
Roland Best

Costas 
Loops
Theory, Design, and Simulation



Costas Loops



Roland Best

Costas Loops
Theory, Design, and Simulation

123



Roland Best
Oberwil
Switzerland

Additional material to this book can be downloaded from
http://www.springerlink.com/978-3-319-72008-1

ISBN 978-3-319-72007-4 ISBN 978-3-319-72008-1 (eBook)
https://doi.org/10.1007/978-3-319-72008-1

Library of Congress Control Number: 2017959923

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The Costas loop has been invented in 1956 by an American engineer J. P. Costas.
His original circuit was used for the synchronous demodulation of double-sideband
amplitude-modulated signals with suppressed carrier. What Costas designed that
time was a variant of the phase-locked loop (PLL), a circuit that had been known
long before. We will see later why the conventional PLL failed in such an appli-
cation. Today, Costas loops are mainly used for the detection of signals by making
use of digital modulation techniques, such as binary phase shift keying (BPSK). It
showed up that a BPSK signal has very similar properties like the formerly men-
tioned amplitude-modulated signal. Later, the Costas loop was extended for the
application in quadrature phase shift keying (QPSK) and also in m-ary PSK. Costas
loops are also found today in the demodulation of quadrature amplitude modulation
(QAM) signals.

Like the PLL, the Costas loop is a synchronizing device. The incoming signal in
both systems is usually a carrier having frequency fC that is modulated with the
transmitted signal. Both Costas loop and PLL incorporate a local oscillator, oper-
ating at frequency fLoc, and this frequency is controlled in such a way that it locks
onto the carrier in both frequency and phase, hence the name “phase-locked loop.”
When a data transmission starts or when a PLL or Costas loop is switched on, the
initial frequency fLoc is not yet synchronized to the carrier frequency, but it must
first get locked to that frequency. This process is referred to as acquisition process.
With the PLL, two different acquisition processes have been defined: (1) the rel-
atively fast lock-in process and (2) the slower pull-in process. For the PLL, a
quantity called lock range fL has been defined. When the initial frequency of the
local oscillator is within that lock range, the system will lock within at most one
beat note between carrier frequency fC and initial local oscillator frequency fLoc.
The time to get locked is called lock time TL. When the initial frequency of the local
oscillator is outside the lock range but within another range called pull-in range fP,
acquisition will still take place but is much slower. The time required for the pull-in
process is called pull-in time TP. The dynamic performance has been extensively
investigated in case of the PLL; here, the designer can make use of equation
enabling to compute all these parameters (lock range, lock time, pull-in range,
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pull-in time) explicitly as a function of loop parameters such as natural frequency
fn, damping factor f and gain factors of building blocks such as phase detector or
voltage-controlled oscillator (VCO). Such equations enable the designer to tailor
his/her device in order to fulfill a number of given requirements, e.g., locking
within, say, 20 ls.

It is surprising that this dynamic analysis has never been performed for the
Costas loop, although it has been described in many textbooks and papers.
A possible reason for that could be the higher complexity of mathematics. When I
tried first to develop such design equations for the Costas loop, I got aware that the
Costas loop presents more nonlinearities than the PLL, which complicates the
mathematical treatment considerably. Only after introducing a number of simpli-
fications and linearizations, I was finally able to get explicit mathematical expres-
sions for lock range, lock time, pull-in range, and pull-in time for the Costas
loop. The mathematical treatment is even more aggravated because different
analyses must be performed for the different types of Costas loop. The corre-
sponding design equations will be presented in this textbook.

Another aspect of the Costas loop overlooked by almost all authors is the design
of “modified” Costas loops, i.e., of Costas loops that operate with so-called
pre-envelope signal, also referred to as “analytical” signal.

Operating with the pre-envelope has a dramatic impact on the performance of the
Costas loop. First, it is easily shown that the lowpass filters used in conventional
Costas loops are no longer required. It can be demonstrated that this greatly
improves the dynamic performance of the loop, i.e., the pull-in range of such
modified loops becomes much larger. When the loop filter is implemented by a PI
filter (proportional + integral filter), the pull-in range becomes even infinite. Of
course, this is only of “academic” interest; however in a real circuit, the loop can
lock onto every frequency that can be generated by the local oscillator.

Another promising technology that has been widely discarded by most authors is
the use of “phasor rotators” in Costas loops. In such systems, the local oscillator is
not realized as an oscillator whose frequency can be controlled by a control signal,
but as a simple oscillator that generates a constant frequency. In order to get locked,
the two output signals of the Costas loop—it will be shown that there are two such
signals in each Costas loop—are considered to form a “phasor,” a complex
quantity. Acquisition is obtained by a rotation of that phasor. Such a design offers
some advantages: the complexity of the high-frequency portion is reduced, and the
rotating circuits are easily implemented from some logic circuits.

The book is organized as follows:
Chapter 2 gives a short introduction to the Costas loop. It concentrates on the

differences between phase-locked loop and Costas and shows by some simple
examples where the PLL can be used and where the PLL fails to do the required job
and should be replaced by the Costas loop.

Chapters 3 and 4 discuss the conventional Costas loops for BPSK and QPSK,
where “conventional” means a loop that operates with real input signals and not
with the pre-envelope signal. After theoretical investigation, design procedures are
presented, including case studies for the design of analog and digital circuits.
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Finally, Simulink models are shown (all MATLAB files on attached CD), which
enable the designer to verify the design.

In Chaps. 5 and 6 modified Costas loops for BPSK and QPSK are discussed,
including design procedure and simulation. These systems operate with the
pre-envelope signal.

Chapter 7 presents theory and design of a Costas loop for m-ary PSK demod-
ulation, with design procedure and simulation.

Chapter 8 presents Costas loop for BPSK using phasor rotation circuit with
design procedure, case study for designing a digital Costas loop, and simulation.

Chapter 9 presents Costas loop for QPSK using phasor rotation circuit with
design procedure, case study for designing a digital Costas loop, and simulation.

Chapter 10 presents Costas loop for demodulation of quadrature amplitude
modulation (QAM) signals with theory, design procedure, and simulation.

Oberwil, Switzerland Roland Best
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Chapter 1
Simulink Models

1.1 Model Overview

In Chaps. 3–10 Simulink models are cited that can be used to simulate the per-
formance of all types of Costas loops discussed in these chapters. The files for
these models are not distributed with the book, but can be downloaded from
https://doi.org/10.1007/978-3-319-72008-1_1.
The following Simulink models are available:

Chapter no. Model filename Type of costas loop simulated

3 BPSK_Real.mdl Conventional costas loop for BPSK

4 QPSK_Real.mdl Conventional costas loop for QPSK

5 BPSK_Comp.mdl Modified costas loop for BPSK

5 BPSK_Com_PreAmb.
mdl

Modified costas loop for BPSKusing preamble

6 QPSK_Comp.mdl Modified costas loop for QPSK

7 mPSK_Comp.mdl Modified costas loop for m-ary PSK

8 BPSK5.mdl Costas Loop for BPSK using phasor rotator

8 BPSK6.mdl Modified costas loop for BPSK using phasor
rotator

9 QPSK5.mdl Costas loop for QPSK using phasor rotator

9 QPSK6.mdl Modified costas loop for QPSK using phasor
rotator

10 QAM16_Nyq_mod1C.
mdl

Costas loop for QAM

Electronic supplementary material The online version of this chapter (doi:10.1007/978-3-
319-72008-1_1) contains supplementary material, which is available to authorized users.
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1.2 A Note on MATLAB/Simulink File Types

As shown in the table above, every Simulink model is realized by a.mdl file
(Simulink model file). Some of the models are also using a number of callback
functions (.m files). These functions are called at different instants during a simu-
lation. A preload function is called before the .mdl file is loaded. Some models also
use init functions. These functions are called whenever the operator starts a sim-
ulation. Some models also include close functions that are called when the model is
closed.

Some of the models store the parameters specified by the operator in a parameter
file (.mat file). When the operator loads that model another time, the last entered
parameters are restored. When operating these models, the operator must be
authorized to change the content of such files. In some never versions, only
administrators are allowed to modify such files. When such versions are used, the
operator should choose the option “Run as administrator” when starting MATLAB.

All files of the mentioned models have been archived in one single zip file
named Costas_Loops_Simulink_Files.zip. To get all Simulink models, it is only
required to download that zip file and dearchive it. The next paragraph explains
how to proceed.

1.3 Downloading and Installing the Simulink Models

The procedure for downloading the Simulink model is most easily explained when
a number of assumptions are made first. It is assumed that

• the drive name of the hard disk in your computer is C.
• MATLAB has been installed in a folder C:\MATLAB

(of course, any other folder name can be used).
• there exists a subfolder C:\MATLAB\WORK, where you store applications

(mdl files, m files, and the like) you created yourself or downloaded from
elsewhere.
(of course, any other folder name can be used).

• the files you downloaded are stored in a folder C:\downloads
(of course, any other folder name can be used).

Installation starts with the download of file Costas_Loops_Simulink_Files.zip.
This file can be downloaded from the website https://doi.org/10.1007/978-3-319-
72008-1_1.

• store the zip file in folder C:\downloads.
• open Windows Explorer and double-click the file Costas_Loops_

Simulink_Files.zip
• this opens the Winzip program. A window is displayed on the desktop. In the

title bar, “Winzip Costas_Loops_Simulink_Files.zip” is displayed. In the pane

2 1 Simulink Models
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below the menu bar, all files contained in the zip archive are listed (mdl files, m
files, etc).
(if you do not have Winzip installed on your computer, you can download it
without any cost from the Web).

• create a subfolder C:\MATLAB\WORK\Costas_Models. This will be used to
store the Simulink models
(of course, you can specify any other subfolder name)

• select all dearchived files in the Winzip window and drag them to subfolder C:
\MATLAB\WORK\Costas_Models. You are now ready to run the simulations.

• start MATLAB. Make subfolder C:\MATLAB\WORK\Costas_Models your
current folder. Start a model by double-clicking the corresponding mdl file.

• for each model, a detailed description is available. To display the description,
load a model and click the File menu. This brings up a pull-down menu. Click
menu item “Model Properties.” The model description contains a number of hints
for how to run simulations, how to change model parameters, and much more.

1.3 Downloading and Installing the Simulink Models 3



Chapter 2
Introduction: From Phase-Locked Loop
to Costas Loop

The Costas loop can be considered an extended version of the phase-locked loop
(PLL). The PLL has been invented in 1932 by French engineer Henri de Belleszice
[1]. In his first application, de Belleszice used the PLL as a synchronous demod-
ulator for double sideband amplitude modulated signals with carrier. The block
diagram of a PLL is shown in Fig. 2.1. It is built from three blocks, a phase detector
(PD), a loop filter (LF), and a voltage-controlled oscillator (VCO). In the first PLL
applications, an analog multiplier was used for the phase detector [2]. Assuming for
the first moment that both signals U1 and U2 are sinusoidal, we can write

u1ðtÞ ¼ U10 sinðx1tþ h1Þ
u2ðtÞ ¼ U20 cosðx1tþ h2Þ

where U10, U20 are the amplitudes of U1 and U2, respectively, x1 is the radian
frequency of the input signal U1, and h1 and h2 are the zero phases of U1 and U2,
respectively. Assume further that the system is already locked, i.e., both signals
have the same frequency, but can have different phases. In this case, the signals u1
and U2 differ by 90° in the locked state; hence, it is reasonable to define U1 as a sine
wave and U2 as a cosine wave. It can be shown that the output signal of the phase
detector is proportional to sin(h1 − h2) = sin(he), where he is called phase error. But
the output signal of that type of phase detector also contains a high-frequency term,
i.e., a sine term having radian frequency 2 x1. This term is removed by the loop
filter, which is mostly realized either as a lag-lead filter or as a PI filter (proportional

Electronic supplementary material The online version of this chapter (doi:10.1007/978-3-
319-72008-1_2) contains supplementary material, which is available to authorized users.
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and integral filter). More about loop filters later in this text. The output signal uf of
the loop filter is applied to the input of the VCO. When there exists a phase error,
the frequency of the VCO is adjusted such that finally the phase error becomes
either 0 or is at least very small.

Next we consider a PLL circuit used for synchronous demodulation of AM
signals.

Figure 2.2 shows the relevant signals. The upper trace is the modulating signal.
It is scaled such that it is within the range from −1 to 1. The middle trace is the
carrier signal c(t). The modulated signal U1 is given by

u1 ¼ cðtÞð1þmumðtÞÞ

with m = modulation index. m must be chosen m < 1, a commonly used value is
m = 0.3. In this case, the modulated signal u1 (lower trace) is always in-phase with
the carrier c(t). If m were chosen larger than 1, U1 could be in antiphase with the
carrier when the modulating signal has large negative values. When the modulated
signal u1 is now applied to the input of a PLL, the output signal U2 of the VCO
would correctly lock onto that signal, i.e., there would always be a phase difference
of 90° between u1 and u2. Figure 2.3 shows the block diagram of a PLL designed
for synchronous demodulation of the amplitude modulated signal.

Four blocks have been added to the basic circuit of Fig. 2.1, a 90° phase shifter,
a multiplier (MUL), a lowpass filter (LPF), and a highpass filter (HPF). As we have
seen, there is a phase difference of 90° between U1 and U2 when the PLL has
locked. When U2 is shifted by 90°, the shifted signal U2,shift is exactly in-phase with
the modulated carrier U1. With the definitions

u1 ¼ U10 sinðx1 þ h1Þð1þm umÞ
u2;shift ¼ U20 sinðx1 þ h1Þ

Fig. 2.1 Block diagram of a phase-locked loop

6 2 Introduction: From Phase-Locked Loop to Costas Loop
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the output signal of the multiplier UMul becomes

uMul ¼ U10U20ð1þm umÞ sin2ðx1tþ h1Þ
¼ U10U20ð1þm umÞ 1

2
� 1
2
cosð2x1tþ 2h1Þ

� �

We recognize that UMul contains a high-frequency term centered at twice the
center radian frequency x1. This term is removed from the lowpass filter; hence, its
output signal is given by

uLPF ¼ U10U20

2
ð1þm umÞ

This signal contains a dc term U10U20/2. This can be removed if required by a
highpass filter. The output of the highpass filter is then

uHPF ¼ U10U20m
2

um

which is identical with the modulating signal scaled by a factor U10U20 m/2.
Whereas the PLL can be successfully used for the synchronous demodulation of

double sideband AM signals with carrier, it fails when it cames to demodulated AM
signals with suppressed carriers. The waveforms of such an AM signal are shown in
Fig. 2.4.

First trace: modulating signal Um. Second trace: carrier c(t). Third trace: mod-
ulated signal U1. Fourth trace: reconstructed carrier U2,shift.

The modulated signal U1 is given here by

u1 ¼ um sinðx1tÞ

When Um is positive (cf. time interval from 0…4 ms), U1 is in-phase with the
carrier. When Um becomes negative, however, the U1 is in antiphase with the
carrier (cf. time interval from 4…8 ms). When U1 is applied now to the input of a
PLL, this circuit would track the phase of the VCO output signal U2 to the phase of
U1. The shifted signal U2,shifted would be in-phase with U1 when Um is positive, but
after a transient in the interval 4…5 ms, it would lock in antiphase with the carrier c
(t). If the circuit in Fig. 2.3 were used to demolate the AM signal, the output signal
UMul would have wrong polarity during the intervals where Um is negative.

There is another application where the PLL fails for the same reason: Binary
Phase Shift Keying (BPSK). The signals are similar to those in the previous
example, as shown in Fig. 2.5.

The same happens as in the previous example. Because the polarity of the BPSK
signal is reversed when the binary signal becomes negative, the reconstructed
carrier U2,shift is in antiphase with the carrier c(t), when the modulating signal Um is
negative.
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Here the Costas loop comes into play [3]. Figure 2.6 shows the block diagram of
the conventional Costas loop for BPSK. Compared with the PLL, this novel circuit
consists of two branches, the I branch and the Q branch, whereas the PLL has only
one. The input signal is given by U1 = m(t) sin(x1t + h1), where m is the data
signal and can two values, +c or –c, where c is a constant. In many cases, c = 1 is
chosen. When the currently transmitted bit is a logical one, m = + c, and when the
currently transmitted bit is a logical zero, m = −c. The voltage-controlled oscillator
in this circuit has two outputs that differ by 90° in-phase, i.e., a sine output and a
cosine output. The input signal is multiplied by the sine wave in the I branch, and it
is multiplied by the cosine wave in the Q branch. Consequently, the output of the
multiplier in the I branch becomes m(t) sin(x1 t + h1) 2 sin(x1 t + h2). This signal
contains a high-frequency term whose frequency is centered around 2 x1. This term
is removed by lowpass filter LPF1, and the output signal of this filter becomes m(t)
cos(h1 − h2) = m(t) cos he, where he is the phase error. In analogy, the output signal
of lowpass filter LPF2 becomes m(t) sin he. Now the output signals of both lowpass
filters are multiplied; hence, the output signal of multiplier MUL is

ud ¼ m2

2
sinð2 heÞ
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Fig. 2.4 Waveforms of a double sideband AM signal with suppressed carrier
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Fig. 2.6 Block diagram of Costas loop for BPSK
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Fig. 2.5 Waveforms for BPSK. First trace: binary signal um. Second trace: carrier c(t). Third
trace: BPSK signal u1. Fourth trace: reconstructed carrier U2,shift, shifted by 90°
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When the phase error is small, this can be written

ud ¼ m2he

i.e., the multiplier represents a phase detector having detector gain

Kd ¼ m2

We recognize that the output signal ud of the phase detector does not depend on
the polarity of signal m, due to the factor m2. Thus, the phase detector output signal
does not change polarity when m changes from positive to negative values and vice
versa. The output signal ud of the multiplier (phase detector) is applied to the input
of the loop filter LF. This filter is always realized as a lowpass filter. Two kinds of
loop filters are in use, the lag-lead filter and the PI filter (proportional and integral
filter) [2, 4]. When there is a phase error he, the output signal of the loop filter
controls the frequency of the VCO such that the phase error is reduced to zero or to
a very small value. When the phase error has been reduced to zero or near zero, the
output signal of lowpass filter LPF1 is identical with the data signal m(t).

We have seen that the Costas loop can adjust the frequency and phase of the
VCO such loop locks with a phase difference h1 − h2 near zero. It should be noted
that the Costas loop can also lock with a phase difference h1 − h2 of p. Assume for
the moment that h1 − h2 has not yet attained the value p, but is near p. We then
can set

h1 � h2 ¼ pþ he

Under this condition, the output signal of LPF1 becomes m(t) cos(h1 − h2) = −m
(t) cos he, and the output signal of LPF2 becomes −m(t) sin he. The output signal of
the multiplier then becomes again

ud ¼ m2he

Here again, when there exists a phase error, the frequency of the VCO will be
adjusted such that the loop stably locks with a phase difference h1 − h2 = p. We
can conclude therefore that the Costas loop can lock at two different points of
equilibrium, i.e., with h1 − h2 = 0 or with h1 − h2 = p. When the loop locks with a
phase difference of p, the output signal of lowpass filter LPF1 becomes −m, i.e., its
polarity gets inverted.

This is not necessarily a problem, because in many cases differential encoding is
used with BPSK [5]. With standard—i.e., not differential—encoding the value of
the currently transmitted bit depends only on the polarity of signal m(t). The Costas
loop can decide that a transmitted bit is a logical 1 when m is positive or a logical 0
when m is negative. When differential encoding is applied, the value of the cur-
rently transmitted bit depends from two values, i.e., from the polarity of the current
bit and the polarity of the previously transmitted bit. We define, for example, that
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the currently transmitted bit is a logical 1 when current and previous bit have
opposite polarity, and that the value of that bit is a logical 0 when these two samples
have the same polarity. Under this condition, the Costas loop can lock onto any of
the two equilibrium states.

Non-differential encoding can be used when the Costas loop can be brought to
lock a priori with the “correct” phase difference of 0. Assume that a transmitter
starts to send a series of binary data, e.g., a series of 256 bits. To obtain correct
locking, a preamble is preceding the data block, e.g., a series of 16 logical 1’s. The
Costas loop must now be equipped with an initialization circuit that becomes active
at start of data transmission. Because the Costas loop “knows” the correct value of
the first received bits, the initialization circuit can control the VCO such that false
locking (i.e., locking with a phase difference of p is prevented). In Sect. 5.6, an
example of a Costas loop using such a preamble is presented.
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Chapter 3
Conventional Costas Loop for BPSK,
Dynamic Analysis, Design Procedure,
and Simulation

As we have seen in Chap. 2, the Costas loop can be considered a variant of the
phase-locked loop (PLL). Both systems are synchronizing devices. When a data
transmission starts, the loop has not yet acquired lock, i.e., there is a difference
between the carrier radian frequency x1 of the input signal and the radian frequency
x2 of the local oscillator (VCO, cf. Fig. 3.1). A process called acquisition process
will then start. In case of the PLL, two different acquisition processes have been
defined [2, 4, 5]. When the difference between carrier frequency and initial fre-
quency of the local oscillator is within a range called lock range DxL the acquisition
process is relatively fast, and the loop will lock within at most one beat note
between the frequencies x1 and x2. The time required to get locked is called lock
time TL. When the difference between carrier frequency and initial frequency of the
local oscillator is outside the lock range but inside another range called pull-in
range DxP, a slower acquisition process will take place. There will be a number of
beat notes between the two frequencies, and the time required to get locked, the
pull-in time TP, is much longer than TL. For the PLL, equations have been
developed that enable the designer to calculate all these parameters, DxL, TL, DxP,
and TP from the properties of the PLL such as natural frequency, damping factor,
phase detector gain Kd, VCO gain K0. Astonishingly, this analysis has never been
made for the Costas loop. This will therefore be done in the following sections. As
it will show up the parameters for the lock process DxL, TL can be derived from the
parameters of the phase transfer function H(s) of the Costas loop. To derive
equations for the parameters of the pull-in process, however, we will need more
complex mathematical models, i.e., models for the unlocked loop.
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3.1 The Linear Model of the Costas Loop

First we develop a linear model for this type of Costas loop that is valid in the
locked state of the loop. The block diagram of the Costas loop is shown in
Fig. 3.1a.

The input signal is given by

u1ðtÞ ¼ m1ðtÞ sinðx1tþ h1Þ ð3:1Þ

where m1(t) is the data signal, x1 is the carrier frequency, and h1 is the zero phase.
In many cases, m1(t) has either the value 1 or −1 but it also can have arbitrary
values. As Gardner [1] has shown the output signal of the multiplier at the right of
the block diagram represents the phase detector output signal and is given by

udðtÞ ¼ m2
1

2
sin 2he; with he ¼ h1 � h2 ð3:2Þ

Fig. 3.1 a Block diagram of Costas loop for BPSK. b Definition of symbols for the Costas loop
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In the locked state, the phase error he is very small so we can write

udðtÞ � m2
1he ¼ Kdhe ð3:3Þ

with Kd called detector gain. For the locked state, a simplified block diagram can be
derived therefore, which is shown in Fig. 3.1b.

In the locked state, both reference and VCO frequencies are approximately the
same; hence, the input of the lowpass filter is a very low frequency signal.
Therefore, the lowpass filter can be ignored when setting up the linear model of the
Costas loop. The linear model is made up of three blocks: the phase detector PD,
the loop filter LF, and the VCO (voltage-controlled oscillator). In digital Costas
loops the VCO is replaced by a digital-controlled oscillator (DCO). This will be
discussed in Sect. 3.5.2. For these building blocks, the transfer functions are now
defined as follows:

Phase detector PD

HPDðsÞ ¼ UdðsÞ
HeðsÞ ¼ Kd ð3:4Þ

Note that the uppercase symbols are Laplace transforms of the corresponding lower
case signals.

Lowpass filter LPF

As described in Chap. 2, the lowpass filter is used to suppress the high frequency
component centered around twice the carrier frequency (2 x1). This is usually a
first-order lowpass filter with corner radian frequency x3; hence, its transfer
function is given by

HLPFðsÞ ¼ 1
1þ s=x3

Loop filter LF

For the loop filter, we choose a PI (proportional + integral) filter whose transfer
function

HLFðsÞ ¼ Uf ðsÞ
UdðsÞ ¼

1þ ss2
ss1

ð3:5Þ

This filter type is the preferred one because it offers superior performance
compared with lag or lag–lead filters.
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VCO

The transfer function of the VCO is given by

HVCOðsÞ ¼ H2ðsÞ
Uf ðsÞ ¼

K0

s
ð3:6Þ

where K0 is called VCO gain.
We now can derive the open loop transfer function of the Costas loop which is

defined by the ratio H2 (s)/H1(s)

GOLðsÞ ¼ Kd
K0

s
1þ ss2
ss1

� 1
1þ s=x3

ð3:7Þ

Figure 3.2 shows a Bode plot of the magnitude of GOL. The plot is characterized
by the corner frequency xC which is defined by xC = 1/s2, and gain parameters Kd

and K0. At lower frequencies, the magnitude rolls off with a slope of −40 dB/
decade. At frequency xC, the zero of the loop filter causes the magnitude to change
its slope to −20 dB/decade. To get a stable system, the magnitude curve should cut
the 0 dB line with a slope that is markedly less than −40 dB/decade. Setting the
parameters such that the gain is just 0 dB at frequency xC provides a phase margin
of 45° which assures stability [2]. At radian frequency x3, the influence of the
lowpass filter becomes visible. Above x3, the slope of the open loop transfer
function switches to −40 dB/decade. The placement of the pole at s = x3 is critical.
When it was placed at lower frequencies, e.g., below corner frequency xC, the slope
would approach −60 dB/decade which would make the system unstable. It is
therefore mandatory to place the pole at a frequency where the open loop gain is
markedly below 0 dB. When doing so, the pole at s = x3 has almost no effect onto
the dynamic performance of the loop and can therefore be discarded for the fol-
lowing analysis. We will see later, however, that the pole at s = x3 will come into
play when nonlinear mathematical models for the Costas loop are developed.

From the open loop transfer function, we now can calculate the closed loop
transfer function defined by

GCLðsÞ ¼ H2ðsÞ
H1ðsÞ ð3:8Þ

After some mathematical manipulations, we get

GCLðsÞ ¼
K0Kd

1þ ss2
ss1

s2 þ s K0Kds2
s1

þ K0Kd
s1

ð3:9Þ
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It is customary to represent this transfer function in normalized form, i.e.,

GCLðsÞ ¼ 2sfxn þx2
n

s2 þ 2sfxn þx2
n

ð3:10Þ

with the substitutions

xn ¼
ffiffiffiffiffiffiffiffiffiffiffi
K0Kd

s1

r
; f ¼ xns2

2
ð3:11Þ

where xn is called natural frequency and f is called damping factor. The linear
model enables us to derive simple expressions for lock range DxL and lock time TL.

