Applied Interval Analysis

Springer-Verlag London Ltd.

Luc Jaulin, Michel Kieffer, Olivier Didrit
and Eric Walter

Applied
Interval
Analysis

With Examples in Parameter and State Estimation,
Robust Control and Robotics

With 125 Figures

5) Springer

Luc Jaulin, PhD
Michel Kieffer, PhD
Olivier Didrit, PhD
Eric Walter, PhD

Laboratoire des Signaux et Systémes, CNRS-SUPELEC-Université Paris-Sud, France

British Library Cataloguing in Publication Data
Applied interval analysis
1. Interval analysis (Mathematics)
1. Jaulin, Luc
519.4
ISBN 978-1-4471-1067-5

Library of Congress Cataloging-in-Publication Data
Applied interval analysis / Luc Jaulin ... [et al.].
p.cm.
ISBN 978-1-4471-1067-5 (alk. paper)
1. Interval analysis (Mathematics) I.Jaulin, Luc, 1967-
QA297.75 .A664 2001-04-26 511’.42—dc21
2001020164

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should
be sent to the publishers.

ISBN 978-1-4471-1067-5 ISBN 978-1-4471-0249-6 (eBook)
DOI 10.1007/978-1-4471-0249-6

http://www.springer.co.uk

© Springer-Verlag London 2001
Originally published by Springer-Verlag London Berlin Heidelberg in 2001
Softcover reprint of the hardcover 1st edition 2001

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence
of a specific statement, that such names are exempt from the relevant laws and regulations and there-
fore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
matjon contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

Typesetting: Electronic text files prepared by authors
69/3830-543210 Printed on acid-free paper SPIN 10741551

Preface

At the core of many engineering problems is the solution of sets of equa-
tions and inequalities, and the optimization of cost functions. Unfortunately,
except in special cases, such as when a set of equations is linear in its un-
knowns or when a convex cost function has to be minimized under convex
constraints, the results obtained by conventional numerical methods are only
local and cannot be guaranteed. This means, for example, that the actual
global minimum of a cost function may not be reached, or that some global
minimizers of this cost function may escape detection. By contrast, interval
analysis makes it possible to obtain guaranteed approximations of the set of
all the actual solutions of the problem being considered. This, together with
the lack of books presenting interval techniques in such a way that they could
become part of any engineering numerical tool kit, motivated the writing of
this book.

The adventure started in 1991 with the preparation by Luc Jaulin of his
PhD thesis, under Eric Walter’s supervision. It continued with their joint
supervision of Olivier Didrit’s and Michel Kieffer’s PhD theses. More than
two years ago, when we presented our book project to Springer, we naively
thought that redaction would be a simple matter, given what had already
been achieved... Actually, this book is the result of fierce negotiations between
its authors about what should be said, and how! At times, we feared that
we might never end up with an actual book, but we feel that the result was
worth the struggle.

There were at least two ideas on which we easily agreed, though. First,
the book should be as simple and understandable as possible, which is why
there are so many illustrations and examples. Secondly, readers willing to
experiment with interval analysis on their own applications should be given
the power to do so.

Many people contributed to our conversion to interval analysis, and it is
impossible to quote all of them, but we would like at least to thank Vladik
Kreinovich for all the energy that he puts into the Interval Computations
WERB site and for all that we learned there.

Special thanks are due to Michel Petitot for his help in exploring the mys-
teries of ADA and the Stewart-Gough platform, to Dominique Meizel for in-
troducing us to robot localization and tracking, to Olaf Kniippel and Siegfried

vi

M. Rump for making PROFIL/BIAS and INTLAB available, to Isabelle Braems,
Martine Ceberio, Ramon Moore, Stefan Ratschan and Nathalie Revol for
their constructive remarks when reading earlier versions of the manuscript,
and to our editorial assistant Oliver Jackson, whose friendly enquiries were
instrumental in the release of this book this millennium.

We would also like to express our gratitude to Guy Demoment, head of
the Laboratoire des Signaux et Systemes and to Jean-Louis Ferrier, head of
the Laboratoire d’Ingénierie des Systémes Automatisés for their support and
the way they managed to shield us from the perturbations of the outside
world.

The French Centre National de la Recherche Scientifigue provided us with
ideal working conditions, and partial support by INTAS is also gratefully
acknowledged.

Contents

Preface e v

Notationo xiii

Part I. Introduction

1. Imtroduction i 3
1.1 What Are the Key Concepts? ..., 4
1.2 How Did the Story Start? 4
1.3 What About Complexity?, 5
1.4 How is the Book Organized? 6

Part II. Tools

2. Imterval Analysis i 11
2.1 Introduction 11
2.2 Operations on Setst 11

2.2.1 Purely set-theoretic operations 11
2.2.2 Extended operations, 12
2.2.3 Properties of set operators.............. 13
2.2 4 WA DI . v vttt 15
2.3 Interval Analysis ...ttt 17
2.3.1 Intervals. 18
2.3.2 Interval computation.............. 19
2.3.3 Closed intervals 20
2.3.4 Interval vectors............. 23
2.3.5 Interval matrices 25
2.4 Inclusion Functions 27
2.4.1 Definitions 27
2.4.2 Natural inclusion functions 29
2.4.3 Centred inclusion functions 33

2.4.4 Mixed centred inclusion functions.................... 34

viii

Contents
2.4.5 Taylor inclusion functions. 35
2.4.6 COMPATISOM .« v o vttt et e e et e e 35
2.5 Inclusion Tests oo 38
2.5.1 Interval Booleans 38
2.5.2 TestS. e e 40
2.5.3 Inclusion testsfor sets......... 42
2.6 Conclusions. 42
Subpavings 45
3.1 Introductionoieiii 45
3.2 Set TopOlOgY vttt 46
3.2.1 Distances between compact sets 46
3.2.2 Enclosure of compact sets between subpavings 48
3.3 Regular Subpavings........ ... i 49
3.3.1 Pavings and subpavings 50
3.3.2 Representing a regular subpaving as a binary tree 51
3.3.3 Basic operations on regular subpavings 52
3.4 Implementation of Set Computation 54
3.4.1 Set INVErSION . .ottt 55
3.4.2 Imageevaluation 59
3.5 Conclusions. . .o ov it 63
Contractors. 65
4.1 Introductionoueririnn i 65
4.2 Basic Contractorsot 67
4.2.1 Finite subsolvers i 67
4.2.2 Intervalization of finite subsolvers.................... 69
4.2.3 Fixed-point methods, 72
4.2.4 Forward-backward propagation 7
4.2.5 Linear programming approach....................... 81
4.3 External Approximation.......... ..., 82
4.3.1 Principle 83
4.3.2 Preconditioning i i i 84
4.3.3 Newton contractor.........., 86
4.3.4 Parallel linearization 87
4.3.5 Using formal transformations 88
4.4 Collaboration Between Contractors 90
4.41 Principle 90
4.4.2 Contractors and inclusion functions 95
4.5 Contractors for Sets i 97
4.5.1 Definitions. ... 97
4.5.2 Sets defined by equality and inequality constraints 99
4.5.3 Improving contractors using local search.............. 99

4.6 ConcluSionS. . ..ot e 100

5.

Contents ix

SOIVEES .o 103
5.1 Imtroduction 103
5.2 Solving Square Systems of Non-linear Equations 104
5.3 Characterizing Sets Defined by Inequalities 106
5.4 Interval Hull of a Set Defined by Inequalities............... 111

5.4.1 First approach 112
5.4.2 Second approach i 113
5.5 Global Optimization, 117
5.5.1 The Moore—Skelboe algorithm 120
5.5.2 Hansen’s algorithm 121
5.5.3 Using interval constraint propagation 125
5.6 Minimax Optimizationcoiiiiiiinnn. . 126
5.6.1 Unconstrained caseo 127
5.6.2 Constrained case i 131
5.6.3 Dealing with quantifiers 133
5.7 Cost COMBOULS .« v vv vttt et 135
5.8 ConcluSionS. . . vt vt 136

Part III. Applications

6.

Estimation............ 141
6.1 Introduction i 141
6.2 Parameter Estimation Via Optimization................... 144

6.2.1 Least-square parameter estimation
in compartmental modelling 145
6.2.2 Minimax parameter estimation 148
6.3 Parameter Bounding o i 155
6.3.1 Introduction i 155
6.3.2 The values of the independent variables are known. 158
6.3.3 Robustification against outliers................... ... 160

6.3.4 The values of the independent variables are uncertain .. 164
6.3.5 Computation of the interval hull of the posterior feasible

T P 167

6.4 State Bounding 168
6.4.1 Introduction i 168
6.4.2 Bounding the initial state. 171
6.4.3 Bounding all variables............ 171
6.4.4 Bounding by constraint propagation 174
6.5 ConcluSions.ot 184
Robust Control 187
7.1 Introduction 187
7.2 Stability of Deterministic Linear Systems 188

7.2.1 Characteristic polynomial........................... 189

X Contents

7.2.2 Routh criterion......... i 189
7.2.3 Stability degree 190
7.3 Basic Tests for Robust Stability 193
7.3.1 Interval polynomials 195
7.3.2 Polytope polynomials 196
7.3.3 Image-set polynomials.............. 196
7.3.4 ConclusSion.o 198
7.4 Robust Stability Analysis........... 198
7.4.1 Stability domains o 198
7.4.2 Stability degree 201
7.4.3 Value-set approach 205
7.4.4 Robust stability margins 211
7.4.5 Stability radius....... ... 216
7.5 Controller Design. 220
7.6 ConcluSiOnS . « o vt i et e 223
8. Robotics..... 225
81 Introduction i 225
8.2 Forward Kinematics Problem for Stewart—Gough Platforms .. 226
8.2.1 Stewart—Gough platforms............. 226
8.2.2 From the frame of the mobile plate to that of the base . 227
8.2.3 Equationstobesolved, 229
824 Solution 230
8.3 Path Planning i 234
8.3.1 Graph discretization of configuration space 237
8.3.2 Algorithms for finding a feasible path 239
8.3.3 Test case . ..ou ittt 241
8.4 Localization and Tracking of a Mobile Robot 248
8.4.1 Formulation of the static localization problem 249
8.4.2 Model of the measurement process 253
8.4.3 Setinversion 257
8.4.4 Dealing with outliers.........., 259
8.4.5 Static localization example. 260
8.4.6 Trackingo 263
847 Example 264
85 Conclusions. 267

Part IV. Implementation

9. Automatic Differentiation 271
9.1 IntroduCtion 271

9.2 Forward and Backward Differentiations 271
9.2.1 Forward differentiation 272

9.2.2 Backward differentiation. 273

Contents xi

9.3 Differentiation of Algorithms............................. 275
9.3.1 First assumptionooiiiiitn . 275
9.3.2 Second assumptionii i 278
9.3.3 Third assumption.ou it 279

9.4 Examples 281
9.4.1 Example 1... 281
9.4.2 Example 2. 284

9.5 ConclusionS. . ..ottt 285

10. Guaranteed Computation with Floating-point Numbers .. 287

10.1 Introductionouunin i 287

10.2 Floating-point Numbers and IEEE 754 287
10.2.1 Representation, 288
10.2.2 Rounding...........ooiiinininii i 289
10.2.3 Special quantities. 291

10.3 Intervals and IEEE 754 292
10.3.1 Machine intervals........ 293
10.3.2 Closed interval arithmetic 294
10.3.3 Handling elementary functions 295
10.3.4 Improvementsc.ouiitmireneennennennnn.. 297

10.4 Interval Resources, 297

10.5 ConcluSionsS. . ..o vt e 299

11. Do It Yourself 301

11,1 IntroducCtion . ..ovvt it e et 301

11.2 Notions of CH ... e 301
11.2.1 Program structure, 302
11.2.2 Standard types 303
11.2.3 Pointerst e 304
11.2.4 Passing parameters to a function 304

11.3 INTERVAL Class .. ovvtie ettt et et e 305
11.3.1 Constructors and destructor 307
11.3.2 Other member functions............................ 308
11.3.3 Mathematical functions 313

11.4 Intervals with PROFIL/BIASottt 315
1141 BIAS ottt e e e e 315
11.4.2 PROFIL .« vt ottt it e e e e e e e e e e e e e e 316
11.4.3 Getting started 317

11.5 Exerciseson Intervals, 318

11.6 Interval Vectorscc.iniiii i, 319
11.6.1 INTERVALVECTOR classvviiirinennnnnnnn.. 320
11.6.2 Constructors, assignment and function call operators ... 321
11.6.3 Friend functions i 323
11.6.4 Utilities ... ov vt e 325

11.7 Vectors with PROFIL/BIASttt 326

xii Contents

11.8 Exercises on Interval Vectors. oot 327
11.9 Imterval Matricest 331
11.10 Matrices with PROFIL/BIASottt 332
11.11 Exercises on Interval Matrices. 333
11.12 Regular Subpavings with PROFIL/BIASc..uuuun.. 336
11.12.1 NODE class ..o ov vttt 336
11.12.2 Set inversion with subpavings 339
11.12.3 Image evaluation with subpavings 342
11.12.4 System simulation and state estimation with subpavings 347
11.13 Error Handling. o 349
11.13.1 USING @XAt « vt ettt e e et e 349
11.13.2 Exception handling 350
11.13.3 Mathematical errors oo, 351
References. 353

Notation

The following tables describe the main typographic conventions and symbols
to be used.

Punctual quantities

T punctual scalar

¥ actual value of an uncertain variable =
I prior value of an uncertain variable x

T posterior value of an uncertain variable x
X punctual column vector

xT punctual row vector

0 vector of zeros

1 vector of ones

X : punctual matrix

0,0,x,» : matrix of zeros, (n X m) matrix of zeros
LI, : identity matrix, (n X n) identity matrix
Im(s) : imaginary part of s

Re(s) : real part of s

Xiv Notation

Sets

16} empty set

S set

N : set of all positive integers

Z set of all integers

R set of all real numbers

IR : set of all interval real numbers

C : set of all complex numbers

C~ . set of all complex numbers

with a strictly negative real part

B : set of all Boolean numbers

B : set of all interval Boolean numbers

0S . boundary of S

[S] interval hull of §

S outer approximation of S

S inner approximation of S

L list, stack, queue, tree or graph
Intervals

[] = [z, 7] : interval scalar

[x] = [x,X] : interval vector (or box)

X] = [X,X] : interval matrix

[:] = ([x])s : ith entry of [x]

[i;] = ([X])i; : entry of [X] at ¢th row and jth column

Ib([z]) : lower bound of [x]

ub([z]) : upper bound of [z]

w ([z]) : width of [z]

]
mid([z]) : centre of [x]

Notation XV

Other symbols

= equal by definition
= : assignment operator
universal quantifier (for all)

3 : existential quantifier (there exists)

- ¢ logical complementation

A : logical AND

\% . logical OR

A xB : Cartesian product of A and B

A\B x| (e A)A(z ¢ B)}

ALUIB : interval union of A and B, equal to [A U B]
Functions

Functions are denoted with the same typographical convention as the ele-
ments of their image spaces, thus [f] () is a scalar interval function and [f] (+)
a vector interval function.

If £(.) is a once-differentiable function from R™ to R™, then its Jacobian
matriz at X is

df1 df1
8—;151()() : an(x)
Je(x) = : Lo

S0 5 ()

If f(.) is a once-differentiable function from R™ to R, then its gradient at x
is

of

TM(X)

gr(x) = |

of

O0%n,

(%)

If f(.) is twice differentiable, then its Hessian matriz at x is the (symmetric)
Jacobian matrix associated with its gradient, i.e.,

Xvi Notation

0% f 0% f
a—xf(x) . 0%, 0T (x)
Hyx) = | ¢ o
E P
Ox10%n, = 0x2 =
Algorithms

Algorithms are described in a pseudo-code allowing the usual mathematical
notation. The most important arguments are listed after the NAME of the
algorithm as input arguments (in:), output arguments (out:) or input-output
arguments (inout:). To facilitate reading, we take the liberty to omit some
of them, such as inclusion functions, gradients, Hessian matrices... Blocks
of statements are indicated by indentation. Any return statement causes an
immediate return from the current algorithm. Return statements at the end
of the algorithms are implicit.

For details about the implementation of these algorithins, see Chapter 11,
where C++ code is set in Typewriter.

Part I

Introduction

1. Introduction

This book is about guaranteed numerical methods for approximating sets,
and their application to engineering. Guaranteed means here that outer (and
sometimes inner) approximations of the sets of interest are obtained, which
can, at least in principle, be made as precise as desired. It thus becomes
possible to achieve tasks often thought to be out of the reach of numerical
methods, such as finding all solutions of sets of non-linear equations and
inequalities or all global optimizers of possibly multi-modal criteria.

The figure on the cover illustrates this idea. It describes a question mark
defined by a series of inequalities connected by logical operators. The prior
space of interest has been partitioned into three sets of rectangles (two-
dimensional versions of what we shall call boxes). The first one, in red, con-
sists of rectangles proved to belong to the question mark. The second one, in
blue, is made of rectangles proved to have an empty intersection with it. The
last one, in yellow, contains rectangles for which nothing could be proved.
The surface of the yellow region could easily be decreased, at the cost of
more intensive computation.

The main tool to be used is interval analysis, based upon the very simple
idea of enclosing real numbers in intervals and real vectors in boxes. This first
made it possible to obtain guaranteed results on computers by direct transpo-
sition to interval variables of classical numerical algorithms usually operating
on floating-point numbers. More recently, interval analysis also allowed the
derivation of algorithms specifically dedicated to dealing with sets, with no
real counterpart. This made it possible to use numerical methods to prove
mathematical statements about sets. Algorithms based on interval analysis
thus compete with those based on computer algebra, with the advantage that
they can deal with more general classes of problems and that even steps that
can only be solved numerically (such as finding the roots of a high-degree
polynomial equation) can nevertheless be solved in a guaranteed way. Note
that the usual numerical methods based on Monte-Carlo sampling or on sys-
tematic gridding could not be used to prove even such simple properties as
the emptiness or disconnected nature of a set.

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001

4 1. Introduction

1.1 What Are the Key Concepts?

Some of the problems treated are still deemed unsolvable by many, so why
would interval analysis allow one to solve them? A short answer, to be sub-
stantiated by this book, is that interval analysis allows guaranteed conclusions
to be reached about the properties of boxes in search space after a finite num-
ber of operations, although the vectors in each of these boxes are not even
denumerable. This is achieved by wrapping the sets of interest into boxes or
unions of boxes upon which computations can be conducted more easily than
upon the original sets.

Consider a box [x] of R, a function f from R™ to R and a subset S of
R™ defined by a series of constraints connected by logical operators such as
AND or OR. The question mark on the cover is a two-dimensional example of
such a set S. Interval analysis makes it possible to implement three essential
operations. The first one is computing an interval that contains the image
of [x] by f. The key to this operation, which is a direct consequence of the
properties of interval calculus, is the notion of inclusion function. The second
operation is testing whether [x] belongs to S, or more precisely whether [x] C S
or whether [x] 'S = @. For this purpose, the notion of inclusion test will be
introduced. The third operation is the contraction of [x] with respect to S,
i.e., the replacement of [x] by a smaller box [z], such that [x| NS = [z] N S.
If [z] turns out to be empty and S defines the feasibility set for the solution
of some problem, then [x]| can be eliminated from the list of boxes that may
contain this solution.

When no conclusion can be reached about a given box, this box can
be bisected into subboxes, and each of these can be studied in turn. This
corresponds to branch-and-bound (or branch-and-prune) algorithms, whose
main drawback is their exponential complexity in the number of interval
variables. Contractors can be employed to decrease (sometimes eliminate)
the need for splitting boxes into subboxes, thereby playing an essential role
in the struggle against the curse of dimensionality.

These concepts and operations are at the core of the main algorithms to be
considered, and any other mathematical theory that would allow their imple-
mentation could be substituted for interval analysis. Ellipsoids, for instance,
have also been used for guaranteed computation on sets. Interval analysis,
however, can be employed over a much wider class of functions f and con-
straints defining S. Moreover, this can be done in such a way that rounding
errors due to the inaccurate representation of real numbers on computers are
taken into account to guarantee the results provided.

1.2 How Did the Story Start?

Moore completed his doctorate on the use of intervals to analyze and con-
trol numerical errors in computers in 1962. In 1966, he published his first

1.3 What About Complexity? 5

book Interval Analysis (Moore, 1966), which remains a reference to this day.
During the same period, Hansen studied interval manipulation in linear al-
gebra (Hansen, 1965), and a group of German researchers including Alefeld,
Krawczyk and Nickel developed many aspects of computer implementation
(Nickel, 1966). Interval analysis is thus a child of many fathers.

During the first twenty years, the spreading of the interval methodology
remained relatively confined to the periphery of the initial seeds, notably in
Germany within Karlsruhe University (Kulisch and Miranker, 1981). Among
the new adepts who brought important advances, one may quote Neumaier
(1985) on the solution of sets of linear and non-linear equations, and Ratschek
and Rokne (1984) and Kearfott (1989a) on optimization.

During the 1990s, interval analysis has recruited a larger community. It
now has its own journal Interval Computations, created in 1991 and renamed
Reliable Computing in 1995, and several regular international conferences.
References to thousands of papers can be found at the WEB site

http://liinwww.ira.uka.de/bibliography/
?query=interval&case=off&partial=on

The reader is also advised to visit the very active site
http://www.cs.utep.edu/interval-comp/main.html

entirely dedicated to interval analysis.

1.3 What About Complexity?

Interval algorithms will always take longer than their real counterparts when
such counterparts exist. Sometimes, it is necessary to split intervals into
subintervals that may require vast quantities of memory to be stored, which
soon leads to the curse of dimensionality. The increase factors in time and
memory required vary considerably from one application to another. The ex-
amples treated in Chapters 6 to 8 should convince the reader that complexity
is not prohibitive for quite a number of problems of practical interest. These
problems have been treated over a period of about a decade, on a variety of
personal computers, and by programs written in PASCAL, ADA and C++.
We did not find it worthwhile to process all of them again for the sole bene-
fit of giving unified computing times, and chose instead to indicate times as
measured on the computers operating when the examples were treated. The
reader may thus rest assured that the times indicated are pessimistic — and
sometimes very pessimistic — upper bounds of what can be achieved with
present-day personal computers.

6 1. Introduction

1.4 How is the Book Organized?

Part II is devoted to basic tools. Every effort has been made to present
them as simply as possible, in a concrete and readily applicable way. Some
of the techniques reported appear in book format for the first time. Chap-
ter 2 recalls a few simple notions of set theory that form the foundations
of the methodology. It then presents the main concepts of interval analy-
sis, including the very important notions of inclusion functions and inclusion
tests. Chapter 3 is about subpavings, i.e., sets of non-overlapping boxes to
be used to approximate compact sets. The few notions of topology needed to
quantify the distance between subpavings and compact sets are recalled. The
representation of a useful class of subpavings by binary trees is explained,
and computation on subpavings is applied to two operations of fundamen-
tal importance, namely set inversion and direct image evaluation. Chapter 4
presents contractors, i.e., operators used to decrease the sizes of the domains
on which variables may be allowed to vary if they are to satisfy a given set
of constraints. Contractors have already been mentioned as playing a fun-
damental role in the struggle against the curse of dimensionality. Chapter 5
describes problem solvers. Contractors alone cannot solve all problems of
interest and one must sometimes resort to the bisection of boxes to get bet-
ter approximations of solution sets by subpavings. The problems considered
include solving sets of non-linear equations or inequalities, and optimizing
multi-modal and minimax criteria.

The ability of the tools of Part II to solve non-trivial engineering prob-
lems is demonstrated in Part III. Sufficient details are provided on each topic
to allow readers with other applications in mind to grasp its significance.
Chapter 6 is about estimation, i.e., the use of experimental data to derive in-
formation on the numerical value of some uncertain variables, which may be
assumed constant (parameter identification) or time-varying (state estima-
tion or parameter tracking). Estimation is performed either by optimizing a
cost function (this is the case, for instance, of least-square estimation), or by
looking for all values of the vector of uncertain quantities of interest that are
consistent with the data up to prior bounds on the acceptable errors. In both
cases, interval analysis allows guaranteed results to be obtained. Chapter 7
deals with two basic problems of robust control. The first one is the analysis
of the robustness of a given control system to uncertainty in the model of
the process to be controlled. The second one, more complicated, is the design
of a controller achieving a satisfactory level of performance in the presence
of uncertainty. Chapter 8 addresses three difficult problems of robotics. The
first one is the evaluation of all possible configurations of a parallel robot,
known as a Stewart—Gough platform, given the lengths of its limbs, a now
classical benchmark in computer algebra. The second problem is the plan-
ning of a collision-free path in an environment cluttered with obstacles. The
last one is the localization and tracking of a vehicle from on-board distance
measurements in a partially known environment.

1.4 How is the Book Organized? 7

An in-depth treatment of implementation issues in Part IV facilitates the
understanding and use of freely available software that makes interval com-
putation about as simple as computation with floating-point numbers. Chap-
ter 9 presents automatic differentiation, a numerical tool that can be used
to obtain guaranteed estimates of the derivatives of functions with respect
to their arguments, as needed by some of the algorithms described earlier.
Chapter 10 describes the facilities offered by the IEEE-754 standard for bi-
nary floating-point arithmetic, adhered to by most present-day computers
and its limitations. Pointers to readily available software dedicated to inter-
val computation are also provided. In Chapter 11, readers are given the basic
information needed to build their own C++ interval libraries or to use the
PROFIL/BIAS library. The implementation of the main algorithms described
in the book and their application to illustrative examples is considered in
detail through exercises. The source code corresponding to the solutions of
all these exercises can be downloaded from the WEB site

http://www.lss.supelec.fr/books/intervals

Part II

Tools

2. Interval Analysis

2.1 Introduction

Before using interval analysis as a basic tool in the following chapters, we shall
now introduce its main concepts. Section 2.2 recalls fundamental notions on
set operators, set functions and set calculus. Section 2.3 then presents basic
notions of interval analysis. Section 2.4 is dedicated to the important notion
of inclusion function. Finally, Section 2.5 deals with the extension to intervals
of logical tests that are almost invariably present in the algorithms of interest
to us.

2.2 Operations on Sets

Interval computation is a special case of computation on sets, and set theory
provides the foundations for interval analysis. The reader interested only in
interval computation may skip this section and go directly to Section 2.3.

The operations on sets fall into two categories. The first one, considered
in Section 2.2.1, consists of operations that have a meaning only in a set-
theoretic context (such as union, intersection, Cartesian product...). The
second one, considered in Section 2.2.2, consists of the extension to sets of
operations that are already defined for numbers (or vectors).

2.2.1 Purely set-theoretic operations

Consider two sets X and Y. Their intersection is

XNY2{z|zecXand z €Y}, (2.1)
and their union is

XUY2{z|zeXorzeY} (2.2)
X deprived of Y is defined by

X\Y£{z|recXandz ¢ Y} (2.3)

The Cartesian product of X and Y is

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001

12 2. Interval Analysis

XxY 2 {(z,y) |z € X and y € Y}. (2.4)

If Z = X x Y, then the projection of a subset Z; of Z onto X (with respect
to Y) is defined as

projx (Z1) = {z € X | 3y € Y such that (z,y) € Z}.

These operations are illustrated by Figure 2.1.

Y Y
XUY
X\ Y X
X

A AY

XxY

,@Z/ pro(%)
X

Fig. 2.1. Operations on sets

The inclusion of X in Y is defined by

XCYeVreX ey, (2.5)
and the equality of X and Y by
X=Y<XcCYandY CX (2.6)

2.2.2 Extended operations

Consider two sets X and Y and a function f: X — Y. If Xj C X the direct
image of Xy by f is

FX) = A{f(2) |z e Xy} (2.7)
IfY, C Y, the reciprocal image of Yy by f is
FUY) 2 (e X fla) € Yib (2.8)

If @ denotes the empty set, then the previous definitions imply that

2.2 Operations on Sets 13

F(@) =1 (@) =2 (2.9)
It is trivial to show that if X; and X5 are subsets of X and if Y; and Y
are subsets of Y, then
fXiNXs) C f(X1)
fX1UXp) = f(Xy)
FHYinYa) = 1
FFruYe) =71
f(FHY) CY, (2.10)
FFHFX) DX,
X1 CXe= (X)) C f(Xy),
Y1 CYo= fH(Yy) € (Yo),
X CY; x Y= X C projy, (X) x projy, (X).
In the same manner, it is possible to extend operations on numbers (or vec-
tors) to operations on sets. Denote by P(X) the power set of X, i.e., the set

of all subsets of X. Let ¢ be a binary operator from X X Y to Z. It can be
extended as a set operator as follows:

X;0Yy £ {:L‘l S Y1 ‘ xr1 € X1,y1 € Yl}, (2.11)

where ¢ is now an operator from P (X x Y) to P (Z). For instance, if X; and
Y, are subsets of R”, then

X1 +Y1:{x+y|x€X1,y€Y1}, (212)

Xi—-Yi={x—-y|xeX,ye Y} (2.13)
Note that the set X; —X; = {x —y | x € X3,y € X;} should not be confused
with the set {x —x | x € X3} = {0}.

When the operator ¢ applies to an element x; of X together with a subset

Y1 of Y, 1 is cast into the singleton {z1}, so

T10Yq £ {$1}0Y1 = {1‘1 S Y1 ‘ Y1 € Yl}. (2.14)

For instance, if D is the disk of R? with centre ¢ and radius 4, then 3 * D is
the disk of R? with centre 3¢ and radius 12. If Y; is also a singleton {y1},
then

zroyr ={z}o{y} ={z1om}, (2.15)

and the usual rules of ¢ for punctual arguments apply.

2.2.3 Properties of set operators

Some properties of operators acting on numbers extend to their set counter-
parts. Consider, as an illustration, a set X equipped with the binary opera-
tor ¢. Assume that X is closed with respect to ¢ (i.e., if z and y belong to X,

14 2. Interval Analysis

then x ¢y belongs to X). Assume also that ¢ has been extended to P(X) as
described in the previous section. Some properties true for (X, ¢) remain true
for (P(X), o). For instance, if ¢ is commutative for X, it is also commutative
for P(X), i.e.,

(Vlil S X,Vl’g S X,Jil S To = T2 0131)
= (VXl S P(X),VXQ S P(X),Xl o Xo =Xy <>X1) . (216)
If © is associative for X, it is also associative for P(X), i.e.,
(V (fEl, Za, :L'3) S XS, x1 ¢ (:L'Q <>IE3) = (fEl < :L'Q) < :L'3)
= (v (X1,Xs,X3) € (P(X))®, X1 0 (Xg 0 X3) = (X; 0 Xa) oxg) .
(2.17)
If o admits a unit element (denoted by 0) in X, then it also admits a unit
element in P(X), which is the singleton {0}.

On the other hand, some properties true for (X,¢) may become false
for (P(X),¢). For instance, if each element x of (X,¢) admits a symmetric
element this is no longer true in (P(X), o). We only have

(Vlil S X,Hyl e X | T10Y1 = 0)
= (VX; e P(X),dY; e P(X) | X;0Y120). (2.18)
Thus, if (X, ¢) is a group, (P(X), o) is only a monoid.

It is not our purpose here to give an exhaustive view of the extensions of

operators on numbers to sets, but just to stress that special care should be

exercised when dealing with set arithmetic. For instance, if Xy is a subset of
a group (X, 4), an expression such as

7Z=X-X (2.19)
should not be interpreted as

Z={x—x|x¢€X}, (2.20)
but as

Z={x-y|xeXyyeX} (2.21)

see (2.13). To avoid such confusions, the use of algebraic manipulations on
sets will be limited as much as possible in this book.

The following theorem will have important consequences in the context
of interval computation.

Theorem 2.1 Consider the function
CX(1) x - xX(n) = Y

.(1’1,...,1’”) — Yy

2.2 Operations on Sets 15

for which a formal expression involving operators and functions is available.
Let F(Xy,...,X,) be a function from P(X(1)) x --- x P(X(n)) to P(Y). As-
sume that F(Xq,...,X,,) has the same formal expression as f(Xy,...,X,).
Then

fXy,.. X)) CFXy,. ., Xy), (2.22)
where
fXy, X)) ={f(x1,...;2p) |21 €Xq,... 2, € X, }.
Moreover, if each x; occurs at most once in the formal expression of f, then
fXy,.. X)) =FXy, ..., Xp). (2.23)

[|

A proof of Theorem 2.1 in the case where all functions involved in the
formal expression of f are continuous and where the sets X; are closed inter-
vals may be found in Moore (1979). The extension to more general sets (as
presented in Theorem 2.1) is a direct consequence of the propagation theo-
rem (Jaulin, Kieffer, Braems and Walter, 2001), the principle of which will
be recalled in Section 6.4.4, page 174.

In general, unfortunately, F(Xy,...,X,,) is only an outer approximation of
f(Xy,...,X,), because of multiple occurrences of variables in the formal ex-
pression of f. Set computation is thus pessimistic, because of the dependency
effect illustrated by the following example.

Example 2.1 Consider the function f : R? — R, f(x1,22) = 21 + 22 — 271.
Then

FXL,Xo) ={z1+a2—21 |21 € Xy, 20 € X} (2.24)
= {.CEQ ‘ XTo € Xg} :Xg,

and
F(X1,Xo) =X + X5 — Xy

(2.25)
= {:L‘l + X0 — I3 ‘ xr1 EXl,ZEQ c Xg,xg c Xl}

It is clear that f(X1,Xs) C F(X1,Xs). The dependency between x1 and x3
(x1 = x3) has been forgotten in (2.25), thus adding one degree of freedom in
the elaboration of the set F(X1,Xa); hence the pessimism. [|

Note that multiple occurrences of variables associated to singletons do
not cause pessimism.

2.2.4 Wrappers

Consider a set X and a set IX of subsets of X. IX is a set of wrappers for X
if X and each singleton of X belong to IX and if IX is closed by intersection
(i.e., if X5 € IX and Xz € IX| then X; N Xy € IX). The empty set & must
thus belong to IX, unless X is a singleton.

16 2. Interval Analysis

Example 2.2 A set of wrappers for X = {a,b,c,d} is
IX={9,a,b,¢,{a,b},{a,d},{a,bc,d}}. (2.26)
|

Let X; be a subset of X; the smallest wrapper [Xi] of X; is the smallest
element of IX containing X;:

Xy = (Y € IX | X; C Y} (2.27)

Example 2.3 The set P(X) of all subsets of X is a set of wrappers for X. If
X1 is a subset of X, then [X;] = X;. []

Example 2.4 When X = R"™, the set IX of all convex sets of R™ is a set of
wrappers for X. [X1] is then the convexr hull of Xy. []

In practice, wrappers should be simple enough to allow the computation
of outer approximations of sets. The wrappers to be considered in this book
are intervals of R, axis-aligned boxes of R™, subsets of the Boolean set {true,
false} and unions of intervals or boxes. Other types of wrapper could be
used, such as parallelotopes, zonotopes, convex sets or unions of such sets.
Although they are not closed with respect to intersection, ellipsoids can also
be used (Milanese et al., 1996).

Let ¢ be a binary operator from X x Y to Z. Let IX, IY and IZ be sets
of wrappers for X, Y and Z. The operator ¢ can be extended to these sets of
wrappers as follows. If X; € IX and Y; € IY, then

Xy [o] Y1 & [{zioyn |z € Xy,m € Y1}, (2.28)

where the wrapping operator [.] on the right-hand side is defined as in (2.27).
Because of the definition of X; ¢ Y; given in (2.11),

X1 [0] Y, O X;0Y;. (229)

Consider two sets X and Y, a function f : X — Y, and two sets of wrappers
IX and TY for X and Y respectively. If X; € IX, then f can be extended to
wrappers as

1(X1) & [{f(z) | v € X1 }]. (2.30)
Again,
F1(X1) D F (X)) (2.31)

Consider three sets X, Y, Z, their sets of wrappers IX, IY, IZ and three
functions f: X - Y, g: Y — Z, h = go f (where o denotes the composition
operator). Then, g(f (X1)) = h (X1), but one can only write that

91 ([F1(X1)) D [A] (X1). (2.32)

This is known as the wrapping effect, illustrated by Figure 2.2 when the
wrappers are convex sets of R?.

2.3 Interval Analysis 17

)

v

(b)

Fig. 2.2. Wrapping effect when the wrappers are the convex sets of R?; (a) Xy is
convex and thus a wrapper; (b) f (X1), in dark grey, is not convex; its convex hull is
the wrapper [f] (X1); (c) since f (X;1) C [f] (X1), we have g (f (X1)) C g ([f] (X41)) C
[g] ([f] (X1)); therefore, [g] ([f] (X1)) is a convex set that contains the convex hull
[h] (X1) of g (f (X1)); the undesirable points of [g] ([f] (X1)) that are outside [h] (X1)
are a direct consequence of the wrapping effect

As the dependency effect, the wrapping effect introduces pessimism when
computing with wrappers. Some properties that held true for set computation
are thus no longer true for computation with wrappers. This is the case for
Theorem 2.1; when wrappers are used, the inclusion property (2.22) is still
satisfied, but does not necessarily transform into the equality (2.23) when
each input variable occurs at most once in the formal expression of f.

Remark 2.1 In this book, computation will be with wrappers and not with
generic sets. When this creates no ambiguity, X1 [¢] Y1 will be shortened into
Xl < Yl. |

2.3 Interval Analysis

In interval analysis, the wrappers to be used are intervals when dealing with
R and axis-aligned boxes when dealing with R™. Using the concepts of set
computation recalled in Section 2.2, we shall now present interval computa-
tion.

18 2. Interval Analysis

2.3.1 Intervals

An interval real [z] is a connected subset of R. Even when the interval is not
closed, we shall keep to the notation [z]. When no confusion may arise, [x]
will often merely be called an interval. Whether the empty set @ should be
considered as an interval is still a subject of discussion. We choose to answer
positively, if only to ensure that the set of intervals is closed with respect
to intersection, and also because @ represents the absence of solution of a
problem. The lower bound 1b([z]) of an interval [z], also denoted by z, is
defined as

x = 1b([z]) £ sup{a € RU {~o0,00} | Yz € [7],a < 7}. (2.33)
Its upper bound ub([x]), also denoted by T, is defined as

7 = ub([z] £ inf{b € RU {—00,00} | Vx € [z],2 < b}. (2.34)
Thus, z is the largest number on the left of [z] and T is the smallest number on
its right. For instance if [x] =]—3,7] then £ = —3 and T = 7; if [x] =] — 00, 00|
then £ = —oo and T = occ. The width of any non-empty interval [z] is

w(lz]) =7 -z, (2.35)

so w(]3,00[) = oo. The midpoint (or centre) of any bounded and non-empty
interval [z] is defined as

mid([z]) 2 Q;j (2.36)

The set-theoretic operations of Section 2.2.1 can be applied to intervals. The
intersection of two intervals [x] and [y], defined by

N[yl =2 {z€R|z€[z] and z € [y]}, (2.37)

is always an interval. This is not the case for their union
Z]Uy] 2 {z€R|z¢<[z] or 2z € [y} (2.38)

To make the set of intervals closed with respect to union, define the interval
hull of a subset X of R as the smallest interval [X] that contains it. This is
consistent with (2.27). For instance, the interval hull of]2,3] U [5,7] is the
interval]2, 7]. Define the interval union of [z] and [y], denoted by [x] LI [y], as
the interval hull of [z] U [y], i.e.,

] U [y] = [l=] U 1] (2.39)

In the same manner,

2] N\ Iyl = [\ [wl) = Hz € [2] [= & [v]}] (2.40)

For instance, [0,5] [\] |3,4[= [0,5[and [0,5] [\]]3,5[= [0, 3]. The Cartesian
product of two intervals is not an interval but a box of R?; it thus corresponds
to an external operation, to be treated in Section 2.3.4.

2.3 Interval Analysis 19

2.3.2 Interval computation

The four classical operations of real arithmetic, namely addition (+), subtrac-
tion (—), multiplication (%) and division (/) can be extended to intervals. For
any such binary operator, denoted by ¢, performing the operation associated
with ¢ on the intervals [z] and [y] means computing

2 olyl =HzoyeR |z elely <y}, (2.41)
which is a direct consequence of (2.28). For instance

(11,2.2] % [0,2]) +]1,3] = [0,4.4] +]1,3] =]1,7.4], (2.42)

1/[-2,2[=] — 00, 00], (2.43)

[3,4]/[0,0] = @. (2.44)

The rule (2.41) was first presented in the context of bounded and closed inter-
vals by Moore (1959) and then extended to open-ended unbounded intervals
(Hanson, 1968; Kahan, 1968; Davis, 1987).

Remark 2.2 The result of (2.44) is based on a mathematical interpretation
of the interval [0,0]. We shall see in Chapter 10 that two types of zero are dis-
tinguished in the floating-point representation to be used when implementing
interval computation, which sometimes allow different results. |

Remark 2.3 Definition (2.41) differs from that given for sets in (2.11) be-
cause it is required that o returns an interval and not a possibly non-connected
subset of R. Because of wrapping, we should have written [x] [¢] [y] instead
of [x] o [y] but, as for generic wrappers, we shall keep to the simpler notation
[] o [y]. Note that (2.41) and (2.11) match when ¢ is continuous, as the set
{zroyeR | xez],y € [y]} is then an interval. [|

Remark 2.4 The operator ¢ defined for intervals can also be extended to
unions of intervals (also called discontinuous intervals) (Hyvénen, 1992).
For instance, one may write

1/[=2,2[=] — 00, —1/2[U [1/2, 0], (2.45)

instead of | —o0, 00l as in (2.43). The computation on unions of intervals may,
however, lead to an explosion of the number of subintervals to be handled and
will no longer be considered in this book.]

As already mentioned for generic sets, the properties of the basic operators
for intervals differ from their properties in R. For instance, [x]—[z] is generally
not equal to [0, 0]. This is because [z] — [z] = {z —y | = € [z],y € [z]}, rather
than {x —z | z € [z]}. The subtraction thus does not take the dependency of
the two occurrences of [z] into account. Addition and multiplication remain
associative and commutative, but multiplication is no longer distributive with
respect to addition. Instead,

[z ([y] + [2]) C [a] * [y] + [2] = [2], (2.46)

20 2. Interval Analysis

a property known as subdistributivity, which is a direct consequence of the
dependency eflect, as [x] appears only once on the left-hand side but twice
on the right-hand side. As a result, it is recommended to factorize expanded
forms as much as possible.

Elementary functions such as exp, tan, sin, cos... extend to intervals as
indicated by (2.30). If f is a function from R to R, then its interval counterpart
[f] satisfies

[f1([2]) = [{f(x) [= € [2]}]. (2.47)

For any continuous elementary function, [f] ([z]) is thus equal to the image
set f([x]). For instance,

arctan|([0, oo[) = [0, 7/2],
sar] ([-1,3[) = [0,9],
exp]([0,1]) = [exp(0), exp(1)[= [1,],

[
[
[
[sart]([4, 25]) = [sqrt(4), sqrt(25)] = [2, 5], (2.48)
[sart)([~25, —4]) = 2,

fsart)([~50, 1]) = [sart}([0, 1)) = [0, 1]

[ln)([-50,1]) =]—00,0].

2.3.3 Closed intervals

This section presents rules for computing on subsets of R in the special case
where the wrappers are closed intervals of R. Denote by IR the set of all such
closed intervals. Since R and @ are both open and closed, they both belong
to IR, and any element of IR can be written in one of the following forms:

[a,b],] — 00, a], [a,00[,] — o0, 00[or &, where a and b are real numbers such
that a < b. Any [z] of IR can be spec1ﬁed in a unique way by its lower bound
z and its upper bound Z. For simplicity, we shall often write [z] = [z,T],

even if bounds may be infinite. Thus, [0, cc] should be interpreted as [0, col.
Note the dual nature of closed intervals, which may be viewed as sets (on
which standard set operations apply), and as couples of elements of R on
which an arithmetic can be built. Couples of the form [00, o0], [—00, —o0] and
[a,b] with @ > b do not correspond to intervals (see modal interval arithmetic
(Gardenes et al., 1985), however, where the notation [a, b] with a > b receives
a meaning). When z and T are equal, the interval [z] is said to be punctual
(or degenerate). Any real number could thus be represented as a punctual
interval and vice versa.

The operations of Section 2.3.2 can be redefined, in the context of closed
intervals, as operations on their bounds: the bounds of the result of an interval
operation are expressed as functions of the bounds of its interval arguments.
The remainder of this section is devoted to illustrating how this can be done.

2.3 Interval Analysis 21

The interval union of two non-empty closed intervals [x] and [y], defined
by (2.39), satisfies

V[z] € IR,V[y] € IR, [z]U[y] = [min{z, y}, max{Z,7}] . (2.49)

The intersection of two non-empty closed intervals [x] and [y], defined by
(2.37), satisfies

[] N [y] = [max{g, g}, min{T, @}] if max{z, g} < min{Z, 7},
= & otherwise. (2.50)
If « is a real number and [z] a non-empty interval, then the interval
alr] &£ {ax |z € [z]} (2.51)
is given by

alz] = [az,az] if a =0
= [aZ,az] if a<0. (2.52)
For non-empty closed intervals,
[z] +] = [z+y, T+,
[2] = [y] = [z - 7.7 — y], (2.53)
[#] * [y] = [min{zy, 27, Ty, 7y}, max{zy, 27, Ty, T}].

The product of two intervals will be denoted indifferently by [z]*[y], or [z][y].
For division, (2.41) leads to

1y =2 if [y] = [0,0],
=[1/y,1/yl if0¢ [yl,
1/y,00[ify=0andy>0, (2.54)

= [
=]-o00,1/y] ify <0 and g =0,
= |—00, 0| ify <0andy >0,
and
[@]/ly] = 2] % (1/[y))- (2.55)

Of course, when applied to punctual intervals [z] and [y], the previous rules
simplify into the usual rules of real arithmetic, which is why interval arith-
metic can claim to be an extension of the latter.

Elementary interval functions can also be expressed in terms of bounds.
For instance, for any non-empty [x],

[exp]([z]) = [exp(z), exp(T)]. (2.56)

For non-monotonic functions, the situation is more complicated. For example,
[sin]([0,7]) = [0,1] differs from the interval [sin(0),sin(7)] = [0, 0]. Specific

22 2. Interval Analysis

Table 2.1. Algorithm for the interval evaluation of the sine function

Algorithm sin(in: [z]; out: [r])
1 if3ke€Z|2knr—mn/2 € [z] then r =—1;

2 else r = min(sin z, sin T);
3 if3dkeZ|2knr+m/2 € [z] then 7 = 1;
4

else ¥ = max(sin z, sin 7).

algorithms must therefore be built. An algorithm for the sine function is given
by Table 2.1.

Figure 2.3 illustrates the computation of sin([2.6,7.2]) = [—1,0.7937].
Inclusion functions for other trigonometric functions are obtained in the same
way or by expressing them as functions of the sine function. The hyperbolic
functions receive a similar treatment.

Fig. 2.3. Computation of sin([z])

Remark 2.5 Most often, an operation or the evaluation of a function with
an empty interval argument should yield an empty result. Obvious exceptions
to this rule are for the union operator U and interval union operator LI, as
[]U@ = [z] and [z] U & = [z] [|

As already mentioned, the arithmetical rules for intervals differ from those
for real numbers. For instance, z2 —z = (z —)% — 1 whereas [z]? — [z] differs
1)2 1

2
from ([z] — 5)? — 7, as illustrated by the following example.
Example 2.5 At [z] =[-1,3],

2]? — [7] = [-1,3)* = [-1,3] = [0,9] + [-3,1] = [-3,10], (2.57)

2.3 Interval Analysis 23

(f-9' - 4= 40 -4=DF -d=[hel. @5

The first result is a pessimistic approzimation of the image set of x> — x at
[—1, 3], whereas the second one is equal to this image set (see Theorem 2.1). W

One is therefore well advised to transform expressions in such a way as to
reduce the number of occurrences of each variable as much as possible, which
is sometimes easier said than done.

Since computation on closed intervals reduces to computation on their
bounds, traditional interval software considers only closed intervals (except
packages such as INC+—+ or PROLOG 4, which also support open and half-
open intervals, at the cost of a much more complex implementation).

2.3.4 Interval vectors

An interval real vector [x] is a subset of R™ that can be defined as the Carte-
sian product of n closed intervals. When there is no ambiguity, [x] will simply
be called an interval vector, or a box. It will be written as

[x] = [z1] X [®2] X - -+ X [x,], with [x;] = [z;,Z;] for i = 1,...,n. (2.59)

Its ith interval component [x;] is the projection of [x] onto the ith axis. The

empty set of R™ should thus be written as @ X --- x @ because all of its
interval components are empty. Expressions such as
[x] =@ x [0,1] (2.60)

are therefore prohibited, because [0,1] is not the projection of [x] onto the
second axis. This guarantees the uniqueness of notation of a given box. The
set of all n-dimensional boxes will be denoted by IR"™. Non-empty boxes
are n-dimensional axis-aligned parallelepipeds. Figure 2.4 illustrates the case
n = 2, with [x] = [21] X [z2].

Fig. 2.4. A box [x] of TR?

Many of the notions introduced in Section 2.3.2 for intervals extend with-
out difficulty to boxes. For instance, a box will be said to be punctual if all
its interval components are. Any box with at least one punctual component

24 2. Interval Analysis

has a zero volume, so a box with a zero volume may not be punctual. The
lower bound 1b(]x]) of a box [x] is the punctual vector consisting of the lower
bounds of its interval components:

x = Ib([x]) £ (Ib([za]), Ib([a]), - Ib(lwa])) " = (21 20+ s 2,) "
Similarly, the upper bound ub([x]) of [x] is the punctual vector

X= Ub([x]) = (Ub([ml])7Ub([$2])’ T ,ub([l’n]))T = (flvi?v T 7jn)T :
The width of [x] = ([x1], [z2],- .., [za])" is
w([x]) £ 112%}(”10([951-]). (2.61)

If [x] is bounded and non-empty, then its midpoint (or cenire) is
mid([x]) £ (mid([z1]), ..., mid([z,]))T. (2.62)

The interval hull of a subset A of R™ is the smallest box of IR™ that contains
A, denoted by [A].
The intersection of the boxes [x] and [y] of TR" satisfies

Xyl = (a0) x - ox (@] 0 [yal), (2.63)

provided that [x] N [y] is non-empty. Applying this rule for the intersection
of [1,3] x [-1,2] and [2,4] x [3,7] would lead to [2,3] x &, which is actually
correct but inconsistent with the convention that [2, 3] should then be the
projection of the result onto the first axis.

Most often the union of two boxes [x] and [y] is not a box. A favourable

case is when there exists a unique ¢ € {1,...,n} such that [x;] = [y;] for all
j # i and [z;] N[y # @, because then [x] U [y] = ([x1],...,[zi—1], [z:] U
Wi, [Tig1]s- .., [xn])T. This seemingly unlikely event turns out to be fre-

quently encountered with some of the algorithms to be considered in this
book. In all other cases, the interval hull [[x] U [y]] of the union of [x] and [y]
can be computed as

[U [y] = (fza] U [ya]) x - x ([wn] U [yn)), (2.64)

a process that extends to any number of boxes, some of which may be the
empty set. We also have

[x] Cly] © [#1] C [y1] and ... and [z,] C [yn], (2.65)
and
X €[yl ez €yi] and ... and x, € [yn]. (2.66)

Classical operations for interval vectors are direct extensions of the same
operations for punctual vectors. For instance, if [x] and [y] are boxes of IR",
and if « is a real number, then

2.3 Interval Analysis 25

alx] 2 (afzy]) x -+ x (alz]),
] " [y] 2 [z] * [y1] + -+ [wn] * [ynl, (2.67)
[x] + [y] 2 ([z1) + [ya]) x - % ([za] + [ya]) -

These definitions are consistent with the more general set operation of (2.11),
page 13.

