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So far as the laws of mathematics refer to reality, they
are uncertain, and so far as they are certain, they do not

refer to reality. Albert Einster
— er mstein



Preface

In the second half of the past century, the theory of fuzzy sets arose as a new
mathematical concept in the field of information processing, and it rapidly ad-
vanced to becoming a well-established scientific discipline and a challenging
object of both theoretical research and practical application. Since its intro-
duction by Lotfi A. Zadeh in 1965, enormous progress has been made and
numerous subdomains of fuzzy set theory have emerged, such as fuzzy logic
and approximate reasoning, fuzzy pattern recognition and fuzzy modeling,
expert systems and fuzzy control, and fuzzy arithmetic. Compared to most
other fields, fuzzy arithmetic has received little attention in recent years, and
the scope of its practical application has barely exceeded the level of elemen-
tary academic examples. The reasons for this may be seen in the absence of a
well-organized, systematic, and consistent elaboration of the theory of fuzzy
arithmetic, the lack of practical approaches to its effective implementation,
and the apparent underestimation of its potential for the solution of real-world
problems.

The intention of this book is to fill this gap by providing a well-structured
compendium that offers both a deeper knowledge about the theory of fuzzy
arithmetic and an extensive view on its applications in the engineering sci-
ences. The book is divided into two parts with chapter continuity. Part I,
Chapters 1 to 5, gives an introduction to the theory of fuzzy arithmetic, which
aims to present the subject in a well-organized and comprehensible form.
The derivation of fuzzy arithmetic from the original fuzzy set theory and its
evolution towards a successful implementation is presented with existing for-
mulations of fuzzy arithmetic included and integrated in the overall context.
Part II, Chapters 6 to 9, presents a diversified exposition of the application of
fuzzy arithmetic, addressing different areas of the engineering sciences, such
as mechanical, geotechnical, biomedical, and control engineering.

Chapter 1 gives a review of the fundamentals of fuzzy set theory by recall-
ing the basic principles and definitions of classical set theory and introducing
the fuzzy theoretical analogs as a generalization. In this connection, partic-
ular attention is given to the essentials of fuzzy set theory, while the often
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discussed associated areas of fuzzy logic and approximate reasoning are ex-
cluded for lack of relevancy. Under the heading of elementary fuzzy arithmetic,
Chapter 2 introduces fuzzy numbers and fuzzy vectors as generalizations of
their crisp counterparts, and presents different concepts for the realization of
elementary binary operations of fuzzy arithmetic. Explicitly, the concepts of
L-R fuzzy numbers, discretized fuzzy numbers, and decomposed fuzzy num-
bers are derived, thoroughly discussed and compared. With the objective of
extending the applicability of fuzzy arithmetic from elementary binary opera-
tions to the evaluation of fuzzy rational expressions, standard fuzzy arithmetic
is introduced in Chapter 3, where the attribute ‘standard’ characterizes the
concept as the most commonly used formulation of fuzzy arithmetic. In ad-
dition to the definition and a case study of standard fuzzy arithmetic, this
chapter deals with the exposure and discussion of the serious drawbacks and
limitations, which distinctly challenge the practicality of this approach. To
solve these limitations, Chapter 4 introduces the transformation method as
the basis of an advanced fuzzy arithmetic which enables a significantly en-
hanced fuzzy arithmetical evaluation of arbitrary models with fuzzy-valued
parameters. The chapter provides an exhaustive description of the different
versions of the transformation method and concludes with an overview of ef-
ficient strategies for the implementation of the method. Forming a bridge to
the applications section of this book, Chapter 5 places particular emphasis
on the characteristic property of fuzzy arithmetic of being exceedingly well
suited for the numerical solution of problems in consideration of uncertainty,
providing an expedient classification of the uncertainty phenomena that can
occur in engineering applications. Finally, amongst other additions to fuzzy
arithmetic, the chapter focuses on a trend-setting approach to inverse fuzzy
arithmetic, which is also based on the transformation method.

Marking the beginning of Part II, Chapter 6 presents a number of chal-
lenging applications of fuzzy arithmetic in the area of mechanical engineer-
ing. These range from the examination of structural joint connections with
uncertain parameters, where the models are available in analytical form, to
the simulation and analysis of the vibrations of an engine hood by the use
of finite element software. Chapter 7 deals with applications in geotechnical
engineering, focusing on problems of environmental importance such as flow
processes of contaminant migration in porous media. The need to consider
uncertainties in biomedical engineering is highlighted in Chapter 8, where the
human glucose metabolism of patients with diabetes mellitus Type I takes
a central position. Finally, the book is completed by an application of fuzzy
arithmetic in the field of control engineering, which clearly differs from the
well-established fuzzy-logic methods known as fuzzy control. This application
consists of a fuzzy arithmetical approach to the linear quadratic regulator
design for a system with uncertain model parameters.

In conclusion, it is a great pleasure for me to express my appreciation
and thanks to a number of individuals who have helped me, either directly
or indirectly, in the task of initiating and completing this book. I am grateful
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to all my colleagues, both past and present, at the Institut A fiir Mechanik,
Universitdt Stuttgart, for the productive intellectual environment, the pleas-
ant atmosphere and for their willingness to share their interests in mechanics
and computational modeling, which lead to a notable number of research col-
laborations and documented results. In particular, I would like to thank Prof.
Dr.-Ing. habil. Lothar Gaul, Director of the Institut A fiir Mechanik, Univer-
sitdt Stuttgart, for providing me the opportunity to realize my interests in
fuzzy methods and to create a working environment that would enable the
completion of this work. I record my sincere thanks to Prof. Dr.-Ing. Arnold
Kistner, Institut A fiir Mechanik, Universitdt Stuttgart, for the many helpful
suggestions to my research activities and especially for stimulating my inter-
ests for the theory of fuzzy sets a decade ago. I gratefully acknowledge the
support of Prof. Dr. Michael Berthold, ALTANA-Lehrstuhl fiir Angewandte
Informatik, Universitdt Konstanz and Past-President of the North American
Fuzzy Information Processing Society for his kind willingness to review the
manuscript. The debt I owe to Professor Patrick Selvadurai, William Scott
Professor at the Department of Civil Engineering and Applied Mechanics,
McGill University Montréal, Canada, is particularly substantial. Quite apart
from his careful review of the manuscript and his inspiring scientific support,
especially during his sojourns as an Alexander-von-Humboldt fellow and a
Max-Planck awardee at the Institut A fiir Mechanik in Stuttgart, I am deeply
grateful for the long lasting friendship of him and his family.

My special thanks and distinct appreciation goes to Mrs. Sally Selvadurai
for her excellent and invaluable work of proof-reading the manuscript. Last
but not least, I am indebted to my parents for the continued appreciation and
support that I have received in all my educational pursuits.

Stuttgart, October 2004 Michael Hanss
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The Theory of Fuzzy Sets

1.1 Classical Sets

1.1.1 Terminology and Notation

According to the basic definitions of naive set theory [19, 52], a classical or
crisp set A can be defined as a collection of objects or elements z out of
some universal set X, which are characterized by some well-defined common
property. If an element shows this property, it belongs to the set A, and we
can symbolically write z € A. Otherwise, it is excluded, and we write = ¢ A.
Such a classical set, which is sometimes also referred to as an ordinary set
[132], can be described in different ways. The first way, usually applied for sets
with a finite, countable number of elements, is to explicitly list the elements
that belong to the set, as in

A={11,13,17,19} . (1.1)

In the second method, we define the set by giving the common property that
the elements must possess in order to be included in the set. This condition
for membership can be expressed by a statement A(z), which is true for a
member element z, as in

A={z|Al)} with (1.2)

A(z) = ‘x is a prime number between ten and twenty’ .

This formulation yields the same set A that was given by explicitly listing its
elements in (1.1). In the third method, the member elements of the set can
be defined by using a characteristic function s, which as a mapping of the
form

pa: X - {0,1} (1.3)

indicates membership of the element x € X if p4(z) = 1, and non-membership
if pa(z) = 0. For the set A of all prime numbers between ten and twenty, the
characteristic function is
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1 for 2=11,13,17,19
= 14

Ha(@) { 0 otherwise . (14)
1.1.2 Basic Definitions
In the following, some important terms of classical set theory are introduced
and explained.
Universal Set

The wuniversal set X is a nonempty set consisting of all possible elements z
of relevance in a particular context. The characteristic function ux (z) of the
universal set X is given by

ux(z)y=1 VzeX. (1.5)

If the universal set X is denumerable, i.e., countable and either finite or infi-
nite, every subset A of X shall be called a discrete set, otherwise it shall be
called a continuous set.

Empty Set

The empty set  or {} is a set that contains no elements. The characteristic
function ug(z) of the empty set  is given by

up(z) =0 VzeX. (1.6)

Cartesian Product

The n-fold Cartesian product A; x As X ... x A, of the sets A;,As,..., Ay,
n € IN, is the set of all ordered n-tuples (z1, 2, ..., Z,) with 1 € Ay, 22 € As,
..+ Ty € A,. Symbolically, we can write this n-dimensional product set as

A1XA2X...XAn = {(1’1,1’2,...,37”) | ) € Al N x9 € A2 AN...Nx, € An} .

(1.7)
The Cartesian product X; X Xs X...x X,, of the universal sets X1, X5,..., X,
is called universal product set or universal product space. If A1 C X1, As C X5,
e Ap C X, then

Ay x Ay x ... x A, C X1 xXox...xX,. (1.8)
If, for example, n = 2 and X; = X5 = R, the Cartesian product
X1XX2:RXR:R2:{($1,$2)|I1ER/\IzEIR} (19)

corresponds to the universal product set of all points on the Euclidean plane.
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Classical Relations

The concept of a classical set, defined in its original sense for a one-dimensional
universal set, can be generalized by the introduction of an n-dimensional set R,
which is usually defined as the subset

RCA; x Ay x...x A, (1.10)

of the Cartesian product A; x Ay X ... x A, of some (one-dimensional) sets
A, A, ..., A,. The set R is then called an n-ary relation, for it correlates
the elements x; of the single sets A;, i = 1,2,...,n, in terms of its elements
($1,$2,...,.Tn).

Without loss of generality, we can consider the sets A;, As,..., A, to be
subsets of some universal sets X7, Xs,...,X,, i.e.,, A1 C X1, A2 C X», ...,
A, C X, and from (1.10) and (1.8) follows

RCA; xAyXx...xA, CXi xXox...xX,. (1.11)

Consequently, the set R can also be regarded as a relation that is defined in
the universal product set X; X X5 X ... X X,,. In this definition of a relation,
every regular, one-dimensional set is included as the special case of a unary
relation with n = 1.

Following the definition of a classical, one-dimensional set in (1.2), an n-
ary relation R can be defined by formulating the common property of the
member elements (1, T2, ..., Z,), which corresponds to the relational condi-
tion R(z1,%2,-..,T,) that has to be fulfilled by an element in order to be
included in the set. We can write

R={(z1,z2,...,2n) € X1 X Xo X ... x X, | R(z1,Z2,...,2,)} . (1.12)

According to the one-dimensional set, the member elements of the relation R
can be defined by using the characteristic function pg, which as a mapping
of the form

pr: X1 x Xo x...x X, —{0,1} (1.13)
indicates membership of the element (z1,zo,...,z,) if ur(z1,z2,...,2,) = 1,
and non-membership if ugr(z1,z2,...,2,) =0.

Ezxample 1.1. As an example of a discrete relation, let us consider the binary
relation
Ry = {(&1,25) € Ay x Az | &1 > 5} (1.14)

with A; = {6,15,30} C IN and A; = {1,2,5,10} C IN. Those pairs (z1,z2) of
the product set A; x A which fulfill the relational condition

Ri(z1,x2) = ‘xp is greater than zo’ (1.15)

belong to the relation, the others are excluded. The relation R; can be ex-
pressed in tabular form, as in Table 1.1, with the values of the characteristic
function g, (z1,z2) as entries.
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Ezxample 1.2. As an example of a continuous relation, we consider the ternary
relation

Ry = {(1’1,1’2,1’3) € X1 x X x X3 | T3 = I1 -|—.ZL’2} (116)

with X7 x X5 x X3 = RxRXx R = R3. The member elements (1, z2,z3) € R?
that fulfill the relational condition

Ri(x1,x2,23) = ‘3 is equal to the sum of z; and z»’ (1.17)

can be geometrically interpreted as the subset of points (z1,x2,z3) in the
Euclidean space that lie on the planar surface defined by the equation

o1+ 20 —23=0. (1.18)

Table 1.1. Discrete binary relation R; in tabular form.

z2| 1 2 5 10
T1
6 1 1 1 0
Ry 15 111 1
30 1 1 1 1
pry (T1,T2)
Function
The function F is a set of ordered n-tuples (z1,%2,...,%Zn-1,y) € X1 X X5 X

... X X,—1 XY such that for each (z1,22,...,2n—1) € X1 X X2 X ... X X1
there is a unique element y € Y. Thus, the function F' can be consid-
ered as a special case of an n-ary relation, where the member elements
(z1,Z2,...,Zn_1,y) are related by the functional dependence

y=F(z1,22,...,2n-1) , (1.19)
and F' is a unique mapping of the form
F:XixXox..xXp_1=Y. (1.20)
Explicitly, the uniqueness condition can be formulated as follows:
(Z1,%2, ..., Zn-1,¥) €EF A (21,29,...,2n-1,2) €EF = y=2z. (1.21)

The element y is called the value that the function F' takes on at the argument
(1171,1172, N ,.Z’nfl).



1.1 Classical Sets 7
Power Set

The power set P(A) of a set A is the set of all possible subsets T' of A. We
can write

P(A) ={T|TCA}. (1.22)

In accordance with this formulation, the power set can be defined for an n-ary
relation R, so P(R) is the set of all possible relations being subsets of R.

Cardinality of Classical Sets and Relations

For a discrete and finite set A, A C X, the (absolute) cardinality card(A) = |A|
is defined as the number of elements of A. In terms of the characteristic func-
tion pa(z), z € X, for the set A, the (absolute) cardinality can be formulated
as

card(A) = [A| = > pa(z (1.23)
zeX

The relative cardinality cardx (A) of the set A with respect to a finite universal
set X is defined as

card(A) zEZX na(z)
card(X) Y1

zeX

cardx (4) = (1.24)

Similarly, for a continuous, finite set A, A C X, the (absolute) cardinality can
be defined as

card(A) = | 4] = / joa(z) da | (1.25)
rzeX

and the relative cardinality as

J palz)ds
cardy (A4) = EZIS((?)) - o&X T (1.26)
zeX

Obviously, the relative cardinalities cardx (X) and cardx (f) of the universal
set X and the empty set () are given by

cardx(X) =1 and cardx () = 0. (1.27)

Generalizing the definition of the cardinality of sets by defining the cardinality
of relations, we can formulate the absolute cardinality of a discrete n-ary
relation R as

card(R) = [Rl= > Y ... > pr(z1,22,...,24), (1.28)

r1EX1 22€X2 nE€Xn
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whereas for a continuous n-ary relation R, we get

card(R) = |R| = / / / ur(z1, T2, ..., ¢n) dz, dz,—q ... dzy .
r1EX1 22€X2 znEXn
(1.29)
The corresponding relative cardinalities are defined in accordance with
(1.24) and (1.26).

Convexity of Classical Sets and Relations

A continuous n-ary relation R C R™ is called convex if for every element
u = (u,us,...,un) € Rand v = (v1,v2,...,0,) € R

A+ (l—ANveR YAe[0,1]. (1.30)

From a geometrical point of view, a continuous set R of points in R™ is defined
as convex if for every two points u,v € R the points on the connecting line
between u and v also belong to R.

Ezxample 1.3. Let us consider the continuous binary relation R given by the
ellipsoidal set of points (z1,z>2) € R? as shown in Fig. 1.1a. Obviously, the
relation R is convex, since every point on the connecting line of two arbitrary
points u = (u1,us) and v = (vq,vs) of the relation R represents an element
of the relation R. This, however, changes if we consider the binary relation S
given by a formerly ellipsoidal set of points featuring an indentation as shown
in Fig. 1.1b. This relation is not convex, since at least one pair of points u
and v can be found such that parts of the connecting line of w and v do not
belong to S.

The definition of convexity of relations includes, of course, the definition of
convexity of regular, one-dimensional sets as the special case of unary rela-
tions.

Ezample 1.4. Let us consider the set
A={z€eR |z €[a,bl,a < b} (1.31)

of all points € R within the closed interval [a, b], a < b, as shown in Fig. 1.2a.
Obviously, the set A is convex, since every point between two arbitrary points
w and v of the set A represents an element of the interval [a, b]. If we consider,
instead, the set

B={zecR|z€la,b) AN z€le,d,a<b<c<d} (1.32)

as shown in Fig. 1.2b, we can choose u € [a,b] and v € [c,d] to see that those
points z between u and v with z € ]b, ¢[ do not belong to B. Thus, the set B
is not convex.
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a A b A
s convex relation . non-convex relation
2
¢S
uz |--- R
I
1
| | S
I I
1 1 - .
u1 U1 T1 Z1

Fig. 1.1. Example of (a) a convex relation R and (b) a non-convex relation S in

R2
a b
convex set non-convex set
A ¢ B B
u v u v
—. *— > ——1s 1 *— -
a b T a b c d =

Fig. 1.2. Example of (a) a convex set A and (b) a non-convex set B in R.

1.1.3 Operations for Domain-Compatible Classical Sets and
Relations

Considering the definition of operations for classical sets and relations, we
have to distinguish between operations for sets or relations that are domain-
compatible and those that are not. Domain-compatible sets or relations are
characterized by being defined on the same universal set or product set. Sets
or relations that are not domain-compatible are defined on different universal
sets or product sets. In the ensuing exposition, the most important operations
for domain-compatible sets and relations are listed.

Inclusion (Containment)

A set A is included (contained) in or is equal to another set B if every ele-
ment of A is also an element of B. With X being the universal set, we can
symbolically write

ACB & VieX[z€eA = z€B]. (1.33)

If A is included in B, then A can be referred to as a subset of B, A C B, and
B as a superset of A, B D A. If A is included in B and A is not equal to B,
then A is said to be a proper subset of B. Symbolically, we can write
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ACB & ACBAA#B. (1.34)

Recasting the definition of inclusion in terms of the characteristic functions
wa(z) and pp(z) of the sets A and B, we can write

ACB <& pualz)<upplz) VzeX. (1.35)

In accordance with this formulation, we can give the following definition for
the inclusion of two n-ary relations R and S, R, S C X1 X Xo X ... x X,:

RCS & jpr(mi,ze,...,%,) < ps(z1,Ta,-..,Tn) (1.36)
V(.Tl,l'z,...,$n) €X1 XX2 X XXn .

Equality
Two sets A and B, A,B C X, are equal if they contain exactly the same
elements. Symbolically, we can write

A=B & VieX[z€A & z€B] (1.37)
or, by using the definition of inclusion,

A=B & ACBABCA. (1.38)

In terms of the characteristic functions ua(z) and pp(z) of the sets A and B,
the definition can be rewritten as

A=B & jpuas(z)=pplz) YzeX. (1.39)
Accordingly, we can give the following definition for the equality of two n-ary
relations R and S, R, S C X; x X5 x ... x X,
R=S < MR($17$27"'amn):NS(mlamZa"'axn) (140)
V(.Tl,l'z,...,$n) €X1 XX2 X ... XXn .

Complementation

The complement A€ of a set A is the set of all elements of the universal set
X that are not members of A. Symbolically, we can write

A={z|zeX AzdgA}. (1.41)

In terms of the characteristic function p4(z) of the set A, the characteristic
function pae(x) of the complement A° of A is defined as

uAc(:E):{é iﬁ ng;:? (1.42)

The generalization of (1.42) to the definition of the complement R of an n-ary
relation R C X7 X X2 X ... x X, yields

1 if ,LLR(ml,iEg,...,LL’n):O

1.43
0 if pr(zi,z2,...,2,)=1. ( )

MR“($17$27"'7$n) = {
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Intersection

The intersection of two sets A and B, A, B C X, is a set AN B that contains
every element that is simultaneously a member of both the set A and the set
B. Symbolically, we can write

AnNB={ze X |z€A Nz €B}. (1.44)

If the sets A and B are available in terms of the characteristic functions p 4 ()
and pp(z), the characteristic function panp(x) of the intersection A N B is
defined as

(1.45)

pans(z) = {1 if pa(z)=1A pp(z)=1

0 otherwise

Generalizing (1.45) for the definition of the intersection RN S of two n-ary
relations R and S, R,S C X1 x X2 X ... x X,,, we get

1 if pr(zi,z2,...,2,) =1
KRS (T1, T2, ..., Tn) = AN ps(zy,z2,...,z,) =1 (1.46)
0 otherwise

Union

The union of two sets A and B, A,B C X, is a set AU B that contains all
the elements of either set A or set B. Symbolically, we can write

AUB={ze X |z€ AV z€B}. (1.47)

With the characteristic functions p4(z) and pg(z) of the sets A and B, the
characteristic function payup(z) of the union AU B can be defined as

1 if pa(z)=1V up(z)=1

= 1.48
Havs () { 0 otherwise (1.48)

The generalization of (1.48) to the definition of the union RU S of two n-ary
relations R and S, R,S C X1 X X2 X ... x X, yields

1 if pr(zi,z2,...,2,) =1
“RUS(T1, T2, ..., Tn) = Voops(zr,z2,...,z,) =1 (1.49)
0 otherwise

Difference

The set difference B \ A of the sets A and B, A,B C X, is the set of all
elements of B that are not members of A. Symbolically, we can write

B\A={zeX|ze€B A z¢A}. (1.50)
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Although this operation is often used to facilitate a compact notation, it need
not be considered as another basic set theoretical operation, as it can be
reformulated in terms of the complement and the intersection of sets by

B\A = BnNA°. (1.51)

Consequently, the characteristic function g\ 4(z) of the set difference B\ A
can be expressed in terms of the characteristic functions pa(z) and pg(z) of
the sets A and B as follows:

1 if pa(z)=0 A pp(z)=1
Hp\a(z) = {0 E)t%lerwise ) (1.52)
As a generalization of (1.51) to the definition of the difference S \ R of two
n-ary relations R and S, R,S C X; X X5 x ... x X,, we can write

S\R = SNR°. (1.53)
Consequently, the characteristic function pg\g(z1,72,...,7,) of the dif-
ference S \ R can be expressed in terms of the characteristic functions
ur(z1,z2,...,z,) and ps(zy,za,...,z,) of the relations R and S as follows:
1 if wpr(zi,z2,...,2,) =0
,Lbs\R(.Z’l,.Z’z,...,iEn): A\ u5($1,$2,...,1'n) =1 (154)
0 otherwise

Properties of Domain-Compatible Classical Set Operations

Based on the definitions above, some fundamental properties of the opera-
tions for domain-compatible classical sets and relations can be formulated as
summarized in Table 1.2. For the sake of simplicity and clearness, the proper-
ties are only formulated for regular sets, i.e., for unary relations; nevertheless,
the listed properties also hold for domain-compatible n-ary relations of order
n > 1.

1.1.4 Further Operations for Classical Relations

Among the operations that exceed those for domain-compatible relations, the
most important ones are as follows: expanded Cartesian product, projection,
restriction/selection, ©-join, inversion and composition [16]. The composition
of relations is the only operation pertinent to the scope of this book, and
the definitions of the other operations will be excluded. Furthermore, for the
sake of simplicity and clarity, only the composition of binary relations will be
considered in the following.
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Table 1.2. Properties of classical set operations.

AB,CCX
Reflexivity ACA
Antisymmetry ACBANBCA = A=B
Transitivity ACBANBCC = ACC
Involution (A% =A
Commutativity AUB=BUA
ANB=BNA
Associativity (AuUB)UC =AU (BUC)
(AnNB)NC=AN(BNC)
Distributivity AN(BUC)=(ANB)U(ANC)
AU(BNC)=(AUB)N(AUC)
Idempotency AUA=A
ANA=A
Identity AUD=A
ANX=A
Special absorption AUX =X
AND =10
General absorption AU(ANB)=A
AN(AuB)=A
De Morgan’s laws (AUB)°=A°NB°
(ANB)° = A°UB°
Law of the excluded middle AUA =X
Law of non-contradiction ANA“ =0

Composition

The composition or composite relation R o S of two binary relations R C
X1 X Xo and S C X, x X3 is the set of all ordered pairs (z1,z3) € X1 X X3,
for which there exists at least one element z» such that (z1,z2) € R and
(z2,z3) € S. Symbolically, we can write

RoS ={(z1,%3) | Iz2 € X2 [(z1,22) € RA (z2,73) € S|} . (1.55)
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If the relations R and S are available in terms of their characteristic func-
tions pgr(z1,z2) and ps(za,zs), the characteristic function pgos(z1,zs) of
the composition R o S is defined as

1 if Jzy € Xy with z1,23) =1 A ZTo,x3) =1
uRoS(Il,I?,) :{ 2 2 NR( 1 2) NS( 2 3)

0 otherwise
(1.56)
Ezxample 1.5. Let us consider the universal set X with
X ={z | ‘z is a male person’} (1.57)

and the relations R C X x X and S C X x X defined by their relational
properties as follows:

R = {(z1,22) € X x X | ‘xy is the son of z5’} (1.58)
S = {(z2,23) € X x X | ‘@5 is the brother of 23’} . (1.59)

The composite relation RoS C X x X can then be formulated in terms of its
relational property as

RoS ={(z1,z3) € X x X | ‘xy is the nephew of z3’} . (1.60)

1.2 Fuzzy Sets

1.2.1 Terminology and Notation

When we consider, as a practical example of a classical (crisp) set, the con-
tinuous and non-countable universal set X of possible outside temperatures x
in degrees Celsius, we can use classical set theory and define the set A of
‘freezing temperatures’ by

A={reX |z <0}, (1.61)

or alternatively by the characteristic function

1 for z<0
= - X . 1.62
pa@={ o TS0 s (1.62)
Thus, the property
A(z) = ‘x is the freezing temperature’ (1.63)

allows a non-ambiguous definition of the set A, that is, it allows a clear dis-
tinction between the elements that belong to A, and those which do not. The
characteristic function p4(z) of the set A of ‘freezing temperatures’ is plotted
in Fig. 1.3.
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Classical set theory, however, reaches its limits when the property that
determines the membership of an element to a set is defined in such a way
that a clear distinction between either membership or exclusion is no longer
possible. As an extension of the example above, let us consider the following
question: How does the set A of ‘low temperatures’ look like? Even though
the classification of temperatures is, of course, very much dependent on the
personal perception of ‘low temperature’, or ‘cold’, respectively, it is obvious
that a clear division of the universal set into elements that definitely belong
to the set, and those that are completely excluded, no longer makes sense.
The notion of a fuzzy property

A(z) = ‘is a low temperature’ (1.64)

for the set A necessitates an extension of classical set theory towards a gener-
alized set theory, where in addition to membership and exclusion there is also
the possibility for the provision of gradations between the two groups.
Against this background, fuzzy sets can be introduced as a generalization
of conventional sets by allowing elements of a universal set not only to entirely
belong or to not belong to a specific set, but also to belong to the set to
a certain degree [132]. For the description of fuzzy sets, the characteristic
function pa of a crisp set A can be generalized to a membership function uz

for a fuzzy set Z, which as a mapping of the form
pi:X —[0,1] (1.65)

represents a fuzzy measure from a set-theoretical point of view [120]. In gen-
eral, a fuzzy set A can thus be expressed by a set of pairs consisting of the
elements z of a universal set X and a certain degree of pre-assumed member-
ship p 7(z) of the form

A={(z,nz5(z)) |z € X, nzz) €[0,1]} . (1.66)

In the case of discrete fuzzy sets with a finite, countable number of elements,
the elements of the set can be listed, while elements with a zero degree of
membership are usually omitted, e.g.,

A ={(1,0.2),(2,0.5), (5,1.0),(7,0.9), (9,0.5)} . (1.67)

Otherwise, for continuous fuzzy sets, we can simply define the sets by speci-
fying the membership function u ;(z) for the universal set X under consider-
ation. B

Recalling the introductory example of the fuzzy set A of ‘low temper-
atures’, one possible realization of the membership function yz(x) may be
given by .

= X 1.68
1+ exp(z — 10) ’ e, (1.68)

()

as plotted in Fig. 1.3.
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A
p(z)
1.0
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pa(z) E
0.5 4-------- ‘
ﬁ 00f LN o
I ‘ o
—9273.15 0 10 z/°C

Fig. 1.3. Characteristic function pa(z) (dashed line) and a possible realization for
the membership function p;(z) (solid line).

1.2.2 Basic Definitions

In the following, some important terms and characteristic properties of fuzzy
set theory are introduced and explained.

Fuzzy Relations

Based on the definitions and formulations so far, fuzzy relations can be intro-
duced in two different ways: as a generalization of classical relations with a pro-
vision of gradations between the groups of membership and non-membership,
or as an extension of the regular, one-dimensional fuzzy sets towards higher
dimensions of the universal product set. Finally, both concepts lead to n-
dimensional fuzzy sets

ﬁgXlxsz...xXn, (1.69)

which are defined as fuzzy subsets of the universal product set X; x X» X
... X X,. These subsets are called n-ary fuzzy relations R, for they correlate
the elements z; of the universal sets X;, i = 1,2,...,n, by the use of a fuzzy
relational condition R(z1, %2, .., %n) for their elements (z1,%2,...,%n)-
Following the definition of a regular, one-dimensional fuzzy set in (1.66),
an n-ary fuzzy relation R can be expressed by a set of pairs consisting of the

elements (z1,%2,...,%,) of the universal product set X; x X5 x ... x X,, and
a certain degree of pre-assumed membership pz(z1,22,...,2,) of the form
R= {((xl,xz, oy Tn), pg(T1, T2, - - ,mn)) | (1.70)

(T1,22,...,2n) € X1 X Xo X ... X Xy, pg(21,72,...,T,) € [0,1]} .
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In the case of discrete fuzzy relations with a finite, countable number of el-
ements, the elements of the set can explicitly be listed. Otherwise, for con-
tinuous fuzzy sets, we can define the relations by analytically specifying the
membership function pz(z1, T2, . .., z,) for the universal set X; x Xox...x X,
under consideration.

Ezample 1.6. As an example for a discrete fuzzy relation, let us recall the
classical binary relation from Example 1.1,

Ry = {(z1,22) € X1 X Xo | @1 > @2} , (1.71)

with the universal sets X; = {6,15,30} and X, = {1,2,5,10}. This binary
relation of the classical type can easily be transformed into a relation of the
fuzzy type by replacing the classical relational condition

Ri(z1,z2) = ‘zy is greater than zo’ (1.72)
by the fuzzy relational condition
Ry (z1,%2) = ‘x1 is very much greater than x5’ , (1.73)
which leads to the binary fuzzy relation
Ry = {(z1,25) € X1 X X5 | 71 > 22} . (1.74)

Even though the classification of the elements (z1, z2) is, of course, very much
dependent on the personal perception of ‘very much greater than’, it is obvi-
ous that the fuzzy nature of the relational condition R (z1,z2) necessitates
the existence of a gray area between membership and non-membership of an
element (z1,z2). A possible realization of the fuzzy relation R;, expressed
in tabular form with the values of the membership function ug (z1,22) as
entries, is shown in Table 1.3 with the classical relation R; for comparison.

Table 1.3. Discrete binary relations Ry (classical) and Ry (fuzzy) in tabular form.

zol 1 2 5 10 T2 1 2 5 10
1 T
6 1 1 1 0 _ 6 0.5 0.2 0.1 0.0
LENT 111 1 Ri: g5 0.9 05 0.2 0.1
30 1 1 1 1 30 1.0 09 05 0.2
1R, (T1,T2) b, (z1,72)
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Fuzzy Power Set

The fuzzy power set ’IS(A) of a crisp set A is the set of all possible fuzzy subsets
T of A. We can write B o
P(A) = {T T C A} . (1.75)

In accordance with this formulation, the fuzzy power set can be defined for a
crisp n-ary relation R, so P(R) is the set of all possible fuzzy relations being
subsets of R.

Height of Fuzzy Sets and Relations

The height hgt(A) = h(A) of a fuzzy set A € P(X) is the supremum (or
the maximum, when the universal set X is finite) of the membership function
pz(z):

hgt(A) = h(A) = sup 4 (@) . (1.76)
TE
If hgt(A) = 1, A is called normal; otherwise, it is called subnormal.
Similarly, the height hgt(R) = h(R) of an n-ary fuzzy relation R € P(X; X
X3 X...x Xp) is the supremum (or the maximum, when the universal product
set X1 x Xp x...x X, is finite) of the membership function pz(z1, z2,...,2,):

hgt(R) = h(R) = sup sup ... sup pE(T1, T2, Tn) - (1.77)
1 E€X1 w2€X>2 nEX,

Core of Fuzzy Sets and Relations

The core core(A) = C(A) of a fuzzy set A € P(X) is the crisp set of all
elements z € X that have a degree of membership of unity:

core(A) = C(A) = {z € X | pz(z) =1} . (1.78)

Similarly, the core core(R) = C(R) of an n-ary fuzzy relation R € P(X; x
Xo x ... x X,) is the classical relation of all elements (z1,%2,...,%,) € X1 X
X5 X ... x X, that have a degree of membership of unity:

core(R) = C(R) =
{(ml,mz,...,mn) €X1 xXo X ... x Xy | pg(w1,72,...,2,) = 1} . (1.79)
Support of Fuzzy Sets and Relations

The support supp(A) = S(A) of a fuzzy set A € P(X) is the crisp set of all
elements z € X that have a nonzero degree of membership:

supp(A) = S(A) = {z € X | uz(z) >0} . (1.80)
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Similarly, the support supp(ﬁ) = S(]N%) of an n-ary fuzzy relation Re ’IS(Xl X
Xo x ... x X,) is the classical relation of all elements (z1,z2,...,2,) € X; X
X2 X ... x X, that have a nonzero degree of membership:

supp(R) = S(R) =
{(ml,xz,...,mn) e Xi xXox...xX, | uﬁ(l’l,l’z,...,mn) > O} . (181)

In other words, the support contains those elements of the universal set or
universal product set that actually contribute to the fuzzy set or fuzzy relation.
a-cut of Fuzzy Sets and Relations

The a-cut cuty(A) = Ay of a fuzzy set A € P(X) is the crisp set of all
elements z € X that belong to the fuzzy set A at least to the degree a € [0, 1]:

cuta(A) = A, = {zeX|pz(z)>a} . (1.82)
The set Ay4 with
Cutar (A) = Aay = {z € X |pz(x)>a} (1.83)

is called strong a-cut of the fuzzy set A. L

Similarly, the a-cut cut,(R) = R, of an n-ary fuzzy relation R € P(X; x X5 X
...x X,) is the classical relation of all elements (z1,z2,...,z,) € X1 X X5 X
... x X, that belong to the fuzzy relation R at least to the degree a € [0, 1]:

cuta(R) = Ra =
{(z1,22,...,20) € X1 x X X ... x Xy | pp(21,22,...,20) > ) . (1.84)

The classical relation R,4 with

Cuta+(§) :Ra+ =
{(z1,22,...,20) € X1 x X2 X ... x Xy | pg(21,22,...,20) >} . (1.85)

is called strong a-cut of the fuzzy relation R. _
In particular, the following relations hold for any n-ary fuzzy relation R with
n>1:

cutoy (R) = supp(R) (1.86)

cuty (R) = core(R) (1.87)

cuty (R) # 0 <= hgt(R) =1 (1.88)
a1 < Qp = CUba, (R) C cuta, (R) . (1.89)

Furthermore, every fuzzy relation R can uniquely be represented by the asso-
ciated sequence of its a-cuts via the formula
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iz, 2o,...,Tn) = sup aucuta(ﬁ)(ml,mz,...,xn) (1.90)
a€0,1]
= azl[lor’)l]a’uC“taJr(ﬁ)(ml’mz"”’xn) )

where Heus, (F) and Hreus,, , () BT€ the characteristic functions of the classical
sets cuta(ﬁ) and cutaJr(E). In particular, this formula applies to the special

case of regular fuzzy sets A in the form

pi(z) = sup aucuta(g)(m) = sup O‘“cut,,+(2)($)' (1.91)
a€el0,1] a€l0,1]

Equations (1.90) and (1.91) are usually referred to as the decomposition theo-
rem of fuzzy relations and fuzzy sets, respectively, and they establish an im-
portant connection between fuzzy relations and classical relations, and fuzzy
sets and crisp sets, respectively. This connection provides us with a criterion
for generalizing properties of classical, crisp sets or relations to their fuzzy
counterparts, as we will show for the property of convexity of fuzzy sets and
relations. Moreover, it is of enormous importance for the definition of fuzzy
arithmetic, which can be reduced to interval arithmetic, when fuzzy numbers
are decomposed into a-cuts (see Sect. 2.2.3).

The fundamental properties of fuzzy sets and relations, such as height,
core, support and a-cut, are illustrated for an example fuzzy set in Fig. 1.4.

}
pi(z)
hgt(A) =1
A
Q2 F--—--—~-—~————¢ -~ ————
o [
3 3 co‘re(g) 3 3
0 : :__~>i ; n -
| Cubas (A)
' cuta, (A) ‘ o
supp(A)

Fig. 1.4. Fuzzy set A with the characterizing properties height, core, support set
and a-cuts.
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Cardinality of Fuzzy Sets and Relations

The definition of the cardinality of classical sets and relations in (1.23) can be
generalized to arguments of fuzzy type by replacing the characteristic function
wa(z) of the classical set A by the membership function of the fuzzy set A.

The (absolute) cardinality card(A A) = |A| of a discrete fuzzy set A € P(X)
with finite support supp(A) can be defined as

card(4) = |A] = > pz(x) > pgle). (1.92)

zeX wEsupp(g)

The relative cardinality cardx (A) of the fuzzy set A with respect to the finite
universal set X is defined as

= > ki)
cardy () = 34 _ wex (1.93)
card(X) IEEX 1

Often, however, the relative cardinality cardsupp( Iy, (Z) of the fuzzy set A with

respect to the support set supp(A) is of more significance. It is defined as
follows:

d(A) 5 "5

N car zesupp(A)

. o _ . 1.94

supp() (4) card [supp(4)] 2 1 o
EESUPP(A)

Similarly, for a continuous, finite fuzzy set Ae ’IS(X ), the (absolute) cardi-
nality can be defined as

card(l):|l|:/ug(x)dz: / pz(z)de (1.95)

z€X wesupp(g)
and the relative cardinalities cardx (4) and card, o 3 (A) as
~ [ ni(z)de
cardy (4) = 04 _ wex , (1.96)
card[supp(A)] [ d=z
zeX
P [ pil@)de
card,, | 5 () = card( )~ _ eEsupp(4) (1.97)
P card[supp(4)] [ dz

wesupp(A)
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Generalizing the definition of the cardinality of fuzzy sets by defining the
cardinality of fuzzy relations, we can formulate for the absolute cardinality of
a discrete n-ary fuzzy relation R € P(X; x Xo x ... x X,,)

card(R) Z Z Z pg(T1, T2, .. Tn) , (1.98)

T1€X1 22€X2 ,€Xn

whereas for a continuous n-ary relation R, we get

card( / / / (T, T2, ... Ty) dzy dey .. doy

z1€X1 22€X2 znEXn
(1.99)

The corresponding relative cardinalities are defined in accordance with
(1.93), (1.94), (1.96), and (1.97).

Convexity of Fuzzy Sets and Relations

Making use of the decomposition theorem (1.90), which provides a connection
between fuzzy relations and their crisp counterparts, the convexity of fuzzy
relations can, in general, be defined as follows:

A fuzzy relation is convez if and only if all possible a-cuts of the relation are
convex in the classical set theoretical sense.

Consequently, an n-ary fuzzy relation R € P(R™) is called convez if for every
element w = (u1,us, ..., un) € cutq(R) and v = (v1,vs,...,v,) € cute(R)
and for every a € [0, 1]

M+ (1—Av € cuto(R) VAe[0,1]. (1.100)

This definition includes, of course, the definition of convexity of regular, one-
dimensional fuzzy sets as the special case of unary fuzzy relations. It can be
formulated in the following way:

A fuzzy set A € ’ﬁ(]R) is called convez if for every element u € cut, (Z) and
v € cuty(A) and for every a € [0, 1]

A+ (1= M € cuto(A) VAel0,1]. (1.101)

Example 1.7. Let us consider the fuzzy sets A and B given by their member-
ship functions p;(z) and pz(z), z € R, as shown in Fig. 1.5. For the fuzzy
set A in Fig. 1.5a, every possible a-cut cuts(A), o € [0,1], is convex in the
classical set theoretical sense, whereas at least one a € [0, 1] can be found for
the fuzzy set B in Fig. 1.5b such that the corresponding a-cut cut,(B) is not
convex. Consequently, the fuzzy set Ais convex, the fuzzy set B is not.
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non-convex fuzzy set

convex fuzzy set

Fig. 1.5. Application of the convexity condition (1.101) to (a) a convex fuzzy set
A € P(R), and (b) a non-convex fuzzy set B € P(R).

By circumventing the reduction of the convexity condition of fuzzy sets
and relations to classical set theory, the convexity of fuzzy relations can alter-
natively be defined in terms of their membership functions uz(z1,z2,...,7,)
with (z1,Z2,...,z,) € R" as follows:

An n-ary fuzzy relation R € ’ﬁ(]R”) is called convez if for every element

u = (u1,Us,...,U,) € supp(R) and v = (v1, v, ...,V,) € supp(R)
pg A+ (1= Av] > min [pg(u),ugz(v)] YAeE0,1]. (1.102)

This definition includes the convexity condition of regular, one-dimensional
fuzzy sets as the special case of unary fuzzy relations, which is often formulated
in the following way:

A fuzzy set A € ’ﬁ(]R) is called convez if for every u,v,w € supp(ﬁ) with
u<w<w
pz(w) > min [py(u), pz(v)] - (1.103)

Ezample 1.8. When we consider again the example with the fuzzy sets A and
B given by the membership functions p ;(z) and pg(z), € R, as shown in
Figs. 1.5 or 1.6, respectively, we can alternatively use the convexity condition
(1.103) to classify the fuzzy sets. For the fuzzy set A in Fig. 1.6a the member-
ship value p;(w) is always greater or equal to min [ug(u),,ug(v)] for every
u,v,w € supp(ﬁ) with u < w < v, but at least one combination (u,v,w)
can be found for the fuzzy set Bin Fig. 1.6b such that this condition is not
fulfilled. Consequently, the fuzzy set A is convex, the fuzzy set B is not.



24 1 The Theory of Fuzzy Sets

a A b A
convex fuzzy set

non-convex fuzzy set

Fig. 1.6. Application of the convexity condition (1.103) to (a) a convex fuzzy set
A € P(R), and (b) a non-convex fuzzy set B € P(R).

Linguistic Variable and Linguistic Values

Recalling the introductory example in Sect. 1.2.1 that motivated the defini-
tion of fuzzy sets as a mathematical representation of fuzzy properties, such
as ‘low temperatures’ or ‘cold’ for the variable ‘temperature’, we see that it is
obviously possible to quantify the value of a variable by a number of (overlap-
ping) fuzzy sets, which cover the entire domain of the variable. This procedure
is often referred to as granulation, in contrast to the division of a domain into
crisp sets, known as quantization. The fuzzy sets, each labeled by a linguistic
term according to predefined semantic rules [141], are then called the linguistic
values of a linguistic variable. For the linguistic variable ‘temperature’, for ex-
ample, linguistic values comprising the terms ‘ice-cold’, ‘cold’, ‘tepid’, ‘warm’
and ‘hot’ may be defined. This way of quantification is especially appropriate
for real-world applications where, in nature, the variable is inherently vague,
either due to impreciseness of measurements or subjectivity in perception.

Ezample 1.9. Among others, a very striking example for the usefulness of
quantifying a variable by linguistic values is the linguistic variable ‘color’.
In reality, objects distinguished by their color are quantified by linguistic val-
ues, such as ‘violet’, ‘blue’, ‘green’ ‘yellow’ and ‘red’, rather than by indicating
the wave length X\ of their reflected light. For the granulation of the domain
of wave lengths using the above-mentioned linguistic values, the fuzzy sets
Ajp,As, ... A5 can be introduced, which are defined by membership functions
of Gaussian type as shown in Fig. 1.7.
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Fig. 1.7. Linguistic variable ‘color’ quantified by five linguistic values.

The major advantage of introducing linguistic values for the quantification
of a variable lies in the possibility of ‘computing with words’. That is, the
human way of quantification can be described in a mathematically consistent
way and can be embedded into a well-defined framework, which forms the basis
for further fuzzy theoretical applications, such as approximate reasoning and
fuzzy control (e.g., [28, 141]).

1.2.3 Operations for Domain-Compatible Fuzzy Sets and Relations

In accordance with the definitions of operations for classical sets and rela-
tions, we have to distinguish between operations for fuzzy sets and relations
that are domain-compatible and those that are not. Domain-compatible fuzzy
sets or relations are characterized by being defined on the same universal set
or universal product set, respectively; sets or relations that are not domain-
compatible are defined on different universal sets or product sets. In the fol-
lowing, the most important operations for domain-compatible fuzzy sets and
fuzzy relations are listed. We will see that the previously defined operations
for classical sets and relations can often be generalized to their fuzzy coun-
terparts by simply replacing the characteristic functions in the closed-form
expressions of the classical case by the membership functions as arguments
of the fuzzy case. As a novelty, however, we will encounter a characteristic
property of the operations for fuzzy sets and relations, which points to the
existence of different possibilities of implementing certain operations.

Inclusion (Containment)

As a generalization of (1.35), the inclusion of a fuzzy set A in another fuzzy
set B can be defined in terms of the membership functions x 7(z) and pz(z) as
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ACB & pz(r)<pgle) YreX. (1.104)

In accordance with this formulation, we can give the following definition for
the inclusion of two n-ary fuzzy relations R and S, R,S C X1 X Xo X ...x X,
as a generalization of (1.36):

RCS & pg(e,ae,...,20) < pg(@1, 22, ..., 2,) (1.105)
\V/($1,$2,...,$n) EXl XX2 X ... XXn.

Equality

As a generalization of (1.39), the equality of two fuzzy sets A and B can be
defined in terms of the membership functions p3(z) and pg(z) as

A=B & pi(z) =pglr) VeeX. (1.106)

Accordingly, we can give the following definition for the equality of two n-ary
fuzzy relations R and S, R,S C X; X X3 X ... x X,,, as a generalization of
(1.40):

R=S & pE(T1, 2, .. Tn) = pg(T1, T2, ..., Tn) (1.107)
V(ml,mg,...,mn) eXixXox...xX,.

Complementation
Standard Fuzzy Complement

Given a fuzzy set A C X with the membership function p i(z), the member-
ship function p 3. (z) of the complement A€ can be defined as

pi(z) =1—-pz(r) VezeX. (1.108)

This operation of fuzzy complementation, as illustrated in Fig. 1.8, is also re-
ferred to as the standard fuzzy complement [89] and was originally introduced
by ZADEH [132]. The standard fuzzy complement performs precisely as the
corresponding operation for classical sets in (1.42) when the range of member-
ship grades is restricted to the set {0,1}. That is, the closed-form expression
in (1.108) is a generalization of the corresponding classical set operation.