Fig. 3.2 Bode plot of magnitude of open loop gain GOL(x)
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3.2 Lock Range DxL and Lock Time TL

For the following analysis, we assume that the loop is initially out of lock. The
frequency of the input signal (Fig. 3.1a) is x1, and the frequency of the VCO is x2.
The multiplier in the I branch therefore generates an output signal consisting of a
sum frequency term x1 + x2 and a difference frequency term x1 − x2. The sum
frequency term is removed by the lowpass filter, and the frequency of the difference
term is assumed to be much below the corner frequency x3 of the lowpass filter;
hence, the action of this filter can be neglected for this case. Under this condition,
the phase detector output signal ud(t) will have the form [cf. Eqs. (3.2) and (3.3)]

udðtÞ ¼ Kd

2
sin ðDx tÞ

with Dx = x1 − x2. ud(t) is plotted in Fig. 3.3, upper trace. This signal passes
through the loop filter. In most cases, the corner frequency x2 is much lower than
the lock range; hence, we can approximate its transfer function by

HLFðxÞ � s2
s1

¼ KH

i.e., the gain of the loop filter at higher frequencies can be approximated by constant
KH. Now the output signal of the loop filter is a sine wave having amplitude Kd KH/2
as shown by the middle trace in Fig. 3.3. Consequently, the frequency of the VCO
will be modulated as shown in the bottom trace. The modulation amplitude is given
by Kd K0 KH/2. In this figure, the reference frequency and the initial frequencyx20 of
the VCO are plotted as horizontal lines. When x1 and x20 are such that the top of the
sine wave just touches the x1 line, the loop acquires lock suddenly, i.e., the lock
range DxL is nothing more than the modulation amplitude Kd K0 KH/2. Making use
of the substitutions (3.11), we finally get

DxL ¼ fxn ð3:12Þ

Now the lock process is a damped oscillation whose frequency is the natural
frequency. Because the loop is assumed to lock within at most one cycle of that
frequency, the lock time can be approximate by the period of the natural frequency,
i.e., we have

TL � 2p
xn

ð3:13Þ
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3.3 Nonlinear Model of the Costas Loop

We need a nonlinear model to derive expressions for pull-in range DxP and pull-in
time TP. Let us start with the block diagram in Fig. 3.4a.

Fig. 3.3 Lock range of Costas loop
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The input signal is defined by u1(t) = m1 sin(x1 t), and the output signals of the
VCO are defined to be 2 sin(x2 t) and 2 cos(x2 t), respectively. As will be shown
later, initial phases h1 and h2 do not play any role here and can be discarded. The
lowpass filters (LPF) used in both I an Q branches are assumed to be first-order
filters having transfer function

HLPFðsÞ ¼ 1
1þ s=x3

ð3:14Þ

As will be demonstrated later, the corner frequency of these filters must be
chosen such that the data signal I is recovered with sufficient accuracy, i.e., the
corner frequency x3 must be larger than the symbol rate [3]. Typically, it is chosen
twice the symbol rate, i.e., f3 = 2 fS with fS = symbol rate and f3 = x3/2 p. The
output signal I1 of the multiplier in the I branch consists of two terms: one having
the sum frequency x1 + x2 and one having the difference frequency x1 − x2.
Because the sum frequency term will be suppressed by the lowpass filter, only the
difference term is considered. The same holds true for signal Q1 in the Q branch. It
will show up that the range of difference frequencies is markedly below the corner
frequency x3 of the lowpass filter. Hence, the filter gain will be nearly 1 for the
frequencies of interest. As will also be shown later the phase, however, at frequency
Dx = x1 − x2 cannot be neglected. The lowpass filter is therefore represented as a
delay block whose transfer function has the value exp(j u1), where u1 is the phase
at frequency Dx. The delayed signals I2 and Q2 are now multiplied by the product

Fig. 3.4 a Nonlinear model of the Costas loop. b Modified model of Costas loop, reversed order
of blocks. c modified model of Costas loop, concatenated blocks
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block at the right in the block diagram. Consequently, the output signal ud(t) of this
block will have a frequency of 2 Dx.

This signal is now applied to the input of the loop filter LF. Its transfer function
has been defined in Eq. (3.5). The corner frequency of this filter is DxC = 1/s2.
From Eqs. (3.11) and (3.12), it can be seen that xC is in the order of the lock range
DxL. Because we are considering here difference frequencies Dx that are beyond
the lock range, Dx is markedly larger than the corner frequency Dx, and the gain
KH of the loop filter can be approximated by

KH � s2
s1

ð3:15Þ

Because the phase of the loop filter cannot be neglected, it is represented as a
delay block characterized by

HLFð2 DxÞ ¼ KH expðju2Þ ð3:16Þ

where u2 is the phase of the loop filter at frequency 2 Dx.
The analysis of dynamic behavior becomes easier when the order of some blocks

in Fig. 3.4a is reversed, i.e., when we put the multiplying block before the lowpass
filter [3].

The modified block diagram is shown in Fig. 3.4b. Because the frequency of
signal ud(t) in Fig. 3.4a is twice the frequency of the signals I2 and Q2, the phase
shift created by the lowpass filter at frequency 2 Dx is now twice the phase shift at
frequency Dx. The LPF is therefore represented here by a delay block having
transfer function exp(2 j u1).

We can simplify the block diagram even more by concatenating the lowpass
filter and loop filter blocks. The resulting block delays the phase by utot = 2
u1 + u2. This is shown in Fig. 3.4c. The output signal uf(t) of this delay block now
modulates the frequency generated by the VCO.

We have seen that all signals found in this block diagram are sine functions, i.e.,
all of them seem to have zero average, hence do not show any dc component. This
would lead to the (erroneous) conclusion that a pull-in process would not be pos-
sible. In reality, it will be recognized that some of the signals become asymmetrical,
i.e., the duration of the positive half wave is different from the duration of the
negative one. This creates a nonzero dc component, and under suitable conditions
acquisition can be obtained. We are therefore going to analyze the characteristics of
the signals in Fig. 3.4c.

All considered signals are plotted in Fig. 3.5. For signals I1 and Q1, we obtain

I1ðtÞ ¼ m1 cosðDx tÞ
Q1ðtÞ ¼ m1 sinðDx tÞ
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Note that only the difference frequency terms are considered. The sum frequency
terms are discarded because they are removed by the lowpass filter. The signal
ud(t) is the product of I1 and Q1 and is given by

Fig. 3.5 Signals of the model in Fig. 3.4c
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udðtÞ ¼ m2
1

2
sinð2 Dx tÞ

Next the loop filter output signal uf(t) is plotted. Its amplitude is KH m1
2/2, and its

phase is delayed by utot = 2 u1 + u2. This signal modulates the frequency of the
VCO as shown in the bottom trace of Fig. 3.5. The modulation amplitude is given
by 0.5 m1

2 KH K0. In order to get an estimate for the nonzero dc component of ud(t),
we will have to analyze the asymmetry of the signal waveforms. It will be shown
that ud [the average of ud(t)] is a function of frequency difference Dx and phase
utot. The analysis becomes easier when we first calculate ud for some special values
for utot, i.e., for utot = 0; −p/2; and −p. Let us start with utot = 0, cf. Fig. 3.6a.

Shown are the waveforms for ud(t) and x2(t). The asymmetry of the signals is
exaggerated in this plot. During the positive half cycle (duration T1), the average
value of VCO output frequency x2(t) is increased, which means that the average
difference frequency Dx(t) is lowered. Consequently, the duration of the positive
half wave becomes larger than half of a full cycle. During the negative half cycle
(duration T2), however, the average value of VCO output frequency x2(t) is
decreased, which means that that the average difference frequency Dx(t) is
increased. Consequently, the duration of the negative half wave becomes less than
half of a full cycle.

Next we are going to calculate the average frequency difference in both half
cycles. The average frequency difference during half cycle T1 is denoted Dxdþ , and
the average frequency difference during half cycle T2 is denoted Dxd�. We get

Dxdþ ¼ Dx� 2
p
K0KdKH

2
ð3:17aÞ

Dxd� ¼ Dxþ 2
p
K0KdKH

2
ð3:17bÞ

For the durations T1 and T2, we obtain after some manipulations

T1 � p
2 Dx

1þ K0KdKH

p Dx

� �
ð3:18aÞ

T2 � p
2 Dx

1� K0KdKH

p Dx

� �
ð3:18bÞ

Now the average value ud can be calculated from

udðtÞ ¼ K0K2
dKH

p2 Dx
ð3:19Þ

The average signal ud is seen to be inversely proportional to the frequency
difference Dx. Because ud is positive, the instantaneous frequency x2(t) is pulled in
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positive direction, i.e., versus x1 which means that a pull-in process will take place.
The loop will lock after a time called pull-in time TP. This will be discussed in
Sect. 3.4.

Next we are going to analyze the dependence of ud on phase utot. Let us consider
now the case for utot = −p, cf. Fig. 3.6b. We observe that in interval T1, the
instantaneous frequency x2(t) is pulled in negative direction; hence, the average
difference frequency Dxdþ becomes larger. Consequently, interval T1 becomes
shorter. In interval T2, however, the reverse is true. Here the instantaneous fre-
quency T1 pulled in positive direction, hence the average Dxd� is reduced, and

Fig. 3.6 a Signals of model in Fig. 3.4c for utot = 0. b Signals of model in Fig. 3.4c for
utot = −p. c Signals of model in Fig. 3.4c for utot = −p/2
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interval T2 becomes longer. The average ud is now equal and opposite to the value
of ud for utot = 0. Because ud is negative under this condition, a pull-in process
cannot take place, because the frequency of the VCO is “pulled away” in the wrong
direction.

Last we consider the case utot = −p/2, cf. Fig. 3.6c. In the first half of interval
T1, the instantaneous frequency x2(t) is lowered, but in the second half it is
increased. Consequently, the average difference frequency Dxdþ does not change
its value during T1. The same happens in interval T2. Dxd� does not change either,
and ud remains 0.

It is easy to demonstrate that ud varies with cos(utot); hence, we have

udðtÞ ¼ K0K2
dKH

p2 Dx
cosðutotÞ; utot ¼ 2u1 þu2 ð3:20Þ

Equation (3.20) tells us that the pull-in range is finite. The pull-in range is the
frequency difference for which phase utot = −p/2. An equation for the pull-in range
will be derived in Sect. 3.4. We also will have to find an equation for the pull-in
time. The model shown in Fig. 3.7 will enable us to obtain a differential equation
for the average frequency difference Dx as a function of time.

The model is built from three blocks. The first of these is labeled “phase–
frequency detector.” We have seen that in the locked state, the output of the phase
detector depends on the phase error he. In the unlocked state, however, the average
phase detector output signal ud is a function of frequency difference as shown in
Eq. (3.20); hence, it is justified to call that block “phase-frequency detector.” As we
will recognize the pull-in process is a slow one, i.e., its frequency spectrum contains
low frequencies only that are below the corner frequency xC of the loop filter, cf.
Eq. (3.5). The loop filter can therefore be modeled as a simple integrator with
transfer function

HLFðsÞ � 1
s s1

ð3:21aÞ

Fig. 3.7 Nonlinear model of
Costas loop for computation
of pull-in time
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In time domain, we can therefore write

uf tð Þ ¼ 1
s1

Z t

0

udðsÞ ds ð3:21bÞ

The frequency x2 of the VCO output signal is defined as

x2 ¼ x20 þK0uf ð3:22Þ

where x20 is the free-running frequency and K0 is the VCO gain. Now we introduce
the initial frequency difference Dx0 as

Dx0 ¼ x1 � x20 ð3:23Þ

(x1 = carrier frequency or reference frequency) and the instantaneous frequency
difference Dx as

Dx ¼ x1 � x2 ð3:24Þ

Substituting (3.23) and (3.24) into (3.22) finally yields

Dx ¼ Dx0 � K0uf ð3:25Þ

Equations (3.20), (3.21b), and (3.25) enable us to compute the three variables
ud , uf and Dx as a function of time. This will be demonstrated in Sect. 3.4.

3.4 Pull-in Range DxP and Pull-in Time TP

The pull-in range can be computed using Eq. 3.20. Lock can only be obtained when
the total phase shift utot is not more negative than −p/2. This leads to an equation of
the form

2u1ðDxPÞþu2ð2DxPÞ ¼ �p=2 ð3:26Þ

According to Eqs. (3.5) and (3.14), u1 and u2 are given by

u1ðxÞ ¼ �arctgðx=x3Þ; u2ðxÞ ¼ �p=2þ arctgðx=xCÞ

with xC = 1/s2. Hence, the pull-in range DxP can be computed from the tran-
scendental equation

2 arctgðDxP=x3Þ ¼ arctgð2 DxP=xCÞ ð3:27Þ
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To solve this equation for DxP, we use the addition theorem for the tangent
function

tgð2aÞ ¼ 2 tga
1� tg2a

and can replace 2 arctg ðDxP=x3Þ by arc tg
2DxPx3

1�Dx2
P

x2
3

. Equation (3.27) can now be

rewritten as arc tg
2
Dx

P
x3

1�Dx2
P

x2
3

¼ arc tg 2 DxP
xC

:

When the arc tg expressions on both sides of the equation are equal, their
arguments must also be identical, which leads to

2 DxP
x3

1� Dx2
P

x2
3

¼ 2
DxP

xC

Hence, we get for the pull-in range

DxP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3ðx3 � xCÞ

p
ð3:28Þ

It is easily seen from Eq. (3.28) that the pull-in range is positive and real only
when the corner frequency xC of the loop filter is chosen smaller than the corner
frequency x3 of the lowpass filters. When xC is chosen larger than xC, the loop
becomes unstable. When xC is markedly lower than x3, the pull-in range
approaches x3. When a large pull-in range is desired, a large corner frequency x3

of the lowpass filters should therefore be chosen. Because the lowpass filters are
expected to suppress the upper sidebands that are located around twice the carrier
frequency 2 x1 (cf. Fig. 3.1a), x3 must be chosen to be significantly less than 2 x1.

Last an equation for the pull-in time TP will be derived. Equations (3.20),
(3.21b), and (3.25) describe the behavior of the three building blocks in Fig. 3.7
and enable us to compute the three variables ud , uf , and Dx. We only need to know
the instantaneous Dx versus time; hence, we eliminate ud and uf from Eqs. (3.21b)
and (3.25) and obtain the differential equation

d
dt
Dx s1 þ 1

Dx
K2
0K

2
dKH

p2
cosðutotÞ ¼ 0 ð3:29Þ

This differential equation is nonlinear, but the variables Dx and t can be sepa-
rated, which leads to an explicit solution. Putting all terms containing Dx to the left
side and performing an integration, we get
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s1p2

K2
0K

2
dKH

Z DxL

Dx0

Dx
cosðutotÞ

dDx ¼ �
Z TP

0
dt ð3:30Þ

The limits of integration are Dx0 and DxL on the left side, because the pull-in
process starts with an initial frequency offset Dx = Dx0 and ends when Dx reaches
the value DxL, which is the lock range. Following that instant a lock-in process will
start. The integration limits on the right side are 0 and TP, respectively, which
means that the pull-in process has duration TP, and after that interval (fast) lock-in
process starts.

Performing the integration on the left imposes some considerable problems,
when we remember that cos(utot) is given by

cosðutotÞ ¼ cos �2 arctg
Dx
x3

� p
2
þ arctg

2 Dx
xC

� �

Finding an explicit solution for the integral seems difficult if not impossible, but
the cos term can be drastically simplified. When we plot cos(utot) versus Dx, we
observe that within the range DxL < Dx < Dx0 the term cos(utot) is an almost
perfect straight line. Hence, we can replace cos(utot) by

cosðutotÞ � 1� Dx
DxP

Inserting that substitution into Eq. (3.30) yields a rational function of Dx on the
left side, which is easily integrated. After some mathematical manipulations, we
obtain for the pull-in time TP

TP ¼ DxPp2s1
K2
0K

2
dKH

DxP ln
DxP � DxL

DxP � Dx0
� Dx0 þDxL

� �
ð3:31Þ

Making use of Eqs. (3.11) and (3.15), we have

KH ¼ s2
s1

x2
n ¼

K0Kd

s1

f ¼ xns2
2

Using these substitutions, Eq. (3.31) can be rewritten as

TP ¼ DxP p2

2 f x3
n

DxP ln
DxP � DxL

DxP � Dx0
� Dx0 þDxL

� �
ð3:32Þ
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This equation is valid for initial frequency offsets in the range

DxL\Dx0\DxP

For lower frequency offsets, a fast pull-in process will occur and Eq. (3.13)
should be used.

3.5 Design Procedures for Conventional Costas
Loop for BPSK

In this section, we will describe design procedures for Costas loops that will be used
for demodulation of BPSK signals. Two case studies will be presented, one for the
design of analog and one for the design of digital systems.

3.5.1 Case Study 1: Designing an Analog Costas
Loop for BPSK

An analog Costas loop for BPSK shall be designed in this section. It is assumed that
a binary signal is modulated onto a carrier. The carrier frequency is set to 400 kHz,
i.e., the Costas loop will operate at a center frequency x0 = 2 p 400’000 =
2’512’000 rad s−1. The symbol rate is assumed to be fS = 100’000 symbols/s. Now
the parameters of the loop (such as time constants s1 and s2, corner frequencies xC

and x3, and gain parameters K0 and Kd) must be determined [Note that these
parameters have been defined in Eqs. (3.4–3.6), and (3.13)].

The modulation amplitude m1 is set m1 = 1, cf. Eq. (3.1). According to
Eq. (3.3), the phase detector gain is then Kd = 1. It has proven advantageous to
determine the remaining parameters by using the open loop transfer function
GOL(s) of the loop [2]. This is given by

GOLðsÞ ¼ K0 Kd

s
1þ s=xC

s s1

1
1þ s=x3

ð3:33Þ

The magnitude |GOL(x)| (Bode diagram) is plotted in Fig. 3.8. The magnitude
curve crosses the 0 dB line at the so-called transit frequency xT. It is common
practice to choose xT to be about (0.05 … 0.1) * x0 [2]. Here we set xT = 0.1 x0,
i.e. xT = 251’200 rad s−1. Furthermore, we set corner frequency xC = xT. When
doing so, the slope of the asymptotic magnitude curve changes from –40 dB/decade
to –20 dB/decade at x = xC. Under this condition, the phase of GOL(x) is –135° at
xC. Consequently, the phase margin of the loop becomes 45° which provides
sufficient stability. According to Eq. (3.5), s2 becomes 4 ls. Next corner frequency
x3 will be determined. The corner frequency of the lowpass filter must be chosen
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such that the demodulated data signal (i.e., the output of the lowpass filter in the I
branch) is recovered with high fidelity. To fulfill this requirement, x3 should be
chosen as large as possible. On the other hand, the lowpass filter should suppress
the double frequency component (here at about 800 kHz) sufficiently, which means
that x3 should be markedly less than 2 x0. It is a good compromise to set corner
frequency to twice the symbol rate, i.e., x3 = 2 * 2 p * 100’000 =
1’256’000 rad s−1. Last the remaining parameters s1 and K0 must be chosen. They
have to be specified such that the open loop gain becomes 1 at frequency x = xC.
According to Eq. (3.33), we can set

GOLðxCÞ ¼ 1 � K0 Kd

x2
c s1

ð3:34Þ

Because two parameters are still undetermined, one of those can be chosen
arbitrarily; hence, we set s1 = 20 ls. Finally from (3.34), we get K0 =
1’262’000 s−1.

The design of the Costas loop is completed now, and we can compute the most
important loop parameters. For the natural frequency and damping factor, we get
from Eq. (3.11)

xn ¼ 251’000 rad=s fn ¼ 40 kHzð Þ
f ¼ 0:5

From (3.12), the lock range becomes

DxL ¼ 125’000 rad s DfL ¼ 20 kHzð Þ

and from (3.13), the lock time becomes

TL ¼ 25 ls

Fig. 3.8 Bode plot of open loop transfer function of Costas loop
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Next we compute the pull-in range and get from Eq. (3.28)

DxP ¼ 1’086’440 rad s�1 ðDfP ¼ 173 kHzÞ

3.5.2 Case Study 2: Designing a Digital Costas Loop
for BPSK

For the Costas loop, the same design parameters will be used as in the example
before. To convert the analog loop into a digital one, we first must define a suitable
sampling frequency fsamp (or sampling interval T = 1/fsamp). To satisfy the Nyquist
theorem, the sampling frequency must be higher than twice the highest frequency
that exists in the loop. In our case, the highest frequency is found at the output of
the multipliers in the I and Q branches (cf. Fig. 3.1a). The sum frequency term is
about twice the center frequency; hence, fsamp must be greater than four times the
center frequency. A suitable choice would be fsamp = 8 f0 = 3.2 MHz.

Next the transfer functions of the building block have to be converted into
discrete transfer functions, i.e., H(s) ! H(z). For best results, it is preferable to use
the bilinear z transform [2]. Given an analog transfer function H(s), this can be
converted into a discrete transfer function H(z) by replacing s by

s ¼ 2
T
1� z�1

1þ z�1 ð3:35Þ

Now the bilinear z transform has the property that the analog frequency range
from 0 to ∞ is compressed to the digital frequency range from 0 to fsamp/2. To
avoid undesired “shrinking” of the corner frequencies (xC and x3), these must be
“prewarped” accordingly, i.e., we must set

xC;p ¼ 2
T
tg
xC T
2

ð3:36Þ

x3;p ¼ 2
T
tg
x3 T
2

ð3:37Þ

where xC,p and x3,p are the prewarped corner frequencies. Now we can apply the
bilinear z transform to the transfer functions of the lowpass filters [cf. Eq. (3.14)]
and of the loop filter [cf. Eq. (3.5)] and get

HLPFðzÞ ¼
1þ 2

x3;p T

h i
þ 1� 2

x3;p T

h i
z�1

1þ z�1 ð3:38Þ
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HLFðzÞ ¼
1þ 2

xC;p T

h i
þ 1� 2

xC;p T

h i
z�1

2 s1
T � 2 s1

T z�1
ð3:39Þ

Because the VCO is a simple integrator, we can apply the discrete z transform of
an integrator, i.e.,

HVCOðzÞ ¼ K0 T
1� z�1 ð3:40Þ

The digital Costas loop is ready now for implementation. A Simulink model will
be presented in Sect. 3.6.

3.6 Simulating the Costas Loop for BPSK

The CD included with this book contains a number of Simulink models for different
types of Costas loops. The models can be run directly from the CD but is generally
more convenient to copy the files to hard disk. To do so, determine the folder where
you want copy the files to; perhaps you will find it practical to copy them to the
WORK folder found in every MATLAB installation. The models are stored in
different subfolders. The model we used here is BPSK_Real.mdl and is in subfolder
BPSK_Real. This model is designed following the procedure discussed in Sect. 3.6.

When the model is started, a dialog box is displayed, as shown in Fig. 3.9.
A number of parameters can be entered in the corresponding edit windows, such

as carrier frequency, symbol rate. The button “Set initial defaults” can be used to set
a number of initial values. Whenever one or more parameters have been changed,
the “Done” button must be pressed to store that data.

The block diagram of the model is shown in Fig. 3.10. It does not only present
the Costas loop but also the transmitting section, cf. the blocks on the left side.

The transmitter creates a random binary signal and modulates it to the carrier
signal. All relevant signals are displayed by scopes. Scope labeled “RF Signals”
shows the binary signal and the BPSK signal. Scope labeled I, Q shows the output
signals if the I and Q branches. The I signal is equivalent to the binary signal c(t).

Detailed information is found in file “Description,” which can be seen when
clicking File/Model Properties/Description in the menu bar of the model.

It is instructive to play around with the parameters of the model, such as the
receiver offset frequency for instance. When small frequency errors are specified,
the loop will lock with the “correct” polarity. When choosing larger frequency,
errors become possible that the loop locks with inverted polarity. It is also possible
to measure the pull-in time for different values of initial frequency errors. Some
results are shown in Table 3.1.

We note that the predicted and simulated parameters are in good agreement.
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Fig. 3.9 Parameter window for Costas loop simulation

Fig. 3.10 Simulink model of the Costas loop for BPSK
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Table 3.1 Comparison of predicted and simulated results for the pull-in range

Df0 (kHz) Dx0 (rad s−1) TP (theory) (ls) TP (simulation) (ls)

50 314ʹ000 33 30

70 439ʹ000 78 85

100 628ʹ000 204 200
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Chapter 4
Conventional Costas Loop for QPSK

4.1 Linear Model and Frequency Response

The block diagram of the Costas loop for QPSK is shown in Fig. 4.1. The input
signal u1(t) is defined as

u1ðtÞ ¼ m1 cosðx1tþ h1Þþm2 sinðx1tþ h1Þ ð4:1Þ

m1 and m2 are the amplitudes of the modulating signals I and Q, respectively. The I
signal is modulated onto the cosine carrier, and the Q signal is modulated onto the
sine carrier. Let m = |m1| = |m2|. In many cases m is chosen 1, but it can have any
other value. We first analyze the static behavior of the Costas loop. Both fre-
quencies x1 and x2 are set equal, and the phase error he = h1 − h2 is varied over
the range 0 < he < 2p. According to Gardner [1], we then get for ud

2m sin he; �p=4\he\p=4

� 2m cos he; p=4\he\3p=4

ud ¼
� 2m sin he; 3p=4\he\5p=4

2m cos he; 5p=4\he\7p=4

ð4:2Þ

ud versus he is plotted in Fig. 4.2. The curve looks like a “chopped” sine wave. The
Costas loop can get locked at four different values of he, i.e., with he = 0, p/2, p, or
3p/2. To simplify the following analysis, we define the phase error to be zero
wherever the loop gets locked. Moreover, in the locked state, the phase error is
small, so we can write
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ud � 2m he ¼ Kd he ð4:3Þ

i.e., the output signal of the adder block at the right in Fig. 4.1 is considered to be
the phase detector output signal ud. The phase detector gain is then

Kd ¼ 2m ð4:4Þ

It is easily seen that the linear model for the locked state is identical with that of the
Costas loop for BPSK, cf. Fig. 3.1b. Because only small frequency differences are
considered here, the lowpass filters in Fig. 4.1 can be discarded. The transfer
functions of the loop filter and of the VCO are assumed to be the same as in case of
the Costas loop for BPSK, and hence, these are given by Eqs. (3.5) and (3.6). The

Fig. 4.1 Block diagram of Costas loop for QPSK

Fig. 4.2 Phase detector output signal ud as a function of phase error he
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open loop transfer function is also identical with that of the Costas loop for BPSK,
cf. Eq. (3.7) and Fig. 3.2. This holds true for the closed loop transfer function, too,
cf. Eqs. (3.9), (3.10), and (3.11).