2.3.5 Interval matrices

Let R™*™ be the set of all matrices with real coefficients, m rows and n
columns. An (m x n)-dimensional interval matrix is a subset of R"*™ that
can be defined as the Cartesian product of mn closed intervals. The interval
matrix [A] will be written indifferently in any of the following forms:

[a11] .. [¢1n]
[A] =
[@mi] --- |amn]
= la1] x [a1a] X -+ X [amn] = ([945]) 1cicmicjcn » (2.68)
where [a;;] = [a;;,@ij] is the projection of [A] onto the (i, j)th axis. This con-

vention makes unique the representation of the empty matrix. For instance,

[A] = <@ 0.1] > (2.69)

g o

is not allowed because the projection of the matrix represented by the Carte-
sian product & x [0, 1] x @ X & onto the (1, 2)-axis is empty and not equal to
[0,1]. The set of all m x n interval matrices is denoted by IR™*"™. An interval
matrix is said to be punctual if all its entries are punctual. The lower bound
Ib([A]) of an interval matrix [A] is the punctual matrix made up with the
lower bounds of its interval components:

a1 - Qg

A= Ib(A]) =] Co (2.70)

Q1 - pn

Similarly, its upper bound ub([A]) is the punctual matrix

A=ub([A) £ | : : . (2.71)

TIts width w([A]) is

26 2. Interval Analysis

w([A]) & max w([ay]). (2.72)

1<is<m, 1<j<n
If [A] € IR™ ™ is bounded and non-empty, then its midpoint (or centre) is
given by
mid([A]) = (mid([ai;]); <;<m1<i<n - (2.73)
For [A] and [B] in IR™*™ and C in R™*"
[A] C [B] & [ay] C [bij] for 1 <i<m, 1<

j<n, (2.74)
CeBlecg;clbylforl<i<m,1<j<n

(2.75)

The interval hull of a set A of matrices of R™*™ is the smallest element of
IR™*™ that contains A.

If [A] and [B] are intervals, interval vectors or interval matrices of appro-
priate dimensions and if ¢ is a binary operator, then

[A]o[B] = [{AoB| A € [A] and B € [B]}]. (2.76)

For instance, if [A] and [B] are in TR™*", [x]is in TR" and « is in R, then

a[A] = (afan]) x -+ x (afann]) ,
[A] + [B] = ([ai;] + [b Dl<z<n 1<j<n?
[A] = [B] = Zk 1lain] = [brs]) 1<i<n,1<5<n
AL« [x] = (5 fag] # [24])

As with intervals, the product of two interval matrices will be denoted
indifferently by [A] * [B], or [A][B]. Some classical properties of matrices

in a punctual context are no longer true. For instance, product is no longer
associative

([A]B][C] # [AI(B][C]), (2.78)
or commutative with respect to scalars
[a]([A][x]) # [A]([a][x]). (2.79)

Part of these specificities can be explained by the wrapping effect, as illus-
trated by the following example where it is shown that

Alx] D {Ax | x € [x]}. (2.80)

(2.77)

1<i gn

Example 2.6 Take
(11 o = [—1,0]
a= (1), = (). oo
_([0,2]
Alx] = <[1’2]>7 (2.82)

2.4 Inclusion Functions 27

which implies that (0,2)T belongs to A [x], whereas it does not belong to the

actual value set B = {Ax | x € [x]}, as Figure 2.5 makes clear. []
T2,
2
' Alx]
—
1 2 Ty

Fig. 2.5. Pessimism introduced by the wrapping effect

Of course, linear algebra also involves more sophisticated operations such
as matrix inversion and the computation of eigenvalues and eigenvectors,
which raise difficulties that go beyond this introductory chapter. See Neu-
maier (1990) for more details.

2.4 Inclusion Functions

2.4.1 Definitions

Consider a function f from R™ to R™. The interval function [f] from IR" to
IR™ is an inclusion function for f if

V[x] € IR", f([x]) C [f]([x]). (2.83)

The interval function [f]([x]) = R™, for all [x] € IR", is an example of
a (not very useful) inclusion function for all functions f from R™ to R™.
One of the purposes of interval analysis is to provide, for a large class of
functions f, inclusion functions that can be evaluated reasonably quickly
and such that [f] ([x]) is not too large. The function f may, for instance,
be polynomial (Malan et al., 1992; Garloff, 2000), or given by an algorithm
(Moore, 1979). It may even be defined as the solution of a set of differential
equations (Lohner, 1987; Berz and Makino, 1998; Kiihn, 1998).

To illustrate the notion of inclusion function, consider a function f from
R? to R?, with variables 71 and x5 that vary within [z;] and [x2]. The image
set f([x]) may have any shape. It may be non-convex (i.e., there are points
of f([x]) such that the line segment connecting them is not in f([x])), or
even disconnected (i.e., f([x]) is a union of disjoint sets) if f is discontinuous.
Whatever the shape of £([x]), an inclusion function [f] of f makes it possible
to compute a box [f]([x]) guaranteed to contain it (Figure 2.6).

28 2. Interval Analysis

Ys

g] ()

0 |G p

[£](D))

Z1 Ty T Y1

Fig. 2.6. Images of a box by a vector function f and two of its inclusion functions
[f] and [£]*; [f]" is minimal

Actually, as suggested by Figure 2.6, [f]([x]) may offer a very pessimistic
vision of f([x]). But remarkable properties of f, such as the positivity of
some of its components, may be preserved by [f]. Given that it is far easier
to manipulate boxes than generic sets, this is a very interesting standpoint
for the observation of a vector function.

An inclusion function [f] for f is thin if, for any punctual interval vector
[x] = x, [f] (x) = £(x). It is convergent if, for any sequence of boxes [x] (k),

Jim aw(x] (k) =0 = Tim w((£)([x] (k) = 0. (2.84)

This property is illustrated by Figure 2.7. Note that if [f] is convergent, it is
necessarily thin. The convergence of inclusion functions is required for proving
the convergence of interval solvers such as those presented in Chapter 5. The
inclusion function [f] is minimal if for any [x], [f] ([x]) is the smallest box
that contains f ([x]). The minimal inclusion function for f is unique and will
be denoted by [f]" (see Figure 2.6).

Ty A Yo A
f
_
> >
Ty Y

Fig. 2.7. A convergent inclusion function

2.4 Inclusion Functions 29

Fig. 2.8. A convergent inclusion function that is not inclusion monotonic

[f] is inclusion monotonic if

x] < [yl = [£)([x]) < [E]([y]) (2.85)

It is trivial to check that a minimal inclusion function is inclusion monotonic
but not necessarily convergent (because f may be discontinuous). A conver-
gent inclusion function may not be inclusion monotonic (see Figure 2.8).

Consider a function f from R"™ to R™, and let [f;], j = 1,...,m, be m
inclusion functions from IR™ to IR associated with the coordinate functions
f; of £. An inclusion function for f is then given by

[() = (AT () x>] ([]) - (2.86)

[f] is convergent (thin, minimal, inclusion monotonic, respectively) if all its
coordinate functions [f;] ([x]) are convergent (thin, minimal, inclusion mono-
tonic, respectively). The construction of inclusion functions for f can therefore
be cast into that of inclusion functions for each of its coordinate functions.
This is why we shall focus attention on getting inclusion functions for real-
valued functions.

2.4.2 Natural inclusion functions

The first idea that comes to mind in order to build an inclusion function for
f:R™ — R is to perform two optimizations to compute the infimum and
supremum of f when each x; is constrained to belong to [z;]. At least in princi-
ple, one should thus get the smallest interval containing f([x1], [x2], ..., [z4]),
denoted by [f]*([z1], [z2], ..., [zn]). However, these optimization problems
turn out to be far from trivial in general.

An alternative and much more tractable approach uses the following the-
orem, which is a direct consequence of Theorem 2.1, page 14.

30 2. Interval Analysis

Theorem 2.2 Consider a function
[R* =R,

(2.87)
(1;1’ ce X)) f(l?l, .. ,.Tin),

expressed as a finite composition of the operators 4+, —, %,/ and elementary
functions (sin, cos, exp, sqr. ..). An inclusion monotonic and thin inclusion
function [f] : IR" — IR for f is obtained by replacing each real variable
x; by an interval variable [x;] and each operator or function by its interval
counterpart. This function is called the natural inclusion function of f. If
[tnwvolves only continuous operators and continuous elementary functions,
then [f] is convergent. If, moreover, each of the variables (x1,...,xy) occurs
at most once in the formal expression of [then [f] is minimal. |

Remark 2.6 Contrary to set computation, it is not sufficient that each input
variable x; appears at most once for the matural inclusion function to be
minimal. Because of the wrapping effect, it is also required that all functions
and operators involved in the expression of f be continuous. Consider, for
instance, the continuous function f(x) = (sign(x))?, where sign(z) is equal
to1lif x >0 and to —1 otherwise. Its natural inclusion function [f] satisfies
[fl([—1,1]) = [~1,1)2 = [0,1]. Although = occurs only once in the formal
expression of f(x), [f] is not minimal as f([—1,1]) = 1. [|

Natural inclusion functions are not minimal in general, because of the
dependency and wrapping effects. The accuracy of the resulting interval
strongly depends on the expression of f, as illustrated by the three following
examples. The first one presents a function of one variable to allow a graph-
ical illustration. The next one involves a function of two variables. The last
one shows how to deal with transcendental functions.

Example 2.7 Consider the following four formal expressions of the same
function f(x):

fi(z) = z(z +1), (2.88)

fo(z) =z sz +a, (2.89)

fa(z) = 2% + (2.90)

falz) = (z + %)2 - i (2.91)
Evaluate their natural inclusion functions for [x] = [~1,1]:

] ([e]) = [2] ([2] + 1) = [-2,2], (2.92)

[fo] ([a]) = [2] * [2] + [2] = [-2,2], (2.93)

3] ([a]) = o] + [¢] = [-1,2], (2.94)

2.4 Inclusion Functions 31

[fa] ([z]) = ([x] + %)2 - i = {—i,z} : (2.95)

The accuracy of the interval result thus depends on the formal expression of
f (see Figure 2.9). Since [x] occurs only once in fq and f4 is continuous, [f4]
is minimal. Thus [f4] ([z]) = f([z]) = [-1.2]. []

) s
af| L £l ()
] (=)
N W)
)

Fig. 2.9. Four natural inclusion functions for the same function

Example 2.8 Consider the real function f : R2 — R defined by

Flrn,we) = 222 with 2, € [-1,2] and 22 € [3,5]. (2.96)
1+ T2
The natural inclusion function [f]1 for f is obtained by replacing each real
variable by an interval variable, and each real operation by its interval coun-
terpart:

_ lza] — [ao]
[f11([z1], [=2]) = 2] + [72]’ (2.97)
_ [_) } [375] _ [_67_1]
[ﬂ ([_1v2]v[375]) - 7_ ’2]+[3’5} [2’7}
= [-6,~1]*[z,5] = [-3,—3]. (2.98)

A second interval extension [f]a can similarly be obtained after rewriting f
in such a way that x1 and xo each appear only once:

32 2. Interval Analysis

2
a(fa], [e2]) =1 = 1 Tzal (2.99)
Then
(1,2, 3,5) =1 — 2 g2
1+ [-1,2]/[3,5] 1+ [~1/3,2/3]
2
=1 B
= [-2,-1/5]. (2.100)

[fl1 and [f]2 are both interval extensions of f. [fla is more accurate than
[f]1, which suffers from the dependency effect. The interval computed by [f]a
is minimal, and thus equal to the image set f([—1,2],[3,5]). [|

Example 2.9 Consider the real function f defined by

f(z1,22) = In(e™ + sin(z2)), (2.101)
with x1 € [0,1] and x4 € [7/4,47/3]. Its natural inclusion function is
[f1([1], [w2]) = In(exp([z1]) + sin([z2])), (2.102)

SO

110, 1], /4, 47 /3]) = ln(exp([1]) + sin([r/4, 4m/3]))
In([1,¢] + [-v/3/2,1])
In([1 —v3/2,e+1]) (2.103)
= [ln(l —/3/2),In(e + 1)]
C [~2.0101,1.3133].

Since each variable appears only once, and since all the functions and oper-
ators involved in the formal expression of f are continuous, the penultimate
interval is the exact image set f([0,1],[n/4,4n/3]). Note that the minimum
and mazimum values taken by f have thus been computed without perform-
ing a single optimization, although f is not monotonic. The last interval is
a guaranteed numerical estimate of the previous one, obtained by outward
rounding, see Chapter 10.]

The use of natural inclusion functions is not always to be recommended,
however. Their efficiency depends strongly on the number of occurrences
of each variable, which is often difficult to reduce. An important field of
investigation of interval analysis has thus been to propose other types of
inclusion function that would provide less pessimistic results (Ratschek and
Rokne, 1984), as shown in Sections 2.4.3 to 2.4.5.

2.4 Inclusion Functions 33

2.4.3 Centred inclusion functions

Let f : R"— R be a scalar function of a vector x = (x1,...,7,)". Assume
that f is differentiable over the box [x], and denote mid([x]) by m. The
mean-value theorem then implies that

vx e [x],3z € [x] [f(x)=f(m)+g"(z)(x —m), (2.104)

where g is the gradient of f, i.e., a column vector with entries g; = 0f/0z;,
i=1,...,n. Thus,

vx € [x], f (x) € f (m) + [g"] ([x]) (x —m), (2.105)
where [gT] is an inclusion function for gT, so

F(xD) S f(m) +[g"] (X)) ([x] —m). (2.106)
Therefore, the interval function

[fe] ([x]) = f (m) + [g7] ([x]) ([x] — m) (2.107)

is an inclusion function for f, which we shall call the centred inclusion func-
tion. To illustrate the interest of this function in the one-dimensional case,
consider the function [f;] (z) from R to IR defined by

[fe] (@) 2 f (m) + [f] ([2]) (x —m) (2.108)

for any given [z]. This function can be viewed as affine in « with an uncertain
slope belonging to [f'] ([z]). The graph of [f.] () can thus be represented by a
cone with centre (m, f(m)) as illustrated by Figure 2.10 for decreasing widths
of [z]. The smaller w([z]) is, the better the cone approximates the function.

The figure illustrates the fact that

wllfd ()
w(f (@) .

when the width of [x] tends to 0, which is not the case in general for a natural
inclusion function.

)
(el ([=])

---------- (feJ([1)

(fe)([])

] | W * W

Fig. 2.10. Interpretation of the centred inclusion function

34 2. Interval Analysis

When the width of [x] is small, the effect of the pessimism possibly result-
ing from the interval evaluation of [g]([x]) is reduced by the scalar product
with [x] — m, which is a small interval centred on zero.

2.4.4 Mixed centred inclusion functions

The centred inclusion function for a function f from R™ to R can be noticeably
improved at the cost of a slightly more complicated formulation (Hansen,
1968). Recall that, for a function ¢ from R to R,

p(@) € p(m) + ¢ (a]) (] — m), (2.110)

where m = mid([z]). The main idea to get a mixed centred inclusion function
is to apply (2.110) n times, considering each variable of f in turn. The case
n = 3 will be treated first, to simplify exposition. Consider f(x1,z2,23) as a
function of z3 only and take mg = mid([zs]); (2.110) then implies that

f(z1,22,23) € f(x1,22,Mm3) + g3(21, T2, [w3]) * ([73] — M3). (2.111)

Consider now f(x1,x2, ms) as a function of x5 only and take mo = mid([z2]);
(2.110) then yields

fx1,22,m3) € fx1,ma,ms) + ga(x1, [x2], m3) * ([x2] — me2). (2.112)

Finally, consider f(x1,me, m3) as a function of z; and take m; = mid([x1]);
(2.110) then leads to

flx1,ma,ma) € f(mi,ma,ms) + g1([x1], ma, m3) * ([£1] —mq). (2.113)
Combine these three equations to get
flx1, e, x3) € f(may,ma, ms) + g1([z1], ma, ms) * ([x1] — mq)
+ g2(x1, [T2], m3) * ([v2] —m2)
+ g3(x1, x2, [23]) * ([x3] — Mm3). (2.114)
Thus
f(lzal, [22], [z3]) € f(ma,ma, m3) + g1([z1], m2, m3) = ([x1] —ma)
+ g2([z1]; [x2], m3) * ([z2] — m2)

+ ga([z1], [z2], [x3]) * ([x5] — ms). (2.115)
This expression can be generalized for a function f of n variables. With
X = (x1,...,2,)T and m = mid([x]), one gets
FO) € FOm) + Y lgil (o], [l magas o omin) = (] = ma),
i=1
(2.116)

and the right-hand side of (2.116) defines the mized centred inclusion func-
tion. The main difference with (2.107) lies in the arguments of the gradient. In

2.4 Inclusion Functions 35

(2.116), interval and punctual arguments are mixed, which allows pessimism
to be decreased, as

[g](mid([x]), [x]) < [g]([x])- (2.117)

2.4.5 Taylor inclusion functions

Iterating the reasoning that led to the centred inclusion function, one may
think of using Taylor series expansion to approximate a function f from R™
to R at a higher order. This leads to the Taylor inclusion function. Consider
a second-order expansion as an illustration:

[fle(x) = f(m) +g" (m)([x] - m) + %([X] —m)"H]([x])([x] - m),
(2.118)

where m = mid([x]), g is again the gradient of f and [H]([x]) is the interval
Hessian matriz. The entry [H];; of [H] is an inclusion function of

0%f/ox? ifj=i (i=1,...,n),
hij =< 20%f/0xixj if j<i (i=1,...,n), (2.119)

0 otherwise.

A symmetric form of the Hessian matrix (h;; = 0?f/dx;x; for all i and j)
could also be used, but the resulting increase in the number of interval
components in [H]([x]) would then lead to an increase in the pessimism of
[f]1- Pessimism can be reduced by replacing [H]([x]) by a mixed expression
[H](mid([x]), [x]), as was done for the gradient in the mixed centred form of
Section 2.4.4.

When f has only one variable, the nth-order Taylor inclusion function is
given by

(D

Fhe(lal) = Fm) -+ £/m)(e] —m) - 7 om) 5

(2.120)

Evaluation of the Taylor inclusion function of order n thus requires compu-
tation of the derivatives of f up to nth order, which may entail cumbersome
manipulations.

2.4.6 Comparison

Under mild technical conditions (Moore, 1979), the natural, centred and Tay-
lor inclusion functions are convergent. Roughly speaking, the convergence rate
of a convergent inclusion function is the largest o such that

B [wlf (X)) —w(f([x])) < Bw([x])* (2.121)

36 2. Interval Analysis

when w([x]) tends to 0. When an inclusion function is minimal, its conver-
gence rate is infinite. The convergence rate of a natural inclusion function is
at least linear (« > 1), whereas the convergence rate of a centred form is at
least quadratic (« > 2). The convergence rate of a Taylor inclusion function
is also at least quadratic for any order n > 2. Quadratic convergence looks of
course more interesting than linear convergence, but it should be remembered
that it only means that more accurate results will be obtained in the case
of infinitesimal boxes. Nothing similar can be said on the behaviour of these
inclusion functions for boxes of a more realistic size. When the box involved
is large, the natural inclusion function is generally more satisfactory than the
centred inclusion function, whereas the latter performs better when the box
is small, with the mixed version superior to the standard version.

No approach to building an inclusion function can claim to be uniformly
the best, and a compromise between complexity and efficiency must often be
struck. One may also use several inclusion functions and take the intersection
of their image sets to get a better approximation of the image set of the
original function.

Example 2.10 Consider the function f defined by
f(z) = z* + sin(x), (2.122)

and the intervals

27 4w 997 101w
We shall compare the approximations of f([x]) and f([y]) obtained when us-
ing the natural, centred, Taylor of order two and minimal inclusion functions,
which will be respectively denoted by [fln, [fle, [f]T, and [f]*. See also Exer-
cise 11.10, page 318. The first three of these functions are given by

(2.123)

Fha(la)) = + sin(e), (2120
i) = $m) + (fa] = L)), (2.125)
r -7 2
e = £ + (o] - 0@+ E D, a2
with
f(x) =2z +cos(z) and f"(x) =2 — sin(z). (2.127)

The minimal inclusion function is trivial to evaluate after noticing that f is
increasing over [x] (and thus over [y] C [x]). So
A7 (1a]) = [2® + sin(z), 7 + sin(z)] (2.128)

The results obtained by evaluating each of these inclusion functions over [x]
and [y] are indicated in Table 2.2, where A([f]([x])) stands for the value of

w([f]([2])) = w(f([z]))-

2.4 Inclusion Functions 37

Table 2.2. Comparing inclusion functions

=] = [,] ly) = [355+ o]
[£] [£1([]) A(lS](=))) /(Y A(SI())
[fln | [3-52046,18.41199] | 3.46410 | [9.64178,10.09940] | 0.12564
[fle | [1-62022,18.11899] | 5.07134 | [9.70163,10.03758] | 0.00397

] []

} []

[f]r | [4.33706,16.97362] | 1.20913 | [9.70362,10.03659] | 0.00099
[f]* | [p.25251, 16.67994] 0 [9.70461, 10.03658)] 0

The numerical values are given with an accuracy of 1072, It turns out that
the natural inclusion function remains competitive for the larger interval [z],
which is an additional incentive to use it, besides its simplicity. The centred
and Taylor inclusion functions are more efficient than the natural inclusion
function for the smaller interval [y]. The Taylor inclusion function brings a
noticeable improvement compared to the natural and centred inclusion func-
tions, even for the larger interval. Finally, this example reminds us that it
may be useful to check whether the function considered is monotonic, in which
case obtaining a minimal form is trivial. Unfortunately, the expressions en-
countered in engineering applications are seldom as cooperative as the one
considered here, which limits the practical interest of this remark.]

Example 2.11 Consider now o vector function f from R? to R2, defined by

fil@y, x2) = 27 + x1 exp(x2) — 23,

(2.129)
fa(z1,22) = 2% — 11 exp(x2) + 3,

where x1 and xs belong to [x1] and [x2] respectively. The natural inclusion
function [f], for £ is given by

[£], 1 ([x]) = [21]* + [@1] exp ([z2]) — [2]", (2.130)
[£],.2([x)) = [21]° — [21] exp ([za]) + [z2]”. (2.131)

The centred inclusion function [f]_ is given by

[£]([x]) = £(mid([x])) + [Tel([x]) ((x] — mid([x])). (2.132)

All the arguments of the interval Jacobian matriz [J¢] are intervals and the ith
row of [J¢]([x]) is given by [gF]([x]), with g; the gradient of the ith component
of f (see (2.107) page 33):
20a1] + exp ([z2]) —2[wa] + [x1] exp ([x2])
[Je]([x]) = . (2.133)
20a1] —exp ([z2]) 2[wa] — [z1] exp ([x2])
s given by

The mized centred inclusion function [f]_

[£], (3x)) = £(mid([x])) + [Je] (mid([x]), [x]) * (] — mid([x])), (2.134)

38 2. Interval Analysis

where [J¢] now depends on a mixture of punctual and interval arguments

[Je (mid([x]), [x])
_ (2[:r1} + exp (mid([z2])) —2[x2] + [x1]exp ([xg])> . (2.135)
2[a1] — exp (mid([z2])) 2[wa] — [21] exp ([22])

As expected, (2.135) contains less interval arguments than (2.133). Table 2.3
compares the efficiency of the natural, centred and mixed centred inclusion
functions on two bozxes [x| and [y]. The definition of A is as in Fxample 2.10.
The conclusions are similar to those of the scalar case: for the larger box
[x], the natural inclusion function is more satisfactory, whereas the centred
inclusion function performs better for the smaller box [y], with the mized
version superior to the non-mized one. |

Table 2.3. Comparison of vector inclusion functions

[£1] = [0.5, 1.5] ; [z2] = [1.5,2.5] [y1] = [0.9,1.1] ; [y2] = [1.9, 2.1]
[f] [F1([x]) A[[f]([x])] [f1(ly) A[[f]([yD]

[filn | [-3.75916,18.2737] 7.67904 [2.41730, 6.58279] 1.60000
[f2]n | [—15.7737,6.25916] 11.67904 | [—4.56279, —0.39730] | 2.40001
[fi]le | [-10.8391,19.6172] 16.10248 [2.83416, 5.94395] 0.54430
[f2]c | [—15.6172,10.8391] 16.10248 | [—3.54395, —1.23416] | 0.54431
[film | [—8.44234,17.2205] 11.30902 [2.91187, 5.86624] 0.38888
[fo]m | [~13.2205,8.44234] 11.30902 | [—3.46624, —1.31187) 0.38889
[f1]* | [—0.08008,14.27374] 0 [3.21730, 5.78279] 0
[f2]* | [-9.77374,0.58008] 0 [~3.36279, —1.59731] 0

2.5 Inclusion Tests

Inclusions tests can be used to prove that all the points in a given box satisfy
a given property, or to prove that none of them does. These tests involve
interval Booleans, which will be presented first.

2.5.1 Interval Booleans

Set computation as defined in Section 2.2 can be used for the Boolean set
B £ {false, true}, (2.136)

but there is no need to use wrappers for outer approximating the Boolean
sets to be handled, since B is finite. There will thus be no wrapping effect, but

2.5 Inclusion Tests 39

the dependency effect will still be present. A Boolean number is an element
of B. By extension!, an interval Boolean is a subset of B. Thus, the set of all
interval Booleans is

IB = {,0,1,[0,1]}, (2.137)

where & stands for émpossible, 0 for false, 1 for true, and [0, 1] for indetermi-
nate. Operations on interval Booleans are easily defined in the framework of
set computation:

]
]

al ={-a | a € lal}, (2.138)
]

where A and V respectively stand for the AND and OR operators and where —
is the complementation operator, such that—0 = 1 and —1 = 0. For instance,
(0,1 V1) A([0,1] A1) =1 A[0,1] =[0,1]. (2.139)
If [a] € IB, then
0A[al =0; 1A [a] =[a]; [a]

I; [a] Ala] = [al (2.140)
0V) = [a]; 1V [a) = 1; [d]

A
V[a] = [a]. (2.141)
The dependency effect is still present when the complementation operator is
used. For instance,

[a] C (la] A b)) V ([a] A= [0]) (2.142)

and the values of the two sides of (2.142) differ for a = 0 (or 1) and [b] = [0, 1],
whereas a = (a A b) V (a A —b).

Any function 3 from B™ to B will be called a Boolean function. The notion
of inclusion function developed for real functions readily extends to Boolean
functions. [3] : IB" — IB is an inclusion function for 3 if

V([b1],...,[bn]) € IB™, B ([b1],...,[bn]) C [B] ([b1],-.-,[bn]). (2.143)
The natural inclusion function [3] of 3 is obtained by replacing all arguments
and operators of 5 by their interval counterparts. [3] ([b1], ..., [bn]) is minimal
if

YV ([b1],.. ., [ba]) € IB™, B([b1],- .-, [bn]) = [B] ([b1],-- -, [bn]) - (2.144)

! For any set equipped with a partial ordering (S, <), one can always define the
set IS, of the pairs [a, b] such that a € S, b € S and a < b. The elements of IS will
be called intervals. S may for instance stand for R™, for the set of all Boolean
numbers B or for the set of all compact sets. In the last case, the partial ordering
s C.

40 2. Interval Analysis

As with real functions, whenever the expression (b, ..., by,) is non-decreas-
ing with respect to all its variables, the minimal inclusion function is given
by

B (1], - [ba)) = [B(bys - 58,) B (b, ba)] (2.145)

Note that this is a frequently encountered situation. It is the case, for
instance, when the complementation operator is not used, ¢.e., when 3 is a
polynomial. There are nevertheless many Boolean expressions that are not
monotonic, such as the exclusive or

B(b1,b2) = (by A —=bs) V (=by A by). (2.146)

Even when a Boolean expression is not monotonic, it is always possible,
at least in principle, to evaluate a minimal inclusion function for it, be-
cause each of the interval Booleans may take four values at most. Con-
sider, for example, G([b1],[b2]), with B(b1,b2) = (b1 A ba) V (b1 A —ba),
for [b1] = 1 and [ba] = [0,1]. The natural interval extension of 3 yields
[8](1,[0,1]) = (1 A[0,1]) V(1 A—[0,1]) = [0,1]. A minimal evaluation is ob-
tained by writing 3(1,[0,1]) = 8(1,0) U 5(1,1) = 1. Of course, this approach
leads to a combinatorial explosion when the number of variables increases,
which can sometimes be avoided by manipulating the Boolean expressions,
for instance with the help of Karnaugh tables or by taking advantage of
well-known simplification rules to reduce the number of occurrences of the
Boolean variables.

2.5.2 Tests

A test is a function ¢ from R™ to B. An inclusion test for t is a function [¢]
from IR" to IB such that for any [x] € IR",

(Vx € [x], t(x)

)=1= : (2.147)
([t ([x]) =0) = (vx € [x], t(x)

= 1)

=0).

An inclusion test [¢] is thin if [t] (x) = t(x) for any x € R™. It is minimal if
Vix] € IR, [(x]) = {¢(x) | x € [x]}. (2.143)

A minimal test is necessarily thin.

Example 2.12 Consider the test

R? — {0,1}

t - (2.149)
(x1,22)" — (31 + 22 < 5),
which means that
1ifz1 + 20 <5,
Hx) = | LTT (2.150)
0 ifz1 + 2 > 5.

2.5 Inclusion Tests 41

The minimal inclusion test [t] associated with t is given by

1 if Ty +To <5,
H(x)=9 0 ifa;+z,>5, (2.151)
[0,1] otherwise,
which can be written more concisely as
t] ([x]) & ([71] + [r2] < 5). (2.152)
It is minimal and thin. |

Any Boolean operator on real numbers, such as (<, >, <, >, integer, odd,
even, prime...) can be similarly extended to intervals. For instance,

([a,b] < [e,d]) =1 ifb<e,
([a,b) < [e,d]) =0 ifa>d, (2.153)
([a,b] < [e,d]) = [0,1] if neither b < ¢ nor a > d.

The Boolean comparison operator = cannot be extended in this way, because
it has already been given a bivalued meaning by set theory:

([a,b] = [¢,d]) =1if a =cand b=d,

(2.154)
= 0 otherwise.

With the help of interval analysis and the notion of inclusion function, it is
easy to build an inclusion test for any test that can be put in the form

t(X) :ﬁ(tl (X)w"atn (X))a (2155)
with

t(x)e (fi(x)20), i=1,...,n, (2.156)
and §: B" — B a Boolean expression. This inclusion test is given by

[t ([x]) = [B] ([(X)) 5 - [En] (D)), (2.157)
with

] ([x]) < (il (x) = 0), i=1,...,n, (2.158)

and [3] some inclusion function for 3. Note that even if the tests [t;] ([x]) are
all minimal and if [5] is minimal too, the dependency effect is still lurking,
so pessimism can still be introduced. For instance, the test t (z) = (z < 7) V
(z > 6) admits the inclusion test [t] ([z]) = ([z] < 7) V ([z] = 6). Despite the
fact that [t] ([x]) consists of two minimal inclusion tests and a polynomial and
thus increasing expression (b1, b2) = b1V b, this inclusion test is pessimistic.
For instance for [z] = [5, 8],

1] ([2]) = (15,8 < T) v ([5,8] = 6) = [0,1] v [0,1] = [0,1], (2.159)
whereas ¢ ([z]) = {t(z) | z € [5,8]} = 1.

42 2. Interval Analysis

2.5.3 Inclusion tests for sets

Let A be a set of R™; an inclusion test [ta] for A is an inclusion test for the
test t4(x) & (x € A), i.e., [ty] satisfies

tal(x]) =1 = (vx e [x], ta(x) =1) & (x] € 4),

(2.160)
ta] ([x]) =0 = (Vx e [x], ta(x) =0) & (X NA =2).

When [ta] ([x]) = [0,1], nothing can be concluded as to the inclusion of [x]
in A.

The notion of inclusion test for sets will simplify the presentation of al-
gorithms in future chapters.

Previous definitions can be adapted to inclusion tests for sets:

[ta] ([x]) is inclusion monotonic iff | (x| C [y]) = ([ta] ([x D [ta] (IY])
[ta] is minimal iff Vx| € IR™, [ta] ([x]) = ta ([x])
[ta] is thin iff Vx € R™, [ta] (x) # [0,]

The inclusion test [ta] will be said to be more accurate than the inclusion
test [t,] iff

Vix] € IR™, [t4] ([x]) C [3] ([x]). (2.161)

The following properties can be used to build inclusion tests for sets de-
fined from elementary set operations such as union, intersection or comple-
mentation. If [to] ([x]) and [tg] ([x]) are thin inclusion tests for the sets A and
B, define

[tane] () = ([ta] 0 [te]) ([x]) = [ta] ((x]) 0 [te] ([x]),
[taue] ((x]) = ([ta] U [ta]) (x]) = [ta] (x]) U [te] (Ix]), (2.162)
[toal(X]) = = ftal (X)) = 1 = [ta] ([x])

[tarB], [taur] and [t-a] are then thin inclusion tests for the sets ANB, AUB
and —A £ {x € R" | x ¢ A}, respectively.

2.6 Conclusions

Computation on sets should in general be viewed as an idealization, because
generic sets cannot be represented and handled exactly by a computer. This
is why the notion of set of wrappers was introduced. Wrappers are simple
sets easily manipulated by computers, to be used to approximate more com-
plicated sets.

Interval analysis uses intervals and boxes as wrappers, which makes it
possible to compute outer approximations of ranges of functions. When eval-
uated for interval arguments, inclusion functions yield outer approximations

2.6 Conclusions 43

of the actual image sets of interest. Interval computation is thus usually
pessimistic. This pessimism is due to the dependency and wrapping effects.
The dependency effect, already present when computing on sets, takes place
when variables occur several times in the formal expression of the function
to be evaluated. The wrapping effect is due to the fact that generic sets are
contained in intervals or boxes.

Pessimism may be reduced by transforming the formal expression of func-
tions in order to decrease the number of occurrences of the variables or by us-
ing more sophisticated inclusion functions than the natural inclusion function
obtained by replacing each operator and elementary function by its interval
counterpart.

Intervals and boxes alone cannot describe all sets of interest with sufficient
accuracy. The next chapter will show how this can be done by using unions
of intervals or of boxes.

3. Subpavings

3.1 Introduction

As we have seen in the previous chapter, intervals and boxes form an attrac-
tive class of wrappers, easily manipulated. These wrappers, however, are not
by themselves general enough satisfactorily to describe all types of sets of
interest to us, which are of course not restricted to intervals and boxes and
include, for instance, unions of disconnected subsets.

The policy to be followed is based upon covering the set of interest X
with subsets of R™ that are easy to represent and manipulate. The class of
these subsets could be that of ellipsoids, boxes, polytopes, zonotopes, etc.
(see Schweppe, 1968; Fogel and Huang, 1982; Milanese and Belforte, 1982;
Walter and Piet-Lahanier, 1989; Milanese et al., 1996; Kiihn, 1998, and the
references therein). Important properties of X can be proved by using such
a covering. If, for instance, the covering is empty, then X is empty too. In
this book, X will be covered with sets of non-overlapping boxes of R™, or
subpavings. We shall also bracket X between inner and outer approximations
(Jaulin and Walter, 1993a, 1993c; Jaulin, 1994). Two subpavings X and X
will then be computed, such that

XcXcX (3.1)

The knowledge of the pair [X, X] provides valuable information about X. For
instance, vol(X) < vol(X) < VOI(X), if X is empty then X is empty too, and
if X is non-empty then X is non-empty too. It may even be possible to prove
that X is connected or disconnected. For instance, if X and X both consist of
two disconnected subsets: X = X, UX, with X; X, = @ and X = X;UX; with
X;NXy = &, and if moreover X; C X; and X, C X, then X is not connected.
This type of information could not be obtained from a representation of X
by a cloud of points, obtained, for example, by a Monte-Carlo method or by
systematic gridding.

Section 3.2 recalls the notion of distance between sets to be used for the
evaluation of the quality of the approximation of a set by another one. Sec-
tion 3.3 introduces the approximation of sets by subpavings and explains how
these objects can be implemented. Finally, Section 3.4 presents algorithms
evaluating the direct and inverse images of a compact set by a given function.

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001

46 3. Subpavings

3.2 Set Topology

3.2.1 Distances between compact sets

Let C (R™) be the set of all compact sets of R™. To quantify the quality of
a given representation of a compact set, a measure of the distance between
A and B of C (R™) will be needed. Recall that compact sets of R™ are closed
and bounded subsets of R™. Equip R"™ with the distance
Loo (x,y) & max |y — . (3.2)
ic{l,...,n}
The unit ball U £ [—1,1]" of (R™, L) is then a hypercube with width two.
The prozimity of A to B is

R, (A,B) 2inf {r e R" |ACB+rU}. (3.3)

Figure 3.1 illustrates this notion; to get hY% (A,B) one inflates B until it
contains A and to get hY, (B, A) one inflates A until it contains B. Note that
hY% may also be applied to non-compact sets, in which case their proximity
may be infinite.

Fig. 3.1. The Hausdorff distance ho (A, B) is equal to max {hgo (A,B),rS, (B, A)}

The Hausdorff distance (Berger, 1979) between A and B is given by
hoo (A, B) £ max {hd (A, B),hd (B,A)}. (3.4)

It is a distance for C (R™) as the following three requirements are satisfied

3.2 Set Topology 47

(i) separability heo (A,B) =0= A =B,
(i) symmetry hoo (A,B) = hoo (B, A), (3.5)
(44) triangular inequality heo (A, C) < hoo (A, B) + heo (B, C) .

Consider a compact set A and a point a far from A. The set Ay = AU
{a} is also heo-far from A. On the other hand, the set obtained by drilling
small holes into A remains hso-close to A. This illustrates the coarseness
of the characterization of the differences between compact sets provided by
the Hausdorff distance. A finer characterization will be needed to analyze the
convergence properties of the algorithm S1viA to be presented in Section 3.4.1.

Define the complementary Hausdorff semi-distance hoo between A and B
of C (R™) as

hoo(A,B) £ hoo (R™\A,R™\B)
= max {h2, (R™\A,R™\B), h% (R"\B,R™\A)}
= max {h2, (A,B),h3, (B,A)}, (3.6)

where R™\A is the complementary set of A in R™ and where h2 (A, B) £
hY, (R™\A, R™\B). Figure 3.2 illustrates this definition. h% (A, B) is obtained
by deflating B until it is contained in A; hY (B, A) is obtained by deflating
A until it is contained in B. For the situation represented by Figure 3.2,
hoo(A,B) is equal to hY (A, B), as A2 (A,B) is larger than A2 (B, A). The
operator hs, is a semi-distance on C (R"), because it does not satisfy the
separability requirement to be a distance since hoo(A,B) = 0 whenever A
and B are singletons.

Fig. 3.2. The complementary Hausdorff semi-distance is equal
to max {hgc (A, B), RS, (IB%,A)}

48 3. Subpavings

As hoo, the complementary Hausdorff semi-distance ho fails to give a fine
characterization of the differences between compact sets; if the compact set
obtained by drilling a single small hole in A is not hso-close to A, the compact
set obtained by adding to A a finite numbers of vectors far from A remains
heo-close to A.

Based on ho, and A, a new distance can be defined (Jaulin and Walter,

1993c¢), which avoids the defects of each of them:
Moo (A, B) £ max(heo (A, B), hoo (A, B)). (3.7)

Example 3.1 Consider three compact subsets of R given by X =[1,7], Y =
[1,7U[9—¢,9] and Z = [1,5]U[5+¢, 7] where is a positive number tending
to zero. Then

hoo (X, Y) = 2; hoo(X,Y) = £/2; moo(X,Y) = max(2,£/2) =2, (3.8)
hoo (X, Z) = £/2; hoo(X,Z) = 2; moo(X,Z) = max(e/2,2) =2, (3.9)
hoo(Y,Z) = 25 hoo(Y,Z) = 2; meo(Y,Z) = max(2,2) = 2. (3.10)

The Hausdorff distance h does not capture the difference between X and
Z, and the complementary Hausdorff semi-distance hoo does not capture the
difference between X and Y, but mqo captures both. |

3.2.2 Enclosure of compact sets between subpavings

A subpaving of a box [x] C R™ is a union of non-overlapping subboxes of [x]
with non-zero width. Two boxes in the same subpaving may have a non-empty
intersection if they have a boundary in common, but their interiors must have
an empty intersection. Subpavings can be employed to approximate compact
sets in a guaranteed way. Computation on subpavings allows approximate
computation on these compact sets, and forms the basic ingredient of the
parameter and state estimation algorithms to be presented in Chapter 6.

When a subpaving P of [x] covers [x], it is a paving of [x]. The accumu-
lation set of a subpaving P is the limit of the subset of R™ formed by the
union of all boxes of P with width lower that € when ¢ tends to zero. Since
subpavings only contain boxes with non-zero width, the accumulation set of
a finite subpaving is necessarily empty.

Let (C(R™), C,mao) be the set of all compact sets of R™ equipped with
the partial ordering C and the distance mq.. The set of finite subpavings
is dense from outside in (C (R™), C,mu), %.€., for any compact set X we
can find a subpaving X containing X and as me.-close to X as desired. It
may be impossible, however, to find a subpaving X contained in X. Consider,
for instance, a segment of a line of R2. It can be approximated as closely
as desired by a subpaving of R? from the outside but not from the inside.
To avoid this, we sometimes restrict consideration to the (large) class of
full compact sets, i.e., of compact sets that are equal to the closure of their

3.3 Regular Subpavings 49

interiors. Figure 3.3 gives an example of a compact set that is not full. Denote
by Ct (R™) the set of all full compact sets of R™. The set of all finite subpavings
of R™ is dense from inside and from outside in (Cf (R™), C,my) (Jaulin and
Walter, 1993c). Thus, for any full compact set X, it is possible to find two
finite subpavings X and X as meo-close to X as desired and such that X C
X € X. The set of compact sets

XX 2 {X € (R") | XX cX} (3.11)

is then a neighbourhood of X, the diameter m (X, X) of which can be made
as small as desired (Jaulin, 1994).

(a) (b) ()

Fig. 3.8. (a): a compact set A; (b): its interior B; (c): the closure C of B; since A
and C differ, A is not full

3.3 Regular Subpavings

We shall first introduce some additional notation before defining subpavings
more precisely and explaining how the useful class of regular subpavings
can be represented in a computer. We shall then present a few elementary
algorithms for the manipulation of regular subpavings.
Consider the box

5] = 23, 1] X o X [y Ta] = 1] X - X [(3.12)
and take the index j of its first component of maximum width, i.e.,

J=min{i | w([z;]) =w([x]) }. (3.13)

Define the boxes L [x] and R [x] as follows:
2 feymxx fa (g 7)) o< Tl
R[X} £ [ﬁlvfl] X X I:(lj +fj) /2>jj} Xoeoee X [lmxn] .

For instance, if [x] = [1,2] x [2,4] x [1,3], we get w([x]) =2, j =2, L[x] =
[1,2] x [2,3] x [1,3] and R[x] = [1,2] x [3,4] x [1,3]. L[x] is the left child of

50 3. Subpavings

[x] and R [x] is the right child of [x]. L and R may be viewed as operators
from IR™ to IR™. The generation of these two children from [x] is called
bisection of [x]. The two boxes L [x] and R [x] are siblings. Reunification is
the operation of merging two siblings L [x] and R[x] into their parent [x].
This will be denoted by [x] := (L [x] | R[x]).

3.3.1 Pavings and subpavings

A subpaving of [x] is reqular if each of its boxes can be obtained from
[x] by a finite succession of bisections and selections. Regular subpavings
(Jaulin, 1994; Sam-Haroud and Faltings, 1996), also called n-trees (Samet,
1990), are a class of subsets of R" easily manipulated with a computer
as we shall see. Non-regular subpavings will also be used, but operations
such as intersecting two subpavings will then become computationally much
more demanding. Both types of subpavings share the ability to approxi-
mate full compact subsets of R™ as precisely as desired (see also Lozano-
Pérez, 1981; Pruski, 1996; Pruski and Rohmer, 1997).

0
0 4 8

Fig. 3.4. Regular paving of a box; the boxes in grey form a regular subpaving

The set of all the regular subpavings of [x] will be denoted by RSP ([x]).
Figure 3.4 presents a regular paving P of the box [x] = [0, 8] x [0, 8]. The grey
boxes form a regular subpaving Q of [x] = [0,8] x [0, 8]. From any regular
subpaving (or paving) Q € RSP ([x]), define LQ € RSP (L[x]) as the regular
subpaving that contains all the boxes of Q also included in L [x]. Similarly,
define RQ € RSP (R[x]) as the regular subpaving that contains all the boxes
of Q also included in R[x|. LQ and RQ are respectively the left and right
children of Q. If, for instance, Q is defined as in Figure 3.4, then

3.3 Regular Subpavings 51

LQ = LL x| =10,4] x [0,4]
RQ =LRR[x]ULLRRR[x]U LLRRRR[X] (3.15)
=[4,6] x [4,8]U[6,7] x [4,6]U[6,7] x [6,7].
The box from which Q was derived by a succession of bisections and selections

of boxes is the root of Q. Thus, root(Q) = [x], and root(LQ) = L [x].

Remark 3.1 The subpaving Q has a dual nature. It may be seen as a subset
of R?, and we may write [0,1]> C Q C R%. Q may also be viewed as a finite
list of boxes

{LL[x], LRR[x], LLRRR[x|, LLRRRR[x]} (3.16)
= {[0,4] x [0,4]; [4,6] x [4,8];[6,7] x [4,6];[6,7] x [6,7]}. '

The notation Q will be used when the subpaving is considered as a set, and
the notation Q will be used instead when the subpaving is viewed as a list of
bozxes. |

Figure 3.5 illustrates the bracketing of the set
S ={(z,y) | 22+ 9% € [1,2]} (3.17)

between subpavings with an increasing accuracy from left to right. The frame
corresponds to the box [—2,2] x [—2,2]. The subpaving AS in grey contains
the boundary of S whereas the subpaving S in white is inside S. Thus

ScScS,withS&£SuUAS. (3.18)

7N 7Y
e‘m# N A

Fig. 3.5. Bracketing of a set between two subpavings; precision increases from left
to right

3.3.2 Representing a regular subpaving as a binary tree

In a computer, a regular subpaving may be represented as a binary tree. A
binary tree contains a finite set of nodes. This set may be empty, may contain

52 3. Subpavings

a single node, the root of the tree, or may contain two binary trees with an
empty intersection, namely the left and right subtrees. Thus, the subpaving
Q of Figure 3.4 is described by the binary tree of Figure 3.6, where 1 means
that the corresponding node belongs to the subpaving. On this figure, 4 is
the root of the tree. B and C' are respectively its left and right children. They
are siblings as they have the same parent node A. A has a left subtree and a
right subtree; the right subtree of B is empty. A, B and C are nodes because
they have at least one non-empty subtree. Finally, as D has no subtree, it is
a degenerate node or leaf .

Fig. 3.6. Tree associated with the regular subpaving of Figure 3.4

The binary tree associated with a subpaving may be built from the list of
its boxes. The growth of its branches is defined by how the initial box [x¢],
which corresponds to the root of the tree, is bisected. Any non-degenerate
node stands for a box that has been bisected. Any leaf indicates that the box
it stands for belongs to the subpaving. For instance, the branch in bold on
Figure 3.6 corresponds to the box LRR [x¢] = [4,6] x [4,8]. The depth of a
box is the number of bisections necessary to get it from the root box. Thus,
the depth of the box [4, 6] x [4, 8] is three.

A tree (or the corresponding subpaving) is minimal if it has no sibling
leaves. Any non-minimal tree representative of a subpaving can be made
minimal by discarding all sibling leaves so that their parents become leaves.
This amounts to merging sibling boxes of the subpaving into single boxes.

Since the notions of binary tree and of regular subpaving are equivalent,
the terminology of trees will also be employed for regular subpavings. In what
follows, the representation of regular subpavings by binary trees will be used,
because of the natural recursiveness of this data structure.

3.3.3 Basic operations on regular subpavings

The four basic operations to be considered are reuniting sibling subpavings,
taking the union or the intersection of subpavings, and testing whether a box
is included in a subpaving. All of them are facilitated by the use of binary

3.3 Regular Subpavings 53

trees. For non-regular subpavings, they would be significantly more compli-
cated. The computer implementation of regular subpavings is considered in
Section 11.12, page 336.

Reuniting sibling subpavings: Consider a box [x] and two regular
subpavings X € RSP (L[x]) and Y € RSP (R[x]). These subpavings have
the same parent box [x]. The reunited subpaving Z = (X | Y) € RSP([x]) is
computed as follows:

Algorithm REUNITE(in: X, Y; out: Z)

1 ifX=L[x] and Y = R[x], then Z := [x];
2 elseif X=@ and Y = &, then Z := ;
3 else LZ:=Xand RZ =Y.

When a binary tree representation is employed, each of the instructions in
REUNITE is trivial to implement. For instance, the instructions LZ := X and
RZ :=Y amount to grafting the two trees X and Y to a node to form the
tree Z (see Figure 3.7, case (ii)). Note that the number #Z of boxes in the
subpaving 7Z is not necessarily equal to #X+#Y. If, for instance, [x] = [0, 2]2 ,
X =10,1] x [0,2] and Y = [1,2] x [0,2], then X = L[x] and Y = R[x]|. Thus
#7Z = 1 whereas #X + #Y = 2 (case (i) on Figure 3.7). In what follows,
REUNITE(X,Y) will simply be written (X | Y). Note that reunification may
be viewed as the inverse operation of applying L and R, since

Z=(X|Y)eX=LZand Y = RZ. (3.19)
o} o) °
— (4)
. ®
o}]
. /-\ e (4i)
X Y Z

Fig. 3.7. Reuniting sibling subpavings; (%) sibling leaves, (ii) sibling subpavings

Intersecting subpavings: if X € RSP ([x]) and Y € RSP ([x]), then
Z = XNY is also a subpaving of RSP ([x]). It contains only the nodes
shared by the binary trees representing X and Y, and can be computed by
the following recursive algorithm:

54 3. Subpavings

Algorithm INTER(in: XY, [x]; out: Z)

1 ifX=gorY =@ then Z := &;

2 else if X = [x] then Z :=Y;

3 elseif Y = [x] then Z:=X;

4 else Z := (INTER(LX, LY, L[x]) | INTER(RX, RY, R[x])).

Taking the union of subpavings: if X € RSP ([x]) and Y € RSP ([x]),
then Z = XUY also belongs to RSP ([x]). Z is computed by putting together
all nodes of the two binary trees representing X and Y. Again, this can be
done recursively:

Algorithm UnioN(in: X, Y, [x]; out: Z) ‘
1 ifX=o orY=[x]then Z :=Y;

2 elseif Y =@ or X = [x] then Z :=X;

3 else Z := (UnioN(LX, LY, L[x]) | UNION(RX, RY, R[x])).

