a hard reset for your Smart TV, the
steps to do so are same for any customer.

Chapter 6 ■ Skype Calling Bot

125

•	 A Skype bot can also act as an intelligent listener in a group
conversation. Let us say you want to have a listener in your regular
group calls who can summarize the contents of the call; it can be
automated by building a Skype bot and adding it to the group call.
Skype bots can be integrated with Cognitive Services to perform
speech-to-text conversion, key-phrase extraction, sentiment
analysis, and topic and language detection. It can also do the job
of language translation in text format for the participants on the
call who speak different dialects.

•	 A Skype calling bot can act as an authentication platform when
combined with Bing Speech API’s voice-recognition feature. For
example, you can use Skype calling in two-factor authentications
where the bot provides an authentication code after recognizing
the user’s voice.

•	 A Skype calling bot can also help in speech analysis. For example,
we can build a bot that converts speech to text and performs
sentiment analysis, biased/unbiased categorization, and so on.

Enabling Calling for Your Bot
A Skype calling bot’s registration process is essentially no different from the steps we saw
earlier, although there is one additional mandatory step to enable Skype calling for your bot.

Follow these steps to enable Skype calling for your bot:

•	 Log in to the Developer Portal at https://dev.botframework.com
and navigate to the My Bots section.

•	 Select the bot for which you intend to enable Skype calling

•	 Click on the icon on the Skype channel.

•	 Click on the Calling tab.

•	 Select “Enable Calling” and “IVR – 1:1 IVR audio calls” and click
Save (Figure 6-1).

Figure 6-1. Enable Skype calling feature in Developer Portal

•	 To disable, select “Disable Calling” and click Save.

https://dev.botframework.com/

Chapter 6 ■ Skype Calling Bot

126

Building a Skype Calling Bot
There are many scenarios where you might want to provide a rich user experience by
building voice-based interaction. In this section, we will build a Skype IVR bot that
registers a customer’s complaints related to products made by an imaginary organization,
Contoso. IVR stands for Interactive Voice Response. In a typical IVR-based system, the
computer reads out a predefined set of options to the user and seeks information from
the user in the form of keyboard input or voice, which is converted into commands or
actions. It is also possible to generate dynamic menus in an IVR system. In this example,
we will stick to a simple IVR bot with a fixed menu that seeks information from the
user using keyboard-based inputs. IVR-based bots can be helpful in building a guided
conversation that resembles a workflow.

 ■ Note For this example, let us assume Contoso is an organization that sells electronics like
smart tVs, laptops, refrigerators, and washing machines to its consumers. any such organization
is usually backed up by a customer-service team that is reachable by a toll-free number. in this
chapter, we will learn to build scenarios around automating the job of a customer-service agent.

Let us get started with building our Contoso bot by following these steps:

•	 Open Visual Studio and create a new project using Bot Template,
and let us call it ContosoIVRBot.

•	 The Skype Calling API is available as an extension to the Bot
Builder SDK called Microsoft.Bot.Builder.Calling. The
extension should be installed on the project using the NuGet
Installer. Right-click on the project references and then click on
Manage NuGet Packages. Search and install the package named
Microsoft.Bot.Builder.Calling as shown in Figure 6-2.

Figure 6-2. Installing Bot Builder Calling SDK using NuGet installer

Chapter 6 ■ Skype Calling Bot

127

•	 Alternatively, you can also run the following command in the
NuGet package console:

Install-Package Microsoft.Bot.Builder.Calling -Version 3.0.4

•	 The default template provides a controller that is used for
text conversation, which we have been using in the previous
examples. The Skype Calling controller has a different workflow.
To build a Skype calling bot, we should create a controller that
can accept incoming calls and call back. For this purpose, let
us add a new controller to the ContosoIVR project under the
Controllers folder and call it CallingController. Although
both MessageController and CallingController extend from
the same base class ApiController, the lifecycle of the calling
controller is different from that of a message controller, as the
message controller responds to the post messages from the user
while the calling controller is controlled by a series of events.
Copy the following contents into the CallingController:

[BotAuthentication]
[RoutePrefix("api/calling")]
public class CallingController : ApiController
{
 public CallingController() : base()
 {
 CallingConversation.RegisterCallingBot(callingBotService

=> new IVRBot(callingBotService));
 }

 [Route("callback")]
 public async Task<HttpResponseMessage>

ProcessCallingEventAsync()
 {
 return await CallingConversation.SendAsync(this.Request,

CallRequestType.CallingEvent);
 }

 [Route("call")]
 public async Task<HttpResponseMessage>

ProcessIncomingCallAsync()
 {
 return await CallingConversation.SendAsync(this.Request,

CallRequestType.IncomingCall);
 }
}

Chapter 6 ■ Skype Calling Bot

128

Add the following using statements to the CallingController to refer the required
libraries:

using Microsoft.Bot.Builder.Calling;
using Microsoft.Bot.Connector;

A few important things to notice in the preceding CallingController are the Class
decoration and attributes. The route prefix attribute allows you to define a route to reach
your bot’s callable endpoint, in this case api/calling. This is a very important step,
as the route defined here is also used for debugging by enabling a few settings at the
Developer Portal, which we will learn later. Hence, if there is change in the route, the bot’s
registration should be updated accordingly.

The CallingConversation class is at the root of the series of events. It allows you
to register a service that can handle the events that will be raised during a Skype call
conversation. In this example, we are using a class called IVRBot, which hosts our event
handlers. If the calling bot is not registered, the application would compile successfully
but you would not be able to receive any calls.

The following route handles the incoming call and invokes the
OnIncomingCallReceived event on our registered bot service (IVRBot, in this case):

 [Route("call")]
 public async Task<HttpResponseMessage> ProcessIncomingCallAsync()
 {
 return await CallingConversation.SendAsync(this.Request,

CallRequestType.IncomingCall);
}

The following callback event is a process for any subsequent callbacks from the
user. Depending on the state of the conversation, the appropriate event handler on the
calling bot service is invoked.

 [Route("callback")]
 public async Task<HttpResponseMessage> ProcessCallingEventAsync()
 {
 return await CallingConversation.SendAsync(this.Request,

CallRequestType.CallingEvent);
 }

The following code shows the skeleton of the IVRBot service that registers the event
handlers for our callable bot:

/// <summary>
/// IVR Bot class
/// </summary>
/// <seealso cref="System.IDisposable" />
/// <seealso cref="Microsoft.Bot.Builder.Calling.ICallingBot" />
public class IVRBot : IDisposable, ICallingBot
{

Chapter 6 ■ Skype Calling Bot

129

/// <summary>
 /// Initializes a new instance of the <see cref="IVRBot"/> class.
 /// </summary>
 /// <param name="callingBotService">The calling bot service.</param>
 public IVRBot(ICallingBotService callingBotService)
 {
 if (callingBotService == null)
 {
 throw new ArgumentNullException(nameof(callingBotService));
 }

 this.CallingBotService = callingBotService;

 // Registering Call events
 this.CallingBotService.OnIncomingCallReceived +=

OnIncomingCallReceived;
 this.CallingBotService.OnPlayPromptCompleted +=

OnPlayPromptCompleted;
 this.CallingBotService.OnRecordCompleted +=

OnRecordCompletedAsync;
 this.CallingBotService.OnRecognizeCompleted +=

OnRecognizeCompleted;
 this.CallingBotService.OnHangupCompleted += OnHangupCompleted;
 }

 /// <summary>
 /// Gets the calling bot service.
 /// </summary>
 /// <value>
 /// The calling bot service.
 /// </value>
 public ICallingBotService CallingBotService
 {
 get; private set;
 }
}

The important piece of code you need to notice is the interface ICallingBot that is
implemented by the IVRBot. The root registration class CallingConversation expects an
object of a class that implements ICallingBot; hence, the interface:

namespace Microsoft.Bot.Builder.Calling
{
 //
 // Summary:
 // The calling bot interface.
 public interface ICallingBot
 {

Chapter 6 ■ Skype Calling Bot

130

 ICallingBotService CallingBotService { get; }
 }
}

ICallingBot hosts the instance of CallingBotService (as just shown), which
contains the events that are fired during a Skype call conversation. The interface
containing the events raised during a Skype call conversation is shown in Figure 6-3.

Sequence of Events
It is important to understand the sequence of the events when designing a free flow or
guided conversation in a Skype calling bot. Every action from the user is converted into
an HTTPS REST–based call to our endpoint, and the bot should reply with workable
actions like accepting the DTMF inputs or voice from the user. The list of actions sent to
the user to execute is called the workflow. If the bot fails to send a proper action to the
user, the call will be disconnected/dropped, which means there is no way the bot can
communicate back to the user. The Skype channel does not provide any details of the
caller, like Skype username or email ID; Skype only sends a unique identifier for each
participant in the conversation. The number of participants on the call can be more
than one (excluding the bot). The Skype channel respects the user’s privacy and security
guidelines by not exposing the Skype caller name or user information.

Figure 6-3. Events of calling bot interface

Chapter 6 ■ Skype Calling Bot

131

Figure 6-4 explains a typical scenario in a voice-based conversation with a bot.

Figure 6-4. Sequence of events in a callable bot application

Chapter 6 ■ Skype Calling Bot

132

Table 6-1 lists the critical events in a CallingBotService that should be handled by
the bot.

In addition to the preceding events, there are a few more design aspects that should
be considered before authoring a bot. Bots are stateless, but the bot conversations
should be state-ful; every action should be saved to provide a rich and personalized
conversation experience for the user. There are several ways to do this. You can save the
state to a temporary storage, like a dictionary, and push it to more persistent storage, like
DocumentDB, Azure Storage, or SQL Database. In this example, I’m using a dictionary,
which saves the user’s state and pushes the state to Azure table storage at the end of the
conversation. See here:

/// <summary>
/// The call state map

Table 6-1. CallingBotService Events

Event Description

OnIncomingCallReceived This event is raised when the bot receives a call. The
reply action could be answer/reject.

OnAnswerCompleted This event is raised when caller is acknowledged by the
answer action. This also means that the connection
is established for any further communication. The
bot should respond with an action or list of actions in
every call.

OnRejectCompleted This event is raised when bot rejects the call, and the
reject action is acknowledged by the user. In this case,
there is no need to respond with any workflow action.

OnPlayPromptCompleted This event is raised when a play prompt action is
completed. The arguments of this event contain the
outcome of the play prompt.

OnRecognizeCompleted This event is raised when bot gets the outcome of
a recognize option (like a DTMF response). The
arguments of this event contain the DTMF response
status and the actual outcome.

OnRecordCompleted This event is raised when the bot gets the outcome of
the record action. The arguments of this action contain
the content stream.

OnHangupCompleted This event is raised when bot gets the outcome of
the hangup action, and this also means that the
connection is no longer available.

OnWorkflowValidationFailed This event is raised when any workflow is failed by the
bot platform during validation.

Chapter 6 ■ Skype Calling Bot

133

/// </summary>
private IDictionary<string, CallState> callStateMap = new Dictionary<string,
CallState>();

Bot applications are multi-user environments. There could be multiple users
interacting with a bot at the same time; hence, there are multiple user states while the
application is running. To identify or differentiate between two user states, we should
have a unique identifier. The bot channel assigns a default identifier to each conversation
that can be used to isolate the user state. The value of the identifier is passed to every
event handler during the conversation and can be used to retrieve the previous state from
storage, like the language option chosen by the user, user preferences, or a chosen menu
option.

Having reviewed the core functionality of each event, let us now build our
Skype calling bot. As a first step, we should accept the call from the user and play a
welcome message, which can be done in the OnIncomingCallReceived event. Copy
the following code to the OnIncomingCallReceived event handler. As explained earlier,
incomingCallEvent.IncomingCall.Id is the unique identifier for the user.

this.callStateMap[incomingCallEvent.IncomingCall.Id] = new
CallState(incomingCallEvent.IncomingCall.Participants);
 telemetryClient.TrackTrace($"IncomingCallReceived -

{incomingCallEvent.IncomingCall.Id}");
 incomingCallEvent.ResultingWorkflow.Actions = new List<ActionBase>
 {
 new Answer { OperationId = Guid.NewGuid().ToString() },
 GetPromptForText(IVROptions.WelcomeMessage)
 };
 return Task.FromResult(true);

The method GetPromptForText converts any given text to an audio prompt. The bot
calling service provides the text-to-speech conversion out of the box. You also have the
option to customize the voiceover, like the gender of the speaker and culture. You can
also play a recorded audio instead of text-to-speech. The Prompt class provides various
configurable options, like emphasize any given word, customize pronunciation, or
configure a delay between the speech.

private PlayPrompt GetPromptForText(string text)
 {
 var prompt = new Prompt { Value = text, Voice = VoiceGender.

Female };
 return new PlayPrompt { OperationId = Guid.NewGuid().ToString(),

Prompts = new List<Prompt> { prompt } };
 }

Chapter 6 ■ Skype Calling Bot

134

Figure 6-5 shows the options for configuring the prompts played to the user.

Once the prompt is played to the user, the bot channel invokes the next event:
OnPlayPromptCompleted.

 ■ Note you can also register the OnAnswerCompletedEvent. this event is helpful when
you want to establish a connection to the persistent storage and load the previous state. in
this case, i’m using the OnPlayPromptCompletedEvent to send a recognize workflow action
to the user.

In this method, you can set up the next workflow action for the user; for example,
choosing from a list of options.

private Task OnPlayPromptCompleted(PlayPromptOutcomeEvent
playPromptOutcomeEvent)
 {
 // Add Choices for the caller
 telemetryClient.TrackTrace($"PlayPromptCompleted -

{playPromptOutcomeEvent.ConversationResult.Id}");
 Recognize recognize = SetupInitialMenu();
 playPromptOutcomeEvent.ResultingWorkflow.Actions = new

List<ActionBase> { recognize };
 return Task.FromResult(true);
 }

The recognize action lets the user choose an option from the list of key–value pairs.
Once the key matches the user’s input, the value is sent as an argument to the next event
handler. The following code plays the prompt “If your complaint is regarding Mobile, press
1, for TV, press 2, for Refrigerator, press 3” to the user and waits for user’s input until the
timeout value assigned to the property InitialSilenceTimeoutInSeconds runs out.

Figure 6-5. Properties of Prompt class

Chapter 6 ■ Skype Calling Bot

135

private Recognize SetupInitialMenu()
 {
 var callerChoices = new List<RecognitionOption>()
 {
 new RecognitionOption() { Name = "1", DtmfVariation = '1' },
 new RecognitionOption() { Name = "2", DtmfVariation = '2'},
 new RecognitionOption() { Name = "3", DtmfVariation = '3'},
 new RecognitionOption() { Name = "#", DtmfVariation = '#'}

// for navigating back
 };

 // create recognize action for caller
 var recognize = new Recognize
 {
 OperationId = Guid.NewGuid().ToString(),
 PlayPrompt = GetPromptForText(IVROptions.MainMenuPrompt),
 BargeInAllowed = true,
 InitialSilenceTimeoutInSeconds = 10,
 Choices = callerChoices
 };
 return recognize;
 }

 ■ Note GetPromptForText is used throughout the example; it converts any given text
into a voice prompt. all the text messages are stored as constants in a static class called
IVROptions.

Notice that the voice prompt has the exact same number of options as in our
recognizable options. If the options are not in sync with the prompt played, the outcome
will be a failure, or you might end up taking a wrong action. The option BargeInAllowed
is set to true to allow users to select an option before the prompt completes. If you intend
to capture a sequence of numbers from the user, like an Order ID or phone number,
you can use the CollectDigits property in the recognize class. Remember: You can
either ask the user to enter a single digit as input or a sequence of digits; you cannot
use both. Every recognize action is assigned a unique operation Id, which can be used
to identify or correlate the outcome during the validation and response event. The bot
calling service allows you to send multiple actions to the user. The OperationId will also
be helpful when identifying an action in the response body when multiple actions are
specified.

In response to the above workflow action, the user should select a number from the
dial pad, which is available in the list of recognizable options. Once the user makes a
selection, an OnRecognizeCompleted event is raised. The outcome of the event could be
success or failure. In case of failure, you can either replay the previous prompt to the user

Chapter 6 ■ Skype Calling Bot

136

and ask them to retry or prompt an error message and hang up. In this case, I’m playing
an unsupported option prompt and replaying the initial menu:

private Task OnRecognizeCompleted(RecognizeOutcomeEvent
recognizeOutcomeEvent)
 {
 if (recognizeOutcomeEvent.RecognizeOutcome.Outcome != Outcome.

Success)
 {
 telemetryClient.TrackTrace($"RecognizeFailed -

{recognizeOutcomeEvent.ConversationResult.Id}");
 var unsupported = GetPromptForText(IVROptions.

OptionMenuNotSupportedMessage);
 var recognize = SetupInitialMenu();
 recognizeOutcomeEvent.ResultingWorkflow.Actions = new

List<ActionBase> { unsupported, recognize };
 return Task.FromResult(true);
 }

// outcome success
telemetryClient.TrackTrace($"RecognizeCompleted - {recognizeOutcomeEvent.
ConversationResult.Id}");
 var prompt = GetPromptForText(IVROptions.RecordMessage);
 var record = new Record
 {
 OperationId = Guid.NewGuid().ToString(),
 PlayPrompt = prompt,
 MaxDurationInSeconds = 60,
 InitialSilenceTimeoutInSeconds = 5,
 MaxSilenceTimeoutInSeconds = 2,
 RecordingFormat = RecordingFormat.Wav,
 PlayBeep = true,
 StopTones = new List<char> { '#' }
 };
 this.callStateMap[recognizeOutcomeEvent.ConversationResult.

Id].ChosenMenuOption = recognizeOutcomeEvent.RecognizeOutcome.
ChoiceOutcome.ChoiceName.ToString();

 this.callStateMap[recognizeOutcomeEvent.ConversationResult.Id].
Id = recognizeOutcomeEvent.ConversationResult.Id;

 recognizeOutcomeEvent.ResultingWorkflow.Actions = new
List<ActionBase> { record };

 return Task.FromResult(true);
 }

In the event of success, the record workflow is set up for the user. The user is
asked to voice his message, which will be captured by the bot. According to the above
configuration, the maximum possible duration of a message is 60 seconds, and the
user has 5 seconds after the play beep to start recording or else it will result in a

Chapter 6 ■ Skype Calling Bot

137

timeout. The user can press the # key to end the recording; you can use any other
key as an indicator to end the recording, but the # key is the recommended and
conventional approach. The recording format can be set to WAV, MP3, or WMA. As
part of this event handler, I’m also capturing the user’s choice so that I can use it in the
next stages if required.

 ■ Note Since this is sample code, i’m using an in-memory dictionary to store the state.
this is not recommended in a production scenario because you might lose state if the
application crashes. you must design it to sync the state to a persistent store more often.

The user now records his message after the beep and presses # on the dial pad to
end the recording. As a result, an event OnRecordCompletedAsync is raised. The event’s
arguments contain the recorded voice in the form of Stream, which can be saved to any
persistent storage like Azure blob storage. You can extend the conversation to any extent
in this way and update the state as the conversation progresses; to end the conversation
at any point you should raise a Hangup action as shown here:

private async Task<bool> OnRecordCompletedAsync(RecordOutcomeEvent
recordOutcomeEvent)
 {
 telemetryClient.TrackTrace($"RecordCompleted -

{recordOutcomeEvent.ConversationResult.Id}");
 recordOutcomeEvent.ResultingWorkflow.Actions = new List<ActionBase>
 {
 GetPromptForText(IVROptions.Ending),
 new Hangup { OperationId = Guid.NewGuid().ToString() }
 };

 // Message from User as stream of bytes format
 var recordedContent = recordOutcomeEvent.RecordedContent.Result;
 this.callStateMap[recordOutcomeEvent.ConversationResult.Id].

RecordedContent = recordedContent;

 // save call state
 var azureStorgeContext = new AzureStorageContext();
 await azureStorgeContext.SaveCallStateAsync(this.

callStateMap[recordOutcomeEvent.ConversationResult.Id]);

 recordOutcomeEvent.ResultingWorkflow.Links = null;
 this.callStateMap.Remove(recordOutcomeEvent.ConversationResult.Id);
 return await Task.FromResult(true);
 }

In this example, the recorded content is saved to Azure blob storage, and the call
state along with the blob’s URL are saved to Azure table storage. Unlike web or mobile
applications, bot speech conversations cannot be reinitiated unless designed to do so;

Chapter 6 ■ Skype Calling Bot

138

you must ensure during your design phase that you are allowing the user to retry in case
of a failed outcome using the event arguments. See here:

if (recordOutcomeEvent.RecordOutcome.Outcome != Outcome.Success)
 {
 // write code to Hangup or Ask user to repeat
 return await Task.FromResult(false);
 }

The following event handler is invoked after the call is disconnected. This should be
the point where you dispose of any open connections to resources like storage or save any
pending state.

private Task OnHangupCompleted(HangupOutcomeEvent hangupOutcomeEvent)
 {
 telemetryClient.TrackTrace($"HangupCompleted -

{hangupOutcomeEvent.ConversationResult.Id}");
 hangupOutcomeEvent.ResultingWorkflow = null;
 return Task.FromResult(true);
 }

And, finally, you unregister the event handlers in the Dispose method:

public void Dispose()
 {
 if (CallingBotService != null)
 {
 CallingBotService.OnIncomingCallReceived

-= OnIncomingCallReceived;
 CallingBotService.OnPlayPromptCompleted

-= OnPlayPromptCompleted;
 CallingBotService.OnRecordCompleted

-= OnRecordCompletedAsync;
 CallingBotService.OnRecognizeCompleted

-= OnRecognizeCompleted;
 CallingBotService.OnHangupCompleted -= OnHangupCompleted;
 }
 }

The other pieces of the code, like logging events to Application Insights and Azure
blob/table storage, follow the best practices in application design. You can download
the code from GitHub to understand how telemetry works. Now that we have a fully
functional Skype calling bot, let us learn how to debug and test it.

Chapter 6 ■ Skype Calling Bot

139

Debugging Skype Calling Locally Using Ngrok
When we developed chat-based bots in previous chapters, we learned how to debug
using Bot Emulator. The same approach isn’t possible with Skype calling bots because
calling is only available on the Skype channel, which means the only way you can test
the bot is by calling from Skype (besides the Direct Line API). Debugging your code on
the development machine is an important step, as it is critical to know how your user
experiences the workflow and how well your bot can capture the user’s voice. It creates a
serious hit on the branding of your bot if anything goes wrong after it is published. Direct
Line API is a complex approach to test calling bots, but there is a simple yet convincing
method of debugging a Skype calling bot that does not involve Direct Line API. You can
call from your Skype application on mobile/PC through to your local PC’s Visual Studio
instance using Ngrok. Ngrok is a tiny executable that can be used to create an HTTPS or
HTTP (or SSH) tunnel to any port on your localhost, which means any calls on a public
internet-facing endpoint can be routed to the local port by running Ngrok on your local
machine. Let us learn how to debug a Skype calling bot. You can download the Ngrok
executable from https://ngrok.com/.

Follow these steps to set up debugging for a Skype calling bot in Visual Studio:

 1. Register the bot at the Bot Developer Portal: https://dev.
botframework.com.

 2. Unzip Ngrok to any folder on your local PC and run the
following command:

ngrok.exe http 3979 -host-header="localhost:3979"

(Assuming you’re running the application on port 3979)

 3. Ngrok should show up online and provide a forwarding IP
address mapping on HTTP/HTTPS endpoints, as shown in
Figure 6-6.

Figure 6-6. Ngrok TunnelCopy the HTTPS endpoint (https://c5a82e95.ngrok.io) in
this case

https://ngrok.com/
https://dev.botframework.com/
https://dev.botframework.com/
https://c5a82e95.ngrok.io/

Chapter 6 ■ Skype Calling Bot

140

 4. In the Bot Developer Portal for your bot, click on the “Skype
edit” option on the Skype channel and enable the options
shown in Figure 6-7.

 5. Configure the Webhook endpoint as shown in Figure 6-8.

 6. https://{ngrokendpoint}}/api/calling/call (ensure
HTTPS endpoint is used). For example,

 7. Update the CallbackUrl endpoint on the web.config with the
ngrok endpoint, as shown below.

<add key="Microsoft.Bot.Builder.Calling.CallbackUrl"
value="https://c5a82e95.ngrok.io/api/calling/callback" />

Remember that the call back on the Developer Portal ends with call, and the call
back on the bot’s web.config ends with callback. That’s all you need to set up debugging.
You can now press F5 in Visual Studio to configure break points and debug your Skype
bot. Before you do any of that, ensure you have added the bot to your Skype contacts; this
can be done from the Bot Developer Portal. After the contact is added, you should also
see the calling option enabled on Skype.

 ■ Note it takes few minutes for the configuration to work.

