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Preface 

High-speed impact dynamics is of interest in the fundamental sciences, 
e.g., astrophysics and space sciences, and has a number of important 
applications in military technologies, homeland security and engineering. 

When compared with experiments or numerical simulations, analytical 
approaches in impact mechanics only seldom yield useful results. However, 
when successful, analytical approaches allow us to determine general laws 
that are not only important in themselves but also serve as benchmarks for 
subsequent numerical simulations and experiments.   

The main goal of this monograph is to demonstrate the potential and 
effectiveness of analytical methods in applied high-speed penetration 
mechanics for two classes of problem. The first class of problem is shape 
optimization of impactors penetrating into ductile, concrete and some 
composite media. The second class of problem comprises investigation of 
ballistic properties and optimization of multi-layered shields, including 
spaced and two-component ceramic shields. Despite the massive use of 
mathematical techniques, the obtained results have a clear engineering 
meaning and are presented in an easy-to-use form. One of the chapters is 
devoted solely to some common approximate models, and this is the first 
time that a comprehensive description of the localized impactor/medium 
interaction approach is given.  

In the monograph the authors present systematically their theoretical 
results in the field of high-speed impact dynamics obtained during the last 
decade which only partially appeared in scientific journals and conferences 
proceedings.    

This monograph is written primarily for scientists and engineers working 
in the field of high-speed impact dynamics and penetration. It can be also 



xiv 
 

 

used as a textbook in industrial and applied mathematics for demonstrating 
the applicability of mathematical methods for solving applied problems. 
Familiarity with basic concept of solid mechanics and mathematics is 
assumed. 

Preface 



  

1

 

Chapter 1 

INTRODUCTION 

 

 

The main goal of this monograph is the analysis of engineering problems 
in penetration mechanics and the derivation of solutions that have practical 
applications. We consider regimes of normal high-speed (but not s 
hypervelocity) penetration by a rigid impactor that are accompanied by 
elastic-plastic deformations and brittle failure and when hydrodynamic 
models are not applicable. The authors aim is to show that despite of the 
massive use of computer modeling in penetration mechanics – which is 
facilitated by easy access to powerful computers and multi-purpose codes 
– the analytical methods that are employed in this book are still useful and 
retain their importance. The advantage of analytical methods is that they 
allow us to determine general laws and express them in analytical form. 
Such results are not only important in themselves, but they can also serve as 
benchmarks for experiments and numerical simulations. The price of the 
advantages of the analytical methods is the necessity to use approximate 
models. These models must not only be sufficiently reliable and adequate, 
but they must also be relatively simple and convenient. Therefore, in this 
book the discussion of approximate models receives considerable attention. 
We do not, however, go into a discussion of the range of applicability and 
the experimental validation of widely used approximate models, since these 
discussions can be found in a number of publications, many of which are 
referred to in our book. Primary emphasis is placed on the association 
between different approaches for developing approximate models of 
impactor-shield interaction and on some formal procedures for constructing 
these models, particularly, the localized interaction approach (LIA). The LIA 
has received considerable attention (methodological and practical aspects) 
because of the experience of its application that has accumulated in 
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gasdynamics and because of growing interest in different aspects of LIA in 
impact dynamics, where many elements of the LIA have been repeatedly 
rediscovered.  

In their exposition of the LIA, the authors use rigorous mathematical 
proofs and employ numerical simulations only when rigorous mathematical 
proof is not found. Despite the approximate nature of the basic models, this 
approach seems reasonable, since it allows us to establish a reliable 
association between the models and the results obtained on the basis of the 
models. However, one must keep in mind that results obtained with the 
approximate models should be used mainly for the qualitative estimation of 
tendencies and not as quantitative predictions. 

This monograph is not intended to serve as a textbook. Similarly, it does 
not contain a chapter like “Introduction to high-speed impact dynamics”, i.e., 
it is not an initial introduction to this subject. As a basic text, we recommend 
the monograph (Zukas, 1990), although no special prerequisites are required 
for understanding the problem under consideration. Our monograph covers 
the aspects of modeling of high-speed impact that are determined by our 
research interests and presents the results of our studies. Together with the 
new material, we include in this monograph some previously published 
results in revised and expanded form, e.g., we have simplified the proofs, 
added new examples and calculations, and used a unified style of exposition. 
The overviews presented in the book are associated directly with the topic of 
the research. References and information concerning more general problems 
associated with high-speed plate penetration modeling using approximate 
models can be found in the studies of Kennedy (1976), Backman and 
Goldsmith (1978), Jonas and Zukas (1978), Zukas (1982), Brown (1986), 
Anderson and Bodner (1988), Heuzé (1989), Recht (1990), Zukas and 
Walters (1990), Abrate (1994), Corbett et al. (1996), Abrate (1998), Teland 
(1998), Børvik et al. (1998), Kasano (1999), Goldsmith (1999), and 
Cheeseman and Bogetti (2003). 

The monograph is divided into three parts. 
Part 1, which comprises Chapters 2-4, deals mainly with two universal 

approximate approaches that are associated with each other and that are 
widely used in impact dynamics: the LIA and cavity expansion 
approximations (CEAs). 

Chapter 2 is devoted to a discussion of the LIA. In its simplest 
formulation, it is based on the assumption that the net drag force exerted by 
the shield on the penetrating impactor can be represented as a sum of 
independent local drag forces at the contact points. Each local instantaneous 
drag force is assumed to depend only on the velocity of a penetrator, the 
angle between the velocity vector and the local normal vector at the 
impactor’s surface, and some global characteristics that remain constant  

Chapter
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during penetration, e.g., the material properties of the shield. Most of 
approximate models that are used in practice for describing local interaction 
between a shield and a high-speed penetrator belong to the class of  
localized interaction models (LIMs). Chapter 2 offers, for the first time, a 
comprehensive exposition of the foundations of localized interaction theory 
(LIT) applied to modeling of penetration by rigid impactors. Along with the 
description of the universal model and investigation of general properties of 
LIMs, this chapter provides a classification of the basic types of LIMs, 
considers various simplified approaches, and presents formulas for the 
ballistic limit velocity (BLV) and the depth of penetration (DOP) for 
impactors of various shapes. LIMs are used in the book as a basis for 
investigating different problems. 

Some features of CEAs are discussed in Chapter 3. It is shown that 
spherical cavity expansion approximations (SCEAs) and the widely used 
static versions of cylindrical cavity expansion approximations (CCEAs) can 
be reduced to LIMs. The main emphasis is placed on mathematical 
formulation of the non-static CCEA model for sharp impactors and 
impactors with flat bluntness. Notably, in many cases the mathematical 
derivations are worked down to design formulas. 

Whereas Chapters 2 and 3 deal with the models describing local 
impactor-shield interaction, Chapter 4 discusses a power-law relationship 
between the impact velocity, the residual velocity and the BLV that is 
widely used for reduction of experimental data. It is demonstrated that some 
LIMs and their “non-local” generalizations yield such power-law 
relationships. The accuracy of the power-law approximations is compared 
with the accuracy of the “basic” power law with an exponent equal to two. 

Part 2 of the monograph comprises Chapters 5-9 dealing with shape 
optimization of impactors penetrating into different media. 

The Chapter 5 – an introductory chapter – presents an overview of the 
subject. It also gives a short description of the analytical and numerical 
methods for solving, in the general case, non-classical variational problems 
where functionals depend on the integrals of the unknown solution. These 
methods are not widely known, even through such non-classical problems 
are often encountered in shape optimization of penetrating impactors (some 
problems of the latter kind are investigated in Chapters 6 and 7). 

Optimal impactors having the shape of bodies of revolution with fixed 
length and radius of the shank and penetrating at the maximum depth into 
ductile media (metal, soil) and concrete, are considered in Chapters 6 and 7, 
respectively. When the simplest models without friction are employed, the 
well-known solution of Newton (1687) is obtained once again. More 
complex models suggested at the Sandia Research Laboratories (Warren and 
Forrestal, 1998; Forrestal and Tzou, 1997) yield complicated variational 
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problems that are also considered in these chapters. Chapter 8 contains the 
solution of a problem of finding the impactor with the minimum BLV that 
penetrates into fibre-reinforced plastic laminates and has the shape of a body 
of revolution. In the solution, the model suggested by Wen (2000) and 
generalized to impactors having an arbitrary shape is used. Chapter 8 
discusses the ballistic properties of three-dimensional penetrating impactors 
having a star-shaped cross-section. Investigations showed that when 
solutions in the class of bodies of revolution are considered, optimal 
penetrating impactors generally have large flat bluntness and a shape close 
to truncated cones. 

In Chapter 9, the well-known in gasdynamics area rules are generalized 
for the case of penetrating impactors, and a new version of area rules is 
found. The latter allows us to predict the conditions under which a change of 
the impactor’s shape by a small factor of the order of ε  causes changes in 
the BLV and some other ballistic characteristics by a smaller factor of the 
order of 2ε . 

Part 3 of the monograph, Chapters 10 and 11, deals with investigations 
of the ballistic properties of non-homogeneous (mainly, layered) shields, 
including spaced shields.  

Chapter 10 analyzes the effect on the BLV of the order of the plates and 
the air gaps in the shield and of separating a monolithic shield into several 
plates during penetration by a conical impactor. The main emphasis is placed 
on analytical techniques, although numerical simulations are also used. In 
Chapter 10, it is shown that if any LIM is valid, then the BLV does not 
change when the initially monolithic shield is replaced by a spaced shield 
having the same total width of the plates. The latter result does not depend 
on the widths of the plates or of the air gaps. Analysis of the same problem 
by means of the CCEA shows that the protective properties of a monolithic 
shield can be slightly improved by replacing it with a shield with air gaps 
and that the maximum benefit is achieved when the plates in the spaced 
shield have the same thickness. The analysis performed yields a criterion 
that allows us to determine the optimal sequence of the plates in the shield 
when the shield is composed of plates manufactured from different 
materials. The magnitude of the gain can, in fact, be quite large. 

Two problems of optimization of two-component ceramic armor are 
solved in Chapter 11 by applying the model suggested by Florence (1969). 
The solutions are found in the form of explicit dependencies of the 
thicknesses of the layers in the optimal armor as functions of the parameters 
determined by the properties of the shield and the impactor.  

In the organization of the monograph, the following set-up is used. 
Equations are labeled consecutively within each chapter. The number of 
each equation given as (y.x), where y is a number of the section within the 
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particular chapter (chapters are subdivided into sections) and x is a number 
of the equation inside the section. As a result formulas with the same 
equation numbers can be encountered in different chapters. Therefore, 
formulas in the same chapter are referred to as Eq. (y.x); if the necessity to 
refer to an equation from another chapter arises, we add the number of the 
chapter, e.g., Eq. (z-y.x), where z is the number of the chapter. The formulas 
in Appendix 2 are denoted as (A2.x), and they are referred to as Eq. (A2.x). 

Consecutive labeling is used for figures and tables within each chapter, 
e.g., Table z-x or Figure z-x, and they are referred to in the monograph 
accordingly. The same system is used for numbering and referring to 
sections, e.g., Section z-y, Section z-y.v.w, etc. 

To unify the system of notations in the monograph, the following 
methods are used: (1) Summarizing in the tables the numbers of the 
equations that determine a model or its particular version (this method is 
often used in Chapter 2); (2) Using the same notations to denote parameters 
that are encountered throughout the monograph, e.g., mass of the impactor, 
BLV, DOP; (3) Employing notation that characterizes the meaning of the 
parameter, e.g., µ  with a subscript to denote the material properties of a 
shield; and (4) Presenting a glossary of the notations in Appendix 1 (in the 
table). Tensors are not used in the monograph, and a superscript without 
parentheses always denotes an exponent. To simplify the presentation, we 
have tried to avoid the use of dimensionless variables. 

To master the material presented in the monograph, it is sufficient for the 
reader to be familiar with basic engineering courses in mathematics and 
mechanics. However, understanding the proofs and transformations requires 
a certain mathematical sophistications. The mathematical component of the 
monograph is intended for researchers in the field of impact dynamics. 
However, useful information can be obtained simply by skipping the 
mathematical details and proofs. The authors hope that the theoretical 
predictions described in the monograph will attract the attention of 
experimentalists working in the field of penetration mechanics. 

 



  

 

 

PART 1: SOME COMMON MODELS 



 

Chapter 2 

LOCALIZED INTERACTION APPROACH 
 

 
 

1. BASICS OF THE LOCALIZED INTERACTION 
APPROACH 

Many engineering models for penetration modeling belong to the 
category of the so-called localized interaction models (LIM) (Bunimovich 
and Dubinsky, 1995, 1996), in which the integral effect of the interaction 
between a host medium and a moving projectile is described as a 
superposition of the independent local interactions of the projectile’s surface 
elements with the medium. Every local interaction is determined by the local 
geometric and kinematic parameters of the surface element (primarily, by 
the local velocity of the surface element and the angle between the local 
surface velocity vector and the local normal vector to the projectile surface) 
as well as by some global parameters that take into account the integral 
characteristics of the medium (e.g., hardness, density, etc.). Let us consider 
different versions of the following unified LIM: 

⎪
⎩

⎪
⎨

⎧

≤
=

<<+
=

0uif0
1uifdsn)v,1(

1u0ifds])v,u(n)v,u([
Fd 0

n

00
n

r

rr

r
Ω

τΩΩ τ , (1.1) 

2000 u1/)nuv( −⋅+−= rrrτ

9

 

 

(1.2) , 
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υ̂cosnvu 00 =⋅−= rr

where  (Figure 2-1) Fd
r

 is the force acting at the surface element dS  of the 
projectile that is in contact with the host medium, 0nr and 0τr are the inner 
normal and tangent vectors at a given location on the projectile’s surface, 
respectively, 0vr  is an unit vector of the surface element velocity of the 
projectile, vr , and υ̂  is the angle between the vector 0nr  and the vector 
( 0vr− ); the non-negative functions nΩ  and τΩ  determine the model of the 
projectile-medium interaction and also depends on the parameters ,...a,a 10  
that characterize, mainly, the properties of the host medium. The unit tangent 
vector 0τr  lies in the plane of the vectors 0vr  and 0nr and is perpendicular to 
the vector 0nr ; its direction is chosen such that 0v 00 <⋅τrr , i.e., the direction 
of the friction force is the same as the direction of the vector 0τr .  
 

 

Figure 2-1. Description of the LIM. 

0vr

dS
υ̂

0τr

0n
r

(1.3) ,
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The resultant force acting on the body at each instant of time is 
determined by integrating Fd

r
 over the surface of the impactor-medium 

contact at the same instant, S . Let us now consider a normal impact (impact 
velocity is normal to the impacted plate) of a rigid “symmetric body”, so that 
we may assume translational motion of the impactor under the effect of the 
drag force D , which can be represented in the general case as: 

∫∫∫∫∫∫ ⋅−+⋅−=⋅−=
latperp S

0

S

0

S

0 Fd)v(Fd)v(Fd)v(D
rrr

, (1.4) 

where perpS  is a part of the contact surface S  that is normal to the 
impactor’s velocity (as a rule, the flat bluntness) and latS  is the lateral 
surface of the impactor. Substituting Fd

r
 from Eq. (1.1) into Eq. (1.4), we 

obtain: 

∫∫∫∫ +=
latperp S

0
S

n dS)v,u(dS)v,1(D ΩΩ

where 

)v,u(u1)v,u(u)v,u( 2
n0 τΩΩΩ −+=

2. DESCRIPTION OF NORMAL PENETRATION 

From this point onwards, we consider normal penetration and use the 
following notations (Figure 2-2a-b). The coordinate h , the instantaneous 
depth of the penetration, is defined as the distance between the nose of the 
impactor and the front surface of the shield, and L  is the length of the nose 
of the impactor. We take into account the possible interaction between the 
shield and the lateral surface of the impactor only for Lh0 ≤≤ . The 
cylindrical coordinates ϑρ ,,x  are associated with the impactor, and the 
equation ),x( ϑΦρ = , where Φ  is some function, determines the shape of 
the impactor.  

Generally, we consider impactors with flat bluntness and a cylindrical 
part of length 0L  and assume that this cylindrical part does not interact with 
the shield. In other words, all the above-mentioned formulas refer to the 
impactor’s nose, which is located between sections  0x =  and Lx = . Thus, 
for example, the notion of a conical penetrator implies a penetrator with a 
conical nose. 

, (1.5) 

. (1.6) 
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Figure 2-2.  The notations. 

2.1 Impactor-shield interaction surface 

The formalism of the description of the impactor-shield interaction 
surface in the case of a semi-infinite shield (SIS) is illustrated in 
Figure 2-3a-b. Generally, two stages of penetration can be considered. The 
first stage, entry into the shield, occurs when Lh0 ≤≤ (Figure 2-3a). In this 
case, the flat bluntness of the impactor (if any) and the part of its lateral 
surface between the sections 0x =  and hx =  interact with the shield. The 
second stage (Figure 2-3b), i.e., motion inside the shield, is associated with 
full immersion of the bluntness and of the lateral surface of the impactor into  
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Figure 2-3. Two-stage penetration model for a SIS. 

the shield and occurs when Lx ≥ . Therefore, the moving area of the 
impactor-shield interaction can be described as (Figure 2-4): 

)h(x0 Θ≤≤ , (2.1) 
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Figure 2-4. Penetration into a SIS. Description of the area of impactor-shield interaction. 

where 

⎩
⎨
⎧

≥
≤≤

=
LhifL

Lh0ifh
)h(Θ

In some instances, it is convenient to define function )h(Θ  also for 
negative values of variable h , assuming that  0)h( =Θ  for 0h < . 

In the following exposition, we use a useful elementary identity that is 
valid for any function  0)x( ≥Ξ  and 0h* ≥  (Figure 2-4):  

∫∫∫ −=
)h(

0
*

)h(

0

h

0

**

dx)x()xh(dx)x(dh
ΘΘ

ΞΞ

The proof of Eq. (2.3) is based on the change of the order of integration:  

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥−=

≤−=
=

∫∫ ∫

∫∫ ∫
∫∫

Lhifdx)x()xh(dhdx)x(

Lhifdx)x()xh(dhdx)x(
dx)x(dh

*

L

0
*

L

0

h

x

*

h

0
*

h

0

h

x
)h(

0

h

0
*

** *

*

ΞΞ

ΞΞ
Ξ

Θ

.  (2.4) 

hLh* ≥

x

L

*h

LLh* ≤

)h(x Θ=

. (2.2) 

, (2.3) 
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Figure 2-5. Three-stage penetration model for a SFT. The case bL ≤ .  
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Figure 2-6. Three-stage penetration model for a SFT. The case bL ≥ . 
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Figure 2-7. Penetration into a SFT. Description of the area of impactor-shield interaction. 

Consider a shield with a finite thickness (SFT), b . First, let bL ≤ . We 
consider a perforation as a three-stage process (Figure 2-5a-c). In the first 
stage (the entry of the impactor into the shield, Lh0 ≤≤ ), the flat bluntness 
of the impactor (if any) and the part of its lateral surface between the 
sections 0x =  and hx =  interact with the shield. In the second stage (the 
full immersion, bhL ≤≤ ), the flat bluntness of the impactor (if any) and 
the entire lateral surface ( Lx0 ≤≤ ) interact with the shield. In the third 
stage (emergence of the impactor from the shield, Lbhb +≤≤ ), the flat 
bluntness of the impactor (if any) does not interact with the shield, while the 
part of the impactor’s lateral surface between the sections bhx −=  and 

Lx = interactswith the shield. The case bL ≥  is illustrated in Figure 2-6a-c 

h  bL bL +0  

)h(x Θ= a) bL ≤

L

)h(x θ=

x

)h(x Θ=

)h(x θ=

hb  0  L bL +

b) bL ≥

L  

x



18 2
 

 

and can be analyzed in a similar manner to bL ≤ . In both cases, the moving 
area of the impactor-shield interaction can be described as follows 
(Figure 2-7a-b): 

where function )h(Θ is defined by Eq. (2.2) and 

⎩
⎨
⎧

+≤≤−
≤≤

=
Lbhbifbh

bh0if0
)h(θ

In some instances, it is convenient to define functions )h(θ  и )h(Θ  for 
SFT as follows:  0)h()h( ==Θθ  for 0h <  и  L)h( =θ  for Lbh +> . The 
latter definition implies that L)h()h( ==Θθ  for Lbh +> . 

An identity similar to Eq. (2.3) is valid for some function 0)x( ≥Ξ  
applied to a SFT (Figure 2-7a-b):  

∫∫∫∫∫ ==
+=

=

+ L

0

bxh

xh

L

0

)h(

)h(

Lb

0

bdhdx)x(dx)x(dh ΞΞ
Θ

θ

Thus Eq. (2.5) can be used as a unified description of the area of 
impactor-shield interaction, taking into account that 0h ≥  and 0=θ  for a 
semi-infinite shield and Lbh0 +≤≤  and )h(θ  is defined by Eq. (2.6) for 
a SFT. 

The model can be simplified if we do not take into account the stage at 
which penetrator is only partially immersed in the shield. Since such 
simplification is used frequently, in Section 2-9 we consider this subclass of 
the models. However, this simplification may impair the performance 
of the model. Thus, for example, Li et al. (2004), using experimental data, 
confirmed the need to take into account the incomplete immersion of the 
impactor in the shield at the initial stage of penetration, where the length of 
the impactor and a penetration depth are of the same order.  

Sometimes, we shall use other representations of functions )h(θ  and 
)h(Θ : 

)h(x)h(),bh(x)h( ** =−= Θθ

Chapter

θ( h ) ≤ x ≤ Θ( h ),

Ξ ( x )dx . (2.7) 

(2.5)

(2.6)

(2.8)
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⎟
⎠

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −= ◊◊ L

h,
L

bhXL)h(θ

where 

⎪
⎩

⎪
⎨

⎧

≥
≤≤

≤
=

⎪
⎩

⎪
⎨

⎧

≥
≤≤

≤
=◊

LzifL
Lz0ifz

0zif0
)z(x,

1zif1
1z0ifz

0zif0
)z(X * . (2.10)  

2.2 Drag force. Equation of motion. Depth of 
penetration and ballistic limit velocity 

Now, we can write the expression for the drag force using the adopted 
system of coordinates. Since 

ϑϑ
ϑ
ϑϑ dxd),x(udS,

),x(u
),x(unx),x(u 0

0

100 ==⋅= rr , (2.11) 

x1
22

x
2

0 ),x(u,)1(),x(u ΦΦϑΦΦΦϑ ϑ =++= , (2.12) 

Eq. (1.5) can be transformed into the following form: 

( ) ,d),x(uv),,x(udx)h()0()v,1()v,h(D 0

)h(

)h(

2

0
0n ϑϑϑΩδσΩ

Θ

θ

π

∫ ∫+=  (2.13) 

where )x( )σ  is the area of the section of the impactor in the plane xx )= , 

Φσ
π

2
1)x(

2

0

2∫=

Function )h(δ  is associated with the description of the resistance of an 
impactor’s nose: 

1)h( =δ

in the case of penetration into a SIS, and  

and 

Θ( h ) = L X ⎞ , (2.9)

( x,ϑ )dϑ . (2.14)

(2.15)
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⎪
⎩

⎪
⎨

⎧

>

≤
=

bhif0
1

0hif0
)h(δ

when an impactor penetrates into a SFT. Clearly, we do not consider here 
penetration phenomena that are accompanied by plug formation. 

An equation of motion of an impactor with mass m :  

)h,h(Dhm &&& −=

with initial conditions: 

0)0(h = ,  impv)0(v)0(h ==&

allows us to determine the depth of penetration h  and the velocity of the 
impactor v  as a function of time t  and impact velocity impv . 

Since the right-hand side of Eq. (2.17) does not depend on time in the 
explicit form, the order of this differential equation can be decreased. 
Considering v  as a function h , )h(vv = , and taking into account that 

)h(v)h(v
dt
dh

dh
dv

dt
dv

dt
hdh 2

2

′====&&

we can rewrite Eq. (2.17) as follows: 

0)v,h(D
dh
dvmv =+

Let  

)v;h(Vv imp=

be the solution of Eq. (2.20) with the initial condition: 

impv)0(v =

Then, the law of motion of the impactor determined as the solution of the 
differential equation for h  with the appropriate initial condition: 

Chapter

if 0 ≤ h ≤ b , (2.16)

(2.17)

(2.18)

(2.19)

. (2.20)

(2.21)

. (2.22)
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0)0(h),v;h(V
dt

)t(dh
imp ==

may be written as: 

∫=
h

0 imp
imp )v;z(V

dz)v,h(t

Equation (2.24) allows us to construct the inverse dependence h  vs. t  if 
required. Therefore, Eqs. (2.21) and (2.24) determine function v  vs. t  in a 
parametric form. 

The ballistic limit velocity (BLV), blv , is usually considered as a 
characteristic of perforation for a shield with a finite thickness, and it is 
defined as the initial velocity of the impactor that is required for the 
impactor to emerge from the shield with zero velocity. Thus, blv  is 
determined from the equation: 

0)v;Lb(V bl =+

In the case of a semi-infinite shield, the depth of penetration (DOP), H , 
for the known impact velocity, impv , is determined from the equation: 

0)v;H(V imp =

Therefore, the general characteristics of the penetration, the BLV and the 
DOP, can be obtained through solving a first order ordinary differential 
equation.   

3. SUB-CLASS OF MODELS CONSIDERED 

From here on, we will consider, as a rule, LIMs of the following type: 

nfrΩµΩτ =

where frµ  is a friction coefficient. If friction between the impactor and the 
host medium is not taken into account then:  
 

0fr =µ .                        (3.2)   

(2.23)

. (2.24)

. (2.25)

. (2.26)

, (3.1)
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Taking into account Eqs. (1.6), (3.1) and (2.11)-(2.12), we can rewrite 
Eq. (2.13) as: 

( ) ,d),x(Uv),,x(udx)h()0()v,1()v,h(D
)h(

)h(

2

0
nn ϑϑϑΩδσΩ

Θ

θ

π

∫ ∫+=  (3.3) 

where 

22
frx0

2
fr u)u1u(),x(U ϑΦΦµΦΦµϑ ++=−+= , (3.4) 

22
x

2
x

)1(
),x(u

ϑΦΦΦ
ΦΦϑ

++
= .

For purpose of convenience, we have summarized all the required for 
calculations formulas in Table 2-1. All the solutions presented below are 
derived by applying these general relationships.  

Table 2-1. Calculating formulas for the LIM with arbitrary nΩ and 3-D impactor 
Function/variable 
determined 

Equations Comments 

)x(σ  (2.14)  

1=  SIS )h(δ  
(2.16) SFT 

)h(Θ  (2.2), (2.8), (2.9)  
(2.6), (2.8), (2.9) SFT )h(θ  

0=  SIS 
U,u  (3.4), (3.5)  

)v,h(D  (3.3)  

)v;h(Vv imp=  (2.21) The solution of Eq. (2.20) with initial 
condition of Eq. (2.22) 

blv  (2.25) BLV for SFT 

H  (2.26) DOP for SFT 

4. CONSIDERED SHAPES OF THE IMPACTOR 

Formulas for calculations using the general model determined by 
Eq. (3.1) and for different shapes of the impactor are summarized in 
Table 2-2.  

Chapter

(3.5)
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0

L

0
imp L)L(dx)x(V σσ += ∫

where )x(σ  is given by Eq. (2.14). 
The mass of the impactor m , the volume of the impactor impV  and the 

density of the material of the impactor impγ  are related by the equation: 

impimpVm γ=

Let us now consider several classes of impactor shapes.  
The equation of the lateral surface of a 3-D conical impactor may be 

written as (Figure 2-8): 

)()xkk(),x( 0 ϑηϑΦ +=

 

Figure 2-8. 3-D conical impactor. 

where function )(ϑη determines the shape of the impactor’s cross section,  
and 0k  and k  are coefficients. 

If the impactor has the shape of a body of revolution, then:  

)x(ΦΦ =

The volume of the impactor can be represented as: 

(4.1),

. (4.2)

, (4.3)

(4.4).
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kxk),x( 0 +=ϑΦ

If an impactor has a flat bluntness then:  

0rk)0( 0 ===σ

Formulas for )(,, xUu σ  and )0(σ in Table 2-2 are derived using the 
corresponding formulas in Table 2-1 and taking into account the equations 
describing the surface of the impactor. The following formulas for the drag 
force D  of impactors having different shapes are obtained from Eq. (3.3). 

Table 2-2. Description of LIM with arbitrary nΩ for impactors of different shapes 

Function 3-D cone Body of revolution Cone of 
revolution 

Φ  )()xkk( 0 ϑη+  )x(Φ  kxk0 +  

u  22222 )1k(k ηηηη ′++  12 +′′ ΦΦ  1kk 2 +  

U  )(u~)kxk( 0 ϑ+  )( frµΦΦ +′  u~)kxk( 0 +  

u~  22
fr

2k ηηµη ′++   frk µ+  

)x(σ  ϑϑη
π

d)()kxk(
2
1

2

0

22
0 ∫+  )x(2Φπ  2

0 )kxk( +π  

)0(σ  ϑϑη
π

d)(k
2
1

2

0

22
0 ∫  2rπ  2

0kπ  

D  Eqs. (4.10), (4.9), (4.11) Eq. (4.7) Eqs. (4.8), (4.9) 

blv , sharp 
impactor 

Eqs. (5.7), (5.5), (4.11)  Eqs. (5.7), (5.5), 
(4.12) 

H , sharp 
impactor Eqs. (5.11), (5.5), (4.11)  Eqs. (5.11), (5.5), 

(4.12) 

Comments  r)0( =Φ  
υtanLRk

,rk0

==
=

 

 

  
 

A cone of revolution may be considered as a particular of both case a 3-D 
conical body and a body of revolution. The equation of its lateral surface is: 

Chapter

.

.

. (4.6)

(4.5)
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and for a cone of revolution: 

( ) ),h(D)(tanv,sin2)h()v,1(r

)h(D)k(v,
1k

k2)h()v,1(r)v,h(D

frnn
2

fr2nn
2

)

)

µυυΩπδΩπ

µΩπδΩπ

++=

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+=

 (4.8) 

where υ  is a half-angle of the apex of the cone and 

)]h()h([
2
k)]h()h([kdx)kxk()h(D 22

0

)h(

)h(
0 θΘθΘ

Θ

θ

−+−=+= ∫
)

. (4.9) 

In the case  of a 3-D conical impactor: 

)v(D)h(D)0()h()v,1()v,h(D n

()
+= σδΩ , (4.10) 

where )h(D
)

 is defined by Eq. (4.9) and 

( ) ϑϑϑΩ
π

d)(u~v),(u)v(D
2

0
n∫=

(

For a cone of revolution, Eq. (4.11) can be simplified as: 

( ) )(tanv,sin2)v(D frn µυυΩπ +=
(

. 

5. SOLUTIONS FOR A THREE-DIMENSIONAL 
SHARP CONICAL IMPACTOR 

Let us now consider a 3-D sharp cone. Then, Eqs. (4.9) and (4.10) yield: 

)v(D)h(D)v,h(D
()

= ,  (5.1) 

∫ +′⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+′
′+=

)h(
fr2nn

2 dx)(v,
1

2)h()v,1(r)v,h(D
θ

µΦΦ
Φ

ΦΩπδΩπ
)h(Θ

In the case of impactor of revolution: 

(4.7)

. (4.11)

(4.12)



26 2

 
and the equation of motion of the impactor (Eq. 2.20) may be written as:    

)v(D)h(D
dh
dvmv

()
−=

The solution of this equation with the initial condition impv)0(v =  may be 
represented in the form: 

∫∫=−
)h~(

)h~(

h

0
imp xdxh~d)v(F̂)v(F̂

Θ

θ

where 

∫=
z

0 )v(D
vdv

k
m)z(F̂ (

Let us now consider shield of finite thickness (SFT) and semi-infinite 
shield (SIS).  

In the case of a SFT, the equation for the BLV can be obtained by 
substituting Lbh,vv,0v blimp +===  into Eq. (5.4): 

∫∫
+

=
)h(

)h(

Lb

0
bl xdxdh)v(F̂

Θ

θ

Using the identity Eq. (2.7), we can transform the right-hand side of 
Eq. (5.6) to 2bL2 , and this equation becomes 2bL)v(F̂ 2

bl = . Since 
0)z(F̂ >′  and, consequently, )z(F̂ is an increasing  function, the latter 

equation has only one solution:   

)2bL(F̂v 21
bl

−=

In the case of a SIS the equation for the DOP can be obtained by 
substituting 0)h(,Hh,0v === θ  into Eq. (5.4): 

)]h()h([
2
kxdxk)h(D 22

)h(

)h(

θΘ
Θ

θ

−== ∫
)

,  (5.2) 

Chapter
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,  (5.4)

. (5.5)

.

. (5.7)
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.
LHif)L2H3(L

LH0ifH
6
1

)]H(2)H(H3[
6
1xdx)xH(xdxdh)H(F~

2

3

32
)H(

0

)h(

0

H

0

⎩
⎨
⎧

≥−
≤≤=

−=−== ∫∫∫ ΘΘ
ΘΘ

 (5.9) 

Considering Eq. (5.8) as a definition of function H  vs. impv , we can 
differentiate both sides of this equation with respect to impv : 

dH
)H(F~d)H(F~,

dv
)v(F̂d

)v(F̂,
dv
dH)H(F~)v(F̂

imp

imp
imp

imp
imp =′=′′=′ . (5.10) 

Since 0)v(F̂ imp >′  and 0)H(F~ >′ , Eq. (5.10) implies that 0dvdH imp > , 
i.e., )v(H imp  is an increasing function, and we can solve Eq. (5.8) with 
respect to H :  

⎪
⎩

⎪
⎨

⎧

≥+

≤≤
=

0impimp2
imp

0impimp
3

imp

vvif
L

)v(F̂2
3
L2

vv0if)v(F̂6
H ,  (5.11) 

where 0impv  is the impact velocity that provides penetration of the impactor 
at the depth L :  

( ))L(F~F̂v 1
0imp

−=

For a sharp cone of revolution, some equations derived in this section can 
be simplified using Eq. (4.12). 

 

)H(F~)v(F̂ imp =

where the right-hand side of this equation can be transformed by using the 
identity Eq. (2.3):  

,  (5.8)

. (5.12)
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traditional – approach, the study of a corresponding physical phenomenon 
yielded some types of LIMs. The second approach employs the results 
obtained in gasdynamics for which the LIA was well developed. The third 
approach is associated with using the concepts of a localized approach (and 
not always recognizing them as such) directly in impact dynamics. In this 
section we consider these approaches in brief. 

6.1 Some special localized interaction models 

To the best of our knowledge, the first LIM describing bullet-barrier 
interaction during penetration of a projectile through a plate was suggested 
by Nishiwaki (1951). This model can be described as a LIM with:  

nfr
22

20n ,vuaa ΩΩΩ µ=+= τ

where 0a  is the “statical contact pressure” and sh2a γ=  is the density of the 
material of the shield. Using his experimental results for conical bullets and 
aluminum shields, Nishiwaki (1951) drew the conclusion that 0a  is 
proportional to the thickness of the perforated plate. He developed a 
relationship between the impact velocity and the residual velocity of a 
cone-shaped impactor perforating a SFT, taking into consideration the 
change in the impactor-plate contact surface during penetration. It is of 
interest to note that Nishiwaki employed the same model as did Newton 
(1687). This model is based upon the assumptions that the medium is 
rarefied and that the interaction of the projectile with the medium occurs 
through elastic or inelastic (as in this case) collisions of the particles of the 
medium with a projectile’s surface. It later became apparent that this model 
is also applicable to dense media. Exactly the same situation is true for 
gasdynamics, for which a similar Newton’s model ( 0a   pressure in the 
undisturbed gas flow) and its modifications are widely used in calculations 
of the aerodynamic characteristics of supersonic projectiles (Hayes and 
Probstein, 1959; Chernyi, 1969). Interestingly, Nishiwaki did not refer to 
Newton’s model or to gasdynamics analogy.  

– 

 

6. HISTORICAL  AND METHODOLOGICAL 
BACKGROUND OF THE LOCALIZED 
INTERACTION APPROACH IN IMPACT 
DYNAMICS  

The foundations of the localized interaction approach (LIA) in impact 
dynamics  were developed from three different approaches. In  the first -  

Chapter

, (6.1)
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also Klepaczko and Hughes, 2005) proposed the use of concrete shields 
penetration models with a friction coefficient depending on the local 
tangential component of the impactor’s velocity. The majority of known 
models employ a second order polynomial of vu, , and the most frequently 
used models are determined by Eq. (6.1).   

A model that is based solely on the dependence between the drag force, 
D , and the velocity of the impactor, v , and does not consider the influence 
of the impactor’s shape on its resistance or takes it into account through 
some, usually empirical, coefficients, may be classified as a “degenerate” 
LIM (DLIM). “Classic” DLIMs postulate a polynomial dependence )v(D , 
and solving the equation of motion in this case reduces to calculating the 
integral )W;c,c,c,1,1(M 210  in Eq. (A2.01). A brief analysis of these models 
and references to the early studies can be found in Goldsmith (1960) and  
Backman and Goldsmith (1978). Heimdahl and Schulz (1986) studied the 
motion of an impactor for an arbitrary function )v(D . A number of 
investigators have proposed power-law dependences for different media 
(Mileiko and Sarkisyan, 1981; Mileiko et al., 1994; Forrestal et al., 1984; 
Forrestal et al., 1986). Various approaches to determine the drag force acting 
on the body as a function of its velocity and penetration depth were 
considered by Stone (1994), Zook (1977), Beth (1946), Allen et al. (1957), 
Bernard (1978), and Dehn (1979, 1986, 1987).   

Phenomenological or semi-phenomenological formulas for direct 
calculations of DOP, BLV or residual velocity seem to have no relation to 
the problem under consideration. However, they can be useful in developing 
some particular LIMs (see Section 2-6.2). A large number of such models 
can be found in Heuzé (1989), Backman and Goldsmith (1978), Brown 
(1986), Corbett et al. (1996), Young (1997), Project THOR (1961), Barr 
(1990), and Dancygier (1997, 2000). A comparative analysis of a number of 
known models was performed by Neilson (1985), Børvik et al. (1998), and 
Teland (1998). The latter survey also briefly summarized the findings of the 
earlier studies for concrete shields.   

Various semi-empirical models were collected and analyzed by Recht 
(1990). An approach based upon cavity expansion approximations, which is 
discussed comprehensively in Chapter 3, yielded a large number of LIMs. 
The list of LIMs may be supplemented by adding the models suggested by 
Landgrov and Sarkisyan (1984) and by Golubev and Medvedkin (2001). The 
latter model is a modification of the model of Vitman and Stepanov (1959), 
which takes into account the effect of viscous resistance at the initial stage of 
penetration. Klepaczko (2001), Jones et al. (2003) and Davis (2003) (see 
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It must be noted that such approaches are often accepted intuitively 
without invoking the theory. As an example, we may refer to the suggested 
by Bernard and Creighton (1979) “extrapolation to non-normal impact” of 
the expression for local compressive normal stress on projectile’s surface 
that was employed earlier for normal penetration. 

Clearly, the below-described methods alone do not guarantee the validity 
of the constructed models for non-conical impactors. Development of 
particular correct procedures for constructing a LIM (including the choice of 
the type of approximation) is a separate problem that has not yet been 
addressed in the impact dynamics context.   

6.2.1 The version based on the cones resistance measurements 

Vitman and Stepanov (1959) investigated experimentally the penetration 
of conical-nosed impactors with impact velocities up to sm1000  into 
various metal shields. They found that the drag force to shank area ratio 
exhibits a linear dependence on the impactor’s velocity squared provided 
that the penetration depth exceeds the length of the conical nose. Analysis of 
these linear correlations for penetrators with different cone angles emptied 
two interesting observations. The first is that the slope of these lines is 
approximately the same as the slope of the drag force dependence for a 
conical projectile moving in a gas flow calculated according to Newton’s 
model. The second is that all the straight lines, obtained in the experiments 
on penetration into the shields manufactured from the same material 
intersect at the same point. These two observations imply that the formula 
for a drag force for a conical impactor may be written as: 

0),vsinaa(RD 22
20

2
cone =+= τΩυπ ,  

where sh2a γ= , а sh0 H~a =  is the “dynamic hardness of the metal for impact 
velocities of sm10~v~ ”. Initially, Vitman and Stepanov (1959) used the 
following correlation: 

 

6.2 “Tangent cones” approaches 

In all the below-described methods, the force at the location of the 
interaction between the projectile and the host medium is assumed to be 
equal to the force at the surface of the tangent cone at this location, when the 
projectile velocity and the host medium are the same in both cases. Different 
versions of such an approach are known in aerodynamics as “methods of 
tangent cones” (Chernyi, 1969; Hayes and Probstein, 1959). 

Chapter
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  Consider the penetration of a sharp straight conical impactor into a  
SIS without friction for Lh ≥ . Then, under conditions of validity of some 
LIM and taking into account that L)h( =Θ , 0)h( =θ , RtanLLk == υ , 
Eqs. (4.8) and (4.9) yield the following formula:  

( )v,sinRD n
2 υΩπ= .  

Comparing Eqs. (6.2) and (6.4) and assuming that a particular LIM without 
friction is valid, we arrive at the conclusion that this LIM may be expressed 
as follows: 

0,vuaa)v,u( 22
20n =+= τΩΩ

Let us demonstrate that such method of construction of LIM can be used 
in a more general case. During penetration of a sharp straight cone into a SIS 
(as well as into a SFT), the projection of the lateral surface of the impactor 
inside the shield upon the plane normal to its direction of motion may be 
written as:    

22 ]tan)h([]tan)h([)h( υθπυΘπσ∆ −= . (6.6) 

Then neglecting friction (a method can easily be generalized for a case with 
friction) and taking into account Eqs. (5.2) and (4.12), we can rewrite 
Eq. (5.1) as follows: 

( ) )h(v,sinD n σ∆υΩ=

Let us now assume that penetration experiments performed with 
different conical impactors and different impact velocities showed that the 
experimentally measured function )h()h,(DF expD σ∆υ= , where expD  is 
the drag force, depends (certainly, in some approximation) on the cone  

 

α)v~v(H~a sh0 =

but they subsequently decided that the dependence of 0a  on the impactor 
velocity can be neglected because 10 <<< α . Although the development of 
a LIM describing the interaction between the medium and the impactor’s 
surface was not the direct goal of the study of Vitman and Stepanov (1959), 
their formula is often referred as a LIM.  

Let us now show that under several assumptions Eq. (6.2) implies 
Eq. (6.1) with 0=τΩ .  

, (6.3)

(6.4)

. (6.5)

. (6.7)
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Note, that the mere fact that the function DF  depends solely on the 
penetrator’s velocity and does not depend explicitly on the location of the 
penetrator inside the shield, can be used as a criterion of the “locality” of the 
model of interaction between the impactor and the shield.  

6.2.2 The “local similarity” version 

The second method of constructing LIMs is based on the known local 
model for a sharp straight circular cone. Let us consider the normal 
penetration of a conical impactor into a shield and assume that functions 

)v,(n υσ  and )v,(υστ in the relationship that is similar to Eq. (1.1),  

20,ds])v,(n)v,([Fd 00
n πυτυσυσ τ <<+=

rrr
,    (6.9) 

are known. Then, functions determining the LIM that is suitable for sharp 
impactors with other shapes are determined as: 

τ=ζσ= −
ζζ ,n),v,u(sin)v,u( 1Ω

An example of the particular realization of this approach can be found in 
Chapter 8 (see also Ben-Dor et al., 2002a,b,c).  

6.2.3 The Recht’s version 

Let us show that the method proposed by Recht (1990) can be considered 
as a discrete version of the LIT for sharp bodies of revolution. For 
simplicity, let us neglect friction. Then, Eq. (4.7) for a drag force acting on a 
sharp impactor of revolution yields:   

dx)v,u(2)v,h(D
)h(

)h(
n∫ ′=

Θ

θ

ΦΦΩπ

 

apex half-angle and impactor’s velocity at penetration depth h , i.e., 
)v,(FF DD υ= . Then, for each penetrator, function DF  will assume the same 

values for the same penetration velocity, although this velocity in different 
experiments can be attained at different penetration depths. Then, equating 
functions )v,(FD υ  and )h(D σ∆  and using Eq. (6.7), we arrive at the 
following LIM: 

( ) 0),v,u(sinFv,u 1
Dn == −

τΩΩ

Chapter
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( ) ( ) .)x(v,~dx
dx

)(dv,~

dx)v,u(2)v,h(D
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∑∫∑

∑ ∫
+

+

 (6.12) 

Here, as shown in Figure 2-9, the impactor’s surface that interacts with  
ixx = ,  where 

x...xx...xx
)h(

N1ii21

θ
<<<<<<

=
+ i   the  cross-sectional 

area of the  impactor in the plane ixx = , )x()x()x( i1ii σσδσ −= + , )x(~~
ii υυ = . 

 

Figure 2-9. Recht’s (1990) model.  

Thus, if a penetrator is a body of revolution, Eq. (6.12) allows us to 
calculate the force applied by the shield at any location on the impactor’s 
surface, provided the function ( )v,n υσ  is known. This function determines 
the shield-penetrator interaction force at any location on the surface of a 
straight circular cone having an apex half-angle υ  and velocity v . 

x  

)x( iδσ

iρ  1i+ρ  

υ~

)x(Φρ =

ρ

1ix +ix

where υΦΦ ~sin1/)x(uu 2 =+′′== , and )x(~~ υυ = is the angle between 
the tangent to the generator and the axis of the impactor. The integral in 
Eq. (6.11) can be approximated by a sum: 

the  shield  is  divided int o sub-area s usin g th e plane s
=Θ( h ), an d σ ( x )  is
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6.2.4 The version based on the cones depth of penetration model 

A particular LIM can be constructed provided that a function that 
determines the penetration depth by a circular conical impactor in a SIS as a 
function of the impact velocity and a cone apex half-angle is known. Let us 
denote this function by )v,(Ĥ impυ . 

Taking into account Eqs. (5.5) and (5.9), and the relationship υtank =  
Eq. (5.8) yields:  

∫∫ =
H

0

2
v

0

dh
2
1

)v(D
vdv

tan
m imp

Θ
υ

(

Assumption about LIM implies that Eq. (6.13) must be an identity for 
)v,(ĤH impυ= . Differentiating, after this substitution,  both sides of this 

equation with respect to impv  , we obtain: 

( )
imp

imp
2

imp

imp

v
Ĥ)v,(Ĥ

2
1

)v(Dtan
mv

∂
∂= υΘ

υ
(

Substitution of D
(

 from Eq. (4.11) yields:  

( ) ( )
1

imp
imp

2

fr

imp
impn v

Ĥ)v,(Ĥ
)(tantan

mv
v,sin

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
= υΘ

µυυπ
υΩ . (6.15) 

After the change of variables, vv,usin imp
1 == −υ , we obtain an expression 

for function ( )v,unΩ  that determines the LIM: 

( ) ( )
1

12
2

fr

2

n v
Ĥ)v,(sinĤ

)u1u(u

)u1(mvv,u
−

−
⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−+

−= υΘ
µπ

Ω .  (6.16) 

A similar approach can be used for a SFT, provided that the 
 function )b,(v̂bl υ , which determines the dependence of the BLV of a 
straight circular conical impactor vs. impact velocity, cone apex half-angle 
and plate thickness, is known.  

Equations (5.5) and (5.7) yield an equation similar to Eq. (6.13): 

Chapter

, (6.13)
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)v,(b̂
2
L

)v(D
vdv

tan
m

bl

2v

0

bl

υ
υ

=∫ (

where )v,(b̂ blυ  is the inverse of )b,(v̂bl υ  with respect to the second 
variable. The latter function does exist, since the BLV is an increasing 
function of the thickness of the plate, i.e., ( ) blblbl v)v,(b̂,v̂ ≡υυ . Then, 
differentiating Eq. (6.17) with respect to blv , we obtain: 

bl

bl
2

bl

bl

v
)v,(b̂

2
L

)v(Dtan
mv

∂
∂= υ

υ
(

Using the same reasoning as in the case of the SIS, we arrive at the 
following formula that determines the model:  

( )
11

22
fr

2

n v
)v,(sinb̂

L)u1u(u

)u1(mvv,u
−−

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

−+

−= υ
µπ

Ω . (6.19) 

Note that the idea to restore a model using a known DOP function was 
used by Eisler et al. (1998) for the simplest degenerate model with )v(Ĥ imp , 

)v(DD = , without considering the stage of incomplete immersion of the 
projectile into the target.  

 

6.3 From aerodynamics to impact dynamics 

The conception and development of LIT (primarily for aerodynamic 
applications) have been discussed in monographs written by Bunimovich 
and Dubinsky (1995) and Miroshin and Khalidov (2002), as well as in the 
review of Bunimovich and Dubinsky (1996). Therefore, we will discuss here 
only briefly the principal points that are important for impact dynamics.  

It must be emphasized that the “classic” LIT under discussion here deals 
mainly with the integral characteristics of a body moving in a fluid. 
Moreover, in fluid mechanics, the characteristics of the medium and motion 
of the flying body (including the magnitude and direction of the velocity) are 
considered to be known. The basic problem here is to determine 
aerodynamic characteristics of the body for the known values of these 
parameters. 

In 1960s, the problem of rapid calculation of the aerodynamic 
characteristics of high speed flying bodies over a whole range of flight 

, (6.17)

. (6.18)
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altitudes became very important. For high altitudes, at which the medium is 
very rarefied, a simple model could be used to describe a free molecular 
flow. For low altitudes, at which the atmosphere is relatively dense, various 
versions of Newton’s model were used. The models that worked well for 
these two extreme situations did indeed have a theoretical foundation and 
turned out to be LIMs. Theoretical predictions concerning models with the 
same degree of simplicity for the intermediate range of altitudes were not 
available, a situation exacerbated by the fact that calculations for these flow 
conditions were the most problematic. 

Barantsev et al. (1969) suggested and validated experimentally an 
unconventional approach to the problem. They postulated the “locality” of 
the required model for the intermediate range of flight altitudes and found a 
class of particular models that satisfied a number of requirements. The most 
important requirements are the simplicity, a smooth transition to the models 
for limiting cases of very large and very small degrees of rarefaction, and 
experimental validation. 

Basically, the problem was to develop a unified engineering model 
applicable to all flight regimes and having parameters that account for the 
degree of rarefaction. During the first stage of LIT development (as 
summarized in the monograph by Alekseeva and Barantsev, 1976; see also 
Barantsev, 1978), these results were received with great interest, not because 
they employed nontrivial reasoning (from locality to a particular model) but 
because they constituted a breakthrough in the field of approximate 
aerodynamic calculations in the intermediate range of altitudes. Interestingly, 
quite independently, with the same goals and at the same time as Barantsev 
et al. (1969), local interaction approach suggested Galkin et al., 1977 (these 
authors claim that their study was performed in 1968). Bunimovich (1973) 
was the first to note that the significance of the local interaction approach is 
beyond the scope of rarefied gasdynamics. At present this point of view is 
generally accepted, and the notions like localized interaction theory, 
localized interaction models, etc. are widely used (see Bunimovich and 
Dubinsky, 1995, 1996; Miroshin and Khalidov, 1991, 2002 and references 
therein). Studies in the framework of the LIT were continued in different 
directions, such as development of particular LIMs and effective methods 
for aerodynamic calculations, shape optimization, etc. One of the most 
important directions of these investigations, which has retained its 
significance right up to the present, is the development of approaches that 
employ the locality property and do not dwell on the properties of particular 
local models (see, e.g., Dubinsky and Elperin, 1997; Yakunina, 2000a,b, 
2002). Analysis of the development of LIT allows us to draw the following 
conclusions: 

Chapter
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1) Validity of the “hypothesis of locality” and validity of a particular 
local model are completely different concepts. On the methodological level, 
it is often appropriate to consider locality as a fundamental property of an 
interaction between a projectile and the surrounding medium while a 
particular local model constitutes only one of a number of possible methods 
for describing this interaction. The latter approach is especially justified 
when there are several more or less equivalent models or when there is no 
any model at all. In the latter case, a hypothesis of locality can be used as 
one of the instruments for developing a model. Since the hypothesis of 
locality can be validated experimentally irrespective of the acceptance of a 
particular local model, a convenient two-stage procedure can be employed in 
which the hypothesis of locality is validated in the first stage and particular 
local models are devised in the second stage. 

2) LIMs and their subsets have the properties that allow us to develop 
methods for solving various problems based on locality but not on a 
particular model. 