Testing whether a box [z] is included in a subpaving X of
RSP ([x]). This test is straightforward in four cases. It holds true if [z] is
empty, or if X is reduced to a single box [x] and [z] C [x]. It holds false if
X is empty and [z] is not, or if [z] is not in the root box of X. These basic
tests will first be applied to the root of the tree representing the subpaving.
If none of the four simple cases is satisfied, these basic tests are recursively
applied on the left and right subtrees. The following algorithm summarizes
the process:

Algorithm INSIDE(in: [z],X; out: ¢)

1 if [z] =@ orif (Xis a box [x] and [z] C [x]) then ¢ := 1;

2 elseif X = & then t := 0;

3 else t := (InsiDE([z] N L [x], LX) U INsIDE([z] N R [x], RX)).

When [z] C X 1 is returned, when [z] N X = @, 0 is returned and when [z]
overlaps the boundary of X, [0, 1] is returned.

Remark 3.2 Many other algorithms operating on subpavings would be inter-
esting to consider. For instance, the computation of the neighbours of a given
box in a subpaving may be performed by Samet’s algorithm (Samet, 1982).
This algorithm could be very useful to study whether a subpaving is connected,
as required in the context of path planning (see Section 8.3, page 254). |

3.4 Implementation of Set Computation

We shall now see how two important basic blocks of set computation can be
implemented in an approximate but guaranteed way, based on the notions of

3.4 Implementation of Set Computation 55

inclusion function and inclusion test presented in Chapter 2, and using regular
subpavings as the basic class of objects to represent sets. The implementation
of more ambitious set algorithms is deferred to the next chapters.

The first basic block to be considered is the computation of the reciprocal
image

X =f1(Y), (3.20)

of a regular subpaving Y of R™ by a function f : R" — R™. We shall call
this operation set inversion. A method to compute two subpavings X and X
of R™ such that

XcXcX (3.21)

is proposed in Section 3.4.1.
The second basic block to be considered is the computation of the direct
image

Y = £(X), (3.22)

of a subpaving X of R™ by a function f. We shall call this operation image
evaluation. An algorithm that computes an outer subpaving Y for Y is pro-
posed in Section 3.4.2. It will turn out that image evaluation is more difficult
than set inversion. Moreover, up to now, no method to compute an inner
approximation Y of Y seems to be available, except via set inversion. This
is why it may be advisable to recast image evaluation into the framework of
set inversion when f is invertible.

3.4.1 Set inversion

Let f be a possibly non-linear function from R" to R™ and let Y be a subset
of R™ (for instance, a subpaving). Set inversion is the characterization of

X={xeR"|f(x) e Y}=Ff1V). (3.23)

For any Y C R™ and for any function f admitting a convergent inclusion
function [f] (.), two regular subpavings X and X such that

XcXcX (3.24)

can be obtained with the algorithm S1via (Set Inverter Via Interval Analysis,
Jaulin and Walter, 1993a and 1993c), to be described now.

SIVIA requires a (possibly very large) search box [x](0) to which X is
guaranteed to belong. To facilitate presentation, Figure 3.8 describes the
basic steps of S1viA, assuming that Y is a regular subpaving. The general
procedure is easily derived from this simplified example. Four cases may be
encountered.

1. If [f] ([x]) has a non-empty intersection with Y, but is not entirely in
Y, then [x] may contain a part of the solution set (Figure 3.8a); [x] is said to

56 3. Subpavings

be undetermined. If it has a width greater than a prespecified precision pa-
rameter ¢, then it should be bisected (this implies the growth of two offspring
from [x]} and the test should be recursively applied to these newly generated
boxes.

2. If [f] ([x]) has an empty intersection with Y, then [x] does not belong
to X and can be cut off from the solution tree (Figure 3.8b).

3. If [f] ([x]) is entirely in Y, then [x] belongs to the solution subpaving
X, and is stored in X and X (Figure 3.8c).

4. The last case is depicted on Figure 3.8d. If the box considered is un-
determined, but its width is lower than ¢, then it is deemed small enough to
be stored in the outer approximation X of X.

Table 3.1. Version of S1viA based on an inclusion function

Algorithm Sivia(in: f,V, [x],¢; inout: X, X)

1 if [f]([x]) NY = & return; // Figure 3.8b
2 if [f]([x]) C Y then

3 {X:=XU[x]; X:=XU|[x]; return;}; // Figure 3.8¢
4 ifw([x]) < ¢ then {X := XU [x]; return;}; // Figure 3.8d
5 SviA(f,Y,L[x],e,X,X); Stvia(f, Y, R[x],¢,X,X). // Figure 3.8a

SIVIA is a recursive algorithm summarized by Table 3.1, where the sub-
pavings X and X have been initialized as empty.

The subpaving AX £ X \ X consisting of all boxes of X that are not in X
is called the uncertainty layer. It is a regular subpaving, all boxes of which
have a width smaller that «.

Theorem 3.1 (Jaulin and Walter, 1993c) If £~ is moo-continuous around
Y, then when € tends to zero

(1) AX = 89X,
(i) X =X, (3.25)
(i) X S X (if X is full),

where = and S respectively mean the hoo-convergence from without and
within and where 0X denotes the boundary of the compact set X. |

Provided that X is full, this theorem means that, the pair [X, X] defines
a neighbourhood of X with a diameter that can be chosen arbitrarily small.
SIVIA terminates after less than

e

bisections and the computing time increases exponentially with the dimension
of x (Jaulin and Walter, 1993a). When one is only interested in computing

3.4 Implementation of Set Computation 57

Outer subpaving X T - space 1y - space
@ A [x)] A
(a)
(b)
(c)
(d)

Fig. 3.8. Four situations encountered by SiviA; in the second column, the set in
light grey is the set X = f~'(Y) to be characterized; (a) the box [xo] to be checked
is undetermined and will be bisected; (b) the box [f]([x1]) does not intersect Y and
[x1] is rejected; (c) the box [f]([x2]) is entirely in Y and [x2] is stored in X and X;
(d) the box [x3] is undetermined but deemed too small to be bisected, it is stored
in X but not in X

a given characteristic of X such as its interval hull [X] or its volume, only
the recursivity stack takes a significant place in the memory. This place is
extraordinarily small, as it can be proved (Jaulin and Walter, 1993a) that

#stack < n (logy (w ([x] (0))) —logy (€) +1). (3.26)

For instance, for n = 100, w ([x] (0)) = 10* and ¢ = 107!, (3.26) implies
that #stack < 100 (log, (101) — log, (10710) 4 1) = 4751.

58 3. Subpavings

The algorithm can be generalized to the case where the search space,
which was assumed here to be a box [x](0), is replaced by a more general
subpaving (Kieffer, 1999; ?).

Table 3.2. Version of S1viA based on an inclusion test

Algorithm Sivia(in: ¢, [x],&; inout: X, X)

1 if [f] ([x]) = O return;

2 if [t]([x]) = 1 then {X:= X U|[x]; X:= XU [x]; return;};
3 if w([x]) <& then {X := XU [x]; return;};

4 Swia(t, L(x],e,X,X); Svia(t, R([x], 6, X, X).

S1viA can also be presented with an inclusion test [¢] (.} taking its values
in {0,1,[0,1]} in place of [f] and Y, as indicated in Table 3.2. Both algorithms
are initialized in the same way.

)
4

N

.
e

0

\ 4

0 2 4"
Fig. 3.9. Subpaving obtained with S1viA for Example 3.2

Example 3.2 Let X be the set of all xs in R? that satisfy

{ exp (z1) +exp (z2) € [10,11],

(3.27)
exp (2x1) + exp (2x2) € [62,72].

Characterizing X is a set-inversion problem, as

X =f1([10,11] x [62,72]), (3.28)

3.4 Implementation of Set Computation 59

with

o) = < exp (1) + exp (22)) (5.29)

exp (221) + exp (222)

For [x] (0) = [0,4] x [0,4] and € = 0.01, SIVIA yields the reqular subpaving X
described by Figure 3.9 in less than 2 s on a PENTIUM 133.]

By using some of the contractors to be presented in Chapter 4, it may be
possible to improve the quality of the description of a set obtained with S1via
for a given number of bisections. The price to be paid is that the resulting
subpaving may no longer be regular.

3.4.2 Image evaluation

Computing the direct image of a subpaving by a function is more complicated
than computing a reciprocal image, because interval analysis does not directly
provide any inclusion test for the point test t(y) = (y € f (X)). Note that even
this point test is very difficult to evaluate in general, contrary to the point
test t(x) = (x € f -t (Y)) involved in set inversion. Indeed, to test whether
x € £71(Y), it suffices to compute f (x) and to test whether the result belongs
to Y. On the other hand, to test whether y € f (X), one must study whether
the set of equations f (x) = y admits at least one solution under the constraint
x € X, which is usually far from simple.

(a) initial subpaving (b) minced subpaving

N

5
7
(¢c) image boxes (d) image subpaving

Fig. 3.10. The three steps of IMAGESP. (a) — (b): mincing; (b) — (c): evaluation;
(¢) — (d): regularization

60 3. Subpavings

Assume that f is continuous and that a convergent inclusion function [f]
for f is available. The algorithm to be presented generates a regular sub-
paving Y that contains the image Y of a regular subpaving X by f (see also
Kieffer et al., 1998, ?). The set Y is included in the box [f] ([X]), i.e., in the
image by the inclusion function [f] of the smallest box containing X. The
algorithm proceeds in three steps, namely mincing, evaluation, and regular-
ization (Figure 3.10). As with S1via, the precision of the outer approximation
will be governed by the real € > 0 to be chosen by the user. During mincing,
a non-minimal regular subpaving X, is built, such that the width of each of
its boxes is less than e. During evaluation, a box [f] ([x]) is computed for
each box [x] of X., and all the resulting boxes are stored into a list ¢. During
regularization, a regular subpaving Y is computed that contains the union U
of all the boxes of /. This regularization can be viewed as a call of SIvVIA to
invert U by the identity function, taking advantage of the fact that f (X) Cc U
is equivalent to f (X) C Id=! (U).

The resulting algorithm is described in Table 3.3.

Table 3.3. Algorithm for image evaluation based on subpavings

Algorithm IMAGESP(in: f,X, ¢; out: Y)

1 X: := mince(X, ¢);

2 U:=w; //Uisalist and U is the set of the boxes in U
3 for each [x] € X, add [f] ([x]) to the list i;

4 Swia(y € U, [f] (X]),e,Y, V). // Sivia of Table 3.2

The complexity and convergence properties of IMAGESP have been studied
in Kieffer (1999).

Remark 3.3 As only the outer approximation Y is returned by IMAGESP,
one may of course use a simplified version of SIVIA without the computation
of an inner approximation Y. |

Remark 3.4 Since U is not a subpaving, implementation is not trivial, see
Section 11.12.3, page 342, for details. |

Theorem 3.2 (iaulin, 2000b; ?) If f admits a convergent inclusion function
[f], then the setsY and U evaluated by IMAGESP([f] X,) satisfy the following
properties:

f (X)) maxpex. w ([f] (),
(X)) = 0 when ¢ — 0,
f

3.4 Implementation of Set Computation 61

Example 3.3 Consider the reqular subpaving X of Figure 3.11a. This sub-
paving covers the set

X = {(z1,72) € R? | 2 + 2% € [1,2]}. (3.30)

IMAGESP is used to compute an outer approrimation of the image of X by
the function

f(x)(o) (3.31)
1+ T2

Mincing generates the regular subpaving X. of Figure 3.11b. Note that al-
though X. and X represent exactly the same set (X, = X), they do not con-
tain the same lists of bores (X. # X) since the number of bozes in X, is
larger than that of X, see Remark 8.1. The evaluation step generates a list Y
of bozes and the union of these boxes contains £(X.) (Figure 3.11¢c). Finally,

reqularization yields the reqular subpaving Y of Figure 3.11d. |
.;E_:L ! T Lﬂ;.
(a) (b)

(©) (d)

Fig. 3.11. Principle of IMAGESP; (a) initial subpaving, (b) minced subpaving, (c)
evaluated set, (d) regularized subpaving containing the evaluated set; all frames
correspond to the box [—3,3] x [—3,3]

The next example combines the use of S1via and IMAGESP.

Example 3.4 This example is divided into three parts. The first one is the
characterization of the set

X1 = {(z1,22) € R?| af — 2] + 423 € [-0.1,0.1] } . (3.32)

62 3. Subpavings

(b): £(X,)

©: £ ({X,)

-5

-5 0 5

Fig. 3.12. Inverse and direct image evaluations

This set-inversion problem is solved by SIVIA in the search box [x]; = [—3, 3] x
[—3,3] for e = 0.1. The resulting subpaving Xy is represented on Figure 3.12a.
The second part consists in the evaluation of an outer approximation of the
image Xo of X1 by the function

—1 271 T
f(z1,22) = <(1If +)(:E2 t)22> ’

With € = 0.1, IMAGESP yields the subpaving Xy depicted on Figure 3.12b.
The last part is the characterization of the image of Xo by the inverse of
f£(.), ie, of X3 = {f 1 (X2)}. The function f(.) is not invertible (in the
common sense) in R%. Thus, an explicit form of £=1(.) is not available for

3.5 Conclusions 63

the whole search domain and the problem is treated as a set inversion prob-
lem. SIVIA is thus used in the search box [x|, = [—5,5] x [=5,5], again for
e = 0.1. The outer subpaving X3 is represented on Figure 3.12c. We have
X; cf! (f (Xl)) C Xs. The initial set Xy is clearly present in Xs. The result
is slightly fatter, due to error accumulation during inverse and direct image
evaluation. Additional parts have appeared because f(.) is only invertible in
a set-theoretic sense.]

3.5 Conclusions

The notion of subpaving introduced in this chapter makes it possible to ob-
tain, store and manipulate inner and outer approximations of compact sets.
Subpavings will form a useful class of objects on which computations will
be performed in what follows. Two basic algorithms have been presented to
perform direct and inverse evaluation of functions on subpavings. The prob-
lem of getting an inner approximation for image sets is still open when the
function is not invertible, because of the impossibility of casting the problem
in the framework of set inversion.

Regular subpavings are simpler to store and manipulate than generic sub-
pavings, but form an expensive representation of sets in terms of memory
space. They are thus adapted to low-dimensional problems. For sets of higher
dimension, the requirement of regularity of the subpavings may be relaxed
to allow the use of contractors, presented in the next chapter.

4. Contractors

4.1 Introduction

Consider ny variables z; € R, i € {1,...,nx}, linked by nt relations (or
constraints) of the form
filz,ze, .. 20) =0, j€{1,...,n¢}. (4.1)

Each variable z; is known to belong to a domain X;. For simplicity, these
domains will be intervals, denoted by [z;], but unions of intervals could be
considered as well. Define the vector x as

X= (Il,...,an)T, (42)
and the prior domain for x as
[x] = [z1] X -+ X [Tp,]- (4.3)

Let f be the function whose coordinate functions are the f;s. Equation 4.1 can
then be written in vector form as f(x) = 0. This corresponds to a constraint
satisfaction problem (CSP) H, which can be formulated as

H:(f(x) =0, x€[x]). (4.4)
The solution set of H is defined as
S={x€[x] | f(x) = 0}. (4.5)

Such CSPs may involve equality and inequality constraints. For instance, the
set of constraints
1 +sin(x2) <0
¥ sin(z2) <0, (4.6)
r1 — T2 = 3,

can be cast into the CSP framework by introducing a slack variable x3 to get
the set of constraints:

x1 + sin(zs) + x3 = 0, (47)
T, — Ty — 3= 0, ’

where the domains for the variables are [z3] = [0,00[, [z1] = R, [z2] = R
and the coordinate functions f; are fi(x) = z1 + sin(x2) + x3 and fa(x) =

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001

66 4. Contractors

x1 — x2 — 3. Characterizing the solution set S is NP-hard in general, which
means that no algorithm with a complexity polynomial in the number of
variables is available to obtain an accurate approximation of S in the worst
case.

Originally, CSPs were defined for discrete domains, i.e., the values taken
by the z;s belonged to finite sets (Clowes, 1971; Waltz, 1975; Mackworth,
1977a, 1977b; Freuder, 1978; Mackworth and Freuder, 1985; Dechter and
Dechter, 1987). Later, CSPs were extended to continuous domains (subsets
of R or intervals) (Cleary, 1987; Davis, 1987; Hyvonen, 1992; Lhomme, 1993;
Benhamou et al., 1994; Haroud et al., 1995; Sam-Haroud, 1995; Sam-Haroud
and Faltings, 1996; Deville et al., 1997; van Hentenryck et al., 1998; Lottaz
et al., 1998). Most of the algorithms presented in these papers use consistency
techniques such as those described below to find an outer approximation of
the set S of all solutions of H. The main advantage of these techniques is that
they yield a guaranteed enclosure of S with a complexity that can be kept
polynomial in time and space.

Contracting H means replacing [x] by a smaller domain [x’] such that the
solution set remains unchanged, i.e., S C [x] C [x]. There exists an optimal
contraction of H, which corresponds to replacing [x] by the smallest box that
contains S. A contractor for H is any operator that can be used to contract
it. In order to keep the time and space complexity polynomial, contractors
will not be allowed to bisect domains. A contractor will be denoted by C, with
a subscript indicating the principle on which it is based. The contractors to
be presented in this chapter are enumerated in Table 4.1.

Table 4.1. Contractors to be presented

Contractor Based on Section

Cae(Ap —b =0, [A], [p], [b]) Gauss elimination 4.2.2

Cas(Ap —b = 0,[A], [p], [b]) Gauss—Seidel algorithm 4.2.3

Cx(f(x) =0, [x]) Krawczyk method 4.2.3

Ci1(f(x) =0,[x]) forward—backward 4.2.4
propagation

Crp (Ap — b =0,[A],[p],[b]) | linear programming 4.2.5

Casp(Ap —b =0,[A],[p],[b]) | Gauss—Seidel 4.3.2
with preconditioning

Carpr(Ap — b = 0,[A],[p], [b]) rauss elimination 4.3.2
with preconditioning

Cn (f(x) =0, [x]) Newton with preconditioning | 4.3.3

C) (f(x) = 0, [x]) parallel linearization 434

4.2 Basic Contractors 67

Remark 4.1 It is sometimes convenient to distinguish several types of do-
mains for uncertain quantities, such as [A], [b] and [p] in Table 4.1, instead
of pooling all of them in a single box [X] . [|

The basic contractors are Cqg, Cas, Ck, C;1 and Crp, to be presented
in Section 4.2. These contractors are efficient on specific classes of problems
only. Section 4.3 presents some tools to transform a CSP so that basic con-
tractors become more widely applicable. Incorporating the transformation in
the contraction procedure will yield new contractors (Casp, Carp, Cn and
C)), able to deal with a much larger class of problems. In Section 4.4, all
available contractors are made to collaborate in order to increase their effi-
ciency. Section 4.5 presents the notion of contractor for sets. This notion does
not bring anything new from a methodological viewpoint, but allows one to
deal easily with contractors independently of the type of the constraints that
define the set of interest. In the next chapter we shall see how contractors can
be used to get efficient solvers to deal with various optimization problems,
and with the resolution of systems of equations and inequalities.

4.2 Basic Contractors

In this section, some basic contractors will be presented. Some of them are
interval counterparts of classical point algorithms such as the Gauss elimina-
tion, Gauss—Seidel and Newton algorithms. Others use constraint propaga-
tion. Each of them is efficient only for specific CSPs, but a suitable combi-
nation of these contractors, possibly supplemented with some formal trans-
formation or preconditioning, makes them efficient for a much larger class
of CSPs, as we shall see in Section 4.3. To prove useful, it suffices that a
contractor extends the class of CSPs that can be handled efficiently, even if
there are still some CSPs for which it turns out to fail.

Section 4.2.1 presents the notion of finite subsolvers used in Section 4.2.2
to build contractors by intervalization. Section 4.2.3 presents contractors ob-
tained by intervalization of fixed-point methods. A contractor based on con-
straint propagation will be described in Section 4.2.4. The last basic contrac-
tor, to be presented in Section 4.2.5, takes advantage of linear programming
techniques.

4.2.1 Finite subsolvers

Roughly speaking, a finite subsolver of the CSP H : (f(x) =0,x € [x]) is a
finite algorithm to compute the values of some variables x; when some other
variables x; are known. Figure 4.1 illustrates a finite subsolver ¢ computing
rg and xg from x1,x9,x3 and x4. The formal definition of a subsolver will
require the definition of a subvector of a given vector.

68 4. Contractors

Fig. 4.1. Subsolver computing xs and x9 when x1, x2,x3 and x4 are known

Definition 4.1 The vector u = (uy,...,u,,)T is a subvector of x =
(z1,...,m,,)7T, if there exists a subset T = {i1,...,in,} of {1,...,n.} such
that w = (x4,,...,3;,)T. T is then called the index set of u, and we shall
write U = X7. |

Definition 4.2 ConsiderZ = {i1,...,in,} and J = {j1, ..., jn, }, two indez
sets such that TNJ = &, and two subvectors u = xg and v = Xz of the same
vector x. A finite subsolver associated with H is a finite set-valued algorithm
¢ :u— ¢(u) such that the following implication holds true:

f(x) =0=v e ¢(u). (4.8)

The components of u are called the inputs of ¢ and those of v are called its
outputs. In the situation represented in Figure 4.1, the inputs are x1, T2, T3,
and x4, and the outputs are g and xg. |

Often, ¢(u) is a singleton, and the membership relation on the right-hand
side of (4.8) can be understood as the equation v = ¢(u). The following
example shows that defining ¢ as a set-valued function can be useful and
illustrates the concept of subsolver.

Example 4.1 Consider the CSP
X1y — T3 = 0
H: | zo—sin(zg) =0 . (4.9)
[21] = [#2] =] — 00,0}, [23] = [z4] = R

Many subsolvers of H can be obtained by elementary algebraic computation.
Five of them are:

4.2 Basic Contractors 69

¢, (in: 1, x2; out: x3) {zs = 122},
¢p(in: x1,x3; out: x2) {ze :=x3/x1 if 1 # 0, R otherwise},
in: x4; out: x To 1= sin(xzy4)},
P (in: @4 2) {z2 (z4)} (4.10)
dq(in: 1, x3,24; out: x2) {x2 1= ¢px1,23) N O (24)},

in: x3, x4; out: x1,xe) {xs := sin(zy),

X1 :=xg/x2 if x3 # 0, R otherwise}.
Note that ¢4 may yield the empty set when x1,xs and x4 are inconsistent with
H. This is not necessarily the case as some inconsistent values for x1,x3 and

x4 are such that ¢ (x1,xs,24) # . For instance, 11 = x4 =0 and 23 = 1
are inconsistent (because x1x9 — x5 #0), but $4(0,1,0)=RnN {0} =0. N

Example 4.2 Consider the CSP

H;(Apbo) (4.11)
p € R b € [b],A € [A]

where A is a square matriz. The set of all variables of H is

X = (@11, 8nyny, PLy- vy Py 015 - -, bnp)T. (4.12)
A possible subsolver is

¢;(in: A, p; out: b) {b:= Ap}, (4.13)

where the input subvector consists of the coefficients of A and p and where
the output subvector is b. Another subsolver is

¢4 (in: A, b; out: p) {code of a linear solver}. (4.14)

The linear solver may, for instance, use Gauss elimination, which will be
presented in the section.]

4.2.2 Intervalization of finite subsolvers

In this section, we show how the knowledge of an interval counterpart of a
finite subsolver of H : (f(x) = 0,x € [x]) makes it possible to contract H.
Let ¢ be a finite subsolver of H with input vector u and output vector v. An
inclusion function [@] of ¢, is a function [¢] from IR™ to IR™* such that for
all boxes [u] of IR™,

d([u)) C [¢] ([u]), where ¢([u]) 2 |] ¢(u). (4.15)
u€lu]

This definition is a slight extension of that of Chapter 2, to take into account
the fact that ¢(u) may not be a singleton. For instance, an intervalization of
the subsolver ¢, (x3,x4) of Example 4.1 is given by

70 4. Contractors

[pe] (i [ws], [za] 5 out: [21], [22])

{ lzo] = sin([z4]); . (4.16)
[21] := [w3] / 2] if O & [22];
[x1] ;== R otherwise}.

Theorem 4.1 Consider a CSP H : (f(x) = 0,x € [x]) and one of its finite
subsolvers ¢ with input vector u = xz and oulput vector v = xg. If [¢]
s an inclusion function of ¢, then a contraction of H can be performed by
replacing each domain [x5],j € J by the domain [x;] N [¢;] ([u]). [|

Proof. Let S be the solution set of H.

(4.5)

x €S & xe€ x| and f(x) =
W xe [x] and f(x) =0 and v € ¢(u) (4.17)
“LY x € [x] and £(x) = 0 and [v] C [@] ([u]).
The replacement thus does not modify the solution set. |

Remark 4.2 The resulting contractor may of course leave the boxr [x] un-
changed, in which case it will have failed to produce any useful result. |

Example 4.3 Consider again the situation described in Example 4.1 with
the subsolver ¢,. Theorem 4.1 and (4.16) yield

22) = |—00,0] (1 sin(R) = [1,0},
[z1] =]—00,0] NR =] — o0, 0].
]

Intervalization of Gauss elimination. An important class of CSPs for
which intervalization of finite subsolvers can be employed is that of square
linear systems of interval equations. The problem is to compute a box con-
taining the solution set of the CSP

Ac|A]l,be|b|,pe
H - [A] [b].p € [p] : (4.18)
Ap—b=0
with
a1 a12 ... Gin, by
A= : : ,b= : . (4.19)
anpl anpz . anpnp bnp

The variables of H form the vector

X = (11, Unynps Pls- - - > Prys 015 - - .,bnp)T. (4.20)

4.2 Basic Contractors 71

Remark 4.3 FEven if the expression linear interval equations is classical in
the interval communaity, the relations between the variables are bilinear, since
the entries of A and p belong to x. We shall keep to the classical expression
linear interval equations to be consistent with the literature, but shall talk
of linear CSPs only when all the relations between the variables involved are
linear. This is the case if the domain [A] is a punctual matriz, which implies
that the vector of all variables boils down to x = (p1,...,Pn,,b1,.. .,bnp)T
and thus that the products of variables disappear.]

The classical Gauss elimination procedure can be used as a finite subsolver
for (4.18). It makes it possible to compute p when the vector

u = (alla A12; - -+ 5 Anpng b17 B bnl,)T (421)

is known. A simple implementation of this procedure is given in Table 4.2,
but more efficient implementations could be considered. An inclusion function
for this finite subsolver is given in Table 4.3. For the intervalization of ¢, the
natural inclusion function was used. One may of course also use the centred
form or any other type of inclusion function.

Table 4.2. Gauss elimination

Algorithm ¢(in: a11,a12, ..., @nyny, b1, .., bnys out: p1,...,pPny)

1 fori:=1ton,—1

2 if a;; := 0, then (pl, .. ,pnp) := R"™; return;
3 for j:=i+1tonp

4 oy = aji/aii; bj :=b; — a; * by

5 for k:=i+1tonp

6 Qjk 1= Qjk — O * Gk

7 for i := ny down to 1

8

i = (bi = D i1 Qij % pj) /aii.

From Theorem 4.1, the operator

CGE([AL [b}a[p}) = ([AL [b}a[p] n [qb} ([A]v [p]v [b])) ’ (422)

where [¢] (.) is given by Table 4.3 and GE stands for Gauss elimination, is
a contractor for H. Because the condition 0 € [a;;] is frequently satisfied for
some ¢, Cgr, often fails to contract (4.18). Cgr is efficient, for instance, when
the interval matrix [A] is close to the identity matrix.

Note that the domain [b] for b can be contracted by using the subsolver

(A, p) = Ap. (4.23)

72 4. Contractors

Table 4.3. Intervalization of Gauss elimination

Algorithm [¢] (in: [a11], [a12] ..., [@npnp] 5 [01] 5.0, [bny |5
out: [p1],..., [Pnp))

1 fori:=1ton,—1

2 if0e [CL”]

3 ([p1] e [pn])}) := R"™; return;

4 for j:=14+1tonp

5 ;] := layil / [asil; [bs] := [bs] — [a] % [bi] ;

6 for k: =141 tonp

7 laji] := lazx] = [og] * @] ;

8 for ¢ :=mnp down to 1

0 Ipa)i= (b =35y L) * (o)) / o)

Example 4.4 For

[4,5] —1,1] [1.5,2.5]
[Al=| [-0.5,0.5] [-7,-5] [1,2] ,
[1.5,-0.5] [-0.7,-0.5] [2,3]
[374} [—OO,
[b]=| [0,2] | and [p]= | [~oo,
3,4] [—o0

]
1, (4.24)

}

g8 8 38

?

Cae([A], [bl,[p]) yields:

[—1.81928,1.16873]
p] = | [-0.414071,1.72523] | . (4.25)
[0.700233, 3.42076]
This example s treated in Fxercise 11.25, page 333. It can be checked that if
Cgg s run again, the domain for p is not contracted any more. Cgg s said
to be idempotent. A contractor associated with the subsolver (4.23) would

make it possible to contract [b], which might allow a new contraction of [p]
by CGE- |

4.2.3 Fixed-point methods

A fized-point subsolver for the CSP H : (f(x) = 0,x € [x]) is an algorithm
such that

f(x) =0 x=9(x). (4.26)

If the sequence

4.2 Basic Contractors 73

Xhy1 = P(Xk) (4.27)

converges to a point X, for a given initial value xq, then X, is a solution of
f(x) = 0. For instance, since for any a # 0

z=a(®-2)+ze2>-2=0, (4.28)
a fixed-point subsolver for the CSP (x2 —2=0,z ¢ R) is
Y(z) =a(z® —2) + = (4.29)

A fixed-point subsolver provides an iterative procedure that may converge
towards one of the solutions of f(x) = 0. For instance, when nf = ny, a
possible fixed-point subsolver for H is

P(x) = x — Mf(x), (4.30)
where M is any given invertible matrix, which may depend on x.

Theorem 4.2 Let v : R™ — R™ be a fived-point subsolver for H, and
[] : IR™ — TR™ be an inclusion function for ¥. A contractor for H is
obtained by replacing [x] in H by

(xIN[]([x]). (4.31)

This contractor will be called the fixed-point contractor associated with 1. M

Proof. Let S be the solution set of H. For any x € S,

(4,26)

[=2]

f(x)=0andx € [x] & x¢€[x]andx=19(x)

= x € [x] and x € ¥([x])

= xe[xn ().

Therefore, S C [x] N [4]([x]). [|

To illustrate the approach, three fixed-point contractors are now pre-
sented, namely the interval Gauss—Seidel, Krawczyk and interval Newton
contractors.

Gauss—Seidel contractor. Consider again the CSP

” (AE[A],bE[b],pE[p}»

: (4.32)
Ap—b=0

where the matrix A is assumed to be square. A can be decomposed as the
sum of a diagonal matrix and a matrix with zeros on its diagonal:

A = diag (A) + extdiag (A). (4.33)
Now, Ap — b = 0 is equivalent to
diag (A) p + extdiag (A) p = b. (4.34)

74 4. Contractors

Provided that diag(A) is invertible (i.e., A has no zero entry on its diagonal),
this equation can be rewritten as

p = (diag (A)) " (b — extdiag(A) p). (4.35)

A fixed-point subsolver for H is thus

A A
Y| b|= b : (4.36)
p (diag (A))™" (b — extdiag(A)p)

An inclusion function for 1) is
[A] [A]
Wl| [b] | = b] . (4.37)
b (diag ([A])) ™" (b] — extdiag([A]) [p]

From Theorem 4.2, a contractor is given by

[A] [A]
b [b]
[p] N (diag ([A])) ™" ([b] — extdiag([A]) [p])

Cas : —

5=

(4.38)

Cas is the Gauss—Seidel contractor. As Cag, it is efficient, for example, when
[A] is close to the identity matrix.

Example 4.5 Consider again the situation of Example 4.4, where

[4,5] —1,1] [1.5,2.5]
[Al=| [-05,05] [-7,-5 [1,2] |, (4.39)
[~1.5,—0.5] [-0.7,—0.5] [2,3]

3,4] [-10,10]
bl =] 1(0,2] | and [p] = | [-10,10] |. (4.40)
3, 4] [—10,10]
Then
0.2,0.25] [0,0] [0,0]
(diag ((A)) " = | [0,0] [-0.2,-0.1429] [0,0] (4.41)
[0,0] [0,0] [0.3333,0.5]

and

4.2 Basic Contractors 75
[0,0} [—1,1] [1.5,2.5]
extdiag ([A]) = | [-0.5,0.5] [0,0] 1,2] (4.42)
[71.5, —0.5} [—0.7, 70.5] [O, 0]
Cas : ([A], [b].[p]) yields
[—8, 9.75}
[p] = [—5.4001,5.0001] (4.43)
[79.5, 10}
Table 4.4. Iterations of the Gauss—Seidel contractor
k [p1] (k) [p2] (k) [ps] (k)
0 [—10, 10] [—10, 10] [—10, 10]
1 [—8,9.75] [—5.40001, 5.00001] [—9.5,10]
2 [—6.85001, 8.28751] [—5.17501, 4.97501] [—6.39001, 10]
5 [—5.66909, 5.24052] [—3.03602, 4.03031] [—4.65079, 7.84124]
10 [—3.82831, 3.40254] [—1.86306, 2.85556] [—2.27608, 5.79364]
20 [—2.48786,2.03998] | [—0.994123,2.00077] | [—0.775045, 4.29151]
100 | [—2.08452,1.63673] | [—0.736983,1.74357] | [—0.321329, 3.83781]

Let us iterate contraction by Cas. The results obtained for some values of k
are given in Table 4.4, where [p] (k) is the box obtained for [p] at iteration k.
For this example, the results obtained are less accurate than those obtained by
Car n Example 4.4, page 72, but this is not always the case. This example
is treated in Fxercise 11.26, page 335.]

Krawczyk contractor. Consider the CSP H : (f(x) = 0,x € [x]), where
ng = ny and f is assumed to be differentiable. Since, for any invertible matrix
M, f(x) = 0 & x — Mf(x) = x, the function ¥(x) = x — Mf(x) is a fixed-
point subsolver for H. The centred inclusion function for 1 is

[]([x]) = 9 (x0) + [Ty ([x]) * ([x] — x0),

where [Jy] is an inclusion function for the Jacobian matrix of 4 and
xo = mid([x]) (recall that mid([x]) denotes the centre of [x]). From The-
orem 4.2, the following fixed-point contractor is obtained, classically called
the Krawczyk contractor (Neumaier, 1990):

(4.44)

Cr : [x] = [x] N (p(x0) + [To] ([x]) * (%] = x0))- (4.45)
Replace 1(x) by x — Mf(x) in (4.45) to get
Ci = [x] = [x] N (x0—MF (x0) + (I = M[J¢)([x])) * ([x] - x0)), (4.46)

76 4. Contractors

where I is the identity matrix and [J;] is an inclusion function for the Jacobian
matrix of f. The matrix M is often taken to be the inverse J;*(xo) of the
Jacobian matrix of f, computed at xg. It can be viewed as a preconditioning
matrix (see Section 4.3.2, page 84). An algorithm implementing Ck is shown
in Table 4.5.

Table 4.5. Krawczyk contractor

Algorithm Cx(in: f; inout: [x])

xo := mid([x]);

M = J;l(xo);

Jyp] =T = M[J]([x]);

1] == x,—Mf(x) + [Ju] * ([x] — x0);
(x| == [x] N r].

=W N =

ot

Example 4.6 Consider the CSP H : (f(x) = 0,x € [x]), described by

filx1,x2) = 22 — dao
He| folwy,me) =23 — 2z +4an |- (4.47)
x] = [~0.1,0.1] x [~0.1,0.3]

H has a unique solution x = (0,0)T. The Jacobian matriz for f is

2 4
Je=| ™ : (4.48)
-2 2132 +4

and the preconditioning matrix M is given by

—0.525 —0.5
M =J-10,0.1) =) 4.49
£)(_0.25 O) (4.49)
The Krawczyk contractor yields:
[—0.0555,0.0455]
Cx () =
[—0.005, 0.005]
0.00258, 0.00255
Ok (Ck (W) = . (450)
0.00128,0.00127]

[_
[,
Ci (Cie (Cie ([X]))) = ({_0.00000818, 0.00000817}) .

0.00000329, 0.00000329)

which converges to the unique solution. This example is treated in Erer-
cise 11.27, page 335. |

4.2 Basic Contractors 7

Newton contractor. Consider again the CSP H : (f(x) = 0,x € [x]),
where ny = ny and the fixed-point subsolver given by (x) = x — Mf(x),
see (4.30). If f(x) is affine, say f(x) = Ax+ b, then the fixed-point sub-
solver becomes 1(x) = x — M(Ax + b). For M = A™', the sequence Xz, =
1(xy) converges towards the solution x* = —A~!b in one step. Now,
if f is non-linear but differentiable, it can be approximated by its first-
order Taylor expansion to get an approximate fixed-point subsolver ¥ (x) =
x — J;1(x) * f(x). The sequence (4.27) then leads to the Newton method.
The inclusion function

[([x]) = [x] = (3] ([]) * [£)((x]) (4.51)

yields the Newton contractor (see Theorem 4.2)

O [= [1 (I = 3] () + [£](x))) (4.52)

Other inclusion functions, such as the centred form, could of course be used.
Classically, a more efficient version of this contractor is used, as presented in
Section 4.3.3, page 86.

4.2.4 Forward—backward propagation

The forward-backward contractor C; (Benhamou et al., 1999; Jaulin, 2000b)
is based on constraint propagation (Waltz, 1975; Cleary, 1987; Davis, 1987).
This contractor makes it possible to contract the domains of the CSP H :
(f(x) = 0,x € [x]) by taking into account any one of the n¢ constraints in
isolation, say f; (x1,...,2n,) = 0. Note that n¢ is no longer necessarily equal
to nx. The next example illustrates how a given constraint can be used to
contract domains.

Example 4.7 Consider the constraint x3 = x1x2 and the box [x] = [1,4] x
[1,4] x [8,40]. This constraint can be rewritten in three ways:

T = x3/T2,
T2 = 13/71, (4.53)
Tr3 = T1T2.

Each of these equations has been obtained by isolating one of the variables in
the initial constraint. Three finite subsolvers are thus obtained:

¢q(in: xa,x3; out: x1) {a1 1= x3/x2 if 2 # 0, R otherwise},
b (in: T1,x3; out: x2) {2 := x3/71 if T1 # 0, R otherwise}, (4.54)
ds(in: x1,xa; out: x3) {xs := x122}.

An intervalization of these finite subsolvers leads to the following contractions

78 4. Contractors

(sl flea) nfer] = Sl)= (2.4
(lea) /fea)) N f2a] - = [2,4], (4.35)
(lza] = [wa]) N lzs] = ([1,4] % [1,4]) N [8,40] = [8,16].
The new domain is thus [2,4] x [2,4] x [8, 16]. [|
Assume that each constraint has the form f; (z1,...,z,,) = 0, where f;

can be decomposed into a sequence of operations involving elementary op-
erators and functions such as +, —, %, /, sin, cos... It is then possible to de-
compose this constraint into primitive constraints (Lhomme, 1993). Roughly
speaking, a primitive constraint is a constraint involving a single operator
(such as +, —,* or /) or a single function (such as sin, cos or exp). For in-
stance the constraint x; exp(xs) + sin(zz) = 0 can be decomposed into the
following set of primitive constraints

ay = exp (x2),

as = z101, (4.56)
as = sin (z3),

as + a3 = 0.

The domains associated with all intermediate variables (here a1, a2 and as)
are |—o00,00[. A method for contracting H with respect to the constraint
x1 exp(z2) + sin(zz) = 0 is to contract each of the primitive constraints
in (4.56) until the contractors become inefficient. This is the principle of
constraint propagation (Waltz, 1975), initially employed without the help of
interval analysis.

Forward-backward propagation selects the primitive constraints to be
used for contractions in an optimal order in the sense of the size of the
domains finally obtained (Benhamou et al., 1999). This is illustrated by the
following example.

Example 4.8 Consider the equation

f(x)=0 (4.57)
where

f(x) = x1 exp(z2) + sin(xs). (4.58)

The domains for the variables x1,x2 and x3 are denoted by [x1], [x2] and [x3].
To obtain an algorithm contracting these domains, first write an algorithm
that computes y = f(x), by a finite sequence of elementary operations, such
as the one suggested by (4.56)

a1 = exp (x2);

Gy 1= X1071;

S (4.59)

ag = sin (x3);

Yy = az + as.

4.2 Basic Contractors 79

Then write an interval counterpart to this algorithm.:

1 [aa] := exp ([x2]);
2 faa) = foa] * o} o)
3 [as] :=sin ([z3]);
4 [y] = [az] + [as].

Since f(x) =0, the domain for y should be taken equal to the singleton {0}.
One can thus add the step

5 [y] = [y] N {0}. (4.61)

If ly] as computed at Step 5 turns out to be empty, then we know that the CSP
has no solution. Else, [y] is replaced by {0}. Finally, a backward propagation
is performed, updating the domains associated with all the variables to get

6 [az2] == ([y] — [a3]) N [az]; // see Step 4
7 as] := (ly] — [az]) N [as]; // see Step 4
8 [x3] :=sin"!([a3]) N [x3]; // see Step 3 (462)
9 la1] := ([a2]/[z1]) N [a1]; // see Step 2
10 [x1] := ([a2]/]a1]) N [x1]; // see Step 2
[2] n

11 [x2]. // see Step 1

(
At Step 8, sin™!([az]) N [x3] returns the smallest interval containing {xs €
[z3] | sin(xs) € [as]}. The associated contractor is given in Table 4.6. [|

Table 4.6. Forward—backward contractor

Algorithm Cj(inout: [x])

1 [a1] = exp([z2]);

2 [ag] = [@1] x [aa];

3 Jas] :=sin ([z3]);

4 [y] = [a2] + [as];

5 [yl =y n{0}k

6 [az] := ([y] — [as]) N [az];

7 las] = ([y] — [a2]) N [as];

8 [ws]:=sin"([a3]) N [x3];

9 [aa] = (laz]/[z1]) N [aa];
10 [za] = ([az]/laa]) N [21];
11 [z2] :=log([a1]) N [z2].

80 4. Contractors

An example of the design of a forward-backward contractor for a function
defined by an algorithm containing loops will be presented in Section 6.4.3,
page 171, in the context of state estimation. The next example illustrates the
performances of C;1 on a linear CSP. See also Exercise 11.11, page 318.

Example 4.9 Consider the CSP

1 +2x0 —23=0
H:|axg—a20—24=0 . (4.63)
[x] € [-10,10] x [—10,10] x [-1,1] x [-1,1]

Using C|1, the constraint x1 + 2x9 — x3 = 0 yields

[131} = [_107 10]7 (4.64)

[132} = [_1_217 %L (465)

[zs] = [-1,1], (4.66)
and the constraint x1 — xo — x4 = 0 yields

[131} = [_gv %L (467)

[132} = [_1_217 %L (468)

[za] = [-1,1]. (4.69)

Tterating this procedure, one would like the sequence of boxes [x|(k) to con-
verge towards the smallest possible domain. Unfortunately, this is not so. The
results of the contractions for some values of the iteration counter k are pre-
sented in Table 4.7.

Table 4.7. Iterations of the forward—backward contractor

k [1] (k) (2] (k) (3] (k) | [24] (k)
0 [10, 10] [10, 10] 1,1 | [-1,1]
1 (—6.5,6.5] [—5.5,5.5] 1,1 | [-1,1]
2 [—4.75,4.75] [—3.75,3.75] 1,1 | [-1,1]
5 | [-3.21875,3.21875] | [—2.21875,2.21875] | [—1,1] | [—1,1]
10 | [—3.00684,3.00684] | [—2.00684,2.00684] | [-1,1] | [~1,1]
00 [—3,3] [-2,2] [-1,1] | [-1,1]

Ci+ comes to a deadlock. A possible way out is to bisect the search box into
two boxes:

(4.70)

[x](1) = [~10,0] x [-10,10] x [—1,1] x [~1, 1],
x](2) = [0,10] x [—10,10] x [-1,1] x [~1,1],

4.2 Basic Contractors 81

and to apply Ci1 to each of these bozes in turn. For [x](1) one gets

k| [z (k) | [wo] (k) | [ws] (k) | [w4] (K)
0 | [~10,0] | [-10,10] | [-1,1] | [-1,1] @)
1 | [-1.5,0] | [-0.5,1] | [-1,1] | [-1,1] '
0 | [-1.5,0] | [<0.5,1] | [-1,1] | [~1,1]
and for [x](2)
k| lza (k) | [wo] (k) | [ws] (k) | [w4] (k)
0 | [0,10] | [-10,10] | [-1,1] | [-1,1] (472)
1][0,15 | [~1,05] | [-1,1] | [-1,1] '
oo | [0,1.5] | [-1,0.5] | [=1,1] | [-1,1]

The reunification of the domains obtained for [x](1) and [x](2) provides the
domain

[x] =[-1.5,1.5] x [-1,1] x [-1,1] x [-1,1], (4.73)
which corresponds to the optimal contraction of H (Jaulin, 2000b), i.e., [x]

1s the interval hull of the solution set. |

Remark 4.4 On the CSP (4.532), C1 applied for each equation of the system
Ap = b leads to the same contraction for [p] as Cgs, but it has the advantage
over Cas of also providing contractions for [A] and [b].]

4.2.5 Linear programming approach

Consider again the problem of contracting the domains of the CSP

H: (Apbo) (4.74)
A €[A],be[b],pe€ [p]

where now A is not necessarily square. Finding the smallest box [p] that
contains all the vectors p consistent with H is known to be NP-hard in the
general case (Rohn, 1994). We shall consider two special cases for which this
problem can be transformed into 2n, linear programming problems, so that
efficient linear programming techniques can be used. The resulting contractor
will be denoted by Crp.

Case 1: All components of p are assumed to be positive (p > 0). The vector
p € [p] is then consistent with H if and only if
JAc€[A],dbe[b] | Ap—b=0
< JA € [A] | Ap € [b] (4.75)
& 3JAc[A] |Ap >band Ap < b.

82 4. Contractors

Now, since p > 0, the following equivalences hold true
(SAc[A] |Ap>b) = Ap > b, (4.76)
(HA €[A] | Ap < E) = Ap < b. (4.77)

Remark 4.5 If at least one component of p is not positive, the last two
equivalences are no longer true. For instance, assume that A is scalar and

equal to the real number a, and take (4.76) with [a] = [-4,—1],b=4 and p =
—2. The proposition (Ja € [—4,—1] | ap = b) is true (take a = —3), whereas
the proposition (ap = b) is false (=1 % —2 > 4 is false). |

Therefore, p € [p], where [p;] C RT (i =1,...,np), is consistent with H if
and only if

Ap >b and Ap <b. (4.78)

The smallest box [q] containing all the vectors p that are consistent with H
can therefore be computed by solving the following 2n, linear programming
problems:

opt pi, 1 =1,...,nyp,

—A -b
(3
p € [p,

where opt is alternatively min and max to obtain the coordinates of q and

q.

Case 2: The domain [A] is assumed to be punctual (i.e., A = A). The
vector p € [p| is consistent with H if and only if there exists b € [b] such
that Ap—b =0, i.e,

Fbe[b] | Ap—-b=04 Ap < [b] & Ap > b and Ap <b. (4.80)

The smallest box [q] containing all the vectors p that are consistent with H
can therefore be computed by solving the following 2n,, linear programming
problems:

opt pi, 1 =1,...,nyp,

A p < b (4.81)
A/ "\ b))’ ’

P € [p,

where opt is again alternatively min and max.

4.3 External Approximation

Contractors based on the basic contractors of Section 4.2 and able to contract
a much larger class of CSPs will now be presented.

4.3 External Approximation 83

4.3.1 Principle

A subvector p of x is consistent with H : (f(x) = 0,x € [x]) if p can be
supplemented with another subvector to form a solution vector x (i.e., x € S).
Let H; and Hsz be two CSPs and x be the vector of all variables of H;.

We shall write H; = Ho, if

e all the variables of H; are also variables of Hy and
e if x is a solution vector of H; then it is consistent with Hs.

The notation H; = Ho indicates that the CSP Hs can be deduced from the
CSP H; (for instance by introducing additional variables taking the values
of some expressions in constraints of ;). We shall say that Hs is an external

approzimation of Hi, because the solution set of Hs is guaranteed to contain
that of Hj.

Example 4.10 Consider the three CSPs

H, - 3x; —exp(z1) =0 ’
T € [0,2}

31 —x2=0
Ho: | 22 —exp(z1) =0 , (4.82)
z1 €[0,2], 22 € [—00, +0]

e - <3LL‘1 —exp(l) —exp(§)(x1 — 1) = 0)
3 .
T € [072}7 5 <€ [072}

Check that H1 = Ho and Hi = Hs. The fact that Hi = Hs is a direct
consequence of the mean-value theorem, which implies that for any x1 € [0,2],
there exists £ € [0,2] such that exp(z1) = exp(1l) + exp(§)(z1 — 1). [|

Contracting the domains of a CSP H via an external approximation con-
sists of three steps:

e finding an external approximation H; of H for which basic subsolvers are
efficient,,

e contracting H;

e updating the domains for H.

The approach will first be illustrated through two classical methods, namely
the preconditioning of linear interval systems in Section 4.3.2 and the interval
Newton iteration (or Newton contractor) in Section 4.3.3, before presenting
some alternative approaches in Sections 4.3.4 and 4.3.5.

84 4. Contractors

4.3.2 Preconditioning

Consider the CSP H: (Ap—b =0,A €[A],p € [p],b € [b]), and assume
that [A] is such that the Gauss—Seidel contractor presented in Section 4.2.3,
page 73, and the Gauss elimination contractor presented in Section 4.2.2,
page 70, are not efficient. If Ay is some invertible matrix in [A], then

(i) A=A 'A
<Ap b=0) N (i1) b’ =A;'b
p € [p], A €[A], bc [b] (i) A’p b' =0
(w) p€[pl,Ac[A],b¢c [b]

(4.83)

A Dbasic contraction over the constraints (¢) and (i) provides domains [A’]
and [b’] for A’ and b’. Provided that w([A]) is small enough and that Ay
is well conditioned, the interval matrix [A’] is close to the identity matrix.
Contractors such as Cag or Cag are then likely to be efficient on the constraint
(4ii). This is illustrated by the contractor Cagp (GSP for Gauss—Seidel with
preconditioning) of Table 4.8.

Table 4.8. Gauss—Seidel contractor with preconditioning

Algorithm Cesp(inout: [A], [p], [b])
1 Ap:= mid([A)]);

> [A]i= A7 [A];

3 b= Ayl bl

1 Cas(A'p— b = 0,[A'],[p), [b');
5

6

[b] := Ao [b'] N [b];
[A] == Ao[A'] N [A].