Figure 6-7. Enabling Skype calling

Figure 6-8. Webhook configuration for debugging on a local development environment

Chapter 6 ■ Skype Calling Bot

141

When you make a call, the Skype Bot channel receives the call and forwards it to the
webhook. The webhook running our machine forwards the call to the application running
on our localhost, and that’s how we get to debug our application. Figure 6-9 shows the
series of HTTPS calls made on the webhook that are forwarded to Visual Studio.

Figure 6-10 shows the breakpoint hit when the first request is made by the Skype caller.

Speech-to-Text Using Bing Speech API
Skype calling is an amazing feature. It takes very little code to set up a calling bot that
allows your callers to record their voice in any language or culture from any type of
device. But in most of the cases, a recorded voice is not useful as-is. If you want to
perform any analysis—like s search operation, language conversion, or to find out the
speaker’s intent by applying text analytics—it should converted to text format. In its plain
form, the audio file should be downloaded and played back anytime you want to analyze.
Speech-to-text conversion was not something achievable with a few lines of code before
Microsoft launched Cognitive Services. With Cognitive Services, you just need an API

Figure 6-9. HTTP requests for Skype calling with Ngrok configuration

Figure 6-10. Debugging Skype calling bots using Ngrok configuration

Chapter 6 ■ Skype Calling Bot

142

key and a few lines of code to extract text from any type of audio file. In this section, we
will learn to extend our Contoso IVR bot by converting the audio recording to text and
building a simple Power BI dashboard that shows trends in customer complaints.

The Bing Speech API is one of the many services under Microsoft Cognitive Services
with which you can build smart applications with capabilities like speech recognition
and speech-to-text from an audio stream in real-time or from an audio file. The Bing
Speech API also helps you build applications that can talk back to your users using text-
to-speech—this is an out-of-the-box feature in Microsoft Bot framework. The Bing Speech
API can be consumed using the REST API or C# SDK; in this example we will use the C#
SDK. The API can also be used when building bots with Node.js.

Bing Speech API’s billing is calculated in terms of transactions per month; with each
pricing tier there is a limit on the number of calls per second (Figure 6-11).

Figure 6-11. Bing Speech API pricing options

Chapter 6 ■ Skype Calling Bot

143

To get started we need to obtain an API key, which you can get by creating a Bing
Speech API account in the Azure Subscription by navigating to https://ms.portal.
azure.com/#create/Microsoft.CognitiveServicesBingSpeech. See Figure 6-12.

Figure 6-12. Azure portal blade showing Bing Speech API account creation

https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesBingSpeech
https://ms.portal.azure.com/#create/Microsoft.CognitiveServicesBingSpeech

Chapter 6 ■ Skype Calling Bot

144

You can also get a 15-day trial key by adding Bing Speech API (Figure 6-13) to your
subscription here: https://azure.microsoft.com/en-us/try/cognitive-services/
my-apis/.

Figure 6-13. Bing Speech API keys

In our example, we will use the Microsoft.ProjectOxford.SpeechRecognition
NuGet package to interact with the Bing Speech API (Figure 6-14). Right-click on the
references and add the following packages to the project.

Figure 6-14. Bing Speech API NuGet packages

Add the following code to the OnRecordCompletedAsync event handler after the
recorded content is available:

BingSpeech bs = new BingSpeech(
 async t => {
 // save call state
 this.callStateMap[conversationId].SpeechToTextPhrase = t;
 await azureStorgeContext.SaveCallStateAsync(this.

callStateMap[recordOutcomeEvent.ConversationResult.Id]);
 this.callStateMap.Remove(conversationId);
 },
 t => telemetryClient.TrackTrace("Bing Speech to Text failed"));
 bs.CreateDataRecoClient();
 bs.SendAudioHelper(recordedContent);

BingSpeech is a custom class. The constructor of BingSpeech accepts two call
backs, one for success and one for failure, which will be invoked appropriately after the
speech-to-text conversion. To convert speech to text, we should create a connection to
the Bing Speech API (https://api.cognitive.microsoft.com/sts/v1.0) and subscribe

https://azure.microsoft.com/en-us/try/cognitive-services/my-apis/
https://azure.microsoft.com/en-us/try/cognitive-services/my-apis/
https://api.cognitive.microsoft.com/sts/v1.0

Chapter 6 ■ Skype Calling Bot

145

to the events that are invoked by SDK. The following functions take care of creating the
connection by reading the API key from the web.config:

public void CreateDataRecoClient()
 {
 this.SubscriptionKey = ConfigurationManager.AppSettings["Microso

ftSpeechApiKey"].ToString();
 this.dataClient = SpeechRecognitionServiceFactory.CreateDataClient(
 SpeechRecognitionMode.ShortPhrase,
 this.DefaultLocale,// for example: ‘en-us’
 this.SubscriptionKey);
 this.dataClient.OnResponseReceived += this.

OnResponseReceivedHandler;
 this.dataClient.OnConversationError += this.OnConversationError;
 }

Speech Recognition mode supports two options:

•	 Short Phrase mode: Supports an utterance up to 15 seconds long

•	 Long Diction mode: Supports an utterance up to 2 minutes long

The response from the API can be subscribed to using two types of events:
OnResponseReceived and OnPartialResponseReceived. The first event is raised
when the API finishes the speech-to-text conversion completely; the second event,
OnPartialResponseReceived, is raised when some part of the conversion is available.
OnPartialResponseReceived is more suitable for long dictations. For long dictations,
OnResponseReceived is raised multiple times based on the sentence pauses detected by
the server. The event OnConversationError is invoked when the server detects an error
during conversion.

The following method sends the audio stream to the server:

public void SendAudioHelper(Stream recordedStream)
 {

 int bytesRead = 0;
 byte[] buffer = new byte[1024];
 try
 {
 do
 {
 // Get more Audio data to send into byte buffer.
 bytesRead = recordedStream.Read(buffer, 0, buffer.Length);

 // Send audio data to service.
 this.dataClient.SendAudio(buffer, bytesRead);
 }
 while (bytesRead > 0);
 }

Chapter 6 ■ Skype Calling Bot

146

 catch (Exception ex)
 {
 Debug.WriteLine("Exception ------------ " + ex.Message);
 }
 finally
 {
 // We are done sending audio. Final recognition results will

arrive in OnResponseReceived event call.
 this.dataClient.EndAudio();
 }
 }

The following method is invoked when a response is available, which in turn calls the
registered callback:

private void OnResponseReceivedHandler(object sender,
SpeechResponseEventArgs e)
 {
 StringBuilder phraseResponse = new StringBuilder();
 for (int i = 0; i < e.PhraseResponse.Results.Length; i++)
 {
 phraseResponse.AppendLine(string.Format("{0} ",

e.PhraseResponse.Results[i].DisplayText));
 }
 this._callback.Invoke(phraseResponse.ToString());
 }

PhraseResponse contains a list of phrases with a confidence level assigned to each
phrase, as shown in Figure 6-15. Confidence level helps in making a guided decision on
the converted text.

Figure 6-15. Response from Bing Speech-to-Text API request

The following piece of code is invoked, with the text converted from the speech:

 async t =>
{
// save call state
this.callStateMap[conversationId].SpeechToTextPhrase = t;

Chapter 6 ■ Skype Calling Bot

147

await azureStorgeContext.SaveCallStateAsync(this.
callStateMap[recordOutcomeEvent.ConversationResult.Id]);
this.callStateMap.Remove(conversationId);
}

The application stores the converted text in an Azure Storage account; the storage
account connection string is available in the web.config. Refer to https://docs.
microsoft.com/en-us/azure/storage/storage-create-storage-account to create
a storage account. You can see the speech-to-text converted data when connected to
the Azure Storage account configured in the web.config (you can connect using Visual
Studio Cloud Explorer or download Azure Storage Explorer). Figure 6-16 shows a table
with text extracted from speech.

Figure 6-16. Visual Studio Azure Storage Explorer

What if you want to play back the text to the user? In a few cases, you might like to
have the user confirm if the message has been correctly converted to text. This too is
possible by creating a proactive message and sending it through by direct conversation.
Adding the following code after the STT response is received does the job.

var url = "https://skype.botframework.com";

 var userAccount = new ChannelAccount(caller.Identity, caller.DisplayName);

 var botAccount = new ChannelAccount(callee.Identity, callee.DisplayName);

// authentication
 var account = new MicrosoftAppCredentials(ConfigurationManager.
AppSettings["MicrosoftAppId"].ToString(),
 ConfigurationManager.AppSettings["MicrosoftAppPassword"].ToString());
var connector = new ConnectorClient(new Uri(url), account);

 MicrosoftAppCredentials.TrustServiceUrl(url, DateTime.Now.AddDays(7));

https://docs.microsoft.com/en-us/azure/storage/storage-create-storage-account
https://docs.microsoft.com/en-us/azure/storage/storage-create-storage-account

Chapter 6 ■ Skype Calling Bot

148

 var conversation = await connector.Conversations.CreateDirectConversation
Async(botAccount, userAccount);
 IMessageActivity message = Activity.CreateMessageActivity();
message.From = botAccount;
message.Recipient = userAccount;
 message.Conversation = new ConversationAccount(id: conversation.Id);
 message.Text = string.Format("The following complaint has been registered
thanks for calling: {0}, Complaint Id: {1}", t, conversationId);
message.Locale = "en-us";
 await connector.Conversations.SendToConversationAsync((Activity)message);

The above code creates a direct connection to the user by using the participant IDs
sent by Bot Connector. The message back and the service URL should be signed before
sending the message to the connector. This is done to let our bot account trust the
service URL, and so the outgoing call is authenticated. Remember: we are not sending
the message directly to the user; instead, it is sent to the Bot Connector, which then
sends the message to the user, as shown in Figure 6-17.

Figure 6-17. Successful conversation with Skype calling bot from Skype on Windows 10

Chapter 6 ■ Skype Calling Bot

149

As per the current design, our bot ends the call before the preceding message is
passed to the user. Instead, you can wait for the user to confirm or edit the complaint
before you hang up. The complaint ID is a unique identifier for the complaint that the
caller can use to reply back.

The information is stored in the Azure Storage account and can be used for business
analytics. The sample Power BI report in Figure 6-18 (also available in the sample code)
helps you analyze the trends and complaints by category and search through the text that
is captured in the storage account.

Figure 6-18. Power BI dashboard with live status of calls received by Contoso in various
categories

Azure gives you a plethora of options with which to channel your data into the right
medium to bring in more intelligence, which can then help drive your business in a better
and more profitable way. It could be as simple as creating a Power BI report, making
your data searchable using Azure Search, maintaining better customer relationships by
sending notifications using Azure Mobile Push Notifications, and so on. The preceding
example can be extended by sending the converted text to LUIS for intent recognition.
With Bing Speech and bots, you can build intelligent bots that capture feedback in a
sophisticated fashion and make your business reachable by a larger audience.

Summary
Microsoft Bot framework provides a Skype Calling SDK that can be used to build bots
with calling features. The Skype Calling SDK allows developers to design bot APIs with
calling and voice support, DTMF input, intent recognition, and text input by using Bot
framework–supported languages like C# and Node.js. Skype calling is available only on
the Skype channel and is an opt-in feature. The Skype calling feature should be enabled
from the Bot Developer Portal. The Skype Calling API is available as a REST API and

Chapter 6 ■ Skype Calling Bot

150

NuGet package called Microsoft.Bot.Builder.Calling. The Skype Calling SDK contains
built-in support for converting text to speech or playing any audio file to the user.

The response from the user can be as simple as selecting a menu option by using the
dial pad or their voice. Microsoft Cognitive Services provides an intelligent
speech-recognition API called Bing Speech API that developers can use to build bots that
can convert speech to text and text to speech as well as perform voice recognition. The
Microsoft.ProjectOxford.SpeechRecognition NuGet package is used to interact with
Bing Speech API; it can also be interacted with via REST API. Bing Speech API’s billing is
calculated in terms of transactions per month.

It is important to understand the sequence of the events in order to design a free flow
or guided conversation in a Skype calling bot. Every action from the user is converted into
an HTTPS REST–based call to our bot endpoint, and the bot should reply with workable
actions, like accepting DTMF inputs or voice from the user. The list of actions sent to
the user to execute is called the workflow. If the bot fails to send a workflow, the call is
dropped. The call can be intentionally dropped by sending the hang-up workflow.

You can debug Skype calling bots by initiating a call from your Skype application on
mobile/PC through to your local PC’s Visual Studio instance using the ngrok executable.
Bing Speech API supports two types of voice-recognition modes: short phrase and long
dictation. Short Phrase supports an utterance up to 15 seconds long while long dictation
mode supports up to 2 minutes. The extracted PhraseResponse contains a list of phrases
with a confidence level assigned to each phrase—High, Normal, and Low. The extracted
text from speech can be sent back to the user in text form by using proactive messaging.

151© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_7

CHAPTER 7

Storing State

State management is one of the more complex subjects in software computing related to
services on the internet. The internet uses HTTP protocol by default, which is stateless
in nature. It means that a request to one URI on the internet using HTTP protocol is
different than a subsequent request. The changes in the first request are not reflected in
next request. All the requests are independent of each other, and subsequent requests do
not have knowledge about the previous requests. This is the nature of internet protocols;
however, to write rich applications and services that can remember what the previous
request did, multiple frameworks, patterns, and platforms have been developed. The
purpose of these frameworks and patterns is to provide state management either on the
client side or the server side—or on both—and thus save a developer from undergoing
the pain of writing their own state-management routines.

There are two types of services implemented on the internet—stateful and stateless.
Stateful refers to a programming paradigm in which the services actively hold the

values of variables between multiple requests. The values stored in the variables are
available in subsequent requests.

Stateless is also a programming paradigm in which the services do not hold and
manage values in variables between multiple requests. All necessary values needed to
execute the services are sent by the client along with every request.

There are pros and cons of both stateful and stateless services. However, stateless
services have an edge over stateful services since they are highly scalable and consume
fewer resources. They are scalable because they do not need to take care of recreating the
current state of a request in times of disaster; they can simply be moved and deployed to
another server without any dependency on the current state. Also, not managing a state
means a lesser dependence on volatile memory.

To overcome these challenges, stateful services have an option to store the state in a
separate process or server instead of in-memory. This helps the service to move around
on servers without losing the current state, and it can also connect to a previously stored
state easily. However, this arrangement has its own cost. Generally, managing state in
different processes or servers has performance penalties that are not always desirable.

http://dx.doi.org/10.1007/978-1-4842-3312-2_7

Chapter 7 ■ Storing State

152

MS Bot framework provides a centralized mechanism to manage state for bots. By
default, bots do not have to worry about managing their state. Bots can be implemented
as stateless services, and Bot framework will ensure that whatever state is needed by a bot
is available to it anytime and every time. This chapter focuses on state management in
bots and will discuss in detail the following topics:

•	 Types of state management available in MS Bot framework

•	 Introduce and interact with state service

•	 State management in bots with dialogs

•	 Storing custom state information

•	 Storing state in Cosmos DB (formerly known as DocumentDB)
and table storage

Stores for Bot State
The MS Bot framework provides three stores that you can use to store state, as follows:

•	 User data state

•	 Conversation data state

•	 Private conversation state

It is to be noted that every channel provides a separate state store. There could be a
User data state specific to the Facebook channel and another related to the Slack or Skype
channels.

The User data store should be used to store user-specific data on a channel. Data that
relates to a user, like name, age, email, and so on should be stored in this data store. This
data will remain the same irrespective of the number of conversations the user has with a
bot. PII data can be stored in the User data store.

The Conversation data store is used to store data related to a conversation on a
channel but is not specific to any user. This data is visible to all parties involved in a
conversation. User-specific PII data should not be stored in this store.

The Private Conversation data store should be used to store user-specific data on a
channel specific to a conversation. PII-related user data can be stored in this data store.

It is important to note that state data, no matter the store, is available for the lifetime
of a session. If the user closes the client application, like Slack or Facebook, the session
is torn down and so is the state for that session. If the same user comes back on the same
channel, he/she will not find the previous state available.

Another important point to remember is that both the Conversation and the Private
Conversation data stores are available for the lifetime of a conversation within a session.
If the user closes the conversation, the state in both stores is lost. However, data stored in
the User store is not dependent on any specific conversation. User data continues to be
available even if the user switches or creates a new conversation. All stores lose data when
the session expires or is closed.

Chapter 7 ■ Storing State

153

All three stores can store up to 32 KB of data individually for a channel. The maximum
amount of data that you can store in each store for a user or conversation is 32 KB. For
example, you can store 32 KB of data for User A on channel ABC, 32 KB of data for User A in a
private conversation on channel ABC, and 32 KB of data for Conversation 1 on channel ABC.

Typically, you use the stores to save a user’s preferences so you can tailor the
conversation to them the next time you chat. For example, you can use this information
to alert them about a news article that might interest them or alert them when an item of
their interest is available again for buying. A hiking bot might want to save previous hike
information so it can suggest new hikes. It’s up to you how you use the stores.

State Service
The state stores are available to a bot as set of REST APIs. MS Bot framework makes it
easier to interact with state APIs with the StateClient object.

The REST API for the User data store is available at https://api.botframework.
com/v3/botstate/{channelId}/users/{userId}.

The REST API for the Conversation data store is available at https://api.
botframework.com/v3/botstate/{channelId}/conversations/{conversationId}.

The REST API for the Private Conversation data store is available at https://api.
botframework.com/v3/botstate/{channelId}/conversations/{conversationId}/
users/{userId}.

StateClient provides Get, Set, and Delete methods that encapsulate calls to these
REST APIs.

Figure 7-1 shows a snapshot of the getter properties available from the
StateClient object.

Figure 7-1. Getter properties available from StateClient object

https://api.botframework.com/v3/botstate/{channelId}/users/{userId
https://api.botframework.com/v3/botstate/{channelId}/users/{userId
https://api.botframework.com/v3/botstate/{channelId}/conversations/{conversationId
https://api.botframework.com/v3/botstate/{channelId}/conversations/{conversationId
https://api.botframework.com/v3/botstate/{channelId}/conversations/{conversationId}/users/{userId}
https://api.botframework.com/v3/botstate/{channelId}/conversations/{conversationId}/users/{userId}
https://api.botframework.com/v3/botstate/{channelId}/conversations/{conversationId}/users/{userId}

Chapter 7 ■ Storing State

154

Figure 7-2 shows a snapshot of the setter properties available from the
StateClient object.

Figure 7-3 shows a snapshot of delete properties that are available from the
StateClient object.

There are three variants for each API. There is a synchronous method, an
asynchronous method, and a method that adds custom HTTP headers before invoking
the REST API. Internally, the synchronous method calls the asynchronous method which
in turn calls the method that adds HTTP headers.

The bot saves state data by using one of the Set methods, and subsequent requests
can access the same using one of the Get methods.

Figure 7-2. Setter properties available from StateClient object

Figure 7-3. Delete properties available from StateClient object

Chapter 7 ■ Storing State

155

Storing and Retrieving State Using StateClient
Adding and retrieving state in a bot is quite simple. Follow these steps:

 1. Get an instance of the StateClient object from activity
object, which was introduced in Chapter 4. StateClient helps
in managing state. The GetStateClient method gets the
StateClient object:

StateClient sc = activity.GetStateClient();

 2. StateClient maintains an object BotState that implements
the IBotState interface. It is this object that helps in getting,
setting, and deleting state from the state store.

To get the User data state, the code shown next should be
used. Retrieval of User state needs channel ID and user ID
information, which are available from activity object:

BotData userData = sc.BotState.GetUserData(activity.ChannelId,
activity.From.Id);

To get the Conversation data state, the code shown next
should be used. Retrieval of Conversation state needs channel
ID and conversation ID information:

BotData conversationData = sc.BotState.
GetConversationData(activity.ChannelId, activity.Conversation.Id);

To get the Private Conversation state, the code shown next
should be used. Retrieval of this state needs channel ID,
conversation ID, and user ID information:

BotData privateConversationData = sc.BotState.GetPrivateConversa
tionData(activity.ChannelId, activity.Conversation.Id, activity.
From.Id);

 3. Get state value from state store by name. In this case,
properties named myUserString, myConversationString,
and myPrivateConversationString are queried from three
different state stores. It will return empty if these properties do
not exist in state stores.

myUserString = userData.GetProperty<string>("myUserString") ?? "";

myConversationString = userData.GetProperty<string>("myConversation
String") ?? "";

myPrivateConversationString = userData.GetProperty<string>("myPri
vateConversationString") ?? "";

http://dx.doi.org/10.1007/978-1-4842-3312-2_4

Chapter 7 ■ Storing State

156

 4. The next code checks if the property is empty. If it is empty,
then a new property is created in a BotState object and is
finally added to the User data store. This will ensure that
subsequent requests will get a valid property value instead of
returning empty.

To set the User data state, the code shown next should be
used. Information about channel ID and user ID along
with an updated BotState object should be provided while
updating the store.

if (myUserString == "")
{

userData.SetProperty<string>("myUserString", "userData: " +
activity.Text + " from user data \n\n");

sc.BotState.SetUserData(activity.ChannelId, activity.From.Id,
userData);

str.Append("userData: " + activity.Text + " from user data
\n\n");
 }
 else {
str.Append("userData: " + myUserString + " from user data
\n\n");
 }

To set the Conversation data state, the code shown next
should be used. Information about channel ID and
conversation ID along with an updated BotState object
should be provided while updating the store.

 if (myConversationString == "")
 {

userData.SetProperty<string>("myConversationString",
"conversationData: " + activity.Text + " from conversation
data \n\n");

sc.BotState.SetConversationData(activity.ChannelId, activity.
Conversation.Id, userData);

str.Append("conversationData: " + activity.Text + " from conversation
data \n\n");
 }

Chapter 7 ■ Storing State

157

 else {
 str.Append("conversationData: " +

myConversationString + " from conversation data
\n\n");

 }

To set the Private Conversation data state, the code shown
next should be used. Information about channel ID,
conversation ID, and user ID along with an updated BotState
object should be provided while updating the store.

 if (myPrivateConversationString == "")
 {
 userData.SetProperty<string>("myPrivateConversationString",
"privateConversationString: " + activity.Text + " from private
conversation data \n\n");
sc.BotState.SetPrivateConversationData(activity.ChannelId,
activity.Conversation.Id, activity.From.Id, userData);

str.Append("privateConversationString: " + activity.Text + " from
private conversation data \n\n");
 }
 else {
str.Append("privateConversationString: " +
myPrivateConversationString + " from private conversation data
\n\n")
 }

 5. Depending on the choice of state store or any of its
combinations, the values stored within a session are available
either across conversations or just within a conversation.

Chapter 7 ■ Storing State

158

Figure 7-4 shows the sample bot displaying stored values from all three types of stores.

Storing and Retrieving State with Dialogs
Adding and retrieving state in a bot that uses dialog is also quite simple if you follow
these steps:

 1. As discussed briefly in Chapter 2, dialogs are an abstraction
manifested as a C# class containing its own state and behavior
and implementing an IDialog interface. A conversation can
consist of multiple dialogs, and the framework maintains
them using a dialog context via a stack. The dialog stack is
stored in a state service provided by Bot Connector Service.
Create a new project using the Bot Application template in
Visual Studio, as shown in Figure 7-5.

Figure 7-4. Bot Emulator showing values from different stores in a bot application

http://dx.doi.org/10.1007/978-1-4842-3312-2_2

Chapter 7 ■ Storing State

159

 2. Add a new class through which a dialog can be implemented.
This example uses a class named StateSampleDialog. This
class should implement the IDialog<object> interface.
Necessary namespaces should be added to the class file for
name resolution. The entry point within a dialog is through
the StartAsync method. We will discuss dialogs in detail in
the next chapter, and readers should revisit this section for a
better understanding of state management in dialogs.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Threading.Tasks;
using Microsoft.Bot.Builder.Dialogs;
using Microsoft.Bot.Connector;

namespace DialogStateExample
{
 [Serializable]
 public class StateSampleDialog :IDialog<object>
 {
 public async Task StartAsync(IDialogContext context)

Figure 7-5. Select Bot Application template in Visual Studio for creating a new bot

Chapter 7 ■ Storing State

160

 {

 }
 }
}

 3. Dialogs should be serializable. MS Bot framework by default
sterilizes the state of all dialogs and stores in the Private
Conversation store before returning to the user. When a
subsequent request reaches the bot, the state is retrieved
from the state store and fills all public class variables with
previously stored values. Two public variables are declared
within the class:

public string userName;
public string cityName;

 4. A set of asynchronous functions are implemented to
demonstrate the default state management provided by
dialogs. This dialog starts a conversation by asking the name
of the user and their city. It saves both the name and city in
username and cityName variables declared earlier. StartAsync
is the starting function that wires up NameFromUserMethod,
which then wires up CityFromUserMethod. The last method,
GetCityFromUserMethod, displays the values entered by the
user as part of the conversation. The values are automatically
serialized and stored in the state store, then retrieved when
recreating the dialog.

public async Task StartAsync(IDialogContext context)
 {
 await context.PostAsync("Hi There!! Lets get started

!!");
 context.Wait(GetStarted);
 }

 public virtual async Task GetStarted(IDialogContext
context, IAwaitable<object> result)

 {
 var name = await result;

 await context.PostAsync("Please provide your name !!");
 context.Wait(NameFromUserMethod);
 }

 public virtual async Task NameFromUserMethod(IDialogContext
context, IAwaitable<IMessageActivity> result)

 {
 var incomingMessage = await result;

Chapter 7 ■ Storing State

161

 userName = incomingMessage.Text;

 await context.PostAsync("Please provide your City
name !!");

 context.Wait(CityFromUserMethod);
 }

 public virtual async Task CityFromUserMethod(IDialogContext
context, IAwaitable<IMessageActivity> result)

 {
 var incomingMessage = await result;
 cityName = incomingMessage.Text;

 await context.PostAsync($"Hello {userName} !! do you
want to know which city you entered ??");

 context.Wait(GetCityFromUserMethod);
 }

 public virtual async Task GetCityFromUserMethod(IDialogCo
ntext context, IAwaitable<IMessageActivity> result)

 {

 var answer = await result;

 await context.PostAsync($"Hello {userName} !! You
entered {cityName} ??");

 context.Wait(GetStarted);
 }

 5. Change the implementation of MessageController code.
Replace the next lines of code

ConnectorClient connector = new ConnectorClient(new Uri(activity.
ServiceUrl));
 // calculate something for us to return
 int length = (activity.Text ?? string.Empty).Length;

 // return our reply to the user
 Activity reply = activity.CreateReply($"You sent

{activity.Text} which was {length} characters");
 await connector.Conversations.