3) LITs can be used for connecting and mutual cross-fertilization of 
different fields in mechanics. In the case under consideration, results from 
aerodynamics may be applied in impact dynamics. It is no accident that 
many authors using local or similar models in high speed penetration 
mechanics (HSPM) also have research experience in gasdynamics. A 
number of monographs (Bunimovich and Dubinsky, 1995; Vedernikov and 
Shchepanovsly, 1995; Vedernikov et al., 1995; Ostapenko, 1997) have  
separate sections dealing with application of the approximate models in both 
fields. However, while in aerodynamics the main field of application of the 
LIT is calculation and analysis of aerodynamic characteristics of projectiles 
during their specified motion, in HSPM there are no laws of motion for 
impactors, and important characteristics, such as BLV and DOP, are 
determined by solving equations of impactor motion. Seemingly, the direct 
similarity between HSPM and LIT applies only in the determination of the 
forces acting upon impactor. However, this connection is deeper than is 
demonstrated in applications for shape optimization of projectiles (see 
Section 5-1). There are also some tendencies which, at first thought, 
characterize only HSPM but are known from history of development of LIT. 
As examples, we can cite to the method suggested by Recht (1990) and the 
spherical cavity expansion approximation (see Section 3-1), which are 
essentially based on the hypothesis of locality. Using the LIT approach, 
Ben-Dor et al. (1998a) showed that lack of dependence of BLV in a spaced 
shield on the thicknesses of the gaps and of the plates (provided the total 
thickness is kept constant) during penetration by a conical impactor is a 
consequence of the local character of the penetrator-shield interaction, 
independently of the choice of a particular local model. Without the use of 
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the concepts of LIT even such approach to the problem would have been 
impossible.   

Here, we do not intend to reject the application of other methods but only 
to draw attention to LIT which is a promising method for solving penetration 
problems already taking root in HSPM. In the exposition that follows, we 
have adopted LIT viewpoint which is also convenient for better organizing 
the material. In this chapter, we derived formulas for drag force, DOP and 
BLV for the basic LIMs used in HSPM. The derived formulas will be used 
in subsequent chapters. 

7. ONE-TERM LOCALIZED INTERACTION 
MODELS 

In this Section, we consider the following model: 

20,v)u(A)v,u( 0n <≤= αΩ α

and particular cases thereof. The most important formulas are summarized in 
Table 2-3. In the following expositions, we substantiate these formulas and 
some other relationships that follow from the model determined in Eq. (7.1).   

Table 2-3. Formulas provided by LIM with αΩ v)u(A)v,u( 0n =
Function/variable 3-D impactor 3-D conical 

impactor 
Impactor of 
revolution 

Cone of 
revolution 

Φ  ),x( ϑΦ  )()xkk( 0 ϑη+   
Sharp cone: 0k0 =  

)x(Φ  kxk0 +  

Θθδ ,,  Table 2-1 Table 2-1 Table 2-1 Table 2-1 
u~,U,u,σ  Table 2-2 Table 2-2 Table 2-2 Table 2-2 

0B  Eq. (7.4) Eq. (7.20) Eq. (7.32)  

H  Eqs. (7.19), 
(7.16) 

Eqs. (7.25), (7.28) 
Sharp cone: 
Eq. (7.30) 

Eqs. (7.16), 
(7.19) 
 

Eqs. (7.25), 
(7.28) 
Sharp cone: 
Eq. (7.30) 

0impv  Eq. (7.15) Eq. (7.29) 
Sharp cone: 
Eq. (7.31) 

Eq. (7.15) Eq. (7.29) 
Sharp cone: 
Eq. (7.31) 

initF  Eq. (7.13) Eq. (7.21) Eq. (7.33) Eq. (7.21) 

initD~  Eq. (7.10) Eq. (7.27) Eq. (7.34) Eq. (7.27) 

50 ee ÷   Eqs. (7.24), (7.26)  Eqs. (7.24), 
(7.26) 

0C   Eq. (7.22)  Eq. (7.35) 

blv  Eq. (7.40) Eq. (7.40) Eq. (7.40) Eq. (7.40) 

Chapter
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7.1 General formulas  

Equation (3.3) for function )v,u(nΩ , which is defined by Eq. (7.1), 
implies that: 

αv)h(f)h(D 0=

where 

ϑϑδσ
Θ

θ

π

d),x(Bdx)h()0()1(A)h(f
)h(

)h(

2

0
000 ∫ ∫+= , (7.3) 

( ) ),x(U),x(uA),x(B 00 ϑϑϑ =

The equation of motion (Eq. 2.20) can be written as: 

0)h(D
dh
dvmv =+

The solution of this differential equation with the initial conditions given by 
Eq. (2.22) may be written as: 

)h(F
m

vv imp ∗−= βββ

where 

∫=∗

h

0
0 ĥd)ĥ(f)h(F

αβ −= 2

,

.

.

,

,

.

(7.2)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)
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7.2 Semi-infinite shield 

7.2.1 3-D impactor 

Equations (2.1) and (2.15) are valid in the case of a 3-D impactor 
penetrating a SIS, and Eq. (7.2) can be written separately for the range  

Lh0 ≤≤ (initial stage, non-complete immersion of the impactor into the 
target) and the range Lh >  (full immersion) in the following form: 

⎩
⎨
⎧

≥
≤≤

=
Lhif)L(D~

Lh0if)h(D~
)h(f

init

init
0

where 

ϑϑσ
π

d),x(Bdx)0()1(A)h(D~
h

0

2

0
00init ∫ ∫+= .  (7.10)  

Then, the equation for determination of DOP, H , can be obtained by 
substituting Hh = and 0v =  into Eq. (7.6): 

2
impv

2
m)H(F =

Equations (7.7)-(7.10) allow us to write the following expression for )h(F : 

⎩
⎨
⎧

≥
≤≤

=
Lhif)h(F

Lh0if)h(F
)h(F

full

init

ϑϑσ
π

d),x(Bdxĥdh)0()1(A)h(F
ĥ

0

2

0
0

h

0
0init ∫ ∫∫+= ,  (7.13) 
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.d),x(Bdx)Lh(

d),x(Bdxĥdh)0()1(A

)L(D~)Lh()L(Fĥd)ĥ(D~ĥd)ĥ(D~)h(F

L

0

2

0
0

ĥ

0

2

0
0

L

0
0

initinit

h

L

L

0
full

ϑϑ

ϑϑσ

π

π

∫ ∫

∫ ∫∫

∫∫

−+

+=

−+=+=

 (7.14) 

Equations (7.11) and (7.12) show that the impact velocity providing the 
penetration of the impactor to the depth L , 0impv , is:   

ββ 1

init0imp )L(F
m

v ⎥⎦
⎤

⎢⎣
⎡=

Then, Eq. (7.11) can be written, depending on the impact velocity, in one of 
two possible forms: 

0vm)H(F impinit =− β

β
  if    0impimp vv ≤

or 

0vm)H(F impfull =− β

β
  if    0impimp vv ≥

Since ββΞ impinit v)m()H(F)H( −=  is an increasing function, and 
0v)m()0( imp <−= ββΞ  and 0)vv)(m()L( imp0imp ≥−= βββΞ , then 

Eq. (7.16) has only one root, but generally the solution cannot be obtained 
 in a closed form. On the contrary, the exact solution of Eq. (7.17) can be 
easily written. By substituting  )H(Ffull  from Eq. (7.14) and )L(Finit from 
Eq. (7.15), Eq. (7.17) can be written as: 

0vm)L(D~)LH(vm
impinit0imp =−−+ ββ

ββ

and the desired solution of Eq. (7.18) is: 

. (7.15)

(7.16)

. (7.17)

, (7.18)
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0impimp
init

0impimp vv,
)L(D~

)vv(m
LH ≥

−
+=

β

ββ

7.2.2 3-D conical impactor 

In the case of a 3-D conical impactor penetrating a SIS, 0B  in Eq. (7.4) 
may be expressed as: 

( ) )kxk)((u~)(uA),x(B 000 += ϑϑϑ

where )(u ϑ  and )(u~ ϑ are given in Table 2-2. Substituting Eq. (7.20) into 
Eq. (7.13) and calculating the integrals over x  and ĥ , we obtain: 

,)k3kh(
6
hCh)0()1(A

dx)kxk(ĥdCh)0()1(A)h(F

0

2
0

0

ĥ

0
0

h

0
00init

++=

++= ∫∫

σ

σ
 (7.21) 

where )0(σ is determined in Table 2-2 and: 

( ) ϑϑϑ
π

d)(u~)(uAC
2

0
00 ∫=

Equation (7.16) thus takes the form: 

0eHeHeH 01
2

2
3 =−++

with 

k
k3e,

kC
)0()1(A6e,

kC
mv6

e 0
2

0

0
1

0

imp
0 === σ

β

β

.  (7.24) 

The solution of this algebraic equation of the third order, i. e., the expression 
for DOP in the case 0impimp vv ≤ , can be written using Cardano’s formulas 
(Korn and Korn, 1968), and the solution of Eq. (7.16) is: 

0impimp2
3

45
3

45 vvif3ee5.0ee5.0eH ≤−+−−= ,  (7.25) 
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where 
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Substituting Eq. (7.20) into Eq. (7.10) and calculating the integrals over ĥ , 
we obtain: 

)kkh5.0(hC)0()1(A)h(D~ 000init ++= σ . (7.27) 

Using Eqs. (7.15), (7.21) and (7.27), we can rewrite Eq. (7.19) as follows:  

)kLk2(LC)0()1(A2
)kL32k(LCmv)2(

H
000

0
2

0imp

++
++

=
σ

β β

, 0impimp vv ≥ , (7.28) 

where 

ββσ 1
000

0imp m6
)]k3kL(LC)0()1(A6[Lv

⎭
⎬
⎫

⎩
⎨
⎧ ++= . (7.29) 

Equations (7.25) and (7.28) allow us to calculate the DOP of 3-D conical 
impactor into a SIS. In the case of a sharp impactor, 0)0(,0k0 == σ , and 
Eqs. (7.25), (7.28) and (7.29) yield: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥+

≤
=

0impimp2
0

imp

0impimp3

0

imp

vvif
kLC

mv2
L

3
2

vvif
kC

mv6
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β
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, (7.30) 

where 

β
β
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0imp m6
kLCv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= . (7.31)
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7.2.3 Impactor of revolution 

In the case of an impactor of revolution penetrating a SIS, Eqs. (7.16) 
and (7.19) for calculating H  and Eq. (7.15) for 0impv  are valid where: 

)(
1

A)x(B fr200 µΦΦ
Φ

Φ +′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+′
′

=

]dx)x(Bĥd2h)0()1(A[)h(F
ĥ

0
0

h

0

2
0init ∫∫+= Φπ , (7.33) 

]dx)x(B2)0()1(A[)h(D~
h

0
0

2
0init ∫+= Φπ . (7.34) 

Equations (7.32)-(7.34) are obtained from Eqs. (7.4), (7.10) and (7.13) using 
Table 2-2. 

7.2.4 Cone of revolution  

In the case of a cone of revolution penetrating a SIS, the formulas for a 
3-D conical impactor remain valid, with a simplified Eq. (7.22) for 0C :   

)k(
1k

kA2C fr200 µπ +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

7.3 Shield with a finite thickness 

Substituting Lbh,vv,0v blimp +===  into Eq. (7.6) and taking into 
account Eq. (7.2), we obtain the equation for determining the BLV for 3-D 
impactor: 

∫∫∫
++

+=
)h(

)h(

Lb

0

Lb

0
0bl dx)x(~dhdh)h()0()1(Avm

Θ

θ

β ψδσ
β

, (7.36) 

Chapter

, (7.32)

(7.35)
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ϑϑψ
π

∫=
2

0
0 d),x(B)x(~

and ),x(B0 ϑ  is defined by Eq. (7.4). 
Using the definition of )h(δ  given by Eq. (2.16), we calculate the first 

integral in the left-hand side of Eq. (7.36) as: 

bdh)h(dh)h(dh)h(
Lb

b

b

0

Lb

0

=+= ∫∫∫
++

δδδ .  (7.38) 

The second integral can be transformed using Eq. (2.7): 

∫∫∫
+ L

0

)h(

)h(

Lb

0

~~dh
Θ

θ

Substituting Eqs. (7.38) and (7.39) into Eq. (7.36) we obtain: 

ββ 1

initbl )L(D~
m
bv ⎥⎦

⎤
⎢⎣
⎡=

where function )h(D~init  is defined by Eq. (7.10).  
Equation (7.40) also remains valid in the cases of 3-D conical impactors 

and impactors having the shape of a body of revolution, where function 
)h(D~init  is determined by Eq. (7.27) and Eq. (7.34), respectively.  

8. TWO-TERM LOCALIZED INTERACTION 
MODELS 

In this section, we consider the following model: 

20,v)u(Av)u(A)v,u( 0
2

2n <≤+= αΩ α . (8.1) 

The derived final expressions are summarized in Table 2-4 and Table 2-5. 
  
8.1        General solution for a tree-dimensional impactor 
 
Taking into account Eq. (8.1), Eq. (3.3) yields ( 2,0i = ): 

where  

, (7.37)

.ψ ( x )dx = b ψ ( x )dx (7.39)

, (7.40)
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αv)h(fv)h(f)v,h(D 0
2

2 +=

where 

( )∫ ∫+=
)h(

)h(

2

0
iii d),x(U),x(uAdx)h()0()1(A)h(f

Θ

θ

π

ϑϑϑδσ . (8.3) 

The equation of motion (Eq. 2.20) becomes:  

0v)h(fv)h(f
dh
dvm 1

02 =++ −α

This is an ordinary differential equation of the Bernoulli type. Using the 
change of variable (Kamke, 1959): 

β1wv =

where, as before, αβ −= 2 , Eq. (8.4) can be transformed into a linear 
ordinary differential equation:  

0)]h(fw)h(f[
mdh

dw
02 =++ β

The solution of this equation with the initial condition 

β
impv)0(w =

reads: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−== ∫ h~d)h~(Q)h~(f

m
v

)h(Q
1)h(v)h(w

h

0
0imp

βββ , (8.8) 

where 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∫ ζζβ d)(f

m
exp)h(Q

h

0
2

Chapter

,

.

,

.

.

(8.2)

(8.4)

(8.5)

(8.6)

(8.9)

(8.9)
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In the case of a SIS, Eq. (8.8) yields a formula for the DOP, H:  

β

β imp

H

0
0 vmdh)h(Q)h(f =∫

where Eq. (2.15) must be taken into account. 

8.  Shield with a finite thickness. General model  

8. .1 3-D impactor 

In the case of a SFT, the BLV, blv , can be calculated from Eq. (8.8) by 
substituting 0)h(v,Lbh =+=  and blimp vv = : 

dh)h(Q)h(f
m

v
Lb

0
0bl ∫

+

= ββ

This case will be considered below in more detail. Assuming that 
blimp vv ≥ , we can write Eq. (8.8) for the residual velocity, )Lb(vvres += : 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∫

+

dh)h(Q)h(f
m

v
T
1v

Lb

0
0impres

βββ

where 

)Lb(QT +=

Eqs. (8.11) and (8.12) imply the following simple relationship between the 
impact velocity, residual velocity and BLV: 

blimp
bl

res

bl

imp vv,1
v
vT

v
v

≥=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ββ

8. .2 3-D conical impactor  

Taking into account the formulas from Table 2-2, we obtain ( 2,0i = ): 

2

2

2

, (8.10)

. (8.11)

, (8.12)

. (8.13)

. (8.14)
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)]},h()h([kk2)]{h()h([C5.0

d)()h()1(A
2
kdx)kxk(C)h()0()1(A)h(f

0i

2

0

2
i

2
0

)h(

)h(
0iii

θΘθΘ

ϑϑηδδσ
πΘ

θ

++−+

=++= ∫∫

where 

( ) ϑϑϑ
π

d)(u~)(uAC
2

0
ii ∫=

and )(u ϑ  and )(u~ ϑ are determined by equations in Table 2-2 for 3-D 
conical impactor. 

For a cone of revolution, Eq. (8.16) becomes: 

)k(
1k

kA2C fr2ii µπ +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

In the case of a sharp 3-D conical impactor, 0k0 =  and 0)0( =σ . Then, 
Eq. (8.15) implies that: 

∫=−=
)h(

)h(
i

22
ii xdxkC)]h()h([kC5.0)h(f

Θ

θ

θΘ . (8.18) 

Since  

)h(Q)h(f
mC

C)h(Q)h(f
mdh

dQ
0

0

2
2

ββ ==

Eq. (8.11) can be written as: 

)]0(Q)Lb(Q[
C
Cdh

dh
dQ

C
Cv

2

0
Lb

02

0
bl −+== ∫

+
β .  (8.20) 

Using Eq. (2.7) the expression for )Lb(QT +=  can be transformed into the 
following form: 

Chapter

(8.15)

, (8.16)

. (8.17)

, (8.19)
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Lb
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2 ββ Θ

θ

.  (8.21) 

Then Eq. (8.20) can be written as: 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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m2
kbLCexp

C
C1T

C
Cv

2
2

2

0

2

0
bl

ββ .  (8.22) 

Since Eq. (8.19) implies that  

]1T[
C
Cdh

dh
dQ

C
Cdh)h(Q)h(f

m 2

0
Lb

02

0
Lb

0
0 −== ∫∫

++β ,  (8.23) 

Eq. (8.12) takes the form: 

⎥
⎦

⎤
⎢
⎣

⎡
−−= )1T(

C
Cv

T
1v

2

0
impres
ββ

8. .3 Impactor of revolution  

Taking into account the formulas in Table 2-2, Eq. (8.3) yields ( 2,0i = ): 

∫ +′⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+′

′
+=

)h(

)h(
fr2i

2
i

i dx)(
1

A2)h(r)1(A)h(f
Θ

θ

µΦΦ
Φ

Φδ
π

 (8.25) 

and the other equations for a 3-D impactor remain valid. 

Table 2-4. Formulas provided by LIM with αΩ v)u(Av)u(A)v,u( 0
2

2n +=  
Function/variable 3-D impactor 3-D conical impactor Impactor of 

revolution 
Φ  ),x( ϑΦ  

Sharp impactor: 
0)0( =σ  

)()xkk( 0 ϑη+  
Sharp cone: 0k0 =  

)x(Φ  
Sharp body: 

0r =  
Θθδ ,,  Table 2-1 Table 2-1 Table 2-1 

U,u~,u,σ  Table 2-2 Table 2-2 Table 2-2 
H  Eq. (8.10)   

2

20 f,f  Eq. (8.3) Eq. (8.15) Eq. (8.25) 

. (8.24)
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Function/variable 3-D impactor 3-D conical impactor Impactor of 
revolution 

Q  Eq. (8.9) Eq. (8.9) Eq. (8.9) 

blv  Eq. (8.11) Eq. (8.11) 
Sharp cone: Eq. (8.22) 

Eq. (8.11) 

resv  Eq. (8.12) Eq. (8.12) 
Sharp cone: Eq. (8.24) 

Eq. (8.12) 

T  Eq. (8.13) Eq. (8.13) 
Sharp cone: Eq. (8.21) 

Eq. (8.13) 

20 C,C   Eq. (8.16) 
Cone of revolution: Eq. (8.17) 

 

8.  Generalized “Newton’s model”  

The most widely used model of the type determined by Eq. (8.1) may be 
expressed as follows: 

αΩ vavua)v,u( 0
22

2n +=

i. e.,  

2
2200 ua)u(A,va)u(A == α

Although commonly used values of the constants are 0=α  and 
22 =−= αβ , we still consider the case with 20 <≤ α , since it does not 

complicate the obtained formulas or the exposition. 
Transition from the model determined by Eq. (8.1) to a particular model, 

i.e., transition to the model determined by Eq. (8.26), is performed by the 
choice of 0f  and 2f  in Eq. (8.3) for non-conical strikers or by choosing 
particular expressions for coefficients 0C  and 2C  in Eq. (8.16) for conical 
impactors.  

 In the case of a 3-D impactor, the following formulas must be used 
instead of Eq. (8.3):  

∫ ∫ +++=
)h(

)h(

2

0

22
frx
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0 d)(dx)h()0(
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)h(f Θ
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π

ϑ ϑΦΦµΦΦδσ , (8.28) 
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2 d
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)(
dx)h()0(
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)h(f

Θ

θ

π

ϑ

ϑ ϑ
ΦΦΦ

ΦΦµΦΦΦΦ
δσ . (8.29) 

3

Chapter

, (8.26)

. (8.27)
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For a 3-D conical impactor, expressions for iC  in Eqs. (8.16) assume the 
following form:  

ϑηηµη
π

d)k(aC
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fr

2
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ηηη

ηηµηηπ
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2222

22
fr

24
2

22 ∫ ′++
′++

=

If an impactor’s nose has the shape of a body of revolution, then instead 
of Eq. (8.25), the following formulas must be used:  

∫ +′+=
)h(

)h(
fr

2

0

0 dx)(2)h(r
a

)h(f Θ

θ

µΦΦδ
π
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+=
)h(
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2

fr
2

2
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2 dx
1

)(
2)h(r

a
)h(f Θ

θ Φ
µΦΦΦ

δ
π

.  (8.33) 

In the case of a cone of revolution, Eqs. (8.30) and (8.31) yield: 

1k
)k(ka2

C),k(a2C 2
fr

2
2

2fr00 +
+

=+=
µπ

µπ .  (8.34) 

Formulas for considered model are summarized in Table 2-5. 

Table 2-5. Formulas provided by LIM with αΩ vavua)v,u( 0
22

2n +=  for SFT 
Function/variable 3-D impactor 3-D conical impactor Impactor of 

revolution 
Φ  ),x( ϑΦ  

Sharp impactor: 
0)0( =σ  

)()xkk( 0 ϑη+  
Sharp cone: 0k0 =  

)x(Φ  
Sharp body: 0r =  

Θθδ ,,  Table 2-1 Table 2-1 Table 2-1 

u~,u,σ  Table 2-2 Table 2-2 Table 2-2 
H  Eq. (8.10)   

20 f,f  Eqs. (8.28), (8.29) Eq. (8.15) Eqs. (8.32), (8.33) 

Q  Eq. (8.9) Eq. (8.9) Eq. (8.9) 

blv  Eq. (8.11) Eq. (8.11) 
Sharp cone: Eq. (8.22) 

Eq. (8.11) 

(8.30)

. (8.31)

, (8.32)
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Function/variable 3-D impactor 3-D conical impactor Impactor of 
revolution 

resv  Eq. (8.12) Eq. (8.12) 
Sharp cone: Eq. (8.24) 

Eq. (8.12) 

T  Eq. (8.13) Eq. (8.13) 
Sharp cone: Eq. (8.21) 

Eq. (8.13) 

20 C,C   Eqs. (8.30), (8.31) 
Cone of revolution: 
Eq. (8.34) 

 

 

9. A CLASS OF AVERAGED LOCALIZED 
INTERACTION MODELS  

The models considered in this section are derived from the initial LIM 
using averaging over the penetration path, h  (but not over the impactor’s 
velocity). Actually, this procedure results in substitution of constant 
integration limits instead of variable integration limits in the expression for 
the drag force [ )h(θ  is replaced by 0  for SFT and )h(Θ is replaced by L ] 
and in the appearance of the coefficient in the case of a SFT.  

 

9.1 General localized interaction model for 
three-dimensional impactor 

We start from Eqs. (3.3), (3.4) and (3.5) that determine the drag force of 
a 3-D impactor D  as a function of its instantaneous coordinate h  and 
velocity v . 

 

9.1.1 Shield of finite thickness  

Averaging )v,h(D over h  ( Lbh0 +≤≤ ), we obtain the following 
expression for the average drag force, avD : 
 

( ) ,d),x(Uv),,x(udxdh
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dh)h(
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δσΩ

 (9.1) 
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where ),x(u ϑ  and ),x(U ϑ  are determined by Eqs. (3.5) and (3.4). Taking 
into account the definition of the function )h(δ  and using Eq. (2.7), we 
obtain: 

)v(D
Lb

b)v(D 0av +
=

where 

( ) ϑΦΦµΦΦΩσΩ ϑ

π

d][v,udx)0()v,1()v(D 22
frx

2

0
n
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0
n0 +++= ∫∫ (9.3). 
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π

ππ

σσσϑΦ

ϑΦϑΦΦ
 (9.4) 

Eq. (9.3) can be rewritten, after substituting )0(σ from Eq. (9.4), in the 
following form, which is more convenient when optimization problems are 
investigated: 

.d})v,u()]v,1()v,u({[dx

)L()v,1()v(D
2
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22
nfrxnn

L

0

n0
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π
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=

 (9.5) 

The equation of impactor motion (Eq. 2.20) can be simplified: 

0)v(D
Lb

b
dh
dvmv 0 =

+
+

Then 
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+

+
−=

Lb

0

0

v 0
dh
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b

)v(D
vdvm
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,  (9.7) 

(9.2),

. (9.6)
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and we obtain the equation for determining BLV: 

1
)v(D

vdv
b
m blv

0 0
=∫

9.1.2 Semi-infinite shield  

Averaging )v,h(D over h  ( Hh0 ≤≤ ) where H , as before, is the DOP, 
we obtain the expression for the average drag force, avD~ : 

( ) .Udv,udxdh
H
1

dh)0()v,1(
H
1dh)v,h(D

H
1)v(D~
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 (9.9) 

Using the identity given by Eq. (2.3), we obtain:   
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Θ π

ϑΩσΩ .  (9.10) 

If LH >> , then  L)H( =Θ , Hx <<  and  the second integral in the 
right-hand side of Eq. (9.10) can be simplified: 

)v(D)v(D~ 0av =

The equation of the impactor’s motion may be written as: 

0)v(D
dh
dvmv 0 =+

Then 

∫∫ −=
H

0

0

v 0
dh

)v(D
vdvm

imp

and we arrive at the following expression for DOP: 

Chapter
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impv

0 0 )v(D
vdvmH

9.2 Three-term localized-interaction models 

9.2.1 General three-term model 

Here, the term “general three-term model” denotes the following model:  

)u(Av)u(Av)u(A)v,u( 01
2

2n ++=Ω

Since we now consider the general 3-D impactor, ),x(u ϑ is determined by 
Eqs. (3.5). Substituting  Eq. (9.15) into Eqs. (9.3) and (9.5), we obtain: 

01
2

20 BvBvB)v(D ++=

where iB  ( 2,1,0i = ) are determined by one of two possible formulas, 
depending on which equation, Eq. (9.3) or Eq. (9.5), is used: 
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Then the BLV and the DOP can be found from Eq. (9.8) and Eq. (9.14), 
respectively: 
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b
m

bl210 =
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The latter integral can be expressed through elementary functions, and the 
corresponding formulas are presented in Appendix 2. 

The choice of the type of striker affects only the formulas for iB , and 
these formulas can be simply obtained using Table 2-2. In particular, in the 
case of an impactor of revolution: 
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 (9.21) 

where 1u 2 +′′= ΦΦ . 

9.2.2 Three-term sub-model  

For this model:  
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ii == , Eq. (9.17) for a 3-D impactor implies:  
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 (9.23) 

In particular, the formula for 0B  is quite simple: 
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In the case of an impactor of revolution: 
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The formulas associated with the three-term model are summarized in 
Table 2-6. 

Table 2-6. Formulas provided by three-term averaged LIMs 
)u(Av)u(Av)u(A)v,u( 01

2
2n ++=Ω  

01
22

2n auvavua)v,u( ++=Ω  Function / 
Variable 

3-D impactor Impactor of revolution 3-D impactor Impactor of 
revolution 

Φ  ),x( ϑΦ  
Sharp impactor: 

0)0( =σ  

)x(Φ  
Sharp body: 0r =  

),x( ϑΦ  
Sharp 

impactor: 
0)0( =σ  

)x(Φ  
Sharp body: 

0r =  

u  Eq. (3.5) Table 2-2 Eq. (3.5) Table 2-2 

)x(σ  Table 2-1 Table 2-2 Table 2-1 Table 2-2 

2,1,0i
,Bi

=
 

Eq. (9.17) Eq. (9.21) Eqs. (9.23), 
(9.24) 

Eqs. (9.25), 
(9.26) 

blv  Eq. (9.18) Eq. (9.18) Eq. (9.18) Eq. (9.18) 
H  Eq. (9.19) Eq. (9.19) Eq. (9.19) Eq. (9.19) 

(...)M  Eq. (9.20) Eq. (9.20) Eq. (9.20) Eq. (9.20) 

 

9.3 Two-term localized-interaction models 

9.3.1 General two-terms model 

Let us consider the model: 

)u(Av)u(A)v,u( 0
2

2n +=Ω

(9.25)

. (9.26)

(9.27)
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and 3-D impactor. In this case, Eq. (9.17) for 0B  and 2B  and Eqs. (9.16) and 
(9.18)-(9.19) with 0B1 = , are valid. The integral in Eq. (9.20) can be 
simplified:  

∫ +
=

W

0 0
2

2
20 BB

d)W;B,0,B,1,1(M
ζ

ζζ

and the result is given by Eq. (A2.14). Then, Eqs. (9.18) and (9.19) yield: 
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In the case of an impactor of revolution, 0B  and 2B  are determined by 
Eq. (9.21). 

9.3.2 Two-term sub-model 

In this case, the model is determined by the following formula:  

0
22

2n avua)v,u( +=Ω

i. e., 2,0i,ua)u(A i
ii ==  in Eq. (9.27). 

For a 3-D impactor, Eqs. (9.29) and (9.30) remain valid, with 0B  and 2B  
determined by Eqs. (9.23)-(9.24). 

In the case of an impactor of revolution, 0B  and 2B  are determined by 
Eqs. (9.25)-(9.26). 

Formulas associated with the two-terms model are summarized in 
Table 2-7. 

Table 2-7. Formulas provided by two-term averaged LIMs 
)u(Av)u(A)v,u( 0

2
2n +=Ω  0

22
2n avua)v,u( +=Ω  Function/ 

variable 
3-D impactor Impactor of 

revolution 
3-D impactor Impactor of 

revolution 
Φ  ),x( ϑΦ  

Sharp impactor: 
0)0( =σ  

)x(Φ  
Sharp body: 

0r =  

),x( ϑΦ  
Sharp impactor: 

0)0( =σ  

)x(Φ  
Sharp body: 0r =  

u  Eq. (3.5) Table 2-2 Eq. (3.5) Table 2-2 
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3-D impactor Impactor of 
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3-D impactor Impactor of 
revolution 

)x(σ  Table 2-1 Table 2-2 Table 2-1 Table 2-2 

20 B,B  Eq. (9.17)  Eq. (9.21)  Eqs. (9.23), (9.24) Eqs. (9.25), (9.26) 

blv  Eq. (9.29) Eq. (9.29) Eq. (9.29) Eq. (9.29) 

H  Eq. (9.30) Eq. (9.30) Eq. (9.30) Eq. (9.30) 

 
 



  

Chapter 3 

CAVITY EXPANSION APPROXIMATIONS 
 

 
 

1. INTRODUCTION TO THE CAV TY EXPANSION 
APPROXIMATIONS 

1.1 Spherical cavity expansion approximation 

The spherical cavity expansion approximation (SCEA) in a quasi-static 
version is widely used for constructing impactor-shield interaction models 
for SISs. In these models, expansion of a spherically symmetrical cavity 
from a zero initial radius at a constant velocity is considered by means of 
some continuum mechanics model of the material. Let the solution of this 
problem be represented in the form: 

)y;a(p &
r)ω= , (1.1)  

where p  is the stress at the boundary of the cavity, y  is the radius of the 
hole, and ω)   is some function. Then, it is assumed that the normal stress at 
the surface of the impactor moving in the same medium is given by the 
following formula: 

)uv;a(n
r)ωσ = . (1.2)  

The latter assumption implies that the normal stress caused by host 
medium-penetrator interaction at the impactor’s surface at some location 
moving with the instantaneous normal velocity uvˆcosvvn == ν  is equal to 
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the stress at the boundary of the cavity that expands with constant velocity 
nv . Clearly, a quasi-static SCEA implies a LIM with )uv;a(n

r)ωΩ =  in 
Eq. (2-1.1). Friction between  impactor and shield can be taken into account 
by using Eq. (2-3.1). 

1.2 Cylindrical cavity expansion approximation  

 Another widely used approach is known as the cylindrical cavity 
expansion approximation (CCEA) (model, method, etc.). Sometimes other 
names are used, e.g., the method of plane sections (Sagomonyan, 1960; 
Rakhmatulin et al., 1964) and the disks model (Yankelevsky and Adin, 
1980). The CCEA has been applied to modeling penetration into SISs and 
perforation of SFTs. In this approach, normal penetration of a slender body 
of revolution is usually considered, and it is assumed that particles of the 
material of the shield move in a radial direction during penetration by the 
impactor. The shield is divided into infinitely thin layers, and in each layer a 
cavity expansion caused by the moving impactor is modeled. This approach 
facilitates calculating the stress at the boundary of the hole in each layer and, 
consequently, the force acting at the penetrator at each location on the 
impactor’s lateral surface. The common technique for applying the CCEA to 
penetration mechanics may be described as follows. The solution of a 
“dynamical problem” of hole expansion with time is usually represented for 
each layer as: 

)y,y,y;a(p &&&
r(ω= .  (1.3) 

Let )x(Φρ = be the equation of the surface of the impactor (a body of 
revolution). Then, for the layer with the coordinate ξ   (see Figure 3-1), the 
condition that the boundary of the hole coincides with the boundary of the 
impactor (Rakhmatulin et al., 1964) reads: 

( )ξΦ −= hy . (1.4)  

Differentiation of Eq. (1.4) yields: 

( ) ( ) ( ) ξΦΦΦ −=′+′′=′= hx,hxhxy,hxy 2 &&&&&&& . (1.5)  

The expression for the normal stress at the surface of the impactor, pn =σ , 
is obtained by substituting y,y &  and y&&  from Eqs. (1.4) and (1.5) into 
Eq. (1.3). Since nσ  is a function of vh,x =& , and dh/dvvh =&& , the equation  
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 Figure 3-1. The cylindrical cavity expansion approximation. 

of motion of an impactor in the case of CCEA is similar in structure to 
Eq. (2-2.20).  

In the case of a “quasi-static” model—when Eq. (1.1) instead of Eq. (1.3) 
is assumed to be valid—the CCEA yields:  

)v,u;a(~)
u1

uv;a()v;a(
2n

rr)r) ωωΦωσ ≡
−

=′= ,  (1.6) 

i.e., the CCEA is reduced to a LIM with  ωΩ ~
n = .  

In the following exposition, we comprehensively discuss applications of 
the CCEA to particular models. 

1.3 Cavity expansion approximation models in 
penetration mechanics 

Bishop et al. (1945) pioneered the application of cavity expansion models 
in penetration mechanics. They obtained solutions describing the quasi-static 
expansion of cylindrical and spherical cavities in an infinite medium from 
zero initial radius and used these solutions to determine the forces acting at a 
conical impactor. A survey of the state-of-the-art up to the late 1950s 
concerning the dynamic expansion of cavities in solids was written by 
Hopkins (1960). Useful information on this topic is summarized in the 
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monograph of Yu (2000), which consists of two parts, namely, “Fundamental 
Solutions” and “Geotechnical Applications”. Cavity expansion models applied 
to penetration mechanics have been described and analyzed by Teland 
(1999) and Satapathy (1997). Recent studies directly associated with the 
application of cavity expansion methods in modeling ballistic impact are 
surveyed below. The most intensive research in this field has been conducted 
at Moscow State University (the results were published mainly in Russian) 
and Sandia Research Laboratories, and, as was noted by Isbell et al. (1992), 
some of the results obtained are similar.  

Investigations that were performed at Moscow State University in the 
1950s and at the beginning of 1960s in the field of soil dynamics were 
summarized in the monograph by Rakhmatulin et al. (1964), in which 
penetration modeling occupies an important place. The authors described 
dynamic solutions for the expansion of cylindrical and spherical cavities in 
soil. The problem of impactor penetration into a SIS (soil) was solved by 
applying the developed cylindrical cavity expansion models. Solutions were 
found for the DOP, which took into account incomplete immersion of the 
impactor in the shield at the initial stage of penetration. 

The results of subsequent investigations, mainly associated with the 
development and application of the cavity expansion approach (CEA) were 
summarized in the monographs of Sagomonyan (1974, 1988). A dynamic 
CCEA was used to model perforation of a metal plate and a brittle plate by a 
sharp impactor; a technique for obtaining an analytical solution for the BLV 
was outlined, and some calculations for cone-nosed impactors were 
performed. In an investigation of the penetration of an impactor with plane 
bluntness into an elastic-plastic shield with plug formation, the penetration 
phenomenon was considered as two simultaneous processes, namely, 
expansion of the cavity in the shield and motion of the plug. A model was 
developed to describe the expansion of a cylindrical cavity inside an 
elastic-plastic medium, starting from non-zero radius. Sagomonyan (1975) 
noted that the CCEA may be generalized to layered shields. 

Extensive studies of CEAs in penetration dynamics were performed at 
the Sandia Research Laboratories by Forrestal and his colleagues. They 
proposed a large variety of spherical and cylindrical cavity expansion 
models for materials with different mechanical properties. The distinct 
features of their approach are described below. Simple “quasi-static” 
two-term or three-term models for engineering applications were developed 
by using theoretical studies of cavity expansion problems, numerical 
simulations, and experimental investigations. The friction coefficient was 
often introduced into a model to account for the tangent component of the 
impactor-shield interaction force. A limited number of impactor nose shapes 
(cone, sphere and ogive) were considered comprehensively, although the  
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approach is applicable to a wide class of bodies of revolution. Forrestal and 
coauthors did not consider separately the stage of penetration with incomplete 
immersion of the impactor when normal penetration was modeled. 

Two-term SCEAs, 

2
20 yaa)y;a( &&

r) +=ω

have been developed for concrete shields (Luk and Forrestal, 1987, 1989), 
shields manufactured from elastic-plastic materials (Forrestal and Luk, 1988; 
Forrestal et al., 1995), strain-hardening materials (Luk et al., 1991; Forrestal 
et al., 1981b, 1991; Forrestal and Luk, 1992a; Piekutowski et al., 1996) and 
soils (Forrestal and Luk, 1992b). Three-term SCEAs, 

2
210 yayaa)y;a( &&&

r) ++=ω

have been proposed for concrete shields (Forrestal and Tzou, 1997) and 
metal shields taking into account strain hardening, compressibility, and 
strain-rate effects (Warren and Forrestal, 1998). The coefficients ia  in 
Eqs. (1.7) and (1.8) depend, generally, on the mechanical properties of the 
material of the shield and are determined experimentally or obtained from 
numerical simulations.  

Development of the approaches based on CEA accounts for some 
additional features of penetration. In the studies of Littlefield et al. (1997), 
Partom (1996), and Teland and Sjøl (2000), cavity expansion models were 
modified to account for the finite size of the shield in the direction normal to 
the direction of penetration. Warren and Poormon (2001), Warren et al. 
(2001) and Longcope et al. (1999) took into account the influence of the free 
surface. For this purpose, in the developed spherical cavity expansion 
models it was assumed that radial stress vanishes at some sphere that 
represents the “free surface”. A spherical cavity expansion technique was 
also developed by Macek and Duffey (2000) to take into account 
near-surface effects and layering.  

Cylindrical cavity expansion models have been developed for geological 
shields (Forrestal et al., 1981a, 1987; Forrestal and Longcope, 1982; 
Forrestal, 1983, 1986; Longcope and Forrestal, 1981, 1983; Norwood and 
Sears, 1982), metal shields (Forrestal et al., 1981b, 1990; Rosenberg and 
Forrestal, 1988; Luk and Amos, 1991; Warren, 1999) and concrete shields 
(Forrestal et al., 1988a).  

Some two-term CCEAs and SCEAs were summarized and compared by 
Forrestal et al. (1988b)—using experimental data—for conical-, spherical 

,

, (1.7)

(1.8)
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and ogive-nosed projectiles. Brown et al. (2003) and Teland (2002) 
described computer tools which are based on some cavity expansion models. 
Analysis of various CEAs using experimental data and benchmark 
calculations were undertaken by a number of researchers (Sjøl and Teland, 
2000; Sjøl et al., 2002; Teland and Moxnes, 2003; Børvik et al., 2004). 
Forrestal and Longcope (1990), Satapathy and Bless (1996, 2000), Kartuzov 
et al.(1999, 2002), Satapathy (2001) and Mastilovic and Krajcinovic 
(1999a,b) also applied cavity expansion analysis to brittle materials. 
Aptukov (1991a,b) and Aptukov et al. (1992) took into account the influence 
of the free surface, “spherical layering” of the medium, and temperature 
effects, and obtained the solution for the one-dimensional problem of the 
expansion of a spherical cavity into a compressible elastic-plastic medium. 
Some engineering approximations of dynamic spherical cavity expansion 
solutions in an elastic-plastic medium applied to penetration problems have 
been obtained. Kravchenko et al. (1994) used a combined approach, 
including the “method of plane sections” and cylindrical (spherical) cavity 
expansion models, in modeling penetration by a solid body of revolution into 
soils and rocks. Bashurov et al. (1994) used a three-term SCEA, given by 
Eq. (1.8), in modeling penetration into concrete, metal, ice and geological 
media.  

Luk and Forrestal (1987, 1989) developed a model to estimate the DOPs 
and the forces acting at the surface of ogive- and spherical-nose projectiles 
penetrating into a concrete SIS. The model was based on a quasi-static 
SCEA. Forrestal et al. (1988a) proposed a cylindrical cavity expansion 
model and an iterative procedure for determining its parameters. Forrestal  
et al. (1994) suggested the following two-stage penetration model. In the 
first stage of the penetration, the resistance force was given by: 

Rh0,hc~D κ≤≤= , 

where c~  is a constant and 4=κ . In the second stage ( Rh κ≥ ), it was 
assumed that the spherical cavity expansion model (Forrestal and Luk, 
1992b) described by Eq. (1.7) is valid, with 80 sa µ= , sh2a γ= , where 8µ  
was considered as a mechanical characteristic of concrete similar to the 
unconfined compressive strength (for details see Forrestal et al., 2003), and 
dimensionless empirical constant s  could be calculated from experimental 
data. The constant c~  was determined by using the condition of continuity of 
the resistance force at Rh κ= . This model yielded an explicit solution for the 
DOP. More recently, Forrestal et al. (1996) and Frew et al. (1998) showed 
that s  can be considered as a function of 8µ , and they plotted the 
corresponding curve. Frew et al. (1998) suggested the approximation 

544.0
86.82s −= µ  ( 8µ in MPa), but Forrestal et al. (2003) preferred to interpret  
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0a  as “the measure of the shield resistance”. Forrestal and Tzou (1997) used 
approximation of the type described by Eq. (1.8) for the second step of the 
penetration. 

Although Forrestal and Luk (1992b) developed their model for 
ogive-shaped impactors, the model may easily be generalized to arbitrary 
bodies of revolution and projectiles with plane bluntness (see Chapter 2). 
The corresponding formulas for cone, truncated-ogive and segmental-spherical 
noses were derived by Chen and Li (2002). Qian et al. (2000) introduced an 
empirical constant to take into account the truncation effect of the 
ogive-nose projectile. In some studies (Qian et al., 2000; Gomez and Shukla, 
2001), it was proposed that κ  in Eq. (1.9) should be considered as an 
empirical constant. Teland and SjØl (2004) suggested their version of the 
model with RL=κ and conducted a number of experiments that validated 
application of two-step models to describe penetration of flat-nosed 
projectiles into a concrete shield.  Li and Tong (2003), Chen et al. (2004), 
Chen and Li (2003) generalized the model, taking plug formation into 
account.   

An elastic-cracked model based on the SCEA was developed by Xu et al. 
(1997). Yankelevsky (1997) suggested a two-stage model for concrete slab 
penetration/perforation in which the disks model (Yankelevsky and Adin, 
1980) was used. Gomez and Shukla (2001) extended the model of Forrestal 
and Luk (1992b) to multiple impacts. To this end, an empirical coefficient 
that is a function of the number of impacts was introduced into the formula 
derived by Forrestal and Luk (1992b). On the basis of the same model, 
Choudhury et al. (2002) and Siddiqui et al. (2002) derived expressions for 
the DOP in a buried shield  and applied sensitivity analysis to study the 
influence of various random parameters on projectile reliability and shield 
safety. Chen and Li (2002) and Li and Chen (2002, 2003) performed a 
dimensional analysis of analytical perforation models for concrete, metal and 
soil and concluded that two dimensionless parameters would suffice to 
describe the DOP with reasonable accuracy. 

 Frew et al. (2000) and Forrestal and Hanchak (2002) proposed that the 
model of Forrestal and Luk (1992b) could be applied to a limestone shield. 

Modeling of penetration into a shield with a pre-drilled cavity has also 
attracted the attention of researchers in the field. Yankelevsky (1983a) 
developed a model based upon his own version of CCEA. To determine the 
DOP, Murphy (1984), Folsom (1987) and Mostert (1999) modified models 
developed for homogeneous shields. A better substantiated approach takes 
into account the influence of the pre-drilled cavity on the contact surface 
between an impactor and a shield during penetration. The area and the shape 
of this contact surface affect the drag force. Teland (2001a,b) suggested an 
SCEA-based model and noted that a similar approach had been developed 
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independently by Szendrei (2000). Although all these studies used some 
particular models describing impactor-barrier interaction, the LIT can be 
generalized to describe this situation.  

Clearly, the majority of CEA models used are LIMs, and methods used 
for LIMs can be directly applied in these cases. In this chapter, we also 
discuss CCEA models of the type determined by Eq. (1.3) that are not 
reducible to LIMs and the applications of these models. 

2. CYLINDRICAL CAVITY EXPANSION 
APPROXIMATION MODEL FOR A BLUNT 
IMPACTOR AGAINST AN ELASTIC-PLASTIC 
SHIELD  

2.1 Introduction 

The procedure of constructing the penetration model that employs the 
CCE concept involves several steps, namely, modeling of the cavity 
expansion (step 1), formulation of the equation of motion of the impactor 
(step 2), and determining the desired characteristics (the BLV, the maximum 
DOP) (step 3). Clearly, the models developed in step 1 with the purpose of 
obtaining analytical formulas for the stress at the wall of the cavity are 
approximate. Further simplifications are often introduced in step 2 to obtain 
a linear differential equation with constant coefficients for the squared 
relative velocity of the impactor. Such equation is obtained by assuming that 
the impactor is completely immersed into the host medium. However, 
analytical solutions of the equation in step 3 can often be determined in the 
integral form for CCE models without using the simplifications described 
above and/or some additional approximations. Moreover, for conical sharp 
impactors, these solutions can be expressed through elementary functions, 
which is very convenient for the analysis and applications.  

To illustrate the procedure of constructing a penetration model on the 
basis of CCEA, we have chosen the case in which: (i) CCEA is not 
simplified, so as to represent it as a LIM, (ii) non-complete immersion into 
the host medium at corresponding stages is taken into account,  
(iii) impactors (bodies of revolution) with an arbitrary generator are considered, 
(iv) impactors with a flat bluntness are allowed. The latter condition implies 
a problem that is more involved than that for sharp impactors, because more 
complicated solutions must be used in step 1 and because the resistance of 
the flat part of the impactor’s nose and plugging (for a shield with a finite 
thickness) must be taken into account. This problem was formulated and  
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applied to shields with a finite thickness by Sagomonyan (1988), who 
considered hole expansion from the initial non-zero radius (step 1) and 
outlined the procedure for modeling the motion of the impactor. Here, we 
have extended this approach, and have determined the closed-form solutions 
for the BLV by using the hole expansion model without any additional 
simplifications. On the basis of these solutions, we will later investigate 
some problems associated with spaced shields. 

2.2 Cavity expansion equation 

Consider the high-speed normal penetration of a rigid body of revolution 
into a shield with thickness b . The notations are shown in Figure 3-2a-b.  

As usual, the coordinate h , the depth of the penetration, is defined as the 
distance between the nose of the impactor and the front surface of the  
target. The coordinates ρ,x  are associated with the impactor, function 

)x(Φρ = determines generator of the nose of the impactor having bluntness 
with the radius r . The impactor may also have a cylindrical part that does 
not make a contribution to its resistance. The part of the lateral surface of the 
nose of the impactor that interacts with the target can be described by 
Eq. (2-2.5).  

Following Sagomonyan (1988), we consider an elastic-plastic shield  and 
use a CCEA that implies the solution for the hole expansion from time 0t = : 
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Figure 3-2. Coordinates and notations. The first stage (a) and the second stage (b) of 

penetration. 
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y  is the radius of the hole that varies from the initial radius r , p  is, as 
before, a stress at the boundary of the cavity, elastp and plastp  are associated 
with the elastic and plastic regimes at the boundary of the hole, respectively; 

11109 ,, µµµ  and shγ  are Young’s modulus,  Poisson’s ratio, shear strength 
and mass density of the material of the shield, respectively. In order to 
simplify the algebra, friction is neglected.  

2.3 Penetration model 

Equations (2.1)-(2.3) can be rewritten using Eqs. (1.4) and (1.5) for 
pn =σ  as follows: 
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Then, the expression for the drag force acting at the impactor’s lateral 
surface, impD , reads: 

∫ ′=
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Θ

θ

ΦΦσπ&&&

For a blunt impactor, we use a simplified model of plugging (see, e.g., 
Sagomonyan, 1988; Holt et al., 1993, Chen and Davies, 1997; Goldsmith 
and Finnegan, 1971) assuming that the cylindrical plug of the radius r , 
height b  and mass 

 brm 2
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is formed at the beginning of penetration, and that the plug moves together 
with the impactor, while bh ≤  (the first stage, see Figure 3-2a). The 
formula for the resistance force associated with the plug during this stage of 
the penetration reads: 

)hb(r2D 11plug −= πµ

When bh = , the impactor and the plug break apart, and the impactor with 
mass m  moves under the action of force impD  (the second stage, see 
Figure 3-2b). Therefore, equations describing the motion of the impactor 
read: 

bh0,0)h(D)h,h,h(Dh)mm( plugimpplug <≤=+++ &&&&& , (2.14) 

Lbhb,0)h,h,h(Dhm imp +≤≤=+ &&&&&

Considering h  as an independent variable 

22 hvw &==

and taking into account Eqs. (2.12) and (2.13) and identity: 

dh
dw

2
1w

dh
dw

w2
1

dt
dhw

dh
dw

dt
dh ====&& , (2.17) 

we can rewrite Eqs. (2.14) and (2.15) as follows:  

bh0,0)hb(r2
dh
dw

2
1,w,hD

dh
dw]brm[

2
1

11imp
2

sh <≤=−+⎟
⎠
⎞

⎜
⎝
⎛++ πµπγ , 

Lbhb,0
dh
dw

2
1,w,hD

dh
dwm

2
1

imp +<≤=⎟
⎠
⎞

⎜
⎝
⎛+  . (2.19) 

Let )h(ww 2=  be the solution of Eq. (2.19) with the boundary condition 
0)Lb(w =+  and )h(ww 1= be the solution of Eq. (2.18) with the boundary 

condition )b(w)b(w 21 = . Then the BLV is determined as )0(wwv 1bl
2
bl == .  

Equations. (2.18) and (2.19) can be replaced by one equation:  

Chapter
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(2.16)

(2.15)
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0)h()hb(r2
dh
dw

2
1,w,hD

dh
dw])h(brm[

2
1

11imp
2

sh =−+⎟
⎠
⎞

⎜
⎝
⎛++ δπµδπγ ,

where function )h(δ  is determined by Eq. (2-2.16). The BLV is determined 
as )0(wwv bl

2
bl == , where )h(ww =  is the solution of Eq. (2.20) with the 

boundary condition 0)Lb(w =+ . Strictly speaking, the correctness of this 
change of variables calls for proof, because )h(δ  is a non-smooth function. 
In the cases considered below, such proof can be obtained directly by 
comparing the solutions. 

3. SOLUTION FOR AN ARBITRARY BODY OF 
REVOLUTION 

3.1 Elastic response 

Equation (2.8) shows that the elastic mode of deformation of the shield at 
the boundary of the hole occurs only if the following condition is satisfied:  

)L(Rr)1( 1 Φµ ≡≥+  . (3.1) 

Since elastnn σσ = , Eqs. (2.9) and (2.11) imply that: 

ΦΦΦϕϕ
µ

πµ Θ

θ

′−=
+

= ∫ ]r)x([)x(,dx)x(
r)1(

2
D

)h(

)h(10

9
imp . (3.2) 

Then Eq. (2.20) can be represented in the following form:  

dh)h(~dw Ψ−= ,  (3.3) 

where 

)h(brm

)h()hb(rdx)x(
r)1(

4)h(~
2

sh

11

)h(

)h(10

9

δπγ

δµϕ
µ

µ

πΨ

Θ

θ

+

−+
+

=
∫

. (3.4) 

(2.20)
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Integrating Eq. (3.3) over w  from 0w =  to )0(www bl ==  and over h  
from Lbh +=  to 0h = , we obtain: 

∫∫∫∫∫
+

+−+=
)h(

)h(

Lb

b
7

b

0
82

)h(

)h(

b

0
6bl )x(dxdhedh)hb(e

b
2)x(dxdhew

Θ

θ

Θ

θ

ϕϕ , (3.5) 

where 

brm
rb2e,

mr)1(
4e,

r)brm)(1(
4e 2

sh

11
2

8
10

9
72

sh10

9
6 πγ

µπ
µ
πµ

πγµ
πµ

+
=

+
=

++
=  .(3.6) 

Introducing the function 

∫∫=
)h(

)h(

z

0

)x(dxdh)z(
Θ

θ

ϕψ   (3.7) 

and calculating the second integral in the right-hand side of Eq. (3.5), we 
may rewrite the latter equation as: 

.)b()ee()Lb(ee
)]b()Lb([ee)b(ew

6778

786bl

ψψ
ψψψ

−−++=
−+++=

  (3.8) 

The expression for the function )z(ψ  can be simplified by changing the 
order of integration in the integrals. If  Lb ≤ , (see Figure 3-3a) then:  

∫∫∫ −==
b

0

b

x

b

0

dx)x()xb(dh)x(dx)b( ϕϕψ  . (3.9) 

If  Lb ≥  (see Figure 3-3b), then:  

∫∫∫ −==
L

0

b

x

L

0

dx)x()xb(dh)x(dx)b( ϕϕψ  . (3.10) 

Finally, we obtain (see the identity given by Eq. 2-2.7): 

 

Chapter
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Figure 3-3. Possible structures of the domain on x,h plane in description of impactor-shield 
interaction. 