Remark 4.6 If Cqr was used at Step 4 instead of Cas, the contractor of
Table 4.8 would become Corp (GEP for Gauss elimination with precondi-
tioning). [|

Example 4.11 Consider again the situation of Example 4.4, page 72, where

[4,5] 1,1 [1.5,2.5] [3,4]
[Al=| [-05,05 [-7,-5] [1,2] | and b]=|[0,2] |,
[~1.5,-0.5] [-0.7,—0.5] [2,3] [3,4]

(4.84)

but assume that

4.3 External Approximation 85

[—10, 10]
bl = | [~10,10) (4.85)
[—10,10]
At Step 2, [A’] = (mid (JA])) " % [A] is given by
[0.81909, 1.18092] [—0.21869, 0.21869] [—0.18092, 0.18092]
[—0.14248,0.14248] [0.79556,1.20445] [—0.14248,0.14248] | ,
[—0.23659, 0.23659] [~0.15110,0.15110] [0.76342, 1.23659]
(4.86)
and at Step 3,
[—0.0755468, 0.302187]
[b'] = (mid ([A])) " % [b] = | [~0.0231942,0.437376] (4.87)
[1.24056, 1.74951]
Cas(A'p —b' = 0,[A’], [p], [b']) finally yields
[—4.97088, 5.24758]
[p]=| [-3.611,4.13162] (4.88)

[—3.4532,7.3698)

Table 4.9. Iterations of Gauss—Seidel contractor with preconditioning

k [p1] (k) [p2] (k) [ps] (k)

0 [£10,10] (10, 10] (10, 10]

1 [—4.97088, 5.24758] [73.61101, 4.13162} [—3.45313, 7.36981}
2 [72.82313, 3.09983] [—2.28883, 2.80945} [—0.818916, 4.73559]
5 [71.26437, 1.54107] [—0.939061, 1.45968] [0.474056, 3.14881]
10 [71.10986, 1.38656] [—0.813738, 1.33436] [0.573876, 2.98711]
20 [71.10698, 1.38368] [—0.811386, 1.33201] [0.575741, 2.98409]

The results of Table 4.9 are obtained by iterating the application of Casp.
They are better than those obtained without preconditioning in Example 4.5,

page 74. This example is treated in Exercise 11.28, page 336.

Example 4.12 If now [p] is given, as in Example 4.4, by

[_00700]
pl = | [-o0,0q] |,

{700700]

86 4. Contractors

Casp cannot contract [p]. On the other hand, by replacing Cas by Car in
Step 4 of Table 4.8, one obtains the contractor Carp, which contracts [p] in
one iteration into
[—1.10698, 1.38367]
p] = | [-0.785241,1.33201] | . (4.90)
[0.758351, 2.98409]

This result is slightly better than that obtained by Cas in Fxample 4.4. No
further contraction can be performed on [p] by iterating Car. The results
obtained by Cqgp in one interation for this example are better than those
obtained by Casp in 20 iterations (see Table 4.9). On the other hand, for
many examples, Carp s unable to contract [p] whereas Casp is efficient. W

4.3.3 Newton contractor

This contractor applies to the CSP
H:(f(x) =0,x € [x]), (4.91)

with ny = ny (Moore, 1979; Hansen, 1992a). It is not a direct intervalization
of the Newton fixed-point method, but can be interpreted as an improved
version of the contractor presented in Section 4.2.3. It is very efficient when
f is smooth over the domains of the CSP and when these domains are small.
Let xo be any vector in [x] (its centre, for instance), then a componentwise
application of the mean-value theorem to (4.91) yields, with obvious notation,

(f(Xo) +Je(€y - &) (x —x0) = 0)

xe[x),& €x]...&, € [x

Ap +f(x0)=0 (4.92)
- P=X—Xp
A=Je(& &)

x e [x],§ €[x]...&, € [x]

This yields the contractor of Table 4.10, denoted by Cn (for Newton contrac-
tor).

Remark 4.7 The order in which the constraints are written, which was ar-
bitrary in (4.92), is significant in the implementation of Cx.]

Remark 4.8 From a geometrical point of view, the principle of this con-
tractor is to enclose the graph of each coordinate function f;(x) over [x]
between two hyperplanes and to solve the associated interval linear system.
This can be viewed as a linearization where non-linearity is transformed into
uncertainty. |

4.3 External Approximation 87

Table 4.10. Newton contractor

Algorithm Cy (in: f; inout: [x])

1 xo:= mid([x]);
2 [A] = [32] ()
3 [p] =[x - %o
4

Casp (Ap+f(x0) =0,A €[A],p € [p]);
x] := [x] N ([p] + x0) -

ot

4.3.4 Parallel linearization

In Section 4.3.3, the number n; of constraints was assumed to be equal to the
dimension n of x. Assume now that n¢ and n, may differ. The contractor to
be presented handles all the constraints simultaneously, using a parallel lin-
earization approach (Kolev, 1998; Jaulin, 2001b). The principle is to enclose
each f; (x) over [x] between two parallel hyperplanes (contrary to the interval
Newton method, where these hyperplanes are not parallel). The function f is
then bracketed over [x] according to

Ax+b<f(x) <Ax+b. (4.93)

This bracketing can again be found by using the mean-value theorem, pro-
vided that f is differentiable. Assume that x¢ is a point in [x], for instance
its centre. Then there exists £ € [x] such that

f(x) = f(x0) + J¢ (&) (x — x0)
& f(x) = f(x0) + Je¢(x0)(x — x0) + J¢ (&) (x — x0) — T¢(x0)(x — x0)
& f(x) = Je(xo)x + f(x0) — Je(x0)x0 + (J£(€) — Te(x0))(x — Xo0).
(4.94)
Equivalently, one may write f(x) = Ax + b, with
A = J¢(x0) (4.95)
and
b = f(xg) — Je(x0)x0 + (J£(&) — J£(x0)) (x — x0). (4.96)

Based on (4.94), an external approximation of H : (f(x) = 0,x € [x]) is thus

Ax+b=0

A = Je(x0)

b = f(x¢) — Axo + (J¢(§) — A) (x — xo)
x € [x], € € [x]

(4.97)

The resulting contractor by parallel linearization is denoted by Cj. An imple-
mentation of) is given in Table 4.11. The contractor Cpp called at Step 4 by

88 4. Contractors

Table 4.11. Contractor by parallel linearization

Algorithm C;| (in: f; inout: [p])

1 xo := mid([x]);

A = J¢(x0);

1b] = £(x0) — Axo = (] (x]) — A) (ix] — x0)
CLP(AX —-b=0,x¢ [X] b e [b})

=W

C) performs a contraction of the domain for x via linear programming (see
Section 4.2.5, Case 2).

To quantify the quality of the linear bracketing (4.93), let us compute the
ratio w ([b]) /w ([x]), where [b] is the box computed at Step 3 of C. This
ratio is given by

w([b]) _ w(([Je] ([x]) = I¢ (x0)) * ([¥] — x0))

0
w ([x]) w ([x]) ’

(4.98)

so w ([b]) /w ([x]) tends to 0 with w ([x]), which means that the bracketing

becomes more and more accurate when [x] converges to a point. Figure 4.2

illustrates the parallel linearization ax + [b] = 22+ [, 1] of a function f over

2] = [-2,2].

Fig. 4.2. Parallel linearization in the scalar case

4.3.5 Using formal transformations

Algebraic manipulation of the existing constraints makes it possible to build
a CSP H; that is an external approximation of H : (f(x)=0,x € [x]},
i.e., such that H = H;. Except in the polynomial case (Marti and Rue-
her, 1995; Benhamou and Granvilliers, 1997), no general formal method seems
to have been developed to build such external approximations, but it is good

4.3 External Approximation 89

practice to design H; in such a way that it involves few variables to facilitate
processing by bisection if it turns out to be needed. The idea is illustrated in
the following example.

x2/\ :L'Ql\
1 1
of - : of =
0 05 1 e 0 05 i >z,

(a) (b)

Fig. 4.3. The CSP of Example 4.13 has an empty solution set; (a) contractors
such as Cj, Cx or Cyp fail to contract [x](0); (b) a formal transformation makes it
possible to bypass the deadlock

Example 4.13 Consider the CSP

1 — To =0
2+a5-1 =0
xo — sin(mwzy) =0 (4.99)
x1 — sin(mwzg) =0
To — T% =0
z1 € [0,1], 22 € [0,1]

Contractors based on linearization, such as C or Cx are not efficient on 'H
because the domains are too large. C|1 is not efficient either, because each
of the five constraints is consistent with the box [x](0) = [0,1] x [0,1] (see
Figure 4.3a). Now, by summing the first two constraints, one gets the new
constraint x2 + x3 — 1 + 21 — 29 = 0. Therefore, the CSP

M - (m +3) + (-3 -3 0) . (4.100)
xr1 € [0,1},1‘2 S [0, 1]

satisfies H = Hy. Constraint propagation can be used to contract [x1] and
[x2] in H1. The primitive constraints associated with the constraint of Hy are

90 4. Contractors

1

ay =T+ 3,

1

a2 = T2 — 3,
— 2
a3 — al,
2
aq == CLQ,
_ 3
as + a4 = 5.

They are used to contract the domains for v1,x2, a1, a2, a3 and a4 as detailled
below

a; =x1 + = and z1 € [0,1] = a1 € [5,3],

az =3 — 5 and x9 € [0,1] ﬁage[f%,%],

as = a} andale[%,%] :age[%,%],

as = a3 and az € [—1, 1] = as€[0,1],

az =32 —aq, as € [0,1] andaz € (1.5 = a3 € [§,2],

aq % ag,age[%,%} anda4€[0,i] :>a4€[0,%],

a3 = ay, @6[—2,%} anda;;e[(),ﬂ =>a2€[—%,%],

a? =as, a1 € [1,2] andas € [3,3] = ai € [\/g, 3,
xg—ag—&-%andage 2,%} = x4 €]0,1],
xlzal—%andale{\/;,\/—} :>1:16[%—%, %—%]

No more contraction can be performed. The resulting contracted box is

S

The contraction is optimal, as illustrated by the box [x](1), in dark grey in
Figure 4.8b. This is because 1 and x2 occur only once in the constraint of
H1. The contracted domain [x](1) can then be transmitted back to H to bypass
the deadlock. The first constraint of H makes it possible to contract [x](1)
down to [x](2) and the second constraint to contract [x](2) down to [x](3),
see Figure 4.3b. Few more iterations are necessary to get empty intervals. B

4.4 Collaboration Between Contractors

4.4.1 Principle

Several contractors for CSPs of the form H : (f(x) = 0,x € [x]) have been
presented. None of them can claim to be universally better than the others.
What is important is their complementarity. A good contractor is one that
is able to contract the CSP, especially when the others are not. Among the
contractors presented up to now, Cgk, Cn, Casp and C) are efficient only if

4.4 Collaboration Between Contractors 91

the size of [x] is small, whereas C | is more efficient if [x] is large. Cqr, Casp
and Cpp consider constraints only of the form Ap = b, whereas C|, C|; and
Cn can deal with much more general non-linear constraints.

In this section, the available contractors will be made to collaborate in
order to build a more efficient contractor, inheriting the qualities of its con-
stituents. Any new contractor with desirable features can be appended to the
resulting contractor.

The basic idea is taken from interval constraint propagation (ICP), an ex-
tension to intervals of constraint propagation as initially developed by Waltz
(1975), which is akin to a relaxation method. This extension was indepen-
dently proposed by Cleary (1987) and Davis (1987). The idea is to contract
the domains of the variables of the CSP by using all the available contrac-
tors successively. The order in which the contractors are selected forms the
strategy (Montanari and Rossi, 1991).

Let us first recall some definitions (Benhamou and Granvilliers, 1997). A
contractor C satisfies

V], C([x]) C [x] (contractance),

(4.101)
V[x], [x] NS C C([x]) (correctness),

where S is the solution set of H. Moreover, a contractor is monotonic if
x] C [yl = C([x]) € C(ly))- (4.102)

All the contractors presented in this chapter are monotonic (Granvilliers,
1998). A contractor C is idempotent if

Coc(x) 2 () = (Ix]). (4.103)
A fized point of a contractor C is a box [x] that satisfies
C([x]) = [x]. (4.104)

If C; and Cy are monotonic, then the contractor Cy 2 £ Cy o Ca ([x])) is also
monotonic. Even if C; and C; are idempotent, C; 2 may not be idempotent.
A store is a set of contractors and a strategy is a sequence of contractors
belonging to the store. Consider, for instance, a store L consisting of four
contractors C1,Ca,C3 and Cy:

£ = {61762763764}-
A cyclic strategy associated with £ corresponds to the sequence
S = {Cla CQ, C37 C47 Cla 627 C37 C47 Cla 627 637 C4 e } (4105)

A strategy S is fair if, for any k > 1 and any contractor C in the store, there
exists k1 > k such that C is at rank k.

The contractor Co, of Table 4.12 corresponds to the application of all the
contractors of the list £ according to the strategy S. For a store of monotonic
contractors and a fair strategy, it is trivial to prove that C, is monotonic and
idempotent.

92 4. Contractors

Table 4.12. Contractor combining all the contractors of the store £ according to
a strategy &

Algorithm Co (inout: [x])
k= 0;[x] (0) = [x];

1
2 repeat

3 k=k+1;

4 choose the contractor C in £ according to the strategy S;
5 Xk = C (k- 1))

6

7

until [x](k) is a fixed point of all contractors in L;

I := [x](k).

Theorem 4.3 The algorithm Cu([X]) converges to the largest box [z] in-
cluded in [x] such that ¥C in L, C([z]) = [z], provided that all sets (or con-
straints) involved are closed.]

Proof. Denote by [x](k) the box at iteration k. Let us first prove that Coo ([x])
contains [z]. Since [z] C [x](0) and since all contractors of the store are
monotonic,

2] C [xX|(k) = C([2]) C C(X|(k)) = [2] C [x](k +1), (4.106)

for any contractor C of £, then [z] C [x](o0) = Cuoo([x]). Let us now prove that
Coo([x]) = [2]. For all C in L, since the strategy is fair, C (Coo([X])) = Coo([X]),
i.e., Coo([x]) is a fixed point of all contractors in £. Therefore [z] = Coo([x]). W

This result has been established by Montanari and Rossi (1991) for CSPs
with finite domains, see also Arsouze et al. (2000). Here, it has been extended
to continuous domains. It shows that the result obtained by Cu is indepen-
dent of the strategy used, provided that it is fair. In our implementation,
a cyclic strategy has been chosen because it is simple to implement as it
does not require any bookkeeping on dynamical structures involving the use
of pointers. More efficient strategies can be found in Montanari and Rossi
(1991). In practice, the loop in the algorithm of Table 4.12 is stopped when
the contractions are deemed too small.

The algorithm of Table 4.12 will now be illustrated on an example where
all constraints have been chosen linear to facilitate calculation by hand. For
simplicity, the store contains only contractors based on forward—backward
propagation. There are only two variables to allow a visual presentation of
the contractions and to illustrate the deadlock effect.

Example 4.14 Consider the two following CSPs, both to be contracted with
respect to their two equality constraints with C1.

4.4 Collaboration Between Contractors 93

1 +x9y =0 r1+x9=0
— 225 =0 zy — x5 =0
My | U and Ho - | 17 2 . (4.107)
zy € [-10,10] 71 € [~10,10]
2o € [10, 10] 5 € [~10,10]

The store contains two contractors, namely C 1 applied to the first equation
(contractor C1) and Ciy applied to the second equation (contractor Cz). A
cyclic strategy is chosen. For Hi, Coo converges to the solution x = 0 (Fig-
ure 4.4a), but Coo fails to contract Ha. The reason for this failure is that
the box [—10,10] x [—10, 10] is consistent with each constraint taken indepen-
dently. For a visual interpretation of this deadlock, consider the sets associ-
ated with the two constraints of Hs:

Er = {(z1,22) | 21 + 22 =0},
]EQ = {(:L‘l,:L'Q) ‘ r1 — T2 = 0}

C1([x]) returns the smallest box that contains By N[x]. But since Ey intersects
all faces of [x] (see Figure 4.4b), this smallest box is [x] itself (i.e., C1([x]) =
[x]). The situation is similar with Eo, ie., Ca([x]) = [x]|. As illustrated by
Figure 4.4a, the deadlock cannot occur with Hi. Note that the contractors
C1, Co and Cx are all idempotent for Hy and Ha. The composition Cy o0 Cy is
idempotent for Ha but not for H;. [|

(4.108)

Loy
N
o x]
E, «
EQ
-10 10| ",
—10l -10

(a) (b)

Fig. 4.4. Interpretation of forward—backward propagation; (a) Co contracts [x]
down to the singleton 0; (b) the contractor is at a deadlock, i.e., C1([x]) = [x] and
C2([x]) = [x]

Remark 4.9 Example 4.14 suggests three conjectures that are true if n, =
2 but false if ny > 3. The first one is that if E1 or Es in Figure 4.4b is

94 4. Contractors

moved, the deadlock disappears, and thus that the failure of C |+ is atypical.
The second conjecture is that if C|y fails in the linear case, then the centre
of [x| is a solution of H (see Figure 4.4b). The last conjecture is that if the
constraints are monotonous with respect to all the variables with the same type
of monotonicity, then C|y cannot fail (see Figure 4.5). Figure 4.6 provides
a counterexample to these three conjectures, by showing a situation with two
linear constraints with the same type of monotonicity, with an empty solution
set and for which C |y fails. The two constraints are represented by the two
parallel planes. Both planes touch all faces of [x] and thus C|1 cannot contract
[x]. []

S /_’
L/

a1

\d

[x]

A]

Fig. 4.5. With C,, the box [x]| will converge to the box [r], which is the smallest
one consistent with the two constraints

Fig. 4.6. Counterexample to three conjectures of Remark 4.9

4.4 Collaboration Between Contractors 95

4.4.2 Contractors and inclusion functions

Contractors may employ inclusion functions. These inclusion functions are
not necessarily minimal, so contractors may be used to improve their accu-
racy. The complexity of the resulting contractors remains polynomial. This
idea is the foundation of box-consistency, developed in the context of con-
straint propagation (Benhamou et al.; 1999). Using contractors to improve
inclusion functions is especially helpful when dealing with high-dimensional
problems (typically more than ten variables), and when there are multiple
occurrences of variables in the formal expression of the function f.
An upper bound 7 for

f = max f(x), (4.109)
xE[x]

where f : R"” — R, can be computed by the algorithm UUB (for upper upper
bound) of Table 4.13. UUB uses a contractor C for contracting the CSP

H: (f(x) =y, XE[X], y € [g,y]), (4.110)

where [y, 7] is an interval guaranteed to contain f, initially equal to [f] ([x]).
The complexity of the computation can be kept polynomial provided that C
has polynomial complexity.

Table 4.13. Computing an upper bound for an inclusion function with a contractor

Algorithm UUB(in: f, [x]; out: 7)

1 repeat

2 [g, m := [f] ([x]); // where [f] is a classical inclusion function
3 y = f(mid([x]));

4 (L) =C(f(x) =y, x€[x], y € [y,7]);

5 until the improvement on y and ¥ is deemed too small.

The interval computed at Step 2 of UUB contains £, as defined by (4.109).
At Step 3, y is necessarily a lower bound for f, but this statement could
be made more efficient by using a local maximization algorithm, such as a
punctual Newton method. The contractor of Step 4 eliminates parts of [x]
that contain x such that f(x) < y.

Example 4.15 Let us search for an upper bound of the function f(z) =

z% — 32 over the interval [x] = [0,4]. With the natural inclusion function, at
Step 2, UUB yields
3 3
[£1((2]) = [a]” = 5[] = [0,16] - 5[0, 4] = [-6,16]. (4.111)
The pessimism due to the two occurrences of x in the formal expression of

can be illustrated by decomposing the constraint f(x) = x2 — 2z into the
2

96 4. Contractors

primitive constraints a = x2 and y = a — %x In the (x,a) space (i.e., in
the (:r,x2) space), the relation y = f%:r + a corresponds to the orthogonal
projectz'on of the point (x,a) onto a straight line with direction vector v =
(=3, 1)T. As idllustrated by Figure 4.7a, [f]([z]) = [—6,16] is much larger
than f([z]) = [-0.5625,12], because it includes the projections of the pairs
(r = 4,22 = 0) and (z = 0,22 = 16), which are unfeasible. The role of UUB
is to enclose the unknown upper bound f = 12 for f([z]) inside a smaller
interval. At Step 3, UUB computes y = f(mid([z])) = f(2) =4—-3=1. At
this stage, the best available enclosure for f is [1,16]. At Step 4, UUB calls
a contractor for the CSP

(x? — gx =y,x € [0,4],y € [1,16]). (4.112)

Assume for simplicity that the only available contractor is C|r. Contracting
the domains of the CSP (4.112) corresponds to the following operations

[z] = [0,4],

la] = [2)* = [0, 16],

ly] = (la] — 2 [z]) N [1,16] = [1,16], (4.113)
la] = (Jy] + 2 [2]) N [a] = ([1,16] = [0,6]) N [0, 16] = [1, 16],

[z] = V/[a]N]0,4] = [1, 4].

This is summarized by Figure 4.7b. The box [1,4] x [1,16] containing the pair
(:r, :r2) is represented in grey. During the second iteration of the loop, a better
lower bound for f is obtained as y = f (mid ([z])) = f(2.5) = 2.5. The best

known enclosure for f is now [2.5,16]. Figures 4.7c and 4.7d describe the
results of the second and third iterations of the loop. The procedure converges
to the actual value f = 12. |

Table 4.14. Inclusion function evaluation with a contractor

Algorithm IFEC(in: f, [x]; out: [y,7])
L y:=-UUB(-f, [x]);

9 7:= UUB({,[x]).

The same algorithm can also be used to compute a lower bound y for the
lower bound of f ([x]). It suffices to compute —UUB(—f, [x]). An inclusion
function [f] for f can thus be obtained by running the algorithm IFEC pre-
sented in Table 4.14. Employing this algorithm for the evaluation of inclusion
functions used by a contractor preserves the polynomial complexity of this
contractor.

4.5 Contractors for Sets 97

7 16
w e\ 1(7%)
6=
14 _
12)
g x
§ ===\ o625

Fig. 4.7. Contracting procedure to compute an upper bound for f([z]); as the scales
on the two axes differ, orthogonal projection does not actually correspond to the
directions indicated in dotted lines, which should only be interpreted symbolically

4.5 Contractors for Sets

4.5.1 Definitions

A\

Fig. 4.8. Contractor for sets

98 4. Contractors

The operator Cg, : IR™ — IR™ is a contractor for a set S, of R™ if it
satisfies

Cs, ([p]) C [p] (contractance),

(4.114)
Cs,([P]) NSp = [p] NS, (correctness),

V[p] € IR, {
as illustrated by Figure 4.8. Even if the notions of contractors for sets and for
CSPs defining these sets can be considered as equivalent, contractors for sets
will often be preferred in later chapters. They simplify the presentation of
algorithms and make it possible to avoid the use of the terminology of CSPs.

Properties of contractors for sets are presented in Table 4.15.

Table 4.15. Properties of contractors for sets

Cs,, is monotonic iff [p] C [a] = Cs,([p]) C Cs,([a])

Cs,, is minimal iff V[p] € IR™, Cs, ([p]) = [[P] N Sp]
Cs, is thin iff vp € R™, Cs,(p) = {p }m Sp

Cs, is idempotent iff V[p] € IR™,Cs, (C L ([P]) = Cs, ([p])
Cs, is more contracting than Cg iff | V[p] € IR™ ,Cs, ([p]) C Cs, ([p])

Let Cgll) and CSiZ) be two monotonic contractors for S%) and Sg and define

Cs1 N Csz ([P)) = Csp([P)) N Csz([P)) (4.115)
Cs1 LI Cs2 ([p]) = Csp ([P]) U Cez ([p]) - (4.116)
It is trivial to show that the following properties hold true:
(i) S§CSE= Csz is also a contractor for St
(47) Cs3 NCsz is a contractor for SL NSz, (4.117)
(477) Csy LI Csz is a contractor for SL LS.
The property (i) will be used to contract domains for optimization problems

and (74) is useful to develop contractors for problems involving a disjunction
of constraints (i.e., the Boolean operator OR is involved).

Example 4.16 Consider an inclusion test [ts,] for the set Sp. A contractor
Cs, for Sy is given by

Cs, ([pl) = @ if [ts,] ([P]) =0,
Cs, ([p]) = [p] otherwise.

D

(4.118)

This contractor is thin if and only if [ts,] is thin. []

4.5 Contractors for Sets 99

4.5.2 Sets defined by equality and inequality constraints

The contractor C, developed in Section 4.4 for CSPs of the form H : (f(x) =
0,x € [x]) can be used to build efficient contractors for more general classes
of sets. Consider, for instance, a set S;, defined by equality and inequality
constraints:

Sp ={p € R™ | g(p) < 0,h(p) =0}, (4.119)

where g and h are non-linear vector functions and the inequality is to be
understood component-wise. Set

x = <p> J[x] = [p] x [v] and £(x) = (g(}fz;) V) , (4.120)

where v is a vector of slack variables with domain [v] = [0, c0[Xx - -+ x [0, 00].
Since

x € [x] < | h(p)=0 |, (4.121)
p € [p]

B g(p) < 0
(f(x) o) o | a) =

v €[0,00[x -+ % [0,00]

a contractor C for the CSP H : (f(x) = 0,x € [x]) can be used as a contractor
for the set S, using the algorithm described in Table 4.16. Step 1 defines the
CSP associated with the set Sy, Step 2 contracts the domain for the extended
box [x] and Step 3 computes the projection of [x] onto the p-space.

Table 4.16. Contractor for a set defined by equality and inequality constraints

Algorithm Cg, (in: g, h; inout: [p])

1 x:=(p,v); [x] := [p] x [0,00[*"=; £(x) := (g(p) + v, h(p));
2 [= C(pd):

3 [p] := projrm [X]-. // projection of [x] onto p-space

4.5.3 Improving contractors using local search

Consider a set S, with a non-zero volume, a contractor Cs, for S, and a box [p]
to be contracted as illustrated by Figure 4.9a. Some known feasible points are
represented by black dots and [r] denotes the smallest box containing them.
The only parts of [p] that may be eliminated by contraction are those in [p]
and outside [r]. Let [q] be a box with a face in common with [p] and touching
[r] as indicated in Figure 4.9a. A contraction of [q] can be extended to [p] as

100 4. Contractors

shown in Figure 4.9b. This technique can be employed in Cs, to make it more
efficient. Moreover, the fact that [p] and [r] are almost equal can be used as
a stopping criterion for the contractor. To be efficient, local searches should
inflate [r] as much as possible; see Section 5.4, page 111, for more details.

Pap

3

I
S
>

> >
P by

(a) (b)

Fig. 4.9. Feasible points make it possible to improve the efficiency of contractors

4.6 Conclusions

This chapter has presented the important notion of contractor, used to down-
size the search box without losing any of the solutions of the problem of in-
terest. Contractors are basic ingredients of the solvers to be presented in the
next chapter. As illustrated by Figure 4.10, solvers use inclusion functions
and interval computation only through contractors. Note that even if many
contractors are based on inclusion functions, some contractors use other types
of tools. This is the case, for instance, for the contractors developed in the
context of constraint propagation over continuous domains. The notion of
contractor generalizes that of inclusion test presented in Chapter 2, in the
sense that an inclusion test applied to a box [x] can be seen as a special
contractor that returns either [x] itself or the empty set. As shown in Sec-
tion 4.4.2, contractors may also be helpful to improve the quality of inclusion
functions. This is represented by the upward arrow of Figure 4.10.
Contractors are requested to have a polynomial complexity in time and
space, and thus not allowed to bisect domains. As a result, they may reach
deadlocks, as illustrated by Example 4.14. Bisection will be a way out of
such deadlocks. The idea is to split the box [x] into two subboxes, and to

4.6 Conclusions 101

solvers
(see Chapter 5)

contractors
(see Chapter 4)

inclusion
function
{see Chapter 2)

interval
computation
{see Chapter 2)

Fig. 4.10. Solvers call contractors, contractors use inclusion functions that require
interval computation; the accuracy of the inclusion functions can be improved by
using contractors

attempt contraction on each of them. When the dimension of [x] is large, this
should be a last resort, because a bisection in one direction is often followed
by bisections in the others, and the complexity then becomes exponential.
For instance, in dimension 20, a bisection in each direction of a single box
generates more than one million boxes.

Recent results have shown that if a limitation is set on the number of
components of x allowed to be bisected, it is possible to keep the complexity
of the contractor polynomial. The corresponding methods are based for in-
stance on 3-B-consistency (Lhomme and Rueher, 1997) or on box-consistency
(Benhamou et al., 1999). A result that seems even more promising is the al-
gorithm based on (3-2)-consistency (Sam-Haroud, 1995; Lottaz, 2000), which
provides a polynomial contractor that is optimal for a huge class of CSPs,
in the sense that it generates the smallest box that contains the solution
set. It suffices that the CSP involves constraints that are at most ternary
(this can be achieved by decomposing the CSP into primitive constraints)
and that these constraints satisfy some row-convexity conditions. Unfortu-
nately, even if this contractor is polynomial, it requires computation with
five-dimensional subpavings, which turns out to be extremely difficult with
present-day computers.

The contractors presented in this chapter will be important ingredients
of the solvers to be presented in the next.

5. Solvers

5.1 Introduction

Chapter 4 presented contractors that make it possible to contain a compact
set S defined by non-linear equations and inequalities in a box. Although
the results are guaranteed, the accuracy with which S is characterized is not
under control. On the other hand, bisection allows accuracy to be controlled,
but causes exponential complexity. Bisection should therefore be avoided as
much as possible when the number of variables is high, in an attempt to
escape the curse of dimensionality. This is why, in our opinion, when many
variables are involved bisection should be used as a last resort, only when all
available contractors have failed. A decision may then have to be taken as to
which variable domains should be bisected.

All the solvers proposed in this chapter partition the search box into a
union of boxes (the paving). The paving is generally built by the solver itself.
On each box of this paving, contractors, inclusion tests and local optimization
procedures are called. All of these procedures have a polynomial complexity.
The results returned by the solvers depend only on the results obtained for
each box of the paving. The precision of the solver is controlled by coefficients
specifying, for example, the width ¢ of the smallest boxes of the paving, or
the accuracy in the localization of a global optimum. For a given problem,
the accumulation set of a solver is the set where boxes with width less than e
accumulate when ¢ tends to zero. The computing time of the solver increases
quickly with the dimension and size of this accumulation set.

To illustrate the methodology followed to obtain efficient solvers, several
problems will be considered. Section 5.2 is about solving systems of non-
linear equations where the number of equations is equal to the number of
variables. The characterization of a set defined by non-linear inequalities will
be performed in Section 5.3 by bracketing this set between two subpavings.
Section 5.4 addresses the problem of finding the smallest box containing a
set defined by non-linear inequalities. Section 5.5 deals with the minimization
of a cost function under equality and inequality constraints. The approach is
then extended in Section 5.6 to the difficult problem of minimax optimization.
Section 5.7 presents a method for characterizing level sets of a cost function.

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001

104 5. Solvers

5.2 Solving Square Systems of Non-linear Equations

Consider n variables linked by n equations:

filzy,xa,...,xy) =0,

falzr, @, ... @n) =0,
or equivalently, in vector form,
f(x) = 0. (5.2)

The problem to be solved is to characterize the set Sy of all the vectors x
that satisfy f(x) = 0 and belong to a (possibly very large) search box [x].
The recursive algorithm of Table 5.1 computes a subpaving that contains
Sx. We called this algorithm S1viAX because the search space corresponds
to the entire vector x whereas in Section 5.3 the algorithm S1viaP will deal
with a subvector p of x. £ is initialized as the empty list and £ is a small
positive real number. The union of all the boxes in the list £ returned by
S1viAX contains Sy. Cs, used at Step 1 is a contractor for Sy, i.e., it satisfies
Cs, ([x]) NS¢ = [x] NSk (see Section 4.5). Chapter 4 suggested a number of
such contractors.

Table 5.1. Algorithm S1viaX for solving a set of non-linear equations

Algorithm SrviaX(in: [x],Cs,,€; inout: £)
<] = Cor (<)
if ([x] = @) then return;
if (w([x]) < €) then
L= L U{[x]}; return;
bisect [x] into [x1] and [x2];
StviaX([x1],Cs,, €, £); SIVIAX([x2], Cs,, €, £).

S T e W N =

Remark 5.1 For some applications, it is useful to test whether there exists
a unique solution of f(x) = 0 in a given bozx [x] of L. If Cn([x]), Cnp([x]) or
Cx([x]) is strictly inside [x], then there exists a unique solution of f(x) = 0
in [x| (Hansen, 1992b). []

To bisect [x] into two boxes at Step 5, one may cut it at its centre,
perpendicularly to one of its edges of maximum length. But, as we shall see
now, when the problem is ill conditioned, such a bisection may be inefficient
and one should find a more suitable criterion to select the direction along

5.2 Solving Square Systems of Non-linear Equations 105

which the bisection should be conducted (Ratschek and Rokne, 1995; Ratz
and Csendes, 1995).

Define the ith symmetry segment and the ith symmetry (hyper) plane of
[x] as follows:

segm,([x]) & my X ... X My_1 X [Tg] X myp1 X ... X My,

A

plane;([x]) = [x1] X ... X [mi—1] X mi X [Ti41] X ... X [zy],

where my, = mid([zx]). Note that segm;([x]) and plane;([x]) are orthogonal.
These definitions are illustrated by Figure 5.1, where n = 3.

Fig. 5.1. Three-dimensional cube with its three symmetry planes and its three
symmetry segments

Figures 5.2 to 5.4 show that the efficiency of bisection may strongly de-
pend on the choice of the plane along which this bisection is performed. In
these pictures, the inclusion function [f] for f is minimal, but this is not re-
quired. Figure 5.2 illustrates a situation where f is ill conditioned and where
the box [x] is assumed small enough to allow a linear approximation of the
behaviour of f over [x]. The symmetry segments of [x] as well as their images
are represented with thin lines. A bisection along plane; ([x]), as in Figure 5.3,
marginally improves the description of the behaviour of f over [x], contrary
to a bisection along planes([x]), as in Figure 5.4, which is much more effi-
cient. It then seems rather natural to bisect [x]| along the symmetry plane
orthogonal to the symmetry segment along which f is the most sensitive, by
choosing the index i that maximizes

pa (i) = jemax | w (f5 (segmy ([x]))) - (5.3)

106 5. Solvers

This criterion can be approximated by

pali) = _max wi(e]) | 203 (mid (i)

J€{1,...,n} T

, (5.4)

which is much easier to compute. If the efficiency of the bisection of [x] into
[x1] and [x2] is quantified by

vol([f}([x]))
vol([£]([x,]) U [£]([x2]))’
then the bisection of Figure 5.3 is about half as efficient as that of Figure 5.4.
Once the direction i of bisection has been chosen, it may be more inter-
esting to translate the bisection plane by cutting along

(5.5)

plane,(a, [x]) = [z1] X -+ X [z;-1]

x (az; + (1 — a)T;) X [Tig1] X -+ X [25], (5.6)
where a €]0,1[, with @ = 0.5 corresponding to a symmetry plane. This is
illustrated by Figures 5.5 to 5.7. In Figure 5.5 four horizontal and vertical
segments of x| are represented with thin lines, as well as their images by f.
The criterion (5.4) suggests that the bisection should be performed for i = 2.
For o = 0.5, one obtains the situation depicted in Figure 5.6. The bisection
of Figure 5.7, which corresponds to a = 0.2, leads to better efficiency in
the sense of (5.5). A suitable choice for o generally reduces the number of
bisections performed by S1viaX but the improvement is significant only when
the problem is very ill conditioned. For simplicity, in this book, we shall only
consider bisections along symmetry planes.

5.3 Characterizing Sets Defined by Inequalities

Consider the set of non-linear inequalities

gl(plaan s 7pnp) € [y1]7
. . (5.7)

gng(p17p27 “ee 7pn],) S [yn,Jv

i.e., in vector form,

g(p) € lyl, (5.8)

where p is assumed to belong to the prior search box [p]. The problem to be
treated in this section is the characterization of the set

Sp 2{p < lpl|gp) €y} =g "(ly]) N [pl- (5.9)

Denote by x the vector obtained by appending y to p, and by [x] the box
[p] x [y]. For some applications, it is also of interest to characterize Sy and
Sy defined by

5.3 Characterizing Sets Defined by Inequalities 107

\4
A4

Fig. 5.2. Situation where f is ill conditioned

Fig. 5.3. Inefficient bisection

Fig. 5.4. Efficient bisection

108 5. Solvers

Fig. 5.5. Situation where f is ill conditioned

Fig. 5.7. A more efficient bisection (o = 0.2)

5.3 Characterizing Sets Defined by Inequalities 109

{X (5) Iyg(p),yé[y},pe[p]}, (5.10)

Sy = {g(p) I p € [p], g(p) € [y]} = g([p]) N[yl (5.11)

Note that S, is the orthogonal projection of Sy onto the p-space and that S
is its orthogonal projection onto the y-space, as illustrated by Figure 5.8.

[>

Sx

Fig. 5.8. Feasible sets Sx, Sy and Sy

Outer approximations for S,, Sy and Sy and an inner approximation for
Sp can be obtained with arbitrary precision by using the recursive algorithm
SIVIAPY given in Table 5.2.

Table 5.2. Algorithm S1viAPY

Algorithm S1vIAPY (in: [x],Cs,, ¢; inout: £)

1] = Cau(x]);

2 if ([x] = @) then return;

3 ([Pl Y] == s

4 if (w([x]) < €) then

5 L := L U{[x]}; return;

6 bisect ([p]) into [p1] and [p2];

7 al= (el) [x2] = (P2, [y]);

8 SvIAPY([x1],Cs,, €, £); SIVIAPY ([x2],Cs,; €, £).

In contrast to the algorithm SiviAX of Section 5.2, where a single type
of box is considered, SIVIAPY distinguishes [p] and [y], in order to allow the

110 5. Solvers

characterization of S,, Sy and Sy. £ is initialized as the empty list. After
completion of SIVIAPY, £ can be written as

L= {[X1}7[X2]v~~~v[xﬂ}v (5.12)

or equivalently as

L= {(lpals[y1]) (2], [Yal) s - ([Pl ly)) } - (5.13)

At Step 1, Cs, is a contractor for the set Sy (see Section 4.5, page 97).
From the list £ generated by SIVIAPY, outer approximations S;, Sy and Sk
for S;, Sy and Sk can be obtained by

Ss= U el S§s= | [yw] and Si= (J [xx (5.14)

and an inner approximation for S, is obtained as

Sp= U {lpl | glpe)) € 1} (5.15)

k=1,...k

where [g] is an inclusion function for g. Various strategies can be considered
for the bisection of [p] at Step 6. When the problem is well conditioned, for
simplicity, bisection is along a principal plane of [p], i.e., along a symmetry
plane orthogonal to one of the edges of maximum length. Otherwise, bisection
is performed perpendicularly to the direction ¢ that maximizes

; 99; mi 5
s il | 52 (o)) (5.16)

The subpaving S, generated by SIVIAPY in the p-space accumulates on
the set Sp, which generically has a dimension equal to n,. This means that
when the dimension of p is large (typically greater than four) and when high
accuracy is required for the characterization of Sy, no computer will be able
to complete SIVIAPY in a reasonable time. When one is interested in S,
only and not in Sy and Sy, the dimension of the accumulation subpaving can
be reduced to n, — 1. It suffices to store the current box [p] in S, when the
condition [g]([p,]) C [y] is satisfied, and to remove it from the list of the boxes
still to be bisected. The corresponding recursive algorithm SIVIAP, given in
Table 5.3, is similar to the Sivia algorithm of Section 3.4.1, page 55. The
main difference is that SIVIAP uses contractors for S,. The two subpavings
S, and S;, are initialized as the empty set.

At Step 1, SIVIAP uses a contractor Cs, for S,. We shall assume that Cg,
is either the contractor

IR™ — IR

Cs, : 7 if [g)(p) N[yl =2 (5.17)
Pl = i otherwise

5.4 Interval Hull of a Set Defined by Inequalities 111

or a more efficient contractor, which may for instance include Cgp in its store
(see Section 4.4, page 90). If Cs, has contracted [p] to @, then [p] is eliminated
at Step 2. At Steps 3 and 4, if [p] is proved to be inside Sy, then it is stored
in S, and Sp. Steps 5 to 8 are similar to steps of S1viaX (page 104). After
completion of SIVIAP, we have

S, CS, CSp. (5.18)

Table 5.3. Algorithm SiviAP

Algorithm SiviAP(in: [p],Cs,, g, [y], ; inout: Sp,gp)

[p] = Cs, ([P]);
if ([p] = @) then return;
if [g]([p]) C [y]
S, =8, U [pl; §, =5, U [p]; return;

if (_w([p])_< €) then
Sp :=Sp U [p]; return;

=W N =

bisect ([p]) into [p1] and [pg]_ ~
SIVIAP([plLCSpvgv [y] 1 E,S SP); SIVIAP([pz],Cgp,g, [y] 1€, S SP)'

2po =p?

0w N O G

Example 5.1 Consider again the problem of Example 3.2, page 58, which
is the characterization of the set of vectors p that satisfy

{exp (p1) +exp(p2) € [10,11],

(5.19)
exp (2p1) + exp (2p2) € [62,72].

For [p] = [0,4]x0,4], and e = 0.001, SIVIAP generates a subpaving similar to
that of Figure 3.9, page 58, in 3.8 s on a PENTIUM 133. With the same value
of €, SIVIA as presented in Chapter 3 would take 6 s. The improvement brought
by SIVIAP increases with n, and decreases when the size of S;, increases. B

The following section deals with the problem of finding the smallest box
that contains Sp.

5.4 Interval Hull of a Set Defined by Inequalities

Characterizing a (full) compact set S, may turn out to be too costly when
the dimension of p is high and when S, is large, because the paving of all the
boxes generated by SIVIA or SIVIAP accumulates on the boundary of S;,. In
the hope of computing less if less if asked for, consider now the problem of
finding the interval hull [Sp] of S, (the smallest box that contains it) instead
of requesting a detailed characterization of Sp,.

112 5. Solvers

This simplified characterization is important for many practical problems
such as parameter estimation, where the interval components of the interval
hull correspond to the parameter uncertainty intervals (see Chapter 6).

5.4.1 First approach

A first approach to solving this problem in a non-linear context is to decom-
pose it into the 2n, optimization problems

;r;réisri Di, Lneas}é D, i=1,...,np. (5.20)
Optimization may be based on signomial programming (Milanese and Vicino,
1991) or on interval analysis (Jaulin, 1994). For each of the optimization
problems in (5.20), the paving generated by an interval technique for global
optimization (such as the one to be presented in Section 5.5) accumulates
on IS, N A[Sp], i.e., on the part of the boundary of S, that belongs to the
boundary of the interval hull of S,. This is a drastic simplification compared
to SIVIAP, which accumulates on the boundary of S;; see Figure 5.9.

0 [Sp} nas,

Fig. 5.9. The part of the boundary of S; that also belongs to the boundary of [Sp]
is indicated by black dots

Example 5.2 Consider the problem (Jaulin, 1994) of characterizing the set
<1}.

The subpavings obtained when performing the four optimizations of (5.20)
are presented in Figure 5.10a. Compare with Figure 5.10b, which presents
the subpavings generated by SIVIAP when solving the same example. |

Sp = {(p1,p2) € [0,5)% | vt € [0,1], [¢t? + 2t + 1 — preP?*

5.4 Interval Hull of a Set Defined by Inequalities 113

(a) (b)

Fig. 5.10. Pavings generated when processing Example 5.2; (a) when evaluating
the interval hull; (b) when using SIVIAP; the number of bisections is much smaller
in (a) than in (b)

5.4.2 Second approach

A second approach based on interval analysis is to use the algorithm HuLL
(Jaulin, 2000a), which brackets [Sp] between two boxes [pin] and [Pout, as
follows:

[pin] C [Sp} C [pouty (521)

The only assumptions are that a contractor is available for S, that it is pos-
sible to check whether a given point p belongs to S, and that a (possibly very
large) box [p] containing S, is available. Instead of solving 2n,, optimization
problems, HULL generates two sequences of boxes [pin](k) and [pout](k) and
a sequence of subpavings IL (k) that satisfy

[Pin(K) C [Sp],
Sp C L (k) U [Pout](k), (5.22)
[pin](k) - [pout](k)‘

The principle of HULL is illustrated by Figure 5.11. As suggested in Re-
mark 3.1, page 51, L (k) will be denoted by L (k) when it is considered as a
list of boxes.

HuLL empties £ (k) by increasing [pin](k) as much as possible and
[Pous] (k) as little as possible, while satisfying the three conditions (5.22). The
basic transformations employed to perform this task are described below. Af-
ter each transformation, k is increased by 1. For simplicity, the dependency
of [Pin], [Pout] and £ in k will be omitted.

1. Inner inflation: If a point p € S, is found outside [piy] by any local
search (this is the case of the point represented by the black dot in

inner inflation, (¢) am-

)

b

(

bisection

5. Solvers

Fig. 5.11. Principle of HuLL; (a) initial configuration,

114

contraction, (e) outer inflation, (f)

)

d

(

putation,

5.4 Interval Hull of a Set Defined by Inequalities 115

Figure 5.11a), then set [pin] := [pPin) U {P} and [pout] := [Pout) L/ {P}
Recall that the interval-union operator L) computes the smallest box that
contains the union of its arguments, i.e., A LB = [A U B]. Inner inflation
is illustrated by Figure 5.11b.

2. Amputation: For any given [p] listed in £, set [p] := [[p] \ [Pin]], where

PI\[Pin] = {p € [P] | P ¢ [Pin]}- (5.23)

If, for instance, [p] C [pin] then [p]\[pin] = @ and the amputation
amounts to removing [p] from £. Note that the amputation is inefficient
if [p] contains a corner of [pin], since the box [[p]\[pin]] is then equal to
[p]. In Figure 5.11c, the amputation has been efficient only for two boxes
of L.

3. Contraction: For any given [p] listed in £, set [p] := Cs, ([p]), where Cs,,
is the available contractor for S,. See Figure 5.11d for an illustration.

4. Outer inflation: If the width of a box [p] listed in £ is smaller than € or
if only a very small part of [p] is outside [pout] (i.¢., b, ([P], [Pout]) < &),
then remove [p] from £ and set [pout] := [Pout] L! [P]. The small grey box
at the top of Figure 5.11e is deemed too small for a bisection to be
considered; [pout] has thus been inflated in order to enclose it, even if [p]
does not intersect Sp,.

5. Bisection: If the width of a box [p] listed in £ is larger than e, then
it is bisected into two subboxes [p1] and [p2]. In £, [p] is then replaced
by these two subboxes. Since bisection makes the complexity of HULL
exponential with respect to np, it should only be performed as a last
resort. This is illustrated on Figure 5.11f.

It is trivial to show that the three properties (5.22) remain satisfied after each
transformation. For simplicity we have chosen a first-in-first-out structure
for the list £, even if other structures might be more suitable. The algorithm
HULL is summarized in Table 5.4.

The following properties hold true (Jaulin, 2000a):

Jk > 0 such that L (k) = &, (5.24)

[pin](E) C [Sp] - [pout](E)v (525)

where k is the value of k after completion of HULL. This means that HULL
terminates and provides a guaranteed bracketing of [Sp]. The analysis of the

convergence of [pin](k) and [pout](k) towards [S,] when € tends to 0 remains
to be carried out.

Example 5.3 For the problem of Example 5.1, HULL finds in 0.0555s on a
PENTIUM 133 the smallest box enclosing Sy, with an accuracy of siz digits.
Figure 5.12 illustrates the technique. During the first iteration, at Steps 4, 5
and 6, HULL succeeds in scanning only the leftmost connected component of
Sp. It is thus able to inflate [pin] and [Pous] so that they are almost equal to the

116 5. Solvers

Table 5.4. Algorithm for characterizing the interval hull of a set defined by non-
linear inequalities

Algorithm HuLL(in: [p],Cs, ,&; out: [pi], [Pout))
L [pin] =5 [Pout] = @; L :={[p]};
2 repeat
3 pop first box out of £ into [p];
4 with a local seach, initialized at mid([p]),
search for feasible points p outside [pin|
5 for each p,
6 [Dia] = [pinl U LB} [Pout] i= [Pouw] U {B}; (inner inflation);
7 o] = [\lpill; (amputation)
8 if [p] # @; [p] := Cs,, ([P]); (contraction)
9 if [p] # &
10t (w(lpl) < 2) or (% () [pow]) < 2)
11 [Pout] := [Pout] LI [P]; (outer inflation)
12 else
13 bisect [p] and put the resulting boxes at the end of £;
14 until £ = 2.

interval hull of the left component of S, (see Figure 5.12a). The local search
of Step 4 is performed by the algorithm CROSS, shown at page 152 (Jaulin,
2000a). At Step 7, [p| cannot be amputated, but at Step 8, Cs, contracts [p]
directly to the solution box [Sp). At this stage, HULL cannot conclude that
[p] is equal to [Sp]. This is why [p] is bisected into two subbozes. L now
contains the two boxes represented in Figure 5.12b. Note that the conditions
(5.22) are satisfied. Then HULL takes the left box, fails in its local search and
contracts it at Step 8 until it becomes almost equal to [pin] and [pout]. Since
at Step 10, K2 ([p], [Pout]) < &, [Pout] is slightly inflated. Then HULL goes
to Step 2. Again the conditions (5.22) are satisfied. HULL takes the last box
of L and succeeds in scanning the rightmost connected component of S,. The
bozes [pin] and [pout] are thus inflated and become almost equal to [Sp]. At
Step 11, [Pout] is slightly inflated by [p] and HULL terminates because L is
empty. |

Remark 5.2 When the volume of S, is too small and S;, is elongated, it may
become very difficult to find feasible points that allow an inner inflation. As a
result, HULL may bisect boxes that are inside [Sp]. To avoid this effect, which
slows down the algorithm, one could use the main feature of the approach of
Section 5.4.1, which bisects only bozes with a part outside [Sp]. Thus, at each
iteration HULL should compute the smallest box [pext] that contains [Pout)
and the boxes of L. It will then bisect only boxes of L that touch the boundary

of [Pext]- n

5.5 Global Optimization 117

=V

Fig. 5.12. (a) [p] is contracted into the grey box; local search scans the left con-
nected component of S, only; (b) after bisection, HULL becomes able to scan the
right connected component of Sp; when HULL terminates, [pin)and [pout] are indis-
tinguishable

5.5 Global Optimization

The problem to be considered now is the minimization of a cost function ¢(p)
over a compact set S° C R"»:
min ¢ . 5.26
min c (p) (5.26)
For unconstrained minimization, S;° will be taken as a possibly very large
box [p] of R™. For constrained minimization, the definition of S;° will also

involve equality or inequality constraints. For instance, S;° may be defined
as

S% 2 {p e R

h(p) <0 and p € [p]}. (5.27)

The global minimum will be denoted by ¢, and the set of all the corre-
sponding global minimizers by S,. It is always possible to transform a max-
imization problem into a minimization problem, for instance by multiplying
¢(p) by —1. The most efficient interval-based optimization algorithms com-
bine the use of contractors for §p and classical local search with branching
algorithms. We shall explain how to get a contractor for gp, before describing
a branching algorithm that performs the minimization.

The tools developed in Chapter 4 cannot be applied directly to build a
contractor Cg for Sy, because the set of all global minimizers is usually not
described by non-linear equations or inequalities. Now, if € is an upper bound
for the global minimum ¢ (for instance obtained by local minimization), then

Sp C Sp(0), (5.28)

where

118 5. Solvers

Sp(e) =P(e) NSy, (5.29)
with

P(c) £ {peR™ | c(p) <T}. (5.30)
Thus, the contractor for S, (¢) defined by

Cs,.() = Csge N Crg) (5.31)

is also a contractor for gp, see (4.115) and (4.117), page 98. This contractor
is not thin in general, and its efficiency strongly depends on the value of .
Note that if ¢ is the smallest ¢ such that S,(¢) # @ then S,(¢) = Sp(€) = Sp.