ReplyToActivityAsync(reply);

with the following:

await Conversation.SendAsync(activity, () => new
StateSampleDialog());

Chapter 7 ■ Storing State

162

 6. Whenever, a request comes to the bot, it is passed to
StateSampleDialog. Here, the dialog is resurrected from state
and continues executing from where it was serialized.

More Control over State with Dialogs
In the previous example, all class-level variables were stored in a state store irrespective
of their requirements. If there is a need to have finer control over the values stored in
the state stores, the dialog context provides access to all three bot stores. These can be
directly interacted with, and a bot can choose the values it wants to store in different types
of stores based on its needs.

This section will provide the steps to follow in order to create a bot with dialog that
controls all variables that are stored in state stores.

 1. Create a new project using the Bot Application template in
Visual Studio.

 2. Add a new class through which a dialog can be implemented.
This example uses a class named StateSampleDialog. This
class should implement the IDialog<object> interface.
Necessary namespaces should be added to the class file for
name resolution. The entrypoint within a dialog is through a
StartAsync method. We will discuss dialogs in more detail in
the next chapter, and readers should revisit this section for a
better understanding of state management in dialogs.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Threading.Tasks;
using Microsoft.Bot.Builder.Dialogs;
using Microsoft.Bot.Connector;

namespace DialogStateExample
{
 [Serializable]
 public class StateSampleDialog :IDialog<object>
 {
 public async Task StartAsync(IDialogContext context)
 {

 }
 }
}

 3. Dialogs should be serializable, as explained in the previous
section. It is to be noted that no class-level variables are
declared within this bot.

Chapter 7 ■ Storing State

163

 4. A set of asynchronous functions are implemented to
demonstrate the custom state management using the dialog
context. This dialog starts a conversation by asking the name
of the user and then their city. The name of the user is stored
in the User data store as the username property. This store is
available from the context object:

context.UserData.SetValue("username", name.Text);

The bot then asks the user’s city name. It saves the city name
in the Conversation data store as the cityname property, and it
also retrieves the username saved earlier in the User data store:

string userName = context.UserData.Get<string>("username");

context.ConversationData.SetValue("cityname", city.Text);

The bot then goes on to ask the user about his rating for
the current conversation. It saves this rating in the Private
Conversation data store as the rating property, and it also
retrieves the user name and city name saved earlier in the
User data and Conversation data stores respectively.

string userName = context.UserData.Get<string>("username");

string cityName = context.ConversationData.
Get<string>("cityname");

 context.PrivateConversationData.SetValue("rating", rating.
Text);

Finally, the bot asks the user to close the conversation, and as
a result it retrieves the username property from the User data
store, cityname property from the Conversation data store,
and rating from the Private Conversation data store and
displays them to the user.

The code for these functions is listed here:

 public async Task StartAsync(IDialogContext context)
 {
 await context.PostAsync("Hi There!! Lets get started

!!");
 context.Wait(GetStarted);
 }
public virtual async Task GetStarted(IDialogContext context,
IAwaitable<object> result)
 {
 var name = await result;

Chapter 7 ■ Storing State

164

 await context.PostAsync("Please provide your name !!");
 context.Wait(NameFromUserMethod);
 }

 public virtual async Task NameFromUserMethod(IDialogContext
context, IAwaitable<IMessageActivity> result)

 {
 var name = await result;

 context.UserData.SetValue("username", name.Text);

 await context.PostAsync("Please provide your City
name !!");

 context.Wait(CityFromUserMethod);
 }

 public virtual async Task CityFromUserMethod(IDialogContext
context, IAwaitable<IMessageActivity> result)

 {
 var city = await result;

 string userName = context.UserData.
Get<string>("username");

 context.ConversationData.SetValue("cityname", city.Text);

 await context.PostAsync($"Hello {userName} !! you
stay in {city.Text}..Provide a rating (1-10) for this
conversation");

 context.Wait(RatingFromUserMethod);
 }

 public virtual async Task RatingFromUserMethod(IDialogCon
text context, IAwaitable<IMessageActivity> result)

 {
 var rating = await result;

 string userName = context.UserData.
Get<string>("username");

 string cityName = context.ConversationData.
Get<string>("cityname");

 context.PrivateConversationData.SetValue("rating",
rating.Text);

 await context.PostAsync($"Hello {userName} !! Enter
'over' to know your details !!");

 context.Wait(closingConversation);
 }

Chapter 7 ■ Storing State

165

 public virtual async Task closingConversation(IDialogContext
context, IAwaitable<IMessageActivity> result)

 {
 var rating = await result;

 string userName = context.UserData.
Get<string>("username");

 string cityName = context.ConversationData.
Get<string>("cityname");

 string score = context.PrivateConversationData.
Get<string>("rating");

 await context.PostAsync($"Hello {userName} !! you stay
in {cityName}.. and you have rated this conversation
with a score of {score} .. Thank you!!");

 context.Wait(NameFromUserMethod);
 }

 5. Change the implementation of the MessageController code.
Replace the next lines of code

ConnectorClient connector = new ConnectorClient(new Uri(activity.
ServiceUrl));
 // calculate something for us to return
 int length = (activity.Text ?? string.Empty).

Length;

 // return our reply to the user
 Activity reply = activity.CreateReply($"You sent

{activity.Text} which was {length} characters");
 await connector.Conversations.

ReplyToActivityAsync(reply);

with the following:

await Conversation.SendAsync(activity, () => new
StateSampleDialog());

 6. Whenever a request comes to the bot, it is passed to
StateSampleDialog. Here, the dialog is resurrected from state
and continues executing from where it was serialized

Custom State Data Store
By default, MS Bot framework stores the state in cache using the CachingBotDataStore
object. There are use cases in which the bot would like to store state in DocumentDB or
Azure Tables to have more control over it. Bot framework is an extensible framework and
allows extensions for a custom state data store. By using a custom data store, the state

Chapter 7 ■ Storing State

166

is no longer written in cache but rather in the custom store as configured by the MS Bot
framework. In this chapter, two examples will be described, one using DocumentDB as
the state data store and the other using Table storage.

MS Bot framework provides two classes as part of the Bot Builder SDK:

 1. DocumentDBBotDataStore

 2. TableBotDataStore

Both the classes implement the IBotDataStore interface responsible for declaring
methods for reading, writing, and deleting data from the state store.

Cosmos DB will be used as one of the custom bot state stores, and so a small
overview on it is provided next. DocumentDB and Cosmos DB are used interchangeably
in this chapter. Any reference to DocumentDB can also be read as Cosmos DB.

Overview of Cosmos DB
Azure Cosmos DB is a fully managed, globally distributed, horizontally scalable in storage
and throughput, multi-model database service backed up by comprehensive SLAs.
Azure Cosmos DB is the next generation of Azure DocumentDB. Cosmos DB was built
from the ground up with global distribution and horizontal scale at its core—it offers
turn-key global distribution across any number of Azure regions by transparently scaling
and replicating your data wherever your users are. You can elastically scale throughput
and storage worldwide and pay only for the throughput and storage you need. Cosmos
DB guarantees single-digit millisecond latencies at the 99th percentile anywhere in the
world, offers multiple well-defined consistency models to fine-tune for performance,
and offers guaranteed high availability with multi-homing capabilities—all backed by
industry-leading service-level agreements (SLAs).

Cosmos DB is truly schema-agnostic; it automatically indexes all the data without
requiring you to deal with schema and index management. Cosmos DB is multi-
model—it natively supports document, key–value, graph, and columnar data models.
With Cosmos DB, you can access your data using the NoSQL APIs of your choice—
DocumentDB SQL (document), MongoDB (document), Azure Table Storage (key–
value), and Gremlin (graph) are all natively supported. Cosmos DB is a fully managed,
enterprise-ready, and trustworthy service. All your data is fully and transparently
encrypted and secure by default. Cosmos DB is ISO, FedRAMP, EU, HIPAA, and PCI
compliant as well.

Cosmos DB as Custom State Data Store
The high-level steps for using a custom state data store are as follows:

 1. Identify the data store. This example uses Cosmos DB as its
data source.

 2. Provision the data store if it does not already exist.

 3. Create or open a bot project using Bot Application template.

Chapter 7 ■ Storing State

167

 4. Add code to wire up and use Cosmos DB as the data store
provided by Bot Builder SDK.

 5. Write dialogs normally without any knowledge of location and
type of state store.

Here are the steps in more detail:

 1. In this example, Cosmos DB is used as the state store.

 2. As mentioned before, Cosmos DB is a managed Azure service.
To use Cosmos DB, having a valid Azure subscription is a
pre-requisite. Log in to Azure as a valid user and create a new
Cosmos DB service. Provide a name, select the appropriate
subscription, choose DocumentDB as the API type, and set
the resource group to provision a Cosmos DB database. This is
shown in Figure 7-6.

Figure 7-6. Creating Cosmos DB service on Azure

Chapter 7 ■ Storing State

168

Apart from URL, the primary authentication key should also
be noted down in order for client applications to connect to
Cosmos DB. The primary key is available from Keys blade,
as shown in Figure 7-8. Both URL and authentication key are
needed to successfully connect to Cosmos DB.

Figure 7-7. Noting down the document’s service endpoint

Figure 7-8. Taking note of Cosmos DB primary key used to connect to it from bot application

After Cosmos DB is provisioned, navigate to its Overview
blade and copy the service endpoint URL as shown in
Figure 7-7. Client applications can use this URL to connect to
this instance of Cosmos DB.

 3. This example will reuse the same solution created in the
previous section for managing state using dialog, but with
more control. The Bot template ensures that the necessary
assemblies related to Bot Builder and Connector SDKs are
already referenced by the project. If these are not available,
then they are downloaded and installed by NuGet.

Bot Builder SDK provides the DocumentDbBotDataStore
class, which helps in working with DocumentDB as a state
store. This class is part of the Microsoft.Bot.Builder.Azure
namespace. If this class is not available on your system,
it means that this version of Bot Builder Azure SDK is not
available and should be downloaded and installed.

Chapter 7 ■ Storing State

169

Navigate to Tools ➤ NuGet Package Manager ➤ Package
Manager Console and run this command:

Install-Package Microsoft.Bot.Builder.Azure

It is used for installing assemblies containing classes related
to Azure services, as shown in Figure 7-9. In this case,
version 3.2.1 is the version downloaded and installed for the
Microsoft.Bot.Builder.Azure assembly.

Figure 7-9. Opening Package Manager Console in Visual Studio

 4. Open the global.asax file and update it with the code within
the Application_Start function. DocumentDBBotDataStore
implements the IBotDataStore interface, providing necessary
functions to wire up data stores to the state store. MS Bot
framework utilizes Autofac Inversion of Control (IoC) to
create objects and services. By default, Bot framework uses
CachingBotdataStore as its data store, which should be
overridden with DocumentDbBotDataStore to store state data
in Cosmos DB rather than in the default cache. An instance
of ContainerBuilder is created (part of the Autofac library),
and an Azure module is registered with it, and Cosmos DB
is registered as the new state store. Finally, the container is
updated to reflect the changes made to available services.

Chapter 7 ■ Storing State

170

At this stage, if the name of the Cosmos DB collection is
not provided, Bot framework will provide a default name
botcollection. The DocumentDbBotDataStore constructor
accepts databaseId and collectionId parameters, and users
can provide their own values. They would be created if they
do not pre-exist.

 Uri docDbServiceEndpoint = new
Uri(ConfigurationManager.AppSettings["DocumentDbService
Endpoint"]);

 string docDbEmulatorKey = ConfigurationManager.AppSet
tings["DocumentDbAuthKey"];

 var builder = new ContainerBuilder();

 builder.RegisterModule(new AzureModule(Assembly.
GetExecutingAssembly()));

 var store = new DocumentDbBotDataStore(docDbService
Endpoint, docDbEmulatorKey);

 builder.Register(c => store)
 .Keyed<IBotDataStore<BotData>>(AzureModule.Key_

DataStore)
 .AsSelf()
 .SingleInstance();

 builder.Update(Conversation.Container);

GlobalConfiguration.Configure(WebApiConfig.Register);

 5. Update the imported namespace in the global.asax file:

using System;
using System.Web.Http;
using System.Configuration;
using System.Reflection;
using Autofac;
using Microsoft.Bot.Builder.Azure;
using Microsoft.Bot.Builder.Dialogs;
using Microsoft.Bot.Builder.Dialogs.Internals;
using Microsoft.Bot.Connector;

Chapter 7 ■ Storing State

171

 6. Update the web.config file and add both the Cosmos DB
service endpoint URL and the principal authentication key
as additional name–value pairs in the appSettings section.
These values are referenced in the Application_Start code:

<add key="DocumentDbServiceEndpoint" value="https://botstore.
documents.azure.com:443/" />

 <add key="DocumentDbAuthKey" value="xxxxxxxxxxxxxxxxxxxxxxxxx
xxx
xxxxxxxxxxxxxxxxxxxxxxxxx==" />

Run the bot and complete a conversation with it using Bot Emulator, as shown in
Figure 7-10.

Figure 7-10. Complete sample bot showing usage of different stores

Now, to verify that the bot state is stored in the Cosmos DB collection, navigate to
Cosmos DB service on Azure. Figure 7-11 shows data in JSON format stored in the User
data store; Figure 7-12 shows data stored in the Conversation data store; and Figure 7-13
shows data stored in the Private Conversation data store.

Chapter 7 ■ Storing State

172

Figure 7-11. User state data in Cosmos DB collection

Figure 7-12. Conversation state data in Cosmos DB collection

Chapter 7 ■ Storing State

173

Table Storage as Custom State Data Store
The high-level steps for using a Table storage state data store remain the same as those for
the Cosmos DB data store:

 1. Identify the data store. This example uses Table storage as its
data source.

 2. Provision the data store if it does not already exist.

 3. Create or open a bot project using the Bot Application template

 4. Add code to wire up and use Table storage as the data store
provided by Bot Builder SDK.

 5. Write dialogs normally without any knowledge of location or
type of state store.

Here are the steps in more detail:

 1. In this example, Azure Table storage is used as the state store.
Azure Table storage is a service that stores structured NoSQL
data in the cloud, providing a key–attribute store with a
schema-less design. That Table storage is schema-less helps
in creating a flexible database design to accommodate data in
different shapes quite easily without any changes.

 2. As mentioned before, Table storage is a managed Azure
service. To use Table storage, you must have a valid Azure
subscription. Log in to Azure as a valid user and create a new
Storage account. Provide a name and select the appropriate
subscription and resource group to provision a storage
account. This is shown in Figure 7-14.

Figure 7-13. Private Conversation state data in Cosmos DB collection

Chapter 7 ■ Storing State

174

Figure 7-14. Creating a new Azure Storage account

Chapter 7 ■ Storing State

175

After your Storage account is provisioned, navigate to its
Access Keys blade and copy the Connection String against
Key1 as shown in Figure 7-15. Client applications can use this
connection string to connect to this Storage account.

Figure 7-15. Taking note of Azure Storage account connection string for bot to connect to it

 3. This example will reuse the same solution created in the
previous section for managing state using dialog, but with
more control. The Bot Application template ensures that
the necessary assemblies related to the Bot Builder and
Connector SDKs are already referenced within the project. If
these are not available, they can be downloaded and installed
using the NuGet Package Manager and provider.

Bot Builder SDK provides a TableBotDataStore class that
helps in working with TableBotDataStore as the state store.
This class is part of the Microsoft.Bot.Builder.Azure
namespace. If this class is not available on your system,
it means that this version of Bot Builder Azure SDK is not
available and should be downloaded and installed.

Readers are advised to check out the previous section on
DocumentDB for installing assemblies using Visual Studio
Package Manager.

Chapter 7 ■ Storing State

176

 4. Open the global.asax file and update with the code within
the Application_Start function. TableBotDataStore
implements the IBotDataStore interface, providing necessary
functions to wire up Table storage to the bot’s state store. The
steps are the same as we saw using DocumentDB, with the
only difference being the use of TableBotDataStore as the
data store instead.

 string storageConnectionString = ConfigurationManager.App
Settings["storageConnectionString"];

 var builder = new ContainerBuilder();

 builder.RegisterModule(new AzureModule(Assembly.
GetExecutingAssembly()));

 var store = new TableBotDataStore(storageConnectionString);
 builder.Register(c => store)
 .Keyed<IBotDataStore<BotData>>(AzureModule.Key_

DataStore)
 .AsSelf()
 .SingleInstance();

 builder.Update(Conversation.Container);

GlobalConfiguration.Configure(WebApiConfig.Register);

 5. Update the imported namespace in the global.asax file as
shown in this section:

using System;
using System.Web.Http;
using System.Configuration;
using System.Reflection;
using Autofac;
using Microsoft.Bot.Builder.Azure;
using Microsoft.Bot.Builder.Dialogs;
using Microsoft.Bot.Builder.Dialogs.Internals;
using Microsoft.Bot.Connector;

 6. Update the web.config file and add the Azure Storage
account connection string as an additional name–value pairs
in the appSettings section. These values are referenced and
used from the Application_Start code in global.asax.

Chapter 7 ■ Storing State

177

<appSettings>
 <!-- update these with your BotId, Microsoft App Id, and your

Microsoft App Password-->
 <add key="BotId" value="YourBotId" />
 <add key="MicrosoftAppId" value="" />
 <add key="MicrosoftAppPassword" value="" />
 <add key="storageConnectionString" value="DefaultEndpointsPro

tocol=https;AccountName=botstatestorage;AccountKey=xxxxxxxxxx
xxx
xxxxxxxxxxxxxxx==;EndpointSuffix=core.windows.net" />

 </appSettings>

 7. Download and install Azure Storage Account Explorer from
http://storageexplorer.com/ to easily verify the data stored
as state by TableBotDataStore in Azure table storage after
running the sample bot. The Azure account should be added
first to the explorer. This is shown in Figure 7-16.

Figure 7-16. Connecting Storage Explorer to our storage account

http://storageexplorer.com/

Chapter 7 ■ Storing State

178

Figure 7-17. Storage Explorer showing data in Table storage (there is no data to start with)

Initially, the Table will be empty, as shown in Figure 7-17. This
is because we have not run our bot even once.

 8. Run the bot and complete a conversation with it using Bot
Emulator, as shown in Figure 7-18. Now, if you navigate to the
DocumentDB service on Azure, the bot state data should be
available, as shown in Figure 7-19.

Figure 7-18. Sample bot showing use of Table storage for storing state

Chapter 7 ■ Storing State

179

The data in Table storage is encoded by default. The schema for Table storage can be
viewed using the explorer, and it will show the different columns created by the Bot SDK
to store bot state data. This is shown in Figure 7-20.

Figure 7-20. Storage Explorer showing Table storage schema

Figure 7-19. Storage Explorer showing data in Table storage (after bot stored state)

Chapter 7 ■ Storing State

180

Summary
Microsoft offers the Bot Builder SDK so that Node.js and C# developers can build
smart and intelligent bots. The SDK offers a variety of options to save state using the
StateClient object. The data can be saved per globally or per user/conversation.
Any serious bot would need to remember its users to provide personalization services
and remember them the next time they come back. They would also need some
transient data store to store intermediary data within a conversation to facilitate better
conversations with its users. Bot SDK helps in easing this task by providing centralized
state management. Users do not have to manage the infrastructure for this state, and it is
available out of the box. To author advanced features in a bot, state features are generally
used. It is must-have knowledge and a great toolkit for any serious bot developer.

181© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_8

CHAPTER 8

Dialogs

Bots are all about “Conversation as a platform.” Bots help build relationships with their
users. They do not perform monologues or just provide details iteratively. Just like the
way you converse with different people in daily life, bots have meaningful conversations
with their users. And just like the way you have different conversation with different
people, bots also have different contexts and intents while having different conversations
with their users.

Conversations are the core element for bots. Conversation happen when there is a
dialog between people. This dialog could be one to one or one to many. Dialogs have a
context, opening, state, and closing. There can be multiple dialogs with the same person.
Dialogs can move from one topic to another and return back to the original topic.

Every application has some sort of user interface. While some have wizards, other
have screens that transition from one screen to another. Bots also have a user interface. In
fact, dialogs are the User Interface for bots. Dialogs enable the Bot developer to logically
separate various areas of bot functionality and guide conversational flow. For example,
Bot can contain a dialog that has logic to search airline tickets, another dialog to buy
airline tickets, and a separate dialog to book a hotel room.

MS Bot framework provides a user interface in terms of prompts, carousel, buttons,
and other elements apart from text, though text forms the majority of a dialog’s UI.

Bot framework provides a couple of ways to author bots. We have seen in previous
chapters that a complete bot can be written within the controller itself. Another approach
is to use the Dialog framework, which provides a rich plumbing infrastructure to manage
the dialog’s stack and state as well as the current dialog, and to transition from one dialog
to another and other dialog management–related activities.

The Dialog Model
The Dialog model provides access to a rich framework provided by Bot Builder SDK to
manage the entire lifecycle of multiple dialogs, interactions between dialogs, the current
dialog, the state machine for all dialogs, and the loading and saving of the dialog state.
Figure 8-1 shows the class hierarchy for dialogs in Bot SDK.

http://dx.doi.org/10.1007/978-1-4842-3312-2_8

Chapter 8 ■ Dialogs

182

IBotData
This interface provides function definitions for managing dialog state—retrieving and
saving bot state data to different stores, as follows:

•	 UserData

•	 PrivateConversationData

•	 ConversationData

IBotTouser
This interface provides function definitions for creating and sending messages to users.

IDialogStack
This interface is responsible for providing function definitions to manage the stack of
dialogs in the conversational process. It provides definitions that help in transitioning
from one dialog to another and also provides the hook that suspends the current dialog
until an external event has been sent to the bot.

Figure 8-1. Dialog class and interface hierarchy

Chapter 8 ■ Dialogs

183

IBotContext
The IBotContext interface inherits IBotData and IBotToUser interfaces and provides
properties to retrieve conversationData, UserData, and PrivateConversationData states.

Dialog Stack
Dialog stack, as the word signifies, means a stack of dialogs. A stack is a group of items
where some items are kept on top of other items. Dialog stack means creating a stack in
which dialogs are placed on top of other dialogs. There is always a root dialog when the
conversation starts with the user. This root dialog can further invoke other dialogs, and
they are placed on top of the calling dialog in a stack. The dialog that is on top of the stack
is the current dialog in progress and controls the conversation. Every new message sent
by the user will be subject to processing by that dialog until it either closes or redirects
to another dialog. When a dialog ends its execution, it’s removed from the stack, and
the previous dialog in the stack assumes control of the conversation. Dialog stacks are
a means and mechanism for MS Bot framework to know the hierarchy of dialogs in
conversation, the current dialog, and the last dialog. Typically, when having a guided
conversation, multiple dialogs are involved, and the dialog stack helps in managing all
constituent dialogs.

Dialog Context
Dialog context is the core concept when working with dialogs. Context is the entry point
into the Dialog framework. By the time a message from the user reaches a method within
a dialog, the context is already populated with the dialog stack, the current dialog in the
stack, and the state for the current dialog. Dialog context is pre-populated by Bot framework
and available to every method and function in a dialog. The context helps in retrieving the
current bot state, transitioning between dialogs, and managing a stack of dialogs.