Similarly, we can give the following definition for the complement Re of
an n-ary fuzzy relation R C X1 X Xo X ... x X,:

Mﬁc($17$2a"')mn) =1 _Nﬁ(xlam%"':xn) (1109)
\V/($1,$2,...,.Tn) EXl XX2 X ... XXn .

It is obvious, however, that the standard fuzzy complement is not the only
possible generalization of its crisp counterpart. In fact, there exists a broad
class of functions whose members qualify as possible fuzzy generalizations of
the classical operation of complementation. Those functions will be dealt with
in the following.
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Fig. 1.8. (a) Membership function p ;(z) of the fuzzy set A; (b) membership func-
tion p . (z) of the standard fuzzy complement A°.

General Fuzzy Complements

As a notational convention, let the complement Acofa fuzzy set Z, in general,
be defined by a functional mapping ¢ of the form

c: [0,1] — [0,1], (1.110)
which assigns the membership grade
pie(z) = cpz(@)] (1.111)

to each membership grade p ;(z) of the fuzzy set A for all z € X. Tt is obvious
that the function ¢ must possess certain properties to produce a fuzzy set Ac
that qualifies as a meaningful complement of the fuzzy set A. Explicitly, the
function ¢ must satisfy at least the following requirements, which are stated
in an axiomatic form:

Axiom C1: ¢(0)=1 and ¢(1)=0 (boundary conditions).
> c(p2)

Axiom C2: 1 < p2 = c(p) > c(u2)  (monotonicity).

All functions ¢ that satisfy both Axioms C1 and C2 form the most general
class of fuzzy complements. Axioms C1 and C2 are therefore also referred to
as the aziomatic skeleton for fuzzy complements [89)].

In most cases of practical significance, however, two additional require-
ments for fuzzy complements are considered:

Axiom C3: ¢ is a continuous function (continuity).
Axiom C4:  cle(w)]=p VY pe|0,1] (involution).
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Obviously, a class of fuzzy complements that additionally satisfies Axioms C3
and C4 forms a subclass of the most general class of fuzzy complements in-
duced by the axiomatic skeleton. Two parametric subclasses of continuous
and involutive fuzzy complements are presented in the following.

e Sugeno class of complements
The Sugeno class of complements, named after SUGENO [120], is defined
by
_1l-n
14
For each value of the parameter A, we obtain one particular continuous and
involutive fuzzy complement. For A = 0, the fuzzy complement becomes
the standard fuzzy complement in (1.108), defined by ZADEH.

CSug (14) with A €] —1,00]. (1.112)

e Yager class of complements
The Yager class of complements, named after YAGER [130], is defined by

Cvag(p) = (1— )™ with w €]0, 00 . (1.113)

Here, the standard fuzzy complement in (1.108) is obtained for w = 1.

One important property that is shared by all fuzzy complements is the equi-
librium of a complement function c. It is defined as any value p* € [0,1] for
which ¢(u*) = p*, and it gives the degree of membership in a fuzzy set A
which equals the degree of membership in the complement A°. For the stan-
dard fuzzy complement in (1.108), the equilibrium value is given by 0.5, which
is the solution of the equation 1 — p* = p*. For any arbitrary fuzzy comple-
ment, the following theorem holds [89]:
Every fuzzy complement function ¢ has at most one equilibrium. If the fuzzy
complement c is continuous, then c has a unique equilibrium.

In summary, we can give the following general definitions for the comple-
ment of fuzzy sets and fuzzy relations:

Given a fuzzy set A C X with the membership function p i(z), the member-
ship function p 3. (z) of the complement A€ is given by

pi(@) =cluz(@)] VseX, (1.114)

where the function c is a general fuzzy complement. Similarly, the complement
R¢ of an n-ary fuzzy relation R C X; x Xs X ... x X,, with the membership
function pgz(z1,2,...,7,) is given by

B (1, T2,...,0,) =c [ué(ml,mz,...,mn)] (1.115)
V(ml,mg,...,xn) eXi xXox...xX,.
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Intersection
Standard Fuzzy Intersection

Given two fuzzy sets A and E, Z,E C X, with the membership functions
p3(z) and pg(z), the membership function p 3 5() of the intersection ANB
can be defined as

ting(®) = min [py(z),pp(z)] VzeX. (1.116)

This operation of fuzzy intersection, as illustrated in Fig. 1.9, is also referred to
as the MIN-intersection or standard fuzzy intersection [89] and was originally
introduced by ZADEH [132]. Like in the case of the standard fuzzy comple-
ment, the standard fuzzy intersection performs precisely as the corresponding
operation for classical sets in (1.45) when the range of membership grades is
restricted to the set {0,1}. That is, the closed-form expression in (1.116) is a
generalization of the corresponding classical set operation. o

Similarly, we can give the following definition for the intersection RN S of
two m-ary fuzzy relations R and S, R,S C X1 X Xg X ... X X,;:

BEng(T1,22,. .., 2,) = min [uﬁ(ml,mz,...,xn),ug(xl,xg,...,mn)]
\V/(.Tl,l'z,...,$n)€X1XXQX...XXTL. (1117)

Again, it is clear, that the standard fuzzy intersection is not the only possi-
ble generalization of its crisp counterpart. In fact, there exists a broad class
of functions whose members qualify as possible fuzzy generalizations of the
classical operation of intersection. Those functions will be dealt with in the
following.

a | b A
7 2
A B ANB
1 1 1
0 0
xr i

Fig. 1.9. (a) Membership functions p ;(z) and pg(z) of the fuzzy sets A and B;
(b) membership function p 7 5(z) of the standard fuzzy intersection AN B.
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General Fuzzy Intersections — t-Norms

As a notational convention, let the intersection AN B of two fuzzy sets A and
B, in general, be defined by a functional mapping 7 of the form

i:[0,1] x [0,1] ~ [0,1], (1.118)
which assigns the membership grade

1ing(@) =i [pz(z), np(2)] (1.119)
to the argument consisting of the pair of membership grades p () and pz(z)
of the fuzzy sets Aand Bforallz € X. It is obvious that the function i must
possess certain properties to produce a fuzzy set AN B that qualifies as a
meaningful intersection of the fuzzy sets A and B. Explicitly, the function ¢
must, for all pg,u1,p2 € [0,1], satisfy at least the following requirements,
which are stated in an axiomatic form:

Axiom I1:  i(uo,1) = po (boundary condition).
Axiom 12: g < po = i(po, p1) < i(po, p2)  (monotonicity).
Axiom I3:  i(u1, pe) = i(us2, 11) (commutativity).

Axiom T4: i [uo,i(p1, p2)] =4 [i(uo, 1), p2]  (associativity).

All functions i that satisfy Axioms I1 to I4 form the most general class of fuzzy
intersections. Axioms I1 to I4 are therefore also referred to as the aziomatic
skeleton for fuzzy intersection [89]. The class of functions that satisfy the
axiomatic skeleton for fuzzy intersection is also known as triangular norms
or t-norms, which have been extensively studied in the literature. The terms
‘t-norms’ and ‘general fuzzy intersections’ can be used interchangeably.

In most cases of practical significance, two additional requirements for
fuzzy intersections are considered:

Axiom I5: i is a continuous function (continuity).
Axiom 16: p1 < pe and p3 < g
= i(p1,p3) < i(pe2,ps)  (strict monotonicity).

The most frequently used t-norms that satisfy Axioms I1 to I6 are listed in
the following (each defined for all u1, s € [0,1]):

MIN-intersection: Tmin (1, p2) = min [y, pe]

Algebraic product: Targ (1, fh2) = 12

Bounded difference:  ipna(p1, p2) = max [0, pg + po — 1)
M1 lf M2 = 1

Drastic intersection:  iqpt(p1,t2) = p2  if pup =1
0  otherwise.

The algebraic product 7., was originally introduced along with the MIN-
intersection 4mi, by ZADEH [132]. The bounded difference ip,q was proposed
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by GILES [49], and the drastic intersection iq,+ by DUBOIS AND PRADE [28, 31].
For the ¢-norms listed above, it can be shown that for all g, pe € [0,1]

dart (11, p2) < ibna (1, p2) < darg(p1, p2) < fmin(p1, p2) - (1.120)

Furthermore, it can be proven mathematically that, in general, every t-norm ¢
is bounded by the drastic intersection ¢4,t on the one side, and by the MIN-
intersection iy, on the other [112]. That is, for all 1, us € [0,1]

dare (B, pi2) < i(pins p2) < dmin (1, p2) - (1.121)

To extend the range of the above-mentioned ¢-norms, several parametric sub-
classes of t-norms have been suggested in the literature. Two of those are
presented in the following, while the reader is referred to [89, 141] for further
studies.

e Yager class of intersections
The Yager class of intersections, named after YAGER [130], is defined by

ivag (M1, p12) = 1—min |1, [(1 = p1)" + (1 — p2)*]"™|  with w €]0, 00

(1.122)
For each value of the parameter w, we obtain one particular ¢t-norm oper-
ator for the intersection of fuzzy sets. For w — oo, the Yager intersection
ivyag converges to the MIN-intersection #,in, for w — 0, it converges to the
drastic intersection iq.¢, and for w = 1, it becomes the bounded difference
Thnd-

e Dubois and Prade class of intersections
This subclass of t-norms, named after DuBOis AND PRADE [30, 32], is
defined by

1 2

— 2" with a€[0,1]. 1.123
max [f1, 2, @) (0.1] ( )

iDub (p1, p2) =
This operator of fuzzy intersection is decreasing with respect to a and lies
between the MIN-intersection %;,, obtained for a = 0, and the algebraic
product 7,1, obtained for o = 1.

In summary, we can give the following general definitions for the intersection
of fuzzy sets and fuzzy relations:

Given two fuzzy sets A and E, J,E C X, with the membership functions
p3(z) and pg(z), the membership function p 3 5() of the intersection ANDB
is given by

1 ing(T) :i[ug(x),ué(x)] Vee X, (1.124)

where the function 4 is any ¢-norm. Similarly, the intersection RN S of two n-
ary fuzzy relations R and S, R, S C X; X X3 X...x X,,, with the membership
functions pg(z1,2,...,2,) and pgz(z1,z2,...,7,) is given by
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i (T1, T, .., Tn) :i[uﬁ(xl,xg,...,mn),ug(ml,mz,...,xn)]
\V/(.Tl,l'z,...,$n)€X1XXQX...XXTL. (1125)

Union
Standard Fuzzy Union

Given two fuzzy sets A and E, Z,E C X, with the membership functions
pz(r) and pg(x), the membership function u 3 5(7) of the union AU B can
be defined as

pi,g (@) = max [pz(z),pg(z)] VzeX. (1.126)

This operation of fuzzy union, as illustrated in Fig. 1.10, is also referred to as
the MAX-union or standard fuzzy union [89] and was originally introduced
by ZADEH [132]. As in the former cases of the standard fuzzy complement
and standard fuzzy intersection, the standard fuzzy union performs precisely
as the corresponding operation for classical sets in (1.48) when the range of
membership grades is restricted to the set {0,1}. That is, the closed-form
expression in (1.126) is a generalization of the corresponding classical set
operation. o

Similarly, we can give the following definition for the union R U S of two
n-ary fuzzy relations R and S, R,S C X; X Xo X ... X X,:

pE,5(T1, 22, .., 2,) = max [ué(ml,mz,...,xn),ug(xl,xg,...,mn)]
\V/(.Tl,l'z,...,$n)€X1XXQX...XXTL. (1127)

Again, it is obvious, that the standard fuzzy union is not the only possible
generalization of its crisp counterpart. In fact, there exists a broad class of
functions whose members qualify as possible fuzzy generalizations of the clas-
sical operation of union. Those functions will be dealt with in the following.

General Fuzzy Unions — t-Conorms — s-Norms

As a notational convention, let the union AU B of two fuzzy sets A and B ,
in general, be defined by a functional mapping u of the form

w: [0,1] x [0,1] = [0,1], (1.128)
which assigns the membership grade
piu5(®) = upz(@), np(z)] (1.129)

to the argument consisting of the pair of membership grades p 7(z) and pz(z)
of the fuzzy sets A and B for all z € X. It is obvious that the function u must



1.2 Fuzzy Sets 33
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Fig. 1.10. (a) Membership functions p ;(z) and pj(z) of the fuzzy sets A and B;
(b) membership function p 3 ,5(x) of the standard fuzzy union AU B.

possess certain properties to produce a fuzzy set A U B that qualifies as a
meaningful union of the fuzzy sets A and B. Explicitly, the function v must,
for all pg, p1, o € [0, 1], satisfy at least the following requirements, which are
stated in an axiomatic form:

boundary condition).
monotonicity).
commutativity).
associativity).

Axiom Ul:  u(uo,0) = uo

Axiom U2: 1 < pa = ulpo, 1) < ulpo, p2)
Axiom U3:  u(pg, po) = u(pe, p1)

Axiom U4:  w[uo, u(p1, p2)] = wlu(uo, 1), o)

A~ N N

All functions u that satisfy Axioms Ul to U4 form the most general class of
fuzzy unions. Axioms Ul to U4 are therefore also referred to as the aziomatic
skeleton for fuzzy union [89]. The class of functions that satisfy the axiomatic
skeleton for fuzzy union is also known as triangular conorms, t-conorms or
s-norms, which have been extensively studied in the literature. The terms ‘¢-
conorms’, ‘s-norms’ and ‘general fuzzy unions’ can be used interchangeably.

In most cases of practical significance, two additional requirements for
fuzzy unions are considered:

Axiom Ub:  wu is a continuous function  (continuity).
Axiom U6: 1 < ps and pz < s
= w(p1,ps) < u(psz,ps)  (strict monotonicity).

The most frequently used s-norms that satisfy Axioms U1 to U6 are listed in
the following (each defined for all u1, 2 € [0,1]):
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MAZX-union: Umax (41, ph2) = max [u1, o]
Algebraic sum:  waig(p1, p2) = p1 + pi2 — papi2
Bounded sum:  upna(p1, o) = min [1, pgg + p2]
w1 if ue =0
Drastic union:  waet(p1,u2) =< p2  if p; =0
1  otherwise.

The algebraic sum ua1, was originally introduced along with the MAX-union
Umax Dy ZADEH [132]. The bounded sum up,q was proposed by GILES [49],
and the drastic union ua,+ by DUBOIS AND PRADE [28, 31]. For the s-norms
listed above, it can be shown that for all py, us € [0, 1]

Umax (11, 12) < Ualg (1, p2) < Ubnd (1, pr2) < vare(pi1, p2) - (1.130)

Furthermore, it can be proven mathematically that, in general, every s-norm u
is bounded by the drastic union wuq,+ on the one side, and by the MAX-union
Umax ON the other [112]. That is, for all u1, e € [0,1]

Umax (11, 2) < w(pin, p2) < tare(pa, o) - (1.131)

To extend the range of the above-mentioned ¢-conorms, several parametric
subclasses of t-conorms have been suggested in the literature. Two of those
are presented in the following, while the reader is referred to [89, 141] for
further studies.

e Yager class of unions
The Yager class of unions, named after YAGER [130], is defined by

tyag (i1, 12) = min [1, (uf” + )] with w€]o,00[.  (1.132)

For each value of the parameter w, we obtain one particular ¢-conorm
operator for the union of fuzzy sets. For w — oo, the Yager union wyag
converges to the MAX-union max, for w — 0, it converges to the drastic
union uq,t, and for w = 1, it becomes the bounded sum wup,q-

e Dubois and Prade class of unions
This subclass of ¢-conorms, named after DuBoIS AND PRADE [30, 32], is
defined by
_p1 pe — gy — min [, g, (1 — a)]

Upub (K1, p2) = max[(1— ), (1 — ia), 0 with a €0,1].
(1.133)

This operator of fuzzy union is increasing with respect to a and lies be-
tween the MAX-union .y, obtained for a = 0, and the algebraic sum
Ualg, Obtained for a = 1.

In summary, we can give the following general definitions for the union of
fuzzy sets and fuzzy relations:
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Given two fuzzy sets A and E, J,E C X, with the membership functions
pi(z) and pz(z), the membership function p 3 5(z) of the union AUB is
given by

tiu5) =ulpz(z),pg(@)] VreX, (1.134)
where the function u is any s-norm (¢-conorm). Similarly, the union RUS
of two m-ary fuzzy relations R and §, ﬁ, S C X1 X X5 x...x X, with the
membership functions pz(z1, 22, ..., 2,) and pg(z1,z2,...,7,) is given by

uﬁu§(mlam27"'7$n) :u[Mﬁ(mlam%'"7$n)7M§($17$2a"')mn)]
V(xl,xg,...,mn)EXl><X2><...><Xn. (1135)

Advanced Aggregation Operations

All the operators mentioned thus far include the case of classical set theory
as a special case. That is, although there exist several different t-norms for
the fuzzy intersection and s-norms for the fuzzy union, they all perform in
exactly the same way as long as the degrees of membership are restricted to
the values 0 or 1. If this is no longer guaranteed, different results are obtained.

Such variations for performing a specific set theoretical operation is a char-
acteristic property of fuzzy set theory and prompts the question whether the
classical operations of intersection and union are the only ways to combine
or aggregate fuzzy sets. In fact, there are other ways to aggregate fuzzy sets
or fuzzy relations, known as averaging operators, which lead to membership
grades that lie between the MIN-operator, as the highest possible t-norm, and
the MAX-operator as the s-norm of lowest value. For example, WERNERS
[125, 126] suggests the ‘fuzzy intersection’ and ‘fuzzy union’ as a generaliza-
tion of the standard intersection and union, combining the MIN-operator and
the MAX-operator, respectively, with the arithmetic mean. Another operator,
which is more general in the sense that the compensation between intersection
and union is no longer fixed, but adjustable by a parameter, is the compen-
satory operator ‘compensatory and’ proposed by ZIMMERMANN AND ZYSNO
[142]. These aggregation operations have no counterpart in classical set the-
ory, but are of practical significance, for instance, in the context of decision
making, where they can incorporate the idea of trade-offs between conflicting
goals when compensation is allowed. Within the scope of this book, however,
a detailed discussion of this topic shall be omitted.

Properties of Domain-Compatible Fuzzy Set Operations

As a major property of classical set theory, the operations of intersection and

union are dual with respect to the complement. That is, for two classical sets

A and B, the operations satisfy the De Morgan’s laws (see Table 1.2)
(AUB)*=A°NB°, (1.136)
(ANB)* = A°UB°. (1.137)
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Regarding fuzzy sets as a generalization of classical sets, it is desirable that
this duality also hold for fuzzy sets. However, it is obvious that only specific
combinations of t-norms, s-norms, and fuzzy complements can satisfy this
property. Explicitly, a t-norm ¢ and an s-norm wu are called dual with respect
to a fuzzy complement c if, for all uy, us € [0, 1], they satisfy the generalized
De Morgan’s laws for fuzzy sets

¢ fulur, pa)] = i feun), e(pa)] (1.138)
cli(, o)) = wle(un), e(uo)] - (1.139)

Every triple (i, u, ¢), which consists of a t-norm 7 and an s-norm « that are dual
with respect to the fuzzy complement ¢, can then be called a dual triple. It
can easily be verified that if the standard fuzzy complement cgq from (1.108)
is used as the fuzzy complement, the following combinations are dual triples:

fmin, Umax; Cstd) —  MIN-intersection — MAX-union — ¢gtq ,
Galg, Ualg, Cstd) — algebraic product — algebraic sum — cstq

ibnd, Ubnd, Csta) — bounded difference — bounded sum — ¢stq ,

(idrt, Udrt, Cstd) — drastic intersection — drastic union — cgtq -

Even though these dual triples satisfy the De Morgan’s laws, it can be shown
that, in general, it is impossible for fuzzy sets to preserve the full Boolean
lattice structure as it applies for the operations between classical sets (see
Table 1.2). In particular, the laws of non-contradiction and of the excluded
middle are incompatible with the principles of idempotency, distributivity and
general absorption for degrees of membership x4 €]0,1[ [29]. That is, any dual
triple of fuzzy operations can either satisfy the laws of non-contradiction and
the excluded middle, or the principles of idempotency, distributivity and gen-
eral absorption, but never both groups. For example, the former group applies
t0 (ibnd, Ubnd, Cstd) and (Gart, Udrt, Cstd ), the latter to (imin, Umax, Csta ), and nei-
ther of them to (faig, Ualg, Csta). All of them, however, satisfy the remaining
principles, such as the law of commutativity, associativity, identity, special
absorption, and, of course, the De Morgan’s laws.

Of all dual triples, the combination of MIN-intersection, MAX-union and
standard fuzzy complement, originally defined by ZADEH [132], occupies a cen-
tral position, which allows it to be referred to as the standard fuzzy operations.
In addition to its historical importance, its practical implementation and its
numerical efficiency, this definition of fuzzy set-theoretical operations stands
out for its ‘optimal algebraic structure’ [34], since it preserves a maximum of
the classical properties of set-theoretic operations. The non-compliance with
the law of non-contradiction and the law of the excluded middle can be re-
garded as minor, inasmuch as the following question may arise, when fuzzy
sets are considered: If the statement ‘z has the property A’ is uncertain and
exhibits a truth value that equals neither zero nor unity, and the same applies
to the complementary statement ‘z does not have the property A’, then why
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does the conjunctive statement ‘z has the property A and does not have the
property A’ have to be false in any case? ZADEH’s answer to this question is
clear and supports the optimal properties of his fuzzy operators:

“The principle of the excluded middle is not accepted as a valid
axiom in the theory of fuzzy sets because it does not apply to sit-
uations in which one deals with classes which do not have sharply
defined boundaries.” —L. A. Zadeh [139].

The properties of ZADEH’s standard fuzzy set operations (imin, Umax, Cstd) are
listed in Table 1.4.

1.2.4 Further Operations for Fuzzy Relations

In accordance with Sect. 1.1.4 of classical set theory, only the operation of
composition, among the operations for non domain-compatible fuzzy rela-
tions, will be of further interest within the scope of this book. For the sake of
simplicity and clarity, only the composition of binary relations will be consid-
ered in the following.

Composition
Standard Fuzzy Composition

Given two binary fuzzy relations R C X; x X2 and S C X3 x X3 with the
membership functions pg(z1,22) and pg(ws,3), the membership function

K5.5(71,w3) of the composition Ro S is, in general, defined as

Bgo5(®1,m3) = sup min [pz(z1,22), pg(we, x3)] ¥V (z1,23) € X1 x X3,

z2€ X2
(1.144)
which, in the case of fuzzy relations R and S with finite support sets, becomes

PE.5(T1,73) = max min [M§($1;$2)7M§($2;$3)] V (21,73) € X1 X X3.

z2€ X2

(1.145)
This operation of fuzzy composition is also referred to as the standard
fuzzy composition or SUP-MIN-composition (MAX-MIN-composition) and
was originally introduced by ZADEH [132]. As for the case of the standard
fuzzy operations for domain-compatible fuzzy sets and relations, the standard
fuzzy composition performs precisely as the corresponding operation for clas-
sical relations in (1.56) when the range of membership grades is restricted
to the set {0,1}. That is, the closed-form expressions in (1.144) or (1.145)
can be considered as an extension of the classical operation of composition on
fuzzy-set arguments.
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Table 1.4. Properties of ZADEH’s standard fuzzy set operations (imin, %max, Cstd)

A,B,CCX

pr=pzi(@), pe=pg(@), ps=ps(), r€X
imin(;utly,ut2) = min(,ul,pg),

Umax(p1, pi2) = max(pa, p2), Csea(pr) =1 —

Involution (EC)C =A
1-(1—p1)=m
Commutativity AUB=BUA

ANB=BnA
max(p1, p2) = max(uz, p1)

min(p1, p2) = min(p2, p1)

Associativity (AUB)UC = AU (BUC)
(ANB)NC =ANn(BNC)
max [max(p1, p2), ps| = max [p1, max(pz, ps))
min [min(p1, p2), pa] = min [p1, min(p2, ps)]
An(BUC)=(ANB)U(ANC)

AU(BNC)=(AUB)N(AUC)

Distributivity

min [max(p1, p2)] = max [min(p1, p2), min(p1, ps3)]

max [min(g1, p2)] = min [max(p1, p2), max(pa, ps)]

Idempotency Aud=4
ANA=4
max(p1, p1) = p
min(p, p1) = p
Aup=4

Identity
ANX=A
max(p1,0) = p

min(p1,1) = p

(continued on next page)
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Table 1.4. Properties of ZADEH’s standard fuzzy set operations (imin, Umax, Cstd)-

continued from previous page
g

Special absorption Aux =X
AND=0

max(pu1,1) =1

min(p1,0) =0
General absorption AU(ANB)=A
AN(AuB)=4

max [p1, min(p1, p2)] = p1

min [p1, max(p1, p2)] = p

De Morgan’s laws (AUB)* = A°N B°
(ANB)* = A°UB°
1 — max(pn, ) = min (1 — o) (1 — i)

1 — min(ur, p) = max[(1 - u1)(L - pr2)]

Law of the excluded middle AUA =X

does not apply max [p1, (1 —p1)] #1
YV p1 €]0,1]

Law of non-contradiction AnAc =9

does not apply min [p1,(1 —p1)] #0
YV p1 €]0,1]

General Fuzzy Composition — SUP-t-composition

The MIN-operator in (1.144) and (1.145), which generalizes the conjunctive
combination of the characteristic functions in (1.56) to the use of membership
functions of fuzzy relations, can be replaced by an arbitrary {-norm i. The
membership function pg, s(x1,23) of the composition Ro S is then defined by

Bgog(1,w3) = sup i [pg(w1,22), pg(z2,w3)] Y (21,73) € X1 X X3,
z2€EX2
(1.146)

which in the case of fuzzy relations R and S with finite support sets becomes
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BRog(T1,m3) = max i [pg(ee, 22), pg(ee, x3)]  V (21,73) € X1 X X5

(1.147)
This operation of general fuzzy composition is also referred to as the SUP-t-
composition (MAX-t-composition), SUP-x-composition (MAX-x-composition),
or SUP-star-composition (MAX-star-composition), where ‘¢’ or ‘star’, respec-
tively, acts as a wild-card character for an arbitrary ¢-norm. A very com-
mon alternative to the standard SUP-MIN-composition is the SUP-PROD-
composition (MAX-PROD-composition), where the algebraic product .y is
used as the ¢t-norm.

The most frequently used versions of composition, the SUP-MIN- and
the SUP-PROD-composition, possess a number of properties which are listed
in Table 1.5. Evidently, the fuzzy composition is not commutative and only
weakly distributive (subdistributive) with respect to the intersection.

Table 1.5. Properties of the SUP-MIN- and the SUP-PROD-composition.

RgXlXXz, §QX3><X4, ng5><X6

Monotonicity R - S = RoT - SoT

(X1 = X3, X2 = X4) RCS = ToRCToS
Associativity (RoS)oT =Ro(SoT)

(Xo = X3,X4 = X5)

Distributivity Ro(SUT)=(RoS)U(RoT)
(X2 = X3 = X5, X4 = X¢) Ro(SNT)C (RoS)N(RoT)

As an example for the composition of two fuzzy relations, let us con-
sider the discrete binary fuzzy relations R C X; x X, and S C X5 X X3
in Table 1.6a, which are defined on the Cartesian products of the universal
sets X; = {a1,b1}, Xo = {as,bs,c2} and X3 = {az, b3}. After applying the
MAX-MIN-composition or, alternatively, the MAX-PROD-composition, we
obtain the results for the composite relation RoS C X; x X3, as presented
in Table 1.6b. For example, the computation of the degree of membership
15.5(a1,b3) using the MAX-MIN-composition results in

)
’ 5(02’ )] (1.148)
= max [min(0.1,0.3), min(0.5, 0.6), min(0.9, 0.9)]

= max[0.1,0.5,0.9
=09.
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Table 1.6. (a) Discrete binary fuzzy relations R and S; (b) composition results
(R o S) for the MAX-MIN-composition and the MAX-PROD-composition.

a
rs3 as b3
T2 a2 b2 C2 To
1
a2 0.1 0.3
5. a 0.1 05 09 a.
R: 5: by 04 0.6
b1 0.2 0.6 1.0
c2 0.8 0.9
b1, 2)
pg(z2,23)
b
MAX-MIN-composition MAX-PROD-composition
3 as b3 3 as b3
1 1
RoS: a 0.8 0.9 RogS: a 0.72 0.81
b1 0.8 0.9 b1 0.8 0.9
B705(T1,T3) B705(T1,T3)

1.3 The Extension Principle

One of the most basic concepts of fuzzy set theory is the extension principle.
Introduced by ZADEH, it was already implied in [132] in an elementary form
and was finally presented in its well-known form in [133] and [135, 136, 137].
This principle provides a general method for extending crisp mathematical
concepts to fuzzy quantities, that is, it allows the domain of definition of
a functional mapping to be extended from crisp elements to fuzzy sets as
the arguments of the function. Following ZADEH’s formulation, the extension
principle is defined as follows:

Let X1 x X5 x...x X, be a universal product set and F' a functional mapping
of the form
F:XixXox...xX,— 27, (1.149)

which maps the element (z1,zs,...,z,) of the universal product set to the
element z = F(z1, 3, ..., 2,) of the universal set Z. In addition, let A; C Xj,
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Ay c X, ..., A, C X, be n fuzzy sets, defined by the membership functions
Y (z1), 1, (z2), .., b3 (Tn), z; € X;,1=1,2,...,n. Then the membership

function pz(2), z € Z, of the fuzzy set B C Z with

B=F(A1,As,...,A,) (1.150)
is defined by
sup minS py (z1),pug (T2),...,u57 (Tn
z=F(x1,x2,...,Tn) { Al( 1) A2( 2) A"( )}
ng(z) = if 3z=F(x1,2s,...,2,) (1.151)
0 otherwise .

In accordance with the operation of composition, which in its form is similar
to the extension principle, the supremum operator can be replaced by the
maximum operator if all the fuzzy sets A; have finite support sets supp(A4;),
i =1,2,...,n. Again, alternative formulations of the extension principle are
possible, such as the generalization of the minimum operator to an arbitrary
t-norm [28]. Due to the unique properties of ZADEH’s formulation (1.151),
however, the extension principle is usually applied in this classical form.

In the special case n = 1, where the fuzzy set A C X is defined by the
membership function p;(z), € X, and the function F' maps an element x
of the universal set X to the element z = F'(z) of the universal set Z, the
membership function pj(z), z € Z, of the fuzzy set B C Z with

B = F(4) (1.152)

is defined by
sup pz(z) if Jz=F(x)
pg(z) = ¢ ==F@ (1.153)
0 otherwise .

Ezample 1.10. As an example for the special case n = 1, let us consider the
discrete fuzzy set A, defined on the universal set X = Z of integer numbers
by

A=1{(-1,0.1),(0,04),(1,1.0),(2,0.4),(3,0.1)} . (1.154)

The evaluation of the functional mapping F', defined for the crisp argument
z by
z=F(z)=2>+1, (1.155)

then results in the discrete fuzzy set E, given on the universal set Z = IN by
B=F(A) = A>+1={(1,04),(2,1.0),(5,0.4), (10,0.1)} . (1.156)

For example, the degree of membership pz(z = 2) can be obtained from
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pg(z=2) = S p (@)
= max [N;{(m = —1);,“;(33 = 1)] (1.157)
=max[0.1, 1.0]
=1.0.

Ezample 1.11. As an example for the case n > 1, let us consider the n = 2
discrete fuzzy sets A; and As, defined on the universal sets X; = Xs = Z of
integer numbers by

Ay = {(-1,0.1),(0,0.4), (1,1.0),(2,0.5), (3,0.1)} , (1.158)
Ay = {(0,0.2),(1,0.4), (2,1.0), (5,0.4), (10,0.1)} . (1.159)

The evaluation of the functional mapping F', defined for the crisp arguments
z1 and x5 by

1
z=F(r1,22) =21 + = T2

5 (1.160)

then results in the discrete fuzzy set E, given on the universal set Z = Q of
rational numbers by

= F(A,4) = Ay + % Ay ={(-1,0.1),(-.5,0.1),(0,0.2), (0.5,0.4),

)
1,0.4),(1.5,0.4), (2,1.0), (2.5,0.4),
3,0.5), (3.5,0.4), (4,0.1),
4.5,0.4),(5,0.1), (5501)

( (8,

(
(
(
(6,0.1),(7,0.1),(8,0.1)} .

(1.161)

A practical way for evaluating the extension principle in the case of n = 2 dis-
crete fuzzy sets A; and Ay as input arguments is shown in Tables 1.7 and 1.8.
In the leftmost column and the top line of Table 1.7, the original fuzzy sets A;
and A; are listed by their elements z; and z5 and the corresponding degrees of
membership as superscripts in angle brackets. The interior entries of Table 1.7
consist of the elements z that result from evaluating the function z = F(z1, z2)
for the values z; and x5 at each intersection of rows and columns. Thus, the el-
ements z in Table 1.7 form the set of values that the function F' takes on for the
elements of the Cartesian product supp(A;) x supp(As) as its arguments. The
superscripts of the elements z give the minimum value min[u 3 (1), p g, (2)]
of the membership degrees of z; and x>, providing an ‘intermediate degree of
membership’ for the elements z. Finally, all the possible values of z are listed
in Table 1.8 together with their intermediate membership values. In case of
multiple occurrence, the supremum of the intermediate degrees of member-
ship is to be formed for each element z to obtain its final membership value
p5(z) in the fuzzy set B.
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Table 1.7. Evaluation of the extension principle for Example 1.11 (step I).

<wg,(z2)>

T 0<0.2> 1<0.4> 2<1.0> 5<0.4> 10<0.1>
2
<wg, (@1)>
X
1
_1<0.1> _1<0.1> _(p<01>  (<01> 1 p<01> 4<0.0>
0<0.4> 0<0.2> 0.5<0.4> 1<0.4> 2.5<0.4> 5<0.1>
1<1.0> 1<0.2> 1.5<0.4> 2<1.0> 3.5<0.4> 6<0.1>
2<0.5> 2<0.2> 2.5<0.4> 3<0.5> 4.5<0.4> 7<0.1>
3<0.1> 3<0.1> 3.5<0.1> 4<0.1> 5.5<0.1> 8<0.1>
<minf[p = (z1),n 5+ (z2)]>
2 1z, (®1)p g, (@2)] ,Z=x1+%x2

Table 1.8. Evaluation of the extension principle for Example 1.11 (step II).

z=1x1+ %1‘2 min [,ugl (xl),ugz (xg)] max
-1 0.1 0.1
—0.5 0.1 0.1
0 0.1 0.2 0.2
0.5 0.4 0.4
1 0.4 0.2 0.4
1.5 0.1 04 0.4
2 1.0 0.2 1.0
2.5 04 04 0.4
3 0.5 0.1 0.5
3.5 0.4 0.1 0.4
4 0.1 0.1 0.1
4.5 0.4 0.4
5 0.1 0.1
5.5 0.1 0.1
6 0.1 0.1
7 0.1 0.1
8 0.1 0.1

z 1y (2)
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Elementary Fuzzy Arithmetic

2.1 Fuzzy Numbers and Fuzzy Vectors

Among the various types of fuzzy sets, those which are defined on the universal
set R of real numbers are of particular importance. They may, under certain
conditions, be viewed as fuzzy numbers, which reflect the human perception
of uncertain numerical quantification. Similarly, so-called fuzzy vectors can
be introduced as a special class of fuzzy relations which are defined on the
universal product set R™ of the Euclidean n-space. They may be used as
representations of uncertain vector quantities in Cartesian coordinates and
can thus be considered as generalized, n-dimensional fuzzy numbers, which
include the class of regular fuzzy numbers for the special case n = 1.

2.1.1 Fuzzy Numbers
Basic Definitions

A fuzzy set Pe 'ﬁ(]R) is called a fuzzy number p if it satisfies the following
conditions:

1. P is normal, that is, hgt(P) = 1.

2. P is convex. _

3. There is exactly one T € R with p5(Z) = 1, that is, core(P) = T.

4. The membership function pz(z), € R, is at least piecewise continuous.

The value T = core(p) which shows the maximum degree of membership
(@) = 1 is called the modal value of the fuzzy number p, in notational
accordance with the value that occurs most frequently in data samples. The
modal value may also be referred to as peak value, center value, or mean
value, where the last two expressions are preferably used for symmetric fuzzy
numbers.

The set_of all possible fuzzy numbers p shall be called the fuzzy-number
power set P'(R) with the property P'(R) C P(R).
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A fuzzy number p € ’ﬁ’(IR) is called symmetric if its membership function
pi(x) satisfies the condition

(T +z)=ps(T—z) VzeR. (2.1)

A fuzzy number p € P'(R) is called (strictly) positive, symbolized by § > 0
or sgn(p) = +1, if

supp(p) C ]0, 00[, (2.2)
or (strictly) negative, symbolized by p < 0 or sgn(p) = —1, if
supp(p) € ] —00,0[ . (2.3)

A fuzzy number p € ’ﬁ’(IR) shall be called a (fuzzy) zero, symbolized by
sgn(p) = 0, if it is neither positive nor negative; that is, if

0 € supp(p) . (2.4)

Types of Fuzzy Numbers

Among the infinite number of possible fuzzy sets in p € P'(R) that qualify as
fuzzy numbers, some types of membership functions pz(z) are of particular
importance, especially with respect to the use of fuzzy numbers in applied
fuzzy arithmetic.

Triangular Fuzzy Number (Linear Fuzzy Number)

Due to its rather simple membership function of the linear type, the triangular
fuzzy number or linear fuzzy number is one of the most frequently used fuzzy
numbers. As an abbreviated form, we can introduce the notation

5 = tfn(ia ay, ar) (25)
to define a triangular fuzzy number p € P’ (R) with the membership function

0 for 2<ZT-—m
1+(z—-2)/ay for T—a<z<ZT
pi(z) = B B B or (2.6)
1—(z—-%)/ay, for T<z<IT+a

for z>T4+ay
p(z) = min { max [0,1 — (Z — z)/u], max [0,1 — (z — T) /| }
VzeR.

The parameter T denotes the modal value of the fuzzy number, and o; and a,
are the left-hand and right-hand worst-case deviations from the modal value
(Fig. 2.1a). The set of values covered by the fuzzy number can be referred to
as the worst-case interval W of the fuzzy number p and shall be defined as

(2.7)

W= [wlawl‘] = [E_ alaf_'_ ar] = Supp(@ U {f_ alyf_f_ar} . (28)
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Gaussian Fuzzy Number

Another important type of fuzzy number is the Gaussian fuzzy number, where
the membership function is characterized by a normalized and, in general,
asymmetrically parameterized Gaussian function. We can introduce an ab-
breviated notation of the form

p = gin(Z, o1, 01) (2.9)
to define a Gaussian fuzzy number p € P'(R) with the membership function

exp|— (z —7)?/(20%)] for 2<%
5(z) = { VeeR.  (2.10)
g exp|— (z —7)?/(202)] for z>7

Again, the modal value is denoted by the parameter Z, and o) and o, denote
the left-hand and right-hand spreads, corresponding to the standard devia-
tions of the Gaussian distribution (Fig. 2.1b).

a A triangular b A Gaussian
w(z) fuzzy number pu(z) fuzzy number

1 fp------- A 1 1
: p 1 2
| 1 1
| ve |

0 | _ 0 | _
T T T z

a ! ar o1'o,

Fig. 2.1. (a) Triangular fuzzy number; (b) Gaussian fuzzy number.

Quasi-Gaussian Fuzzy Number

With particular regard to practical applications of fuzzy numbers, it is rea-
sonable to define a quasi- Gaussian fuzzy number which consists of a Gaussian
fuzzy number that is truncated for z < T — 30y and for x > T + 3 o, respec-
tively. That is, the membership grades pz(z) of the fuzzy number p are set to
zero for those deviations |z — Z| from the modal value Z that are larger than
301 or 30y, respectively. This way of proceeding is motivated by the fact that
beyond the cut-off points, the membership grades are smaller than 1%. We
can introduce the notation

p = g*(Z,01,0) (2.11)
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to define a quasi-Gaussian fuzzy number p € ’ﬁ’(]R) with the membership
function

0 for z<7Z-30;
() = exp | — (2 —T)?/(20%)] for T-301<z<T vreR
i exp | — (z—7%)?/(202)] for Z<z<T+30,
0 for z>7T+30;
(2.12)

Similar to the triangular fuzzy number, the set of values covered by the quasi-
Gaussian fuzzy number can be referred to as the worst-case interval W, which
is now defined as

W = [w,w] =[Z—30,T+30:] =supp(p) U{ZT —301,T+30,}. (2.13)
Quadratic Fuzzy Number

For the definition of the quadratic fuzzy number, we can introduce the abbre-
viated notation

p = ain(z, b1, Br) , (2.14)
which leads to a fuzzy number p € P'(R) with the truncated quadratic mem-
bership function

0 for z<zT-0
1—(z—72)?/pF for z—-PFi<z<T
1—(z—7)2/p2 for T<2<T+p5

0 for z>7T+0,

Hp(@) = (2.15)

Again, the parameter T denotes the modal value of the fuzzy number, and
B and B, are the left-hand and right-hand worst-case deviations from the
modal value (Fig. 2.2a). The set of values covered by the fuzzy number can
be referred to as the worst-case interval W of the quadratic fuzzy number p
and shall be defined as

W =[w,w,]) =[Z — 1, T+ By] = supp(p) U{ZT — B, T + B:} - (2.16)
Ezxponential Fuzzy Number

The membership function of the exponential fuzzy number is of an exponential
type, and we can introduce the abbreviated notation

p=em(Z,n,7n) (2.17)

to define the fuzzy number p € P’ (R) with the membership function

() = {exp [—(z—1T)/n] for

| exp [—(z—7)/r] for

8|

v VeeR. (2.18)
xr

(AVARVAN
8
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The modal value is again denoted by the parameter Z, and n, and 7, are the
left-hand and right-hand spreads, which are identical to the inverse absolute
values of the gradients of the membership function to the left and right of the
modal value Z (Fig. 2.2b).

a A quadratic b ' exponential
pu(z) fuzzy number () fuzzy number
1 ,,,,,,,,,
| P
0 | . .
T z
B B

Fig. 2.2. (a) Quadratic fuzzy number; (b) exponential fuzzy number.

Quasi-Exponential Fuzzy Number

Similar to the quasi-Gaussian fuzzy number, it is reasonable to define a quasi-
exponential fuzzy number as an exponential fuzzy number with a finite support
set. For this purpose, the exponential fuzzy number is truncated for z <
T — 4.5 and for z > T + 4.5 1, respectively. That is, the membership grades
pi(z) of the fuzzy number p are set to zero for those deviations |z — Z| from
the modal value T that are greater than 4.57 or 4.5 7, respectively. This
procedure is again motivated by the fact that beyond the cut-off points, the
membership grades are less than 1%. We can introduce the notation

p=cen*(Z,n,7) (2.19)

to define a quasi-exponential fuzzy number p € P'(R) with the membership
function

0 for z<zZ—-45n
exp|—(z —Z)/m for T—-45n1<z<7T
pp(x) = p[=( /| : VzeR. (2.20)
eXP[—(ﬂU—f)/Tr] for T<z<T+457:
for 2>7T+45n

Similar to the other fuzzy numbers with a finite support set, the set of values
covered by the quasi-exponential fuzzy number can be referred to as the worst-
case interval W, which is now defined as

W =[w,w,] =[Z-4.57n,T+4.57] =supp(p)U{Z—4.5n,T+4.51} . (2.21)
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Fuzzy Singleton

In accordance with the theory of fuzzy sets where classical sets are included
in the superordinate class of fuzzy sets, crisp numbers can be considered as a
special case of fuzzy numbers, for they possess all their properties. Against this
background, a crisp number Z can be expressed by a fuzzy number p € P'(R)
defined through the membership function

0 for z<7Z
pp(z) =<1 for z=7 VzelR. (2.22)
0 for z>7=

When crisp numbers are considered as fuzzy numbers, they are usually referred
to as fuzzy singletons (Fig. 2.3a).

]
a fuzzy singleton b fuzzy non-convex
() (crisp number) () interval  fuzzy set
1 ,,,,,,,,,,,
P
0 > -
T z a b T

Fig. 2.3. (a) Crisp number (fuzzy singleton); (b) fuzzy interval and non-convex
fuzzy set.

If for a given fuzzy set P € ’ﬁ(]R) at least one of the four conditions
for fuzzy numbers is violated, the fuzzy set cannot be considered as a fuzzy
number. As an example, two fuzzy sets Py and P» are shown in Fig. 2.3b.
Since P» does not satisfy the second condition, which requires convexity, P;
violates the third condition, which postulates that there be only one z € R
with u5(T) = 1, tantamount to core(P) = Z. Fuzzy sets which do not possess
the latter property, but their core can be expressed by a closed interval [a, b] =
core(ﬁ), a < b, are usually referred to as fuzzy intervals.

Since fuzzy numbers represent a special class of fuzzy sets, they can also
be labeled by linguistic terms (see Sect. 1.2.2), which linguistically reflect the
uncertain granulation of the universal set R of real numbers. As an example,
fuzzy numbers with the modal value T may be characterized by the linguistic
terms ‘about Z’ or ‘approximately z’.
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2.1.2 Fuzzy Vectors
An n-ary fuzzy relation P € P(R™) is called an n-dimensional fuzzy vector p
if it satisfies the following conditions:

1. P is normal, that is, hgt(P) = 1.
2. P is convex.

3. There is exactly one (ZT1,%2,...,Tn) € R™ with pp(T1,T2,...,Tn) = 1,
that is, core(P) = (T1,Ta,.-.,Tn)-
4. The membership function pp(z1,2,...,2,), (T1,72,...,2,) € R", is at

least piecewise continuous.

In accordance with the notation for fuzzy numbers, the crisp vector  with
T = [T1,T2,...,T,)T = core(p) and up(T) = 1 is called the modal vector of
the fuzzy vector p.

The set of all possible fuzzy vectors p shall be called the fuzzy-vector power
set P'(R™) with the property P'(R™) C P(R").

In contrast to the regular fuzzy numbers, fuzzy vectors of dimension n > 1
are of only secondary importance within the scope of applied fuzzy arith-
metic. For this reason, an exhaustive description of different types of higher-
dimensional fuzzy vectors will not be part of this book. Nevertheless, two-
dimensional fuzzy vectors may be of particular interest in the context of com-
plex numbers. Figure 2.4 shows an example of a two-dimensional fuzzy vector
P with the modal vector T = [Ty, T2]T. If the z;-axis is interpreted as the real
axis and the zs-axis as the imaginary one, the fuzzy vector p represents the
complez fuzzy number ¢ with its complex modal value

c=71+izs € C, 71,72 € R. (2.23)

2.2 Elementary Fuzzy Arithmetical Operations

The primary objective of fuzzy arithmetic can be seen in the definition of
elementary fuzzy arithmetical operations as appropriate counterparts of the
elementary operations addition, subtraction, multiplication, and division of
crisp-number arithmetic. That is, given two fuzzy numbers p; and p; with
their membership functions ug, (z1), 21 € R, and p,(22), 2 € R, the goal of
elementary fuzzy arithmetic is to determine the membership function ugz(z),
z € R, of the fuzzy number

q=E(p1,p2) , (2.24)
where the function E symbolizes one of the elementary arithmetical operations
E.(p1,p2) =P1+D2,  Es(p1,D2) =p1 — D2,

o o o o (2.25)
En(p1,D2) =p1 D2, Ea(p1,p2) =p1/D2 -
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/J‘(-Tlv .’Ez)

A
/I“‘\\\
Iy
I \

Fig. 2.4. Two-dimensional fuzzy vector p with the modal vector & = [fl,fg]T.