∫∫∫ ==+
+ L

0

xb

x

L

0

dx)x(bdh)x(dx)Lb( ϕϕψ  .          (3.11) 

 

∫∫ −−−+=
)L,bmin(

0
67

L

0
78bl dx)x()xb()ee(dx)x(beew ϕϕ .  (3.12) 

Therefore, 
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3.2 Elastic-plastic response  

When Rr)1( 1 <+µ , Eq. (2.8) implies that both elastic and plastic 
regimes occur during penetration. The corresponding areas on the plane x,h  
are shown in Figure 3-4. 

 
Figure 3-4. Subdomains of impactor-shield interaction on x,h plane in the case of 

elastic-plastic regime.  

The domain of the elastic region is bounded by the lines 0x = , ×= xx , 
hx =  and bhx −= , where  

( )r)1(x 1
1 += −

× µΦ .  (3.13) 

This domain can be described as follows: 

×+≤≤≤≤ xbh0),h(x)h( elel Θθ ,

)h(x plΘ=

h

)h(x plθ=

)h(x elθ=

0 b

x

L  

)h(x plθ=

×x bx +×

Plastic response 

Elastic response 
×x

Lb +

Chapter

(3.14)
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where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −=
×

◊×
×

◊× x
hXx)h(,

x
bhXx)h( elel Θθ  (3.15) 

and function )z(X ◊  is defined by Eq. (2-2.10). 
The domain of the plastic region is bounded by the lines ×= xx , Lx = , 
hx =  and bhx −= , and can be described as follows: 

Lbhx),h(x)h( plpl +≤≤≤≤ ×Θθ , 

where 

.
xL
xh

X)xL()h(

,
xL

bxh
X)xL(x)h(

pl

pl

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
−+=

×

×
◊×

×

×
◊××

Θ

θ
 (3.17) 

Functions )h(plθ , )h(plΘ , )h(elθ  and )h(elΘ  are formally defined for 
∞<<∞− h , and )h()h( elel Θθ = outside the interval )xb,0( ×+  and 

)h()h( plpl Θθ = outside the interval )Lb,x( +× . Therefore, the following 
expression for the drag force acting at the impactor’s lateral surface impD  is 
valid for Lbh0 +≤≤ : 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
′+′= ∫∫

)h(

)h(
plastn

)h(

)h(
elastnimp

pl

pl

el

el

dxdx2D
Θ

θ

Θ

θ

ΦΦσΦΦσπ . (3.18) 

Substituting elastnσ  and plastnσ  from Eqs. (2.9) and (2.10) into Eq. (3.18) 
and taking into account Eqs. (2.16) and (2.17), we obtain: 

dh
dw)h(gw)h(g)h(gD 120imp ++=

(3.16)

, (3.19)
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⎥
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⎦

⎤

⎢
⎢

⎣

⎡
′+′−

+
= ∫∫

)h(

)h(
011

)h(

)h(10

9
0
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pl

el
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dx)(dx)r(
r)1(

2)h(g
Θ

θ

Θ

θ

ΦΦΦϕµΦΦΦ
µ

µπ ,(3.20) 

∫ ′=
)h(

)h(

22
1

sh
1

pl

pl

dx)(
2

)h(g
Θ

θ

ΦΦΦϕπγ

∫ ′′′+′=
)h(

)h(
1

2
2sh2

pl

pl

dx])()([)h(g
Θ

θ

ΦΦΦΦΦϕΦΦϕπγ . (3.22) 

Then equation of motion of the impactor, Eq. (2.20), can be written in the 
following form: 

 

0)h(w)h(
dh
dw =++ βα

where 

).h(g2)h(brm)h(

,
)h(

)]h()hb(r2)h(g[2)h(,
)h(
)h(g2)h(

1
2

sh

1102

++=

−+==

δπγζ
ζ

δπµβ
ζ

α
 (3.24) 

Equation (3.23) implies the following expression for the BLV: 

∫ ∫
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

Lb

0

h

0
bl h~d)h~(exp)h(dhw αβ

This equation can be transformed by taking into account the special 
features of the stages of penetration. To this end, let us rewrite the integral in 
Eq. (3.25) as: 

where 

Chapter

, (3.21)

, (3.23)

. (3.25)
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⎜
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⎝
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 (3.26) 

where )h()h(i αα =  and )h()h(i ββ = for the stage with the number 
)2,1i(i = , namely: 

).h(g2m)h(,
)h(
)h(g2

)h(,
)h(
)h(g2

)h(

),h(g2brm)h(

,
)h(

)]hb(r2)h(g[2
)h(,
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)h(
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1
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2
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2
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1
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sh1

1

110
1

1

2
1

+===

++=

−+
==

ζ
ζ

β
ζ

α

πγζ
ζ

πµβ
ζ

α

 (3.27) 

3.3 Plastic response (sharp impactor) 

When 0r = , i.e, a sharp impactor is considered, only the plastic regime 
occurs during penetration and a plug is not formed. Then  

∫ ′=
)h(

)h(
plastnimp dx2D

Θ

θ

ΦΦσπ

where a plastic response is described by Eq. (2.10) with constant 10 ,ϕϕ  
and 2ϕ  in Eqs. (2.4)-(2.5): 

1
),1ln(,1

2

2
122110 +

−=+=+=
µ

µϕϕµϕϕϕ . (3.29) 

For purposes of convenience, we consider the solution of the CCEA problem 
written in a more general form: 

, (3.28)
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01
2

2plast ayyayap ++= &&&

Then Eq. (2.10) can be rewritten as:  

01
2

1
2

2plastn ahah)aa( +′+′′+′= &&& ΦΦΦΦΦσ . (3.31) 

Clearly, Eqs. (3.30) and (3.31) coincide with Eqs. (2.3) and (2.10), 
respectively, when   

01101sh12sh2 a,5.0a,5.0a ϕµϕγϕγ === .  (3.32) 

Substituting plastnσ  from Eq. (3.31) into Eq. (3.28), we arrive at Eq. (3.19) 
with  

( ) ( )[ ])h()h(adxa2)h(g 22
0

)h(

)h(
00 θΦΘΦπΦΦπ

Θ

θ

−=′= ∫ , (3.33) 
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)h(

)h(

22
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θ

ΦΦπ , 

⎥
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)h(
1

)h(

)h(

3
22 dxadxa2)h(g

Θ

θ

Θ

θ

ΦΦΦΦΦπ . (3.35) 

The BLV is determined by using Eq. (3.25) with 

)h(g2m)h(,
)h(
)h(g2)h(,

)h(
)h(g2)h( 1

02 +=== ζ
ζ

β
ζ

α . (3.36) 

4. SOLUTIONS FOR SOME PARTICULAR 
IMPACTOR’S SHAPES 

4.1 Truncated cone. General formulas 

The equation of the generator for the lateral surface of the cone with flat 
bluntness reads: 

Chapter

. (3.30)

(3.34)
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kxr)x( +=Φ

Consequently, )kxr(xk)x( 2 +=ϕ , where function )x(ϕ  is defined by 
Eq. (3.2). Calculating the integrals in Eqs. (3.12) we can determine the 
expression for blw  in the case of elastic response in the following form: 

⎪
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3232
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2

bl . (4.2) 

In the case of an elastic-plastic regime, integrals in Eqs. (3.20)-(3.22) can 
be calculated and the expressions for functions )2,1,0i(gi =  can be 
simplified: 

21112110
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2
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0 F)h(F]1)1[ln()h(F
r)1(

k)h(g
2
1 µµµ

µ
µ

π
++++

+
= , (4.3) 
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where 
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( ) ( ) 5,4,3,2,1i,)h(f)h(f)h(F pliplii =−= θΘ  (4.7) 
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4.2 Sharp cone. Shield with a finite thickness 

In the case of a sharp cone (a plastic regime), kx)x( =Φ  and formulas 
from Section 3-4.1 are simplified, namely: 

)]h()h([ka)h(g 222
00 θΘπ −= , 

)]h()h([
3

ka)h(g 33
4

1
1 θΘπ −=

)]h()h([ka)h(g 224
22 θΘπ −= , 

where 210 ,, ϕϕϕ  are defined by Eq. (3.29), while Eqs. (3.25) and (3.36) 
remain valid. Taking into account Eqs. (4.12) and (4.14), Eq. (3.36) yields: 

)h()h(
)h(g
)h(g)h( 0

2

0 αλαβ == , 

where 

2

0
20 a

a
,

k
== χχλ

The equation of motion of the impactor (Eq. 3.23) can be written as:   

0)h()w(
dh
dw

0 =++ αλ

Chapter
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λ
−=

+

Integrating Eq. (4.18) over w  from )Lb(www res +==  to )0(www imp ==  
and over h  from Lbh +=  to 0h = , we obtain the relationship between the 
impact velocity and the residual velocity of the impactor: 

)1T̂(w),1T̂(wT̂w 0imp0resimp −≥−=− λλ , (4.19) 

where 
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dh)h(expT̂ α

The expression for the BLV can be obtained from Eq. (4.19) at 0wres = : 

)1T̂(vw 0
2
blbl −== λ . 

terms of elementary functions. For this purpose, it is convenient to use 
dimensionless variables and to represent the integral in the form: 
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Calculating the integral I  for 1b ≤  and for 1b ≥  (see Figure 3-5a-b),  

. (4.18)

. (4.20)

In the case considered (a sharp cone), the integral in Eq. (4.20) can be  in 

(4.21)

(4.23)
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Figure 3-5. Functions )h(Θ  and )h(θ . 
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we obtain: 
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Introducing the function: 
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we can represent the expression for I  as: 
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+
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Thus, the relationship between the impact velocity and the residual 
velocity of the impactor and the formula for the BLV are determined by 
Eqs. (4.19) and (4.21), respectively, with  
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⎞
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I Eqs.
 (4.27)-(4.29).  

4.3 Sharp cone. Semi-infinite shield 

In the case of a SIS, Eqs. (4.12)-(4.18) remain valid with )h(Θ defined 
by Eq. (2-2.2) and 0)h( =θ . To obtain a relationship for determining the 
DOP, H , we integrate Eq. (4.18) over w  from 0w =  to )0(www imp ==  
and over h  from Hh =  to 0h = . After some algebra we obtain:  

)H(J
w

1ln
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imp =⎟⎟
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⎜⎜
⎝

⎛
+

λ

where 

L
HH,hd

)h(m
)h()H(J

H

0
3

imp

2

=
+

= ∫ Θ
Θ

and )h(Θ  is determined by Eq. (4.24). 
Let us calculate the integral )H(J  (function )h(Θ is shown in 

Figure 3-5a-b): 

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

≥
+

−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

+
+

+

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

+

=
∫∫

∫

1Hif
1m

1H
m

11ln
3
1

1m
hd

hm
hdh

1Hif
m
H1ln

3
1

hm
hdh

)H(J

impimp

H

1 imp

1

0
3

imp

2

imp

3H

0
3

imp

2

. (4.33) 

Then Eq. (4.31) allows us to determine H (Ben-Dor et al., 2000d): 

where  can  be  calculated using  the explicit formulas given by 
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where 
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4.4 Cylinder 

In this case, the initial energy of the impactor is expended solely for 
plugging. Then, 0Dimp =  in Eq. (2.20), and the equation of motion of the 
impactor for bh0 ≤≤  reads: 

brm
r4,0)hb(

dh
dw

2
sh

11
1919 πγ

πµλλ
+

==−+  . (4.36) 

Integrating the equation dh)hb(dw 19 −−= λ  over w  from 0w =  to blww =  
and over h  from bh =  to 0h = , we obtain the formula for the BLV: 

2bvw 2
19

2
blbl λ== .  (4.37) 

(4.35)



  

 

Chapter 4 

POWER-LAW RELATIONSHIPS BETWEEN 
IMPACT, RESIDUAL AND BALLISTIC LIMIT 
VELOCITY   
 

 
 

1. INTRODUCTION 

The following formula:  

blimpblresimp vv,vvav ≥=− ◊
βββ

where resimp v,v  and blv  are  the impact velocity, the residual velocity and the 
BLV, respectively, and 0vres =  for blimp vv < , is used widely in impact 
dynamics. Lambert and Jonas (1976) and Lambert (1978) proposed this 
formula as a unified relation for processing ballistic impact data, where ◊a  
and β  (and, actually, blv ) are the coefficients of approximation. Many 
empirical and semi-empirical models can be represented in the form of 
Eq. (1.1), particularly the models based on the conservation of energy and/or 
momentum (Zukas, 1982; Recht and Ipson, 1963; Ipson and Recht, 1975; 
Hetherington and Rajagopalan, 1991; Hetherington, 1992b; Hetherington, 
1996; Giere, 1964). Among the most known models of this type is the model 
suggested by Recht and Ipson (1963), which can be justified by assuming 
constant energy absorbed by a shield. This model may be represented in the 
form given by Eq. (1.1) as: 

impres mma,2 == ◊β

89 
 

(1.1)

, (1.2)



90 4
 

 

where impm  is the impact (initial) mass of the impactor, resm is the residual 
mass of the impactor, including the mass of material expelled from the target 
by a blunt impactor. Mileiko and Sarkisyan (1981) and Mileiko et al. (1994) 
(see also Mileiko, 1997) demonstrated that a solution of the equation of 
motion of the impactor yields Eq. (1.1), with 1a =◊ , when a power-law 
dependence between the impactor s drag force and its velocity is valid. 
Nixdorff (1983; 1984a,b; 1987a) showed that under certain assumptions the 
theory of Awerbuch and Bodner (Awerbuch, 1970; Awerbuch and Bodner, 
1974) implies Eq. (1.1). The model determined by Eq. (2-8.1) also has the 
same property (see  Eq. 2-8.14). Although other relationships between resv , 

impv and blv can be used (see, e.g., Anderson et al., 1999), at present Eq. (1.1) 
is considered as the method of choice for the reduction of experimental data. 
Therefore, it would useful to understand the cause of the efficiency of 
correlations of this type. One way to explain the efficiency of these 
correlations is to construct physically realistic models of penetration 
that imply Eq. (1.1). This approach is described below (see Ben-Dor et al., 
1998b; 2001b; 2002d).  

2. A CLASS OF GENERALIZED LOCALIZED 
INTERACTION MODELS  

Let us consider the penetration model that is based on the following 
assumptions (the notations are shown in Figure 4-1): 

1) During penetration, the impactor can change its shape and accumulate 
and/or lose mass (even if the impactor’s nose can be deformed, we measure 
the coordinate h  from the front side of the shield to the point of the impactor 
having the coordinate 0h = at the beginning of its motion). The rate of 
change of mass is a function of the DOP, and it does not depend upon the 
impactor’s velocity, i.e., 

)h(mm),h(mm),h(mm ++−− ===

where m  is the mass of the impactor, and +m  and −m  are mass 
accumulation and mass loss from the beginning of motion, respectively. It is 
assumed that 

vv,0v == −+

where +v  is the velocity of the accumulated particles and −v  is the velocity 
of the lost particles. 

,
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Figure 4-1. Notations for the generalized model. 

2) The expression for the differential drag force dD  acting on the 
impactor s surface element between the sections x  and dxx +  (see Figure 4-1) 
reads: 

dx]v)h,x(Pv)h,x(P[dD 0
2

2
α+=

where 0P  and 2P  are non-negative functions and parameter 20 <≤ α . 
Clearly, this is more general model than the model considered in Section 2-8. 

3) The part of the impactor interacting with the shield depends only on 
the DOP, i.e., 

)(),( ** hxhx Θ== θ

Impactor-shield interaction begins when 0h =  and is completed when 
Lbh += . The functions )h(*θ  and )h(*Θ  have the meaning of )h(θ  and 

)h(Θ , correspondingly, but we do not specify their particular forms.   
4) The impactor can change its shape during penetration. Generally, the 

functions **20 ,,G,G,m,m,m Θθ+−  depend on the instantaneous shape of the 
impactor, i.e., they account for deformation, accumulation and loss of mass 
of the impactor. 

The equation of motion of a body with a variable mass can be written as 
(see, e.g., Avallone and Baumeister, 1996; Corben and  Stehle, 1994): 

,

, (2.3)

.  

.  (2.4)
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)v,h(D
dt

dm)vv(
dt

dm)vv(
dt
dvm −=−+−+

−
−

+
+ .  (2.5) 

The expression for the drag force can be obtained from Eqs. (2.3) and (2.4): 

αv)h(f̂v)h(f̂)v,h(D 0
2

2 +=

where 

2,0i,dx)h,x(P)h(f̂
)h(

)h(
ii

*

*

== ∫
θ

Θ

The model also includes the equation of mass balance: 

)h(m)h(mm)h(m imp
+− ++=

where )0(mmimp = and )Lb(mmres += .  
After substituting D  given by Eq. (2.6), +v and −v given by Eq. (2.2) and 

using change of variables dhdvdtd = , we may write Eq. (2.5) as: 

0v)h(fv)h(f
dh
dvm 1

02 =++ −α

where 

)h(m
)h(f̂)h(f,)h(f̂

dh
dm

)h(m
1)h(f 0

022 =⎥
⎦

⎤
⎢
⎣

⎡
+=

+

. (2.10) 

Equation (2.9) coincides with Eq. (2-8.4), and we can immediately write 
relationship between impact velocity, residual velocity and BLV that is 
similar to Eq. (2-8.14) in the form of Eq. (1.1) with: 
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dmexpdh)h(fexpa ββ , (2.11) 

αβ −= 2
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Differentiation of Eq. (2.8) yields: 

( )
dh

dm
)h(m

1
dh

)h(mlnd
dh

dm
dh
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)h(m
1

dh
dm

)h(m
1 −−+
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−= . (2.13) 

Then Eq. (2.11) can be written in the following form: 
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. (2.14) 

Therefore, the above-suggested model implies a power-law dependence 
between the impact, the residual and the ballistic limit velocities of the 
impactor given by Eq. (1.1). Note that the parameter ◊a  does not depend 
upon the function )h(f̂0 . 

Let us consider the case when 0)h,x(P2 =  in Eq. (2.3) and, hence, 
0)h(f̂2 = . If the impactor only accumulates mass ( 0m =− ), then Eq. (2.14) 

implies that: 

β

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=◊

imp

res

m
ma

If the impactor only loses mass ( 0m =+ ), then Eq. (2.11) implies that: 

1a =◊

In both the cases, the parameter ◊a  is independent of the history of mass 
change that is determined by the functions +m and −m . 

3. A BENCHMARK ANALYSIS OF POWER-LAW 
APPROXIMATIONS  

  
It is of interest to compare the performance of the most justified version 

of the model with 2=β  and versions of the model with 2≠β . 
Let us rewrite Eq. (1.1) as: 
 

ββββ 1
blimp

1
blimpres )a1(c,vv,)vv(cv ◊◊◊ =≥−= , (3.1) 

. (2.15)

. (2.16)
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and assume that this is an “exact” model. Our immediate task is to determine 
the best approximation of the “exact” model in the form: 

blimp
212

bl
2
impres v̂v,)v̂v(ĉv̂ ≥−=

for  blimpbl v̂2vv̂ ≤≤  where ĉ  and blv̂  are the unknown coefficients of the 
model with 2=β  ( blv̂  is interpreted as the BLV), and resv̂ is the residual 
velocity calculated using the model with 2=β .  

The difference between these models can be estimated by means of the 
following norm: 

impres

v2

v
res2

bl

dv|v̂v|
vc
1 bl

bl

−= ∫
◊

ε

Substituting resv  and resv̂
 blimp vzv = , we may rewrite  Eq. (3.3) as:  

dz|)z()1z(| 2/12
v

2
c

/1
2

1

λλε ββ −−−= ∫ , 

where 

blblvc vv̂,cĉ == ◊ λλ

The values of the parameters cλ  and vλ  can be found by minimizing ε , 
taking into account the conditions 0c >λ  and 10 v ≤< λ . The results of the 
calculations are shown in Table 4-1, where the difference in the results 
obtained using these models is estimated by the following parameter: 

2/12
v

2
c

/1
resres

bl

)z()1z()v̂v(
vc
1~ λλε ββ −−−=−=
◊

. (3.6) 

Table 4-1 shows that both Eqs. (3.1) and (3.2) provide estimates of 
the residual velocity with almost the same accuracy. In the neighborhood  
of the BLV where the residual velocity changes rapidly, neither of these 
approximations is reliable. 
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Table 4-1. Estimation of the difference in the models, ε~  
β  Z 

2.1 2.2 2.3 2.4 2.5 2.6 
1.0 -0.144 -0.250 -0.291 -0.328 -0.362 -0.444 
1.1 -0.001 -0.018 -0.016 -0.015 -0.014 -0.026 
1.2  0.004 -0.002  0.004  0.009  0.012  0.009 
1.3  0.004  0.002  0.010  0.015  0.018  0.018 
1.4  0.003  0.003  0.010  0.015  0.017  0.018 
1.5  0.001  0.002  0.008  0.012  0.013  0.014 
1.6 -0.001  0.0  0.005  0.008  0.008  0.008 
1.7 -0.003 -0.003  0.001  0.002  0.001  0.0 
1.8 -0.005 -0.006 -0.003 -0.003 -0.006 -0.008 
1.9 -0.008 -0.009 -0.008 -0.009 -0.013 -0.017 
2.0 -0.010 -0.013 -0.013 -0.016 -0.021 -0.026 

cλ   1.020  1.030  1.040  1.050  1.060  1.070 

vλ   0.990  0.970  0.960  0.950  0.093  0.910 

 
The results of calculations using the experimental data of BØrvik et al. 

(2002) are presented in Table 4-2 (blunt cylinder) and in Table 4-3 (cylinder 
with hemispherical nose). In these tables the magnitude of the error ]2[

iε is 
determined as:  

,v)v̂v(ĉ i,res
2/12

bl
2

i,imp
]2[

i −−= ◊ε

Table 4-2. Errors of approximation of the experimental data of Børvik et al. (2002) for a 
blunt-nosed cylinder 

Impact velocity (m/s)  
303.5 285.4 244.2 224.7 200.4 189.6 

][ βε  1.1 1.5 4.6 -1.6 0.2 0.4 
]2[ε  0.2 -0.0 2.0 -4.3 -0.5 4.8 

 

Table 4-3. Errors of approximation of the experimental data of Børvik et al. (2002) for a 
hemispherical-nosed cylinder 

Impact velocity (m/s)  
452.0 420.6 362.9 326.7 300.0 

][ βε  -5.2 2.6 -2.2 6.6 -6.3 
]2[ε  1.0 4.1 -8.3 -0.6 0.9 

(3.7)
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where i,impv  and i,resv  are the impact velocity and the residual velocities in 
the i -th experiment, respectively; and parameters ĉ  and blv̂ minimize the 
sum ∑ || ]2[

iε . The values of the errors ][
i

βε are calculated as:  

,v)vv(c i,res
/1

bli,imp
][

i −−= ◊
ββββε

where the parameters blv,,c β◊ in these models were obtained by BØrvik  
et al. (2002) using the method of least squares. The above-described results 
clearly demonstrate that of the considered models have approximately the 
same accuracy. 
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PART 2: SHAPE OPTIMIZATION OF 
IMPACTORS  



  

 

Chapter 5 

TOWARDS SHAPE OPTIMIZATION OF 
IMPACTORS 
 

 
 

 1. INTRODUCTION 

In this chapter, the notion of shape optimization of impactors implies the 
choice of the best impactor from an infinite number of possible solutions. 
Emphasis is placed on variational problems that permit analytical solution. 
Certainly, the latter requirement does not prevent us from using numerical 
calculations for determining a particular solution. To study such problems, it 
is feasible to employ only those models that allow us to continuously vary 
the impactor’s shape, i.e., the models describing impactor-shield interaction 
for a wide class of impactor shapes (e.g., convex bodies of revolution). The 
models used must also be sufficiently simple to allow determination of the 
target functional in a relatively compact form. Sometimes, instead of a direct 
criterion, e.g., the BLV or DOP, an indirect optimization criterion was used 
with the goal of circumventing the latter requirement. Such approach was 
used in the early studies of impactor shape optimization. 

Kucher (1967) optimized the penetrator’s shape using as the criterion the 
dynamic work  from Thomson’s theory (Thomson, 1955) for thin plates. 

Nixdorff (1987b) compared the efficiency of conical, different power-law 
and ogival heads and found that there exist impactors that are superior to 
“Kuсher’s optimum head”, which was determined by solving the 
corresponding variational problem. This paradox was explained (Ben-Dor 
et al., 2001a) with reference to the correct solution (Miele, 1962, 1965) of 
the mathematically similar variational problem in hypersonic aerodynamics, 

”“
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namely, determining a thin head with minimum drag by means of the 
Newton-Busemann model for a projectile-medium interaction. In solving 
this problem in gasdynamics, investigators also encountered serious 
difficulties, which were reflected in corresponding sections in the 
monographs of Hayes and Probstein (1959) and Miele (1965). Note that this 
situation is not the only example of a problem of shape optimization that 
turns out to be more complicated than it seems at first sight. 

The first studies of shape optimization of non-thin impactors also used 
indirect optimization criteria. Gendugov et al. (1984), Bunimovich and 
Yakunina (1987a,b; 1989), Ostapenko and Yakunina (1992), and Ostapenko 
(1997) determined the shapes of 3-D bodies with a minimum “shape factor” 
that is equivalent to the minimum resistance during the motion of an 
impactor inside a dense medium with constant velocity. We note (Ben-Dor 
et al., 1997c, 2001a) that using the two-term LIM yields minimum BLV 
and/or maximum DOP solutions that coincide with the solution obtained by 
applying the above-mentioned indirect criterion. Using the previously 
developed disks model (Yankelevsky and Adin, 1980), Yankelevsky (1983b) 
optimized the shape of a projectile penetrating into soil by minimizing the 
instantaneous resistance force. The optimal shape was found to be 
determined by a single parameter depending on the velocity and deceleration 
of the impactor and the properties of the medium. 

As a direct criterion for optimization, the maximum DOP for a given 
impact velocity in the case of a SIS and the BLV for a SFT were used. 
Yankelevsky and Gluck (1980) obtained formulas for the DOP of an 
ogive-shaped projectile penetrating into soil and analyzed the influence of 
the impactor’s shape parameters and the characteristics of the shield material 
on the criterion. Bondarchuk et al. (1982) used a simple LIM for shape 
optimization of 3-D impactors penetrating into SISs (soil and metal). 
Numerical calculations and experiments showed that 3-D impactors can 
offer advantages over bodies of revolution, when the DOP is taken 
as the criterion of optimization. Additional calculations associated with 
determining efficient 3-D penetrators can be found in the monographs by 
Vedernikov and Shchepanovsly (1995) and Vedernikov et al. (1995). 
Ostapenko et al. (1994) found numerically the optimum cross-section of a 
3-D conical impactor with a maximum DOP for the class of three-terms 
LIMs with friction. Ostapenko and Yakunina (1999) used this criterion in 
their analytical investigation of a variational problem based on two-term 
LIMs with friction; they considered slender bodies with self-similar 
cross-sections.  

Let us now discuss more comprehensively the optimization of impactors 
having the shape of bodies of revolution, using as the criterion the maximum 
DOP. We employ a two-term LIM and neglect incomplete immersion of the 

Chapter
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impactor in the shield at the initial stage of penetration (see Section 2-9.3.2). 
This problem merits attention since historically it was the first properly 
posed and correctly solved variational problem in projectile shape 
optimization (following Alekseev et al., 1987, we can designate this problem 
as the first problem of the optimal control theory) and since, as mentioned 
before (Ben-Dor et al., 2001a), investigation of this or similar problems is 
still fraught with difficulties. In his classic study, Isaac Newton (1687) 
considered motion of a body of revolution in a gaseous medium and 
assumed that the external rarefied medium interacts with the body through 
elastic collisions of its particles. Although Newton did not use modern 
mathematical theory (that was nonexistent at that time), his geometrical 
constructions yielded a correct answer. In particular, he found that the 
optimal body of revolution has flat bluntness at the leading edge. Newton 
also considered inelastic interaction of particles of the medium with a body. 
In the latter case, the magnitudes of the local and integral forces are smaller 
by a factor of two than in the elastic case, but the optimal shape of the body 
remains the same. The necessity to take into account the possibility of the 
existence of flat bluntness in the mathematical formulation of the problem 
renders this problem methodologically interesting and instructive. The study  
of the calculus of variations and of the optimal control theory is often 
accompanied by analysis of this problem (see, e.g., Alekseev et al., 1987; 
Edwards, 1997; Ivanov, 1998; Silva and Torres, 2004). The results obtained 
by Newton did not invoke particular interest among researchers in the field 
of aerodynamics because he used models for projectile-medium interaction 
that did not realize the desired degree of accuracy in practice. The situation 
changed drastically with the emergence of supersonic velocities and cosmic 
flights. Interestingly, Newton’s model was used mainly not for calculating 
the drag experienced by a body in a free molecular flow regime at high 
altitudes but for aerodynamic calculations for flight in a dense atmosphere at 
supersonic and hypersonic velocities. In these calculations, the collisions of 
gas molecules with the flying body were considered completely inelastic, 
and the corresponding approach was referred to as “Newton’s theory”, 
“Newton’s drag law” etc. (Hayes and Probstein, 1959; Chernyi, 1969). 
These developments stimulated numerous studies on the application of 
Newton’s model to shape optimization of flying bodies. Many interesting 
results obtained in this field were surveyed in the monograph of Miele 
(1965). Naturally, the interest was regenerated in the problem of determining 
a body of revolution with minimum drag that had been solved by Newton at 
the end of the 17th Century. Eggers et al., 1957 (see also Miele, 1965) 
studied this problem and its modifications using the modern mathematical 
apparatus. They found an analytical solution of Newton’s problem and 
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determined the equation of the generator of the optimal shape in a closed 
form.  

Let us return to optimization of impactors having the shape of bodies of 
revolution. Jones et al. (1998) considered such problem using the two-term 
Newton’s LIM without friction determined by Eq. (2-9.31) and employed 
the “shape factor” as the optimization criterion. Later, Jones and Rule (2000) 
showed that the criterion of the maximum DOP implied the same variational 
problem. In the latter case, the optimization problem is identical to “Newton’s 
optimization problem” in aerodynamics, which permits an analytical solution.  
In their solution, Jones et al. (1998) used two approximate methods. The first 
method is a perturbation method  that assumes that the ratio LR  is a small 
parameter ( R  and L  are the radius of a shank and impactor’s length, 
respectively). The second method involves minimization of a target 
functional in 5-dimensional parameter space, where the chosen class of 
functions permits only generators that pass through the origin. Although the 
mathematical formulation of the problem does not permit the possibility of 
the existence of optimal shapes with flat bluntness, the “best” approximate 
solutions tend to describe impactors having exactly this shape (especially 
when the ratio LR  is not small). Based on their numerical findings, Jones 
et al. (1998) arrived at the correct conclusion that an “optimal penetrator” 
has a blunt tip. Certainly, this conclusion follows directly from the known 
analytical solution of the problem. In their further study, Jones and Rule 
(2000) investigated a new problem, namely, maximization of the DOP using 
the two-term LIM and taking friction into account. The mathematical 
formulation of the problem does not provide for the possibility of the 
existence of optimal shapes with flat bluntness, and the situation repeats 
itself. Numerical simulations performed by Jones and Rule (2000) showed 
that for some values of the parameters the predicted impactor tip is “as close 
to blunt-ended as possible”. The latter effect can be explained by the fact 
that if friction is taken into account, optimal impactors also have flat 
bluntness (Ben-Dor et al., 2003a). 

By emphasizing the necessity to account for the existence of flat 
bluntness in formulating these applied variational problems, we simply 
situation somewhat. The equation of the generator of a body of revolution 
can be written as )y(xx = , where the origin of the coordinate system is 
located at the leading edge, the x -axis is directed along the axis of 
symmetry of the body, and the y -axis is normal to the projectile’s axis of 
symmetry. Then, in the formulation of the problem, one must include the 
condition 0)y(x ≥′  (Alekseev et al., 1987) that automatically implies the 
existence of shapes with flat bluntness and excludes from consideration 
saw-like generators (see Figure 5-1). Admitting the saw-like generators 
allows us to make a target function arbitrarily small, but this solution has no 
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practical sense, since without the condition 0)y(x ≥′ , our variational 
problem is not properly posed. 

Despite the availability of well developed methods for investigating 
variational problems, practical solution of these problems requires some 
experience and intuition that allow one to obtain correct results by using 
reasonably less rigorous considerations. Note also that the investigation of 
practical problems is generally performed using the necessary conditions for 
the optimum. 

 

Figure 5-1. Saw-shaped generator of a body of revolution. 

Variational problems associated with shape optimization of impactors 
have some peculiarities, which have also been encountered in application of 
LIMs in aerodynamics. Miele and Hull (Miele, 1965) investigated a problem 
of a minimum drag projectile, for which pressure was found using Newton’s 
model and the shape of the shank or its surface area were known. They 
showed (with some additional restrictions) that for the optimal projectile 

*
00 unvu =⋅−=
rr , where *u  is a constant that depends upon a coefficient of 

friction. Berdichevsky (1975) investigated a similar problem without friction 
but with some additional requirements for the shape of a projectile and 
demonstrated that certain versions of the optimization problem are 
well-posed while some others are ill-posed. The simplest version of the 
ill-posed problem is to find a minimum-drag conical projectile with a given 
shape of the shank, without additional restrictions. Clearly the drag can be 
made infinitely small by increasing the height of the cone. Dubinsky, 1980 
(see also Bunimovich and Dubinsky, 1995) extended the results by Miele 
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and Hull to LIMs.  Yakunina (2000a,b) proposed procedures for constructing 
projectiles with minimum drag from conical and plane elements with 
constant *

00 unv =⋅−
rr . Later, Yakunina (2001) used DOP as the criterion of 

optimization and two-term LIMs for the normal and tangent forces to extend 
this theory to 3-D impactors. Although at first sight this approach is quite 
neat and attractive, there are several factors that restrict its applicability. 
Mathematical formulation of the problem by Yakunina (2001) does not 
allow to introduce a restriction on the length of the projectile. The 
Euler-Lagrange equation yields a solution with 1u0 * <<  only for particular 
values of the parameters of the model and impact velocity, while the 
physical meaning of the solutions with 0u* =  and 1u* =  is doubtful. 
Particularly disturbing is the fact that the solution is strongly affected by the 
value of friction coefficient frµ ; this coefficient is often used in penetration 
models for calibration and its magnitude can be varied in a wide range. 
Experiments have shown that the friction coefficient frµ  for penetration of a 
metal shield by a metal striker is negligibly small (Kraft, 1955; Recht, 1990), 
and at the same time the assumption 0fr =µ  renders the optimization 
problem degenerate. 

Aptukov and Pozdeev (1982) considered the minimax problem for 
determining the shape of an impactor (body of revolution) that penetrates to 
the maximum depth under the most unfavorable distribution of the 
mechanical properties along the depth of a SIS with a given areal density. 
The two-term LIM without friction was used with a linear relationship 
between the parameters of the model.   

Shape optimization of penetrating impactors were studied by Ben-Dor et 
al. (1997a,c; 1999d; 2000a; 2001a; 2002a,b,c; 2003a,b). In a number of 
sections of this monograph, we use some previously published studies, but 
we also present the results that are original and have not been published 
before. 

2. BASICS OF THE CALCULUS OF VARIATIONS 

In this section and the subsequent section, we present some analytical 
and numerical methods of the calculus of variations. This survey is by no 
means complete or rigorous. Our goal is to facilitate an understanding of the 
methods used in this monograph for solving particular engineering problems. 
Therefore, the material is presented in the form most suitable for achieving 
this goal.  

The simplest problem of the calculus of variations for the function of one 
variable is presented in many textbooks and handbooks (see, e.g., Korn and 
Korn, 1968; Gelfand and Fomin, 1963; Ewing, 1985). This problem is to 
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find, among a class of functions )x(y , the function (the minimizer)  that 
minimizes the functional: 

( )∫ ′=
b

a

dx)x(y),x(y,xF)]x(y[I , 

where function )x(y is defined for bxa ≤≤ , and function F  has first and 
second continuous partial derivatives with respect to y,x  and y′ . The 
problem of maximization can be reduced to the problem of minimization by 
changing the sign of the functional )]x(y[I . The boundary values ay and 

by  (see Figure 5-2) where 

ba y)b(y,y)a(y ==

can be given or left free. 

 
Figure 5-2. Notations. 

The function )x(y minimizes the functional determined by Eq. (2.1) if 
and only if it satisfies the Euler-Lagrange differential equation: 

0F
dx
dF yy =− ′

where yF  and yF ′  are the partial derivatives of F  with respect to its 
corresponding arguments. This equation can be rewritten as: 

y

0

by

ay

a b x

)x(yy =

(2.1)

(2.2)

, (2.3)
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0FFFyFy yyxyyyy =−+′+′′ ′′′′

The solution of this equation (the extremal) takes the form: 

)c,C;x(yy =

where C  and c are constants. 
Several cases are known for which the first integral of the 

Euler-Lagrange equation can be determined. In particular, if F does not 
depend explicitly on x , i.e., 

)y,y(FF ′=

then the following expression is valid: 

CFyF y =′− ′

The solution of the variational problem must satisfy the Lagrange  condition: 

0F yy ≥′′

The Erdmann-Weierstrass corner conditions allow us to determine the 
locations of the points at which y′  has a jump discontinuity (if these points 
exist). The following conditions must be satisfied at such points: 

0)F(,0)FyF( yy ==′− ′′ ∆∆ , 

where (...)∆  denotes the difference between the corresponding values to the 
left and to the right of the point of discontinuity. The points where 0F yy ≠′′  
cannot be the corner points. 

The transversality conditions are formulated as follows: 

0]FyF[ axy =′− =′  if  a  is free, (2.10) 

0]FyF[ bxy =′− =′  if  b  is free, (2.11) 

0]F[ axy ==′  if  ay  is free, (2.12) 

Chapter
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0]F[ bxy ==′  if  by  is free, (2.13) 

where ax[...] = and bx[...] = mean that the expressions in the square brackets 
(values y,x  and y′ ) are calculated at ax =  and bx = , respectively. 

Functionals of more general form than functionals determined by 
Eq. (2.1) are not uncommon in impact dynamics in applications concerned 
with shape optimization. Let us consider generalized functional of the 
following form (Brady, 1938; Bunimovich and Dubinsky, 1973; Cherkaev 
and Cherkaeva, 2003): 

)I,...,I,I,y,y,b,a(f)]x(y[J N21ba=

where f  is some function, 

( )∫ ′==
b

a
iii dx)x(y),x(y,xF)]x(y[II ,  N,...,2,1i = . (2.15) 

Investigation of such functionals can be reduced to the study of the 
functional in the form given by Eq. (2.1) with: 

( ) ( )∑
=

′=′
N

1i
ii )x(y),x(y,xF)x(y),x(y,xF λ

)
, (2.16) 

and with modified transversality conditions: 

0]afFyF[ axy =∂∂−′− =′  if  a  is free, (2.17) 

0]bfFyF[ bxy =∂∂+′− =′  if  b  is free, (2.18) 

0]yfF[ axay =∂∂− =′  if  ay  is free, (2.19) 

0]yfF[ bxby =∂∂+ =′  if  by  is free. (2.20) 

The constants iλ
)

 ( N,...,2,1i = ) are determined from the following 
equations: 

, (2.14)
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),...,,;x(y~yi
i

N21
I
f

λλλ

λ
)))

)

=∂
∂=

where ),...,,;x(y~y N21 λλλ
)))

=  is the solution of the optimization problem for 
the functional given by Eq. (2.16). 

If some 
*iλ

)
is positive (without the loss in generality, we can assume that 

01 >λ
)

), the functional in Eq. (2.16) can be replaced by the functional: 

( ) ( ) ( )∑
=

′+′=′
N

2i
ii1 )x(y),x(y,xF)x(y),x(y,xF)x(y),x(y,xF λ , (2.22) 

and the solution of the optimization problem for this functional 
),...,;x(y~y N2 λλ=  is used in the equations: 

),...,;x(y~y1i
i

N2
I
f

I
f

λλ

λ
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂=

Note that well-known Bolza functional encountered in solving the 
variational problem with the same name is the particular case of the 
functional given by Eq. (2.14) with:   

)]x(y[I)y,y,b,a(f)]x(y[J 1ba0 +=

where 0f  is some function. 

3. NUMERICAL METHOD OF LOCAL 
VARIATIONS 

In this section, we consider briefly a very convenient numerical method 
for solving variational problems for generalized functionals described in 
Section 5-2, namely, the method of local variations (Chernous’ko and 
Banichuk, 1973). As is the case for most existing numerical methods, it 
allows us to find only local extremum. Using the notations of the previous 
section, we have outlined the method applied to the functionals of the 
following form: 

)I,...,I,I,y,y(f)]x(y[J N21ba=

Chapter
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We assume that )x(y varies in the range between miny  and maxy , when 
bxa ≤≤ . We can impose additional constraints on y,x  and y′ as well as on 

the integrals iI . In particular, ay  and by  can be given or left free.  
To solve the minimization problem for the functional given by Eq. (3.1), 

the function )x(y can be approximated as a piecewise linear function 
determined by the values b

)n()1n()j()1(
a

)0( yy,y,...,y,...,y,yy == −  in  
1n +  equally spaced mesh points of interpolation, respectively, 

,ax )0( = ,...,x,...,x )j()1( bx,x )n()1n( =− , where ),x(yy )j()j( =  ,xjx )j( ∆=  
,n/)ab(x −=∆  n,...,2,1j = . The unknown solution y  varies in this range 

of arguments and assumes discrete values, i.e., miny , yymin ∆+ ,…,
y)1m(ymin ∆−+ , where maxmin yymy =+ ∆  and m/)yy(y minmax −=∆  (see 

Figure 5-3). Then the integrals in Eq. (2.15) can be approximated as: 
  

 

Figure 5-3. Discretization of the problem. 

( ) ( )∑
=

−=
N

1i

)j()1j()j(
i

)n()0(
i y,yIy,...,yI , 

where 

)n(xb =)0(xa =

miny
x∆

y∆

x

maxy

0

)j(y

)j(x

(3.2)
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( )

.
x
yy,

2
yy,

2
xxFx

dx)y,y,x(Fy,yI

)1j()j()j()1j()j()1j(

i

x

x
i

)j()1j()j(
i

)j(

)1j(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −++≈

′=

−−−

− ∫
−

∆
∆

 (3.3)  

Similar discretization must be performed for the expressions that describe 
the constraints. 

The minimization problem is to find (with required accuracy) 
)1n()0( y,...,y,n −  that satisfy the constraints and provide the minimum value 

of the functional J  determined by Eq. (3.1). In summary, the numerical 
minimization procedure comprises the following three steps. 

Step 1. Choose the initial approximation, i. e., the initial values n  and 
)n()0( y,...,y , taking into account the constraints, and calculate all )j(

iI  
using Eq. (3.3) and the current value of the criterion J using Eq. (3.2). Since 
the method allows us to determine only a local minimum, several 
calculations must be performed with various initial approximations.  

Step 2. Perform sequentially the following calculations for n,...,0j = . 
Change )j(y  by the increments y∆  and )y( ∆− .  If the constraints are 
satisfied, then a new value of the criterion += JJ ( −= JJ ) is calculated 
using Eqs. (3.1)-(3.3); otherwise set +∞=+J  ( +∞=−J ). If  

)J,Jmin(J −+ <  then yy )j( ∆+  is set as a new value of the function at the 
point )j(x  and += JJ  is set as a new value of the criterion. If 

)J,Jmin(J +− < , then yy )j( ∆−  and −= JJ  are set as the new values of 
the function and of the criterion, respectively. If )J,Jmin(J −+≤ , then J  
and )j(y  retain their values. Note that only two integrals at most, )j(

iI  and 
)1j(

iI − ,  must be recalculated for correcting the criterion when the value )j(y  
is changed. If the value of the function is changed in the cycle of 
calculations for n,...,0j = , the entire cycle is repeated. If the function and 
the criterion cease to change at step 2, then control is transferred to step 3 of 
the procedure. 

Step 3. If  the function and the criterion were changed at step 2 and the 
change of the criterion is within the allowable error limits, then the 
calculations are terminated.  Otherwise, parameter n  is increased by a factor 
of two, the values of the function y  in new nodal points of the mesh are 
calculated using a linear approximation, and control is transferred to step 2 
of the procedure. The conditions of the convergence of the procedure are as 
follows: 0)x(y,0x →→ ζ∆∆∆ , where 2≥ζ . 
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Chapter 6 

SHAPE OPTIMIZATION OF IMPACTORS 
PENETRATING INTO DUCTILE SHIELDS 
 

 
 

1. TWO-TERM MODEL: NEWTON’S SOLUTION  

Let us consider shape optimization of the impactor having the geometry 
of body of revolution penetrating into a SIS. We assume that the model 
given by Eq. (2-9.31) is valid and that friction between the impactor and the 
shield may be neglected. A dimensionless expression for the DOP can be 
obtained from Eqs. (2-9.30), using Eq. (2-9.25) for iB , in the form: 

)J1ln(
J
1H 22
2

λ+=

where 

L
R,

L
rr,

xd
d,

L
,

L
xx ===′== τΦΦΦΦ ,  (1.2) 

2
0

2
imp2

2 a
va
τ

λ = ,  
m

La2 2
2

3
πλ = , HH 3λ=

xd
1

2r)]x([J
La

BJ
1

0
2

3
2

22
2

2
2 ∫ +′

′
+===

Φ
ΦΦΦ

π
. (1.4) 
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Since  

0
)J1(

d
Jd
Hd,

J1
dH

22

0
2

220 2
<

+
−=

+
= ∫∫

λλ

ζ
ζζ

ζ
ζ  , (1.5) 

it can be concluded that H is a decreasing function of 2J when 2λ  and 3λ  
are fixed (this property for the case 0r =  was discussed by Jones and Rule, 
2000). The latter conclusion has certain implications, as discussed below. 

Let us consider the problem of determining the shape of the impactor 
having the maximum DOP determined by the functional )]x([H Φ among 
the impactors with a given length L  and shank radius R , where 

R)L( =Φ

and the parameters describing the properties of the shield, 0a  and 2a , the 
mass of impactor m  and the impact velocity impv  are given. Then the 
solution of the problem of minimization of the functional )]x([J2 Φ , 

min)]x([J2 →Φ

taking into account the constraint  

τΦ =)1(

provides the solution of the above-described initial problem (after 
transforming the impactor’s generator equation into the dimensional form).  

 The variational problem given by Eqs. (1.7) and (1.8) is the classical 
problem of Newton discussed in Section 5-1. Let us present here the solution 
of this problem in modern notations (Alekseev et al., 1987; Miele, 1965). 
The equation of the generator of the optimal impactor reads:  

 1tt),t(r)t(),t(r)t(x *
121 ≤≤== ϕΦϕ , (1.9) 

where 

)t(
1r *

11ϕ
=

Chapter
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3

22

24

442

1 t4
)1t()t(,

t16
t7tlnt4t43)t( +=−++= ϕϕ . (1.11) 

Parameter *
1t , the derivative of the optimum impactor’s generatrix at its end 

point, Lx = , satisfies the following equation:  

0)t()t( 1112 =−τϕϕ

The solution of Eq. (1.12) is shown in Figure 6-1. The shape of the 
generatrix of the optimal impactor is shown in Figure 6-2 for different 
values of τ . The optimum impactor has flat bluntness with a relative shank 
radius R/r  that increases with τ . 
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Figure 6-1. Dependence of  *
1t  vs. τ . 

The minimum value of the functional 2J  is: 

4

4246

3*
1

2
2

*
13

2
min
2 t4

3tlnt4t10t17t2)t(,
)t(8
)t(J +−++== ϕ

ϕ
ϕτ .  (1.13) 

As we shall see subsequently, many problems of shape optimization of 
penetrating impactors are reduced to Newton’s problem. 

It must be noted that if instead of the model determined by Eq. (2-9.31), 

. (1.12)
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Figure 6-2. Shape of the generator of the optimal impactor. 

we consider the model given by Eq. (2-9.27) with constA0 = , then the 
optimization problem also reduces to minimization of some integral 
functional because in this case as well as in Eq. (2-9.27), constB0 = (see 
Eq. 2-9.26 for 0fr =µ ). Eq. (2-9.17) implies that the classic variational 
problem for the integral functional is also obtained for 3-D impactors with a 
given area of the shank when the model with constA0 =  and constA1 =  is 
used. In this case also,  constB0 = .  

2. TWO-TERM MODEL WITH FRICTION: 
NUMERICAL INVESTIGATION  

Consider now the problem similar to the problem in Section 6-1 taking 
into account the friction between the impactor and the shield. Here we use 
the results obtained by Ben-Dor et al. (2003a). Earlier, the same problem 
was considered by Jones and Rule (2000). The differences between the two 
approaches is discussed in Section 5-1.  

A dimensionless expression for the DOP can be obtained from 
Eqs. (2-9.30) and (2-9.25) in the following form: 

Chapter



Shape optimization of impactors penetrating into ductile shields 115
 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

0

2
4

2 K
K1ln

K
1H λ

where Eq. (1.2) remains valid, 3λ is determined by Eq. (1.3), 

∫∫ +′
+′′

+=+′+=
1

0
2

fr
2

2
2

1

0
fr

2
0 xd

1
)(

2rK,xd)(2rK
Φ

µΦΦΦ
µΦΦ  (2.2) 

 and 

0

2
imp2

4 a
va

=λ ,      2
i

i
i La

BK
π

= ,   2,0i = .  

The problem of optimization, 

max)K,K(HH 20 →=

is investigated taking into account the condition given by Eq. (1.8) and the 
following constraints: 

0)x( ≥′Φ , τΦτ ≤≤ )x(x , 1x0 ≤≤

The constraint Φτ ≤x is introduced so as to eliminate from consideration 
sharp bodies with a needle-shaped part of the nose  that are of no practical 
significance. This constraint implies that a sharp cone with a generatrix 

xτΦ =  is an optimal impactor for relatively small 4λ . Indeed, expanding 
the logarithm in the expression for the DOP given by Eq. (2.1) in power 
series of 4φλ , where 

0

2

K
K=φ

we obtain: 

∑
∞

=

−−=
1

41

2

)()1(
K
1H

ν

ν
ν

ν
φλ

Since 

 , (2.1)

(2.3)

, (2.4)

. (2.5)

, (2.6)
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0xd
1

)(
2KK

1

0
2

fr
20 >

+′
+′

=− ∫ Φ
µΦΦ

and, consequently, 1<φ , the series in Eq. (2.7) converge for 14 ≤λ . Then 
for small 4λ , Eq. (2.1) can be written as: 

1fr
2

4

0

4

2

4

K2KK
H

µτ
λλφλ

+
==≈

In Eq. (2.9), the following transformation of the integral 0K  is used: 

1fr
2

1

0
fr

1

0

2
2

0 K2xd2xd
xd

drK µτΦµΦ +=++= ∫∫ ,  (2.10) 

where 

∫=
1

0
1 xdK Φ

Taking into account Eq. (2.5) we may conclude that in the limiting case 
under consideration the minimum 1K  (maximum H ) is attained when 

xτΦ = , i.e., for a cone-shaped impactor. 
The results of numerical calculations were obtained using the method of 

local variations (see Section 5-3). The shape of the generatrix of the 
optimum impactor is shown in Figure 6-3a-b. For *

44 λλ ≤ , where *
4λ  is a 

boundary value depending on τ  and frµ , the optimal impactor is a sharp 
cone, while for *

44 λλ > , the optimal impactor has flat bluntness. 
The maximum DOP, maxH , as a function of the parameter 4λ  (for 

convenience, written in transformed variables) is shown in Figure 6-4a-d. 
Inspection of these figures reveals that the influence of friction coefficient 
on maxH is significantly enhanced with the increase of 4λ , i.e., with the 
increase of impact velocity for a given shield material. 