Root Dialog
Every bot should start its conversation with users using a root dialog. This root dialog acts
as the first point of contact and is responsible for creating new dialogs, since conversation
flow starts with user. This root dialog should create newer dialogs or implement the bot
conversation. As a best practice, based on nature and the topic of conversation, newer
Dialogs should be created using single-responsibility intuition.

Chapter 8 ■ Dialogs

184

Building a Simple Dialog Bot
In this section, a bot with a single dialog will be created. It will provide the steps required
to create such a bot and will also explain in detail the concepts around it.

Follow these steps to create a dialog-based bot:

 1. Create a new bot project.

 2. Add the Microsoft.Bot.Builder.Dialog namespace in the
MessagesController.cs file.

 3. Add a new class file and add the Microsoft.Bot.Builder.
Dialog and Microsoft.Bot.Connector namespaces.

 4. Derive the new class from the IDialog interface and
implement its only method: StartAsync.

 5. Change the code of the MessagesController class to invoke
your root dialog.

In this sample, we will create a bot that will be responsible for accepting a word
and returning its synonyms. For returning synonyms, REST APIs provided by Oxford
Dictionaries are used.

Create an account with Oxford Dictionaries by going to https://developer.
oxforddictionaries.com. There is a free plan you can use to test its usage.

After your account is created, a new application ID and key should be generated.
These will be used in the bot to authenticate the Oxford Dictionaries API. Both
application ID and key should be saved in a secure location and should not be shared
with anyone.

SimpleDialog.cs
Add a new class file and name it SimpleDialog.

Add the Microsoft.Bot.Builder.Dialogs and Microsoft.Bot.connector
namespaces to this file. It provides access to all classes and interfaces from the Bot
Builder framework that help in creating and using a dialog.

using Microsoft.Bot.Builder.Dialogs;
using Microsoft.Bot.Connector;

Derive the new class from the IDialog<string> interface. There are two
implementations of this interface, one with C# generics and another without it. Each
bot can return a value when it has completed its execution, and this datatype helps in
identifying the type of return value coming from the bot.

Decorate the new bot class with the [Serializable] attribute. Dialog state is saved
automatically by Bot framework, and thereby the framework mandates that bot dialogs
should be serializable. Without this attribute, the framework would not be able to save
dialog state to its state store.

https://developer.oxforddictionaries.com/
https://developer.oxforddictionaries.com/

Chapter 8 ■ Dialogs

185

Implement the single method StartAsync provided by the IDialog interface. This
method gets an IDialogContext object by default and will be used to send messages to
the user, suspend the current dialog, navigate to another dialog, and store and load state.

public async Task StartAsync(IDialogContext context)
 {
 context.Wait(MessageHandler);

 }

Context.wait suspends the current execution, saves the state, and waits for inputs
from the user. As soon as it gets an input from the user, it executes the function that is
provided to it as a parameter while suspending the current execution. This function acts
as a continuation delegate and gets executed when a new message arrives.

The implementation of the MessageHandler function is the core of the SimpleDialog
dialog. It is here that the main logic of invoking the Oxford Dictionaries REST API is
executed and its return value is captured, iterated over, and returned back to the user.

Even this function is passed IDialogContext by the Bot framework, and it also gets
the incoming activity containing the user-provided text.

private async Task MessageHandler(IDialogContext context,
IAwaitable<IMessageActivity> result)

The incoming activity is stored in the message variable, and the bot informs and
confirms with the user using the PostAsync method:

var message = await result;
await context.PostAsync("You said: " + message.Text);

A StringBuilder typed variable to hold returnMessage is declared next:

StringBuilder returnMessage = new StringBuilder();

The Oxford Dictionaries REST API needs language to be sent as part of its
URL. It is set to “EN.” The REST API for synonyms is available at https://od-api.
oxforddictionaries.com/api/v1/entries/{source_lang}/{word_id}/synonyms.

The word_id is the word that the user is interested in finding synonyms for:

StringBuilder returnMessage = new StringBuilder();
string language = "en";
string word_id = message.Text;

string url = "https://od-api.oxforddictionaries.com:443/api/v1/entries/" +
language + "/" + word_id + "/synonyms";

Next, a new managed object of type HttpClient is created. It will get disposed of
automatically after the using block has finished its execution. Oxford Dictionaries REST
API expects the application ID and application key to be part of the request header, and

https://od-api.oxforddictionaries.com/api/v1/entries/{source_lang}/{word_id}/synonyms
https://od-api.oxforddictionaries.com/api/v1/entries/{source_lang}/{word_id}/synonyms

Chapter 8 ■ Dialogs

186

they are added to newly created HttpClient object. The HttpClient object is needed to
invoke the LUIS endpoint. The request is sent using the GetStringAsync method from
this class. It should be provided with the complete URL to the REST endpoint along
with text from the user. The user text is available from the text property of the activity
object.

using (var httpClient = new HttpClient())
 {
 httpClient.DefaultRequestHeaders.Add("ContentType",

"application/json");
 httpClient.DefaultRequestHeaders.Add("app_id", "294b41ad");
 httpClient.DefaultRequestHeaders.Add("app_key",

"6ae4a7a761884936995f7d875ef479eb");

The REST API is invoked using the GetClientAsync method, and the returned JSON
value is converted into a dynamic .NET object using the JSONConvert class. This class is
available as part of the Newtonsoft.JSON namespace. The return value from the REST
API contains deep-nested arrays and objects. To navigate to synonyms, multiple foreach
loops are used and the synonyms are appended to the StringBuilder object.

try
{

 var response = await httpClient.GetStringAsync(new Uri(url));

 dynamic rr = JsonConvert.DeserializeObject(response);
 foreach (var obj in rr.results)
 {
 foreach (var obj1 in obj.lexicalEntries)
 {
 foreach (var obj2 in obj1.entries)
 {
 foreach (var obj3 in obj2.senses)
 {
 foreach (var obj4 in obj3.synonyms)
 {
 returnMessage.Append(obj4.text);
 returnMessage.Append(" , ");
 }
 }
 }
 }
 }

}
catch (Exception ex)
{

Chapter 8 ■ Dialogs

187

 await context.PostAsync(ex.ToString());
}

Finally, the response containing the string from the StringBuilder object is
returned to the user:

await context.PostAsync("Synonyms for your word : " + message.Text + " are ");
await context.PostAsync(returnMessage.ToString());
context.Wait(MessageHandler);

The code for this function is shown here:

private async Task MessageHandler(IDialogContext context,
IAwaitable<IMessageActivity> result)
 {
 var message = await result;
 await context.PostAsync("You said: " + message.Text);

 StringBuilder returnMessage = new StringBuilder();
 string language = "en";
 string word_id = message.Text;

 string url = "https://od-api.oxforddictionaries.com:443/api/v1/
entries/" + language + "/" + word_id + "/synonyms";

 using (var httpClient = new HttpClient())
 {
 httpClient.DefaultRequestHeaders.Add("ContentType",

"application/json");
 httpClient.DefaultRequestHeaders.Add("app_id", "294b41ad");
 httpClient.DefaultRequestHeaders.Add("app_key",

"6ae4a7a761884936995f7d875ef479eb");

 try
 {

 var response = await httpClient.GetStringAsync(new Uri(url));

 dynamic rr = JsonConvert.DeserializeObject(response);
 foreach (var obj in rr.results)
 {
 foreach (var obj1 in obj.lexicalEntries)
 {
 foreach (var obj2 in obj1.entries)
 {
 foreach (var obj3 in obj2.senses)
 {
 foreach (var obj4 in obj3.synonyms)

Chapter 8 ■ Dialogs

188

 {
 returnMessage.Append(obj4.text);
 returnMessage.Append(" , ");
 }
 }
 }
 }
 }

 }
 catch (Exception ex)
 {

 await context.PostAsync(ex.ToString());
 }

 }
 await context.PostAsync("Synonyms for your word : " + message.

Text + " are ");
 await context.PostAsync(returnMessage.ToString());
 context.Wait(MessageHandler);
 }

MessagesController.cs
Add the Microsoft.Bot.Builder.Dialogs namespace to this file. It provides access to all
classes and interfaces from the Bot Builder framework that help in creating and using a dialog.

using Microsoft.Bot.Builder.Dialogs;

Open and replace the following code in MessagesController.cs within the
Controllers folder:

ConnectorClient connector = new ConnectorClient(new Uri(activity.ServiceUrl));
// calculate something for us to return
int length = (activity.Text ?? string.Empty).Length;

// return our reply to the user
Activity reply = activity.CreateReply($"You sent {activity.Text} which was
{length} characters");

await connector.Conversations.ReplyToActivityAsync(reply);

with the following:

await Conversation.SendAsync(activity, () => new SimpleDialog());

Chapter 8 ■ Dialogs

189

The post method in MessagesController is the entry point to the bot, and the
Conversation.SendAsync method is the entry point to the Dialog framework. The
method is a state machine and is responsible for creating a new instance of Dialog,
loads the last saved state from the state store, finds the current suspended location, and
resumes the conversation from there, replying to the user and saving the new state to the
state store. It also calls the bot’s implementation of the StartAsync method, and from
there the dialog takes control of the conversation.

Interacting with this bot using Bot Emulator is shown in Figure 8-2.

Here, the user provides “Table” as input, and all synonyms from the Oxford
Dictionary are returned as response.

Creating Multi-Dialog Bots
Now that we understand single-bot implementations, it’s time to understand the
technicalities for implementing bots with multiple dialogs.

There are three different ways in which multiple dialogs can be implemented:

•	 Nested dialogs – In this implementation, one Dialog calls another
dialog, and second dialog calls further dialogs in turn.

Figure 8-2. Interacting with bot using Bot Emulator (without dialogs)

Chapter 8 ■ Dialogs

190

•	 Façade dialogs – In this, a dialog calls multiple dialogs, each
responsible for its own functionality.

•	 Combined dialogs – Here, both nested and façade dialogs are
used for bot functionality.

In this section, an example of using combined dialogs will be illustrated and
explained.

There are two primary ways in which bots can interact with each other. Bot
framework provides the following:

•	 IDialogContext.Forward method calls StartAsync method on
another dialog and passes the message as well.

•	 IDialogContext.Call method calls StartAsync method on
another dialog but does not pass any messages to it. The target
dialog should initiate its own conversation to get its conversation
going.

When a dialog is initiated into a conversation using either the call or the forward
method, it should either call the IDialogContext Done method to inform Bot framework
that it has completed its execution successfully and return any return value, or call the
IDialogContext Fail method to inform Bot framework that it has failed in its execution
and return an exception to its parent dialog.

Scenario
To explain the multiple-bot scenario, a dictionary bot will be created with two dialogs,
as follows:

•	 A dialog responsible for providing antonyms

•	 Another dialog responsible for providing synonyms

A user will initiate the conversation, and the bot will ask the user to either type
Antonym or Synonym. Based on the user input, either the antonym dialog or the synonym
dialog will be used.

There will also be a root dialog that will act as the entry point to the bot dialogs and
be responsible for further creating and transitioning to other dialogs. The root dialog uses
the forward method of IDialogContext to invoke both antonym and synonym dialogs.

One of the dialogs, called a “support” dialog, will be created to help users open a
ticket for any issue with the dictionary bot. The root dialog uses the forward method of
IDialogContext to invoke both antonym and synonym dialogs. The root dialog uses the
call method of IDialogContext to invoke the support dialog.

Chapter 8 ■ Dialogs

191

Solution
The picture shown in Figure 8-3 depicts the dialog stack for the sample application. The
source code for is available as MultiDialogExample within accompanying code bundle.

Figure 8-3. Dialog composition for multi-dialog bot application

The Synonym dialog created in the previous section while discussing the simple
dialog will be reused in this example. Moreover, few more dialogs will be created for this
example, as follows:

•	 Root dialog that will orchestrate creating the appropriate dialog
based on user input

•	 Antonym dialog for fetching all antonyms of a word

•	 Support dialog for generating a support ticket for any problems
with the not

Both antonym and synonym dialogs will be invoked using the call method, and the
support dialog will be used using the forward method.

Chapter 8 ■ Dialogs

192

RootDialog.cs
RootDialog is the first point of contact for our lexicon bot. MessagesController creates
the RootDialog and invokes its StartAsync method. Within this method, the dialog
expects the user to initiate the conversation by suspending the current dialog, using the
IDialogContext.wait method to pass in the continuation handler start as a parameter.

public async Task StartAsync(IDialogContext context)
 {
 context.Wait<IMessageActivity>(start);
 }

As soon as the user initiates and provides its input (e.g., Hi/Hello), the bot reloads
the root dialog and its state and executes the start method. In this method, the bot
asks the user to provide input—antonym or synonym—and again suspends the current
dialog, using the IDialogContext.wait method to pass in the continuation handler
DecisionMaker as its parameter.

 private async Task start(IDialogContext context,
IAwaitable<IMessageActivity> result)
{
 await context.PostAsync("Please provide your input !! Synonym or

Antonym");
 context.Wait<IMessageActivity>(DecisionMaker);
}

DecisionMaker is the heart of RootDialog. Here, the user input is evaluated and a
decision is made about the next dialog to be created and passed over the control. There
is also a support dialog that will be invoked if the user provides support as a keyword.
Readers should notice that for the support dialog the forward method of IDialogContext
is used while for the antonym and synonym dialogs the call method is used.

The call method takes two parameters—an instance of the next dialog to be made
the current dialog in the stack and a message handler that will be executed when the next
dialog has finished its execution either successfully or failure. The bool datatype in the
call method signifies the return value from the next bot. This value should be set in the
target dialog to announce whether it was successful in its execution or not, and the parent
dialog should check this value to decide on next steps. As a good practice, it is always
advised to return an appropriate type from child dialogs to know their execution status.

The forward method takes four parameters—an instance of the next dialog to be
made the current dialog in the stack, a message handler that will be executed when the
next dialog has finished its execution either successfully or unsuccessfully, the message
itself from the user, and a cancellation token. The difference between the call and forward
methods is that a message is passed along with the invocation of the forward method.

private async Task DecisionMaker(IDialogContext context,
IAwaitable<IMessageActivity> result)
 {
 var message = await result;

Chapter 8 ■ Dialogs

193

 if ("support" == message.Text.ToLower())
 await context.Forward(new Support(), SupportHandler,

message, System.Threading.CancellationToken.None);
 else if ("synonym" == message.Text.ToLower())
 context.Call<bool>(new Synonym(), SynonymHandler);
 else if ("antonym" == message.Text.ToLower())
 context.Call<bool>(new Antonym(), SynonymHandler);
 else
 context.Wait(start);
 }

Next, two handlers—one for handling the return from the synonym and antonym
dialogs and another for handling the return from the support dialog. Synonym and
antonym use the same handler because of the similarity in their return values and its
handling. This handler gets IDialogContext as its first argument and a result argument
of type bool. The parent dialog gets the return value from the child dialog using this
argument. Both synonym and antonym dialogs are responsible for displaying and
returning results to its user, and the root dialog is only tasked to ask questions. Here, the
root dialog again asks the user about their choice.

private async Task SynonymHandler(IDialogContext context, IAwaitable<bool>
result)
{
 bool message = await result;
 await context.PostAsync("Please provide your input !! Synonym or

Antonym");
 context.Wait<IMessageActivity>(DecisionMaker);
}

The support dialog returns an integer value representing a ticket number. This is
captured and returned to the user.

private async Task SupportHandler(IDialogContext context, IAwaitable<int>
result)
 {
 var ticketNumber = await result;

 await context.PostAsync($"Thanks for contacting our support
team. Your ticket number is {ticketNumber}.");

 context.Wait(start);
 }

Chapter 8 ■ Dialogs

194

Synonym.cs
This is a child dialog invoked using the IDialogContext call method. This
implementation is the same as that of the simple dialog that was discussed in last section.
Please refer to the previous section for more details.

Antonym.cs
This is a child dialog invoked using the IDialogContext call method and is very similar to
the synonym dialog. The only difference between the two implementations are the Oxford
Dictionaries REST API URL and schema for the return value. The REST URL for antonym is
https://od-api.oxforddictionaries.com/api/v1/entries/{source_lang}/{word_id}/
antonyms, and the returned JSON schema contains antonyms instead of synonyms. Notice
the call to the Done method and passing of a return value using the same.

dynamic rr = JsonConvert.DeserializeObject(response);
 foreach (var obj in rr.results)
 {
 foreach (var obj1 in obj.lexicalEntries)
 {
 foreach (var obj2 in obj1.entries)
 {
 foreach (var obj3 in obj2.senses)
 {
 foreach (var obj4 in obj3.antonyms)
 {
 returnMessage.Append(obj4.text);
 returnMessage.Append(" , ");
 }
 }
 }
 }
 }

await context.PostAsync("Synonyms for your word : " + message.Text + " are ");
 await context.PostAsync(returnMessage.ToString());
 context.Done(true);

Support.cs
This is a child dialog invoked using the IDialogContext forward method. This is invoked
when the user provides the support keyword. This is a simple dialog that generates a new
random number and returns it back to the parent dialog as a ticket number. Notice the
call to the Done method and the passing of the return value using the same.

public async Task StartAsync(IDialogContext context)

https://od-api.oxforddictionaries.com/api/v1/entries/{source_lang}/{word_id}/antonyms
https://od-api.oxforddictionaries.com/api/v1/entries/{source_lang}/{word_id}/antonyms

Chapter 8 ■ Dialogs

195

 {
 context.Wait(MessageHandler);

 }

 private async Task MessageHandler(IDialogContext context,
IAwaitable<IMessageActivity> result)

 {
 var message = await result;

 var ticketNumber = new Random().Next(0, 20000);

 await context.PostAsync($"Your message '{message.Text}' was
registered. Once we resolve it; we will get back to you.");

 context.Done(ticketNumber);
 }

MessagesController.cs
The is the entry class for the bot. It implements the POST method and accepts incoming
activities from the user. It creates the RootDialog and passes control over to it:

await Conversation.SendAsync(activity, () => new RootDialog());

FormFlow
The Dialog model provides access to a rich framework provided by Bot Builder to
give complete control over the bot implementation. Dialogs offer complete flexibility
to implement the bot’s conversational flow and its business logic; however, writing a
guided conversation can be a difficult proposition both in terms of effort required and
complexity. Conversations can be quite complex. At any point in a conversation, there
are multiple options and directions in which the conversation can flow. Users may ask
for help, support, confirmation for previous inputs, and more. It can be a daunting task
to implement all of this functionality using dialogs, especially when all of it needs to be
implemented from scratch.

There are two ways in which FormFlow can generate conversation bots, as follows:

•	 Using C# classes – used in this book

•	 Using JSON schema

Bot Builder SDK for C# provides the FormFlow framework with which writing
guided conversation–based bots can be simplified, and it can also help you save time.
FormFlow allows you to design a guided conversation–based bot using simple guidelines
in terms of C# enums and properties. Dialogs are generated from these guidelines and

Chapter 8 ■ Dialogs

196

wired together to form a complete conversation. Needless to say, there are constraints
while using FormFlow because of its inherit nature, and the bot designer will lose some
flexibility when creating a bot. FormFlow dialogs can be combined with general dialogs to
form more complex conversations.

All the information that a bot should ask the user for in a guided conversation should
be provided by the bot designer to FormFlow. The information should be available within a
C# class as properties. Each property in this class should be based on following data types:

•	 Integral (sbyte, byte, short, ushort, int, uint, long, ulong)

•	 Floating point (float, double)

•	 String

•	 DateTime

•	 Enumeration

•	 List of enumerations

Building a Simple FormFlow Bot
The first step in creating a FormFlow bot is to declare a class with properties. If properties
are based on enums, those Enums should be defined as well. In this example, a simple
Notebook configuration information is sought by the bot from its users.

The FormFlowSimple class defines the form along with its properties. The properties
are based on Enum declarations within the same namespace. The form is used to order
Notebook based on the custom configuration.

The Microsoft.Bot.Builder.FormFlow namespace should be imported into both
messagesController.cs and the custom form class.

The code for the form is shown next. Enums for delivery options, RAM options,
screen-size options, disk options, CPU options, and operating system options are
declared. A class containing public properties for these enums are declared. There is
additionally a string property to hold the credit card number. The class also implements
a BuildForm static function that is responsible for building the form and returning a
dialog containing the entire conversation flow. This function creates a new instance of
FormBuilder. FormBuilder implements Fluent API and helps in chaining multiple form-
based calls together, including the start message.

namespace FormFlowExample
{

 public enum Deliveryoptions {
 CashOnDelivery, CreditCard, DebitCard, Wallet, BitCoin
 }

 public enum RamOptions
 {
 TwoGB, FourGB, EightGB, SixteenGB
 }

Chapter 8 ■ Dialogs

197

 public enum ScreenSizeOptions
 {
 Small, Medium, Large
 }

 public enum DiskOptions
 {
 SSD, HybridDrive, MechanicalHardDrive
 }

 public enum CpuOptions
 {
 AMD, IntelCoreI5, IntelCoreI7, IntelPentium, IntelCeleron
 }

 public enum OperatingSystemOptions
 {
 DOS, Windows, Linux, Mac, Chrome
 }

 [Serializable]
 public class FormFlowSimple
 {
 public OperatingSystemOptions? OS;
 public CpuOptions? cpu;
 public DriveOptions? drive;
 public ScreenSizeOptions? screen;
 public RamOptions? ram;
 public Deliveryoptions? delivery;
 public string CreditCardNumber;

 public static IForm<FormFlowSimple> BuildForm() {
 return new FormBuilder<FormFlowSimple>().Message("Welcome to

NoteBook builder..").Build();
 }
 }
}

The next step is to connect the form to the bot. This happens within the
messagesController.cs, which contains the Post REST API. An additional function is
defined in this class that is responsible for creating a FormDialog. FormDialog is passed
the static BuildForm function in our Form class. FormDialog invokes this function, which
in turn builds the entire form and returns back to FormDialog. Fluent API is used again,
and the Do method is called, which accepts a message handler that is called after the user
confirms all their input and has completed the conversation. In this function, if there is an
exception, the user is notified; otherwise, a success message is sent.

Chapter 8 ■ Dialogs

198

internal static IDialog<FormFlowSimple> MakeRootDialog()
 {
 return Chain.From(() => FormDialog.FromForm(FormFlowSimple.

BuildForm)).Do(async (context, order) =>
 {
 try
 {
 var completed = await order;
 // Actually process the sandwich order...
 await context.PostAsync("Your laptop order is processed

and will be delivered soon !");
 }
 catch (FormCanceledException<FormFlowSimple> e)
 {
 string reply;
 if (e.InnerException == null)
 {
 reply = $"Bot was at {e.Last} stage, try again later !";
 }
 else
 {
 reply = "Apologies, there was an issue with the Bot!

Please try again";
 }
 await context.PostAsync(reply);
 }
 });

 }

This function is called by the Post method, similar to other dialogs using the
Conversation.SendAsync method. Here, instead of creating a dialog, the MakeRootDialog
function is called.

FormFlow provides multiple features, like each property name is used to ask the user,
prompts are displayed to the user in order of their property declaration in the class, each
option within enums is divided into multiple words based on capital letters, a confirmation
message containing all chosen options is run by to user (see Figure 8-4), and so on. More
details about these features can be found at https://docs.microsoft.com/en-us/bot-
framework/dotnet/bot-builder-dotnet-formflow and https://docs.microsoft.com/
en-us/bot-framework/dotnet/bot-builder-dotnet-formflow-advanced.

https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-formflow
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-formflow
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-formflow-advanced
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-formflow-advanced

Chapter 8 ■ Dialogs

199

FormBuilder
The previous section introduced FormFlow, and FormBuilder is the main engine that
helps in FormFlow bots. FormBuilder provides a rich and versatile framework and APIs
that help with customizing almost every aspect of the FormFlow. This section will
deep-dive into some of these customization aspects of FormBuilder; however, not
everything can be covered in a small section. Some of the most important aspects will be
covered.

We will continue with the same example created in the previous section. The
accompanying code contains the FormBuilderCustomization project for this section.

Customizing the Prompts
Generally, FormFlow prompts for text based on property names. For example, when
asking for a credit card number, FormFlow would prompt, “Please enter your Credit card
Number” for simple properties and “Please select a ram” for enum-based properties.
The prompt text can be customized using prompt and template attributes on top of
properties.

The prompt for a simple property can be changed using the Prompt attribute:

[Prompt("Please enter your Credit card Number in international format !!")]
public string CreditCardNumber;

The prompt for an enum-based property can be changed using the Template
attribute. EnumSelectOne allows a single selection and many more options. Check out the
online documentation to find out more about these options. {||} helps show the list of
choices for the property.