Next the lock range DxL and the lock time TL will be determined.

4.2 Lock Range DxL and Lock Time TL

To determine the lock range, we assume that the loop is out of lock. Let the
reference frequency be x1 and the initial VCO frequency be x20. The difference
frequency x1 - x20 is called Dx. When the loop has not acquired lock, the phase
error he is a continuously rising function that increases toward infinity. The phase
detector output signal ud is then a chopped sine wave as depicted in Fig. 4.2. The
fundamental frequency of this signal is four times the difference frequency, i.e.,
4Dx. This signal is plotted once again in the top trace of Fig. 4.3. The amplitude of
this signal is Kd/√2. The fundamental frequency of ud is assumed to be much higher
than the corner frequency xC of the loop filter; hence, the transfer function of the
loop filter can be approximated by

HLFðsÞ � s2
s1

¼ KH ð4:5Þ

Hence, the output signal of the loop filter uf has an amplitude of Kd KH/√2, cf.
middle trace of Fig. 4.3. This signal modulates the output frequency of the VCO,
and the modulation amplitude is given by Kd KH K0/√2, cf. bottom trace in Fig. 4.3.
It is easily seen that the loop spontaneously locks when the peak of the
x2(t) waveform touches the x1 line; hence, we have

DxL ¼ K0KdKHffiffiffi
2

p ð4:6Þ

Making use of Eqs. (3.11) and (4.5), this can be rewritten as

DxL ¼
ffiffiffi
2

p
fxn ð4:7Þ

Because the transient response of the loop is a damped oscillation whose frequency
is xn, the loop will lock in at most one cycle of xn, and we get for the lock time

TL � 2p
xn

: ð4:8Þ
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Fig. 4.3 Signals ud(t), uf(t), and x2(t) during the pull-in process
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4.3 Nonlinear Model in the Unlocked State

The nonlinear model of the Costas loop for QPSK is developed on the basis of the
nonlinear model we derived for the Costas loop for BPSK, cf. Sect. 3.3 and
Fig. 3.4c [2–4]. Here again the order of lowpass filters and the blocks shown at the
right of Fig. 4.1 is reversed. This results in the model shown in Fig. 4.4a. In the
block labeled “B”, the function blocks at the right of Fig. 4.4a have been integrated,
cf. Fig. 4.4b. The output signal ud of block B is the “chopped” sine wave as shown
in Fig. 4.2. Its fundamental frequency is 4 times the frequency difference x1 − x2.
The lowpass filters and the loop filter have been concatenated in the block labeled
“LPF + LF” at the right of Fig. 4.4a. Referring to Fig. 4.1, signals I1 and Q1 are
passed through lowpass filters. As in the case of the Costas loop for BPSK, we
assume here again that the difference frequency Dx is well below the corner fre-
quency x3 of the lowpass filters, hence the gain of the lowpass filters is nearly 1 at
x = Dx. Because the phase shift must not be neglected, we represent the lowpass
filter by a delay, i.e., its frequency response at x = Dx is

HLPFðDxÞ ¼ expðju1Þ

Fig. 4.4 Nonlinear model of the Costas loop for QPSK
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where u1 is the phase of the lowpass filter at x = Dx. Due to the arithmetic
operations in block “B” (cf. Fig. 4.4), the frequency of the ud is quadrupled, which
implies that the phase shift at frequency 4Dx becomes 4u1. As for the Costas loop
for BPSK, the frequency response of the loop filter at x = 4Dx is given by

HLFð4 DxÞ ¼ KH expðj u2Þ

where u2 is the phase of the loop filter at frequency x = 4Dx. KH is the gain of the
loop filter at “higher frequencies,” cf. Eq. (3.15). Hence, the cascade of lowpass
filter and loop filter can be modeled the transfer function KH exp(j[4u1 + u2]) as
shown in Fig. 4.4a. Let us define the total phase by utot = 4u1 + u2.

Next we are computing the average phase detector output signal ud as a function
of frequency difference and phase utot. First we calculate ud for the special case
utot = 0. As shown in the bottom trace in Fig. 4.5 during interval T1 the average
frequency x2 is increased, hence the average difference Dx becomes smaller.
During next half cycle T2, the reverse is true: The average difference Dx becomes
greater, hence for utot = 0T1 is longer than T2. The modulating signal is therefore
asymmetric, and because also ud(t) (top trace) is asymmetrical, its average ud
becomes non zero and positive. This asymmetry has been shown exaggerated in
Fig. 4.5.

Using the same mathematical procedure as in Sect. 3.3, the average ud signal is
given by

ud ¼ 0:3732K2
dK0KH

Dx
cosð4u1½Dx� þu2½4Dx�Þ ð4:9Þ

As in case of the Costas loop for BPSK, here again Eq. (4.9) tells us that the pull-in
range is finite. The pull-in range is the frequency difference for which phase
utot = −p/2. An equation for the pull-in range will be derived in the Sect. 4.4. We
also will have to find an equation for the pull-in time. To derive the pull-in process,
we will use the same nonlinear model as used for the Costas loop for BPSK, cf.
Fig. 3.7. The transfer functions for the loop filter and for the VCO have been given
in Eqs. (3.21b) and (3.25).

4.4 Pull-in Range DxP and Pull-in Time TP

The pull-in range can be computed using Eq. (4.9). Lock can only be obtained
when the total phase shift utot is not more negative than −p/2. This leads to an
equation of the form

4u1ðDxPÞþu2ð4DxPÞ ¼ �p=2 ð4:10Þ
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According to Eqs. (3.5) and (3.14), u1 and u2 are given by

u1ðxÞ ¼ �arctgðx=x3Þ; u2ðxÞ ¼ �p=2þ arctgðx=xCÞ

Fig. 4.5 Signals of the Costas loop for QPSK in the unlocked state
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with xC = 1/s2. Hence, the pull-in range DxP can be computed from

4 arctgðDxP=x3Þ ¼ arctgð4DxP=xCÞ ð4:11Þ

Using the addition theorem of the tangent function

tgð4aÞ ¼ ð1� tg2aÞ4 tga
1� 6tg2aþ tg4a

the term 4 arctgðDxP=x3Þ can be replaced by arc tg
1� DxP

x3

� �2
� �

4 xP
x3

1� 6 DxP
x3

� �2
þ DxP

x3

� �4

Equation (4.11) then reads

arc tg
1� DxP

x3

� �2
� �

4 DxP
x3

1� 6 DxP
x3

� �2
þ DxP

x3

� �4 ¼ arc tg
4DxP

xC

When the arc tg expressions on both sides are equal, the arguments must be
identical as well, hence we get

1� DxP
x3

� �2
� �

4 DxP
x3

1� 6 DxP
x3

� �2
þ DxP

x3

� �4 ¼
4DxP

xC

Solving for DxP yields

DxP ¼ x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� xc

x3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� xC

x3

h i2
�4 1� xC

x3

� �r

2

vuuut
ð4:12Þ

Last an equation for the pull-in time TP will be derived. Based on the nonlinear
model shown in Fig. 3.7 and on Eqs. (3.21b), (3.25), and (4.9), we can create a
differential equation for the instantaneous difference frequency Dx as a function of
time. For this type of Costas loop, the differential equation has the form

d
dt
Dxs1 þ cosðutotÞ

Dx
0:3732K2

0K
2
dKH ¼ 0
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with

cosðutotÞ ¼ �4 arctg
Dx
x3

� p
2
þ arctg

Dx
xC

Also here the cos term can be replaced by

cosðutotÞ � 1� Dx
DxP

and using similar procedures as in Sect. 3.4 we get for the pull-in time

TP � DxP

0:278fx3
n

DxP ln
DxP � DxL

DxP � Dx0
� Dx0 þDxL

� �
ð4:13Þ

which again is valid for initial frequency offsets in the range

DxL \Dx0 \DxP

For lower frequency offsets, a fast pull-in process will occur, and Eq. (4.8) should
be used.

4.5 Design Procedure for Costas Loop for QPSK

Case Study: Designing a digital Costas loop for QPSK

A digital Costas loop for QPSK shall be designed in this section. It is assumed that
two binary signals (I and Q) are modulated onto a quadrature carrier (cosine and
sine carrier). The carrier frequency is set to 400 kHz; i.e., the Costas loop will
operate at a center frequency x0 = 2p 400′000 = 2′512′000 rad s−1. The symbol
rate is assumed to be fS = 100′000 symbols/s. Now the parameters of the loop (such
as time constants s1 and s2, corner frequencies xC and x3, and gain parameters such
as K0, Kd) must be determined [Note that these parameters have been defined in
Eqs. (3.4), (3.5), (3.6), and (3.13)].

The modulation amplitudes m1 and m2 are set to 1. According to Eq. (4.4), the
phase detector gain is then Kd = 2. It has proven advantageous to determine the
remaining parameters by using the open loop transfer function GOL(s) of the loop
[5]. As shown in Sect. 3.5 [cf. Eq. (3.33)], this is given by

GOLðsÞ ¼ K0Kd

s
1þ s=xC

ss1

1
1þ s=x3

ð4:14Þ

The magnitude of GOL(x) is shown in Fig. 4.6.
As already explained in Sect. 3.5, the magnitude curve crosses the 0 dB line at

the transit frequency xT. As in the case of the Costas loop for BPSK, we again set
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xT = 0.1x0, i.e., xT = 251′200 rad s−1. Furthermore, we set corner frequency
xC = xT. When doing so, the slope of the asymptotic magnitude curve changes
from −40 dB/decade to −20 dB/decade at x = xC. Under this condition, the phase
of GOL(x) is −135° at xC. Consequently, the phase margin of the loop becomes 45°
which provides sufficient stability. According to Eq. (3.5), s2 becomes 4 ls. Next
corner frequency x3 will be determined. The corner frequency of the lowpass filter
must be chosen such that the demodulated data signal (i.e., the output of the
lowpass filter in the I branch) is recovered with high fidelity. To fulfill this
requirement, x3 should be chosen as large as possible. On the other hand, the
lowpass filter should suppress the double frequency component (here at about
800 kHz) sufficiently, which means that x3 should be markedly less than 2x0. It’s a
good compromise to set corner frequency to twice the symbol rate, i.e.,
x3 = 2 * 2p * 100′000 = 1′256′000 rad s−1. Last the remaining parameters s1 and
K0 must be chosen. They have to be specified such that the open loop gain becomes
1 at frequency x = xC. According to Eq. (4.14), we can set

GOLðxCÞ ¼ 1 � K0Kd

x2
cs1

ð4:15Þ

Because 2 parameters are still undetermined, one of those can be chosen arbitrarily,
hence we set s1 = 20 ls. Finally from (4.15), we get K0 = 631′000 s−1.

The design of the Costas loop is completed now, and we can compute the most
important loop parameters. For the natural frequency and damping factor, we get
from Eq. (3.11)

xn ¼ 251'000 rad=s fn ¼ 40 kHzð Þ

f ¼ 0:5

Fig. 4.6 Bode plot of open loop transfer function of Costas loop
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From (4.7), the lock range becomes

DxL ¼ 177'483 rad s DfL ¼ 20 kHzð Þ

and from (4.8) the lock time becomes

TL ¼ 25 ls

Next we want to compute the pull-in range. Solving (4.11) graphically yields

DxP ¼ 439'600 rad s�1 DfP � 70 kHzð Þ

Using the approximation (4.12), we get DxP = 339′000 rad s−1 (DfP = 54 kHz).
In Sect. 4.6, we will simulate this Costas loop and compare the results of the

simulation with the predicted ones.
All block parameters have been determined now in the complex s domain. To

get a digital Costas loop, we must convert the transfer function in the s domain into
transfer functions in the z domain, using the z transform. As done in Sect. 3.6 a
suitable sampling frequency fsamp must be chosen. As shown previously fsamp must
be greater than 4 times the center frequency of the Costas loop. A suitable choice
would be fsamp = 8f0 = 3.2 MHz.

Next the transfer functions of the building block have to be converted into
discrete transfer functions, i.e., H(s) ! H(z). For best results, it is preferable to use
the bilinear z transform [5]. Given an analog transfer function H(s), this can be
converted into a discrete transfer function H(z) by replacing s by

s ¼ 2
T
1� z�1

1þ z�1

Now the bilinear z transform has the property that the analog frequency ranges from
0 to ∞ is compressed to the digital frequency range from 0 to fsamp /2. To avoid
undesired “shrinking” of the corner frequencies (xC and x3), these must be “pre-
warped” accordingly, i.e., we must set

xC;p ¼ 2
T
tg
xCT
2

x3;p ¼ 2
T
tg
x3T
2

where xC,p and x3,p are the prewarped corner frequencies. Now we can apply the
bilinear z transform to the transfer functions of the lowpass filters [cf. Eq. (3.14)]
and of the loop filter [cf. Eq. (3.5)] and get
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HLPFðzÞ ¼
1þ 2

x3;pT

h i
þ 1� 2

x3;pT

h i
z�1

1þ z�1

HLFðzÞ ¼
1þ 2

xC;pT

h i
þ 1� 2

xC;pT

h i
z�1

2 s1
T � 2 s1

T z�1

Because the VCO is a simple integrator, we can apply the discrete z transform of an
integrator, i.e.,

HVCOðzÞ ¼ K0T
1� z�1

The digital Costas loop is ready now for implementation. A Simulink model will be
presented in Sect. 4.6.

4.6 Simulating Costas Loops for QPSK

To simulate a conventional Costas loop for QPSK, we use the model QPSK_Real.
mdl. Its block diagram is shown in Fig. 4.7.

Two data signals (I and Q) are created by random number generators at the left
in the block diagram. The other blocks are self-explanatory. The model is used now
to check the validity of the approximations found for pull-in range and pull-in time.

Equation (4.13) predicted a theoretical pull-in range of DfP = 73 kHz. The
simulations revealed a pull-in range of DfP = 62 kHz; hence, the prediction comes
close to reality. A series of other simulations delivered results for the pull-in time
DTP. The results are listed in Table 4.1.

Fig. 4.7 Simulink model of the Costas loop for QPSK
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At higher frequency offsets, the results of the simulation are in good agreement
with the predicted ones. The pull-in time for an initial frequency offset of 40 kHz is
too low, however, but it should be noted that the lock time TL is about 25 ls, and
the total pull-in time cannot be less than the lock time.
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Table 4.1 Comparison of predicted and simulated results for the pull-in range
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50 kHz 314′000 37 40

60 kHz 376′800 86 70

4.6 Simulating Costas Loops for QPSK 47



Chapter 5
Modified Costas Loop for BPSK

The modified Costas loop for BPSK operates with so-called pre-envelope signals
[1]. Figure 5.1a explains how a pre-envelope signal is generated.

A real input signal u1(t) is applied to the input of a Hilbert transformer [1, 2].
The output of the Hilbert transformer û1ðtÞ is considered to be the imaginary part of
the pre-envelope signal, i.e., the pre-envelope signal is obtained from

uþ
1 ðtÞ ¼ u1ðtÞþ j û1ðtÞ

The transfer function Hhilb(x) of the Hilbert transformer is defined by [3]

HhilbðxÞ ¼ �j; x[ 0
j; x\0

����
i.e., the Hilbert transformer is a phase shifter. When a sine signal sin(x1 t) is applied
to the input of a Hilbert transformer, the output signal is shifted by 90° and becomes
cos(x1 t). When the input signal is a cosine signal cos(x1 t), the output becomes—
sin(x1 t). The phase shift of 90° is identical for all frequencies. Hilbert transformers
can be implemented by digital filters, generally by FIR filters [3, 4]. When the input
signal of the Hilbert transformer is narrowband, it can be realized by a time delay,
i.e., by delaying the signal by a quarter of one period of the carrier signal.
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5.1 Linear Model and Frequency Response

The block diagram of the modified Costas loop for BPSK is shown in Fig. 5.1b.
Complex signals are represented by double lines; the real part of the signal is shown
as a solid line and the imaginary part as a dashed line. The input signal is given by

u1ðtÞ ¼ m1 cosðx1 tþ h1Þ

with m1 = modulating signal, x1 = reference frequency, and h1 = initial phase. m1

can have two equal and opposite values, either +1 and −1, or +c and −c, where c
can be an arbitrary constant. The input signal is first converted into a pre-envelope
signal, as explained by the block diagram in Fig. 5.1a. The output signal of the
Hilbert transformer (cf. Fig. 5.1b) is

û1ðtÞ ¼ H½m1 cosðx1tþ h1Þ� ¼ m1 sinðx1tþ h1Þ

H(…) stands for Hilbert transform. (Note that because the largest frequency of the
spectrum of the data signal m1 is much lower than the carrier frequency x1, the
Hilbert transform of the product H½m1 cosðx1tþ h1Þ� equals m1 H½cosðx1tþ h1Þ�
[1].) The pre-envelope signal is obtained now from

Fig. 5.1 a Generation of the pre-envelope signal using Hilbert transformer, b Block diagram of
modified Costas loop for BPSK
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uþ
1 ðtÞ ¼ u1ðtÞþ j ûðtÞ ¼ m1 expðj½x1 tþ h1�Þ ð5:1Þ

The exponential in Eq. (5.1) is referred to as a “complex carrier.” To demodulate
the BPSK signal, the pre-envelope signal is now multiplied with the output signal of
the VCO, which is here a complex carrier as well. The complex output signal of the
VCO is defined as

u2ðtÞ ¼ expð�j½x2 tþ h2�Þ ð5:2Þ

In the locked state of the Costas loop, both frequencies x1 and x2 are equal, and we
also have h1 � h2. Hence, the output signal of the multiplier M1 is

umðtÞ ¼ m1 expðj½ðx1 � x2Þtþ h1 � h2�Þ � m1 ð5:3Þ

i.e., the output of the multiplier is the demodulated data signal m1. To derive the
linear model of this Costas loop, it is assumed that x1 = x2 and h1 6¼ h2. The
output signal of multiplier M1 then becomes

umðtÞ ¼ m1 expðj½h1 � h2�Þ ð5:4Þ

This is a phasor having magnitude |m1| and phase h1 − h2, as shown in Fig. 5.2.
Two quantities are determined from the phase of phasor um(t), i.e., the demodulated
data signal I and the phase error he. The data signal is defined as

I ¼ sgnðRe½umðtÞ�Þ ð5:5Þ

i.e., when the phasor lies in quadrants I or IV, the data signal is considered to be +1,
and when the phasor is in quadrants II or III, the data signal is considered to be −1.

Fig. 5.2 Representation of phasor um(t) in the complex plane
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This means that I can be either a phasor with phase 0 or a phasor with phase p.
These two phasors are plotted as thick lines as shown in Fig. 5.2.

The phase error he is now given by the difference of the phases of phasor
um(t) and phasor I, as shown in Fig. 5.2, i.e., he is determined from

he ¼ phaseðumðtÞ � IÞ ð5:6Þ

The product umðtÞ � I is computed by multiplier M2 in Fig. 5.2. The block labeled
“Complex ! mag, phase” is used to convert the complex signal delivered by M2

into magnitude and phase. The magnitude is not used in this case, but only the
phase. It follows from Eq. (5.6) that the phase output of this block is the phase error
he, hence the blocks M1, M2, sgn, and Complex ! mag, phase represent a phase
detector with gain Kd = 1. The phase output of block Complex ! mag is therefore
labeled ud.

Figure 5.3 shows the completed linear model of the modified Costas loop for
BPSK [5–7]. The transfer functions of the loop filter and VCO have been defined in
Eqs. (3.5) and (3.6). Note that with this type of Costas loop there is no additional
lowpass filter, because the multiplication of the two complex carriers [cf. Eq. (5.3)]
does not create the unwanted double frequency component as found with the
conventional Costas loops. From the model of Fig. 5.3, the open loop transfer
function is determined to be

GOLðsÞ ¼ Kd
K0

s
1þ ss2
ss1

Figure 5.4 shows a Bode plot of the magnitude of GOL. The plot is characterized by
the corner frequency xC which is defined by xC = 1/s2 and gain parameters Kd and
K0. At lower frequencies, the magnitude rolls off with a slope of −40 dB/decade. At
frequency xC, the zero of the loop filter causes the magnitude to change its slope to
−20 dB/decade. To get a stable system, the magnitude curve should cut the 0 dB
line with a slope that is markedly less than −40 dB/decade. Setting the parameters
such that the gain is just 0 dB at frequency xC provides a phase margin of 45°
which assures stability [2]. From the open loop transfer function, we now can
calculate the closed loop transfer function defined by

Fig. 5.3 Linear model of the
modified Costas loop for
BPSK
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GCLðsÞ ¼ H2ðsÞ
H1ðsÞ

After some mathematical manipulations, we get

GCLðsÞ ¼
K0Kd

1þ ss2
ss1

s2 þ s K0Kds2
s1

þ K0Kd
s1

It is customary to represent this transfer function in normalized form, i.e.,

GCSðsÞ ¼ 2sfxn þx2
n

s2 þ 2sfxn þx2
n

with the substitutions

xn ¼
ffiffiffiffiffiffiffiffiffiffiffi
K0Kd

s1

r
; f ¼ xns2

2
ð5:7Þ

where xn is called natural frequency and f is called damping factor. The linear
model enables us to derive simple expressions for lock range DxL and lock time TL.

Fig. 5.4 Bode plot of magnitude of open loop gain GOL(x)
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5.2 Lock Range DxL and Lock Time TL

For the following analysis, we assume that the loop is initially out of lock. The
frequency of the reference signal (Fig. 5.1) is x1, and the frequency of the VCO is
x2. The output signal of multiplier M1 is then a phasor rotating with angular
velocity Dx = x1 − x2. Consequently, the phase output of block
“Complex ! mag, phase” is a sawtooth signal having amplitude (p/2) Kd and
fundamental frequency 2Dx, as shown in the upper trace of Fig. 5.5. Because 2Dx
is usually much higher than the corner frequency xC of the loop filter, the transfer
function of the loop filter at higher frequencies can be approximated again by

HLFðxÞ � s2
s1

¼ KH

The output signal uf of the loop filter is a sawtooth signal as well and has amplitude
(p/2) Kd KH, as shown in the middle trace of the figure. This signal modulates the
frequency x2 generated by the VCO. The modulation amplitude is given by (p/2)
Kd KH K0, cf. bottom trace. The Costas loop spontaneously acquires lock when the
peak of the x2 waveform touches the x1 line, hence we have

Fig. 5.5 Signals ud, uf, and
x2 during the lock process
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DxL ¼ p
2
KdK0KH ¼ p

2
KdK0

s2
s1

Making use of the substitutions Eq. (5.7), this can be rewritten as

DxL ¼ p fxn ð5:8Þ

Because the lock process is a damped oscillation having frequency xn, the lock
time can be approximated by one cycle of this oscillation, i.e.,

TL � 2p
xn

ð5:9Þ

5.3 Nonlinear Model for the Unlocked State

To derive the model for the unlocked state, we assume that the loop is not yet
locked and that the difference between reference frequency x1 and VCO output
frequency x2 is Dx = x1 − x2. As shown in Sect. 5.2 (cf. also Fig. 5.5), ud is a
sawtooth signal having frequency 2Dx, cf. upper trace in Fig. 5.6. As will be
explained in short, this signal is asymmetrical, i.e., the duration of the positive have
wave T1 is not identical with the duration T2 of the negative half wave. The middle
trace shows the output signal of the loop filter, and the lower trace shows the
modulation of the VCO output frequency x2. From this waveform, it is seen that
during T1 the average frequency difference Dx becomes smaller, but during interval
T2 it becomes larger. Consequently, the duration of T1 is longer than the duration of
T2, and the average of signal ud is nonzero and positive. Using the same mathe-
matical procedure as in Sects. 3.3 and 4.3, the average ud can be computed from [7]

ud ¼ p2KdK0KH

8 Dx
ð5:10Þ

Because this type of Costas loop does not require an additional lowpass filter, the ud
signal is not shifted in-phase, and therefore there is no cos term in Eq. (5.10). This
implies that there is no polarity reversal in the function ud(Dx), hence the pull-in
range becomes theoretically infinite. Of course, in a real circuit, the pull-in range
will be limited by the frequency range the VCO is capable to generate. When the
center frequency f0 of the loop is 10 MHz, for example, and when the VCO can
create frequencies in the range from 0 to 20 MHz, then the maximum pull-in range
DfP is 10 MHz, i.e., DxP = 6.28 � 106 rad/s.

Figure 5.7 shows the nonlinear model used to compute the pull-in process. The
block generating signal ud is labeled “Phase/Frequency Detector” (cf. Eq. (5.10))
because in the unlocked state ud us a function of the frequency error Dx.

5.2 Lock Range DxL and Lock Time TL 55



Using the same mathematical procedure as in Sect. 3.3, the transfer function of
the loop filter can be approximated as

HLFðsÞ � 1
s s1

ð5:11aÞ

In time domain, we can therefore write

uf tð Þ ¼ 1
s1

Z t

0

udðsÞ ds ð5:11bÞ

Fig. 5.6 Pull-in process of
the modified Costas loop for
BPSK

Fig. 5.7 Nonlinear model of
the modified Costas loop
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For the transfer function of the VCO, we get

Dx ¼ Dx0 � K0uf ð5:12Þ

where Dx0 is the initial frequency difference given by

Dx0 ¼ x1 � x20

Equations (5.10), (5.11b), and (5.12) enable us to compute the pull-in process, i.e.,
the instantaneous frequency difference Dx as a function of time. This will be
demonstrated in the next section.

5.4 Pull-in Range and Pull-in Time of the Modified Costas
Loop for BPSK

As seen in the last section, the pull-in range of this type of Costas loop is theo-
retically infinite. This is, however, rather of “academic” interest. For real circuit
“infinite pull-in range” simply means that the loop is able to lock onto frequencies
that can be generated by the lock oscillator. Using Eqs. (5.10), (5.11b), and (5.12),
we can derive an equation for the pull-in time [7]:

TP � 2
p2

Dx2
0

fx3
n

ð5:13Þ

5.5 Design Procedure for Modified Costas Loop for BPSK

The following design is based on the method we already used in Sect. 3.5. It is
assumed that a binary signal I is modulated onto a carrier. The carrier frequency is
set to 400 kHz, i.e., the Costas loop will operate at a center frequency x0 = 2p
400’000 = 2’512’000 rad s−1. The symbol rate is assumed to be fS = 100’000
symbols/s. Now the parameters of the loop (such as time constants s1 and s2, corner
frequency xC, and gain parameters such as K0, Kd) must be determined [Note that
these parameters have been defined in Eqs. (3.4), (3.5), (3.6), and (3.13)].