Remark 5.3 Additional information could be used to increase the efficiency
of the contractor for S,. If, for instance, the cost function c to be minimized is
twice differentiable with respect to p and the minimization is unconstrained,
then the set

de d?c
02 {p R) =055 ()2 o} (5.32)

contains gp. A better contractor for gp is
Cgp = Cs, @ NCo- (5.33)
|

Table 5.5 presents the branching algorithm OPTIMIZE that performs the
minimization. Q is a working list of boxes ordered by increasing value of the
associated lower bound for the cost. OPTIMIZE fills a list £ of boxes. Upon
completion of the algorithm, the set IL associated with this list contains all
the global minimizers of the cost function ¢ (.) over S§5°, and the interval [c]
contains the global minimum ¢. [¢](.) is an inclusion function for the cost
function ¢(.). The box of Q selected at Step 3 is the one associated with the
smallest lower bound of the cost, which corresponds to selecting the most
promising box. At Step 4, some unspecified local minimization procedure
GODOWN is used to decrease the upper bound ¢. The real number € > 0 is
the width beyond which boxes listed in @ will not be bisected. The interval
[€] bracketing the global minimum is computed at Steps 15 and 16 by interval
evaluation of ¢ over all the boxes of L.

As an illustration, consider the situation of Figure 5.13a. An upper bound
c1 is available for ¢, but the contractor Cg (., leaves [p] unchanged. A local
search can then provide a smaller upper bound ¢y for ¢ (Figure 5.13b). The
contractor Cg_(c,) can now be used to contract [p] with an increased efficiency,

as shown in Figure 5.13c. Since Cg_ (c,) is also a contractor for gp, no global
solution of the minimization problem can be lost.

5.5 Global Optimization 119

Table 5.5. Algorithm for reliable minimization

Algorithm OpTIMIZE(in: [p],c(.),&; out [¢], £)
1 Q:={([p],0)}; ¢:=o0; [:==2; L:=2;
2 repeat
3 pop first box out of Q into [p];
4 ¢ := GoDowN(mid([p]),c(.));
5 remove from Q any pair ([p:],¢;) such that ¢; > G
6 [p] :=Cg ([P]);
7 if [p] # @ then
8 if (w([p]) < €) then
0 put ([p), b (el([p]))) into £;
10 else
11 bisect [p] into [p1] and [p2];
12 put ([p1],1b ([¢]([p1]))) and ([p2],1b ([c]([p2]))) into Q;
13 until Q = @;
14 remove from £ any pair ([p:],¢;) such that ¢; > ¢
15 forall [p] in £, [7 := [U [e](p]);
16 [c] :==[e]N]—o00,7].
[p] Cs, (1)

Sp(cl)

(a) (b) (c)

Fig. 5.13. OPTIMIZE algorithm; (a) initial configuration, (b) local minimization,
(c) contraction

Remark 5.4 Experiments (Ratschek and Rokne, 1995; Ratz and Csendes,
1995) have shown that an efficient choice for the bisection is to cut along
plane; ([p]), a symmetry plane such that

w([52] @) wio > w ([5=] @o)) +w .

120 5. Solvers

5.5.1 The Moore—Skelboe algorithm

A simplified version of OPTIMIZE has been proposed by Skelboe (1974) and
improved by Moore (1976). The resulting algorithm does not use any contrac-
tor and does not perform any local search. The next two examples (Walster
et al., 1985; Moore and Ratschek, 1988; Jansson and Kniippel, 1995) illus-
trate the efficiency of the Moore—Skelboe algorithm and the influence of the
dimension of the problem.

Example 5.4 The Branin function

5.1 5 ; 1
o(p) = (p2 = 75Pi + —p1 = 6)* + 10(1 —) cosp1 + 10 (5.34)
admits three global minimizers over the box [p] = [-5,10] x [0, 15], namely

p1 = (—m,12.275)T, Py = (7,2.275)T, Pz = (37,2.475)T. (5.35)

The corresponding global minimum is ¢ ~ 0.397887. For ¢ = 1075, after 422
bisections performed in 0.4 s on a PENTIUM 90, the Moore—Skelboe algorithm
finds 18 bozes, the union of which contains all the global minimizers; € is
also computed, with an accuracy of 10 digits. The 18 solution boxes can be
decomposed into three groups. The interval hulls of these groups are

D], = [—3.141594, —3.141586] x [12.274982,12.275012],

pl, = [3.141591,3.141599] x [2.274982,2.275014], (5.36)
pl; = [9.424769,9.424785] x [2.474977,2.475021].
]
Example 5.5 Consider the Levy 13 family of functions
n—1
cn(p) = sin® 3mpy + Y (pi — 1)*(1 + sin® 3xpi 1)
i=1
+(pn — 1)2(1 + sin? 27py,), (5.37)

with n = 1. The search box [p] is [—10,101"™ if n < 4, and [-5,5]*™ if
n > 4. Fach function c, admits the global minimum ¢ = 0 and only one
global minimizer p with all of its entries equal to one. The number of local
minimizers of c, grows exponentially with n (900 for n = 2 and 10° for
n = 5). The performances of the Moore-Skelboe algorithm for siz values
of n with € = 107° are given in Table 5.6. The times indicated are for a
PENTIUM 90.]

5.5 Global Optimization 121

Table 5.6. Computing time and number of solution boxes
as a function of dimension n

n 1 - 5 6 7 8 9
Computing time (s) 0.05 ... 0.71 143 297 6.87 17.02
Number of solution boxes 1 . 66 147 294 547 955

5.5.2 Hansen’s algorithm

Another variation around OPTIMIZE is Hansen’s algorithm. This section
presents some of the contractors involved (Hansen and Sengupta, 1980;
Hansen, 1992b). All of them can be cast into the framework of Chapter 4.
Note that this algorithm does not use any contractor based on interval con-
straint propagation such as C|. Some of its special features will be presented;
for more detail the reader is urged to consult Hansen (1992b), entirely de-
voted to the subject.

Upper-bound contractors: Assume that an upper bound ¢ for ¢ is
available. Contracting a box under the constraint ¢(p) < ¢ amounts to con-
tracting the CSP

H:(ce(p)=2zpE[p], z€]-00,7). (5.38)

Provided that ¢(.) is differentiable, an external approximation of H (see Sec-
tion 4.3, page 82) is given by

)
" ((m)[+22 V(i — mi)gi(E)Z>’ (5.39)

p] [}7 ZE]_OQE]

where g;(€) is the ith component of the gradient of ¢ at € and m = mid([p]).
A subsolver for H; is given by

n

1
Pr = mg + m z—c(m) — i:%:¢k (pi —mi) gi(§) | » (5.40)

which is used by Hansen to contract the domain for the variable py. Another
external approximation of H based on the second-order Taylor expansion of
cis
T
—m) H —m

2 , (5.41)
p € [pl.€ € [p),z €] — 0,7

Hg:

where m = mid([p]), g is the gradient vector of ¢, and H(&) is its Hessian
matrix at €. The first line of (5.41) is equivalent to

122 5. Solvers

c(m) + (px — mi)gr(m)
+ 20 ik (P — ma) g, (m) + 5 (e — M) hik ()

| " (5.42)
+ 3(px — mk)zi:L#k(pif mi)hix (&)
+ %Z?:L#k(pi —m;) 23:1,#1@ (p; —m;)hi;(§) = 2.
‘Ho can thus be rewritten as
L:ag + Btk +75t: =0
2ty = pr — my
3rap=—z+c(m)+ DL, L (pi — mi)gi(m)
Ha +3 Z?:l,i;ék(pi — mi) Z;:l,j;ék(pj —my)hi;(§)
4: 0y = ge(m) + 55700 L (pi — mi)har(€)
5: 9k = shie(§)
6:p€lp), £€[pl, z€]-00,7
(5.43)

Domains for ag, 8, and v, are easily obtained from Constraints 3 to 6 of
(5.43). Counstraint 1 can then be used to get a domain for t;. Since this
constraint is quadratic and involves only tx, a special algorithm can be de-
veloped to get the smallest domain for ¢, consistent with it (Hansen, 1992b).
Constraint 2 can then be used to contract [p].

Concavity and gradient contractors: If no constraint is involved in
the minimization problem and if ¢ is differentiable, then all the global min-
imizers p should satisfy g(p) = 0, where g(p) is the value of the gradient
of ¢ at p. Moreover, if ¢ is twice differentiable, it should be convex in all
directions, including the axes of parameter space. Therefore the constraints

91(P)=0,...,9.(p) =0 (5.44)

9?%c 9?%c

Tpg(P)?anw(P)?O (5.45)
1 n

can be used to contract the current box [p] at Step 6 of OPTIMIZE for an
unconstrained minimization. For a maximization, the sign of the inequalities
in (5.45) should be reversed.

Stopping criterion:Because of Step 8, OPTIMIZE does not bisect any
box that satisfies w([p]) < . In Hansen’s variant of OPTIMIZE, the boxes
that satisfy both conditions

w(lp]) <& and w([e|([p])) < e, (5.46)

are never bisected. The accuracy coeflicients ¢}, and . are chosen by the user.

Uniqueness condition: Assume again that no constraint is involved in
the minimization problem. Let [p]’ be the box obtained after one iteration
of the Newton contractor applied to the box [p] over the gradient constraint

5.5 Global Optimization 123

g(p) = 0. If [p]’ is strictly included in [p], then there exists at most one global
minimizer of ¢ in [p] (Ratschek and Rokne, 1995; Wolfe, 1996). Therefore,
when only one box is returned by OPTIMIZE, the uniqueness condition may
prove that the global minimizer is unique. On the other hand, if several boxes
are returned, it is possible that some of them do not contain any global
minimizer, even if each of them satisfies the uniqueness condition.

To illustrate the efficiency of Hansen’s algorithm, consider the same ex-
amples as with the Moore—Skelboe algorithm.

Example 5.6 Consider again the Branin function (5.34) of Example 5.4.
Recall that it admits three global minimizers

P1 = (-7, 12.275), Po= (m,2.275), D3 = (3m,2.475),

in [ply, = [—5,10] x [0,15] and that the global minimum is ¢ ~ 0.397887. For
ep = €. = 107°, after 32 iterations performed in 0.05s on a PENTIUM 90,
Hansen’s algorithm returns three boxes, the width of which is smaller than
10~7. The global minimum is obtained with an accuracy of 10719,]

Example 5.7 Consider again the Levy 13 family of functions of Fxam-
ple 5.5. For n < 50 and g, = e. = 1075, Hansen’s algorithm produces the
results of Table 5.7. Comparing Tables 5.6 and 5.7, we observe that the use of
contractors makes it possible to deal with higher-dimensional problems. Note
that on this example Hansen’s algorithm always returns a single box that sat-
isfies the uniqueness condition, thus proving that there exists one and only
one global minimizer.]

Table 5.7. Computing time and number of solution boxes
as a function of dimension n

n 1 .. 5 .. 20 50
Computing time (s) 005 ... 033 ... 125 401
Number of solution boxes 1 .. 1 .. 1 1

Fritz—John contractor: Assume now that there are inequality con-
straints of the form h(p) < 0 to be satisfied by the optimizers. Hansen
proposes use of a contractor based on the Fritz—John conditions. Similar to
the more famous Kuhn—Tucker conditions (Pardalos and Rosen, 1987), the
Fritz—John conditions provide necessary conditions for a vector p to be a
solution of a constrained optimization problem, as stated by the following
theorem.

Theorem 5.1 If the vector p € [p] C R™ is a local minimizer of the cost
function c under the constraints h;(p) < 0 fori € {1,...,m}, then there exist
m + 1 real coefficients ug, U1, ..., Uy Such that

dc , . ohy , . Ol
uoap@(p)_l—ul apll (p)++uma—£() _07 Z_la s Ty
uihi(p) =0, t=L....m (547)
u; = 0, i=0,...,m,

ug +ur 4+ Uy = 1.
The coefficients ug, uq, ..., Uy are called Lagrange coefficients. |

The n +m + 1 equations in (5.47) involve n + m + 1 variables (n for the
components of p and m + 1 for the Lagrange coefficients). Since all the u;s
should be positive and since their sum is equal to 1, the domain for each u;
can be set to [0, 1]. The second line of (5.47) implies that if h;(p) < 0 (which
means that the constraint associated with h; is not active at p) then u; = 0.
The equations in (5.47) can be put in the compact form f¥'(t) = 0, where

L e I e S |

uoH=(p) + w1 F(p) + - + um G (p)

fFJ(t) =1 wo 3(2,6" (p) + Ul%(p) 4o+ Um%(p) ’ (548)
urh1(p)
U forn (P)
and
‘- <p> ’ (5.49)
u
with u = (uo, u1, . .. ,Um)T. f¥J is called the Fritz—John function. A contrac-

tor for the equation f¥7(t) = 0 can be used to contract [p] without losing
any solution of the constrained minimization problem. The efficiency of the
Fritz—John contractor, included in Hansen’s algorithm, will now be illustrated
with two examples.

Example 5.8 Consider the minimization of

c(p) = 0.1 (p} + p3) (5.50)
over [p] = [~1,1]*? under the constraint
2sin(2mps) — sin(4npr) < 0. (5.51)

This problem is known to have 24 local minimizers and only one global mini-
mizer p = (0,0)7, for which ¢(p) = ¢ = 0 (Ratschek and Rokne, 1988). With
€p =Ec = 1075, after 25 iterations and in 0.11 s on a PENTIUM 90, Hansen’s
algorithm returns a single box approximately given by

5.5 Global Optimization 125
[—0.0000002, 0.000004]
[p] = , (5.52)
[—0.0000002, 0.000004]

which contains the global minimizer. The global minimum ¢ is proved to belong
to [0,10-19]. -

Example 5.9 Hansen (1992b) illustrates the performance of his algorithm
on about 30 test cases, but only one of them involves constraints over p,
namely the minimization of

c(p) = 12p7 — 6.3p] + P} + 6p1ps + 6p3 (5.53)

over [p] = [~2,4]*? under the constraints

1 — 16p] — 25p3 <0,
13p? — 145p; + 85py — 400 < 0, (5.54)
pip2 —4 < 0.
This problem is known to have two global minimizers:
p(1) ~ (—0.066042,0.192895) T (5.55)
and
P(2) ~ (0.066042, —0.192895) T, (5.56)

for which ¢ ~ 0.199035. For e, = . = 107°, after 44 iterations and in 0.22 s
on a PENTIUM 90, Hansen’s algorithm generates two boxes that bracket these
two global minimizers with a precision equal to 10719, The global minimum ¢
is bracketed with a precision of 107°. For the two bozxes found in parameter
space, the last two constraints are inactive so us = us = 0. The other two
Lagrange coefficients are ug ~ 0.834087 and u; ~ 0.165913. [|

5.5.3 Using interval constraint propagation

OPTIMIZE is also used in the literature with contractors based on interval
constraint propagation (ICP) such as C|t presented in Chapter 4 (see, for
instance, Zhou, 1996 and van Hentenryck et al., 1997). Strangely enough, the
contractors based on ICP never seem to have been combined with those em-
ployed by Hansen. When the optimization problem is non-linear and the cost
function is not differentiable, the contractors based on linear approximations
(i.e., all those presented in Chapter 4, except C|1) are in general inefficient,
and only contractors based on ICP are able to contract large domains. This
is illustrated by the following example (Jaulin, 2001b).

Example 5.10 Consider the minimization of

c(p) = e X 9 (P, k)|, (5.57)

126 5. Solvers

where

g(p, k) =p1 exp(@kQ) + p3 exp(&kQ) — 20 exp(—0.2 k%)
4 T (5.58)
+ 10exp(—0.05 k%) 4+ 0.1 sin(z),

and p = (p1,p2,p3,p4) | belongs to the box
[p] = [—60,60] x [—1,0] x [—60,60] x [—1,0]. (5.59)

A permutation of p1 with ps and of pa with py leaves c¢(p) unchanged.
The solution set is thus symmetric with respect to the plane (p1 — p3s =
0, p2 — pa = 0). This problem is ill conditioned and non-differentiable, and
classical punctual local methods have difficulties finding even a local mini-
mizer (Jaulin, 2001b). Moreover, they cannot detect that the problem has two
global minimizers. Equipped with the single contractor C |+ associated with the
constraint (¢ (p) < ¢), on a PENTIUM 133, OPTIMIZE finds in 1.7 s and after
109 bisections that the global minimum lies inside [0.0653,0.0657]. The list L
returned by OPTIMIZE consists of 44 tiny boxes, each of which is such that its
image by the cost function is included in [0.0653,0.0657]. These boxes can be
classified into two symmetrical groups, associated with each of the two global
minimizers. |

5.6 Minimax Optimization

Consider now the difficult problem (Du, 1995) of getting an enclosure of the
real number ¢, defined by the following sequence of optimization problems:

Cl(p2v"'7pn) = MaXp, e[p] Co(p17~~~apn)a
subject to (p1,...,Pn) € S(1),
CQ(p?n"'vpn) - minpge[pg] Cl(p27~-~apn)a

subject to (p2,...,Pn) € S(2),

¢i(Pit1s - sPn) = (*Di Ming, e(p,] (*1)i0i71(Pi,~-~,Pn),
subject to (ps,...,Pn) € S(4),

cn-1(Pn) = (_1)n_1 ming, cfp, 4] (_1)n_1 cn—2(Pn—1,Pn);
subject to (Pn—1,Pn) € S(n — 1),
Cn = (*1)71 minpne[pn,] (*1)n Cn—1(Pn),

subject to p, € S(n),
(5.60)

5.6 Minimax Optimization 127

where co(p1,...,Pn) is a known function of the n vectors p1,...,pn. The
set S(¢) is associated with the constraints of the ith optimization problem.

When i is even, (—1)" = 1 and thus

Ci(pi+17 R ,pn) = minp,;E[p,;] Ci*1<pi7 cee 7pn)7 (561)
subject to (pi,...,Pn) € S(4).

When i is odd, (—1)" = —1 and thus
¢i(Pit1,---,Pn) = Maxp, c[p,] Ci—1(Pis- -, Pn), (5.62)
subject to (Pi,...,Pn) € S(4).
An example of such a minimax problem is the guaranteed evaluation of
c3 = min max min p1 (p2 + p3) .
p3 € [_172] P2 € [_17 1] P1 € [07 10]
sin(ps) >0 p3+p2 =2 pi+pops>1

N————
Co (p17p2>p3)

c1 (p2,p3)
C2 (p3)
For simplicity, it will be assumed that c¢;(pit1,...,Pn) exists for all
i € {0,...,n— 1} and for all p;t1,...,pn. This assumption, satisfied in
the applications considered in this book, implies that for any (p;+1,-..,Pn),

there exists at least one p; such that (p;,...,pn) € S(4).

Although many application problems can be cast into this form, as illus-
trated in Chapter 8, the minimax problem has received very little attention in
the interval community (Zuhe et al., 1990; Didrit, 1997; Wolfe, 1999; Jaulin,
2001b). Section 5.6.1 is devoted to the unconstrained case and shows how
a convergent inclusion function for ¢; can be built when a convergent in-
clusion function for ¢;_1 is available. The constrained case is considered in
Section 5.6.2. Section 5.6.3 is devoted to the closely related problem of dealing
with quantifiers.

5.6.1 Unconstrained case

Assume that S(i) = RIS for § = 0,...,n— 1. For the time being, take i
to be even, so

¢i(Pit1y -+, Pn) = min_ ¢;—1(Piy--.,Pn)- (5.63)
pi€[pi]
We shall now explain how to get an inclusion function for ¢;(pit1,..-,Pn)

based on an inclusion function for ¢;—1(p;, . . ., Prn). Provided that an inclusion

128 5. Solvers

function is available for co(p1,-..,Pn), we shall thus obtain an inclusion
function for each function ¢;, including ¢,, as defined by (5.60).
Denote (pit1,-.-,Pn) by di+1. Equation 5.63 then becomes
ci(qi+1) = Heli[n] ci—1(Pi» Qit+1)- (5.64)
pi€ps

i€ (P

The method to be proposed is based on the following theorem.

Theorem 5.2 If [c;—1]([pi]; [qi+1]) s a_convergent inclusion function for
ci—1(pPi, Qit1), and if [p;](k), k € {1,...,k} is a partition of [p;] such that

vk e {L,....k} w(pd (k) < w(lai)), (5.65)
then
ci([ai+]) = min_ [e—1]([pi] (k). [@i+1]) (5.66)
ke{l,....k}
is a convergent inclusion function for ¢;(qit1)- |

Proof. The first part of the proof establishes that [¢;] as defined by (5.66) is
an inclusion function for ¢;. The second part proves that [¢;] is convergent.
Define

2 min ¢ 1(pi, Qi) (5.67)

(k)
C, i
i (q +1) pilpi] (k)

From (5.63), and since the [p;](k)s form a partition of [p;],

¢i(Qit1) = i min cEk)(qm). (5.68)
S

(1.5}
Now, from (5.67),

(1) € cima([pi] (), disn), (5.69)

which is a subset of [e;—1]([p:](k), [di+1]), if Qir1 € [qi+1]. Therefore, from
(5.68),

cillaipi]) € min e, a]([Pil(F), [@ita])- (5.70)

ke{l,....k}

To prove that [¢;] is convergent, assume that the width of [q;;1] tends to
zero. From (5.65) the widths of the [p;](k)s also tend to zero, and so does the
width of [c;—1)([p:](k), [@i41]) for all & € {1,...,k}. Therefore, the width of
[ei]([di+1]) as computed by (5.66) tends to zero. |

For a given punctual vector q;y1, Figure 5.14a gives an interpretation
of ¢;(qi+1). Figure 5.14b depicts the interval function ¢;—1(p;, [qit1]). The
inclusion function (5.66) obtained by partitioning [p;] is illustrated by Fig-
ure 5.14c.

5.6 Minimax Optimization 129

¢, (Pid,)

v

Fig. 5.14. Enclosing ¢;([qi+1]) in the minimax algorithm (unconstrained case);
qi+1 stands for (pit1, ..., Pn); (a) definition of ¢; from ¢;—1 for punctual arguments;
(b) evaluation of ¢; from ¢;—1 when all arguments are boxes except p;; (¢) interval
enclosure of ¢; and ¢;—1 when all their arguments are boxes

130 5. Solvers

Remark 5.5 The min operator in (5.66) should be interpreted as an interval
extension of the min operator on real numbers. For instance

min([1, 6], [3, 5, [0, 10], 1, 7], [9, 9])

(5.71)
= [min(1, 3,0, —1,9),min(6,5,10,7,9)] = [—1,5].

Remark 5.6 It is trivial to extend Theorem 5.2 to deal also with the case
where 1 is odd. If a convergent inclusion function is available for cy, a re-
cursive application of Theorem 5.2 then yields inclusion functions for all the
functions c;. |

The algorithm of Table 5.8, adapted from Didrit (1997), is a recursive
implementation of the inclusion function for ¢;{(q;+1) based on Theorem 5.2. Tt
is assumed that an inclusion function for ¢y is available, and the presentation
is first for even ¢. The positive coeflicient € represents the width of the smallest
box that can still be bisected to update the partition of [p;] so that this
partition satisfies (5.65). Since ¢ is assumed to be even, an upper bound ¢;
for ¢;([qi+1]) is given by

min _ (ub ([ci—1] ([p:] (k), [9i+1]))) » (5.72)
ke{l,... k}
see Figure 5.14c. This upper bound is used to eliminate any [p;] (k) that
satisfies

Ib ([ei—1] ([pi] (k) , [@i+a])) > @ (5.73)
(see Step 7). In Figure 5.14c, the leftmost and rightmost boxes satisfy this
condition and can thus be eliminated. This could be avoided in principle, but
it is a useful simplification to eliminate boxes without bisecting them down
to the width & whenever possible. The first call of the algorithm computes
[cn] (£) and the deepest call (in the sense of recursivity) evaluates

[co] ([P1], [a2]) = [co] ([P1], - - -, [Pn])- (5.74)

Remark 5.7 In Table 5.8, [pi] stands for the current bozx [p;] (k) of the
partition. |

Remark 5.8 No contractors are used in this simple version, but they should
be involved to improve efficiency. |

The following lines should replace their counterparts of Table 5.8 when
is odd:

3 g =00 G = —00;

7 if (ub([r]) = ¢;) then

8 ¢; = max(Ib([r]) , ¢;);

9’ if (w([pi]) < €) then ¢; = max(¢;,ub([r]));

5.6 Minimax Optimization 131

Table 5.8. Inclusion function for the unconstrained minimax problem

Algorithm [¢](in: [piti],-.., [Pn],&; out: [¢;]) // i assumed to be even
1 if 4 = 0 then return [co] ([p1],-- -, [Pr]);
2 2={[plh
3 ¢ = 00; G 1= 005
4 do
5 pop first element out of Q into [ps];
6 compute [r] := [cia] ([Pi] - -+, [Pn] w([Pi]));
7 if (Ib([r]) < &) then
8 ¢; := min(ub([r]),&);
9 if (w([ps]) < €) then ¢; := min(c, Ib([r]));
10 else bisect [p;] and put the resulting boxes at the end of Q;
11 while Q # &;
12 [Cz] = [Qi,ai}.

The algorithm computing a guaranteed enclosure of ¢, is then simply

Algorithm MINIMAX(in: g, [P1], .- -, [Pn],&; out: [c,)])
1 [en] i=len) ().

5.6.2 Constrained case

Assume again that 7 is even, so

Ci(pi-}—la R} pn) = minp,;e[p,;] Ci—l(piv oo 7pn)> (575)
subject to (pi,...,Pn) € S(i).
Denote again (pi+1,---,Pn) by qi+1. Equation 5.75 then becomes
ci(Qi+1) = ming,c(p,) Ci—1(Pi, di+1), (5.76)

subject to (P, Qir1) € S(3).
In the constrained case, Theorem 5.2 is replaced by the following one, which

will also serve to obtain inclusion functions for each function ¢;, including c,,.

Theorem 5.3 Assume that i is even. If [ci—1]([Pi], [ai+1]) is an inclusion

function for c;—1(pi,dit1), if {[pi](k), k € {1,...,k}} is a partition of [py]
and if [ty s an inclusion test for the set S(i) (i.e., [tge]([Pd), [div1]) =1 =

) (ie.,
([Pil: [aia]) € S() and [tso))([pi], [div1]) = 0 = ([pi], [@ir1]) N S(E) = 2),
then a lower bound for c;([q,]) is

¢ (layq]) = min b ([ci—1]([pi](K), [di+1])) (5.77)
ke{l,... k}
ts)]([Pils [qz+1])

132 5. Solvers

and an upper bound for c; ([qiﬂ]) s

& (laigal) = min ub ([ei 1] ([ps] (k), [1])) » (5.78)
kefl,..., k}
(s (mi(k), [@ia]) = 1
where m;(k) = mid([p;](k)) . =

Proof. The proof for the lower bound is trivial and only a proof for the
upper bound is given. If [tg;)](m;(k), [q;+1]) = 1, this implies that for any
di+1 € [q;], (m(k), ;1) € S(i). Then, according to (5.75),

VqQit+1 € [qi+1], ci(dit1) < ci—1(my(k), qit1)- (5.79)

The upper bound ¢;(k) for [c;—1]([pi](k), [@i+1]) is also an upper bound for
(ci—1](m;(k), [q;11]) and thus an upper bound for ¢;([qi+1]). The smallest

of these k& upper bounds as given by (5.78) is also an upper bound for
ci([ai+1])- u

G ([‘L‘H])

{p;i [(Pyla;4]) € S(E)}

Fig. 5.15. Illustration of Theorem 5.3 used for constrained minimax optimization

Figure 5.15 illustrates this theorem. Boxes in dark grey correspond to
[ps](k)s such that [tg)]([Pe](k), [di+1]) = 0. These boxes are not taken into
account to get the bounds ¢; ([qi+1]) and G ([qH_l]). Boxes in light grey
are associated with [p;](k)s for which [tg]([pe](k), [qi+1]) = [0,1]. They
should be considered for the computation of ¢, ([ql +1D' White boxes satisfy
tsep) (mid ([pe] (k)), [@i+1]) = 1. They are involved in the computation of

(] ({qi—&-l]) and ¢; ([qi+1}) ‘

5.6 Minimax Optimization 133

Table 5.9 implements the inclusion function provided by Theorem 5.3.
It requires an inclusion function for ¢y and an inclusion test for S(i). If
([pi],---,[pn]) turns out to be outside S(i), then the current box [p;] is
removed (see Step 6). The current upper bound ¢; is updated at Step 10 in
order to allow the evaluation of (5.78) and the possible elimination of boxes
(see Step 8). The current lower bound ¢, is updated at Step 11 in order to
allow the evaluation of (5.77). Recall that in the presentation of the algorithm
it was assumed that i is even. Adaptation to deal with odd i is trivial. Note
that Remarks 5.7 and 5.8 still apply.

The algorithm MINIMAX computing a guaranteed enclosure of ¢, is the
same as in the unconstrained case.

Table 5.9. Inclusion function for the constrained minimax problem

Algorithm [¢;](in: [pi41],...,[Pn].€; out: [¢;]) // i assumed to be even
1 if ¢ = 0 then return [co] ([p1] ;.- -, [Pn]);
2 o={[plh
3 ¢ = 00; G 1= 00;
4 do
5 pop first element out of Q into [p;];
6 if [tsp)] ([pil, -, [Pn]) # O then
T compute [r] = (i) (Ipi] - [pn] w([pi]));
8 if (Ib([r]) < &) then
9 if [te(](mid([ps]) ; [Pit1], -+ [Pn]) = 1 then
10 ¢; := min(ub([r]),);
11 if (w([ps]) < €) then ¢; := min(c, Ib([r]));
12 else bisect [p;] and put the resulting boxes at the end of Q;
13 while Q # &;
14 [a] == g G-

5.6.3 Dealing with quantifiers

This section deals with inequality problems involving the existential quantifier
J and universal quantifier V. Surveys of the available methods can be found in
(Mishra, 1993; Caviness and Johnson, 1998; Dorato, 2000), and applications
in (Toakimidis, 1997; El Kahoui and Weber, 2000). This class of problems is
particularly important in control theory (Jaulin and Walter, 1996; Liska and
Steinberg, 1996; Steinberg and Liska, 1996; ?; Hong et al., 1997; Jirstrand,
1997; Neubacher, 1997). Some examples related to robust control will be
considered in Chapter 7. Interval analysis provides very promising tools to
solve such problems (Jaulin and Walter, 1996; Benhamou and Goualard, 2000;

134 5. Solvers

Ratschan, 2000a, 2000b). This section shows that problems involving 3 and
Y are closely related to minimax problems and that the algorithm MINIMAX
can be used to solve them. For instance, proving that

va € [173]7 sz € []WQLVPI S {07 ”71)1 +pops <1 (580)
amounts to proving that

max min max_ p;+ pop3 < 1. (5.81)
ps€[1,3] p2€[1,2] p1€[0,1]

More generally, proving that

Vps € [p3), ps € S(3)
dps € [p2], (P2, P3) € S(2) such that co(p1, p2,P3) =0 (5.82)
vpl S [pl]v (PlaanPS) € S(l)

can be cast into proving that

min max min co(p1, P2, p3) = 0.
P3 € [p3] P2 € [p2] P1 € [p1]
P3 €5(3) (p2,p3) €5(2) (P1,P2,P3) € 5(1)
(5.83)

MINIMAX can thus be used to prove (or disprove) (5.82). Of course, it should
be slightly modified to terminate as soon as the current enclosure for the
global optimum c3 has a positive lower bound (or a negative upper bound).

Consider now the problem of characterizing a set S defined by inequalities
involving ¥V and d. For simplicity, it will be assumed that

S ={ps € [p3](0) | (¥p2 € [p2], 3p1 € [P1] | 9(Py,P2,P3) = 0)},
(5.84)

but more general sets could be considered as well. S can be defined equiva-
lently by

S = {pg € [ps3)(0) | min max g(p,,pP2,P3) = O}. (5.85)
pP2€[p2] P1€[p1]

A subbox [ps] of [p3](0) is inside S if

min min max g(p;, P2, P3) =0, (5.86)
p3€[ps] P2€[p2] P1€([P1]

and outside S if

max min max g(py, P2, P3) <0. (5.87)
p3€[ps] P2€[p2] P1€([P1]

5.7 Cost Contours 135

Define the interval function

[(h]([p3]) = | min min max g(p,, P2, P3),
P3€[ps] P2€[p2] P1€[P1]

max min max g¢(p;,p2,P3)| - (5.88)
P3€[ps] p2€[p2] P1€[pP1]

An enclosure [he|([ps]) of [h]([ps]) can be obtained by running MINIMAX for
the lower and upper bounds. The accuracy parameter in MINIMAX could be
taken as € = w([ps]) as suggested in Jaulin and Walter (1996). An inclusion
test for S is then

tl(lps])) =1 if Ib([he]([ps])) = 0,
[tl([ps]) =0 if ub([he]([ps])) <0, (5.89)
[t]([ps]) = [0, 1] otherwise.

S1viA (see Table 3.2, page 58) can now be used to get inner and outer ap-
proximations of S by subpavings.

A possible application is the characterization of the projection of a set
defined by non-linear inequalities onto a subspace, for instance, the projection
of the three-dimensional sphere

O={(z,y,2) eR® | 2® +¢y* + 2* < 1} (5.90)
onto the (z,y)-plane, which is defined by
S={(z,y) €R?| Iz, 22 +y? + 22 < 1}. (5.91)

The accumulation set of the algorithm is here the set of all the points of R3
that are projected onto the boundary 9S of S. It has a dimension equal to that
of JS, i.e., one. On the other hand, if the characterization of S were performed
by running SIVIA to characterize @ and then by projecting the resulting
boxes onto the (z,y)-plane, the accumulation set would be the boundary of
O (which has a dimension equal to two instead of one for 9S), so complexity
would be higher. Moreover this approach would not be able to provide an
inner approximation of S, contrary to the one advocated here.

5.7 Cost Contours

Consider the cost function ¢ : R® — R, p — ¢(p), for which an inclusion
function [c] is assumed available. The problem to be addressed now is the
characterization of the m level sets Ly, ..., L,, associated with m given values
c1,...,Cn of the cost, defined by

L, £{pelp]|lclp)=c}t i=1,...,m, (5.92)

136 5. Solvers

where [p] is the box of interest. Table 5.10 presents the algorithm ISOCRIT
(for iso-criterion) (Didrit et al., 1997) performing this characterization. Upon
completion of ISOCRIT, the union of the boxes listed in £ contains the m L;s.
The structure of ISOCRIT is similar to that of SiviA, presented in Chap-
ter 3. At Step 4, the smallest interval containing the intersection of [c]([p])
and {c1,...,¢n} is computed. A contraction is performed at Step 5, which
may lead to the empty set if there is no ¢; in [¢]([p]). In such a case, [p]
does not intersect any level set of interest and is eliminated. At Steps 7 and
8, before storing [p] into the list £ it is also required that [A], computed at
Step 4, be a degenerate interval. When this condition occurs, [p] is a small
box, that intersects one level set of interest at most. The value of the cost
associated with this level set is stored with [p] in £ for further treatment.

Table 5.10. Algorithm for characterizing level sets

Algorithm IsocriT(in: ¢(.},ci,...,cm,[p],; out: L)
T Q= (b} L=2;
2 do
3 pop first box out of Q into [p];
4 b =d(p) e, emll
5 contract [p] under the constraint [c]([p]) € [h];
6 if [h] # @,
7 if w([p]) < € and if [h] is punctual, then
8 put the pair ([p], [h]) into £;
9 else
10 bisect [p] and put the resulting boxes in Q;
11 while O # &.

Example 5.11 For the Branin function of Example 5.4, page 120, and Ex-
ample 5.6, page 123, for ¢y = 1, c5 = 10, c3 = 50, ¢4 = 150 and ¢ = 0.2,
ISOCRIT yields the paving of Figure 5.16 after 6951 iterations and 0.8 s on
a PENTIUM 90. The figure suggests the existence of at least three local mini-
Mizers. |

5.8 Conclusions

This chapter has presented solvers to treat difficult non-linear problems in a
guaranteed way. The notions of inclusion test and of set contractor allowed
us to focus attention on the management of search space rather than on the
technical tools to be employed (interval analysis, consistency techniques and
CSPs).

5.8 Conclusions 137

Interval analysis is present in these solvers through the notions of con-
tractor and inclusion test. This is why the literature often calls them interval
solvers.

This chapter concludes Part II, devoted to interval tools. It has provided
algorithms to solve problems that are the bread and butter of engineering
applications, such as finding all the solutions of systems of equations and
inequalities and optimizing cost functions of various types under various con-
straints.

These tools will be applied in Part III to typical engineering problems.
Chapter 6 deals with the estimation of unknown quantities of interest from
uncertain experimental data, Chapter 7 is devoted to the control of uncertain
systems and Chapter 8 to problems of robotics. Every effort will be made to
make the problems treated understandable by readers with other applications
in mind.

25
A

¢y =150y

5 10" p

Fig. 5.16. Paving obtained by ISOCRIT for the Branin function

Part 111

Applications

6. Estimation

6.1 Introduction

Consider a set X consisting of real variables x1, ..., x,, which form a vector
x. For the sake of simplicity, n = dim x will be taken as finite. A variable in
X may, for instance, represent

e the time at which a given event occurs (or the value taken by any other
independent variable),

e the value of some physical parameter, such as the rate constant of a chem-
ical reaction,

e the value taken by some quantity of interest at a given instant of time.

Each of the variables in x will be assumed to be partially or totally un-
known, and it is the purpose of estimation to use all the available data to
obtain more accurate information about the numerical values of all or some
of them, see, e.g., Walter and Pronzato (1997). When these quantities are as-
sumed to be constant, one often speaks of parameter identification. Assume
that relations can be defined between variables, based on physical laws and
on hypotheses about the system under consideration. Examples of such rela-
tions are 1 < 3z2 and z3 = sin(x1 +x2). These relations define a subset M of
R™, called the constrained set, containing all the xs that satisfy all of them.
The letter M has been chosen as a reminder of the fact that the constrained
set is a model of reality. Note that if z(t) is a time-dependent quantity of
interest, the function z is not considered as a variable, but its values at all
time instants of interest form as many variables. Thus, z(1), z(5) and z(10)
may be variables. Note also that any quantity that can be assumed to be
known exactly need not be incorporated in X.

Remark 6.1 Differential relations, such as §j(t) +3y(t) —sint = 0 cannot be
incorporated as such, since the number n of variables is taken as finite. The
only continuous-time systems to be considered in this chapter are thus those
for which explicit solutions can be calculated.]

Remark 6.2 With the approach presented in this chapter, there is no need to
distinguish between input variables, which are known and more or less under
control, and output variables, which are observed on the system as it reacts

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001

142 6. Estimation

to inputs and perturbations. This approach is thus well suited to behavioural
modelling as advocated by Willems (1986a, 1986b), where no such distinction
is made. When convenient, the distinction remains possible, of course. |

Example 6.1 Consider a system with input u(t) and output y(t), where t is
time. Assume that

vt € RT, y(t) = u(t) + exp(—pt), (6.1)

where p is some unknown scalar parameter. Assume that two measurements
y(t1) and y(t2) of the output are collected at times t1 and to. The set of all
variables of interest may then be

X = {t17t2vulvu2apvylay2}v (62)

where w1, ug, y1 and ys represent u(t1), u(t2), y(t1) and y(ts). The constrained
set is then the set Ml of all (1, ta,u1,u2, p,y1,y2) such that yy = uy + e Ph
and ys = ug + e~ Pz, []

Independently of the relations defining M, assume that information is
available about the values that x may take. This information may come
from measurements and from prior knowledge about their reliability. Two
expressions of this information will be considered.

The first one is by a real function ¢ in the x-space, to be used as a
measure of the feasibility of x, which will be called the prior feasibility
function. By convention, the value of ¢(x) will decrease when the feasibil-
ity of x increases. The prior feasibility function may have been obtained by a
maximum-likelihood approach based on statistical information about the na-
ture of measurement noise, but many other interpretations could be thought
of (e.g., fuzzy logic).

The second expression of prior information is by a subset X of R™ con-
taining all feasible values for x, which will be called the prior feasible set.
This set may have been derived from the technical data sheets of sensors,
which usually contain information about the maximum error committed in
any given range of operation.

Example 6.2 Consider again FExample 6.1, and assume that approximate
values for all the variables have been obtained, given by

% = (1, t2, 01, G2, P, 1, G2)- (6.3)
A possible prior feasibility function is
E(t1,t2, ur, u2, P Y1, Y2) = Wy, (151 - 7F1)2 + wy, (ﬁz - fz)z
+ Wy, (ug — 121)2 + Wy, (ug — 122)2
+ wp (p— 13)2
+ wy, (g1 = 510)7 + wy, (42— 92)°

6.1 Introduction 143

where wy, is a positive coefficient expressing the confidence associated with
the approximate value T;. When no &; is available, one may take w,, = 0.
Note that the minimum of ¢ is reached at X = ({1, Lo, Uy, Uz, P, J1,%2) and that
the associated value of é is zero. One may alternatively decide to represent
prior knowledge on x by a prior feasible set X, containing % and large enough
to include all values of x that are deemed acceptable. Here, the prior feasible
set might be defined as

X = {X = (tl,tg,Ul,UQ,p, ylayQ) | tl S [51]7 Y2 € [gﬂ}
= [t1] x [f2] x [an] x [@2] x [p] x [51] x [92], (6.5)
where [t1],...,[J2] are prior intervals assumed to contain the true values for
the corresponding variables.]

Estimation will be viewed as the action of taking the constrained set
M into account to make the information available on x more accurate. Two
approaches will be considered. The first one, described in Section 6.2, is based
on the prior feasibility function ¢(x). The posterior (set) estimate X, is then
defined as the set of all global minimizers of this prior feasibility function
over the constrained set M:
X = in &(x). 6.6
o = argmin o(x) (6.6)
The second approach, presented in Sections 6.3 and 6.4, aims to characterize
the posterior feasible set X, defined as

X, =XNM (6.7)
For both approaches, a projection of the posterior estimates onto the space

of the variables of interest should be performed.

Remark 6.3 Here prior means before taking the constrained set into ac-
count, whereas usually in statistics it means before taking the data into ac-
count.]

Example 6.3 Consider again Example 6.2. With the first approach, the pos-
terior estimate s

~

Xe = arg min E(t1, ta, ur, w2, D, Y1, Y2)- (6.8)
Y1 = u1 exp(—pt1)
Y2 = uz exp(—pt2)
It contains the best values for x (in the sense of ¢) among those in M. With
the second approach, the posterior feasible set might be
XS = {x = (t1,t2, u1,u2,p,y1,¥2) | &(x) < 4, (6.9)
y1 = urexp(—pt1) and ys = uzexp(—pts)},

where & is some prespecified positive real number. If one is only interested in
the value of p, then one should project X. or Xg onto parameter space.]

144 6. Estimation

6.2 Parameter Estimation Via Optimization

Assume that the set X of all variables can be partitioned into two sets Z and
Y, where Z = {z1,...,2,,} and YV = {y1,...,¥n, }, such that there exists a
function ¢ : R™ — R™ for which the following equivalence holds

(Zla"'aznzaylv“wyny)T €M<« (ylv”'ayny)T = ¢(Zla"'aznz)’

(6.10)
By an abuse of notation, we shall feel free to write, more concisely,
(z,y) e M &y = ¢(z). (6.11)
Define the posterior feasibility function as
é(z) £ &(z, d(2)). (6.12)

Solving (6.6) amounts to the unconstrained minimization of ¢(z). Except in
important special cases such as when the posterior feasibility function ¢ is
quadratic in z, ¢(z) is not convex and the usual local iterative algorithms
of non-linear programming may get trapped in local minima. Global guar-
anteed methods such as OPTIMIZE (page 119), should therefore be preferred
whenever applicable.

Example 6.4 Consider again Example 6.1, and take Z = {i1,t2,u1,u2,p}
and Y = {y1,y2} so

uy1 exp(—pt1
¢(z) = () . (6.13)
uz exp(—pta)
Solving (6.8) amounts to finding the set of all the global minimizers of
é(z) = &(t1, ta, u1, Uz, p, u1 exp(—pt1), uz exp(—pta)). (6.14)

Note that if t1, ta, u1 and us were assumed to be known exactly, they should
not appear in z, and optimization would be with respect to the parameter p
only. The situation considered here is much more general, since the values
taken by the input and output, as well as the time instants at which they are
measured, may be uncertain and may need to be estimated. |

In what follows, the prior feasibility function ¢(x) will characterize the dis-
tance between x and some given vector X of prior estimates for the variables.
A weighted Lo norm

éx) = Ix = %[5 =D we, (@ — #:)°, (6.15)
i=1

will be used in Section 6.2.1 and a weighted L., norm

é(x) = ||x — X||oo = m%lx Wy, |25 — T4, (6.16)
1=

6.2 Parameter Estimation Via Optimization 145

in Section 6.2.2. In both cases, w,, is a prespecified positive weight expressing
the degree of confidence in the prior estimate Z;. These two norms may
lead to totally different posterior estimates X, as illustrated by Figure 6.1.
Geometrically, X is the projection of X onto the constrained set M, as defined
for the norm employed.

Tapn

ol

(2) K (b) =

Fig. 6.1. The posterior estimate X is here very sensitive to the norm employed; (a)
Loo-norm, (b) Lz-norm

Remark 6.4 If nothing is known about the variable x;, w,, may be taken
equal to 0, in which case (6.15) and (6.16) no longer correspond to norms. B

6.2.1 Least-square parameter estimation
in compartmental modelling

Compartmental models are widely used in biology and pharmacology to study
metabolisms and the fate of drugs (Jacquez, 1972). They also find applica-
tions in ecology and chemical engineering (Happel, 1986). A compartmental
model consists of a finite set of homogeneous reservoirs, called compartments
and represented by circles, which may exchange material as indicated by ar-
rows. The evolution of the quantity of material in each of the compartments
is described by a set of first-order ordinary differential equations, usually
assumed to be linear and time-invariant, with the flow of material leaving
Compartment ¢ proportional to the quantity ¢; of material in this compart-
ment. The equations describing the behaviour of the compartmental model
are obtained by writing down conservation equations, under the form of a
state equation. As in Kieffer and Walter (1998), consider for example the
system described by Figure 6.2.

The evolution of the vector q = (¢1, qg)T of the quantities of material in
the two compartments is described by the linear time-invariant state equation

146 6. Estimation

u) —

Fig. 6.2. Two-compartment model

H = — + + b
{ql (p3+p1) 1 +p2g2 +u (6.17)

2 = p3q1 — p2qa-
Take the system in zero initial condition (q(0_) = 0), and assume that a
Dirac input u(t) = 4(t) is applied to Compartment 1, so ¢1(04) = 1 and
¢2(04) = 0. Assume also that the content of Compartment 2 is observed at
16 instants of time, according to

Yi=q2(t;), i=1,.,16. (6.18)

It is trivial to show that

Yi = a(exp(—Ait;) —exp(—Aat;)), i=1,..,16, (6.19)
where
a= b3 , (6.20)
\/(p1 —p2 +p3)” + 4paps
p1+p2+p3— \/(p1 —p2 +p3)” + 4pops
A = (6.21)
2
and
p1+p2+ps+ \/(m —pa+ps)” + 4paps
A = . (6.22)

2

These equations define the constrained set M. Assume further that the mea-
surement times t; are known exactly, and thus need not be considered as
variables. The variables of the problem are then p = (pi,p2,p3)’, which
takes the role of z, and y = (y1,...,¥y16) . Prior values ¢; of the variables y;
have been obtained as a result of the measurements performed on the system
under study, and are given in Table 6.1.

No prior information is available about p, and the measurements 7j; are
all deemed equally reliable, so the prior feasibility function is chosen as

16

é(pv y) = Z (gl - yi)Q) (623)

i=1

6.2 Parameter Estimation Via Optimization 147

which does not depend on p. The associated minimization problem is
16
. . 2
min (Ui — i) - (6.24)
(py)eM —

Now, (p,y) € M is equivalent to

Vie{l,...,16},y; = ¢;(p), (6.25)
where ¢,(p) is computed according to (6.19)—(6.22). Minimizing the prior
feasibility function defined by (6.23) under the constraint (p,y) € M thus

amounts to the unconstrained minimization of the posterior feasibility func-
tion

16
ép) = (5 — 9.(p))" (6.26)

Table 6.1. Experimental data

t; 1 2 3 4 5 6 7 8
¥; | 0.0532 0.0478 0.0410 0.0328 0.0323 0.0148 0.0216 0.0127

t; 9 10 11 12 13 14 15 16
¥; | 0.0099 0.0081 0.0065 0.0043 0.0013 0.0015 0.0060 0.0126

For a search box in parameter space taken as [0.01,2.0] x [0.05, 3.0] x
[0.05,3.0], and with the precision parameters £, and &. both equal to 1079,
Hansen’s algorithm for unconstrained optimization (page 121) encloses the
two global minimizers of this cost function in the two boxes

[1.925402,1.925404] x [0.232717,0.232719] x [0.145075,0.145077]
[0.232717,0.232719] x [1.925402, 1.925404] x [0.145075,0.145077].

(6.27)

Notice that these boxes can be deduced from one another by exchanging
their interval values for p; and p2, whereas p3 takes the same interval value
in both boxes. This is consistent with the conclusion of an identifiability study
(Walter and Pronzato, 1997), which indicates that the system of Figure 6.2
is only locally identifiable, and that p; and ps can be interchanged without
modifying the input—output relation, whereas p3 is uniquely identifiable from
the experimental data. It seems important to stress that the conclusion of the
present estimation was not based on such a prior identifiability study, which
can be dispensed with when global tools are used as here. Two compartmental
systems representative of the solutions in (6.27) are drawn on Figure 6.3.

Figure 6.4 presents the data ¢ (t;) and the fitted response g (t) associated
with the global minimizers.