Figure 6-5 shows that not only the shape of the optimum impactor is 
close to a blunt (in general case) cone but also that the maximum DOP of the 
optimal impactor maxH  and the maximum DOP of the optimal truncated 
conical impactor conemaxH  are also close. The difference in DOP between the 
optimal impactor and the optimal truncated conical impactor decreases with 
an increase of the friction coefficient. Therefore, the optimal truncated cone 
(a body having a rather simple shape) penetrates to the depth that is close to 

Chapter
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the optimal depth. Dimensionless radius of the bluntness of the optimal cone 
R/r coneopt  as a function of 4λ  is shown for different τ  and frµ in 

Figure 6-6a-d. 
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Figure 6-3. Shape of the generator of the optimal impactor. 
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Figure 6-4. DOP of the optimal impactor, maxH , as a function of parameter 4λ , for different 
τ  and frµ . 
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Figure 6-5. Comparison between the values of the DOP for the optimal impactor, maxH , and 
the optimal truncated conical impactor, conemaxH . 
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Figure 6-6. Radius of bluntness of the optimal truncated conical impactor coneoptr  normalized  
by the radius of the shank of the impactor R  , for different  τ  and frµ . 

3. THREE-TERM MODEL: FORMULATION OF 
THE PROBLEM 

To describe the impactor-shield interaction, we use the model that was 
proposed and studied by Warren and Forrestal (1998). This model is based 
on the SCEA in the form determined by Eq. (3-1.8), and it implies the LIM 
described by Eq. (2-9.22), 01

22
2n auvavua)v,u( ++=Ω  with 0fr =µ  and  

7sh3
i
37ii ,2,1,0i,a~a µγµµµ ===

where 7µ is the uniaxial compressive strength of the material of the shield, 
shγ  is density of the non-deformed material of the shield, and 

)2,1,0i(a~i = are the dimensionless coefficients determining the properties 
of the material of the shield. Values ia~  for aluminum are given in Table 6-1 
(Warren and Forrestal, 1998). 

In this study, we undertook to investigate this problem analytically for 
the models 2-4 given in Table 6-1. Model 1 was studied in Section 6-1, and 
the results obtained for this model will be used only for the completeness of 
the presentation. 

Chapter

, (3.1)
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Table 6-1. Parameters of the models for an aluminum shield (Warren and Forrestal, 1998) 
Model number Characteristic of the model 0a~  1a~  2a~  
1 Incompressible without strain rate effects 4.8376 0.0 1.5 
2 Incompressible with strain rate effects 5.5468 0.6255 1.4377 
3 Compressible without strain rate effects 4.4534 0.4680 0.9926 
4 Compressible with strain rate effects 5.0394 0.9830 0.9402 

 
The expression for determining the DOP is given by Eq. (2-9.19): 

∫ ++
==

impv

0 01
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2
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dm)v;B,B,B,1,1(mMH
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ζζ , (3.2) 

where  10 B,B  and 2B  can be determined from transformed Eqs. (2-9.25) and 
(2-9.26):  

2
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The integral in Eq. (3.2) can be evaluated through elementary functions as 
shown in Appendix 2.  

Equations. (3.3) and (3.4) can be written as follows: 

i
i
3

2
7i eRB µπµ=

where 

L
R,2,1i),J21(a~e,0a~e i2ii00 ==−=>= τ

τ
, (3.7) 

xd)(J
1

0
ii ΦψΦ ′= ∫ ,     2,1i = ,  (3.8) 

, (3.3)

,

, (3.4)

, (3.6)
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Using Eqs. (A2.15), (A2.16) and (3.6), we can transform the expression 
for the DOP (Eq. 3.2) as follows: 
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Therefore, the dimensionless DOP can be written as: 
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2
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2
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Let us show that 0e,e 21 >  if 0a~,a~ 21 > . The following estimations 
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imply that 0e,e 21 ≥ . Now let us prove that 0e,e 21 ≠ . Consider the 
equations )2,1i(0ei == , which can be written as: 
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The first integral in the left-hand side of Eq. (3.15) is equal to 
])Lr([5.0 22 −τ , and therefore this equation yields: 
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The integral in Eq. (3.16) is larger than or equal to zero. Therefore, the 
right-hand side of Eq. (3.16) is less than or equal to zero, and equality can be 
attained only if 0r =  and )const(0 ==′ ΦΦ  for 1x0 ≤≤ . The 
contradiction of these conditions implies that 0e,e 21 ≠ . 

The considered problem is to maximize the DOP for a SIS with the 
known impact velocity and parameters determining the mechanical 
properties of the shield. The mass, length and shank radius of the impactor 
are assumed to be given. The problem reduces to the optimization of the 
functional H  in Eq. (3.11) with given parameters τ,v,a~,a~,a~ imp210 , where 
the solution must satisfy the following condition: 

τΦ =)1(

Although the expression for the DOP H  does not depend explicitly on a 
radius of a flat bluntness, the model also allows a truncated impactor. This is 
very important because a high-speed optimal impactor has bluntness, as is 
shown below. 

4. THREE-TERM MODEL: INVESTIGATION OF 
THE VARIATIONAL PROBLEM 

4.1 Outline of the method of solution 

The optimization criterion, the functional )]x([H Φ , is determined by 
Eq. (3.11), and it depends on the functionals 1J  and 2J  through the 
parameters 1e  and 2e . Functionals 1J  and 2J , in turn, depend on the 
unknown solution )x(Φ . According to the method described in Section 5-2, 

(3.15)

(3.16)

. (3.17)
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this non-classical variational problem can be reduced to investigating the 
following functional:  

∫ ′=
1

0

xd),(F̂Ĵ ΦΦ ,   )()(),(F̂ 2211 ΦψΦλΦψΦλΦΦ ′+′=′
))

, (4.1) 

where functions 1ψ  and 2ψ  are determined by Eq. (3.5) and )2,1i(i =λ
)

 are 
some unknown constants. Therefore, the solution of the variational problem 
for a functional given by Eq. (4.1) depends on these constants. These 
constants are determined by the following formulas: 
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where the integrals )v;e,e,e,2,2(M imp210  and )v;e,e,e,3,2(M imp210  are 
calculated for the optimum solution of the variational problem. Since 02 >λ

)
,

 the criterion given by Eq. (4.1) can be replaced by the following functional: 
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Although the optimization criterion is represented in a form that does not 
depend explicitly on the dimensionless radius of the impactor’s flat 
bluntness, )0(Lrr Φ== , the model also allows truncated impactors, i.e., 
r  is considered as an unknown parameter to be determined.  

We studied the variational problem for the functional J  using the 
necessary conditions for the extrema. Generally, the variational problem is  
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solved in the following manner. First, a solution, )x,(opt λΦΦ = , is found 
for every parameter 0>λ . Then, a decreasing function )(vimp λ  is 
determined (for a given τ ) such that if *λ  is a root of the equation 

*impimp v)(v =λ , then )x,( *opt λΦΦ =  is the solution of the considered 
variational problem for a given impact velocity *impv . 

4.2 The necessary conditions 

Since the integrand F  in Eq. (4.3) does not depend on x , the 
Euler-Lagrange equation has a first integral (see Eq. 5-2.7), CFF =′− ′ΦΦ , 
which can be written as follows: 

C)(0 =′ΦϕΦ

where C  is a constant and 
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A transversality condition written for the initial point 0x =  
(see Eq. 5-2.12), 0)F( 0x ==′Φ , reads: 

0)t(r 01 =ϕ
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A Legendre condition (see Eq. 5-2.8) written with the less than or equal 
to sign because the problem of maximization is considered, 0F ≤′′ΦΦ , 
yields: 

0)(2 ≥′ΦϕΦ

, (4.7) 

,  (4.9) 

, (4.10) 
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4.3 Constructing the solution 

4.3.1 Investigation of the equation for determining *
0t  

Since 0r ≠  (see Eq. 4.7), Eq. (4.9) implies that *
0t  (optimal value 0t ) 

must be determined as a root of the equation:  

0)t( 01 =ϕ  . (4.14) 

Let us now prove that the latter equation has a unique solution. The 
function )z(1ϕ is defined by Eq. (4.11), and it can be written as: 
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Let us solve the inequality: 

0)z(*
1 <ϕ

After a change of variables Zz2 = , inequality (4.17) reads: 

1
)1Z(

)2Z(Z
2/3 >

+
+

After some algebra, we obtain: 

01ZZ 2 >−+   (4.19) 

Taking into account the condition 0Z ≥ , the solution of the inequality (4.19) 
is )15(5.0Z −> . Finally, the solution of the  inequality given by 
Eq. (4.17) reads: 

where 
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,  (4.15) 

. (4.17) 

. (4.18) 



Shape optimization of impactors penetrating into ductile shields 129
 

 

786.0)15(5.0t~,t~z ≈−=>

Therefore, for t~1z >> the inequalities 0)z(*
1 <ϕ  and 0)z(**

1 <ϕ  are valid, 
and, consequently, 0)z(1 <ϕ . Thus, Eq. (4.14) cannot have a root that is 
larger or equal to 1. 

Equations (4.11) and (4.13) imply that  0)z()z( 12 >′−= ϕϕ  for 1z0 << , 
i. e., the function )z(1ϕ decreases in the range of z  from 0  to 1 . Since  

01)0(1 >+= λϕ

0061.0)2/31()1( 2/3
1 <−≈−= λλϕ

there exists only one root. Calculating )z(1ϕ  at some intermediate point: 

0146.0)537(5.0)t~(1 >≈−=ϕ

we conclude that the unique root of Eq. (4.14), *
0t , satisfies the following 

inequality: 

1tt~ *
0 <<

4.3.2 Equation of the extremal 

Using a parameter 

Φ ′=t

we may write the solution of Eq. (4.7) as: 
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0C > , *
01 ttt0 ≤<< ,

and the value of parameter t , 1tt = , corresponds to the boundary point 
τΦ == ,1x . 

Since 
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we conclude that Eqs. (4.26) and (4.27) determine a convex curve.  
Clearly, a Legendre condition given by Eq. (4.12) is satisfied for every t , 

where 1tt0 0 <≤< . Since 0)t(2 ≠ϕ , the corner points do not exist. 

4.3.3 Investigation of the equation for determining *
1t  

Equations (4.26) and (4.27) written at the right boundary point read: 
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Equations. (4.31) and (4.32) yield an equation for 1t : 

0)t( 1 =Λ

where 

∫∫ −=
′−

−
′−

′′
=

z

t 0
3

z

t
2

*
0

*
0

)z(
1d)(

)z(z)z(
1

)t(
dt)z(

ϕ
ζζϕτ

ψψψψ
ψτΛ . (4.34) 

Let us prove that Eq. (4.33) has a unique solution at the interval )t,0( 0 . 
Taking into account that 0, 20 >ϕϕ and:  

where 
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we can establish some properties of the function )t( 1Λ .  
Let us investigate the behavior of the function )t( 1Λ  when 0t1 +→ . 

Equations (4.8) and (4.13) imply that 1,)t( 2
2

10 ∝∝ ϕϕ  and 0, 20 >ϕϕ . 
Using Eq. (4.36), we conclude that 4

1 )t( −∝′Λ  and 0<Λ . Since 
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then 
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)t(lim 10t1

Λ .

If τ>*
0t (see Figure 6-7a) , then )t( 1Λ  decreases from 0)t( *

0 <Λ  to 
0)( <τΛ , while 1t  decreases from *

0t  to τ ; a further decrease of 1t  to 0+  
implies increase of )t( 1Λ  to ∞+ . If τ<*

0t (see Figure 6-7b), then )t( 1Λ  
increases from 0)t( *

0 <Λ  to ∞+ , while 1t  decreases from *
0t  to 0+ . 

Consequently, Eq. (4.33) has the unique root *
0

*
11 ttt <= . 

4.3.4 Procedure for constructing a solution 

When *
1t  has been determined, C and r  can be found from Eqs. (4.31) 

and (4.26), respectively: 

)t(C *
10τϕ=
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Figure 6-7. Behavior of the function  )t( 1Λ .  
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The above-described procedure allows us to determine the optimum 
generatrix of the impactor for a given τ and some 0>λ  and to calculate the 
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parameters 1e and 2e .  Then, the  first relationship in Eqs. (4.6) can be 
considered as the equation for determining impv : 

0)v( imp =Ξ
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Let us prove that Eq. (4.41) has only one root. To this end, we use the 
expression for the derivative )W(Ξ ′ : 
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and the following property of the function )W(Ξ :   
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Ξ

The validity of Eq. (4.44) can be proved using Eqs. (A2.18)-(A2.22). 
Equations (4.42)-(4.44) show that the function )W(Ξ decreases from 

0)0( =Ξ  to 0)c( <Ξ  when W  increases from 0  to c.  A further increase 
of W  to ∞+ results in an increase of the function )W(Ξ  from a negative 
value )c(Ξ to ∞+ .  Consequently, Eq. (4.41) has only one root, 

cvv *
impimp >= . 

The optimum value of the dimensionless DOP, maxH , can be determined 
from Eqs. (3.11) where ie are found from Eq. (3.7) and the integrals iJ  are 
calculated for the optimum function defined by Eqs. (4.26) and (4.27). The 
expression for the optimum values of integrals iJ  reads: 
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The above-described procedure for constructing a solution is summarized 
in Table 6-2, in which the references to the relevant equations are given. 

Table 6-2. Sequence of steps for constructing the optimum solution 
Step Determined   parameter Equation 
1 *

0t  
(4.14) 

2 *
1t  

(4.33) 

3 C  (4.39) 

4 r  (4.40) 

5 *
impv

 
(4.41) 

6 opt
iJ  

(4.45) 

5. THREE-TERM MODEL: RESULTS AND 
DISCUSSION 

Numerical calculations performed using the above-described optimization 
procedure show the following. The shape and the DOP of the optimum 
impactor are very close to the shape and the DOP of the optimum truncated 
cone, where the shape of the optimum cone is determined for the same impv ,
τ  and the same model is used for impactor-shield interaction. The difference 
in the two DOPs is less than 2% for every 4v1 imp ≤≤ , 5.125.0 ≤≤τ  and 
for each of the considered models of the material of the shields. The ranges 
of variation of the bluntness radius when impv changes from 1 to 4 are shown 
in Table 6-3.  

Table 6-3. Normalized (divided by the shank radius) radius of the bluntness of the optimum 
truncated cone 
τ  Model 1 Model 2 Model 3 Model 4 
0.25 0.06 0.07 ÷ 0.09 0.07 ÷ 0.09 0.08 ÷ 0.10 
0.50 0.17 0.19 ÷ 0.20 0.19 ÷ 0.21 0.19 ÷ 0.23 
1.00 0.38 0.40 ÷ 0.41 0.40 ÷ 0.42 0.41 ÷ 0.43 
1.50 0.52 0.53 ÷ 0.55 0.53 ÷ 0.55 0.53 ÷ 0.56 

 
Inspection of Table 6-3 shows that the type of model and the magnitude of 
parameter impv  have only a weak effect on the shape of the optimum 
truncated cone. Therefore, the difference between the curves in 
Figure 6-8a-d is determined mainly by the difference in the models used to 
calculate the DOP and not by the difference in the optimum impactor’s 
shape for different models. Generally, the shape of the impactor can strongly 
affect the DOP. A comparison between the optimum impactor and the sharp 
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cone is shown in Figure 6-9 , where the DOP of the sharp cone and the DOP 
of the optimum impactor are the average values obtained for the  considered 
models. 
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Figure 6-8. Dimensionless DOP for the optimum impactor, maxH , vs. dimensionless impact 
velocity, maxv , for different models of the material of the shield and different values of the 

normalized thickness of the impactor’s nose, τ .  
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Figure 6-9. DOP of the impactor with a sharp conical nose normalized by the DOP of the 
optimum impactor vs. dimensionless impact velocity, maxv , for different values of the 

normalized thickness of the impactor’s nose, τ .  

impv

m
ax

H
H

/



  

 

Chapter 7 

SHAPE OPTIMIZATION OF IMPACTORS 
PENETRATING INTO CONCRETE SHIELDS 
 

 
 

1. TWO-STEP MODELS OF PENETRATION  

As a basic penetration model for shape optimization of impactors 
penetrating into concrete shields, we have adopted a slight modification of 
the three-term two-step model suggested by Forrestal and Tzou (1997). 
Here, we will not discuss the choice of the magnitude of parameter κ  in 
Eq. (3-1.9), since it does not affect the optimal shape of the impactor. We 
will start by deriving a formula for calculating the DOP, which is valid for 
an arbitrary 3-D body, including a body with a flat bluntness. Clearly, the 
two-term two-step model of Forrestal et al. (1994), which will be also used, 
is a particular case of three-term two-step model. 

Let us consider the penetration of a 3-D impactor with impact velocity 
impv  into a semi-infinite concrete shield. We assume that the two-stage 

penetration model is valid; the drag force in the first stage of penetration is 
given by Eq. (3-1.9) and the impactor-shield interaction model for the 
second stage is generally described by Eq. (2-9.15). Then, the formula for 
the drag force may be written as: 

⎩
⎨
⎧

≥
≤≤

= ◊

Rhif)v(D
Rh0if)h(D

D
0 κ

κ

where (see Eqs. 3-1.9 and 2-9.16): 

139
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01
2

20 BvBvB)v(D,hc~)h(D ++==◊ , 

κ  is some positive constant that does not affect the final result, and c~  is a 
constant that is determined from the condition of continuity of the resistance 
force at Rh κ= . Coefficients iB  are chosen from Tables 2-6 and 2-7; they 
depend on the particular penetration model adopted and the shape of the 
impactor.  

The equation of motion of an impactor with mass m  in the first stage of 
penetration may be written as: 

hc~
dh
dvmv −=

Now, let us consider the motion of the impactor between the initial 
( impvv,0h == ) and the final ( 0vv,Rh == κ ) locations in the first stage of 
penetration. Equation (1.3) yields:  

∫∫ −=
R

0

v

v

dhhc~vdvm
0

imp

κ

Calculating the integrals, we obtain: 

22
0

2
imp )R(c~)vv(m κ=−

Similarly, integration of the equation of motion of the impactor in the 
second stage of penetration, 

)BvBvB(
dh
dvmv 01

2
2 ++−=

between the locations 0vv,Rh == κ  and 0v,Hh ==  (H is the DOP) 
yields:   

∫∫ −=
++

H

R

0

v 01
2

2

dh
BvBvB

vdvm
0 κ

Using the notations given in Appendix 2, we obtain in a general case: 

Chapter

 (1.2) 

. (1.3) 

. (1.4) 

. (1.5) 

, (1.6) 

. (1.7) 
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)v;B,B,B,1,1(mMRH 0210+= κ

The condition of continuity of the resistance force at Rh κ= , 
)v(D)R(D 00=◊ κ ,  yields the following relationship: 

001
2
02 BvBvB)R(c~ ++=κ

Equations (1.5) and (1.9) allow us to exclude c~  and to obtain the 
relationship between impv  and 0v : 

0)Bv(vBv)B( 0
2
imp601

2
062 =−−++ λλ

where 

R
m

6 κ
λ =

If all 0Bi >  and 

60imp Bv λ>

then Eq. (1.10) has the unique positive root: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

−+
+

+
= 1

B
)Bv)(B(4

1
)B(2

Bv 2
1

0
2
imp662

62

1
0

λλ
λ

. (1.13) 

If a model with  

0B1 =

is considered, then, instead of Eq. (1.13), the following equation  

62

0
2
imp6

0 B
Bv

v
λ

λ
+

−
=

must be used, and Eq. (1.8) can be written in the following form (see 
Appendix 2):   

. (1.8) 

. (1.9) 

, (1.10) 

. (1.11) 

, (1.12) 

 (1.14) 

 (1.15) 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=+= 2

0
0

2

2
*20 v

B
B1ln

B2
mR)v;B,0,B,1,1(mMRH κκ . (1.16) 

2. SOLUTIONS FOR THE TWO-TERM MODEL  

2.1 Bodies of revolution 

Consider the problem of maximizing the DOP H  for a semi-infinite 
concrete shield (Ben-Dor et al., 2003b), with known parameters determining 
its mechanical properties, namely, the parameters 0a , 2a  and κ  in the two-
term model without friction determined by Eq. (2-9.31). It is assumed that 
the mass of the impactor having the shape of a body of revolution m , length 
L , shank radius R  and the impact velocity are given.  

Equations (2-9.25) and (2-9.26) imply that the only parameter in 
Eqs. (1.15) and (1.16) that depends upon the shape of the impactor is 2B . 
The dependence of H  on 2B  can be obtained by substituting 0v  from 
Eq. (1.15) into Eq. (1.16). To prove that H is a decreasing function of 2B , 
let us  rewrite Eq. (1.16) as follows: 

∫
+

+=
0v

0 2

0

2
0

B
B1

dmBRH
ζ

ζζκ . 

Differentiating Eq. (2.1) using the Leibnitz rule (Korn and Korn, 1968),  
we obtain: 

,
v

B
B1

v
)B(
Bv

2
1

)
B
B1(

d
B
1

B
B1dB

dvd

B
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d
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dH
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2
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v
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where the dependence of 0v  on 2B is given by Eq. (1.15). Since 
0dBdH 2 < , H is a decreasing function of 2B , and the minimum 2B  

provides the maximum H .  
Substituting 0v  from Eq. (1.15) and 0B  and 2B  as indicated in Table 2-7 

into Eq. (1.16), and using Eq. (6-1.2) and the relationships: 

R5.0
HH
κ

= ,  1
Ra

mv
3

0

2
imp

7 −=
πκ

λ , 2
2

8 RLa
m

πκ
λ = , (2.3) 

we may rewrite Eq. (1.16) as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++==
28

27

2

8
2 J

J1ln
J

2)J(QH
λ

λλ

xd
1

J,J2xd
1

2rJ
1

0
233

2
1

0
2

3
2

2 ∫∫ +′
′

=−=
+′
′

+=
Φ

ΦΦτ
Φ

ΦΦ . (2.5) 

Since 2
2

22 JLaB π= , using the dimensionless variables, the problem 
reduces to the variational problem given by Eqs. (6-1.7) and (6-1.8).  

The solution of this problem was discussed in Section 6-1.  In this section 
we determine the ‘relative optimal’ geometry of impactors for some simple 
classes of shapes and analyze how their efficiency compares with that of the 
“absolute optimum” impactor. Clearly, the minimization of 2J  is equivalent 
to the maximization of 3J . However, it is more convenient to consider the 
latter problem.  

It must be noted that when a two-term penetration model is used shape 
optimization of impactors penetrating into ductile and into concrete shields 
reduces to the minimization of the same functional. Therefore, the results for 
the optimal shapes of various classes of projectiles that are obtained 
Section 7-2 are also valid for ductile shields.    

When Newton’s model is used, the problem of finding a body of 
revolution having the minimum drag in a high speed gas flow reduces to the 
minimization of the same functional. Newton’s model has been used in 
gasdynamics for many years for solving various variational problems. 
Therefore, it is quite probable that results similar to those derived for 
penetration problems in Section 7-2.3 and 7-2.4 has been previously 
obtained in gasdynamics.  

Finally it must be noted that some generalizations discussed at the end of 
Section 6-1 are also valid in this case.  

, (2.4) 
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2.2 Truncated-conical impactors 

Let us consider a class of impactors with a conical shape and analyze 
their efficiency as compared to that of the optimum impactor. The equation 
of the generatrix of such impactor may be written as:  

( ) υτυΦ tanr,xtanrx −=+=

where υ  is an angle between the generatrix and the x -axis. Substituting 
Eqs. (2.6) into the second equation in Eqs. (2.5), we obtain: 

τυυυτυυ ≤≤−==− tan0),sin5.0cos(sin)(YJ conetr
3 . (2.7) 

To determine the shape of the optimal conical impactor, let us find the 
maximum of function )(Y υ . Since the first derivative is 

υττυ tanz),zz(cosY 22 =−+−=′

then 0)(Y >′ υ  for maxzz0 <≤ , 0)(Y max =′ υ , and 0)(Y <′ υ  for 
τ<≤ zzmax ,  where 

)2(tan
2
1)z(tan,

2
114z 1max1max

2
max τυ

τ
τ −− ==−+= . (2.9) 

Consequently, maxυυ =  is the location of the maximum of )(Y υ . Then 
Eqs. (2.6) and (2.7) yield the following formulas for the radius of the 
bluntness of the optimal truncated conical impactor and the optimal value of 
the functional 3J : 

4
114J,

114

21r
R

r 2
conetropt

32

conetroptconetropt −+=
++

−== −
−− τ

ττ

For a sharp cone τυ =tan , and Eq. (2.7) yields the following formula 
for the value of the functional 3J :  

)1(2
J 2

2
conesh

3 +
=−

τ
τ

Chapter

, (2.6) 
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Plots of  conetr
3J −  versus the normalized radius of bluntness  

τ
r

R
rr~ ==

for different τ  are shown in Figure 7-1. The variation of the function is 
quite small in the neighborhood of the maximum, specially for relatively 
small τ . This means that the radius of the flat bluntness can be changed  
in the vicinity of the optimal value (see Figure 7-2) without considerable 
loss in the value of the integral 3J . Plots of  3J  versus  τ  for an optimal 
truncated cone and a sharp cone are shown in Figure 7-9. 

This problem was first investigated by Newton (1687). The solution of 
this problem in modern notation can be found in Edwards (1997). 
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Figure 7-1. Functional  conetr
3J −  vs. normalized radius of the bluntness of a truncated-conical 

impactor, Rrr~ = .  

2.3 Truncated-ogive impactors 

The equation of the generatrix of the impactor with a truncated-ogive 
nose (see Figure 7-3) in dimensionless variables may be written as:  

1x0,)1x(qq)x( 22
11 ≤≤−−+−= τΦ , (2.13) 

−

 (2.12) 
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Figure 7-2. Normalized radius of the bluntness of the optimum truncated-conical impactor 
Rr conetropt −  vs. normalized thickness τ .  

 

Figure 7-3. Shape of the nose of a truncated-ogive impactor.  

where Lqq 11 =  is the dimensionless ogive radius. This is an equation of 
the circle arc of the radius 1q  with the center at the point 

1x = , 0q1 ≤−=τΦ . We must now take into account the conditions that 
follow from the geometrical considerations: 

Φ

τ

1

1q

x
0

r

−
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0)0(,1q,q 11 ≥≥≥ Φτ

Solving the equation r)0( =Φ , we can obtain the following relationship 
between r  and 1q : 

)r(2
1)r(

L
qq

2
1

1 −
+−==

τ
τ

and replace the constraints on 1q  in Eq. (2.14) by the following constraints 
on r :  

222 r)1,0max( ττ ≤≤− , 

or by the constraints on  Rrr~ = : 

1r~)1,0max( 22 ≤≤− −τ . 

Substituting Eq. (2.13) into the expression for 3J  in Eqs. (2.5), we can 
calculate the integral for a truncated-ogive nose: 

2
1

2/32
1

3
12

1

1ogivetr
3 q4

1])1q(q[
q3

q
2
1J −−−−+=− τ . (2.18) 

In the case of an ogive-nose impactor without flat bluntness, 0r =  and 
Eqs. (2.15) and (2.18) can be rewritten as: 

τ
τ

2
1q

2

1
+=  , 22

242
ogive
3 )1(6

)32(J
+

++=
τ

τττ , 10 ≤<τ . (2.19) 

Using the caliber-radius-head parameter  

⎟
⎠
⎞

⎜
⎝
⎛ +=+=== 22

2
11 11

4
1

4
1

2
q

R2
q

ττ
τ

τ
ψ

we may rewrite the second and third equations in Eqs. (2.19) as:  

2
1,

)14(48
1824J 2

2
ogive
3 ≥

−
+−= ψ

ψψ
ψψ

. (2.14) 

, (2.15) 

 (2.16) 

. (2.17) 

, (2.20) 

 

. (2.21) 
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Plots of  ogivetr
3J −  versus  r~  for different τ  are shown in Figure 7-4. If 

1≤τ , then r~  varies from 0 to 1; there is a maximum  )r~(J ogivetr
3

− , but the 
values of the function are very close to this maximum value when r~  
changes in the range from 0 to 0.5. If 1>τ , then r~  varies in the range from 

0r~r~ =  to 1 where 2
0 1r~ −−= τ . If  15.11 <≈<τ , then the maximum  

)r~(J ogivetr
3

−  is attained for  0r~r~ > . If  15.1>≈τ , then 0r~r~ =  is the location 
of the maximum  )r~(J ogivetr

3
− . A plot of the normalized radius of the 

bluntness of the optimum truncated-ogive impactor Rr ogivetropt −  versus the 
normalized thickness τ  is shown in Figure 7-5. The plot of 3J  versus τ  
for optimal truncated ogive is shown in Figure 7-9. 
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Figure 7-4. Functional ogivetr
3J −   vs. normalized radius of the bluntness of truncated-ogive 

impactor, Rrr~ = .  

2.4 Spherical-conical impactors 

The equation of the generatrix of the impactor with a spherical-conical 
nose (see Figure 7-6) in dimensionless variables may be written as: 

⎪⎩

⎪
⎨
⎧

≤≤−+
≤≤−=

1xxif)xx(tgcosq
xx0ifx)xq2()x(

002

02

υυ
Φ , (2.22) 

where 2q  is the radius of the spherical bluntness, υ  is the angle between the 
generatrix of the cone and the x -axis,  

J
og

iv
e

tr 3
−

Rr
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Figure 7-5. Normalized radius of the bluntness of the optimum truncated-ogive impactor 
Rr ogivetropt −  vs. normalized thicknessτ . 

 

Figure 7-6. Shape of the nose of a spherical-conical impactor. 

υ
υυτυυτ

sin1
sincos

L
qq,sincos

L
xx 2

2
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0 −
−==−== . (2.23) 

The parameter 0x  is the abscissa of the point where the circle arc 

Φ

0x

υ

2q
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 smoothly transforms to the straight line: 

)x()x(),x()x( 0000 +′=−′+=− ΦΦΦΦ . (2.24) 

The following conditions that follow from geometrical considerations must 
be satisfied:  

),1min(q0 2 τ≤≤

or   

)1,min(q~0 1
2

−≤≤ τ

where  

τ
22

2
q

R
qq~ ==

Substituting Eq. (2.22) into Eq. (2.5) we obtain after some algebra the 
expression for 3J  in the case of spherical-conical impactor: 

].sin)x1(cosq2)[x1(sin5.0cosq25.0J 0
22

20
42

2
conesph

3 υυυυ −+−+=−

Equation (2.28) together with Eq. (2.23) determine conesph
3J −  as a function of 

υ . It is more convenient to use the dependence conesph
3J −  versus 2q  or 2q~ . 

Equation (2.23) implies the following formula forυ  as a function of 2q  and 
τ : 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+
−−−+

= −
2

2
2

222
2

1

)q1(
)q1(qq21

sin
τ

ττ
υ

Substituting 22 q~q τ=  into Eq. (2.29), we can obtain the dependence υ  
versus 2q~  (for a given τ ). The above-given formulas allow us to calculate 

conesph
3J − for a given 2q~ . The procedure for this calculation comprises 

calculating υ  and 2q~  using Eqs. (2.29) and (2.27), determining 0x  using 
Eq. (2.23), and finding conesph

3J −  from Eq. (2.28). 

Chapter
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Plots of conesph
3J −  versus 2q~  for different τ  are shown in Figure 7-7. If  

1≤τ , then 2q~  varies from 0 to 1; there is a maximum  )q~(J 2
conesph

3
− , but 

variation of the function is quite small in the neighborhood of the maximum.  
If  1>τ , then 2q~  varies from 0 to 1

2q~ −=τ . If  2.11 <≈< τ , then the 
maximum  )q~(J 2

conesph
3

−  is attained for  1
2q~ −<τ . If  2.1>≈τ , then 1

2q~ −=τ  
is the location of the maximum )q~(J 2

conesph
3

− . The plot of the normalized 
radius of the spherical bluntness of the optimum spherical-conical impactor 

Rqq~ conesph
2

conesph
2

−− =  versus the normalized thickness τ  is shown in 
Figure 7-8. The plot of 3J  versus τ  for an optimal spherical-conical 
impactor is shown in Figure 7-9. 

2.5 Comparison of different shapes  

Plots of  the maximum 3J  versus  τ  are shown in Figure 7-9 for the 
“absolute optimal” nose and the optimal noses among the considered nose 
shapes. The second equation in Eqs. (2.5) implies that the minimum value of 

3J  is 0, and this value is attained for the cylinder, τΦ =)x( .  
Remarkably, as is demonstrated in Figure 7-9, the functional 3J  for the 

optimal truncated-conical nose assumes the values that are very close to the 
optimum for all τ . For 5.00 <≈<τ , the difference in the values of 3J  for 
all shapes is very small. For 0.15.0 <≈<≈ τ , the value of 3J  for the 
optimum spherical-conical nose is close to the optimum. For a relatively 
large τ , the advantage of the absolute optimal nose and the optimal 
truncated-conical nose over other shapes becomes quite pronounced.  

Generally, the difference in the magnitude of the functional 3J cannot be 
considered as a measure of the difference in the criterion of optimization. To 
compare the efficiencies of the “absolute optimal” impactor and the optimal 
truncated-conical impactor the following parameter: 

%100
H
HH

max

conetrmaxmax

0

−−=ε

is used, where maxH  and conetrmaxH −  are the DOP of the “absolute 
optimum” impactor and optimum truncated-conical impactor, respectively.  
Figure 7-10a-d shows that these impactors are practically equivalent. This 
property allows us to propose the following approximate analytical formula 
for the “absolute maximum” DOP, maxH , namely,  

)J2(QH conetropt
3

2max −−≈ τ

 (2.30) 

, (2.31) 
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Figure 7-7. Functional conesph
3J −   vs. normalized radius of the spherical bluntness of 

spherical-conical impactor, Rqq~ 22 = . 
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Figure 7-8. Normalized radius of the bluntness of the optimum spherical-conical impactor 
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Figure 7-9. Comparison of the performance of impactors with different shapes of the nose.  

where the function Q  is determined by Eq. (2.4) and conetropt
3J −  is calculated 

using the second equation in Eqs. (2.10). 
The “absolute optimum” impactor and the sharp conical impactor are 

compared in Figure 7-11a-b by using the following parameter: 

%100
H

HH
max

conesharpmax

1
−=ε

The pronounced advantage of the optimal shape over the sharp cone is 
clearly evident. 

Thus, the optimal shape of a normally striking impactor penetrating at 
the maximum depth into a concrete semi-infinite shield is independent of 
the properties of the material of the shield in the framework of the 
employed two-term model of penetration. The optimum impactor has flat 
bluntness, and its shape and the DOP are very close to the shape and DOP 
of the optimal truncated-conical impactor. The typical shapes of the 
impactors in order of decreasing DOP are: optimal truncated-conical 
impactor, optimal spherical-conical impactor, sharp-conical impactor, and 
optimal truncated-ogive impactor. The difference in the efficiency between 
the optimal impactor or the optimal truncated-conical impactor and each of 
the remaining impactors in the list increases with an increase of the 
thickness of the impactor. 

“ ”

. (2.32) 
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Figure 7-10. Comparison of the performance of the optimum truncated-conical impactor and 
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3. SOLUTION FOR THE THREE-TERM MODELS  

3.1 Statement of the problem 

In this section, we consider impactors having the shape of bodies 
revolution and employ the two-step three-term model that was described in 
Section 7-1. The references to the equations describing the model are given 
in Table 7-1 . Parameters 210 a~,a~,a~  that determine a particular model are 
given in Table 7-2. 

Table 7-1. References to the equations describing the two-step three-term model applied to a 
concrete shield 

Determined  parameter  Equation  
H  (1.8) 

0v  (1.13) 
6λ  (1.11) 

210 B,B,B  (6-3.3)-(6-3.5) 
210 a,a,a  (6-3.1) 

Table 7-2.Parameters of two-step three-term models for a concrete shield (Forrestal and Tzou, 
1997). 

Number of the 
model Characteristic of the model 0a~  1a~  2a~  

1 Incompressible, elastic-plastic 5.18 0.0 3.88 
2 Incompressible, elastic-cracked-

plastic 
4.05 1.36 3.51 

3 Compressible, elastic-plastic 4.50 0.75 1.29 
4 Compressible, elastic-cracked-plastic  3.45 1.60 1.12 

 
Using the dimensionless variables defined by Eq. (6-1.2), we may write 

the expression for the DOP as: 

)v;e,e,e,1,1(M2
R5.0

HH 02109λ
κ

+==

where 

imp3imp0

2
imp9
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sh

39 vv,0e
2
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,
R
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λ
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γπκ
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and ie , iJ  and iψ  are determined by Eqs. (6-3.7), (6-3.8) and (6-3.5), 
respectively. 

The problem under consideration is to maximize the DOP for an 
impactor with known impact velocity and known parameters determining the 
mechanical properties of the shield. It is assumed that the mass and length of 
the impactor and the shank radius of impactor’s nose are given. The problem 
then reduces to optimization of the functional H  in Eq. (3.1) with given 
parameters τλλ ,,,a~,a~,a~ 109210 , provided that the solution satisfies the 
condition given by Eq. (6-3.17). 

3.2 Investigation of the variational problem  

Analysis of the variational problem is similar to that performed for the 
one-step three-term model (see Section  6-4). Therefore, in this section we 
omitted obvious explanations and proofs.  

The variational problem under consideration may be reduced  to 
investigating the functional given by Eq. (6-4.1), where functions 1ψ  and 

2ψ  are determined by Eq. (6-3.5), and )2,1i(i =λ
)

 are some unknown 
constants determined by means of the following formula: 

2,1i,
J
e

e
v

v
H

e
H

J
H

i

i

i

0

0ii
i =

∂
∂

⎟⎟
⎠

⎞
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⎝

⎛
∂
∂

∂
∂+

∂
∂=

∂
∂=λ

)

Let us calculate the derivatives in Eq. (3.4). Using the definition of the 
function M (see Appendix 2) and Eq. (6-3.7), we find that: 

)v(D̂
v

v
H,a~2

J
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e
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0
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∂
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, (3.5) 

where 

01
2

2 eveve)v(D̂ ++=

To simplify the calculations of the derivatives i0 ev ∂∂ , we note that 0v  
(Eq. 3.3) is the positive root of the following equation: 

02ve2v)e2( 1001
2

092 =−++ λλ

Differentiating this equating with respect to 1e  and 2e , we obtain: 

Chapter
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Equations (3.8) and (3.9) yield: 
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 (3.12)  

where 0v  is determined by Eq. (3.3) and the integrals )]x([J1 Φ  and 
)]x([J2 Φ  in expressions for 1e  and 2e  are calculated for the optimum 

solution of the variational problem. Since 02 >λ
)

, the criterion given by 
Eq. (6-4.1) can be replaced by the functional in Eq. (6-4.3), where functions 
F  and ψ  are defined by Eqs. (6-4.4) and (6-4.5), correspondingly, and  

 0
v)v;e,e,e,3,2(M)v(g)v(D̂
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The following procedure may be used for solving the variational problem 
(for a given τ ). First, a solution, )x,(opt λΦΦ = , is found for every 
parameter 0>λ . Then, a decreasing function )(v0 λ  is determined, since 
Eq. (3.13)  allows us, for every *λλ = , to find *00 vv = . Eliminating 10λ  
from Eq. (3.7) and using Eq. (3.2), we obtain the relationship between 0v  
and impv  

9

02
0imp

)v(D̂2vv
λ

+=

, (3.8) 

. (3.9) 

, (3.10) 

. (3.11) 

 (3.14) 
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which allows us to determine *impv  for every *0v , i. e., we determine the 
function )(vimp λ and the inverse function )v( impλ . Using the latter 
relationship, we can express the solution of the problem in terms of impv . 

The procedure for the derivation of the equation for the extremal is 
similar to that discussed in Section 6-4. Therefore, we use below the same 
notations taking into account that the equations for λ  are different. 

The equation for the extremal is given by Eqs. (6-4.26) and (6-4.27) 
where *

0
*
1 ttt0 ≤<<  ;  parameters *

0t  and *
1t  are determined from 

Eqs. (6-4.14) and (6-4.31), correspondingly. The constant C  and the 
dimensionless radius of the bluntness are determined from Eqs. (6-4.39) and 
(6-4.40), respectively. 

We have thus devised a procedure that allows us, for a given τ  and some 
0>λ , to determine the optimum generatrix of the impactor and to calculate 

the parameters 1e and 2e . Then, Eq. (3.13) can be considered as the 
equation with respect to 0v :  

0)v( 0 =Ξ

where  

)v()v()v( 02010 ΞΞΞ +=
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)eee(
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Let us now prove that Eq. (3.15) has only one root. Eqs. (3.17) and (3.18) 
imply that 0)v( 01 <Ξ , 0)v( 02 <Ξ  and, consequently, 0)v( 0 <Ξ  when 

cv0 0 ≤≤ . Therefore, Eq. (3.15) cannot have roots in this range. To 
investigate the behavior of the function )v( 0Ξ  for cv0 > , let us calculate 
the derivative )v( 0Ξ ′ : 

2
000

010000
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)v(g)v(D̂)v(g)cv(vv)v( +−=′ λΞ , (3.19) 
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where 

)c
3
2v(e3)c

2
1v(v)e2(2)v(g 01009201 −+−+= λ . (3.20)  

Equations (3.19) and (3.20) imply that 0)v( 0 >′Ξ  when cv0 > , i. e., 
)v( 0Ξ  increases from the negative value )c(Ξ  when 0v  increases from 

cv0 = .  
Let us now estimate )v( 0Ξ  when +∞→0v . Equations (A2.19)-(A2.22) 

imply that:  

+∞=
+∞→

)v(lim 01
v0

Ξ

Taking into account Eqs. (3.9) and (3.11), we obtain: 
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Therefore,  

+∞=
+∞→

)v(lim 0
v0

Ξ

Since )v( 0Ξ  increases from 0)c( <Ξ  to +∞=+∞ )(Ξ , Eq. (3.15) has 
the unique root cvv *00 >= . The corresponding value of the impact velocity, 

*impv , can be obtained by substituting *00 vv =  into Eq. (3.14). 
The optimum value of the dimensionless DOP, maxH , can be determined 

from Eqs. (3.1), where ie are found from Eq. (6-3.7) and the integrals iJ  are 
calculated for the optimum function. The expression for the optimum values 
of the integrals iJ , opt

iJ  are given by Eq. (6-4.45). 
The above described procedure for finding a solution is summarized in 

Table 7-3, in which references to the relevant equations are given.  
Table 7-3 The sequence of steps for finding the optimum solution.  
Step Determined parameter Equation 

1 *
0t  (6-4.14) 

2 *
1t  (6-4.33) 

3 C  (6-4.39) 

4 r  (6-4.40) 

. (3.21) 

. (3.23) 
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Step Determined parameter Equation 

5 
*0v  (3.15) 

6 
*impv  (3.14) 

7 opt
iJ  (6-4.45) 

3.3 Numerical results and discussion 

Values of the dimensionless DOP of the optimum impactor for different 
impv , τ , 9λ  and different models are presented in Table 7-4. 

Table 7-4. Dimensionless DOP for the optimum impactor. 
impv  129 =λ  209 =λ  289 =λ  

Mo
del 

 
1 2 3 4 1 2 3 4 1 2 3 4 

  
τ  =  0.25 

 
1.0 2.0 2.4 2.2 2.6 2.8 3.4 3.2 4.0 3.6 4.2 4.0 4.8 
1.5 3.6 4.0 3.8 4.6 5.2 6.0 5.8 6.8 6.8 8.0 7.6 9.2 
2.0 5.4 6.0 6.0 7.0 8.2 9.4 9.2 11.0 11.0 12.8 12.6 15.0 
2.5 7.6 8.4 8.6 10.0 11.8 13.4 13.6 16.0 16.2 18.4 18.6 22.0 
3.0 10.0 11.2 11.6 14.4 16.0 18.0 18.8 21.8 22.0 24.6 25.8 30.2 
3.5 12.8 14.0 15.0 17.4 20.6 22.6 24.4 28.2 28.4 31.2 33.6 39.0 

  
τ  =  0.50 

 
1.0 2.2 2.4 2.2 2.6 2.8 3.2 3.0 3.6 3.6 4.0 4.0 4.6 
1.5 3.4 3.6 3.8 4.2 4.8 5.4 5.4 6.4 6.4 7.2 7.2 8.4 
2.0 4.8 5.4 5.4 6.4 7.4 8.0 8.6 9.8 9.8 10.8 11.6 13.4 
2.5 6.4 6.8 7.8 8.6 10.0 10.8 12.2 13.8 13.6 14.6 16.8 19.0 
3.0 8.2 8.6 10.2 11.2 12.8 13.6 16.2 18.2 17.4 18.6 22.4 25.0 
3.5 9.8 10.2 12.6 14.0 15.6 16.4 20.4 22.6 21.4 22.6 28.2 31.4 

  
τ  =  0.75 

 
1.0 2.2 2.4 2.2 2.6 2.8 3.0 3.0 3.4 3.4 3.8 3.8 4.4 
1.5 3.2 3.4 3.6 4.0 4.6 5.0 5.2 6.0 6.0 6.6 7.0 8.0 
2.0 4.4 4.8 5.2 3.8 6.6 7.2 8.2 9.0 8.8 9.6 11.0 12.2 
2.5 5.8 6.0 7.2 7.8 8.8 9.2 11.2 12.4 11.8 12.4 15.4 17.0 
3.0 7.0 7.2 9.2 10.0 10.8 11.4 15.4 16.0 14.8 15.4 20.0 22.0 
3.5 8.2 8.4 11.2 12.2 12.8 13.2 18.0 19.6 17.6 18.2 24.8 27.0 
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impv  129 =λ  209 =λ  289 =λ  
Mo
del 

 
1 2 3 4 1 2 3 4 1 2 3 4 

1.5 3.2 3.4 3.6 3.8 4.4 4.8 5.2 5.8 5.8 6.2 6.8 7.6 
2.0 4.2 4.4 5.0 5.6 6.2 6.6 7.8 8.6 8.2 8.8 10.4 11.6 
2.5 5.2 5.4 6.8 7.4 8.0 8.4 10.6 11.6 10.8 11.2 14.4 15.8 
3.0 6.2 6.4 8.6 9.2 9.8 10.0 13.6 14.6 13.2 13.6 18.4 20.2 
3.5 7.2 7.4 10.2 11.0 11.4 11.6 16.4 17.8 15.4 15.8 22.6 24.6 

 

The shape and the DOP of the optimum impactor are very close to the 
shape and the DOP of the optimum truncated cone, respevtively, if the shape 
of the optimum cone is determined for the same impv ,τ , 9λ  and the same 
model is used. We calculated the performance parameter: 

max

conesharpmax

1 H
H=δ

where maxH is the DOP of the optimum impactor and conesharpmaxH is the 
DOP of the impactor that is the best  among the impactors with  truncated 
conical noses. We found that 1δ  varies from 0.96 to 1.00 when 

5.3v1 imp ≤≤ , 3212 9 ≤≤ λ , 125.0 ≤≤ τ , and it increases with increasing τ ,
 e.g., 00.199.01 ÷=δ  for 1=τ .  

Generally, the impactor’s shape can strongly affect the DOP; the 
comparison between the DOP of the optimum impactor and the DOP of the 
sharp cone, conesharpH , is shown in Figure 7-12 for different τ   and  impv  . 

 

  

τ  =  1.00 

 

1.0 2.2 2.2 2.2 2.4 2.8 3.0 3.0 3.4 3.4 3.8 3.8 4.4 

, (3.24) 
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Figure 7-12. DOP of the sharp cone impactor, conesharpH ,  normalized by the DOP of the 
optimum impactor, maxH  ,  as a function of the dimensionless impact velocity, impv  ,  for 

different LR=τ . 

The estimates given in Figure 7-12 for  209 =λ  are valid for other 
values of 9λ , with an accuracy of about 1%. 

Since the optimum impactors are close to the truncated cones, the radius 
of the bluntness of the optimum cone can be used as the general 
characteristic parameter of the shape of the optimum impactor. This 
parameter is used in Figure 7-13a-d where R/r conetropt −  is the radius of the 
bluntness of the optimum cone divided by the shank radius; parameter 9λ  
practically does not influences R/r conetropt − .  

Therefore, the shape of the theoretically optimum impactor is close to 
that of a truncated cone and its radius of a flat bluntness depends mainly on 
the given normalized thickness of the impactor. 
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Figure 7-13. Normalized radius of the bluntness for the optimum truncated cone-shaped 
impactor, R/r conetropt −  ,  as a function of the dimensionless impact velocity, impv  ,  for different 

models of the shield material 
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Chapter 8 

OPTIMUM SHAPE OF IMPACTORS AGAINST 
FIBRE-REINFORCED PLASTIC LAMINATES 
 

 
 

1. GENERAL PENETRATION MODEL FOR 
THREE-DIMENSIONAL IMPACTORS  

1.1 Basic model  

The main results for ballistic impact dynamics of composites have been 
summarized in a number of reviews and monographs, e.g., Abrate (1994, 
1998), Reid and Zhou (2000), Naik and Shrirao (2004), Kasano (1999). In 
the study of shape optimization of impactors penetrating into 
fibre-reinforced plastic (FRP) laminates, we are primarily interested in those 
models that allow us to describe the effect of the impactor’s shape (over a 
wide range of shape variation) on the ballistic properties of the impactor 
(BLV, DOP). Analysis has shown that there are no models (even for 
projectiles having the shape of bodies of revolution) that completely meet 
our requirements. The most appropriate model for our purposes is that 
suggested by Wen (2000, 2001) (see also Reid and Wen, 2000 and some 
preceding studies by Wen et al., 1998; Reddy et al., 1998; Reid et al., 1999). 
Subsequently, Wen (2002a, 2002b) generalized his model to metal, concrete 
and soil shields, as well as to eroding penetrators.  

Although the model suggested by Wen (2000, 2001) is not directly 
applicable to arbitrary impactors having the shape of bodies of revolution, it 
is suitable for our purposes for two reasons. First, it facilitates analytical 
representation for conical impactors. Therefore, in the framework of the LIA 
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this model can be generalized to projectiles with more complicated shapes, 
including 3-D projectiles (see Section 2-6.2.2). Second, since Wen (2000, 
2001) demonstrated good performance of this model for impactors with flat 
and semi-spherical bluntness, the generalized model may hopefully be 
applicable to projectiles having a nose deviating strongly from the conical 
shape. 

Therefore, as a basic model, we use the model suggested by Wen (2000, 
2001), where it is assumed that the local pressure nσ  applied normally to the 
surface of the projectile by an FRP laminate material during penetration by 
an impactor can be represented as: 

0,v frimpimp6sh6n =+= µβµγµσ

where  shγ  and 6µ  are  the density and the quasi-static linear elastic limit of 
the material of the shield, respectively, impv is the impact (initial) velocity of 
the impactor, frµ  is a friction coefficient between the impactor and the 
shield, and impβ  is a constant, which is determined empirically. Formulas for 
calculating impβ  as a function of geometrical parameters of the impactor are 
given in Wen (2000, 2001) for several typical shapes of bodies of revolution; 
in particular, υβ sin2imp =  for a conical-nosed impactor, where υ  is the 
half angle of the apex of the cone. Let us now generalize this model for a 
projectile having the shape of an arbitrary 3-D body. To this end, we will use 
the method described in Section 2-6.2.2. 

Let us rewrite the above-mentioned expression for impβ  for a conical 
impactor in the following form: 

υβ ˆcos2)nv(2 00
imp =⋅−= rr ,  (1.2) 

 where, as before, υ̂  is the angle between the vector 0nr and the vector 
( 0vr− ), 0nr  is the inner normal vector at a given location at the impactor’s 
surface, 00 vx rr −= , 0vr  is the unit vector of the velocity of the impactor, 0xr  
is the unit vector of the corresponding axis; υ̂  may be defined as 

υπυ −= 2ˆ  for a conical impactor. Thus, the model given by Eq. (1.1) can 
be written for a conical impactor in the form given by Eqs. (2-1.1), (2-3.1) 
and (2-3.2) with: 

00
imp6sh6n nvu,uv2)u( rr ⋅−=+= µγµΩ . (1.3) 

Assuming that the same LIM describes the local interactions between the 
shield and the impactor, independent of the shape of the impactor, we use 

Chapter

, (1.1) 
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Eq. (1.3) for impactors of arbitrary shapes. Clearly, this generalized model 
coincides with the model suggested by Wen (2000, 2001) for flat-faced 
(cylindrical) projectiles and sharp cone-shaped projectiles. Therefore, the 
formulas for the BLV and DOP that yield this generalized model are similar 
to the formulas from Wen (2000, 2001) obtained by other methods for 
impactors having these shapes. 

The model given by Eq. (1.3) is similar to the model considered in 
Section 2-7 for 0=α . However, in contrast to above-mentioned  model, 
function  nΩ  in Eq. (1.3) depends on impv . Therefore, we do not use all the 
formulas from Section 2-7 directly. 