It has been shown in Sect. 5.1 that for this type of Costas loop Kd = 1. The
modulation amplitudes m1 and m2 are set to 1. It has proven advantageous to
determine the remaining parameters by using the open loop transfer function
GOL(s) of the loop [2], which is given here by

GOLðsÞ ¼ Kd
K0

s
1þ ss2
ss1
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The magnitude of GOL(x) has been shown in Fig. 5.4. As already explained in
Sect. 3.5, the magnitude curve crosses the 0 dB line at the transit frequency xT. As
in the case of the conventional Costas loop for BPSK, we again set xT = 0.1x0, i.e.,
xT = 251’200 rad s−1. Furthermore, we set corner frequency xC = xT. When doing
so, the slope of the asymptotic magnitude curve changes from −40 dB/decade to
−20 dB/decade at x = xC. Under this condition, the phase of GOL(x) is −135° at
xC. Consequently, the phase margin of the loop becomes 45° which provides suf-
ficient stability. According to Eq. (3.5), s2 becomes 4 ls. Last the remaining
parameters s1 and K0 must be chosen. They have to be specified such that the open
loop gain becomes 1 at frequency x = xC. According to Eq. (4.14), we can set

GOLðxCÞ ¼ 1 � K0 Kd

x2
c s1

Because two parameters are still undetermined, one of those can be chosen arbi-
trarily, hence we set s1 = 20 ls. We then get K0 = 1’262’000 s−1.

The design of the Costas loop is completed now, and we can compute the most
important loop parameters. For the natural frequency and damping factor, we get
from Eq. (3.11)

xn ¼ 251’000 rad=s fn ¼ 40 kHzð Þ

f ¼ 0:5

From (5.7), the lock range becomes

DxL ¼ 394’000 rad=s DfL ¼ 62:7 kHzð Þ

and from (5.8), the lock time becomes

TL ¼ 25 ls

All block parameters have been determined now in the complex s domain. To get a
digital Costas loop, we must convert the transfer function in the s domain into
transfer functions in the z domain, using the z transform. As done in Sect. 3.6, a
suitable sampling frequency fsamp must be chosen. As shown previously, fsamp must
be greater than 4 times the center frequency of the Costas loop. A suitable choice
would be fsamp = 8f0 = 3.2 MHz.

Next the transfer functions of the building block have to be converted into
discrete transfer functions, i.e., H(s) ! H(z). For best results, it is preferable to use
the bilinear z transform [2]. Given an analog transfer function H(s), this can be
converted into a discrete transfer function H(z) by replacing s by

s ¼ 2
T
1� z�1

1þ z�1
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Now the bilinear z transform has the property that the analog frequency ranges from
0 to ∞ is compressed to the digital frequency ranging from 0 to fsamp/2. To avoid
undesired “shrinking” of the corner frequency xC, this must be “prewarped”
accordingly, i.e., we must set

xC;p ¼ 2
T
tg
xC T
2

where xC,p is the prewarped corner frequency. Now we can apply the bilinear z
transform to the transfer functions of the loop filter [cf. Eq. (3.5)] and get

HLFðzÞ ¼
1þ 2

xC;p T

h i
þ 1� 2

xC;p T

h i
z�1

2 s1
T � 2 s1

T z�1

Because the VCO is a simple integrator, we can apply the discrete z transform of an
integrator, i.e.,

HVCOðzÞ ¼ K0 T
1� z�1

The digital Costas loop is ready now for implementation. A Simulink model will be
presented in Sect. 5.6.

5.6 Simulating Modified Costas Loops for BPSK

We will perform simulations for the modified Costas loop for BPSK on two dif-
ferent models:

1. Model BPSK_Comp.mdl
A digital modified Costas loop for BPSK.

2. Model BPSK_Comp_PreAmb.mdl
A digital modified Costas loop using a preamble that forces the loop to lock with
“correct” polarity.

Model BPSK_Comp.mdl

The block diagram of the model is shown in Fig. 5.8.
The phase detector of this circuit operates as described in Sect. 5.1 and Eq. (5.6).

When larger frequency errors (receiver offset frequency) are chosen in the dialog
box of the model, the loop can lock with inverted polarity. The pull-in time has
been determined for a number of different receiver offset frequencies. The results
are shown in Table 5.1.

The predictions for Df0 = 50 kHz and 100 kHz are too low. As already men-
tioned in Sect. 4.7, the pull-in time cannot be lower than the lock time, and the

5.5 Design Procedure for Modified Costas Loop … 59



latter is estimated �25 ls. The simulation results for these two different frequencies
are around 20 ls, which roughly correspond with the lock time. The simulation
result for a frequency difference of 200 kHz comes close to the predicted value.

Model BPSK_Comp_PreAmb.mdl

The block diagram of this model is shown in Fig. 5.9. The circuit is almost identical
with the previously discussed model (Fig. 5.8), but the phase detector is different
(cf. the blocks sgn(I), Switch2, Mul4, C->M, phi). This phase detector operates in
two different modes: (1) in “preamble mode” during the preamble interval and (2) in
“data mode” after the preamble.

The transmitter generates a modulating signal labeled m(t). During the preamble
interval m(t) is constant, i.e., m(t) = 1. After the preamble, the modulating signal is
a random binary signal as in the previous model. The transmitter also contains a
step function block labeled Step 1. During the preamble interval, the output signal
of Step 1 is 1, and after the preamble, it is 0. This signal is used to switch the phase
detector between the two modes mentioned above.

In preamble mode, the phase detector computes the phase error he from he =
phase(um(t)), cf. also Eq. (5.6). In the block diagram of Fig. 5.9, um(t) is identical
with the signal labeled sdem. In data mode, however, the phase error is computed
from he = phase(I um(t)), where I is the sign of the real part of um(t). Let us consider
the phase detector operation by a numerical example. Suppose that the current
signal um(t) is a phasor having a phase angle of 170°, as shown in Fig. 5.10. When
the phase detector operates in preamble mode, it “sees” a phase error of 170°.

This forces the loop to rotate phasor um(t) in clockwise direction until it
approaches a position of approximately um(t) = 1 + j � 0. In this way, it is

Fig. 5.8 Simulink model of the modified Costas loop for BPSK

Table 5.1 Comparison of predicted and simulated results for the pull-in range

Df0 (Hz) Dx0 (rad s−1) TP (theory) (ls) TP (simulation) (ls)

50 kHz 314′200 2.5 20

100 kHz 628′000 10 20

200 kHz 1′256′000 40 50
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prevented that the loop locks with “false” polarity, i.e., with a phase difference of
180° between the signals u1(t) and u2(t), as described in Chap. 2. When the phase
detector operates in data mode, however, the phase error becomes he = phase(I
um(t)) = phase((−1) � um(t)) = −10°. This causes the phasor to be rotated in
counterclockwise direction until it reaches a position near um(t) = −1 + j � 0.

To see how this type of Costas loop operates it is instructive to run a simulation
with a relatively large receiver offset frequency, e.g., 100 kHz. Monitoring the
scopes RF Signal and I, Q will demonstrate the loop locks with correct polarity. It is
interesting to compare this simulation with the other model that does not make use
of a preamble.

To be useful in practical applications, the model shown in Fig. 5.9 would have to
be extended in different ways. The gating signal used to control the operating mode
of the phase detector must be generated by the receiver, of course, and cannot be
delivered by the transmitter. This can be realized when data are transmitted in
blocks having limited duration. Such a block could consist, e.g., of N preamble bits,
i.e., by a series of N consecutive logical ones. The preamble is followed by a series
of data bits, e.g., M data bits. A pause is inserted between succeeding blocks.
During the pause, the transmitter switches off the carrier. The receiver is equipped
with a carrier detect circuit. As soon as the receiver detects a carrier, it initiates the
preamble interval by generating a gating pulse whose duration is identical with the
preamble interval. This gating pulse switches the phase detector into preamble
mode. After the preamble, the phase detector operates in data mode. Data trans-
mission in blocks of limited length is very frequently used, for example, in mobile
phones [8].

Fig. 5.10 Operation of the
phase detector in Fig. 5.9 in
preamble mode and data
mode, respectively
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Chapter 6
Modified Costas Loop for QPSK

6.1 Operating Principle

Figure 6.1 shows the block diagram of the modified Costas loop for QPSK [1–4].
The reference signal u1(t) is defined by

u1ðtÞ ¼ m1 cosðx1tþ h1Þ � m2 sinðx1tþ h1Þ ð6:1Þ

where m1 and m2 are data signals that can have a value of +c or −c, where c is an
arbitrary constant. In many cases, c = 1. The Hilbert transformed signal is then
given by

û1ðtÞ ¼ m1 sinðx1tþ h1Þþm2 cosðx1tþ h1Þ ð6:2Þ

and the pre-envelope signal then becomes

uþ
1 ðtÞ ¼ m1 cosðx1tþ h1Þ

� m2 sinðx1tþ h1Þþ jm1 sinðx1tþ h1Þþ jm2 cosðx1tþ h1Þ ð6:3Þ

This can be rewritten as

uþ
1 ðtÞ ¼ ðm1 þ jm2Þðcos½x1tþ h1� þ j sin½x1tþ h1�Þ

¼ ðm1 þ j m2Þ expðj½x1tþ h1�Þ ð6:4Þ

Herein the term m1 + j m2 is called “complex envelope” [5], and the term exp(jx1

t + h1) is referred to as “complex carrier.” The VCO generates another complex
carrier given by

Electronic supplementary material The online version of this chapter (doi:10.1007/978-3-
319-72008-1_6) contains supplementary material, which is available to authorized users.

© Springer International Publishing AG 2018
R. Best, Costas Loops, https://doi.org/10.1007/978-3-319-72008-1_6

65

http://dx.doi.org/10.1007/978-3-319-72008-1_6
http://dx.doi.org/10.1007/978-3-319-72008-1_6


u2ðtÞ ¼ expð�j½x2tþ h2�Þ ð6:5Þ

The multiplier M1 creates signal um(t) that is given by

umðtÞ ¼ ðm1 þ j m2Þ expðj½ðx1 � x2Þtþðh1 � h2Þ�Þ ð6:6Þ

When the loop has acquired lock, x1 = x2 and h1 � h2, so we have

umðtÞ � ðm1 þ j m2Þ ð6:7Þ

Hence, the output of M1 is the complex envelope. In the locked state, the complex
envelope can take four positions, as shown in Fig. 6.2. When there is a phase error,
um(t) deviates from the ideal position, as demonstrated in the figure. The phase error
he is the angle between um(t) and the closest of the four possible positions. When
um(t) is in quadrant I, e.g., phasor 1 + j is considered the estimate of the complex
envelope. When um(t) is in quadrant II, however, the estimate of the complex
envelope would be −1 + j, etc. The estimates I and Q are taken from the output of
sgn blocks, cf. Fig. 6.1. The phase error is obtained from

he ¼ phase½umðtÞ � ðI � jQÞ� ð6:8Þ

where I − jQ is the conjugate of the complex envelope. Multiplier M2 delivers the
product um(t) � (I − jQ), and the block “Complex ! mag, phase” is used to
compute the phase of that complex quantity. Note that the magnitude is not
required. As we already have seen in Sect. 6.1, the blocks M1, sgn, Inverter, M2,
and Complex ! mag, phase form a phase detector having gain Kd = 1. The phase
output of block Complex ! mag, phase is therefore labeled ud.

Fig. 6.1 Block diagram of modified Costas loop for QPSK
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6.2 The Transfer Function of the Modified Costas
Loop for QPSK

Figure 6.3 shows the completed linear model of the modified Costas loop for
QPSK.

The transfer functions of the loop filter and VCO have been defined in Eqs. (3.5)
and (3.6). From the model of Fig. 6.3, the open loop transfer function is determined
to be

GOLðsÞ ¼ Kd
K0

s
1þ ss2
ss1

Figure 6.4 shows a Bode plot of the magnitude of GOL. The plot is characterized by
the corner frequency xC which is defined by xC = 1/s2, and gain parameters Kd and
K0. At lower frequencies, the magnitude rolls off with a slope of −40 dB/decade. At
frequency xC, the zero of the loop filter causes the magnitude to change its slope to
−20 dB/decade. To get a stable system, the magnitude curve should cut the 0 dB
line with a slope that is markedly less than −40 dB/decade. Setting the parameters

Fig. 6.2 Representation of
phasor um(t) in the complex
plane

Fig. 6.3 Linear model of the
Costas loop
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such that the gain is just 0 dB at frequency xC provides a phase margin of 45°
which assures stability [6]. From the open loop transfer function, we now can
calculate the closed loop transfer function defined by

GCLðsÞ ¼ H2ðsÞ
H1ðsÞ

After some mathematical manipulations, we get

GCLðsÞ ¼
K0Kd

1þ ss2
ss1

s2 þ s K0Kds2
s1

þ K0Kd
s1

It is customary to represent this transfer function in normalized form, i.e.,

GCSðsÞ ¼ 2sfxn þx2
n

s2 þ 2sfxn þx2
n

with the substitutions

xn ¼
ffiffiffiffiffiffiffiffiffiffiffi
K0Kd

s1

r
; f ¼ xns2

2
ð6:9Þ

where xn is called natural frequency and f is called damping factor. The linear
model enables us to derive simple expressions for lock range DxL and lock time TL.

Fig. 6.4 Bode plot of magnitude of open loop gain GOL(x)
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6.3 Lock Range DxL and Lock Time TL

For the following analysis, we assume that the loop is initially out of lock. The
frequency of the reference signal (Fig. 6.1) is x1, and the frequency of the VCO is
x2. The output signal of multiplier M1 is then a phasor rotating with angular
velocity Dx = x1 − x2. Consequently, the phase output of block “Complex !
mag, phase” is a sawtooth signal having amplitude (p/4) Kd and fundamental
frequency 4 Dx, as shown in the upper trace of Fig. 6.5. Because 4 Dx is usually
much higher than the corner frequency xC of the loop filter, the transfer function of
the loop filter at higher frequencies can be approximated again by

Fig. 6.5 Signals ud, uf, and x2 during the lock process
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HLFðxÞ � s2
s1

¼ KH

The output signal uf of the loop filter is a sawtooth signal as well and has amplitude
(p/4) Kd KH, as shown in the middle trace of the figure. This signal modulates the
frequency x2 generated by the VCO. The modulation amplitude is given by (p/4)
Kd KH K0, cf. bottom trace. The Costas loop spontaneously acquires lock when the
peak of the x2 waveform touches the x1 line; hence, we have

DxL ¼ p
4
KdK0KH ¼ p

4
KdK0

s2
s1

ð6:10Þ

Making use of the substitutions Eq. (5.7) this can be rewritten as

DxL ¼ p
2
fxn ð6:11Þ

Because the lock process is a damped oscillation having frequency xn, the lock
time can be approximated by one cycle of this oscillation, i.e.,

TL � 2p
xn

ð6:12Þ

6.4 NonLinear Model for the Unlocked State

To derive the model for the unlocked state, we assume that the loop is not yet
locked and that the difference between reference frequency x1 and VCO output
frequency x2 is Dx = x1 − x2. As shown in Sect. 6.2 (cf. also Fig. 6.5), ud is a
sawtooth signal having frequency 4 Dx, cf. upper trace in Fig. 6.6.

As will be explained in short, this signal is asymmetrical, i.e., the duration of the
positive have wave T1 is not identical with the duration T2 of the negative half wave.
The middle trace shows the output signal of the loop filter, and the lower trace shows
the modulation of the VCO output frequency x2. From this waveform, it is seen that
during T1 the average frequency difference Dx becomes smaller, but during interval
T2, it becomes larger. Consequently, the duration of T1 is longer than the duration of
T2, and the average of signal ud is nonzero and positive. Using the same mathe-
matical procedure as in Sects. 3.3 and 4.3, the average ud can be computed from

ud ¼ p2K2
dK0KH

64 Dx
ð6:13Þ

Because this type of Costas loop does not require an additional lowpass filter, the ud
signal is not shifted in-phase, and therefore there is no cos term in Eq. (6.12). This
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implies that there is no polarity reversal in the function ud(Dx); hence, the pull-in
range becomes theoretically infinite. Of course, in a real circuit the pull-in range
will be limited by the frequency range the VCO is capable to generate. When the
center frequency f0 of the loop is 10 MHz, for example, and when the VCO can
create frequencies in the range from 0 to 20 MHz, then the maximum pull-in range
DfP is 10 MHz, i.e., DxP = 6.28 106 rad/s.

Figure 6.7 shows the nonlinear model used to compute the pull-in process. The
block generating signal ud is labeled “Phase/Frequency Detector” [cf. Eq. (5.10)]
because in the unlocked state ud is a function of the frequency error Dx.

Using the same mathematical procedure as in Sect. 3.3, the transfer function of
the loop filter can be approximated as

HLFðsÞ � 1
s s1

ð6:14Þ

Fig. 6.6 Pull-in process of
the modified Costas loop for
QPSK
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In time domain, we can therefore write

uf tð Þ ¼ 1
s1

Z t

0

udðsÞ ds ð6:15Þ

For the transfer function of the VCO, we get

Dx ¼ Dx0 � K0uf ð6:16Þ

where Dx0 is the initial frequency difference given by

Dx0 ¼ x1 � x20

Equations (6.13), (6.14), and (6.15) enable us to compute the pull-in process, i.e.,
the instantaneous frequency difference Dx as a function of time. This will be
demonstrated in the next section.

6.5 Pull-in Range and Pull-in Time of the Modified
Costas Loop for QPSK

As seen in the last section, the pull-in range of this type of Costas loop can be
arbitrarily large. Using Eqs. (6.12), (6.13), and (6.14), we can derive an equation
for the pull-in time TP:

TP � 16
p2

Dx2
0

fx3
n

ð6:17Þ

Fig. 6.7 Nonlinear model of
the modified Costas loop
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6.6 Design Procedure for Modified Costas Loop for QPSK

In the following, a design procedure for a digital modified Costas loop is presented.
The design is based on the method and we already used in Sect. 5.5. It is assumed
that two binary signals (I and Q) are modulated onto a quadrature carrier (cosine and
sine carrier). The carrier frequency is set to 400 kHz, i.e., the Costas loop will
operate at a center frequency x0 = 2 p 400’000 = 2’512’000 rad s−1. The symbol
rate is assumed to be fS = 100’000 symbols/s. Now the parameters of the loop (such
as time constants s1 and s2, corner frequency xC, and gain parameters such as K0,
Kd) must be determined. [Note that these parameters have been defined in Eqs. (3.4),
(3.5), (3.6), and (3.13)].

It has been shown in Sect. 6.1 that for this type of Costas loop Kd = 1. The
modulation amplitudes m1 and m2 are set to 1. It has proven advantageous to
determine the remaining parameters by using the open loop transfer function
GOL(s) of the loop [6], which is given here by

GOLðsÞ ¼ Kd
K0

s
1þ ss2
ss1

The magnitude of GOL(x) has been shown in Fig. 6.4. As already explained in
Sect. 3.5, the magnitude curve crosses the 0 dB line at the transit frequency xT. As
in the case of the Costas loop for BPSK, we again set xT = 0.1 x0, i.e.,
xT = 251’200 rad s−1. Furthermore, we set corner frequency xC = xT. When doing
so, the slope of the asymptotic magnitude curve changes from −40 dB/decade to
−20 dB/decade at x = xC. Under this condition, the phase of GOL(x) is −135° at
xC. Consequently, the phase margin of the loop becomes 45° which provides suf-
ficient stability. According to Eq. (3.5), s2 becomes 4 ls. Last the remaining
parameters s1 and K0 must be chosen. They have to be specified such that the open
loop gain becomes 1 at frequency x = xC. According to Eq. (5.14), we can set

GOLðxCÞ ¼ 1 � K0 Kd

x2
c s1

Because 2 parameters are still undetermined, one of those can be chosen arbitrarily;
hence, we set s1 = 20 ls. We then get K0 = 1’262’000 s−1.

The design of the Costas loop is completed now, and we can compute the most
important loop parameters. For the natural frequency and damping factor, we get
from Eq. (3.11).

xn ¼ 251'000 rad=s fn ¼ 40 kHzð Þ
f ¼ 0:5
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From (6.10), the lock range becomes

DxL ¼ 1970820 rad sðDfL ¼ 31:5 kHzÞ

and from (6.11), the lock time becomes

TL ¼ 25 ls

All block parameters have been determined now in the complex s domain. To
get a digital Costas loop, we must convert the transfer function in the s domain into
transfer functions in the z domain, using the z transform. As done in Sect. 3.6, a
suitable sampling frequency fsamp must be chosen. As shown previously, fsamp must
be greater than 4 times the center frequency of the Costas loop. A suitable choice
would be fsamp = 8 f0 = 3.2 MHz.

Next the transfer functions of the building block have to be converted into
discrete transfer functions, i.e., H(s) ! H(z). For best results, it is preferable to use
the bilinear z transform [6]. Given an analog transfer function H(s), this can be
converted into a discrete transfer function H(z) by replacing s by

s ¼ 2
T
1� z�1

1þ z�1

Now the bilinear z transform has the property that the analog frequency range from
0 to ∞ is compressed to the digital frequency range from 0 to fsamp/2. To avoid
undesired “shrinking” of the corner frequency xC, this must be “prewarped”
accordingly, i.e., we must set

xC;p ¼ 2
T
tg
xC T
2

where xC,p is the prewarped corner frequency. Now we can apply the bilinear z
transform to the transfer functions of the loop filter [cf. Eq. (3.5)] and get

HLFðzÞ ¼
1þ 2

xC;p T

h i
þ 1� 2

xC;p T

h i
z�1

2 s1
T � 2 s1

T z�1

Because the VCO is a simple integrator, we can apply the discrete z transform of an
integrator, i.e.,

HVCOðzÞ ¼ K0 T
1� z�1

The digital Costas loop is ready now for implementation. A Simulink model will be
presented in Sect. 6.6.
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6.7 Simulating the Digital Costas Loop for BPSK

For the following simulation, the Simulink model QPSK_Comp.mdl is used.
Figure 6.8 shows the Simulink model of the Costas loop. Table 6.1 lists a

number of results for the pull-in time TP.
The predictions come very close to the results obtained from the simulation.
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Table 6.1 Comparison of predicted and simulated results for the pull-in range

Df0 (kHz) Dx0 (rad s−1) TP (theory) (ls) TP (simulation) (ls)

50 314,200 20 20

100 628,000 81 80

200 1,256,000 327 300
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Chapter 7
Costas Loop for m-ary Phase Shift
Keying (mPSK)

7.1 Operating Principle

In the previous chapters, we discussed Costas loops for binary and quadrature phase
shift keying. In BPSK, one bit is transmitted at a time, and in QPSK, two bits can be
transmitted in one symbol. This technique can be extended to transmit more than 2
bits per symbol when the number of phase constellations is increased. This is called
m-ary PSK [1, 2]. Here, the phase of the modulated signal can have one of the m
states. In the following, we consider an example for m = 8, i.e., the phase of the
modulated signal can be either 0, p/4, 2 p/4, 3 p/4 … 7 p/4. The block diagram of a
Costas loop for m-ary PSK is shown in Fig. 7.1.

In m-ary PSK, the transmitter generates a signal

sðtÞ ¼ cosðx1 tþ 2p
m

kÞ with k ¼ 0. . .m� 1

where x1 is the radian frequency of the carrier, and k is an integer in the range 0 …
m − 1. When m = 8 is chosen, the modulated signal can have 8 different phase
constellations. The circuit shown in Fig. 7.1 is a modified Costas loop, i.e., it works
with pre-envelope signals. We are considering this type of Costas loop because it is
easier to implement and has better dynamic performance than conventional Costas
loops. The pre-envelope signal then becomes

sþ ðtÞ ¼ sðtÞþ jH½sðtÞ� ¼ cosðx1 tþ 2p
m

kÞþ j sinðx1 tþ 2p
m

kÞ
¼ expðj½x1 tþ 2p

m
k�Þ
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where H(..) stands for Hilbert transform. The local oscillator (VCO) must then
generate a complex signal of the form

u2ðtÞ ¼ expð�½x2tþ h2�Þ

where h2 is the initial phase. This signal is multiplied in the block MUL with the
input signal s+(t); hence, the output signal of the multiplier is

umðtÞ ¼ expðj½x1 � x2�tþ j
2p
m

k � j h2Þ

When the loop is locked in both frequency and phase, x1 = x2, and h2 � 0; hence,
we have

umðtÞ � exp ðj 2p
m

kÞ

and the phase of um(t) is an integer multiple of 2 p/m. The phase of um(t) is labeled
as phi_out in Fig. 7.1. When a phase error he exists, it is computed from

he ¼ phi out � phi est

where phi_est is an exact multiple of 2 p/m. phi_est is obtained by the block entitled
“round” in Fig. 7.1. phi_est is an estimate of the actual phase and is the value that is
closest to the actual phase phi_out. This phase error is actually the output signal ud
of a phase detector and is applied to the input of the loop filter LF. The output signal
uf of the loop filter controls the frequency of the VCO. As the signal ud is identical
with the phase error, this phase detector has phase detector gain Kd = 1.

7.2 Transfer Function of the modified Costas Loop
for mPSK

We now can compute the transfer function H(s) of the modified Costas loop for
mPSK. A linear model of the loop is shown in Fig. 7.2.