[Template(TemplateUsage.EnumSelectOne, "What is your preferred operating
system? {||}")]
public OperatingSystemOptions? OS;

Figure 8-4. FormFlow asks for confirmation as final step in conversation

Chapter 8 ■ Dialogs

200

Customizing the Order of Prompts
The prompts are displayed to the user in order of property declaration. Instead of
displaying the prompts based on their order of declaration, the order can be customized
using the Field method, as shown next. Instead of relying on the default prompt layout,
individual fields have been used to define the order of prompts. In this example, the order
of prompts will be ram, cpu, drive, screen, os, delivery:

public static IForm<FormFlowSimple> BuildForm()
 {
 return new FormBuilder<FormFlowSimple>()
 .Message("Welcome to NoteBook builder..")
 .Field(nameof(ram))
 .Field(nameof(cpu))
 .Field(nameof(drive))
 .Field(nameof(screen))
 .Field(nameof(OS))
 .Field(nameof(delivery))
 .Field(nameof(CreditCardNumber), IsCreditCard)
 .Build();
 }

Conditional Fields
By default, all properties are shown to the user by means of prompts. However, there are
situations where a field should be shown based on a condition. For example, if the user
has opted to use credit card as payment, then the credit card number prompt should be
shown; otherwise, not. The second parameter of the Field method takes in a boolean
true/false value. The field is prompted only if its value is true. By default, the value is true.
A function is declared that checks the current state of the delivery property. If the
value is the same as that of Credit Card, the prompt for the credit card number is shown.
See here:

public static IForm<FormFlowSimple> BuildForm()
 {
 return new FormBuilder<FormFlowSimple>()
 .Message("Welcome to NoteBook builder..")
 .Field(nameof(ram))
 .Field(nameof(cpu))
 .Field(nameof(drive))
 .Field(nameof(screen))
 .Field(nameof(OS))
 .Field(nameof(delivery))
 .Field(nameof(CreditCardNumber), IsCreditCard)
 .Build();
 }

Chapter 8 ■ Dialogs

201

 private static bool IsCreditCard(FormFlowSimple state)
 {
 return state.delivery == Deliveryoptions.CreditCard;
 }

When implementing a conditional field, the credit card number prompt is not shown
to the user, as shown in Figures 8-5 and 8-6.

Figure 8-6. Utilizing conditional fields based on certain conditions being true

Figure 8-5. Bot asking user for payment selection

Chapter 8 ■ Dialogs

202

Summary
Bot framework provides multiple options for authoring conversational bots. Each option
has its advantages and disadvantages. The Bot framework enables the writing of the
entire logic within the messagesController API itself or allows you to divide logic within
multiple dialogs and FormFlow. While dialog provides maximum control and flexibility
when authoring bots, FormFlow makes authoring conversational bots faster and easier.
Architects should evaluate their requirements and adopt an option. Moreover, these
options can be used together to create a conversational bot. For example, a LUISDialog
can be used in conjunction with FormFlow in a multi-dialog scenario. There are lots of
moving pieces for both dialogs and FormFlow, and this chapter provides the beginners’
introduction to them. Readers should also check for online documentation for changes to
these elements with passage of time.

203© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_9

CHAPTER 9

Natural Language Processing

Natural language processing (NLP) is a field of computer science that is a subset of
artificial intelligence and that helps computers understand human language as it is
written and spoken. Until recently, it was humans who were trying to understand
computer languages to talk to them in their way via scripting languages like BASH,
JavaScript, and PowerShell and programming languages like Java, C#, and others. In
recent times, a new phenomenon is gaining momentum—machines learning and
understanding the language of humans.

Generally, computers are great for computational processing. If you tell a computer to
find the square of a number as big as 25 digits, it will have an answer in less than a fraction
of a second. However, if, at the same time, you tell it to find differences between two almost
identical images, or to guess the emotions of a person in a picture, it can be difficult and
challenging for them to have an answer immediately. On the contrary, humans will take
minutes if not hours to find the same square number but only seconds to discern the
emotions of the person in the picture or the differences between two images.

Artificial intelligence helps replicate the same neural functionality within computers
so they can become capable of understanding and finding answers like emotions just like
the human brain does. This could relate to vision, speech, emotions, or human language.

Every human has their own proficiency and vocabulary in written and spoken
language. An English sentence conveying a message can be written in multiple ways
while conveying the same idea. Everyone has their own way of expressing the same thing.
A user searching for a flight for vacation will use different vocabulary, punctuation, and
phrasing compared to any other individual. Understanding the idea and motive behind
user-provided text in their own language is a difficult problem to solve, but NLP can help.

NLP helps by creating generic language models through which it is easier for
computers to understand the idea and motive of user interactions that use written
language. NLP helps make intelligent systems that can understand the intent behind a
user’s text and provide them with an appropriate response.

In this chapter, we will go through Microsoft Cognitive Services’ offering that is
specific to NLP, known as Language Understanding Intelligent Services (LUIS). Important
concepts related to LUIS like intents and entities, along with the LUIS process of creating
and publishing them, will be the core of the chapter. A sample bot solution will be
undertaken that will interact with LUIS to find the motive behind a user’s interaction to
demonstrate the usage of LUIS with bots. MS Bot framework provides multiple framework
features to interact with LUIS, which will also be discussed in depth in this chapter.
Finally, best practices related to LUIS will also be provided.

http://dx.doi.org/10.1007/978-1-4842-3312-2_9

Chapter 9 ■ Natural laNguage proCessiNg

204

Cognitive Services
Microsoft provides a suite of intelligent API services under an umbrella known as
Cognitive Services. These services enable natural and contextual interaction by using
tools that augment users’ experiences via the power of machine-based intelligence.
Cognitive Services provides a collection of powerful artificial intelligence algorithms
for vision, speech, language, and knowledge. It helps build intelligent systems with
powerful algorithms that use just a few lines of code and work across devices and
platforms, such as iOS, Android, and Windows. More about Cognitive Services can be
found at https://azure.microsoft.com/en-gb/services/cognitive-services/.

LUIS
The NLP implementation is known as LUIS. It offers a fast and effective way of adding
language understanding to applications. It is a service exposed as a REST API, and users
can consume this service from any platform. It provides an HTTP endpoint that will take
in sentences sent by users, find the intention behind them, and identify the subject and
objects in them. LUIS helps boost developers’ productivity by providing a set of powerful
tools in the form of dashboards and a web-based environment to define models and
by exposing them through a simple user experience and a comprehensive set of APIs.
These APIs are part of Azure Services, and users must have an active Azure subscription
to consume these services. An account at https://www.luis.ai/ should also be created
using your Microsoft (earlier Live) account. Luis.ai provided the browser-based interface
to manage the lifecycle of LUIS applications.

LUIS is not aware of the business problem that you as a developer are trying to solve.
Developers should make LUIS aware of the problem they are trying to solve by providing
inputs to it. LUIS needs a few inputs to create intelligent, language-aware applications.
These inputs in LUIS’s terms are as follows:

•	 Intents

•	 Entities

•	 Utterances

•	 Features

Intents
The primary function of LUIS is to find intents from user-provided text. Users can provide
any text with any vocabulary and punctuation. Developers should provide LUIS with
the intents they are interested in. Intents are the motives, ideas, or goals of the users
interacting with the application. These motives can be divided into two categories:

https://azure.microsoft.com/en-gb/services/cognitive-services/
https://www.luis.ai/

Chapter 9 ■ Natural laNguage proCessiNg

205

 1. Searching for something – Examples of these motives are
finding weather conditions next week in local city or town,
finding information about flight tickets, etc.

 2. Acting or taking action – Examples include booking a flight
ticket, reserving a seat in a restaurant, etc.

Intents are verbs or actions that users are trying to execute using the application.
A set of intents that correspond to the user’s actions should be provided as inputs to LUIS.
If you are building an application for a travel company, it might include intents like find
a flight between two locations, book a flight, cancel a flight, reschedule a flight, find
connected flights, and more.

Intents have scores in LUIS. It means that LUIS can identify multiple intents for
the same utterance; however, the score will distinguish between them in terms of
their strength. Intents with higher scores show a higher confidence level about its
identification, while a low score denotes a lower confidence level.

Entities
Entities are equally important and should be fed into LUIS along with intents. It is good
to know the user’s intent, but it will fail miserably if an action cannot be taken on the
identified intent. The action depends on the user-provided parameters for their intent.
For example, if a user is booking a flight ticket, then flight information, source location,
destination location, date of travel, class of ticket, and food preferences should be
identified in order to take any meaningful action. LUIS can identify these entities from
user-provided sentences. Entities are the core data elements for applications. Entities
are like nouns, objects, and subjects that provide additional context for the meaning of a
conversation and subsequent action. If a user typed book a flight to Paris from London for
December 25, 2017 the intent would be to book a flight, and the entities would be Paris,
London, and December 25, 2017. These entities would represent source and destination
locations along with the date.

Entities can be pre-built and provided by LUIS, like age, datetime, numbers,
dimension, and so on, or they can be custom, which we will use heavily in this chapter.
Custom entities are the ones defined by developers for their business problem and
solution. Pre-built entities are already trained and do not need further training.

Utterances
The lexical meaning of utterance is “the action of saying or expressing something.” After
intents and entities have been defined, LUIS should be fed with sample utterances so
as to train itself to identify those intents and entities. Just providing intents and entities
to LUIS is not enough. LUIS needs to be trained to find them in incoming sentences.
To enable the training of LUIS, sample utterances should be provided. Based on these,
LUIS will adapt itself to understand the utterances and to find intents and entities based
on them. Examples of utterances for the previous travel-agent example include “Book
a flight from London to Paris tomorrow,” “Book a flight from London to Paris today,” “I
want to fly on December 22, 2017 from Mumbai to Hongkong.” Enough utterances should

Chapter 9 ■ Natural laNguage proCessiNg

206

be provided so that LUIS is able to identify the majority of a user’s incoming text and to
successfully identify appropriate intents and entities. In the end, it is utterances that come
from users when they use applications.

Features
Features refers to additional metadata, traits, or attributes for an intent or entity. They
help in improving the overall efficiency and effectiveness of the NLP algorithmn that
runs behind the scene. Phrase lists can be added to features and will provide additional
information while training LUIS; scores can be made significantly higher using them.

LUIS Development Lifecycle
LUIS is an Azure service with generic API endpoints to create LUIS applications. It
provides a web-based user interface to create your own endpoints that can take user
sentences as an input and output the intents and entities. The user’s related endpoints are
auto-generated when a LUIS application is published. These newly generated endpoints
are customized based on the model, which is defined in terms of intents, entities, and
utterances. Intelligent applications should consume this newly published REST API that
is aware of your intents and entities.

However, before a model can be published as an endpoint, it should be created and
trained. In this section, we will go through the process of creating a LUIS application and
publishing it as endpoint for consumption.

The high-level process that should be followed to create a LUIS application is as
follows:

•	 Create application

•	 Add intents

•	 Add entities

•	 Add utterances

•	 Train and test

•	 Publish

Create Application
The first step in using LUIS is to create an application. LUIS is available at https://www.
luis.ai. Sign in to LUIS with an appropriate account and create a new app. The LUIS app
is the logical boundary, and each app, when published, generates endpoints that can be
consumed in bot applications (see Figure 9-1).

https://www.luis.ai/
https://www.luis.ai/

Chapter 9 ■ Natural laNguage proCessiNg

207

Add Intents
After the app is provisioned, the first step should be creating intents. Open the recently
created app and click Intents in the left panel, as shown in Figure 9-2.

Figure 9-1. Steps to create a new LUIS app

Chapter 9 ■ Natural laNguage proCessiNg

208

A None intent is created for all apps by default. There are two additional intents
created that will be used in later sections of this chapter.

Add Entities
After intents have been defined, the next step should be creating entities. Entities can be
the following:

•	 Simple: a generic entity

•	 Hierarchical: entities in a parent–child relationship. A parent can
have multiple children (sub-entities).

•	 Composite: a compound of two or more separate entities
combined, forming a composite and treated as a single entity.
Composite entities are best suited to establishing and inferring
relationships between multiple entities. For example, “fly from
London to Paris via Globe Airways” has three simple entities—
London, Paris, and Globe Airways. Without composite entities,
LUIS would still be able to find these three entities, but there
would be no way to establish and infer a relationship between
them. Composite entities help us establish relationships among
multiple entities.

•	 List: a customized list of entity values to be used as keywords or
identifiers to recognize entities within utterances.

Click on Entities on the left panel to create new entities. This is shown in Figure 9-3.

Figure 9-2. Adding a new intent in LUIS app

Chapter 9 ■ Natural laNguage proCessiNg

209

Add Utterances
Utterances help in identifying intents and entities with higher confidence. Each intent
can be identified through multiple utterances. Utterances can be added using the user
interface of an intent. Click on any intent and add utterances to it. While adding them,
select the entities that are part of the utterances. This is shown in Figure 9-4.

Figure 9-3. Adding a new entity in LUIS app

Figure 9-4. Mapping intents and entities within LUIS app

Chapter 9 ■ Natural laNguage proCessiNg

210

Train and Test
After intents, entities, and sufficient utterances are added, other LUIS components like
features can be used to augment the performance of the overall model and increase
predictability. However, after the model is completed, the next step is to train it. Training
a model means to take the available intents, entities, features, and utterances and process
them through LUIS-provided algorithms to build the neural networks that will help in
identifying the intents and entities in incoming sentences. Developers just need to click
on the “Train & Test” link available in the left panel to start the training process.

Testing can be done on a trained model by providing additional utterances and
checking the intents and entities identified as output with their individual scores. If
there is any deviation from the actual meanings, more utterances should be added, more
features should be utilized, and the model should be retrained to understand any outliers
and deviations. LUIS provides a testing feature for applications, shown in Figure 9-5.

Figure 9-5. Testing intents and entities using sample queries

Publish
Once developers are confident about the predictability scores for the intents and entities
after training and retraining the model, they can publish their app. This will publish the
endpoints necessary for the application to consume.

To publish your application, you need a key and application ID. Publishing will
generate a new endpoint and URL. This URL should be used by the application to interact
with LUIS. The format of the URL is as follows:

https://westus.api.cognitive.microsoft.com/luis/v2.0/apps/<<ApplicationID>>?
subscription-key=<<Subscription key>>&timezoneOffset=0&verbose=true&q=

Both subscription key and application ID must be provided by developers.
Click on the “Publish App” link on the left panel to open the Publish window. This is

shown in Figure 9-6.

Chapter 9 ■ Natural laNguage proCessiNg

211

Sample Application
We will now create a sample application for LUIS named LearningBots and then create a
bot that will consume LUIS’s services using the custom endpoint published. The goal of
this sample is to understand LUIS modeling and the options available to integrate with a
bot. The same sample will be implemented using different features provided by MS Bot
framework. The purpose of the bot is to show how LUIS can help implement intelligent
bots and find intents and entities based on which the bot can take appropriate actions.
For sample purposes, two intents are created, as shown in Figure 9-7, and the None intent
is available by default. None intent is used when no other intent matches incoming data.

•	 Flying – used when flying from one city to another using a flight

•	 Driving – used when either driving on the road or riding a train
from one city to another)

Figure 9-6. Publishing LUIS app for use in bot application

Chapter 9 ■ Natural laNguage proCessiNg

212

The entities defined for the sample application are as follows:

•	 FromCity and ToCity are simple entities for capturing information
about source and destination cities. This is used for both flying
and driving intents.

•	 Train and Car are simple entities for capturing information about
the medium of transportation on the ground. This is used for the
driving intent.

•	 Date is a simple entity for capturing input about the date of travel.
This could have been a prebuilt entity as well.

•	 A list entity names airlines. The list includes “Airline1,” “Abc
Airline,” “World Airlines,” and Globe Airways.” It is solely used for
the flying intent.

•	 Two hierarchical entities, City and Land, with City containing
FromCity and ToCity simple entities. City is used for both intents
while Land is used only for driving intent.

•	 A composite entity MyTravel comprising Date, Airlines, City, and
Land entities. City and Land in turn have further child entities.

All entities for the sample application are shown in Figure 9-8.

Figure 9-8. Sample entities for bot application

Figure 9-7. Intents created for the sample application

Chapter 9 ■ Natural laNguage proCessiNg

213

Utterances act as training data and help find the intents by training the LUIS model.
Utterances as shown in Figure 9-9 are used for the flying intent.

Figure 9-9. Utterances mapping entities and flying intent for sample application

Figure 9-10. Utterances mapping entities and driving intent for sample application

Utterances as shown in Figure 9-10 are used for the driving intent.

Chapter 9 ■ Natural laNguage proCessiNg

214

Readers should notice that each utterance has multiple brackets representing
composite, hierarchical, list, and simple entities.

The LUIS application should be trained and published such that it can be consumed
by bots using REST endpoints. Publishing would generate the endpoint URL. Copy
the URL and use it in a web browser by appending query text so as to view the JSON
document that is generated as a LUIS response containing the intents and entities. This is
shown in Figure 9-11. Do not worry if the JSON document does not contain all the intents
and entities related to your application. At this stage, we are more interested in getting the
JSON structure obtained from LUIS. This JSON document would eventually be needed in
order to generate a C# class from it. Copy the JSON document to the clipboard. Replace
the subscription key and application ID with valid values.

https://westus.api.cognitive.microsoft.com/luis/v2.0/apps/<<Application
ID>>?subscription-key=<<Subscription key>>&timezoneOffset=0&verbose=true&q=t
ravel to london from edinburgh tomorrow

Figure 9-11. JSON payload used to generate plain old simple C# class

Chapter 9 ■ Natural laNguage proCessiNg

215

Creating Intelligent Bots
Bots need to invoke HTTP capabilities to consume LUIS endpoint services. Furthermore,
LUIS provides a response comprising intents and entities in JSON format. Any client
capable of parsing JSON documents can take advantage of LUIS. Although it is possible to
parse raw JSON, it is a better practice to use objects deserialized from JSON documents.

By now, we know that bots can be created with or without dialogs. In this section,
we will create two bots—one using dialogs and one without dialogs. Both bots would
consume the same LUIS application.

Creating Intelligent Bots Without Dialogs
In this approach of creating a bot with LUIS without dialogs, the developer is responsible
for invoking the LUIS endpoint explicitly. Developers are also responsible for sending
requests and parsing JSON responses from LUIS. They can create objects by deserializing
the JSON document or they can work with raw JSON. Working with objects is much easier
than parsing raw JSON. The developer also needs to write the logic and code for how
he or she wants to redirect the code execution based on incoming intents and entities.
Generally, these are not needed when using dialogs. This approach should generally be
avoided, especially when MS Bot framework provides inherent support to work with LUIS
using dialogs. This example will demonstrate the process of invoking the LUIS endpoint,
sending requests containing sentences from the user, obtaining the response containing
intents and entities, and displaying them within the bot. Once you have entities and
intents available, you can split the code into multiple paths and take necessary action.

Create a new bot project. Add a new class structure representing JSON documents
from LUIS. Create or open a C# class file in Visual Studio, then go to Edit ➤ Paste Special
➤ Paste JSON As Classes. The JSON document should already be there in the clipboard.
This will generate the entire class structure. The class should similar to that shown in
Figure 9-12.

Chapter 9 ■ Natural laNguage proCessiNg

216

Figure 9-12. Class generated from JSON payload, used in bot application

Chapter 9 ■ Natural laNguage proCessiNg

217

Open and replace the following code in MessagesController.cs within Controllers
folder:

ConnectorClient connector = new ConnectorClient(new Uri(activity.
ServiceUrl));
// calculate something for us to return
int length = (activity.Text ?? string.Empty).Length;

// return our reply to the user
Activity reply = activity.CreateReply($"You sent {activity.Text} which was
{length} characters");

await connector.Conversations.ReplyToActivityAsync(reply);

with the following:

ConnectorClient connector = new ConnectorClient(new Uri(activity.
ServiceUrl));

LuiSObject Data = new LuiSObject();
StringBuilder sb = new StringBuilder();
using (HttpClient client = new HttpClient())
{
 string RequestURI = "https://westus.api.cognitive.microsoft.com/luis/

v2.0/apps/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx?subscription-key=xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx&verbose=true&timezoneOffset=0&q=" +
activity.Text;

 HttpResponseMessage msg = await client.GetAsync(RequestURI);

 if (msg.IsSuccessStatusCode)
 {
 var JsonDataResponse = await msg.Content.ReadAsStringAsync();
 Data = JsonConvert.DeserializeObject<LuiSObject>(JsonData

Response);

Intent itemsMax = Data.intents.Where(x => x.score == Data.intents.Max(y =>
y.score)).First();

 sb.Append("intent is " + itemsMax.intent);

 foreach (var d in Data.entities) {
 sb.Append("Entity type " + d.type + " has value " + d.entity +

Environment.NewLine);
 }
 }
}

Chapter 9 ■ Natural laNguage proCessiNg

218

Activity reply = activity.CreateReply($"You sent {sb.ToString()} ");
await connector.Conversations.ReplyToActivityAsync(reply);)

 1. Create ConnectorClient object. This is the main object through
which a bot can communicate with channels and eventually
users. Also, create an instance of newly generated LuiSObject
class. This is needed for populating values from the deserialized
JSON document received as a response from LUIS.

ConnectorClient connector = new ConnectorClient(new
Uri(activity.ServiceUrl));

LuiSObject Data = new LuiSObject();
StringBuilder sb = new StringBuilder();

 2. Create an instance of HttpClient object. This is needed
to invoke the LUIS endpoint. The request is sent using the
GetAsync method from this class. It should be provided with
the complete URL to the LUIS endpoint along with text from
the user. The user text is available from the text property of the
activity object.

HttpClient client = new HttpClient()
string RequestURI = "https://westus.api.cognitive.
microsoft.com/luis/v2.0/apps/xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx?subscription-key=xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx&verbose=true&timezoneOffset=0&q=" +
activity.Text;

HttpResponseMessage msg = await client.
GetAsync(RequestURI);

 3. If the LUIS endpoint responds with success code (200 OK),
get the JSON content and deserialize it a into LuiSObject
instance.

var JsonDataResponse = await msg.Content.
ReadAsStringAsync();
 Data = JsonConvert.DeserializeObject<LuiSObje

ct>(JsonDataResponse);

 4. By now, the LuiSObject instance has all the identified intents
and entities from LUIS. It is up to the developer now how he
wants to use them. For the purpose of this sample, the intent
with the highest score is extracted using a LINQ query, and all
entities are looped through to fill the StringBuilder object.

Chapter 9 ■ Natural laNguage proCessiNg

219

Intent itemsMax = Data.intents.Where(x => x.score ==
Data.intents.Max(y => y.score)).First();

sb.Append("intent is " + itemsMax.intent);

foreach (var d in Data.entities) {
 sb.Append("Entity type " + d.type + " has
value " + d.entity + Environment.NewLine);
}

 5. Finally, the content from the StringBuilder object is sent as
the response to the user from the bot.

Figure 9-13 uses Bot Emulator to show an interaction with this bot demonstrating the
driving intent.

Figure 9-13. Interacting with sample LUIS-based bot using Bot Emulator (driving intent)

Here, the intent is driving and entities found were tomorrow, Edinburgh, London,
and a composite entity “London from Edinburgh tomorrow.”

Figure 9-14 shows the flying intent getting used in Bot Emulator.

Chapter 9 ■ Natural laNguage proCessiNg

220

Here, the intent is flying and entities found were tomorrow, Edinburgh, London,
globe airways, and a composite entity “London from Edinburgh via globe airways.”

Creating Intelligent Bots with Dialogs
As seen in the previous chapter, a dialog models a conversational process where the user
exchanges a series of messages with the bot. The MS Bot framework comes with an out
of the box dialog, LuisDialog, that is integrated with LUIS. Using this dialog helps the
developer by eliminating any need to write code explicitly for invoking a LUIS endpoint.
They do not even have to think about JSON parsing or creating classes that can help with
deserializing JSON. These things are automatically taken care of by LuisDialog. This
is the recommend approach when working with and integrating LUIS with Bots. This
example will demonstrate the process of creating a bot using LuisDialog, handling intents
and entities, and passing control to sub-dialogs for each intent. It will also show how to
use global handlers using the Scorable interface.

 1. Create a new bot project in Visual Studio. The first step
should be to update the Bot Builder assemblies with the latest
version. Open Package Manager Console from Tools ➤ NuGet
Package Manager (Figure 9-15) and execute the following:

Install-Package Microsoft.Bot.Builder

Figure 9-14. Interacting with sample LUIS-based Bot using Bot Emulator (flying intent)

Chapter 9 ■ Natural laNguage proCessiNg

221

 2. After the package is updated, create a new class file that would
represent the root dialog for the bot. This dialog will also be
responsible for integrating with LUIS.

 3. Name the class LearningBotDialog. Add Serializable
attribute to it.

 4. Add necessary using statements, including the following:

a. Microsoft.Bot.Builder

b. Microsoft.Bot.Builder.Luis

c. Microsoft.Bot.Builder.Luis.Models

 5. LuisDialog should inherit from the LuisDialog<object>
class.

 6. Add the LuisModel attribute to the class. Also, provide the
LUIS app ID and subscription ID as parameters to LuisModel.
LuisDialog will use both app ID and subscription ID to
invoke the LUIS endpoint internally.

namespace LUISDialog
{
 [LuisModel("xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" ,

"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")]
 [Serializable]
 public class LearningBotDialog :LuisDialog<object>
 {
 }

Figure 9-15. Installing Bot SDK NuGet packages in Visual Studio solution

Chapter 9 ■ Natural laNguage proCessiNg

222

 7. Write a method for each intent that is available in the LUIS
application, with each method decorated with the LuisIntent
attribute. This attribute takes a string parameter representing
the name of the intent. In effect, each of these methods acts as
a handler for the intent it is associated with. This association is
made using the LuisIntent attribute. Since we had three intents,
there are three methods, each associated with an intent.