A formal approach to the solution of this problem is provided by ZADEH’s
extension principle, which allows the evaluation of arbitrary functions with
fuzzy sets as their argument values (see Sect. 1.3). After rewriting (1.151)
with the fuzzy numbers p; and ps as arguments and with the binary operation
E as the functional mapping, the membership function pgz(z) of the resulting
fuzzy number ¢ can be obtained from

pg(z) = sup  min{up, (z1), up,(z2)} Vo, 2z €R. (2.26)

z=E(x1,z2)

Consequently, an effective definition of elementary fuzzy arithmetic requires
the practical implementation of (2.26) for the elementary arithmetical oper-
ations E,, Es, E,, and Eq, and for fuzzy numbers p; and p» with arbitrary
membership functions ug, (z1) and ug,(z2).

To illustrate the evaluation scheme of the extension principle in (2.26) for
elementary arithmetical operations between fuzzy numbers, let us consider the
addition ¢ = E,(p1,p2) = D1 + P2 of two fuzzy numbers p; and po as shown
in Fig. 2.5. When we first select the crisp input values z; = 8 and z, = 3,
we obtain the output value z = z; + z2 = 11 with an intermediate degree
of membership given by min{uz, (z1 = 8), up, (z2 = 3)}, as illustrated by the
dashed horizontal lines in Fig. 2.5. However, the same output value z = 11
can be obtained by other combinations of input values, which then lead to
intermediate degrees of membership of different values. For example, the com-
bination z; = 7 and x> = 4 leads to the intermediate degree of membership
min{uz, (1 = 7), up, (z2 = 4)}, as illustrated by the solid horizontal lines in
Fig. 2.5. Ultimately, the final degree of membership uz(z) results from the ap-
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Ppy (Il)

Fig. 2.5. Evaluation of the extension principle for the addition of two fuzzy numbers.

plication of the supremum operator to all possible intermediate membership
grades assigned to the output z.

Considering the fact that there is obviously an infinite number of com-
binations of input values z; and z» which lead to the same output value z,
the straightforward evaluation scheme of the extension principle according to
Fig. 2.5 does not prove to be a practical method of implementation. This
is primarily due to the fact that the characteristic properties that qualify
fuzzy sets as fuzzy numbers have not yet been incorporated. In the following,
three approaches for the practical implementation of the extension principle
for the elementary arithmetical operations in (2.25) will be presented. The
first is based on the concept of L-R fuzzy numbers, introduced by DUBOIS
AND PRADE [26, 27], and the second follows the notion of discretized fuzzy
numbers proposed by HANss [56, 70]. The third approach, which shall be
referred to as the concept of decomposed fuzzy numbers, reduces elementary
fuzzy arithmetic to the well-established discipline of interval arithmetic, as in-
troduced by MOORE [95]. Extensive studies on the latter approach have been
conducted by KAUFMANN AND GUPTA [78].

2.2.1 Elementary Operations on L-R Fuzzy Numbers
L-R Fuzzy Numbers

The fundamental idea of the L-R representation of fuzzy numbers is to split
the membership function pg, (z;) of a fuzzy number p; into two curves p; (z;)
and py, (z;), left and right of the modal value Z;, according to Fig. 2.6. The
membership function pg, (z;) can then be expressed through parameterized
reference functions or shape functions L and R in the form

(z;) = L|(Z; — x;)/e;| for z; < T;
. (31) = , (z;) = L[( _)/ ] < i (2.27)
te; (i) = R[(z; — ;) /Bi] for z; > T; .
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!

Zq

Fig. 2.6. L-R representation of a fuzzy number p;.

Thus, in addition to the modal value Z;, the fuzzy number p; is characterized
by the spreads a; and §;, corresponding to the left-hand and right-hand curve
of the membership function, respectively. As an abbreviated notation, we can
define an L-R fuzzy number p; with the membership function ug, (z;) in (2.27)
by

pi = (Ti, i, Bi)L.R (2.28)

where the subscripts L and R specify the type of reference functions.

The properties that the functions L(u) and R(u), u € Ry, have to pos-
sess in order to qualify as reference functions for L-R fuzzy numbers are the
following:

1. L(u) € [0,1] Yu and R(u)€[0,1] VYu.
2. L(0) = R(0) =1.

3. L(u) and R(u) are decreasing in [0, oo[ .

4. L(1) =0 if minL(u) =0,

lim L(u)=0 if L(u)>0 VYu,

UuU—r 00

and
R(1) =0 if minR(u)=0,
lim R(u) =0 if R(u)>0 Vu.

UuU—r 00

An L-R fuzzy number is called semi-symmetric if the reference functions L
and R are identical, i.e., L(u) = R(u) ¥ u € Ry . Furthermore, if the spreads
a; and f; of a semi-symmetric fuzzy number p; are equal, i.e., a; = ;, the
L-R fuzzy number is said to be symmetric.

For the most frequently used types of fuzzy numbers introduced in Sect. 2.1.1,
an adequate representation as semi-symmetric L-R fuzzy numbers can be pro-
vided by defining appropriate reference functions as follows:
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e Triangular fuzzy number (linear fuzzy number):
pi = t(Z;, an,, o) = (Ti, o, e 1 (2.29)
l(u) = max [0,1 —u] = L(u) = R(u) . (2.30)
e Gaussian fuzzy number:
pi = gfn(Zi,01,,0v,) = (Ti, 01,00, )g g » (2.31)
g(u) = exp(—u?/2) = L(u) = R(u) . (2.32)
e Quadratic fuzzy number:
pi = afn(Ty, B, Br;) = (T, B, Bridasa » (2.33)
q(u) = max [0,1 —v®] = L(u) = R(u) . (2.34)
e Exponential fuzzy number:
pi = efn(Zi, m,, ;) = (Tiy Ty, Tridere s (2.35)

e(u) = exp(—u) = L(u) = R(u) . (2.36)

Operations on L-R Fuzzy Numbers

In the following, the formulas for the elementary operations between L-R
fuzzy numbers will be presented. Owing to the very restricted applicability of
L-R fuzzy numbers for practical implementations of fuzzy arithmetic, given
at the end of this section, we will ignore extensive detail, but will give clear
motivations for the formulas, where appropriate.

Addition of L-R Fuzzy Numbers

Given two fuzzy numbers p; and po, represented as L-R fuzzy numbers of the
form
p1 = (T1,1,81).r and p2 = (T2, 2,82)L R , (2.37)

the sum E,(p1,p2) = ¢ = p1 + P2 is again an L-R fuzzy number of the form

a: <Eaa7ﬂ>L,R (238)
with the modal value
Z=7T1 + T2 (2.39)
and the spreads
a=a;+ay and B=p1+pP:. (2.40)

In short, we can write
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z [e% B
_ _ — N
(1,01, 51)1,R + (T2, 00, B2) L. = (T1 + T2, 01 + 2,1 + B2)r.r - (2.41)
B 7 7

Note that the fuzzy numbers p; and ps have to be of the same L-R type to
guarantee the closure of the L-R addition. That is, the left-hand reference
functions of both fuzzy numbers p; and p2 have to be given by L, and the
right-hand reference functions by R. The formula of the L-R addition in (2.41)
is motivated by what follows.

When we first consider the right-hand curves p,, (z1) and py, (22) of the
L-R fuzzy numbers p; and ps with

fy(21) = R[(21 —71)/B1] and  pu,(z2) = R[(z2 —T2)/Ba] ,  (2.42)
the degree of membership p* € [0, 1] is taken on for the argument values
i =T+ R (p*) and z5 =79+ B R (u") . (2.43)
This implies
2 =ai s =T+ T2+ (b + B2) RHuY) (2.44)
and we obtain for the right-hand curve p.(z) of the fuzzy number q
pe(z*) = p* = R[(z"=%)/B] with Z=Z1+Z> and B =p1+p. (2.45)
The same reasoning holds for the left-hand curves of py, p2, and ¢, and we get
m(z) =L[(Z—2)/a] with Z=%+7, and a=o; +a>. (2.46)

For fuzzy numbers p; and p, of different L-R type, we can deduce the following
more general formula for the L-R addition ¢ = p1 + po:

Sf1, a1, B1)rL, R, +S52, a2,ﬂ2>L2,R21 = \(@ + 72,1, 1>L,R: (2.47)
P Pe 7
with
L=(mLi'+aLy') ' and R= (BRI +BRY) . (248)

Subtraction of L-R Fuzzy Numbers

Making use of the opposite —p of the L-R fuzzy number p, which is defined
as
—ﬁ: - (fa a7ﬂ>L,R = <_§7/87 a>R,L ) (249)

we can deduce the following formula from (2.41) for the subtraction
G = Es(p1,p2) = p1 — P2 of L-R fuzzy numbers:
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z a B
——
(T1,a1,B1)L,r — (T2, 2, B2) R, = (T1 — T2, 01 + P2, 01 + 2)L.r - (2.50)

~

e e e

p1 P2 q
Note that in the case of subtraction of L-R fuzzy numbers, the fuzzy numbers
p1 and po have to be of opposite L-R type to guarantee the closure of the
operation.
For fuzzy numbers p; and p» of arbitrary L-R type, we obtain from (2.47)
and (2.49)

(T1,01,01)1,,R, — (T2, @2, B2)Ly,R, = (T1 — T2, 1, 1)L R (2.51)
B P 7
with
L= (L +BRyY)™" and R=(BR‘+anly?) . (252)

Multiplication of L-R Fuzzy Numbers

Let us consider again two fuzzy numbers p; and ps of the same L-R type given
by the L-R representations
p1 = (T1,01,B1)L,r and P2 = (T2, 2,82)L.R - (2.53)

Additionally, if we assume both fuzzy numbers p; and ps to be positive, p; > 0
and p» > 0, we can construct the right-hand curve u,(z) of the product
4 = Eun(p1,p2) = p1 P2 on the basis of the right-hand curves

Hry (1’1) = R[(xl - El)/ﬁl] and My ($2) = R[($2 - EZ)/ﬁZ] (254)

of the L-R fuzzy numbers p; and ps. In accordance with the deduction of the
formula for the L-R addition, the argument values which take on the degree
of membership p* € [0,1] are

G=mAARIW) ad g3 =m AR . (25
This implies

2 = gt = BT + (Tafa + Tofr) R1(W*) + BB [R M (w)])” . (2.56)

Owing to the quadratic term in (2.56), the operation of multiplication proves
to be open for fuzzy numbers of L-R type. To circumvent this drawback, two
approximations have been proposed [28], which shall be referred to as tangent
approzimation and secant approximation in the following:

1. Tangent approximation:

Provided that a; and asy are small compared to Z; and Z» and/or p* is in
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the neighborhood of 1, we can neglect the quadratic term [R_l(u*)]2 in
(2.56) and we obtain for the right-hand curve p,(z) of the approximated
product ¢; an expression of the form

(z*) =p* = R[(z" —%)/B] with (2.57)

=71T2 and B =702 +T2f .

N =

Using the same reasoning for the left-hand curves of p1, ps, and g, we
deduce the following overall formula for the multiplication of L-R fuzzy
numbers

z a B

A A

(T1,01,01)L,r " (T2, 02, 02) L. R & (flfzyrflaz +Toa1,T182 + Z2f1) LR -

. s\
~ ~ e

P1 P2 qt

(2.58)

. Secant approximation:

If the spreads are not negligible compared to the modal values T; and To,
the rough shape of the product ¢ = p1p> can be estimated by approximat-
ing the quadratic term [R~"(p*)] %in (2.56) by the linear term [R™*(u*)].
This gives the right-hand curve u,(z) of the approximated product g5 in
the form

pe(z*) = p* = R[(z" —%)/B] with (2.59)
Z=7T1Z2 and B = 51,82 +52,81 + ,81,82 .

With the same reasoning for the left-hand curves of p;, ps, and g, the
overall formula for the multiplication of L-R fuzzy numbers results in

(T1,01,01)L,r " (T2, 02, B2) LR

s\
e ~

p1 P2
z a B
S~ A A

R (Tlfz,'flaz + Taay — g, T1 B + Tofhy + B1B2)L,r - (2.60)

~

=

The appropriateness of the newly introduced terms tangent approximation
and secant approximation becomes clear when we consider the multiplication
of L-R fuzzy numbers of the triangular type, as shown in Example 2.1. In
the case of the tangent approximation the proper result ¢ = pips of the
multiplication is approximated by a triangular L-R fuzzy number g, the curves
of which are the tangents at the membership functions of ¢ in the vertex (z, 1).
In the case of the secant approximation, the approximating triangular L-R
fuzzy number ¢ coincides with the proper product ¢ in the points (z — «, 0),
(z,1) and (z+ 3,0) with Z, « and 8 specified in (2.60). Thus, the curves of g;
can be interpreted as the secants to the curves of g.
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Example 2.1. Let us consider the positive triangular fuzzy numbers
p1 =tMm(2,1,1) and p2 =tM(4,2,4), (2.61)
which can be rewritten as L-R representations in the form
p1=(2,1,1),; and p2=(4,2,4),. (2.62)

If the tangent approximation (2.58) is used, the product ¢ = p1p» is approxi-
mated by the triangular L-R fuzzy number

g = (8,8,12)1; . (2.63)

In case of the secant approximation according to (2.60), the result of the
multiplication of p; and p» is approximated by

gs = (8,7,16)1, . (2.64)

The exact result ¢ for the product of the triangular L-R fuzzy numbers p;
and py as well as the approximations ¢y and ¢s are shown in Fig. 2.7. For
this example, it can be seen that the secant approximation gives significantly
better results, in particular because supp(gs) = supp(q).

b 1.0
pa(2)
pa. (2)

0.5

0.0L

0.0

0 5 Z10 15 20 2 25 30 0 5 Z10 15 20 2 25 30

Fig. 2.7. (a) Exact product ¢ = p1p2 (solid line) and its tangent approximation g
(dashed line); (b) exact product § = pip2 (solid line) and its secant approximation
Gs (dashed line).

When we omit the restriction that both L-R fuzzy numbers p; and p»
be positive, and we allow them to be either positive or negative, we have to
differentiate between three cases; for each of them, the tangent and the secant
approximation can be formulated. A complete listing of the resulting formulas
can be found in Table 2.1.
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Table 2.1. Tangent and secant approximation formulas for the multiplication of
L-R fuzzy numbers.

p1={(T1,01,B1)L,r >0, D2 =(T2,2,B2)r,r >0 :
Tangent approximation:

P1P2 R ¢ = (T1T2, T1iaz + T2a1,T1B2 + T261)L,R
Secant approximation:

P1P2 R ¢ = (T1T2, Tia2 + Tea1 — 12, T1P2 + T201 + B1P2)L,r

p1={T1,01,81)L,r <0, P2 = (T2,2,B2)r,r <0 :
Tangent approximation:

P1P2 = ¢ = (T1T2, —T1B2 — T2B1, —T102 — T2Q1)R, L
Secant approximation:

P1P2 = ¢ = (T1T2, —T1PB2 — T251 — B1B2, —T1a2 — T201 + a1Q2)R, L

p1 = {(T1,01,P1)r,L <0, p2=(T2,2,B2),r >0 :
Tangent approximation:

DP1D2 = @y = (T1T2, T201 — T152,T2ff1 — T1Q2)R,L
Secant approximation:

D1D2 = @s = (T1T2, Ta01 — T1f2 + 182, Toff1 — Tiaz — Prow)r L

Division of L-R Fuzzy Numbers

An appropriate formulation for the quotient § = Eq(p1,p2) = p1/P2 of two
L-R fuzzy numbers p; and p» can be obtained by reducing the division of the
fuzzy numbers p; and p> to the multiplication of the dividend p; with the
inverse p, ' = 1/py of the divisor p». Since the inversion of an L-R fuzzy num-
ber is a non-closed operation with respect to the type of reference functions,
approximations are again required, similar to the multiplication of L-R fuzzy
numbers.

When we consider a fuzzy number p which is either positive or negative,
that is, O ¢ supp(p), given by the L-R representation

ﬁ: (f)a)B>L7R ) (265)
the tangent approximation (1’5*1)t for the inverse p—! is defined by
1 8 «a
~_1 ~1
=(=, =, — ~ 2.66
1), (5,52,52%“ P, (2.66)

and the secant approximation (f)’l)s by
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~1 _ l ﬁ 64 ~ 1
(™), = <f’f(f+ﬁ)’f(f— a)>R’L =P (2.67)

The tangent approximation (p~'), is usually the only type of approximation
for the inverse p—! of an L-R fuzzy number p that is discussed in the literature
[11, 28]. It can be considered a good approximation as long as it is evaluated in
the neighborhood of the modal value. If this is not the case, the secant approx-
imation often performs much better, and especially for L-R fuzzy numbers of

linear and quadratic type, it guarantees supp[(ﬁ’l)s] = supp [ﬁ’l].

Using the above-mentioned identity p1/p2 = D1py ! as well as the approxi-
mation formulas for the multiplication of L-R fuzzy numbers on the one side
and those for the inverse of an L-R fuzzy number on the other, a number of
different approximative L-R representations for the quotient p; /p» can be for-
mulated. For reasons of simplicity, however, only the formulas which are based
on the tangent approximation for both the multiplication and the inversion
are listed in Table 2.2. In contrast to the multiplication, where three cases
were differentiated with respect to the algebraic sign of the operands, four
cases need to be considered for the division, due to the non-commutativity of
the operation.

Table 2.2. Approximative formulas for the division of L-R fuzzy numbers (based
on double tangent approximation).

51:<El,a1,ﬂ1>L,R>0, 52:<52aa2aﬂ2>R,L>0 :

51/172 ~ att = <f1/f2,(flﬂ2 +§2a1)/§22, (flaz +52ﬂ1)/322>l/ R

51:<El,a1,ﬂ1>L,L <o, 52:<E2,a2,ﬂ2>L,L <0 :

P1/P2 = Qo = (T1/T2, (Traz — T21) T3, (B1 B2 — Tacn) [T5) | |

p1=(T1,01,51)0,L <0, p2=(T2,a2,B2)r,L >0 :

P1/P2 R G = (T1/T2, (T201 — Tr002) [T3, (T2b1 — T12) [T3)

p1 ={(ZT1,01,51)0,L >0, p2=(T2,a2,B2)r,L <O :

P1/P2 = Goo = (T1 /T2, (T1 2 — T21) /T3, (Traz — Toon ) [T3), |

In summary, we can conclude that the concept of L-R fuzzy numbers must
be rated as rather ill-suited for practical implementations of fuzzy arithmetic.
The long-term objective of a fuzzy arithmetic that can be applied for the
evaluation of real-world problems of arbitrary complexity can definitely not
be achieved, since the short-term objective of elementary fuzzy arithmetic
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fails at many points. Explicitly, the major drawbacks of the elementary L-R
fuzzy arithmetic are the following:

e The elementary operations on L-R fuzzy numbers are often open with re-
spect to the type of reference functions. This necessitates the introduction
of approximation procedures, which ultimately leads to a significant loss
of information.

e Further restrictions apply to the type of reference functions that allow for
the compatibility of the operands. That is, only operands with compatible
reference functions are accepted, other combinations are excluded.

e The elementary operations are defined only for either positive or negative
fuzzy numbers; L-R representations of fuzzy zeros are not accepted.

2.2.2 Elementary Operations on Discretized Fuzzy Numbers
Discretized Fuzzy Numbers

Recalling the scheme for the evaluation of the extension principle in Fig. 2.5,
the major drawback of the straightforward approach of implementing ele-
mentary fuzzy arithmetic lies in the fact that there is an infinite number of
combinations of input values 1 and z» which lead to the same output value z.
Against this background, a practical solution to this limitation is motivated
by the idea of discretizing the continuous membership functions of the fuzzy
numbers in the style of sampling time-continuous signals [56]. In this way,
the fuzzy numbers are expressed by discrete fuzzy sets, for which the exten-
sion principle can be applied without problem, as outlined in Example 1.11
of Sect. 1.3.

As a matter of principle, we can differentiate between two ways of dis-
cretizing the membership function pg,(z;) of a fuzzy number p;. When we
require the discretization to be equidistant, we can subdivide either the z;-
axis or the p-axis into intervals of definite length. In the former case, the
z;-axis is split up into discrete elements z;, which are spaced out by the con-
stant interval Az; = z;,,, — z;;. In the latter case, the p-axis is subdivided
into discrete elements p; with the constant spacing Ay = pj11 —pj. Although
the former approach appears to be the most straightforward, this method of
discretization fails for a number of reasons, the most obvious being;:

1. The discrete representation of the fuzzy number p; should contain the
modal value, where ug,(z;) = 1, as well as the boundary values with
tp; (2;) = 0. This cannot, however, be guaranteed for any discretization
of the z;-axis with an arbitrarily chosen interval Az;.

2. It is difficult to define reasonable and consistent discretization intervals
Az1,Azs, ..., Az, for each of the fuzzy numbers p1,ps, ..., Dn, in par-
ticular when they stand for real-world parameters with different physical
dimensions.
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3. Fixed values of the discretization intervals Az;, i = 1,2,...,n, cannot
usually be maintained, for they are subjected to changes according to the
arithmetical operations that are carried out. Furthermore, the equidis-
tance of the discretization is violated for nonlinear operations.

The discretization of the u-axis, however, avoids these problems effectively
and qualifies by the following properties instead:

1. The modal values as well as the lower and upper bounds of the fuzzy num-
bers p;, represented by the abscissas for the boundary values y = 1 and
= 0 of the ordinates, are always included in the discretized counterparts.

2. For all fuzzy parameters, identical discretization intervals Au can be de-
fined because the range of values for the membership grades u(z;) is al-
ways equal to the closed interval [0, 1], independent of the actual physical

dimensions of the fuzzy parameters p;, i = 1,2,...,n.
3. The discretization interval Ay is invariant with respect to any arithmetical
operation that is carried out for the fuzzy numbers p;, 1 = 1,2,...,n.

When we assume the p-axis to be subdivided into m intervals of the length
Ap=— (2.68)

where m shall be called the discretization number, the discrete ordinates are
given by
, 7=0,1,...,m, (2.69)

with the properties

po=0, pm=1,
Mit1 =p; +Ap, 7=01,....m—-1. (2.70)

The fuzzy number p; can then be represented in its discretized form by the

discrete fuzzy set
= (b§”> ,um)

) T
B = {(a o), )., (a7 ) e
(bgmil)a ,U'm—l)a bimiz)a ,U'm—2) [ (bEO)’ 'U'O)} ’

where agj) and bgj), j=0,1,...,m, satisfy the following equations (Fig. 2.8):

j d pp, (2 .
i @) =gy and NS0 e me ), @7)
j d pp, (2 .
i) = and R0 e me 1), @7)
aEO) = wy, , bgo) = wy, with Jwy,,w.,[=supp(p;), (2.74)

() = (™) = 7, = core(p) - (2.75)
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Here, w), and wy; correspond to the worst-case deviations of the fuzzy num-
bers, as introduced for their prevalent forms in (2.8), (2.13), (2.16), and (2.21).
Additionally, it should be noted that according to the definition of discrete
fuzzy sets, the (2m + 1) elements of P are listed in ascending order, and the

element (bgm), [im) is omitted due to its identity to (agm),um).

A

.u'ﬁi(xi)
lp------ T
,,,,,, N
I
pivt [
1 An ()
2] : (bz 7/‘]')
L ___ L ___ _
1
I G L __
0 l -
al(j) T bz(‘j) Z;

Fig. 2.8. Discretization of a fuzzy number p;.

Operations on Discretized Fuzzy Numbers

To explain the methodology of executing elementary operations on discretized
fuzzy numbers, let us use an example by recalling the multiplication of the
fuzzy numbers p; and p» from Example 2.1.

Example 2.2. We consider the positive triangular fuzzy numbers p; and ps
given by
p1 =tm(2,1,1) and p. =ti(4,2,4), (2.76)

as plotted in Fig. 2.9. For the sake of simplicity and clarity, we define the
discretization number as m = 2, which corresponds to a spacing of Ay = 0.5
along the p-axis. As a result of the discretization, we obtain the discrete fuzzy
sets

Py =1{(1,0.0),(1.5,0.5), (2,1.0), (2.5,0.5), (3,0)},
Py ={(2,0.0),(3,0.5), (4,1.0),(6,0.5),(8,0)} (2.77)

as discretized representations of the fuzzy numbers p; and p» (Fig. 2.9). The
elementary operation of multiplication

q = Ew(p1,P2) = p1 P2 (2.78)
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\ A

Hpy (wl) Hps (3:2)

1.0

Fig. 2.9. Fuzzy numbers p1 and p» and their discretized representations Py and P
for m = 2.

can then be evaluated by applying the extension principle with the discrete
fuzzy sets P* and P* as the input fuzzy sets according to Tables 2.3 and 2.4.

The discrete fuzzy set Q' that results from the multiplication of the discrete
fuzzy sets P1 and P5 can be deduced from the rightmost column of Table 2.4,
and we obtain

Q = {(2,0.0), (3,0.0), (4,0.0), (4.5,0.5), (5,0.0), (6,0.5),
(7.5,0.5),(8,1.0),(9,0.5), (10,0.5), (12,0.5), (2.79)
(15,0.5), (16,0.0), (18,0.0), (20, 0.0), (24,0.0) } .
This result, however, does not comply with the characteristic structure of dis-
cretized fuzzy numbers, as presented in (2.71). First, the discrete fuzzy set Q'

exhibits more than (2m + 1) elements, and second, an imaginary reconstruc-
tion of the continuous counterpart of the fuzzy set by means of a connecting

Table 2.3. Evaluation of the extension principle for Example 2.2 (step I).

<Hﬁék (z2)>

T, 2<0.0> 3<0.5> 4<1.0> 6<0.5> 8<0.0>
<Pﬁ1* (11)>
Ty
1<0.0> 2<0.0> 3<0.0> 4<0.0> 6<0.0> 8<0.0>
1 5<0.5> 3<0.0> 4 5<0.5> 6<0.5> 9<0.5> 12<0.0>

2<1.0> 4<0.0> 6<0.5> 12<0.5> 16<0.0>
2.5<0.5> 5<0.0> 7.5<0.5> 10<0.5> 20<0.0>

3<0.0> 6<0.0> 9<0.0> 12<0.0> 18<0.0> 24<0.0>

<minfp g (z1),p 55 (x2)]>
z 1 2 , 2 = X122
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Table 2.4. Evaluation of the extension principle for Example 2.2 (step II).

Z = T1 T2 min [,ulgl* (ml),uﬁ; (mz)] max
[ 2 || [ o0 | 0.0
0.0 0.0 0.0
0.0 0.0 0.0
5] | T
0.0 0.0
0.0 0.0 0.5 0.5 0.5
7.5 0.5 0.5
| 2o o
0.0 0.5 0.5
10 0.5 0.5
12 0.0 0.0 0.5 0.5
5] | Cus
16 0.0 0.0
18 0.0 0.0
20 0.0 0.0
24 || [ 00 0.0
z pg(2)

line between the elements (z, 1) does not lead to an acceptable fuzzy number,
for the fundamental property of convexity is violated at z = 5.

The reason for this drawback is that the fuzzy sets P1 and P2 are treated
in the extension principle as regular fuzzy sets of the discrete type, completely
disregarding their origin as discretized representations of the fuzzy numbers
p1 and po. That is, the characteristic properties that qualify the fuzzy sets as
fuzzy numbers have not been incorporated in this procedure at any stage.

To overcome this limitation, an additional consideration has to be made
which ultimately aims to exclude invalid elements from the provisional result
Q' to achieve the proper result Q* For the current example of multiplying
two positive fuzzy numbers, this consideration is specified as follows.

We assume that there are two positive fuzzy numbers p; and ps — not
necessarily identical to the fuzzy numbers p; and ps of this example — which
are to be multiplied, as shown in Fig. 2.10. For any degree of membership
p' €10,1], four abscissas, namely, z7,, z7_, =5 and x5 , are available which
fulfill the condition

1

plwy) = pla;) =4, i=12. (2.80)



2.2 Elementary Fuzzy Arithmetical Operations 67
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Fig. 2.10. Additional consideration for the multiplication of two positive discretized
fuzzy numbers.

When we consider, at first, only the abscissas z} and x5, related to the
left-hand curves of the fuzzy numbers p; and ps, we obtain the product

z' =y, x5 (2.81)

as one potential element of the output fuzzy set, along with its provisional
degree of membership u’, which satisfies

p' = min {p(zy), p(@s,) } - (2.82)

To verify the pair (2', ') as a valid element (2*, 4*) of the proper output fuzzy
set @Q*, it has to be proven that (z',u’) fulfills the extension principle such

that for any z1, €]al”,a{™ [ and 2, €]al”,al™

,u'l = sup min {/’l’(mll)’ M('T21)} : (283)

z’:zll T2

For this purpose, let us first consider the elements
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otV =6y, €la”,z}[  and
(0) ’
J m a T
o) = b /6 €lah,al™], S-<i< = (2.84)
1 Qs
2 5

which result from z} and z5 through multiplication and division by J, re-
spectively. For any & €]d, [, the product of these elements is given by

Z = mf) mgf) , (2.85)

and, owing to the convexity property of the fuzzy numbers p; and pj, it is

guaranteed that

p(@i?) <y and  pd) > (2.86)
and thus

sup min {,u(:rf)), 3721 )} <u (2.87)

_ (&) (8)
z’lel Ty

In a second step, we can similarly consider the elements

(7) =z, E]mll,agm)[ and
() — 4 0 gp, i (2.88)
$21 _'T21/7 e]a’2 7$21[7 W<’Y<x—l, .
Qs 1,
ol y

which result from z7, and 5 through multiplication and division by =, re-
spectively. For any v €]v,7%[, the product of these elements is given by

Z' = :Egj) 1‘;7) , (2.89)

and, owing to the convexity property of the fuzzy numbers p; and pj, it is

guaranteed that

p(@) > @' and p(aS)) < (2.90)

and thus again
sup  min {p(z; (7) )5 (mg))} <. (2.91)
z’:zg"’) 20

1

2]

When we recall (2.87) and (2.91) as well as (2.82), we see that

u(#') < i (2.92)

( (0)

if 7, E]ago),m’ll[ U ]x’ll,alm)[ and 3 €lay”, x5 [U ]m’zl,agm) [, and
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) = i (2.93)

if 71, = 27, and x5, = x5 . This yields

sup min {/1'('7;11)7 N($21)} = min {u(xlll)v /1'('1',21)} = H’I (294)

z’:wll T2,

and proves (2.83).

Thus, the combination (zj,z5) can be characterized as a valid combi-
nation with respect to its compliance with the extension principle, and the
corresponding element (z', u') of the provisional output fuzzy set Q' can be
referred to as a stable element, which forms an element (z*, u*) of the proper
fuzzy set Q*. The same conclusions can be drawn for combinations of the
abscissas z7_and z5_, related to the right-hand curves of the fuzzy numbers
p{ and ps. They can also be considered as valid combinations, which lead to
stable elements of é’, and are thus accepted as proper elements of @* Al-
though the property of stability is not addressed here in its well-established
system theoretical sense, the notation ‘stable element’ proves appropriate in
this context, for the pair (z, 25 , u') turns out to be the indifferent result of the
multiplication at the level of membership p' even if 27, or x5 are perturbed.

On the other hand, when we consider the abscissas =} and x5 , related to
the left-hand curve of the fuzzy number p] and the right-hand curve of p;, we
obtain the product

2" =xy ah (2.95)

as one potential element of the output fuzzy set é’ . Its provisional degree of
membership p' satisfies

p' = min {p(z)), p(@s,)} - (2.96)

As a sufficient condition for the pair (z,u') to qualify as a valid element
(z**, u*) of the proper output fuzzy set Q*, the element (2", u') has to fulfill

the extension principle such that for any z;, € ]ago), agm)[ and zz, € ]bém) , béo)[
p'= sup min{p(z,), m(22,)} - (2.97)
z:wll T2,
For this purpose, we consider the elements
mf) =z, E]m'll,agm)[ and
() (m) 0" b
zy =ah [y €lby,zh [, 1<v<min{ ;, , b(m”)} , (2.98)
1 2

1
5

which result from zj, and z5 through multiplication and division by v, re-
spectively. For any v € ]1,7][, the product of these elements is given by
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2" = .Z‘gl) my) , (2.99)

and, owing to the convexity property of the fuzzy numbers p; and ps, it is
guaranteed that

p(@) > @' and p($?) > (2.100)
and thus
sup  min {,u(mg':)), (7) )} > (2.101)
Z”:ivg?) zg:)

That is, the element (2", u') does not fulfill the extension principle according

(7) and x(v)

are ‘perturbed’ to the other side, namely, towards smaller values of mgl) and

0 (2.97). The equlvalent result can be achieved if the abscissas z;

higher values of mgw) Consequently, the combination (1,75 ) proves to be an
invalid combination, and the corresponding element (2", u") of the provisional
output fuzzy set é’ can be referred to as an unstable element, which has to be
excluded and will not become an element of Q*. The same conclusions can be
drawn for combinations of the abscissas ] and z , related to the right-hand
curve of the fuzzy number p] and the left-hand curve of pj.

Summarizing these results for the current example, we can c1a551fy the
elements (z\"), 41;,) and (25, uj,) of the discretized fuzzy sets Py and Py,
with m%’l) € {agjl , 5]1)}, g”) € {agj2 , 2“ }odd2=0,1,...,m, and p; =
Jj/m, to be a valid combination if they satisfy the following conditions:

(z! (41) (z$ (42)

1. The elements , i, ) and , lj,) must be assigned to the same
level of membershlp, that is, 71 = jo» = .

2. The corresponding elements (xgj),uj) and (ac2 ),,uj) must be located on
compatible curves. For the multiplication of positive fuzzy numbers 51
and p» this compatibility condition is fulfilled if both Z‘gj) and .Z‘(J)

located either on the left-hand (rising) curves (L-L COmpatlblhty) or on

the right-hand (falling) curves (R-R compatibility). We can call this type

of compatibility conformity and formulate it as
@7, 29y € {@7,a$), B 69N}, j=0,1,...,m.  (2.102)

In accordance with this formulation, the antonym non-conformity can be
used if the elements are L-R compatible or R-L compatible, respectively.

Consequently, the product of two positive discretized fuzzy numbers ]51* and
Py of the form

ﬁl* = ( ©) 7,“’0) ( (1)7 )7 ( gm)aum)a
b(m Y 7,u'm—1)7 (b§m7 )7,u'm—2)7~ B (bg())a,u'o)} and

(
{(a’gO):,U'O) (a’g )hu'l) ( gm))um))
(b(m 2 numfl)a (b;m 2)7 ,um72) yerey (bgO)a MO)}

(2.103)
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is given by the discretized fuzzy number

é* = {(a(O))NO)a (a'(l):,ul)a ) (a(m))um)a

2.104
(b(mfl)“um_l), (b(mfz),um—z), o (b(o),,uo)} ) ( )

with ‘ o ' o
a =aad) b =0 | j=0,1,....m. (2.105)

For the discretized fuzzy numbers ﬁl* and ﬁz* of the current example, given
in (2.77), the product Q* results in

Q* ={(2,0.0), (4.5,0.5), (8,1.0), (15,0.5), (24,0) } . (2.106)

In Tables 2.3 and 2.4, the (2m + 1) elements of Q* are marked by frames,
characterizing them as stable elements of é’ . Figure 2.11 shows the fuzzy set
Q* as the discretized representation of the product ¢ = p; p> of the fuzzy
numbers p; and Po, as initially defined in (2.76).

Fig. 2.11. Product fuzzy number ¢ = p1 p2 and its discretized representation é* =
Py - Py for m = 2.

When we compare the concepts of discretized fuzzy numbers and L-R
fuzzy numbers on the basis of Figs. 2.7 and 2.11, we see that the concept of
discretized fuzzy numbers does not exhibit any methodogical errors. In fact,
the elements (29, pu;), j = 0,1,...,m, of the discretized fuzzy number Q*
coincide with the corresponding points on the graph of the membership func-
tion pz(z) of the exact fuzzy number § = Py ps, that is, ugz(2)) = u;. Thus,
as opposed to the multiplication procedure defined for L-R fuzzy numbers,
the concept of discretized fuzzy numbers gives the exact solution of the arith-
metical operation with a degree of refinement that can be predefined by the
discretization number m.

Extending the methodology that has been applied in Example 2.2 to the mul-
tiplication of positive fuzzy numbers to the case of any elementary operation
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q:E(ﬁhﬁZ) =pi*p2, K€ {Ea)ES)EmvEd} y *€ {+7_7'7/}) (2107)

on fuzzy numbers p; and ps of arbitrary sign, the following general procedure
can be formulated:

1. Discretization of the fuzzy numbers p; and p» according to (2.68) to (2.71),
leading to discretized fuzzy numbers

Br = {(a” ). (ol ). (™),

. o (2.108)
(bg l)aum—l)a (bg 2)7um—2)7-~-7 (bg()):uO)}

and

]52* = {(ag))w“o)7 (agl),,ul), Tt (agm),um),
(bgm71)7 :umfl)a (b;miz)v ,um72) yerey (bg)): MO)} .

2. Application of the extension principle with the discrete fuzzy sets ]51* and
P; as the input fuzzy sets, resulting in the discrete fuzzy set

(2.109)

Q' ={(#n5 (=) | 2 € E(supp(Py) x supp(P5)) } ,

()= sup  min{up (o), pp; (52)} (2.110)

z=E(x1,z2)

z1 € supp(Py), o> € supp(Py) .

3. Determination of the proper discretized representation Q* of the fuzzy
number ¢ by filtering out the (2m + 1) stable elements (z, u(z)) of Q. To
qualify as a stable element, the values

z=E(z1,72) , 1 €supp(Py), z2 € supp(Py) , (2.111)

must result from valid combinations (z1,z») of elements (ml,uﬁf (1))

and (1’2, = (mz)), which satisfy the following conditions:

a) The elements (1, L (z1)) and (z2, 15 (z2)) must be assigned to the
same level of membership pu = [ (z1) = 1 (z2). This holds if

_ () (7) 3(3) _ .9 (7) ()

T] =T G{al , by } N Ty =T E{a2 , bs }, (2.112)

7=0,1,....m.

b) The corresponding elements (mgj),,uj) and (mgj),uj) must be located
on compatible curves. On the basis of additional considerations,
consistent with those described in Fig. 2.10, the relevant compati-
bility conditions can be formulated depending on the type of ele-
mentary operation and on the actual signs of the crisp arguments
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27 € {agj),bgj)} and z) € {a;’),b;])}. The resulting compatibility
conditions, which for each level of membership determine the two valid
combinations out of the four possible ones, are listed in Table 2.5. Note
that the actual decisive condition of compatibility may change within
the overall evaluation of an elementary operation on discretized fuzzy
numbers. This arises for the operations of multiplication and division
if at least one of the operands — except for the divisor, of course — is
a fuzzy zero. In this case, different types of compatibility conditions
may apply depending on the actual level of membership p;.

Table 2.5. Compatibility conditions and valid combinations for elementary opera-
tions on discretized fuzzy numbers.

Elementary operation Signs of ng) and m;ﬂ Compatibility condition
+ any conform
— any non-conform
equal conform
unequal non-conform
/ equal non-conform
unequal conform

In the exceptional case of both the multiplicand and the multiplier being given
by a fuzzy zero, the corresponding condition of compatibility in Table 2.5 will
not be sufficient to properly filter out the valid combinations. In fact, all four
possible combinations at one level of membership will be characterized as
valid, which calls for further considerations to be made. Again, following the
extension principle, it can be shown that in this case the valid combinations
are those for which the product a:gj)a:;j), xgj) € {agj),bgj) }, a:gj) € {a;j),b;j)},
reaches its minimum and maximum value, respectively.

2.2.3 Elementary Operations on Decomposed Fuzzy Numbers

Decomposed Fuzzy Numbers

Basically, the concept of decomposed fuzzy numbers stems from the decompo-
sition theorem as formulated for regular, one-dimensional fuzzy sets in (1.91).
It states that every fuzzy setNE can uniquely be represented by the associated
sequence of its a-cuts cut,(A) via the formula

pi(@) = sup ap. 5@, (2.113)
«€[0,1]
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where p, 7 is the characteristic function of the classical set cut,(4). In
equal measure, this theorem holds for any fuzzy number p; as a special case
of a fuzzy set and can be rewritten in the form

fig; (T) = SUp & ficus, (1) (%) - (2.114)

a€l0,1]

To render this decomposition theorem usable for practical applications, the
infinite number of a-cuts resulting for a € [0, 1] has to be reduced to a finite
number of cuts by allowing only a sequence of discrete values a; = p; to be
selected for a. For this purpose, we assume the interval [0, 1] to be subdivided
into m intervals of the length

1
Ap=—, (2.115)
m
similar to the subdivision of the p-axis within the concept of discretized fuzzy
numbers. The discrete values p; are then given by

J .
’UIJ:E’ ]:0,1,,m, (2116)

with the properties

po=0, pm=1,
Miv1 = +Ap, j=01,...,m—1. (2.117)

The parameter m, which characterizes the degree of refinement of the de-
composition, shall be referred to as the decomposition number. Applying the
decomposition theorem to the finite number of a-cuts, the fuzzy number p;
can be represented in its decomposed form by the set

p={x,xM .. x" (2.118)
of (m + 1) intervals
X9 =[P 9] = cut,,, (51), o <bP, j=1,2,...m, (2.119)

X = [a{”0"] = [wn,,w.,] with  Jwi,, we, [ = supp(@;) , (2.120)

K2

as illustrated in Fig. 2.12. In the context of fuzzy arithmetic, these intervals
are also referred to as intervals of confidence [78]. Since cuty(p;) is infinite

and equal to R, the interval Xi(o) assigned to the lowest level of membership
o is defined by the worst-case interval [wy,, w,,] with Jw),, w,,[ = cuto (p;) =
supp(p;) (see (2.8), (2.13), (2.16), and (2.21)). Additionally, it should be noted
that in the decomposed representation P; of the fuzzy number p; in (2.118),

the affiliation of the (m + 1) intervals X i(] ) to the actual level of membership
Wi, j = 0,1,...,m, is inherent in the order of the interval-valued elements
of P;. That is, the first element of P; corresponds to the lowest degree of
membership, and the last one to the highest. Furthermore, the cut Xi(m) at

the highest level of membership u,, = 1 is expressed by a degenerated interval
of zero length owing to the equality of agm) and bgm).
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az(j) Xi(j) bgj) Zi

Fig. 2.12. Decomposition of a fuzzy number p; into intervals.

Operations on Decomposed Fuzzy Numbers

Based on the concept of decomposed fuzzy numbers, the elementary opera-
tions

q=E@P1,p2) =pr*p2, *€{+,—/}, (2.121)
on the fuzzy numbers p; and ps can be carried out by applying the operations
separately for each level of membership p;, j = 0,1,...,m, to the pairs of

intervals X 1(j ) and X. 2(j ) of the decomposed fuzzy numbers P; and P». That is,
the result § = E(p1,Dp2) = p1 * p2 of the elementary operation can be written
in its decomposed form as

Q=E(P,,P) =P xPy={z0, 20 zm} (2.122)
with

Z0) = [a),p)] = a,(j),b(j) % a,(j),b(j) — x4 x© ’
o0 = o, = X0
7=0,1,...,m.

Since the arguments Xl(j) and Xz(j) in (2.123) are not of crisp, but of interval
value, the elementary operations have to be carried out by a special arithmetic,
namely, the interval arithmetic. Even though the use of intervals traces back
to ARCHIMEDES, when he defined the irrational number 7 by the interval
[3%—(1), 3%], recent developments in interval arithmetic are largely based on the
work of MOORE [95]. In the last decades, interval computation has emerged
as a well-established discipline in applied mathematics (e.g., [2, 76]).

The fundamental idea of classical interval arithmetic is to redefine the
elementary operations of addition, subtraction, multiplication, and division
for interval-valued operands, that is, to determine the result of
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[a1,b1] * [az,b2] = {z1 %22 | a1 <21 < br,ap < x5 <bo}

*€{+,—,',/},

where the expression [a1, b1]/[az, b2] is not defined if O € [az, b2]. By adopting
the notation of (2.123), we can give the following definitions for the elementary
operations of interval arithmetic, which are equivalent to (2.124) and feature
an algebraic structure with respect to the lower and upper bounds of the
resulting intervals:

(2.124)

Addition
o0 80+ B0 =0+ 00+ ). 2)
S—— ——
al® b()
Subtraction
[t 5] =[5, 857] = [at”) — b5, b7 — 0] (2.126)
—_— ——
al® b()
Multiplication

[agj),bgj)] . [agj),bgj)] — [min(M(j)),max(M(j))] ,

a) b (2.127)
MO = {a@a§), 0059 b0l 0} .

Division
[agj),bgj)] / [aéj), bgj)] — [min(D(j)),max(D(j))] ,

————— — —
ald) b))

, N (2.128)
DU — {agj)/ag]),agj)/bg]),bgj)/ag]),bgj)/béj)} ’

provided that 0 ¢ [aéj),béj)] )

Using the general operator x € {4+, —,-,/}, we can rewrite (2.125) to (2.128)
in the generalized form

[agj),bgj)] * [agj),bgj)] — [min(G(j)), max(G(j))] ,
S—— ———
a@® b (2.129)

G0 = {a «af, a7 b 67 a0 b % b} .

Equations (2.125) to (2.129) follow from the fact that E(Xl(j), Xz(j))

X 1(j ) *Xz(j ) is a continuous function on a compact set. Therefore, the function
E(X 1(j ),X2(j )) takes on a smallest and a largest value as well as all values in
between. The interval ZU) = Xl(j ) Xz(j ) is again a closed interval on R.
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To illustrate the methodology of executing elementary operations on de-
composed fuzzy numbers, let us recall the multiplication of the fuzzy numbers
p1 and po, as shown in Example 2.1 and Example 2.2, respectively.

Ezxample 2.3. We consider again the positive triangular fuzzy numbers p; and
P2 given by

p1 =tm(2,1,1) and p. =ti(4,2,4), (2.130)
as plotted in Fig. 2.13. For the sake of simplicity and comparison with Exam-
ple 2.2, we define the decomposition number as m = 2, which corresponds to
a spacing of the discrete level of membership by Ay = 0.5. As a result of the
decomposition, we obtain the set of intervals

P ={[1,3],[1.5,2.5],[2,2]} and P»={[2,8],[3,6],4,4]} (2.131)

as decomposed representations of the fuzzy numbers p; and p» (Fig. 2.13).
The elementary operation of multiplication

q = En(p1,p2) = P1 D2 (2.132)

can then be evaluated by applying interval arithmetic separately to each level
of membership p;, j =0,1,2

po=00: 2O =x9.x=1,3-[28] = [2,24]  (2.133)
p=05: zO=xW.xM=[1525.[36] = [4515 (2.134)
pp=1.0: 73 = X(z) [2,2] - [4,4] = [8,8.  (2.135)

This yields the product ¢ = p1 p2 in its decomposed form
Q=P -Po={20 70 . zM} ={[2,24],[45,15],[8,8]} . (2.136)

Figure 2.14 shows the decomposed representation @ of the product ¢ = p; po
of the fuzzy numbers p; and p» initially defined in (2.130).