Fig. 7.1 Block diagram of
modified Costas loop for
mPSK
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The transfer functions of the loop filter and VCO have been defined in Eqs. (3.5)
and (3.6). Note that with this type of Costas loop there is no additional lowpass
filter because the multiplication of the two complex carriers [cf. Eq. (6.6)] does not
create the unwanted double-frequency component as found with the conventional
Costas loops. From the model of Fig. 7.2, the open loop transfer function is
determined to be

GOLðsÞ ¼ Kd
K0

s
1þ ss2
ss1

Figure 7.3 shows a Bode plot of the magnitude of GOL. The plot is characterized by
the corner frequency xC which is defined by xC = 1/s2, and gain parameters Kd and
K0. At lower frequencies, the magnitude rolls off with a slope of −40 dB/decade. At
frequency xC, the zero of the loop filter causes the magnitude to change its slope to
−20 dB/decade. To get a stable system, the magnitude curve should cut the 0 dB
line with a slope that is markedly less than −40 dB/decade. Setting the parameters
such that the gain is just 0 dB at frequency xC provides a phase margin of 45
degrees which assures stability [3]. From the open loop transfer function, we now
can calculate the closed loop transfer function defined by

Fig. 7.2 Linear model of the
modified Costas loop for
mPSK

Fig. 7.3 Bode plot of
magnitude of open loop gain
GOL(x)
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GCLðsÞ ¼ H2ðsÞ
H1ðsÞ

After some mathematical manipulations, we get

GCLðsÞ ¼
K0Kd

1þ ss2
ss1

s2 þ s K0Kds2
s1

þ K0Kd
s1

It is customary to represent this transfer function in normalized form, i.e.,

GCSðsÞ ¼ 2sfxn þx2
n

s2 þ 2sfxn þx2
n

with the substitutions

xn ¼
ffiffiffiffiffiffiffiffiffiffiffi
K0Kd

s1

r
; f ¼ xns2

2
ð7:1Þ

where xn is called natural frequency, and f is called damping factor. The linear
model enables us to derive simple expressions for lock range DxL and lock time TL.

7.3 Lock Range DxL and Lock Time TL

For the following analysis, we assume that the loop is initially out of lock. The
frequency of the reference signal (Fig. 7.1) is x1, and the frequency of the VCO is
x2. The output signal of multiplier MUL is then a phasor rotating with angular
velocity Dx = x1 − x2. Consequently the phase output of block “Complex !
mag, phase” is a sawtooth signal having amplitude (p/8) Kd and fundamental
frequency 8 Dx, as shown in the upper trace of Fig. 7.4. As 8 Dx is usually much
higher than the corner frequency xC of the loop filter, the transfer function of the
loop filter at higher frequencies can be approximated again by

HLFðxÞ � s2
s1

¼ KH

The output signal uf of the loop filter is a sawtooth signal as well and has amplitude
(p/8) Kd KH, as shown in the middle trace of the figure. This signal modulates the
frequency x2 generated by the VCO. The modulation amplitude is given by (p/8)
Kd KH K0, cf. bottom trace. The Costas loop spontaneously acquires lock when the
peak of the x2 waveform touches the x1 line; hence, we have
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DxL ¼ p
8
KdK0KH ¼ p

8
KdK0

s2
s1

Making use of the substitutions Eq. (7.1) this can be rewritten as

DxL ¼ p
4
fxn ð7:2Þ

As the lock process is a damped oscillation having frequency xn, the lock time can
be approximated by one cycle of this oscillation, i.e.,

TL � 2p
xn

ð7:3Þ

Fig. 7.4 Signals ud, uf, and x2 during the lock process
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7.4 Nonlinear Model for the Unlocked State

To derive the model for the unlocked state, we assume that the loop is not yet
locked, and that the difference between reference frequency x1 and VCO output
frequency x2 is Dx = x1 − x2. As shown in Sect. 6.2 (cf. also Fig. 6.5), ud is a
sawtooth signal having frequency 8 Dx (cf. upper trace in Fig. 7.5).

As will be explained in short, this signal is asymmetrical, i.e., the duration of the
positive which has wave T1 is not identical with the duration T2 of the negative. The
middle trace shows the output signal of the loop filter, and the lower trace shows the
modulation of the VCO output frequency x2. From this waveform, it is seen that
during T1 the average frequency difference Dx becomes smaller, but during interval
T2 it becomes larger. Consequently the duration of T1 is longer than the duration of

Fig. 7.5 Pull-in process of
the modified Costas loop for
mPSK
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T2, and the average of signal ud is non-zero and positive. Using the same mathe-
matical procedure as in Sects. 3.2 and 4.3, the average ud can be computed from

ud ¼ p2K2
dK0KH

128 Dx
ð7:4Þ

Because this type of Costas loop does not require an additional lowpass filter, the ud
signal is not shifted in-phase, and therefore, there is no cos term in Eq. (6.12). This
implies that there is no polarity reversal in the function ud(Dx), hence the pull-in
range becomes theoretically infinite. Of course in a real circuit, the pull-in range
will be limited by the frequency range the VCO is capable to generate. When the
center frequency f0 of the loop is 10 MHz, for example, and when the VCO can
create frequencies in the range from 0 … 20 MHz, then the maximum pull-in range
DfP is 10 MHz, i.e., DxP = 6.28 106 rad/s.

Figure 7.6 shows the nonlinear model used to compute the pull-in process. The
block generating signal ud is labeled “Phase/Frequency Detector” [cf. Eq. (5.10)]
because in the unlocked state ud is a function of the frequency error Dx.

Using the same mathematical procedure as in Sect. 3.3, the transfer function of
the loop filter can be approximated as

HLFðsÞ � 1
s s1

ð7:5Þ

In time domain, we can therefore write

uf tð Þ ¼ 1
s1

Z t

0

udðsÞ ds ð7:6Þ

For the transfer function of the VCO, we get

Dx ¼ Dx0 � K0uf ð7:7Þ

where Dx0 is the initial frequency difference given by

Dx0 ¼ x1 � x20

Fig. 7.6 Nonlinear model of
the modified Costas loop
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Equations (7.4) … (7.7) enable us to compute the pull-in process, i.e., the instan-
taneous frequency difference Dx as a function of time. This will be demonstrated in
the next section.

7.5 Pull-in Range and Pull-in Time of the Modified Costas
Loop for QPSK

As seen in the last section, the pull-in range of this type of Costas loop can be
arbitrarily large. Using Eqs. (6.13), (6.15), and (6.16), we can derive an equation
for the pull-in time TP:

TP � 32
p2

Dx2
0

fx3
n

ð7:8Þ

7.6 Design Procedure for Costas Loop for mPSK

In the following, a design procedure for a digitally modified Costas loop is pre-
sented. The design is based on the method we already used in Sect. 5.5. It is
assumed that two binary signals (I and Q) are modulated onto a quadrature carrier
(cosine and sine carrier). The carrier frequency is set to 400 kHz, i.e., the Costas
loop will operate at a center frequency x0 = 2 p 400’000 = 2’512’000 rad s−1. The
symbol rate is assumed to be fS = 100’000 symbols/s. Now the parameters of the
loop (such as time constants s1 and s2, corner frequency xC, and gain parameters
such as K0, Kd) must be determined. (Note that these parameters have been defined
in Eqs. (3.4–3.6), and (3.13).

It has been shown in Sect. 6.1 that for this type of Costas loop, Kd = 1. It has
proven advantageous to determine the remaining parameters by using the open loop
transfer function GOL(s) of the loop [3], which is given here by

GOLðsÞ ¼ Kd
K0

s
1þ ss2
ss1

The magnitude of GOL(x) has been shown in Fig. 7.3. As already explained in
Sect. 3.5, the magnitude curve crosses the 0 dB line at the transit frequency xT. As
in the case of the Costas loop for BPSK, we again set xT = 0.1 x0, i.e.,
xT = 251’200 rad s−1. Furthermore, we set corner frequency xC = xT. When doing
so, the slope of the asymptotic magnitude curve changes from −40 dB/decade to
−20 dB/decade at x = xC. Under this condition, the phase of GOL(x) is −135° at
xC. Consequently, the phase margin of the loop becomes 45° which provides suf-
ficient stability. According to Eq. (3.5), s2 becomes 4 ls. Lastly, the remaining
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parameters s1 and K0 must be chosen. They have to be specified such that the open
loop gain becomes 1 at frequency x = xC. According to Eq. (3.5), we can set

GOLðxCÞ ¼ 1 � K0 Kd

x2
c s1

Because 2 parameters are still undetermined, one of those can be chosen arbitrarily,
hence we set s1 = 20 ls. We then get K0 = 1’262’000 s−1.

The design of the Costas loop is completed now, and we can compute the most
important loop parameters. For the natural frequency and damping factor we get
from Eq. (3.11),

xn ¼ 251’000 rad=s ðfn ¼ 40 kHzÞ
f ¼ 0:5

From (7.3), the lock range becomes

DxL ¼ 98’500 rad s�1ðDfL ¼ 15:7kHzÞ

and from (6.11) the lock time becomes

TL ¼ 25 ls

All block parameters have been determined now in the complex s domain. To
get a digital Costas loop, we must convert the transfer function in the s domain into
transfer functions in the z domain, using the z transform. As done in Sect. 3.6, a
suitable sampling frequency fsamp must be chosen. As shown previously, fsamp must
be greater than 4 times the center frequency of the Costas loop. A suitable choice
would be fsamp = 8 and f0 = 3.2 MHz.

Next, the transfer functions of the building block have to be converted into
discrete transfer functions, i.e., H(s) ! H(z). For best results, it is preferable to use
the bilinear z transform [3]. Given an analog transfer function H(s), this can be
converted into a discrete transfer function H(z) by replacing s by

s ¼ 2
T
1� z�1

1þ z�1

Now, the bilinear z transform has the property that the analog frequency range from
0 … ∞ is compressed to the digital frequency range from 0 … fsamp/2. To avoid
undesired “shrinking” of the corner frequency xC, this must be “prewarped”
accordingly, i.e., we must set

xC;p ¼ 2
T
tg
xC T
2
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where xC,p is the prewarped corner frequency. Now, we can apply the bilinear z
transform to the transfer functions of the loop filter [cf. Eq. (3.5)] and get

HLFðzÞ ¼
1þ 2

xC;p T

h i
þ 1� 2

xC;p T

h i
z�1

2 s1
T � 2 s1

T z�1

As the VCO is a simple integrator, we can apply the discrete z transform of an
integrator, i.e.,

HVCOðzÞ ¼ K0 T
1� z�1

The phase detector used in this Costas loop is somewhat special, because the phase
error is computed on the base of estimates of the actual phase constellation. Details
about phase detector design are presented in Sect. 7.7, where we will perform
simulations with that type of Costas loop.

7.7 Simulink Model for Costas Loop for mPSK

A Simulink model for a Costas loop for mPSK is shown in Fig. 7.7 (mPSK_Comp.
mdl). The model consists of a transmitter and a receiver circuit. In the following,
various parts of the model are described.

(a) Transmitter

In the transmitter section of the model, an 8-ary random signal k(n) is created,
which is in the range −4… 3. (n = sample index). Then a complex phasor exp(j k
(n) pi/4) is computed. Data signal I is then given by the real part, and data signal Q
is given by the imaginary part of that phasor. This phasor has a magnitude of 1 and
can have 1 of 8 possible phases, i.e., 0, pi/4, pi/2, 3 pi/4, etc.

Furthermore, a complex carrier exp(j omegaC t + theta1) = exp(j phi1) is gen-
erated. (In this simulation, theta1 is set 0.) Multiplying the phasor with the complex
carrier yields the pre-envelope signal s + (t)

sþ tð Þ ¼ Iþ jQð Þ�exp j omegaC�tð Þ

The transmitter output signal s(t) is by definition the real part of s + (t)

s tð Þ ¼ Re sþ tð Þ½ � ¼ I cos omegaC tð Þ � Q sin omegaC tð Þ
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(b) Receiver

The receiver first builds the pre-envelope signal s + (t)

sþ tð Þ ¼ s tð Þþ j s ^ tð Þ

with s ^ tð Þ ¼ H s tð Þ½ �

where H[.] denotes Hilbert transform. As the bandwidth of the data signal is much
less than the carrier frequency, the Hilbert transform can be computed by a simple
delay, i.e., by delaying the samples of s(t) by one quarter of a carrier period (8
samples by default in our case).

As the receiver does not “know” the exact frequency and phase of the carrier, a
Costas loop is used to extract that information. To reconstruct the data signal, the
pre-envelope signal ismultipliedwith a complex carrier of the form exp(−j omegaC t):

s� tð Þ ¼ sþ tð Þ exp �j omegaC tð Þ ¼ Iþ jQð Þ�exp j omegaC tð Þ�exp �j omegaC tð Þ

This yields

s� tð Þ ¼ Iþ j Q

which is called “complex envelope.” When the loop has not yet acquired lock,
s * (t) is not identical with the complex envelope but contains a phase error term:

s� tð Þ ¼ Iþ j Qð Þ�exp j theta eð Þ

where theta_e is the phase error.

(c) Phase detector

We now have to extract that phase error by some suitable operations. First, we
extract the phase of s * (t) by block C->M,phi. This phase is called phi_out. Next,
we round that phi_out to the nearest integer multiple of pi/4 (45°). This yields a
phase estimate and is called phi_est here.

Now, the phase error theta_e is simply the difference

ud tð Þ ¼ theta e ¼ phi out� phi est

The blocks Mul3, C->M,phi, *4/pi, round, *(−pi/4) end the adder form; therefore, a
phase detector that has phase detector gain Kd = 1. The phase error signal ud(t) is
applied to the input of a loop filter F3(z) that is realized as a PI filter. Its transfer
function in the s domain is
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1þ s tau2
F3 sð Þ ¼ � � ������������������������

s tau1

This transfer function is converted into F3(z) by the bilinear z transform (cf. the
comments in initialization file InitFcnmPSK_Comp.m).

The output of the loop filter is applied to the input of the DCO built from F4(z)
and surrounding blocks. In the s domain, the transfer function of the DCO is given
by

K0
F4 sð Þ ¼ � �����������

s

with K0 = DCO gain. This transfer function is also converted into F4(z) by using
the bilinear z transform (cf. the comments in initialization file InitFctMPSK8D.m).

The radian frequency of the DCO is given by

omega2 ¼ omega0þK0 uf

where uf is the output signal of the loop filter. omega0 is the center radian fre-
quency of the Costas loop. Ideally, omega0 should be equal with omegaC. It is
allowed, however, that omega0 deviates from omegaC, because the Costas loop can
track the frequency error.

(d) Parameters of the model

A number of parameters can be specified by the operator:

– fC carrier frequency of the transmitter (default = 400’000 Hz).
– fR symbol rate (default = 100’000 symb/s).
– OS oversampling factor factor used in the transmitter section. The sampling

frequency of the model is defined as the product OS * fC (default = 32).
– nCycles number of symbols used in the simulation (default = 20).
– delta_f frequency error of receiver carrier frequency. To simulate a frequency

offset, the initial frequency of the Digital-controlled oscillator (DCO) is set to
fC − delta_f.

– D decimation factor (default = 8). This allows to sample the blocks within the
receiver with a lower sampling frequency.

(e) Instructions for model operation

To perform simulations, proceed as follows:

– load the model mPSK phase shift keying (mPSK)_Comp by double-clicking the
file QPSK Phase Shift Keying (QPSK)_Comp.mdl in the Current Folder of
MATLABMatlab.
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– this displays the model and a figure window containing 6 edit controls for
parameter specification. When the model runs the first time, default parameters
are set (cf. Sect. 7.2). You now can alter these parameters. When done, click the
“Done” button. When an invalid number format has been entered in one of the
edit controls, an error message is issued, telling you to correct this entry and to
hit the “Done” button again. Hitting this button saves the actual parameters to a
parameter file params_mQPSK_Comp.mat. When the model is started next, the
parameters saved in these files are loaded.

There is an option to load the initial default parameters: hit the “Set init defaults”
button.

This can be useful whenever you specify parameters that do not give useful
results.

– after hitting the “Done” button, go to the model window and start the simulation
(menu item Simulation/Start).

– look at the results on the scopes phi_in and ph error. phi_in represents the phase
of the data phasor I + j Q. k(n) can have integer values in the range −4… 3, and
the corresponding phase is k(n) * pi/4. The reconstructed phase is seen in trace
k^(n)wrap in scope phi error. The Wrap block is used to get the same phase
readout at the input and at the output of the model. As the round block can also
yield a result of +4, this is wrapped to −4 in order to have the same scales for
input and output phase. From the theta_e, uf, and omega2 signals, you can see
how fast the lock acquires lock.

(f) Comment on the pull-in range of the Costas loop

In contrast to the conventional Costas loop (as used in model QPSK_Real), the
modified Costas loop does not require an additional lowpass filter to remove the
unwanted double-frequency components. Hence, there is no additional phase shift
in the Costas loop, and the pull-in range can be arbitrarily high. When selecting a
higher delta_f value, it will be necessary to increase the duration of the simulation
(increase nCycles), because the pull-in time TP will become larger.

When very large frequency errors are simulated, you will note that the loop is no
longer able to acquire lock when larger decimation factors are used. This stems
from the fact that the output signal of block Mul3 will contain very high frequency
components, i.e., waveforms whose frequency is up to 8 times the frequency error.
To process those high-frequency signals, a large sampling rate must be selected;
otherwise, we will be confronted with aliasing effects.

(g) Comment on the “phase ambiguity” of the Costas loop

When performing simulations with different values of frequency error delta_f, you
will recognize in some situations that the phase of the output signal can be offset
from the phase of the input signal.
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This occurs because the Costas loop for mQPSK can lock with 8 possible phase
differences between transmitter and receiver carriers, i.e., with a phase difference of
0, 45, 90, 135, etc., degrees.

To avoid this ambiguity, additional measures have to be taken. A common
method is to use a given preamble at each start of a data transmission, e.g., a
sequence of symbols having all the same phase.

Because the receiver knows what symbols are sent in the preamble, it will
replace the demodulated I signal with these symbols during the interval where the
preamble is transmitted. This method is demonstrated in an other model
(BPSK_Real_
PreAmb).

The same procedure could be applied in this model, i.e., we would have to create
a predefined preamble for both I and Q signals, e.g., a sequence of all 1’s.
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Chapter 8
Costas Loop for BPSK Using Phasor
Rotator Circuit

8.1 Operating Principle

In this chapter, we consider another variant of the Costas loop that does not use a
voltage-controlled oscillator (VCO) or digital-controlled oscillator (DCO), but
acquires the locked state by rotating a phasor [1]. The block diagram of this Costas
loop is shown in Fig. 8.1.

The blocks at the left of the diagram are identical with those of the Costas loop
considered in Chap. 3, cf. Fig. 3.1a. The input signal is given by

sðtÞ ¼ m sinðx1tþ h1Þ

In place of the VCO in Fig. 3.1a, an ordinary oscillator (Osc) is used that
generates a fixed frequency x2. This oscillator has a sine and a cosine output. The
output signals of the multipliers in the I branch and Q branch are again lowpass
filtered to remove the high-frequency component at about twice the carrier fre-
quency. The output signal of the lowpass filter in the I branch is therefore

I ¼ m cosð½x1 � x2� tþ h1 � h2Þ;

and the output signal of the lowpass filter in the Q branch becomes

Q ¼ sinð½x1 � x2� tþ h1 � h2Þ
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We now define a phasor P by

P ¼ Iþ jQ ¼ m cosð½x1 � x2� tþ h1 � h2Þþ j m sinð½x1 � x2� tþ h1 � h2Þ
¼ m expðj½Dx tþ he�Þ

ð8:1Þ

with Dx = x1 − x2 and he = h1 − h2, i.e., signal I is considered to be the real part
and signal Q the imaginary part of phasor P. Assume for the moment that m can
take the values = 1 or −1. According to Eq. (8.1), P rotates with a radian frequency
Dx, i.e., it executes Dx/2 p revolutions per second. But our aim is to get the loop
locked, which means that the phasor P should settle at a position P = 1 + j � 0 when
m = 1 or at a position P = −1 + j � 0 when m = −1. To reach that goal, we must
therefore rotate phasor P in opposite direction. When Dx is positive, e.g., P rotates
in positive (counterclockwise) direction. In this case, the phasor rotator must rotate
P in the negative direction, i.e., clockwise. The operating principle of the phasor
rotator is explained by Fig. 8.2.

The rotator can be considered as a rotating switch. It can rotate the phase of
phasor P by integer multiples of a phase step D/. D/ has been chosen 2 p/16 in this
example, which corresponds to an angle of 22.5°. The choice of the phase step D/
is crucial for the operation of the loop. We will consider the criteria for selecting the
appropriate value for D/ later in this section.

As shown in Fig. 8.2, the phasor P can be rotated by 0°, 22.5°, 45°, 67.5° …
337.5°.

The position of the rotating switch is controlled by a circuit labeled Rotator
Control, cf. Fig. 8.3.

To determine the required direction of ratation, it is checked first in which of the
four quadrants the rotated phasor P′ is currently positioned, cf. Fig. 8.5. When P′ is in
quadrant Q4, it must be rotated in positive (counterclockwise) direction in order to
get settled at a position near P′ = 1 + j � 0. When P′ is currently in quadrant Q1,

Fig. 8.1 Costas loop for BPSK using phasor rotator
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however, it must be rotated in negative (clockwise) direction to get settled at
P′ = 1 + j � 0. When P′ is in quadrant Q2, it must be rotated positively in order to get
settled at P′ = P′ = −1 + j � 0. When P′ is in quadrant Q3, it must be rotated nega-
tively to reach a position near P′ = −1 + j � 0. It turns out that the required direction is
positive whenever I′ and Q′ have opposite sign, and negative, whenever I′ and Q′

Fig. 8.3 Operation of the
Rotator Control circuit

Fig. 8.2 Phasor rotator
operation

Fig. 8.4 Operation of the
phasor rotator circuit
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have the same sign. Therefore, two binary signals Ib and Qb are created, cf. Fig. 8.3.
Ib is a logical 1 when the sign of I′ is positive and a logical 0 when I′ is negative. The
same holds for binary signal Qb: Qb is a logical 1 when Q′ is positive. The rotation
direction is now positive when I′ and Q′ have different sign. Hence, we derive a
logical signal labeled UP=DN is built from the EXOR function of Ib and Qb,

UP=DN ¼ EXORðIb;QbÞ ¼ Ib � Qb þ Ib � Qb

This signal is fed to the direction UP=DN of a bidirectional counter. This counter is
clocked by a signal labeled fclock. When the direction signal UP=DN is high (logical
1), the counter counts upward at a rate given by fclock. When UP=DN is low, the
counter counts downward. The content of the counter is restricted to the range 0…
15. When the content exceeds 15, the counter is reset to 0, and when the content
switches from 0 to 1, the content is reset to 15. As we will recognize soon, fclock
must be an integer multiple of the symbol rate fS (number of bits per second). We
therefore define an oversampling factor OS by

OS ¼ fclock
fS

In the example of Fig. 8.1, OS has been chosen 16. This means that the counter is
clocked 16 times in every symbol period TS = 1/fS. We will discuss the optimal
choice of the oversampling factor in the following. The operation of the phasor
rotator becomes now evident: When phasor P′ is in quadrant Q4, for example, the
counter in Fig. 8.3 counts upward. Every clock pulse applied to the counting input
of the counter increases the content C_out of the counter, and the rotation angle / is
incremented by every clock pulse. This happens until the rotated phasor reaches the
point P′ = 1 + j � 0. The counter now counts in opposite direction, i.e., downward.

Fig. 8.5 Definition of
quadrants
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This decreases the rotation angle /. When the loop has acquired lock, the rotated
phasor is positioned either near P′ = 1 + j � 0 when m = 1 or near P′ = 1 − j � 0
when m = −1. Because the rotated phasor P′ can be incremented or decremented
only in increments of D/, P′ settles within an error band of ±D/.

The content of the counter C_out determines the angle / by which phasor P
must be rotated. / is obtained by multiplying C_out by DC

/ ¼ C out � D/

The operation of the phasor rotator is explained by Fig. 8.4. To rotate phasor P by
an angle /, the following trigonometric operations are required:

I 0 ¼ I � cos /� Q � sin/
Q0 ¼ I � sin/þQ � cos/ ð8:2Þ

Last but not least, we will analyze how the parameters OS (oversampling factor)
and the phase step D/ should be chosen. Let us start with phase step D/. When D/
is made very small, for instance 5°, the phasor can be very accurately positioned at
the desired location, and the phase error band becomes very small, i.e., ±5°. This is
not a large benefit, however, because an error band of say ±22.5° can also be
tolerated without any trouble. On the other side, D/ cannot be made arbitrarily
large. When we choose, e.g., D/ = 90°, P’ executes large jumps whenever the
content of the counter is increased or decreased. If D/ is chosen too large, this can
lead to instabilities, because the loop is not able to settle at the desired position. For
this reason, it seams reasonable to choose a value of 22.5° or 11.25° for D/.

The oversampling factor must also be chosen appropriately. Assume for the
moment that the phasor rotator circuit is rotating permanently in the same direction,
positive or negative. The rotator then rotates the phasor by an angle rad/s.

h ¼ D/ � OS � fS ð8:3Þ

This is the maximum phase angle per second that can be tracked by the
loop. Apparently, this figure is identical with the pull-in range DxP. The pull-in
range expressed in Hz then becomes

DfP ¼ D/
2p

� OS � fS ð8:4Þ

Eq. (8.4) shows that the pull-inrange is proportional to the oversampling factor OS
and to the phase step D/. When a large oversampling factor is chosen, the pull-in
range becomes large as well, but when the phase step is made smaller, the pull-in
range is decreased correspondingly. In the example of Fig. 8.1, we have chosen
D/ = 2p/16 and OS = 16, hence the pull range (in Hz) equals the symbol rate fS.

The designer of a Costas loop using phasor rotation would certainly be interested
to know the pull-in time TP. Because this system is highly nonlinear, it is very
difficult to derive an equation for TP. Simulations show that the loop acquires lock
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very rapidly, i.e., in only a few cycles of the clock signal fclock, and that the loop
locks within one only symbol period TS = 1/fS,

TP\1=fS ð8:5Þ

We recognize that the acquisition process of this type of Costas loop is considerably
faster than that of the Costas loops that use a VCO or DCO and a loop filter
(Fig. 3.1a).

8.2 Design Procedure for Costas Loop Using
Phasor Rotator

The design of this type of Costas loop is very simple, because only a few
parameters must be set:

– the phase step D/,
– the oversampling factor OS,
– the 3 dB corner frequency x3dB of the lowpass filters LPF1 and LPF2 (cf.

Fig. 8.1).