Equation (2-3.3) implies the following expression for the drag force: 

,du]uv2[dx

)0()h(]v2[)v,h(D
2

0
1imp6sh6

)h(

)h(

imp6sh6imp

∫∫ ++

+=
πΘ

θ

ϑµγµ

σδµγµ

 (1.4)  

where u  and Uu1 =  ( 0fr =µ ) are determined by Eqs. (2-2.11) and (2-2.12), 
respectively. 

 The solution of the equation of motion of the impactor implies an 
equation similar to Eqs. (2-7.6) and (2-7.7):  

∫−=
h

0
imp

2
imp

2 h~d)v,h~(D
m
2vv

1.2 Shield with a finite thickness  

In the case of a shield with a finite thickness (SFT), the formula for the 
BLV blv  is obtained by substituting blimp vv,0v,Lbh ==+=  into Eq. (1.5): 

0dh)v,h(D
m
2v

Lb

0
bl

2
bl =− ∫

+

.   (1.6) 

Using Eq. (1.4) for )v,h(D bl , we may rewrite Eq. (1.6) as: 

. (1.5) 
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.0duudxdhv2dudxdh

dh)h()0(]v2[
m
2v

2

0
1

2

0

)h(

)h(

Lb

0
bl6sh1

)h(

)h(

Lb

0
6

Lb

0
bl6sh6

2
bl

=
⎪⎭

⎪
⎬
⎫

++

⎪⎩

⎪
⎨
⎧

+−

∫ ∫∫∫∫∫

∫
++

+

π πΘ

θ

Θ

θ

ϑµγϑµ

δσµγµ

  (1.7) 

Applying Eq. (2-2.7) for the functions 

∫=
π

ϑϑΞ
2

0
1 d),x(u)x(

and 

∫=
π

ϑϑϑΞ
2

0
1 d),x(u),x(u)x(

we obtain, respectively: 

,)]0()L([bdx
x

d
2
b

dudxbdxudxdh

L

0

22

0

2

0
1

L

0

2

0
1

)h(

)h(

Lb

0

σσΦϑ

ϑ

π

ππΘ

θ

−=
∂

∂=

=

∫∫

∫∫∫∫∫
+

and 

0

2

0
1

)h(

)h(

Lb

0

bJduudxdh =∫∫∫
+ πΘ

θ

ϑ

where 

ϑ
π

duudxJ
2

0
1

L

0
0 ∫∫=

Now using Eqs. (1.10), (1.11) and (2-7.38), we can write Eq. (1.7) for blv  as 
follows: 

Chapter

 (1.8) 

 (1.9) 

 (1.10) 

, (1.11) 

. (1.12) 
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0
m

)L(b2v
m

]J)0([b4
v 6

bl
06sh2

bl =−
+

− σµσµγ
. (1.13) 

Eliminating m  from Eq. (1.13), using Eqs. (2-4.1), (2-4.2) and 
dimensionless variables  

L/,L/xx ΦΦ ==

we may rewrite Eq. (1.13) in the following form: 

0KvK2v 111bl211
2
bl =−− λλ ,  (1.15) 

where 

bl
6

sh
bl vv

µ
γ= ,      

L
b2

imp

sh
11 γ

γλ =

imp
1 V

)1(K σ= ,   
imp

0
2 V

J)0(K += σ

,,
x

,d),x(
2
1)x(

),1(Lxd)x(
L

m
L

V
V

x

2

0

2

0

1

0
3

imp
3

imp
imp

ϑ
ΦΦΦΦϑϑΦσ

σσ
γ

ϑ

π

∂
∂=

∂
∂==

+===

∫

∫
 (1.18) 

ϑ
ΦΦΦ

ΦΦπ

ϑ

d
)1(

xd
L
JJ

2

0
22

x
2

2
x

21

0
2
0

0 ∫∫ ++
== . (1.19) 

Solution of Eq. (1.15) yields a formula for the BLV: 

)K,K(v 211111bl λλϕ=

where 

)zz11(zzzz)z,z( 2
2121

2
2221 ++=++=ϕ . (1.21) 

, (1.14) 

, (1.16) 

, (1.17) 

, (1.20) 

Optimum shape of impactors against FRP laminates 



172 8
 

 

1.3 Semi-infinite shield  

In the case of a semi-infinite shield (SIS), substituting 0v,Hh ==  into 
Eq. (1.5), we obtain the correlation between the impact velocity, impv  , and 
the DOP, H : 

0dh)v,h(D
m
2v

H

0
imp

2
imp =− ∫

Substituting )v,h(D bl  from Eq. (1.4) into Eq. (1.22), we obtain: 

.0duudxdhv2dudxdh

H)0(]v2[
m
2v

2

0
1

2

0

)h(

0

H

0
imp6sh1

)h(

0

H

0
6

imp6sh6
2
imp

=
⎪⎭

⎪
⎬
⎫

++

⎪⎩

⎪
⎨
⎧

+−

∫ ∫∫∫∫∫
π πΘΘ

ϑµγϑµ

σµγµ

 (1.23) 

Applying Eq. (2-2.3) for the functions )x(Ξ given by Eqs. (1.8) and 
(1.9), we obtain the following equation that relates the impact velocity to the 
DOP: 

0K̂vK̂2v 112imp212
2
imp =−− λλ

where 

imp
6

sh
imp vv

µ
γ= ,    

imp

sh
12

2
γ
γλ =

V
ĴH)0(K̂ 1

1
+= σ

,  
V

ĴH)0(K̂ 0
2

+= σ
, 

L
HH = , (1.26) 

ϑ
ΦΦΦ

ΦΦπ

ϑ

d
)1(

xd)xH(Ĵ
2

0
22

x
2

2
x

2)H(X

0
0 ∫∫ ++

−=
◊

, (1.27) 

ϑΦΦ
π

dxd)xH(Ĵ
2

0
x

)H(X

0
1 ∫∫

◊

−=

and function )z(X ◊ is determined by Eq. (2-2.10). 

Chapter

. (1.22) 

, (1.24) 

, (1.25) 

, (1.28) 
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Equation (1.24) allows us to express impv as a function of the DOP in the 
form:  

)K̂,K̂(v 212112imp λλϕ=

where function ϕ  is determined by Eq. (1.21). 
When the impactor’s shape is known, 1K̂  and 2K̂  are increasing 

functions of H . In turn, ϕ  is an increasing function of each of its 
arguments. Therefore, ϕ  is an increasing function of H , and there exists an 
inverse increasing function )v(H impψ= . Let us show that the expression 
for this function can be obtained in analytical form for the stage of motion of 
the impactor when  1H ≥ . 

Let 0impv  be the impact velocity corresponding to the value of the DOP 
1H = . This impact velocity 0impv  can be obtained using Eq. (1.29) together 

with Eqs. (1.26)-(1.28) or 1H =  and 1X =◊ . If 0impimp vv ≥  ( 1H ≥ ), then  
1X =◊ , and Eqs. (1.27) and (1.28) yield: 

ϑ
ΦΦΦ

ΦΦπ

ϑ

d
)1(

xdxJ,JHJĴ
2

0
22

x
2

2
x

21

0
2200 ∫∫ ++

=−= , (1.30) 

[ ]

,V)0(H)1()1LH(dxd
2
1

0x
1x

)xH(d
2
1xd

x
)xH(d

2
1Ĵ

imp0

2

0

2
1

0

2
2

0

1

0

22

0
1

+−−−=+

=
=

−=
∂

∂−=

∫∫

∫∫∫

σσθΦ

ΦϑΦϑ

π

ππ

 (1.31) 

where integration by parts is used in Eq. (1.31). Then 

imp

imp0
1 V

V)1LH()1(
K̂

+−−
=

σ
,

imp

20
2 V

JH]J)0([K̂ −+= σ  (1.32) 

and Eq. (1.24) when considered as an equation with respect to H yields: 

)1(]J)0([v2
V)1L)(1(Jv2/Vv

H
0imp

imp02imp12imp
2
imp

σσ
σλ

++
−+++

= ,  0impimp vv ≥ , (1.33) 

 
 

, (1.29) 
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where 0impv  can be determined from Eq. (1.29) by substituting 1K̂  and 2K̂  
from Eqs. (1.32). 

2. PENETRATION MODEL FOR THREE-
DIMENSIONAL CONICAL IMPACTORS  

For a 3-D conical impactor, function ),x( ϑΦ  is generally of the 
following type: 

)()xkk(),x( 0 ϑηϑΦ +=

where 0k  and k  are dimensionless parameters, 

1k0,k1k 00 ≤≤−=

and dimensionless function )(ϑη  determines the shape of the impactor at 
the cross-section 1x = . 

2.1 Shield with a finite thickness  

Substitution of Eqs. (2.1) and (2.2) into Eqs. (1.17)–(1.19) in the case of 
a finite shield yields: 

 ]}k),([I)k1()k1(k{kK,kK 00
2

0
2

01211 ϑη+−+== , (2.3) 

where 

)1kkL3/(3k 0
2
001 +++=

∫∫ =
++−

=
ππ

ϑ

ϑη
ηηη

ϑη 2

0

2
1

2

0
2242

0

4

0 dI,
)k1(

dI , (2.5) 

ϑ
ηηϑ d

d,
I
II

1

0 ==

and Eq. (1.20) for the BLV remains as before, with 1K  and 2K  given by 
Eqs. (2.3). 

In the particular case of a sharp 3-D cone: 

Chapter

, (2.1) 

, (2.2) 

, (2.4) 

, (2.6) 
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0k0 =

and Eq. (1.20) for the BLV is valid with: 

],0),([IkK,kK 1211 ϑη==

)1L3(3k 01 +=

2.2 Semi-infinite shield 

In the case of a SIS, expressions for 1K̂  and 2K̂  can be obtained by 
substituting Eqs. (2.1) and (2.2) into Eqs. (1.26)-(1.28): 

)]H(Z)k1)(3/1(Hk[kK̂ 0
2

011 −+=

]}k),([I)H(Z)k1)(3/1(Hk{kK̂ 0
2

0
2

012 ϑη−+= , (2.11) 

where 

⎩
⎨
⎧

≥−−+
≤−+

=
1Hif2kH)1k(3

1Hif]H)k1(k3[H
)H(Z

00

00
2

, (2.12) 

1k  is determined by Eq. (2.4), and Eq. (1.29) remains as before with 1K̂  and 

2K̂  given by Eqs. (2.10) and (2.11). 
In the case of a sharp 3-D conical impactor when Eq. (2.7) is valid, the 

expressions for the parameters and functions given by Eqs. (2.10)-(2.12) are 
as follows: 

]0),([I)H(Z)3/1(kK̂),H(Z)3/k(K̂ 1211 ϑη== , (2.13) 

⎩
⎨
⎧

≥−
≤=

1Hif2H3
1HifH)H(Z

3

where 1k  is determined by Eq. (2.9). In this case the DOP, H , as a function 
of the impact velocity, impv , can be represented in analytical form. Solving 
Eq. (1.29) with 1K̂  and 2K̂  given by Eq. (2.13), we obtain:  

 (2.7) 

 (2.8) 

. (2.9) 

, (2.10) 

, (2.14) 
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⎪⎩

⎪
⎨
⎧

≥+
≤

=
0impimp

0impimp
3

vvif3/)2z(
vvifz

H

where 

⎟
⎠
⎞

⎜
⎝
⎛=

+
= ]k),([I

3
k,

3
kv,

}1v]k),([I2{k
v3

z 0
121121

0imp
imp0121

2
imp ϑηλλϕ

ϑηλ

3. PENETRATION MODEL FOR BODIES OF 
REVOLUTION 

3.1 Shield with a finite thickness  

Substituting )x(ΦΦ =  into Eqs. (1.18) and (1.19), we obtain: 

2r)0( πσ = ,  2R)1( πσ =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=== ∫ 2

0

1

0

2
3

imp
3

imp
imp RLxd)x(

L
m

L
V

V Φπ
γ

, (3.2) 

00 G2J π= ,

[ ] ∫ =′
+′

′
=

1

0
2

2

0 xd
d,xd

1
)x(G ΦΦ

Φ
ΦΦΦ

Then Eqs. (1.20) and (1.21) yield the following formula for the BLV: 

)GG(v 14
2

13bl λλ ++=

where 

m
bL4 2

sh
13

πγλ = ,  4
sh

2

14 bL8
mR

πγ
λ =

Chapter

, (2.15)  

 (2.16) 

, (3.1) 

 (3.3) 

. (3.4) 

, (3.5) 

, (3.6) 
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∫ +′
′

+=+=
1

0
2

2
2

0
2 xd

1
r5.0Gr5.0G

Φ
ΦΦ . (3.7) 

Equation (1.16) relating the BLV and the dimensionless BLV remains 
valid. The mass of the impactor can be expressed through the parameters 
that determine its shape and impactor’s density by using Eq. (3.2), if 
required.  

Let us now consider impactors with different shapes. 
The generatrix of the simplest ogive-shaped impactor without bluntness 

is determined by Eq. (7-2.13), with 1q  given by Eq. (7-2.19). Substituting 
these equations into Eq. (3.7), we obtain: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
−−

+
++= −

1
2sin

2
1

)1(3
323

4
1G 2

1
4

2

4

τ
τ

τ
τ

τ
ττ

τ
. (3.8) 

For a hemisphere that is a special case of the ogive with 1=τ : 

31G =

In the case of a cylindrical impactor: 

ττΦ == r,)x( .

Substituting Eq. (3.10) into Eq. (3.7), we obtain: 

25.0G τ= .

Then Eqs. (3.5) can be rewritten as follows: 

)1(),(v 1515151515bl ++== λλλλλϕ ,  

where 

m
bR2 2

sh
15

πγλ = . 

The generatrix of a conical impactor is determined by Eq. (7-2.6), and 
the expression for G in Eq. (3.5) reads: 

.  (3.9) 

  (3.10) 

 (3.11) 

(3.12) 

(3.13) 
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)]tan2)(sin1(tan[5.0G 2 υτυυτ −−−= . (3.14) 

For a sharp cone, τυ =tan and Eq. (3.14) yields: 

15.0G 23 += ττ . (3.15)   

3.2 Semi-infinite shield  

In a case of a SIS, Eqs. (1.24)-(1.26), (1.29) and (1.33) remain valid; and 
expressions for  )0(σ , )1(σ  and impV can be simplified by using Eqs. (3.1) 
and (3.2). The formula for the integrals in Eqs. (1.27) and (1.28) reads: 

∫
◊

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+′

′′−=
)H(X

0

i1

2i xd
1

)xH(2Ĵ
Φ

ΦΦΦπ , 1,0i = . (3.16) 

3.3 Comparison with the experimental data  

The proposed model coincides with the model developed by Wen (2000, 
2001) for sharp cones and flat-faced (cylindrical) projectiles. In the latter 
study, it was shown that for these shapes of the nose this model is in good 
agreement with the experimental results of Reid et al. (1995), Reid et al. 
(1999), Wen et al. (1998), Mines et al. (1999), Zhu et al. (1992), and Reddy 
et al. (1998). 

The results presented in Wen (2000, 2001) also demonstrate good 
agreement between the predictions of the model and experimental data 
obtained by Kumar and Bhat (1998) for ogival-nosed projectiles and the 
experimental results of Mines et al.,  (1999), Wen et al. (1998),  Reddy et al. 
(1998), and Reid et al. (1999) for hemispherical nosed missiles. 
Reyes-Villanueva and Cantwell (2004) showed good predictive properties of 
Wen’s model applied to the penetration of fibre-metal-laminate-skinned 
aluminum foam sandwich structures by a hemispherical nosed impactor. 
Ulven et al. (2003) studied experimentally the penetration of vacuum 
assisted resin transfer molding processed carbon/epoxy laminates by 
impactors of different shapes (hemispherical, conical, flat, and fragment 
simulating) and compared their results with the predictions obtained using 
Wen’s model. Despite large quantitative discrepancies between the 
theoretical and experimental results, the model correctly describes the 
tendencies in variation of the BLV during variation of the impactor’s shape. 

Figure 8-1a-b shows the comparison between the predictions obtained 
using Eqs. (1.16), (3.6), (3.5) and (3.9) and the experimental data of Mines 
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et al. (1999) for the perforation of E-glass/polyester laminates struck 
transversely by hemispherical-ended impactors when the generalized model 
and Wen’s model do not coincide. Following Wen (2000), where these data 
are also analyzed, we used in the theoretical calculations 3

sh m/kg1650=γ ,
MPa2256 =µ . Inspection of Figure 8-1a-b shows that the theoretically 

predicted ballistic limits are also in a good agreement with the experimental 
data. Thus, there is reason to believe that the proposed model can indeed be 
used for determining the optimal nose geometry of an impactor. 

4. SOME OPTIMAL PROPERTIES OF THREE-
DIMENSIONAL CONICAL IMPACTORS 

Here, we do not formulate or solve the shape optimization problem for 
3-D impactors, although we do describe some results obtained in this field 
(Ben-Dor et al., 2002c). The emphasis is placed on the analysis of some 
peculiarities of these problems, and at the same time we elucidate some 
considerations presented in Section 5-1. 

Consider a variational problem of finding for a SFT the cross section of 
the impactor [the function )(ϑη ] that provides the minimum BLV blv  for 
given 0011 k,L,λ . In this case, Eqs. (2.3) and (2.4) imply that 1K is known 
and 2K  is an increasing function of the functional I . Eqs. (1.20) and (1.21) 
imply that blv  is an increasing function of I , and the problem is reduced to 
the minimization of the functional ]k),([II 0ϑη= ; the change of 11λ  
and/or 0L  does not affect the optimal shape of the impactor. 

Consider now for a SIS, the problem of finding the cross section of the 
impactor that provides the minimum impv  for given 0012 k,L,λ  and the DOP 
H . Equations (2.10), (2.11), (1.29) and (1.21) show that this problem 
reduces to the minimization of the same functional ]k),([II 0ϑη= , and 
the change of 11λ  and/or  0L , H does not affect the optimal contour of the 
impactor. 

Consider finally another variational problem for SIS: to determine the 
cross section of the impactor that provides the maximum DOP, H , for 
given 0012 k,L,λ  and impv . Equation (1.29) can be considered as the 
definition of the dependence between H  and I . Differentiating Eq. (1.29) 
over I , taking into account Eqs. (2.10)-(2.12) and (1.21) and 
differentiability of the function )H(Z for 0H > , we obtain: 

dI
K̂d

K̂d
dz

z
0 i

i

i
2

1i i

⋅⋅
∂
∂=∑

=

ϕ , (4.1) 
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Figure 8-1. Comparison of the theoretical predictions (solid lines) with experimental data for 
perforation of glass reinforced plastic laminates struck by projectiles having a hemispherical 

shape (Mines et al., 1999). 
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where 

2,1i,
K̂d

dz,K̂z 12
i

i
i12i === λλ ,

2
211 zz2

1
z +

=
∂
∂ϕ

,  
2
21

2

2 zz
z1

z +
+=

∂
∂ϕ

, (4.3) 

⎥
⎦

⎤
⎢
⎣

⎡
⋅−+=

Id
Hd

Hd
dZ

3
k1

Id
Hdkk

Id
K̂d 02

01
1

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ +⋅−+= ZI
Id
Hd

Hd
dZ

3
)k1(

Id
Hdkk

Id
K̂d 2

02
01

2 ,  (4.5) 

⎩
⎨
⎧

≥+
≤−+

=
1Hif)1k(3
1Hif]H)k1(k2[H3

Hd
dZ

0

00 .

Substituting Eqs. (4.2)-(4.6) into Eq. (4.1), after simple transformations, 
we obtain: 

]I
Hd

dZ)k1(k3[
z

z
)k1(Z

Id
Hd

1ii
0

2
0

2

1i i

2

2
0

−

=

−+
∂
∂

∂
∂−

−=

∑ ϕ

ϕ

. (4.7) 

Since 

1k0,0Z,0I,0
Hd

dZ,0
z

,0
z 0

21
≤≤>>>>

∂
∂>

∂
∂ ϕϕ , (4.8) 

Eq. (4.7) implies that 0Id/Hd < . Therefore the maximum DOP is attained 
for given 0012 k,L,λ  and impv  when the value of I  is minimal. Hence all 
three above-considered problems reduce to minimization of the same 
functional, where the optimal solution is independent of the properties of the 
shield. 

Let us show that the proposed model predicts an advantage of 3-D 
conical impactors over conical impactors having the shape of a body of 

 (4.2) 

, (4.4) 

 (4.6) 
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revolution. Consider a star-shaped impactor with the cross-section consisting 
of N  identical segments (see Figure 8-2a, 4N = ). The equation of the 
straight-line boundary of a half-segment for 00 ϑϑ ≤≤  in polar coordinates 

ϑρ ,)  (in cross-section 1x = ) is )(ϑηρ =) ,  where 

)sin(RsinR
sinRR)(

0102

021

ϑϑϑ
ϑϑη

−−
=

N0
πϑ = ,

L
RR 1

1 = ,
L
RR 2

2 = ,

and all the notations are shown in Figure 8-2b. 
Substituting Eq. (4.9) into Eqs. (2.5) and (2.6), we obtain the following 

expression for the integral I  for a star-shaped impactor: 

0210
22

2
2

1
2

0
2

2
2

1

021
star

cosRR2sinRR)k1(RR

sinRRI
ϑϑ

ϑ
−−++

= .  (4.11) 

In the case of a conical impactor with radius of the base 0R , the value of 
the integral I  can be obtained by substituting 0R)( =ϑη  ( L/RR 00 = ) 
into Eqs. (2.5) and (2.6): 

2
0

2
0

2
0

2
0

0
cone

)R1()k1(

1

1R)k1(

RI
+−

=
+−

= . (4.12) 

Clearly, Eq. (4.12) implies that among the cones with  201 RRR ≤≤  the 
minimum coneI  is attained if 10 RR = . This cone is selected for comparison 
with a star-shaped impactor. After some algebra we obtain: 

]1R)k1[sinR
)cosRR(1

I
I

2
1

2
00

22
2

2
021

2

star

cone

+−
−+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ϑ
ϑε ,  (4.13) 

and 

]1R)k1[sin
)1cos)(1(cos2

d
d

2
1

2
00

3
0

2
0

0 +−
−−=

ϑ
ϑφφϑ

ϑ
ε , 

02

1

cosR
R

ϑ
φ = , (4.14) 
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Figure 8-2. Cross-section of  the star-shaped impactor: (a) general view for 4N =  and 
(b) half-segment. 

where geometric considerations imply that 1<φ . In differentiation with 
respect to 0ϑ , it is assumed that 3N ≥  can take real values. 

Equations (4.13) and (4.14) show that: 

,,1 00
∞⎯⎯ →⎯> →ϑεε 0

d
d

0

>
ϑ
ε

Hence, always conestar II < . Moreover, conestar I/I  monotonically 
decreases with increasing number of segments N  and becomes arbitrary 
close to zero. Since coneI  does not depend on N , this means that starI  can 
be made as small as desired by increasing N . 

)a

ϑ
0ϑ

)(ϑηρ =)

2R

1R

)b

. (4.15) 
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Therefore, increasing the number of segments in a star-shaped impactor 
causes the magnitude of the functional I  approach arbitrarily close to the 
optimal value, which in this case equals zero. From a methodological point 
of view effects of this kind were discussed in Section 5-1. 

It may be concluded that this model predicts that the use of impactors 
with complicated 3-D shapes allows us to increase considerably the 
performance of the impactor. Although it is possible to solve a number of 
different shape optimization problems, one has to keep in mind that there are 
no experimental data available that allow us to validate the applicability of 
this model to impactors having a complicated 3-D shape. 

5. OPTIMIZATION OF PENETRATING BODIES OF 
REVOLUTION 

5.1 The statement of the problem  

Consider (Ben-Dor et al., 2002a) the problem of minimizing the BLV blv  
for a SFT when the thickness of the shield and the parameters determining 
its mechanical properties are known. The mass of the impactor, the length 
and shank radius are assumed to be given. It is easy to see from Eq. (3.5) 
that the BLV is an increasing function of G . Therefore, the problem can be 
reduced to the optimization of the functional: 

[ ] ∫ ′+=
1

0

2 xd),(Fr5.0)x(G ΦΦΦ ,

where 

1z

z)z(),(F
2

2

00
+

=′= ϕΦϕΦ

and, as before, xdd,Lxx,L ΦΦΦΦ =′== .  
The solution of the variational problem, )x(Φ , must satisfy the 

boundary condition: 

τΦ =)1(

while the value )0(r Φ=  is unknown. 
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 (5.1) 

 (5.2) 

 (5.3) 
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It should be noted that a similar problem for a SIS is more complicated 
and can be solved only numerically (Ben-Dor et al., 2002b). 

5.2 Investigation of the variational problem  

We study the variational problem using the necessary conditions for the 
extremum (see Section 5-2). 

Since F  does not depend on x , the Euler-Lagrange equation has a first 
integral: 

2

2/32

11 z
)1z()z(),(C +=′= ϕΦϕΦ

where C  is a constant. 
The transversality condition of the type given by Eq. (5-2.12) reads: 

1
)1z(

)2z(z)z(,0)t(r 2/32

2

202 −
+

+== ϕϕ

where 0t  is the derivative of the optimal generatrix at the initial point,   

)0(t0 Φ ′=

Analysis of the Erdmann-Weierstrass corner conditions: 

0
)1( 2/32

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+′
′

Φ
Φ∆ , 0

)1(
)2(

2/32

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+′

+′′
Φ

ΦΦ∆  (5.7) 

shows that corner points do not exist.   
The Legendre condition yields: 

0
)1(

)2(
2/52

2

≥
+′

′−
Φ

ΦΦ

Since 0≠Φ  (see Eq. 5.4), 0t  is determined by equation 0)t( 02 =ϕ , which 
can be written as follows: 

2
0

2/3 tT,)1T()2T(T =+=+   (5.9) 

, (5.4) 

, (5.5) 

. (5.6) 

 (5.8) 
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Equation (5.9) yields a quadratic equation  01TT 2 =−+ . Solving this 
equation allows us to determine 0t : 

786.0)15(5.0t,tt *
0

*
00 ≈−== .

The constant C  can expressed through r by considering Eq. (5.4) at the 
initial point 0x =  where r=Φ  and 0t=′Φ : 

300.0)t()t(/1c,rcC 5*
0

*
01** ≈=== ϕ , (5.11) 

and Eq. (5.4) can be rewritten as follows: 

)(rc 1* ΦϕΦ ′=

The solution of the ordinary differential equation (5.12) can be represented 
in a parametric form choosing as a parameter:  

Φ ′=t

Equation (5.12) can be rewritten as: 

)t(rc 1* ϕΦ =

where x  is considered a function of t  and can be determined using the 
expression tdxd Φ= . Therefore, 

)t(rcx 3* ϕ=

where 

,)t()z(

d1)2(d
d

)(d1)z(

*
044

z

t
4

22z

t

1
3

*
0

*
0

ϕϕ

ζ
ζ

ζζζ
ζ
ζϕ

ζ
ϕ

−=

+−
== ∫∫  (5.16) 

)1zzln(1z
z3
z2)z( 22
3

2

4 ++++−=ϕ . (5.17) 
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Taking into account Eqs. (5.14) and (5.15), Eq. (5.3) yields two 
correlations for determining r  and the derivative of the optimal generatrix 
at the endpoint 1t : 

 )t(rc 11* ϕτ =

)t(rc1 13* ϕ=

Eliminating r  from Eqs. (5.18) and (5.19), we obtain the equation for 
determining 1t : 

0)t( 1 =Λ

where 

)].t()1zz[ln(
3

1z
z

)3zz3(z2

)z()]t()z([)z()z()z(

*
04

2
2

3

2

1
*
04413

ϕτττ

ϕϕϕτϕτϕΛ

−++++⋅++−=

=−−=−=
 (5.21) 

Let us calculate the derivative: 

3

22

1 z
1z)2z()z( +−=′ϕ

Equations (5.16) and (5.22) show that the moving a point along the curve 
determined by Eqs. (5.14), (5.15) from the initial point to the end point is 
associated with the decrease of the parameter t  from *

0tt =  to some value 
1tt = , where 1t  is a root of Eq. (5.20). Hence this curve is convex. Let us 

prove that Eq. (5.20) has only one solution in the interval )t,0( *
0 . 

Equation (5.21) implies that 

+∞=
+→

)t(lim 10t1

Λ , 0)t()t( *
01

*
0 <−= ϕΛ

and, consequently, there exists at least one root of Eq. (5.20) in the interval 
)t,0( *

0 . It can be easily shown that this equation has only one root. Using 
Eq. (5.16), we can write the derivative )t( 1Λ′  as: 

, (5.18) 

. (5.19) 

, (5.20) 

.  (5.22) 

 (5.23) 
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)t(
t

)t()t( 1
1

11
1 −

′
=′ τϕΛ

Equation (5.22) implies that 0)t( 11 <′ϕ  for *
01 tt0 ≤< . Consequently, as 

show Eqs. (5.23) and (5.24), two versions of the behavior of the function are 
)t( 1Λ possible (see Figure 3-7a-b), depending on whether τ≥*

0t  or τ≤*
0t . 

Clearly, Eq. (5.20) has the unique solution *
11 tt =  in both cases. Since 

1ttt0 *
0

*
1 <<<<  , the Legendre condition ( Eq. 5.8) is satisfied. 

After *
1t  has been determined, the parameter r  can be found from 

Eqs. (5.18) or Eq. (5.19): 

)t(c
1r *

13*ϕ
=  or   

)t(c
r *

11*ϕ
τ=

Let us calculate the minimum of the optimized functional, i.e., the value 
of the functional G  when the function )x(Φ  is the solution of the 
considered variational problem. We denote the minimum value of this 
functional by minG . It is convenient to calculate the integral in Eq. (5.2) 
using the variable t  given by Eq. (5.13) instead of x . Since   

dt)t(rcdt
t

)t(rcdt
dt

d
t
1

t
dxd 3*

1* ϕϕΦΦ ′=
′

=⋅== , (5.26) 

then 

)G~c5.0(rG min
2
*

2
min +=

where r  is determined by Eq. (5.25) and 

,)t()t(d)1)(2(

d)()()(G~

*
05

*
15

t

t
4

2/322

t

t
310min

*
1

*
0

*
1

*
0

ϕϕζ
ζ
ζζ

ζζϕζϕζϕ

−=+−=

′=

∫

∫
 (5.28) 

)z1zln(
2
1

z6
1z)4z10z3()z( 2

3

224

5 −+++++=ϕ  . (5.29) 
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Figure 8-3 shows the shape of the generatrix of the optimum impactor’s 
nose for different τ . The optimum projectile has plane bluntness with a 
radius that increases as τ  increases (see Figure 8-4).  
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Figure 8-3. Shape of the generatrix of the optimal impactor. 
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Figure 8-4. Radius of bluntness of the optimum impactor and the optimum truncated conical 
impactor. 
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6. COMPARISON BETWEEN DIFFERENT SHAPES 

6.1 The worst value for the criterion  

Let us first find the shape of the nose having the maximum G .  
Interchanging the dependent and independent variables in Eq. (5.1) and 
denoting ΦΦ d)(xdx =′ , we obtain: 

∫∫ +′
+=′

+′

′⋅+=
−

− ττ ΦΦΦΦ

r
2

2

r
2

2
2

1x

dr5.0dx
1)x(

)x(r5.0G . (6.1)  

Since the equation of the generatrix for  r0 ≤≤Φ  is 0)(x =Φ , we can 
write: 

∫ +′
=

r

0
2

2

1x

d2r ΦΦ .

Substituting 2r  from Eq. (6.2) to Eq. (6.1) yields: 

∫ +′
=

τ ΦΦ

0
2 1x

dG

Since G  attains its maximum value when 0)(x =Φ  for τΦ ≤≤0 , 
Eq. (6.3) implies: 

2
dG

2

0

τΦΦ
τ

=≤ ∫

Therefore, a flat-faced cylindrical projectile has the maximum BLV for 
impactor noses that are the bodies of revolution and the upper bound for the 
functional G given by Eq. (6.4) is attained. The lower bound for this 
functional can be found using Eq. (6.4) 

6.2 Optimum truncated-conical impactor  

Consider the problem of shape optimization of a projectile in the class of 
cones with plane bluntness. The equation of the generatrix and the formula 
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for calculating G  are given by Eqs. (7-2.6) and (3.14), respectively. Clearly, 
minimization of G is equivalent to the maximization of the function 

)sin1)(tan2(tanG2)(f 2 υυτυτυ −−=−= , (6.5) 

taking into account the constraints arising due to geometrical considerations: 

0
1 )(tan0 υτυ =≤≤ −

Since )0(f)(f 0 >υ  where 

0
1

1)(f,0)0(f
2

2
0 >⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−==

τ
ττυ

the point 0=υ  can not be a point of the maximum ).(f υ On the other hand,  

01/)(f 2
0 <+−=′ ττυ

where 

)tan2(sin
cos

)tan)(sin1(2)(f 2 υτυ
υ

υτυυ −−−−=′ . (6.9) 

Equation (6.8) implies that there exists some υ~ ( 0
~0 υυ ≤< ) for which 

)(f)~(f 0υυ > . Therefore, we have proved that the maximum value of the 
function f  and the minimum value of the functional G  are attained inside 
the interval ),0( 0υ , i.e., the optimum projectile among the conical bodies 
has a finite bluntness Rr < . The dependence of the normalized radius of the 
bluntness of the optimum cone vs. τ  is shown in Figure 8-4. 

6.3 Results of numerical simulation 

Comparison of the values of G  for the optimum shapes, optimum 
truncated cone, ogive, and sharp cone is shown in Figure 8-5. 
Equations (3.8) and (3.15) are used in calculations for ogives and sharp 
cones. Figure 8-5 shows that the difference in G  between the optimum 
impactor and the blunt cone impactor is relatively small for all practically 
relevant values of τ , whereas the advantage of the optimum impactor over 
the sharp cone and ogive impactors is significant for all τ . 

. (6.6) 

, (6.7) 

, (6.8) 
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Figure 8-5. Comparison of the performance of impactors with different shapes of the nose. 
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Chapter 9 

AREA RULES FOR PENETRATING 
IMPACTORS 
 
 
 

1. INTRODUCTION 

Area rules, in the commonly accepted sense, determine the conditions 
under which difference between the values of some aerodynamic 
characteristics of a 3-D projectile and those of a reference projectile is of a 
higher order than the difference in their shapes. Area rules are used in 
gasdynamics, particularly for determining drag coefficients of 3-D 
projectiles under different high velocity flight conditions, provided a body of 
revolution is chosen as the reference projectile. It is assumed that both 
projectiles have the same length. The differences between the areas of 
cross-section and the contours of the projectiles at every cross-section along 
the longitudinal axis are assumed to be small. The area rule asserts that if the 
magnitude of these differences is of the order of ε , the magnitude of the 
difference in the drag forces acting on these projectiles is of the order of 2ε . 
Area rules have been determined for special ranges of flight conditions for 
various integral characteristics (not only for the drag force), including the 
characteristics that can be expressed through functionals of a quite general 
form. More information on this subject may be found, for example, in 
Bunimovich and Dubinsky (1995) and Apshtein and Titow (1996). 

The significance and usefulness of the area rules is discussed in the 
following. It may be relatively easy to analyze a reference impactor having a 
simple shape. The method of area rules allows us to predict the behavior of a 
projectile with a more complex shape using the results obtained for the 
reference impactor. This method can essentially simplify the prediction 
procedures for projectiles having complicated shapes, and it is of particular 
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importance for predicting the consequences of small geometrical changes on 
the performance of a projectile. 

Area rules have also been established for penetrating impactors (Ben-Dor 
et al., 1997b, 1998c). Using the assumption of the LIT, two versions of such 
rules are found in the following sections for the BLV, namely, when a body 
of revolution or a projectile with a polygonal cross-section is considered as 
the reference impactor.  

2. BODY OF REVOLUTION AS A REFERENCE 
IMPACTOR 

2.1 Statement of the problem 

Consider the penetration of a rigid sharp 3-D impactor Γ  into a shield 
with a finite thickness and assume that the general LIM is valid. 
Equations (2-2.11)-(2-2.13) allow us to rewrite the functional D  
determining the drag force as follows: 

ϑΞϑΦ
Θ

θ

π

dÛ)w,û(dx]w,h),,x([D
)h(

)h(

2

0
∫ ∫= , (2.1) 

where 

û)w,û()w,û( 0ΩΞ =

x22
x

2
x ),x(Û,

)1(
),x(û ΦΦϑ

ΦΦΦ
ΦΦϑ

ϑ

=
++

= , (2.3) 

2vw = .

If )h(ww =  is a solution of the equation of motion of the impactor  

]w,h),,x([D
dh
dw

2
m ϑΦ−=

with the initial condition  
 

0)Lb(w =+ ,                      (2.6) 
 
then the BLV is determined as blbl wv =  and )0(wwbl = . 

Chapter

, (2.2) 

 (2.4) 

 (2.5) 
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)x(rd),x(
2
1 2

2

0

2 πϑϑΦ
π

=∫

Equations (2-2.14), (2-4.1), (2-4.2) and (2.7) show that if the material 
density of the impactors impγ  is the same, then the impactors have the same 
mass of the nose. Assuming that their cylindrical parts have the same mass, 
it may be concluded that the parameter m  in Eq. (2.5) is the same for both 
impactors. 

Assume also that the shapes of the impactors Γ  and oΓ  are close to 
each other in the sense that  

)(O),x()x(r),x( 2εϑεξϑ ++=Φ

where ),x( ϑξ is some function, and ε  is a small parameter. Hereafter, a 
non-numerical subscript will denote differentiation with respect to the 
corresponding variable. Our goal is to estimate the difference between 
values of the BLV for impactors Γ  and oΓ . 

2.2 Derivation of the area rules 

Substituting ),x( ϑΦ from Eq. (2.8) to Eq. (2.7), we obtain after some 
algebra: 

0)(O)x()x(r 2 =+∆ εε

where 

ϑϑξ∆
π

d),x()x(
2

0
∫=

 
 

 
Together with a 3-D impactor Γ whose shape is determined by the 

function ),x( ϑΦ  let us consider a reference body of revolution oΓ  with the 
equation of the generatrix )x(r=ρ  having the same length and the same 
cross-sectional area )x(σ  at every cross-section. The latter implies the 
relationship:  

 (2.7) 

, (2.8) 

, (2.9) 

, (2.10) 
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and, consequently, 

ε~)x(∆

Now let us use the general approach of the perturbation theory (see, e.g., 
Bush, 1992). The solutions of Eq. (2.5) with initial condition given by 
Eq. (2.6) can be expanded into a series of a small parameter ε : 

)(O)h(w)h(w)h(w 2]1[]0[ εε ++=

where functions )h(w ]0[  and )h(w ]1[ must be determined. For this purpose 
substitute ),x( ϑΦ from Eq. (2.8) and )h(w from Eq. (2.12) into Eq. (2.5): 

[ ] )(Oww,h),,x()x(rD)(Oww
2
m 2]1[]0[2]1[

h
]0[

h εεϑεξεε +++−=++

Drag coefficient D  in Eq. (2.13) can be expanded in Taylor series with 
respect to  a small parameterε : 

)(ODDD 2εεε ++= oo

where the superscript denotes the value for 0=ε , i.e., 

[ ]
0

]0[ DD,w,h),x(rDD
=∂

∂==
ε

ε ε
oo

Then Eq. (2.13) can be rewritten as: 

[ ] )(ODD)(Oww)2m( 22]1[
h

]0[
h εεεε ε −−−=++ oo . (2.16) 

Taking into account Eq. (2.12) let us calculate the derivative εD  of the 
function determined by Eq. (2.1): 

[ ] ϑΞΞΞ
Θ

θ

π

εεεε dÛwÛÛûdxD
)h(

)h(

2

0
wu∫ ∫ ++= , (2.17) 
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where 

,)(O)rr(rr

)](Or)][(Or[Û
2

xxx

2
xx

2

εεξξ
εεξεεξ

+++=

++++=
 (2.18) 

.
)(O])rr(r[r2)1r(r

)(O)rr(rr

)](O[)](Or[U

Ûû

2
xxx

2
x

2

2
xxx

22222

εεξξξ
εεξξ

εεξεεξ θ

+++++

+++=

+++++
=

 (2.19) 

Then let us calculate the derivatives εû , εÛ . After some algebra and 
using Eq. (2.17), we arrive at the following expression for o

εD : 

JIw2D ]1[ += πε
o ,  

where 

∫ +
==

)h(

)h(
2
x

x]0[
wx

1r

rû,dx)w,û(rrI
Θ

θ

Ξ oo , (2.21) 

[ ]∫ +=
)h(

)h(
x dx)x()h,x()x()h,x(J

Θ

θ

∆ψ∆ϕ

( ) ( )
( ) ( ) ( ) .h,x )h(w,û)û(

r
1

r
r h,x

  ,)h(w,ûrh,x
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u

3

xx

]0[
x

⎥
⎦

⎤
⎢
⎣

⎡
+=

=

ϕΞψ

Ξϕ

oo

o

 (2.23) 

Integrating by parts the second term in formula for J in Eqs. (2.22), we 
find that: 

[ ]

( ) ( ) ( ) ( )

[ ] .dx)x()h,x()h,x(

)h(h),h()h(h),h(

dx)x()h,x()x()h,x(
x

)x()h,x(J

)h(

)h(
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 (2.24) 

 (2.20) 
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Taking into account Eq. (2.11), we obtain the following estimate, ε~J . 
Therefore, Eq. (2.16) can be rewritten in the following form: 

[ ] [ ] )(OIw2D)(Oww)2m( 2]1[2]1[
h

]0[
h εεπεε −−−=++ o . (2.25) 

Equating the coefficients near the same powers of ε   in both sides of 
Eq. (2.25) and taking into account Eq. (2.6), we obtain two ordinary 
differential equations (ODEs) for determining ]0[w  and ]1[w : 

[ ] 0)Lb(w,w,h),x(rDw)2m( ]0[]0[]0[
h =+−= , (2.26) 

and 

0)Lb(w,)h(Iw2w)2m( ]1[]1[]1[
h =+−= π . (2.27) 

Equation (2.26) describes the motion of the impactor oΓ . A general 
solution of problem for ODE given by Eq. (2.27) reads: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∫

h

0

]1[ h~d)h~(I
m
4expC)h(w π

where C  is a constant. Since the initial condition given by the second 
relation in Eq. (2.27) can be satisfied only when 0C = , the solution for ]1[w  
reads: 

0)h(w ]1[ =

Equation (2.12) yields the following estimate for the function describing 
motion of the impactor with impact velocity equal to the BLV: 

)(O)h(w)h(w 2]0[ ε+=

Taking into account Eq. (2.4), we obtain the following estimate for the BLV 
of the impactor Γ : 

)(Ov)(O)0(wv 2
bl

2]0[
bl εε +=+= o

where o
blv  is the BLV of the impactor oΓ . 
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Therefore, the difference between the BLVs of the impactors Γ  and oΓ  
is of the order of 2ε ,  i.e., the area rule for the BLV has been established. 

Similar laws can be determined for other characteristics of the 
penetration. Assume that impactor Γ  begins its motion in the shield with 
the impact velocity impv , i.e., the initial condition 

2
impv)0(w =

replaces the initial condition given by Eq. (2.6). Then the initial conditions 
for )h(w ]0[  and )h(w ]1[  read: 

0)0(w,v)0(w ]1[2
imp

]0[ ==

Equation (2.28) determines the solution of Eq. (2.27) for ]1[w  with the 
initial condition given by Eq. (2.33). Therefore, the estimate given by 
Eq. (2.30) is valid, where ]0[w is the solution of Eq. (2.26) with the initial 
condition given by Eq. (2.33). Equation (2.30) implies the following 
estimate of the difference between the velocities of the impactors Γ  and oΓ  
at the same depth, )h(v  and  )h(vo : 

)(O)h(v)h(v 2ε+= o

Therefore, if the impact velocities of the impactors Γ  and oΓ  are the same, 
the difference between their velocities at any depth  Lbh +≤  inside a shield 
is of the order of 2ε  until both impactors continue their motion inside the 
shield. 

The latter conclusion is also valid if the impactors penetrate into a SIS. 
The only difference is that in this case 0)h( =θ  and )h(Θ is determined by 
Eq. (2-2.2). It should be noted that the above-given analysis does not yield 
the estimate for the difference between the maximum DOPs. However, if the 
impactor oΓ  stops its motion in the shield while the impactor Γ  continues 
to move, the velocity of the impactor Γ  is of the order of 2ε . 

It must be noted that the above-given analysis can be simplified if one 
replaces Eq. (2.7) by the condition: 

0)x( =∆

However, the name area rule would be inappropriate in this case, and the 
meaning of such a rule would be less transparent. 

 (2.32) 

. (2.33) 

. (2.34) 

. (2.35) 
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2.3 An illustrative example 

Let us consider conical impactors and use elliptical cones as 3-D 
impactors Γ  so as to illustrate the above described area rules. The equation 
of the surface of the impactors Γ  reads (see Eq. 2-4.3): 

ϑϑ
ϑηϑηϑΦ

22
y

22
x

yx

cosasina

aa
)(,

L
1k),(kx),x(

+
=== ,  (2.36) 

where function )(ϑηρ = is the equation of the shank of the cone, xa  and 
ya are the lengths of its semi-axes.   

For the model that is determined by Eq. (2-8.26) with 0fr =µ  and 0=α  
( 2=β ), Eqs. (2-8.30) and (2-8.31) yield: 

yx0
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2
00 akaa2dkaC πϑη
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== ∫
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d
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2
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2222
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=
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= ∫
π

ϑ
ηηη

ηπ

. (2.38) 

Taking into account that L1k = , Eq. (2-8.22) with 2=β  reads: 

⎥
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⎤
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⎢
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⎡
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⎟
⎠

⎞
⎜
⎜
⎝

⎛
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bl λ
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)1a)(1a(q,
L
a
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L
aa,

m
abL2 2

y
2
x

y
y

x
x

2
2

16 ++==== πλ . (2.40) 

Let the impactor oΓ  be a cone with radius of the shank R . The 
cross-sectional area of an elliptical cone may be written as: 

yx

2

0

2 akxadkx
2
1)x( πϑησ

π

== ∫

Chapter

, (2.37) 

, (2.39) 

 (2.41) 
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Hence, the condition of equality of the areas of the impactors Γ  and oΓ  in 
the same cross-sections may be written as :  

LR,aa 2
yx == ττ

It is convenient to select the parameter ε  determining the difference 
between the shapes of the impactors Γ  and oΓ  as follows: 

1
a
a1

a
a

y

x

y

x −=−=ε

Then Eq. (2.42) yields: 

ετετ +=+= 1a,1a yx

and Eq. (2.39) can be rewritten in the following form: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
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⎝

⎛
= 1

q
expq

a
a1)(v

4
16

2

0
bl

τλ
τ

ε

where 

]1)1(][1)1([)(q 22 ++++= ετετε . (2.46) 

Clearly, o
blbl v)0(v =  is the BLV of the impactor oΓ . 

Using a Taylor series expansion with respect to ε  and substituting xa  
and ya  from Eq. (2.44), allows to obtain the following expression for 
function )(ϑη  in Eq. (2.36): 

)(O2cos
2
11

1
cos)1(sin

R
)( 2

2
2 εϑ

ε
ϑεϑϑη ++=

+
++= . (2.47) 

Therefore, the equation of the surface of the impactor Γ  is described in the 
form of Eq. (2.8) with: 

ϑτϑξτ 2cosx5.0),x(,x)x(r == , 

for which Eq. (2.31) is satisfied.  

.  (2.42) 

. (2.43) 

, (2.44) 

, (2.45) 

, (2.48) 
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The area rule in this case can be proved by considering Taylor series 
expansion of the function )(vbl ε  with respect to ε . Since 

)(va2
)q(Q)(qa

)(v
bl2

2
0

bl ετ
εε

′
=′

1
q

exp
q

1)q(Q,
)1)((q2

)2()(q
4

16
4

16
2

2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+
+=′ τλτλ

εε
εετε , (2.50) 

then  0)0(q =′  and, consequently, 0)0(vbl =′ . Therefore, the area rules given 
by Eq. (2.31) are valid. 

Figure 9-1a-b illustrates the square-law dependence between 
oo
blblbl v)vv(~ −=δ and ε . Clearly, the dimensionless parameter δ~  does not 

depend, for given 16λ  and τ , upon the parameters of the model used. 
However, to remain approximately in the range of the parameters 
corresponding to the ballistic impact conditions, we use the restriction 

900)sm(v100 bl ≤≤ o  applied to shields manufactured from soft steel (the 
parameters of the model for soft steel are taken from Table 10-3). Inspection 
of these figures shows that the normalized difference between the BLV of 
the elliptical impactor Γ  and the BLV of the reference impactor oΓ  is very 
small and negative. The latter finding means that the BLV of an 
elliptical-shaped conical impactor is, for small ε , smaller than the BLV of a 
conical impactor - a body of revolution with the same area of the shank and, 
consequently, with the same volume.  

Let us prove that this advantage is retained for arbitrary ε , i.e., for all 
elliptical-shaped conical impactors. Let us calculate the derivative:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′=′=

q
exp

q
)()(q

dq
dQ)(q

d
dQ 4

16
3

24
16 τλτλεε

ε
. (2.51) 

Equation (2.50) shows that 0)(q >′ ε , and Eq. (2.51) implies that 
0ddQ >ε . Since Q  is an increasing function of ε  and 

( ) 0)(qQlim =
+∞→

ε
ε

it can be concluded that 0Q <  for 0≥ε . Eq. (2.49) implies that 0)(vbl <′ ε  
for finite values of 0≥ε . 

Therefore, )0(vv)(v blblbl =< oε  for all 0>ε , i.e., the BLV of the 
impactor Γ  is always smaller than the BLV of the impactor oΓ . Moreover, 

Chapter

, (2.49) 

, (2.52) 
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the difference between the BLVs of the impactors Γ  and oΓ  increases with 
the increase of ε  and tends to a finite value when +∞→ε . 
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Figure 9-1. Normalized difference between the BLV of the elliptical impactor, blv and the 
BLV of the reference impactor, o

blv , vs . the normalized difference in their shapes, ε . 
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The latter limit can be calculated using L’Hospital’s rule: 
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 (2.53) 

3. BODY WITH A POLYGONAL CROSS SECTION 
AS A REFERENCE IMPACTOR 

In this section, as a reference impactor oΓ  we consider a 3-D impactor 
with polygonal cross-sections. We assume that all cross-sections of this 
reference impactor are geometrically similar and that an inscribed circle 
exists for each polygon. The equation of the surface of the reference 
impactor can be written as follows: 

)()x(r),x(),,x( ϑηϑΦϑΦρ == oo

where functions )x(r  and )(ϑη determine the longitudinal contour of the 
impactor and the shape of its cross-sections, respectively. It is assumed that 

1)L(r =

Therefore, )(ϑη  describes the impactor’s surface in the cross-section Lx =  
(see Figure 9-2). A polygon with N  sides can be determined by the radius 
of the inscribed circle g  and the angles )N,...,1i(i =α . Then  

⎪
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if)(

)(

ϑϑϑϑη

ϑϑϑϑη

ϑϑϑϑη

ϑη ,

where 

N,...,1i),sec(g)( ii =−= ααϑη ,
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. (3.2) 

 (3.3) 

 (3.4) 
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Figure 9-2. Cross-section of the reference impactor. 
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Similarly to the derivation in the previous section, let us consider another 
impactor Γ  and assume that both impactors have the same length L , 
density and areas at every cross-section; therefore, they have the same mass. 
It is assumed that shapes of both impactors are close to each other in the 
following sense:  

)(O),x()()x(r),x( 2εϑεξϑηϑΦ ++=

where ),x( ϑξ is some function, ε  is a small parameter, and function 
),x( ϑΦ  determines the shape of the impactor Γ . The requirement of 

continuity of the surface must be satisfied for both impactors. 
From Eqs. (3.3)-(3.6), the equality of the cross-sectional areas of the 

projectiles Γ  and oΓ  can be written, for some x , as follows: 

iϑ
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i
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2
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, (3.6) 
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 (3.7) 

Equation (3.7) yields the following estimate: 

∫∑
−
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=

i

1i

~d)sec()x(r)x( i

N

1i

ϑ

ϑ

εϑαα∆

Equation (2.1) for the functional D  determining the drag force acting at 
the impactor can be rewritten as follows: 

∑
=

++=
N

1i

2
ii ]w,h),(O),x()()x(r[D]w,h),,x([D εϑεξϑηϑΦ , (3.9) 

where 
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∫ ∫
−

=++ (3.10) 

In Eq. (3.10), function Ξ  determines the model of projectile-shield 
interaction; variables iû  and iÛ  have the same meaning as û  and Û  in 
Eq. (2.1), respectively; and the subscript indicates the range of the angle 

],[ i1i ϑϑϑ −∈ . Then the following expressions are valid: 

)],(O)sec(gr)][(O)sec(gr[Û 2
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2
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Assume that w  in Eq. (3.10) is replaced by Eq. (2.12). Then the 
expression for the derivative ε∂∂D  reads: 
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where formula for ε∂∂ iD  is similar to that given by Eq. (2.17): 
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After some algebra, the expression for ε∂∂D  at 0=ε can be written as: 
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Using Eq. (3.5), we can rewrite Eq. (3.20) in a more convenient form:  

 (3.13) 

, (3.18) 

, (3.19) 
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Note that all iu for 0=ε  do not depend on ϑ . Therefore, the first argument 
in the expressions for Ξ , uΞ  and wΞ  in Eqs. (3.17)-(3.19) does not have a 
subscript.  