[LuisIntent("")]
 public async Task None(IDialogContext context,
LuisResult result)
{
 await context.PostAsync("I do not understand

you!!");
 context.Wait(MessageReceived);
}

[LuisIntent("Flying")]
 public async Task Fly(IDialogContext context,
LuisResult result)
{
 await context.Forward(new FlyingDialog(),

AfterMessagehandler, result, CancellationToken.
None);

}

[LuisIntent("Driving")]
 public async Task Ground(IDialogContext context,
LuisResult result)
{
 await context.Forward(new GroundDialog(),

AfterMessagehandler, result, CancellationToken.
None);

}

The None method sends a response directly to the user
because it does not match any custom intent, while the Fly
and Ground methods associated with the flying and driving
intents forward the request to another dialog, and, while
forwarding the request, it sends the LuisResult object along
with it. It is to be noted that the LuisResult class is available
from the Microsoft.Bot.Builder.Luis.Models namespace.
This class contains all intents and entities identified by LUIS,
along with their scored.

Chapter 9 ■ Natural laNguage proCessiNg

223

It is important to understand here that users’ requests do not
land in any of the methods shown before. These methods
are invoked after LUIS has processed and identified the
intents and entities. The request from the user is passed on
to the LuisDialog base class, which connects and invokes
the LUIS endpoint along with the user-provided content.
LUIS identifies intents and entities and sends the response
back to the LuisDialog base class, which fills up the
LuisResult object. The LuisDialog base class then, based
on the LuisIntent attribute value, identifies the appropriate
method handler to fire it. It also sends the LuisResult object
to the handler as a parameter. In effect, the custom Dialog
class inheriting from the LuisDialog base class acts as a
state machine, and based on the returning intent value an
appropriate handler is invoked.

 8. There is an additional method, AfterMessageHandler, that is
invoked after the sub-dialogs have finished their processing.

 private async Task AfterMessagehandler(IDialogContext
context, IAwaitable<bool> result)
{
 bool message = await result;

 context.Wait(MessageReceived);
}

The LuisDialog class provides MessageReceived, a generic
implementation of message handler. The Context.Wait
method ensures that this handler is invoked, which in turn
connects and queries LUIS with the user text, processes
incoming intents and entities, and invokes the appropriate
intent handler.

Both Fly and Ground methods forward requests to
their corresponding sub-dialogs—FlyingDialog and
GroundDialog. Next, it’s time to implement them.

 9. Create a new class and name it FlyingDialog. Add the
Microsoft.Bot.Builder, Microsoft.Bot.Builder.Luis,
and Microsoft.Bot.Builder.Luis.Models namespaces
and inherit the newly created class from the IDialog<bool>
interface. Also, attribute the class with the Serializable
attribute. Note that this class does not implement or inherit
the LuisDialog class. This is a general dialog that we saw in
the previous chapter. Implement the StartAsync method,
available from the IDialog interface, and a handler after
receiving inputs from its parent dialog. This dialog is invoked
when the flying intent is identified by LUIS.

Chapter 9 ■ Natural laNguage proCessiNg

224

namespace LUISDialog
{
 [Serializable]
 public class FlyingDialog : IDialog<bool>
 {
 public async Task StartAsync(IDialogContext

context)
 {
 await context.PostAsync("Thanks for

booking with us!! please confirm your
details");

 context.Wait<LuisResult>(BookFlightTrip);
 }

 private async Task
BookFlightTrip(IDialogContext context,
IAwaitable<LuisResult> result)

 {
 var message = await result;

 StringBuilder sb = new StringBuilder();

 var itemsMax = message.Intents.Where(x
=> x.Score == message.Intents.Max(y =>
y.Score)).First();

 sb.Append("Intent is " + itemsMax.Intent
+ Environment.NewLine + "\n");

 foreach (var d in message.Entities)
 {
 sb.Append("Entity type " + d.Type + "

has value " + d.Entity + Environment.
NewLine + "\n");

 }

 await context.PostAsync(sb.ToString());)

 context.Done<bool>(true);
 }
 }
}

Within the StartAsync method, the bot waits for user inputs,
which in this case come from the parent learningBotsDialog
dialog. The handler BookFlightTickets is invoked when
learningBotsDialog forwards the request to FlyingDialog.

Chapter 9 ■ Natural laNguage proCessiNg

225

Within BookFlightTickets, the LuisResult object is looped
and both intents and entities are extracted. Finally, they are
returned as text to the user using the StringBuilder object.
It is to be noted here that within this method actions like the
actual booking of tickets can be executed.

When using multiple dialogs and weaving them together
explicitly, a call to context.Done should be made to flag that
the current dialog has finished its processing and that it can
be removed from the stack.

 10. Create a new class, GroundDialog, similar to FlyingDialog.
Add the Microsoft.Bot.Builder, Microsoft.Bot.Builder.
Luis, and Microsoft.Bot.Builder.Luis.Models namespaces
and inherit the newly created class from the IDialog<bool>
interface. Also, attribute the class with the Serializable
attribute. Implement the StartAsync method, available from
the IDialog interface, and a handler after receiving inputs
from its parent dialog. This dialog is invoked when the driving
intent is identified by LUIS.

namespace LUISDialog
{
 [Serializable]
 public class GroundDialog : IDialog<bool>
 {
 public async Task StartAsync(IDialogContext

context)
 {
 await context.PostAsync("Thanks for

booking with us!! please confirm your
details");

 context.Wait<LuisResult>(BookGroundTrip);
 }

 private async Task
BookGroundTrip(IDialogContext context,
IAwaitable<LuisResult> result)

 {
 var message = await result;
 StringBuilder sb = new StringBuilder();

 var itemsMax = message.Intents.Where(x
=> x.Score == message.Intents.Max(y =>
y.Score)).First();

 sb.Append("Intent is " + itemsMax.Intent
+ Environment.NewLine + "\n");

Chapter 9 ■ Natural laNguage proCessiNg

226

 foreach (var d in message.Entities)
 {
 sb.Append("Entity type " + d.Type + "

has value " + d.Entity + Environment.
NewLine + "\n");

 }
 await context.PostAsync(sb.ToString());
 context.Done<bool>(true);
 }
 }
}

 11. Open and replace the following code in MessagesController.cs
within the Controllers folder:

ConnectorClient connector = new ConnectorClient(new
Uri(activity.ServiceUrl));
// calculate something for us to return
int length = (activity.Text ?? string.Empty).Length;

// return our reply to the user
Activity reply = activity.CreateReply($"You sent
{activity.Text} which was {length} characters");

await connector.Conversations.
ReplyToActivityAsync(reply);

with the following:

await Conversation.SendAsync(activity, MakeRoot);

Here, the MakeRoot handler is invoked by MS Bot framework
and then starts the process of creating the root dialog.

 12. Implement the MakeRoot method in the MessagesController.cs
class. This method is responsible for creating the root dialog
and putting it on top of the dialog stack. The root dialog for the
current sample is LearningBotDialog.

private static IDialog<object> MakeRoot()
{
 return Chain.From(() => new LearningBotDialog());
}

Chapter 9 ■ Natural laNguage proCessiNg

227

 13. The final step in this example is to implement global
handlers. It is possible to implement generic bot features,
like responding to Hi, Hello, help, and so forth, using LUIS by
creating a greetings intent and populating it with appropriate
utterances. However, generally users input these ancillary
keywords throughout a conversation, so it’s important that
even after such interruptions bots can continue with their
conversation from where they left off. Scorable helps in
implementing such functionality, which we already saw in the
previous chapter.

 14. Implement a class, in this case GreetingsScorable,
implementing all methods of the ScorableBase abstract class.
The Bot framework always checks for scorables before passing
the request to the root dialog. The first method that Bot
framework invokes is the PrepareAsync method. This method
returns the actual text message back to the Bot framework to
show which intent it wants to handle these messages from
the user. The Bot framework calls the HasScore method,
which returns true, to flag that this scorable is interested
in getting invoked when any ancillary text is submitted by
the user. If the HasScore method returns true, the GetScore
method is invoked to evaluate the score. Since we have
only one Scorable class, the GetScore method returns 1.0.
The score from the GetScore method can range from 0 to 1.
Eventually, the PostAsync method is invoked, which in turn
calls HelpDialog and passes the text to be sent to the user.
HelpDialog responds back to the user and removes itself from
the dialog stack. For more details on scorables, please refer to
the previous chapter.

namespace LUISDialog)
{
 public class GreetingsScorable:

ScorableBase<IActivity, string, double>
 {

 private IDialogTask _task;
 public GreetingsScorable(IDialogTask task)
 {
 SetField.NotNull(out _task, nameof(task),

task);
 }
 protected override Task DoneAsync(IActivity

item, string state, CancellationToken token)
 {
 return Task.CompletedTask;
 }

Chapter 9 ■ Natural laNguage proCessiNg

228

 protected override bool HasScore(IActivity
item, string state)

 {
 return state != null;
 }

 protected override double GetScore(IActivity
item, string state)

 {
 return 1.0;
 }

 protected override async Task
PostAsync(IActivity item, string state,
CancellationToken token)

 {
 var message = item as IMessageActivity;

 if (message != null)
 {
 var incomingMessage = message.Text.

ToLowerInvariant();
 var messageToSend = string.Empty;

 if (incomingMessage == "hello")
 messageToSend = "Thanks for

pinging me!! provide details
about your travel";

 if (incomingMessage == "thank you")
 messageToSend = "You are welcome

and can always return back for
further queries and travel
bookings!";

 if (incomingMessage == "goodbye")
 messageToSend = "See you later

but remember to get back if you
want to travel again!!";

 if (incomingMessage == "hi")
 messageToSend = "Thanks for

pinging me!! provide details
about your travel";

 if (incomingMessage == "help")
 messageToSend = "Please provide

from and To location, date of

Chapter 9 ■ Natural laNguage proCessiNg

229

travel to start the conversation
!!";

 var abc = new
HelpDialog(messageToSend);

 var interruption = abc.Void<object,
IMessageActivity>();

 this._task.Call(interruption, null);
 await this._task.PollAsync(token);
 }
 }

 protected override async Task<string>
PrepareAsync(IActivity item,
CancellationToken token)

 {

 var message = item.AsMessageActivity();

 if (message != null && !string.
IsNullOrWhiteSpace(message.Text))

 {
 var msg = message.Text.

ToLowerInvariant();

 if (msg == "hello" || msg == "thank
you" || msg == "goodbye" || msg ==
"hi" || msg == "help")

 {
 return message.Text;)
 }
 }

 return null;

 }
 }
}

 15. Implement the HelpDialog dialog as a normal general dialog
that implements the IDialog<object> interface and its sole
method, StartAsync.

namespace LUISDialog
{
 [Serializable]
 public class HelpDialog : IDialog<object>

Chapter 9 ■ Natural laNguage proCessiNg

230

 {
 private readonly string _messageToSend;

 public HelpDialog(string message)
 {
 _messageToSend = message;
 }

 public async Task StartAsync(IDialogContext
context)

 {
 await context.PostAsync(_messageToSend);
 context.Done<object>(null);
 }

 }
}

 16. The final change needed is to stitch Scorable into the request
pipeline. This is done using the ContainerBuilder IOC
container available from Autofac. This change should be done
in the Application_Start method of Global.asax. Ensure
that this function has the following code:

 GlobalConfiguration.Configure(WebApiConfig.Register);
var builder = new ContainerBuilder();
 builder.RegisterType<GreetingsScorab
le>().As<IScorable<IActivity, double>>().
InstancePerLifetimeScope();
builder.Update(Conversation.Container);

A new instance of ContainerBuilder is created, and
GreetingScorable is registered with it. Implementing this
functionality in the Application_Start method ensures that
the effect is application wide and for all requests.

 17. Interacting with this bot using Bot Emulator is shown next in
Figures 9-16 and 9-17.

Chapter 9 ■ Natural laNguage proCessiNg

231

Figure 9-17. Interacting with sample LUIS-based bot using Bot Emulator (flying intent)

Figure 9-16. Interacting with sample LUIS-based bot using Bot Emulator (driving intent)

Chapter 9 ■ Natural laNguage proCessiNg

232

Here, the intent is driving and entities found were tomorrow, Edinburgh, London,
and a composite entity, “London from Edinburgh tomorrow.”

Here, the intent is flying and entities found were tomorrow, Edinburgh, London,
globe airways, and a composite entity, “London from Edinburgh with globe airways.”

The use of scorables is shown in Figure 9-18.

Figure 9-18. Usage of scorables in Bot framework

When the user types Hi, help, goodbye, hello, and thank you, the scorable kicks in
and takes care of the request but also ensures that any conversation that was interrupted
because of it continues from where it left off.

Summary
Bots are gaining prominence because of two important factors—availability on multiple
channels and ability to converse with users in their natural language form. Bots should
be intelligent enough to understand the meaning of inputs provided by the user. This
makes the bot intelligent and also ensures that users are satisfied using the bot. Without
intelligence, bots will simply become a static search interface that takes commands in an
exact static format. In this chapter, LUIS was introduced, which is part of Azure Cognitive
Services. It helps in defining entities and intents, which subsequently can be consumed
by bots. Bot framework provides constructs that help in easily wiring bots with LUIS
endpoints. There are also advanced features available in Bot framework, like scorables,
which help intercept asides within conversations and return back to the original
conversation. LUIS and bots go hand-in-hand, and writing bots cannot be envisaged
without incorporating LUIS.

233© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_10

CHAPTER 10

Azure Cognitive Services

Bots can be broadly divided into two categories: chat bots and smart bots. Chat bots
respond using a predefined set of rules and hence the responses are limited. For example,
if you build a bot for reserving a table in a restaurant, the bot would always ask the basic
questions of date and time, number of people, and seating preference (indoor/outdoor).
If you throw a random request at the chat bot, it might not respond with a meaningful
message or might just respond with a generic message. Smart bots are more intelligent.
They work with a wide variety of information and generate more human-like responses.
Smart bots are designed to learn from the conversation and provide more-useful
answers as the conversation progresses, leaving the impression of a human-to-human
conversation. Bots can be designed to create smarter responses by using cutting-edge
artificial intelligence algorithms. Authoring AI algorithms is a complex task, requiring
a varied skill set and lots of analysis to build an AI algorithm that can perform tasks like
natural language processing and sentiment analysis or generate recommendations.
Microsoft Cognitive Services provides a basket of AI algorithms that can be integrated
into any application. These algorithms were developed by an expert team and cater
across the fields of computer vision, speech, text analysis, natural language processing,
knowledge extraction, and web search. In this chapter, we will learn to build smarter
bots using Microsoft Cognitive Services and come to understand the capabilities of the
evolving list of powerful AI algorithms.

The following topics will be discussed in this chapter:

•	 Introduction to Microsoft Cognitive Services

•	 Getting started, APIs, language support

•	 Building a Bing web search bot

•	 Building an OCR bot

http://dx.doi.org/10.1007/978-1-4842-3312-2_10

Chapter 10 ■ azure Cognitive ServiCeS

234

Introduction to Microsoft Cognitive Services
Microsoft Cognitive Services is an exhaustive list of intelligent APIs that can be easily
integrated into any type of application. Formerly known as Project Oxford, Microsoft
Cognitive Services is built on top of Azure Machine Learning (ML). Microsoft Cognitive
Services contains highly complicated, state-of-the-art, intelligent ML algorithms exposed
as uniform and simple-to-use REST APIs and available as SDKs for a few languages. REST
APIs can be used in any type of application written in any language just by adding a few
lines of code. With Cognitive Services, Microsoft is aiming to increase the productivity of
every individual and organization by allowing developers to build applications with rich
intelligence by which applications can hear, see, speak, and think like humans. The goal
is to simplify and merge the very complicated ML-based algorithms into the world of
mainstream computing, thus bringing the benefits of AI to every individual.

Microsoft Cognitive Services lets you build all the smartness into the bot application,
which can differentiate your bots from the rest while all the complexity is handled within
the APIs. Bots can integrate with Microsoft Cognitive Services to provide a personalized
and rich conversation experience for the user. They allow you to perform complex
operations like image processing, pattern matching, recommendations, speech-to-
text, tagging images, and so on using simple API calls. Microsoft Cognitive Services is
broadly divided into vision, speech, language, knowledge, and search APIs. Each of these
categories contains discrete APIs catering to various needs. While you are designing your
bots for intelligence or personalization, it is recommended you go through the following
exhaustive list of APIs to see which one fits your needs or which among these can bring
a more personalized and rich conversation experience to your bot. For example, if
I’m building a bot that automatically places an order for my monthly list of prescribed
medicines, I would try to use OCR to read text from digital prescriptions, handwriting
recognition to read text from handwritten prescriptions, speech-to-text to accept
voice inputs from the user, and text analytics and Bing search APIs to provide better
information on the entities extracted from the user’s conversation.

Before you know which APIs to use, you should know the breadth of services
provided by MCS. Table 10-1 lists what each API provides.

Chapter 10 ■ azure Cognitive ServiCeS

235

Table 10-1. Microsoft Cognitive Services API Classification

Vision Computer Vision
API

This API helps you extract actionable information
from the images based on the uploaded image or
the image URL. The Vision API can analyze visual
data and extract textual/objects/analytics in the
form of a JSON response.
For example:

• Identifying objects and living beings in an image

• Categorizing images based on visual aspects into
groups like Indoor, Dark, Sky. Vision API
supports 86 different categories.

• Identifying images as clipart, non-clipart, or
ambiguous

• Recognizing faces, gender, and age in images
with human faces

• Generating descriptions of an image

• Recognizing handwritten text and converting it
into digital format

• Generate thumbnails from an image for different
form factors

• Perceive color schemes in an image

• Flag adult and racy content Extracting text from
image using optical character recognition (OCR)

Emotion API This API can be used to identify emotions like
happiness, sadness, surprise, anger, fear, contempt,
disgust, or neutral in an uploaded image or URL
with human faces. Each human face will also have
a bounding box to help relate the response. The
emotions for each human face are normalized in
such a way that they sum up to 1, so you should
always consider the emotion with higher confidence.
The Emotion API works across all cultures.

Face API This API can be used for face detection and face
recognition in an image. The response contains the
coordinates of the bounded rectangle (left, right,
top, bottom) that indicates the face within an image
and a few face-related attributes, like age, gender,
pose, head pose, facial hair, and glasses. It can also
perform one-to-one face verification, check for similar-
looking faces, and do face grouping, face identification
from a database of faces, and face storage.

Video API This API allows you to detect faces and emotions in
a video or URL of a video. You can also stabilize a
video or generate a thumbnail.

(continued)

Chapter 10 ■ azure Cognitive ServiCeS

236

Speech Bing Speech API This API helps you enable voice input for your
applications. The API allows you to convert speech
to text and vice versa. It supports around 29 different
languages (at the time of writing) for speech to text
and around 40 languages for speech to text.

Speaker
Recognition API

This API provides speaker identification and
verification services. Using speaker identification,
you can provide sophisticated voice-based
authentication to your users. Each user should
enroll by recording a specific phrase; during
authentication the voice for the same phrase is
compared with the voice and phrase (and a few
other features) recorded during enrollment. For
speaker identification, each speaker should be
enrolled by speaking any phrase; for any given voice
input the API compares the voice using the enrolled
list and returns an identity if found.

Language Bing Spell Check
API

This API can be used to provide contextual grammar
and spelling corrections using the web-based spell
checker built using Azure ML. Traditionally, spell
check is performed using dictionary-based rule
sets, as in Microsoft Word, but Bing spell check
uses web documents to provide real-time spelling
and contextual grammar checks. It supports many
sophisticated features like slang, word breaking,
and so forth, which is otherwise not possible with
regular spell checkers.

Text Analytics API This API can be used to perform sentiment analysis
from text, extract key phrases from a sentence using
the Natural Language Processing Kit, extract topics
from a discussion or user review, or do language
detection from a handwritten text (around 120
languages are supported).

Web Language
Model API

This API can be used to build a language model
using the web-scale corpus collected by Bing in
the en-us market. The data set is available as the
XML Web Service; it is divided into four categories,
namely Body Text, Title Text, Anchor Text, and
Query Text.

Linguistics Analysis
API

This API can be used to identify the structure of text.
The following services are provided by the API:
1. Sentence separation and tokenization
2. Part-of-speech tagging
3. Constituency parsing

Table 10-1. (continued)

(continued)

Chapter 10 ■ azure Cognitive ServiCeS

237

Apart from these, Microsoft also allows you to take an early look at their biding
Cognitive Services, like Project Prague, Project Johannesburg, and Project Wollongong; for
more details on each of these projects visit https://labs.cognitive.microsoft.com/.

Knowledge Recommendations
API

This API can be used to recommend items to
your customer based on their activity and the
trained catalog of items in your store. The API
supports scenarios like frequently bought together,
recommend related items, and recommend items
based on customer’s past activity.

Entity-Linking
Intelligence Service

This API can be used to identify entities within a
specific paragraph and context. For example, in the
sentence “The Bermuda Triangle, also known as the
Devil's Triangle, is a loosely-defined region in the
western part of the North Atlantic Ocean,” the API
recognizes entities like “Bermuda Triangle,” “Devil's
Triangle,” and “North Atlantic Ocean.” This can be
combined with Bing Search API to link discovered
entities with contextual information from the web.

Academic
Knowledge API

This API can be used to interpret search queries
related to academic intent using the Microsoft
Academic Graph knowledge base. The knowledge
base is divided into field of study, author,
institution, paper, venue, and event. The MAG
knowledge base is continuously indexed and mined
by using Bing.

Search Bing Search API This API provides search capabilities like Bing.com
that can be integrated into any application. Using
this API, you can perform searches related to web
pages, images, videos, and news. Bing Search API
also provides content-specific APIs for images, web,
videos, and news for more specific search.

Bing Auto-Suggest
API

This API can be used to provide auto-suggest
capabilities for search queries to your users using
data from the web. The suggested terms are picked
from the query searches performed by other users
as well as from user intent.

Table 10-1. (continued)

https://labs.cognitive.microsoft.com/

Chapter 10 ■ azure Cognitive ServiCeS

238

Getting Started
Like any other Azure service, getting started with Azure Cognitive Services is quite easy.
All you need is a Windows Live Account and an Azure subscription. You can also acquire
a free account for MCS by visiting https://www.microsoft.com/cognitive-services/
en-US/subscriptions. The free account provides access to each of the APIs just
described for a period of 30 or 90 days depending on the type of service (Figure 10-1).

Each API contains the threshold limit set for the service, Key 1, and Key 2. For
example, using the free version you can perform a total of 5000 transactions in a period
of 90 days and only 20 per minute. While this may be sufficient for learning, to build a
production bot we should create an account using the following steps:

 1. Sign into the Azure Portal (https://portal.azure.com).

 2. Click +New.

 3. Select AI + Cognitive Services and discover the list of APIs
available under MCS. Click on “See All” to see the complete
list of APIs (Figure 10-2).

Figure 10-1. Cognitive Service API keys

https://www.microsoft.com/cognitive-services/en-US/subscriptions
https://www.microsoft.com/cognitive-services/en-US/subscriptions
https://portal.azure.com/

Chapter 10 ■ azure Cognitive ServiCeS

239

 4. Click on the API of your choice to create an account.

 5. On the Create page, provide the following information:

 a. Account name – The descriptive name of the account.
It is recommended to use the name of the product,
location, and environment in the account name. For
example, contoso_ea_dev_bingsearch.

 b. Subscription – Choose the Azure subscription to be used
to associate with the account. To select a subscription,
you should have at least contributor access.

 c. Pricing tier – Each API comes with multiple pricing tiers;
the cost of the service depends on the pricing tier chosen
here. Each pricing tier also comes with a threshold value.
If the API reaches the threshold, the service is throttled.
Choose a pricing tier that fits the needs of your bot. You
can upgrade/degrade your service tier after provisioning
an account.

Figure 10-2. AI + Cognitive Services on Azure Portal

Chapter 10 ■ azure Cognitive ServiCeS

240

 d. Resource group – Choose an existing resource group or
create a new one. The resource group defines the logical
group of resources the API will fall under and also the
location.

 e. Finally, read and agree to the Microsoft terms and
conditions before clicking Create.

Figure 10-3 shows a Bing Search Cognitive Services account created using Azure Portal.