Assume that the carrier frequency is fC = 400 kHz and the symbol rate is
fS = 100’000 bits/s. As discussed in Sect. 8.1, an appropriate value must be chosen
for the phase step D/. We have seen that D/ = 2p/16 (22.5°) is a good choice. The
oversampling factor will be chosen using Eq. (8.4). Assuming that we want a pull-in
range of 100 kHz, Eq. (8.4) yields an oversampling factor OS = 16. Last we deter-
mine the 3 dB corner frequency of the lowpass filters. The modulating signal m(t) is a
square wave function. The largest fundamental frequency of that signal is fS/2, when a
bit sequence of the form 01010101… is transmitted. x3dB must therefore be chosen
markedly larger than fS/2, but also smaller than twice the radian carrier frequency xC,
which is 2p � 400’000 = 2’512’000 rad/s. A good choice would be to set the 3 dB
corner frequency twice the symbol rate, i.e., x3dB ¼ 2 � 2p � fS ¼ 1'256'000 rad=s:

The transfer function of the lowpass filters is given by

HLPFðsÞ ¼ 1
1þ s=x3dB

When the lowpass filters are realized as digital filters, we must convert the transfer
function HLPF(s) into the discrete transfer function HLPF(z). For best results, it is
preferable to use the bilinear z transform [2]. Given an analog transfer function H
(s), this can be converted into a discrete transfer function H(z) by replacing s by

s ¼ 2
T
1� z�1

1þ z�1 ð8:6Þ
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T is the sampling interval used for this digital filter, and fF = 1/T is the sampling
frequency. Because the highest frequency component at the output of these filters is
twice the carrier frequency 2 fC, according to the Nyquist theorem the sampling
frequency fF must be chosen at least twice that frequency, i.e., fF > 1.6 MHz. Now
the bilinear z transform has the property that the analog frequency ranges from 0 to
∞ is compressed to the digital frequency ranging from 0 … fsamp/2. To avoid
undesired “shrinking” of the corner frequencies (xC and x3), these must be “pre-
warped” accordingly, i.e., we must set

x3dB;p ¼ 2
T
tg
x3dB T

2
ð8:7Þ

where x3dB,p is the prewarped corner frequency. Now we can apply the bilinear z
transform to the transfer functions of the lowpass filters and get

HLPFðzÞ ¼
1þ 2

x3dB;p T

h i
þ 1� 2

x3dB;p T

h i
z�1

1þ z�1 ð8:8Þ

A Costas loop using these parameters will be presented in Sect. 8.3.

8.3 Simulating the Costas Loop for BPSK Using
Phasor Rotator

The Simulink model BPSK5.mdl shown in Fig. 8.6 represents a BPSK system built
from a transmitter and a receiver. The model uses the design parameters used in the
design example of Sect. 8.2. The transmitter section is shown on left top of the block
diagram. A random generator creates a random binary signal m(t), and this signal is
modulated to a carrier c(t). At the right, the receiver section is shown. The input
signal of the receiver is multiplied by a sine wave (I branch) and a cosine wave
(Q branch). The frequency of these signals is fixed. The output signals of the
multipliers are lowpass filtered. The filtered signal represents the phasor P = I + j Q.
Phasor P is applied to the phasor rotator, which is built from the four multipliers and
two adders shown at the right. Signal I is converted by Relay1 (which is actually a
comparator) to a logical signal labeled I′_del, representing the sign I = of I′ and
signal Q′ is converted by Relay2 to a logical signal labeled Q′_del, representing the
sign of Q′. These two logical signals are applied to an EXOR gate, and the output of
the EXOR is the

logical UP=DN signal that determines the counting direction of the Up/Down
counter, built from an adder labeled Counter ACC.

To see how this type of Costas loop actually works, it is instructive to have a
look on some waveforms, cf. Fig. 8.7. In this simulation, the frequency error is set
50 kHz. Figure 8.7 shows the data signal m(t) and the BPSK signal c(t) m(t), where

100 8 Costas Loop for BPSK Using Phasor Rotator Circuit



a. Modulating signal m(t) and BPSK signal c(t) m(t) 

b. Output signals I and Q of the lowpass filters LPF1 and LPF2 

Fig. 8.7 Signals of the Simulink model of Fig. 8.6
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c. Rotated signals Ií and Qí 

d. Bottom trace: content C_out of the Up/Down Counter (cf. Figure 7-3) 

Fig. 8.7 (continued)
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c(t) is the carrier. Figure 8.7b shows the output signals I and Q of the lowpass filters
LPF1 and LPF2. The sum I + j � Q builds a phasor P rotating with a frequency of
50 kHz. The phasor rotation is now canceled by the phasor rotator. The rotated
signals I′ and Q′ are shown in Fig. 8.7c. We recognize that I′ signal is perfectly
aligned with the modulating signal m(t). Finally in Fig. 8.7d, the content of the Up/
Down Counter C_out is shown, cf. bottom trace. This signal looks like a sawtooth
signal. It periodically ramps from 15 down to 0 and restarts at 15 again, and the
range of 0…15 corresponds to a phase shift in the range from 337.5° to 0°
(Fig. 8.6).

8.4 Modified Costas Loop for BPSK Using Phasor Rotator

In the preceding section, we considered Costas loop for BPSK using phasor rotators
that worked with a real input signal s(t). This type of Costas can be realized,
however, also as modified Costas loop, i.e., a Costas loop working with
pre-envelope signals.

The block diagram of such a loop is shown in Fig. 8.8.
The input signal is given by

sðtÞ ¼ m cosðx1 tþ h1Þ

with m = modulating signal, x1 = reference frequency, and h1 = initial phase.
m can have two equal and opposite values, either +1 and −1, or +c and −c, where c
can be an arbitrary constant. The input signal is first converted into a pre-envelope
signal, as explained in Sect. 1.1. The output signal of the Hilbert transformer is

ŝðtÞ ¼ H½m cosðx1tþ h1Þ� ¼ m sinðx1tþ h1Þ

H(…) stands for Hilbert transform. (Note that because the largest frequency of the
spectrum of the data signal m is much lower than the carrier frequency x1, the

Fig. 8.8 Block diagram of modified Costas loop for BPSK using phasor rotator
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Hilbert transform of the product H½m cosðx1tþ h1Þ� equals mH½cosðx1tþ h1Þ�
[3].) The pre-envelope signal is obtained now from

sþ ðtÞ ¼ sðtÞþ j ŝðtÞ ¼ m expðj½x1 tþ h1�Þ

The ocsillator generates a complex signal

u2ðtÞ ¼ expð�j½x2 tþ h2�Þ

The signals s+(t) and u2(t) are multiplied in block MUL. The output signal of MUL
is

m expðj½ðx1 � x2Þtþ h1 � h2�Þ ¼ m expð�j½Dxtþ he�Þ

with Dx = x1 − x2 and he = h1 − h2. This is a phasor rotating with a frequency of
Dx. The output signal of the multiplier is split by the block labeled C->Re,Im
(complex to real, imaginary) into the two components I and Q. The remaining
blocks of the loop are identical with those of the formerly discussed circuit of
Fig. 8.1. The phasor P = I + j � Q is applied to the phasor rotator, and the position
of the rotating switch is again controlled by block Rotator Control.

8.5 Simulating the Modified Costas Loop for BPSK Using
Phasor Rotator

A data transmission system using this modified Costas loop has been realized by
Simulink model BPSK6.mdl, cf. Fig. 8.9. Most blocks are identical with those of
the model in Fig. 8.6. The transmitter generates directly the pre-envelope signal
s+(t). The local oscillator is built from a sine and a cosine generator that generates a
fixed frequency signal. These two signals are combined by block Re,Im ->C (Real,
Imag to Complex) to form the complex signal exp(−j[Dx t + he]). This signal is
multiplied by the block labeled product. All remaining blocks are identical with
those of the previous model (Fig. 8.6).

This model has been developed with the following default parameters:

• phase step D/ = 2 p/16 (22.5°),
• symbol rate fS = 100’000 bits/s,
• carrier frequency fC = 400 kHz.

The blocks following block C->Re,Im (Complex to Real, Imaginary) (including the
up/down counter in the phasor control circuit) operate at a sampling frequency of 32
times to carrier frequency, i.e., at 12.8 MHz. Hence, the oversampling factor OS
becomes OS = 12.8 MHz/400 kHz = 128. This leads to a pull-in frequency
DfP = 800 kHz. When running the model, frequency errors in the range of
−800 kHz…800 kHz can theoretically be specified. The frequency f0 of the local
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oscillator is given by f0 = fC − df, with df = frequency error. Because Simulink
does not support negative frequency values in the oscillator blocks, frequency errors
larger than 400 kHz cannot be entered, but negative frequency errors down to
−800 kHz are no problem. The simulations also clearly demonstrate that the loop
acquires lock extremely fast, i.e., in at most one sampling interval (default 10 ls).
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Chapter 9
Costas Loop for QPSK Using Phasor
Rotator Circuit

9.1 Operating Principle

The Costas loop considered in this chapter is similar to the circuit discussed in
Chap. 8 but is extended for operation with QPSK signals. The block diagram of this
Costas loop is shown in Fig. 9.1.

The input signal is defined by

sðtÞ ¼ m1 cosðx1 tþ h1Þ � m2 sinðx1 tþ h1Þ

where m1 and m2 are data signals that can have a value of +c or −c, where c is an
arbitrary constant. In many cases, c = 1. x1 is the carrier radian frequency, and h1 is
the zero phase. The local oscillator (labeled Osc) generates two output signals, a
sine wave and a cosine wave having a constant radian frequency x2. s(t) is mul-
tiplied with the sine wave in the I branch and with the cosine wave in the Q branch.
The output signals of the multipliers are lowpass filtered by filters LPF1 and LPF2
in order to remove the high frequency components at frequency x1 + x2. The
output signal of lowpass filter LPF1 is then given by

I ¼ m1 cosðDxþ heÞ � m2 sinðDxþ heÞ

and the output signal of LPF2 becomes

Q ¼ m2 cosðDx tþ heÞþm1 sinðDx tþ heÞ
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with Dx = x1 − x2 and he = h1 − h2. In analogy to the circuit in Fig. 8.1, we
define a phasor P by

P ¼ Iþ jQ ¼ ðm1 þ j m2Þðcos½Dx tþ he� þ j sin½Dx tþ he�Þ
¼ ðm1 þ j m2Þ expðj½Dxtþ he�Þ

Phasor P rotates with radian frequency Dx, as in the loop of Fig. 8.1. The
remaining blocks in Fig. 9.1 are the same as in the circuit of Fig. 8.1, but the
schematic of the Rotator Control circuit is different, as will be explained below. The
phasor rotator is required to cancel the rotation of phasor P by rotating P such that
the rotated phasor P′ settles at one of four positions as shown in Fig. 9.2. Assuming
c = 1, the rotated phasor P′ should be located either at P′ = 1 + j (phase = 45°), or
at P′ = −1 + j (phase = 135°), or at P′ = −1 − j (phase = 225°), or at P′ = 1 − j
(phase = 315°). When the loop has not yet acquired lock, the position of phasor P′
can be anywhere, i.e., in any of the eight octants, which are defined in Fig. 9.2 and
labeled O1…O8. Assume that P′ is initially in octant O1. The phasor must then be
rotated in positive direction (counterclockwise) to settle at an angle of 45°. When P′
is in octant O2, however, it must be rotated in negative direction (clockwise) to
settle at 45° as well. The phasor is always rotated to settle at the closest of the four
phasor locations shown in Fig. 9.2.

As we have seen in Sect. 8.1, the phasor rotator can be considered as a rotating
switch (cf. Fig. 8.2). The position of the switch is determined by the block labeled
Rotator Control in Fig. 9.1. The block diagram of the Rotator Control is shown in
Fig. 9.3. First the required direction of rotation must be determined. A logical
signal UP=DN is generated, which controls the counting direction of an up/down
counter. The counting direction depends on the octant where phasor P′ is currently
located. Table 9.1 shows the value of UP=DN in every one of the eight octants.
UP=DN is a boolean function of three boolean variables Ib′, Qb′, and C. Ib′ is

Fig. 9.1 Block diagram of Costas loop for QPSK using phasor rotator
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derived from signal I′, cf. Fig. 9.3. I′ is applied to the input of a comparator. Ib′ is
the output signal of that comparator. When I′ is positive, Ib′ is 1, otherwise it is 0. In
analogy, Qb′ is a boolean signal which is 1 when Q′ is positive and 0 when Q′ is
negative. The third boolean signal C is derived from the magnitude of I′ and Q′.
Note that the absolute value of I′ is larger than the absolute value of Q′ when phasor
P′ is in octant Q1. But the absolute value of I′ is smaller than the absolute value of
Q′ when p′ is in octant O2. Boolean variable C is used therefore to decide whether
P′ is in octant O1 or in octant O2. The boolean variable UP=DN is therefore a
logical function of the three variables Ib′, Qb′, and C.

As shown in Fig. 9.3, the signal UP=DN controls the counting direction of an
up/down counter. When the signal is 1, the counter counts upwards, otherwise it
counts downwards. The counter is clocked by a clock signal having frequency
fclock. In analogy to the circuit in Fig. 8.1, fclock must be chosen an integer multiple
of the symbol rate fS, i.e., fclock = OS fS, with OS = oversampling factor. The

Fig. 9.2 Location of phasor P′ with QPSK and definition of octants O1 … O8

Fig. 9.3 Block diagram of phasor control circuit
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content C_out of the up/down counter determines the position of the rotating switch
(cf. Fig. 8.2).

The phasor rotator in Fig. 9.1 is identical with that of the Costas loop for BPSK
described in Chap. 8, and its schematic is shown in Fig. 8.4.

9.2 Design Procedure for Costas Loop for QPSK Using
Phasor Rotator

The design procedure for this type of Costas loop is very similar to that of the
Costas loop discussed in Sect. 8.1. Three parameters have to be specified:

– the phase step D/
– the oversampling factor OS
– the 3 dB corner frequency x3dB of the lowpass filters LPF1 and LPF2 (cf.

Fig. 9.1).

Assume that the carrier frequency is fC = 400 kHz and the symbol rate
fS = 100’000 bits/s. In case of the Costas loop for BPSK in Sect. 8.1, specifying a
value D/ = 2p/16 (22.5°) was a good choice. When this value was chosen for the
Costas loop for QPSK, simulations revealed that this value is too large. This
resulted in instabilities of the loop; hence, it was necessary to reduce D/. The
choice D/ = 2p/32 was successful; thus, it is recommended to use it for this design.

The oversampling factor can be specified using Eq. (8.4). Choosing OS = 16
yields a pull-in range DfP = 50 kHz. When a larger pull-in range is desired, a larger
value for OS can be specified.

Last we determine the 3 dB corner frequency of the lowpass filters. The mod-
ulating signal m(t) is a square wave function. The largest fundamental frequency of
that signal is fS/2, when a bit sequence of the form 01010101… is transmitted. x3dB

must therefore be chosen markedly larger than fS/2, but also smaller than twice the
radian carrier frequency xC, which is 2p � 400’000 = 2’512’000 rad/s. A good
choice would be to set the 3 dB corner frequency twice the symbol rate, i.e.
x3dB = 2 � 2p � fS = 1’256’000 rad/s.

Table 9.1 Truth table for the
boolean function UP=DN

Octant C Ib′ Qb′ UP=DN

O5 0 0 0 0

O4 0 0 1 1

O8 0 1 0 1

O1 0 1 1 0

O6 1 0 0 1

O3 1 0 1 0

O7 1 1 0 0

O2 1 1 1 1
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The transfer function of the lowpass filters is given by

HLPFðsÞ ¼ 1
1þ s=x3dB

When the lowpass filters are realized as digital filters, we must convert the transfer
function HLPF(s) into the discrete transfer function HLPF(z). For best results, it is
preferable to use the bilinear z transform [1]. Given an analog transfer function
H(s), this can be converted into a discrete transfer function H(z) by replacing s by

s ¼ 2
T
1� z�1

1þ z�1 ð9:1Þ

T is the sampling interval used for this digital filter, and fF = 1/T is the sampling
frequency. Because the highest frequency component at the output of these filters is
twice the carrier frequency 2 fC; according to the Nyquist theorem, the sampling
frequency fF must be chosen at least twice that frequency, i.e., fF > 1.6 MHz. Now
the bilinear z transform has the property that the analog frequency range from 0 to
∞ is compressed to the digital frequency range from 0 to fsamp/2. To avoid
undesired “shrinking” of the corner frequencies (xC and x3), these must be “pre-
warped” accordingly, i.e., we must set

x3dB;p ¼ 2
T
tg
x3dB T

2
ð9:2Þ

where x3dB,p is the prewarped corner frequency. Now we can apply the bilinear z
transform to the transfer functions of the lowpass filters and get

HLPFðzÞ ¼
1þ 2

x3dB;p T

h i
þ 1� 2

x3dB;p T

h i
z�1

1þ z�1 ð9:3Þ

A Costas loop using these parameters will be presented in Sect. 9.3.

9.3 Simulating the Costas Loop for QPSK Using
Phasor Rotator

The block diagram of a Costas loop for QPSK is shown in Fig. 9.4 (QPSK5.mdl).
The model is very similar to the model of the Costas loop for BPSK in Fig. 8.6. The
only differences are in the transmitter section where a QPSK signal is created and in
the logical circuits (right top) where the UP=DN signal for the up/down counter is
generated.
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9.4 Modified Costas Loop for QPSK Using Phasor
Rotator

In the preceding sections, we considered Costas loop for QPSK using phasor ro-
tators that worked with a real input signal s(t). This type of Costas can realized,
however, also as modified Costas loop, i.e., a Costas loop working with
pre-envelope signals.

The block diagram of such a loop is shown in Fig. 9.5.
This circuit is almost identical with that of Fig. 9.1, with three minor differences:

1. The input signal s(t) is converted into a pre-envelope signal s + (t)
2. The local oscillator generates a complex carrier exp(−j[x2 t + h2])
3. No lowpass filters are needed.

The input signal is given by

sðtÞ ¼ m1 cosðx1 tþ h1Þ � m2 sinðx1 tþ h1Þ

where m1 and m2 are data signals that can have a value of +c or −c, where c is an
arbitrary constant. In many cases, c = 1. The Hilbert transformed signal is then
given by

ŝðtÞ ¼ m1 sinðx1 tþ h1Þþm2 cosðx1 tþ h1Þ

and the pre-envelope signal then becomes

sþ ðtÞ ¼ m1 cosðx1 tþ h1Þ � m2 sinðx1 tþ h1Þ
þ jm1 sinðx1 tþ h1Þþ jm2 cosðx1 tþ h1Þ

This can be rewritten as

sþ ðtÞ ¼ ðm1 þ jm2Þðcos½x1 tþ h1� þ j sin½x1 tþ h1�Þ
¼ ðm1 þ j m2Þ expðj½x1 tþ h1�Þ

Fig. 9.5 Block diagram of modified Costas loop for QPSK using phasor rotator
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Herein the term m1 + j m2 is called “complex envelope,” and the term exp(jx1

t + h1) is referred to as “complex carrier.” The VCO generates another complex
carrier given by

u2ðtÞ ¼ expð�j½x2 tþ h2�Þ

The multiplier M1 creates signal um(t) that is given by

umðtÞ ¼ ðm1 þ j m2Þ expðj½ ðx1 � x2Þ tþðh1 � h2Þ�Þ

When the loop has acquired lock, x1 = x2, and h1 � h2, so we have

umðtÞ � ðm1 þ j m2Þ

The block C ! Re, Im (Complex to Real, Imaginary) splits this signal into the real
part I and the imaginary part Q. All other blocks of the circuit are identical with
those of the previously discussed system (Fig. 9.1). The design of the modified
Costas loop for QPSK is identical with the design of the previous system. Only two
parameters have to be specified: the phase step D/ and the oversampling factor OS.

9.5 Simulating the Modified Costas Loop for QPSK Using
Phasor Rotator

A data transmission system using this modified Costas loop has been realized by
model QPSK6.mdl. Its block diagram is shown in Fig. 9.6.

Most blocks are identical with those of the model in Fig. 9.4. The transmitter
generates directly the pre-envelope signal s+(t). The local oscillator is built from a
sine generator and a cosine generator that generate a fixed frequency signal. These
two signals are combined by block Re,Im ! C (Real, Image to Complex) to form
the complex signal exp(−j[Dx t + he]). This signal is multiplied by the block
labeled product. All remaining blocks are identical with those of the previous model
(Fig. 8.6).

This model has been developed with the following default parameters:

• phase step D/ = 2 p/32 (11.25°)
• symbol rate fS = 100’000 bits/s
• carrier frequency fC = 400 kHz.

The blocks following block C ! Re,Im (Complex to Real, Imaginary) (including
the up/down counter in the phasor control circuit) operate at a sampling frequency of
32 times to carrier frequency, i.e., at 12.8 MHz. Hence, the oversampling factor OS
becomes OS = 12.8 MHz/400 kHz = 128. Using Eq. (8.4), the pull-in range DfP
becomes DfP = 400 kHz. The simulations also clearly demonstrate that the loop
acquires lock extremely fast, i.e., in at most one sampling interval (default 10 ls).
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Chapter 10
Costas Loop for Quadrature Amplitude
Modulation

10.1 QAM Signal Generation

In the previous chapters, we considered Costas loops for BPSK, QPSK, and m-ary
PSK. When using BPSK, one single bit is transmitted in every symbol interval.
When the symbol rate is fS, the information throughput of a BPSK link is fS bits/s.
With QPSK, two bits are transmitted in every symbol interval, i.e., the information
throughput becomes 2 fS. More bits/s can be transmitted with m-ary PSK. When m
is chosen 8, the information throughput is 3 fS bits/s.

QAM can be considered an extension of QPSK. When using QPSK, two bit
streams are transmitted at a time, where one bit stream builds the in-phase signal
and the other bit stream the quadrature signal. Both bit streams are represented by
binary signals, i.e., the modulating signals for the cosine and sine carriers can have
amplitudes of 1 or −1 (respectively c or −c, where c is an arbitrary constant). With
QAM, both amplitude and phase modulation are combined. This signifies that the
modulating signals cannot take only values of 1 or −1, but more than two values,
e.g., 3, −3, −1, 1, or 3. When both in-phase and quadrature signal can take four
different values, their combination can take 16 different levels. This is shown in a
so-called constellation diagram, as shown in Fig. 10.1.

This constellation is referred to as QAM16. Using this modulation scheme, 4 bits
can be transmitted in one symbol period. The information throughput can be further
extended by using more than 16 constellation points, e.g., 64, 128, 256, or even
more. With QAM256, 8 bits are transmitted in one symbol period.

QAM is widely used today, for instance in digital TV or radio.
The generation of a QAM16 signal is shown in Fig. 10.2.
This kind of QAM is called unfiltered QAM. Both modulating signals m1 and m2

exhibit sharp transients at the start of the symbol intervals. The modulating signals
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are similar to a square wave. When the polarity of the signal m1 changes in every
symbol interval (i.e., when this signal looks like a sequence +−+−+−…), the
fundamental of that square wave like signal is half the symbol rate fS. But because
such a signal contains also higher harmonics, the spectrum of signal m1 is by far
larger than fS/2 [1].

Fig. 10.1 Constellation
diagram of QAM16

Fig. 10.2 Generation of
QAM16 signal. a Modulating
signals m1 and m2 having
amplitudes of either −1.5,
−0.5, 0.5, or 1.5. b m1 is
multiplied with cosine carrier,
m2 is multiplied with sine
carrier
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As Nyquist realized in 1928 [2], a receiver will be able to reconstruct the data
signal if only the fundamental component of this square wave signal is transmitted,
i.e., when the data signal is lowpass filtered with a corner frequency of fS/2. A first
idea would be to filter the m1 and m2 signals by a “brickwall filter,” i.e., an ideal
low-pass filter having gain 1 at frequencies below half the symbol rate fS/2 and gain
0 elsewhere. The frequency response of the brickwall filter is shown in Fig. 10.3 by
the curve labeled r = 0 (the meaning of r will be explained in the following).

The impulse response of the brickwall filter is

hðtÞ ¼ sinðpt=TÞ
pt=T

ð10:1Þ

which is referred to as a sinc function. T is the symbol period. The duration of the
impulse response is infinite, and it starts at t = −∞; the filter delay is also infinite.
The impulse response is plotted in Fig. 10.4 by the curve labeled r = 0. Of course
such a filter cannot be realized. An approximation to the brickwall filter can be
implemented by a FIR digital filter (FIR = finite impulse response) [3–5] to any
desired level of accuracy, however because the impulse response decays slowly to
0, this leads to excessively long FIR filters, i.e., to filters with a large number of
taps. Nevertheless, we will consider the impulse response in more detail because it
exhibits a very useful property.

Fig. 10.3 Frequency response of Nyquist filters. Explanations cf. text
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Every FIR filter causes the signal that is passed to be delayed, where the delay s
is given by

s ¼ L� 1
2

TF ð10:2Þ

L is the length of the FIR filter and TF is the sampling interval of the filter. In
Fig. 10.4, the delay of the filter has been neglected; hence, its maximum (+1)
occurs at time t = 0. Normally such a filter would be sampled at a frequency fF
which is an integer multiple of the symbol rate fS = 1/T, where T is the symbol
period. If we used a FIR filter of length 33, e.g., it would have a delay of 16 TF; if
we assume furthermore that the filter sampling frequency fF is four times the
symbol rate fS, the filter would delay the signal by four symbol periods. For this
FIR filter, the impulse response h(t) would no longer be symmetrical about t = 0,
but rather about t = 4 T. For simplicity, the delay has been omitted in Fig. 10.3, i.e.,
we assume that the filter is a so-called zero phase filter, which causes no delay.

Note that the impulse response of the brickwall filter becomes 0 at t = T, 2T, 3T,
etc. Now we remember that the impulse response is nothing more than the response
of the filter to a delta function with amplitude 1, applied at t = 0 to its input.
Sending a logical 1 therefore corresponds to applying a positive delta function
(amplitude +1), and sending a logical 0 corresponds to applying a negative delta
function (amplitude −1). Next we consider the case where a number of symbols it

Fig. 10.4 Impulse response of the raised cosine filter for various values of (relative) excess
bandwidth r
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passed through the filter in succession. If two succeeding 1’s are supplied, the first
logical 1 will be represented by a delta function with amplitude +1 applied at
t = −T, the second logical 1 by another delta function with amplitude +1 applied at
t = 0. This situation has been plotted in Fig. 10.5. The upper trace shows the two
delta functions (marked by arrows), the lower trace the corresponding impulse
responses (solid curves). The zeros of the impulse responses are marked by circles.
The superposition of the two impulse responses is shown by the dotted curve
(thick). In order to recover the data, the receiver would have to sample the filtered
signal exactly at time t = 0, T, 2T, etc. As can be seen from Fig. 10.4, the amplitude
of the combined signal at t = 0 (marked by a square) depends uniquely on the
impulse applied at t = 0; the impulse response caused by the second delta function
is zero at this time. The same holds for the combined signal at t = −T. Its amplitude
at t = −T (marked by a square) uniquely depends on the amplitude of the second
delta function and does not contain any contribution from the first delta function. In
other words, the impulse responses caused by various delta functions do not
interfere, i.e., when using the brickwall filter, there will no inter symbol interference
(ISI). To recover the data signal without error, the applied filter must be chosen
such that no ISI can occur. (It is easy to demonstrate how ISI can be created:

Fig. 10.5 Response of the raised cosine filter to a sequence of two binary ones applied to its input.
Upper trace: a sequence of two delta functions corresponding to two binary 1’s transmitted in
succession. Lower trace: the solid curve (thin) whose maximum is at t = −T is the response of the
filter to the delta function applied at t = −T, the solid curve whose maximum is at t = 0 is the
response to the delta function applied at t = 0, and the thick (dotted) curve is the superposition of
these two responses
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assume that we filter the data signal by a Butterworth lowpass filter, e.g., its impulse
response will be a damped oscillation. It also passes through zero, but these zeros
are not at t = 0, T, 2T, etc., hence the impulse responses coming from delta
functions applied to the input will interfere, or in other words, an output sample
taken at t = kT (k = positive integer) is the sum of the contributions of many
symbols. This cannot be tolerated, of course.)