Integrating by parts the first integral in Eqs. (3.16), we find that: 
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Taking into account Eq. (3.8), we obtain the following estimate: 

ε~I~

Assume now that the following requirement is satisfied: 

0J~ =

We now list the most important cases when condition (3.24) is valid using 
Eq. (3.21). 

1) For every x , the contour of the cross-section of the impactor Γ  passes 
through the apexes of the polygon at the cross-section of the impactor oΓ . 
Then all 0),x( i =ϑξ , and Eq. (3.24) is valid. 

2) If the cross-section of the impactor oΓ  is a regular polygon, then 

N1i     ),1i2(
N

     ,i
N
2

0i0i ÷=−+=+= πγαπϑϑ , (3.25) 

and Eq. (3.21) implies that 
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Then from Eqs. (3.6) and (3.26), it can be concluded that Eq. (3.24) is valid 
when   

0)]()x(r),x([
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0i
ii =−∑

−

=

ϑηϑΦ

3) Function 0)x( →Ψ  when ∞→N  (see Eq. 3.26). Then the reference 
impactor is a body of revolution. This special case was analyzed in 
Section 9-2. 

Therefore, Eqs. (3.23) and (3.24) allow us using Eq. (3.15) to obtain the 
following estimates of ε

o

D : 

)(O)h(w)h(K~D ]1[ εε +=o

As was found in the previous section, we obtain two ODEs for ]0[w  and 
]1[w : 

[ ] 0)Lb(w,w,h),()x(rDw)2m( ]0[]0[]0[
h =+−= ϑη , (3.29) 

and 

0)Lb(w,)h(K~ww)2m( ]1[]1[]1[
h =+−= . (3.30) 

Hence all the conclusions and estimates obtained in Section 9-2 are also 
valid in this case. 
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PART 3: OPTIMIZATION OF 
NON-HOMOGENEOUS SHIELDS 



  

 

Chapter 10 

OPTIMIZATION OF MULTI-LAYERED AND 
SPACED DUCTILE SHIELDS 
 

 
 

1. INTRODUCTION 

Several topics associated with the penetration mechanics of layered 
(including spaced) shields have been extensively studied in the literature, 
and some examples of these topics are given below. 

1) Comparing the ballistic characteristics of monolithic shields with those 
of shields composed of several plates with the same total thickness and 
manufactured from the same material.  

The plates may be in contact or there may be air gaps between the plates. 
Therefore, as alternatives to the monolithic shield, many types of shields are 
possible with different numbers of plates and different thicknesses of the 
plates and of the air gaps. 

2) Analysis of the effect of the order of plates manufactured from 
different materials on the ballistic characteristics of the shield.  

The simplest case of this problem is interchanging the plates in a 
two-layered shield. In the general case, the number of plates may vary and 
they may be manufactured from different materials. 

3) Investigating the combined effects, e.g., changing the order of plates 
and using air gaps, on the ballistic performance of the shield and various 
problems of optimization of the structure of the shield. 

The ballistic performance of a shield depends on its structure, the 
material properties of its elements, and the shape of the penetrator; e. g., 
penetration by a striker with bluntness is accompanied by plugging, and 
penetration into a thin plate causes petalling (see, e.g., Backman and 
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Goldsmith, 1978; Corbett et al., 1996; Wierzbicki, 1999). Penetration modes 
may differ from shield to shield. Significant role can be played by the 
obliquity of the impact, the deformation or fragmentation of the impactor 
and other factors.  

A brief survey of the state-of-the-art presented below (mainly on 
penetration in metal shields) validates the assessment of Radin and 
Goldsmith (1988) that: “only limited results for multiple target materials 
exist in the literature…, and the results obtained cannot easily be correlated 
since different target and projectile materials, nose shapes, impact 
geometries and striker speeds were used”. Clearly, the latter assessment is 
not related to the problem of selecting the best shield out of the given set of 
shields against the impactor with a given shape. This problem can be often 
solved experimentally, and the obtained results can be explained using 
relatively simple physical reasoning. The problem is to determine a 
more-or-less general law that will enable prediction of the change of ballistic 
characteristics of the shield by varying the structure of the shield. This 
problem has not been solved as yet, although a number of experimental and 
theoretical studies have been performed in this direction. 

Hurlich (1950) noted that the earliest study on the modern use of spaced 
armor that he found was performed in 1913 for armor of naval vessels. He 
presented some qualitative arguments in favor of spaced armor (mostly for 
tanks), a number of tables with experimental results, some references and 
curious historical information. 

Honda et al. (1930) (see also Goldsmith, 1960) investigated experimentally 
the impact of steel plates by conical-nosed projectiles. It was found that a 
shield composed of thin plates had a lower ballistic resistance than a 
monolithic shield with the same thickness. However, a spaced shield with 
thicknesses of the plates equal to the half-thickness of a monolithic shield 
performed better than a monolithic shield. Marom and Bodner (1979) 
conducted a combined analytical and experimental comparative study of 
monolithic, layered and spaced thin aluminum shields. They found that the 
ballistic resistance of a monolithic shield is higher than that of a 
multi-layered shield with the plates in contact and lower than the ballistic 
resistance of a spaced shield. The study of Radin and Goldsmith (1988) was 
also based on semi-empirical models and experimental investigations. They 
found a monolithic aluminum shield to be superior to a layered shield with 
the same total thickness for conical-nose and blunt projectiles, while spaced 
shields were less effective. Corran et al. (1983a,b), using experimental 
results on penetration of mild steel plates by impactors having “increasingly 
rounded nose shape”, plotted a curve describing dependence of perforation 
energy vs. plate thickness for all considered variants of the shield and found 
a “kink” in the curve “at about 3.5 mm total thickness”. The occurrence of 
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the kink was explained by the change of character of energy absorption. The 
authors arrived at the following conclusions. “(1) The order of unequal plate 
thickness is important… (2) No advance is found in using multilayered 
targets below the kink… Above this point the best combinations may 
approach the best-fit line to the single layer tests below the kink… (3) There 
is an advantage in placing the layers in contact”. 

Nixdorff (1984a,b; 1987a) compared the ballistic performance of a 
monolithic metal shield with shields manufactured from the same material, 
having the same total thickness, and consisting of several plates in contact. 
Using the theory developed by Awerbuch and Bodner (Awerbuch, 1970; 
Awerbuch and Bodner, 1974), Nixdorff showed that separation of a 
homogeneous shield into several layers implies a reduction of the BLV of 
the shield.  

Woodward and Cimpoeru (1998) developed a simple phenomenological 
model that considers the perforation of laminates as a two-stage process of 
indentation on the impact side of the shield and either shear or dishing 
failure on the exit side, depending on the shield configuration. Experimental 
data for laminated aluminum alloy shields perforated by flat-ended or 
conical penetrators were used in this investigation.  

Zukas  (1996) and Zukas and Scheffler (2001) found, on the basis of 
numerical simulations with metallic shields, that “layering dramatically 
weakens thin [ 1)R2(b < ] and intermediate [ 10)R2(b3 << ] thickness 
targets”, while “thick targets [ 10)R2(b > ] show small changes in 
projectile residual properties [residual mass and residual velocity] when 
compared to their monoblock equivalent”. 

Madhu et al. (2003) conducted experiments with aluminum plates 
impacted normally and concluded that “there is no significant change in the 
ballistic performance due to layering of such intermediate thickness of 
plates”. They compared a monolithic shield with two- and three-layered 
shields of the same thickness. Gupta and Madhu (1997), using experimental 
results obtained for aluminum and steel plates, arrived at the same 
conclusion with respect to “relatively thick plates”. For thin shields, “the 
layered combinations in contact give higher residual velocity [when 
compared with a monolithic shield] for the plates of both the materials 
tested”. It was also found that for a “spaced target… the residual velocity 
was higher than the plates in contact”, for the same impact velocity. 

Weidemaier et al. (1993) conducted experiments and numerical 
simulations on the perforation of steel barriers by spherical impactors with a 
diameter of 17 mm. They studied a monolithic shield with a thickness of 43 
mm and shields composed of plates in contact having the same total 
thickness. It was found that the ballistic characteristics of layered shields 
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depended strongly on the order of the plates having different thicknesses and 
that layering could improve or impair the ballistic performance of the shield.  

Almohandes et al. (1996) conducted a comprehensive experimental study 
on the perforation of mild steel by standard 7.62 mm bullets. They 
investigated layered in contact, spaced and monolithic shields with total 
thickness in the range 8-14 mm. The efficiencies of shields were assessed by 
comparing their residual velocities for the same magnitude of the impact 
velocity. It was found that single shields were more effective than laminated 
shields of the same total thickness, regardless of the configuration or striking 
velocity, and that the difference in performance diminished as the striking 
velocity increased. Moreover, the effectiveness of laminated shields – 
whether in contact or spaced – increased as the number of plates comprising 
each shield decreased. Ballistic performance of laminated shields is further 
enhanced by using the thickest lamina as the back lamina. The authors also 
studied shields with different structures in which fiberglass reinforced 
polyester was used as the filler material, and showed that these shields 
performed better than weight-equivalent steel shields. The experimental 
results of Almohandes et al. (1996) were used by Liang et al. (2005) for 
validating their proposed approximate penetration model. This model was 
used for comparative analysis of shields with different structures. It was 
concluded that the ballistic performance was the best for the double shield 
when the ratio of the first-layer thickness to the total thickness was about 
0.75, and the worst performance was obtained when this ratio was equal to 
0.5. An air gap slightly influenced the resistance to perforation in 
multi-layered shields. 

Elek et al. (2005) developed a simple model to describe the perforation of 
monolithic and multi-layered thin metallic plates by a flat-ended cylindrical 
impactor and used their model for the analysis of the ballistic properties of 
multi-layered spaced shields. The main results of this study may be 
summarized as follows. The suggested model predicted that the monolithic 
shield will have larger resistance than any other multi-layered shield with 
standoff distance between layers and equivalent total mass. The analysis of 
penetration in a two-layered shield showed that the maximum resistance 
could be obtained for very low (<20% of total thickness) or very high (>80% 
of total thickness) first-layer thickness. The increase of the number of spaced 
layers of a multi-layered shield, at constant total mass, caused a further 
decrease of ballistic resistance. Deterioration of the ballistic performance of 
thin steel shields against  flat-ended cylindrical impactors caused by layering 
had been noticed earlier by Zaid et al. (1973). 

Shirai et al. (1997) investigated experimentally and numerically the 
impact resistance of reinforced concrete plates against projectile impact. 
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They found that double-layered plates could be expected to have higher 
impact resistance than standard plates.  

Park et al. (2005) suggested a multi-stage procedure for optimization of a 
two-layered shield. In the first stage, using numerical simulations to describe 
penetration into shields with different thicknesses of the layers, )1(b  and 

)2(b , they determined the average temperature of a shield, aveT , the average 
equivalent plastic strain aveσ  and the maximum equivalent plastic strain in a 
critical element of the shield maxσ . In the second stage, the approximate 
functions describing the dependencies, aveT , aveσ  and  maxσ  vs. )1(b  и )2(b , 
were determined. In the third stage, using a reduction to a single-criterion 
problem by a linear combination of criteria, they solved a two-objective 
optimization problem. The authors considered two variants of optimization 
criteria ( aveT  or aveσ  and the weight of a shield); the constraints included the 
upper bounds or maxσ , and constraints on the thicknesses of the plates and 
the total thickness of a shield. 

Aptukov (1985) and Aptukov et al. (1985), using Pontrjagin’s maximum 
principle, determined the optimum distribution of the mechanical 
characteristics of a non-homogeneous plate. The areal density of the shield 
along the trajectory of the impactor until it stopped was used as a criterion, 
and cylindrical and cone-nosed impactors were considered. The two-term 
LIM was employed, wherein the assumption about a linear dependence 
between the coefficients of the model was used. Aptukov et al. (1986) solved 
the discrete problem of optimization of a layered plate when the shield 
consisted of several layers of material and the material itself could be chosen 
from a given set of materials. The cylindrical cavity expansion model 
suggested by Sagomonyan (1988) was used in that study. All these 
investigations are summarized in the monograph of Aptukov et al. (1992).  

Young (1972, 1997), using phenomenological formulas for soil, rock and 
concrete homogeneous shields, developed a technique for calculating the 
penetration into layered shields. Bernard (1978) suggested a model 
describing penetration in soil/rock multi-layered SISs that takes into account 
simultaneous interaction of a conical impactor with adjacent layers in a 
shield. The DOP was determined by numerical simulations. Yossifon et al. 
(2002) also suggested mathematical models and methods for calculating the 
ballistic characteristics of multi-layered shields. The survey of Corbett et al. 
(1996) contains a section on multi-layered shields. 

Ben-Dor et al. (1997c; 1998a,d,e,f; 1999b,c,d; 2000c )  investigated multi- 
layered ductile shields using LIMs and CCEMs. Systemized and expanded 
results of these studies are presented in this chapter. 
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2. LOCALIZED INTERACTION APPROACH FOR 
NON-HOMOGENEOUS SHIELDS 

2.1 Modeling of non-homogeneous shields 

The LIT can easily be generalized to the case of non-homogeneous 
shields by assuming that functions nΩ  and τΩ  in Eq. (2-1.1) also depend 
on the location of the impactor-shield contact point in the coordinate system 
associated with the shield. This dependence can be described directly or 
through the parameters ,...a,a 10 , that depend on the coordinates. We 
consider a normal impact and normal penetration of a rigid striker into a 
non-homogeneous shield with mechanical properties that change only along 
the direction of the impactor’s motion. 

Therefore, we assume that ,...a,a 10  are functions of the coordinate ξ  
associated with the shield (Figure 10-1), i. e.: 

)(aa ξrr
=

where ar  is a vector with components ),...(a),(a 10 ξξ  Then  

( ) ( )v,u),(a,v,u),(ann ξΩΩξΩΩ ττ
rr

== . (2.2) 

Figure 10-1. Description of LIM for non-homogeneous shields. 
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Without loss of generality, we can assume that:  

( ) ( ) 0v,u,0v,u,0n == τΩΩ

If this assumption is not valid for the original functions nΩ  and τΩ , we can 
introduce modified functions  nΩ̂  and τΩ̂ :  

ττ ΩΩΩΩ ++ == aˆ,aˆ
nn

where +a  is an additional auxiliary parameter. 
Definitions of the coordinates h,x  and ξ  imply the following 

relationship for every impactor-shield contact point: 

xh −=ξ

Hereafter we consider the case of a shield with a finite thickness. Techniques 
used in this chapter and the derivation procedures employed in Chapter 2 
allow us to derive formulas for a SIS as well. 

Equation (2-2.13) can be rewritten as: 

( )

( ) ,d),x(uv),,x(u),xh(adx

)h()0(v,1),h(a)v,h(D

0

)h(

)h(

2

0
0

n

ϑϑϑΩ

δσΩ
Θ

θ

π

∫ ∫ −+

=

r

r

 (2.6) 

where a formula similar to Eq. (2-1.6) is valid for 0Ω ,  

( ) ( ) ( )v,u),(au1v,u),(auv,u),(a 2
n0 ξΩξΩξΩ τ

rrr −+= , (2.7) 

and references to other notations are given in Table 10- . 

Table 10- .  Reference to the equations defining a LIM for a non-homogeneous shield 
Function Definition 

)x(σ  Eq. (2-2.14) 
)h(δ  Eq. (2-2.16) 

),x(u0 ϑ , ),x(u1 ϑ  Eq. (2-2.12) 
)h(θ  Eq. (2-2.6) 
)h(Θ  Eq. (2-2.2) 

),x(u ϑ  Eq. (2-2.11) 
 

1

1

. (2.3) 

, (2.4) 

. (2.5) 
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In the case of 3-D conical impactor when the impactor’s shape is 
described by Eq. (2-4.3), Eq. (2.6) can be rewritten as follows: 

( ) ( )∫ −++=
)h(

)h(
0n dxv),xh(aG~)kxk()h()0(v,1),h(a)v,h(D

Θ

θ

δσΩ rr , (2.8) 

where 

( ) ( ) ϑϑϑξΩξ
π

d)(Uv),(u),(av),(aG~
2

0
0

)rr
∫= , (2.9) 

0)v,0(G~ = ,

)(Uk)(u,)1k()(U 22222 ϑηϑηηηϑ
))

=′++= . (2.11) 

Equation (2-2.20) describing the motion of the impactor and Eq. (2-2.25) are 
used for determining the BLV.  

2.2 A model for multi-layered shields 

For a layered shield consisting of N  non-interacting plates with 
thicknesses )N()2()1( b,...,b,b (see Figure 10-1), )(a ξr is a step-function: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤=

<≤=

<≤=

=

−

−

)N()1N()N(
2

)N(
1

)N(

)j()1j()j(
2

)j(
1

)j(

)1()0()1(
2

)1(
1

)1(

if,...)a,a(a
...
if,...)a,a(a
...
if,...)a,a(a

)(a

ξξξ

ξξξ

ξξξ

ξ

r

r

r

r , (2.12) 

where )j(ξ  ( N,...,2,1j = ) is the total thickness of the first j  layers (in the 
direction of the axis ξ ),  

0,b )0(
j

1

)()j( ==∑
=

ξξ
κ

κ ,

and a vector )j(ar  with components ,...a,a )j(
2

)j(
1  represents the parameters 

that determine the properties of the plate with number j , i.e., a superscript 
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in parentheses denotes the number of the plate in a multi-layered shield, 
while a subscript denotes the number of the parameter in the set of 
parameters that determine the properties of this plate. Figure 10-2 shows, in 
the coordinates h  and x ,  the borders between neighboring plates. 

 

Figure 10-2. Description of the LIM for multi-layered shields. 

If the plate with the number j  is an air gap, then  

0a )j( =r

and Eq. (2.3) is valid. 

2.3 Some properties of the model 

Let us prove an identity that is often used in the remainder of the chapter. 
Let )x(Ξ be an arbitrary function, and )(ai ξ  a step function describing 
variation of a parameter of a multi-layered shield. Then, the following 
identity is valid: 

Lb + h)1(ξ )2(ξ )j(ξ b)N( =ξ

)N(bj(b)1(b )2(b

)h(x θ=  

L

x

)h(x Θ=

j N21  

0)0( =ξ

)

 (2.14) 
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( )

( )
∑ ∫∫

=

−

−

−

=−
N

1j

hx

hx

)j(
i

)h(

)h(
i

)1j(
*

)j(
*

dx)x(adx)xh(a)x(
ξ

ξ

Θ

θ

ΞΞ , (2.15) 

where )z(x* is determined by Eq. (2-2.10). 
First let us prove the following identity for any function )x(~Ξ and any 

Lbh0 0 +≤≤ : 

( )

( )
∑ ∫∫

=

−

−

−

=
N

1j

hx

hx

)h(

)h(

)1j(
0*

)j(
0*

0

0

dx)x(~dx)x(~
ξ

ξ

Θ

θ

ΞΞ

The simplest method to prove this identity is to consider four possible 
locations of the straight line 0hh =  with respect to the borders of the domain 

Lbh0 +≤≤ , )h(x)h( Θθ ≤≤ (see Figure 10-3a-d) 
Let us consider the case )b,Lmin(h0 0 ≤≤  when h)h(,0)h( == Θθ . 

This case is shown in Figure 10-3a and, in more detail, in Figure 10-4. 
Denote by maxj  such a number j  so that )j(

0
)1j( maxmax h ξξ ≤≤− . Then (see 

Figure 10-4): 

 ∑ ∫∫∫
−=

−

−

− −−

+=
1

1jj

h

h

h

0

)h(

)h( max

)1j(
0

)j(
0

)1maxj(
00

0

dx)x(~dx)x(~dx)x(~
ξ

ξ

ξΘ

θ

ΞΞΞ . (2.17) 

Since ( ) 0hx )j(
0*

max =−ξ  for Njjmax ≤≤  and ( ) )j(
0

)j(
0* hhx ξξ −=−  for 

1jj1 max −≤≤ , we can rewrite Eq. (2.17) as: 

( )

( )

( )

( )

( )

( )

( )

( )
.dx)x(~dx)x(~
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)1j(
0*
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ξ

ξ

ξ

Θ
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ΞΞ

ΞΞΞ

 (2.18) 

Therefore, Eq. (2.16) is valid if )b,Lmin(h0 0 ≤≤ . The cases shown in 
Figure 10-3b-d can be considered in a similar manner. 

Equation (2.16) can be written for )xh(a)x()x(~
i −= ΞΞ : 
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( )

( )
∑ ∫∫

=

−

−

−

−=−
N

1j

hx

hx
i

)h(

)h(
i

)1j(
*

)j(
*

dx)xh(a)x(dx)xh(a)x(
ξ

ξ

Θ

θ

ΞΞ , (2.19) 

 

0 0h Lb +   bL h
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x
b)  bhL,bL 0 ≤≤<  

h0h0 Lb +

L

bL

x

a)  )b,Lmin(h0 0 ≤≤  
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Figure 10-3. Possible locations of the straight line 0hh =  with respect to the borders of the 
domain Lbh0 +≤≤ , )h(x)h( Θθ ≤≤ . 

where 0h  is replaced  by h . Since )j(
ii a)xh(a =−  if 

( ) ( ))1j(
*

)j(
* hxxhx −−≤≤− ξξ  and ( ) ( ))1j(

*
)j(

* hxhx −−=− ξξ  for 
( ))j(

* hxx ξ−≤  and for ( ))1j(
* hxx −−≥ ξ , we obtain: 

( )

( )

( )

( )
∫∫

−− −

−

−

−

=−
)1j(

*

)j(
*

)1j(
*

)j(
*

hx

hx

)j(
i

hx

hx
i dx)x(adx)xh(a)x(

ξ

ξ

ξ

ξ

ΞΞ . (2.20) 

L 0h Lb +   b h0

L

x
c)  Lbh)L,bmax( 0 +≤≤

L

0h0 Lb +b L h

d) Lhb,Lb 0 ≤≤≤  x
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Figure 10-4. Case )b,Lmin(h0 0 ≤≤ . 

Substitution of the integral in the left-hand side of Eq. (2.20) into Eq. (2.19) 
completes the proof of validity of Eq. (2.15). 

Another useful relationship can be easily proved for some functions 
)x(Ξ and )h(Ξ̂ by interchanging the order of integration and changing the 

variables xx → , hxh )j( →−−ξ  in the integrals: 

( )

( )
∫ ∫∫ ∫ ++=

+ −

−

− L

0

b

0

)j(
Lb

0

hx

hx

)j()1j(
*

)j(
*

)xh(ˆdh)x(dx)x(dx)h(ˆdh ξΞΞΞΞ
ξ

ξ

. (2.21) 

3. TWO-TERM LOCALIZED INTERACTION 
MODELS  

3.1 Three-dimensional impactors  

First, let us consider the following model: 

( ) ( ) ( ) αξξξΩ vu),(aAvu),(aAv,u),(a 0
2

2n
rrr

+= , (3.1) 

)1j( max −ξ  

0h

x

j( maxξ

h)j(ξ

L

)j(hx ξ−=

L b
)0(ξ

maxj

)
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( ) ( )v,u),(av,u),(a nfr ξΩµξΩ τ
rr

=

This model is a generalization of the model considered in Section 2-8 for 
non-homogeneous shields. Equation (2.6) implies Eq. (2-8.2), with 2,0i = : 

( ) ( )∫ ∫ −+=
)h(

)h(

2

0
iii ,d),x(U),x(u),xh(aAdx)h()0(1),h(aA)h(f

Θ

θ

π

ϑϑϑδσ rr

where the notations are given in Table 10-4, and U  is defined by 
Eq. (2-3.4). Equations (2-8.4)-(2-8.8) and Eqs. (2-8.11)-(2-8.14) remain 
valid, taking into account that )h(fi are defined by Eq. (3.3). 

When  

( ) 2,0i),u()(au),(aA iii == ωξξr

where iω  are some positive functions, then Eq. (3.1) becomes: 

( ) αωξωξξΩ v)u()(av)u()(av,u),(a 00
2

22n +=
r .  (3.5) 

Substituting iA  ( 2,0i = ) given by Eq. (3.4) into Eq. (3.3) we obtain: 

( )∫ ∫−+

=
)h(

)h(

2

0
ii

iii

,d),x(U),x(udx)xh(a

)h()0()1()h(a)h(f
Θ

θ

π

ϑϑϑω

δσω

 (3.6) 

Clearly, in this case Eqs. (2-8.4)-(2-8.8) and Eqs. (2-8.11)-(2-8.14) and 
references in Table 10-4 remain valid. 

Let us consider this model for a sharp 3-D impactor [ 0)0( =σ ] 
penetrating into a multi-layered shield in more detail. Using Eq. (2.15), we 
can transform Eq. (3.6) to the following form: 

( )

( )
∫ ∫∑

−−

−=

=−=
)h(

)h(

hx
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)j(
iiii

)1j(
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)j(
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Θ

θ

ξ

ξ

 , (3.7) 

where ,2,0i =  
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( )∫=
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ϑϑϑω
2

0
ii d),x(U),x(u)x(e

⎟
⎟
⎠

⎞
⎜
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⎝

⎛
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h~d)h~(f
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0
0bl

β
β

β .  (3.9) 

3.2  Conical three-dimensional impactors 

3.2.1 General formulas 

In the case of a 3-D conical impactor, using formulas from Table 2-2, we 
can write Eq. (3.6) as follows:  

,dx)xh(a)xkk(cd)()h()1()h(a
2
k)h(f

)h(

)h(
i0i

2

0

2
ii

2
0

i ∫∫ −++=
Θ
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π

ϑϑηδω

where ,2,0i =  

( )∫=
π

ϑϑϑω
2

0
ii d)(u~)(uc

22
frk)(u~ ηηµηϑ ′++=

and function )(u ϑ  is determined by Eq. (2.11). 
When the impactor’s nose is a sharp 3-D conical body ( 0k0 = ), 

Eq. (3.10) can be rewritten as: 

2,0i,dx)xh(axkc)h(f
)h(

)h(
iii =−= ∫

Θ

θ

. 

Note that for a 3-D conical impactor penetrating into non-homogeneous 
shields a simple analytical solution similar to that given by Eq. (2-8.22) 
cannot be obtained. 

, (3.8) 

 (3.10) 

, (3.11) 

, (3.12) 

 (3.13) 
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3.2.2 3-D sharp cone 

Since the model given by Eqs. (3.2) and (3.5) for a 3-D sharp conical 
impactor penetrating into a multi-layered shield will be often used in this 
book, we present the relevant relationships in more detail. 

Equation (2.15) allows us to present functions )h(fi  in Eq. (3.13) in the 
following form: 

( )

( )
∑∑ ∫

==

−

−

==
−

N

1j

)j(
N

1j

hx

hx

)j(
222 )h(mxdxakc)h(f

)1j(
*

)j(
*

ψ
β

ξ

ξ

, (3.14) 

( )

( )
∑∑ ∫

==

−

−

==
−

N

1j

)j()j(

2

0
N

1j

hx

hx

)j(
000 )h(m

c
cxdxakc)h(f

)1j(
*

)j(
*

ψχ
β

ξ

ξ

, (3.15) 

where ,N,...,2,1j =   

( )

( )
∫∫

−−

−

=
)1j(

*

)j(
*

h~x

h~x

h

0

)j()j( xdxh~dc)h(
ξ

ξ

ϕ

( )

( )
∫

−−

−

==
)1j(

*

)j(
*

hx

hx

)j(
)j(

)j( xdxc
dh

d)h(
ξ

ξ

ϕψ

)j(
2

)j(
0)j(

a
a=χ

)j(
22

)j( kac
m

c β=

and parameters ic  and k  depend on the shape of the impactor (see 
Eq. 3.11), 20 ≤< β . 

Substituting )h(f2  and )h(f0 from Eqs. (3.14) and (3.15) into Eq. (3.9), 
we obtain: 

∑
=

=
N

1j

)j()j(
bl

0

2 Iv
c
c χβ

Chapter

, (3.16) 

, (3.17) 

, (3.18) 

, (3.19) 

,  (3.20) 
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where 

( ) N,...,2,1j,dh)h(expI
Lb

0

)j()j( == ∫
+

ϕψ , (3.21) 

∑
=

=
N

1j

)j( )h()h( ϕϕ

For the convenience of the reader, the references to the equations that 
determine the model for a 3-D sharp conical impactor are summarized in 
Table 10- . 

Table 10- . References to the equations determining two-term LIMs for a sharp 3-D conical 
impactor penetrating into a layered shield 

Function/parameter Definition 

τΩΩ ,n  Eqs. (3.5), (3.2) 
u~,u  Eq. (3.12) 

Φ  Eq. (2-4.3) 

blv  Eq. (3.20) 
)j(χ  Eq. (3.18) 

)j(I  Eq. (3.21) 
)j(ψ  Eq. (3.17) 

ϕ  Eq. (3.22) 
)j(

2
)j(

0 a,a  Eqs. (3.5), (2.12) 

20 c,c  Eq. (3.11) 
)j(c  Eq. (3.19) 

 
Let us now prove a useful formula. Equations (3.16), (3.17), (3.21) and 

(3.22) yield: 

( ) ( ) ( )[ ] Lbh
0h

Lb

0

Lb

0

N

1j

)j( expdh
dh

expddhexp
dh

)h(dI +=
=

++

=

=== ∫∫∑ ϕϕϕϕ  (3.23)   

Using Eq. (2.20) for 1)h(ˆ =Ξ  and x)x( =Ξ , we obtain: 

( )

( )

2
Lbcdhxdxcxdxdhc)Lb(

2)j()j(b

0

L

0

)j(
hx

hx

Lb

0

)j()j(

)j()1j(
*

)j(
*

===+ ∫∫∫∫
−−

−

+ ξ

ξ

ϕ . (3.24) 

2

2

. (3.22) 
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Taking into account that 0)0()j( =ϕ  for all j , Eqs. (3.18), (3.22), (3.23) 
and (3.24) yield: 

1ba
m2

kcLexpÎ,ÎI
N

1j

)j()j(
2

2
2N

1j

)j( −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== ∑∑

==

β . (3.25) 

3.2.3 3-D sharp cone of revolution: Newton’s model   

Consider an impactor having the shape of a cone of revolution. The 
model given by Eqs. (3.2) and (3.5) with 

0,u)u(,1)u( fr
2

20 === µωω

yields the following equations: 

( )∑∫
=

++=
N

1j

)j()j(
017

1b

0
172

2

bl )h(Ka)h(P~exphd
k

1kv λλβ , (3.27) 

where 

[ ]

( ) ,),h(~aa)b,h(~a)0,h(~a
2
1

),h(~),h(~a
2
1h~d)h~(Ka)h(P~

1Ni1

)i()i(
2

)1i(
2

)N(
2

)1(
2

)i()1i(
N

1i

)i(
2

N

1i

h

0

)i()i(
2

⎥
⎦

⎤
⎢
⎣

⎡
−+−=

−==

∑

∑∑ ∫

−≤≤

+

−

==

ξΨΨΨ

ξΨξΨ
(3.28) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+≥−−

+≤≤−

≤

=−= ∫ ◊

1chif32ch

1chcif)ch(
3
1

chif0

h~d)ch~(X)c,h(~ 3
h

0

2Ψ , (3.29) 

( )

( )
( ) ( )[ ])j(2)1j(2

hX

hX

)j( hXhX
2
1xdx)h(K

)1j(

)j(

ξξ
ξ

ξ

−−−== ◊
−

◊

−

−
∫

−
◊

◊

, (3.30) 

m)1k(
Lk2

2

34

17 +
= πβλ
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 (3.26) 

, (3.31) 
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L
bb,

L
xx,

L
,

L
hh

)j(
)j( ==== ξξ

4. EFFECT OF AIR GAPS ON THE BALLISTIC 
RESISTANCE OF A SHIELD 

4.1 Multi-layered shield with the layers of the same 
material: general localized interaction model 

Let us consider a shield consisting of maxµ  plates manufactured from the 
same material with air gaps between the plates (Figure 10-5). The shield is 
perforated by a 3-D sharp conical impactor. There are no constraints on the 
widths of the air gaps, so that the impactor can interact with several plates 
simultaneously. 
For a sharp impactor, 0k0 = , and  Eq. (2.8) can be rewritten as: 

( )∫ −=
)h(

)h(

dxv),xh(aG~xk)v,h(D
Θ

θ

r

where the notations are explained in Section 10-2.1.  
Let us define a function )(ξε , which is equal to 1 if the point with the 

coordinate ξ  (see Figure 10-5) is located in any plate and is equal to 0 if 
this point is located in an air gap:  

.0......

,1......

,1,...,2,1j,if)(

)22()2()2(

)12()12()1(
max

)j()1j()j(

max

max

=====

=====

−=≤≤=

−

−−

−

µµ

µµ

εεε
εεε

µξξξεξε
 (4.2) 

Then  

( ) ( ) ( ) ϑϑϑΩξεξεξ
π

d)(Uv),(u,a)(v,aG~)(v),(aG~ )1(
2

0
0

)1( )rrr
∫== , (4.3) 

where vector )1(ar  with constant components ,...a,a )1(
2

)1(
1  represents the 

parameters determining  the material properties of the plates. Using 
Eq. (4.3), we can write the expression for drag force (Eq. 4.1) as: 

 

. (3.32) 

, (4.1) 
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Figure 10-5. Structure of a shield with air gaps. 

( ) ∫ −=
)h(

)h(

)1( dx)xh(xv,aG~k)v,h(D
Θ

θ

εr

The equation of motion of the impactor reads: 

( ) ∫ −−=
)h(

)h(

)1( dx)xh(xv,aG~k
dh
dvmv

Θ

θ

εr

or 

( ) dhdx)xh(xdv
v,aG~k

mv
)h(

)h(
)1( ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−= ∫

Θ

θ

εr
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Integrating the left-hand side of this equation over v  from impvv = to resvv =  
and right-hand side over h  from 0h =  to Lbh += , we obtain the 
relationship between the impact velocity and the residual velocity of the 
impactor:  

J~)v()v( resimp =−ψψ

where 

( )∫=
z

0
)1( v,aG~

vdv
k
m)z( rψ

∫∫ −=
+ )h(

)h(

Lb

0

dx)xh(xdhJ~
Θ

θ

ε

Equation (4.7) yields an equation for the BLV by substituting blimp vv =  and 
0vres = : 

J~)v( bl =ψ .

Integral in Eq. (4.9) can be transformed by changing the variables, 
ξ+== xh,xx (see Figure 10-6a-b): 

∫ ∑ ∫∑ ∫∫ ∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+==

−

== −

−

−

L

0

1

11

L

0

b

0

max
)2(

)12(

max
)12(

)22(

d)(d)(xdxd)(xdxJ~
µ

µ

ξ

ξ

µ

µ

ξ

ξ

µ

µ

µ

µ

ξξεξξεξξε . (4.11) 

The second sum in Eq. (4.11) equals 0, while the integrals in the first sum 
yield the thicknesses of the corresponding plates. After some algebra, 
Eq. (4.11) yields:  

( ) sum
2

L

0
sum

L

0 1

)22()12( bL5.0xdxbxdxJ~
max

==−= ∫∫ ∑
=

−−
µ

µ

µµ ξξ , (4.12) 

 

, (4.7) 

, (4.8) 

. (4.9) 

 (4.10) 
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Figure 10-6. Coordinates used in the description of the impactor-shield interaction. 
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where sumb  is the total thickness of all the plates: 

∑
=

−=
max

1

)12(
sum bb

µ

µ

µ

Therefore, Eqs. (4.7),  (4.10) and (4.12) imply that: 

)bL5.0(v sum
21

bl
−=ψ

( ) blimpsum
2

imp
1

res vv,bL5.0)v(v ≥−= − ψψ . (4.15) 

Equations (4.14) and (4.15) show that the residual velocity for a given 
impact velocity and the BLV are the same for all shields (spaced and 
non-spaced) with the same total thickness sumb . It must be emphasized that 
the latter result was obtained by using a general LIM. Note that the model 
used does not account for the difference between the resistance properties of 
a monolithic shield and a shield consisting of several plates that are 
in-contact and have the same total thickness; it also neglects interaction 
between plates in contact. 

Experimental data on ballistic penetration of conical impactors into 
ductile shields with air gaps are quite scarce. Radin and Goldsmith (1988) 
investigated the impact response of shields composed of soft aluminum 
multi-layered plates penetrated by a hard-steel 60-grad conical-nosed 
projectile. Two of their experiments are relevant to our study. In the first 
experiment, the BLVs for a shield consisting of two plates, 1.6 mm thick, 
were found to be 93.2 m/s and 90.6 m/s for adjacent and spaced plates, 
respectively. In the second experiment, the plates of thickness 3.2 mm were 
used; the measured BLVs were 160.4 m/s and 153.4 m/s, respectively. The 
values of BLV for adjacent and spaced plates were thus close. The increase 
in the BLV for plates in contact may be associated with friction between the 
layers (Corran et al., 1983b) that has not been taken into account in the used 
models. 

4.2 Two-layered shield with different materials of the 
plates: two-term localized interaction model 

4.2.1 Statement of the problem 

Consider penetration of a 3-D rigid conical impactor into two-layered 
armor with an air gap between the plates. The notations used in the analysis  
 

. (4.13) 

, (4.14) 
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of this problem are shown in Figure 10-7. The shield consists of two plates 
with thicknesses )1(b and )3(b  manufactured, in general, from different 
materials. The first (front) plate is located between the cross-sections 

0)0( == ξξ  and )1()1( b== ξξ , and the second plate is located between the 
cross-sections )2()1()2( bb +== ξξ  and  )2()2()1()3( bbb ++== ξξ , where 

)2(b  is the thickness of the air gap. 

 
Figure 10-7. Two-layered shield with air gap. 

We use the impactor-shield interaction model defined in Table 10-5. In 
the considered case ( 3,1j = ): 

( )

( )
∫∫

−−

−

=
)1j(

*

)j(
*

h~x

h~x

h

0

)j()j( xdxh~dc)h(
ξ

ξ

ϕ

)3()3()1()1(
bl

0

2 IIv
c
c χχβ +=

( )∫
+

+=
Lb

0

)3()1(
)j(

)j( dhexp
dh

dI ϕϕϕ

where )j(χ  and )j(c  are determined by Eq. (3.18) and Eq. (3.19), 
respectively (with 3,1j = ). 

Chapter

, (4.16) 

, (4.17) 

, (4.18) 
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First let us consider the dependence of the BLV blv  on the thickness of 
the air gap )2(b . 

4.2.2 Investigation  of the problem 

Using Eq. (3.25), we can write: 

)1()3( IÎI −=

where  

( )⎥⎦
⎤

⎢⎣
⎡ += )3()3(

2
)1()1(

22 babakc
m2

expÎ β

 Substituting )3(I  from Eq. (4.19) into Eq. (4.17), we obtain: 

( ) )1()3()1()3(
bl

0

2 IÎv
c
c χχχβ −+=

where only the integral )1(I  depends on the thickness of the air gap )2(b . 
Consider the integral )1(I  in more detail. From Eq. (4.16), this integral 

can be transformed, by changing variables, as follows: 

( )
( )

( )

( ) ( ) ,expexpdhxdxc

xdxexpdhcI

L

0

bx

x

)3()1()1(

Lb

0

hx

hx

)3()1()1()1(

)1(

*

)1(
*

∫ ∫

∫ ∫
+

+

−

=

+=

ϕϕ

ϕϕ
ξ  (4.22) 

where 

( )

( )
∫∫
−

=
h~x

bh~x

h

0

)1()1(
*

)1(
*

xdxh~dc)h(ϕ

),h(ˆc)h( )2()3()3()3( ξϕϕ =

, (4.19) 

. (4.20) 

, (4.21) 

, (4.23) 

, (4.24) 
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( )

( )

( )

( )
( )−+

−

−

−

−

−=== ∫∫∫∫ II
6
1xdxh~dxdxh~d),h(ˆ

)2(
*

)3(
*

)2(
*

)3(
*

h~x

h~x

h

0

h~x

h~x

h

0

)2()3(
ξ

ξ

ξ

ξ

ξϕ , (4.25) 
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+≤≤−

≤
=−= ∫+

LhifL2hL3
Lhifh

hif0
h~dh~x3I

)2(3)2(2

)2()2(3)2(

)2(
h

0

)2(2
*

ξξ
ξξξ

ξ
ξ  ,

( ) ( )

( )
( )⎪

⎩

⎪
⎨

⎧

++≥−−−
++≤≤+−−

+≤
=

−−=−= ∫∫−

LbhifL2bhL3
Lbhbifbh

bhif0

h~dbh~x3h~dh~x3I

)3()2(3)3()2(2

)3()2()3()2(3)3()2(

)3()2(

h

0

)3()2(2
*

h

0

)3(2
*

ξξ
ξξξ

ξ

ξξ

 (4.27) 

and )3(ϕ̂  is now considered as a function of two arguments, h  and 
)2()1()2( bb +=ξ . Equations (4.22)-(4.27) show that the BLV depends on 

the thickness of the air gap )2(b  only through the function .ˆ )3(ϕ  
Let us derive a formula for the function ),h(ˆ )2()3( ξϕ . Equations (4.26) 

and (4.27) yield: 

( )
( ) ( )

( ) ( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+≥
+≤≤+−−−−

+≤≤−−−
≤≤−

≤
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LhifbL3
LhLifhL2hL3
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hif0

),h(ˆ6

)3()3(2

)3()2(3)3(3)2(2
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)2(

)2()3(

ξ
ξξξξ

ξξξξ
ξξξ

ξ

ξϕ

 (4.28)  

for Lb )3( ≤ ,  and 
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≤
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)3()2()3(2
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)2(
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Lhifh

hif0

),h(ˆ6

ξ
ξξξξ

ξξξ
ξξξ

ξ

ξϕ

 (4.29) 

for  Lb )3( ≥ , where )3()2()3( b+= ξξ . 
The expression for the derivative of ),h(ˆ )2()3( ξϕ  with respect to )2(ξ  

reads: 
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 (4.30) 

for  Lb )3( ≤ , and 
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 (4.31) 

for   Lb )3( ≥ . 
We included the boundary points between the neighboring intervals in 

the formula for the derivative of ),h(ˆ )2()3( ξϕ  with respect to )2(ξ  because 
the  left and right derivatives in these points coincide, i.e., function 

),h(ˆ )2()3( ξϕ has a continuous first partial derivative with respect to )2(ξ . 
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Inspection of Eqs. (4.28)-(4.31) allows us to draw the following 
conclusions. 

Assume that )Lb(Lb )2()1()2( ≥+≥ξ . Since 0ˆ )3( =ϕ  for )2(h ξ≤ , then 
0ˆ )3( =ϕ  for Lbh )1( +≤  as well. Consequently, 0ˆ )3( =ϕ  in the domain of 

integration in Eq. (4.22), )1(bxhx,Lx0 +≤≤≤≤ . Hence, )1(I  and the 
BLV do not depend on the thickness of the air gap. Clearly, this conclusion 
is valid because the plates are perforated consecutively. 

If Lbb )1()2()1( +<≤ ξ , then )3(ϕ̂  is a non-increasing function of )2(ξ  at 
every sub-interval, and there is always the sub-interval of h  where )3(ϕ̂  is a 
decreasing function of )2(ξ . Therefore, the integral )1(I decreases when 

)2(ξ  increases. 
Thus, Eq. (3.5) implies the following claim. When  )3()1( χχ >  

( ))3()1( χχ < , then the BLV of the shield decreases (increases) with 
increasing air gap thickness from zero to the length of the impactor, and 
remains constant with a further increase of the air gap thickness. If 

)3()1( χχ = , the BLV does not depend on the thickness of the air gap. 

5. EFFECT OF THE ORDER OF THE PLATES ON 
THE BALLISTIC RESISTANCE OF A SHIELD 

5.1 Two-layered shield consisting of plates in contact 

5.1.1 Formulation of the problem 

Consider the penetration of a 3-D rigid conical impactor into two-layered 
armor. In the following exposition, we use the notations of the 
Section 10-1.2. Some details pertinent to the considered problem are shown 
in Figure 10-8a-b. The shield consists of two plates in contact with 
thicknesses )1(b and )2(b in the direction of the impactor’s motion (reference 
position of the plates). The plates, in general, are manufactured from 
different materials. All superscripts in the notations of the parameters are 
associated with this order of the plates in the shield. We consider the 
reference order of the plates in the armor (Figure 10-8a) and the inverse 
order of the plates (Figure 10-8b) with the goal of determining the effect of 
the order of the plates on the BLV of the shield. 

In the analysis, we use the model described in Table 10-5. For purposes 
of convenience, we rewrite some relationships for the two-term case 
( 2,1j = ) and replace )2()1()0( ,, ξξξ  by )2()1()1( bb,b,0 + . After these 
manipulations, we obtain: 

Chapter
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2 IIv
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)j(
)j( =+== ∫

+

ϕϕϕϕϕ , (5.3) 

 

where )j(χ  and )j(c are determined by Eq. (3.18) and Eq. (3.19), 
respectively.  

The model for the shield with the inverse positions of the plates 
(subscript inv indicates the parameters of this model) may be written as: 

( )
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*
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h

0

)1()2(
inv

h~x

bh~x

h

0

)2()1(
inv xdxh~dc)h(,xdxh~dc)h( ϕϕ ,  (5.4) 

, (5.2) 
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Figure 10-8. Two variants of a two-layered shield.  

Chapter
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)2(
inv

)1()1(
inv

)2(
invbl

0

2 IIv
c
c χχβ += , 

( ) 2,1j,,dh)h(exp
dh

dI )2(
inv

)1(
invinv

Lb

0
inv

)j(
inv)j(

inv =+== ∫
+

ϕϕϕϕϕ . (5.6) 

5.1.2 Investigation  of the problem 

Using Eq. (3.25) we can write: 

)1(
inv

)2(
inv

)1()2( IÎI,IÎI −=−=

where 

( )⎥⎦
⎤

⎢⎣
⎡ += )2()2(

2
)1()1(

22 babakc
m2

expÎ β

does not depend on the order of the plates in the shield. Substituting )2(I  
and )2(

invI  from Eq. (5.7) into Eqs. (5.2) and (5.5), respectively, we obtain: 

( ))1()2()1()1(
bl

0

2 IÎIv
c
c −+= χχβ

( ))1(
inv

)1()1(
inv

)2(
invbl

0

2 IÎIv
c
c −+= χχβ , (5.10)   

and 

( ) ( )
( )( ) .II

IIÎ)vv(
c
c

)1(
inv

)2()2()1(

)1(
inv

)1()2()1(
blinvbl

0

2

−−=

−−−=−

χχ

χχββ

 (5.11) 

Let us now prove that 0II )1(
inv

)2( >− .   
We interchange the variables h  and x  in the integrals )2(I  and )1(

invI  and 
then change the variable hbh )1( →− . The result reads: 

, (5.5) 

, (5.7) 

 (5.8) 

, (5.9) 
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( )
( )

( )
( )

( ) ,dh)bh(expxdxc

dh)h(expxdxcxdx)h(expdhcI

L

0

bx

x

)2()2(

Lb

0

L

0

bbx

bx

)2(
bhx

bbhx

)2()2(

)2(

)2()1(

)1(

)1(
*

)2()1(
*

∫ ∫

∫ ∫ ∫∫
+

+

+

−

−−

+=

==

ϕ

ϕϕ

( )∫ ∫
+

=
L

0

bx

x
inv

)2()1(
inv

)2(

dh)h(expxdxcI ϕ

Then 

( ) ( ) ( )[ ]

( )[ ] ( ) ,dh)h(exp1)h(Ĝexpxdx

dh)h(exp)bh(expxdxII
c

1

L

0

bx

x
inv

L

0

bx

x
inv

)2()1(
inv

)2(
)2(

)2(

)2(

∫ ∫

∫ ∫
+

+

−=

−+=−

ϕ

ϕϕ
 (5.14) 

where 

)h(gc)h(gc)h()bh()h(Ĝ )2()2()1()1(
inv

)2( +=−+= ϕϕ , (5.15) 

2,1j,
c

)h()bh()h(g )j(

)j3(
inv

)1()j(
)j( =−+=

−ϕϕ , (5.16) 

( )

( )

( )

( )
∫∫∫∫
−

−−−

+

−=
)2(

*

)2()1(
*

*

)1(
*

)1( bh~x

bbh~x

h

0

h~x

bh~x

bh

0

)1( xdxh~dxdxh~d)h(g , (5.17) 

( )

( )

( )

( )
∫∫∫∫
−

−

−−

+

−=
h~x

bh~x

h

0

bh~x

bbh~x

bh

0

)2(
*

)2(
*

)1(
*

)2()1(
*

)1(

xdxh~dxdxh~d)h(g . (5.18) 

 Let us now investigate the sign of )h(g )1( . After the change of 
variables h~bh~ )2( →−  in the second integral in Eq. (5.17), the equation 
reads: 

Chapter

 (5.12) 

. (5.13) 
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( )

( )

( )

( )
∫∫∫∫
−

−

−−

+

−=
h~x

bh~x

bh

b

h~x

bh~x

bh

0

)1(
*

)1(
*

)2(

)2(

*

)1(
*

)1(

xdxh~dxdxh~d)h(g . (5.19) 

Since 0)bh~(x)h~(x )1(
** =−=  for 0h~ ≤ , the upper bound  )2(bh~ −=  in the 

integral in the second term in Eq. (5.19) can be replaced by 0h~ = . Then  

( )

( )

( )

( )

( )

( )
0xdxh~dxdxh~dxdxh~d)h(g

h~x

bh~x

bh

bh

h~x

bh~x

bh

0

h~x

bh~x

bh

0

)1(
*

)1(
*

)1(

)2(

*

)1(
*

)2(
*

)1(
*

)1(

≥=−= ∫∫∫∫∫∫
−

+

−−

−

−

+

. (5.20) 

Similarly, after the change of variables h~bh~ )1( →−  in the first integral in 
Eq. (5.18), the equation reads: 

( )

( )

( )

( )

( )

( )
0xdxh~dxdxh~dxdxh~d)h(g

h~x

bh~x

0

b

h~x

bh~x

h

0

h~x

bh~x

h

b

)2(
*

)2(
*

)1(

*

)2(
*

*

)2(
*

)1(

==−= ∫∫∫∫∫∫
−−−−−

. (5.21) 

Therefore, 0)h(Ĝ ≥ , and Eq. (5.14) implies that: 

0II )1(
inv

)2( >−

and Eq. (5.11) allows us to conclude that:  

( ))2()1(
blinvbl sign)vv(sign χχ −=−

We have shown that the maximum BLV of the shield is attained when 
the plates are arranged in order of the increasing values of parameters χ .  

5.2 Two-layered spaced shield 

Let us consider four shields (see Figure 10-9a-d ). The first shield 
(Figure 10-9a) is denoted by 1-2 ( ]21[

blv − denotes the corresponding BLV). 
This is a two-layer shield without an air gap, which consists of two plates 
with the thicknesses )1(b  (the front plate) and  )2(b  (the rear plate). The 
second shield (Figure 10-9b) is denoted by 1-0-2 ( ]201[

blv −−  is its BLV), and 
it consists of the same plates in the same order with an air gap. The third 
shield (Figure 10-9c) and the fourth shield (Figure 10-9d ) are similar to the 
shields 1-2 and 1-0-2, respectively, but the plates are arranged in the 

  (5.22) 

. (5.23) 
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opposite order. These shields are denoted by 2-1 and 2-0-1 (with BLVs 
]12[

blv − and ]102[
blv −− ,  respectively).  

 

Figure 10-9. Compared shields. 