When we compare the concepts of discretized and decomposed fuzzy numbers
on the basis of Figs. 2.11 and 2.14, we see that the results are absolutely
identical. In conformance with the concept of discretized fuzzy numbers, the
fuzzy arithmetical approach on the basis of decomposition does not exhibit
any methodogical errors, that is, the upper and lower bounds of the intervals
ZU) at the levels of membership Wi, 3 =0,1,...,m, coincide with the corre-
sponding points on the graph of the membership function pg(z) of the exact
fuzzy number ¢ = p; p>. Thus, compared to the discretization approach, the
concept of decomposed fuzzy numbers gives the exact solution of the arith-
metical operation with a degree of refinement that can be predefined by the
decomposition number m. Extending the scope of the present example, one
can conclude that the identity of the concepts of discretized and decomposed
fuzzy numbers with respect to the results of elementary fuzzy arithmetical
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Fig. 2.13. Fuzzy numbers p; and p> and their decomposed representations P; and
P, for m = 2.

pa(z)

[0 e —— 0
. /\
W
0.5 : Z

/ 3 \ Z(O)
0.0 T

Fig. 2.14. Product fuzzy number ¢ = pi p2 and its decomposed representation
Q:P1'P2 form:2.

operations is a general property. This is due to the fact that the necessary
condition for the validity of combinations in the approach of discretized fuzzy
numbers, which requires that related elements be assigned to the same level
of membership, is fulfilled by the separate application of interval arithmetic
to each level of membership in the approach of decomposed fuzzy numbers.
Furthermore, the required condition for the compatibility of combinations in
the concept of discretization directly corresponds to the application of the
minimum and maximum operator in the concept of decomposition.

In summary, we see that the concepts of discretized and decomposed fuzzy
numbers clearly surpass the approach of L-R fuzzy numbers in its practical
applicability. Above all, the arithmetic based on the former concepts proves
to be closed with respect to any elementary operation, and no restrictions
apply to the shape of the fuzzy-valued operands. Although the discretization
and decomposition approaches are equally valid, the latter, based on interval
arithmetic, may be preferred for its uncomplicated implementation. For these
reasons, the concept of decomposed fuzzy numbers will be adopted in the
following to form the basis for the so-called standard fuzzy arithmetic.
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Standard Fuzzy Arithmetic

3.1 Definition of Standard Fuzzy Arithmetic

As an extension of the binary operations of elementary fuzzy arithmetic, we
define standard fuzzy arithmetic as the successive execution of different ele-
mentary operations, based on the concept of decomposed fuzzy numbers, to
evaluate a fuzzy rational expression of the form

f(ﬁl:ﬁ%"':ﬁn) . (31)

The arguments p; € P (R) are fuzzy numbers given by the membership func-
tions g, (2;), z; € R, i = 1,2,...,n, and f is a functional mapping of the
form

f:R*" =R (3.2)

that only consists of the elementary operations addition, subtraction, multipli-
cation, and division. Furthermore, we assume that the fuzzy-valued expression
can be evaluated in a finite number of steps, that is, f(p1, P2, - . -, Dn) 18 a finite
fuzzy rational expression.

Based on the principles of elementary fuzzy arithmetic with decomposed
fuzzy numbers in Sect. 2.2.3, the following general procedure for the evaluation
of fuzzy rational expressions can be formulated:

1. Decomposition of the Input Fuzzy Numbers

In a first step, the interval [0, 1] of the p-axis is subdivided into m intervals
of length Ay = 1/m (see Fig. 2.12), and the discrete values p; of the
(m + 1) levels of membership are then given by

J .
pi=- j=0,1,...,m. (3.3)
In a second step, the arguments p;, i = 1,2,...,n, of the fuzzy rational

expression, also referred to as the input fuzzy numbers, are decomposed
into a-cuts, leading to the decomposed representations
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3 Standard Fuzzy Arithmetic
pi:{xgm,xgw,...,xgm)} L, i=1,2,....n, (3.4)
of the fuzzy numbers p;, where each set P; consists of the (m+ 1) intervals
D] = cuty,, (7)), o <o, j=1,2,....m, (3.5)
x© = [a.o),bl(.o)] = [wy,,wy,] with Jwi,, w,, [ = supp(p;) - (3.6)

Application of Interval Arithmetic

The fuzzy rational expression
q=f(p1,D2,---,Pn) (3.7)
is computed by evaluating the interval-valued counterparts
720 = f(x9 xP . xD), j=01,...,m, (3.8)

separately at each level of membership p;. The evaluation of these interval
rational expressions is performed by successive execution of elementary
interval arithmetic according to the definitions of the basic operations
in (2.125) to (2.128). When we consider, for example, the fuzzy rational
expression

q = f(p1,p2,P3,p4) = (P1 + P2)(P3 — Pa) , (3.9)
the corresponding interval rational expression
70) — f(Xl(j),Xz(j),Xéj),Xij))
= (x4 x(xP —xP), j=0,1,...,m, (3.10)
is evaluated for each j in the steps
Z1(j) _ X1(j) +X2(j) _ Ea(Xl(j),Xéj)) ’
79 =xP - xP = E(x{, xP), (3.11)
A Z1(j) -Zéj) =B, (Zl(j),Zéj)) _
Recomposition of the Output Intervals

As a result of the application of interval arithmetic, the value of the fuzzy
rational expression is available in its decomposed representation

Q= {Z<0>,Z<1>,...,Z<m>} : (3.12)
By recomposing the intervals Z(9), j = 0,1,...,m, of Q according to their

levels of membership p;, the value g of the fuzzy rational expression, also
referred to as the output fuzzy number, can be obtained.
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3.2 Application of Standard Fuzzy Arithmetic

Making use of the methodology defined in Sect. 3.1, we now apply standard
fuzzy arithmetic to solve a standard statically determinate problem in engi-
neering mechanics. The problem is presented in Example 3.1 and has been
extensively studied by HANSS ET AL. [72] and HANSS AND WILLNER [70] as
well as in a similar set-up by RAo AND CHEN [107].

Ezxample 3.1. We consider a one-dimensional static problem which consists of
a composite massless rod under a tensile load. The components of the rod
are characterized by the length parameters (V) and [(®), the cross sectional
areas A and A® | and the Young’s moduli E®") and E®) quantifying the
elasticity of the components of the rod. The rod is clamped at one end and is
subjected to the tensile force F' that acts as an external loading at the other
end. To determine the displacement u(z) of the cross section at any position
z within the rod, the well-established finite element method can be applied.
For this purpose, we discretize the rod into two elements as shown in Fig. 3.1.

1 1@

—1l44444444444444444444444444444444I-—%‘l4‘4‘4‘4‘4‘4‘4‘4‘4‘4‘4‘4‘Ibk
BW, AW | B, A® -
\
N | |
i element 1 l element 2 |
—-F ! 1 F
- ® o—
node 1 node 2 node 3

Fig. 3.1. Composite rod under tensile load, discretized into two finite elements
corresponding to three nodes.

In general, the finite element equations can be derived from the principle
of virtual work [7]. When we consider only one-dimensional structures with
negligible body forces and we introduce Hooke’s law

o=Ee, (3.13)

we can formulate the equation of virtual work for a single rod element i as

E® A /E(i) 5l dg = Fj(i)ﬂsug-i) + F,Ei)éugf) . (3.14)

1(9)
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Here, the subscript indicates the number of the node, and the superscript
denotes the number of the element (Fig. 3.2).

1G4

E(i),A(i)
(2) 1 te i
Fj element ¢ FIS )
L ‘ P
node j node k
. -
Q) (1)
f] . Uy,
T

Fig. 3.2. Single finite element.

When we use linear shape functions for the displacement field u(?) (z) within
the element 7 and we consider the strain-displacement relation

. (i)
) () = 2 dz(m) : (3.15)
we obtain
(i) i o7 |uf” (1) 44 (9)
u(z) = [1 —2/1% | /1] uj(j) =HY4\" | (3.16)
. , Tl .
eW(z) = [-1/1D 1/10)] u%.) =Dy (3.17)

By introducing these relations into (3.14) and applying the fundamental
lemma of variational principles to

Su®T L EO AG) / DOYTDO dz ud - FO 3 =0 (3.18)

1)
we obtain a linear system of equations in the matrix form

(i
Ff
F

J, =
10) 11 |u? (3.19)

B0 A6 [ 1 _1] [u@

K® w() F@®
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Here, K @ g the element stiffness matrix, u'? is the element displacement
vector, and F% denotes the element nodal force vector.
The assembly process for the system in Fig. 3.1 uses the condition of

equilibrium of forces at node 2,

FY+F? =0, (3.20)
as well as the continuity of displacements at that node, which requires
ul) = o (3.21)
This leads to the equation
M @) 0 U1l Fi
—cM D@ @ fuy| =10 (3.22)
0 —c®@ ¢ U3 F3

with the stiffness parameters
) — E® A(Z)
G

When we finally include the boundary conditions

i=1,2. (3.23)

up =0 and F3 = F, (324)
(3.22) is reduced to the overall system equation
W4 2 _c®

c\+c c Us 0
= . 3.25
el 0= 62

N g _
K u F

For the purpose of solving the system equation (3.25), i.e., for the determina-
tion of the unknown displacement vector

u=K 'F, (3.26)
let us have a closer look at three different approaches:
1. Symbolic Simplification

Owing to the simplicity of the problem and the existence of only two ele-
ments, we can solve (3.25) directly by eliminating either the displacement
us or the displacement us. This procedure leads to

1
Us = m F, (327)

1 1
Uz = <E + m) F. (328)

Since this solution is achieved by consecutive symbolic simplification, the
expressions (3.27) and (3.28) are also referred to as the canonical form of
the solution of (3.25).
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2. Inversion

When we consider, however, the usual case of a global stiffness matrix
K exhibiting a large dimension, symbolic simplification of the solution
is definitely impractical. For this reason, the finite element problem is
usually solved numerically by the use of special computer programs.

In the first method of numerical solution, the finite element problem is
solved according to (3.26), i.e., by firstly determining the inverse global
stiffness matrix K ™' and then forming the matrix product K~ ' F.
Rewritten in analytical form, this procedure leads to

uy = [(Cm OE (c<2>)2] Cop (3.29)

vy — [(Cm @) e (C<2))2] - () +) F. (3.30)

.LDLT Decomposition

In the second method of numerical solution, we exploit the fact that the
global stiffness matrix is usually symmetric and positive definite. In this
case, the problem in (3.25) can effectively be solved by an LDL" decom-
position of K where L denotes a lower triangular matrix with diagonal
terms of unity, and D is a matrix of diagonal form. The problem can then
be expressed in the form

LDL u=F, (3.31)

which can numerically be solved by forward and back substitution proce-
dures according to

La=F, Db=a, L'u=b. (3.32)

Basically, the advantages of the LDL" decomposition are the following:

e For a constant matrix K the cost intensive part of the calculation,
namely, the decomposition, can be performed at the outset for all
right-hand sides F'. This proves to be especially useful for different
load cases or transient calculations.

e An often encountered band structure of K is preserved by L and can
be stored in-place with D on the main diagonal.

When we formulate this procedure in analytical terms for the problem

considered, we obtain

(2) 2 (2)
— |2 _ (c ) c
v = [c C(l) +c(2) c(l) +C(2) F: (333)
@y 17
| ()
= [c | (3.34)
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Solution for Crisp-Valued Parameters

As a first step, we shall solve the finite element problem for a definite crisp-
valued parameter configuration where the first component of the rod is as-
sumed to be steel with the material and geometry parameters

EMW =20-10° Nmm~2, (3.35)
A = 100mm?, 1V =500 mm , (3.36)

and the second component consists of aluminum with the parameters

E® =69-10*Nmm™2, (3.37)
A® =75mm?, 1® =500mm . (3.38)

The external load is specified by the force
F =1000N . (3.39)

When we use any of the methods discussed previously, we obtain the following
results for the displacements us and us at node 2 and node 3, respectively:

u2 = 0.0250mm and wus = 0.1216 mm . (3.40)
Solution for Fuzzy-Valued Parameters

As a second step, we shall consider the elasticity parameters of the rod being
replaced by fuzzy numbers. That is, the Young’s moduli E®) and E() are
no longer regarded as crisp, but they are defined by fuzzy numbers EM and
E®) | which, in anticipation of the subject under discussion in Sect. 5.1, may
express some uncertainty in the elasticity of the material. Consequently, the
global stiffness matrix K in (3.25) becomes a fuzzy-valued matrix K with the
fuzzy-valued stiffness parameters

o _ B0 a0

—a i=1,2. (3.41)

The uncertain estimates for the Young’s moduli are assumed to be given by
fuzzy numbers of symmetric quasi-Gaussian shape with their modal values £
and F, being exactly equal to the values of the former non-fuzzy parameters,
that is,

E;=20-10°Nmm ? and E;=6.9-10*Nmm ?. (3.42)

The standard deviations of the quasi-Gaussian distributions are set equal to
5% of the modal value for each component, so the uncertain Young’s moduli
E® and E® can be defined according to (2.11) in the form

EW = gtn*(E;,0.05E;,0.05E;), i=1,2. (3.43)
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The geometry parameters of the rods as well as the external loading are kept
constant at their crisp values, as specified in (3.36), (3.38), and (3.39).
Making use of standard fuzzy arithmetic, as defined in Sect. 3.1, we can
evaluate the fuzzy rational expressions in (3.27) and (3.28), (3.29) and (3.30),
and (3.33) and (3.34) to determine the fuzzy-valued displacements @2 and
ug for each of the three approaches. For simplicity, in the following, we only
focus on the uncertain displacement us at the tip of the rod. Its member-
ship functions are plotted in Fig. 3.3. Apparently, we are confronted with the
highly remarkable and rather unexpected attribute that there are three differ-
ent results ﬁz(,,s), ﬂgl) and ﬂgD), depending on the solution technique applied.
Whereas the modal values of all solutions are identical to the crisp result in
(3.40),
T3 = 0.1216 mm , (3.44)

the fuzzy-valued results show spreads that significantly differ from each other.
Explicitly, we observe that

) cal® cal”, (3.45)

(S) )

where @5 is the result based on symbolic simplification, and ﬂ:(,,D) and ﬂg
denote the results using LDLT decomposition and inversion, respectively.

1.0

Hag (u) :

0.5

Fig. 3.3. Fuzzy-valued displacements us at the tip of the rod: ﬂés) by symbolic
simplification, ﬂgD) by LDLT decomposition, and Egn by inversion.

It turns out that obtaining different results for the evaluation of different
forms of fuzzy rational expressions is not restricted to the example presented.
In fact, it proves to be a characteristic property that arises from (standard)
fuzzy arithmetic and does not occur in the conventional crisp-number arith-
metic. The origin, the evolution, and the effects of this phenomenon will ex-
tensively be studied and discussed in Sect. 3.3.
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In anticipation of these explanations, we can reveal that the result ags)’
obtained for the evaluation of the canonical form, gives the exact fuzzy arith-
metical solution of the problem. That is, the fuzzy-valued displacement ﬂgs)
exclusively shows the natural uncertainties induced by the fuzziness of the
input fuzzy numbers EW and E@); the displacements ﬁgD) and ﬂgl), how-
ever, exhibit some additional, artificial uncertainty, which is inherent to the

procedure of standard fuzzy arithmetic. The displacements ﬁgD) and ﬂg) over-

estimate the proper result ﬂgs) of the problem.

3.3 Drawbacks and Limitations of Standard Fuzzy
Arithmetic

In Sect. 3.2, the basic phenomenon of standard fuzzy arithmetic, consisting
of the overestimation of results depending on the actual form of the fuzzy
rational expression, has been shown for a practical problem of engineering
mechanics. In the following, this characteristic property will be extensively
studied and analyzed on the basis of some typical academic examples. Ex-
plicitly, Examples 3.2 and 3.3 focus on fuzzy rational expressions of only one
fuzzy-valued variable p; Example 3.4 deals with an expression of two variables
p1 and po.

Ezxample 3.2. We consider the fuzzy rational expression
f(p)=p>-2p*-21p—18, (3.46)
which shall be evaluated for the input fuzzy number
p=tfn(1.5,1.5,1.5) (3.47)

of symmetric triangular shape, as shown in Fig. 3.4a.
When we apply standard fuzzy arithmetic directly to the original expres-
sion of the form
fo(p) =p°-2p*-21p-18, (3.48)

we obtain the fuzzy-valued result fp(p), as plotted in Fig. 3.4b. The fuzzy
rational expression in (3.46) can, however, be rewritten in Horner’s form,
where the operations of multiplication are nested according to

fu@ =[(p-2p-21]p—18. (3.49)

Its evaluation then leads to the result fu(p), as shown in Fig. 3.5a. Ulti-
mately, the expression in (3.46) can be evaluated by applying standard fuzzy
arithmetic to its factorized form

fr®)=@+3)p+1)(P-6), (3.50)
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which leads to the result fr(p), as plotted in Fig. 3.5b. For comparison, the
proper fuzzy arithmetical result f(p) is also displayed in each of the Figs. 3.4b,
3.5a and 3.5b. It can, for instance, be obtained by numerical optimization,
where the minimum and maximum value of the function f is determined for
each input interval X, j =0,1,...,m.

We can see from Figs. 3.4a to 3.5b that the fundamental drawback of
standard fuzzy arithmetic can again be clearly detected. Obviously, the fuzzy
arithmetical solution of the problem leads to different results, depending on
the type of symbolic preprocessing the fuzzy rational expression has been
subjected to. Moreover, we see that none of the results thus obtained comply
with the proper fuzzy arithmetical solution of the problem. In fact, all the
results overestimate the proper solution to a greater or lesser extent.

a 1.0 — b 1.0
s () p(z)
p
0.5 0.5
0.0 . . . . . . 0.0 . . . M- . i .
0 1 2 3 4 —140 —100 —60 —20 0 20
T z

Fig. 3.4. (a) Input fuzzy number p; (b) result fp(p) of the direct evaluation (solid
line) and proper fuzzy arithmetical result f(p) (dashed line).

a 1.0 b 10
u(z) p(z)
0.51 0.5
0.0 . . . R . ) . 0.0 { . . R . A .
—140 —100 —60 —20 0 20 —140 —100 —60 —20 0 20
z z

Fig. 3.5. (a) Result fu(p) of the evaluation of Horner’s form (solid line) and proper
fuzzy arithmetical result f(p) (dashed line); (b) result fr(p) of evaluation of the
factorized form (solid line) and proper fuzzy arithmetical result f(p) (dashed line).
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To trace back this effect, let us focus on the worst-case intervals of the
fuzzy numbers, given at the membership level py = 0. In this connection,
it is worth mentioning that every real number c is equivalent to an interval
[¢, ], which is said to be degenerate. We will, however, retain the non-interval
notation in those cases for reasons of simplicity and clarity.

In case of the direct evaluation of the interval-valued expression

fo(X©) = (X@)° —2(X©@)* —21 x© —18 (3.51)
for the input interval X(®) = [0, 3], we obtain
75" = fo (X )

=1[0,3]-[0,3]-0,3] — 2[0,3] - [0,3] — 21[0,3] — 18 (3.52)
=[-99,9].

When we evaluate, instead, Horner’s form
fu(X@) = ((x© - 2) x© —21) x© — 18 (3.53)
for the argument X (©) = [0, 3], we obtain
749 = 1u(x)
= (([0, 31— 2)[0,3] - 21) [0,3] - 18 (3.54)
=[-99, —18] ,
and the evaluation of the factorized form
fr(XO) = (x© 4+3)(XxO +1)(X® —5) (3.55)
for the input interval X(©) = [0, 3] leads to
7" = fr (X©)

= ([0,3] + 3) ([0, 3] + 1) ([0, 3] — 6) (3.56)
=[-144,-9] .

The proper fuzzy arithmetical result Z(9), however, is given by
7O = £([0,3)) = [-72, 18], (3.57)

representing the real range of values of f (X (0)) for X(© =0, 3].

To quantify the effect of overestimation that is assigned to a fuzzy rational
expression given in the form ‘1" and evaluated by the use of standard fuzzy
arithmetic, we shall introduce the local degree of overestimation at a specific
level of membership p; in the form
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e o

_wth(Z9) —wth(29))
B wth(Z()) , J=01.(m=1), (359

where the operator ‘wth’ expresses the width of an interval, defined as
wth([a,b]) =b—a. (3.60)

For the different forms fp (X(?), fu (X(©), and fr (X(©) of the interval ratio-
nal expression f (X (0)) at the lowest level of membership pg, the local degrees
of overestimation yield

09 =100%, 09 =50%, and 020 =150%. (3.61)

As an overall measure of the overestimation of the fuzzy rational expression,
we can additionally introduce the global degree of overestimation wm(p) as

an average value of the locally defined counterparts .Q(E{ ) (X (j)) over the total

number m of relevant membership levels p;, 7 =0,1,...,(m —1), in the form
m—1
1 @) (x (i
==Y 0¥ (xV). 3.62
wa(p) m ]z::O a ( ) ( )

Although the dependency of the global degree of overestimation on the decom-
position number is such that estimations for wn(p) are improved for higher
values of m, acceptable approximations for the global degree of overestimation
can already be achieved for rather small values of the decomposition number.
Using m = 10, we obtain for the present example

wp(@) = 7%, wu() ~33%, and wr(p)~ 125% . (3.63)

Ezample 3.3. Let us now consider the fuzzy rational expression
9(p) =2p-p°, (3.64)
which shall again be evaluated for the symmetric linear fuzzy number
p = tfn(1.5,1.5,1.5) , (3.65)

as shown in Fig. 3.4a.
When we apply standard fuzzy arithmetic directly to the original expres-
sion of the form

gp(P) =2p—-p", (3.66)

we obtain the fuzzy-valued result gp(p), as plotted in Fig. 3.6a. The fuzzy
rational expression in (3.64) can, however, be rewritten in the form
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gur(P) = (2-D)P, (3.67)

which can be considered as either Horner’s form or the factorized form of
g9(p). Its evaluation leads to the result ggp(p), as shown in Fig. 3.6b. The
proper fuzzy arithmetical result g(p) is displayed in each of the Figs. 3.6a and
3.6b for reasons of comparison.

b 1.0
u(z) |

0.5

. / ; 0.0 . . . . M . .
—10 —6 -2 0 2 6 10 —10 —6 -2 0 2 6 10
z z

Fig. 3.6. (a) Result gp(p) of the direct evaluation (solid line) and the proper fuzzy
arithmetical result g(p) (dashed line); (b) result gur(p) of the evaluation of Horner’s
form or the factorized form (solid line) and the proper fuzzy arithmetical result g(p)
(dashed line).

Similar to Example 3.2, the effect of overestimation is clearly observable in
Figs. 3.6a and 3.6b. For its reconstruction, let us again focus on the worst-case
intervals of the fuzzy numbers, given at the membership level py = 0. In case
of the direct evaluation of the interval-valued expression

gp(X©) =2X© — (x©)? (3.68)
for the input interval X(®) = [0, 3], we obtain
7290 = gp(X©) = 200,3] - [0,3] - [0,3] = [-9,6] . (3.69)
When we evaluate, instead, Horner’s form or the factorized form, respectively,
gir (X@) = (2 - x©) x(© (3.70)
for the argument X (©) = [0, 3], we obtain
Zigg = gur (X)) = (2-10,3]) [0,3] = [3,6] (3.71)
The proper fuzzy arithmetical result Z(9), however, is given by

Z©® = g([0,3]) = [-3,1], (3.72)
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representing the real range of values of g(X(O)) for X(©) =0, 3].

The quantification of the overestimation for the different forms gp (X ()
and ggp (X (0)) of the interval rational expression g(X (0)) using the local
degree of overestimation at the membership level pg yields

00 =275% and 20 =125%. (3.73)

Using the global degree of overestimation to quantify the overall overestima-
tion of the fuzzy rational expression, we obtain for a decomposition number
of m =10

wp(p) ~ 356% and wgr(p) ~ 114% . (3.74)

Ezxample 3.4. As a problem of more than one variable, we consider the fuzzy
rational expression
~ o~ p1+ P2
h(p1,p2) = 5 (3.75)

which shall be evaluated for the symmetric linear fuzzy numbers
p1 =t(2,1,1) and p» =tfn(4.5,0.5,0.5), (3.76)

as shown in Fig. 3.7a.
When we apply standard fuzzy arithmetic directly to the original expres-
sion of the form L
~ o~ P1+ P2
hp(P1,P2) = —=—

N
we obtain the fuzzy-valued result hp(pi1,p2), as plotted in Fig. 3.7b. The
fuzzy rational expression in (3.75) can, however, be symbolically preprocessed
according to

: (3.77)

ptp_ P P2 (3.78)
Y41 D1 D1
~

=1

and rewritten in the simplified form

hs (P, B2) = 1+ = . (3.79)
Y41
Its evaluation leads to the result hg(p1, P2), as shown in Fig. 3.7b. Additionally,
the proper fuzzy arithmetical result h(p;,p2) is displayed in Fig. 3.7b, proving
to be identical to hs(p1,D2)-

The effect of overestimation can clearly be observed for the result hp (p1, D2)
of the direct evaluation, but there is obviously no overestimation for the result
hs(p1,D2) of the simplified form. To verify this observation, let us again focus
on the worst-case intervals of the fuzzy numbers, given at the membership
level o = 0. In case of the direct evaluation of the interval-valued expression
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a 1.0 b 1.0

\ hs(p1,p2)
() | ;,71 wz) ¢ [\ = (1, p2)
_ — ho (p1,p2)
0.5] p2 0.5}
0.0 0.0 A
1 2 3 4 5 1 2 4 6 8
X 4

Fig. 3.7. (a) Input fuzzy numbers p1 and p2; (b) result hp(p1,p2) of the direct
evaluation (solid line) and identical curves of the result hs(p1,p2) of the simplified
form and the proper fuzzy arithmetical result h(p1,p2) (dashed line).

_ X+ xy”

0 0
ho (X1, x37) = ~© (3.80)
1
for the input intervals Xl(o) =[1,3] and XZ(O) = [4, 5], we obtain
1,3]+[4,5] [5,8 .5
20 — po (x©, x©y = L3+ 48] 5.8 _ 5 o 3.81
D D( 1 2 ) [1,3] [1’3] [37 ] ( )
When we evaluate, instead, the simplified form
X(O)
0 0
hs (X0, xV) =1+ XZ“’) (3.82)
1
for the arguments Xl(o) =[1, 3] and Xz(o) = [4, 5], we obtain
4, 5] 4 7
20 = he(x® x) =14 B3 5T 3.83
S S( 1 » 2 ) +[1,3] +[37 ] [37 ] ( )

The proper fuzzy arithmetical result Z(%), representing the real range of values
of h(Xl(O),Xéo)) for Xl(o) =[1, 3] and X2(0) = [4, 5], is given by

7
AL :g([1)3])[4’5]) = [5)6] : (384)
The quantification of the overestimation for the different forms fp (X.”, X{”)

and hs (X.\”, X{”) of the interval rational expression h (X", X{”)) using the
local degree of overestimation at the membership level pg yields

09 ~73% and 2 =0%. (3.85)
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Using the global degree of overestimation to quantify the overall overestima-
tion of the fuzzy rational expression, we obtain for a decomposition number
of m =10

wD(i)') ~ 73% and UJHF(]A)) = 0% . (3.86)

Summarizing the key points of Examples 3.2 to 3.4, we arrive at the conclu-
sion that the application of standard fuzzy arithmetic for the evaluation of
fuzzy rational expressions leads to results that usually overestimate the proper
results of a problem. In this connection, the degree of overestimation substan-
tially depends on the actual form of the fuzzy rational expression, ranging
from no overestimation to degrees of significant extent.

In fact, this overestimation effect is well-known as a serious drawback of
interval computations. It is often referred to as the dependency problem (e.g.,
[65]) and sometimes as the property of conservatism of interval arithmetic.
MOORE [95] simply attributed this effect to the multiple occurrence of an
interval-valued variable in the expression to be evaluated. In fact, this circum-
stance represents a necessary condition for overestimation to arise, and thus,
the reverse holds that overestimation can never arise if a particular interval-
valued variable occurs only once in an expression. However, to be more spe-
cific, the origin of the effect of overestimation lies in the fact that standard
fuzzy arithmetic — independently of whether it is based on decomposed or on
discretized fuzzy numbers — carries out every elementary operation between
fuzzy numbers as an operation between completely independent operands.
The reality, however, does not comply with this assumption in most cases. In
other words, the overestimation effect arises from the incorrect application of
elementary arithmetic in the way that some combinations of elements of the
support sets involved are wrongly taken into account, for they cannot occur
in reality.

Against this background, the basic principles of interval arithmetic must
be put into perspective. For example, the statement

1,2 - [1,2] = [-1,1] (3.87)

may be true under certain conditions, but it is not necessarily true in general.
If the interval value [1,2] is taken on by two independent interval variables
X; and Xs, which thus exhibit coincidentally identical ranges, that is,

X1 = [1,2] and X2 = [1,2] 5 (388)

the difference
X; —X>=11,2] - [1,2] (3.89)

must, indeed, result in an interval around zero, that is,

X, - Xo =[1,2] - [1,2] = [-1,1] . (3.90)
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On the other hand, the evaluation of the difference
Xy — Xy =[1,2] - [1,2] (3.91)
must lead to a crisp zero, that is,
X, - X, =1[1,2]-11,2] =[0,0], (3.92)

for the involved operands are not only of equal value, but they are identical.
Thus, the fundamental drawback of standard fuzzy arithmetic can be seen in
the fact that the result of each particular arithmetical operation only depends
on the values of the arguments involved, but not on the entities that are ac-
tually represented. This characteristic property also explains the observation
that fuzzy arithmetical results are heavily influenced by symbolic preprocess-
ing, which directly corresponds to the calculation with entities. Furthermore,
we can conclude that overestimation never arises from the operation of ad-
dition, but the operations of subtraction, multiplication, and division can be
affected, although in different ways.

When we recall Examples 3.2 and 3.3, we see that there is only one fuzzy-
valued variable p. This implies that the fuzzy-valued parts of the expressions
f(@) and g(p), which emerge in the course of their successive fuzzy arith-
metical evaluation, are strictly dependent. Consequently, operations between
these parts must not be carried out using the above-defined elementary fuzzy
arithmetic, since it assumes the operands to be independent. The occurrence
of overestimation for the evaluation of the expressions fp(p), fu(p), and fr(p)
is therefore inevitable.

In Example 3.4, there are two independent variables p; and ps, and the
numerator p; +po of the expression h(p1, p2) in (3.75) is neither strictly depen-
dent on the denominator p; nor completely independent thereof. Hence, the
application of standard fuzzy arithmetic directly to the expression hp(p1,D2)
will definitely lead to overestimation of the actual result. By the use of sym-
bolic preprocessing, however, the fuzzy rational expression can be split into
two parts, as shown in (3.78): one of them with strictly dependent, yet iden-
tical operands, and the other with completely independent variables. By ex-
ploiting the fact that the quotient of two identical values must be equal to
crisp unity, the expression hs(p1,p2) can finally be achieved, where the input
fuzzy numbers p; and ps occur only once. That is, the remaining expression
hs(p1,p2) contains only independent operands, so the application of standard
fuzzy arithmetic must lead to the proper result.

In recent decades, there have been a large number of publications with the
objective of reducing the effect of overestimation in the evaluation of fuzzy or
interval rational expressions. The presentation of a comprehensive overview
on the various methods is hardly possible and is beyond the scope of this
book. However, some of the basic ideas in this field shall be outlined in the
following.
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3 Standard Fuzzy Arithmetic

A rather simple, but effective step to overcome the dependency problem
in interval multiplication is a special definition of the nth power X" of
an interval X, rather than reproducing the operation as an n-fold mul-
tiplication (e.g., [55]). Using this term, the undesirable widening of the
results can be avoided if powers of fuzzy zeros are to be determined. This
case, however, proves the exception, compared to all the possible origins
of overestimation, which for the most part remain unaffected.

Another approach is based on the so-called centered form of an interval ra-
tional expression, which has been proposed by MOORE [95] and extensively
studied by HANSEN [54]. In this method, the interval rational expression is
rewritten in a form where the center points of the argument intervals X;,
1=1,2,...,n play an important role. The final objective of this symbolic
preprocessing is to obtain an expression for which the evaluation leads to
an interval of significantly smaller width. Nevertheless, a drawback of this
method lies in the fact that the intended reduction of the overestimation
effect can only be guaranteed if the widths of the argument intervals are
sufficiently small. If this is not the case, the evaluation of the modified ex-
pression can lead to results which are even wider than those of the original
ones. This precondition of sufficiently small width of the input intervals is
often not satisfied in real-world applications of fuzzy arithmetic.
Reverting to an idea that was originally presented by MOORE [95], tighter
enclosures of the real interval-valued results can be achieved by so-called
interval splitting. In this approach, which has successfully been imple-
mented as a practical algorithm by SKELBOE [116], each of the input in-
tervals X;, ¢ = 1,2,...,n, is initially split into N subintervals of equal
width. Interval arithmetic is then applied separately to all the subprob-
lems that arise with the subintervals as arguments, and finally, the overall
result is obtained by forming the union of the partial results. Owing to
the fact that complete avoidance of overestimation is theoretically only
guaranteed for N — oo, the computational costs of this method can be
fairly high if a sufficiently large value for N is chosen.

Finally, KLIR [86] proposes the definition of so-called requisite equality
constraints to allow for the identity of entities in standard fuzzy arith-
metic. For fuzzy rational expressions of n variables, these constraints can
be formulated by n-dimensional relations and can be incorporated into the
existing forms of elementary fuzzy arithmetic, interval arithmetic, or the
extension principle, by conjunctive combination. Nevertheless, the practi-
cal implementation of this concept for the fuzzy arithmetical solution of
large-scale problems still appears very challenging.

In addition to the individual impediments assigned to each of the above-
mentioned approaches, there are a couple of rigorous limitations that generally
apply — even though to different extents — if standard fuzzy arithmetic is
intended to be used for the solution of real-world problems. These are listed
in the following.
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e Pursuant to the definition of standard fuzzy arithmetic, its application is
in the first instance restricted to the evaluation of fuzzy rational functions,
which preferably should be available in analytical form.

e Without further definitions, standard fuzzy arithmetic cannot accomplish
the evaluation of the prevalent transcendental functions, such as ‘sin’, ‘cos’,
or ‘exp’. Appropriate extensions for these purposes are fairly straightfor-
ward for monotonic functions, such as ‘exp’, where only the bounds of the
argument intervals need to be considered. For non-monotonic functions,
such as ‘sin’ and ‘cos’, however, the internal extrema have to be deter-
mined to obtain correct fuzzy arithmetical results. An approach to the
algorithmic implementation of a rapid check for internal extrema can be
found in [76].

e The successful implementation of standard fuzzy arithmetic into existing
software environments for the evaluation of real-world problems requires
expensive rewriting of the program code or the development of special
software that provides the possibility of operator overloading.

e The effect of overestimation cannot be pre-estimated in size. It can only be
reduced to a more or less large extent, but cannot be avoided completely
at reasonable expense.

Due to these limitations, an advanced fuzzy arithmetic, based on the so-called
transformation method, is introduced in the following. Its area of applica-
tion exceeds the evaluation of fuzzy rational expressions and allows the fuzzy
arithmetical solution of complex real-world systems with fuzzy-valued model
parameters.
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Advanced Fuzzy Arithmetic —
The Transformation Method

4.1 Fuzzy-Parameterized Models

Among others, one characteristic property and outstanding achievement of
the advanced fuzzy arithmetic introduced in this chapter is the elimination
of restrictions in its area of applications. That is, advanced fuzzy arithmetic
based on the transformation method cannot only be used to evaluate fuzzy
rational expressions as discussed previously, it can also be applied to simulate
static or dynamic systems of arbitrary complexity with fuzzy-valued parame-
ters. The models that mathematically represent these systems shall be called
fuzzy-parameterized models.

In anticipation of the subject under consideration in Sect. 5.1, the fuzzy
numbers occurring in the respective model equations can be interpreted as nu-
merical representations of uncertainties of different origin. These uncertainties
may be inherent in the input signals, in the model parameters, or in the ini-
tial or boundary conditions. For example, the fuzzy-parameterized model of a
linear, one-dimensional problem of a free oscillation with one uncertain model
parameter and two uncertain initial conditions can be expressed by the linear,
homogeneous ordinary differential equation

i(t) + 2 Dwo i(t) + wiz(t) =0, z(0) =%y, &(0)=2%, (4.1)

where wy is the natural frequency, p; = D is the fuzzy-valued damping factor,
and p2 = Ty and p3 = Zo are the fuzzy-valued initial conditions for amplitude
and velocity.

For reasons of simplicity and clarity, we will use a simplified notation
for fuzzy-parameterized systems, which consists of the following three key
components:

e A set of n independent fuzzy-valued parameters p; € 'ﬁ'(]R) given by the
membership functions ugp, (z;), z; € R,i=1,2,...,n.

e The model itself, consisting of N functions F,., r = 1,2,..., N, that per-
form some operations on the input fuzzy numbers p;, i = 1,2,...,n.
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e N fuzzy-valued output variables g, € P’ (R) with the membership func-
tions pg. (2r), z» € R, r = 1,2,..., N, that are obtained as the result of
the functions F,.

Without loss of generality, the number of fuzzy-valued output variables can
be set to N = 1 in the following; that is, the fuzzy-parameterized model shall
be given by

a:F(ﬁlaﬁ27"~aﬁn)~ (42)
Note that this is an abbreviated form that focuses on the dependency of
the fuzzy-valued parameters p1, s, - - ., Dn- It does not, of course, exclude the

existence of independent input variables such as the time ¢ in the case of
dynamic systems. In this connection, (4.2) may also be considered as a short
form of

q(t) = F(t;p1,p2,- - Pn) - (4.3)

4.2 General and Reduced Transformation Method

In the following, the transformation method is introduced in both its general
and its reduced form, as proposed by HANSS in [58] and earlier in [57]. We
can differentiate between the simulation of fuzzy-parameterized systems on
the one hand, and their analysis on the other.

4.2.1 Simulation of Fuzzy-Parameterized Systems

For the advanced fuzzy arithmetical simulation of fuzzy-parameterized models
on the basis of the transformation method, the following procedure can be
formulated:

1. Decomposition of the Input Fuzzy Numbers

In a first step, the interval [0, 1] of the u-axis is subdivided into m intervals
of length Ay = 1/m (see Fig. 2.12), and the discrete values p; of the
(m 4 1) levels of membership are then given by

i =—, 7=01,...,m. (4.4)

In a second step, the input fuzzy numbers p;, i = 1,2, ..., n, of the fuzzy-
parameterized model are decomposed into a-cuts, leading to the decom-
posed representations

Pi:{Xi(O),Xi(l),...,Xi(m)} C i=1,2,....n, (4.5)
of the fuzzy numbers p;, where each set P; consists of the (m+ 1) intervals
x9 =

x =

of b = cut, @), o <b) . j=12..m, (46)
al” bgo)] = [wy,,wy,] with Jwi,, w,, [ = supp(p;) - (4.7

1 )



4.2 General and Reduced Transformation Method 101

2. Transformation of the Input Intervals

In case of the reduced transformation method, the intervals X i(j ),
i =1,2,...,n, of each level of membership p;, j =0,1,...,m, are trans-

formed into arrays X i(j ) of the form

2¢~1 pairs

X7 = ((f.87), (0,87),.... (", 8)) (4.8)
o = (a9 aDY, B9 = (9, ). (a9)
2n—t elements 27—t elements

Obviously, only the boundary values al(.j) and bl(.j) of the intervals Xi(j),
i1 = 1,2,...,n, j = 0,1,...,m, are considered in this transformation
scheme. This proves to be sufficient, however, if the problem
F(p1,p2,-..,Pn) is monotonic, that is, if dF/dz; # 0 for x; € supp(p:),
1 =1,2,...,n,or else if the problem is characterized by only one uncertain
model parameter, that is, if n = 1.

If the fuzzy-parameterized model, instead, is expected to show non-
monotonic behavior with respect to a number of 7, 1 < 7 < n, out of

the n > 1 fuzzy-valued parameters p;, i = 1,2,...,n, the general trans-
formation method is recommended. In this case, additional points within
the intervals Xi(’), i=1,2,...,n,7=0,1,...,m — 2, are considered for

the transformation scheme (Fig. 4.1), and the intervals are transformed

into arrays X i(j ) of the form
@) _ (3 ) (9 (3 ) (4)
X = ( (712' 7’72{1' ~-~:7(in+1—j),i)7 SRR (712' 772{1’""’7(:11-&-1—]')72') )

~

~~

(m—j+1)"=!  (m—j+1)—tuples

(4.10)
with ' . '
W= () (411)
~—_—————
(m—j+1)»— elements
and
( an) for =1
and j =0,1,...,m,
1 j+1 j+1 .
cl(ji) _J3 (CI(J_LZ») + cl(]Z )) for 1=2,3,....m—j (4.12)
: and j =0,1,...,m—2,
bz('j) for l=m—j+1
and j =0,1,...,m.
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Fig. 4.1. Decomposition of the ith uncertain parameter p; with additional points
considered by the general transformation method (here: m = 5).

3.

Evaluation of the Model

Assuming that the fuzzy-parameterized model is given by the functional
expression F' in (4.2), its estimation is carried out by evaluating the ex-
pression separately at each of the columns of the arrays, using the classical
arithmetic for crisp numbers. That is, if the output ¢ of the system can
be expressed in its decomposed and transformed form by the arrays Z @),
j=0,1,...,m, the kth element *2() of the array Z() is then determined
by

0 = F (%), k8, ka0 (4.13)

where ki:gj) denotes the kth element of the array )A(i(j).

Retransformation of the Output Array

The decomposed representation of the fuzzy-valued model output g, ex-
pressed by the set

Q= {Z<0), AC I Z<m>} (4.14)
of the (m + 1) intervals

79 = [a9 pD] = cut,, (@), o <9, j=1,2,...,m, (4.15)

i

AR [a(o),b(o)] = [wl,wr] with ]wl,wr[ = supp(q) (4.16)

can be obtained by retransforming the arrays A% according to the recur-
sive formulas
a¥) = min (a(Hl), kg(j)) and bY) = max (b(jJrl), kg(j)) ,
k k (4.17)
j=0,1,....m—1,
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with

o™ = mkin (kﬁ(m)) = max (ké(m)) = b | (4.18)

5. Recomposition of the Output Intervals

By recomposing the intervals Z/), j = 0,1,...,m, of the set Q according
to their levels of membership p;, the output ¢ of the fuzzy-parameterized
model can be obtained.

From a geometrical point of view, the implementation of fuzzy arithmetic on
the basis of the transformation method can be interpreted as multiple eval-
uations of the problem for different combinations of crisp parameter values.
These crisp-valued parameter combinations can be regarded as the coordi-
nates of points located on the (n — 1)-dimensional hypersurfaces of a number
of (m+ 1) n-dimensional cuboids, which are nested according to their level of
membership. Each of the cuboids in the n-dimensional domain is spanned by
the intervals that are assigned to the n parameters at the corresponding level
of membership. The cuboid for the membership level p = 1 is degenerated to
a single point. If the transformation method is applied in its reduced form,
only the 2™ vertex points of each n-dimensional cuboid are considered for the
evaluation of the problem. However, for the general transformation method,
additional points on the hypersurfaces of the cuboids are taken into account.
The number of these points increases with the decrease of the membership
level p; (Fig. 4.1).

To illustrate the transformation scheme in (4.8) and (4.9) for the reduced
transformation method, let us consider a problem with n = 3 independent
uncertain parameters p;, po, and p3. When we focus, for example, on the worst-
case intervals of the fuzzy numbers, given at the membership level y = 0, the
uncertain parameters take on the interval values

0 0) (0 0 0) (0 0 0) (0
X0 = 0], X0 = [00], X = [0 (wo)
The transformation will convert these intervals into the arrays
(0 0) (0) (0) (0) 7(0) 1(0) 1(0) 1(0
RO = (o, a5 80 10,0
X5 = (a8, 07,68, 0, a8 057857 ) (4.20)

(0 0 0 0 0 0 0 0 0
R = (o250, a0 0,0 000 )

each of length 2™ = 8. Considering the columns of these arrays, each of the
columns represents one out of the possible eight combinations of the lower
and upper interval bounds of the uncertain parameters, corresponding geo-
metrically to the vertices of the outermost cuboid (Fig. 4.2). The pattern
behind the transformation scheme in (4.20) becomes even clearer if each of
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the intervals Xl(o), XZ(O), and Xéo) is normalized to the interval [—1, 1] before-

hand. The arrays [71(0), [72(0), and 17950), resulting from the transformation of
the normalized intervals

Ul(o) _ Uz(O) _ Uéo) =[-1,+1], (4.21)
are then given by
U = (=1, =1, =1, =1, +1, +1, +1, +1) ,
U% = (=1, =1, 41, +1, =1, =1, +1, +1) , (4.22)
O = (=1, +1, =1, +1, -1, +1, -1, +1) ,

which shows the inherent regularity in the scheme of the reduced transforma-
tion method. The pattern in (4.22) is fairly well-known from the method of
full factorial design in the context of design of experiments (e.g., [92]).

]
xrs3 ) 8
,,,,,, 2
bS” 7
by
1]
e | )
ag)) ,,,,,, Ll
o
a§°) bﬁ‘” L1

Fig. 4.2. Geometric interpretation of the transformation scheme for the reduced
transformation method and a problem of n = 3 uncertain parameters.

Summarizing the simulation of fuzzy-parameterized models at this stage,
we can conclude that it is sufficient to apply the transformation method in
its reduced form if the problem F(pi,p2,...,Pn) is monotonic, that is, if
dF/dz; # 0 for all z; € supp(p;), i = 1,2,...,n, or else if the problem is
characterized by only one uncertain model parameter, that is, if n = 1. In the
former case, an extreme value of F' is taken on for a crisp-valued parameter
combination that corresponds to the coordinates of one of the vertices of the
hypercuboids in Fig. 4.2. For this reason, the reduced transformation method
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leads to the proper fuzzy-valued result of the problem, even by disregarding
the recursive components in the formulas (4.17) and (4.18). In the latter case,
the use of the reduced transformation method is still indicated, but it may
only lead to approximations of the proper result if the problem exhibits non-
monotonic behavior. More precisely, in the non-monotonic case and forn = 1,
the results calculated by the use of the reduced transformation method might
show a slight difference to the proper result of the problem, depending on the
actual position of the extrema. This difference, however, tends to decrease
for increasing values of the decomposition number m. In this connection, the
recursive definition of (4.17) and (4.18) plays an important role; the interval-
valued results at one particular level of membership are not only affected by
the results obtained for this level, but also by those calculated at higher levels
of membership. That is, by carrying out the transformation method top down
with respect to the grade of membership, we can utilize the nesting property
of the a-cuts of fuzzy numbers and take advantage of the fact that possible
extrema inside the current interval may be well approximated by the results
already calculated for higher levels of membership. Moreover, the recursivity
in (4.17) and (4.18) ensures the preservation of the fundamental property of
convexity for any fuzzy-valued result, and thus, it guarantees the closure of
fuzzy arithmetic based on the transformation method.