You can test the service using the API testing console at https://dev.cognitive.
microsoft.com/docs/services/56b43eeccf5ff8098cef3807/operations/56b4447dcf
5ff8098cef380d or by using any HTTP REST client, like fiddler or Postman. Figure 10-4
shows testing the Bing Web Search API using the account just created on an Open API
Testing console. The ocp-Apim-Subscription-key can be obtained by clicking on the
“Show access keys” option.

Figure 10-3. Bing Search Service Azure dashboard

https://dev.cognitive.microsoft.com/docs/services/56b43eeccf5ff8098cef3807/operations/56b4447dcf5ff8098cef380d
https://dev.cognitive.microsoft.com/docs/services/56b43eeccf5ff8098cef3807/operations/56b4447dcf5ff8098cef380d
https://dev.cognitive.microsoft.com/docs/services/56b43eeccf5ff8098cef3807/operations/56b4447dcf5ff8098cef380d

Chapter 10 ■ azure Cognitive ServiCeS

241

The response for this request looks like Figure 10-5.

Figure 10-4. Bing Web Search API testing console

Chapter 10 ■ azure Cognitive ServiCeS

242

The same request can be made from the Postman HTTP client, as shown in
Figure 10-6. The Postman HTTP client can be downloaded from https://www.
getpostman.com/apps.

Figure 10-5. Sample Bing Search response

https://www.getpostman.com/apps
https://www.getpostman.com/apps

Chapter 10 ■ azure Cognitive ServiCeS

243

Figure 10-7 shows where MCS fits into the lifecycle of a bot’s conversation.

Figure 10-6. Invoking Bing Web Search API from Postman

Figure 10-7. Microsoft Cognitive Services and Bot framework ecosystem

Chapter 10 ■ azure Cognitive ServiCeS

244

Building Smart Bots with Bing Web Search
Bing Search APIs allow you to add intelligent search capabilities to your bot, providing
the experience of a Bing-style web search from the bot’s interface. Using the Bing Search
API, the user’s bot conversations can be easily converted to search queries and the
responses can be influenced by knowledge acquired from the web pages, images, video,
and news related to the user’s conversation. Search APIs provide fine-grained control
over the request. With them, we can search the web for location-based information, apply
filters to eliminate adult content, and order the results by a specific date. The Bing Search
API consolidates the searches from web pages, images, videos, and news for any given
search query. The Search API is segregated into more-specific content APIs, like Image
Search API, News Search API, and Video Search API. If you are looking specifically for a
particular type of content, you should use the content-specific API instead. For example,
if you are building a bot that searches for relevant images based on the text entered by the
user as part of the conversation, you can use the Image Search API instead. Bing Search
API is a super set of all the content-specific APIs; however, for a search query Bing Search
only returns relevant results for each of the content types. For example, for a query like
“rainforest colorful birds,” the Bing Search API might return images, web pages, and news
but not videos, because it did not find anything relevant to the search query, whereas the
content-specific APIs would still return videos for the same search query—they just might
not be very relevant.

Let us build a simple web-search bot using Microsoft Cognitive Services’ Bing Search API.

•	 Open Visual Studio as Administrator and create a new bot project
called SearchBot.

•	 Create a new class called SearchDialog in the project.

•	 The following code shows the template for the SearchDialog
class:

namespace SearchBot
{
 using System;
 using System.Threading.Tasks;
 using Microsoft.Bot.Builder.Dialogs;

 [Serializable]
 public class SearchDialog : IDialog<Object>
 {
 public Task StartAsync(IDialogContext context)
 {
 throw new NotImplementedException();
 }
 }
}

Chapter 10 ■ azure Cognitive ServiCeS

245

	 IDialogs is an interface that is used to model a conversation
for the user; it is more flexible for authoring new styles of
conversations. In the below code, an object of SearchDialog is
instantiated and the StartAsync method is called when a new
conversation starts. IDialogContext contains a stack of dialogs
active in the current conversation.

•	 Add the following code to the StartAsync method so that it waits
for the user’s response:

public async Task StartAsync(IDialogContext context)
{
 context.Wait(this.MessageReceiveAsync);
}

The method MessageReceiveAsync acts as a handler whenever a new message
arrives from the user:

public async Task MessageReceiveAsync(IDialogContext dialogContext,
IAwaitable<IMessageActivity> argument)
{
 throw new NotImplementedException();
}

IAwaitable<IMessageActivity> contains the conversation message from the
user. Before we make a call to the Bing Search API, we need to get a Cognitive Services
subscription key from https://azure.microsoft.com/en-us/try/cognitive-services/
my-apis/.

The link shows the keys and the usage limits for each of the cognitive services
subscribed to, as shown in Figure 10-8. Copy Key 1; Key 2 is used as a spare key. The key
acts as an authentication token for our requests to the Bing Search API.

Figure 10-8. Bing Speech API

https://azure.microsoft.com/en-us/try/cognitive-services/my-apis/
https://azure.microsoft.com/en-us/try/cognitive-services/my-apis/

Chapter 10 ■ azure Cognitive ServiCeS

246

To fetch the web-search results, we should make a GET request to the Bing Search API
endpoint: https://api.cognitive.microsoft.com/bing/v7.0/search.

 ■ Note at the time of writing, v7 is still in preview. the reSt endpoint for v5 is https://
api.cognitive.microsoft.com/bing/v5.0/search.

To interact with the Bing Search API, we can use any HTTP client library that
is capable of making HTTPS-based REST calls. In this example, we will be using the
HttpClient class from the System.Net.Http assembly.

using (var httpClient = new HttpClient())
{
 var queryString = HttpUtility.ParseQueryString(string.Empty);

 // Request headers
 httpClient.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",
"{SubscriptionKey}");
}

The subscription key fetched goes as part of the request headers. It acts as an
authentication key and also helps to track the number of requests made. Remember all
the Microsoft Cognitive Service API calls are metered, and there is a limit on the number
of API calls that can be made as part of a free subscription. With the free subscription,
Bing Search API allows you to perform 1,000 transactions per month and up to 7 per
second.

The search query from the user will be used as a request header. Bing Search API
allows a few more request headers, as mentioned in the following table. Each of the
headers adds more context to the search request, like user’s location and client IP, which
can be used to personalize the search response. Table 10-2 shows request headers and
query parameters that can be used with Bing Web Search v7.

https://api.cognitive.microsoft.com/bing/v7.0/search
https://api.cognitive.microsoft.com/bing/v5.0/search
https://api.cognitive.microsoft.com/bing/v5.0/search

Chapter 10 ■ azure Cognitive ServiCeS

247

Query Parameters
To make a Bing Search from a bot application we should create an HTTP GET request,
which comprises the URL, request headers, and query parameters. Table 10-3 shows the
query string parameters that can be appended to the GET request to form a search request.
Each parameter value should be URL encoded before being appended to the request.

Table 10-2. Bing Speech API Request Headers

Header Required Description

Ocp-Apim-Subscription-Key Yes The authentication key obtained by
subscribing for the service.

X-MSEdge-ClientID No (Optional) Bing uses this header to provide a
consistent user experience to users
for requests originating from the same
user on the same device. Bing also uses
this ID to improve the result ranking
by using the activity generated by the
user.

X-Search-ClientIP No (Optional) The IPv4 or IPv6 address of the user’s
device. This is used to discover the
user’s location. Bing uses the location
to determine safe search behavior.

X-Search-Location No (Optional) A semicolon-separated list of
key–value pairs that describe the
client's geographical location. This
information is used by Bing to provide
safe search behavior and location-
relevant information

Chapter 10 ■ azure Cognitive ServiCeS

248

Table 10-3. Query String Parameters

Parameter Required/Optional Description DataType

Q Required Search term String

Mkt Optional The market you want to associate
the request with. It takes the format
of <languageCode>-<countryCode>;
for example, en-US. For full list of
market codes, visit https://docs.
microsoft.com/en-us/rest/api/
cognitiveservices/bing-web-api-
v7-reference#market-codes.

String

Cc Optional A two-character country code
indicating where the results come
from. Bing uses the cc code combined
Accept-Language to show results
with nearest match. Cc and mkt are
mutually exclusive—only one of them
should be included in a request.

String

Count Optional The number of search results to be
included in the response. The actual
number of results can be lesser than
the specified count. You can combine
this with offset to page the results.

Positive
Integer

Answercount Optional The number of answers you want the
response to include. The answers are
filtered based on ranking. This can
be combined with responseFilter
parameter below to filter further.

Positive
Integer

Freshness Optional Filters results by age in terms of day,
week, or month.

String

Offset Optional This zero-based offset can be used to
skip a few results. The default is zero (0).
This parameter can be used along with
Count to page the results.

Positive
Integer

(continued)

https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-web-api-v7-reference#market-codes
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-web-api-v7-reference#market-codes
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-web-api-v7-reference#market-codes
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-web-api-v7-reference#market-codes

Chapter 10 ■ azure Cognitive ServiCeS

249

Bing Search Request
The following code shows how to make a Bing Search API request from a bot application
built in C#:

using (var httpClient = new HttpClient())
 {
 var queryString = HttpUtility.ParseQueryString(string.Empty);

 // Request headers
 httpClient.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-

Key", "ff72d7edc09741c7b350906980ab502a");
 // User agent for PC, this should be extracted from client's

request to Bot application and
 // forwarded to the Cognitive Services API
 httpClient.DefaultRequestHeaders.Add("User-Agent",

"Mozilla/5.0 (compatible; MSIE 10.0; Windows Phone 8.0;
Trident/6.0; IEMobile/10.0; ARM; Touch; NOKIA; Lumia 822)");

 // Bing-generated ID to identify the request
 httpClient.DefaultRequestHeaders.Add("X-Search-ClientIP",

"999.999.999.999");
 // User's location

Parameter Required/Optional Description DataType

Promote Optional A comma-delimited list of results
that you want to promote irrespective
of ranking. For example: news,
video will add news and video to
the search result irrespective of the
answerCount set on the same request.
This parameter is to be used along
with answerCount only. For example:
If you want to get top two ranked
answers and you want to promote
videos within that, you should set
answerCount to 2 and promote to
video.

String

responseFilter Optional A comma-delimited list of results that
you want to include in the result. Use
promote to force include any specific
type of response.

String

safeSearch Optional Use as a filter to exclude adult content.
The possible values are Off, Moderate,
and Strict.

String

Table 10-3. (continued)

Chapter 10 ■ azure Cognitive ServiCeS

250

 httpClient.DefaultRequestHeaders.Add("X-Search-Location",
"lat:17.4761950,long:78.3813510,re:100");

 // Query parameters
 queryString["q"] = message.Text;
 // user's search query
 queryString["count"] = "10";
 // number of results to include
 queryString["offset"] = "0";
 // number of pages to skip
 queryString["mkt"] = "en-us";
 // market to associate the request with
 QueryString["safesearch"] = "Moderate";
 // safe search other possible values are Off and Strict
 queryString["freshness"] = "Day";
 // freshness of the content by Day, Week, Month
 queryString["answerCount"] = "2";
 //
 queryString["promote"] = "Video, News";
 // freshness of the content by Day, Week, Month
 var uri = "https://api.cognitive.microsoft.com/bing/v7.0/

search?" + queryString;
 var responseMessage = await httpClient.GetAsync(uri);
 var responseContent = await responseMessage.Content.

ReadAsByteArrayAsync();
 var response = Encoding.ASCII.GetString(responseContent, 0,

responseContent.Length);
 dynamic data = JsonConvert.DeserializeObject<object>

(response) ;

 }

Figure 10-9 shows the response for the preceding request:

Chapter 10 ■ azure Cognitive ServiCeS

251

To parse the response, you can use any JSON parser for C#, like Newtonsoft.json:
https://www.nuget.org/packages/newtonsoft.json/.

The following code shows how the response is parsed to convert image-search
results to Hero cards:

var replyMessage = dialogContext.MakeMessage();
replyMessage.Attachments = new List<Attachment>();

 foreach (var webPage in data.images.value)
 {
 string name = webPage.name;
 string url = webPage.thumbnailUrl;
 string displayUrl = webPage.contentUrl;
 string snippet = webPage.encodingFormat;
 string hostPageDisplayUrl = webPage.hostPageDisplayUrl;
 DateTime datePublished = webPage.datePublished;
 replyMessage.Attachments.Add(new ThumbnailCard
 {
 Title = name,
 Subtitle = "Date Published: " + datePublished.

ToLongDateString(),
 Images = new List<CardImage> { new

CardImage(displayUrl) },
 Buttons = new List<CardAction> { new

CardAction(ActionTypes.OpenUrl, "Know more", value:
hostPageDisplayUrl) }

 }.ToAttachment());
 }

 await dialogContext.PostAsync(replyMessage);

Figure 10-9. Bing Search response

https://www.nuget.org/packages/newtonsoft.json/

Chapter 10 ■ azure Cognitive ServiCeS

252

Figure 10-10 shows the user experience of this code from Bot Emulator.

If you look through the lens of the HTTP watch tool fiddler, this is how the request looks:

GET https://api.cognitive.microsoft.com/bing/v7.0/search?q=brad+pittt&count=
10&offset=0&mkt=en-us&safesearch=Moderate&freshness=Day&answerCount=2&promote=
Videos%2cNews HTTP/1.1
Ocp-Apim-Subscription-Key: 35c667a6d90049678156ae7d8a064a4d
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows Phone 8.0;
Trident/6.0; IEMobile/10.0; ARM; Touch; NOKIA; Lumia 822)
X-Search-ClientIP: 999.999.999.999
X-Search-Location: lat:17.4761950,long:78.3813510,re:100
Host: api.cognitive.microsoft.com
Connection: Keep-Alive

Figure 10-10. Bing image search

Chapter 10 ■ azure Cognitive ServiCeS

253

Handling Errors
It is very important to consider resiliency when building applications that rely heavily on
services whose availability are not under our control. Though Microsoft guarantees the
availability of services as per their SLA, there could be instances where the service might
fail to respond. In these cases, the errors should be captured and acted upon accordingly.
A few scenarios where the service might fail to respond are as follows:

•	 Invalid/expired subscription key

•	 Missing a required parameter in the request/invalid request

•	 Quota expired

•	 Unexpected server error

In these cases, our bot application should capture the error and convert it into
a user-friendly message so that users are aware of the unavailability and can act
accordingly. If the request fails while connecting to Microsoft Cognitive Services, the
response object will contain all the necessary details. The request can fail as a result of
several errors, in which case the error-response object will contain a list of error objects,
as shown in Figure 10-11.

Figure 10-11. Microsoft Cognitive Services error response

Chapter 10 ■ azure Cognitive ServiCeS

254

The request in the figure has three incorrect parameter values, and aptly the
response type is marked as ErrorResponse, so as a developer you should use this field
to differentiate between a valid response and an error response. Additionally, each
of the error object shows the name of the parameter, value passed for the parameter,
and the message. For more details on error codes and sub-error codes, visit https://
docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-web-api-v7-
reference#error-codes.

Every user who subscribes to Cognitive Service is granted access, with a few
threshold limits called quota per month (QPM) and quota per second (QPS). As a bot
application developer, it is your responsibility to design your application in such a
way that you always stay within these defined limits. The service responds with HTTP
response code 403 if the service exceeds QPM. One way of handling this is to have a pool
of subscriptions and to retry the request with a different subscription key. The service
responds with HTTP response code 429 if the service exceeds QPS, and the service also
includes a Retry-After header, which can be used to retry after a specified number of
seconds. Cognitive Services is smart enough to differentiate between DOS (denial of
service) attack and QPS violations. If the service detects DOS, it responds with 200 OK
and an empty response.

Bing Search contains a generic search option called search and content-specific
API endpoints for images, news, and videos so on. Table 10-4 shows all the available
endpoints and what they provide for v7. If you’re building a bot for a specific response
type, like a Bing image search, you should query the content-specific API rather than
the generic search API. The generic search API responds with all types of content
types matching the search query, which can be filtered further by using attributes like
responseFilter and promote.

https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-web-api-v7-reference#error-codes
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-web-api-v7-reference#error-codes
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/bing-web-api-v7-reference#error-codes

Chapter 10 ■ azure Cognitive ServiCeS

255

Apart from the above list, Bing Search also supports computation- and time
zone–related search queries. For example, the following query returns a computational
response as shown in Figure 10-12:

https://api.cognitive.microsoft.com/bing/v7.0/search?q=how+many+litres+
in+one+gallon&mkt=en-us

Table 10-4. Bing Search API Endpoints

Endpoint Details

https://api.cognitive.microsoft.
com/bing/v7.0/search

The response includes links to images, web
pages, videos, and web searches that are
related to the user’s search query.

https://api.cognitive.microsoft.
com/bing/v7.0/videos/search

Returns videos relevant to user's query

https://api.cognitive.microsoft.
com/bing/v7.0/videos/details

Returns videos along with relevant details like
related videos

https://api.cognitive.microsoft.
com/bing/v7.0/videos/trending

Returns trending videos related to the
query. This can be combined with a market
parameter to get trending videos by market

https://api.cognitive.microsoft.
com/bing/v7.0/images/search

Returns images relevant to user's query

https://api.cognitive.microsoft.
com/bing/v7.0/images/details

Returns images along with relevant details like
web pages that include the image

https://api.cognitive.microsoft.
com/bing/v7.0/images/trending

Returns trending images related to the query

https://api.cognitive.microsoft.
com/bing/v7.0/Suggestions

Returns a list of intent-based auto-suggest
queries that other users have searched;
this can be used to provide a rich search
experience to users

https://api.cognitive.microsoft.
com/bing/v7.0/news

Returns top news articles by category, like
sports, politics, technology, etc.

https://api.cognitive.microsoft.
com/bing/v7.0/news/search

Returns top news articles related to the user’s
search query

https://api.cognitive.microsoft.
com/bing/v7.0/news/trendingtopics

Returns trending topics from social networks

https://api.cognitive.microsoft.
com/bing/v7.0/SpellCheck

Spell-check service lets you perform a spelling
and grammar check on a string

https://api.cognitive.microsoft.com/bing/v7.0/search?q=how+many+litres+in+one+gallon&mkt=en-us
https://api.cognitive.microsoft.com/bing/v7.0/search?q=how+many+litres+in+one+gallon&mkt=en-us
https://api.cognitive.microsoft.com/bing/v7.0/search
https://api.cognitive.microsoft.com/bing/v7.0/search

Chapter 10 ■ azure Cognitive ServiCeS

256

Optical Character Recognition with Computer Vision API
Search forms a very critical component of any data-oriented application. Azure Search is
a popular PaaS service from Microsoft that can be used to build applications with search
capabilities that use various forms of data sources. It helps to perform a quick search from
any form of application using a simple-to-use REST API or C# SDK. Data can be ingested
for search from various relational databases, like SQL, and non-relational databases,
like JSON documents. Text can be extracted from PDFs and MS Word documents and
stored in Azure blob storage for Azure Search. Images also contain text, like the one
shown in Figure 10-13. For example, you might want to create a bot application that
allows doctors to search through patients’ lab records. The data comes from various labs
in the form of digital documents (JPEG, PNG). But what if you want to search text within
images? Extracting text embedded in images is quite challenging, Cognitive Services
helps us solve this problem by offering a simple API called OCR. OCR (optical character
recognition) is a state-of-the-art Intelligent Vision API that can be used to detect and
extract text from images. The service detects over 20 languages today and can auto-detect
the language from the uploaded image.

Figure 10-12. Bing computation search query

Figure 10-13. Sample image with text. Source: izquotes.com

Chapter 10 ■ azure Cognitive ServiCeS

257

Users can upload an image or provide a URL of the image. The image containing the
text should adhere to the following restrictions:

•	 The size of the image must be between 40 × 40 and 3200 × 3200
pixels.

•	 The image cannot be greater than 10 MB.

The accuracy of the text depends on the quality of the image. In the following
example, I’m building a Skype bot that my users can use to upload images with text.
The extracted text is then uploaded to the Azure Search index, which makes it instantly
searchable. Let us start by building the bot application. The following code shows the
sample code for making a request to the OCR vision API:

string _apiUrlBase = "https://westus.api.cognitive.microsoft.com/vision/
v1.0/ocr";
var message = await argument;
string ret = "";
if (message.Attachments != null && message.Attachments.Any())
{
 var attachment = message.Attachments.First();
 using (HttpClient httpClient = new HttpClient())
 {
 // Skype & MS Teams attachment URLs are secured by a JwtToken, so we

need to pass the token from our bot.
 if ((message.ChannelId.Equals("skype", StringComparison.

InvariantCultureIgnoreCase) || message.ChannelId.Equals("msteams",
StringComparison.InvariantCultureIgnoreCase))

 && new Uri(attachment.ContentUrl).Host.
EndsWith("skype.com"))

 {
 var token = await new MicrosoftAppCredentials().GetTokenAsync();
 httpClient.DefaultRequestHeaders.Authorization = new Authentication

HeaderValue("Bearer", token);
 }

 var responseMessage = await httpClient.GetAsync(attachment.ContentUrl);
 using (var httpClient1 = new HttpClient())
 {
 //set up HttpClient
 httpClient1.BaseAddress = new Uri(_apiUrlBase);
 httpClient1.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",

"5c3911e21d464982a8f5f1272d294cc3");
 HttpContent content = responseMessage.Content;
 content.Headers.ContentType = new MediaTypeWithQualityHeaderValue

("application/octet-stream");
 var response = await httpClient1.PostAsync(_apiUrlBase, content);
 var responseContent = await response.Content.ReadAsByteArrayAsync();
 ret = Encoding.ASCII.GetString(responseContent, 0,

responseContent.Length);

Chapter 10 ■ azure Cognitive ServiCeS

258

 dynamic image = JsonConvert.DeserializeObject<object>(ret);
 }
 }
}

The above code ensures that the request contains an image as an attachment and
uploads the image as a series of bytes with the appropriate media type as the content
header. Figure 10-14 shows the sample response from the service. The response contains a
region array, which identifies the regions where the text was available on the image, along
with the coordinates of the region, which are specified in the boundingBox attribute. Each
region contains lines, and lines are made up of words. Again, each line and box contains
the boundingBox attribute, which specifies the coordinates of the words within the image.

The following is the sample code that parses the response from all the regions
available on the image and extracts the complete sentence. Figure 10-15 shows the result.

 string temp = "";
 foreach (var regs in image.regions)
 {
 foreach (var lns in regs.lines)
 {
 foreach (var wds in lns.words)

Figure 10-14. OCR response

Chapter 10 ■ azure Cognitive ServiCeS

259

 {
 temp += wds.text + " ";
 }
 }
 }
 await context.PostAsync($"The text found is '{temp}' ");

In some cases, an image can contain text oriented at an angle. OCR can handle
such cases by rotating the image before extracting the text, which can be done by setting
detectOrientation to true in the request headers. If OCR rotates the image before
extracting text, the angle of rotation (when rotated clockwise around the center of the
original image) for each text is included in the response. Post rotation, the orientation
property included in the response should provide the direction of the text within the
image (up, down, left, and right) relative to the rotated image or text angle. If the image
contains texts at multiple angles, only one of them will be extracted.

The text extracted in the form of words, lines, and regions can be combined to make
a complete sentence, which can then be used in various ways; for example, it can be
ingested into the Azure Search index, as shown in the following code. This allows your
users to search images based on the text contained within them or perform trend or
common data analysis based on the extracted text. For example, if it is a lab report, I can
group the information by blood groups and do more interesting analysis, like classifying
vitamin deficiency among various age groups and so on.

Figure 10-15. Conversation with OCR bot using Bot Emulator

Chapter 10 ■ azure Cognitive ServiCeS

260

// Azure search index endpoint
string _searchAPIBaseURI = "https://mcs-ocr.search.windows.net/indexes/
ocrindex/docs/index?api-version=2016-09-01";

// request body for inserting data into Azure Search
JObject postData = new JObject();
dynamic indexData = new JObject();
indexData["@search.action"] = "upload";
indexData.id = Guid.NewGuid().ToString();
indexData.value = temp;
postData["value"] = new JArray(indexData);

using (var httpClient2 = new HttpClient())
{
 httpClient2.BaseAddress = new Uri(_searchAPIBaseURI);
 httpClient2.DefaultRequestHeaders.Add("api-key",

"3A3D68FC446694903A0CCB62E5C94EC9");
 var response = await httpClient2.PostAsJsonAsync<JObject>

(_searchAPIBaseURI, postData);
}

Summary
Microsoft Cognitive Services (formerly called Project Oxford) is a collection of APIs built
on top of Azure ML to provide rich and intelligent services to developers. It enables
developers to integrate into their bots intelligent algorithms built for emotion and video
detection, facial expression detection, speech and vision recognition, natural language
processing, and many more. The pricing model is scoped individually for each service.
Based on the pricing model chosen, each service contains QPS (quota per second)
and QPM (quota per month) values that act as thresholds for the service. More details
on pricing are available at https://azure.microsoft.com/en-in/pricing/details/
cognitive-services/.