Assume that )2()1( χχ > , where parameter )j(χ  characterizes the 
material properties of the j -th plate. Then, the results of Section 10-5.1 
imply that: 

]21[
bl

]12[
bl vv −− > ,

b(1)b(2)

χ  (2) χ  (1) 

b(1) b(2)

2 1 

a) 

χ  (2) χ  (1)

b(1) b(2)

21

b) 

χ  (2) χ  (1)

2 1 

c) 

χ  (2) χ  (1) 

b(1)b(2)

2 1 

d) 

Shield 1-2 Shield 1-0-2

Shield 2-1 Shield 2-0-1

Chapter

 (5.24) 
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while the results of Section 10-4.2 imply that: 

]12[
bl

]102[
bl

]12[
bl

]21[
bl

]201[
bl

]21[
bl vvv,vvv −−−−∞−−−−−∞− >≥<≤ . (5.25) 

Here, ]21[
blv −∞−  and ]12[

blv −∞− , respectively, are the magnitudes of the BLVs 
of shields 1-0-2 and 2-0-1 with air gaps larger than L . Eqs. (5.24)-(5.25) 
yield: 

]21[
bl

]201[
bl

]21[
bl

]12[
bl

]102[
bl

]12[
bl vvvvvv −∞−−−−−−−−∞− ≥>>>≥ . (5.26) 

Therefore the best ballistic performance of a two-layered shield is 
attained when the plate with the smaller χ  is a front plate, and the air gap 
between the plates is larger than L . In contrast, the minimum BLV is 
attained when the plates are arranged in the reverse order, and the air gap is 
larger than L . 

5.3 Multi-layered shield with large air gaps 

5.3.1 Basic relationship 

In this section, we study the case, in which an N -layered shield is 
perforated sequentially, i.e., the impactor does not interact simultaneously 
with two or more plates. The latter assumption is approximately valid if the 
length of the impactor is much smaller than the thicknesses of the plates. In 
the framework of the LIA this assumption corresponds to a spaced shield 
when the widths of the air gaps are larger than the length of the impactor L . 
We employ the LIM described in Table 10-5 for a 3-D conical impactor and 
will use the corresponding general formulas. However, in the following 
exposition, we employ simple method to derive the relationship for the BLV. 
Since the plates in the shield are perforated independently, a one-layer shield 
model can be used for each plate. 

Let us rewrite the formulas of the model of the Section 2-8.2.2 for the 
plate with number j  (see Figure 10-10). To this end, formulas for )u(A2 and 

)u(A0 in Eq. (2-8.1) can be written as follows: 

N,...,1j),u(a)u(A),u(a)u(A 0
)j(

002
)j(

22 === ωω , (5.27) 

where parameters )j(
0a  and )j(

2a  ( N,...,1j = ) characterizing material 
properties of the plates are determined by step functions )(a0 ξ  and )(a2 ξ , 
respectively. Note that functions )(a0 ξ , )(a2 ξ , )u(0ω  and )u(2ω that are 
used in this section and in Eq. (3.4) have the same meaning. The analog of  
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Figure 10-10. Multi-layered shield with large air gaps.  

Eq. (2-8.24), the correlation between the impact velocity )j(
impv   and the 

residual velocity of the j -th ( N,...,1j = ) plate )j(
resv , reads: 

)j()j(
imp

)j()j(
res FvEv −= ββ

where 

)j(
)j(

T
1E =

⎥⎦
⎤

⎢⎣
⎡ −= )j()j(

2

)j(
0)j(

T
11

C
CF

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

m2
bCkLexpT

)j()j(
2

2
)j( β

Parameters )j(
0C  and )j(

2C  are determined similarly to Eq. (2-8.16). Using 
Eq. (5.27), we can rewrite equation Eq. (2-8.16) as follows: 

N1j,2,0i,caC i
)j(

i
)j(

i ÷=== ,

where coefficients ic  are determined by Eq. (3.11). Substituting )j(
iC from 

Eq. (5.32) into Eq. (5.30), we obtain: 

Chapter

, (5.28) 

, (5.29) 

, (5.30) 

. (5.31) 

 (5.32) 
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)j(
2

)j(
0)j(

)j(
2

0)j()j(

a
a,

T
11

c
cF =⎥⎦

⎤
⎢⎣
⎡ −= χχ . (5.33) 

5.3.2 Formula for the BLV of the shield 

Since the plates are perforated independently (see Figure 10-10), the 
residual velocity of the j -th plate, )j(

resv , is equal to the impact velocity of 
the )1j( + -th plate, )1j(

impv + , for 1N,...,1j −= . In addition, the impact 
velocity of the shield impv  is equal to )1(

impv , and the residual velocity of the 
shield resv  is equal to )1N(

imp
)N(

res vv +=  (notation )1N(
impv +  is introduced here for 

convenience). Then, Eq. (5.28) can be rewritten in the following form: 

N1j,FvEv )j()j(
imp

)j()1j(
imp ÷=−=+ ββ .  (5.34) 

Eliminating )N,...,2j(v )j(
imp = from these equations, we can obtain the 

correlation between the impact velocity of the shield, )1(
impimp vv = , and  

the residual velocity of the shield, )1N(
impres vv += . The result is given by the 

following formula: 

2N,FEFvEv )N(
1N

1j

N

1j

)()j()1(
imp

N

1j

)j()1N(
imp ≥−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑ ∏∏

−

= +==

+

ν

νββ . (5.35) 

Equation (5.35) can be proved by induction. Indeed, let us rewrite 
Eq. (5.34) for  1j =  and 2j = : 

)2()2(
imp

)2()3(
imp

)1()1(
imp

)1()2(
imp FvEv,FvEv −=−= ββββ .  (5.36) 

Eliminating )2(
impv , we obtain: 

)2()1()2()1(
imp

)2()1()3(
imp FFEvEEv −−= ββ

Since Eq. (5.35) for 2N =  yields the same formula, Eq. (5.35) is valid for 
2N = . 

Assume that Eq. (5.35) is valid for an N-layered shield ( 2N >  is an 
integer number). Now, let us prove the validity of this equation for a shield 
consisting of 1N +  plates. In other words, we assume that Eq. (5.35) is valid 
for a sub-shield consisting of the first N plates and prove, using Eq. (5.34), 
that Eq. (5.35) is valid for the whole shield. Eq. (5.34) for 1Nj +=  reads:  

 (5.37) 
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N1j,FvEv )1N()1N(
imp

)1N()2N(
imp ÷=−= ++++ ββ . (5.38) 

Substituting )1N(
impv +  from Eq. (5.35) to Eq. (5.38), we find that: 

.FEFvEFFE

EFEvEEv

)1N(
N

1j

1N

1j

)()j()1(
imp

1N

1j

)j()1N()N()1N(

1N

1j

N

1j

)()j()1N()1(
imp

N

1j

)j()1N()2N(
imp

+

=

+

+=

+

=

++

−

= +=

+

=

++

−−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=−−

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑ ∏∏

∑ ∏∏

ν

νβ

ν

νββ

 

Since the formula for )2N(
impv +  (Eq. 5.39) coincides with Eq. (5.35) after 

replacing N  by 1N + , it can be concluded that Eq. (5.35) is valid for 
arbitrary values of N .  

Substituting 0v )1N(
imp =+  and bl

)1(
imp vv =  into Eq. (5.35), we obtain a 

formula for the BLV of the shield, blv :  

∑ ∏∑ ∏∏
= =

−

= +==

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

N

1j

j

1
)(

)j()N(
1N

1j

N

1j

)()j(
N

1j
)j(bl E

1FFEF
E

1v
ν

ν
ν

νβ . (5.40) 

Using Eqs. (5.29) and (5.33) for )j(E and )j(F , we can rewrite 
Eq. (5.40) as follows:  

∑ ∏
=

−

=

=−=
N

1j

)0(
1j

0

)()j()j(
bl0

2 1T,T]1T[vc
c

ν

νβ χ . (5.41) 

In the case of an impactor having the shape of a cone of revolution and 
using the model given by Eqs. (3.2), (3.5) and (3.26), we obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+
=

L2
abexpT,

1k
k

c
c )j(

2
)j(

17)j(
2

2

0

2 λ

where 17λ  is defined by Eq. (3.31). 

Chapter

 (5.39) 

, (5.42) 
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5.3.3 Effect of the order of the plates on the ballistic limit velocity  

Let us investigate how the BLV changes when two plates with numbers 
s  and 1s +  are interchanged. First, let us rewrite Eq. (5.41) so as to separate 
the terms with superscripts s  and 1s +  from the sum:  

N3s2s1ss1s1bl0

2 UUUUvc
c

÷+++÷−÷ +++=β

where 

⎪
⎩

⎪
⎨

⎧

=

>−= ∑ ∏
−

=

−

=−÷

1sif0

1sifT]1T[U

1s

1j

1j

0

)()j()j(

1s1 ν

νχ , (5.44) 

∏
−

=

++
+÷ −+−=

1s

0

)()s()1s()1s()s()s(
1ss T}T]1T[]1T[{U

ν

νχχ , (5.45) 

⎪⎩

⎪
⎨
⎧

−=

−≤−= ∏
−

=

+++

+

1Nsif0

2NsifTTT]1T[U

1s

0

)()1s()s()2s()2s(

2s ν

νχ , (5.46) 

.

3Nsif0

3NsifT]1T[TT
U

N

3sj
1j2s

1s0

)()j()j()1s()s(

N3s

⎪
⎪
⎩

⎪⎪
⎨

⎧

−>

−≤−
=

∑ ∏
+=

−≤≤+
−≤≤

+

÷+
ν

ν

νχ

Consider now a shield with the reverse order of the plates with numbers 
s  and 1s + . The formula for the BLV, ]s,1s[

blv + , can be obtained from 
Eqs. (5.43)-(5.47) by interchanging  )1s()s( TT +↔  and  )1s()s( +↔ χχ . 
Therefore, 

N3s2s1ss1s1
]s,1s[

bl
0

2 U~U~U~U~v
c
c

÷+++÷−÷
+ +++=β , (5.48) 

, (5.43) 

 (5.47) 
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where 

1s11s1 UU~ −÷−÷ = , 2s2s UU~ ++ = , N3sN3s UU~ ÷+÷+ = , (5.49) 

∏
−

=

+++
+÷ −+−=

1s

0

)()1s()s()s()1s()1s(
1ss T}T]1T[]1T[{U~

ν

νχχ .  (5.50) 

Equations (5.43), (5.48) and (5.49) yield: 

1ss1ssbl
]s,1s[

bl0
2 UU~)vv(c

c
+÷+÷

+ −=− ββ

Substituting Eqs. (5.45) and (5.50) to Eq. (5.51), we obtain after some 
algebra: 

.][T]1T][1T[)vv(c
c )1s()s(

1s

0

)()1s()s(
bl

]s,1s[
bl

0

2 +
−

=

++ −
⎭
⎬
⎫

⎩
⎨
⎧

−−=− ∏ χχ
ν

νββ

Since 1T )( >ν  for all ν  and 0,0c,0c 20 >>> β , Eq. (5.52) implies that: 

)(sign)vv(sign )1s()s(
bl

]s,1s[
bl

++ −=− χχ . (5.53) 

Thus, we have proved that if two adjacent plates in a multi-layered shield 
with large air gaps are arranged such that the value of the parameter χ  for 
the first plate is larger than that for the second plate, the BLV of the shield 
can be increased by interchanging these plates.  

It can also be easily shown that the maximum BLV of the shield is 
obtained when the plates are arranged in the order of increasing values of χ . 
To prove the latter claim, let us assume that this claim is not valid, i.e., the 
ballistic limit for some sequence of the plates is maximum but for some 

Ns0 << , )1s()s( +> χχ . Interchanging the order of these plates results in an 
increase of the BLV that contradicts the initial assumption. Therefore, the 
claim is proved. It must be noted that the optimal order of the plates is 
independent of their thicknesses. Clearly, the minimum BLV is achieved 
when the plates are arranged in the shield in the inverse order. 

The model given by Eq. (5.38), with 2=β  and coefficients that have 
different meanings depending on the adopted physical model of perforation 
have been employed in a number of studies of multi-layered shields. 
Nixdorff (1984b) used this model and derived an equation similar to 
Eq. (5.41). Baranov et al. (1991) determined the criterion given by Eq. (5.53)  
 

Chapter

. (5.51) 

 (5.52) 
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for the case of a shield consisting of two layers. Seliverstov  (2001) 
attempted to determine a general rule for the optimal order of plates in a 
multi-layered shield.  

5.4 Non-conical impactor: a special case  

In this section, we consider penetration in a multi-layered shield 
consisting of N  plates in contact under the following assumptions: (i) the 
impactor is, generally, a 3-D sharp non-conical projectile, (ii) the plates have 
the same thickness, and (iii) the impactor-shield interaction model 
determined by Eqs. (3.2) and (3.5) is valid, where the parameter 2a  is the 
same for all the plates, i.e., 

consta)(a 22 ==ξ

in Eq. (3.5). This model together with assumption (5.54) is applicable when 
the plates are manufactured from different types of functionally graded 
material such as the plates have approximately the same density but their 
strength characteristics are different. 

Taking into account Eq. (5.54) and using the model for sharp 3-D 
impactor determined by Eqs. (3.7)-(3.9), we arrive at the following 
equations: 

( )

( )
∫∑∫

−−

−=

+

=
)1j(

*

)j(
*

hx

hx
0

N

1j

)j(
0

Lb

0
bl dx)x(ea)h(Qdhvm

ξ

ξ

β

β
, (5.55) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∫∫

)h~(

)h~(
2

h

0

2 dx)x(eh~dm
aexp)h(Q

Θ

θ

β

where )x(ei  is determined by Eq. (3.6). Using Eq. (2.21), we can rewrite 
Eq. (5.55) as follows: 

∫∑∫ ++= −

=

)j(b

0

)1j(
N

1j

)j(
0

L

0
0bl dh)xh(Qa)x(dxevm ξ

β
β . (5.57) 

Now let us investigate how the BLV of the shield changes when two 
plates with numbers s  and t  ( )st > having the same thickness are 
interchanged.  

 (5.54) 

, (5.56) 
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Equation (5.57) can be rewritten as:  

.hd)xh(Qadh)xh(Qa

dh)xh(Qa)x(dxevm

)t()s(

)j(

b

0

)1t()t(
0

b

0

)1s()s(
0

tj,sj
Nj0

b

0

)1j()j(
0

L

0
0bl

⎥
⎥
⎥

⎦

⎤

++++++

⎢
⎢
⎢
⎢

⎣

⎡

++=

∫∫

∑ ∫∫

−−

≠≠
≤≤

−

ξξ

ξ
β

β

 (5.58) 

Consider now a shield with the reverse order of the plates with numbers 
s  and t . The formula for the BLV, ]s,t[

blv , can be obtained from Eqs. (5.58) 
by interchanging  )t(

0
)s(

0 aa ↔  and )t()s( bb ↔ : 

.hd)xh(Qadh)xh(Qa

dh)xh(Qa)x(dxevm

)s()t(

)j(

b

0

)1t()s(
0

b

0

)1s()t(
0

tj,sj
Nj0

b

0

)1j()j(
0

L

0
0

]s,t[
bl

⎥
⎥
⎥

⎦

⎤

++++++

⎢
⎢
⎢
⎢

⎣

⎡

++=

∫∫

∑ ∫∫

−−

≠≠
≤≤

−

ξξ

ξ
β

β

 (5.59) 

Taking into account that )t()s( bb = , Eqs. (5.58) and (5.59) yield: 

( )

( ) .dh)xh(Q)xh(Q)x(dxeaa

vvm

L

0

b

0

)1s()1t(
0

)t(
0

)s(
0

bl
]s,t[

bl

)s(

∫ ∫ ++−++−=

−

−− ξξ

β
ββ

(5.60) 

Since )h(Q  is an increasing function and )1s()1t( −− > ξξ , then 
)xh(Q)xh(Q )1s()1t( ++>++ −− ξξ , and Eq. (5.60) implies that: 

 ( ) ( ))t(
0

)s(
0bl

]s,t[
bl aasignvvsign −=−

Since in Eq. (5.61) )j(
0a ∝ )j(χ , we arrive at the following conclusion. If 

the value of the parameter χ  for the first of two plates having the same 

Chapter

. (5.61) 
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thickness is larger than that for the second plate, then the BLV of the shield 
can be increased by interchanging the plates. The method used in 
Section 10-5.3 allows to prove that the maximum BLV is attained when the 
plates are arranged in the order of increasing values of 0a , and the minimum 
BLV is achieved when the plates are arranged in the shield in the inverse 
order. 

6. SOME PROPERTIES OF LAYERED SHIELDS 
WITH A GIVEN AREAL DENSITY 

6.1 A class of optimal multi-layered shields 

The problem under consideration can be formulated as follows. There are 
several materials with different properties that can be used for manufacturing 
the plates in a multi-layered shield. It is assumed that the areal density of the 
shield, namely, its mass per unit surface area, is given. The goal is to 
determine the structure of the shield, i.e., the order and the thicknesses of the 
plates manufactured from different materials that provide the maximum 
BLV of the shield against a normal impact by a conical-nosed 3-D impactor. 

We use the model described in Table 10-5, assuming that the parameter 
)j(

2a  is density. Then, the areal density of the shield A  is given by the 
following formula: 

∑
=

=
N

1j

)j()j(
2 baA

Without a loss of generality, it can be assumed that parameters )j(χ  for 
all plates are different. Denote by )j( *χ  the maximum value of )j(χ  that is 
attained for the plate with number *j . Then Eqs. (3.20) and Eq. (3.25) can 
be rewritten as follows: 

)j()j(

jj
Nj1

)j()j(
bl0

2 **

*

IIvc
c χχβ += ∑

≠
≤≤

1A
m2

kcLexpÎ,ÎII 2
2

)j(

jj
Nj1

)j( *

*

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==+∑

≠
≤≤

β . (6.3) 

. (6.1) 

, (6.2) 



256 10
 

 

Substituting )j( *I  from Eq. (6.3) into Eq. (6.2), we obtain: 

( )∑
≠

≤≤
−−=

*

**

jj
Nj1

)j()j()j()j(
bl

0

2 IÎv
c
c χχχβ , 

where  

( )

( )
∫ ∫ ∫∑∫ ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

−−

−=

)j( )1i(
*

)i(
*

b

0

h

0

h~x

h~x

N

1i

)i(
L

0

)j()j( xdxch~dexpdhxdxcI
ξ

ξ

. (6.5) 

Equation (6.5) shows that 0I )j( >  if 0b )j( >  and 0I )j( =  only when 
0b )j( = . Since constÎ = and 0)j()j( * >− χχ  for *jj ≠ , Eq. (6.4) implies 

that the maximum BLV is attained when 0b )j( =  for all *jj ≠ . 
Therefore, the shield with the maximum BLV consists of one plate  or 

several adjacent plates (these cases are equivalent in the model) 
manufactured from the material with the maximum value of parameter χ , 
regardless of the shape of 3-D conical-nosed impactor. The thickness of the 
optimum shield equals )j(

2
*aA . Similarly, the shield with the minimum 

BLV consists of one plate or several adjacent plates manufactured from the 
material with the minimum value of parameter χ . The BLVs of different 
shields with a given areal density vary in the range between these two 
limiting values. 

6.2 Efficiency of changing the order of the plates in a 
two-layered shield 

Consider the ballistic performance of a two-layer shield with large air 
gaps against a conical impactor. Formulas for the BLV of the shield with the 
direct (original) order of the plates (superscript ]21[ − ) and with the 
inverse order of the plates (superscript ]12[ − ) are given by Eq. (5.41):  

)1()2()2()1()1(]21[
bl

0

2 T]1T[]1T[v
c
c −+−=− χχβ , (6.6) 

)2()1()1()2()2(]12[
bl

0

2 T]1T[]1T[v
c
c −+−=− χχβ . (6.7) 

Here, according to Eqs. (5.31) and (5.32), 

Chapter

 (6.4) 
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( ) )j()j(
2

2
2

)j()j()j( ba
m2

ckLA,AexpT β== , (6.8) 

the superscript in parentheses corresponds to the number of the plate in the 
original shield and )j(A  is the dimensionless areal density of the j -th plate 
( )j(

2a  is the density of a plate).  
Assume that:  

)2()1( χχ >

Then ]21[
bl

]12[
bl vv −− > and we can consider the ratio  

]21[
bl

]12[
bl vv~ −−=ε

as a characteristic of the efficiency of interchanging the plates in the shield.  
Let us determine the maximum magnitude of this parameter, i.e., the 

maximum ε~  that can be attained for a given areal density of the shield: 

)2()1( AAA +=

This problem can be reduced to the maximization of  

)1()2()2()1()1(

)2()1()1()2()2(

T]1T[]1T[
T]1T[]1T[~

−+−
−+−=

χχ
χχε β  (6.12) 

under the following restrictions: 

2,1j,gT1,gTT )j()2()1( =≤≤=

where 

( )Aexpg =

Substituting )1()2( TgT =  into Eq. (6.12) we obtain, after simple 
algebra, the following problem: 

( ) max
T)g(T)1(

T)1g()1(gTf~
)1(2)1(

)1(
)1(

0 →
−+−

−+−==
ξξ

ξξε β , (6.15) 

. (6.9) 

 (6.10) 

. (6.11) 

, (6.13) 

. (6.14) 
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where 

1)2()1( >= χχξ

g  is known, and  

gT1 )1( ≤≤

To investigate this problem, we calculate the first derivative: 

( ) ( )
[ ]2)1(2)1(

)1(
1)1(

0
T)g(T)1(

Tf)1(Tf
ξξ

ξ

−+−

−=′ , (6.18) 

where 

( ) )g(gT)1(g2T)1g(Tf )1(2)1()1(
1 ξξξ −−−−−= . (6.19) 

The equation ( ) 0Tf )1(
1 =  has two roots: 

1g
1g1T,

1g
gg

T )1(
**

)1(
* −

−−=
+
+

=
ξξ

ξ

Since 1g >  and 1>ξ , it can be concluded that the root 1T )1(
** < , i.e., it is 

located outside the domain determined by Eq. (6.17). The formula for the 
first root can be written in two forms: 

1g
g)1g(

gT,
1g

1g1T )1(
*

)1(
* +

−
−=

+
−+=

ξ
ξ

ξ
. (6.21) 

Clearly, this root satisfies the constraints given by Eq. (6.17). Since at the 
boundaries of the interval ]g,1[  

( ) ( ) 0)1g(ggf,0)1g(1f 2
1

2
1 >−=<−−= ξ , (6.22) 

then ( ) 0Tf )1(
1 <  when )1(

*
)1( TT1 <≤  and  ( ) 0Tf )1(

1 >  when 
gTT )1()1(

* ≤< . Hence, as shown by Eq. (6.18), function ( ))1(
0 Tf  increases 

in the interval )1(
*

)1( TT1 <≤ and decreases for gTT )1()1(
* ≤< . The 

maximum of this function is reached at the point: 

Chapter
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1g
gg

TT )1(
*

)1(
max +

+
==

ξ
ξ

Equation (6.23) yields a formula for the maximum value of the ratio ε~ , 
max

~ε , which can be obtained by substituting the maximum )1(T  from 
Eq. (6.23) into Eq. (6.15): 

β

ξ
ξε

2

max g
1g~
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

=

Equation (6.24) for max
~ε  can be rewritten as: 

β

ξ
ξξε

2

max g
1~

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−=

Equation (6.25) shows that max
~ε  increases with an increase of the areal 

density of the shield, )gln(A = . It is interesting to note that there is a 
limiting value of max

~ε , which can be obtained when ∞→g , i.e., always  

βξε 1
max

~ ≤

Expanding max
~ε ( )2=β in a Taylor series of small parameter A , we obtain 

the following approximate formula: 

A
)1(2

11~
max +

−
+≈

ξ
ξε

7. OPTIMIZATION OF IMPACTORS AGAINST 
MULTI-LAYERED SHIELDS 

Let us consider penetration of a 3-D sharp conical impactor into a 
non-homogeneous shield by using the impactor-shield interaction model 
summarized in Table 10-5 with:  

0,1)u( fr0 == µω

. (6.23) 

. (6.24) 

. (6.25) 

. (6.26) 

. (6.27) 

. (7.1) 
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The equation of the impactor’s surface, ),x( ϑΦρ = , reads: 

1k),(kx == ϑηρ

where )(L ϑηρ =  is the equation of the shank of the cone. Substituting 
Eqs. (7.1) and (7.2) into the equations listed in Table 10-5, we obtain the 
following formula for the BLV: 

∫ ∫
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

Lb

0

h

0
20bl h~d)h~(fmexp)h(fdhmv βββ

where  

∫ −=
)h(

)h(
iii dx)xh(axc)h(f

Θ

θ

∫==
π

ϑϑηϑηϑη
2

0

2
000 d)()]([J)],([Jc , (7.5) 

ϑϑη
ηηη

ηωϑηϑη
π

d)(
)1(

)]([J)],([Jc
2

0

2
222

2

2222 ∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′++
== .(7.6) 

Similarly, we can obtain a formula for the DOP: 

βββ
imp

H

0

h

0
20 vh~d)h~(fmexp)h(fdhm =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫ ∫

Clearly,  

)L(
L
2)L(),L(c 20 σσσ ==

where )L(σ  is the area of the impactor’s shank.  
Using these formulas, Eqs. (7.3) and (7.7) can be rewritten as follows: 

10Chapter
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∫
+

=
Lb

0

)]([J
m

2002bl dh)]h([)h()]([J
mL

v 2 ϑηβ
β ΨΨϑηβ , (7.9) 

βϑηβ

ΨΨϑηβ
imp

H

0

)]([J
m

2002 vdh)]h([)h()]([J
mL

2 =∫ , (7.10) 

where 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=−= ∫∫∫

)h~(

)h~(
2

h

0
2

)h(

)h(
00 dx)xh~(axh~dexp)h(,dx)xh(ax)h(

Θ

θ

Θ

θ

ΨΨ . (7.11) 

Assume that parameters 0,m,b,L >β , )]([J)L( 0 ϑησ = and functions 
)(a0 ξ and )(a2 ξ  are given and consider the problem of finding the shape of 

cross-section of the 3-D conical impactor with minimum BLV. Since 
0)]([J,0)h(,0)h( 220 >>> ϑηΨΨ , Eq. (7.9) shows that the solution of the 

variational problem:  

)L()]([Jmin,)]([J 0 σϑηϑη =→

provides the solution to problem of finding a 3-D conical impactor with 
minimum BLV. 

The latter conclusion is also valid when some additional constraints must 
be taken into account, e.g., when the contour of the projectile is bounded by 
a circular ring: 

maxmin R)(R),2()0( ≤≤= ϑηπηη

where minR and maxR  are the dimensionless radii. It is important to note that 
a different choice of 0,m,b,L >β , )(a0 ξ , )(a2 ξ  yields the same variational 
problem. Therefore, the shape of the optimal impactor (in dimensionless 
variables using L  as a reference length) does not depend on these 
parameters and functions, i.e., it does not depend on the distribution of the 
material properties of the shield along the trajectory of the projectile. 

Similar conclusions are valid when we consider the problem of obtaining 
the maximum DOP for a given impact velocity, impv . Indeed, let us assume 
that 0,m,b,L >β , impv , )]([J)L( 0 ϑησ = , )(a0 ξ and )(a2 ξ  are given. 
Then Eq. (7.10) can be considered as a definition of the dependence H  vs. 

)]([J2 ϑη , where H  increases with a decrease of )]([J2 ϑη . Therefore, 

 (7.12) 

, (7.13) 
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the solution of the variational problem given by Eq. (7.12) provides the 
solution of the DOP maximization problem.  

To elucidate the meaning of the functional )]([J2 ϑη , we consider a 
hypothetical situation in which an impactor moves with a constant velocity 
v̂  in a homogeneous shield. Assume also that impactor is completely 
immersed in the shield and that the impactor-shield interaction model is 
determined by Eqs. (3.5) and (7.1) with constant parameters 0â  and 2â : 

0,v̂âv̂)u(â 0
2

22n =+= τ
α ΩωΩ

Substituting Eq. (7.14) and 0)0( =σ , 0)h( =θ , L)h( =Θ , 2
0 xuu η=  into 

Eq. (2.6) and taking into account Eq. (2.7), we obtain the following 
expression for the drag force, D :  

.)}L(v̂â)]([Jv̂â{L5.0

d]v̂âv̂)u(â[xdxD

02
2

2
2

2

0

2
0

2
22

L

0

σϑη

ϑηω

α

π
α

+=

+= ∫∫

Therefore, the solution of the variational problem given by Eq. (7.12) 
also provides the solution to the problem of determining the shape of the 
cross-section of the impactor with the minimum drag force among the 
impactors with a given area of the shank.  

It is interesting to note that for a widely used model  

2
2 u)u( =ω

Eq. (7.15) with 0â0 =  and sh2â γ= coincides with Newton’s model (see, 
e.g., Hayes and Probstein, 1959) for calculating the drag force acting on a 
hypersonic projectile. Therefore, the optimal shapes of penetrating impactors 
and those of flying projectile are the same, and solutions obtained in 
gasdynamics can be used in this case. In particular, this enables us to extend 
the results by Gonor and Chernyi (Miele, 1965) concerning the optimal 
properties of star-shaped flying projectiles to the case of penetrating 
impactors. 

We have thus shown that among the 3-D conical strikers there are 
universal optimal impactors penetrating normally into a non-homogenous 
(layered) SIS or into a SFT. The impactor subjected to the minimum drag 
force during its motion inside a homogenous shield with a constant velocity 
penetrates to the maximum depth into a SIS. This impactor has the minimum 
BLV when it penetrates into a shield with a finite thickness, regardless of the 

10Chapter
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distribution of the material properties of the shield along its penetration path, 
number of layers, etc. Therefore, there is a useful analogy between 
optimization problems encountered in gasdynamics of flying projectiles and 
optimization problems for impactors penetrating into non-homogeneous 
shields.  

Similar results can also be obtained for thin non-conical impactors (see 
Ben-Dor et al., 1997c).  

8. NUMERICAL ANALYSIS AND ILLUSTRATION 
OF THE RESULTS BASED ON LOCALIZED 
INTERACTION MODELS  

In numerical calculations, we used the model given by Eqs. (3.27)-(3.31) 
with 2=β , where parameters 0a  and 2a  are “dynamical hardness” and 
material density of the shield, correspondingly. This model was proposed 
and validated in comprehensive experimental studies conducted by Vitman 
and Stepanov (1959) with conical impactors penetrating into shields 
manufactured from different metals. The values of the “dynamical hardness” 

materials are ordered according to increasing values of parameter χ . It must 
be noted that the remark by Recht (1990) concerning similar semi-empirical 
models is confirmed in this case, i.e., parameter 0a  is significantly larger 
than the compressive yield strength. 

All the calculations presented below were performed for impactors 
having the shape of a sharp body of revolution with a conical-nose. 
Although the results of the analysis are usually presented in the 
dimensionless form, all calculations are performed taking into account the 
following constraint: 

sm700sinv
1k

kv bl2bl ≤=
+

υ

where υ2  is the angle of the conical nose of the impactor. This constraint 
approximately determines the range in which this model is valid. 
The goal of the first series of calculations was to estimate the influence of air 
gaps on the BLV for real magnitudes of the parameters describing the 
ballistic impact. It was found that air gaps changed the BLV by only %1.0 . 
Therefore, in the framework of the considered model the above-described 
formulas and conclusions for the case of large air gaps are indeed valid for 

in Table 10-  are adopted from the study of Vitman and Ioffe (1948). The 3

, (8.1) 



264
 

 

shields with arbitrary air gaps and, in particular, for shields with plates in 
contact.  

Table 10- . Parameters of the model (adopted from Vitman and Ioffe, 1948) 

Number Material 
Dynamical 
hardness, 
 0a , 2mN  

Density,  
2a , 3mkg  

20 aa=χ ,  
22 sm  

1 Aluminum 610350 ⋅  2765  610127.0 ⋅  
2 Soft steel 6101850 ⋅  7830  610236.0 ⋅  
3 Copper 610910 ⋅  2700  610337.0 ⋅  
4 Duraluminum 6101330 ⋅  2765  610481.0 ⋅  

 
Figure 10-11a-d shows the efficiency of interchanging the order of the 

plates in the shield depending on the thicknesses of the plates in the case of 
two plates for different values of 17λ  (see Eq. 3.31). The following numbers 
are assigned to the materials of the plates. The superscript ]21[ − means 
that the order of the plates in the shield is such that the plate manufactured 
from material #1 is perforated before the plate manufactured from material 
#2. Since parameter χ  increases with an increase in the number of the 
material, ]21[

bl
]12[

bl vv −− ≥ . Some curves in Figure 10-11a-d  were not 
continued because of the constraint given by Eq. (8.1). Inspection of these 
figures shows that the arrangement of the plates in increasing order of 
parameter χ  can result in significant increase of the BLV in comparison 
with the reverse order of the plates, especially for relatively large values of 

17λ . 
Figure 10-12 shows a quantitative estimate of the results obtained in 

Section 10-6.2, i.e., it shows the maximum effect on the BLV that can be 
achieved by changing the order of the plates in the shield. This effect is 
characterized by the parameter max

~ε  in Eq. (6.24), where A  is the 
dimensionless areal density of the shield (Eq. 6.8) and ξ  depends on the 
plates materials (Eq. 6.16). The effect is especially large when the difference 
between the values of the parameter χ  for the plates is large.  

Theoretically predicted structures of the three-layered shield arranged in 
increasing order of the BLV are shown in Figure 10-13, in which the 
transition to the structure with the larger BLV is performed by interchanging 
the neighboring plates when the magnitude of the parameter χ  for the first 
plate (in the direction of penetration) is larger than the value of parameter χ  
for the second plate. In this manner, we obtain two series of structures of the 
shield: 

]321[
bl

]312[
bl

]132[
bl

]123[
bl vvvv −−−−−−−− <<<

3
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Figure 10-11. Efficiency of the optimum arrangement of plates in the shield. [1-2] and [2-1] 
denote the arrangements of the plates with the minimum and maximum BLV, respectively;  

)1(b  is the thickness of the steel plate,  sumb  is the dimensionless (normalized by L ) thickness 
of the shield. 

and 

]321[
bl

]231[
bl

]213[
bl

]123[
bl vvvv −−−−−−−− <<<
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Figure 10-14a-d shows  the dependencies of parameter 
]123[

bl
−− the 

sum

plates. Here [...]
blv  denotes the BLV of the shield with the corresponding 

structure, while ]123[
blv −−  is the BLV of the shield with the smallest BLV. In 

all calculations, kgm0001.0 3
17 =λ  was used. The relative locations of the 

curves are in accordance with the inequalities given by Eqs. (8.2) and (8.3), 

shield. 
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Figure 10-12. Maximum effect on the BLV achieved by changing the order of the plates vs. 
dimensionless areal density of the shield A  

9. APPLICATION OF A CYLINDRICAL CAITY 
EXPANSION APPROXIMATION FOR STUDY OF 
SPACED SHIELDS 

9.1 Model for shield with large air gaps 

Consider the case in which an N -layered shield is perforated 
sequentially by an impactor having the shape of a cone of revolution, i.e., the  
 

[...]
bl

[...]
bl vv =

v vs. the  dimensionless (normalized by L )  thickness  of 

in which the order of the plates can have a strong affect on the BLV of the 

.

impactor does not interact with two or more plates simultaneously. The latter 
requirement was used in Section 10-5.3 in the analysis based on LIM. In this 
section we use the CCEA model given by Eq. (3-3.30). For a multi-layered 
shields, this model can be written as follows:  

 

shield,   b ,  for different given ratios between the  thicknesses of the 
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Figure 10-13. Structures of the shield in increasing order of the BLV. 
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For the j -th plate, Eqs. (3-4.19) can be rewritten as:  

)j()j(
imp

)j()j(
res FwEw −=  , (9.2) 
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 vbl
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 vbl
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 vbl
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 vbl
[1-2-3]

 vbl
[...]

 bsum
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 b(1) = 0.5 bsum
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 vbl
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 vbl
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 vbl
[2-3-1]

 vbl
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 vbl
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 vbl
[...]

 bsum
 

 
 

)j(
0

)j(
1

2)j(
2 ayyayap ++= &&& . (9.1) 
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Figure 10-14. Effect of the order of the plates on the BLV of the shield. 

where 

)j(
2

)j(
0)j(

)j(2

)j(
)j(

)j(
)j(

a
a,

T
11

k
F,

T̂
1E =⎥⎦

⎤
⎢⎣
⎡ −== χχ  (9.3) 
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and 1T̂ )j( >  are determined by Eqs. (3-3.36), (3-4.13)-(3-4.14) and (3-4.20) 
written for the j -th plate.  

Clearly, the model described by Eqs. (9.2)-(9.3) differs from the model 
determined by Eqs. (5.28), (5.29) and (5.33) only in terms of the coefficient 
in the formulas for )j(F  and in that notation )j(T̂  is used instead of )j(T . 
Therefore, we can write the relation for the BLV of the shield in a manner 
similar to Eq. (5.41): 

∑ ∏
=

−

=

=−=
N

1j

)0(
1j

0

)()j()j(
bl

2 1T̂,T̂]1T̂[wk
ν

νχ . (9.4) 

Consequently, the following conclusions of Section 10-5.3.3 remain valid 
in the considered case. For two adjacent plates arranged such that the value 
of the parameter χ  for the first plate is larger than that for the second plate, 
the BLV of the shield can be increased by interchanging the plates. The 
maximum BLV of the shield is achieved when the plates are arranged in 
increasing order of parameter χ . The minimum BLV is obtained when the 
plates are arranged in the shield in the inverse order. 

Since )j(χ  in the CCEA model given by Eq. (9.1) does not depend on 
the coefficient )j(

1a  we conclude that the above-described ballistic properties 
of the shield are valid for an arbitrary choice of this coefficient. 

If all )j(χ  are the same, i.e., all the plates are manufactured from the 
same material, then Eq. (9.4) implies:  

21bl
0

SSw1 −=
λ

where 

∏∑∏∑∏
=

−

= == =

+==
N

0

)(
1N

1j

j

0

)(
N

1j

j

0

)(
1 T̂T̂T̂S

ν

ν

ν

ν

ν

ν

1T̂1T̂T̂S
1N

1j

j

0

)(
N

2j

1j

0

)(
N

1j

1j

0

)(
2 +=+== ∑∏∑∏∑∏

−

= ==

−

==

−

= ν

ν

ν

ν

ν

ν . (9.7) 

 
 
 

, (9.5) 

, (9.6) 



272

 

Consequently,  

1)b(Gexp1T̂w1 N

1j

)j(
18

N

1

)(
bl

0
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=−= ∑∏

==

λ
λ ν

ν , (9.8) 

where 0λ , 1λ  and function G  are determined by Eqs. (3-4.16), (3-4.29) and 
(3-4.28), respectively,  

1
2
1218 aa3 λλ =

and Lbb )j()j( =  is the dimensionless thickness of the j -th plate. 
Hereafter, the argument 1λ  of the function G  is not shown when a shield 
consists of plates manufactured from the same material.  

Equation (9.8) shows that the BLV does not depend on the order of the 
plates in the multi-layered shield. 

In Section 10-4.1, it is shown that LIM enables us to arrive at the 
following conclusion. When the plates in a spaced shield are manufactured 
from the same material, the BLV of the shield against a conical impactor 
depends only on the total thickness of the plates. In the case of the CCEA 
model, the BLV depends upon the widths of the air gaps and thicknesses of 
the plates in the shield.  

9.2 Comparison of monolithic and spaced shields 

9.2.1 Formulation of the problem 

Let us compare the BLV of monolithic shields, monblmonbl wv = , with 
the BLV of spaced shields, blbl wv = , using a model that is based on the 
CCEA and determined by Eq. (9.1). Assume that monolithic shield and N  
plates of the spaced shield are manufactured from the same material and the 
total thickness of the plates equals to the thickness of the monolithic shield, 
i.e., 

sum

N

1j

)j( bb =∑
=

.  (9.10) 

We also assume that air gaps between the plates are wider than the length of 
the conical nose of the impactor.  

For the monolithic shield, Eq. (9.8) can be written as:   
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[ ] 1)b(Gexpw1
sum18monbl

0
−= λ

λ

Equations (9.8) and (9.11) yield: 

[ ] [ ]1)exp()b(Gexpww 18sum180monblbl −⋅=− Γλλλ , (9.12) 

where 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−== ∑∑

==

N

1j

)j(
N

1j

)j()N()2()1( bG)b(G)b,...,b,b(ΓΓ  . (9.13) 

Clearly, 

)(sign)ww(sign monblbl Γ=−

b,...,
,

)N()2(

)1(

and perform minimization of this function. In Section 10-9.2, we show that 
the spaced shield has superior ballistic characteristics than a monolithic 
shield with the same total thickness of the plates. In Section 10-9.3 we 
determine the best partition of a monolithic shield into plates such that the 
difference between the ballistic performances of monolithic and spaced 
shields is maximum. 

9.2.2 Some particular cases  

Before proceeding to the general case, we consider two particular cases.  
1)j( ≥ ( b )j(

sum sum
)1z(

)
1

1
−

+
λ in the considered range of variation of the argument, and: 

monolithic and spaced shields. In the following, we investigate the behavior 
b ) characterizes the differences between the BLV of the 

 Therefore, provided that Eq (.9 .10) is satisfied, function Γ ( b

G( z ) =Ψ ( λL et a ll b ≥ L ), ≥ L ).  Then  b ≥ 1  ( b

. (9.11) 

. (9.14) 
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[ ]

.0
z1

dzz)1N(

dz
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dz)1N(])()[1N(

1b)()1b()(
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11
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311
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)j(
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)j(
11

>
−

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
−=−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−−+=

∫

∫∫

∑∑
==

λ

λλ

λλΨ

λλΨλλΨΓ

 (9.15) 

Consider the second limiting case when all  1b )j( ≤  and 1bsum ≤ . Then 
( ))z1()()z(G 11 −−= λΨλΨ . Using the identity   

( ) ∫
−

−
+=−

)z1(

311

1

1
t1

dt)()z1(
λ

λ

λΨλΨ

for )j(bz =  and ∑
=

=
N

1j

)j(bz  we obtain: 

∫∑ ∫
−= −

−
−

−
=

1

)N(
1

1

)j(
1 )1(

3

N

1j )b1(
3 t1

dt
t1

dt λ

ξλ

λ

λ

Γ  , (9.17) 

where 

N0j,0b,b )0()0(
j

0

)()j( ÷====∑
=

ξξ
ν

ν .  (9.18) 

The second integral in Eq. (9.17) can be written as: 

( )∑ ∫∑ ∫∫
= −

−
=

−

−− −−
=

−
=

−

−
N

0j )b1(
3)1j(

1

N

0j

)1(

)1(
3

)1(
3

1

)j(
1

)1j(
1

)j(
1

1

)N(
1

t~1

t~d
t1

dt
t1

dt λ

λ

ξλ

ξλ

λ

ξλ ξλ
.(9.19) 

In Eq. (9.19) the j -th term in the last sum is obtained from the 
corresponding term in the previous sum by changing the variables, 

)1j(
1t~t −−= ξλ . Substituting Eq. (9.19) into Eq. (9.17), we obtain after 

simple algebra: 
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( ) ( )
( )∑ ∫

= − −

−−
−

⎥⎦
⎤

⎢⎣
⎡ −−−

−+−+=
N

1j )b1(
3)1j(

1
3

2)1j(
1

)1j(
1

2
)1j(

1

1

)j(
1

dt
t1)t1(

ttttλ

λ ξλ

ξλξλξλΓ .  (9.20) 

Since the variable t  varies in the range from ( ))j(
1 b1 −λ  to 1λ , 

( ) ( ))1j(
1

)1j(
1

)j(
1 1t1 −− −≤−≤− ξλξλξλ  . (9.21) 

Taking into account that 11 <λ  and 1b0 sum
)( ≤≤< νξ  for N1÷=ν , 

Eq. (9.21) implies that 1t0 )1j(
1 <−≤ −ξλ . Therefore, each integral in 

Eq. (9.20) is positive, and .0>Γ  
We have proved that in the two examples under consideration a spaced 

shield is superior to a monolithic shield.  
The remaining cases may by analyzed in a similar manner. However, we 

will use another, more general approach. 

9.2.3 General case 

Using Eqs. (3-4.26) and (3-4.28), we can calculate the derivatives of the 
function G  over z : 

( )
⎪⎩

⎪
⎨
⎧

≥

≤
−−=′

1zif

1zif
)z1(1)z(G

1

3
1

1

λ
λ

λ

( )[ ]⎪
⎩

⎪
⎨

⎧

≥

≤
−−

−−
=′′

1zif0

1zif
)z1(1

)z1(3
)z(G 23

1

24
1

λ

λ
. (9.23) 

Inspection of formulas for )z(G , )z(G′  and )z(G ′′  shows that these 
functions are continuous at point 1z = . Therefore, it can be concluded that 
continuous function )z(G  has continuous first and second derivatives. 
Consequently, )b,...,b,b( )N()2()1(Γ  is a sufficiently smooth function that 
can be expanded in a Taylor series:   

∑
=

+=
N

1

)()N()2()1()N()2()1( b)b,...,b,b()0,...,0,0()b,...,b,b(
ν

ν
ν κκκΓΓΓ , 

, (9.22) 

 (9.24) 
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where 10 << κ  and: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′−′=

∂
∂= ∑

=

N

1j

)j()(
)(

)N()2()1( bG)b(G
b

)b,...,b,b( ν
νν

ΓΓ  . (9.25) 

Note that in a Taylor series (Eq. 9.24) the remainder term is written in the 
Lagrange form (Korn and Korn, 1968). Equation (9.23) implies that 

′′ , i.e.,  )z(G′   
)N()2()1(

sum b...bbb +++= , then ( ) 0bG)b(G sum
)( ≥′−′ κκ ν  and 

0)b,...,b,b( )N()2()1( ≥κκκΓν

Since 0)0,...,0,0( =Γ  and 0b )j( > , Eq. (9.26) allows us to conclude that:  

0)b,...,b,b( )N()2()1( ≥Γ

Let us now prove that equality in Eq. (9.27) is not possible. Assume that 
0)b,...,b,b( )N(

*
)2(

*
)1(

* =Γ  for any positive )N(
*

)2(
*

)1(
* b,...,b,b . Then 

0)b
,...,b,b(

)N(

)2()1(

=κ
κκΓν

, b(G) *
)(

* κν ′=′ )N(
*

)2(
*

)1(
** b...bbb +++= .

 Since *
)(

* bb κκ ν < , the latter condition can be valid only if  

N,...,1,1b )(
* =≥ νκ ν , 

when .constG =′ Clearly, Eq. (9.28) implies that 1b )(
* >ν . This case was 

considered in the previous section, and it was proved that 0>Γ . The latter 
result is in conflict with the assumption that equality in Eq. (9.27) can be 
attained. Consequently, 

0)b,...,b,b( )N()2()1( >Γ

for arbitrary set of )N()2()1( b,...,b,b .  
Therefore, a spaced shield with large air gaps performs better than a 

monolithic shield with the same total thickness.  
 

)(b <νG ( z ) ≤ 0 non-increas ing function.  Since  is

im plies that  all Eq. (9.24) with Γ ( 0,0,...,0 ) = 0
) , where   i.e., G (κ b
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9.3 Optimization of spaced shields 

9.3.1 Solution for a given number of plates 

Consider the following problem: how can a monolithic shield be split 
into plates with large air gaps so as to achieve maximum BLV of the spaced 
shield. We assume here that the number of plates is given. Equation (9.8) 
shows that the problem reduces to maximization of the following function:  

∑
=

=
N

1j

)j()N()2()1( )b(G)b,...,b,b(~Λ

Minimization is performed under the constraints: 

N,...,1i,0b,bb )i(
sum

N

1j

)j( =>=∑
=

where the total thickness of the plates sumb  is known. In the following 
exposition, the equivalent formulation of this problem is used: 

  maxbbG)b(G)b,...,b(
1N

1j

)j(
sum

1N

1j

)j()1N()1( →⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= ∑∑

−

=

−

=

−Λ  (9.32) 

subjected to the constraint: 

1N,...,1i,0b,bb )i(
sum

1N

1j

)j( −=><∑
−

=

Let us investigate the behavior of the function Λ . Since the first and 
second derivatives of G  exist, Λ  is a sufficiently smooth function. The 
equations for the first and second derivatives of Λ  read: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−′−′=

∂
∂≡ ∑

−

=

1N

1j

)j(
sum

)(
)(

)( bbG)b(G
b

H ν
ν

ν Λ , (9.34) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−′′+′′=

∂∂
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−

=

1N

1j

)j(
sum

)(
)()(

2
),( bbG)b(G

bb
H ν

νµµν
µν δΛ , (9.35) 

. (9.30) 

, (9.31) 

. (9.33) 
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 where 1N,...,1,1N,...,1 −=−= µν  and  

⎩
⎨
⎧

≠
=

=
µν
µν

δνµ if0
if1

The Hessian (the matrix with the elements )(H νµ ) plays the role of the 
second derivative of Λ , considered as a function of many variables (Korn 
and Korn, 1968). Properties of the Hessian are associated with the convexity 
of function Λ , and they depend on the signs of the roots of the characteristic 
equation: 

  0

H...HH
............
H...HH
H...HH

)1N,1N()2,1N()1,1N(

)1N,2()2,2()1,2(

)1N,1()2,1()1,1(

=

−

−
−

−−−−

−

−

η

η
η

. (9.37) 

Since the last term in Eq. (9.35) is the same for all ),(H µν , this term  can be 
dropped out in the determinant in Eq. (9.37). Nonzero elements remain only 
at the diagonal, and the characteristic equation reads: 

[ ] 0)b(G
1N

1j

)( =−′′∏
−

=

ην

The domain determined by linear inequalities in Eq. (9.33) is convex. 
Since 0)z(G ≤′′ in this domain, all roots of Eq. (9.38) are nonpositive, and 
hence the Hessian is negative semidefinite. In classical mathematical 
analysis such functions are known as non-concave functions. Note that in 
mathematical programming such functions are defined as “concave 
functions”. 

Let us prove that the considered problem always has the unique solution 
if: 

Nbsum ≤

Using Eq. (9.34), we rewrite the conditions )1N,...,1(0H )( −== νν  in the 
following form:  

1N,...,2),b(G)b(G )1()( −=′=′ νν

10Chapter

. (9.36) 

. (9.38) 

. (9.39) 

, (9.40) 



Optimization of multi-layered and spaced ductile shields 279

 

)b(GbbG )1(
1N

1j

)j(
sum ′=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−′ ∑

−

=

Assume that there exists a solution of Eqs. (9.40) and (9.41 with: 

1b )1( ≥

Since )z(G′ decreases in the interval 1z0 <<  and is constant for 1z ≥ , 
Eqs. (9.40) and (9.41) yield, respectively: 

1N,...,2,1b )( −=> νν

1bb
1N

1j

)j(
sum >−∑

−

=

Summation of Eqs. (9.42)-(9.44) yields: 

Nbsum >

which is in conflict with Eq. (9.39). 
The alternative assumption, 1b )1( < , implies the unique solution of 

Eqs. (9.40) and (9.41): 

N1,Nbbb sum
)(

*
)( ÷=== ννν

Since 1b )(
* <ν , then 0)b(G )(

* <′′ ν , Eq. (9.38) has only negative roots and 
the Hessian is negative definite. Therefore, Λ  is strictly convex at the point  

)(
*

)( bb νν = , and this point is the point of a local maximum. In convex 
programming (the considered problem belongs to the class of problems 
considered in convex programming), a local maximum (if it does exist) is 
also a global maximum (see, e.g., Rockafellar, 1970). Therefore, it can be 
concluded that the global maximum of function Λ  is attained at the point 
determined by Eq. (9.46), i.e., when the thicknesses of the plates are the 
same. The equation for the maximum value *Λ  of function Λ  reads: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= )

N
b1()(N sum

11* λΨλΨΛ

. (9.41) 

. (9.42) 

, (9.43) 

. (9.44) 

, (9.45) 

. (9.46) 

. (9.47) 
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Let us consider the case when 

Nbsum >

Then there exists a non-empty sub-domain of the domain determined by 
Eq. (9.33) for which Eqs. (9.42)-(9.44) are valid. To prove the latter claim, it 
is sufficient to find such a sub-domain. It can be verified directly that the 
following sub-domain 

1N,...,1,Nbb1 sum
)( −=≤< νν

satisfies Eqs. (9.33) and Eqs. (9.42)-(9.44). The structure of the sub-domain 
(denoted by Ε ) determined by these equations is shown in Figure 10-15a-b 
for 2N =  and 3N = . 

Since )1z()()z(G 11 −+= λλΨ  for 1z > , the magnitude of 
function Λ at the points that belong to Ε  is given by the following formula: 

sum111* b])([N λλλΨΛ +−=

i.e., *Λ  is constant. 
The sub-domain Ε  is a connected convex domain because it is 

determined by linear inequalities. Clearly, if the non-concave function Λ  
takes the constant value in Ε , then this value is the maximum of this 
function.  

Therefore, if Nbsum > , then there exists a sub-domain in the space of 
variables 1b )( >ν  that is determined by Eq. (9.33). In this sub-domain the 
BLV attains its maximum value *Λ  that is determined by Eq. (9.50). In 
particular, the variables determined by Eq. (9.46) belong to this domain.    

9.3.2 Influence of the number of plates on the optimal solution 

The solution given by Eqs. (9.47) and (9.50) can be represented in the 
following form: 
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Λ . (9.51) 
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Figure 10-15. Sub-domain determined by Eqs. (9.33) and (9.42)-(9.44). 