If the fuzzy-parameterized model is presumed to show non-monotonic be-
havior with respect to a number of @, 1 <7 < n, out of the n > 1 fuzzy-valued
parameters p;, i« = 1,2,...,n, the general transformation method is recom-
mended. In this version of the transformation method, additional points are
considered in the transformation schemes of the intervals, with their num-
ber being incremented by one with each level of membership downwards. In
this way, the fuzzy arithmetical problem is evaluated for more crisp-valued
parameter combinations than originally considered in the reduced transfor-
mation method. Again the recursive components in (4.17) and (4.18) serve
the purpose described above, and the quality of the approximative result can
be expected to improve for an increasing degree of refinement for the decom-
position of the fuzzy parameters.

As a direct consequence of the preceding statements, we can conclude that
in contrast to standard fuzzy arithmetic, the results obtained by the use of the
transformation method never overestimate the proper result of the problem.
Instead, there can be a certain degree of underestimation, that is, a negative
overestimation, in the case where approximative solutions are obtained rather
than the exact ones.

To show the effectiveness of the transformation method, let us recall Ex-
amples 3.2 to 3.4, which have been used as benchmark problems in Chapter 3
of standard fuzzy arithmetic.

Ezxample 4.1. We consider the fuzzy rational expression

f) = 5% — 257 — 21518, (4.23)

which shall be evaluated for the fuzzy parameter
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p = tfn(1.5,1.5,1.5) (4.24)

of symmetric triangular shape (see Fig. 3.4a). Since the number of uncertain
parameters of the model is given by n = 1, the transformation method can
be applied in its reduced form. Using a decomposition number of m = 15, we
obtain the result fr(p), as shown in Fig. 4.3a. This result is guaranteed to
be identical to the proper fuzzy arithmetical solution f(p) of the problem, for
the condition of monotonicity of f(p) is satisfied within supp(p) = [0, 3].

Ezample 4.2. Let us now consider the fuzzy rational expression
o) =25 - 5?, (4.25)
which shall again be evaluated for the symmetric linear fuzzy number
p=tm(1.5,1.5,1.5). (4.26)

In accordance with Example 4.1, the number of uncertain model parameters
is given by n = 1, so the transformation method can be applied in its reduced
form. Using again a decomposition number of m = 15, we obtain the result
g1(P), as shown in Fig. 4.3b. Although this problem exhibits non-monotonic
behavior within supp(p), any result that is achieved by using the reduced
transformation method, with the decomposition number m being a multiple
of three, proves identical to the proper fuzzy-valued result. This is due to the
fact that the maximum value of g(x) is taken for x = 1, which is explicitly
considered in the transformation method if the membership level p = 2/3 is
included. Explicitly, as a result for the worst-case interval at the membership

level po = 0, whose exact value is Z(®) = [~3,1], we obtain Zé01)5 = [-3,1]
for the decomposition number m = 15, and Zéol)ll = [-3,0.9987] for the de-

composition number m = 14. That is, for m = 15, we obtain the exact fuzzy
arithmetical result of the problem, whereas for m = 14, the proper solution is
slightly underestimated. For the considered worst-case interval at the mem-
bership level ug = 0, the underestimation can be quantified by means of the
local degree of overestimation, as introduced in (3.59). For the quantification
of the overall underestimation of the problem, we can use the global degree
of overestimation, as defined in (3.62). For m = 14, the local degree of over-
estimation yields

wth ([~3,0.9987]) — wth([-3,1])

0 (X) = wth (=3, 1])

=—0.1825%,  (4.27)

and the global degree of overestimation results in

W), (B) = —0.0451% . (4.28)
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a 1.0 b 1.0
1(z) n(z) gr(p)
0.5 0.51
0.0 . . . . . . . . . 0.0
—100 —50 0 —4 -3 -2 —1 0 1 2
z z

Fig. 4.3. (a) Result fr(p) and (b) result gr(p), obtained by the use of the reduced
transformation method.

Ezxample 4.3. As a problem of more than one variable, we consider the fuzzy
rational expression

SO p1 + D:
h(pl,pQ) = w R (429)
Y41
which shall be evaluated for the fuzzy numbers
p1 =tMm(2,1,1) and p» = tfn(4.5,0.5,0.5) (4.30)

of symmetric triangular shape (see Fig. 3.7a). Even though the number of
fuzzy-valued model parameters is greater than one, the transformation method
can be applied in its reduced form because h(pi,p2) is expected to show
monotonic behavior within supp(p;), ¢ = 1,2. Again, using a decomposition
number of m = 15, we obtain the result hr(p1,p2), which is guaranteed to
be identical to the proper fuzzy arithmetical solution h(p;, p2) of the problem
(Fig. 4.4a).

Ezxample 4.4. Finally, let us consider a dynamic fuzzy-parameterized system
that is modeled by the system of ordinary differential equations
w(t) = (1—p1)?u(t) +p5v(t), u(0)=1, (431)
0(t) = —p2u(t) + psv(t) v(0) =1,

with the state variables u and v, and the output of the system given by
q(t) = pa [u(t) +v(t)] . (4.32)

Of course, due to the fuzzy values of the model parameters p;, i = 1,2, 3,4,
the state variables u(t) and v(t) are also of fuzzy value for ¢t > 0, and therefore
should be labeled by a tilde. For convenience, however, only the n independent
model parameters p;, which induce and initiate the fuzziness in the model, as
well as the output ¢ of the model will be denoted as fuzzy variables. Explicitly,
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the model shall be evaluated for the fuzzy-valued parameters
ﬁi :tfn(il,Olil,Olil) , 1= 1,2,3,4, (433)

which are all defined by symmetric triangular membership functions with
worst-case deviations of 10% of the respective modal values

T =095, T =02, T3=03, and Z,=0.005. (4.34)

Since the number of uncertain parameters in the model is greater than one and
an a priori exclusion of non-monotonic behavior of the model is not indicated,
the transformation method is applied in its general form. Using a decompo-
sition number of m = 10, we obtain the result shown in Fig. 4.4b, where the
computed time-variant model output gr(t) is displayed as a contour plot with
the even membership levels u;, j = 0,2,...,10, as contour parameters. The
differential equations of the system have been solved by the use of an explicit
Runge-Kutta formula with a time step of At = 0.5s.

a 1.0 b 1.5
w(z) z J P U
Lo qr(t; P1, D2, P3, P1)
0.5 p=10//7,
0.5 o
0.0 ) 0.0 - _=z;§§§::‘52:: E
1 2 8 0 10 20
z t/s

Fig. 4.4. (a) Result ht(p1,p2) obtained using the reduced transformation method;
(b) contour plot of gr(¢; p1,p2,Ps,ps) obtained using of the general transformation
method.

4.2.2 Analysis of Fuzzy-Parameterized Systems

Until now, the fuzzy-valued result ¢ of a problem only reflects the overall
influence of all the n uncertain model parameters p;, 1 = 1,2,...,n taken to-
gether. There is evidence, however, that, in general, the degrees of uncertainty
of each model parameter contribute very differently to the overall degree of
uncertainty of the model output ¢. Against this background, the adequate
quantification of these influences represents an important issue. To illustrate
this aspect, let us consider the following example.
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Example 4.5. We consider a fuzzy-parameterized model given by the two-
argument function

f(p1,p2) = P2 cos(mpr) . (4.35)

When we evaluate the model for the fuzzy parameters
p1 = tfn(0.45,0.05,0.05) and p» = tfn(0.25,0.25,0.25) (4.36)

in Fig. 4.5a, we obtain the fuzzy-valued result g, as shown in Fig. 4.5b. Con-
sidering the question to the degree to which each of the two model parameters
contributes to the overall uncertainty of the result, one might guess that po
has a larger effect on the uncertainty of the result than p;, for its worst-case
variation from the modal value amounts to +100%, which is considerably
larger than the variation of £11% of parameter p;.

a 1O — b 1.0
p1 I
g (@)t ~ g\z)r 7
P [ Pa pa( ) q
0.51 0.57
0.0 . . . . . . . . 0.0 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2
xX; 4

Fig. 4.5. (a) Fuzzy-valued model parameters p1 and p2; (b) output value ¢ =
f(§1a§2)'

A qualitative answer to this question can be obtained by re-evaluating the
fuzzy rational expression f(p1,p2), assuming this time that, in turn, only one
of the parameters be crisp while the other remain fuzzy. That is, we evaluate
the expression f(p1,p2) twice by using first the fuzzy number p; and the crisp
modal value T» = core(pz), and then the modal value Z; = core(p;) and the
fuzzy number p». We obtain the results

g1 = f(p1,72) and @ = f(Z1,p2) , (4.37)

where each output depends on only one fuzzy variable (Fig. 4.6). From the
nearly identical curves for the membership functions of ¢; and g2, we can
conclude that both parameters p; and ps contribute about the same absolute
extent to the overall fuzziness of g. Incorporating the fact that the parameter
p1, in worst case, varies only by +11% of its modal value, while the variation
of ps is £100%, the relative degree of influence of parameter p; appears to be
about nine times larger than that of parameter ps.
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a 1.0 b 1.0
Hay (Z) _ Hgs (Z) r .
q1 F q2
0.5 0.51
0.0 . . . . . . . . . 0.0 . . . . . . . . .
0 0.05 0.1 0 0.05 0.1
z z

Fig. 4.6. (a) Output value ¢1 = f(p1,T2) with T> = core(p2); (b) output value
G2 = f(T1,p2) with T, = core(p1).

A general methodology for quantitatively determining the proportions to
which the n fuzzy-valued parameters p; of a fuzzy-parameterized system sep-
arately contribute to the overall uncertainty of the output ¢ is also provided
by the transformation method. Instead of reducing the arrays Z() immedi-
ately to the intervals Z), j = 0,1,...,m, as done in the retransformation
step of the transformation method, the supplementary information encoded
in the values and the arrangement of the elements in ZU) can be used. With
the objective of uncovering this information, we can determine the coefficients
772(]), i=1,2,...,n,7=0,1,...,(m—1), which for the reduced transformation
method are defined by

2n z2z 1
== Z (D) - 2y (4.38)
2n= 1( i k=1 I=1
with
sp(k,0) =k + (1 —1)2"—*1 (4.39)
so(k, ) =k + (20 —1) 277" | (4.40)

and for the general transformation method by

(m7j+l)n—i (m7j+l)i_1

. 1 s9 2(7 s12(7
77Z(J) — el Z Z ( () _ Z(J))

(m—j+ )"0 —a) o =
(4.41)
with
silk,)=k+(m—j+1)(1-1)(m—j+1)"" (4.42)
=k+(1—-1)(m—j+1)""* (4.43)

solk,)=k+[(m—j+1l—1](m—j+1)"". (4.44)
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An alternative though equivalent notation of (4.38) to (4.44) can be found
n [63]. As defined in (4.6) and (4.7), the values a!’) and b\ are the lower
and upper bounds of the interval X(’), and *120) and 220 denote, respec-

tively, the s;th and ssth element of the array 7. The coefficients n(])

be interpreted as gain factors that express the effect of the uncertainty of the
ith parameter p; on the uncertainty of the output ¢ of the problem at the
membership level p;. More explicitly, within the range of uncertainty covered
at the membership level p;, deviations Az from the modal value Z of the
output fuzzy number ¢ can be considered as being related to the correspond-
ing deviations Am(J) from the modal values T; of the fuzzy parameters p;,
1=1,2,...,n, by the approximation

Az Z nl(j) Amgj) . (4.45)

i=1

The validity of this relation has been proven by HANss AND KLIMKE [65]. To
obtain a non-dimensional form of the influence measures with respect to the
usually different physical dimensions of p;, the standardized mean gain factors
ki can be determined as an overall measure of influence according to

Z ui | (@ Ej)+b§j))‘ [
_ — @) () (9)
Ki = _m—lz'u] n (a7’ +b;77)| . (4.46)
2 Zl ,U,J Jj=1
Finally, as a relative measure of influence, the normalized values p; can be
determined for i = 1,2,...,n according to
N z_: ( (J) ng))‘
pi= = (4.47)
Zlﬁq Z Z ((J +bJ))‘
q= q=1 j=1
The degrees of influence p;, t =1,2,...,n, satisfy the consistency condition

=1

The gain factors x; quantify in a standardized way the effect of the ith fuzzy-
valued model parameter p; on the overall uncertainty of the output ¢ to the
problem by assuming that every input parameter exhibits the same amount
of relative uncertainty with respect to its modal value.

To explain the heuristic origin of (4.38) to (4.47), the following comments
can be made:
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1. Equations (4.38) to (4.40), and (4.41) to (4.44), respectively, have their
origin in the existence of special patterns in the elements of Z@ in the
case of complete independence of the output ¢ from a specific model pa-
rameter p;. This pattern can numerically be characterized by the average
difference between the values of specific columns, which in case of com-
plete independence leads to an average difference of zero. On the basis
of this heuristic approach, which is motivated by Example 4.6 below, the
measure can be generalized to the quantification of arbitrary degrees of
dependence, leading to an average difference of non-zero value. Finally,
the measure is normalized by the length (b) — a{)) of the interval X7
to achieve independency of the fuzziness of the model parameters p;.

2. Equation (4.46) computes a weighted average of the gain factors 771(] ). The
weighting is performed according to the degree of membership u;, which
gives the intervals with a higher level of membership a higher weight.
Note that 772(0) is excluded from the formula, for it does not contribute
to the degree of influence due to its chosen weight of zero. Although this
weighting seems somehow arbitrary, it is motivated by the fact that the
gain factors 772(] )~ as an approximation of the partial derivatives — usually
become less accurate with decreasing levels of membership [65].

3. Equation (4.46) additionally standardizes the gain factors 775] ) to achieve
autonomy of the dimensions of the parameters p; and to make the mea-

sures of influence thus comparable for different model parameters. In this
(

connection, the mean value (agj) + bgj))/2 of each interval Xij) plays an
important role.
4. Equation (4.47) finally normalizes the standardized gain factors to obtain

relative degrees of influence which satisfy the consistency condition (4.48).

To highlight the motivation for the heuristic approach described in the first
item of the enumeration above, let us consider the following example.

Ezample 4.6. We consider two fuzzy-rational expressions fi and f» which shall
be defined by the equations

@ = f1(P1,P2,P3) =P1 + D2 + D3, (4.49)
@ = f2(p1,P2,P3) = q1 — D3 - (4.50)

When we substitute g; in (4.50) by the corresponding expression in (4.49), we
are immediately aware of the fact that the fuzzy rational expression fs is not
dependent on the parameter p3 at all. In other words, the fuzziness assigned to
the model parameter p3 will in no way influence the fuzziness of the output g».
In the following, we ignore this a priori knowledge and evaluate the expression
f2(P1,D2,p3) as a function of n = 3 independent arguments p;, p2, and ps.

For convenience, we will only consider some specific level of membership p;,

)

where the intervals Xl(j , Xz(j ), and Xéj ) of the fuzzy numbers p1, p2, and p3

shall be given by
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x99 =2, X =1[3,6], and X =[4,5]. (4.51)

When we apply the transformation method in its reduced form, the transfor-
mation step for the membership level p; yields the arrays

X9 =(1,1,1,1,2,2,2,2), (4.52)
X{ = (3,3,6,6,3,3,6,6), (4.53)
X = (4,5,4,5,4,5,4,5), (4.54)

)

and the array Z\éj of the output ¢> results in

79 = £,(X9, XD X)) = (4,4,7,7,5,5,8,8) . (4.55)

From the pattern of the elements in the array /Z\z(J ), it is evident that Z\éj ) has

not been influenced by X'?EJ ) in an arithmetical sense. Otherwise, Zéj ) would
not possess the property of equality of the columns 1 and 2, 3 and 4, 5 and
6, and 7 and 8. In other words, the existing characteristic structure of Z\éj )
would have been destroyed if any arithmetical operation had effectively been
carried out with the array )?3(.] ). This conclusion motivates the introduction
of a measure of influence which is based on the sum of the differences between
the values of the above-mentioned columns for the actual model parameter p3.
The final generalization of this measure to the quantification of the influences
of all n model parameters as well as its extension to the general form of the
transformation method leads to the definitions (4.38) to (4.44). The reliability
of this initially heuristic approach has exhaustively been discussed by HANSS
AND KLIMKE [65], revealing a formal relationship to the total differential of
the model function.

Against this background, the analysis part of the transformation method can
be considered as comparable to the well-established method of sensitivity anal-
ysis; however, it excels in its performance due to two major properties. First,
the analysis part of the transformation method does not call for additional,
possibly time-consuming evaluations of the model; in fact, it is available as
a by-product of the transformation method. Second, owing to the number of
intervals, which the fuzzy-valued model parameters are decomposed into, the
degrees of influence are determined for different variations of the parameters,
which are finally averaged and weighted according to their level of member-
ship. In this way, the characteristic difficulty of classical sensitivity analysis,
consisting of the definition of an appropriate variation width [50], can suc-
cessfully be overcome.

When we recall Example 4.5, we can apply (4.38) to (4.47) to determine the
values p; and po, which give the relative degrees of influence of the uncertainty
in the model parameters

P1 = tfn(0.45,0.05,0.05) and P> = tfn(0.25,0.25,0.25) (4.56)
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on the overall uncertainty of the output

q = f(P1,P2) = P2 cos(mpy) . (4.57)

In coincidence with the results of the considerations made in Example 4.5, we
obtain
p1 =89.93% and py =10.07% . (4.58)

Basically, the transformation method as a whole can be considered as an
advanced and extended version of the so-called vertex method, proposed by
DoNG AND SHAH [24], which, by itself, is a generalization of the approach
of fuzzy weighted averages by DoNG AND WoNG [25]. The discussion, the
implementation, and the further development of the vertex method has been
the object of a number of related papers, such as [3, 104, 128, 131], where
the successful fuzzy arithmetical solution of problems with non-monotonic
behavior proved to be the major challenge. One possibility for solving this
limitation has been proposed for the original vertex method in [24]; it first
determines the extrema of the problem and then evaluates the problem not
only at the vertex points, but also at the known extrema. This procedure,
however, is only recommended for sufficiently simple problems. In the case
of more complex practical applications — in particular for the simulation of
uncertain dynamic systems —, the determination of the extrema can be fairly
complicated or nearly impossible, and this approach rapidly turns out to be
unsuitable. Similarly, this drawback applies to the algorithm in [128] as well
as to the method in [131], where the extrema are to be determined directly
or via the computation of the so-called poles.

Against this background, the major merits of the transformation method
can be seen in the following;:

e The transformation method provides a non-ambiguous prescription about
how to form the possible combinations of the lower and upper interval
bounds — or of additional values in-between — for all the uncertain param-
eters. This is achieved by uniquely assigning one well-structured array to
each interval of a fuzzy parameter, which can be considered as a transfor-
mation of the interval into a domain where the regular arithmetic for crisp
numbers can finally be applied.

e As a consequence of the non-ambiguous transformation scheme, the rela-
tive influence of the uncertainty of each parameter on the overall uncer-
tainty of the model output can be quantified, providing a kind of sensitivity
analysis of the model parameters.

e As a result of the analysis of the model, the computational costs for the
simulation of an uncertain model can be reduced in the furure by ignoring
the uncertainty of those model parameters, whose influence turns out to
be negligible.

e Due to the characteristic property of the transformation method that con-
sists of the reduction of fuzzy arithmetic to multiple crisp-number opera-
tions, its area of application is not subject to restrictions in the structure
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of the considered models. That is, any kind of problem, including complex,
non-monotonic, and dynamic systems, can be simulated, and the preva-
lent transcendental functions, such as ‘sin’, ‘cos’, or ‘exp’, can be evaluated
without further arrangements.

e The reduction of fuzzy arithmetic to multiple crisp-number operations
means that the transformation method can be implemented quite easily
into an appropriate software environment. Expensive rewriting of the pro-
gram code is not required. Instead, the steps of decomposition and trans-
formation, as well as of retransformation and recomposition can preferably
be coupled to existing software for system simulation in the form of a sep-
arate pre- and postprocessing tool.

e In contrast to standard fuzzy arithmetic, fuzzy arithmetic based on the
transformation method does not exhibit the effect of overestimation. In-
stead, there may be a certain degree of underestimation if the system shows
non-monotonic behavior with respect to some of the fuzzy model parame-
ters. However, the difference between the estimated and the exact solution
tends to decrease with the increase of the refinement of decomposition.

On the other hand, a characteristic drawback of the transformation method
must be seen in the sizable number of system evaluations required, in partic-
ular if the general form of the transformation method is considered together
with a significant number of fuzzy-valued model parameters. This may lead
to high computational costs, especially when large-scale models, such as finite
element models, are to be simulated. Furthermore, for complex models, it is
usually difficult to furnish proof that the application of the less costly reduced
version of the transformation method is still tolerable.

This drawback can often be narrowed substantially by simply being aware
of the fact that the number of effective model evaluations is not necessarily
as high as the sum of entries required for the overall number of output arrays
in the transformation method. That is, the set of combinations of parame-
ter values, for which the model is to be evaluated, often exhibits a multiple
occurrence of certain combinations; this is especially true if the general trans-
formation method is applied for parameters with membership functions of
symmetric triangular shape [82]. In such cases, the respective entries of the
output arrays can simply be replicated from existing entries and do not call
for new model evaluations.

With the objective of further lowering the computational costs of the trans-
formation method by the onward reduction of the number of evaluations, an
extended form of the formerly defined versions of the transformation method,
the so-called extended transformation method, is introduced in Sect. 4.3. More-
over, some advanced strategies for an efficient implementation of the trans-
formation method are presented in Sect. 4.4.
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4.3 Extended Transformation Method

In its general form, the transformation method can successfully be used for
the simulation and analysis of fuzzy-parameterized models that are non-
monotonic — within the covered ranges of uncertainty — with respect to a
number of #, 0 < @ < n, out of the n > 1 fuzzy-valued model parameters
pi, i = 1,2,...,n. In the case m < n, however, the application of the gen-
eral transformation method requires considerably more computational effort
than is actually necessary to compute the proper fuzzy-arithmetical result.
An effective approach to solve this limitation is represented by the so-called
extended transformation method, as proposed by HANSS [60, 61]. Pursuant
to this method, only those m parameters that actually cause non-monotonic
behavior — without loss of generality, the parameters py, Do, ..., 0m (type-g-
parameters) — are transformed using the general form of the transformation
method (see Fig. 4.1), the others — pry1, Prta, - - -, Pn (type-r-parameters) —
are transformed using the reduced form (see Fig. 2.12). Thus, the extended
version of the transformation method includes the formerly defined versions
as marginal cases: the general form for @ = n, and the reduced form for @ = 0.

4.3.1 Simulation of Fuzzy-Parameterized Systems

To attain the transformation method in its extended form, the transformation
step 2, given by (4.8) and (4.9), or (4.10) to (4.12), respectively, must be
replaced by the equations given below, depending on the parameter index ¢
of the interval Xi(j), j=0,1,...,m, to be transformed. The steps 1, and 3 to
5 of the simulation scheme in Sect. 4.2.1 can be retained unchanged.

e i=1,2,...,n (type-g-parameters):

XD = (w0 Amaa gy o) O 0 0) ) (459)

~ v

(m—j+1)i-1  (m—j+1)—tuples

with (4) (4) (4)

ny = (&, a?) (4.60)
—_———
(m—j+1)®—%27~7" elements
and o
al? for [=1
and 7 =0,1,...,m,
, 1 ( (j+1) (j.+1>) for 1 =2 i

Cz(]i) _ )2 @t + o or [ 33y, — (4.61)

and j =0,1,...,m — 2,

b/ for l=m—j+1
and 7 =0,1,....,m .
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e i=m+1,1+2,...,n (type-r-parameters):

(mfjJrl)i 287 =1 pairs

O _ (r(a(j)”@(j)), (a(j>,ﬂ?j>),‘ (@, 89Y) (4.62)
with ' ' ) ' ) '
o = (a4 B (0 ). a6y
————
2n—1i elements 2n—1i elements

4.3.2 Analysis of Fuzzy-Parameterized Systems

When we reformulate the analysis part of the transformation method in its
extended version, the equations for the determination of the gain factors ngj ),
i=12,...,n, 5 =0,1,...,(m — 1), namely, (4.38) to (4.40), or (4.41) to
(4.44), respectively, must be replaced by the equations given below, depending
again on the parameter index i. Equations (4.46) and (4.47) for the determi-
nation of the standardized mean gain factors k;, as well as the normalized

degrees of influence p;, i = 1,2,...,n, can be adopted as they stand.
e i=1,2,...,m (type-g-parameters):
1

9 = _
Coonm(m -+ 1)L (b)) — al)
_ . _ (4.64)
2° 7 (m—j+ 1) (mjl) i
% Z Z (822(]') _ slé(j))
k=1 1=1
with
sp(k,0) =k + (1 —1)2""™ (m — j + 1)" 1| (4.65)
sa(k,0) =k + [(m —j + 1)l — 1]
X 2n7ﬁ (’ITL _j + 1)ﬁ7i . (466)
e i=m+1,m+2,...,n (type-r-parameters):
@ = !
¢ 2n=m=1(pm — j 4 1)n(b(]) _ a(]))
4.67
gn—i 2T l(m jy1)7 ( )
% Z Z (szzc(j) _ s 2(j))
k=1 1=1
with
s1(k,0) =k + (I — 1) 2"~ (4.68)

so(k,l) =k + (20 —1)2" 7" . (4.69)
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4.3.3 Classification Criterion

It is evident that in order to profitably use the extended transformation
method, the model parameters p;, 1 = 1,2,...,n, need to be classified into
those of ‘type g’ and those of ‘type r’. For models of rather low complexity,
preferably available in analytical form, this task can often be performed by
simply viewing the model equations and the ranges of the uncertain param-
eters. In the case of more complex practical applications, however, this ap-
proach will definitely fail, and the use of a classification criterion is inevitable.
Such a criterion can be motivated by rewriting (4.41) to (4.44), defining the
(9)

gain factors 7;”’ of the general transformation method, in the form

') = LI
i (m —j + 1)n-1 (ng) _ agJ))
, . (4.70)
(m—j+1)"* (m—j41)"" " m—j
X Z Z Zti,j(k;l;r)
k=1 =1 =1
with
ti (k1) = s(kil,r+1) 5(5) _ s(k.lr) 5(5) (4.71)
and
sk, ,ry=k+[m—-j+1)(I-1)+r—1] (m—j+1)"". (4.72)

When we consider only the lowest level of membership, i.e., yg = 0, 7 = 0,
we can rate the output ¢ of the fuzzy-parameterized model as strictly non-
monotonic with respect to the model parameter p;, if the m (m + 1)" ! ele-
ments of the set

Tio = {tio(1,1,1),t;0(1,1,2),... . ti0 (m+ )", (m+ 1) 1,m)} (4.73)

are either all positive or all negative. On this basis, a numerically reasonable
criterion for the classification of the parameters p;, 1 = 1,2, ...,n, which takes
into account the limitation in computational accuracy, can be formulated in
the following form:

The fuzzy-valued model parameter p; can be considered as a type-r-parameter
if the normalized product 7; of the minimum and the maximum element of
the set T}, defined by (4.71) to (4.73), exceeds a certain threshold 0 < ¢ < 1,
that is, if

min(Tw) maX(Ti70)

>e. (4.74)
m(m + 1)"*1(1)50) — ago))

Otherwise, the model parameter p; can be considered as a type-g-parameter.
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For many examples, setting e = 10716 as the threshold value € has proven to
be a very practical assumption.

Even though the application of the classification criterion requires addi-
tional computational effort, there is usually a clear overall advantage at the
end. Firstly, the classification criterion only calls for a partial execution of the
transformation method in its general form, confining itself to the lowest level
of membership and omitting the steps of retransformation and recomposition.
Secondly, by using the extended transformation method for the total number
of membership levels in lieu of its general form, more model evaluations can
usually be saved than the classification criterion requires as an extra effort.

To show the effectiveness of the extended transformation method together
with the presented classification criterion, we will first consider a static model
in Example 4.7 and will then recall the dynamic model of Example 4.4 in
Example 4.8.

Ezample 4.7. We consider the three-argument function
q = f(pr,P2,ps) = sin(p1) + p5 — Ps , (4.75)

which shall be evaluated for the symmetric fuzzy-valued parameters

T

=tfn(-, -, = 4.76
Y41 n(3) 3’ 3) ) ( )
Do = gin*(0.5,0.5,0.5) , (4.77)
B3 = tfn(3,1,1), (4.78)

as shown in Fig. 4.7a. Applying the transformation method in its general as
well as in its reduced form with a decomposition number of m = 10, we obtain
the fuzzy-valued results g, and g, as plotted Fig. 4.7b. Whereas the proper
fuzzy-arithmetical result of the problem is well expressed by the fuzzy number
gg, it is significantly underestimated by the fuzzy number g,. Obviously, this
failure of the reduced transformation method is due to the non-monotonic
dependency of the output ¢ on some model parameters p; within the covered
ranges of uncertainty. This can be proven numerically by the application of
the classification criterion, which yields

A =275-10"", TaAa—-121-1077, and 73~ +6.83-107°. (4.79)

Since 71,7 < € and 73 > € for ¢ = 1079, p; and p» can be considered
as type-g-parameters, whereas ps is a type-r-parameter. Consequently, the
model can successfully be re-simulated by means of the extended version of
the transformation method with @ = 2, leading to a model output g, that is
identical to gy (Fig. 4.7b), but requires less computational effort.

Finally, as a result of the analysis of the model, the relative influences p;
of the fuzzy-valued model parameters p;, i = 1,2, 3, on the uncertainty of the
output value gz = ge of the fuzzy-valued function f can be obtained as
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a 1.0 b 1.0
Hp; (xz) r Do D D3 1 Py (z) - -
P P P g (z) 0z = Qe
| ng (2) i
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xI; 4

Fig. 4.7. (a) Fuzzy-valued parameters pi, p> and p3; (b) fuzzy-valued outputs
Gs = Ge (solid line) for the general and the extended transformation method (7 = 2),
and ¢; (dashed line) for the reduced transformation method.

pr=12.64%, p»=12.48%, and p; = 74.88%. (4.80)

That means, when we assume each of the parameters p;, i = 1,2, 3, to exhibit
the same amount of relative uncertainty with respect to its modal value, about
three quarters of the overall uncertainty of the model output are induced by
the fuzziness of p3, the rest by the fuzziness of p; and p> in approximately
equal proportion.

Ezxample 4.8. Recalling the dynamic fuzzy-parameterized model in Exam-

ple 4.4, we consider the system of ordinary differential equations
w(t) = (1—p1)?u(t) +p5v(t), u(0)=1, (481)
o(t) = —pau(t) + pav(t) , v(0) =1,

with the state variables u and v, and the output of the system given by
q(t) = pa [u(t) +v(t)] . (4.82)
The model shall be evaluated for the fuzzy-valued parameters
p; = tfn(z;,0.1%;,0.1%;), i=1,2,3,4, (4.83)

which are all defined by symmetric triangular membership functions with
worst-case deviations of 10% of the respective modal values

T1 =095, =02, T3=03, and Z4=0.005. (4.84)

Using the decomposition number m = 5, we can evaluate the classification
criterion (4.74) with the objective of providing a proper set-up of the extended
transformation method for the simulation of the model. The resulting time-
plots 72(t), 73(t), and 74(¢) — the latter scaled by the factor 0.1 — are shown
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in Fig. 4.8a; the curve of 71 (t) is plotted in Fig. 4.8b. As we can see, the
model parameters ps, p3, and ps can be rated as type-r-parameters due to
7;(t) >e,e =107 i =2,3,4, and ¢t > 0. The parameter p;, however, has to
be considered as a type-g-parameter, for 71 (t) is strictly negative for all ¢ > 0.

Consequently, the dynamic model can be simulated by using the transfor-
mation method in its extended form with the setting m = 1. This leads to
results that are identical to those obtained by applying the general transfor-
mation method, but the total number of runs of model simulations is reduced
to a large extent. The fuzzy-valued output g.(t) of the model is shown in
Fig. 4.9a by a contour plot with the degree of membership p = pg (2) as
the contour parameter. Finally, as a result of the analysis of the model, the
relative influences p;(t) of the fuzzy-valued parameters p;, ¢ = 1,2, 3, on the
uncertainty of the calculated output ge(t) of the model are plotted in Fig. 4.9b.

a b 0|
Ti(t) | Ti(t) |
3.107*¢ —5-1077}
0.174
1074 73
0 2| -6 e
0 10 t/s 20 0 10 t/s 20

Fig. 4.8. Normalized products of the classification criterion: (a) m2(t), m3(t), and
7a(t) 5 (b) T1(t).

a 1.5 j j j j j j j j j b 1.0
? a. (t."’ ooy ~) ; pi(t)
1.0l gel\l; P1,P2,P3,P4 ’// P4
P3
0.5
0.5} p2
P1
0.0 0.0
0 0 10 20
t/s

Fig. 4.9. (a) Contour plot of the output g.(t;p1,p2,P3,P4), obtained using the
extended transformation method; (b) degrees of influence p;(t) of the fuzziness of
the model parameters p;, i = 1,2, 3,4, on the fuzziness of the output g.(t).



122 4 Advanced Fuzzy Arithmetic — The Transformation Method

4.4 Efficient Implementation of the Transformation
Method

With the objective of achieving efficient implementation of the transformation
method and reducing the computational costs to a minimum, some promis-
ing approaches have been developed by KLIMKE [82, 83] and KLIMKE AND
WOHLMUTH [85]. Basically, three major strategies can be distinguished in this
context:

1. The utilization of special structures, features, and tools provided by the
programming language that is utilized.

2. The reduction of the number of effective model evaluations to a smaller
number than explicitly required within the transformation method.

3. Some symbolic preprocessing of the model function with the objective of
either evaluating nested sub-functions of lower dimension or incorporating
interval arithmetic where applicable without overestimation.

Since the last strategy assumes the model functions to be available in ana-
lytical and preferably static form, which does not generally apply, only those
approaches that are well suited for the application in real-world problems are
outlined in the following.

4.4.1 Multi-Dimensional Array Structure

The one-dimensional arrays X7 that express the transformed intervals X7
of the uncertain parameters p;, ¢ = 1,2,...,n, at the membership level p;,
7 = 0,1,...,m, can be represented by multi-dimensional arrays. This ap-
proach was originally suggested by DONG AND WONG for the algorithm of
so-called fuzzy weighted averages (FWA) [25]. However, for the general or the
extended version of the transformation method, additional points have to be
considered, which are located within the interval bounds.

Taking advantage of the regular structure as well as the repetitive occur-
rence of entries in the multi-dimensional arrays, KLIMKE [82, 83] proposes the
simplified notation

Xp,a=[s1,52,.-.,57|D,d , (4.85)
where D denotes the overall dimension of the array, and d specifies the dimen-
sion, along which the T entries s¢, t = 1,2, ..., T, of the array are consecutively

arranged. In all other dimensions, the entries are simply replicated such that
the resulting array is of size T for D =1, (T'x T) for D =2, (T' x T x T') for
D = 3, et cetera.

Ezample 4.9. As a first example, we consider a multi-dimensional array given
in the form R
Xa1 =[-1,5]21 - (4.86)
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This notation is then equivalent to the matrix

- ~1-1
Xm_{ ! 5}, (4.87)

where the T' = 2 array entries s; and s, are arranged along the dimension
d =1 (index of the rows) of the array.

Ezample 4.10. As a second example, we consider a multi-dimensional array

given in the form N
X2,2 = [47 57 173]2,2 - (488)

This notation is then equivalent to the matrix

X, = (4.89)

[l > S
[SARN 2 GG

1
1
1
1

W w w W

where the T' = 4 array entries s1, so, . .., s4 are arranged along the dimension
d = 2 (index of the columns) of the array.

Using the concept of multi-dimensional arrays in the framework of the trans-
formation method, the overall dimension D of the array corresponds to the
number n of independent model parameters p;, i = 1,2,...,n, and the spe-
cific dimension d correlates with the index 7 of the particular fuzzy parameter.
With this notation, the array X i(] ) of the general transformation method can
be rewritten in the form

Xl =1l el il (4.90)
with
( al('j) for =1
and j =0,1,...,m,
, 1 ( (+1) (j,+1)) for 1 =2.3 i
Cz(fi) _ ) 1, —|—cl’l or . )y, M — ) (4.91)
and 7 =0,1,....m—2,
bl(.j) forl=m-—-j+1
\ and j =0,1,...,m,
and for the reduced transformation method, we obtain
X9 =107 . (4.92)

)

This rewriting of the former one-dimensional array into a multi-dimensional
array facilitates the generation of the arrays and reduces the complexity of
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their indexing. Moreover, in addition to ease of use, the new representation of
the arrays proves computationally more efficient; powerful software packages
can be utilized, which are available for multi-dimensional array processing
(see, e.g., MATLAB commands shiftdim and repmat). The source-code list-
ing of a MATLAB procedure for a fast, vectorized implementation of the
general transformation method by means of multi-dimensional arrays can be
found in [82].

4.4.2 Thinning of the Decomposition Pattern

As mentioned at the end of Sect. 4.2.2, the computational complexity of the
transformation method can effectively be reduced by special provision for
recurring combinations of the parameter values. This is particularly true if the
transformation method is applied in its general form and if the fuzzy-valued
model parameters are characterized by membership functions of symmetric
triangular shape. The recurring combinations can then be excluded from the
procedure of model evaluation and computation time can be saved.

Based on this background, KLIMKE [82, 83] goes one step further and
suggests re-using as many combinations as possible for different a-cuts by
properly selecting the inner points of the intervals. Explicitly, he proposes that
only those inner points at a certain level of membership that have already been
used at higher levels be considered. This objective of somehow ‘thinning out’
the original decomposition pattern can be achieved, for example, by replacing
(4.12) of the general transformation method by

ral(.j) for I =1

and 7 =0,1,...,m,
(7) _ Cz(]——ﬁ) for 1=2,3,...,m—j (4.93)
: andj=0,1,....,m—2,

B for l=m—j+1
and j =0,1,...,m .

\

For symmetric membership functions of triangular type, the new definition of
cl(fi) in (4.93) proves to be identical to its former definition in (4.12). For all
other membership functions, the distribution of the points in the decomposi-
tion scheme is less regular, but of comparable density [83].

In the general transformation method, a reduction of the computational
complexity can be achieved by this technique, but less accurate results com-
pared to the original formulation are usually obtained. This drawback ne-
cessitates a certain trade-off between the computational complexity of the
algorithm and the accuracy of the results, which is further discussed in [83].
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4.4.3 Piecewise Multilinear Sparse-Grid Interpolation

Again based on the fundamental idea of reducing the computation time by
effectively performing fewer model evaluations than there are output values
actually required, a further approach to an efficient implementation of the
transformation method is proposed by KLIMKE AND WOHLMUTH [85]. In this
approach, the more or less dense grid of points to be evaluated for the differ-
ent versions of the transformation method is replaced by a sparse grid (e.g.,
[12, 140]), where a smaller number of points are evaluated instead. The model
outputs for the original combinations of parameter values, corresponding to
the points of the original dense grid, are then estimated by piecewise multi-
linear interpolation as outlined in [84].

Focusing on the interpolation problem, various interpolation techniques
for a sparse grid exist, depending on the characteristics of the function to
be approximated, such as smoothness or periodicity. All these techniques are
based on SMOLYAK’s method [117], where univariate interpolation formulas
are extended to multivariate problems by the use of tensor products. The re-
sulting interpolation method is noteworthy because it requires a significantly
smaller number of support nodes, compared to the conventional interpolation
on a full grid. Furthermore, as a characteristic property, SMOLYAK’s method
exhibits a hierarchical structure, which one can take advantage of, by estimat-
ing the current error of approximation. In this manner, advanced interpolation
algorithms can be developed, with incremental refinement of the grid at each
step, and an automatic termination as soon as a predefined accuracy appears
to be guaranteed.

Among the various types of sparse grids, such as the maximum-norm-
based grid, the no-boundary-nodes grid, and the Clenshaw-Curtis grid (e.g.,
[6, 111, 119]), the latter performs best if piecewise linear basis functions are
used for the interpolation [84]. As an example, two Clenshaw-Curtis grids are
shown in Fig. 4.10, one of dimension n = 2 in Fig. 4.10a, and one of dimen-
sion n = 3 in Fig. 4.10b. Both sparse grids are normalized to the unit square
and the unit cube, respectively, and they are characterized by a refinement
level of d = 4, which corresponds to an overall number of 65 grid points in
the two-dimensional case, and 177 grid points in the three-dimensional case.
For reasons of comparison, the original grids that result for the general trans-
formation method with input parameters of the symmetric triangular form
p; = tfn(0.5,0.5,0.5), i = 1,2, are plotted in Fig. 4.11. Using a decomposition
number of m = 5 in both cases, Fig. 4.11a is based on n = 2 independent
model parameters, and Fig. 4.11b on n = 3 parameters. This corresponds to
an overall number of 91 grid points in the two-dimensional case, and 441 grid
points in the three-dimensional case.

The convenience of piecewise multilinear sparse-grid interpolation for the
implementation of the transformation method is especially useful because the
approximation of the model function, using incrementally refined sparse grids,
can be carried out beforehand, independently of the version and the actual
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Fig. 4.10. Clenshaw-Curtis sparse grids with a refinement level of d = 4: (a) n = 2
dimensions; (b) n = 3 dimensions.
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Fig. 4.11. Original full grids for the general transformation method with symmetric
triangular input parameters p; = tfn(0.5,0.5,0.5), ¢ = 1,2, and a decomposition
number of m = 5: (a) n = 2 parameters; (b) n = 3 parameters.

settings of the transformation method to be applied. This proves particularly
advantageous if the model function exhibits significantly favorable characteris-
tics in terms of multilinear interpolation, such as a high degree of smoothness
or a natural multilinear behavior. In such cases, a highly accurate approx-
imation of the model function may already be achieved for a low level of
refinement, corresponding to a small number of model evaluations, and the
original grid points of the transformation method can be computed at fairly
low cost. Since the procedure of interpolation is usually less time-consuming
than the evaluation of the model for additional grid points, the sparse-grid
approach succeeds particularly when large-scale real-world problems and high
decomposition numbers m are considered. Nevertheless, if the model func-
tion does not exhibit a sufficiently smooth behavior, the sparse-grid approach
may require a high level of refinement to guarantee a predefined accuracy
of interpolation, and its advantage over the direct evaluation of the original
transformation method may no longer exist.
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Additions to Fuzzy Arithmetic

5.1 Uncertainty Processing with Fuzzy Arithmetic

As extensively discussed by KLIR AND WIERMAN [88], uncertainty can ba-
sically be considered the result of some information deficiency. That is, the
information to form the basis of a certain model may be incomplete, impre-
cise, fragmentary, not fully reliable, vague, or contradictory. As a matter of
principle, these various information deficiencies are associated with different
types of uncertainty, which can be measured and processed by different well-
established theories, such as classical set theory, fuzzy set theory, probability
theory, possibility theory, and evidence theory [88]. However, with respect to
the scope of this book, we will restrict ourselves to the types of uncertainty
that are prevalent in the engineering sciences: imprecision and — appearing
less commonly — vagueness. In this connection, we can distinguish between
two major categories of uncertainties: unintentional uncertainties, which arise
due to partial lack or complete absence of information, and intentional un-
certainties, which are usually the consequence of simplification. Some typical
examples of these uncertainties are listed in the following:

Unintentional uncertainties

e Scatter or variability of the model parameters, such as material properties
or geometry parameters, arising due to irregularities in the material or
defects of fabrication.

o Measurement noise or other unmodeled disturbance signals that impair
the identification of model parameters.

e Vagueness, which is, for example, present if verbal characterizations of
parameter values are to be incorporated, such as the boundary condition
‘nearly clamped’ or the initial condition ‘high velocity’.

o Idealization, which is always inherent in modeling procedures when real-
world systems are represented by mathematical models that usually ac-
count for the predominant physical principles only.
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Intentional uncertainties

o Simplification of models for various reasons and purposes, such as the at-
tainment of analytical solutions, the reduction of simulation time, or the
applicability of existing theories, accomplished by well-established meth-
ods, such as linearization or harmonic balance.

Traditionally, two methods of representing uncertainty in terms of imprecision
have become important [34]: probability theory and interval computation. The
former method attempts to model uncertain parameters as random variables,
while the latter tries to represent the ranges of imprecision by classical sets. A
novel strategy, which we focus on in this book, is to quantify uncertain model
parameters by fuzzy numbers and to trace the propagation of the uncertainties
through the systems by using fuzzy arithmetic.

The advantages of this approach over the method of interval computation
are evident. In addition to the effect of overestimation, which emerged as
a major drawback of interval arithmetic, the representation of the ranges
of values of imprecise model parameters by classical sets acts contrary to
the predominant perception of imprecision. In fact, it is considerably better
suited to allow for fuzzy bounds and to express parametric imprecision by
fuzzy numbers, which take on the worst-case interval if a certainty level of
zero is considered, and the crisp modal value if a hundred percent certainty
can be assumed.

Using the theory of probability, the uncertain model parameters are rep-
resented by random variables and quantified by probability density functions.
The computation of the probability density function of the model outputs is
then usually performed in a numerical way by using Monte-Carlo methods.
That is, the models are evaluated for a large number of combinations for the
parameter values, generated randomly according to the predefined distribu-
tions. However, for the types of uncertainties listed above, the application of
probability theory is often not reasonable or correct. In case of measurement
noise or scatter of the model parameters, the use of probability theory and
Monte-Carlo simulation may be indicated, provided that one is actually in-
terested in the probability distribution of the model output, such as for the
calculus of reliabilities. Alternatively, if uncertainty has its origin in idealiza-
tion or simplification, the use of probability theory is not reasonable, and in
the case of vagueness, it is even incorrect. In fact, vagueness in verbal char-
acterization gives the classical motivation for the introduction of fuzzy sets
and their labeling by linguistic terms (see Chap. 1). The cases of idealiza-
tion or simplification are always present if complex real-world systems are
addressed and either unintentionally or intentionally represented by idealized
or simplified models, respectively. This coarse modeling can, metaphorically
speaking, be regarded as some loosely-fitting clothing in contrast to custom-
made garments, which symbolizes sophisticated modeling. Thus, being aware
of the generally coarse structure of most models, it appears reasonable to ac-
count for this imprecision by widening the range of a model parameter from
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a purely crisp to a fuzzy one, corresponding to the freedom of movement in a
loose fit. This definition proves consistent with ZADEH’s perception of a fuzzy
restriction [134, 135, 136, 137], acting as an elastic constraint on the values
that may be assigned to a certain variable. Moreover, a fuzzy restriction can
be interpreted as a possibility distribution, which is associated with a fuzzy
variable in the same manner as a probability distribution is associated with a
random variable [138]. More explicitly, if £; is a variable taking the values z;
in R, and p; is a fuzzy number defined by the membership function pg, (z;),
z; € R, a proposition of the form ‘¢; is p;’ induces a possibility distribution
II¢, (z;) which gives the possibility of ¢; taking the value z; to pp, (z;) — the
compatibility of z; with p;. Thus, fuzzy arithmetic, based on fuzzy numbers
and on the max-min property of the extension principle, provides a natural
basis for the calculus of possibilities.