148 6. Estimation

0 - @ @ - @
0. 233 1.925

\l/l 1925 o 233

u

Fig. 6.3. Two radically different compartmental models with the same observed
behaviour

YA
0.05 1

0.04 +

0.03]

0.02 | *

0.01] +

+ M

+ o+

0 2 4 6 8 10 12 14 16 ¢
Fig. 6.4. Data g (t;) (+) and estimated model output g () (curve)

Remark 6.5 When optimization is with respect to p, Hansen’s algorithm
needs about one day on a PENTIUM 233 to reach this conclusion. By first
optimizing with respect to a, A1 and Ay and then solving (6.20) to (6.22)
for p by SIVIAX, page 104, it is possible to cut down computing time to
about one minute (Kieffer and Walter, 1998). [|

6.2.2 Minimax parameter estimation

As in Section 6.2.1, consider a system for which n, measurements g1, ..., Jn,,
associated with the output variables y1, ..., yn,, have been collected at known
instants of time ¢;, ¢ = 1, ..., ny. The ;s thus correspond to approximate
values for the unknown variables y; that would have been collected in ideal
conditions. Assume that the system depends on an unknown parameter vector
p € R™, to be estimated. The variables of the estimation problem are then

6.2 Parameter Estimation Via Optimization 149

T
X:(plv"'apnpvyla"'?yny) . (628)

Following (6.16), the prior feasibility function will be taken as
ép,y) =¢(y) = Iy — ¥l = e fhax |5i — yil. (6.29)

Since nothing is known about p, we have chosen w,, = 0 and thus é(p,y)
does not depend on p; see Remark 6.4. Assume that the relations defining
the constrained set are given by

y1:¢<pat2)7 Z:I,...,ny, (630)

where ¢(p,t) is some prespecified function. From (6.12), the posterior feasi-
bility function to be minimized is

é(p) = é(¢(p7 tl)v SRR ¢(p7 tny)) = ze{rlnaxn ! |g2 - ¢(p7 tl)l (631)

Estimating p then amounts to computing the global minimizers of

¢p) = _max |fi(p), (6.32)
ie{l,...,ny}
with f;(p) = ¥ — ¢(p,t;). The resulting minimax optimization problem is
known as a discrete Chebyshev problem. This type of problem also appears in
sensor fusion (McKendall, 1990; McKendall and Mintz, 1992) or in decision
theory (Berger, 1985), when one should minimize the maximum probability
of unacceptable error or risk.

Since ¢é(p) is not differentiable everywhere, traditional gradient-type
methods are usually very inefficient, besides having all the well-known limi-
tations attached to local methods. Most existing methods are also essentially
local, and based on the iterative application of linear or quadratic program-
ming techniques. Interval solvers have been used in Wolfe (1999) for one-
dimensional problems (dim p = 1), and in Zuhe et al. (1990) and Jaulin
(2001b) for a more general case. OPTIMIZE (page 119) can be used, as illus-
trated on the following example. (It is not appropriate to resort to MINIMAX
of Section 5.6, as the maximization is with respect to a finite number of
times.)

Example 6.5 Assume that the variables p1,...,pa,Y1,---, Y10 are related by

y; = p1exp(pzt;) + psexp(pati), i =1,...,10. (6.33)

The p;s and y;s form the vectors p andy. Since a permutation of p1 with ps3
and of pa with py does not affect the validity of the relations, p is not identifi-
able uniquely. Any reliable parameter estimation method should therefore lead
to symmetrical solutions, provided that the search domain is sufficiently large
to contain all of them. Assume that the data of Table 6.2 have been collected
at known instants of time t;. These data are displayed on Figure 6.5. The
prior feasibility function is

150 6. Estimation
ép,y) =¢(y) = max [y — i (6.34)
i=1,...,10

Again it does not depend on p, because no prior information is available about
it. The constrained set is

M= {(p,y) | vi = p1exp(pat;) + psexp(pat;), 1 =1,...,10}, (6.35)

and the posterior feasibility function is

¢(p) =, max g — ¢(p. i) (6.36)

’

The minimization of this function will be performed in Example 6.7. |

Table 6.2. Experimental data

t; 0.25 1 2.25 4 6.25
Ui 6.9465 0.8902 —3.0562 —3.7537 —2.8262

t; 9 12.25 16 20.25 25
7 | —1.6660 —0.7961 —0.3086 —0.1330 —0.1218

-4

~+~V

0 5 10 15 20 25

Fig. 6.5. Data of the minimax estimation example

6.2 Parameter Estimation Via Optimization 151

OPTIMIZE (page 119) can be used to find p that minimizes ¢ as defined
by (6.32). At Step 6 of this algorithm, a contractor C([p]) associated with the
constraint

max |fi(p)| <¢ (6.37)

should be provided, where f;(p) = ¢; — ¢(p,t;) and € is an upper bound for
é(p). C([p]) can be obtained by contracting the CSP

fl(p) =1

H: fnv() = Cny . (6.38)
p1€[p1l,- - Pny € [Pny)
c1 € [-64d,...,cn, € [-C,7

For the local search required at Step 4 of OPTIMIZE to decrease the upper
bound ¢, the approach of Jaulin (2001b) will be used, which assumes that each
parameter p; appears only once in the expression for f;(p). This approach
is fast, does not need the evaluation of gradients or subgradients of the cost
function, is easy to implement and illustrates the ability of interval methods
to deal with local optimization.

For a given p, a given index i of axis in parameter space and a given
upper bound € for &(p) (if no better € is available, take ¢ = ¢(p)), define the
following sets:

Li(p) 2{qeR™ |Ve{l,...;i—1,i+1,....n.}, pr=qel},
Sk(@ ={peR™ | fi(p)| < 0}
S@ EMliSk(@ = {p e R™ | &p) <7},

Qi(p,7) 2 Li(p) NS(0)
= (Li(p) N1(®) N -+ (Li(p) NS0, (@) -
(6.39)

A representation of the sets L;(p), S(¢) and Q;(p,¢) is given in Figure 6.6
for dimp = 2 and ¢ = 1. Any point q inside Q;(p,¢) satisfies ¢(q) < ¢ and
can thus be used to decrease the upper bound ¢ along the direction i.

The algorithm CROSS, presented in Table 6.3, takes advantage of this idea
to decrease the upper bound ¢ for é¢(p). The small positive real number is
used to stop the procedure when the improvement is not significant enough.
The set Q;(p, ¢) computed at Step 5 is, in general, a segment or a finite union
of aligned segments. At Step 7, q is usually taken as the centre of the largest
segment of Q;(p,¢). The situation Q;(p,¢) = & (at Step 6) may only be
encountered when é (p) > ¢, i.e., when the loop is executed for the first time.
If the improvement on the upper bound is deemed sufficient (¢ —¢ > k), then
the loop is executed again from q.

152 6. Estimation

Py o

S

Py

Fig. 6.6. Local search from p along the direction associated with pq

Table 6.3. A local algorithm to decrease the upper bound of the optimum cost

Algorithm CRross(in: ¢, p, &; inout: ¢)

1 ¢:=¢ q:=p;

2 do

3 c:=¢ p:=q;

4 forallie {1,...,np}

5 Qi(p,¢) := Ls(p) NS(c);

6 if Q;(p,¢) = @, next i;

7 select q inside Q;(p,T);

8 if e(q) < ¢ {a:=q,c:=c(q)};

9 while 2—¢> k. // s threshold to be chosen by user

The behaviour of this algorithm will now be illustrated on a very simple
two-dimensional problem.

Example 6.6 Finding the smallest disk D containing n points Ai,..., A,
of R? is a minimazx problem. The centre of the solution disk is the minimizer
of the cost function

c(p1,p2) = max {\/(m —4,)%+ (p2 — ij)Q} , (6.40)
je{l,...,n}

and its radius is the minimum ¢. If, for instance, n = 3 and the three points

are A1(0,4), A2(0,—4), A3 (4,0), then the minimizer is p = 0 and the min-

tmum is ¢ = 4. Note that c is not differentiable at p. Figure 6.7 presents

level sets of c. CROSS is run starting at p = (2,8)" and @ = 6. S,(2), S2(¢)

and S3(¢) are the disks in light grey on Figure 6.8. The darker set is S(¢).

6.2 Parameter Estimation Via Optimization 153

Fig. 6.7. Level sets of the cost function of Example 6.6

The loop is first executed for i = 1, and at Step 5 CROSS computes Q1 (p,©).
Since

Q1 (p,¢) = (L1 (p) NS1 (€)) N (L1 (p) N'S2 (2))
N(Li(p)NS3(2)),

computing Q1 (p,¢) amounts to computing Ly (p) N'S; (€),j = 1,2,3. This
can be performed automatically by forward—backward propagation on the CSP
with variables p; and r and with the constraint |f;(p)|—r = 0 and the domains
[0,¢] for r and R for p;. For instance, for j =1,

S1(@ ={peR [V(p —24,)% + (P2 —ya,)? <7}, (6.42)

(6.41)

and
Li(p) = {a € R? | g2 = po}. (6.43)
Asp= (2,8)T, ¢ =6, and the coordinates of A1 are x4, =0 and ya, = 4,

Li(p)NS1(c) = {p € R* | /p} + (p2 — 4)2 <6, p» = 8}. (6.44)

Li (p) NSy (€) can now be computed as follows:
Li(p)NSi1(e) ={peR? | \/pi + (8 —4)? =71, 7 €[0,6], po =8},
={peR?|p?=r2-16,r€0,6], p2 =8},
={p cR? | p; =sqr 1 (r? — 16), r € [0,6], po = 8},
={p €R? | p1 €sqr~ ([0, 6]* — 16), p2 = 8},
={p e R | p1 € [-v20,V20], p» = 8},
= [-/20,/20] x [8, 8].

154 6. Estimation

The function sqr! is the reciprocal function of the square function sqr, which

should not be confused with the classical square root function (e.g., sqr=1(4) =
{—2,2} whereas V4 = 2). (Note that sqr—'([4,9]) = [-3,—-2] U [2,3]; it
may thus be necessary to deal with unions of intervals.) The same reasoning,
applied to Li(p) N S2(¢), leads to the empty set. Therefore, Q1 (p,¢) = &.
The horizontal direction i = 1 is thus eliminated and the loop of CROSS is
now executed for the vertical direction i = 2. We get

Q2 (p,2) = Lo (p) NS (e) = [2,2] x [~1.657,1.657], (6.45)

which corresponds to the thick segment in Figure 6.8. When the loop is left
and if the centre of Qo (p,¢) is chosen as q, then @ = (2,0)7 and € = /20.
CROSS is then run again from p = q. |

Fig. 6.8. An iteration of CROSS

Example 6.7 Consider again FExample 6.5, where the cost function is given
by (6.36). When the initial parameter vector and the options are well chosen,
the procedure MINIMAX of the MATLAB toolbox OPTIM (Brayton et al., 1979),

6.3 Parameter Bounding 155

finds a cost equal to 0.0657 in about 5 s on a PENTIUM 133. This procedure,
however, is local, is sensitive with respect to the initial parameter vector (it
may even diverge), does not provide any guarantee on its results (even lo-
cally), often stops because of ill conditioning and never detects that the prob-
lem has two solutions for p. By contrast, the approach advocated here is able
to solve this minimaz problem globally and efficiently. On the same computer,
for e = 0.05 (in OPTIMIZE), k£ = 0.001 (in CROSS) and a search box equal
to [—60,60] x [—1,0] x [—60, 60] x [—1,0], OPTIMIZE proves in 1.7 s and after
109 bisections that € € [0.0653,0.0657]. The resulting subpaving S (which con-
tains all the global minimizers) consists of 44 bozxes and has two symmetrical
disconnected components. This shows that interval solvers can compete with
MATLAB procedures, even from the point of view of computing time. |

6.3 Parameter Bounding

6.3.1 Introduction

The bounding approach to parameter estimation has received renewed at-
tention in the 1990s (Walter, 1990; ?; Deller et al., 1993; Norton, 1994; Nor-
ton, 1995; Milanese et al., 1996; Walter and Pronzato, 1997, and the many
references therein). Of the reasons for this interest, we shall quote only two.
First, this approach can deal with unavoidable structural errors resulting
from the fact that the equations used to describe the system are always an
approximation of reality. These errors are often deterministic, and thus not
adequately described by random variables. Second, parameter bounding is
well suited to the guaranteed characterization of parameter uncertainty, a
prerequisite for a number of methods in robust control (see Chapter 7). In
the context of bounded-error estimation, interval methods have been intro-
duced independently by Moore (1992) and Jaulin and Walter (1993b).

~

In a bounding approach, the set to be characterized is X, = X N M.
Even if some algorithm could in principle be found to perform this task, an
accurate characterization of X often turns out to be too complex because
X ={x1,...,2,} generally contains many elements. In practice, however, it
is often possible to partition x = (x1,...,2,)T into three vectors y, p and t
in such a way that there exists a function ¢ such that

xeM& (y,p,t) e M & y = d(p,t). (6.46)

When the vectors p and t are concatenated to form a vector z, this cor-
responds to (6.10), page 144. Distinguishing p and t will make it possi-
ble to distinguish parameters to be estimated (the parameter vector p =
(p1,--- ,pnp)T) from other uncertain quantities (the vector of the values taken
by the independent variables t = (ty,...,t,,)") introduced only to allow the
estimation of p. In practice t may correspond to the actual instants of time
at which experimental data are collected, if these instants are uncertain. The

156 6. Estimation

vector y = (y1,...,Yn,)" (the output vector) consists of variables whose val-
ues could be computed from the constrained set M if the values of p and t
were known. A simulator ¢ is a function from R 17 to R™ computing y
from p and t. Since the variables of interest are stored in p, the set to be
characterized is the projection P of X onto parameter space:

P={peR™|3teR™ IyecR™, (y,p,t) eX,=XNM}. (6.47)

Because of (6.46), this implies that

P={pecR™|3tecR™y=d(pt)and (y,p,t) € X} (6.48)
={peR™ |3t € R™, (¢(p,t),p,t) € X}. (6.49)

SIVIA can be used for the characterization of @, provided that an inclusion
test [Tp]([p]) is available for the test

7p(P) £ (3t € R™ | (¢(p, 1), P, t) € X). (6.50)

Let [7ypt]([y], [P], [t]) be an inclusion test for the test Ty, = ((y, P, t) € X).
An inclusion test for the test

Tou(P,t) £ ((¢(p, 1), P, t) € X) (6.51)
is then
[l ([P, [¢]) = [rypel ((#1([P], [¢]), [P], [t]), (6.52)

where [¢]([p], [t]) is an inclusion function for ¢(p,t). An inclusion test for
7,(p) is finally given by the algorithm of Table 6.4. The initial search box [t]
is assumed to be large enough to contain the projection of X onto t-space.

On the one hand, the algorithm attempts to partition [t] into subboxes
[t] such that

(@([p] [t), [P, [t) N X = 2, (6.53)

for all of these subboxes. All subboxes of [t] still to be studied are stored in
the queue Q. If the algorithm succeeds, which means that [p] " P = &, it
returns 0 at Step 3.

On the other hand, the algorithm tries to find one t such that

(¢([pl. t), [pl, t) C X. (6.54)

When such a t is found, this means that [p] C P and the algorithm returns
1 at Step 5.

The test at Step 7 is introduced to avoid splitting [t] ad infinitum and to
introduce some relation with the splitting policy followed for [p] by SIiviA.
When the algorithm fails to reach a conclusion, [0,1] is returned at Step 3.

6.3 Parameter Bounding 157

Table 6.4. Inclusion test for the test of a box [p] for feasibility

Algorithm [rp](in: 7ps, [p], [f]; out: [7])

T Q= ([l [rel = 0

2 repeat

3 if @ = @ then return;

4 pop the first box out of Q into [t];

5 if ([tpe]([p], mid([t])) = 1) then [rp] := 1; return;
6

7

8

9

if ([rps)([p], [t]) # 0) then
if w([t]) <w(lpl), [mp] := [0,1];
else bisect [t] and put the resulting boxes at the end of O;

forever.

In practice, the dimension ny of t is high compared to the dimension
np of p, and the bisections performed at Step 8 make the complexity of
the algorithm exponential with ni. We now consider a situation where such
bisections can be avoided. Assume that the prior feasible set is a box, written
as

X2 [ga] % - X [,] X [Ba] X - % [y] X [E1] X - x [,). (6.55)
Assume also that t; corresponds to the time at which the measurement g;
of y; is collected, i = 1,...,ny. As a result, n; is equal to ny and the ith
component of the relation y = ¢(p,t) can now be written as y; = ¢;(p, ;).
This means that the value of y; does not depend on the time at which the
other measurements are collected, a very common situation. The test 7,(p)
defined by (6.50) is then equivalent to

Jti € [t1],. .., Ttn, € [tn,] such that
p1 € [p1)(0), -, Pn, € [P,])(0) ; (6.56)
¢1(p7T) [] "'7¢ny(p7tny)e [gny]

i.e., to

p1 € []31}(0)7 cee ’pnv S [pnp](o)
It € [t] | ¢1(pst1) € [91]

Ftny € [Eny] | G, (Prtny) € [Uny]

Let [o]([p]) be an inclusion test for o;(p) = (p; € [p;]) and let [1,]([p]) be an
inclusion test for the test n;,(p) = (3t; € [ti] | ¢;(p,t:) € [#:]). An inclusion
test for 7p(p) is then given by

[mp]([P]) = [oa]([P]) A~ Afow, [([P]) A [nd]([RI) A<+ A [, J([P])-
(6.58)

158 6. Estimation

Now, the inclusion test [7,]([p]), implemented along the lines of Table 6.4,
requires only one-dimensional bisections along ¢;. Evaluating [rp]([p]) thus
requires ny searches in one-dimensional spaces instead of one search in an
ny-dimensional space, a drastic simplification.

An even simpler situation will be considered in the next section, where
the value of t is assumed to be known exactly and thus need not be included
in the variables to be considered. We shall return to uncertain measurements
of independent variables in Section 6.3.4.

6.3.2 The values of the independent variables are known

Assume that t need not be incorporated in the list of variables of the estima-
tion problem, for instance because the errors committed when measurering
the measurement times are negligible. Equation (6.49) then simplifies to

(¢(p).p) € X}. (6.59)

Assume also that X is a box, which means that prior knowledge on each
variable is independent of prior knowledge on the other, i.e.,

B (peRrm

XE 1] x - X [gny] X [P1] X -+ X [pn,] = [F] x [B]. (6.60)
Then

(¢(p),p) € X & ¢(p) € [§] and p € [p]
& pecg '([7]) and p € [p] (6.61)
< peplne (7))

Thus
P=[plne (7)), (6.62)
and characterizing P is a set-inversion problem, which can be solved using

StviA. Note that a number of specific methods are available to characterize P
when ¢(p) is linear. In this case, IP is a polytope, which can be characterized
exactly (Walter and Piet-Lahanier, 1989) or enclosed in a simpler-shaped
set such as an ellipsoid (Fogel and Huang, 1982) or a box (Milanese and
Belforte, 1982; Belforte et al., 1990). When ¢(p) is non-linear, there are
much fewer methods leading to guaranteed results. One of them is based
on signomial programming (Milanese and Vicino, 1991). Another approach
based on interval analysis and similar to S1viA was independently developed
by Moore (1992).

Example 6.8 A two-parameter problem will be used as an illustrative exam-
ple, which will make it possible to draw pictures of the paving obtained. This
example is taken from Jaulin and Walter (1993a) and is a simplified version
of a problem considered in Milanese and Vicino (1991). An example related

6.3 Parameter Bounding 159

Table 6.5. Measurement times and corresponding interval data

it (93]
1075 | [27,121]

2| 15 | [104,7.14]

3| 225 | [~0.13,3.61]
4| 3 | [-095,1.15]
5| 6 | [-4.85,-0.29]
6| 9o |[-5.06—0.36]
71 13 | [~4.1,-0.04]
8| 17 | [-3.16,0.3]
9| 21 | [-2.5,051]
10 25 [72, 0.67}

to electrochemistry can be found in Braems et al. (2001). The set P to be
characterized consists of all parameter vectors p such that the graph of the
Sfunction

f(p,t) = 20 exp(—pit) — 8exp(—pat) (6.63)

crosses all the data bars of Figure 6.9. The numerical values of the corre-
sponding interval data are given in Table 6.5.
In this simulated example, the interval data have been computed by in a sim-

Fig. 6.9. Experimental data of Example 6.8, together with their uncertainty inter-
vals

160 6. Estimation

plified way by adding a centred error interval with radius p; = 0.5|y;| + 1 to
the ith component of the data vector
v =(7.39,4.09,1.74,0.097, —2.57,
—2.71,-2.07, —1.44, —0.98, —0.66) T, (6.64)
for ¢ = 1,...,10. The posterior feasible set for the parameters is given by

(6.62), where the search domain [P] is taken as [—0.1,1.5]*2. The coordinate
functions of ¢ are given by

¢1(p) =20 exp(fplti) - 86Xp(*p2ti), i = 17 ceey 10. (665)

In less than 4 s on a PENTIUM 133, SIVIA generates the paving of Figure 6.10,
thus bracketing the posterior feasible set for p between inner and outer ap-
prozimations. |

Fig. 6.10. Paving generated by SiviA for Example 6.8 to bracket the posterior

feasible set P for the parameters between inner and outer approximations; the outer
frame corresponds to the box [—0.1,1.5]*?

6.3.3 Robustification against outliers

The approach considered so far relied on the hypothesis that the prior feasible
set X did contain the actual values for the variables, which is unfortunately
not always realistic. Assume again that X is the box defined by (6.55). Even

6.3 Parameter Bounding 161

if each prior interval component of X is obtained from a reasonable model
of measurement inaccuracy, for instance deduced from sensor technical data
sheets, in practice things do not always happen as expected. For instance,

e some constraints in M may not always hold true,

e a sensor may fail during data collection,

e there might be rare situations where some error bounds turn out to be
optimistic.

A variable x; whose actual value does not belong to its prior interval is
called an outlier. Robot localization (Chapter 8) will provide a context where
such outliers are more or less unavoidable. The presence of outliers may be
detected after completion of the estimation process, if the posterior feasible
set turns out to be empty. Unfortunately, it may also escape detection. To
protect oneself against the fact that X may not contain the actual values of
some of the variables in x, one may enlarge (or relax) X. For this purpose,
consider a relaxing function A : R™—[0,1] such that A\ = 1 if and only if
x € X. The relaxed prior feasible set

Ko 2 {xeR" | A(x) = a} = A Y([a,1]) (6.66)

for a € [0,1] contains X. Moreover X; = X and Xy = R".

Fig. 6.11. Relaxing functions

Example 6.9 Define the characteristic function 7, : R — R of the inter-
val [a,b] as

| 1if xe]a,b]
mat)(®) = {0 if «¢a,b]. (6.67)

The function

162 6. Estimation

Ty (T1) + - + 7Ty, (Tn)

Ar(x) = -

(6.68)

is then relaxing for the box [y] = [y1] x -+ X [yn]. If the wy, i € {1,...,n},
are positive weights, then the function
Wiy, (21) + -+ wamy,) (Tn)

Aw =
(X) wy + -+ wy,

(6.69)

is also relaxing for the box [y]. Figure 6.11 illustrates the relazing functions
(Tl (1) + 7o) (22))/2 (left) and (3yy,)(21) + Ty, (22)) /4 (right). u

Allowing ¢ out of the n variables x; to escape their prior feasible intervals
amounts to enlarging the prior feasible box X by choosing

M) (1) + - + Tl) (@n) anda=1— g, (6.70)
n

Alx) =
))
where the [i;]s are the interval components of X. An inclusion test for X,
can be obtained via an interval evaluation of A(x) and the characterization of
X4 can be performed by using SivIA. For the characterization of the relaxed
posterior feasible set for the parameters, defined by

P, = {p € R™ | 3t € R™, (¢(p,t),p,t) € Xa}, (6.71)

see (6.49), SIVIA can also be used, provided that an inclusion test is available
for the test

T8 £ (3t € R™ | (¢(p,t),p,t) € Xa). (6.72)

Such a test is given by the algorithm of Table 6.4, where the test Tp¢(p,t)
is replaced by 75, (p,t) = (((;S(p,t), p,t) € Xa). To illustrate this approach,
assume that the values taken by the independent variables are certain, so the
entries of t are not variables of the estimation problem. The prior feasible
domain for the variables is then the box X = [§]x[p]. The posterior feasible
set for the parameters is thus

(@(p),P) € [¥] x [P]}- (6.73)

Allow up to ¢ of the n, output variables y; to escape their prior feasible
intervals. This amounts to replacing the box [¥] in (6.73) by the set

B—{perm

Yo 2 {y €R™ [my(y1) + - + 75, 1(Un,) = 0y —ab, (6.74)
and P by
Py ={p €[] | ¢(p) € Yy} = [B] N ™" (Vy). (6.75)

SIVIA can be used to characterize I@’q for any prespecified integer value of ¢
in [0, ny].

6.3 Parameter Bounding 163

Example 6.10 Consider again Example 6.8, but assume now that the vector
¥ comprising all the available data is

¥ = (7.39,0,1.74,0.097, —2.57, —2.71, —2.07,0, —0.98, —0.66) 7, (6.76)

which illustrates a situation where there are two outliers (§(2) = 0 instead
of 4.09 and §(8) = 0 instead of —1.44). The resulting interval data are de-
picted in Figure 6.12. SIVIA generates the subpavings depicted in Figure 6.13
forq=0 (a), ¢ =1 (b) and ¢ = 2 (c), respectively associated with the sets
I@’O, Py and Py. The required accuracy was taken as € = 0.005 and the prior
search box for the parameters was [p] = [—0.1,1.5] x [<0.1,1.5]. By turns out
to be empty, which proves that there is at least one outlier in the data. The
fact that Py is not empty should serve as a warning that outliers may go un-
detected. If one looks for an outer approximation of the posterior feasible set
that would be obtained in the absence of outliers, then one should rather over-
estimate the actual number of outliers. Since there are indeed two outliers,
P, provides such an outer approximation and contains the set P represented
in Figure 6.10. P, is disconnected because there are two different strategies to
eliminate two interval data in order to be able to be consistent with the eight
TEMaINIng Ones.]

Fig. 6.12. Interval data with two outliers

The size of]f”q increases with ¢ and a compromise must of course be struck
between the level of protection against outliers and the size of the resulting
set estimate for the parameters. A possible strategy (Jaulin et al., 1996) is
to start assuming that ¢ = 0, and to increase ¢ by one as long as]f”q remains

164 6. Estimation

empty. This choice, which corresponds to a guaranteed implementation of
OMNE (for Outlier Minimal Number Estimator (Lahanier et al., 1987)),
leads to stopping at Py in Example 6.10.

Fig. 6.13. Pavings generated by Sivia for Example 6.10; (a) no outlier assumed;
(b) up to one outlier assumed; (¢) up to two outliers assumed; the frames correspond
to the parameter box [—0.1,1.5] x [-0.1,1.5]

6.3.4 The values of the independent variables are uncertain

In the literature devoted to parameter bounding, little attention has been
paid to uncertainty in the measurement of independent variables. If the co-
ordinate functions of ¢(p,t) are bilinear in t and p and if the prior feasible
domains [t] and [p] for t and p are boxes, the problem of characterizing
the posterior feasible set P for the parameters can be solved exactly with
the technique described in Cerone (1991, 1996). Ellipsoidal outer approxi-
mations of this set can also be computed (Norton, 1987; Clément and Gen-
til, 1990; Pronzato and Walter, 1994; Norton, 1996; Veres and Norton, 1996).

6.3 Parameter Bounding 165

We shall consider a more general situation where ¢(p, t) may be non-linear in
p and in t. To the best of our knowledge, guaranteed and accurate results in
such a non-linear bounding context were first presented in Jaulin and Walter
(1999). Non-linear parameter estimation with such errors in variables has
been considered in the context of least squares for many years (Schwetlick
and Tiller, 1985), but the results are obtained by local methods and thus not
guaranteed.

Table 6.6. Prior feasible intervals for the data of Example 6.11

it [£:] [9:]
1075 | 025,175 | [2.7,12.1]
2| 15 | [05,2.5] [1.04, 7.14]
30225 | [1.25,3.25 | [-0.13,3.61]
4] 3 [2, 4] [-0.95, 1.15]
5| 6 [5,7] [—4.85,—0.29]
6] 9 8, 10] [~5.06, —0.36]
7| 13 12, 14] [—4.1,-0.04]
8| 17 16, 18] [-3.16,0.3]
9| 21 20, 22] [-2.5,0.51]
10| 25 [24, 26] [~2,0.67]

Example 6.11 Consider again Example 6.5, page 149. Assume now that the
values taken by the independent variables are uncertain. The prior interval
[t;] is obtained by adding the interval [—1,1] to the associated measurement
time t;. The resulting prior intervals [£;] for the t;s,i = 1,...,10, are given
in Table 6.6. Figure 6.14 presents the data. The uncertainty associated with
each pair of output and time data is materialized by a grey box. The set P to
be characterized consists of all the values of p = (p1,p2)T such that the graph
of the function

f(p,t) = 20 exp(—p1t) — 8exp(—pat) (6.77)
goes through all ten boxes of Figure 6.14. It is defined as

P={pecR™|3tecR™ (¢(p,t),p,t) € X}, (6.78)
where

¢i(p, t) = ¢4(p,1i) = 20 exp(—p1t;) — 8exp(—pat;) (6.79)
and

X = [g1] X -+ X [g10] X [p1] X [P2] X [t1] % -+ X [{10]- (6.80)

The prior box for the parameters is taken as

166 6. Estimation
Y
14 ¢
12
10

o \) =~ (@) oo
T T T T

2| R L

-6 . w s L L . .
0 5 10 15 20 25 30

Fig. 6.14. Uncertain experimental data with uncertain measurement times

] = [p1] x [p2] = [0,1.2] x [0,0.5]. (6.81)

SIVIA can be used to characterize IFD, provided that an inclusion test is available

for
It eRY | (¢(p,t),p,t) X (6.82)

This test can be rewritten as

3(tla e 7t10) S Rlov (¢1(paf/1)a vy ¢10(pat10)7p1ap27t1a e af/lO)

)) (6.83)
€ [Ja] x -+ X [g10] X [Pr] x [P2] X [t2] x -+ x [t10],
or equivalently as
t1 4] ¢1(p,t1) [91]
2 | e . | : c .
t10 [£10] ¢10(Pst10) [910]
and <p1> € <M> (6.84)
D2 D]
Pe®B)An®P A A, (P), (6.85)

where 1n,(p) is the test

6.3 Parameter Bounding 167

n:(p) = (3ti € [ti] | ¢5(p.ta) € [Gi])- (6.86)
An inclusion test for n,(p) is then obtained by the algorithm of Table 6.4.
For ¢ = 0.01, SIVIA generates the subpavings represented on Figure 6.15 in
38 s on a PENTIUM 133 (Jaulin and Walter, 1999). The dark grey boxes have
been proved to be included in P and the light grey boxes have been proved to

have an empty intersection with P. No conclusion has been reached for the
black bozes. |

P2 A
0.5
04F

0.3F

0.2

0.1

_01 L L L L ! L I S
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 Dy

Fig. 6.15. Paving generated to bracket the posterior feasible set P for the param-
eters of Example 6.11

6.3.5 Computation of the interval hull of the posterior feasible set

In Sections 6.3.2 to 6.3.4, parameter bounding was illustrated by a modified
version of a problem treated in Milanese and Vicino (1991). The original
problem was the computation of the interval hull []f”} of the posterior feasible
set I for the parameters. This becomes especially interesting if a more accu-
rate outer approximation of the posterior feasible set cannot be obtained or
turns out to be too complicated to be useful. In order to facilitate compar-
ison, the problem considered in Milanese and Vicino (1991) will also serve
here to illustrate the methodology.

168 6. Estimation

Example 6.12 Consider the same situation as in Example 6.8, except that
np =4 (instead of 2) and the constrained set M is defined by the equations

yi = pre P £ pge P i =1,...,10. (6.87)

The prior feasible box for the parameters is [p] = [2,60] x [0, 1] x [—-30, —1] x
[0,0.5]. Asin Example 6.5, the output data are given by (6.64) and the known
measurement times are given by Table 6.5, but the radius of the ith interval
output datum is now taken as p; = 0.05]y;| + 0.1 (instead of p; = 0.5|y;| + 1
in Example 6.5). The posterior feasible set is given by

P={pcR'|(o(p),p) €[y x B} = (7)) N [B] (6.88)
Now, the set ¢*1([y]) can be defined by the following inequalities
pre P pge P €[] i =1,.. ., 10, (6.89)

and thus HULL, described in Chapter 5 at page 116, can be used to character-
ize [P|. For e = 0.001, it takes less than 8 s on a PENTIUM 133 to find inner
and outer boxes for [IP], given by

[pin] = [17.2,26.79] x [0.301,0.49] x [—16, —5.4] x [0.0767,0.1354],

[Pout] = [17.05,27] x [0.298,0.495] x [—16.2, —5.34] x [0.0763,0.136].
In Milanese and Vicino (1991) a signomial approach is proposed to solve this
problem, based on Falk’s algorithm (Falk, 1973). This approach yields less

accurate results than the one advocated here and requires a computing time
that is larger by an order of magnitude (Jaulin, 2000a). |

6.4 State Bounding

6.4.1 Introduction

This section deals with the guaranteed estimation of the state vector of a non-
linear discrete-time system in a bounded-error context. Readers unfamiliar
with the concept of state may refer to Section 7.2, page 188, for a first in-
troduction in a simpler linear framework. Consider a non-linear discrete-time
system described by

wi(k) = filei(k—1),... 20 (k — 1), k),

Ty (k) = fr (x1(k = 1), ..., 2 (k — 1), k),

(6.90)
vi(k) = gi(@1(k), ..., on, (k) k),

Yny (k) = Iny (x1(k), ..o, wn (k) k),

6.4 State Bounding 169

where k is the time index, ranging from 1 to k, x1(k), ..., 7, (k) are the state
variables, y1(k),. .., yn, (k) are the output variables and the f;s and the g;s
are known functions, which may be represented by finite algorithms. For the
sake of simplicity of exposition, input variables were not introduced, but they
would pose no particular conceptual difficulties. In vector form, (6.90) can
be written more concisely as

{x<k> = f(x(k — 1), k),
y(k) = g(x(k), k).

The output vector y(k) is assumed to be measured on the system, and the
problem to be considered is the estimation of the state x(k) from the informa-
tion available. When the data are processed in real time, the data §(i) to be
collected on the system after time k£ are not available during the estimation
of x(k). The most common assumption is thus that only past measurements
can be taken into account, but we shall also consider the off-line case where
results of measurements posterior to time k£ can be used to estimate x (k).

In a linear context (i.e., when f and g are linear), many tools are avail-
able for state estimation. They can be classified according to how they deal
with uncertainty. Some of them do not take explicitly into account the fact
that (6.91) is an approximation of reality and that the measurements are
corrupted by noise. This is the case, for instance, for Luenberger state ob-
servers (Luenberger, 1966). Other estimators, such as the ubiquitous Kalman
filter (Kalman, 1960; Sorenson, 1983), are based on a statistical description of
uncertainty and assume that the measurement noise and state perturbations
are realizations of random variables, with known statistical properties. The
last group of methods corresponds to state bounding (Schweppe, 1968; Wit-
senhausen, 1968; Bertsekas and Rhodes, 1971; Chernousko, 1994; Durieu
et al., 1996; Maksarov and Norton, 1996; Milanese et al., 1996; Kurzhanski
and Valyi, 1997, and the references therein). These methods are based on the
assumption that all uncertain variables belong to known compact sets, and
attempt to build simple sets, such as ellipsoids, orthotopes or parallelotopes,
guaranteed to contain all state vectors consistent with this assumption.

In a non-linear context, the methodology is far less developed, and still
the subject of active research even in the deterministic case (Kang and
Krener, 1998). When uncertainty is explicitly taken into account, this is most
often by resorting to linearization. An extended Kalman filter (Gelb, 1974),
based on linearization of (6.91) around the state trajectory, is usually em-
ployed. This linearization is inherently local and may fail to produce reliable
estimates. It also makes any statistical interpretation of the covariance ma-
trices computed by the algorithm questionable, because the propagation of
the statistical properties of the perturbations through non-linear equations is
largely unknown. In this section, a new non-linear state bounding approach
will be presented, partly based on Kieffer et al. (1998, 1999) and Jaulin,
Kieffer, Braems and Walter (2001).

(6.91)

170 6. Estimation

The set of all the variables involved in (6.90) is

{21(0),...,2,,(0),
21(1), - 2 (1), 91(1), -, (1),

(6.92)

z1(k), .. xn (), y1(k), ... yn, (k) }.
Assume that z1(0),...,2,, (0) are known to belong to some prior bounded
intervals [£1(0)], ..., [£x,(0)]. The interval [#;(0)] represents the prior knowl-

edge on the initial state variable z;(0) and may be taken arbitrarily large in
the absence of information. Let ¢;(k) be the result of the measure of the out-
put variable y;(k). In a bounded-error context similar to that of Section 6.3,
the measures performed at time k yield prior intervals [g;(k)] assumed to
contain the actual values of the output variables y;(k). When estimation
must be performed in real time, [§;(k)] is taken as [—oc, 00| before measure-

ment. The prior domains [#;(k)] for the state variables z;(k)’s, i = 1,...,ny,
k=1,...,k, are also taken as [—00, o0].
The initial state variables 1(0), ..., z,, (0) have a special status, because

if their values were known, then the values of all the other variables could be
computed with the help of (6.90). For this reason, they will be called source
variables, and x(0) will be called the source vector. Let y be the vector of all
output variables

y =Y, (1, y1 (k) g, (B (6.93)
and ¢ be the vector function that computes the values taken by y when (6.90)
is simulated starting at x(0). We shall first consider the off-line estimation of
the set X(0) of all the initial vectors x(0) = (z1(0), ..., zn, (0))T that belong

to the prior domain [%(0)] and are consistent with the prior domain for y,
i.e., with

7] = [(D] x -+ % [Gn, (1)] x o< [ga (k)] -+ % [gny (R)] - (6.94)
This set is given by
X(0) = ®O)] N~ (7). (6.95)

Its characterization is thus a set-inversion problem, which can be solved by
S1VIA, as illustrated in Section 6.4.2. Section 6.4.3 will extend the methodol-
ogy to the estimation of all variables (and not just of the initial state). The
use of a contractor based on forward-backward propagation will be shown
to be particularly well suited to the context of state estimation. Finally, Sec-
tion 6.4.4 will deal with the recursive case where only the past measurements
can be taken into account.

6.4 State Bounding 171

6.4.2 Bounding the initial state

This section illustrates the use of SIVIA to characterize the set of all initial
state vectors that are consistent with the prior interval data (Jaulin, 1994).
Consider the non-linear state equation
x1(k + 1) = cos(x1(k)x2(k)),
xa(k + 1) = 3z1(k) — sin(xa(k)), (6.96)
y(k) = 2(k) — z2(k).
The ten output data

¥y = (y(0),...,y(9)"

=(3,-5,0.6,2.2,—3.8,-1.4,0.4,—1.2, —1.8,2.6)" (6.97)
have been generated by simulating (6.96) for k =0, ...,9 from the unknown
initial state vector x*(0) = (2,1)T, and by adding a realization of some

random noise in [—0.5,0.5] to the resulting output y*(k). The prior feasible
box [y] for y was obtained by adding the error interval [—0.5, 0.5] to all entries
of y. Thus

[¥] = [2.5,3.5] x [=5.5,—4.5] x [0.1,1.1] x [1.7,2.7] X
[—4.3,-3.3] x [~1.9,—0.9] x [—0.1,0.9]x (6.98)
[~1.7,-0.7] x [-2.3,-1.3] x [2.1,3.1].

The set of all the initial state vectors x(0) in the prior box [%X(0)] that are
consistent with [¥] is given by (6.95). For ¢ = 0.01 and [%(0)] = [-5, 5]*2,
the characterization depicted in Figure 6.16a is obtained by SIiviA in less
than 1s on a PENTIUM 233. The zoom around the true value x*(0) of the
initial state presented on Figure 6.16b has been obtained for ¢ = 0.0001 and
%(0)] = [1.98,2.02] x [0.98,1.02].

6.4.3 Bounding all variables

As already mentioned, if a punctual value x(0) is known for the initial state
vector, the punctual values of all other variables can be calculated by sim-
ulating (6.90) from x(0). However, the approach presented in Section 6.4.2
to characterize the set X(O) does not provide any bounds for the other vari-
ables of interest. Such bounds could be obtained by set simulation of (6.90)
from X(0), but this problem is much more difficult than set inversion and its
consideration will be deferred to Section 6.4.4. For the time being, we shall
consider a conceptually simpler approach. A slight adaptation of S1viA de-
scribed in Table 6.7 will first be used to get an outer approximation X(0) of
X(0) consisting of a union of boxes, each of which has a width smaller than e.
The main difference with the version of Chapter 3, page 56, is that subboxes

172 6. Estimation

Fig. 6.16. Characterization of the set of all initial states consistent with interval
data in [—5,5]*? (a) and in [1.98,2.02] x [0.98,1.02] (b)

of [x(0)] which could have been proved feasible are nevertheless bisected un-
til their widths become smaller than the required accuracy parameter £. As
a result, more boxes are obtained upon completion of the algorithm than
necessary for a given quality of the description of X(0), but set simulation
starting from these smaller boxes can be expected to be more accurate than
with the characterization obtained with the initial version of Sivia. In the
algorithm of Table 6.7, £ is a list of boxes in the space of the initial state,
initialized as the empty list. The first call is made with [x(0)] = [%(0)], where
[%(0)] is the prior box for the initial state vector. Cg g, is a suitable contrac-

tor for the solution set X(0) (see Section 4.5, page 97). After * completion of
S1vIA, the union of all boxes in £ is an outer approximation X(0) of the set

X(0) = ¢ (I§]) N [X(0)]-

Table 6.7. Adaptation of SIVIA to set simulation

Algorithm S1vIA(in: Cy gy, [x(0)], €; inout: £)

T x(0)] = Caro) (KO)))

2 if ([x(0)] = @), then return;

3 if (w([x(0)]) < €) then £ = L U {[x(0)]}; return;

4 bisect ([x(0)]) into [x(0)], and [x(0)],;

5 SvIA(Cygy: [%(0)],, €, £); SIVIA(Cgq), [X(0)],: €, £).

The set simulator described in Table 6.8 can then be employed. It uses
inclusion functions for f and g to compute boxes guaranteed to contain the

6.4 State Bounding 173

successive values of the state and output vectors for any initial state vector
in any given box of X(0) (listed in £). It then suffices to take unions of boxes
to get outer approximations of the set of all values of x(k) or y(k) for any
x(0) in X(0).

Table 6.8. Simulation of the state equations for all boxes of the list £ produced
by SiviA of Table 6.7

Algorithm SETSIMULATION(in: £; out [x(1)],...,
x(D]=2;...5[x(k)] =2; [y(D)] =2;...;[y(k)] = 2;
for all [x'(0)] in £
fork=1tok
[(x' (k)] == [£]([x'(k = 1)]);
[(x(k)] := [x(R)] U [x'(K)];
)
]

EN SNC NS LI U JUR O

y' (k)] = (gl (X' (K)]);
[y (k)] := [y (k)] U [y'(K)]-

As an illustration, consider the non-linear discrete-time system

x1 (k) _ (01 (k—1)+xz2(k—1)exp(z1 (k—1))
o (k) x1 (k= 1) +0.12% (k — 1) +sin(k) T (6.99)
y (k) =z (k) /z1(k),

with & € {1,...,15}. Interval data have been generated as follows. First,
starting from the true value x* (0) = (—1,0)T of the initial state vector, the
true values x*(k) and y* (k),k € {1,...,15} were computed by simulation.
To each noise-free output y* (k) a random error was then added, with a
uniform distribution in [—e,], to generate noisy data §(k). Finally, the prior
domain for y(k) was taken equal to [§(k)] = [g(k) — e, 5(k) +e]. [§(k)] is thus
guaranteed to contain the unknown noise-free output y* (k). The problem
to be solved is then: given the equations of the system (6.99), the interval
data [§(k)], and bounded intervals [Z1(0)] and [E2(0)] containing the initial
state variables x1(0) and x2(0), compute (accurate) interval enclosures for
the values of the variables x1(k), zo(k) and y (k), k=1,...,15.

The contractor for the set X(O) required at Step 1 of Table 6.7 may be the
forward-backward contractor C|; described in Section 4.2.4, page 77, applied
to the CSP H : (¢(x(0)) —y = 0,x(0) € [%(0)],y € [¥]). A first simulator ¢
is given by Table 6.9. The statements of this simulator are transformed into
primitive constraints by introducing auxiliary variables in a second simulator,
as indicated in Table 6.10. The resulting contractor is in Table 6.11.

The prior domains for the components of the initial state vector were
taken as

[£1(0)] = [~1.2, —0.8], [£2(0)] = [-0.2,0.2]. (6.100)

174 6. Estimation

Table 6.9. Simulator

Algorithm ¢(in: z1(0), z2(0); out: y(1),...,y(k))
1 fork:=1tok,

2 x1 (k) :=01xx1 (k—1)+z2(k—1)xexp(z1 (k- 1));
3 w2 (k) =1 (K — 1) + 0.1 % 23 (k — 1) +sin(k);
4y (k) = o (k) f2a (k).

Table 6.10. Simulator with auxiliary variables

Algorithm ¢(in: z1(0), 22(0); out: y(1),...,y(k))
1 for k:=1tok,

2 z1 (k) = exp(z1 (k — 1));

3 z2 (k) = z2(k— 1) % 21 (k);

4 z1(k) :=01xz(k—1)+2z2(k);

5 z3 (k) := 0.1xsqr(zz (k — 1));

6 za (k) := z3 (k) + sin(k);

7 z2 (k) ==z (k — 1) +2z4 (k)

8 yk)i=w2 (k) /mi(k).

In the absence of noise (i.e., e = 0), the contractor of Table 6.11 is able
to find the actual values of all the variables with an accuracy of 8 digits in
0.1 s on a PENTIUM 133. No bisection turned out to be necessary to get this
result. The boxes drawn on the left part of Figure 6.17 are those obtained
after each iteration of the contractor C|;. More details about the resolution
of this example with the methodology advocated here can be found in Jaulin,
Braems, Kieffer and Walter (2001).

For e = 0.5 (i.e., in the presence of noise), the volume of X(O) is no longer
equal to zero, and thus, even with an ideal contractor, bisections have to be
performed (see the right part of Figure 6.17). Computing time is now about
3s for e = 0.001, on a PENTIUM 133. The prior interval data [g(k)] are on
the left part of Figure 6.18 and the corresponding contracted intervals [§(k)]
are on the right part of the same figure. Since z%(5) and z3(13) are almost
equal to zero and since y(k) = x2(k)/xz1(k), no contraction was achieved for
[y(5)] and [y(13)]. Figure 6.19 presents the contracted domains obtained for
the state variables x1(k) (left) and xo(k) (right), as functions of k.

6.4.4 Bounding by constraint propagation

When there are many variables in X', as in long-range state estimation, one
should avoid bisecting boxes in the Cartesian product of the domains of all

6.4 State Bounding 175

Table 6.11. Forward-backward contractor for the set X(0) of initial state vectors

Algorithm Cy) (in: [g(1)], ..., [4(k)]; inout: [z1(0)], [z2(0)])
1 fork:=1tok
2 [m(k)] = [-o0,00]; [wa(k)] = [-00,00]
3 [a1(k)] = [-o0,00]; [22(k)] := [—00, 0]
4 [za(k)] := [0, 00]; [24(K)] := [0, 9]
5 do
6 for k:=1to k, // forward
7 [21 (K)] := [z1 (F)] Mexp([1 (k = 1)]);
8 [22 (K)] := [z2 (R)] 0 ([w2 (k = D)] * [z (K)]) ;
9 [z1 (F)] := [z (B)] N (0.1 [21 (k — 1)]+[22 (K)]) ;
10 [23 (k)] := [25 (K)] N (0.1 s sqr([z (k= 1)])) ;
11 24 (k)] := [za (K)] N ([23 ()] + sin(k)) ;
12 (w2 (F)] := [w2 (K)] N ([z1 (k — 1)] + [22 (K)]) 5
13 ly (k)] = [y (K)] 1 ([2 (K)]/[1(R)])
14 for k := k down to 1, // backward
15 (w2 (F)] := [z2 (B)] N ([y (k)] = [z1(K)]) 5
16 [z1 (F)] := [z (B)] N ([z2 (R)]/[y (K))) ;
17 [z1 (k= 1)] := [w1 (k= D] N ([z2 (k)] = [22 (F)]) 5
18 24 (k)] := [za (F)] N ([z2 (K)] — [&1 (K — 1)]);
19 23 (k)] := [25 (K)] N ([za (K)] — sin(k)) ;
20 (22 (k—1)] == [22 (k — 1)] N (0.1 xsqr™ " ([23 (k)])) ;
21 [z1 (k= 1)} := [&1 (k= D] N (10 ([z1 (k)] =22 (K)])) ;
22 [22 (k)] := [z2 (K)] N ([z1 (K)] = 0.1 [z1 (k = 1)]);
23 [z2 (k= 1)] := [wa (k — D] N ([22 (K)]/[21 (F)]) 5
24 [21 (F)] := [z1 (R)] 0 ([z2 (R))/[w2 (k — 1)]);
25 [z1 (k= 1] == [z1 (k = D] Nlog([z1 (F)]);
26 while contraction is significant.

variables, in order to avoid a combinatorial explosion of complexity. Two
approaches may be considered for this purpose.

The first one is based on selecting a set of source variables, as small as
possible, such that the value of all the other variables can be computed in
a unique way from the knowledge of the values of these source variables by
using the available constraints. This is the approach followed in the previous
two sections, where the source variables were x1(0),...,x,, (0). The source
variables were stored in a single source vector (x(0) in Sections 6.4.2 and
6.4.3) and search was performed in the source space to which this source
vector belongs, using a set-inversion technique.

176 6. Estimation

,(0) ,(0)
e=20 e=10.5

Fig. 6.17. Left: contractions generated in a noise-free context; right: contractions
and bisections generated in a noisy context; the two frames are [—1.2, —0.8] X
[—0.2,0.2] in the (21(0),22(0))-space

(k)] (k)]

N A

1 |
1] 1]
1
] T I ST "
: 15 15
-1 ! -1
| 1 N |

Fig. 6.18. In the presence of noise (e = 0.5), interval output data [g(k)] (left)
and contracted interval outputs [§(k)] containing y*(k) obtained by taking the
constrained set into account (right)

The clustering approach (Dechter and Dechter, 1987; Dechter and Pearl,
1989; Meiri et al., 1990; Gyssens et al., 1994; Seybold et al., 1998) to be
considered now partitions X into groups of variables to form vectors, when-
ever possible. The constraints of M are then transformed into constraints on
these vectors. The variables in X’ should be grouped in such a way that the
constraint graph is a tree (i.e., does not contain cycles). The principle of the
approach will first be illustrated on a simple problem.

6.4 State Bounding 177

z,(k) zy(k)
7\ A
10| 10|
0 ko ' k
SET; o ' 15
-10| -10]

Fig. 6.19. In the presence of noise (¢ = 0.5), contracted domains for z1(k) (left)
and z2(k) (right) as functions of k

Example 6.13 Consider the set of variables X = {x1,...,x7}, with the
constraints
16" + 23 < 2,
r1T3 = 5,
To — a3 =0,
To — T3,/T4 =T,

To
To + x3T5e"? =1,

(6.101)

x5 + sin(zgz7) = 0.

The constraint graph is depicted on Figure 6.20a. A link between two vari-
ables x; and x; means that there exists a constraint involving both. This
graph is not a tree because it contains cycles. A (simple but not very effi-
cient) heuristic to group variables in order to transform the constraint graph
into a tree is as follows.

1. Select all cycles with length equal to £ (at the beginning, £ is taken equal to
three, but if no such cycles are found, take £ =4,5...). In this example,
there are four cycles with length three, namely (x1,x2,3), (T2,2s3,x4),
(22,23, 25) and (x5, x6,T7).