Bot applications can easily integrate with MCS and access different services, like
image analysis, natural language processing, or speech-to-text conversion, using HTTP/
REST calls. Based on the channel chosen for your bot, you can choose any API; for
example, if you are creating a bot for Skype for Business users, you can use the speech-to-
text conversion service for voice calls.

Developers can learn to integrate with any service by creating a trial account at
http://microsoft.com/cognitive-services/en-US/subscriptions. In order to create a
new service, you can log in to Azure Portal at https://portal.azure.com and search for
Cognitive Services.

https://azure.microsoft.com/en-in/pricing/details/cognitive-services/
https://azure.microsoft.com/en-in/pricing/details/cognitive-services/
http://microsoft.com/cognitive-services/en-US/subscriptions
https://portal.azure.com/

261© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2_11

CHAPTER 11

Bot Operations

Bots are essentially web APIs and need a container in which to be deployed. The
container could be a virtual machine or a managed hosted platform as a service (PaaS).
Often, bots are hosted on a certain PaaS. Azure provides app services that form a rich
platform for hosting bots created using MS Bot framework. Azure also provides Bots as a
Service, and Azure functions can be used to write bots quickly.

Authoring a bot solves one large piece of the overall puzzle. The other big piece is to
manage your bot appropriately. Monitoring, administrating, and managing are equally
important to the success of the bot in the long run.

This chapter focuses on the monitoring and management aspects of bots.
Microsoft provides Application Insights as a universal service for monitoring and

providing rich information about applications, including bots.

Application Insights
Application Insights is Microsoft’s flagship service for managing applications across
platforms, languages, operating systems, and locations. Application Insights provides
many rich monitoring and management capabilities; it can be used for any kind of
application on any platform. It provides real-time streaming of incoming data, analytics,
application maps, performance information, availability results, and more.

Application Insights installs a small footprint binary in the application. The role of
this agent is to gather instrumentation and log information from the application and
its ecosystem and send it across to the service hosted on Azure. The service provides
rich reports and dashboard features for advanced visualization of incoming data and to
generate insights. Moreover, the raw data can further be consumed by multiple platforms
like Power BI, webhooks, and the generation of alerts. The architecture of Application
Insights is shown in Figure 11-1.

http://dx.doi.org/10.1007/978-1-4842-3312-2_11

Chapter 11 ■ Bot operations

262

Since Application Insights is an Azure resource, having a valid working Azure
subscription is a pre-requisite for working with it. The free Azure trial subscription is
available using multiple channels and can be explored.

More information about Application Insights is available at https://docs.
microsoft.com/en-us/azure/application-insights/app-insights-overview.

Getting Started
In this section, we will add the Application Insights feature and binaries to an existing bot
application. We created the SimpleDialogExample bot in previous chapters and will use it
to show how to monitor and manage using Application Insights.

Figure 11-1. Application Insights architecture overview

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview

Chapter 11 ■ Bot operations

263

Open the project SimpleDialogExample, right-click on the project, and choose
“Application Insights Telemetry,” as shown in Figure 11-2.

This will initiate the process of enabling Application Insights for the bot, as shown in
Figure 11-3.

Figure 11-2. Adding Application Insights feature to bot application in Visual Studio

Chapter 11 ■ Bot operations

264

Click on the Start Free button to get started. It will show any existing Microsoft
account or work or school account. Select an appropriate account, subscription, and
resource. It also shows cost information for data transmission to Azure. This is shown in
Figure 11-4. The agent at the application side can stop sending telemetry information
after 1 GB/month, or they can continue to send.

Figure 11-3. Application Insights start screen in Visual Studio

Chapter 11 ■ Bot operations

265

The resource can be further configured as shown in Figure 11-5 by clicking on
the “Configure” link and providing a custom resource group name, application insight
instance name, and location. The location should ideally be the same as that of the
location of the app service hosting the bot.

Figure 11-4. Configuring Application Insights in Visual Studio

Chapter 11 ■ Bot operations

266

Clicking on “Register” will download the necessary Application Insights binaries and
add to the project the required references. The dashboard shows that Application Insights
is getting added to the project, as shown in Figure 11-6.

Figure 11-6. Application Insights dashboard in Visual Studio

Figure 11-5. Customizing Application Insights configuration in Visual Studio

The post Application Insights installation screen is shown in Figure 11-7. Trace
collections from the bot can be further configured from this screen, but it can be
configured later as well.

Chapter 11 ■ Bot operations

267

The project structure gets updated with Application Insights artifacts, as shown in
Figure 11-8.

Figure 11-7. Application Insights post-installation screen and status

Chapter 11 ■ Bot operations

268

The Application Insights configuration, portal, and other telemetry information is
available by right-clicking on the Application Insights folder, as shown in Figure 11-9.

Figure 11-8. Bot solution structure after installation of Application Insights in Visual
Studio

Chapter 11 ■ Bot operations

269

Now, if we log in to our Azure subscription, an Application Insights resource is
provisioned based on the configuration information provided earlier. The Azure Portal
showing Application Insights is shown in Figure 11-10.

Figure 11-9. Opening Application Insights portal from Visual Studio

Figure 11-10. Application Insights provisioned in Azure

Clicking on an Application Insights resource will take you into its dashboard on
Azure Portal, as shown in Figure 11-11.

Chapter 11 ■ Bot operations

270

Further configuration can be performed using the Configure Application Insights
menu. Trace logs can be enabled from here, as shown in Figure 11-12.

Figure 11-11. Application Insights configuration options in Azure

Figure 11-12. Enabling trace collection using Visual Studio

Chapter 11 ■ Bot operations

271

Live telemetry information can be viewed using the “Search Live Telemetry” option,
as shown in Figure 11-13.

Figure 11-13. Application Insights telemetry information in Visual Studio

Important point to realize here is that all telemetry and insight information is
available within Visual Studio as well as centrally in Azure Portal. Apart from this, this
data can be consumed by custom applications for further custom analysis.

Configuring Application Insights is a first but important step for monitoring the
following:

•	 Request rates, response times, and failure rates

•	 Exceptions

•	 Load performance

•	 User and session counts

•	 Performance counters such as CPU, memory, and network usage

•	 Custom events and metrics

However, a bot needs additional monitoring capabilities, and that is the topic of
discussion of the next section.

Enable Bot Analytics
Now that basic monitoring is in place, it’s time to concentrate on bot-specific monitoring.
Microsoft provides a centralized registry of all bots at https://dev.botframework.com/.
Registering your bot at this location helps it get discovered and provides advanced
monitoring functionality.

The first step to enabling advanced analytics is to register the bot on this portal.

https://dev.botframework.com/

Chapter 11 ■ Bot operations

272

Log in to https://dev.botframework.com/ with valid credentials to register your
bot. Click on the Create a Bot button from the My Bots menu and fill in the displayed
form.

The Configuration section is important, and new AppID and password should be
generated, as shown in Figure 11-14.

Figure 11-14. Registering bot at central bot registry

The Analytics section should be filled with the following:

•	 Application Insights instrumentation key

•	 Application Insights API key

•	 Application Insights application ID

All three values are available from Azure Portal within the Application Insights
resource instance.

The Application Insights instrumentation key is available from the Properties menu
of Application Insights, as shown in Figure 11-15.

https://dev.botframework.com/

Chapter 11 ■ Bot operations

273

Both the Application Insights API key and the Application Insights application ID are
available from the API Access menu in Application Insights (Figure 11-16). You will have
to generate a new key by clicking on the Create API Key button (Figure 11-16).

Figure 11-16. Taking note of Application Insights application ID in Azure Portal

Figure 11-15. Taking note of Application Insights instrumentation key

Chapter 11 ■ Bot operations

274

Both application ID and key should be used to further configure the bot while
registering it at Developer Portal, as shown in Figure 11-17.

Figure 11-17. Enabling analytics at bot registration portal

After registering the bot, the dashboard shows the default channels configured for
the bot, as shown in Figure 11-18.

Figure 11-18. Bot registration dashboard

The Analytics menu should be enabled now, and clicking on it will take you to its
dashboard. Analytics is an extension of Application Insights. Application Insights must
be enabled and configured before using the Analytics dashboard. While Application
Insights is broad-based and provides service- and application-level instrumentation and
analytics, Analytics provides a bot’s conversation-level analytics and instrumentation
information.

Clicking on the down arrow button on the menu will display the monitoring of all
channels, as shown in Figure 11-19. This should be configured based on the channels the
bot is hosted on.

Chapter 11 ■ Bot operations

275

The administrator can also select the time period for which the data is of interest, as
shown in Figure 11-20.

Figure 11-21. Dashboard showing number of users and messages interacting with bot

Figure 11-20. Analytics configuration for data availability time period

Figure 11-19. Analytics configuration for available channels for bot appliction

Further, it also provides the number of messages and users using the bot, as shown
in Figure 11-21.

It also provides a nice view of user retention, as shown in Figure 11-22. It shows how
many users who were involved in a conversation sent follow-up messages after the first
message. The chart is a rolling ten-day window.

Chapter 11 ■ Bot operations

276

The Users chart, as shown in Figure 11-23, shows the number of users on various
channels.

Figure 11-23. Chart showing number of users consuming bot on different channels

Figure 11-22. Report showing number of users who interacted with bot continuously

The messages chart, as shown in Figure 11-24, shows the number of messages on
various channels.

Chapter 11 ■ Bot operations

277

Advanced Analytics
Even after configuring both Application Insights and Bot Analytics, there are use cases
that are still not covered from a monitoring and insights perspective. Imagine a bot is
using LUIS features, and the bot’s stakeholders are interested in knowing about the
following:

•	 How well are LUIS intents getting used!

•	 What are the conversion ratios?

•	 Execute some sentiment analysis to find users’ satisfaction using
bot and company services.

There is an open source tool called ibex available at https://github.com/
CatalystCode/ibex-dashboard. It is an open source tool built using Node.js and react.
It is built on top of Application Insights and so it is a must to be provisioned before
deploying this tool.

It provides relevant information on intent usage, sentiment analysis, channel usage
and activity, and the rate of messages, as shown in Figure 11-25.

Figure 11-24. Chart showing number of messages received by bot on different channels

https://github.com/CatalystCode/ibex-dashboard
https://github.com/CatalystCode/ibex-dashboard

Chapter 11 ■ Bot operations

278

Figure 11-25. Bot advanced analytics tool iBex dashboard

Summary
Bots have become the new face of organizations, and it is extremely important to monitor
and manage them well. It can seriously dampen an organization’s value if the bot does
not perform and interact as expected. Moreover, what cannot be measured, cannot
be improved. Ensuring that the bot keeps learning from its past data and telemetry
information and keeps adapting and improving itself is the key for its success in engaging
its users and customers. Azure provides Application Insights and advanced bot analytics
to ensure that organizations can fetch and view appropriate telemetry information from
the bot’s platform and the bot itself to find any deviation and degradation. It helps to take
proactive as well as reactive steps to keep bots alive and kicking. This is an important
activity, and if you are doing any serious bot development and deployment, the
monitoring of your bot should not be ignored.

279© Srikanth Machiraju and Ritesh Modi 2018
S. Machiraju and R. Modi, Developing Bots with Microsoft Bots Framework,
https://doi.org/10.1007/978-1-4842-3312-2

��������� A
Autofac Inversion of Control (IoC), 169
Azure App Service, 38
Azure bot service

boilerplate templates, 12
configuration, 11
development experience, 13
LUIS bot, 13
proactive Bot, 14
QnA bot, 13

Azure cognitive services
AI + cognitive services, 239
API classification, 235–236
API keys, 238
Bing Web Search, 240–241
Bot framework ecosystem, 243
chat and smart bots, 233
handling errors

API endpoints, 254–255
Bing computation search query, 256
bot application, 253
error-response object, 253
optical character

recognition, 256–260
QPM and QPS, 254

Postman HTTP client, 242
REST APIs, 234

Azure Functions, 12
Azure machine learning (ML), 234

��������� B
Bing Speech API, 123, 141, 150

account creation, 143
audio stream to server, 145
Azure Storage account, 147
billing, 150

keys, 144
NuGet package, 144
OnConversationError event, 145
OnRecordCompletedAsync event

handler, 144
PhraseResponse, 146
Power BI report, 149
pricing options, 142
registered callback, 146
speech recognition mode, 145
STT response, 147
on Windows 10, 148

Bing Web Search
Bing Speech API, 245, 247
bot application, 249–250
bot’s interface, 244
image search, 251–252
MessageReceiveAsync method, 245
Microsoft Cognitive Services, 244
query parameters, 247–249
search response, 251

Bot Builder SDK, 19, 31, 52
Bot Connector Service, 19, 52, 148
Bot Developer Portal, 52
Bot Emulator, 110, 139, 189

attachment, 108, 111
Carousel in, 114
Hero card, 112
Thumbnail card, 113

BotId property, 42
Bot operations

abuse, 17
analytics configuration, 274–275
Application Insights

architecture, 261–262
artifacts, 267–268
configuration, 265, 271
dashboard, 266

Index

■ INDEX

280

Azure Portal, 269–270, 273
bot registration, 274
channels, 8
chat and AI, 6
chat-based applications, 5
conversations, 181
CUI-based software application, 6
customizing application, 266
directory, 8–9
enabling trace collection, 270
face AI bot, 10–11
features, 181
frameworks, 16
IOT, 16
LUIS features, 277
open Application Insights

portal, 268–269
properties menu, 272–273
registering bot, 272
Search Live Telemetry

option, 271
SimpleDialogExample, 263
start screen, 263–264
summarize, 9
time period, 275
user interface, 181
users and messages, 275–277

Bots, .NET Core, 19
application life cycle, 28

activity object, 30
best practices, 20
bootstrapping activities, 29
Bot Builder SDK, 31
conversations, 22–23
events, 29
Global.asax.cs, 28
NuGet package, 31
POST request, 29–30
pre-built method, 31
root dialog, 22

architecture, 31–32
authentication, 32–33
building, 33

Appointment class, 35
conversation, 37
conversationUpdate, 34
prompt attribute, 36
RootDialog, 33–34

configure channels, 45–46
Developer Portal, 47
Skype bot, 47–50
web chat, 50–52

deploy to Azure, 38
Azure App Service, 38
creating account, 39
diagnostics and logging details, 41
doctor appointment bot, 42
publishing, 38
steps, 38–41
Visual Studio Web Deploy, 40

development environment
applications, 24–25
Bot Emulator, 25–26
debugging bot application, 27–28
testing bot, 26–27
tools and SDKs, 23–24

registering, 42
BotId property, 42
configuration section, 43–44
Developer Portal, 42
ID and password, 44–45

��������� C
CachingBotDataStore object, 165
ChannelData property, 97
Channels, 75

bot, 75–77
channel data, 78, 80
chat bot using email client, 80

application, 80
Bot Emulator, 83
configuration, 85
getWeatherdetails helper

function, 82
MessageReceivedAsync

function, 81, 82
openweathermap.org, 86
serializing, 80–81

chat bot using slack channel and API
Developer Portal, 87–88
multi-dialog bot, 89–94
onboarding, 95–96
remote debugging on

development machine, 96–97
sample response, 88
on Windows 10, 87

Bot operations (cont.)

■ INDEX

281

configuration, 76
Get bot embed codes link, 77
issues, 77

Chat bot
using email client, 80

application, 80
Bot Emulator, 83
configuration, 85
getWeatherdetails helper

function, 82
MessageReceivedAsync

function, 81, 82
openweathermap.org, 86
serializing, 80–81

using slack channel and API
Developer Portal, 87–88
multi-dialog bot, 89–94
onboarding, 95–96
remote debugging on

development machine, 96–97
sample response, 88
on Windows 10, 87

Cognitive services, 204
Conventional UI, drawbacks, 3–5
Conversational user interface

(CUI), 5–7
Conversations, 99

activity, 101
bots with

attachments, 105–111
buttons, 116
Carousal, 114–115
Hero card, 111–112
prompts, 116–119, 121
Thumbnail card, 113–114

channels, user and bot, 102
messages, 100–101, 103
under hood, 103, 104

Creating intelligent bots
with dialogs, 220–223, 225–230, 232
without dialogs, 215, 217–220

CUI-based software application, 6

��������� D
Dialog bot, building, 184

MessagesController.cs, 188–189
SimpleDialog.cs, 184, 186–188

Dialog context, 183

Dialog model, 181
IBotContext, 183
IBotData, 182
IBotTouser, 182
IDialogStack, 182

Dialog stack, 183
Direct Line API, 15–16

��������� E
EchoBot, 26

��������� F
FormBuilder, 199

conditional fields, 200
customizing the prompts, 199, 200

FormFlow, 195
data types, 196
features bot, 199
FormFlow bot, 196–199

��������� G, H
Generic language models, 203

��������� I, J, K
Interactive Voice Response (IVR), 126
Internet-based voice calling (VOIP), 123
Internet of Things (IOT), 16
IVRBot class, 128
IVROptions, 135

��������� L
Language Understand Intelligent Service

(LUIS), 203, 204
entities, 205
features, 206
intents, 204

add entities, 208
add intents, 207
add utterances, 209
create application, 206
publish, 210
sample application, 211–214
train and test, 210

utterances, 205

■ INDEX

282

��������� M
Microsoft Bot framework, 7–8
Microsoft Cognitive Services, 52
Multi-dialog Bots, creating, 189

antonym.cs, 194
combined dialogs, 190
Façade dialogs, 190
MessagesController.cs, 195
nested dialogs, 190
RootDialog.cs, 192–193
scenario, 190
solution, 191
support.cs, 195
synonym.cs, 194

��������� N
Natural language processing (NLP), 203

cognitive services, 204
creating intellegent bots, 215, 218–227,

229–230, 232
LUIS, 204–214

Ngrok, 139–141
Node.js

App Service settings, 72
attachment prompt, 66
Azure, 69–73
bot channels, 73
Bot Emulator, 56, 58–59
bot registration, 71
Confirm() method, 65
debugging, VS code, 60
deployment credentials, 70
development environment, 54
dialogs, 61
input choice, 64
IPromptOptions.listStyle property, 64
LUIS/Azure Cognitive Services, 53
Message builder class, 67–68
Message.sourceEvent() method, 67
node_modules, 56
NPM command prompt, 54
NPM init, 55
number prompt, 66
Pizza Bot built, 63
prompts, 62–63
routing pattern, 57
session.beginDialog(), 62
start bot application built, 58

state, 68–69
text Input, 65
time prompt, 66
UniversalBot class, 57
user interface (UI), 64
Visual Studio Code, 54–59
Waterfall model, 62

node_modules, 56
NoSQL APIs, 166

��������� O
Optical character recognition

(OCR), 235, 256–260

��������� P
Platform as a service (PaaS), 261
Proactive Bot template, 14

��������� Q
Quota per month (QPM), 254
Quota per second (QPS), 254

��������� R
Recipient property, 102
ReplyToID property, 103
Rootdialog, 183

��������� S, T
Service-level agreements (SLAs), 166
Skype calling bots, 123

building, 126
for Business bot, 76
callback event, 128
CallingController, 127–128
CallingConversation class, 128
Contoso, 126
Controllers folder, 127
interface ICallingBot, 129–130
IVR, 126
IVRBot service, 128, 129
OnIncomingCallReceived

event, 128
debugging using Ngrok, 139–141
enabling calling, 125
overview, 124

■ INDEX

283

sequence of events, 130
Application Insights and Azure

blob/table storage, 138
callable bot application, 131
CallingBotService events, 132
CollectDigits property, 135
Dispose method, 138
GetPromptForText

method, 133
InitialSilenceTimeoutIn

Seconds property, 134
multi-user environments, 133
OnIncomingCallReceived

event, 133
OnPlayPromptCompleted

event, 134
OnRecognizeCompleted

event, 135
OnRecordCompletedAsync

event, 137
prompt class, 133–134
recognize action, 134
workflow, 130

speech-to-text using Bing
Speech API, 141

account creation, 143
audio stream to server, 145
Azure Storage account, 147
keys, 144
NuGet package, 144
OnConversationError

event, 145
OnRecordCompletedAsync

event handler, 144
PhraseResponse, 146
Power BI report, 149
pricing options, 142
registered callback, 146
speech recognition mode, 145

STT response, 147
on Windows 10, 148

use cases, 124–125
Skype Calling SDK, 149
StartAsync method, 159
StateClient object, 153–154, 180
Stateful service, 151
Stateless service, 151
State management, 151

control over state with dialogs, 162
asynchronous functions, 163
Bot Application template, 162
cityname property, 163
MessageController code, 165
rating property, 163
StartAsync method, 162
StateSampleDialog, 162
username property, 163

Cosmos DB, 165
custom state data store, 166–173
IBotDataStore interface, 166
overview, 166
table storage, 173, 175–179

state service, 153–154
stores for, 152

Conversation data, 152
Private Conversation data, 152
User data, 152

storing and retrieving state
using dialogs, 158–160, 162
using StateClient, 155–157

��������� U
User interface (UI), 2–3, 19

��������� V, W, X, Y, Z
Virtual machine (VM), 38

	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Target Audience
	Chapter 1: Conversations as Platforms
	Types of User Interfaces
	Drawbacks of Conventional UI
	Conversations as Platform
	Introduction to Microsoft Bot Framework
	Meet a Few Bots
	Summarize
	Your Face

	Azure Bot Service
	LUIS Bot
	QnA Bot
	Proactive Bot

	Direct Line
	IOT and Bots
	Other Bot Frameworks
	Bot Abuse
	Summary

	Chapter 2: Develop Bots Using .NET Core
	Designing Bot Applications
	Setting Up the Development Environment
	Testing the Bot
	Debugging the Bot Application

	Bot Application Life Cycle
	Bot Architecture
	Bot Authentication
	Building a Bot
	Deploy Bot to Azure
	Register the Bot
	Configure Channels
	Configuring Skype Bot
	Configuring Web Chat

	Summary

	Chapter 3: Develop Bots Using Node.js
	Setting Up a Development Environment
	Build Hello World Bot Using VS Code
	Debugging Using VS Code
	Building Bots with Conversations
	Dialogs
	Prompts
	Input Choice
	Text Input
	Confirm
	Number
	Time
	Attachment

	Messages
	State

	Deploying to Azure
	Summary

	Chapter 4: Channels
	Channels and Channel Data
	Channel Data

	Build a Chat Bot Using an Email Client
	Build a Chat Bot Using Slack Channel and API
	Multi-dialog Bot Using Slack and Slack Channel Data
	Onboarding a Slack Bot
	Remote Debugging Slack Bot on Development Machine

	Summary

	Chapter 5: Bot Conversations
	Understanding Conversations
	Messages
	Activity
	Relationship Between Channels, Conversation, User, and Bot
	Message Under the Hood
	Conversation Under the Hood

	Building Bots with Conversations
	Attachments
	Hero Card
	Thumbnail Card
	Carousal
	Buttons
	Prompts

	Summary

	Chapter 6: Skype Calling Bot
	Introducing Skype Calling Bots
	Use Cases for Skype Calling Bots
	Enabling Calling for Your Bot
	Building a Skype Calling Bot
	Sequence of Events
	Debugging Skype Calling Locally Using Ngrok
	Speech-to-Text Using Bing Speech API
	Summary

	Chapter 7: Storing State
	Stores for Bot State
	State Service
	Storing and Retrieving State Using StateClient
	Storing and Retrieving State with Dialogs
	More Control over State with Dialogs
	Custom State Data Store
	Overview of Cosmos DB
	Cosmos DB as Custom State Data Store
	Table Storage as Custom State Data Store

	Summary

	Chapter 8: Dialogs
	The Dialog Model
	IBotData
	IBotTouser
	IDialogStack
	IBotContext

	Dialog Stack
	Dialog Context
	Root Dialog
	Building a Simple Dialog Bot
	SimpleDialog.cs
	MessagesController.cs

	Creating Multi-Dialog Bots
	Scenario
	Solution
	RootDialog.cs
	Synonym.cs
	Antonym.cs
	Support.cs
	MessagesController.cs

	FormFlow
	Building a Simple FormFlow Bot

	FormBuilder
	Customizing the Prompts
	Customizing the Order of Prompts
	Conditional Fields

	Summary

	Chapter 9: Natural Language Processing
	Cognitive Services
	LUIS
	Intents
	Entities
	Utterances
	Features
	LUIS Development Lifecycle
	Create Application
	Add Intents
	Add Entities
	Add Utterances
	Train and Test
	Publish

	Sample Application
	Creating Intelligent Bots
	Creating Intelligent Bots Without Dialogs
	Creating Intelligent Bots with Dialogs

	Summary

	Chapter 10: Azure Cognitive Services
	Introduction to Microsoft Cognitive Services
	Getting Started
	Building Smart Bots with Bing Web Search
	Query Parameters
	Bing Search Request

	Handling Errors
	Optical Character Recognition with Computer Vision API

	Summary

	Chapter 11: Bot Operations
	Application Insights
	Getting Started
	Enable Bot Analytics
	Advanced Analytics
	Summary

	Index