Against this background, it appears reasonable to likewise employ fuzzy
arithmetic in those cases where imprecision is present in the form of scatter
and variability, or noise and disturbances. As a promising alternative to prob-
ability theory or Monte-Carlo simulations, the use of the possibilistic approach
features a couple of promising characteristics:

e Possibility measures often comply much better with the human perception
of quantifying imprecision than measures of probability. This is imposingly
expressed by the intrinsic fuzziness of natural language that is used to
verbally quantify imprecise information.

e In practical applications, the possible ranges of output variables, including
the worst-case scenarios of model simulations, are more often in demand
than statements about probabilities, which are rather ill-suited for this
purpose (see Example 5.1).

e For the calculation of expedient curves for the membership functions of
output fuzzy variables, significantly fewer evaluations of the models are
usually required compared to the computation of meaningful curves by
means of Monte-Carlo simulations (see Example 5.1).

e If the possibilistic approach of fuzzy arithmetic is used to incorporate im-
precision in the form of scatter or noise rather than the probabilistic one,
the overall effect of all the uncertain model parameters together — even
though being of different origin — can be determined in one single simu-
lation run. Moreover, a simultaneous analysis of all the model parameters
with respect to the influence of their uncertainty on the overall uncer-
tainty of the model output can be performed using the analysis part of the
transformation method.

Ezample 5.1. Let us recall Example 4.7 and consider the functional expression
z = f(z1,22,73) = sin(z1) + 227 — z3 , (5.1)

which shall be evaluated for both fuzzy-valued arguments and random num-
bers. In the first case, the problem is given by
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q = f(P1,D2,Ps) = sin(p1) + p3 — Ps , (5.2)

where the fuzzy-valued arguments p;, p2, and ps are defined by fuzzy numbers
of symmetric quasi-Gaussian shape according to
T

o =gt (LT .
D1 gn(37959)7 (53)
P2 = gfn*(0.5,0.5,0.5) , (5.4)

. (5.5)

’373
as shown in Fig. 5.1a. The corresponding fuzzy-valued output ¢, plotted in
Fig. 5.1b, can be calculated by means of the transformation method in its
extended form with @ = 2 (see Example 4.7). This requires 1,012 evaluations
of the functional expression in (5.1) if a decomposition number of m = 10 is
used and advanced concepts of efficient implementation (see Sect. 4.4) are not
considered.
In the second case, the problem can be formulated by

ps =gfn™(3

q = f(p1,p2,p3) = sin(p1) +pi — ps , (5.6)

where p1, p2, and ps are random variables that are assumed to be normally
distributed with the mean values mi, ms, and mgs, as well as the standard
deviations o1, 02, and o3, given by

T

pr1: mlzg, 0125, (5.7)

P2 mo = 0.5 y 09 = 0.5 y (58)
1

p3 m3 =3, 03 =3 (5.9)

To numerically evaluate the expression in (5.6) by Monte-Carlo simulation,
a set of 10,000 samples is generated for each of the random variables p;, po,
and ps. They can be plotted as normalized histograms ¢y, (z;) (Fig. 5.2a),
satisfying in a discretized way the consistency condition of probability theory

/gopi(zi)dzi =1, i=1,2,3. (5.10)

The resulting histogram ¢ (z) for the output g of the functional expression is
shown in Fig. 5.2b.

As can be seen from Figs. 5.1 and 5.2, the computation of a meaning-
ful histogram by Monte-Carlo simulation to estimate the probability density
function of the output ¢ requires considerably more evaluations of the model
function than the possibilistic approach based on fuzzy arithmetic. Further-
more, the possibilistic approach proves to be significantly better suited to de-
termine the worst-case ranges of the output than the probabilistic one. This
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is mainly due to the characteristic property of probability theory that uses
the algebraic product operator for the conjunctive combination of probabili-
ties. By this, combinations of parameter values for the marginal cases of low
probability — which do not necessarily exhibit a low possibility — are almost
ignored in the overall simulation of the model. This effect is intensified if the
number of uncertain arguments is increased.

a 1.0[ N ‘ b 1.0
pi; (Ti) b po D1 D3 | pg(z) | q
0.5] ] 0.5+
0.0 0.0 . . . . . .
-1 0 1 2 3 4 -4 -3 -2 -1 0o 1 2 3
z; z

Fig. 5.1. Membership functions of (a) the fuzzy-valued arguments pi, p2, and p3,
and (b) the fuzzy-valued output ¢, using the extended transformation method with
7 =2 and m = 10 (total number of function evaluations: 1,012).

a 14 b 14
Pp; (T4) Pq(2) |
1.0 1.0t
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06 P2 0.6f
0.2 0.2+

0.0l WL N 0.0 ‘ ‘ ‘ ‘

—1 0 1 2 3 4 -4 -3 -2 -1 o0 1 2 3
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Fig. 5.2. Histograms of (a) the random arguments p1, p2, and p3, and (b) the ran-
dom output ¢, using a Monte-Carlo simulation (total number of function evaluations:
10,000).

Finally, as regards the definition of appropriate membership functions
L5, (2:), z; € R, of the uncertain parameters p;, ¢+ = 1,2,...,n, of a spe-
cific model, a universally valid instruction cannot be provided. In fact, the
actual approach is fairly dependent on the type of uncertainty that is to be
represented by the fuzzy number. Usually, the fuzzy-parameterized models
originate from initially crisp models where the crisp-valued model parameters
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stem from either reasonable assumptions or preliminary identification proce-
dures. These crisp values will be adopted as the modal values of the fuzzy
numbers to be defined. In case of vagueness, idealization, simplification, or
noise, the shape and spread of the fuzzy numbers are usually governed by
the individual perception of the expected imprecision or by expert knowledge,
associated with the incorporation of physical laws or constraints. In case of
scatter or variability, statistical information of preceding identification pro-
cedures or available measured data can be included in the form of frequency
distributions. DUBOIS AND PRADE [33, 34] formulate a correspondence be-
tween histograms and possibility distributions that can serve as a direct basis
for the definition of membership functions. For practical purposes, however,
it is usually sufficient to normalize the existing frequency distributions to a
maximum value of unity and to define appropriate membership functions as
the envelopes of the normalized histograms.

5.2 Inverse Fuzzy Arithmetic

As pointed out in Sect. 5.1, the fuzzy numbers which occur in the govern-
ing equations of fuzzy-parameterized models can be interpreted as numerical
representations of uncertainties of different origin. Basically, the uncertainties
in the model parameters can be classified and assigned to different groups
according to their type of origin. As long as uncertainty arises due to vague-
ness, scatter, or variability, the fuzzy-valued model parameters can usually
be pre-defined without major problems. This can be achieved by incorporat-
ing histograms of measured data or a priori expert knowledge, such as the
tolerances of the manufacturing process in case of varying material proper-
ties. In case of idealization or simplification, however, the uncertainties in
the model parameters usually reflect effects or dynamics that have uninten-
tionally not been taken into account during the modeling procedure or have
intentionally been neglected as a consequence of simplification. Normally, the
membership functions of those parameters cannot be defined in a direct way.
In fact, they need to be identified on the basis of the fuzzy-valued output sig-
nals of the model with their membership functions derived from experimental
data [68, 69]. The solution to this problem proves non-trivial and requires the
application of inverse fuzzy arithmetic. To this end, a novel approach will be
presented in the following, which was originally proposed by HANSS [59].

In accordance with the definitions in Sect. 4.1, a fuzzy-parameterized
model shall, in general, be expressed by a system of equations of the form

(71 = Fl(ﬁl:ﬁ27"':ﬁn) )

D= (5.11)
qN:FN(ﬁl)ﬁZa"':ﬁn) .
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As a pre-condition for the application of inverse fuzzy arithmetic, the in-
vertibility of the system, i.e., its unique solution for the uncertain model pa-
rameters p;, ¢ = 1,2,...,n, has to be guaranteed. For this reason, in the
following, we shall consider only those models where the output variables
qi,Q2,---,qn are strictly monotonic with respect to each of the model pa-
rameters pi, ps, ..., Pn. This allows the uncertain model to be simulated and
analyzed by simply applying the transformation method in its reduced form
and by also omitting the recursive elements in the final step of retransforma-
tion.

Considering the structure of the fuzzy-parameterized model defined in
(5.11), the main problem of inverse fuzzy arithmetic lies in the identification of
the fuzzy-valued model parameters py, po, ..., D, on the basis of given values
for the output variables q1,¢s,...,qn. In the case N < n the identification
problem is under-determined, while its solution requires the application of an
optimization procedure for N > n. However, in the following, only the case
N = n shall be considered, where the number of available output variables is
identical to the number of uncertain model parameters.

At first glance, the solution to the inverse fuzzy arithmetical problem ap-
pears to be rather straightforward and easy to achieve — at least for linear
systems: The model equations are solved for the parameters p1,Ds,-- -, Pn,
and the inverted model is evaluated by means of the transformation method
with q1,¢2,...,q, as input variables. This procedure, however, clearly fails
and leads to a significant overestimation of the fuzziness of the model param-
eters p;, i = 1,2,...,n (see Example 5.2). The reason for this failure can be
seen in the fundamental pre-condition of the transformation method, which
requires its fuzzy-valued input parameters to be strictly independent, that
is, to independently initiate the overall uncertainty in the system by uncer-
tain parameters of different origin. Of course, this condition can never be
fulfilled for the inverted model equations because all the input parameters g,
r =1,2,...,n, of the inverse evaluation feature a functional dependency on
the model parameters p;, i = 1,2,...,n, governed by (5.11).

To successfully solve the inverse fuzzy arithmetical problem, the follow-
ing scheme can be applied, consisting of an appropriate combination of the
simulation and the analysis part of the transformation method:

1. Determination of the modal values Z1,Ts, . .., Zn:

Owing to (5.11), the modal values Z; = core(p;) of the real model param-

eters p;, i = 1,2,...,n, and the modal values Z,, = core(g,) of the output
variables ¢, r = 1,2,...,n, are related by the system of equations
Z1 = Fl(fl,EQ, - ,fn) s
P =l (5.12)
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Starting from the n given values Z,. of the inverse problem, the n modal
values z; = core(”p?}) of the yet unknown fuzzy-valued model parameters 1:51»,
i=1,2,...,n can be determined either by analytically solving (5.12) for
T;, ¢t =1,2,...,n, as can easily be done for linear systems, or by numeri-
cally solving the system of equations using a certain iteration procedure.

Computation of the gain factors:

For the determination of the single-sided gain factors ngl and n(j ) the

ri—>

model has to be simulated for some assumed uncertain parameters p;,

i = 1,2,...,n, using the transformation method in its reduced form.
The modal values of p; have to be set to the just computed values Z;,
1 =1,2,...,n, and the assumed fuzziness should be set to a sufficiently

large value, so that the expected real range of uncertainty in 51 is covered.

Assembly of the uncertain parameters 51,52, e ,5n:

Recalling the representation of a fuzzy number in its decomposed form,
the lower and upper bounds of the intervals of the fuzzy parameters p;

at the (m + 1) levels of membership ; shall be defined as @\’ and b\,
and the bounds of the given output values g, as ¢’ and dg] ). The interval

bounds dgj ) and ng ), which finally provide the membership functions of
the unknown model parameters p, ¢ = 1,2,...,n, can then be determined

on the basis of (4.45) through

_(vlgj) | _il | [ ng) — 21
b7 7 d? -7
é,g]) %2 ng) — 22
W) | = | % | +HOT | dY) — 2 (5.13)
aly) T & -z,
Rk 4 7,
with G | o) ()
Hiy | Hiy | | Hy,
| m | EG | Hy,)
HD = |—-== === === ——~— (5.14)
SRR
Hil |HZ |
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and
(4) () (4) (4)
] ]- 777‘7, 1 + sgn ’r’rz 777‘7, 1 sgn 777‘7,

HO) — ! ( (myi2)) iz ( (n,33)) ’ (5.15)
nei (1= sga(niil)) niik (1 +sga(n)))
tL,r=12,....n, J5=0,1,....,m—1.

The values dl(.m) = I;Em), i=0,1,...,n, for the membership level u,, =1

are already determined by the modal values Z;.

To verify the identified model parameters 1:51, 1:52, ceey fﬁn, the model equations
(5.11) can be re-simulated by means of the transformation method, using
51, 52, cee, pn as the fuzzy input parameters. The degree of conformity of the
resulting output fuzzy numbers q;, ¢, . - ., q,, with the original output values
q1,q2,.-.,Qn can serve as a measure of the quality of the identification.

Finally, to clarify the form of (5.13) to (5.15), the special case n = 1 shall
be considered in the following. After some minor rewriting, (5.13) and (5.14)
yield in this case

A T e B (510
& 7 by —

which, after the inclusion of (5.15) leads to
D _z, =g (dgj) —%1) : (5.17)
9=t (1 -3) 619

it nnlil >0,

and
& — 2y =), (b?) f) : (5.19)
49—z =) (vo‘) —il) : (5.20)

it kol <0

The case where 7752&- and 777(,1)_ have different algebraic signs cannot occur since
monotonicity of the outputs g, with respect to the model parameters p; has
initially been postulated for the problem.

As we can see from (5.17) to (5.20), this formulation of inverse fuzzy
arithmetic guarantees that a positive variation from the modal value Z; is
induced by a positive variation from Z; if the gain factors are positive, and by
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a negative variation from 7, if the gain factors are negative. Vice versa, this
also applies for a negative variation from Z;. Furthermore, the importance of
the single-sided gain factors can be seen from the equations; the right-hand
gain factors are assigned to positive variations from the modal values T, and
the left-hand gain factors to negative ones.

Finally, it is worth mentioning that the existence of a solution for the
inverse fuzzy arithmetical problem cannot be guaranteed in every case. Being
aware of the fact that the fuzzy-valued model outputs q,., » = 1,2, ...,n, which
serve as the inputs of the inverse problem, are determined by the transfer
characteristics of the model, prescribed by the functions F1, Fs, ..., F, it is
obvious that solutions p;, i = 1,2, ..., n, to the inverse problem do not exist for
any arbitrarily chosen set of input variables ¢, r = 1,2,...,n. In cases where
no solution exists for the inverse fuzzy arithmetical problem, the problem is
referred to as ill-posed, manifestly violating the side condition of (5.13), that
is,

i <% and B >,
(5.21)
i=1,2,...,n, j=0,1,....m—1.
Ezample 5.2. We consider a model of order n = 2 which is linear with re-
spect to its fuzzy-valued model parameters. It is given by the fuzzy rational
expressions

¢ =Fi(p1,p2) = —4p1 + D2, (5.22)
q> = F>(p1,02) =3p1 — 22, (5.23)

which can be rewritten in the matrix form

~ 4 1115
[,q}} = { } [31] . (5.24)
P 3-2] [p2
———r
A
To provide model outputs q; and g2, which will serve as the input values for

the subsequent inverse problem, the model shall be evaluated for the model
parameters

P1 = gfn*(1.0,0.05,0.05) and P> = tfn(2.0,0.3,0.2) , (5.25)

as shown in Fig. 5.3a. That is, the model parameter p; is defined as a fuzzy
number of quasi-Gaussian shape with the modal value T; = 1.0 and the
standard deviation o3 = 5% T = 0.05, and p» is given by a linear fuzzy
number with the modal value To = 2.0 and the worst-case deviations s, =
15% %> = 0.3 to the left-hand side, and asgr = 10%T> = 0.2 to the right-
hand side, respectively. As a result of the evaluation of the fuzzy rational
expressions, we obtain the fuzzy-valued outputs ¢; and g» with the modal
values z; = —2.0 and Z» = —1.0, as plotted in Fig. 5.3b.

From the general scheme of inverse fuzzy arithmetic introduced above, we
derive the following results for the present example:
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1. Modal values Z; and Zo:

Based on the modal values Z; = —2.0 and Z; = —1.0 of ¢; and ¢>, we can
determine the modal values Z; and Z» by means of (5.24) through

T . [z 1
A = . 5.26
Lz} {EJ {2} (5.26)
2. Gain factors 7,4+ and 7,,—, &, = 1,2:

As a result of the analysis of the system, using the reduced transformation
method, we achieve the following gain factors:

ny =ni = —40, i =n = 10
) () () () (5.27)
772J1+ = 772]1— = 30 772]2-4- = 772]2— = =20,

j=0,1,...,m—1.

Due to the simplicity of the model being considered, and the presence
of an analytical form, the correctness of these numerically obtained gain
factors can easily be verified. Furthermore, as a characteristic property
of linear systems, the identity of the left-hand and the right-hand gain
factors as well as their independence of the membership level u; can be
observed.

3. Assembly of 51 and 52:

The unknown model parameters 51 and 52 can finally be assembled on the
basis of (5.13) to (5.15), where the matrix H7) in (5.14) is determined by
the results of (5.27) as

0 -4 | 1 0
-4 0 | 0 1
HD = | e o —— |, j=0,1,...,m—1. (5.28)
3.0 | 0 —2
0 3 | —2 0

Since the original model parameters p1 and pp are known for this example,
the estimated model parameters p; and p. p2 can directly be compared to the
original ones. It shows that the membership functions of both the original
and the estimated model parameters are identical (Fig. 5.3a), and an extra
re-simulation of the system for the purpose of comparing the original and the
re-simulated output variables is not required. To illustrate the disadvantage
of directly evaluating the inverted model equations (5.26) with ¢; and ¢» as
the fuzzy-valued input parameters of the transformation method, the overes-
timated results py’ and psy for the model parameters p; and p», obtained by
this method, are also plotted in Fig. 5.3a.
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a 1.0

pii (@) | pa, (zr) [ @

0.5f 0.5¢

0.0

Zr

Fig. 5.3. (a) Original model parameters p1 and p2 (solid line), estimated parameters
p; and p, (identical to p1 and p2), as well as overestimated parameters p; and py
(dashed line); (b) fuzzy-valued outputs g1 and go.

Ezample 5.3. We consider a model of order n = 2 which is nonlinear with
respect to its fuzzy-valued model parameters. The system of equations is given
by

¢ = G1(p1,P2) = —4D7 + Do (5.29)

g2 = G2(p1,p2) =3p1 —2 /D2 - (5.30)

To provide output values q; and g», the model shall be evaluated for the same
parameters p; and p» as defined in Example 5.2, that is, for

P1 = gfn*(1.0,0.05,0.05) and P> = tfn(2.0,0.3,0.2) , (5.31)

plotted in Fig. 5.4a. The resulting output values g; and g2 of the model are
shown in Fig. 5.4b.

Again we pursue the general scheme of inverse fuzzy arithmetic, which for
this example is as follows:

1. Modal values Z; and Zo:

Based on the modal values z; = —2.0 and z» ~ 0.1716 of ¢; and ¢2, we
can calculate the modal values Z; and T» by means of (5.29) and (5.30)
either through iterative solution or directly through

. 1

T, = - (2\/4222 — 77 — 3@) , (5.32)
~ 1 =2 ~ _ _2

T2 =g (93:1 —67T1Z —|—z2) . (5.33)

2. Gain factors 7,4+ and 7, &, =1,2:

As a result of the analysis of the system using the reduced transforma-
tion method, the gain factors can be achieved. Due to the nonlinearity of
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the model, the left-hand and the right-hand gain factors are generally not
identical and not independent of the level of membership p;.

3. Assembly of 51 and 52:

The unknown model parameters 1%1 and 1V72 can finally be assembled on
the basis of (5.13) to (5.15) and the computed gain factors. For reasons of
comparlson the membership functions of the estimated model parameters
p; and p, as well as those of the original model parameters p; and p» are
plotted in Fig. 5.4a. While the membership functions are nearly identical
for the model parameter p1, those of p» show a slight difference for lower
levels of membership.

a 1.0 b 1.0
Ha (@) | Ha, (20)
.- |
0.5r = 0.5
Y21
0.0 0.0
0.5 1.0 1.5 2.0 2.5 1

Zq

Fig. 5.4. (a) Original model parameters p1 and pz (solid line) as well as estimated
parameters p; and p, (dashed line); (b) fuzzy-valued outputs g1 and go.

The approach of inverse fuzzy arithmetic can be applied to some challenging
realistic problems in mechanical and geotechnical engineering. Examples of
such extensions are given in in Chaps. 6 and 7.

5.3 Defuzzification of Fuzzy Numbers

Rather than the pure simulation of systems with fuzzy-valued parameters,
there are a number of special fuzzy arithmetical problems, such as the de-
sign of fuzzy-parameterized controllers for uncertain systems (see Chap. 9),
that require the definition of a so-called defuzzification procedure. In con-
formity with the homonymous method applied in the well-established theory
of rule-based fuzzy systems (e.g., [89]), the objective of defuzzification is to
transform fuzzy-valued quantities into meaningful crisp-valued counterparts.
To perform this task for fuzzy numbers in a practical as well as reasonable way
and by simultaneously preserving the maximum information of uncertainty,
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the defuzzification procedure can be defined in the framework of the trans-
formation method. That is, fuzzy numbers can be defuzzified directly from
their transformed representation by omitting the steps of retransformation
and recomposition in the scheme of the transformation method. Even though
the operation of defuzzification is primarily defined for fuzzy numbers in the
following, it can also be applied to fuzzy vectors of higher dimension.

When we assume a fuzzy number v, given in its transformed representation

V= {§(0>’V<1),___,‘7<m)} , (5.34)

where V@) is the array assigned to the membership level u; = j/m, the

defuzzified fuzzy number
= defuzz(v) (5.35)

shall be defined as follows, depending on the version of transformation method
applied:

e Reduced transformation method

m 2"

1 .
I — ko) (5.36)
TEE PP
e General transformation method
m m+l ]
° = k) 5.37
0 (m+1—] (m+1) ; Z Y (5:37)

e Extended transformation method

m 2 ﬁ(erl j)i

o 1 k()
VS e T T mHE Z oW (5.38)

In all cases, the value *9(/) denotes the kth element of the array V.
It can easily be verified that in the special case when V is given by the
transformed representation

<

— X = {)?50),)?51>,...,)?§m)} (5.39)

of independent fuzzy input parameter p;, ¢ = 1,2,...,n, the defuzzified value
v° is equal to the arithmetical mean over the interval centers of all membership
levels, that is,

v® = 7 = defuzz(p;) = ST D) JZ:(:) a(] + b(] (5.40)
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[0, 6] = cut,, (Bi) ,  pj = % . ji=1,2,...,m, (5.41)
I:G,EO),bEO):I = I:'I,U]i,wri] with ]wli:wri [ = Supp(ﬁl) . (542)

However, if other fuzzy-valued quantities or intermediate results within the
transformation method are considered, this relation between the defuzzified
value and the intervals no longer holds in general. Moreover, the informa-
tion encoded in the transformed representation of the fuzzy numbers clearly
exceeds that of its retransformed counterpart. Specifically, if the array V con-
tains complex-valued elements, such as for the transformed representation of
the poles of oscillatory systems, the method of defuzzification proves very
successful, for it avoids the ambiguous retransformation step in the case of
two-dimensional fuzzy vectors.

5.4 Measures for Fuzzy Numbers

For the purpose of quantifying the degree of uncertainty inherent to fuzzy
sets, a number of approaches have been proposed by various authors (e.g.,
[87, 88]). In the majority of cases, special emphasis is placed on measuring
the degree of fuzziness, which stands for the vagueness that results from the
imprecise boundaries of a fuzzy set. For example, influenced by the entropy,
as defined by SHANNON in information theory, DE LUCA AND TERMINI [93]
proposed the entropy of a fuzzy set. KAUFMANN [77] suggested an indez of
fuzziness defined as the Hamming distance between the membership function
of the fuzzy set and the characteristic function of its closest crisp set, and
YAGER [129] views the essence of fuzziness of a fuzzy set in the softening of
the distinction between the set and its complement, that is, in their non-empty
set of intersection.

As a special class of fuzzy sets, fuzzy numbers can be used to quantify
the parametric uncertainty in the framework of simulation and analysis of
uncertain systems using the transformation method. For this purpose, the
following definitions of imprecision and eccentricity of fuzzy numbers prove
to be useful measures.

5.4.1 Imprecision of Fuzzy Numbers

The (absolute) imprecision imp(v) of a fuzzy number v shall be defined as the
approximation of its (absolute) cardinality

card() = [] = / jis(2) dg = / s () da (5.43)

zeX zEsupp(v)
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according to

,_.

m—

1 .
i 7)) = — (J (5+1)
imp(v) ™ 2 [wth (VY)) + wth(V )] (5.44)
1 m—1 )
= o [wih(V®) +2 Y win (V)] , (5.45)
j=1
where V) j = 0,1,...,m, are the interval-valued elements of the decom-

posed representation V' of ¥, given by

v={voyo v, (5.46)

VO =cut, (@), p=->, j=1,2...,m, (5.47)
m

VO = [w] ,wl] with Juw{,w! [=supp(@) . (5.48)

Here, the upper and lower bounds of the worst-case interval of v; are denoted
by w;, and wy,, respectively.

From a geometrical point of view, the (absolute) imprecision imp(v) of a
fuzzy number v quantifies the area framed by the graph of the membership
function uz(z) and the z-axis, using an approximation by trapezoidal elements
between the levels of membership p;, j =0,1,...,m.

The relative imprecision imp4(v) of a fuzzy number v with respect to its
modal value T = core(v) shall be defined for T # 0 as

imp, (7) = WR@) _ imp(®) (5.49)

] core(D)

5.4.2 Eccentricity of Fuzzy Numbers

The eccentricity ecc(v) of a fuzzy number v shall be defined as the (signed)
difference between its defuzzified value and its modal value according to

ecc(V) = v° — v = defuzz(v) — core(v) . (5.50)

In the special case where v is given by an independent fuzzy input parameter
i, © = 1,2,...,n, of symmetric shape, the defuzzified value v°® of v coin-
cides with its modal value @, that is, ecc(v) = 0. Furthermore, any model
output ¢ that is characterized by a linear dependency of its model param-

eters p;, 1 = 1,2,...,n, exhibits zero eccentricity if the model parameters
feature symmetric shape. Conversely, if for symmetric model parameters p;,
i = 1,2,...,n, non-zero eccentricity of the model output ¢ is observed, the

existence of nonlinear dependencies on the model parameters can be deduced.
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As a standardized measure of eccentricity, the specific eccentricity ecc(v) of
a fuzzy number v shall be defined as its eccentricity in relation to its (absolute)
imprecision according to

ece® (5.51)
imp(v)

Ezample 5.4. Let us recall Example 3.3 or 4.2, respectively, where the fuzzy
rational expression

(@) =

9(p) =2p-p°, (5.52)

is evaluated for the symmetric linear fuzzy number
p=tMn(1.5,15,15), (5.53)

as plotted in Fig. 5.5a. Using the reduced transformation method with the
decomposition number m = 15, we obtain the fuzzy-valued output ¢ = g(p),
as shown in Fig. 5.5b. The defuzzification, as well as the calculation of the
measures of imprecision and eccentricity for both the model parameter p and
the model output ¢, yields

T = core(p) = 1.5 z° = defuzz(p) = 1.5
imp(p) = 1.5 imp_(p) = 100% (5.54)
ecc(p) = ecc(p) = 0%
= core(q) = 0.75 2® = defuzz(q) ~ 0.44
1mp(~) ~1.72 imp=(q) ~ 230% (5.55)
ecc(q) =~ —0.31 ecc(q) ~ —18% .

It is evident that the nonlinear nature of the fuzzy rational expression with re-
spect to the fuzzy-valued parameter p is reflected by the non-zero eccentricity
of the output value q.

alo[ A b 1.0
s (z) B na(z)
p q=9(p)
0.5 3 0.5¢
0.0 , 0.0l
0 1z 2 3 4 -4 -3 -2 -1 0 z1 2
xr z

Fig. 5.5. (a) Fuzzy-valued model parameter p; (b) output fuzzy number ¢ = g(p).
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Mechanical Engineering

6.1 Simulation, Analysis, and Identification of Structural
Joint Connections

Mathematical modeling, simulation, and analysis of structural joints have
recently become important and challenging topics of engineering mechanics
(e.g., [100, 102, 127]). Extensive research in this area shows that models of
structural joints are very much subject to uncertainties. These uncertainties
may arise either from identification procedures based on measured data that
can be strongly affected by noise, or as a consequence of idealization and sim-
plification in the modeling. In the ensuing, the simulation and analysis of two
structural joint models with uncertain parameters is presented: the model of a
bolted lap joint under tangential load in Sect. 6.1.1, and the model of a bolted
joint connection with the load acting in the axial direction, normal to the con-
tact interface, in Sect. 6.1.2. Finally, an approach to the identification of the
uncertain parameters of a structural joint model is presented in Sect. 6.1.3.

6.1.1 Simulation and Analysis of a Bolted Lap Joint under
Tangential Friction Load

Bolted lap joints, as illustrated in their conventional, passive form in Fig. 6.1a,
are widely-used as joint connections in mechanical and civil engineering struc-
tures. With the objective of suppressing the vibrations of large-scale space
structures, the introduction of active lap joints, as shown in Fig. 6.1b, has
proven to be a very successful approach. In this concept, a piezoelectric stack
disc is used as a washer to control the normal force on the friction interface. If
a voltage is applied to the piezoelectric washer, the stack disc tends to expand,
which, due to the constraint, results in an increase of the normal force. The
idea of using this active lap joint and its friction-induced damping property
for the semi-active control of structures has been patented by GAUL [43].

In contrast to many applications where friction is modeled by the classical
approach of Coulomb friction, a more sophisticated state-variable model is
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a ‘ friction b | friction
| / interface w / interface
g |

piezoelectric
stack disc

voltage

Fig. 6.1. (a) Conventional, passive bolted lap joint; (b) active bolted lap joint with
piezoelectric washer.

used to describe the friction behavior between the two sliding surfaces in the
interface of the bolted lap joint. Explicitly, the model is given by a modifi-
cation of the so-called Lund-Grenoble (LuGre) model [23], where the friction
interface is thought of as a contact between bristles (Fig. 6.2). This model has
been designed to reproduce the characteristic friction phenomena over a wide
range of operating conditions and has especially been applied to express the
nonlinear transfer behavior of the active joint connection [46, 47, 101]. The
governing equations of the model are

M =7 FxN (0090+01¢+029), (61)
:u(;@é)
¢:9—Uo ﬂ(p) ‘10(0) = %o , (62)
g(0)
. . . 2
9(0) = Fo + Fa exp [~ (8/65)°] (6.3)

where Mg is the frictional moment and 6 the relative angular sliding velocity
at the friction interface. The average deflection of the bristles is expressed
by the internal variable ¢, with its dynamic behavior given by the evolution
equation (6.2). The normal force acting between the sliding surfaces is de-
noted by Fy, and the variable u, defined in (6.1), can be interpreted as a
state-dependent friction coefficient. The parameter F¢ gives the level of the
Coulomb friction, and the sum Fg + Fa corresponds to the stiction force. The
so-called Stribeck velocity fs determines the variation of g(9) between the
Coulomb friction Fg and the stiction force Fo + Fa in terms of the angular
sliding velocity 6. Finally, the stiffness of the bristles is expressed by o, while
o1 and o9 quantify the dependency of friction on the velocity.

The model parameters Fo, Fa, 09, 01, 02, as well as the effective bristle
radius 7 and the Stribeck velocity fs have to be identified from scratch for
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—

=

Fig. 6.2. Model of the friction interface.

each specific problem on the basis of experimental data. It shows that an exact
definition of these model parameters can rarely be achieved, and the provision
for uncertainty is well indicated [44, 127].

For the simulation of the uncertain friction model, the parameters Fc, Fa,
09, 01, 02, 7, and fs are considered as n = 7 independent model parameters,
represented by symmetric quasi-Gaussian fuzzy numbers p; of the form

5i:gfn*(fiao'iao'i)7 'L.:1,2,...,TL. (64)

The modal values T; of the fuzzy parameters are set to the values listed in
Table 6.1, and the standard deviations o; are defined as

o; =3%%T;, i=1,2,...,n, (6.5)

for each parameter, corresponding to a worst-case deviation of £9% from the
modal values. The normal force Fy is kept at a constant value of Fy = 98N,
and the initial condition for ¢ is set to g = 0. Finally, the movement of the
sliding surfaces is described by the relative angle 6(¢), which is assumed to be
given by .

0(t) =0 sin(2w f t) (6.6)

with the amplitude 6 = 2-10~"rad and the frequency f = 10 Hz. These spec-
ifications for the model parameters result from the identification procedure
described by WIRNITZER [127]. For other parameter settings, based on the
experiments of NITSCHE [100], the results of the simulation and the analysis
of the uncertain friction model can be found in [62].

Since non-monotonic behavior is likely to appear as a consequence of the
nonlinear elements in the model equations (6.1) to (6.3), the uncertain fric-
tion model should be simulated and analyzed using an appropriate form of the
transformation method. In contrast to the universally valid general form, the
transformation method can be applied in its extended form to significantly
reduce the computational costs of the simulation. In anticipation of the results
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Table 6.1. Settings for the modal values of the uncertain model parameters.

Parameter Modal value Dimension
pL=T T1 = 0.011 m

P2 = 0o To=6.5-10"  rad!

p3 =01 T3 = 0.02 srad™!

Pa = 02 T4 =0.01 srad !

ps = Es zs = 0.02 rads™!

pe = Fo T = 0.49 —
pr=Fa Z7 = 0.08 —

of the analysis of the model, it shows that upon evaluating the classification
criterion (4.74), only two out of the seven model parameters need to be con-
sidered as type-g-parameters. The remaining five parameters can be regarded
as type-r-parameters, so that the extended transformation method can be
applied with the setting 7 = 2.

As a result of the simulation of the model with a decomposition number
m = 10, the uncertain frictional moment q(t) = M¢(t) can be obtained as
the fuzzy-valued output of the model. It is plotted against time in Fig. 6.3,
featuring contour lines for the membership levels u = 0.0 to u = 1.0 in steps
of Ay = 0.2. Note that the line for 4 = 1.0 is identical to the result one would
achieve if only the modal values were considered as crisp settings for the
model parameters. To avoid undesirable effects and irregularities due to the
arbitrarily chosen initial condition g for the deflection ((¢) of the bristles, the
output value ]\Z(t) is plotted for a period of oscillation that starts at ¢ = 0.1,
instead of ¢ = 0.0s. Furthermore, to highlight the relationship between the
uncertain frictional moment M¢(t) and the movement of the sliding surfaces,
the relative angular sliding velocity 6(¢) is also shown in Fig. 6.3. Finally, the
uncertain frictional moment M¢(t) is plotted against the angle 6(¢) in Fig. 6.4,
showing the characteristic hysteresis curves with the membership grade i as
the contour parameter in steps of Ay = 0.2.

On closer examination of Fig. 6.3, we observe that the absolute value of the
overall uncertainty of the frictional moment M;(t) is relatively constant over
a long period of time and decreases during the phase of diminutive angular
velocity 6(t). Concentrating on two points in time, ¢t; = 0.13s and t2 = 0.16s,
which prove characteristic for the actual operating phase of the system, the
membership functions of the uncertain frictional moments Mf(tl) and M¢(t2)
at these points are plotted in Fig. 6.5 with a resolution of Ay = 1/m = 0.1
for the p-axis. The worst-case ranges of uncertainty amount to about 0.16 Nm
at the time ¢; and to about 0.22 Nm at the time ¢5.
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Fig. 6.3. Contour plot of the uncertain frictional moment M;(t) (solid line) with
the membership grade p as contour parameter in steps of Ay = 0.2 relative angular
sliding velocity 0(t) (dashed line).

0.0

—0.8 n n n n n n n

2.107% 0.0 —_92.10"4%
0/rad

Fig. 6.4. Contour plot of the hysteresis curve for the uncertain frictional moment
M;(0) with the membership grade p as contour parameter in steps of Ay = 0.2.

Another remarkable conclusion which can be drawn from Fig. 6.5 is that
the fuzzy-valued results M¢(t;) and Me(t2) do not show a significantly strong
variation in shape when compared to the original symmetric quasi-Gaussian
shape of the uncertain model parameters p1,ps,...,p7. We can conclude that
the nonlinearities in the model only have a moderate effect on the frictional
moment under the given operating conditions.

For the friction model under discussion, the results of the analysis of the
model are, however, considerably more revealing than those of the pure model
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Fig. 6.5. Membership functions of (a) the uncertain frictional moment M(tl) at
t1 = 0.13s and (b) the uncertain frictional moment M¢(t2) at t2 = 0.16s.

simulation. As is evident from an evaluation of the degrees of influence p;(t),
i=1,2,...,7, only three out of the seven uncertain model parameters show
a significant influence on the uncertain frictional moment, two of them have a
very moderate and almost negligible impact, and the influence of the remain-
ing two parameters cannot be noticed at all. Explicitly, the uncertain model
parameters p1 = 7 (Fig. 6.6a), p» = do (Fig. 6.6b), and ps = Fc (Fig. 6.8a)

exhibit a significant influence, the parameters ps = 6s (Fig. 6.7b) and p7 = Fa
(Fig. 6.8b) have only a very moderate impact, and the influence of the pa-
rameters pg = 01 and py = oo (Fig. 6.7a) is approximately zero and can be
neglected. Focusing on the parameters of significant importance, the influence
of p1 = 7 and pg = F¢ are both of roughly the same extent when the bolted
joint connection is run in its sliding mode. However, as soon as the relative
sliding velocity 6 becomes zero, the sticking effect can be observed before the
frictional state changes to the sliding mode again. During this sticking phase,
the influence of p;1 = 7 and pg = F¢ decrease while the influence of p» = oy
increases. These conclusions have been verified by a number of measurements
for real experimental set-ups of the bolted joint connection, as described in
[44, 127].

The results of the fuzzy arithmetical analysis of the model are of partic-
ular importance for a practical realization of the identification of the model
parameters (see also Sects. 6.2 and 8.2 or [63, 67]). In order to obtain reliable
results for the identification of the parameters r and Fg on the basis of mea-
sured data for the frictional moment M;, the measurements from the sliding
mode should primarily be taken into account. However, to identify the param-
eter oy, only measurements obtained during the sticking mode will provide
meaningful results. The identification of the parameters fs and Fa — prefer-
ably carried out for sliding-phase data — is expected to be rather difficult,
and any identification of the parameters o; and o2 under the given operating
conditions can be considered as an unproductive exercise.
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Fig. 6.6. Degrees of influence p;(t) (solid line) of the uncertain parameter p; and
relative angular sliding velocity 6(¢) (dashed line): (a) p1(t) of p1 =75 (b) p2(t) of
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Fig. 6.7. Degrees of influence p;(t) (solid line) of the uncertain parameter p; and
relative angular sliding velocity 0(t) (dashed line): (a) ps(t) and p4(t) of p3 = o1

and ]74 = 52; (b) ps(t) Ofﬁ5 = és.
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Fig. 6.8. Degrees of influence p;(t) (solid line) of the uncertain parameter p; and
relative angular sliding velocity 6(t) (dashed line): (a) ps(t) of ps = Fc; (b) pr(t)
Of 57 = FA.
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6.1.2 Simulation and Analysis of a Bolted Joint Connection under
Axial Load

As another problem in structural dynamics, we consider a bolted joint con-
nection where the load acts normal to the contact interface. Specifically, we
examine a model as it is used to describe the dynamic behavior of two rods
that are connected in the axial direction by a threaded bolt, as illustrated in
Fig. 6.9. In this problem, we encounter a number of hard-to-model or even
completely unknown effects that have significant influence on the damping
behavior and on the stiffness of the joint. For the damping, there is friction
in the screw thread, gas pumping or impact-induced damping in local micro-
gaps between the surfaces of normal contact, and material damping at the
asperities of the contact surfaces resulting from non-linear processes including
plastic deformation. On the other hand, the stiffness of the joint is very much
influenced by the quality of the contact surfaces, that is, by factors such as
hardness, roughness, and waviness, as well as by their shape and their relative
position. Finally, when considering the large-scale production of mechanical
components, there is always a high degree of uncertainty due to scatter of the
material properties and geometry parameters.

threaded bolt

Fig. 6.9. Two rods connected in the axial direction by a bolt that exerts a force
normal to the contact interface.

When integrating joint models into more complex and higher-dimensional
systems, the use of simpler models of low complexity is preferred. For this
reason, the connected rods shall be modeled by one-dimensional continua,
and the joint by a standard linear solid. This results in a three-parameter
solid model with one damping parameter d and two stiffness parameters k;
and ko, as shown in Fig. 6.10. It is obvious, of course, that various effects are
not covered by this simplified joint model, and they might express themselves
by a nonlinear behavior or by some time-dependency of the model parame-
ters. Consequently, the provision for only crisp-valued model parameters does
not seem to be sufficient, and the use of fuzzy-valued model parameters is
indicated to compensate for the simplification of the model.

Considering the connected rods as one-dimensional continua, we can make
use of the method of transfer matrices [105, 123] to formulate the relationship
between the Fourier transforms Ny, (w) and Ng(w) of the normal forces Ny, (t)
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UL joint |

Fig. 6.10. Connected rods with a three-parameter joint model.

and Ng(t), and the Fourier transforms Ur, (w) and Ugr (w) of the displacements
ur,(t) and ug (t) at the outer ends of the rods. The resulting formulation can be
used as a model for steady-state vibration tests that are carried out by means
of the experimental set-up shown in Fig. 6.11. In these frequency sweep tests,
the connected rods are excited by a shaker that provides a time-harmonic
normal force with an adjustable angular frequency w = 27 f at the left-hand
end of rod 1, and the displacement arising at the right-hand end of rod 2 is
measured with a laser vibrometer [102]. As the transfer model we obtain

UL (w) _ a11(w) a12(w) | | Ur(w) (6.7)
N, (w) a1 (w) azz(w) | | Nr(w) .
with
a11(w) =cos (way) cos (was) (6.8)
cos(wai) cos(way)  sin(wai) .
_ [ e it ied o h ] w B2 sin (was)
ot 22l e ”
[cos (wai) cos(war) sin(way)
+ L kg + kl -f—l(dd_'_ Ldﬁl :| COS((JJCYZ) ’
as1(w) = — w P sin (way) cos (was) (6.10)
(wpisin(war)  wpisin(war) By si
+ T + Tt iwd cos(way)| wphe sin (was) ,
22(w) = — B sin (w aﬁlz sin (w as) (6.11)
_|wh siknz(wm) + wﬂkllsini(jjl) — cos (wal)] cos (was) ,

and
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o = ’2—11117 as = /2_2212, (6.12)
,81 = Al \ El P1 ,82 = A2 \/Eg pP2 . (613)

Here, the Young’s moduli of the rods are denoted by E; /,, the mass densities
by p1/2, the cross sectional areas by A, /», and the lengths of the rods by [y /».
After including the boundary condition Ng(w) = 0 for the free end of rod 2
into (6.7), the frequency response function of the system can be expressed by

_ UR((:J) _ 1
NL(UJ) (1,21((/.1) ’

G(w) (6.14)
The frequency response function G(w) is of complex value and can be written
in the form '

Gw) = A(w) e?) | (6.15)
where the magnitude A(w) gives the amplitude characteristic, and the angle
p(w) the phase characteristic of the oscillating system.

laser

shaker

vibrometer

Fig. 6.11. Experimental set-up of the frequency sweep test.

Considering the above suggestions, the stiffness parameters k; and ko as
well as the damping parameter d of the joint model shall be considered as
uncertain, forming n = 3 independent fuzzy parameters of the model. If ap-
propriate experiments are performed, the uncertain parameters can be iden-
tified by the use of inverse fuzzy arithmetic on the basis of measured data
(see Sect. 6.1.3). In the ensuing discussion, however, the parameters shall be
given by the symmetric quasi-Gaussian fuzzy numbers

P =k =gim* (&, 7% k1, 7%k1), ki =15-10"Nm !, (6.16)
Po = ko = gfn* (b2, 7% ko, 7% k2) , k2 =2.0-10°°Nsm !, (6.17)
Py =d = gfn*(d, 14% d, 14% d) , d=9-1°Nm ™', (6.18)
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which empirically proves to be a practical assumption [103]. Finally, the ge-
ometry parameters and the material properties of the rods are considered as
crisp, given by

B/ =2.108-10"" Nm~?, p1/2 = 7812kgm~? (6.19)
Ay =1.257-107°m?, li/ =0.365m . (6.20)

As a result of the simulation of the uncertain model for a frequency sweep
between
foin = 2000Hz and  fuax = 12000 Hz (6.21)

corresponding to the angular frequencies
Wnin A 12566rads™  and  wpax ~ 75398 rads™! | (6.22)

and by the use of the general transformation method with a decomposition
number of m = 15, the uncertain frequency response function G(f) can be
obtained. In the following, we focus on the uncertain magnitude A(f) of G(f)
according to (6.15), which quantifies the relation between the steady-state
amplitudes 5}{ and ]\AfL. The uncertain amplitude characteristic E( f) is plotted
in Fig. 6.12 as a contour plot for the membership values y = 0.0 and p = 1.0
as the contour parameters. Obviously, the uncertain parameters of the joint
model only have a significant effect on the first and the third eigenfrequency of
the system, considering the given frequency range. The second eigenfrequency
remains almost unaffected by the uncertainties of the joint model.

This fact becomes even clearer when we focus on the frequencies
fo = 7T000Hz and f3 = 10000 Hz, which are located near the second and
third eigenfrequency of the system, respectively. The membership functions
of the uncertain magnitudes A(f>) and A(f3) at these frequencies are plotted
in Fig. 6.13. When we calculate the relative imprecision according to (5.49)
as a measure of uncertainty for A(f,) and A(f3), we obtain

imp, [A(f>)] ~0.12% and impg, [A(f3)] ~ 30.4% (6.23)

with B _
71 = core[A(f2)] and > = core[A(f3)] . (6.24)

Thus, the values for the relative imprecision of the uncertain magnitudes E( f2)
and Z( f3) differ by a factor of about 250 from f2 to fs.

This characteristic effect, of a strong frequency dependence of the dynamic
behavior of the rods on the uncertainties of the parameters of the joint con-
nection, is based on the fact that the first and third eigenfrequencies of the
system correspond to modes where the two rods oscillate opposite in phase,
and the effective load of the joint is maximized. The second eigenfrequency,
however, corresponds to a mode where the two rods oscillate completely in
phase, and the effective load of the joint is minimized.
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Fig. 6.12. Contour plot of the magnitude A(f) of the uncertain frequency response

function G(f) with the membership grade p as contour parameter for y = 0.0 and
pn=1.0.

a 1.0 b 1.0
Iz ] Iz
A(f2) A(fs)
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A(£)/107 mN~! A(£)/107 mN~!