Assuming that N  varies continuously, let us study the behavior of *Λ  as a 
function of N . Let us calculate the first derivative: 
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0dNd * >Λ  for sumbN < . The expression dNd *Λ  for sumbN ≥  can be 
transformed by using Lagrange theorem (Korn and Korn, 1968) twice. In the 
first step we obtain: 
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and finally: 
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 (9.55) 

Since 0)z1(z3)z( 232 >−=′′Ψ , 0dyd * <Λ  for sumbN ≥ . Therefore, *Λ  
is increasing function of variable N .  

Using Eqs. (9.51) and (9.54), we can calculate the limit: 

.
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 (9.56) 

Hence, the BLV increases if the number of plates with the same thicknesses 
in the shield increases and tends to a finite value when the number of plates 
approaches infinity. 
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Let us investigate the behavior of the BLV for large N . The BLV blv  is 
determined by the following equation: 

1
a
a3expv1

*
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2
122

bl
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−⎟⎟
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⎛
= Λλ

λ

where *Λ  is determined by Eq. (9.47). Differentiating both the sides of this 
equation over N ,  we obtain: 

dN
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a
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Equation (9.55) implies that: 

0
dN
dlim *

N
=

∞→

Λ

Using Eq. (9.58), we find that 0dNdvbl →  when ∞→N . Therefore, it can 
be expected that the BLV depends only weakly on the number of plates for 
large N . 

 

9.4 Model for a shield with arbitrary air gaps 

In the general case, we can construct a model similar to that considered 
in Section 10-1. For a sharp impactor having the shape of a body of 
revolution, Eq. (3-3.31) can be rewritten as: 

]ahah)aa)[(xh( 01
2

1
2

2plastn +′+′′+′−= &&& ΦΦΦΦΦεσ , (9.60) 

where function )(ξε is determined by Eq. (4.2) and the notations are shown 
in Figure 10-5. Since the sequential numbers of all layers (plates and gaps) 
in the shield correspond to their location in the shield, plates have odd 
numbers while gaps have even numbers. Parameter µ  in Figure 10-5 
denotes the sequential number of pair that comprises the plate with the 
sequential number 12 −µ  and the gap with number µ2 (except for the last 
plate). 

Substituting plastnσ  from Eq. (9.60) into Eq. (3-3.28), we obtain 
Eq. (3-3.19) with 

, (9.57) 

. (9.58) 

. (9.59) 
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22
12 dx)xh(a)h(g
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ΦΦεπ

The BLV is determined by Eq. (3-3.25), where )h(α and  )h(β  are 
determined by Eq. (3-3.36) and must be calculated using Eqs. (9.61)-(9.63). 

In the case of a sharp cone of revolution when kx)x( =Φ , 
Eqs. (9.61)-(9.63) can be written as follows:   

2
4

121
4

211
2

00 Ĵka)h(g,Ĵka2)h(g,Ĵka2)h(g πππ === , (9.64) 

where 
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=−= ∫ νε
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ν
ν . 

To present νĴ  in a more convenient form, we use the identity given by 
Eq. (2.15). Replacing )xh(ai − by )xh( −ε , we can rewrite this identity for 
a spaced shield (see Figure 10-5): 
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 (9.66) 

Taking into account Eq. (4.2) for νΞ x)x( = , we obtain: 
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where Lhh,L)()( == νν ξξ . 
Using transformations similar to those described in Section 8-2.3.2, we 

obtain an equation for the BLV that coincides with Eqs. (3-4.19), (3-4.21) 
and (3-4.30), where 

∫
+

+
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1b

0 2imp

1

Ĵ3m
hdĴ2I

It is easy to show that when Lb )12()2()2( ≥−= −µµµ ξξ  for 
11 max −÷= µµ , Eq. (9.68) yields the following expression: 
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Let us show that the spacing has only a minor effect on the BLV for large 
impm . Eq. (9.65) yields the following estimate: 
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Equations (9.68) and (9.70) show that when  

1mimp >>

then 2imp Ĵ3m >>  and: 
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i.e., T̂ in Eq. (3-4.30) becomes:  

. (9.68) 

. (9.69) 

 (9.71) 
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m
LkbaexpT̂

24
sum2π

where sumb  is the sum of the thicknesses of the plates normalized by L . 
Thus, we have an equation for the BLV of a monolithic shield with the same 
total thickness. 

It is often convenient to use the following alternative notations 
(see Figure 10-16 ): 

1N1,b,N1,bb )()2()()12( −÷=→÷=→− µ∆µ µµµµ , (9.74) 

N1,b, )1()1()2()()12( ÷=−→→ ++− µξξξξ µµµµµ , (9.75) 

where N  is the number of plates in the shield. Then Eqs. (9.67) and (9.69) 
can be rewritten as: 
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Therefore, the BLV of an impactor with a sharp cone-shaped nose 
against a spaced shield with arbitrary air gaps consisting of plates 
manufactured from the same material , blbl wv = , can be calculated using 
Eq. (3-4.21), where νλ J,I,T̂,0  and impm are determined by Eqs. (3-4.16), 
(3-4.30), (9.68), (9.67) and (3-4.23), respectively. In the case of large air 
gaps (with a width larger than the length of the impactor’s nose), I can be 
obtained from Eq. (9.76), where the parameter 1λ  and function G  are 
determined by Eqs. (3-4.29) and (3-4.28), respectively. 

9.5 Numerical simulations 

We have performed numerical simulations for two shield materials, 
namely, aluminum alloy AA5083-H116 and soft steel. In the calculations, 
the following values of the parameters characterizing the mechanical 
properties of the materials were used: density 3

sh mkg2660=γ , Young’s 
modulus GPa719 =µ , shear strength MPa19011 =µ , Poisson’s ratio 

33.010 =µ  for the aluminum alloy (the data is taken from MatWeb, 
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3
sh mkg7830= ,  9µ

MPa
20611 =µ

 (Recht, 1990) with 3.010 =µ  for the soft steel. Hereafter in 

Figure 10-16. Alternative notations. 

 

= 206 GPa , http://www.matweb.com) , and γ
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this section, we use the parameter monblbl vv to characterize the difference in 
the BLV of the spaced shields, blv , and the monolithic shield with the same 
total thickness, monblv . This dimensionless parameter depends (for a given 
dimensionless thicknesses of the plates in a spaced shield) only on two 
dimensionless parameters, 12 aa and 1λ  (or impm ). Therefore, we should 
investigate the behavior of this parameter in the general case, without  
selecting particular materials of the shield. For purposes of clarity, we did 
not follow this path. The results of our analysis are represented in several 
figures where figures (a) and (b) are refer to the aluminum shield and the 
steel shield, respectively. 

Figure 10-17a-b is auxiliary and allows us to estimate the ranges of the 
parameters. The BLV used for normalization is equal to the BLV of 

090 conical impactors when 1k = . Figure 10-18a-b is similar to 
Figure 10-17a-b, but it shows directly the BLV of the cone-shaped impactor 
with the angle °≈ 36 ( 31k ≈ ). The results of Børvik et al. (2004) for 
numerical simulations (triangles) and experiments (circles) are shown in 
Figure 10-18a. Note that the very small bluntness of the cone’s nose in 
BØrvik et al. (2004) was neglected in our calculations. Our results are very 
close the calculations performed by BØrvik et al. (2004) and agree fairly well 
with their experimental results. 

A number of remarks are pertinent here. We cannot expect the effect of 
spacing for 1mimp >>  (see Section 10-9.4). The impact velocity is limited by 
the requirements of the model (we certainly do not consider velocities larger 
than sm1000 ). The model is intended to describe the penetration of 
sufficiently thin impactors into not very thin plates. The combination of 
these limitations leaves a very small domain in the space of the parameters 
where the effect of air gaps can be observed. Moreover, this theoretically 
predicted effect can be reduced to zero by errors in the model or by 
experimental errors. Therefore, our calculations were performed, mainly, 
with the aim of predicting the conditions under which the effect of spacing 
can be observed with maximum probability in experiments and in numerical 
simulations using more exact models.  

The effect of the width of the air gap on the BLV of a shield consisting of 
two plates is shown in Figure 10-19a-b for a dimensionless air gap 

1L)1()1( <= ∆∆  (this case with narrow air gaps was not analyzed in the 
analytical study). The effect of air gap on the BLV of the spaced shield 
increases with the increase of the width of the air gap. Inspection of 
Figure 10-19a-b shows that the order of the plates has a weak effect on the 
BLV.  
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Figure 10-17. Normalized BLV of monolithic shield vs. dimensionless thickness for a 
conical-nose impactor with the angle ktan2 1−  and length L .  impm  is determined by 

Eq. (3-4.23). 
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Figure 10-18. BLV of monolithic shield against conical-nose impactor with the angle o36  vs. 
dimensionless thickness of the shield. Triangles and circles indicate the results of numerical 

simulation and experiments of Børvik et al. (2004), respectively. 
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Figure 10-19. Dimensionless BLV of the spaced shield vs. dimensionless width of the air gap. 

Figure 10-20a-b shows the influence of the thicknesses of the plates on 
the BLV when the monolithic shield is separated into two plates with wide 
air gap. Inspection of Figure 10-20a-b shows that in compliance with the 
theoretical predictions the maximum efficiency of spacing is achieved when 
the plates have the same thicknesses, and the maximum is well pronounced.  
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Figure 10-20. Dimensionless BLV of the spaced shield consisting of two plates with a wide 
air gap vs. dimensionless width of the first plate; sumb  is the total thickness of the shield. 

The results of a similar analysis for a shield separated into three plates 
are shown in Figure 10-21a-b. The results are pertinent to the case of wide 
air gaps, and the total thickness of the shield is given. These results confirm 
the theoretical prediction that the maximum BLV is attained when all plates 
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have the same thicknesses. Every curve in this figure shows the dependence 
of the BLV on the dimensionless thickness of the second plate when the 
thickness of the first plate is given. Note that each curve has maximum at the 
point where the thicknesses of the second and the third plates are equal. 

0.00 0.25 0.50 0.75 1.00
1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

=>

b(3)

b(1)+b(2)+b(3) = bsum

b(2)b(1)
0

0.2

0.8

0.5

0.7

b(1) /  bsum = 0.33AA 5083-H116

 bsum = 0.1

 mimp = 0.7

a)

v bl
 / 

v bl
 m

on

b (2) / bsum  

0.00 0.25 0.50 0.75 1.00
1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

=>

b(3)

b(1)+b(2)+b(3) = bsum

b(2)b(1)

0

0.2

0.8

0.5

0.7

b(1) / bsum = 0.33Soft steel

 bsum = 0.2

 mimp = 0.7

b)

v bl
 / 

v bl
 m

on

b (2) / bsum  

Figure 10-21. Normalized BLV of a spaced shield consisting of three plates with wide air 
gaps vs. dimensionless width of the second plate; sumb  is the total thickness of the shield.  
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Figure 10-22a-b shows the effect of partitioning the shield into N  plates 
having the same thicknesses and with wide air gaps. Clearly, the normalized 
BLV of the spaced shield strongly depends on N , especially for relatively 
small N . 
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Figure 10-22. Normalized BLV of the spaced shield with large air gaps vs. the number of 
plates; sumb  is the total thickness of the shield. 
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Numerical simulations show that an increase of the width of the air gaps 
up to L  causes an increase of the BLV. Therefore, we have to search for the 
shield with the maximum BLV among the spaced shields with large air gaps. 
We have shown that the shield with the same thicknesses of the plates is 
optimum for a given N  and that the BLV increases with increasing N . 
Equations (9.56) and (9.57) yield the following estimate:  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
< 1

m
Lbka2expa

a
k
1v

2
sum

4
2

2

0
bl

π

Equation (9.78) is valid for monolithic and arbitrary spaced shields with total 
thickness sumb  against a cone-shaped impactor with angle equal to ktan2 1− , 
mass impm  and length of the nose L . Note that the limiting value of the BLV 
does not depend on the parameter of the model 1a . 

 

. (9.78) 
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Chapter 11 

OPTIMIZATION OF TWO-COMPONENT 
CERAMIC SHIELDS 
 

 
 

1. PERFORATION MODEL 

In this section, we consider a two-component composite armor consisting 
of a ceramic front plate and a ductile back plate. An analysis of the 
properties of this armor and a discussion of problems associated with 
improving efficiency of the armor can be found in Anderson (2002), where  
the functions of the two components of the armor are summarized as 
follows: a hard element is needed to erode and decelerate the bullet, while a 
ductile element is required to capture the remnants of the eroded bullet. 

Florence (1969) developed an analytical model for this type of  armor 
impacted normally by a rigid projectile at the ballistic velocity. This model, 
as re-worked by Hetherington and Rajagopalan, 1991 (see also Smith and 
Hetherington, 1994), yields the following expression for the BLV: 

( )[ ] 2)1(
2

)2()2()1()1()2()2(
4

)2(
52

bl )b2R(s,
m91.0

msbbsbv +=
++

= πγγµαµ , (1.1) 

where blv  is the BLV, m  is the mass of the projectile, R  is the radius of the 
projectile, )i(b  are the thicknesses of the plates, )i(

4µ are the ultimate tensile 
strengths, )2(

5µ  is the breaking strain, )i(γ  are the densities of the materials 
of the plates, superscripts 1 and 2 refer to a ceramic plate and a back plate, 
respectively, and 1=α . 
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The model is illustrated in Figure 11-1. The impactor was modeled as a 
short cylindrical rod that strikes the ceramic plate. The ceramic plate breaks 
progressively into a cone of fractured material. The impact energy is 
transferred to the back plate which is deformed like a uniform membrane. 
The simplifying assumptions that allowed an analytical expression to be 
obtained for the BLV were presented by Hetherington and Rajagopalan 
(1991) as follows: (i) the diameter of the circular area at the back plate over 
which the momentum is distributed is equal to the base diameter of the 
fracture conoid in the ceramic facing, and the angle of the conoid is chosen 
to be equal to 63º; (ii) the deformation history of the back plate may be 
modeled by the motion of a membrane clamped around the perimeter of the 
base of the fractured conoid, and the initial conditions for the membrane s 
motion are determined by the condition imposed by the projectile’s impact 
and by the conservation of momentum within the projectile/shield system; 
(iii) failure occurs when the maximum tensile strain in the membrane 
reaches the ultimate breaking strain of the back plate. 

Although other models have been suggested to describe perforation of 
two-component ceramic shields (Woodward, 1990; Reijer den, 1991; Zaera 
and Sanchez-Galvez, 1998; Chocron-Benloulo and Sanchez-Galvez, 1998; 
Zaera et al., 2000; Fellows and Barton, 1999; Zhang et al., 2002; James, 
2002, Gonçalves et al., 2004; Ravid et al., 2001; Navarro et al., 1994), 
Florence’s model was found to be the most suitable for solving problems 
associated with armor optimization. Some numerical results obtained with 
this approach have been presented by Florence (1969) and by Hetherington 
and Rajagopalan (1991). Later, Hetherington (1992a) investigated 
analytically the problem of determining the structure of two-component 
armor with a given areal density that provides the maximum BLV. He 
suggested an approximate expression for the optimum value of the ratio of 
the front plate width to the back plate width. Wang and Lu (1996) 
investigated a similar problem where the total thickness of the armor rather 
than the areal density was a given. Lee and Yoo (2001) conducted a 
comprehensive numerical and experimental study that supported the results 
of the armor optimization based on the Florence’s model. Navarro et al. 
(1993), Ko et al. (1996), and Vaidya et al. (2000) also used Florence’s model 
in their studies. Hetherington and Lemieux (1994) and Sadanandan and 
Hetherington (1997) generalized Florence’s model to the case of an oblique 
impact. Based on the experimental results, Hohler et al. (2001) suggested a 
phenomenological formula for estimating the optimal ratio between the 
thicknesses of the ceramic and metal plates for a general case of an oblique 
impact. In a very useful study by Holmquist et al. (1999), the authors 
collected and systemized experimental data on properties of ceramic armor 
materials including data on perforation of two-component ceramic shields. 

,
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The development of numerical methods should also be mentioned (for 
example, Espinosa et al., 1998; Roeder and Sun, 2001; Fawaz et al., 2004)  

This chapter is based on the investigations of Ben-Dor et al. (2000b, 
2005). In these studies, using appropriate dimensionless variables, the 
solutions of the optimization problems for an arbitrary two-component 
composite armor have been determined in an analytical form.  

 

Figure 11-1. Schematic representation of two-component armor. 

Here, we employ a slightly generalized model determined by Eq. (1.1), 
with coefficient 1≠α , which can be determined using the available 
experimental data to increase the accuracy of the predictions. The 
availability of experimental data on the BLV blv  allows us to determine the 
fitting parameter α  as a regression coefficient in Eq. (1.1). For the data 
presented in Hetherington and Rajagopalan (1991), we found that 90.0=α .  

b(1) 

b (2) 

 
  

Projectile 

2b(1)

R

LCeramic   
plate 

Black ductile 
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2. SHIELD WITH THE MINIMUM AREAL 
DENSITY 

2.1 Formulation of the problem. Dimensionless variables 

The goal of this section is to determine the thicknesses of the plates 
)2()1( b,b  that provide the minimum areal density of the armor: 

)2()2()1()1( bbA γγ +=  

for a given BLV, blv . 
Let us introduce the following dimensionless variables  

A,w,
,,b,b

)2(

)1()2()1(

γ
γ

: 

A
R
mA,

91.0
vv,2,1i,

R
m,Rbb 2)2(

)2(
4

)2(
5

blbl
)i(

3
)i()i()i(

πγ
µαµγ

π
γ =====  (2.2) 

Using these dimensionless variables, we can rewrite Eqs. (1.1) and (2.1) as 
follows: 

( )[ ]1sbbsbv )2()2()1()1()2()2(2
bl ++= γγγ , (2.3) 

)2()2()1()1( bbA γγ +=

where 

2)1(
2 )b21(

R
ss +==

π

Equations (2.3) and (2.4) allow us to obtain an explicit formula for the 
criterion of optimization. Equation (2.3) is a quadratic equation with respect 
to )2()2()2( bA γ= : 

0)s/v(A)sb(A 2
bl

)2(1)1()1(2)2( =−++ −γ ,  (2.6) 

and Eq. (2.6) has only one positive root: 

11Chapter

 (2.1) 

, (2.4) 

. (2.5) 
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)]sb()s/v(4)sb([5.0

Ab
1)1()1(2

bl
21)1()1(

)2()2()2(

−− +−++=

=

γγ

γ
 (2.7) 

Substitution of Eq. (2.7) into Eq. (2.4) yields: 

s2
v4)1sb(1sb

)v,,b(A
2
bl

2)1()1()1()1(

bl
)1()1( +++−

=
γγ

γ   (2.8) 

Thus, the problem is reduced to finding a positive )1(b  that provides the 
minimum A . Then )2(b  can be found from Eq. (2.4). 

It is important to emphasize that the dimensionless areal density A  is a 
function of one variable )1(b and it depends only on two parameters, )1(γ  
and blv . Assume that 

)v,(b bl
)1(

1
)1(

opt γϕ=

yields the minimum A . Then, the dimensionless minimum areal density 
optA  and the optimal ratio of the areal density of the second plate to the areal 

density of the first plate, )1(
opt

)2(
opt AA , are also some functions of )1(γ  and 

blv : 

( ) )v,(v,),v,(AA bl
)1(

2bl
)1(

bl
)1(

1opt γϕγγϕ == , (2.10) 

)v,(1
)v,(

)v,(1
b

A
A
A

bl
)1(

3
bl

)1(
1

)1(
bl

)1(
2

)1(
opt

)1(

opt

)1(
opt

)2(
opt γϕ

γϕγ
γϕ

γ
=−=−= , (2.11) 

where the subscript opt  indicates the corresponding optimum variables. It 
can be easily shown that: 

)v,(

)v,()v,(bAb

bl
)1(

4

bl
)1(

1
)1(

bl
)1(

2
)1(

opt
)1(

opt
)2(

opt
)2(

γϕ

γϕγγϕγγ

=

−=−=
 (2.12)  

Therefore, the solution of the optimization problem depends on two 
dimensionless parameters. This allows us to investigate the problem 
completely and for a general case, namely, for an arbitrary combination of 
materials of the plates. The results for a particular combination of materials 

 (2.9) 
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can be determined by applying the solution obtained in the dimensionless 
form: 

)v,(Rb bl
)1(

1
)1(

opt γϕ=

)v,(
R

mb bl
)1(

4)2(2
)2(

opt γϕ
γπ

=

)v,(
R
mA bl

)1(
22

opt γϕ
π

=

where )1(γ  and blv  are determined by Eq. (2.2). 
To elucidate the analysis based on the dimensionless variables, we will 

show in the following exposition (where possible) the results obtained for a 
reference armor, which we call a basic armor  (BA). As a BA we selected a 
ceramic/glass fiber reinforced plastic armor and used the experimental data 
of Hetherington and Rajagopalan (1991) on perforation of the armor with 
different thicknesses of the plates by a 0.50-inch projectile. For BA a change 
from dimensionless variables to dimensional variables for areal density, 

)mkg(A 2 , the widths of the plates, )mm(b )i( , and the BLV )sm(vbl  
is performed as follows: A370A = , )i()i( b35.6b = , blbl v133v =  
( 060.0)1( =γ  corresponds to 3)1( mkg499,3=γ ). 

2.2 Properties of the function )b(A )1(  

Consider the dependence of A  vs. )1(b . Since  

)1(
)1(

)1(

b b
)b(Alim

)1(
γ=

+∞→
, 0]b)b(A[lim )1()1()1(

b )1(
=−

+∞→
γ , (2.16) 

then  

)1()1( bA γ=

is the asymptote of the curve determined by the function )b(AA )1(= . 
Eq. (2.8) implies that:  

“ ” 
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,0
s2

)1sb(v4)1sb(
b)b(A

)1()1(2
bl

2)1()1(
)1()1()1( >

+−++
=−

γγ
γ

i.e., the function )b(AA )1(=  is located above the asymptote. Expression 
for the derivative: 

2
bl

2)1()1(2

2
bl

)1()1()1()1(

)1(
v4)1sb(s2

v16s)4ss)(1sb(
ss

2
2bd

AdA
++

−−+++==′
γ

γγγ

and Eq. (2.17) show that )b(A )1(  is an increasing function for large )1(b . 
Consider now the behavior of this function for small )1(b . 

Equations (2.5), (2.8) and (2.19) yield:  

( ) ( ) 021q0A >−=

( )
q2

q)4(q40A
)1()1(2 γγ +++−=′   

where 

11v4q 2
bl >+=

Therefore, the sign of the derivative )0(A ′  is determined by the sign of the 
expression )1()1(2 q)4(q4 γγ +++− . In particular,  

0)0(A >′

when 

0q)4(q4 )1()1(2 >+++− γγ

The latter inequality is equivalent to the following inequality: 

)q()1( ϕγ >

 (2.18) 

 (2.19) 

, (2.20) 

,  (2.21) 

. (2.22)  

, (2.23) 

.  (2.24) 

, (2.25) 
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where 

1q
)1q(q4)q(

+
−=ϕ

Since for 1q > , 

0
)1q(

)1q2q(4
dq
d

2

2

>
+

−+=ϕ , 0
)1q(

8
dq
d

32

2

>
+

=ϕ
, (2.27) 

0
1v4

v4
vd

dq
2
bl

bl

bl

>
+

= , 0
)1v4(

4
vd

qd
2/32

bl
2
bl

2

>
+

= , (2.28) 

then 

0
vd
dq

dq
d

vd
d

blbl
>= ϕϕ ,  (2.29) 

0
vd

qd
dq
d

vd
dq

dq
d

vd
d

2
bl

22

bl
2

2

2
bl

2

>+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ϕϕϕ

Therefore, the domain where 0)0(A >′  and the domain where 
0)0(A <′  on the plane )v,( bl

)1(γ  are separated by a curve determined by 
the concave increasing function  ( ))v(q bl

)1( ϕγ =  (see Figure 11-2). Clearly, 

0)0(A <′

when  

)q()1( ϕγ <

Let us consider both cases, i.e., the case when 0)0(A >′ and the case 
when 0)0(A <′ . 

Assume that Eqs. (2.23) and (2.25) are valid. Numerical simulations have 
shown that function )b(A )1( increases for all 0b )1( > .  The  typical 
behavior of this function is shown in Figure 11-3. It should be noted that 
function )b(A )1( attains its maximum at the boundary, 0b )1( = ,  when the 
used physical model is not valid. However, the latter case is of no practical 
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significance. The mass of the cylindrical impactor can be expressed through 
its density impγ , length L  and radius of the base R :  

imp
2LRm γπ= . 

Substituting Eq. (2.33) into the equation for )1(γ  in Eqs. (2.2), we obtain: 

imp

)1(
)1(

L
R

γ
γγ =

0.0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

A'(0) < 0

A'(0) > 0

 γ (1)

 v bl  

Figure 11-2. Domains with positive and negative values of  )0(A ′  on the plane of parameters 
blv   and  )1(γ  . 

Equation (2.34) shows that )1(γ  is much smaller than 1. Therefore 
(see Figure 11-2), Eq. (2.23) is valid only for very small values of the BLV 

blv , that do not correspond to ballistic impact conditions. Thus, for example, 
for the BA, 06.0)1( =γ , and the case described by Eq. (2.23) occurs when  

sm17vbl < . 
Let us consider the case when Eqs. (2.31) and (2.32) are valid. Since 

0)0(A <′ and 0)b(A )1( >′ for large )1(b ,  there is at least one point where 
0A =′ and, consequently, function )b(A )1( attains its minimum. 

Numerical simulations show that function )b(A )1( has only one minimum. 

. (2.33) 

. (2.34) 
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The typical behavior of function )b(A )1(  is shown in Figure 11-4 for 
06.0)1( =γ  and different blv . 

0.0 0.2 0.4 0.6 0.8
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 vbl
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Asymptote

 γ (1)= 0.06

0.12

A

 b(1) 
 

Figure 11-3. Areal density of armor vs. thickness of the ceramic plate for the case 0)0(A >′ . 

The minimum of function )b(A )1(  provides the solution of the 
optimization problem. However, the variation of this function in the 
neighborhood of the minimum is quite small (see also Hetherington and 
Rajagopalan, 1991). Therefore, the thickness of the ceramic plate can be 
changed in the vicinity of the optimal value without a considerable loss in 
areal density. 

Note that qualitatively the curves )b(A )1(  with .constvbl =  plotted 
using experimental data and theoretical curves have the same behavior. The 
latter conclusion is supported by the results of calculations shown in 
Figure 11-5a-b without additional smoothing. In Figure 11-5a, the 
experimental data of Hetherington (1992a) on 7.62 AP ammunition against 
alumina/aluminum armor are used while in Figure 11-5b the experimental 
data of Wilkins (1978) for shields manufactured of AD85 backed by 
6061-T6 aluminum struck by a 30-caliber bullet are plotted. 

Since experimental data in ballistic experiments are presented as values 
of BLV for different thicknesses of the plates, in the following expositions 
we describe a procedure that allowed us to obtain the dependencies of the 
areal density vs. the thickness of the ceramic plate for a given BLV 
(Ben-Dor et al., 1999a). 
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Figure 11-4. Areal density of armor vs. thickness of the ceramic plate for the case 
0)0(A >′ .  Solid circles-experimental data of Hetherington and Rajagopalan (1991). 

Let us consider the BLV blv  as a function of the thicknesses of the plates 
)1(b and )2(b , )b,b(v )2()1(

bl Ψ= . It is clear on physical grounds that Ψ  is 
an increasing function of both arguments. Then, there exists a decreasing 
inverse function )v,b(b bl

)1()2( ξ= , where blv  is a parameter. The areal 
density can be considered as a function of )1(b for a given BLV, 

)v,b(bA bl
)1()2()1()1( ξγγ += . The values of BLV are known from 

experiments for all versions of the armor, i.e., blv  are known for pairs of the 
thicknesses, )1(b and )2(b . Then the following procedure can be used for 
determining the dependence  )b(AA )1(= . 

Step 1. Approximating function Ψ  as a function of two variables on a 
non-uniform grid and determining the domain on plane )b,b( )2()1( , where a 
relatively good approximation can be constructed. In our calculations, we 
used spline approximation. 

Step 2. Constructing functions )b(AA )1(=  for given values of the BLV 
using the approximation obtained in Step 1 and determining the range of 

)1(b  where this function  is defined. 
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Figure 11-5. Areal density of the armor vs. thickness of the ceramic plate. Processing of the 
experimental data of a) Hetherington, 1992a, and b) Wilkins, 1978. Circles – processed 

results. 

2.3 Optimal shield 

Areal density of the optimal shield and optimal thickness of the ceramic 
plate vs. given BLV are shown in Figure 11-6 and Figure 11-7, respectively. 
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Figure 11-6. Areal density of the optimal armor vs. BLV. 
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Figure 11-7. Optimal thickness of the ceramic plate vs. BLV. 

Inspection of Figure 11-8 allows us to arrive at some useful conclusions 
about the properties of optimal armor. Indeed, Figure 11-8 shows that even 
for a relatively small blv , the ratio of the areal densities of the plates in the 
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optimal armor, )1(
opt

)2(
opt AA , is close to a constant value 30.0≈ . The latter 

value corresponds to sm400vbl ≈  for the BA. Therefore, for 4vbl >  the 
ratio of the thicknesses of the plates in the optimal armor is inversely 
proportional to the ratio of their densities: 

)2(

)1(

)1(
opt

)2(
opt 3.0

b
b

γ
γ≈

The families of curves plotted in Figure 11-6 and Figure 11-8 can be 
approximated with an average accuracy of %3  in the range 

10v1,1.004.0 bl
)1( ≤≤≤≤ γ  as follows: 

( ) ( )( ) 425.0
bl

)1(
bl

)1(
2opt v12.104.0v,ˆA γγϕ +== ,  (2.36) 

( ) ( )( ) 47.1
bl

)1(
bl

)1(
3)1(

opt
)1(

)2(
opt

)2(

)1(
opt

)2(
opt v1.029.0v,ˆ

b
b

A
A −++=== γγϕ

γ
γ

. (2.37) 
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Figure 11-8. Optimal ratio of the areal densities of the plates vs. BLV. 

Using Eqs. (2.10)-(2.12), we can express )1(
optb  and )2(

optb  through 
functions 2ϕ̂  and 3ϕ̂ : 
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[ ]
( ) ,

)1.0v29.1(
v)12.104.0(

1)v,(ˆ

)v,(ˆ
)v,(ˆb 47.1

bl
)1()1(

895.1
bl

)1(

bl
)1(

3

)1(
bl

)1(
2

bl
)1(

1
)1(

opt ++
+=

+
==

γγ
γ

γϕγ
γϕγϕ

[ ]1)v,(ˆ

)v,(ˆ)v,(ˆ
)v,(ˆ1b

bl
)1(

3
)2(

bl
)1(

3bl
)1(

2
bl

)1(
4)2(

)2(
opt

+
==

γϕγ

γϕγϕγϕ
γ .  (2.39) 

Together with Eqs. (2.13)-(2.15), the solution given by Eqs. (2.36)-(2.39) 
provides the characteristics of the optimal armor in terms of the parameters 
determining the material properties of the armor’s components, its 
cross-section area, the mass of the impactor and the expected impact 
velocity. 

3. SHIELD WITH THE MAXIMUM BALLISTIC 
LIMIT VELOCITY 

3.1 Formulation of the problem  

Let us determine the thicknesses of the plates, )1(b  and )2(b , that 
provide the maximum BLV for a given areal density of the armor. In some 
sense, this problem is the inverse to the problem that was investigated in 
Section 11-2. Here, we use the same model to describe perforation. 

Substituting )2()2( bγ  from Eq. (2.4) and s  from Eq. (2.5) into Eq. (2.3), 
we obtain: 

)z,,A(Av 2
bl βψ=

where 

]1)1z(A)[1z)(z1()z,,A( 2 +++−= βββψ , (3.2) 

)1()2()1(

)1()1( A2,
AA

A
A

Az
γ

β =
+

==

Therefore, the problem is reduced to the problem of determining z , 

1z0 ≤≤

that provides the minimum of ψ  considered as a function of z . 

(2.38) 

, (3.1) 

. (3.3) 

, (3.4) 
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The solution of this problem depends only on two parameters, A  and 
)1(γ . Suppose that  

),A(z 10opt γϕ=

provides the minimum ψ . Then, the principal dimensionless parameters 
associated with the optimal solution (the thickness of the ceramic plate )1(

optb , 
the areal densities of the plates )1(

optA  and )2(
optA , their ratio, and BLV, opt

blv ) 
are also some functions of A  and )1(γ : 

),A(),A(Ab )1(
1

)1(
0)1(

)1(
opt γϕγϕ

γ
==

),A(AA )1(
0

)1(
opt γϕ=

),A()],A(1[AbA )1(
2

)1(
0

)2(
opt

)2()2(
opt γϕγϕγ =−== , (3.8) 

),A(1
),A(

1
A
A

A
A )1(

3)1(
0

)1(
opt

)2(
opt

)1(
opt

)2(
opt γϕ

γϕ
=−== , (3.9) 

),A(),A(,A2,AAv )1(
4

)1(
0)1(

opt
bl γϕγϕ

γ
ψ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= .  (3.10) 

3.2 Investigation of the function )z,,A( βψ   

Let us calculate the derivative: 

)z,,A(f)1z(
z

)z,,A(z ββψβψ +=
∂
∂=

where 

01
2

2
3

3 czczczc)x,,A(f +++=β ,  (3.12) 
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.A5c),114(Ac

],3)78(A[c,12)14(Ac
3

3
2

2

10

βββ
ββββ

−=−=

−−=−+−=
  (3.13)   

Hereafter, the parameters A  and β  are not listed as arguments of the 
functions. 

Consider the behavior of the function at the interval determined by 
Eq. (3.04). Let us calculate the values of the functions ψ  and f at the 
boundaries of the interval: 

01A)0( >+=ψ ,

0)1( =ψ ,  (3.15) 

),A(g1Ac)0(f )1(
)1(0 γ

γ
+==

0]1A)1A3(A3A[)1(f 23 <+++++−= βββ , (3.17) 

where 

)1()1(

1A
)1A2(A4),A(g γγ −

+
+=

The curve 0),A(g )1( =γ  separates the domain, 0A ≥ , 0)1( ≥γ , into 
two sub-domains determined by the conditions 0g <  and 0g > , 
respectively (see Figure 11-9). Consider now two these cases in more detail, 
taking into account that the third-order polynomial )z(f  can have one or 
three real roots. 

Assume that   

0),A(g )1( <γ

Since +∞→)z(f  when −∞→z , and 0)0(f < , then the equation 
0)z(f =  has a root in the interval 0z <<∞−  and, consequently, 0 or 2 

roots in the interval 1z0 << . 
Consider the case when 

0),A(g )1( >γ

 (3.14) 

, (3.16) 

. (3.18) 

. (3.19) 

. (3.20) 
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Figure 11-9. Sign of )0,,A(f β  depending on the parameters A  and )1(γ . 

 

Taking into account Eq. (3.17) we can conclude that equation 0)z(f =  
has one or three roots in the interval 1z0 << . Since  0)0(z >ψ , then there 
exists an arbitrary small ς  such that )1()0()( ψψςψ >>  and, 
consequently, a maximum )z(ψ  can be attained not at the boundaries of the 
segment ]1,0[  but inside its interior point where 0)z(f)z(z ==ψ . 

Numerical simulations showed that the roots of the equation 0)z(f =  in 
the interval ]1,0[  were not found when Eq. (3.19) was valid, and there was 
only one root in the opposite case (Eq. 3.20). Therefore, the maximum BLV 
is attained at the point 0z =  (the first case) and at the point where 0)z(f =  
(the second case). The behavior of the function blv  is shown in 
Figure 11-10a-b, where Figure 11-10a illustrates the transition from case 1, 

*AA < , to case 2, *AA > , where *AA =  is the solution of the equation 
0),A(g )1( =γ . 

Let us consider in more detail the case determined by Eq. (3.19) and 
show that this case is of no practical significance. Eq. (3.19) can be solved 
with respect to positive A : 

)(A )1(γΘ<

11Chapter

, (3.21) 
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Figure 11-10. Function )z(vbl  for different  A . 
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where 

]16244)[161()( )1(2)1()1()1( +++−= γγγγΘ .  (3.22) 

On the other hand, since )x(ψ  is a decreasing function, then: 

)1A(A)0(A)0(vv blbl +==≤ ψ

Equations (3.21) and (3.23) yield: 

)(v )1(
bl γθ<

where 

]1)()[()( )1()1()1( += γΘγΘγθ

It was shown in the previous section that )1(γ is much smaller than 1. 
Using a Taylor series expansion for small )1(γ , we find that: 

)(O)25.0(25.0)( )1(2)1()1()1( γγγγΘ +−= ,  (3.26) 

)(O5.0)( 2/5)1()1()1( γγγθ += .

Taking into account Eq. (3.27), we can conclude that Eq. (3.24) is valid only 
for very small values of blv . The latter do not correspond to ballistic impact 
conditions. For instance, for the BA (see Section 11-2-1) Eq. (3.24) implies 
that sm17vbl < . Note also that equation 025.0A )1( =− γ  is a good 
approximation for the curve shown in Figure 11-9. 

3.3 Optimal shield 

In the case when Eq. (3.20) is valid, the equation 0)z(f =  has only one 
real root, which is the point of the maximum of function )z(ψ . This root 
can be determined using Cardano’s formulas (Korn and Korn, 1968): 

32
3

20
3

20opt c/c)3/1(C5.0CC5.0Cz −+−−= , (3.28) 

11Chapter

. (3.23) 

, (3.24) 

. (3.25) 

 (3.27) 



Optimization of two-component ceramic shields 317 

 

 
where 

2
2

3
10 )2/C()3/C(C += ,  (3.29) 

2
3

2
231

1 c3
ccc3C −= ,  

3

0
2
3

21
3
3

3
2

2 c
c

c3
cc

c27
c2C +−= .  (3.30) 

Areal density (Figure 11-11) and thickness (Figure 11-12) of the ceramic 
plate, ratio of densities of the plates (Figure 11-13) and BLV (Figure 11-14) 
for the optimum armor vs. given areal density represent the solution of the 
optimization problem. Although Eq. (3.28) represents the solution of the 
considered problem in the closed form, Figure 11-12 shows that )1(

optb  vs. A   
is practically a linear function for every )1(γ . The family of curves plotted 
in Figure 11-12 can be more simply approximated with an average accuracy 
of %3  in the range 35.0A05.0,1.004.0 )1( ≤≤≤≤ γ  as follows: 

25.0A)2.782.4075.588(),A(b )1()1()1(
1

)1(
opt −+−== γγγϕ . (3.31) 

After substituting 

),A(
A

),A( )1(
1

1)1(
0 γϕγγϕ =

 

 
 

Eqs. (3.7)-(3.10) can also be rewritten using function 1ϕ .  

, (3.32) 
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Figure 11-11. Relative area density of the ceramic plate of the optimal armor vs. given areal 
density of the armor. 
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Figure 11-12. Optimal thickness of the ceramic plate vs. given areal density of the armor. 
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Figure 11-13. Optimal ratio of the areal density of the back plate, )2(A , to the areal density of 
the ceramic plate, )1(A , vs. given areal density of the armor. 

0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

5

10

15

20

 γ (1)

0.04
0.05
0.06
0.07
0.08
0.09
0.10

 vbl
opt 

A
 

Figure 11-14. Maximum BLV vs. given areal density of the armor. 
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It was noted in literature (Hetherington and Rajagopalan, 1991; Lee and 
Yoo, 2001) that variation of BLV in the neighborhood of the minimum is 
quite small, i.e., the thicknesses of the plates may be changed in the vicinity 
of the optimal values for the given areal density of the armor, without 
considerable loss in the BLV. The characteristic results of the analysis of 
this feature of the solution are shown in Figure 11-15 for 06.0)1( =γ . 

Let us investigate how the BLV blv  varies vs. some parameter η  (e.g., 
the thickness of the ceramic plate), taking into account the constraints 
imposed in the formulation of the problem. The lower infη  and the upper 
boundaries of variation of parameter η  that result in variation of blv  inside 
the interval  ]v,v)1[( opt

bl
opt
blε−  for several values of ε  and the optimal value 

optη  are shown in Figure 11-15a-c for )1()2()1()2( A/AA/A ==η , 
A/AA/Az )1()1( ===η , and )1(b=η  These results support the claim that 

variation of BLV in the neighborhood of the minimum is quite small.  
Therefore, there are many possibilities to select lightweight 

two-component armor among different versions having almost the same 
ballistic properties.  
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Figure 11-15. Boundaries of the interval ],[ supinf ηη  and the optimal value η   whereby the 
BLV, blv  , varies inside the interval ]v,v)1[( opt
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blε− vs. given areal density, A . 
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Appendix A1 

NOTATIONS 
 

 
 

 
All notations are explained in the text. For purposes of convenience, 

some of notations  are summarized in Table A1-1, abbreviations are given in  
 
 
 

 
 

 

Table A1- 2. Two types of notations are used in the monograph. “Local” 
notations (most of the notations are of this type) are used in each chapter and 
they may have different meanings in other chapters. “Global” notations have 
the same meaning through out the whole monograph; these are presented 
mainly in Table A1-1. The same abbreviations are used throughout the 
monograph. Local notation is considered valid in a case of conflict between 
the “local” and “global” notations. 

Notations like iµ  и iλ  ( i  is number) are used only to denote parameters 
that characterize material properties of the shield ( iµ ) and parameters that 
depend upon material properties of the shield and characteristics of the 
striker ( iλ ). All these notations are presented in Table A1-1. 

Bar above the variable always denotes a dimensionless variable, although 
some dimensionless variables do not have bars. Throughout the monograph 
(except for Chapter 11) all linear dimensions are normalized by L , i.e., 

)j(
sum

)j()j( ,b,b,b,,r,,h,,xz,
L
zz ∆ξξΦ==  (A1.1) 

In Chapter 2 we describe a number of different models. These models are 
determined by different functions, since these functions depend on the model 
and on the shape of the impactor. Specific situations are explained in tables 
in Chapter 2. Table A1-1 contains only general explanations and refers to the 
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general case (commonly to a three-dimensional impactor and general local 
interaction model).  

  

Table A1-1. Basic notations 
 

Notation Meaning Equation 
or figure that explains 
or determines 
parameters or function 

Comment 

A  Areal density of the shield Eqs. (10-6.1) 
and (11-2.1) 

 

)j(A  Areal density of the j-th 
plate in  
non-homogeneous shield 

  

,...a,a 10  Parameters of 
impactor-barrier interaction 
model (homogeneous shield) 

 See Section 2-1 

)j(
ia  

 

Parameters of 
impactor-barrier interaction 
model (non-homogeneous 
shield); i  and j  are the 
number of parameter and of 
the layer, correspondingly 

Eq. (10-2.12)  

b  Thickness of the shield 
including possible air gaps 

 Except for 
Sections 5-2 
and 5-3 

sumb  Total thickness of the plates 
in the shield 

  

)j(b  Thickness of the j-th  layer 
of the shield  

  

c~  Parameter of the two-stage 
model for concrete shield 

Eq. (3-1.9) Chapters 3 and 7 

D  Drag force Eq. (2-1.4)  
G  Function Eq. (3-4.28) Chapters 3 and 10 
H  Depth of penetration (DOP) Eq. (2-2.26)  
h  Coordinate, current location 

of the impactor’s nose 
Figure 2-2  

k,k0  Coefficients in equation of 
conical longitudinal contour 
of impactor    

Eq. (2-4.3)  

1k  Parameter Eq. (8-2.4)  

L  Length of the nose of the 
impactor 

Figure 2-2  

0L  Length of the impactor’s Figure 2-2  
cylindrical part  

M  Function determined by an 
integral  

Appendix 2  

m  Constant mass of impactor   Except for 
Chapter 4 
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Notation Meaning Equation 
or figure that explains 
or determines 
parameters or function 

Comment 

m  Mass of impactor (function)  Chapter 4 
impm  Dimensionless mass of 

impactor 
Eq. (3-4.23)  

0n
r

 Inner normal vectors at a 
given location at the 
projectile’s surface 

Figure 2-1  

p  Stress at the boundary of a 
cavity in CEA 

 See Sections 3-1.1 
and 3-1.2 

R  Shank radius of the impactor 
of revolution 

  

r  Radius of the impactor’s flat 
bluntness  for impactor of 
revolution 

 Except for 
Chapter 9 

r  Function determining the 
shape of the reference 
impactor 

 Chapter 9 

t  (1) Time; (2) Parameter in 
parametric description of the 
generator of the optimum 
impactor  

  

0t  )0(Φ ′= , impactor of 
revolution 

 Chapters 6-8 

1t  )L(Φ ′= , impactor of 
revolution 

 Chapters 6-8 

*
1

*
0 t,t  Value 10 t,t  for optimal 

impactor, respectively 
 Chapters 6-8 

u~,u,U  Function describing 
impactor-shield interaction  

Tables 2-1 and 2-2  

10 u,u  Ibid  Eq. (2-2.12)  

V  Function determining the 
solution of the equation of 
motion of impactor 

Table 2-1  

impV  Volume of the impactor Eq. (2-4.1)  

impV  3
imp LV=    

v  Impactor’s velocity   
0v
r

 (1) Unit vector of the local 
velocity at the projectile’s 
surface; (2) Unit vector of 
the projectile’s velocity 

  

impv  Impact velocity    

blv  Ballistic limit velocity 
(BLV)  

Eq. (2-2.25) Except for 
Chapters 11 

blv  Ballistic limit velocity 
(BLV) 

Eq. (11-1.1) Chapters 11 

resv  Residual velocity    
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Notation Meaning Equation 
or figure that explains 
or determines 
parameters or function 

Comment 

00 v,v  Velocity and dimensionless 
velocity threshold whereby 
the type of the model for a 
concrete shield is changed  

Eqs. (7-1.13) 
and (7-3.3) 

Chapter 7 

resbl w,w,w  2
res

2
bl

2 v,v,v=   Chapters 3 and 9 

resbl w,w,w  βββ
resbl v,v,v=   Except for 

Chapters 3 and 9 
◊X  Function used for 

description of the 
impactor-shield contact 
surface 

Eq. (2-2.10)  

x  Coordinate associated with 
the impactor 

Figure 2-2 Except for 
Chapter 5 

*x  Function used for 
description of the 
impactor-shield contact 
surface 

Eq. (2-2.10)  

y  Current radius of the cavity 
in CEA model 

 See 
Section 3-1.1Except 
for Chapter 5 

α  Velocity power in some 
LIMs  

 Except for 
Chapters 3 and 11 

β  α−= 2   Except for 
Chapters 3 and 11 

impγ  Average density of the 
impactor  

Eq. (2-4.2)  

shγ  Density of a homogeneous 
shield  

  

 
)j(γ  

Density of the j-th  plate in 
a non-homogeneous shield 

  

)( µ∆  Thickness of the air gap with  
number µ  in the spaced 
shield (alternative notations) 

Figure 10-16; 
Eqs. (10-9.74) 
and (10-9.75) 

Chapter 10 

δ  Function  used in the 
description of the impactor’s 
nose resistance 

Eqs. (2-2.15) 
and (2-2.16) 

 

ε  Function determining the 
location of the air gaps in the 
shield 

Eq. (10-4.2) Chapter 10 

)j(ε  Parameters defining the 
function ε  

Eq. (10-4.2) Chapter 10 

η  Function determining the 
shape of the impactor’s cross 
section 

Eq. (2-4.3) Except for 
Chapter 11 

Θθ ,  Functions describing area of 
the impactor-shield 
interaction  

Table 2-1 Except for 
Chapter 11 
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Notation Meaning Equation 
or figure that explains 
or determines 
parameters or function 

Comment 

ϑ  Coordinate associated with 
the impactor 

Figure 2-2  

κ  Parameter in a model Eq. (3-1.9) Chapters 3 and 6 

0λ  A parameter Eq. (3-4.16)  

1λ  Ibid Eq. (3-4.29)  

32 ,λλ  Ibid Eq. (6-1.3)  

4λ  Ibid Eq. (6-2.3)  

5λ  Ibid Eq. (6-3.12)  

6λ  Ibid Eq. (7-1.11)  

87 ,λλ  Ibid Eq. (7-2.3)  

109 ,λλ  Ibid Eq. (7-3.2)  

11λ  Ibid Eq. (8-1.16)  

12λ  Ibid Eq. (8-1.25)  

1413 ,λλ  Ibid Eq. (8-3.6)  

15λ  Ibid Eq. (8-3.13)  

16λ  Ibid Eq. (9-2.40)  

17λ  Ibid Eq. (10-3.31)  

18λ  Ibid Eq. (10-9.9)  

19λ  Ibid Eq. (3-4.36)  

λ  Parameter, similar to 
Lagrange multiplier, in 
non-classical variational 
problem  

Eq. (6-4.6) 
Eq. (7-3.13) 

Chapters 6-7 

frµ  Impactor-shield friction 
coefficient 

Eq. (2-3.1)  

1µ  Parameter Eq. (3-2.7)  

2µ  Ibid Eq. (3-2.7)  

3µ  Ibid Eq. (6-3.1)  

4µ  Ultimate tensile strength   

5µ  Breaking strain   

6µ  Quasi-static linear elastic 
limit 

  

7µ  Uni-axial compressive 
strength 

  

8µ  Parameter  describing 
mechanical properties of 
concrete  

  

9µ  Young’s modulus  

10µ  Poisson’s ratio  
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Notation Meaning Equation 
or figure that explains 
or determines 
parameters or function 

Comment 
 
 

11µ  Shear strength   

ξ  Coordinate associated with 
the shield 

Figure 3-1 Chapters 3 and 10 

)j(ξ  Total thicknesses of the first 
j  layers, basic notations 

Eq. (10-2.13) Chapter 10 

)j(ξ  Total thicknesses of the first 
j  layers. The alternative 

notations 

Figure 10-1; 
Eqs. (10-9.74) 
and (10-9.75) 

Chapter 10 

ρ  Coordinate associated with 
impactor 

Figure 2-2  

σ  Function determining the 
area of cross-section of the 
impactor  

Tables 2-1 and 2-2  

τσσ ,n  Normal and tangential stress 
at the impactor’s surface, 
respectively 

 See Sections 3-1.1 
and 3-1.2 

0τr  Inner tangent vector at a 
given location of the 
projectile’s surface 

Eq. (2-1.2); 
Figure 2-1 

 

τ  LR=    
Φ  Function determining the 

shape of the impactor. 
Figure 2-2; 
Table 2-2 

 

χ  
20 aa=  Eq. (3-4.16) Chapter 3 

)j(χ  )j(
2

)j(
0 aa=  Eq. (10-3.18) Chapter 10 

υ̂  Angle between vector 0n
r

 
and vector ( 0v

r
− ) 

Eq. (2-1.3)  

υ  Half angle of the apex of the 
cone of revolution 

  

Ψ  A function Eq. (3-4.26) Chapters 3 and 10 
τΩΩ ,n  Functions determining the 

impactor-shield interaction 
model 

Eq. (2-1.1)  

0Ω  Function depending on the 
LIM 

Eq. (2-1.6)  

 

 
 
 
 



Appendix A1 331
 

 

 
 

 
Table  A1- 2. Abbreviations 
Abbreviation Meaning 
AR Area rule 
BA Basic armor 
BLV Ballistic limit velocity 
CCEA Cylindrical cavity expansion approximation/approach 
CEA Cavity expansion approximation/approach 
DLIM Degenerate localized interaction model 
DOP Depth of penetration 
FRP Fiber-reinforced plastic 
HSPM High-speed penetration mechanics 
LIA Localized interaction approach 
LIM Localized interaction model 
LIT Localized interaction theory 
ODE Ordinary differential equation 
SCEA Spherical cavity expansion approximation/approach 
SFT Shield with a finite thickness 
SIS Semi-infinite shield 



 

 

Appendix A2 

PROPERTIES OF THE INTEGRAL USED IN 
PENETRATION DYNAMICS MODELING  
 

 
 

 
In the following, we present explicit formulas for the following integrals: 

∫ ++
=

W

0
i

01
2

2

j

210 )ccc(
d)W;c,c,c,j,i(M
ζζ
ζζ . (A2.1) 

These integrals were evaluated through elementary functions for the 
particular cases which are used in the monograph.  

The following notations are used hereafter: 

2
12001

2
2 ccc4,cWcWc −=++= ∆Ψ

2
2012 c/c,cWc2 =+= εη

Case 1: 

0,0c,0c,0c 210 ≠>>> ∆
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In this case: 
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Case 2: 

)cc2c(0,0c,0c,0c 201210 ==>>> ∆ . (A2.9) 

In this case: 
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It is easy to prove that the following formulas are valid for any 0k ≠ : 
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In the analysis of the behavior of )W;c,c,c,j,i(M 210  when ∞→W , we 
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If 0=∆  then: 
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The above-mentioned integrals have been calculated using tables in the 
book of Gradstein and Ryzhik (1980). 
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