Next we are going to consider the generation of a Nyquist-filtered QAM signal.
Two data signals are given, as shown in Fig. 10.2a, a signal m1, the in-phase
component, and a signal m2, the quadrature component. These signals are first
converted to a series of delta functions. This is shown in Fig. 10.6 for the m1 signal.
The delta pulses are created at integer multiples of the symbol period, i.e., at t = 0,
T, 2 T. The amplitude of the delta pulse at t = 0 equals the amplitude of the m1

signal at t = 0, the amplitude of the delta pulse at t = t equals the amplitude of the
m1 signal at t = T, etc. The same procedure is applied to signal m2.

The generation of the filtered QAM signal is represented by Fig. 10.7.
As we have seen a useful approximation to a brickwall filter would lead to

excessive filter length. Nyquist has shown a valuable alternative: if the transition
region of the filter is widened, its impulse response decays faster toward zero.
Moreover, if the amplitude response H(f) of the filter is symmetrical about half the
symbol rate (fS/2), the locations of the zeros of its impulse response remain
unchanged. Filters having this property are commonly referred to as “Nyquist fil-
ters.” One possible realization of the Nyquist filter is the raised cosine filter (RCF).
Its transition region (the region between passband and stopband is shaped by a
“raised” cosine function, i.e., by a cosine wave which stands “on a piedestal.” The
width of the transition band is determined by the parameter r which is called excess
bandwidth. If the frequency corresponding to half the symbol rate is denoted fS/2,
the transition band starts at f = (1 − r) fS/2 and ends at (1 + r) fS/2. The amplitude
response H(s) of the RCF has been plotted in Fig. 10.4 for three values of r, r = 0,
0.5, and 1 (the case r = 0 applies for the brickwall filter). Note that the frequency
response is symmetrical about half the symbol rate. Mathematically, the frequency
response of the RCF is given by

Fig. 10.6 Converting the
continuous signal m1 into a
series of delta functions
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HRCFðf Þ ¼
1 for fj j \ 1�r

2T

cos2 p
4
2T fj j þ r�1

r for 1�r
2T � fj j

0 for fj j [ 1þ r
2T

������ ð10:3Þ

Figure 10.4 shows the impulse response of the RCF for r = 0, 0.5, and 1. The
larger r is chosen, the faster the decay becomes. To economize bandwidth, however,
large values of r must be avoided. In practice, values of r in the range 0.15…0.35
are customary. For completeness, we also give the expression for the impulse
response hRCF(t) of the RCF [3].

hRCFðtÞ ¼ sinðp t=TÞ � cosðp r t=TÞ
ðp t=TÞ � 1� 2 r t

T

� �2h i ð10:4Þ

Designing of an FIR raised cosine filter is an easy task: Eq. (10.4) can be used to
compute the filter coefficients. Care must be taken, however, since there exist values
of t where both numerator and denominator become 0. This happens if the
expression in the square brackets of the denominator becomes 0, explicitly for
t/T = 1/(2r). For the same value of t, the cosine term also becomes 0. This singu-
larity is removed by replacing both numerator and denominator by their derivatives;
mathematically, this is called L’Hôpital’s rule. The computation is made even easier
if MATLAB’s Signal Processing Toolbox is available. It contains a function called
FIRRCOS that calculates the coefficients of the RCF.

So far the raised cosine filter seems to offer the optimum solution for Nyquist
filtering because it completely suppresses ISI. As we will see in the following
sections, the receiver also needs a lowpass filter for different reasons. It will show
up that we cannot use another raised cosine filter at the receiver: when doing so, the
data signal would have to pass through two cascaded RCF’s: one in the transmitter
and one in the receiver. The overall frequency response then would be the RCF

Fig. 10.7 Generation of Nyquist-filtered QAM signal
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transfer function squared! The resulting frequency response would no longer be
symmetrical about half the symbol rate, and ISI would occur. This dilemma can be
fixed by using the so-called root raised cosine filter (RRCF).

The frequency response of the root raised cosine filter is defined to be the square
root of the frequency response of the raised cosine filter. Thus, the RRCF has a
frequency response given

HRRCFðf Þ ¼
1 for fj j \ 1�r

2T

cos p4
2T fj j þ r�1

r for 1�r
2T � fj j � 1þ r

2T
0 for fj j [ 1þ r

2T

������ ð10:5Þ

The impulse response hRRCF(t) of the RRCF is given by [3]

hRRCFðtÞ ¼
sin p t

T ð1� rÞ� �þ 4rt
T cos p t

T ð1þ rÞ� �
p t
T 1� 4 r t

T

� �2h i ð10:6Þ

Similar to the impulse response of the RCF, the impulse response given by
Eq. (10.6) also has singularities. For some values of time t, h(t) becomes a division
0/0. In analogy, this problem is mastered by applying L’Hôpital’s rule and replacing
numerator and denominator by its derivatives.

The frequency response of the RRCF is no longer symmetrical about half the
symbol rate; hence, it leads to ISI which, of course, is not desired. But if the
receiver also contains an identical RRCF, the overall frequency response is identical
with the RCF, hence after the demodulator, ISI becomes zero again.

The Costas loop considered in the following will use RRCF’s for Nyquist fil-
tering, and it is assumed, that another RRCF is used in the transmitter.

10.2 Structure of a Costas Loop for QAM

A block diagram of a Costas loop for QAM is depicted in Fig. 10.8.

10.2.1 Nyquist Filtering of Input Signal S(T)
(RRCF1 and RRCF2)

The structure is similar to the Costas loop for QPSK, as shown in Fig. 4.1. In the I
branch, the incoming QAM signal s(t) is multiplied with a cosine signal generated
by local oscillator VCO. In analogy, s(t) is multiplied in the Q branch with a sine
signal. When the loop is locked onto the carrier in both frequency and phase,
signals I and Q are identical with the data signals m1 and m2, filtered with a raised
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cosine filter. To recover the unfiltered signals m1 and m2, the signals I and Q must
be sampled at the correct instants of time, i.e., at times t = 0, T, 2T …. (assuming
that the filters are zero phase filters—in reality, the signals are delayed by twice the
delay of one root raised cosine filter). The sampled I and Q signals are labeled Isamp

and Qsamp, respectively.

10.2.2 Automatic Gain Control (AGC)

Assume for the moment that QAM16 is used in this Costas loop. When no phase
error and no amplitude error is present (more about amplitude errors later), the
phasor built from Isamp and Qsamp would coincide exactly with one of the con-
stellation points shown in Fig. 10.9. Because the QAM signal is transmitted over a
link, however, the amplitude of the received QAM signal s(t) can deviate from the
amplitude of the transmitter output signal. When the signal is sent over a long cable,
e.g., the signal can be attenuated. When repeaters are used within the link (e.g., with
wireless communication), the amplitude of s(t) can also be larger than the trans-
mitter output signal. This situation is illustrated by phasor P1 in Fig. 10.9; this
phasor has the coordinates IA = 0.8, QA = 0.95, i.e., P1 = (0.8, 0.95). When the
gain of the link is less than 1 (attenuation), the actual value of the current phasor
could be (1.5, 1.5), but when the gain of the link is larger than 1 (amplification), the
actual value of the phasor could be (0.5, 0.5).

Fig. 10.8 Block diagram of a Costas loop for QAM
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This dilemma can be fixed by taking the following two measures:

1. The transmission of symbols starts with a preamble. The preamble can be given
by a series of equal symbols, e.g., P = (0.5, 0.5). The receiver is equipped with a
carrier detect circuit (cf. Fig. 10.8). As soon the receiver detects a carrier, the
carrier detect block generates an initialization pulse labeled “Init” in Fig. 10.8.
When the symbol rate is 100’000 symbols/s and 20 symbols are transmitted in
the preamble, the duration of the Init pulse will be 20 � 10 ls = 200 ls. The Init
pulse is applied to the control input of the blocks labeled “Estim.” The Estim
blocks estimate the amplitude of both I and Q signals. During the preamble, the
Estim block in the I branch generates an output signal IE = 0.5, and the Estim
block in the Q branch generates an output signal QE = 0.5.

2. An automatic gain control system is added to theCostas loop, cf. the blocks labeled
AGC in Fig. 10.8. The AGC blocks are variable gain amplifiers. Their gain is
controled by signal DA. DA is generated by the block labeled AGC control. This
block computes the magnitude MA of the actual symbol (IA, QA) from

MA ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2A þQ2

A

q
ð10:7aÞ

and the magnitude of the estimated phasor (IE, QE) from

ME ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2E þQ2

E

q
ð10:7bÞ

The amplitude error DA is now calculated from

DA ¼ MA �ME ð10:7cÞ

Fig. 10.9 Constellation
diagram for QAM16
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Signal DA is applied to the control inputs of the AGC blocks. The gain of the
AGC amplifiers is successively adjusted such that finally the amplitude error
becomes 0 on average.

10.2.3 Phase Detector

It should be noted that at start of the initialization period the Costas loop is normally
not yet locked in both frequency and phase onto the carrier frequency; hence, there
will also be phase errors he. This situation is sketched in Fig. 10.9 by phasor P2.
When the local oscillator (VCO) is locked to the frequency of the carrier, this phase
error would be a constant. But when the frequency of the VCO deviates from the
carrier frequency, the phasor P2 would rotate with a frequency given by the dif-
ference between local oscillator frequency and carrier frequency, as we have seen in
previous chapters.

The block labeled “Phase Detector” computes the phase error of current phasor
(IA, QA). During the preamble interval, the phase error is computed from

he ¼ phaseðIA;QAÞ � phaseðIE;QEÞ ð10:8Þ

The phase of a phasor is often computed by the arctangent function. MATLAB
offers two different arctangent functions, atan and atan2. atan2 is preferred because
it computes phases within a range of −180…180°, whereas atan computes the phase
only within a range of −90…90°. The atan2 function is visualized in Fig. 10.10.
When the phasor (IA, QA) is in quadrant Q1, the phase can vary within a range of
0…90°. When the phasor is in quadrant Q2, the phase is in the range 90…180°. In
this quadrant, the atan function would deliver phase argument in the range from 0 to
−90°. In quadrant Q3, the phase is in the range −180…−90°, and in quandrant Q4,
the phase is in the range −90…0°. The atan2 function is preferred because it
delivers argument over a larger range. We will see later that the phase error can
exceed 180° during the acquisition process and can even take values larger than a

Fig. 10.10 Definition of
quadrants and range of the
atan2 function in MATLAB
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multiple of 2p or less than a multiple of −2p. To cover a range larger than −180°…
180°, special algorithms will be developed.

10.2.4 Estimator (Estim)

We have seen that during the preamble the Estim blocks delivers the actual
amplitude of the phasors (IE, QE) transmitted during that interval of time. When a
series of identical phasors (0.5, 0.5) is sent during the preamble, the Estim block in
the I branch generates an output signal IE = 0.5, and the Estim block in the Q
branch generates an output QE = 0.5. When the preamble is over, the loop has
acquired lock, and the gain of the AGC blocks has been set in order to receive the
correct amplitudes of phasor (IA, QA). Because phase and amplitude errors are not
exactly zero due to broadband noise superimposed to signal s(t), the sampled
amplitudes IA, QA can slightly deviate from the actual amplitudes of the transmitted
symbol. This is shown in Fig. 10.9 by phasor P1. Assume that a phasor P = (0.5,
0.5) has been transmitted. Due to amplitude and phase errors, the received symbol
P1 deviates from this value. The correct amplitudes are estimated then using a most
likelihood algorithm. The constellation plane IA, QA is subdivided into squares as
shown in the figure, and the constellation points are in the center of these squares.
To determine the correct amplitudes of a received phasor, the Estim blocks takes
that constellation point which is closest to the received on. This is done by a
quantizing the amplitudes IA, QA as follows:

1. The Estim block in the I branch is a quantizer for signal IA, i.e., the estimated
signal IE is obtained from

IE ¼ quantðIAÞ

IE is set −1.5 when IA is less than −1, and IE is set −0.5 when IA is in the range
−1…0, and IE is set 0.5 when IA is in the range 0…1, and IE is set 1.5 when IA is
greater than 1.

2. The same procedure is performed in the Estim block in the Q branch. This block
delivers the estimate QE for the received QA signal by the operation

QE ¼ quantðQAÞ

10.2.5 Clock Recovery

When the loop has acquired lock, the signal I at the output of the RRCF1 filter in
the I branch (cf. Fig. 10.8) should be identical with the series of delta pulses (cf.
Fig. 10.6) applied to a raised cosine filter (RCF). When the gain of the transmission
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link is not exactly 1, this is corrected by the AGC system. In Fig. 10.4, the impulse
response of the RCF has been shown. Assuming that the filter is a zero phase filter,
the impulse response of the delta pulse m1* applied at t = 0 has exactly the value
m1* at t = 0. The amplitude of the delta pulse applied at t = T has exactly the value
m1* at time t = T, etc. It is therefore extremely important to sample the output
signal of RRCF1 at the correct times t = 0, T, 2T … The block Clock Recovery is
used to recover a clock signal, i.e., a series of strobe signals having the frequency fS
(Symbol rate). These strobes sample signal I at the correct times, and the sampled
signal Isamp is obtained from the output of block Sampler.

There are many algorithms for clock recovery. Here we are using a method
developed by Gardner [6, 7], the so-called prefilter method. The operating prin-
ciple of block Clock Recovery is explained by the block diagram in Fig. 10.11.

The frequency response Hpre(f) of the prefilter is derived from the frequency
response HRCF(f) of the raised cosine filter (cf. Eq. 10.3):

HPr eðf Þ ¼ HRCFðf � fSÞþHRCFðf þ fSÞ ð10:9Þ

with fS = symbol rate. The frequency response of the RCF is plotted once again in
Fig. 10.12, upper trace. The frequency response of the prefilter (middle trace)
consists of two parts, the frequency response of the RCF shifted left by fS and the
frequency response of the RCF shifted right by fS. Now we remember that the data
signal m1* (a series of delta pulses) has passed through a RRCF in the transmitter,
as shown in Fig. 10.7. After transmission through a link, this signal has passed
another RRCF in the receiver (cf. RRCF1 in Fig. 10.8). This signal is labeled I.
Transmission through a cascade of two RRCF’s is equivalent to transmission
through one RCF filter, as explained in Sect. 10.1. In block Clock Recovery, I
passes through the prefilter, as shown in Fig. 10.11. The data signal m1* has
therefore passed the cascade of an RCF and the prefilter. The overall frequency
transfer function Htot for the data signal in the I branch is therefore given by

Htotðf Þ ¼ HRCFðf Þ � HPr eðf Þ ð10:10Þ

Fig. 10.11 Block diagram of prefilter algorithm
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Htot(f) is plotted in the bottom trace of Fig. 10.12. We recognize that this is the
frequency response of a bandpass filter having a center (resonance) frequency fS/2.
When a delta pulse is applied at t = 0 to a filter with frequency response Htot(f), the
output of filter Htot(t) (IPre in Fig. 10.11) is a damped cosine wave with a frequency
fS/2. Assuming that all filters involved are zero phase filters, it can be shown that
IPre has zero as t = 0.5 T, 1.5 T, 2.5 T… (With an actual filter, the impulse response
will be the same, but delayed by the sum of delays of all filters involved, hence the
position of the zeros will be t = 0.5 T + Td, 1.5 T + Td, 2.5 T + Td …., with
Td = total delay of filters.) When another delta pulse is applied at t + T, then the
impulse response of Htot to that pulse has, assuming again zero phase filters, zeros
at t = 0.5 T, 1.5 T, 2.5 T … Hence, the superposition of responses onto delta pulses
applied at t = 0, T, 2T, etc., will still have zeros at t = 0.5 T, 1.5 T … This makes it
possible to derive a clock signal by locating the positions of the zeros.

The first trace in Fig. 10.13 shows the prefilter output signal. The waveforms in
this figure are taken from a simulation performed with a Simulink model. This
model will be described in detail in Sect. 10.4. In this model, the symbol rate fS has
been chosen 100’000 symbols/s; hence, we have T = 10 ls. It is clearly seen that
the zeros occur every 10 ls. The prefilter signal has a frequency of fS/2 = 50 kHz.
Following Gardners algorithm, the prefilter output signal is first squared, cf. second
trace in Fig. 10.13. The squared signal has now a frequency of fS = 100 kHz and
has again zeros separated by 10 ls. To remove the dc term of the squared signal,
this signal is filtered by a bandpass filter having a center frequency of 100 kHz. The

Fig. 10.12 Frequency response of RCF (upper trace), prefilter (middle trace), and cascade of RCF
and prefilter (lower trace)
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bandpass-filtered signal is shown in the third trace. The zero transitions of that
signal are now at t = T/4, 3 T/4, 5T/4 … The bandpass filtered signal is applied to a
comparator delivering a logical signal. The output signal is 1 when the bandpass
filtered signal is positive and 0 when that signal is negative. This logical signal is
displayed in the fourth trace and is labeled u1. Signal u1 is applied to the reference
input of a PLL (cf. Fig. 10.11) that operates with square wave signals. The phase
detector of this PLL is realized by an EXOR gate [3, 8, 9]. As usual, the output

Fig. 10.13 Operation of the clock recovery circuit. First trace: output signal of the prefilter,
second trace: output signal of the prefilter squared, third trace: output signal of the prefilter squared
and bandpass filtered, fourth trace: output of comparator, the signal is 1 when the bandpass-filtered
output signal is positive and 0 when the bandpass-filtered output signal is negative
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signal of the phase detector is applied to the input of a loop filter (LF), and the
output signal of the loop filter is applied to the control input of the VCO. For this
type of PLL, the output signal u2 of the VCO lags the input signal by a phase delay
of 90°. u2 has therefore transitions at t = 0, 0.5 T, T, 1.5 T … The waveform of
signals u1, u2, and clock is displayed in Fig. 10.14.

As shown in the middle trace, the negative edges occur at times t = 0, T, 2 T …
The clock signal fS is therefore obtained by “differentiating” the negative edges of
u2, cf. bottom trace as in Fig. 10.14. This is the strobe signal used to sample signals
I and Q in Fig. 10.8.

10.2.6 LF (Loop Filter)

The loop filter is mostly realized like the loop filters used in other Costas loops, i.e.,
either as a lag-lead filter or as a PI filter (proportional + integral filter). In the
following, we will prefer the PI filter because it enables larger pull-in ranges. The
transfer function of the PI is given by

HLFðsÞ ¼ 1þ ss2
ss1

ð10:11Þ

with s1, s2 = time constants. In most applications, the loop filter is realized by a
digital filter; hence, the transfer function HLF(s) must be converted to the discrete
time transfer function HLF(z). This will be discussed in more detail in Sect. 10.3.

10.2.7 Voltage-Controlled Oscillator (VCO)

The VCO is a circuit delivering simultaneously a cosine and a sine output signal. As
we have seen in previous chapters, the phase transfer function HVCO(s) is given by

Fig. 10.14 Signals of the
PLL in Fig. 10.11
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HVCOðsÞ ¼ K0

s
ð10:12Þ

with K0 = VCO gain. In most applications, the VCO is realized by a digital filter;
hence, the transfer function HVCO(s) must be converted to the discrete time transfer
function HVCO(z). This will be discussed in more detail in Sect. 10.3.

10.3 Design Procedure for Costas Loop for QAM

Because the number of functions blocks in a Costas loop for QAM is considerably
higher than in case of Costas loops for BPSK or QPSK, the design procedure for
this type of Costas loop is much more complex and time-consuming. This relates
specially to the large number of special filters such as RRCFs and prefilters. In the
following, the mathematical background for the design of those function block is
presented. All blocks discussed below are shown in Fig. 10.8.

10.3.1 Blocks RRCF1 and RRCF2 (Root Raised
Cosine Filters)

The RRCFs are realized by Finite Impulse Response filters (FIR). The impulse
response hRRCF(t) is given by Eq. (10.6). This is a continuous function of time, and
its duration is from t = −∞ to t = ∞. To get a realizable digital filter, the duration
must be truncated, and the function hRRCF(t) must be discretized, i.e., transformed
to a series of discrete samples hRRCF*. We remember that in the system in Fig. 10.8
there are two RRCFs in series, one in the transmitter and one in the receiver (Costas
loop). The impulse response of the cascaded RRCFs is identical with that of the
RCF, as shown in Fig. 10.4. To get an idea what should be about the duration of the
truncated impulse response, we recognize that the impulse response of the RCF
(e.g., r = 0.5) is almost zero for times less than −4T and greater than 4T. It is
therefore reasonable to truncate the impulse response hRRCF to a time range from
−nT < t < nT, where n is an integer in the order of 4. To get a discrete impulse
response, hRRCF must be sampled by a frequency ff larger than the symbol fre-
quency fS = 1/T, with T = symbol duration. Let ff be ff = OS � fS, where OS is an
oversampling factor. Because the output signal of the RRCF is applied to the
prefilter and the output signal of the prefilter is used to determine the zero transi-
tions of the signal I, OS must be chosen large enough to determine the time instants
of the zero transitions with sufficient accuracy. It is therefore adequate to choose
OS = 16 or larger. According to the theory of digital filters, the discrete impulse
response hRRCF* of the FIR filter is calculated from the value of hRRCF of the
continuous impulse response multiplied by the sampling interval Tf = 1/ff, i.e.,
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hRRCF* = hRRCF � Tf [3, 5]. To implement the FIR filter, we first calculate a time
vector t[i], i.e., a vector built from the sampling instants of the FIR filter. This yields

t½i� ¼ ðiþ eÞ T
OS

; i ¼ �n OS. . .n OS ð10:13Þ

We remember that when computing the impulse response of the continuous RRCF
there are time instants t where the hRCF(t) becomes a division 0/0. To avoid this, we
add a little time offset e to index i. When e is chosen very small, e.g., 0.001, this
effect is negligible, but we avoid the division 0/0. Now the discrete impulse
response of the RRCF becomes a vector hRRCF[i]*

hRRCF ½i�� ¼
sin p t½i�

T ð1� rÞ
h i

þ 4rt½i�
T cos p t½i�

T ð1þ rÞ
h i

p t½i�
T 1� 4 r t½i�

T

� 	2

 � � T

OS

i ¼ �n OS. . .n OS

ð10:14Þ

This vector yields the values of the numerator coefficients of the FIR filter. The
denominator coefficients do not exist, because the discrete transfer function of a FIR
filter is by definition

HðzÞ ¼ a0 þ a1z�1 þ a2z�2 þ . . .

with ai = filter coefficients.

10.3.2 Clock Recovery

The block diagram of the clock recovery system is shown in Fig. 10.11. We will
first develop the prefilter. This filter will also be realized as a FIR filter; hence, we
must know the filter coefficients. The frequency response Hpre(f) of the prefilter
(Eq. 10.9) is derived from the frequency response of the RCF (Eq. 10.3), because it
consists of two shifted replicas of HRCF(f), i.e., we have

HPr eðf Þ ¼ HRCFðf � fSÞþHRCFðf þ fSÞ

When the impulse response h(t) of a filter having frequency response H(f) is
known, the impulse response of a filter having frequency response H(f − fS) is
given, according to the shift theorem of the Fourier transform, by

hshiftedðtÞ ¼ hðtÞ expðj 2p fSÞ
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Consequently, the impulse response of the prefilter is given by

hPr eðtÞ ¼ hRCFðtÞðexp½j 2p fS� þ exp½j 2p fS�Þ ¼ 2hRCFðtÞ cosð2p fSÞ ð10:15Þ

To realize the filter, we can apply the same procedure as done for the RRCF in
the last paragraph. The impulse response hPRE(f) is first truncated within a range of
time −n T < t < n T, where T is the symbol interval and n is an small integer, e.g.,
n = 4. Moreover, the impulse response must be converted to discrete series hPre*(t
[i]) where I is an index ranging from −n OS… n OS. Again, OS is an oversampling
factor. The impulse response must be sampled at a frequency larger than the symbol
rate fS, i.e., the sampling frequency ff is

ff ¼ OS � fS

OS must be chosen large enough to get a sufficient time resolution; a value of
OS = 16 is adequate in most cases. As we did with the RCF, a time vector is
computed first (Eq. 10.13):

t½i� ¼ ðiþ eÞ T
OS

; i ¼ �n OS. . .n OS

The discrete impulse response of the prefilter is then given by

hRCFðt½i�Þ ¼ sinðp t½i�=TÞ � cosðp r t½i�=TÞ
ðp t½i�=TÞ � 1� 2 r t½i�

T

� 	2

 � � T

OS
ð10:16Þ

These values are identical with the filter coefficients of the numerator of the FIR
filter.

The bandpass filter in Fig. 10.11 can be realized by an Infinite Impulse Response
(IIR) filter [4, 5]. Designing bandpass filters is very simple with MATLAB.
MATLAB has a function “butter” that designs an IIR Butterworth filter. The
coefficients [B, A] are obtained by calling

B, A½ � ¼ butter n;Wnð Þ

where n is the order of the filter. To get a bandpass filter, Wn must be specified as a
vector Wn = [W1, W2], where W1 is the lower 3 dB corner frequency and W2 is
the upper 3 dB corner frequency of the filter. Both W1 and W2 must be related to
the Nyquist frequency, i.e., to half the sampling frequency ff. Thus, we obtain the
bandpass filter by specifying

½B;A� ¼ butter 2;
fS � Df
ff =2

;
fS þDf
ff =2


 �� 
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with Df = one-sided bandwidth of the bandpass filter. When fS is the resonant
frequency of the bandpass filter, Df can be chosen Df = 0.01 fS. Vectors B and A
represent the filter coefficients: B contains the coefficients of the numerator, A the
coefficients of the denominator. When a bandpass filter with n = 2 is specified,
MATLAB creates a filter with order 2 n = 4.