Fig. 6.13. Magnitudes A(f) of the uncertain frequency response function G(f): (a)
f2 = 7000 Hz; (b) f3 = 10000 Haz.

As a result of the analysis of the uncertain model, the degrees of influence
p1, p2, and p3 can be determined, which quantify the relative influence of
the uncertain model parameters p; = ki, p» = k2, and p3 = d on the overall
uncertainty of the magnitude A(f). For both frequencies f» and f3, the degrees
of influence are of approximately the same values, namely,

;1 ~5T%, ps~43% and ps; <0.01% . (6.25)

That is, the effect of the uncertain damping parameter d on the uncertainty of
the magnitude A(f) can almost be neglected. However, this conclusion only
applies to the magnitude of the frequency response function, and will not hold
if the uncertain phase characteristic ¢(f) is considered.



6.1 Simulation, Analysis, and Identification of Structural Joint Connections 159

Finally, it is worth mentioning that the simulation of the uncertain model
reveals a clear nonlinear dependency of the model output on the parameters of
the joint connection. Although the uncertain parameters have all been defined
as fuzzy numbers of symmetric shape, the membership functions of the un-
certain magnitudes A(f>) and A(f3) are significantly asymmetric, exhibiting
eccentricities of negative and positive values, respectively.

6.1.3 Identification of the Uncertain Model Parameters of a
Bolted Joint

As already formulated in Sect. 5.2, the membership functions of uncertain
model parameters cannot always be defined in a direct way, but they need to
be identified by means of inverse fuzzy arithmetic on the basis of experimental
data. This is true particularly if the uncertainty arises from idealization or
simplification during the modeling procedure, such as for the problem of a
bolted joint connection under axial load, as outlined in Sect. 6.1.2 (see [68,
103, 102]).

We consider again a system consisting of two rods that are connected in the
axial direction by a threaded bolt (see Fig. 6.9). For reasons of simplicity, this
time the joint shall this time be modeled by only one Kelvin-Voigt element,
that is, by a two-parameter model with one stiffness parameter £ and one
damping parameter d (Fig. 6.14). With regard to the presumably high degree
of simplification in this modeling procedure, the stiffness and the damping
parameter of the joint are considered as uncertain parameters k and d, which
are to be identified by an analysis based on inverse fuzzy arithmetic. This can
be accomplished on the basis of measured data for a particular eigenfrequency
f of the system and its corresponding damping ratio D.

| | | >
rod 1 (E1,p1,l1, A1)

— rod 2 (EQ,pQ,l2,A2)

— U, joint .

Fig. 6.14. Connected rods with a two-parameter joint model.

Considering the connected rods as one-dimensional continua, we can make
use of the method of transfer matrices [105, 123] to formulate the relationship
between the Laplace transforms Ni,(s) and Ngr(s) of the normal forces Ny, (t)
and Ng(t), and the Laplace transforms Uy (s) and Ugr(s) of the displacements
ur(t) and ugr(t) at the outer ends of the rods. We obtain

UL (s) :lall(s) ara(s) | [ Ur(s)

(6.26)
N (s) as1(s) aa(s) | | Nr(s)
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with
a11(s) =cosh (s ay) cosh (s az) (6.27)
cosh(sa;) sinh(say) .
Tt sd 5B s By sinh (s a2)
a12(5) :cosh (say) sinh (s az) (6.28)
s B2
[cosh (sa1) = sinh(say)
+_ F T sd + A cosh (s az)
as1(s) =sf1 sinh (say) cosh (s as) (6.29)
i - .
+ _3'81%8(;0‘1) + cosh (sal)] s B sinh (s ) ,
023(5) :,81 sinh (s @) sinh (s as) (6.30)
o)
s sinh (s ay)
[ R + cosh (s )| cosh (saz)

with the complex eigenvalue s, and with

o = '_2'_11117 062:1/2—22l2, (631)
,81 = Al \ El P1 ,82 = A2 \/ E2 pP2 . (632)

After including the boundary conditions Ny,(s) = Ngr(s) = 0 for free outer
ends of the rods, (6.26) is reduced to

as1(s)Ur(s) =0, (6.33)
which allows non-trivial solutions of the problem if a2; = 0, that is, if

s B sinh (s @) cosh (s as)

sf1 sinh (s« ) (6.34)
,&Ts(dl) + cosh (say)| s B2 sinh (saz) =0 .

For the resulting free vibrations, the complex eigenvalues s are assumed to be
of the single-degree-of-freedom form

s=—-0+iw (6.35)

with
D

V1-D2
where f are the eigenfrequencies and D the corresponding damping ratios of
the system.

w=Im(s) =27 f and &= —Re(s) = w, (6.36)
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To determine the stiffness parameter & and the damping parameter d for
a specific eigenfrequency f and its corresponding damping ratio D, (6.34) can
be solved for d and k, leading to

- 5 1 P2
~ Im(s) Im {_,31 coth (s a2) + B2 coth (s al)} ’ (6.37)
— Sﬂl ﬂz

k =Re [_,31 coth (s ap) + B2 coth (s al)} —dRe(s) . (6.38)

For the acquisition of measuring data for the eigenfrequency f and the
corresponding damping ratio D of the system, we use the experimental set-up
shown in Fig. 6.15. Two cylindrical rods of case hardened steel 16 MnCr 5
are centrally connected by a threaded bolt M 12. The geometry of the joint
is shown in Fig. 6.16, and the lengths [, /> and the diameters a, /5 of the rods
are given by

lyy =215mm and a;/, =40mm . (6.39)

The contact surfaces of the rods have been machined on a lathe, and to protect
them from fretting, a polyester washer of thickness b = 50 um is embedded
between the surfaces. The bolted joint connection is tightened by applying
a torque of M; = 25Nm. Finally, to minimize the influence of the external
bearings, the rods are suspended at 3/7 and 4/7 of their overall length.

joint laser

impact hammer .
vibrometer

Fig. 6.15. Experimental set-up of the impact excitation test.

The experiments are carried out using seven rods with presumably identi-
cal properties which are, in turn, combined in pairs. It implies that, ultimately,
21 experiments are performed, and the system is successively equipped by the
21 possible combinations of the rods, which are (1,2), ..., (1,7), (2,3), ..., (6,7).
The system is excited at one and by means of an impact hammer, while on the
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polyester washer

—— 5() —m=d

Fig. 6.16. Geometry of the bolted joint connection.

other side, the velocity is measured using a laser vibrometer. The eigenfrequen-
cies f and the damping ratios D of the natural vibrations can be determined
by analysis of the velocity signal in the time domain. In this context, only
the first longitudinal eigenmode of the system has been considered. The re-
sults for the eigenfrequency f and the damping ratio D in dependency of the
magnitude of the velocity at the ends of the rods are presented in Figs. 6.17
and 6.18. As can be observed, the eigenfrequency f and the damping ratio D
exhibit some dependency on the magnitude of the velocity, that is, a slightly
nonlinear behavior of the joint can be observed. It manifests itself in the non-
conformity of the measurements with fictitious horizontal lines in Figs. 6.17
and 6.18. However, this property can obviously be disregarded against the
effect of scatter of the measurements, that is, against the discrepancy of the
21 test which occurs as a consequence of the tolerances in manufacturing.

From additional experiments, the material properties as well as the damp-
ing ratio of the single rods can be determined. The rods show a Young’s
modulus E and a mass density p of

E=21084-10"Nm™2 and p=7812kgm™2. (6.40)

The damping ratio D* of the single rods, determined for a continuous rod of
length I; + I2 at the first longitudinal eigenfrequency, amounts to an average
value of

D*=25-107°, (6.41)

which obviously proves to be negligible when compared to the damping ratio
D of the overall system of coupled rods. For this reason, it is permissible to
consider the measured damping ratio D of the composite system as being that
of the joint connection only.

In contrast to conventional approaches where the resulting data for the
eigenfrequency f and the damping ratio D are averaged and only the mean
values are considered for further calculations, the entire information included
in the uncertainty of the measurements of f and D can now be used. For
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Fig. 6.17. Eigenfrequency f of the system in dependency of the amplitude o of the
velocity at the ends of the rods, for the first longitudinal eigenmode.
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Fig. 6.18. Damping ratio D of the system in dependency of the amplitude v of the
velocity at the ends of the rods, for the first longitudinal eigenmode.

this purpose, fuzzy values fand D are defined for the eigenfrequency and the
damping ratio, respectively, and the concept of inverse fuzzy arithmetic is ap-
plied, as introduced in Sect. 5.2. In this framework, the uncertain parameters
k and d are considered as the n = 2 independent parameters

pr=k and po=d, (6.42)

which initiate the overall uncertainty in the joint model, and fand D are the
fuzzy-valued model outputs

@ =f(k,d) and @ =D(k,d). (6.43)
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Following the concept of inverse fuzzy arithmetic, the estimations ¥ and d for
the uncertain parameters k and d can be identified according to the following
scheme:

1. Definition of the fuzzy numbers fand D:

To incorporate the overall uncertainty of the model, appropriate member-
ship functions p > 7 and pp for the fuzzy numbers f and D are derived as
envelopes of measured data in Figs. 6.17 and 6.18. Based on histograms
for the measured data, the fuzzy numbers f and D can be assumed to be
of a quasi-Gaussian shape and parameterized as follows:

f =gfn*(z; = 5745 Hz, 12 Hz, 22 Hz) , (6.44)
D =gi*(zp = 1.35-1072,0.22 - 107%,0.35 - 1073) . (6.45)

This corresponds to worst-case deviations from about —0.6% to about
+1.1% of the modal value for the eigenfrequency f, and from about —49%
to about +78% of the modal value for the damping ratio D. Although the
histogram for the measured data of the damping ratio would, strictly
speaking, allow a lower degree of uncertainty for D, the provision of a
higher degree of uncertainty is strongly recommended [102], representing
an incorporation of additional expert knowledge.

2. Determination of the motilal valges T, and Zq of the fuzzy-valued stiffness
and damping parameter k and d:
As a result of the evaluation of (6.37) and (6.38) for

s=—-0+iw (6.46)

with

w=27mZ; and 6:Z7Dw, (6.47)

V1 —Epz

the modal values Z; and Z,4 are obtained as

T~ 1.19-10°° Nm™* | (6.48)
Tq~9.14-10°Nsm™! . (6.49)

3. Computation of the gain factors:

For the determination of the single-sided gain factors 77;]/2 + ngfd) 4 ngi 4

ng()i 4> and nj(fk)_, 77](@2) , ngi_, ng()i , which quantify the influence of the un-

certainty of the model parameters Kk and d on the eigenfrequency fand the
damping ratio D at the m levels of membership p;, j =0,1,...,(m —1),

the model must be simulated for some assumed uncertain parameters k*
and d* using the transformation method in its general form. The modal
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values of k* and d* have to be set to the calculated values T, and Zg of
(6.48) and (6.49), and the assumed fuzziness should be fixed at a suffi-
ciently large value, so that the expected real range of uncertainty in k and
d is covered. In the present case, both k* and d* are chosen as symmet-
ric fuzzy numbers of quasi-Gaussian shape with a worst-case deviation of
+20% from the modal values. The gain factors can then be determined by
using the analysis part of the general transformation method to evaluate
the input/output data of the uncertain system, simulated by means of
(6.34) and (6.35).

4. Assembly of the uncertain parameters k and d:

When we define the lower bounds of the intervals of the fuzzy numbers f,
5, k and d at the levels of membership p;, 7 =0,1,...,m, as agcj), ag),

Ezgcj ) and dgj ), and the upper bounds as bgcj ), bg), lv);j ) and EElj ), respectively,

the parameters d;j ) and égj ) as well as Iv)éj ) and ng ) of the unknown fuzzy-

valued model parameters k and d can be determined according to (5.13)
to (5.15) through

() )

i T Y | HY) i
pla) = Ik fd p) _ 5
L I e I foo (6.50)
40 = G _ 5o '
wgwg | |
bg]) éd b(D]) ZD
with
o 1 n$)_[1+sgn(n))] 0, [1—sgn(nf),)] 651)
fk — o . . . . ) .
2 [ %) 1 —sen(m¥) )] 0¥ [1+sgn(n¥))] |
g _ L n)_[L+sgn(ni)_)] ni [1—sen(nf),)] (6.52)
fd — o . . . . ) .
2 (0¥ [0 —sgn(n¥) )] n), [1+sgn(n'?),)] |
L L[k [+ sealnsi )] np [1 = sen(npg,)] 659
Dk — o . . . . ’ .
2 | nh_ [1 = sen(n$)_)] nh, [1+ sen(n),)]
(4) @)\ ) ()
, Mpa— 1 +sen(npg )] npgy (1 —sen(npg,)
ng)z _ 1| "pd [ pa-)] Moas | D)) (6.54)

gy [1-sgn(ngy )] ng, (1 +sen(ngy,)]
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for 5 = 0,1,...,m — 1. The values d;cm) = Bgcm) and d((im) = i)fim) for the
membership level j,,, = 1 are already determined by the modal values %y,
and %d-
The fuzzy-valued model parameters k and d that finally result for the given
problem are presented in Fig. 6.19. In particular, the membership function

of the damping parameter d indicates a very pronounced asymmetric shape,
compared to the asymmetry in f and D. This gives evidence of the nonlinear
behavior of the model within the covered ranges of uncertainty. The stiffness

parameter k exhibits a worst-case deviation from its modal value between
—10% and +28%, the damping parameter d between —7% and +46%. Con-
sidering the fact that the original uncertainty of the eigenfrequency f and
the damping ratio D has been assumed significantly unequally distributed
between f and D, it is worth mentioning that this uncertainty has obviously
been assigned at a more or less balanced rate to each of the model parameters
k and d. Vice versa, it shows that the uncertainties in the stiffness and the
damping parameter have a significant effect on the damping ratio, while their
effect on the eigenfrequency is only moderate.

a 1.0 b 1.0
p I
d
0.5 0.5
0.0 0.0
1.0 1.1 1.2 1.3 1.4 1.5 1.6 0.8 0.9 1.0 1.1 1.2 1.3 1.4
k/10"° Nm™" d/10*Nsm™'

Fig. 6.19. Estimated uncertain parameters of the joint model: (a) stiffness param-

eter k; (b) damping parameter d .

Within the framework of the transformatlon method, the overall influences

of the uncertain model parameters k: and d on the uncertainty of the eigen-
frequency f and the damping ratio D can additionally be broken down into
relative measures of influence, quantifying the degrees to which each model
parameter separately contributes to the uncertainty of the two outputs. For

the degrees of influence of k and d on the uncertain eigenfrequency f and on
the uncertain damping ratio D of the system, we obtain
P = 99.86% , pra= 0.14% , (6.55)
ppr = 65.93% , ppa = 34.07% . (6.56)
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This shows that the uncertainty of the eigenfrequency Zis almost completely
governed by the uncertainty of the stiffness parameter &, and the influence of
the damping parameter d can be neglected. On the other hand, the uncertainty
of the damping ratio D is induced at about two third by the stiffness parameter
k, and at about one third by the damping parameter d.

Finally, to validate the results of the inverse fuzzy arithmetical prob-
lem, the eigenfrequency and the damping ratio can be re-calculated by re-
simulating the system with the identified uncertain parameters of stiffness
and damping, that is, by evaluating (6.34) and (6.35) with the general trans-

formation method and with the fuzzy input parameters k and d. As can be

seen from Fig. 6.20, these calculated fuzzy-valued estimations f and D of the
model outputs differ only slightly from the originally assumed fuzzy numbers
f and D.

a 1.0 b 1.0
p I
0.5 0.51
0.0 . oS 0.0 : >~
5700 5750 5800 5850 0.5 1.0 1.5 2.0 2.5
f/Hz D/107®

Fig. 6.20. (a) Original uncertain eigenfrequency f (solid line) and re-calculated
uncertain eigenfrequency f (dashed line); (b) original uncertain damping ratio D

(solid line) and re-calculated uncertain damping ratio D (dashed line).

These results confirm the effectiveness of the concept of inverse fuzzy arith-
metic and endorse the appropriateness of using fuzzy-parameterized models
instead of conventional, crisp models, serving the purpose of extending the
scope of the models without increasing their structural complexity.
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6.2 Fuzzy Sensitivity Analysis of an Orthotropic Plate

With the objective of identifying the material properties of orthotropic plates,
CALDERSMITH [13] suggested a method based on the concept of sinusoidal
equivalent length and applied it to wooden plates. However, the applicability
of his work was limited to the identification of the stiffness parameters only.
An extension of this work was accomplished by GAUL ET AL. [45], where the
elastic constants were determined based on the assumption that the product of
the Poisson’s ratios v, v, in the orthotropic plate is equal to the product of the
Poisson’s ratio v? in the isotropic case. The drawback of this method, however,
is that the Poisson’s ratio of a corresponding isotropic plate has to be identi-
fied at first. AYORINDE AND YU [4] suggested the use of the diagonal modes
for the identification of the material properties of plates. This method, how-
ever, is only recommended for isotropic plates, because otherwise one needs
an orthotropic plate with unknown specific dimensions to obtain diagonal
modes. DE WILDE ET AL. [21, 22] applied an optimization method to solve
for the elastic constants, and they used an over-determined set of equations to
obtain the six elastic rigidities of rectangular anisotropic plates. FREDERIK-
SEN [39, 40, 41] tested different ceramic composites and fiber-reinforced epoxy
panels, for which both the elastic constants governing the classical thin-plate
theory and the constants associated with the thick-plate theory were esti-
mated. LARSSON [90] matched the results from experimental modal testing
with theoretical modal-analysis calculations for a set of plate bending modes
and one in-plane mode of the compression type. The elastic constants were
estimated by minimizing the relative errors between corresponding experi-
mentally and theoretically determined natural frequencies.

Nevertheless, common techniques of model updating usually suffer from
the need of verification, validation, usability, and falsification of the model
[1, 42, 91, 98]. Moreover, identification of the material properties from mea-
sured data shows a serious problem mainly in the acquisition of significant
data. As can be shown, one can always determine certain values for the mate-
rial properties on the basis of experimental data, but there is still the question
of the resonableness of the results. Explicitly, it turns out that in order to guar-
antee the identification of reasonable results, the experimental data should be
acquired for those eigenfrequencies and vibration modes only where a certain
material parameter shows maximum influence on the vibration behavior.

To quantify the degrees of influence of the material parameters on the
vibration behavior of plates, the analysis procedure of the transformation
method proves to be a practical approach. Representing a special method of
sensitivity analysis, this procedure can finally provide recommendations for
a successful identification of the material properties by rating the different
vibration modes with respect to their suitability for data acquisition. In the
following, this fuzzy arithmetical approach to sensitivity analysis is applied to
the vibration problem of a rectangular orthotropic Kirchhoff plate with free
boundaries. By choosing an orthotropic form we assume that the principal
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axes of material symmetry in the plane of the plate coincide with the geometry
of the free boundaries of the plate.

Although vibrations of plates have been frequently studied, there appears
to be no closed-form solution for the case of a rectangular orthotropic Kirch-
hoff plate with free boundaries. However, several approximate methods have
been proposed, as outlined in [63]. WANG AND LIN [124] presented a sys-
tematic analysis for solving boundary value problems in structural mechanics
where a weighted residual form of the differential equations is used with sinu-
soidal weighting functions. This approach has been extended by HURLEBAUS
ET AL. [75] to the calculation of the eigenfrequencies and the eigenmodes of
an orthotropic plate with a completely free boundary, using an exact series
solution. The basic ideas of this method are outlined in the ensuing and an
extensive discussion can be found in [74].

The partial differential equation that governs the free transverse vibration
of a symmetrically laminated thin plate (i.e. omission of shear effects and
rotatory inertia effects) can be formulated in terms of the moments as

0*M,, M., O*M 0w

2 w O 6.57
22 " “ozay a2 Mo T (6.57)

where z and y are the orthogonal plane coordinates, w = w(z,y,t) is the
deflection of the plate, and p is the mass density of the plate material. With
h denoting the thickness of the plate, the bending moments and the twisting
moment per unit length are defined by

h h

MM:/UMzdz, My, = / oyyzdz and My, = / Ozyzdz .

ol
[SIEY
[NEy

(6.58)
After weighting the residual by the function

mm nm

’lﬁ(,ﬁlﬂ’,y) = COS(amLE) COS(’Yny) y Qm = T y Tn = T ) (659)

and integrating the product with respect to the plate area ab, we obtain

a b
02 M, 0’ M, 0’M, 0w
Tx 2 Ty vy ow - . —
//( 92 + 92y + By? ph 6t2> cos(amx) cos(vny) dydz =0
00

(6.60)
which can be rewritten in a different form using integration by parts [74]. The
separation of variables according to

w(z,y,t) = Re[W(z,y) “] , (6.61)

)
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with consideration of the steady state only, and the incorporation of the
boundary conditions of a free plate,

OM,. OM,
Q. = e —l—a—yy:O for =0 and z=a, (6.62)
oM, oM,
Qyza—;yﬁLWy:O for y=0 and y=0, (6.63)
M., =0 for =0 and z=a, (6.64)
M., =0 for y=0 and y=05b, (6.65)

then leads to

a

b
— afn // vz COS(amx) cos(yny) dz dy
0 0
b a

—'yfl//M vy COS(amT) cos(vny) dz dy
0

a b
+ 29 0m // ey Sin(amz) sin(y,y) dy dz
00

a

b
+ phw? //Wcos amx) cos(yny)dyde = 0. (6.66)

In (6.62) and (6.63), the shear forces per unit length are defined by

(NEy
B

Q. = / 0..dz and Q= / 0.y dz . (6.67)

Wl

[N

Using the constitutive equations for orthotropic plates where the principal
directions of orthotropy are parallel to the edges of the plate, we can formulate
the moment-curvature equations of classical plate theory as

o*wW o*wW
*wW *wW
M,, = —-D, (a e e ) : (6.69)
2
My = —2D,, 2 W (6.70)

" oxdy
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With (6.68) to (6.70) we can rewrite (6.66) in terms of the deflection W, and
after additionally using the product integration, we obtain

ow

b
oW
— (D2, 4+ v.D yq/n /cos TnY) { nm e
0

T=a ox

|

=0

b a
+ (Dpat, + 2Ha2,72 + Dyvyi — phw?) / / W cos(amz) cos(vny) dz dy

00
r oW oW
— (Dy'yg—l—l/waafn)/cos(amm) {(—1) By s " By y—0:| dz = 0.
0
(6.71)
In (6.71), H is defined as
H=v,D,+2D,,, (6.72)
and the plate stiffnesses are given by
E.h3 E,h? Gy h®
D,=—" =—239 d D,,=—"2—. (6.73
1201 —very) VT 1201 —very) . v =g 67

E, and E, are the Young’s moduli in the z- and y-direction, respectively, G,
is the shear modulus, and v, and v, are the Poisson’s ratios.

The partial derivatives of the deflection W at the boundaries can be for-
mulated as

oW > ow -

. — ) - =

i HX%W cos(Yny) , 97 oo Z ) cos (vny) , (6.74)
oW b oW

hAS = W cos (amz) , — = cos(am) , (6.75
- S, G| - S W 679

where the superscripts ‘(z)’ and ‘(y)’ identify the coefficients as being associ-
ated with the partial derivatives of W with respect to z and y, respectively.
The general solution is assumed in the following form such that the rigid-body
motions are included

W (z, % s(ame) + Z — €08(Yny)

n=1

(6.76)

Fop cos(amz) cos(yny) -

When we substitute the displacement W in the double integral of (6.71) with
the general solution (6.76), we can rewrite the double integral in the form
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//W (z,y) cos(amz) cos(yny)dedy = Z Z an — (6.77)

m=0 n=0

and (6.71) can be solved for F,,,, resulting in

4
ab(D,at, +2Ha2 2 + Dyt — phw?)

Fon = {(Dzagn—l-I/sz'yZ)

cos(Yny) [(=1)" W) cos(yny) — Wi cos(yay)] dy

cos(amz) [(=1)"Wmb™¥) cos(amz) — w cos(atn )] dm} .

(6.78)

After computation of the integrals, (6.78) can be inserted into the general
solution (6.76), and we obtain the deflection W (z,y) in the form

2 = D.a?, cos(an,z S x
W) =2 3 Dooheosons) gy gy

— D.a%, — phw?
D,a?, cos(am) (v) )
bz D.,a%, — phw? Vy[W ~Wa ]

1 o= Dy72 cos(yny) (2)
Z Y In ZPARI), W) W,
Dy = ph e’ = Wan

2y M[(_

+ b Dy74 — phw?

1)WY —wi] (6.79)

L2 Z Z (D02, + vz Dyy?2) cos(m ) cos(Yny)
Do}, +2Ha2~2 + Dyt — phw?

x [( )’"W‘” -yl

Z Z Dyv2 + vy D,a?)) cos(am ) cos(yny)
b D.a}, + 2Ha2,v2 + Dyyi — phw?

m=1n=1
x ()W) - w9 .

mO0

With the symmetry conditions

ow ow ow ow
- ¢ - = —d— (6.80)
oy ly=b Y ly=0 0x lz=a 0z la=0"’
where ¢ = 1 and ¢ = —1 correspond to the symmetric and antisymmetric

vibration modes about y = b/2, and d = 1 and d = —1 correspond to the
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symmetric and antisymmetric modes about = a/2, we obtain for the second
partial derivative of W (z,y) with respect to z after some transformation [74]

W 2K [d+1 & .
T e |t X [ ]
n=0 m=1

(2H —v.Dy)az,va + Dyyy — phw?

m W(E) "
*D, ot +2Ha2,y2 + Dyt — phw? cos(amz) | Wp,,” cos(7ny)

2 o= = (Dy¥2 +v,D,a?)a?, cos(am) cos(Yny) (¥)
_2 n )+ W
b ZZ Dot +2Ho2 v2 + Dyy: — phw? [( ) +c] mo

1 <= D.a* cos(am,z)
> Dqa, — phw? v l(=1)" + W

(6.81)

By applying the same steps [74], we obtain the second partial derivative of
W (z,y) with respect to y as

(oo}

PW 2. [e+1

(2H —vyDz)a fn%zl + D.a}, — phw?® W
D.ot, +2Ha2,y2 + Dyyi — phw? cos(ny) | Wi cos(am)

2 N = (D02, + vy Dyy2)a2, cos(amz) cos(vny) (x)
- n m d ‘17
a;; D.a}, +2Ha2,~v2 + Dyyi — phw? [( D™+ ] on

Dyvpcos(vay) 1 v0 (2)
Z Dot e e (1 + )

(6.82)

Finally, the use of (6.68) and (6.69) and the incorporation of the boundary
conditions
My, =0 for =0 and z=a, (6.83)
My, =0 for y=0 and y=> (6.84)

leads to

o0 1 oo -
,;) [iAOn + mZ::l Amn} WO(n) cos(Yny)
(6.85)

+ i %BmOW + Z Zancos Ty W =0
m=0

m=0n=1
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and
Z { 'mo + Z Cmn} e cos(amx)
m=0
(6.86)
Z DOHWO(Z + Z Z Dn cos(ama:)WO(fl) =0
n=0m=1
with
2 4D,,0% 72 + (1 — vyv,)Dyyt — phw?
Amn:_d —_1\)™ TY—m In y-x Yin 6.87
a[ +(=1) ] Dot +2Ha2 v2 + Dyy: — phw? ( )
2 (2vyH = v}D, — Dy)aZ, 72 — vyphw?
Bon = — -n" 6.88
b[c+( )] Dot +2Ha2 2 + Dyyi — phw? (6.88)
2 4D 0’72 + (1 — vevy) Do, — phw?
Crum = = —1)n] 2y %mTn =Yy 6.89
b[c+( )] Dot +2Ha2 v2 + Dyvy: — phw? ( )
2 (2v,H —v2D, — D,)a? v2 — vy phw?®
D, =—-|d+(-1)™ Y T 6.90
a[ +(=1) ] Do}, +2Ho2 2 + Dyyi — phw? ( )

Invoking the postulate that each coefficient of cos(a,,x) and cos(v,y) be zero,
we obtain the system of homogeneous algebraic equations in matrix form as

A B||w® 0
with
TAg + z_jl Ao 0 0
0 %A()l + Z Aml 0 .
A= m=1 . , (6.92)
0 0 %Aoz + Z Am2
m=1

%BOO %Bm %Bzo
BOl Bll B21
B=1 By Bi» By | (6.93)



6.2 Fuzzy Sensitivity Analysis of an Orthotropic Plate 175

%Coo + 21 Con 0 0
0 %CIO + Z Cln 0 ..
C = n=1 o , (6.94)
0 0 %020 + Z Csp,
n=1

1 1 1
5Do0 5Do1 5D02
Dy D11 Dio

D=1 Dy Dy Doy | > (6.95)
and
o
Wi w Y
wo = G|, wW= | 6.96
i i 630

To obtain non-trivial solutions to the problem, the determinant of the coeffi-
cient matrix has to vanish, that is,

A B| .
1) = =0. 6.97
@=|p ol (6.97)
In this manner, the natural frequencies w,, r = 1,2,... , of the plate can

be calculated, and the associated vibration modes result from inserting the
natural frequencies in (6.79). A practical way of solving (6.97) is the evaluation
of the determinant § for a series of values for the angular frequency w, equally
spaced by a sufficiently small Aw. The interval

2 = w, @], wth(2,)=Aw, (6.98)

in which an eigenfrequency w, is located exhibits a zero point of §, that is,
0(w,.) §(@,) < 0. The natural frequency w, can then be estimated by means
of a linear interpolation within the interval £2,., given by

w,.:wr—i_r(s(wr):g Wy — W,

" @) = 0(w) 6(w,) - (6.99)

The sensitivity analysis shall be carried out with respect to the material
properties F., Ey, Gy, and v,, which will form the n = 4 independent fuzzy
parameters

P=E., p=E,, p3=G., and py=70, (6.100)
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of the model. The parameter v, is not considered as an additional independent
parameter, since it can be calculated on the basis of the reciprocal theorem

E.’L' D.’L‘ xr
Ze e _ Ve (6.101)
E, D, Vy

The uncertain parameters pi, D2, p3, and py are represented by symmetric
quasi-Gaussian fuzzy numbers of the form

ﬁi = gfn*(fiaa—iaa—i) ) 1= 1a27 ey, (6102)

where the modal values Z; are set to the values listed in Table 6.2. The stan-
dard deviations o; are set to

o =5%%, i=12,...,n, (6.103)

for each parameter, corresponding to a worst-case deviation of +15% from
the modal values.

Table 6.2. Settings for the modal values of the uncertain model parameters.

Parameter Modal value Dimension
P =E. 71 =127.9-10° Nm™?
p2=E, Tp=10.27-10° Nm 2

Ps = Gay T3 =7.312-10° Nm™2

Py = s Ty = 0.22 —

The remaining parameters of the model, such as the thickness ¢ and the
edge length a of the square plate, as well as its mass density p are considered
as crisp. Their actual values are

t=1.483mm, a=0254m, and p=1584kgm™3. (6.104)

As a first step, the crisp-valued angular eigenfrequencies @, of the plate
are determined by solving (6.97) for the modal values T, T2, T3, and T4 of
the uncertain material parameters pi, po, p3, and ps. The different eigenfre-
quencies f, = @,/2r and the corresponding vibration modes are shown in
Fig. 6.21. In a second step, the model is simulated for the fuzzy-valued model
parameters p1, ps, p3, and py using the transformation method in its reduced
form, which proves to be sufficient for this problem. The uncertain values §
of the determinant in (6.97), evaluated for the crisp angular eigenfrequencies
w,, are then considered as the output values

Gr=0w), r=12..., (6.105)
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of the system. They quantify the uncertainties that affect the determination of
the eigenfrequencies of the plate, and are therefore well-suited for character-
izing the uncertain vibration behavior of the plate in its different eigenmodes.
The modal values

z, = core(q,) = core[d(w,)] , r=1,2,..., (6.106)

are expected to be zero, resulting from the fact that the crisp eigenfrequen-
cies w, have originally been calculated for the modal values T, Z», T3, and
T4 of the uncertain material parameters p1, p2, p3, and ps. Finally, the anal-
ysis procedure of the transformation method can be applied to perform the
fuzzy sensitivity analysis of the natural vibrations of the plate. As a result,
the normalized degrees of influence p,; for the uncertain model outputs g,
r=1,2,...,8, and the uncertain model parameters p;, i = 1,2,3,4, can be
obtained, as shown in Fig. 6.22. They quantify the relative influence of each
uncertain material parameter on the vibration behavior of the plate in the
eigenmode associated with the rth natural frequency.

We can see that the different degrees of influence exhibit a significant de-
pendency on the actual vibration mode, which is of particular importance for
the identification of the considered material parameters obtained from mea-
sured data. Against this background, only those vibration modes should be
used for data acquisition where a specific model parameter shows a higher-
than-average influence. Any other data should be neglected, since it would
impair the success of identification. Similarly, we can conclude that the identi-
fication of a parameter should not be carried out using the given experimental
set-up if the relevant parameter never shows a higher-than-average influence.
In the present case, this applies to the Poisson’s ratio v,, which should be
identified on the basis of data from other experiments, such as from tension
tests, rather than from vibrations of plates at natural frequencies. The fi-
nal recommendations for a successful parameter identification of the material
properties of an orthotropic plate from vibration experiments are summarized
in Table 6.3. They show some characteristic regularities which can be verified
by performing the sensitivity analysis for further modes, exceeding the ones
presented in Figs. 6.21 and 6.22.

Table 6.3. Recommendations for a successful parameter identification.

Parameter to be identified Vibration mode for data acquisition
E,. 20-mode, 30-mode, ...

E, 02-mode, 03-mode, ...

Gay 11-mode

Vg —
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Finally, it is important to note that the same conclusions shown for the
well-identified modal values of the material parameters in Table 6.2 can be
drawn if the sensitivity analysis is performed with modal values that just
represent an initial guess or the outcome of a rough first-step identification.

6.3 Frequency Response Function of a Clamped Plate

In contrast to the previous applications in this chapter, where the solutions
were mostly available in analytical form, a more complex example is consid-
ered in this section, requiring the use of the finite element method for its
solution. The problem of incorporating model uncertainties into the finite el-
ement method has already been addressed in a number of publications, of
which the vast majority is based on stochastic descriptions of the uncertain-
ties. In that context, the early papers of COTRERAS [17] and HANDA AND
ANDERSON [53], the monographs of GHANEM AND SPANOS [48] and KLEIBER
AND HIEN [81], and the papers of ELISHAKOFF ET AL. (e.g., [35, 36, 37]) are
worthy of note.

The alternative concept of using fuzzy descriptions of the uncertainties
emerged more recently, and RAO AND SAWYER [108] presented an approach
for its incorporation into the finite element method. However, since that ap-
proach uses the conventional concept of standard fuzzy arithmetic, based on
interval computation, it suffers considerably from overestimation, as described
in Sect. 3.3. With the objective of reducing this effect, while maintaining the
computational effort to an acceptable level, MOENS AND VANDEPITTE [94]
presented a fuzzy finite element approach which is based on the application
of special optimization strategies of an approximative character. The achieve-
ments of this method are emphasized in [94] for the calculation of frequency
response functions of undamped structures; however, its successful applica-
bility to arbitrary finite element problems, especially to the solution of more
complex real-world problems in both the frequency domain and the time do-
main, still seems to be questionable.

In this section, we shall start with a finite element problem of lower com-
plexity — a more challenging one is addressed in Sect. 6.4 —, where the trans-
formation method is applied to simulate the frequency response function of an
isotropic thin plate with uncertain model parameters. Following the example
presented by HANSs AND WILLNER [71], the plate is clamped at one edge as
shown in Fig. 6.23. The geometry of the plate is assumed to be square with
the edge length a and the thickness ¢, and the material is characterized by its
Young’s modulus E, the Poisson’s ratio v, and the mass density p. Whereas
the edge length a and the Poisson’s ratio v are set to the crisp values

a=1m and v=03, (6.107)

the Young’s modulus, the mass density, and the thickness of the plate shall be
considered as uncertain, forming n = 3 independent fuzzy parameters of the
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—
T

Fig. 6.23. Thin plate clamped at one edge and discretized into 100 elements.

uncertain finite element model. These are quantified by the symmetric linear
fuzzy numbers

p=E=th(E2%E,2%E), E=21-10""Nm 2, (6.108)
P2 = p = tfn(p,2%p,2%p) , 7 =T7800kgm 3, (6.109)
ps =t =ti(t,2%1%,2%1) , t=5mm=>5-10"m, (6.110)

all of which exhibit worst-case deviations of +2% from their modal values.
For the simulation of the uncertain system, the plate is excited by the
time-harmonic force N
Fa(t) = Fa cos(2rmft), (6.111)

which is assumed to act in the z-direction at the point A. As the uncertain
output ¢ of the system, we consider the amplitude characteristic

an=Aip =20 (6.112)
Fa

of the frequency response function of the plate with respect to the locations

A and B. It quantifies the frequency-dependent relation between the crisp

amplitude Fy of the excitation force Fi (t), and the uncertain amplitude g (f)

of the steady-state displacement

ip(t) = up(f) cos [2nft—o(f)] , (6.113)

arising in the z-direction at the point B. For the evaluation of the finite ele-
ment model, which uses a uniform mesh of 100 thin-plate elements and 121
nodes according to Fig. 6.23, the transformation method is applied in conjunc-
tion with the commercial finite element software package MSC.Marc. Due to
the characteristic property of the transformation method, which allows a re-
duction of fuzzy arithmetic to multiple crisp-number operations, the coupling
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of the transformation method with the finite element software environment
can be realized without major problems by means of an appropriate pre- and
postprocessing tool.

Using the transformation method in its general form with a decomposi-
tion number of m = 3, the uncertain amplitude characteristic A(f) can be
obtained, as shown as a contour plot in Fig. 6.24a. For purposes of comparison
and clarity, the crisp amplitude characteristic

A(f) = core[A(f)] (6.114)

is also provided and plotted in Fig. 6.24b, representing the result that is
achieved if the model is evaluated with the crisp modal values E, p, and 1,
instead of the uncertain parameters E, p, and t.

As we can see from the solutions to the crisp problem shown in Fig. 6.24b,
the plate exhibits nine eigenfrequencies f;, I = 1,2,...,9, within the con-
sidered frequency range of 0—100 Hz. These are located at the peaks of the
amplitude characteristic and can be determined more precisely by solving the
associated eigenvalue problem of the clamped plate. Explicitly, we obtain the
crisp eigenfrequencies that are listed in Table 6.4.

Table 6.4. Crisp eigenfrequencies f;, [ = 1,2,...,9, of the plate within the fre-
quency range 0-100 Hz.

l 1 2 3 4 5 6 7 8 9
f,/Hz 4.33 10.63 26.86 34.30 39.03 68.63 79.40 82.80 91.77

The comparison of the uncertain amplitude characteristic j( f) in
Fig. 6.24a with its crisp counterpart A(f) in Fig. 6.24b shows that the abso-
lute uncertainty of Z( f), expressed by the difference of the bounding contour
lines for py = 0, increases significantly with the frequency f if the neigh-
borhood of the eigenfrequencies is considered. This implies that a successful
identification and resolution of the eigenfrequencies from an experimentally
obtained frequency response function is scarcely possible for higher frequen-
cies if uncertainty in the model parameters is expected. In the present case,
the amplitude characteristic near the seventh and the eighth eigenfrequency
of the plate can barely be separated into distinct peaks although a rather low
degree of uncertainty was initially assumed for the parameters.

On the other hand, we can draw the interesting conclusion that the para-
metric uncertainty of the plate does not affect the frequency response function
in completely equal measure within the considered frequency range. In fact,
there are frequencies, such as f ~ 50 Hz in this example, where the amplitude
characteristic exhibits a minimum that is virtually invariant with respect to
the change of the model parameters. This result may be particularly impor-
tant for the dimensioning of planar components that are mounted on vibrating
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Fig. 6.24. (a) Uncertain amplitude characteristic A(f) of the frequency response
function with the contour parameters p; = j/3, j = 0,1,2,3, and (b) corresponding
crisp amplitude characteristic A(f).

structures, such as printed circuit boards in the engine compartment of cars.
If the principal frequency of excitation coincides with the location of the in-
variant minimum in the amplitude characteristic, the vibration response of
the components can be kept to a minimum, even if defects of fabrication or
varying equipment give rise to uncertainty in the model parameters.

This localized independency of the amplitude characteristic from the un-
certainty of the model parameters at particular frequencies is also pointed out
by the standardized mean gain factors k;(f), i = 1,2, 3, shown in Fig. 6.25.
For example, at f ~ 50Hz, all the factors x1(f), k2(f), and k3(f) exhibit
a local minimum. Finally, the corresponding normalized degrees of influence
pi(f),i=1,2,3, are presented in Fig. 6.26.
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6.3 Frequency Response Function of a Clamped Plate
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6.4 Simulation and Analysis of the Vibrations of an
Engine Hood

Addressing a finite element problem of higher complexity, the transformation
method is applied in this section to simulate and analyze the vibrations of an
engine hood with uncertain model parameters. Specifically, we consider the
engine hood of the roadster Mercedes SLK, which is shown in its top and
bottom view in Fig. 6.27. Basically, the engine hood consists of two parts: the
upper sheet metal of thickness t;, featuring a light gray color in Fig. 6.27,
and the bottom metal frame of thickness ¢y, pictured in dark gray. Both
components are made of the same material, characterized by the Young’s
modulus F, the Poisson’s ratio v, and the mass density p. Whereas the Young’s
modulus E and the Poisson’s ratio v are set to the crisp values

E=2-10"Nm? and v=0.314, (6.115)

the thickness parameters ¢; and ¢, as well as the mass density p are considered
as uncertain, forming n = 3 independent uncertain parameters of the model.
They are quantified by symmetric quasi-Gaussian fuzzy numbers p;, 1 = 1,2, 3,
given by

P =t =gin*(t1,3%41,3%%), % =08mm=8-10"*m, (6.116)
52 = ftvz = gfn*(52,3%¥2,3%52) , fz =0.7Tmm=17" 10_4m 5 (6.117)
ps=p =g (p,3%p,3%p),  p==8400kgm~?, (6.118)

where the definition of the standard deviations corresponds to a worst-case
deviation of £9% from the modal values.

For the simulation of the uncertain system, the transformation method is
applied in its reduced form, in conjunction with the commercial finite element
software package MSC.Marc. The engine hood is discretized according to the
mesh shown in Fig. 6.27, consisting of 1 889 nodes and 2 235 thin-shell elements
— most of them four-node elements, some of three-node type. As the output
values of the system, the first six uncertain eigenfrequencies

G =f, r=12,..,6, (6.119)
of the engine hood are determined, which satisfy the condition
det (K —&?M) =0, &, =27], (6.120)

where K and M are the fuzzy-valued global stiffness matrix and the fuzzy-
valued mass matrix, respectively. Finally, to simulate the bearings of the en-
gine hood on the car body, the displacements of some nodes at the locations
A, By, and B; in Fig. 6.27 are set to zero.

As result of the finite element simulation using the reduced transformation
method with the decomposition number m = 10, the uncertain eigenfrequen-
cies f, can be achieved with their membership functions I, (f),r=1,2,...,6,
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plotted in Fig. 6.28. We can see that the absolute imprecision of the uncertain
eigenfrequencies increases with the magnitude of their modal values; however,
the relative worst-case deviations from the modal values appear constant at
about +9%, which coincides with the originally assumed worst-case devia-
tions of the uncertain model parameters. Furthermore, to visualize the type
of oscillations assigned to the different eigenfrequencies f1, fa, ..., fs, the cor-
responding eigenmodes of the engine hood are presented in Figs. 6.29 to 6.34.
In these figures, the amplitudes of the displacements are quantified by a gray
scale, where darker gray tones signify higher amplitudes.

By

B>
Fig. 6.27. Mercedes SLK engine hood including the finite element mesh and the
locations A, Bi, and Bs of the bearings: (a) top view; (b) bottom view (courtesy of
DaimlerChrysler AG, Stuttgart).

1.0
pi (O A f fs fa fs 1o
0.5 -
0.0 : : : :
0 20 40 60 80 100

f/Hz
Fig. 6.28. Membership functions 7 (f) of the first six uncertain eigenfrequen-

cies ﬁ, r=1,2,...,6, of the engine hood.
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f,=14.26Hz

Fig. 6.29. Eigenmode of the engine hood for the first eigenfrequency with its modal
value f, = 14.26 Hz.

fo =20.37Hz

Fig. 6.30. Eigenmode of the engine hood for the second eigenfrequency with its
modal value f, = 20.37 Hz.

By evaluating the analysis part of the transformation method, the stan-
dardized mean gain factors r;(f,) as well as the normalized values p;(f,) can
be determined, providing a measure for the influence of the uncertainty of the
ith model parameter p; on the uncertainty of the rth eigenfrequency f,.. As
an absolute measure of influence, the standardized mean gain factors x;(f),
i=1,2,3,r=1,2,...,6, are presented in Fig. 6.35a, while Fig. 6.35b shows
the relative degrees of influence p;(f), 4 =1,2,3,r =1,2,...,6. Focusing on
the influence of the uncertain parameters p; = t; and P = ¢, that is, on the
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Fa=36.79Hz

Fig. 6.31. Eigenmode of the engine hood for the third eigenfrequency with its modal
value f; = 36.79 Hz.

f.=T1.54Hz

Fig. 6.32. Eigenmode of the engine hood for the forth eigenfrequency with its modal
value f, = 71.54 Hz.

thicknesses of the upper sheet metal and the bottom metal frame, we can see
that the influence of ¢, is significantly higher than the influence of ¢; if the en-
gine hood oscillates at its second eigenmode. However, if the sixth eigenmode
is considered, we notice the opposite situation. This result of the analysis of
the transformation method can qualitatively be verified by comparing the pic-
tures of the second and sixth eigenmode of the engine hood in Figs. 6.30 and
6.34. The second eigenmode in Fig. 6.30 represents the first bending mode of
the hood about an in-plane axis that is orthogonal to the axis of symmetry
of the hood. In this eigenmode, the stiffness-inducing bottom frame of the
hood, which is characterized by the uncertain thickness parameter f», will
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fs=T1.73Hz

Fig. 6.33. Eigenmode of the engine hood for the fifth eigenfrequency with its modal
value f, = 77.73 Hz.

Fig. 6.34. Eigenmode of the engine hood for the sixth eigenfrequency with its modal
value fg = 92.62 Hz.

definitely be the determining factor of the oscillation, exhibiting a predomi-
nant influence on the uncertainty of the eigenfrequency f>. Alternatively, the
sixth eigenmode in Fig. 6.34 represents a localized form of vibration, which
primarily affects the upper sheet of the hood in the area located inside the
bottom frame. For this reason, the uncertainty of the eigenfrequency fg is
considerably more influenced by the uncertain thickness parameter ¢; of the
upper sheet, than by the respective property t» of the bottom frame.
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p2

K2
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fi f2 fs fa fs fe fi fo fa fi f5 fs
Fig. 6.35. (a) Standardized mean gain factors ;(f,) and (b) normalized degrees
of influence p; (f») with light gray for + = 1, dark gray for i = 2, and black for i = 3.
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Geotechnical Engineering

7.1 Contaminant Flow in Thin Layers

The study of contaminant migration in porous media constitutes a problem
of significant interest to geo-environmental engineering (e.g., [5, 8, 9, 20, 109,
121]). In general, such transport of a chemical takes place through a com-
bination of advective and diffusive processes, and it is also influenced by the
chemical characteristics of both the porous medium and the contaminant. The
advective processes are largely governed by Darcy-type flow processes and the
diffusive part governed by Fickian processes, which depend on concentration
gradients [9]. Although the advective movement constitutes the major mode of
transport for contaminants in porous media, there are instances, involving low
advective velocities, or stagnant regions, where the contamination migration
is largely due to diffusion.