2. Pool the variables associated with the arc that belongs to the maximum
number of selected cycles into a single vector. Here, the arc is (x2,x3),
which belongs to the first three cycles, and x5 and x3 are pooled into
the vector (z2,73)T. The graph of Figure 6.20b is thus obtained. These
two steps are repeated until the graph becomes a tree, depicted in Fig-
ure 6.20c. |

178 6. Estimation

Fig. 6.20. Clustering variables to transform a graph with cycles into a tree

After grouping the variables in such a way that the constraint graph is
a tree, we have a finite set V = {vi,...,v,} of vector variables v; with
dlmenslons d; € N, and prior domains V; € R% i € {1,...,n}. Some vector
variables, say v; and v;, are related by binary constmmts (Cm-, which can be
viewed as subsets of R% x R% . There may also exist unary constraints C;
expressing relations between components of v;. The prior domain V, for v;
is then obtained by intersecting C;, which can be viewed as a subset of R%
with the Cartesian product of the prior domains of the components of v;.

Example 6.14 Consider again the problem of Example 6.13. The set of
vector wvariables V is {vi,va,v3,v4,V5}, where v = x1,ve = (w2,23)7,
V3 = T4,Vs4 = Xy and vy = (:L'G,:L'7)T. There is only one unary constraint,
given by

Cy={vo eR* zy—a3=0}. (6.102)

If the prior domains for xo and x3 are denoted by Xo and X3 respectively,
the prior domain for vo is thus

= {Vg S Xz X Xg ‘ Xro9 — T3 = 0} . (6103)

The binary constraints between these vector variables are

Cy2 = {(v1,v2) € R® | z1e™ + 23 <2 and z123 =5},
C - > S R?’ — =7 ,
23 = {(v2,v3) | Ty — 33T =T} 6101
(C“ = {(va,v4) € R? | 23 + z3w5¢™ = 1},
{(U47V) € R? | x5 + sin(zgrr) = 0}.
]

In the context of state estimation, unary constraints can be avoided and the
constraint C; ; can generally be put into the form

6.4 State Bounding 179

Cij={(¥:,¥;) eRY xRY | ¥; = £; (¥;)} . (6.105)

To simplify notation, we shall then refer to it as C; ; : v; = f;(v;).
The value taken by v; is consistent (with the constraints) if
AT €V, Vs € Vi, Vg1 € Vigr, .., ¥, € V) |
(Viy..yVie1, Vi, Vig1,...,Vy,) satisfies all the constraints.
(6.106)

The set of all consistent v;s is called the consistency domain associated with
the variable v;, and denoted by V;. Consider two variables v; and v; related
by a constraint C; ;. Define the local contractor of the domain V; with respect
to the variable v; by

Pj (Vl) = {{/1 cV; ‘ H{IJ € Vj, (f’z,{}j) € (Ci,j} . (6107)

Figure 6.21 illustrates this definition. The adjective local indicates that only
one constraint is taken into account. Note that V; C P; (Vi) C V,;. If the
binary constraint is C; ; : v;= f; (v;), then

p; (Vi) =Vint ' (V;),

(6.108)
pi (Vi) =V;n$ (V).

Fig. 6.21. Local contractor

The consistency domains V; can be obtained by extending to vector vari-
ables (Jaulin, Kieffer, Braems and Walter, 2001) the forward-backward propa-
gation algorithm proposed in Benhamou et al. (1999) for variables of R. First,
one node is selected in the tree to become its root. The tree is then scanned
from its leaves down to its root. This is the forward propagation step. Dur-
ing this scan, the domains of the nodes are contracted with respect to their

180 6. Estimation

children. As a result, the domain associated with the root is its consistency
domain. Finally, the tree is scanned from its root up to its leaves. This is the
backward propagation step. During this second scan, the domains of the nodes
are contracted with respect their fathers. Upon completion, each domain is
equal to the corresponding consistency domains (i.e., for any ¢, V; = VZ) A
proof can be found in Jaulin, Kieffer, Braems and Walter (2001). Note that
the same idea for discrete domains can be found in Freuder (1978), Montanari
and Rossi (1991) and Collin et al. (1991).

Example 6.15 Consider the tree of Figure 6.22. Its root is vi and its leaves
are Vu,Vs, Ve, V7, Vs. Forward propagation consists of the following sequence
of set operations (initially, for any i, V; :=V,):
Va0 =Vanpy (V2) N ps (V2) Npg (V2) 5
Vs :=Vsnp, (V) Npg(Vs); (6.109)
Vi:=Vinpy (Vi) Npg (V).
At this stage, V1 = V1. Backward propagation consists in computing
Vo :=Vanp; (Va);
Va:=Vynp, (Vy);
Vs 0 =V5Mpy(Vs)
Ve :=VgNpy(Vg); (6.110)
Vs :=V3np (Vi)
V7 :=Vrnps(V7);
Vg 1= Vg Nps(Vs).
Now, for all 1,V; =V;. |

Fig. 6.22. Tree of Example 6.15

Let us apply this methodology to the estimation of the state of the
discrete-time system

6.4 State Bounding 181

{X(k) = f(x(k — 1)), 1. & (6.111)
(_ yeeeslyy ’

y(k) = g(x(k)),

where x(k) € R™ is the state vector and y(k) € R™ is the output vector.
Equation (6.111) is a special case of (6.90), which could be treated in its
general form along the same lines. The functions f and g may be non-linear.
Two types of estimators will be considered, namely causal estimators where
the estimate of the state at time k can only be based on measurements of
the output up to time k, and non-causal estimators where all measurements
of the output vector are available at the outset. On-line estimation can only
use causal estimators, but off-line estimation allows one to use non-causal
estimators and to take advantage of all the available data to estimate the
state vector at any given time.

Causal estimator. At time k, the set of all vector variables to be considered

is

Vi = {x(0),...,x(k),y(1),...,y(k)}. (6.112)
The set of the associated prior domains is

Dy, = {X(0),...,X(k),Y(1),...,Y(k)}. (6.113)
For simplicity, assume that no specific prior information on x(1),...,x(k) is

available. Thus X(1),...,X(k) are each taken as R™. The past measurements
¥(i), 0 < i < k are used to form the prior feasible domains Y(7) based on
their reliability. The set of the constraints involved is

Cr ={x(f) =f(x(¢—-1)); £=1,...,k}
U{y(®) =gx(®); £=1,...,k}. (6.114)
The corresponding graph is represented on Figure 6.23. Despite the presence

of arrows, this graph is not oriented, and these arrows are only meant to
indicate the directions along which the associated functions operate.

Fig. 6.23. Graph associated with (6.111); the bold circle indicates the root selected
x (k), but any other root could be chosen

Forward propagation applied to the graph of Figure 6.23 computes the
consistency domain X(k) for x(k), provided that x(k) is chosen as the root
of the tree. This results in the causal state estimator (CSE) of Table 6.12.

182 6. Estimation

Table 6.12. Causal state estimator based on forward propagation

Algorithm CSE(in: X(0),Y(1),..., Y(k); out: X(k))
1 X(0) == X(0);

2 for f£:=1tok,
3 X(O):=f(X(-1)ng (Y(0);
4 X(k) == X(k).

At time k + 1, the measurement y(k 4 1) becomes available and the algo-
rithm of Table 6.12 can be used again to compute X(k + 1). One should ob-
viously rather use the recursive causal state estimator (RCSE) of Table 6.13
(Kieffer et al., 1998, 1999), to take advantage of the results already obtained
at time k. This algorithm performs an optimal contraction of the domain for
x(k) after the measurement at time k.

Table 6.13. Recursive causal set state estimator

Algorithm RCSE(in: X(0); out: X(l), .o, X(R))
1 X(0) := X(0); k = 1;
for k=1 to k,
wait for Y(k);
X(k) == £(X(k -1

=W N

) Ng~ (Y (k).

Figure 6.24 illustrates the principle of one iteration of RCSE. At time
k — 1, the state is known to belong to X(k — 1). The predicted set £(X(k —1))
thus contains all possible values of the state at time k. When a measurement
becomes available at time k, g~'(Y(k)) contains all state vectors that could
have led to a measured output belonging to Y(k) Thus, at time k, the state
belongs to the corrected set £(X(k — 1)) N g~ (Y(k)). It is not required that
X(k — 1) or £(X(k — 1)) consist of a single connected component, as will be
seen in Section 8.4.6, page 263, when tracking a moving robot.

Non-causal estimator. Assume now that the k output measurements y(k),
k € {1,...,k}, and the associated prior feasible domains Y (k) are all avail-
able at the outset. Forward—backward propagation then makes it possible
to obtain posterior feasible domains that are consistent with past and fu-
ture information. Table 6.14 describes the resulting procedure NCSE (for
non-causal state estimator) when the root is taken as x(k).

Upon completion of the algorithm, X(k) is the consistency domain for x(k)
and Y(k) the consistency domain for y(k), and the latter contains the actual
output y*(k) with a better accuracy than the prior domain Y(k) (provided,
of course, that the constrained set and prior domains have been properly
chosen).

6.4 State Bounding 183

———— >
7

Y

Fig. 6.24. Principle of one iteration of the recursive causal state estimator (RCSE)

Table 6.14. Non-causal state estimator based on forward—backward propagation

Algorithm: NCSE(in: X(0),Y(1),...,Y(k); out: X(O), e ,X(E))
1 X(0) := X(0);

2 fork:=1tok, // forward
3 () = X0k — 1) N g (TR);

4 for k:=k down to 1, // backward
5 (k) = g(X(k)); X(k—1):=X(k—1)nf1(X(k)).

Remark 6.6 The implementation of these estimators requires a represen-
tation for sets and an implementation of the local contractor p,. A domain
V is represented by a subpaving that encloses it. In the present context, the
local contractor p,; corresponds either to the image (V) of a set V by a vector
function £ or to the reciprocal image £~ (W) of a set W by a vector function
f. A guaranteed enclosure of £(V) can be computed by IMAGESP (see Chap-
ter 8, page 60) and a guaranteed enclosure of £=1(W) can be computed by
SIVIA (see Chapter 3, page 56). [|

Illustration. Consider the non-linear system

184 6. Estimation
z1 (k) _ 3 sin (z1 (k — 1) +x2 (k — 1))
xa (k) cos (@1 (k—1)+ao (k—1)))’ (6.115)

with k € {1,...,10}. For x*(0) = (0 0)T, the true values x*(k) and
y*(k),k € {1,...,10}, have been generated by simulation of this system.
The output data ¢ (k) have then been obtained by adding a bounded noise
to the noise-free output y*(k)

g (k) = y*(k) +n(k), (6.116)

where n(k) is a realization of a random variable uniformly distributed in
[-0.1,0.1]. The prior domain for the kth output is then taken as

Y (k)

y (k) +[-0.1,0.1], (6.117)
y (k) € Y(k), k=1,...,10. (6.118)

The prior domain for x(k) is taken as X(k) = R2. The posterior domains
obtained for x(k) by causal and non-causal estimation are depicted on Fig-
ure 6.25. The total computing time for both estimators is less than one minute
on a PENTIUM 133. The frames of all subfigures are [—4, 4] x [—4, 4]. The first
subfigure is entirely grey, which illustrates the obvious fact that the causal
estimator is unable to provide any information about x(0) (X(0) = R?), in
contrast to the non-causal estimator. The last two subfigures, for k£ = 10, are
identical because both estimators have now processed the same information.

6.5 Conclusions

Estimation problems involve uncertain variables related by constraints. These
constraints are used to decrease the uncertainty in the variables, and advan-
tage may thus be taken of the tools available for the solution of constraint
satisfaction problems (CSPs). This chapter has shown how the formalism and
algorithms of CSPs can be adapted to estimation. A unified framework has
been proposed for a large class of estimation problems, and the efficiency of
the interval solvers of Chapter 5 has been demonstrated in this context.

It is now possible to obtain guaranteed estimates of parameters or state
variables, even when these parameters are not identifiable or when these
state variables are not observable. Non-linear and time-varying constraints
are easily handled. The approach could be extended to the case where X
consists of infinitely many variables, some of which may for instance be integer
or Boolean variables.

6.5 Conclusions 185

Causal Non-causal Causal Non-causal
estimator estimator estimator estimator
k=6
N
k=1 k=17
¢
k=2 k=28
k=3 k=9 . .
k=4 k=10
4 I ’
4 \
k=5

Fig. 6.25. Causal and non-causal set estimates

Least-square estimation suffers from the fact that the cost function to
be minimized is a sum of terms involving the same parameters, so multi-
occurence of these parameters is unavoidable and tends to make inclusion
functions for the cost function very pessimistic, which complicates the elim-
ination of uninteresting parts of the search domain. Parameter and state
bounding are comparatively easier to implement, and interval constraint
propagation contributes to allowing the treatment of high-dimensional prob-
lems.

7. Robust Control

7.1 Introduction

The aim of this chapter is to illustrate the use of interval techniques presented
in Part IT to solve some robust control problems. Robustness is understood
here with respect to uncertainty in the model of the process to be controlled.
The problems considered range from the analysis of the properties of an ex-
isting uncertain system to the design of a controller for an uncertain process.

Only systems described by linear time-invariant differential equations will
be considered. The main reason is that checking stability then amounts to
checking non-linear inequalities. The control of systems defined by non-linear
differential or difference equations is much more complicated. A first approach
based on interval methods for the control of non-linear difference equations
has been proposed in Jaulin and Walter (1997).

Robust control has been a very active field of research for many years
(Horowitz, 1963; Dorato et al., 1993; Kwakernaak, 1993; Barmish, 1994; Boyd
et al., 1994; Francis and Khargonekar, 1995) and it is impossible to present
the state of the art in any detail in a single chapter. We shall focus attention
on robust stability and robust control problems for uncertain systems that
can be described by parametric models, the unknown parameters of which are
assumed to lie between known bounds. This type of uncertainty is difficult
to handle with reference techniques such as Hoo-analysis and p-analysis, and
interval techniques turn out to be particularly suitable, as examples will show.

We did our best to make this chapter understandable by readers who are
not specialists in control. As a result, control-oriented readers may find some
issues oversimplified and may complain that important techniques are not
covered. We plead guilty, but hope that these readers will nevertheless find
interesting material here, which they may easily extend and adapt to other
contexts.

The chapter is organized as follows. In Section 7.2, basic notions about the
stability of deterministic linear models are recalled, as well as the notion of
stability degree. Uncertainty in the parameters of the model is introduced in
Section 7.3. Various types of parameter dependency are considered, and some
results from the literature are recalled, including the celebrated Kharitonov
theorem and edge theorem. Some limitations of these results are indicated.
Section 7.4 explains how the tools of interval analysis can be put to work for

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001

188 7. Robust Control

the analysis of the stability of existing uncertain systems when the tools of
Section 7.3 cannot be used. Section 7.5 is dedicated to the design of controllers
for uncertain processes.

7.2 Stability of Deterministic Linear Systems

Assume, for the time being, that the system X' to be considered involves no
uncertainty. In control, it is customary to distinguish inputs, which are signals
used to act on X, and outputs, which are signals observed on X' as it reacts.
The vector of all inputs at time ¢ will be denoted by u(t), and the vector
of all outputs by y(t). We shall consider only continuous-time systems, but
most of the notions to be presented can be transposed to discrete time. When
X is linear, time-invariant and initially at rest (u = Oand y = 0 before time
t = 0), the Laplace transform of the output is related to that of the input by

y(s) = G(s)u(s), (7.1)

where s is the Laplace variable and G(s) is the transfer matriz associated
with ¥. An important alternative representation of a linear time-invariant
system X is the state-space representation

o {)’((t) Ax(t) + Bu(t), 72)
y(t) = Cx(t),

where x is the state vector, X is its first derivative with respect to time, and
A, B and C are the drift, control and observation matrices, respectively. The
state x(t) may be viewed as the minimal information that it is necessary
to know at time ¢ to be able to calculate the evolution of the system in
response to known future inputs. The initial state vector is denoted by x(0)
and corresponds to the initial conditions. We shall assume that the dimension
n of x is finite, which will be the case whenever X is described by a set of
linear ordinary differential equations.

The Laplace transform of the state-space representation (7.2) for zero
initial conditions is

{ sx(s) = Ax(s) + Bu(s),
v(s) = Cx(s).

Eliminating x(s) from (7.3) we get y(s) = C(sI,—A)~1Bu(s), where I, is
the n x n identity matrix, so the transfer matrix between u(s) and y(s) is

G(s) =C(sI, — A)"'B. (7.4)

(7.3)

The entries of G(s) are thus rational functions of s. This would not be the
case for systems involving delays or partial differential equations, which have
an infinite-dimensional state vector.

7.2 Stability of Deterministic Linear Systems 189

X is said to be asymtotically stable if and only if its state x(t) converges
to 0 when ¢ tends to infinity provided that u(t) = 0 for any ¢ > 0. As a result,
y(t) also converges to 0. Asymptotic stability will be the only type of stability
considered in this book, and whenever we speak of a stable system, one should
understand an asymptotically stable system. Conversely, when we speak of
an unstable system, we mean a system that is not asymptotically stable. For
obvious safety reasons, stability is a vital requirement for most controlled
systems, and the remainder of this section will be devoted to methods for
testing X for stability.

7.2.1 Characteristic polynomial

When u(t) = 0 for any t > 0, the state vector satisfies

x(t) = e*x(0). (7.5)

Since the entries of the matrix e are linear combinations of terms of the

form e*it, where the \;s are the eigenvalues of A, X is stable if and only if all
the eigenvalues have strictly negative real parts, i.e., Re(\;) < 0,i=1,...,n.
Now, the eigenvalues of A are also the roots of the characteristic polynomial
of A, defined by

P(s) = det(sI, — A). (7.6)
This polynomial can be written as
P(s) = aps" + Up_18" "+ +ars+ ao. (7.7)

P(s) also corresponds to the denominators of the entries of the transfer ma-
trix G(s), as evidenced by (7.4), unless there are simplifications between
numerators and denominators.

By extension, we shall say that P(s) is stable if and only if all its roots
have strictly negative real parts, and that the roots of X are those of its
characteristic polynomial. Thus, X' is stable if and only if P(s) is stable, that
is, if all its roots are in the left part C~ of the complex plane. A necessary
condition for P(s) to be stable is that all its coefficients have the same sign. If
the leading coefficient a,, in (7.7) is taken equal to 1, this condition translates
intoa; >0,¢=0,...,n—1.

7.2.2 Routh criterion

Efficient methods are available to check whether a given polynomial is sta-
ble. The Routh criterion is based on the construction of the Routh table
(Table 7.1). The coefficients a; of the polynomial are stored in the first two
rows of this table as indicated. These rows are padded with zeros on their
right. The remaining (n—1) rows of the Routh table are computed as follows:

190 7. Robust Control

Up—10p—2 — Aplp—3 Up—10n—4 — Gplp—5

bl = s b2 =)
b Gn—1 b b Gn—1 b
Ap—3 — Qp—10¢ Up—5 — Op—
e = 18n—-3 n 12’ o = 14n—>5 n 18’ (78)
bl bl
Table 7.1. Routh table
Qp, Ap—2 Ap—4 0
an—1 an—3 an—5 0
b1 b bs 0
C1 C2 c3 0
0
91 0
hi

The number of roots of P(s) with positive real part is equal to the number
of sign changes in the first column of the Routh table. For instance, if the
first column of the Routh table contains the sequence (1,12, —4,3,2,—1) in
this order, then the number of sign changes is equal to three and P(s) has
three roots with positive real parts. Assume that a, has been normalized to
one and define the Routh vector as the vector of all the entries of the first
column of the Routh table after discarding the first entry:

r = (an,l,b1,~~~ ,hl)T. (79)

P(s) is stable if and only if r > 0 and unstable (i.e., not asymptotically
stable) if and only if there exists a component r; of r such that r; < 0. See
Levine (1996) to deal with situations where some entries of r are zeros.

7.2.3 Stability degree

The location of the roots of P(s) provides more information that just the
stability or instability of X. When X is stable, the real parts of the roots of
its characteristic polynomial are related to the speed with which x converges
to 0 in the absence of input, and complex roots are responsible for oscillations
in the process, if any. For instance, if the roots of P(s) are

(—0.2 — 35, 0.2+ 3j,—0.5 — 75, —0.5+ 7j,—1 — 3j,—1 + 3§), (7.10)

then, in the absence of input, all the components y;(t) of the output vector
y(t) of the system X' given by (7.1) or (7.2) have the form

yi(t) = a1 sin(3t + ¢) exp(—0.2t) + ao sin(7t + ¢,) exp(—0.5t)
+ assin(3t + ¢4) exp(—t), (7.11)

7.2 Stability of Deterministic Linear Systems 191

where the coefficients a1, as, as, ¢, ¢, and ¢5 depend on the initial condi-
tions x(0). The function y;(t) is depicted on Figure 7.1 for o1 = a2 =ag =1
and ¢; = ¢y = ¢3 = 0. The location of the roots is directly related to the
temporal behaviour of the outputs of the system. To impose characteristics
of this behaviour, it is thus natural to require that these roots belong to a
prespecified region I' of the complex plane. This corresponds to the notion
of I'-stability. Now, interval methods can prove the I'-stability of a polyno-
mial efficiently without computing its roots. For instance, proving that the
polynomial

P(s) = s5 4+ 165" 4 112s° + 4485 + 1120s* 4 17925*
+ 1792s* + 1024s + 256 (7.12)

is I'-stable, where I' is the circle with radius 2 and centre —3, amounts to
checking that the CSP

H:(P(s) =0, |s+3] >2) (7.13)

has no solution, which can be done with S1vIAX described on page 104.

-1.5 1 1 1 1 1 1 1 1 1] t
0 2 4 6 8 10 12 14 16 18 20

Fig. 7.1. A possible output of a system with roots as in (7.10); the asymptotic
enveloping exponential curves correspond to %+ exp(—0.2t)

Sometimes it is possible to translate I'-stability into asymptotic stability
by algebraic transformation (Sondergeld, 1983). This is so, for example, when

192 7. Robust Control

I' is the part I's of the complex plane located on the left of the vertical line
Re(s) = —4. A system X' is said to be d-stable if and ouly if it is ['5-stable,
i.e., all its roots are in I's. For instance, if the roots of X' are given by (7.10),
then X' is 0.1-stable but 0.3-unstable. To check the J-stability of P(s), it
suffices to check the stability of the polynomial

Qs(s) = P(s —9)
=(5—0)"+an_1(s =" 1+ ... +ai(s—93) +ao (7.14)
=" +b,_1(0)s" 1 + ...+ b1(8)s + bo(d),

as stated by the following theorem.
Theorem 7.1 P(s) is d-stable if and only if P(s — 8} is stable. |

Proof. The proposition “Qs(s) is stable” is equivalent to the implication

Vs € C, Qs(s) =0= Re(s) <0, (7.15)
i.e., to

Vs € C, P(s—3d)=0= Re(s) <0, (7.16)
which is equivalent to the implication

Vs € C, P(s) =0 = Re(s+4) <0. (7.17)
This means that all the roots of P(s) are in [. [|

Now, the stability of Q;(s) can be tested using the Routh criterion. Define
the §-Routh vector r(d) as the Routh vector associated with Q;(s). Then

P(s) is é-stable < Qs(s) is stable < r(d) > 0. (7.18)
The stability degree (or decay rate) of P(s) is

Sy 2 sup § = max 6. 7.19

M he” T x50 (7.19)

By extension, the stability degree of X' is that of its characteristic polynomial.
The larger the stability degree of X is, the faster the state of X will return
to equilibrium in the absence of inputs. Stability degree is thus an important
factor to be taken into account when designing a controller. Figure 7.2 illus-
trates the significance of the stability degree d,s for the root configuration of
(7.10); 65 is found here to be equal to 0.2. This means that asymptotically
the dominant component of y; (t) is a sin(3i+¢;) exp(—0.2t) (see Figure 7.1).

Often, however, the equations describing X' are imprecise, and one would
like to take the uncertainty of the model into account when testing X for
stability, in order to reach a conclusion that is robust to this uncertainty.
Methods to do so are presented in the next section.

7.3 Basic Tests for Robust Stability 193

Im(s)

8 . i

4t |

+ t6,

F I ﬂ[:

0r L

+ i

4t !

+ |

-8 : : : : : !
-1.2 -0.8 -0.4 0 Re(s)

Fig. 7.2. Stability degree dar; the crosses correspond to the roots of the character-
istic polynomial

7.3 Basic Tests for Robust Stability

Assume now that the state-space representation of the system X depends on
some np-dimensional time-invariant parameter vector p:

) x() = A(p)x(t) + B(p)u(?),
2(p):
y(t) = C(p)x(?),
where p is known to belong to the box [p]. Let X([p]) be the set of all the
systems Y(p) such that p belongs to [p]. X ([p]) is said to be robustly stable
if and only if X'(p) is stable for any p in [p]. Proving the robust stability of
X([p]) is one of the fundamental topics of robust control theory. The set of
all the characteristic polynomials associated with X'([p]) is defined by
P(s,[p)) £ {an(P)s™ + an—1(P)s" ' +---+ao(p) | P € [P]}. (7.21)

Define the coefficient function by

(7.20)

a(p) £ (an(p), an-1(p), -+ »a1(p), a0(p))", (7.22)
and the coefficient set by
A= {a(p) | p < [p]} = a([p)). (7.23)

A polynomial P(s,p) is entirely specified by its coefficient function a(p).
This is why, for the sake of brevity, we shall also use a(p) to designate the
polynomial P(s,p) and A to designate the corresponding set of polynomi-
als. Depending on the context, a may thus be a coefficient function or a
polynomial, and A a set of coefficient functions or a family of polynomials.
Consider a family A of polynomials, and assume that the degree of each
of them is equal to n (a,, is thus never equal to zero). A is said to be robustly

194 7. Robust Control

stable if and only if all polynomials in A are stable, and robustly unstable if
and only if all polynomials in A are unstable. The problem to be considered
now is the test of robust stability (or instability) for different types of A.

e Case 1: The coefficient set A is a box
A =an] X [an—1] X -+ X [a1] X [ao] - (7.24)

The corresponding family of polynomials is classically called an interval
polynomial. It can be written as

A = [an] 8™ + [an—1] 8" + -+ [a1] s + [ao] - (7.25)

Note that when A is given under the form (7.23), i.e., A = a([p]), a may not
be the identity function and may even be non-linear in p. If, for instance,
a is a function from R? to R? defined by

a(p) = (sin (p1),exp (p2)) ", (7.26)

then the image by a of any box [p] is a box and A is thus a box or equiv-
alently an interval polynomial.
e Case 2: A is a polytope, or equivalently designates a polytope polynomial.
e Case 3: A is the image of a box [p] by a function a(.). A then designates
an image-set polynomial, which can be written under the form (7.23).

Example 7.1 Since the entries of p appear independently in the coefficients,
the family of polynomials

A= {(p1 + Sin2(pg))s2 +exp(y/p3)s +psIn(l +pg) | p € [p}} (7.27)

is an interval polynomial and thus a polytope polynomial and an image-set
polynomial. It can be rewritten indifferently as

A = ([p1] + sin®([pa]))s® + exp(y/[ps])s + [ps] In(1 + [pg]), (7.28)
A = ([p1] + sin®([p2])) x exp(y/[ps]) x [ps] In(1 + [pg])- (7.29)

The family of polynomials

A= {(cos(pl) + sin®(p2))s? + 3cos(p1)s + ps3 +sin*(p) | p € [p]}
(7.30)

is not an interval polynomial, but is a polytope polynomial. For instance, if
[p] = [0,7/2]%3, then cos([p1]) = sin®([pa]) = [0,1]. A thus can be rewritten
as
A= {(py +p)s> +3pis + 5 +ph | P € [0,1] % [0,1] x [0,7/2]} .
(7.31)

Because of the dependency of the coefficients of the polynomial, no form sim-
ilar to (7.28) can be given. |

7.3 Basic Tests for Robust Stability 195

7.3.1 Interval polynomials

The Kharitonov theorem (Kharitonov, 1978) provides necessary and sufficient
conditions for the robust stability of interval polynomials; see also Bialas
(1983), Barmish (1984) and countless publications in the 1980s. This very
important result is at the origin of the extreme-point approach to testing
uncertain systems for robust stability (Bartlett et al., 1988).

Theorem 7.2 (Kharitonov) The interval polynomial
[a] =la,, @n] x -+ X [ay, @] X [ag, @]

is robustly stable if and only if the four polynomials K1(s), Ka(s), Ks(s) and
K4(s) respectively given by

-1, = -2 = -3 -4 -5
a, 8" +a, 15" Fan—25"" "+ an_35"""+a, 45" " +a, 55""°...,

Tps™ +a, 15" P a, 08" 2+ U35 P Ay as" T b, 5570
Tps™ + 18" @, 58" 2+ a, 38" P Ay asV T Tp5s" 0L

@, 8"+ Tp 18"+ Ty 28" 2 a, 35" P ba, 48" T, 5870

are stable. [|

Studying the robust stability of a non-denumerable set of polynomials
thus boils down to testing at most four of them for stability, independently
of the value of n. (When n < 5, it is possible to prove robust stability with
even less computation, see Anderson et al. (1987).) If the family A is not an
interval polynomial, the Kharitonov theorem can still be used by wrapping
A into an interval polynomial [a]. If [a] is robustly stable, then A is also
robustly stable, but the condition becomes only sufficient, of course. This is
illustrated by the following example.

Example 7.2 The family of polynomials
A = {pss* + (pa + cos?(p3))s® + 2p15® + pay/Pas + p1 |
p1 € [577}7 P2 € [374]7 P3 € [_77/4771-/4]7 P4 € [172}7 ps € [172]}
is not an interval polynomial, but it is a subset of the interval polynomial
[a] = [1,2]s* + [3/2,3]s® + [10, 14]s* + [3,4V2]s + [5, 7). (7.32)

The Kharitonov polynomials associated with [a] are

S
=25+ 23 41082 + 425 + 7,
29 29 S \/_S (733)

=25* +3s% +10s%2 + 35 + 7,

196 7. Robust Control

Each of them is easily proved stable, e.g., by the Routh criterion. Therefore
[a] is robustly stable, and so is A. Assume now (Wei and Yedavalli, 1989)
that

pre1.5,4], po=1, ps=7/2, ps =1, ps = 1. (7.34)
Then
[a] = s + 5% +[3,8)s% + 5+ [1.5,4]. (7.35)

The corresponding Kharitonov polynomial Ko(s) = s* + 8% +3s% + 5+ 4 is
unstable, which implies that [a] is not robustly stable. This does not imply
that A is not robustly stable. It is actually easy to show that A is robustly
stable, for instance by building a formal Routh table depending on py. |

In practice, A is seldom an interval polynomial. For instance, if the entries
of p appear independently in the drift matrix A(p), then the coefficient
function a(p) is multilinear and the coefficient set A is not even a polytope.

7.3.2 Polytope polynomials

The main result regarding the robust stability of polytope polynomials is the
edge theorem (Bartlett et al., 1988).

Theorem 7.3 (edge theorem) The polytope polynomial A is robustly stable
if all its edges are robustly stable. |

Recall that the number of edges in a box increases exponentially with its
dimension. A 10-dimensional box has 5120 edges. Therefore, the edge theorem
may require the study of the robust stability of many edge polynomials of
the form

Pra(s,\) = APy(s) + (1 — N)Ps(s), with A € [0,1]. (7.36)

Now, this is not an easy problem. There are examples where the two vertices
Py (s) and Py(s) of the edge are stable whereas the edge Py (s, A) itself is not
robustly stable (Bialas and Garloff, 1985). The robust stability of an edge can
be established using the Bialas algebraic condition (Bialas, 1985), based on
the Hurwitz criterion. Another approach is to treat polytope polynomials as
special cases of image-set polynomials, as presented in the following section.

7.3.3 Image-set polynomials

Assume that the characteristic polynomial associated with X (p) is
P(s,p) = s" + an—1(p)s" " +... + ar(p)s + ao(p)- (7.37)

The Routh vector of P(s,p) is a function of p, called the Routh function
(Didrit, 1997) and denoted by r(p). From the Routh criterion, the following
equivalence holds:

7.3 Basic Tests for Robust Stability 197

P(s,p) is stable < r(p) > 0. (7.38)

Thus, X¥([p]) is robustly stable if and only if r(p) > 0 for any p in [p]. Let
[r] be an inclusion function for the Routh function r. If all the components
[r:i]([p]) of [r]([p]) are positive (i.e., if their lower bounds are strictly positive)
then X ([p]) is robustly stable. On the other hand, if there exists a component
r; of r such that r;([p]) < 0 then X([p]) is robustly unstable (X' (p) is not
asymptotically stable for any p in [p]).

An efficient way to prove the robust stability or instability of X([p]) is
to use contractors (see Chapter 4). Proving robust instability amounts to
proving that r(p) > 0 admits no solution in [p]. This is equivalent to saying
that the solution set of the CSP

H:(r(p) —y =0,p € [pl,y € [0,00[") (7.39)

is empty. Note that the edge approach is unable to prove robust instability,
even for interval polynomials. Proving robust stability amounts to proving
that,

vp € [p], r(p) >0

& Vpe[pl,Vie{l,...,n}, ri(p) >0

sVie{l,...,n},Vp € p], ri(p) >0 (7.40)
e Vie{l,...,n},Vp € [p], ~(ri(p) <0)
eVie{l,...,n},~(3Fp € [p] | r(p) <0),

where A is equivalent to (A is false). Now, saying that =(3p € [p] | r:(p) < 0)
is equivalent to saying that the CSP

H;: (ri(p) +y =0,p € [p],y €]0,00]) (7.41)

has an empty solution set. Therefore, X([p]) is robustly stable if and only if
all such H;’s have empty solution sets. All the contractors presented in Chap-
ter 4 can thus be used to check both robust stability and robust instability.
Note, however, that checking robust stability with this approach requires the
contraction of n CSPs instead of one for robust instability.

Remark 7.1 The type of reasoning followed here to prove robust stability
can also be used to check that a given box is inside a set S defined by non-
linear inequalities. Contractors could thus be used in an algorithm such as
SIVIA, not only to check that a box is outside S, but also to check that a box
is inside S. |

Remark 7.2 When the coefficient function a(p) is polynomial in p, so is
r(p). Bernstein polynomials may then be used for computing an outer ap-
prozimation of r([p]) and thus for checking the signs of the entries of r([p])
(Vicino et al., 1990; Milanese et al., 1991; Garloff, 2000). [|

198 7. Robust Control

7.3.4 Conclusion

The complexity of the test of the stability of X([p]) drastically depends on
the nature of the coefficient set A. When A is a box, the Kharitonov theorem
reduces the task to that of checking at most four polynomials for stability,
whatever the degree of the uncertain polynomial. When A is a polytope, the
edge theorem reduces the task to that of checking the edges of this polytope,
which may nevertheless reveal quite demanding. When A is a general image-
set polynomial, the problem becomes even more complicated (Nemirovskii,
1993; Poljak and Rohn, 1993; Blondel and Tsitsiklis, 1995). The next section
presents numerical methods based on interval analysis that can be used even
in this most complicated case. Moreover, these methods will make it possible
to characterize the part of [p] that corresponds to stable systems, when X'([p])
is neither robustly stable nor robustly unstable, as well as to characterize level
sets of the stability degree.

7.4 Robust Stability Analysis

The basic tests presented in Section 7.3 will now be used for the analysis of
the robust stability of X([p]).

7.4.1 Stability domains

The stability domain S;, of the polynomial
P(s,p) =s" +an_1(p)s" '+ ...+ a1(p)s + ao(p) (7.42)

is the set of all the parameter vectors p such that P(s, p) is stable. It can be
defined as

Sp 2 {pcR™ |r(p) >0} = r ! (}0, Jroo[xn) . (7.43)

The characterization of S, can thus be cast into the framework of set inversion
and performed by the algorithm Stvia (Walter and Jaulin, 1994).

Example 7.3 Consider the multi-affine polynomial (Ackermann et al., 1990;
Ackermann, 1992)

P(s,p) = s>+ (p1 + p2 +2)s* + (p1 + p2 + 2)s
+ 2p1pa + 6p1 + 6p2 + 2+ 07, (7.44)

where the coefficient o corresponds to the radius of an unstable disk centred
at pe = (1,1)7 inside a stable region. The construction of the Routh table
leads to the Routh function

7.4 Robust Stability Analysis 199

p1+p2+2
r(p)=| (p1—1)2+(p2—1)2%-0% |. (7.45)
2(p1 + 3)(p2 + 3) — 16 + o2

Note that if c = 0 and p1 and ps are positive, then P(s,p) is always stable,
except at p.. For [p] = [-3,7]x[-3,7], = 0.05 and 0 = 0.5, SIVIA computed
the paving of Figure 7.3 in 0.3 s on a PENTIUM 90 (Didrit, 1997). Since all
the components of

[¥)([2,7), 2,7)) = [g s (7.46)
135 735

ﬁ
~fei %
~[2
s

are positive, the box [2,7) X [2,7] was proved to be stable in a single iteration
(see Figure 7.3).

Dy

Fig. 7.3. Characterization of the stability domain of Example 7.3 for o = 0.5; grey
boxes are stable and white boxes unstable

On the other hand, since

w3, 5l 35D = | [|, (7.47)

200 7. Robust Control

the box [—3,—3] x [—3,—2] was proved unstable in a single iteration. Fig-
ure 7.4 has been generated in 0.2 s for o = 0. SIVIA was unable to prove
that p = (1,1)7 was unstable but a small indeterminate box (too small to be
visible) was generated around this unstable point. |

2

Fig. 7.4. Characterization of the stability domain of Example 7.3 for o = 0; grey
boxes are stable and white boxes unstable; the unstable point (1, 1) is surrounded
by an indeterminate box, too small to be visible

Example 7.3 has been used by Ackermann to illustrate the limits of the
idea of studying edges: for o = 0.5, and [p] = [0, 2] x [0, 2] all the edges of [p]
are stable, but [p] nevertheless contains an unstable region. This example was
treated in Murdock et al. (1991) with an approach based on a genetic algo-
rithm. Since this approach amounts to random search, its efficiency decreases
with ¢ and no guarantee on its result can be provided. Kiendl and Michalske
(1992) have studied the same example with a partition method. Their ap-
proach is valid only in the case of polytope polynomials, which implies here
a pessimistic reparametrization of the model, with detrimental consequences
on the quality of the results (see the figures in Kiendl and Michalske, 1992).

The following example shows how SIVIA can be used to characterize the
root locus of an uncertain polynomial.

Example 7.4 We already know that the uncertain polynomial P(s,[p]) of
Example 7.3 is robustly stable for c =0 and p € [p] = [2,7] x [2,7]. Deﬁne
its root locus R([p]) as the set of all the roots of P(s,p) forp € [p]

7.4 Robust Stability Analysis 201

R(lp]) = {s € C| P(s,p) = 0,p € [p]}. (7.48)
R([p]) is thus the projection onto the complex plane of the set
{(s,p) € Cx[p| | P(s,p) = 0}, (7.49)

which can be characterized by SIVIA of Section 3.4.1, page 55. The associated
subpaving, depicted on Figure 7.5, intersects the imaginary axis, so stability
is not proved. Nevertheless, this subpaving provides important information
about the uncertain model. For instance, it shows that, even if the model is
robustly stable on [p], a small non-parametric perturbation may push some
roots across the imaginary axis.]

5 : : :
~19 15 ~10 -5 0 Re(s)
Fig. 7.5. Outer approximation of the root locus for the uncertain polynomial
P(s,[p]) of Example 7.4

7.4.2 Stability degree

Level sets. When X depends on a vector p of parameters, so does its J-
Routh vector, now written r (p, &) (see (7.18), page 192). The stability degree
of Y is now defined as

Sm(p)2 sup 6= max 0. e
el r(p,5)>0 r(p,8)>0 (7.50)

202 7. Robust Control

IsOCRIT presented in Chapter 5, page 135, for the characterization of level
sets will now be applied to the function 657(p). Recall that the level set
of 6y (p) associated with ; is the set of all ps in the region of interest of
parameter space that are such that d;(p) = 61. The levels of interest are
denoted by 61,0d2,...,0,,. It is assumed that the functions a(p) and thus
dn(p) are continuous.

ISOCRIT requires an inclusion function for § s (p), which can be evaluated
for any given box [p] by minimizing and maximizing §(p) over [p] with
OPTIMIZE presented in Chapter 5, page 119.

Example 7.5 For the multi-affine polynomial of Example 7.3 for [p] =
[-3,7] x [-3,7], 61 = 0.1, 62 = 0, ¢ = 0.05 and ¢ = 0.5, ISOCRIT com-
puted the paving of Figure 7.6 in 3.6 s on a PENTIUM 90 (Didrit, 1997). The
level set associated with o = 0 is consistent with the result of Example 7.3

(see Figure 7.5). [|
Do
7 . .
6]]
17
S T BN Azszcnescatacy .
4 H. R H - (5 — 01
Foo R] 4,—‘-'}__1 I T*i7 § /"/
3¢ i - -
2 5 S AT 6=10
1 Iy
ot e
1 e
—27 e
1 AL

-3 -2 -1 0 1 2 3 4 5 6 7
Dy

Fig. 7.6. Level sets of the stability degree for o = 0.5

Example 7.6 Consider now the uncertain system (Kokame and Mori, 1992)
0 1 —m
x=|1 0 —po |x, p1€[-7,13], p2 € [-1,2.5]. (7.51)
p1p2 1

7.4 Robust Stability Analysis 203

Its characteristic polynomial is
P(s,p) ="+ + (pi +p5+ s+ L. (7.52)

From the Routh table of P(s — 0,p), one can easily prove that for 6 > % the
system is d-unstable for any p in [p], and that for 0 < & < % the system is
d-stable if and only if

45(20% — 26 +1)

pt+p3 > BTy S 2 g%(9),
(7.53)
f % +87—6+1 5 _.

Therefore, X (p) is 0-stable for all ps located between the circles centred at
zero and with radii equal to a(d) and T(8). Moreover, the only unstable point
is 0. For §1 = 0.2, 2 = 0.1, 63 = 0.05 and 64 = 0, and for [p] = [-7,1.3] X
[-1,2.5] and £ = 0.1, ISOCRIT computed the paving of Figure 7.7 in 0.3 s on

a PENTIUM 90 (Didrit, 1997). [|
by
2;5 T ¥ T lllﬁ T T
A iy
Tii T‘a”‘
T 15 1 TTIT SHRmeNaNeNg Y 7T
2| (T T TR
il i L Ly
15} 6 =0.2~—T1 Vil i
j%\\ £l
5 | i | R]
1 6 = 0.1 <\ : lg];E!_ I;TI g l,’.
0.5+ . Ti\‘%\~1ﬂ-i,; T |
§ = 0.05 <Xi- Frp
0 f \\- i\§ .: ;*j 5**&
_ R |
_0.5 ‘ Illgl y .:;.E“;‘ B
T A’ ;l ‘=li‘] v‘:ll':?
. LK WL AT L et

Fig. 7.7. Characterization of level sets of the stability degree

This example has also been studied by Kokame and Mori (1992). Their
method applies when the drift matrix is affine in the parameters and only
makes it possible to find a point in parameter space that is d-stable for a
given value of 9.

204 7. Robust Control

Robust stability degree. Define the robust stability degree 6 5 ([p]) of X'(p)
for p in [p] as the stability degree in the worst case:

dp([p]) = min max 4.

7.54
pPE[p| r(p,8)>0 ()

If a7 ([p]) > 0, then all the roots of X(p) are in C~ and the uncertain system
X([p]) is robustly stable (i.e., it is stable for any p in [p]), as illustrated by
Figure 7.8 (left). If d57([p]) < 0, then there exists some p in [p] such that
X (p) is unstable, as illustrated by Figure 7.8 (right).

v

Re

Fig. 7.8. Left: the root locus of X ([p]) is in C~, das([p]) is thus positive and X ([p])
is robustly stable; right: X ([p]) is not in C7, §a;([p]) is thus negative and X(p) is
unstable for some p in [p]

The algorithm MINIMAX, presented in Section 5.6, page 133, can be used
to compute & p7([p]) in a guaranteed way, as illustrated by the two following
examples.

Example 7.7 Consider the uncertain system (Balakrishnan et al., 1991a)

D2 9
1+po
X = X. (7.55)
D2 P1
1+p1 1+ p3

For [p] = [1,2] x [0,0.5], with ¢ = 0.001, on a PENTIUM 90, MINIMAX finds
m 2 s and 237 iterations that the robust stability degree satisfies

—2.01590 < 67([p]) < —2.01451.

The system is thus not robustly stable. |

7.4 Robust Stability Analysis 205

Example 7.8 Consider the uncertain system (Balakrishnan et al., 1991a,
1991b)

1
0
1
%= (P1+35)2+ (P2 + 1)+ 55) % (7.56)
0 1 1
pi+ps+1
For [p] = [—4,0] x [—4, 4], with ¢ = 0.01, again on ¢ PENTIUM 90, MINIMAX
needs only 20 iterations to prove that the robust stability degree satisfies
—1.0048866272 < dps([p]) < —0.9999999781. (7.57)
This system is thus not robustly stable.]

7.4.3 Value-set approach

The concept of value set (Saeki, 1986; Barmish, 1988), allows a simple geo-
metrical interpretation of robust stability in the complex plane. Recall that
the uncertain system X' with characteristic polynomial

P(s,p) = an(p)s" + an—1(P)s" ™" + ... + a1(p)s + ao(p) (7.58)
is robustly stable in [p] if the CSP
H: (P(s,p) = 0,p € [p], Re(s) > 0) (7.59)

has no solution for s and p. This can be checked easily with S1viAX, presented
in Section 5.2, page 104. Since s is complex, the dimension of the search
space is dim p + 2. Let us first show that it is often possible to reduce this
dimension to dim p + 1 by taking advantage of the continuity of the roots of
the characteristic polynomial with respect to its coefficients. Assume that [p]
contains a stable vector pg and an unstable vector p;. The roots associated
with po all have negative real parts and at least one of the roots associated
with p; has a positive real part. This is illustrated by Figure 7.9. Assume
also that the coefficients of P(s, p) are continuous in p and that the leading
coefficient a,, (p) never vanishes. When p moves from pg to p; in [p], at least
one of the roots crosses the imaginary axis (see Figure 7.9), i.e., there exist p
in [p] and w in R such that P(jw, p) = 0. This leads to the following theorem.

Theorem 7.4 If

1. the coefficients of P(s,p) are continuous functions of p,
2. the leading coefficient a,(p) never vanishes over [p],
3. there exists po in [p] such that P(s,po) is stable,

then P(s,[p]) is robustly stable if and only if the CSP
H:(P(jw,p)=0,p€ [p], weR) (7.60)

has no solution. [|

206 7. Robust Control

Ps Im’ A

e a i
%5 > ?(V&\Q Re

D

4

Fig. 7.9. Along the path from a stable point po to an unstable point p1, at least
one of the roots crosses the imaginary axis

The stability of P(s,pg) can be checked with the Routh criterion, for
instance. The domain for w can be restricted to w > 0, because if (p,w)
is a solution of (7.60), so is (p, —w). The dimension of search space is now
dim p + 1 instead of dim p + 2. To apply SiviaX to prove that (7.60) has
no solution, it is important to bound the domain for w. As the module of
P(jw, p) tends to infinity with w, there exists an angular frequency w (cutoff
frequency) beyond which P(jw,p) will never be equal to zero for any p in
[p]. The following theorem (Marden, 1966) provides a mean for computing
an upper bound for w.

Theorem 7.5 All the roots of P(s) = aps™ + -+ + a1s + ag, with a, # 0,
are inside the disk with centre zero and radius

=1+ max{|aol, a1, .-, Jan—1]} (7.61)
an|
|
Proof. First, let us prove the result for the monic polynomial Pj(s) = s™ +

p_15"" 4+ ...+ a1s + ap. Since
Pi(s) = s(s(s(s(s(...) + a4) + a3) + a2) + a1) + ao, (7.62)

Py (s) can be obtained by the following sequence:

QO(S) =1,
Qi(s) = 5Qi—1(s) + an—i, i =1,...,n,
Pi(s) = Qu (s). (7.63)

Assume that |s| > S and that [Q;—1(s)| > 1 (this holds true for ¢ = 1).
1Qi(s)| = [sQi—1(8) + an—q|- Since |s| > 3, [Q;—1(s)| > 1 and (7.61) implies
that |a,_;| < 8 — 1. The property |p;e?%t + pye??2| > |p; — py| then implies

7.4 Robust Stability Analysis 207

that |Q;(s)] = 8 — (8 —1) = 1. Therefore, |s| > 5 implies |Pi(s)] > 1 and
thus Pj(s) # 0. Theorem 7.5 is thus valid for monic polynomials. Now, the
roots of P(s) are those of the monic polynomial

Snolgn-ty 4 84 %0 (7.64)

Qn Qn Qn

s" +

and are therefore located inside the disk with centre 0 and radius

g max(|ag), . .., |an_1\)-

0 Gn—1
)

ﬁ:l—Q—maX(\Z—L..., (7.65)

|an|

When P(s) depends on p, 3 becomes a function of p. An inclusion func-
tion for G(p) is thus

_ . max(|fao]([PD] - - -, [[an—1]([P])])
[B)([p]) =1+ TanT(oD] . (7.66)

If 3 is the upper bound of the interval [3]([p]), the uncertain polynomial
P(s,[p]) has all its roots inside the disk with centre 0 and radius 3. § is
thus an upper bound of the cutoff frequency w.. The domain for w is now
taken as [0, 4], which is finite. For some types of coefficient functions, it has
been shown (Sideris, 1991; Ferreres and Magni, 1996) that the study can be

limited to a finite number of frequencies.

Example 7.9 Consider the polynomial (Barmish and Tempo, 1995)

P(s,p) = s + az(p)s® + a1(p)s + ao(p), (7.67)
with
ao(p) = (p3 + 2)p3 + p1(cos 2ps — pa(ps — 0.5)%) + 5,
a1(p) = p2(2 cos2p3 + p1 cosps) + 20, (7.68)
ag(p) = 4dps +p2(1 + 2p1) + 0.5,
and take p € [p] = [0,1]**. Equation 7.66 yields 3 = 24rad/s. SIVIAX

proves in 0.005s on ¢ PENTIUM 233 that P(s,[p]) is robustly stable (see
Ezercise 11.24, page 331). [|

In the literature on robust control, Theorem 7.4 is generally presented by
introducing the value set

P(jw,[p]) = {P(jw,p) | P € [P]}, (7.69)

considered as a function of w. IMAGESP of Chapter 3, page 59, can be used
to compute such value sets.

208 7. Robust Control

Im
50
P(j2.1,[p])
___ b — P(j1.1,[p))
0 —
— P(j0.1,[p))
50
~50 0 20 Re

Fig. 7.10. Three outer approximations of value sets for Example 7.9

Example 7.10 Consider again the problem of Example 7.9. Outer approxi-
mations of the value sets P(jw, [p]) obtained by IMAGESP for w = 0.1 rad/s,
w=1.1rad/s and w = 2.1 rad/s are presented in Figure 7.10. |

Another formulation of Theorem 7.4 is the zero-exclusion condition stated in
Frazer and Duncan (1929).