Next the PLL system of Fig. 10.11 must be designed. This circuit operates with
binary signals exclusively. It consists of a phase detector realized with an EXOR
gate, a loop filter realized as a PI filter (proportional + integral), and a VCO. The
transfer function of the phase detector is [3]

HPDðsÞ ¼ 1
p
¼ Kd ð10:17Þ

with Kd = phase detector gain. The transfer function of the loop filter is given by

HLFðsÞ ¼ 1þ ss2
ss1

ð10:18Þ

with s1, s2 = time constants, and the transfer function of the VCO becomes

HVCOðsÞ ¼ K0

s
ð10:19Þ

with K0 = VCO gain. The PLL operates at a center frequency f0 = fS, where fS is
the symbol rate. The parameters of the PLL are determined in the same way we
already used in the design of Costas loops for BPSK and QPSK. First the open loop
gain GOL(x) is considered, cf. Fig. 10.15. Using Eqs. (10.17)–(10.19), the open
loop gain GOL(x) is given by

GOLðsÞ ¼ K0Kd

s
� 1þ ss2

ss1
ð10:20Þ

Fig. 10.15 Open loop gain
GOL(x) of the PLL
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In this figure, the magnitude of GOL(x) is plotted (Bode diagram). xC is the
corner frequency 1/s2 of the loop filter. Below that frequency the gain rolls off at a
slope of – 40 dB/dec and above it rolls off at a slope of −20 dB/dec. In this design,
xC has been chosen to be identical with the transit frequency xT of the loop, which
is the frequency where the open loop gain is 1. With this choice, the phase margin
of the loop becomes 45°, which is sufficient for stability. Given the center frequency
f0 of the loop, the transit frequency is usually chosen to be about 0.05 … 0.1 the
center frequency. In our example, it is adequate to specify xT = 0.1 x0 = 0.1 � 2 p
fS, where x0 is the radian center frequency of the loop. Given the transit frequency
xT, the time constant s2 becomes

s2 ¼ 1
xT

¼ 1
0:1 � 2p fS ð10:21Þ

The remaining parameters K0 and s1 must now be chosen such that the open
loop gain becomes 1 at x = xT, i.e.,

1 ¼ K0 Kd

x2
T s1

Because this equation is overdetermined, one of the parameters K0 and s1 can be
chosen free. When s1 is chosen free (e.g. s1 = 20 ls), we get for K0

K0 ¼ x2
T s1
Kd

¼ ð0:1 � 2pfSÞ2s1
Kd

ð10:22Þ

with Kd = 1/p.
The loop filter is realized in most cases as a digital filter, i.e., an infinite impulse

response filter (IIR filter). The transfer function HLF(s) must therefore be converted
into a discrete time transfer function HLF(z). Using the bilinear z transform [3]
HLF(z) becomes

HLFðzÞ ¼
1þ 2 s2

Tf

h i
zþ 1� 2 s2

Tf

h i
2 s1
Tf
ðz� 1Þ ð10:23Þ

Here Tf is the sampling interval. The sampling frequency ff = 1/Tf of the digital
filter must be chosen large enough to get sufficient time resolution. It should be a
multiple of the symbol rate, i.e., ff = OS � fS with OS = oversampling factor.
Choosing OS = 16 is adequate in most applications; hence, we get

Tf ¼ T
OS

with T = symbol interval.
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The VCO can be realized in the same way by a digital filter. The transfer
function of the VCO must also be converted into a discrete time transfer function
HVCO(z). Using the impulse invariant z transform [3], we get

HVCOðzÞ ¼ Tf K0

1� z�1 ð10:24Þ

10.3.3 Frequency Control Loop (Blocks RRCF, Phase
Detector, LF, VCO)

The loop that provides locking onto the carrier frequency in both frequency and
phase is made up from function blocks RRCF, Phase Detector, LF and VCO (cf.
Fig. 10.8). The mathematical model of this control loop is similar to the model used
for the conventional Costas loop for BPSK as shown in Fig. 3.1b. The model for
the Costas loop for QAM is shown in Fig. 10.16.

Block PD is identical with block “Phase Detector” in Fig. 10.8. The operating
principle of the phase detector will be discussed later in Sect. 10.3.4. For the
moment, we note that the phase detector is a block having transfer function
HLF(s) = Kd, with Kd = 1. The parameters of the remaining building blocks must
be specified such that the control loop is stable. This will be done by means of the
Bade diagram. The transfer function HRRCF(s) has been given in Eq. (10.5). For the
loop filter, a PI filter is used. Its transfer function HLF(s) known, cf. Eq. (10.18), and
the transfer function HVCO(s) of the VCO is given in Eq. (10.19). The parameters
s1, s2, and K0 must now be specified. The open loop transfer function GOL(s) of the
control loop becomes

GOLðsÞ ¼ KdK0

s
� 1þ ss2

ss1
� HRRCFðsÞ ð10:25Þ

The analysis of stability becomes easier when we can find a simplified presen-
tation for the transfer function HRRCF(s). As we will recognize in short, the
bandwidth of the RRCF (approximately half the symbol rate fS) is much larger than
the transit frequency xT of the open loop gain GOL; hence, it is acceptable to set the
magnitude of HRRCF(x)

HRRCFðxÞj j ¼ 1

Fig. 10.16 Mathematical
model of the frequency
control loop
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The RRCF can then be replaced by a delay block. We have seen previously that
the truncated impulse response of the RRCF has been restricted to the time interval
−nT < t < nT, with T = symbol interval and n = integer in the order of about 4.
Consequently, the RRCF has a delay of Td = nT, and its transfer function can be
expressed as

HRRCFðxÞ ¼ expð�xTdÞ ð10:26Þ

To construct the Bode diagram for GOL(x), we first calculate the magnitude
GOLðxÞj j. Using Eqs. (10.25) and (10.26), we get

GOLðxÞj j ¼ KdK0

s
� 1þ ss2

ss1

����
���� ð10:27Þ

To get the phase plot of the Bode diagram, we calculate the phase of the open
loop transfer function from

/ðxÞ ¼ /1ðxÞþ/2ðxÞ ¼ phase
KdK0

s
� 1þ ss2

ss1

� 
� xTd ð10:28Þ

In this expression, the phase /(x) has been split into two components /1(x) and
/2(x) where /1(x) is the phase of KdK0

s � 1þ ss2
ss1

and /2(x) is the phase −xTd of the
RRCF. Figure 10.17 shows the magnitude and phase plots of the Bode diagram of
the open loop transfer function GOL(x). The upper trace is the magnitude plot.
Below the corner frequency xC = 1/s2 of the loop filter, the magnitude rolls off with
−40 dB/decade. Above xC the gain rolls off at −20 dB/decade. As shown in the
middle trace phase, /1(x) is −180° at low frequencies and approaches −90° at high
frequencies. At the corner frequency xC, /1 is −135°. Note that /1 is never more
positive than −90°. The phase /2(x) of the RRCF varies linearly with frequency.
To get a stable system, the total phase /(x) must be more positive than −180° at the
transit frequency xT. This implies that xT must be specified such that /2(x) is
greater than −90°. Therefore, we specify the transit frequency xT to be that fre-
quency where the phase of the RRCF is −45°. Using Eq. (10.26), we get

�xTTd ¼ �p=4 or xT ¼ p
4 Td

ð10:29Þ

At x = xT, phase /1(x) must be more positive than −135°, otherwise the system
would become unstable. When the corner frequency xC is chosen xT/3, /1 becomes
−110°; hence, the total phase / is −155°. This results in a phase margin of 25°,
which is sufficient to get a stable system.

Given corner frequency xC, the remaining parameters K0 and s1 can be deter-
mined. As shown in the magnitude plot of Fig. 10.18, the magnitude of GOL must
be 3 at x = xC. Hence, we have
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3 ¼ K0Kd

x2
cs1

ð10:30Þ

This is an overdetermined equation for K0 and s1. It is therefore possible to
choose s1 free and compute K0 from Eq. (10.30). This yields

K0 ¼ 3x2
c s1

Kd
ð10:31Þ

The loop filter is realized in most cases as a digital filter, i.e., an infinite impulse
response (IIR) filter. The transfer function HLF(s) must therefore be converted into a
discrete time transfer function HLF(z). Using the bilinear z transform [3], HLF(z)
becomes

Fig. 10.17 Bode diagram of
the frequency control loop
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HLFðzÞ ¼
1þ 2 s2

Tf

h i
zþ 1� 2 s2

Tf

h i
2 s1
Tf
ðz� 1Þ ð10:23Þ

Here Tf is the sampling interval. The sampling frequency ff = 1/Tf of the digital
filter must be chosen large enough to get sufficient time resolution. It should be a
multiple of the symbol rate, i.e., ff = OS � fS with OS = oversampling factor.
Choosing OS = 16 is adequate in most applications; hence, we get

Tf ¼ T
OS

with T = symbol interval.
The VCO can be realized in the same way by a digital filter. The transfer

function of the VCO must also be converted into a discrete time transfer function
HVCO(z). Using the impulse invariant z transform [3], we get

HVCOðzÞ ¼ Tf K0

1� z�1 ð10:24Þ

Fig. 10.18 Operating principle of the phase detector
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10.3.4 Phase Detector

The block diagram of the phase detector is shown in Fig. 10.18. The phase error he
is computed from the difference of the phase of the current phasor (IA, QA) (cf.
Fig. 10.8) and the phase of the estimated phasor (IE, QE)

he ¼ phaseðIA þ j QAÞ � phaseðIE þ j QEÞ

The phase of phasor (IA, QA) is computed by the atan2 function. As mentioned
in Sect. 10.2.3, the atan2 function is capable of computing the arc tg function within
the range form −180° … 180°, as visualize in Fig. 10.10. As will be demonstrated
in short, the phasor (IA, QA) can reach very high values, i.e., a multiple of p when
there is an initial frequency error and the phasor (IA, QA) rotates with a frequency
Df = fC − f2 with fC is carrier frequency and f2 is frequency of the local oscillator.
The phase of the current phasor (IA, QA) is labeled P(n) and is computed from

PðnÞ ¼ arctg
QA

IA

� 

where the atan2 function is used for arc tg computation. The value P(n) of the
currently received phasor is hold in the hold circuit to the left in Fig. 10.18. The
content of this hold circuit is updated at the clock rate, which is identical with the
symbol rate. One value of P(n) is computed in each symbol period. A second hold
circuit, shown at the right in the figure, is used to store the value of the previously
received phasor. This value is labeled P(n − 1). Now we use the difference

DPðnÞ ¼ PðnÞ � Pðn� 1Þ

to check whether or not the phase P(n) has crossed the 180° boundary, cf.
Fig. 10.10. Assume that the previous phase P(n − 1) had a value slightly less than
180° and the current phase crossed the 180° boundary, i.e., is slightly more than
180°, the atan2 function now delivers a negative value in the order of −180°. The
difference DP(n) is now applied to the input of a comparator, cf. the upper Comp
block in Fig. 10.18. This comparator switches to the logical 1 state when the signal
at the input becomes more negative than the value −p applied to the + input. The
comparator is configured such that its output is 2 p in the 1 state and 0 in the logical
0 state. Whenever phase P(n) crosses the 180° boundary, the upper comparator
delivers an output signal of 2 p. This signal is added to the current content of the
accumulator (labeled Accu). The content of the accumulator is updated on every
clock signal. The output signal of the accumulator is now added to signal P(n), and
the output signal of the accumulator is the corrected phase P(n)corr. When the initial
frequency error is large, phasor (IA, QA) can execute a number of full revolutions;
hence, the corrected value P(n)corr can exceed a multiple of 2 p. The phasor (IA, QA)
can also rotate in the opposite sense, i.e., clockwise. When P(n) is negative and
crosses the 1800 boundary in the opposite direction (i.e., from quadrant Q3 to
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quadrant Q2), the phase P(n) executes a jump of 2 p. Another comparator (bottom
in Fig. 10.18) compares DP(n) with p. Whenever DP(n) becomes greater than p, the
second comparator generates an output signal of −2 p. This value is subtracted from
the current content of the accumulator. Phase P(n) can therefore also reach large
negative values, i.e., values more negative than a multiple of 2 p. Using this
measuring method for P(n) yields a much larger pull-in range, compared with the
classical methods of phase computation without correcting actions.

As shown in Fig. 10.8, the Estimator (Estim blocks) delivers an estimate (IE, QE)
at every clock impulse. The phase of estimated phasor (IE, QE) is again computed
by the atan2 function, cf. Fig. 10.18. The phasor error he is now computed by the
difference of corrected phase P(n)corr and phase of phasor (IE, QE).

10.3.5 Preamble and Acquisition Process

In Sect. 10.2.2, it was demonstrated that a data transmission must always start with
a preamble, because the gain of the AGC amplifier must be set to the correct level.
The preamble consists of a series of known symbols. The simplest preamble is a
sequence of equal symbols. More frequently a so-called S1 sequence is used [3].
The S1 sequence is made from two symbols S1 and S2, as shown in Fig. 10.19a. In

Fig. 10.19 a Phasor
presentation of S1 sequence
(preamble). The S1 sequence
consists of two phasors, S1
and S2. b Phase P of the S1
sequence with phase error
he = 0. c Phase P of the S1
sequence with frequency error
Df 6¼ 0. The phase error he(t)
is a ramp function. P(0), P(1)
… are the phases of phasor P
sampled by the clock signal
CLK (cf. Fig. 10.19) at the
symbol rate
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this example, S1 is a phasor with the coordinates (0.5, 0.5), and S2 is a phasor with
the coordinates (0.5, −0.5). In the S1 sequence, these two symbols are transmitted
in alternation, i.e., S1, S2, S1, S2 … The phase of S1 is p/4, and the phase of S2 is
−p/4. As shown in Fig. 10.18, the phase P(n) is memorized in a hold circuit at
every symbol interval. When no phase error he exists, P(n) is an alternating
sequence having the values p/4 or −p/4, respectively. This is plotted in Fig. 10.19b.
When there is an initial frequency error Df, the phasor (IA, QA) rotates with fre-
quency Df; hence, its phase ramps up as shown in Fig. 10.19c. The phase detector
must now decide at every clock event whether the current phasor is S1 or S2. This is
done by building the difference DP(n) = P(n) − P(n − 1) at every clock event.
When DP(n) is positive, it is decided that the current symbol is S1, and when DP(n)
is negative, it is decided that the current symbol is S2. This works as long as the
phase rotation within on symbol interval remains below p/2. This is the case in
Fig. 10.19. But when the phase rotation becomes greater, this decision can no
longer be made. We conclude therefore that the pull-in range of this type of Costas
loop is limited to a value

DfP ¼ fS=4 ð10:32Þ

When there is an initial frequency error, simulations show that the phase error he
exhibits a damped oscillation whose frequency is the natural frequency xn of the
frequency control loop. Because the system is nonlinear, it is difficult to give an
explicit expression for xn. Considering the open loop frequency response GOL(x),
we could expect that xn would be in the order of xT (transit frequency), which is
given by Eq. (10.29). Simulations reveal that the duration of the pull-in process TP

is in the order of one cycle TC of xn, which is TC = 2 p/xn. When the initial
frequency error is small, the loop can acquire lock within less than one full cycle of
xn. Because the control loop is underdamped, TP can become longer than one cycle
when the frequency error is large. A very crude approximation, obtained by results
from simulations, is

TP ¼ ð0:5. . .3Þ � 2p
xn

ð10:33Þ

10.3.6 Automatic Gain Control (AGC)

The AGC system is used to normalize the amplitudes of the received symbols I and
Q in order to match the constellation points as shown in Fig. 10.9. Consider the
AGC block in the I branch of the Costas loop as depicted in Fig. 10.8. Without gain
control, the gain G0 of this amplifier would be 1. It can be modified, however, by
adding a correction DG. As demonstrated, above block delivers a correcting signal
DA at every sampling instant t = 0, T, 2 T … When the gain of the AGC amplifier
is too high, DA is positive. Consequently, the gain of the amplifier should be
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reduced. The block diagram of the AGC amplifier is shown in Fig. 10.21. The
amplifier gain is adjusted by applying DA to the input of an integrator (labeled Int).
The transfer function of the integrator is given by

HintðsÞ ¼ 1
sTi

ð10:34Þ

with Ti = integrator time constant. When developing Simulink models for this type
of Costas loop, the integrator time constant was chosen by “trial and error.” It
showed up that a good choice is Ti = 4 T, with T = symbol interval. When the
amplifier gain has settled to the required value, DA is 0 on average, and the output
signal DG of the integrator stays almost constant. In most practical circuits, the
integrator will be realized by a digital filter, hence the transfer function Hint(s) must
be converted into a discrete time transfer function Hint(z). Using the impulse
invariant z transform, Hint(z) is given by

HintðzÞ ¼ Tf
Ti

� 1
1� z�1

Tf is the sampling interval. The sampling frequency ff is usually a multiple of the
symbol rate fS, i.e., ff = OS fS, with OS = oversampling factor. Hence, we have

Tf ¼ 1
ff
¼ 1

OS � fS ¼
T
OS

The AGC amplifier in the Q branch is identical with the circuit shown above
(Fig. 10.20).

10.4 Simulating the Costas Loop for QAM

A data transmission system for QAM has been simulated by model
QAM16_Nyq_mod1C. mdl, Fig. 10.21. The entity of all function blocks in this
model is so large that the full block diagram could not be shown in one single
figure, but the system is subdivided into a number of subsystems. Subsystem TX

Fig. 10.20 Block diagram of
the AGC circuit

10.3 Design Procedure for Costas Loop for QAM 145



F
ig
.
10

.2
1

Si
m
ul
in
k
m
od

el
Q
A
M
16

_N
yq

_m
od

1C
fo
r
Q
A
M

da
ta

tr
an
sm

is
si
on

146 10 Costas Loop for Quadrature Amplitude Modulation



represents the transmitter. It first generates a preamble, a S1 sequence, followed by
a series of random symbols (I, Q). Referring to Fig. 10.8, subsystem Demod_P
includes both multipliers MUL, the RRCF filters RRCF1 and RRCF2, and the
filters RRCF1 and RRCF2. The clock recovery circuit is in block CLKRec.
Subsystem PhCtrl_P contains the circuits of the “Phase Detector,” and AGCCtrl
contains the circuits of block “AGC Control.” Subsystem Estim includes both
blocks “Estim” in Fig. 10.8. Subsystem Rot_P is an additional function not yet
discussed previously. Its function will be explained below.

All function blocks have been designed using the procedure described in
Sect. 10.3. The key parameters of the Costas loop are the following

– Carrier frequency fC = 400 kHz.
– Symbol rate fS = 100’000 symbols/s, symbol interval = 10 ls.
– Number of constellation points = 16.
– Duration of impulse response of the RRCF filters is −nT < t < nT, with n = 4,

i.e., −40 ls < t < 40 ls.
– RRCF filter delay Td = nT = 40 ls.
– Transit (radian) frequency xT = 19’625 rad s−1 (cf. Eq. 10.29).
– The natural frequency xn of the Costas loop can be approximated by xT, hence

on full cycle of xn has a duration of 2p
xn

= 320 ls.
– It can be expected that the pull-in time of the loop is in the range 160… 960 ls,

depending on the size of the initial frequency error.

The model is described in detail in the model description included in the
Simulink model. To get that description, the following actions are required:

– Start the model QAM16_Nyq_mod1C,
– Click the file menu,
– Click the submenu Model description,
– Click “Description.”

Before entering into simulations, the function block Rot_P is explained. This is a
phasor rotator, as already seen in previous chapters, cf. Fig. 8.1 [10]. We have seen
that the frequency correcting loop has a relatively low bandwidth xT

(19’625 rad s−1) or fT � 3 kHz. If a broadband noise signal is superimposed to the
QAM signal as generated by the transmitter, fast perturbations cannot be canceled
by the slow frequency control loop. For this reason, a faster correcting loop is
added. The block diagram of subsystem Rot_P is displayed in Fig. 10.22. Rot_P
contains the blocks LF (loop filter), Int (Integrator), and Rotator, which is the same
circuit as the phasor rotator in Fig. 8.1, cf. lower part of the figure. The two atan2
blocks and the adder are part of the phase detector, which is realized in subsystem
PhCtrol_P. The phasor (IA, QA) is applied to the input of a phasor rotator that
rotates (IA, QA) by an angle /rot. Assume for the moment that /rot = 0 initially, so
the phasor (IR, QR) at the output of the rotator is identical with phasor (IA, QA).
When the loop is perfectly locked and there exists no broadband noise, phasor (IR,
QR) would be identical with the estimated phasor (IE, QE). Under real conditions,
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however, there is a deviation, and consequently, the phase detector creates a phase
error signal he that is not zero. Now the loop in block Rot_P comes into action. The
phase error signal he is applied to the input of a loop filter (LF), built from a PI
filter. The output signal uf of the loop filter drives the input of an integrator, and the
output signal of the integrator is the rotating angle /rot. Consequently, phasor (IA,
QA) is rotated until the rotated phasor (IR, QR) is identical with phasor (IE, QE). The
entire loop in Fig. 10.22 can be considered a PLL having a reference signal hE
[phase of phasor (IE, QE)]. The second input of the phase detector (given by the
subtractor on top right) is signal hR, the phase of phasor (IR, QR). The remaining
blocks of the PLL are LF and Int. The rotator can be modeled by a simple adder,
because it computes the sum hA + /rot, where hA is the phase of phasor (IA, QA).

The open loop transfer function of this circuit is now given by

GOLðsÞ ¼ HRðsÞ
HAðsÞ

where HR and HA are the Laplace transforms of phases hR and hA, respectively.
The detector gain Kd = 1 in this application, the transfer function of the loop filter
given by

HLFðsÞ ¼ 1þ s s2
s s1

with s1, s2 = time constants, and the transfer function of the integrator is given by

HintðsÞ ¼ K0

s

Fig. 10.22 Block diagram of
the Phasor Rotator (Block
Rot_P)
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with K0 = integrator gain. The open loop transfer function becomes therefore

GOLðsÞ ¼ K0Kd

s
� 1þ s s2

s s1

The parameters K0, s1, and s2 are again determined using the Bode plot for the
magnitude of GOL(x), cf. Fig. 10.15. First the transit frequency of the loop must be
chosen. The phasors of the loop are updated at a frequency of 100 kHz; hence, it is
reasonable to set fT at 50 kHz, i.e., xT = 2 p fT = 314’000 rad/s. When the radian
corner frequency xC = 1/s2 of the loop filter is chosen to coincide with xT, the
phase margin becomes 45°, which is sufficient for stability. This yields s2 = 3.2 ls.
Finally, the remaining parameters K0 and s1 must be chosen such that the open loop
gain becomes 1 at x = xT. This yields

1 ¼ K0Kd

x2
T s1

or K0 ¼ x2
Ts1
Kd

As done previously, s1 can be chosen free. Specifying s1 = 10 ls, we obtain
K0 = 985’900.

The loop filter is realized in most cases as a digital filter, i.e., an infinite impulse
response (IIR) filter. The transfer function HLF(s) must therefore be converted into a
discrete time transfer function HLF(z). Using the bilinear z transform [3] HLF(z)
becomes (cf. Eq. 10.23)

HLFðzÞ ¼
1þ 2 s2

Tf

h i
zþ 1� 2 s2

Tf

h i
2 s1
Tf
ðz� 1Þ

Here Tf is the sampling interval. The sampling frequency ff = 1/Tf of the digital
filter must be chosen large enough to get sufficient time resolution. It should be a
multiple of the symbol rate, i.e., ff = OS � fS with OS = oversampling factor.
Choosing OS = 16 is adequate in most applications, hence we get (cf. Eq. 10.24)

Tf ¼ T
OS

with T = symbol interval.
The VCO can be realized in the same way by a digital filter. The transfer

function of the VCO must also be converted into a discrete time transfer function
HVCO(z). Using the impulse invariant z transform [3], we get

HVCOðzÞ ¼ Tf K0

1� z�1
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Because the inputs of block Rot_P are phasors (IA, QA) and IE, QE)
(cf. Fig. 10.22), this type of loop is also referred to as “phasor locked loop” [10].

10.4.1 Simulations with Model QAM16_Nyq_mod1C

Section 6 of the model description gives a number of hints for simulations with the
model. Here are some suggestions for testing:

Start the model. A parameter window is also displayed where the operator can
enter a number of parameters. Specify number of symbols in data sequence = 20
and number of symbols in preamble = 20, set frequency error = 1000 Hz. Hit the
“Done” button to store that data. Start the simulation. To see whether or net the loop
has acquired lock, watch scope labeled “IE, QE” in subsystem Estim. This scope
shows signals Idel and Qdel. These are the I, Q signals generated by the transmitter,
but delayed by the accumulated delay of all filters (RRCF in transmitter, RRCF in
Costas loop, etc.). IE and QE are the estimates of I, Q. When the loop has locked, IE
is identical with Idel and QE is identical with Qdel.

Go back to the parameter window and enter other parameters, e.g., number of
symbols in data sequence = 20 and number of symbols in preamble = 60. Set the
frequency error to 5000 Hz. Watch scope labeled “Scope” in subsystem
PhCtrl_P. Look at the waveform for P(n), the phase of phasor (IR, QR). Because the
actual phase becomes larger than 180°, P(n) exhibits large discontinuities when the
180° boundary is crossed. Now watch signal P(n)corr. This is the corrected phase P
(n). It is a smooth function of time.

Repeat this simulation with a larger frequency error. Enter number of symbols in
data sequence = 20 and number of symbols in preamble = 100. Set frequency
error = 20’000. Start the simulation and watch “Scope” in subsystem PhCtrl_P
again. Look at the waveform for theta_e_pre. This is the phase error computed
during the preamble interval. It shows up that the phase error takes large values, up
to 10 rad (corresponding to 570°).

A lot of detailed information is also available from the callback function
InitFctQAM16_Nyq_mod1C.m. This function is executed whenever a simulation is
started. This function computes all circuit parameters (e.g., time constants, transit
frequency) and sets the parameters of the Simulink function blocks correspondingly
(Table 10.1).

Table 10.1 Pull-in time TP

als a function of initial
frequency error Df

Frequency error Df (kHz) Pull-in time TP (ls)

1 150

5 450

10 750

20 800

25 1000
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