Theorem 7.6 (zero-exclusion condition) If the coefficients of the polynomial
P(s,p), are continuous functions of p and if there exists py in [p] such that
P(s,po) is stable, then P(s,[p]) is robustly stable if and only if for any w > 0,
0 ¢ P(jw, [p]). u

Example 7.11 Consider again the problem of Examples 7.9 and 7.10. IM-
AGESP can be used to compute an outer approximation of the set

P(j10,24],[p]) = {P(jw,p) | w € [0,24],p € [p]}. (7.70)

Computing time can be reduced considerably by avoiding the bisection of any
box the image of which does not contain 0 (Adrot, 2000). The resulting sub-
paving, computed in less than 2s on ¢ PENTIUM 233, is presented in Fig-
ure 7.11. It contains the three value sets of Figure 7.10. Since P(j[0,24], [p])
does not contain 0, the zero-exclusion condition implies that P(s, [p]) is ro-
bustly stable, as it is easy to show that P(s, mid[p]) is stable. []

7.4 Robust Stability Analysis 209

Im Im

100 |

-100 L 51
—-180 20Re -5 5Re

Fig. 7.11. Intersections of the outer approximation of the set of all value sets with
the frames [—180, 20] x [—100, 100] and [—5, 5] x [—5,5]; 0 is excluded

Remark 7.3 The approach presented here can be used even if P(s,p) is not
a polynomial. This allows consideration of systems with delays (Barmish,
1994), thus making it possible to deal with a much larger class of problems
than the approach based on the Routh criterion.]

In order to cast the problem into the framework of optimization (Didrit,
1997), one may transform the zero-exclusion condition (Vw > 0, 0 ¢
P(jw,[p])) into the equivalent condition

n([p) = min_[P(jw,p)* > 0. (7.71)
p€[pl,w=0

The dimension of search space is again dim p + 1. The domain [0, 8] for w is
obtained by computing an upper bound of the cutoff frequency as in (7.66).
Note that 7([p]) can be viewed as a stability margin.

Example 7.12 Consider again the problem of Examples 7.9, 7.10 and 7.11.
Barmish and Tempo (1995) show how to construct an outer approximation of
the value set P(jw,[p]) for a given value of w. From ten such approximations
obtained for ten walues of w, they conclude that the family of polynomials
P(s,[p]) should be robustly stable, without proving it rigorously. Recall that
an upper bound of the cutoff frequency is 3 = 24 rad/s. The search domain
is [x] = [0,24] x [0,1]*%. Since the minimum of the cost function c(w,p) =
|P(jw,p)|? is independent of ps, no bisection of [p4) is allowed (Didrit, 1997).
After 275 bisections and in 5.16 s on a PENTIUM 90, Hansen’s algorithm,
presented in Section 5.5.2, page 121, isolates four solution boxes. Each of
them contains one p of the form p = (1,0, 0,p4)T. This may indicate that the
solution is on the boundary of the domain of interest, which poses no problem
to the algorithm. The associated frequency domain for w is [4.4609,4.4611];

210 7. Robust Control

n{[p]) is proved to belong to [15.799,15.802]. We have thus not only proved
that P(s,p) is robustly stable, but also quantified a stability margin. |

The next example shows how ['-stability can be studied when the region
I' of interest is not a half-plane.

Example 7.13 For the polynomial
P(s,p) = s + az(p)s® + a1(p)s + ao(p), (7.72)

where

ao(p) = sin(p2)eP? + pip2 — 1,
ai1(p) = 2p1 + 0.2p1e??, (7.73)
as(p) =p1 +p2 +4,

two of the coefficient functions are neither linear nor polynomial. Using an
affine outer approximation, Amato et al. (1995) have proved that this poly-
nomial is stable for all parameter vectors in [p] = [1,1.5]*2. We shall now
study the robust I'-stability of P(s, [p]), where I' is a cone symmetrical with
respect to the real axis, with verter O and half angle ¢ = 5. The reasoning to
be followed is depicted in Figure 7.12. I' is the intersection of the half-planes
D~% and D%. Since P(s,p) has real coefficients, its roots are symmetrical
with respect to the real axis and a polynomial is I'-stable if and only if it is
D~ 5 -stable, in which case it is also DF -stable. We shall thus consider only
the problem of D™ % -stability. The polynomial is D5 -stable if and only if

P(s)=0,s ¢ D% (7.74)
has no solution for s. Set z = se™7%; (7.74) becomes equivalent to
P(z¢76) =0,2¢ C, (7.75)

where C~ is the set of all complex numbers with strictly negative real parts,
and the polynomial is D~ 5 -stable if and only (7.75) has no solution for z. Set
P(z) = P(z¢%); proving the I'-stability of X ([p]) then amounts to proving
the stability of P(z). This can be done by checking that for a given p in [p],
P(s,p) is stable (trivial) and that

min__|P(jw, [p])]* > 0, (7.76)

PE[p], weR

see (7.71). The latter condition can be checked using Hansen’s optimization
algorithm to minimize the cost function

¢(w,p) = [P(jw, [p])*. (7.77)

For g, = 1072 and e. = 1075, after 230 iterations executed in 2.1s on a
PENTIUM 90, one solution box is generated, the width of which is smaller than
ep. This solution box contains the point with coordinates p1 = 1.5, po =1 and
w = 0.678 rad/s. The algorithm also returns a small interval that contains

7.4 Robust Stability Analysis 211

the minimum of the cost function c(.), the width of which is less than .
This minimum, found to be approximately equal to 0.217, is guaranteed to be
strictly positive. The robust stability of P(z,[p]) and thus the I'-stability of
P(s,[p]) are therefore established. [|

Re

Fig. 7.12. Transformation of a I'-stability problem into a problem of stability for
a polynomial with complex coefficients

Casting the zero-exclusion condition into such an optimization framework
does not make it possible to benefit from the graphical interpretation of the
value sets, but it allows consideration of any type of parametric dependency.
An approach similar to the one followed here can also be used to detect
whether the behaviour of the uncertain system is acceptable in the sense of
many robust performance criteria.

7.4.4 Robust stability margins

To illustrate the notion of robust stability margin, consider a system with a
single input and a single output, defined by its transfer function
N(s) s+1

Gls) = D(s) T 21045+ 1° (7.78)

The unit step response of this system is presented in Figure 7.13. (The unit
step response is the output of the system when u = 0 for ¢ < 0 and v =1 for
t>0)

Put this system inside a negative feedback loop as indicated on Fig-
ure 7.14. Such feedback loops are commonly used to counteract the effect
of external perturbations by adapting the input of G based on the devi-
ation between what is achieved (y) and what is desirable (u). Let H(s)
be the transfer function of the resulting closed-loop system. For zero ini-
tial condition, the Laplace transform y(s) of the system output y(¢) satisfies
y(s) = G(s)(u(s) — y(s)), or equivalently

212 7. Robust Control

————u(s). (7.79)

1.2¢

0.8

0.4

0

0 10 20 30
Fig. 7.13. Unit step response of the open-loop system defined by (7.78)

v

Fig. 7.14. Closed-loop system

The transfer function for the closed-loop system can thus be written as
G N 1

 1+G(s) N(s)+D(s) s2+14s+2 (7.80)
The unit step response of this closed-loop system is presented in Figure 7.15.
Here H(s) is stable, but if the coefficients of G(s) are moved continuously,
H(s) may become unstable. It will do so when any of the roots of its de-
nominator crosses the imaginary axis, i.e., when Jw | N(jw)+ D(jw) = 0, or
equivalently when

N(jw)
D(jw)

This amounts to saying that H(s) becomes unstable when the set

Jw | Gjw) = =-1. (7.81)

7.4 Robust Stability Analysis 213

0.8

0.61

0.4r

0.27

0

0 1.6 3.2 4.8 6.4 8
Fig. 7.15. Unit step response of the closed-loop system

GUR) ={G(jw) | w e R} (7.82)

crosses the critical point —1. It is thus possible to study the stability of the
closed-loop system H (s) by analyzing features of the open-loop system G(s).
Of special importance is the location of the graph of the set G(jR), called
the Nyquist plot of G, relative to the critical point. Note that this critical
point has a modulus equal to 1 and a phase angle equal to —7. The Nyquist
plot of the system defined by (7.78) is given in Figure 7.16.

Assume that the nominal model G(s) is such that H(s) is stable. To evalu-
ate the robustness of the stability of H(s) to a modification of G(s), perturb
the open-loop system until it becomes unstable by multiplying G(s) by a
complex coefficient pe’?, with p > 0. This is illustrated by Figure 7.17. The
open-loop transfer function is now é(@) = pe?®G(s), and the corresponding

closed-loop transfer function will be denoted by H (s). For p = 1and 6§ = 0,
the system is not perturbed, i.e., G(s) = G(s). The gain p is often mea-
sured in dB, with pgp = 20log;y(p). When p = 0,1 or 00, pgg = —00,0 or
00, respectively, so pqg = 0 when the gain is not perturbed. The perturbed

open-loop transfer function can be written as
G(s) = 10 79G(s). (7.83)
If pgp or 6 depart from their nominal zero values, H becomes unstable when

G(jR) crosses the critical point —1, i.e., when
w e R | 1075 /G (jw) = —1. (7.84)
Take first 6 = 0, and define the gain margin mc as the smallest value
of |pgg| such that H(s) becomes unstable. This means that if the gain of
the open-loop system is modified in such a way that the absolute value of

214 7. Robust Control

Im
3

Re

Fig. 7.16. Nyquist plot of the open-loop system G(s); its location with respect to
the critical point —1 provides information on the stability of the closed-loop system
H(s); the angle m, represents the phase margin of G(s)

v

Fig. 7.17. Perturbed system

Pqp remains less than mg, then the closed-loop system remains stable. From
(7.84),

mg = min {|de\ | Jw € R, 1037 G(jw) = *1}- (7.85)

Since 1075 G(jw) = —1 & pyg = 201og, ﬁ, the gain margin may equiv-
alently be computed as

7.4 Robust Stability Analysis 215

mqa = min |20 log

-1
Y G(jw,p)|’
subject to IO%G(jw) = 1.

(7.86)

Now, in (7.86) the real number p,p is a free variable and the constraint
IO%G(jw) = —1 is thus equivalent to stating that G(jw) is real and strictly
negative, i.e., that Im(G(jw)) = 0 and Re(G(jw)) < 0. Therefore

-t
10 G(jw,p) s
subject to (Im(G(jw)) = 0) A (Re(G(jw)) < 0).

mqa = min |20 log

(7.87)

Moreover, since G(jw) = G(—jw) when the constraint Im(G(jw)) = 0 is
satisfied, the search can be limited to w > 0. Finding mg thus amounts to
solving the constrained minimization problem

—1
20 log
0810 A7 G()

subject to (Im(G(jw)) =0) A (Re(G(jw)) < 0) A (w = 0).

mqa = min

(7.88)

Take now pyp = 0, and define the phase margin mg as the smallest value of
6| such that H(s) becomes unstable. From (7.84),

mg = min {|0] | Iw € R, G (jw) =-1}. (7.89)
Since G(jw) and G(—jw) are conjugate, 6 can be taken as positive,

me = mm {9 | Jw € R, ?G(jw) = -1} . (7.90)

Finding m¢ thus amounts to solving the constrained minimization problem

mg = miné, (7.00)
subject to (6 > 0) A (G (jw) = —1).

Assume now that the transfer function of the system to be put in the loop
is G(s,p), where p is an uncertain parameter vector. Assume that for any
p in [p] the closed-loop system is stable, which can readily be checked with
the techniques described in Section 7.2.2, page 189. The notions of gain and
phase margins can be extended to this context by considering the worst case,
i.e., the value of p in [p] such that the margin under consideration is the
smallest. This leads to defining the robust gain margin as

~1
ma([p]) = min min 20log1g =———|, (7.92)
’ p € [p] Im(G(jw,p)) =0 0 G(jw,p)
Re(G(jw,p)) <0
w=0

and the robust phase margin as

216 7. Robust Control

me([p]) = min min 6. (7.93)
p € [p] 020

PG jw,p) = —1

These quantities can be computed with OPTIMIZE, presented in Chapter 5
page 119.

Example 7.14 Consider the system
(2s+ 1) ((1 + pi)s + e7P2)

G(s,p) = , 7.94
(s,p) xS (7.94)
where

s
D(s,p) =s(s+5)(——= + 1 +cos?5
(5.0) = 5(s+5) (1 p)
(52 + /Pa(3 + 25sin3p;)s + p2 — 2p2 + 2). (7.95)
Forp € [-1,1] x [0.3,1.5] and e, = ec = 0.005, OPTIMIZE finds that
16.405 dB < ma([p)]) < 16.891 dB (7.96)
1.537 rad < mgy([p]) < 1.544 rad. ’

On o PENTIUM 90, i takes 23.8 s and 1495 iterations to generate 56 solution
bozes for the gain margin, and 72.7 s and 6349 iterations to generate 1384
solution bozes for the phase margin (Didrit, 1997). |

7.4.5 Stability radius

To characterize the stability margin of X'(p) with respect to the uncertainty
on p around some nominal value p®, Safonov and Athans (1981) and Doyle
(1982) have independently defined the notion of stability radius.

Definition 7.1 The stability radius of X(p) at p°

0 | X(p) is stable for all p € [p](n)}
0 | X(p) is unstable for one p € [p|(n)},

p £ sup{n

= min {n

> (7.97)
2 :

where [p](n) is the box with centre p¥ such that the width of its jth component
satisfies w ([Qj,ﬁj]) = 2nw; for some prespecified positive number w;. []

The quantity # is thus the radius of the hypercube [p](n) in the Lo, norm
weighted by the w;s. Figure 7.18 illustrates this notion for dim p = 2 and
w1 = wy = 1. Now, since

p < [pl(n) < Vjef{l,...,np}, (p) — nw; <p; <P+ nwy) (7.98)

and since

7.4 Robust Stability Analysis 217

XY (p) is unstable < i such that r;(p) <0 (7.99)
& (r(p) <0) V-V (m(p) <0),

where V stands for the Boolean operator OR, the stability radius can also be
defined as

=min7
P ua 15

=

((ri(p) <0) V.-V (ra(p) <0))
bject t 0 _ mws <0
subject to ANYied{l,....,np}, pj Gt ,
nw3+pj<0
(7.100)

where A stands for the Boolean operator AND. Because of the operator V
involved in the constraints, OPTIMIZE cannot be applied directly.

LN
py+nf---

oAy Sp
N pl(n)

) ()
pi-n B pi+n P
Fig. 7.18. Stability radius p at p°; Sp is the stability domain.

An equivalent definition of p is

p=min{py,...,p,}, (7.101)
with
pi = min,

(ri(p) <0)

subject to 0 — pw; <0 .
) AVie (L. nyy, P
- —nwj—Q—p]gO

(7.102)

218 7. Robust Control

Now, the p;s can be computed using OPTIMIZE, because the associated con-
straints are related with A operators. The stability radius p is then obtained
by taking the smallest of the p;s.

The number of minimizations to be performed is equal to the number
of inequalities to be checked in the stability test. If the Routh criterion is
used, this number is equal to n. The Routh-Hurwitz criterion can reduce this
number to three, as stated by the following theorem (Kolev, 1993b; Malan
et al., 1997).

Theorem 7.7 The family of polynomials
P(s,[p]) = an([p])s” + an-1([p])s" " + -~ + a1([p])s + ao([p])

(7.103)
is robustly stable if X (mid([p])) is stable and if for any p in [p]
a(p) = ao(p) >
a@2(p) = an(p) > (7.104)
a3(P) = Dn—1(p) >
where D,_1(p) is the (n — 1)th Hurwitz determinant associated with P(s,p):

a1(p) as(p) as(p) -+ azn-1(P)
ao(p) az2(p) a4(p) -+ azn—2(p)
P) as{p) -+ a2n-3(P
Dn-1(p) = @1(p) as(P)) (7.105)
ap ax(p) -+ azn-4(pP)
0 0 0 an-1(P)
|
The stability radius p satisfies
p = minn,
(@) <OV (@P) <OV @®) <0) (7106
: 0
subject to N) 0_77u;j -p; <0 ’
—p; —nw; +p; <0
or equivalently
p =min{py, py, p3},
p; = minm,
>0 (7.107)
Q - nwj <0
subject to (¢;(p) < 0) A | V5 .
—p; — Nwj —I—p] <0

7.4 Robust Stability Analysis 219

The number of minimizations to be performed is now equal to three instead
of n.

When the coefficient function is affine, the problem can be solved using
linear programming (Tesi and Vicino, 1989). When this function is poly-
nomial, methods based on generalized geometric programming, also called
signomial programming, have been used (Vicino et al., 1990). The problem
of computing the stability radius has been proved to be NP-hard in Braatz
et al. (1994).

The efficiency of interval techniques for computing stability radii will now
be demonstrated on two examples.

Example 7.15 The polynomial

P(s,p) = s> + (p1 +p2 +2)s> + (p1 + p2 + 2)s
+2p1pa + 6p1 + 6p2 + 2 + 02,

was considered in Examples 7.8 and 7.5, pages 198 and 202. When p1 and
p2 are positive, this polynomial is stable for all parameter vectors outside the
disk with centre p° = (1,1)7 and radius o. Hansen’s optimization algorithm
is now used to compute the stability radius for different values of o based on
(7.107). As in Murdock et al. (1991), Psarris and Floudas (1995) and Malan
et al. (1997), the nominal value for p is taken as p® = (1.4,0.85)T, and the
weights are wy = 1.1 and wy = 0.85. The box [p](n) is thus defined by

1.4—1.1n
0.85 — 0.85n

1.4+ 1.1n,
0.85 + 0.857.

! (7.108)

NN
NN

p
D2

The results, obtained on a PENTIUM 90 for different values of o are given in
Table 7.2. They are similar to those of Malan et al. (1997), but our approach
can deal with a general non-linear parametric dependency, as illustrated by
the next example.]

Table 7.2. Stability radii for various values of o (Example 7.15)

o 1071 1073 107° 1077
ep and e 107° 107° 107° 1077
Number of iterations 66 113 55 63
Computing time (s) 0.44 0.55 0.44 0.49
Number of solution boxes 1 5 1 2
Stability radius 0.2727 0.3627 0.3636 0.3636

Example 7.16 Consider the polynomial

220 7. Robust Control

P(s,p) = s* + ax(p)s® + a1(p)s + ao(p), (7.109)
with

ao(p) = sin(p2)e’ + pip2 — 1,

a1(p) = 2p1 + 0.2p1e™, (7.110)

az(p) = p1 +p2 + 4.

The coefficient function a(p) is neither linear nor polynomial. A computa-
tion of the stability radius based on (7.107), using Hansen’s optimization
algorithm for e, = e. = 107°, finds it to be approximatively equal to 2.025 at
p’ = (1.5,1.5)T (Didrit, 1997). This is consistent with the fact that P(s, p)
is stable for any p in [p] = [1,2]*? (Amato et al., 1995). [|

7.5 Controller Design

Although relatively few papers have been dedicated to controller design via
interval analysis (Kolev et al., 1988; Kearfott, 1989b; Khlebalin, 1992; Kolev,
1993a; Jaulin and Walter, 1996; Malan et al., 1997), interest is growing, as
illustrated by a recent special issue of Reliable Computing (Garloff and Wal-
ter, 2000). In this section, the application of the interval solvers presented in
Chapter 5 to the tuning of the parameters of controllers will be demonstrated.

Consider a linear system to be controlled. Assume first that the system is
perfectly known and that no uncertain parameters are involved. The param-
eter vector ¢ of the controller can be chosen arbitrarily in a box [c]. Denote
by r(c,d) the 6-Routh function associated with the controlled system. The
controller that maximizes the stability degree is given by

c=argmax max d. (7.111)
c€lc] r(ec,8)>0

Example 7.17 Consider again the system X (p) of Example 7.6, page 202.
Assume now that p can be tuned so as to maximize the stability degree, so p
plays here the role of c. The characteristic polynomial of X (p) is

P(s,p) =8>+ + (pi +p3+1)s+1, (7.112)

where the parameters py and p2 can be chosen arbitrarily in [p] = [-7,1.3] X
[—1,2.5]. Recall that for any p, X (p) is d-unstable for 6 > % For0<é < %,
P(s,p) is &-stable for all vectors p inside the region located between the circles
with radii

o (4820 —2041) o [t 4t -s+1

The mazximal stability degree is obtained when the inner and outer circles
merge. This happens for § = . Then o(8) = 7(6) = % There are thus

7.5 Controller Design 221

2
2.5 T T T T T T

0.5 -

]

0 1

-1 1 L I 1

Py

Fig. 7.19. Paving generated to characterize the set of all the maximizers of the
stability degree of Example 7.17; all maximizers are in the black subpaving

infinitely many values of p that maximize the stability degree of the closed-loop
system. This is due to the fact the system is overparametrized. For e. = 0.05
and €5 = 0.001, after 588 iterations in 2.5s on a PENTIUM 90, Hansen’s
optimization algorithm yields §p; € [0.3333,0.3339]. All mazimizers are in
the black subpaving of Figure 7.19. |

Assume now that the model of the system to be controlled depends on a
vector p of uncertain parameters. Two types of parameters have then to be
dealt with, namely p and the tuning parameters ¢ of the controller.

Consider a closed-loop system X(p, ¢), the forward path of which consists
of a controller C(s, c) cascaded with an uncertain parametric model G(s, p),
p € [p] (see Figure 7.20). The problem to be studied is the computation of
the set S of the vectors ¢ that maximize the stability degree in the worst
case. This set satisfies

S¢ =arg max min max 0. (7.114)

c€le] pelp] r(p,c,d)=0
The rightmost maz corresponds to the definition of the stability degree. The
min ensures the worst-case conditions. The leftmost max corresponds to the
optimality requirement. If one chooses an element ¢ in S. for the controller,

222 7. Robust Control

then one is certain that the stability degree of the controlled system is at
least equal to

§%; = max min max 6, (7.115)
c€le] pe[p] r(p,c,8)=0

and 6%, is the optimal robust stability degree.

Example 7.18 (Jaulin, 1994; Jaulin and Walter, 1996; Didrit, 1997). For
the closed-loop system X (p,c) of Figure 7.20, MINIMAX gives the results of
Table 7.5. In this table, #S, is the number of boxes in the subpaving S, con-
taining all the values of ¢ corresponding to globally optimal robust controllers,
[S.] is the interval hull of S., and [65;] is an interval guaranteed to contain
the associated optimal robust stability degree. The times are indicated for a

PENTIUM 90, and the order of magnitude of € is 1073, |
2
u —t/\ 5 &S5 + ! PPy \y
- s (pos + 1)(s™ +pys +p3)

Fig. 7.20. Uncertain system with a PI controller

Table 7.3. Results obtained by MINIMAX for the optimal robust controller

[p] Time (s) | #8Sc [Se] (0]
11,07 5.5 66 | [0.257,0.273] x [0.305,0.354] | [0.300,0.326]
[0.99, 1.01]<3 85 60 | [0.230,0.274] x [0.264,0.382] | [0.288,0.299]
0.95,1.05]% | 339 37 | [0.207,0.277] x [0.179,0.437] | [0.261,0.282]
0.9,1.1]% 345 17 | [0.207,0.254] x [0.191,0.367] | [0.230,0.246]

Remark 7.4 In practice, it is often sufficient to find one ¢ such that the
robust stability degree is higher than some prespecified value 8. The problem
can then be formulated as

find one c € [c] | Vp € [p],x(p,c,d) > 0. (7.116)

This is much simpler than finding the set of all optimal robust controllers,
and OPTIMIZE can be adapted to solve this problem in a more efficient way
(Jaulin and Walter, 1996). |

7.6 Conclusions 223

7.6 Conclusions

Robust control provides a mine of opportunities for applying interval analysis.
Almost any question of interest in this field can be cast into the framework
of set inversion, minimax optimization or constrained optimization, and we
hope that the examples considered in this chapter have convinced the reader
that interval analysis is well equipped to provide pertinent answers.

Of course, interval analysis in its present state cannot handle all problems
of robust control, if only because of the curse of dimensionality. Four factors,
however, contribute to making problems of practical interest tractable. First,
one is in general interested in controllers with only a few tuning parameters
(about three for the ubiquitous PID controller). Secondly, parametric uncer-
tainty in the model of the process to be controlled can often be limited to
a few dominant factors, frequently connected to physically meaningful pa-
rameters. Thirdly, it is usually easy to express the open-loop or closed-loop
transfer matrix of the system to be controlled as an explicit function of the
uncertain and tuning parameters, which facilitates the derivation of efficient
inclusion functions. Lastly, what is needed in general is a vector of satisfac-
tory tuning parameters rather than a characterization of the set of all such
vectors.

Assessing how far the complexity barrier can be pushed back in actual
controller design is an exciting challenge, which will require the cooperation
of control engineers and interval analysts.

8. Robotics

8.1 Introduction

Robots are mechanical systems that are controlled to achieve specific tasks,
deemed too repetitive, too dangerous or too difficult for human beings. As a
result, robotics is a vast interdisciplinary field, which draws on mathematics,
mechanics, control theory, artificial intelligence, ergonomics... This chapter
cannot, of course, pretend to exhaustiveness, and will limit itself to illus-
trating how interval analysis can contribute to the solution of three difficult
problems.

The first one, presented in Section 8.2, is the evaluation of all possible
configurations of a parallel robot, known as a Stewart—Gough platform, given
the lengths of its limbs. This has become a classical benchmark for computer
algebra, because it involves solving a rather complicated set of non-linear
equations (Raghavan and Roth, 1995). We shall show that interval analysis
makes it possible to deal with this type of problem on a personal computer
even in the most complex and most general case, and shall stress the ad-
vantages of the resulting solution compared to those based on more classical
symbolic manipulations.

The second problem, described in Section 8.3, is the planning of a collision-
free path for a rigid object in a known environment. It will be solved by
combining interval and graph-theoretical tools. This will be illustrated by a
planar test case where the object is a non-convex polygon and the obstacles
consist of line segments.

The last problem, considered in Section 8.4, is the localization and track-
ing of a robot from on-board distance measurements in a partially known en-
vironment. We shall see how this can be cast into the framework of bounded-
error parameter and state estimation described in Chapter 6, and how sensor
failures, partially outdated maps and ambiguities due to symmetries in the
environment can be taken into account.

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001

226 8. Robotics

8.2 Forward Kinematics Problem for Stewart—Gough
Platforms

8.2.1 Stewart—Gough platforms

A Stewart—Gough platform consists of a rigid mobile plate linked to a rigid
base by six rectilinear limbs, the lengths of which can be controlled (see
Figure 8.1). Because the limbs act in parallel on the position and orientation
of the mobile plate with respect to the base, this platform is an example of
what is known as a parallel robot (as opposed to an articulated arm where
the effectors attached to the articulations act in series). This mechanism was
proposed by Gough in 1949 for a tyre-testing bed (Gough, 1956), and used by
Stewart (1965) to design a flight simulator. Stewart—Gough platforms have
now found many other applications in tasks where force and precision are
required (Merlet, 1990).

Fig. 8.1. Symbolic rendition of a Stewart—Gough platform

Let a(i) and b(i) be the extremities of the ith limb attached to the base
and mobile plate, respectively. The forward kinematic problem consists in
computing all possible configurations of the platform, given (1) the coor-
dinates of the a(i)s in a frame attached to the base, (2) the coordinates
of the b(i)s in a frame attached to the mobile plate and (3) the lengths
y; of the limbs. Solving this problem is difficult, to the point that it has

8.2 Forward Kinematics Problem for Stewart—Gough Platforms 227

become a benchmark for symbolical and numerical computations (Nanua
et al., 1990; Lazard, 1992; Mourrain, 1993; Wang and Chen, 1993).

Several methods are available for translating the problem into a set of non-
linear equations to be solved. An approach based on the Euler angles will be
presented in Sections 8.2.2 and 8.2.3. The solution of the resulting equations
by an interval solver will be described in Section 8.2.4. More details can be
found in Didrit et al. (1998).

8.2.2 From the frame of the mobile plate to that of the base

Let Ry be a frame attached to the base, and R4 be a frame attached to the
mobile plate (the reason for such an indexation will become clear shortly).
The configuration (position and orientation) of the mobile plate with respect
to the base can be represented by the coordinates (czo,cyo,z0) in Ro of a
given point c of the mobile plate together with the three Euler angles 1, 8 and
¢, as illustrated by Figure 8.2. The coordinates of the a(i)s are known in Rg
and those of the b(i)s are known in Ry4. These coordinates do not depend on
the configuration of the platform, but the transformation from R¢ to R4 does.
To compute the lengths of the limbs as functions of the configuration, one
must express the a(i)s and b(¢)s in the same frame, say Rg. A transformation
is thus needed to compute the coordinates of the b(i)s in R¢ from those in
R4. This section is devoted to building this transformation.

Fig. 8.2. Frame transformation using the Euler angles ¢, 8 and ¢

Let Ry be the frame obtained after rotating Ry around ko by an angle
¥ (see Figure 8.2). The basis vectors of Ry can be expressed with respect to
those of Rg as

228 8. Robotics

iy = cos) ig + sin ¢ jo,
J1 = —sin® ip + cosp jo, (8.1)
kl - kUa

or in matrix form as

i io cos®y siney 0
ji | =P1] jo |, where Py = | —siny cos¢ 0 | . (82)
k ko 0 0 1

Let R4 be the frame obtained after rotating R around i; by an angle 8. The
basis vectors of Ry satisty

is i 1 0 0
jo | =P2|ji |, where Po =] 0 cosé sinf | . (8:3)
ko kq 0 —sinfd cost

For R3, obtained after rotating R, around ks by an angle ¢, we have

iz is cos sing 0
j3 | =P3 | jo |, where P3 = | —sinp cosp 0 | . (8.4)
ks ks 0 0 1

Combining (8.2), (8.3) and (8.4) yields

i3 io
jg == P3P2P1 .jO . (85)
ks ko

Consider now a vector v with coordinates (zo, yo, 20) in Ro and (x3,ys, 23)
in R3. It satisfies

v = Zoig + Yojo + zoko = x3iz + y3j3 + 23ka, (8.6)

or, in vector form,

io i3
(Toyozo) | jo | =(xsyszs) | s |- (8.7)
ko ks

From (8.5), this implies that

io iO
(o yo 20) | Jo | = (w3 y3 23)P3P2P1 | jo |- (8.8)
ko kO

8.2 Forward Kinematics Problem for Stewart—Gough Platforms 229

Since (io, jo, ko) is a basis of R?, (8.8) is equivalent to

(To yo z0) = (73 y3 23)P3P2 Py, (8.9)
or to
To T3
yo | =P ys |, (8.10)
20 z3
where
PT=PPIPY, (8.11)

with Py, Py and P3 given by (8.2) to (8.4). Finally, let R4 be the frame
obtained after translating R3 by the vector ¢ with coordinates c.g, cyo and
¢.0 in Rg. The coordinates mgg, myo and m o of a point m in Ry can be
obtained from its coordinates mz4, mys and m,4 in Ry as

mzo Cz0 Me4

T
myo | = | cyo | +P Mya | - (8.12)
mzo Cz20 M4

8.2.3 Equations to be solved

The length y; of the ith limb of the platform is the Euclidean distance between
a(i) and b(i). Now, the coordinates of a(i) are given in Ry, but those of b(i)
are given in Ry4. To compute this distance, the coordinates of these points
must be expressed in the same frame, e.g., Rg. The coordinates of b(i) in Rg
can be computed by (8.12). The length y; can then be obtained as

yi = [la(i) = b(@)|l2

= \/(axo(’i) = ba0(1))? + (ayo(i) — byo(1))? + (azo(i) — bao(1))?.
(8.13)

The procedure for computing the lengths of the six limbs as functions of
the configuration x = (¢0, ¢yo, C20, ¥, 0, ©)T of the platform is summarized
in Table 8.1. The coefficients r;; correspond to the entries of the matrix PT
in (8.11).

Finding all possible configurations of a Stewart—Gough platform from the
knowledge of the lengths of its limbs thus amounts to solving the equation

f(x)—y=0 (8.14)

for x, where x is the configuration vector, f(x) is the vector of the lengths
of the limbs as predicted by the algorithm of Table 8.1 and y is the vector
containing the actual numerical values of the lengths 3,7 = 1,...,6, of the
limbs. Interval solvers such as those presented in Chapter 5 can be used to
solve this problem, as shown in the next section.

230 8. Robotics

Table 8.1. Algorithm for computing the vector ym of lengths of the limbs for a
given configuration of the platform

Algorithm SGSIMULATOR (in: cq0, ¢yo, C20, ¥, 8, @; out ym)
1 ri1:= cosy cos e — sin Y cos @ sin ;
2 rig:= —cosysin p — sin ¢ cos O cos ;
3 riz:=sinysin b,
4 791 :=sint cos ¢ + cos 1 cos f sin ;
5 rao := —sintsin ¢ + cos ¢ cos 0 cos ;
6 raz:= —cosysinb,;
7 rsp:=sinfsiny;
8 732 :=sinfcosy;
9 rsz:=cosb;
10 fori:=1to6
11 bz0(t) 1= g0 + r11b24(8) + 1120y4(2) + r13b.a(i);
12 byo(i) := cyo + 121024 (i) + T22bya (i) + r23b.4(d);
13 b20(4) := cz0 + r31bea(i) + r32bya(d) + r33b.a(i);
14 yi = /(aw0(i) — b20(2))2 + (ag0(d) — byo(9))? + (az0(7) — bz0(1))%;
15 ym:= (yl,...,yg) .

8.2.4 Solution

No analytic solution is available for (8.14) in the general case. It has been
shown (Lazard, 1993; Mourrain, 1993; Raghavan, 1993; Wampler, 1996), that
there are at most 40 complex solutions in the general case, a bound that can
be decreased for special configurations (Lee and Roth, 1993; Faugére and
Lazard, 1995). Of course, only the real solutions are interesting in practice.
Since (8.14) involves trigonometric functions, formal elimination methods for
the solution of sets of polynomial equations, such as those based on the con-
struction of a Grébner basis (Lazard, 1992, 1993), do not apply directly. How-
ever, (8.14) can be transformed into a set of nine polynomial equations, at the
cost of increasing the number of unknowns from six to nine. For special types
of platforms, the problem can be simplified. For instance, when the a;s are
coplanar, by = bg, bs = by, bs = bg and (bq, bs, bs) form an isosceles trian-
gle, it is possible to cast the problem into that of solving a single polynomial
equation in one indeterminate with a degree equal to 16 (Merlet, 1990; Nanua
et al., 1990; Innocenti and Parenti-Castelli, 1991). Husty (1996) has shown
how to perform a similar transformation in the general non-planar case, but
this involves complicated algebraic manipulations that are only possible in
practice when the geometrical parameters defining the problem take small
integer values. Many formal methods based on elimination theory suffer from
the same limitation. Moreover, these methods must use numerical algorithms
to find the solutions of the high-degree polynomials that they generate, and

8.2 Forward Kinematics Problem for Stewart—Gough Platforms 231

the accuracy of the numerical results may be questionable, unless guaranteed
methods such as those based on interval analysis are used. By contrast, the
approach used in this section is able to isolate all real solutions of (8.14) in
the most general non-planar case with realistic coefficients for the geometrical
parameters.

Before running an interval solver, one must specify a prior box guaranteed
to contain all solutions of interest. The naive initial domain

Xlp =RXR xR X [-m, 7] x [-7,7] X [,] (8.15)
can be reduced by taking into account the geometry of the problem. Since
PT(y+m, —0,0+m) =P (v,0,0), (8.16)

where P71 is given by (8.11)!, the configuration of the platform for (¢ +
7, —0, ¢ +) is the same as for (1,0,). The prior domain can therefore be
reduced to

x]p =R xR xR x [—m,7| x [0, 7] x [-7,7]. (8.17)

To bound the domains associated with the first three components of x, notice
that

c=a(i) + (b(i) —a(i)) + (¢ — b(1)). (8.18)

In Ry, this equation becomes

Cz0 amO(i)
Cyo = ayO(i) + (b<Z) - a(i))Ro =+ (C - b(i))Ro' (819)
Cz0 azO@)

Now, since y; is the distance between a(i) and b(7), each component of (b(i)—
a(i))r, belongs to the interval [—y;,y;] and since the distance d (c,b(i))
between ¢ and b(i) is known, each component of (¢ — b(i))x, belongs to the
interval [—d (¢, b(i)),d (¢, b(2))]. Thus, for any i,

Cz0 azo(%) [—vi i [—d(c,b(i)), d(c, b(i))]

cyo | €[ayo@) | + | [=wisw] | + [[—d(e,b(i)),d(c,b(i))] |

€20 azo(i) (=i, vl [—d(c, b(i)), d(c, b(i))]
(8.20)

and c¢ expressed in Ry belongs to the box

! To check (8.16), it suffices to check it for all entries of the matrices. For in-
stance, for the entry associated with the first row and the first column, we have
cos(¢ + m)cos(p + 7) — sin(¢ +) cos(—0) sin(p + 7) = (—cosy)(—cosp) —
(—sin) cos O(—sin ¢) = cos P cos ¢ — sin ¥ cos @ sin .

232 8. Robotics

azo(i) + [=yi, ya] + [—d(c, b(1)), d(c, b(i))]
clo = ﬂ ayO(i) + [=¥i, yi] + [d(c, b(4)), d(c, b(i))]
1€\ a0 (@) + [~yisyi] + [~ d(e, (D)), d(c, b(i))]

~—

(8.21)

Remark 8.1 If the base and mobile plate are both planar (which is often the
case in practice), and if (czo, cyo, C20, %, 0, ¢) is a solution, then the config-
uration (o, Cyo, —Cz0, ¥ + 7,0, +), which is symmetrical with respect to
the base, is also a solution. In such a case, the search domain can be limited
to positive c,os. The prior knowledge that the mobile plate is above the base
would lead to the same decision. |

Table 8.2. Data of Example 8.1

i | axo(i) | ayo(i) | az0(d) | boal() | bya(i) | bua(d) | (y:)*
1 -3 2 0 —1 1 0 22
2 3 2 0 1 0 31
3 4 0 0 2 —1 0 39
4 1 -3 0 —2 0 29
5 —1 -3 0 —1 —2 0 22
6 —4 1 0 —2 —1 0 22
2
—4 -2

Fig. 8.3. Shapes of the base and mobile plate (Example 8.1)

8.2 Forward Kinematics Problem for Stewart—Gough Platforms 233

Example 8.1 (planar case) The base and mobile plate are planar, as de-
scribed in Table 8.2. Their shapes are represented on Figure 8.3. Based on
(8.17), (8.21) and Remark 8.1, the search box is taken as

[—7.93,3.99] x [—4.99,8.25] x [0,6.25] x [, 7] x [0,7] x [~7,7].

For e, = g = 1072, after 286345 iterations performed in 92 minutes on
a PENTIUM 90, Hansen’s algorithm for solving equations (Hansen, 1992b)
generates four boxes, each of which satisfies the uniqueness condition of
page 122. This algorithm is similar to the generic solver SIVIAX of Sec-
tion 5.2, page 104, with the contractors described in Section 5.5.2, page 121.
Approzimations of the four solutions are given in Table 8.3. Figure 8.4
presents the associated configurations. |

Fig. 8.4. The four configurations associated with Example 8.1

234 8. Robotics

Table 8.3. Configurations obtained for Example 8.1

Czo Cyo Zy0 Y o ¥
1 0.823 1.359 | 4.600 | —1.482 | 1.856 | —1.726
2 | —1.014 1.001 | 4.976 0.690 | 0.966 | —0.531
3| —2.014 1.222 | 4.423 0.027 | 0.519 | —0.015
4 | —1.772 | —1.574 | 1.921 | —0.871 | 1.297 0.706

Table 8.4. Data of Example 8.2

i | aeo(i) | ayo(i) | aso(i) | baa(i) | bya(i) | baa(i) | (w)®

1] —9.70 9.1 10| —3.000 | 7300 | 1.0 | 426.76
2 9.70 9.1 | —10| 3000 | -7.300 | —1.0 | 576.27
3| 1276 3.9 10| 7.822| 1052 | 1.0 | 365.86
4 3.00 | 130 | —1.0 | 4822 | -6.248 | —1.0 | 377.70
5| —3.00 | —13.0 10 | —4.822 | —4.822 | 1.0 | 381.53
6 | —12.76 39| —10|-7.82 | -782| —10 | 276.30

Example 8.2 (non-planar case) The base and mobile plate, as described
in Table 8.4, are no longer planar. Again based on (8.17) and (8.21), the
prior box is taken as

[—30.37,18.92] x [—19.52,33.1] x [~25,23] x [—7, 7] x [0, 7] x [-7, 7).

For ex = ¢t = 107°, after 481800 iterations performed in 153 minutes on a
PENTIUM 90, Hansen’s algorithm for solving equations finds ten bozes (see
Table 8.5). For each of them, the uniqueness condition is satisfied. The asso-
ciated configurations are depicted on Figure 8.5. For some of them the mobile
plate intersects the base, which is not realistic but was not forbidden in the
problem as it had been defined. |

8.3 Path Planning

This section presents a recent approach to finding a collision-free path for
an object in a environment cluttered with known obstacles (Jaulin and
Godon, 1999; Jaulin, 2001a). This problem of path planning in a known
environment has received considerable attention (Nilsson, 1969; Lozano-
Pérez, 1981; O’Dunlaing and Yap, 1982; Rimon and Koditschek, 1992). Most

8.3 Path Planning 235

Fig. 8.5. The ten configurations associated with Example 8.2

of the methods available in the literature are based on the concept of con-
figuration space (or C-space) (Lozano-Pérez and Wesley, 1979). Each coor-
dinate in C-space represents a degree of freedom of the object. The number
of independent parameters needed to specify the configuration of this object
corresponds to the dimension of C-space. The initial configuration and de-
sired final configuration of the object become two points a and b in C-space.
Examples of such objects are industrial robots with n degrees of freedom.
Their configuration can be characterized by n real numbers, which are the
coordinates of an n-dimensional vector in C-space (Lozano-Pérez, 1983).
The feasible configuration space S is a subset of C-space that only con-
tains configuration vectors for which the object does not collide with ob-
stacles. Path planning amounts to finding a path belonging to S from the

236 8. Robotics

Table 8.5. Configurations obtained for Example 8.2

Cz0 Cy0 2Zy0 P 0 2
1 4.945 | —6.707 9.757 2.076 | 2.159 2.801
2 4.458 | —4.606 7.666 1.126 | 1.973 2.051
3 | —10.406 | —6.218 —7.269 0.692 | 1.860 0.225
4 —2.904 | —1.346 —3.538 1.124 | 1.107 1.756
5 —4.835 5.507 | —16.756 | —2.790 | 0.503 3.040
6 —6.980 6.457 | —14.916 | —2.256 | 0.740 2.664
7 1.561 6.709 15.219 | —0.928 | 1.227 0.566
8 | —11.524 | —0.882 10.701 0.172 | 1.582 | —0.504
9 —-7.674 | —3.113 5.658 | —1.612 | 1.953 | —1.828
10 —5.000 5.000 17.000 0.000 | 0.524 0.000

initial point a to the desired point b. A number of approaches to solving
this problem are based on the use of potential functions (Khatib, 1986).
The obstacles to be avoided are then surrounded by a repulsive potential,
and the desired final configuration is surrounded by an attractive potential.
Driven by the force generated by these potentials, the object is expected
to reach the desired configuration without colliding with obstacles (provided
that it does not stop at any local minimum). Approaches based on subdivision
of C-space have also been considered (Brooks and Lozano-Pérez, 1985; Re-
boulet, 1988; Pruski, 1996). These approaches partition C-space into three
sets of non-overlapping boxes, namely those that have been proved to be
inside S, those that have been proved to be outside S, and those for which
nothing has been proved. Although this sounds familiar, the methods used
so far in the path-planning literature to decide whether a box is inside or
outside S are not based on interval analysis and meet difficulties with ori-
entation parameters. Interval analysis has already been used for parametric
path planning in Jaulin and Walter (1996) and Piazzi and Visioli (1998), but
this required a parametric model for the path to be available, i.e., the path
had to belong to a family parametrized by a vector p to be tuned, and the
dimension of p had to be small. In these papers, the model chosen for the
path was a cubic polynomial. By contrast, the approach to be presented now
does not require any parametric model of the path.

Section 8.3.1 recalls the basic notions used to build a graph associated
with the path-planning problem. In Section 8.3.2, two algorithms for finding
a feasible path from a to b are described. The first one characterizes S with
subpavings before looking for a feasible path. Except for the fact that the tests
used to decide on the feasibility of a box are based on interval analysis, this al-
gorithm is rather classical (Brooks and Lozano-Pérez, 1985; Reboulet, 1988).
The second algorithm, much more efficient, only investigates regions of C-
space that may lead to an interesting path. As an application, Section 8.3.3

8.3 Path Planning 237

considers the planning of the displacement of a non-convex polygonal ob-
ject in a two-dimensional space cluttered with obstacles represented by line
segments.

8.3.1 Graph discretization of configuration space

A guaranteed characterization of the feasible configuration space S can be
obtained using a subdivision algorithm such as S1VIA, presented in Chapter 3.
A graph associated with this characterization can then be built. The whole
procedure, which we call graph discretization, will be used in Section 8.3.2
for path planning. The basic notions needed to understand the principles of
graph discretization will now be presented.

Recall that a paving of a box [pg] is a set of non-overlapping boxes, the
union of which is equal to [po]. This paving is denoted by P when it is
considered as a set and by P when it is considered as a list of boxes (see
Remark 3.1, page 51). Figure 8.6 describes a paving P = {[p1], [P2],-- -, [Po]}
of the box [po] = [-2,10] x [-2,6].

Y25

A

6

1
T
o
2
il
s
®

T [P4] [Pﬂ

v

-2 1 4 7 10 P,

Fig. 8.6. A paving, denoted by P as a set and by P as a list of boxes

Two boxes of TR" listed in P are neighbours if they share, at least partly,
an (n — 1)-dimensional face. For instance, [p;] and [p4] are neighbours in the
paving of Figure 8.6, but [p2] and [ps] are not. The subpaving P; of a paving
‘P that contains all the boxes of P satisfying a given condition is denoted by

238 8. Robotics

Py = subpaving (P, condition) . (8.22)

Consider, for example, the test t(p) £ (p1 = 5), where p; is the first compo-
nent of p, again in connection with the paving of Figure 8.6. If [¢] ([p]) is the
minimal inclusion test for t(p), since [t] ([p3]) = [t] ([ps]) = [0, 1], then

subpaving (P, [t] ([p]) = 0) = {[p1], [P2]; [P4]. [Ps], [P7], [Ps], [Po]} -
(8.23)

Some basic notions of graph theory are also needed (Deo, 1974). A graph G =
(V, &) consists of a non-empty set V of vertices, and of a set £ of unordered
pairs of vertices of V called edges. If v, and vy are two vertices of the graph,
the edge associated with the pair (v,, vp) is denoted by v,vp. A walk in G is a
sequence of vertices v; (i = 1,...,k) such that for any s € {1,...,k — 1}, the
edge v;viy1 belongs to €. The walk is a path if v; # v; for i # j. The walk is
a cycle if vy = v1. A graph is connected if there is a path between any two
vertices. Two distinct vertices v; and v; of G are neighbours if £ contains the
edge v;v;. A subgraph of G is a graph whose vertices and edges belong to G.

Any paving P of a box [pg| can be represented by a graph G. Each element
[pi] of P is associated with a vertex v; of G. If two boxes [p;] and [p;] of P
are neighbours, then G contains the edge v;v;. For instance, the graph G as-
sociated with the paving of Figure 8.6 is given in Figure 8.7a. Subpavings can
also be represented by graphs. For instance, the graph G; associated with the
subpaving P; of (8.23) is given in Figure 8.7b. It is a (disconnected) subgraph
of G. The graph associated with a paving (or subpaving) P is denoted by G =
graph(P). The construction of the graph associated with a given subpaving
requires fast algorithms to find the neighbours of a given box, such as the
one developed by Samet (1982).

Fig. 8.7. (a) Graph G associated with the paving P; (b) Graph Gi associated with
the subpaving P of P; G; is a disconnected subgraph of G

8.3 Path Planning 239

8.3.2 Algorithms for finding a feasible path

Consider a compact set S included in a box [po] and two points a and b of
S. Assume that a thin inclusion test [t] is available to decide whether a box
is inside or outside S. A motion from the initial point a to the desired final
point b is a one-to-one continuous function m : [0, 1] — R™;7 — m(7), such
that m(0) = a and m(1) = b. The associated path is the set

L= {m(r) | 7 € [0,1]}. (8.24)

The path L is feasible if I C S. In this section, two algorithms FEA-
SIBLEPATH]1 and FEASIBLEPATH2 searching for such paths are proposed.
When they succeed, both return a box path, i.e., a list of adjacent boxes
{{pa]) [pl}) [plfl]) [pb}}a such that a € [pa} and b € [pb} , and that all
these boxes are inside S. It is then still necessary to find a feasible point path
L from a to b. In general, the choice of this final point path should be based
on domain-specific considerations such as kinematic or dynamic characteris-
tics, and not on purely geometric criteria (Laumond, 1986). For instance, a
desirable property of the final path is smoothness. Here, for the sake of sim-
plicity, a broken line from a to b lying inside the box path will be considered
sufficient.

Table 8.6. Algorithm for finding a shortest path in a graph

Algorithm DUKSTRA(in: G, va, vp; out: L)

1 for each vertex v € G, d(v) := o0;
2 d(va) := 0; dumin := 0;

3 repeat

4 if G (dmin) = @ then L := &; return;

5 dmin = dmin + 1;

6 for each vertex v € G (dmin — 1),

7 for each neighbour w of v in G with d(w) = oo, d(w) := dmin;

8 until d(v) # oo;

9 L:=d(vp); ve = vp;

10 for i := £ — 1 down to 0, select a neighbour v; of v;41 such that d(v;) = 4;

11 L :={ve,v1,v2,...,0—1,0p}.

Among the algorithms that have been proposed for finding the shortest
path between two specified vertices v, and v in a graph G, one of the most
efficient is due to Dijkstra (1959). It will be called by the two algorithms FEA-
SIBLEPATH1 and FEASIBLEPATH2. Although it has been initially derived for
weighted digraphs (i.e., graphs with directed edges), we shall use a simplified
version for non-directed graphs, presented in Table 8.6. With each vertex v
of G is associated an integer d(v) representing the minimum number of edges

240 8. Robotics

in a path from v, to v. G (i), i € N, denotes the set of all vertices of G such
that d(v) = 4. If the algorithm DIJKSTRA returns an empty list £, then v,
and v are not in the same connected component of G. Otherwise, it returns
one of the shortest paths from v, to vp, in terms of the number of vertices
crossed.

Running DIJKSTRA(G, v1, vg) on the graph of Figure 8.7a, one gets d(v1) =
0, d(vs) = d(vs) = 1, d(v) = d(vs) = 2, d(vs) = d(vr) = d(vs) = d(vg) = 3.
DDKSTRA returns either the path {v1,vs,v3,v6} or the path {v1, v4, vs, v6}.

Table 8.7. Basic algorithm for finding a feasible path

Algorithm FEASIBLEPATH1(in: ¢ (.),a, b, [po],¢; out: £, message)
if [t](a) # 1 or [t] (b) # 1 then

1
2 L = &; message := “error: a and b should be feasible”; return;

3 ifaé¢[po] or b¢ [po] then

4 L := &; message := “error: a and b should belong to [po]”; return;
5 Q:={[po]}; AP = &; P := &;

6 while Q # &;

7 pop a box out of Q into [p];

8 i [f ([p]) = 1 then B:=PU {[p]};

9 if [t] ([p]) = [0,1] and w ([p]) < € then AP := AP U {[p]};

10 if [t] ([p]) = [0,1] and w ([p]) > ¢ th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>