In the following, we focus on a class of problems where the diffusive in-
plane contaminant transport takes place in a thin porous layer, the thickness
of which is small in comparison to the lateral dimensions and which is char-
acterized by orthotropic diffusivity properties. This type of problem has ap-
plicability to the modeling of diffusive transport that can take place in either
a fluid-filled open fracture or a porous seam in a geological medium. In such a
situation, the fracture effectively behaves as a porous medium. First, attention
is directed to the study of contaminant movement from a quarter-plane region
of a diffusively orthotropic porous medium with a constant initial concentra-
tion. The analysis is then extended to the study of contaminant movement
from a semi-infinite layer, and finally, from a rectangular region with a con-
stant initial concentration. The study of these diffusion problems is facilitated
by the general theorem pertaining to product solutions applicable to the anal-
ysis of various types of diffusive phenomena. The solutions for the problems
considered, as defined by the crisp orthotropic diffusivity parameters, can be
obtained in convenient forms, consisting of a combination of special functions
and series forms.
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Following the approach presented by SELVADURAI AND HANSs [115], these
analytical solutions are extended to include fuzzy representations of the diffu-
sivities, which reflect possible uncertainties in the diffusion parameters, e.g.,
due to uncertain parameter identification or spatial inhomogeneities. Specific
numerical results, developed for the contaminant movement from a rectan-
gular region, illustrate the manner in which both the degree of orthotropy
and the fuzzy description of the diffusivities influence the pattern of in-plane
contaminant migration in the porous medium.

The fundamental law describing diffusive transport of a chemical species
in a fluid-saturated porous medium is that originally proposed by FIcK in
1855 [38]. The analogy between the diffusive transport problem and the tran-
sient heat conduction problem is widely recognized and documented in the
classical texts by CARSLAW AND JAEGER [14], CRANK [18], and others. For
reasons of completeness, however, a brief derivation of the relevant equations
will be presented in the following, to highlight in particular, the product solu-
tions approach for the development of solutions to two-dimensional and three-
dimensional problems associated with transient problems. In this model, the
diffusive chemical flux vector f is related to the gradient of the concentration
C(x,t) (measured as mass per unit pore volume) through

f=-DVC, (7.1)

where x is a position vector and ¢ is time. The components of the diffusivity
tensor D can be expressed by the diffusivity matrix D, which is, in general,
of the form
{Dn D1 D13-|
D = | Doy Doy D3 | (7.2)
[D:n D3s D33J

where the subscripts ‘1°, ‘2’, and ‘3’ denote the directions associated with
some arbitrary but orthogonal basis vectors e;, ey, and ez. The negative
sign in (7.1) indicates that diffusive transport takes place from regions of
higher concentration to regions of lower concentration. From considerations
of thermodynamics, it can be shown that the diffusivity tensor is symmetric,
that is,

D=DT, (7.3)
where the superscript ‘T’ refers to the transpose. Also from theorems in linear
algebra, it can be shown that the eigenvalues of D are real and positive definite.
Since the orientation of the basis vectors of D is arbitrary, we can choose the
reference coordinate system for the problem such that the principal axes of
diffusion coincide with the reference Cartesian coordinate system, z, y, z, such
that the components of the tensor D can be expressed by a diffusivity matrix
of diagonal form, that is,

D,. 0 0
D = [ 0 Dy, DO J . (7.4)
0 0 D
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A medium which can be characterized by the diffusivity matrix in (7.4) is
said to be diffusively orthotropic. Following the developments presented by
SELVADURAI [113], we consider a porous medium of domain V' with boundary
S and porosity n* in which the diffusion takes place in an orthotropic fashion.
The mass influx into the domain V' through S is given by

_// n*f -nds , (7.5)
S

where n is the outward unit normal to dS. Considering (7.1) and (7.4), and
the divergence theorem, we can write (7.5) in the form

= /// n*v.-vedv , (7.6)
|4

where V is now a modified gradient operator given by

7] 0 0
V = D, .e.,— + D,,e + D..e.— , 7.7
and e,, e,, and e are the unit vectors in the principal directions. The rate
of accumulation of the chemical species in the porous medium is given by

Ma dt///nCdV ///n—dV (7.8)

If the mass of the chemical species is conserved, we obtain from (7.6) and

(7.8)
/ / V.VCdv = / / / Cav (7.9)

which, by virtue of the Dubois-Reymond Lemma, gives the diffusion equation

~ 0*C 0%C 0*’Cc  oC

In the following, we consider three initial boundary value problems related
to in-plane diffusion in a porous domain, the thickness of which is substan-
tially smaller than its lateral dimensions. Such a region can be visualized
either as a saturated porous layer or a fluid-saturated open fracture. In both
cases, the layer or the fracture is diffusively confined, that is, it is contained
between either impermeable layers or layers through which no diffusion takes
place. In this instance, homogeneous Neumann-type boundary conditions are
applicable to the boundaries of the thin porous medium in contact with the
impervious confining layers. For such situations, it can be shown that the
two-dimensional solution constitutes the exact solution, even for the instance
when the thickness of the porous layer is finite.



196 7 Geotechnical Engineering
Diffusion from an Orthotropic Quarter Plane

As the first problem, we consider diffusion which takes place in the vicinity of
a corner region of a quarter plane. The boundaries of the quarter-plane region
correspond to £ = 0 and y = 0, and the coordinate axes correspond to the
principal directions of diffusivity. Within the context of this two-dimensional
idealization, we can pose the initial boundary value problem in the following
manner: A porous quarter-plane region with orthotropic diffusivity proper-
ties contains a chemical at a concentration Cy. At time ¢ = 0, the chemical
concentration at the boundaries of the quarter-plane region is reduced to zero.
The first objective is to determine the solution to this initial boundary
value problem, when the diffusivity parameters are considered to be crisp
parameters. Since the problem is two-dimensional, the initial boundary value
problem requires the solution of the governing partial differential equation
0*C 0’C  acC

Devis +Dunys = 5+ #€lool yelooel,  (711)

subject to the boundary conditions

C(z,0,t) =0, z€]0,00[, (7.12)
C(0,y,t) =0, ye€l0,00[, (7.13)
and the initial condition

In addition to the boundary conditions in (7.12) and (7.13), we also require
the solution to be bounded and finite as (x,y) — oo. This initial boundary
value problem is well-posed in a Hadamard sense and the uniqueness of the
solution is assured, provided the diffusivity coefficients satisfy the constraints
indicated previously (e.g., [113]).

The initial boundary value problem posed by (7.11) to (7.14) can be solved
in a variety of ways, including the combined applications of Laplace and
Fourier transforms to remove, respectively, the time and spatial variables and
to reduce the resulting problem to one of transform inversion. An alterna-
tive technique involves the application of a product solutions approach, which
states that the solution to the diffusion problem can be obtained as a prod-
uct of solutions to two one-dimensional initial boundary value problems with
appropriate initial conditions and boundary conditions. To illustrate the pro-
cedure, we transform the partial differential equation (7.11) by introducing
the spatial variables

T y
X = d YV =— 7.15
such that the partial differential equation now reduces to
=~ oC
ViC = X €]0,00[, Y €]0,00[, (7.16)

ot
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with o2 52
oy
Ve = X2 + ve (7.17)
and with the boundary conditions
C(X,0,t)=0, X €]0,00[, t>0, (7.18)
C(0,Y,t)=0, Y €]0,00[, t>0, (7.19)
and the initial condition
C(X,Y,0)=Cy . (7.20)

The product solutions approach assumes that the solution to this revised
initial boundary value problem can be expressed in the form

C(X,Y,t) = Co(X, 1) - Cy(Y, 1), (7.21)

where the solutions C, (X, ) and Cy (Y, t) are governed by the one-dimensional
initial boundary value problems

‘22;; - 8;’ , X €]0,00[, (7.22)
C.(0,6)=0, t>0, (7.23)
C.(X,0) =Co, (7.24)
and
%2YC; - % .Y €]o,00[, (7.25)
C,(0,6)=0, t>0, (7.26)
C,(Y,0)=1. (7.27)

The proof of the applicability of the product solutions approach for the so-
lution of the diffusion equation is further discussed by SELVADURAI [113],
and will not be repeated here. Suffice it to give here the solutions to the
reduced one-dimensional initial boundary value problems in (7.22) to (7.24)
and (7.25) to (7.27). The solution to the first one-dimensional initial boundary
value problem can be obtained in the form

C.(X,t) = Coerf <2£\/¥> : (7.28)

where erf (X/2v/t) is the error function defined by

x X/2v/t
_2 ¢
erf <2—\/Z> =7 O/ et d¢. (7.29)
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Similarly, the solution to the second one-dimensional initial boundary value
problem is given by

Cy(Y,t) = exf (2%/2) . (7.30)

Retransforming (7.28) to (7.30) to the problem domain and making use of
(7.20), we can write the solution to the diffusive transport in the vicinity of
the corner region of a quarter-plane with orthotropic diffusivity characteristics
as follows:

T Y
c t) =Cyerf | ——— fl —— | . 7.31
(@) = Coort (5= ) o (2 DW) (7.31)

Diffusion from an Orthotropic Semi-Infinite Layer

We next consider the problem of the in-plane contaminant migration from a
semi-infinite layer of finite width /,,, which is embedded between impermeable
regions. The semi-infinite layer is initially at a constant concentration Cy
throughout the semi-infinite layer. The boundaries of the layer are maintained
at a zero concentration value for ¢ > 0. The initial boundary value problem
governing the diffusion problem is posed in the following.

The partial differential equation governing the diffusion problem is given
by

oC

Ve = o X €[, ¥ €10,1,/\/Dyyl , (7.32)

where XY are the transformed spatial variables. The boundary conditions
governing the initial boundary value problem are

C(X,0,t)=0, X e€]o,00[, t>0, (7.33)
C(X,1,/\/Dyg,t) =0, X €]0,00[, t>0, (7.34)
C(0,Y,t) =0, Y €]0,l,//Dysl, t>0. (7.35)

The initial condition is
C(X,Y,00=Co, X €]0,00[, Y €]0,l,/\/Dyyl- (7.36)

We adopt a product solutions approach to the analysis of the initial boundary
value problem given by (7.32) to (7.36). Using the representation in (7.21),
the original initial boundary value problem is reduced to two appropriate one-
dimensional problems. The details of the method of analysis will not be pur-
sued here; suffice it to note that the solution to the one-dimensional problem
involving the domain X € ]0, oo[ can be obtained in terms of the error function,
and the solution to the problem involving the domain Y €]0,1,/1/Dyy[ can
be obtained in a series form [113]. The final solution for the time-dependent
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decay of concentration in the layer, expressed in terms of the spatial variables
z and y, takes the form

oo

1) X o

w2 Dyyt
Yy Yy

Diffusion from an Orthotropic Rectangular Region

C(z,y,t) =Cyerf < [1 — cos(nm)]

(7.37)

We now consider the related problem of the in-plane diffusion from a rect-
angular region with orthotropic diffusivity properties. The in-plane diffusion
takes place from a rectangular region of dimensions z €]0,[,[ and y €]0,1,][.
The rectangular region has the constant initial concentration Cy, and at time
t = 0, the concentration at the boundaries of the rectangular region is re-
duced to zero. The resulting initial boundary value problem is governed by
the partial differential equation

= oC I A
VZC = E ’ X E]Ovlw/ wa[ ’ Y E]Ovly/ Dyy[ ’ (738)

where XY are the transformed spatial variables. The boundary conditions
governing the initial boundary value problem are

C(X,0,t) =0, X €]0,l./\/Daa], t>0,
C(X,1,/\/Dyy,t) = X €]0,l./\/Daz], t>0,
C(0,Y,t) = Y €]0,l,/\/Dyyl, t>0,
Cly/ /Dy, Y, t) = Y €10,1y/\/Dyy[, t>0.

The initial condition is

C(X,Y,0)=Co, X €]0,le/\/Decl, Y €10,l,/\/Dygl.  (7.43)

Again, the solution to the initial boundary value problem posed by (7.38)
o (7.43) can be obtained by adopting the product solutions approach as
outlined previously. Avoiding details, it can be shown that the time-dependent
distribution of concentration in the rectangular region can be obtained in the
form

= 2.2
5 et 28] (02

— mm 2
y i 2 [ — cos(nm)] n27r2Dyyt sin [ "TY
—[1- nm)| ex ———— |sin| —=| .
2 P 2 I,

(7.44)



200 7 Geotechnical Engineering

This completes the development of analytical solutions which will form the
basis for the extension of the diffusion problem to include uncertainties with
respect to the orthotropic diffusivity parameters.

We now examine the problem of in-plane diffusion in an orthotropic porous
square region of dimension z €]0,1,[ and y €]0,/,[ with [, =1, = 0.1 m. The
region has constant initial concentration Cp, and for ¢ > 0, the concentra-
tion at the boundaries of the rectangular plate is reduced to zero. For the
simulation of the system, the diffusivity coefficients D,, and D,, are con-
sidered as n = 2 independent model parameters, represented by symmetric
quasi-Gaussian fuzzy numbers p;, i = 1,2, of the form

Pr = Dayw = gfn*(Z,04,04) , (7.45)
P2 =Dy, = gfn*(7,04,0,) . (7.46)

We assume that the modal values T and ¥ of the fuzzy-valued diffusivities Dae
and D,, are related through

T=AT, A>1, (7.47)

where A > 1 expresses the orthotropic case in which the dominating diffusivity
Dy, and A =1 leads to the marginal case of isotropy.

As an illustration, the porous medium is assumed to be orthotropic with
A = 5. The actual settings for the modal values T and ¥ as well as for the
standard deviations o, and o, of the fuzzy-valued diffusivities D,, and D,,
are given by

Z=1.0-10"%m?>s7!, 0. =T%T, (7.48)

7=50-10%m?s 1 =5

S]]

, oy =2%7 . (7.49)

Thus, the uncertain diffusivity coefficients D,, and ﬁyy are assumed to cover
a worst-case scenario with ranges of £21% and £6% from their modal values
T and ¥, respectively.

Evaluating (7.44) by means of the transformation method in its reduced
form, the uncertain system can be simulated and the uncertain concentration
C(z,y,t) can be determined for any time ¢ and at any location (z,y) within
the square region. As an example, the uncertain (normalized) concentration

C(z,y,t)

G (7.50)

c(z,y,t) =
at the location (z* =1,/2=0.05m,y* =1,/2=0.05m) and at the time
t* = 200s is shown in Fig. 7.1. The fuzzy valued concentration is again of
(nearly) symmetric quasi-Gaussian shape, which indicates that the fuzziness-
induced nonlinearities in the system equations have only a moderate effect on
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the simulated concentration within the considered ranges of uncertainty. The
modal value of the normalized uncertain concentration amounts to

¢ =0.463, (7.51)
and the worst-case range is given by the interval at u = 0, that is, by
Wz =1[0.427,0.499] . (7.52)

This interval corresponds to relative worst-case deviations of approximately
+7.8% from the modal value €.

1.0

c(z*

0.5 r

0.0

0.40

C/Co

Fig. 7.1. Uncertain normalized concentration &(z*,y*,t*) = C(z*,y*,t*)/Co at the
location (z*,y*) = (I+/2,1,/2) = (0.05m,0.05m) and at the time ¢* = 200s.

As a result of the analysis of the uncertain system using the analysis
procedure of the transformation method, the relative degrees of influence
oS (z,y,t) = p°(z,y,t) and py C(z,y,t) = py(:p y,t) can be determined, which
for z* =1,/2=0.05m, y* =, /2 = 0.05m and ¢* = 200s amount to

pC(a*,y",t") = 8.3% and pC(a*,y",t*) = 91.7% . (7.53)

Thus, as expected, the influence of the uncertamty associated with the diffu-
sivity coeflicient D, on the concentration C(z*,y*,t*) is considerably larger
than that resulting from the parameter D,..

Another interesting problem of the uncertain system results from the fol-
lowing question: At what time ¢ = T, would the concentration C(z*,y*,t)
at a given location (z*,y*) have fallen to a certain proportion € of the ini-
tial concentration Cy? Due to the uncertain character of the diffusivity co-
efficients, the answer to this question will definitely be given by a fuzzy-
valued time 7., where the worst-case interval, at the membership level . = 0,
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then quantifies the time at which the concentration C(z*,y*,t) may ex-
hibit the value e Cp. Figure 7.2a shows the uncertain normalized concen-
tration ¢(z*,y*,t) = C(z*,y*,t)/Co at the location (z* = I,/2 = 0.05m,
y* = 1,/2 = 0.05m), plotted against time and with contour lines for the
membership levels u = 0.0, p = 0.5 and p = 1.0. The corresponding uncer-
tain time T. at which the concentration e Co = 0.5Cp is reached, can then
be determined, as shown in Fig. 7.2b. The resulting uncertain time range 7.

shows a modal value of _
T =185.6s, (7.54)

and a worst-case range given by the interval
Wz = [173.15,199.45] . (7.55)

Thus, the relative worst-case deviations of the slightly asymmetric fuzzy num-
ber T. amount to —6.7%_ and +7.4% from the modal value T

Finally, the values pl<(z*,y*) and pl*(z*,y*) that quantify the relative
degree of influence of the uncertain diffusivity coefficients D, and 5yy on
the uncertain time T. can be determined on the basis of the relative degrees
of influence pf/y(m*,y*,t) through

~ fo pS), (@ y* 1) g (1) dt
* * t=
Ppoy (@ y") = = : (7.56)

Using a time-discrete approximation with L steps, (7.56) can be evaluated
through

L—1 ~
_ > 0S), @y ) pg (t)
T, * ok =1 Y ‘
pw/y(x )y ) o L—1 Y (7'57)
> by, (t)
where ]
tr=agz + Z(bi - ai) , (7.58)

and where [a7 , bz | is the worst-case interval of the fuzzy number T, that is,

lag bz [= supp(T:). The resulting values for p;E (z*,y*) and py~5 (z*,y*) are
then _
pf (z*,y") =7.4% and pff (z*,y") = 92.6% . (7.59)

The relative degrees of influence p /y( z*,y*,t) as well as the gain factors

K)w/y(l' ,y*,t) are plotted for 0 < ¢ < 250s in Fig. 7.3.
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Fig. 7.2. Orthotropic case A = 5.0: (a) uncertain normalized concentra-
tion ¢(z*,y*,t) = C(z*,y",t)/Co at the location (z*,y*) = (./2,ly/2) =

(0.05m,0.05m); (b) uncertain time 7.

Avoiding the graphical construction of the fuzzy-valued time Tg, as pre-
sented in Fig. 7.2, an estimation &i for the standard deviation of a symmet-
rically shaped approximation of the the fuzzy number ﬁ~can be determined
by using the relative degrees of influence p,* (z*,y*) and p,° (z*,y*) according
to

67, = oL (z*,y*) op + Py (z",y") oy = Z ple(z*,y*) 0y . (7.60)

i=x,y
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Fig. 7.3. Orthotropic case A = 5.0: (a) relative degrees of influence pg(m*,y*,t)
(solid line) and p$ (z*,y",t) (dashed line); (b) gain factors &S (z*,y",t) (solid line)
and k5 (z*,y",t) (dashed line).

For this example, the standard deviation of the symmetrically shaped approx-
imation of T. is estimated at
67 =23T%T, (7.61)

which is equivalent to a worst-case range of £7.11% from the modal value T.
In comparison hereto, the average worst-case deviation for the real uncertain
time 7T; in Fig. 7.2 is [(7.4% 4+ 6.7%)/2] T = 7.05%T.
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As a second example, the porous medium is now assumed to be quasi-
isotropic, i.e., A = 1. The settings for the modal value T as well as for the
standard dev1at10ns o, and o, of the fuzzy-valued diffusivities D, and Dyy
are kept identical to the orthotropic case in (7.48), so that the actual settings
are given by

Z=1.0-10"%m2s7 !, 0. =ThT, (7.62)

7=10-10°m?s ' =7, oy =2%7 . (7.63)

Thus, the uncertain diffusivity coefficients D, and 5yy are again assumed to
cover a worst-case range of £21% and +6% from their modal values T and 7.
Posing the problem once again, we seek the uncertain time t = T, at

*

which the fuzzy-valued concentration C(z*,y*,t) at the given location (z* =
l./2=0.05m, y* =1,/2 = 0.05m) would reduce to the level e Cy = 0.5Cj.
The relevant results for the isotropic case are given in Fig. 7.4. The resulting
uncertain time 7, shows a modal value of

T =592.8s, (7.64)
and a worst-case range given by the interval

Wi = [522.15,685.05)] . (7.65)

Thus, the relative worst-case deviations of the fuzzy number T. amount to
—11.9% and +15.6% from the modal value. This noticeable augmentation of
uncertainty in 7. from the orthotropic to the isotropic case becomes clear
when we compare Figs. 7.2 and 7.4. Note that although the absolute ranges
of the time axes are different, they are plotted to the same scale.

As a result of the evaluation of (7.57) and (7.58) for the isotropic case,

the relative degrees of influence p;( *,y*) and pT (z*,y*) of the uncertain

diffusivity coefficients Dm and D yy on the uncertain time T are now, as
expected,

P (z*,y*) = 50.0% and pyi (z*,y") = 50.0% . (7.66)

Figure 7.5 shows the corresponding relative degrees of influence pf/y(m*, y*, t)
as well as the gain factors nf/ (z*,y*,t), plotted for 500 < ¢t < 750s.

Finally, the relative degrees of influence pmf( *,y*) and p;f( * *) of the

uncertain diffusivity coefficients DM and Dyy on the uncertain time T shall
be determined for various degrees of anisotropy A = y/Z. For the range

from A = 1.0 to A = 10.0, the relative degrees of influence pXe(z*,y*) and
pi (z*,y*) are plotted in Fig. 7.6. It can be seen that with an increasing de-

gree of anisotropy, the uncertain time JN“E is influenced by the uncertainty of
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Fig. 7.4. Isotropic case A = 1.0: (a) uncertain normalized concentra-
tion ¢(z*,y*,t) = C(z*,y",t)/Co at the location (z*,y*) = (./2,ly/2) =

(0.05m,0.05m); (b) uncertain time 7.

the dominant diffusivity coefficient. Empirically, the dependency of pff (z*,y*)

and pZi (z*,y*) on the degree of anisotropy A can very well be approximated
by the formulas
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satisfying the consistency condition

e (@, y") + py (@™, y") = 1. (7.69)

The incorporation of (7.67) and (7.68) into (7.60) then yields

b7 :az+{1—%eXP[—(A—l)/2]}(az+ay), (7.70)

which is a very practical formula for the determination of the uncertainty to
be expected in the time estimation of 7.

0.5

0.0

1 5

10

Fig. 7.6. Relative degrees of influence pij(a:*,y*) for increasing degree of
anisotropy A = y/T.

7.2 Identification of the Uncertain Hydraulic
Conductivities in Transversely Isotropic Porous Media

A characteristic feature of sedimentary geomaterials, such as clays and silt de-
posits in fluvial and lacustrine environments, is that the depositional character
of the geomorphological processes and the lamellar structure of the particles
themselves introduce a directional dependence in the fluid transport charac-
teristic of the pore space. This can occur at various scales of interest, ranging
from the particulate level to dimensions associated with periodic sedimentary
layering. The fluid flow through such porous media can be modeled by appeal
to Darcy flow with predominantly transversely isotropic hydraulic conduc-
tivity characteristics with the plane of isotropy coinciding with the plane of
deposition.
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The in situ characterization of the hydraulic transport in such media re-
quires the determination of the two principal hydraulic conductivity character-
istics of the transversely isotropic porous medium. The conventional method
of testing involves the observation of the rise or fall of the water level in a
cased borehole with specified shapes of the entry points through which water
enters the casing. In order to determine the hydraulic conductivities in the
horizontal and vertical direction separately, two independent casing experi-
ments need to be performed with different intake shape characteristics. In a
recent study by SELVADURAI [114], the fluid intake characteristics of the disc-
shaped and the spherical intakes have been examined, and exact closed-form
solutions have been developed for the intake shape factor, which characterizes
the entry point and thus controls the water entry rate from the transversely
isotropic region into the casing.

Owing to the availability of these closed-form solutions, it becomes possible
to estimate the hydraulic conductivity characteristics of transversely isotropic
geomaterials by using measured data for the flow rates in the two casing intake
configurations. These data, however, tend to exhibit a rather high degree of
variability which usually exceeds the scatter solely assigned to measurement
errors. In fact, the origin of this variance must be seen in the uncertain char-
acter of the hydraulic conductivities induced by the microscopic behavior of
the fluid in the different layers of the porous medium which, in itself, is heav-
ily influenced by random processes. Against this background, the hydraulic
conductivities in the horizontal and vertical direction shall be defined as fuzzy-
valued parameters, which are identified by means of inverse fuzzy arithmetic
on the basis of measured data for the flow rates from the entry points.

Considering the developments presented by HANSS AND SELVADURALI [69)],
we consider the problem of a fluid-saturated porous medium with a rigid
fabric, which is of infinite extent and hydraulically transversely isotropic. The
infinite medium is bounded internally by either a spherical cavity or a disc-
shaped cavity of radius a. The boundary of the cavity is maintained at a
constant potential ¢y. To maintain steady flow from the entry point into the
porous medium, fluid must be supplied to the boundary of the cavity. This
is assumed to be done by the use of a piezometric tube, the cross sectional
diameter of which is significantly smaller than the diameter 2 a of the spherical
and disc-shaped entry points (Fig. 7.7).

The potential causing fluid flow in the hydraulically transversely isotropic
porous medium is taken as the Bernoulli potential consisting of the datum
head and pressure head components. Since the ensuing studies relate to con-
siderations of fluid flow behavior in the neighborhood of the entry point, we
can, without loss of generality, assume that the pressure head is much greater
than both the datum head and the dimensions of the entry point. Also, since
the problems are such that the axis of symmetry is normal to the plane of
transverse isotropy, we can assume that the pressure head can be expressed
by ¢(r,z), that is, in cylindrical coordinates as a function of r and z only
(Fig. 7.7).
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Fig. 7.7. Spherical and disc-shaped entry points located in a porous medium with
transversely isotropic hydraulic conductivity.

We restrict attention to the flow of an incompressible fluid through the
porous medium, which requires the velocity field to satisfy the divergence free
requirement for the fluid velocities, i.e.,

ov, v, Ov.
or + r + 0z
where v, and v, respectively, denote the components of the fluid velocity v
referred to the r- and z-coordinate directions, V is the gradient operator
referred to the cylindrical coordinate system, and V7 is its transpose. Con-
sidering Darcy’s law for fluid flow through the porous medium, we have

vy = =0, (7.71)

v=—-KVp, (7.72)

where K is the hydraulic conductivity matrix and Ve is the gradient operator
applied to the potential given by the hydraulic head ¢. For a porous medium
which is transversely isotropic and where the principal axes of hydraulic con-
ductivity are aligned with the coordinate axes r and z, respectively, Darcy’s
law takes the form

Z—f and vzz—kvg—f,
where ky denotes the hydraulic conductivity in the horizontal direction, co-
inciding with the r-axis, and k, the hydraulic conductivity in the vertical
direction, coinciding with the z-axis. Combining (7.71) and (7.73), we obtain
the partial differential equation for the flow of an ideal incompressible fluid in
a hydraulic transversely isotropic porous medium as

vp = —ky (7.73)
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0% 1 8<p k, 0%¢

bl v .74
or2 ' r Or | ky 022 ’ (7.74)

where £y, is assumed to be non-zero. A generalized derivation of the equation
of flow is given by SELVADURAI [113].

Spherical Intake
For a spherical entry point, the boundary value problem requires the solution
of (7.74) subject to the boundary conditions

o(r,z) =@y for r?+22=a?, (7.75)

p(r,z) >0 for 2422 = 0. (7.76)

The derivation of the solution to this problem is given by SELVADURAI [114].
Within the scope of this section, we restrict ourselves to merely presenting the
relevant expressions for the flow rate to the entry point of spherical shape:

— 1 -
Q. = SmpoavA = Whkiky oy (7.77)
ln (\/X—i-\/)\—l) kv
VA-vA—1
Qs = 8mpoavy = 1vhnky for v= k—v >1. (7.78)
V7 cot ™t ( Tl—l) kn

Disc-Shaped Intake

For a disc-shaped entry point, the boundary value problem requires the solu-
tion of (7.74) subject to the boundary conditions

p(r,z) = for rel0,a], z=0, (7.79)
%(r, z)=0 for re(a,00), 2z=0. (7.80)
z

These mixed boundary conditions yield a system of dual integral equations for
a single unknown function. One method of solution is given by SNEDDON [118]
and SELVADURAI [114], where the latter publication also discusses the details
of derivation of the solution to this problem. Again we restrict ourselves to
the resulting expression for the flow rate to the disc-shaped entry point:

Q4 = 8aywo \/ knky - (7.81)

Starting from some available measured data for the flow rates Qs and Qg
for the spherical and the disc-shaped entry points, respectively, fuzzy numbers
QS and Q4 can be defined to reflect the uncertainty in the measured flow rates.
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The inverse fuzzy arithmetical problem then consists of the determination of
the fuzzy values ky and k, for the hydraulic conductivities in such a way
that a numerical re-simulation of the model using the uncertain parameters
preferably yields the original fuzzy-valued flow rates Qs and Qq. Thus, in
terms of the transformation method, the hydraulic conductivities k, and ks
are considered as the n = 2 independent parameters

Pr="kn and Pp=rhy, (7.82)

which initiate the overall uncertainty in the model, and @S and @d are the
fuzzy-valued model outputs

al = QS(E}UEV) and 62 = de(EhaEv) . (783)

Following the concept of inverse fuzzy arithmetic, as introduced in Sect. 5.2,

the estimations Eh and EV for the uncertain parameters Eh and 75‘, can be
identified according to the following scheme:

1. Definition of the fuzzy numbers st and @d:

To incorporate the overall uncertainty of the model, appropriate member-
ship functions I and 1G for the fuzzy numbers Qs and Qg are derived
as envelopes of measured data Based on some illustrative data, the fuzzy
numbers Qs and Qd can be assumed to be of symmetric quasi-Gaussian
shape and parameterized as follows:

Qs = gfin*(z, =9.0-10 "m®s 1, 6%z, 6% %) , (7.84)

Qa = gfm*(Za =8.0-10°m?s™ 1, 4% 24, 4% Z4) - (7.85)
This corresponds to worst-case deviations of £18% from the modal value
of the flow rate QS, and of +£12% from the modal value of the flow rate Qd

2. Determination of the modal values = Zn and Ty of the fuzzy-valued hydraulic
conductivities kh and k

For A= xh/xv > 1, which applies to the present case, the modal values
7y, and T, can be determmed on the basis of (7.77) and (7.81), requiring
the solution of the nonlinear equation

? + g exp @—%Jﬁ) —0 (7.86)

for the quotient A = 7y, /Tv, and obtaining the product v = Th Ty through

v= (82‘00)2 . (7.87)

With the radius of the cavity set to a = 0.1 m and the hydraulic head po-
tential to w9 = 10m, corresponding to a pressure potential py =~ 0.1 MPa,
the modal values Zj, and T, are obtained as
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Th=VAr~494-10 Tms !, (7.88)

Ty = \/g ~2.02-1072ms™t. (7.89)

3. Computation of the gain factors:

For the determination of the single-sided gain factors 775(}]1)-5-: 775(‘],)4-: 77((1]}1) o

’7((1]\;) 4> and nsh , ns(f,) , n((ijh) , ’7((1]\;) , which quantlfy the influence of the un-

certainty of the model parameters kh and k on the flow rates QS and Qd
at the m levels of membership pj;, j = 0,1,..., (m — 1), the model must
be simulated for some assumed uncertain parameters Eﬁ and k* using the
transformation method in its reduced form. The modal values of 751’; and
k* have to be set to the calculated values %, and %, of (7.88) and (7.89),
and the assumed fuzziness should be fixed at a sufficiently large value, so
that the expected real range of uncertainty in ky and & is preferably cov-
ered. In the present case, both % and k] are chosen as symmetric fuzzy
numbers of quasi-Gaussian shape with a worst-case deviation of +25%
from the modal values. The gain factors can then be determined by using
the analysis part of the reduced transformation method to evaluate the

input/output data of the uncertain system, simulated by means of (7.77)
and (7.81).

4. Assembly of the uncertain parameters Zh and Z :
When we define the lower bounds of the intervals of the fuzzy numbers
QS, Qd, kh and k at the levels of membership u;, 7 = 0,1,...,m, as
a?, ((f), 37 and 6, and the upper bounds as b, b(] bJ) and bJ)
respectively, the parameters dl(qj) and a7 as well as th) and b of the

unknown fuzzy-valued model parameters Eh and %V can be determined
according to (5.13) to (5.15) through

)

( ~
h h 7Y | HY T
B}(IJ) fh sh (]) _ ES
= —== ~ (7.90)
= (7) 7 o) —z
v v g0 | gWw a —~d
i (7) ~ dh | dv (7) —
by Ty by’ —Zd

with
(4) (4) (4) (9)
o1 | e [ sgn(ng )] mgyy |1 —sen(ng.)
HY = | [ )] s i) : (7.91)

2 | @ [1 = sen(m )] 0P, [1 + sen(m$)]
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1 [0S [t + sgn(m)] nlh 1 — sen(n$)))]

H) = 2 1. )\ ) ) ’ (7.92)
Nev [1 —sgn(ng’ )] net’ [1 + sgn(ng’y)]
) _ 1 [0S 1+ sen(n$))] n$l (1 - sen(i))] (799
dh — o ’ :
2 0 [1 - sen(n) )] n§) [ +sen(m$))] |
(4) (4) (4) (4)
. [0 [1+sgn(n$))] 0¥, [1 - sen(n), )
Héf,)zé ?) | ?) | ?)+[ ?)+] (789
| e [1—sgn(ngy )] nayy [1+sgn(ngyy )] |
j:O,l,..., 1.
The values a(m) = b(m) and a{™ = 5™ for the membership level p,, = 1

are already determmed by the modal values Zy, and Zy.

The fuzzy-valued hydraulic conductivities Eh and EV that finally result for
the problem posed are presented in Fig. 7.8. While the hydraulic conductivity

%h exhibits a worst-case deviation from its modal value between —1v9.1% and

+19.3%, the worst-case deviation for the hydraulic conductivity Ky ranges
from —3.7% to 6.5%. This implies that, based on the uncertainty assumed
for the flow rates Qs and @Qq, the hydraulic conductivity in the horizontal
direction is expected to be about three times as uncertain as that in the
vertical direction. Furthermore, it is noticeable that the asymmetry in the

shape of the membership function of Ky is negligible, which — when viewed
against the background of symmetric fuzzy numbers for Qs and Qd — allows
the conclusion that the nonlinearities in the model equations do not have
a significant effect on the considered problem with respect to the hydraulic
conductivity Eh.

Additionally, as some relative measures of influence that quantify the de-
grees to which the hydraulic conductivities Eh and %V separately contribute
to the uncertainty of the flow rates Qs and Qq, the degrees of influence can
be determined by means of the transformation method. We obtain

psn = 92.76% , pev = T.24% (7.95)
pan = 50.02% , pav = 49.98% . (7.96)

It shows that the uncertainty of the flow rate és to the spherical entry point
is mainly governed by the uncertainty of the hydraulic conductivity ky, in the
horizontal direction, and the influence of the hydraulic conductivity k. in the
vertical direction can almost be neglected. On the other hand, the uncertainty
of the flow rate Q4 to the disc-shaped entry point is induced by the hydraulic
conductivities ky, and ky in equal measure.
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Fig. 7.8. Estimated fuzzy-valued hydraulic conductivities: (a) kn in the horizontal

direction; (b) k. in the vertical direction.

Finally, to validate the results of the inverse fuzzy arithmetical problem,
the flow rates to the spherical and the disc-shaped entry point can be re-
calculated by re-simulating the system with the identified uncertain hydraulic
conductivities, that is, by evaluating (7.77) and (7.81) with the reduced trans-

formation method and with the fuzzy input parameters Eh and %v. As we can

see from Fig. 7.9, the calculated fuzzy-valued estimations QS and éd of the
model outputs almost completely correspond in shape with the originally as-
sumed fuzzy numbers @5 and Qq, showing, at maximum, a relative error of
about 1%.

These results confirm the effectiveness of the concept of inverse fuzzy arith-
metic and endorse the appropriateness of using fuzzy-parameterized models
instead of conventional, crisp models, serving the purpose of extending the
scope of the models without increasing their structural complexity.

a 1.0

0.5

0.0

10
Qs/1077m3 s~ ! Qd/lof9 m’s™?!

Fig. 7.9. (a) Original uncertain flow rate Q. (solid line) and re-calculated uncertain

flow rate Q, (dashed line); (b) original uncertain flow rate Qa (solid line) and re-

calculated uncertain flow rate Q, (dashed line).
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Biomedical Engineering

8.1 Simulation and Analysis of the Human Glucose
Metabolism

Diabetes, or, strictly speaking, diabetes mellitus type I, is one of the most
widely spread human diseases of our time. The effects of this disease on pa-
tients’ everyday life can be very serious, ranging from regular medication with
injections to being at risk of heart attacks. In order to improve therapy and
to develop optimal medication for diabetes, the main characteristics of hu-
man glucose metabolism need to be studied on the basis of simulations of
appropriate mathematical models. During the last decades, practical mod-
els for the human glucose metabolism have been developed, among them the
compartment-type models of COBELLI ET AL. [15], GLOCKLE [51], BERGELER
[10] and PUCKETT [106]. Based on the model of COBELLI ET AL., extensive
modifications and enhancements have been made by HOF1a [73], concentrat-
ing, in particular, on the peculiarities of diabetes mellitus type I.

Considering the fact that biomedical models are exceedingly subjected to
uncertainties, the conventional manner of evaluating physiological models as
crisp models is not reasonable. Explicitly, the parameters of the models exhibit
a large range of imprecision and variability, which significantly depends on the
individual physique of the patient as well as on the extent and the duration of
the disease. Furthermore, initial values of the models, such as the nutritional
contents of the ingested food, can only be quantified with a high degree of
uncertainty. To solve these limitations, we pursue the approach of HANSS AND
NEHLS [66, 99] in the following and we apply fuzzy arithmetic based on the
transformation method to take into account the uncertainties in the human
glucose metabolism.

Basically, the overall model of the human glucose metabolism for patients
that suffer from diabetes mellitus type I can be split into two parts: first, the
model for the inflow I.«(t) of exogenic insulin into the blood in consequence
of the subcutaneous injected insulin, and second, the model for the inflow
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Gex(t) of exogenic glucose into the blood as a result of the ingested food. The
latter model can again be divided into two parts, representing the metabolism
in the stomach on the one side, and in the intestine on the other (Fig. 8.1).
Ultimately, the outputs of the preceding models are combined by an final
model of empirical type to predict the amount of in-blood glucose Gy (tx) at
any given time ty.

Model for the Inflow of Insulin into the Blood

After its injection, the exogenic insulin of initial volume Vj is assumed to be
accumulated in a subcutaneous depot. According to MOSEKILDE ET AL. [97]
and TRAJANOSKI ET AL. [122], the subcutaneous depot can be modeled by a
spherical or hemi-spherical region for deep or superficial injection, respectively.
Due to diffusion, the region expands along the radial coordinate r, governed by
the diffusivity coefficient D. In the subcutaneous depot, the insulin appears in
two modifications: as dimeric insulin at the concentration cq(r,t), and as hex-
americ insulin at the concentration cy(r,t). Since absorption is only possible
for the agent of lower molecular size, the uptake of insulin into the blood only
applies to the modification of dimeric insulin. The injected external insulin,
however, is a solution of pure hexameric insulin, which implies that hexameric
insulin is continuously converted into its dimeric modification. This process
is governed by the conversion rate P and the equilibrium constant @, while
the uptake is quantified by the absorption rate B. The final model for the
inflow I.«(t) of exogenic insulin into the blood after superficial injection can
be formulated as

dey(r, t
% =—P(cn —Qc}) +DVien, (8.1)
0 t
%zP(ch—ch)+DV2cd—Bcd, (8.2)
e 3V
I«(t)=27B / r2cq(r,t)dr, ro={ 2—0 (8.3)
w
To
with the operator
2 20
Vi= — 4+ = 8.4
or? + r or (84)
and the model parameters
D =84-10"%cm®min~", P=0.5min™", (8.5)
Q=93-10"°ml’ mg~2, Vo=1.0ml, (8.6)
B=7...13-10 3min !, Fmax = 3.0cm | (8.7)

as well as the initial and boundary conditions
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ch, = 4.0mg ml~? , T=Tp den
0) = 0 nlax;t =0 ) 8.8
Ch(rv ) {O P> Pmin ’ or (T ) ( )
8Cd

ca(r,0) =0, (Fmax, 1) =0.  (8.9)

or

Model for the Inflow of Glucose into the Blood

The overall model for the inflow Gex(#) of exogenic glucose into the blood con-
sists of two submodels [73]: one for the concentration ¢S (t) of carbohydrates
in the stomach and one for the concentration cl(z,t) of carbohydrates in the
intestine. Whereas the stomach is modeled as a system with concentrated pa-
rameters, the intestine is considered as a pipe with the coordinate z and is
thus modeled as a system with distributed parameters (Fig. 8.1).

My, Mpg, Mfy Vmeal

bile stomach

pancreas

CcI(Zat)

intestine

Fig. 8.1. The apparatus of digestion.

Model for the Concentration of Carbohydrates in the Stomach

The governing model equations for the concentration ¢ (t) of carbohydrates
in the stomach of volume V' (t) are
d
FEOVE] =-aVed, (8.10)
dV(t)
dt

=—-aV+q¢ =—q(t)+4¢" (8.11)
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with the initial conditions

Me,

S
0) = 8.12
c. (0) V() (8.12)
V(0) = Vempty + (L + fsec) Vineal (8.13)
and the parameters
asl 2
o= fgas In : (8.14)
Vmeal [01 - 02 eXp(—T K’)]
h= (Be ey + Bp Mpy + Brmig,) (8.15)
with
6, =0.1797minml ™", 6 = 0.167minml ™", (8.16)
7 =0.2389mlkJ !, B =0.0167kJmg™?t, (8.17)
Bp =0.0167kIJmg ', Br =0.0377kIJmg !, (8.18)
Vempty = 50ml , ¢* =0.4861 mlmin~" (8.19)
foec = 1.0, feas = 0.5...0.75 . (8.20)

The parameter o denotes the evacuation rate of the stomach, which can in-
dividually be adapted by the patient-specific gastroparese factor fgas, and &
is the energy density of the ingested food. The continuous salivation is taken
into account by the constant inflow ¢* of saliva into the stomach, and fsec
incorporates the salivation and the gastric juice into the initial conditions of
the stomach volume V. Finally, the food specific parameters m,, mp,, and
mg, denote the amount of carbohydrates, proteins, and fat contained in the
ingested meal of volume Vjcal-

Model for the Concentration of Carbohydrates in the Intestine

The governing equations for the concentration ¢(z,t) of carbohydrates in the
intestine of radius R(z,t) and length [ are

0 0

5 [ce(z,t)mr?] = —v e [ce mr%] = gex(cl) (8.21)
OR(z,t) OR

=—v—— 8.22
ot 0z’ (8:22)

I

I pCc
ex = ) 8.23
gex (¢e) = 775 ; (8:23)

p
l
Gunlt) = / gou(2,1) dz (8.24)
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with the initial and boundary conditions

I q(t) s I
c.(0,t) = co(t), c.(2,0)=0, 8.25
< (0,1) PO A (t) (2,0) (8.25)

t *
RO, =1 Reoy=/L =Ry (8.26)

T T

and the parameters

fo=0.5, v=1cmmin!, [ =150cm , (8.27)
Ry=04cm, p=16.6mgmin~tem™', k=27.72mgml ' . (8.28)

In this model, the parameter v stands for the transport velocity in the in-
testine, and the absorption of glucose is expressed by a so-called Michaelis-
Menten kinetic with the parameters p and k.

Empirical Model for the Amount of In-Blood Glucose

As the ultimate part of the overall model for the prediction of the amount of
in-blood glucose G (t), a final model is applied, which uses the previously de-
termined inflows Iy (t) and Gex(t) of insulin and glucose as input values. Based
on the approach of COBELLI ET AL. [15], a sophisticated multi-dimensional
state-space model can be formulated for this purpose, which is characterized
by a number of patient-specific parameters that need to be identified for each
individual (see Sect. 8.2). In this section, however, we focus on parametric un-
certainties in the submodels of the insulin and glucose inflow only, therefore
suffice it to use the following final model of empirical type:

tr+AL i+ AL
1 1 1
Gb(thrl) = Gb(tk)+a(tk) / Ty dt+m / Gex dt+@At R (829)
tr tr
Golto = 0) = Gy, tess = e + AL (8.30)

The time-variant model parameters a(t), b(t), and c(¢) can be considered as
piecewise constant during a multiple N of the time interval A¢. In practice,
the sampling time is selected to At = 1min, and the parameters a(t), b(t),
and c¢(t) are considered as constant for about one hour, i.e., N = 60.

Simulation and Analysis of the Uncertain Biomedical Model

As we can see from (8.7) and (8.20), the parameter B in the insulin model
and the gastroparese factor fsas in the glucose model commonly exhibit a
rather high degree of uncertainty, inasmuch as they are very much dependent
on the patients’ individual physique. Additionally, the nutritional contents of
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the ingested food, such as the amount of carbohydrates m.,, is fairly difficult
to determine precisely. For these reasons, the parameters B, fgas, and me,
are considered as uncertain, forming n = 3 independent uncertain parame-
ters of the model. They are represented by quasi-Gaussian fuzzy numbers p;,
1 =1,2,3, defined by

pr=B=gm*(11.8-10 > min~!,1.6 - 10 3 min~",0.4 - 10" min~") , (8.31)
Do = feas = gfn*(0.64,0.03,0.02) , (8.32)

~ 1 1
D3 = e, = gin™(5bu, 3 bu, 3 bu) , (8.33)

where the modal values of B and fgas are chosen in accordance with the
parameter settings in [73], and their worst-case uncertainties are not exceeding
the ranges given in (8.7) and (8.20). The worst-case deviation from the modal
value of my, is set to 1 bu = 1 bread unit, equivalent to 10 g of carbohydrates,
seeing that the nutritional content of carbohydrates in the ingested food is
usually quantified as an integer multiple of one bread unit. The membership
functions of the asymmetrically shaped fuzzy parameters p1 = B and p2 = fgas
are plotted in Fig. 8.2.

a 1.0 b 1.0
m wol
B L fgas
0.5 0.5
0.0 . . . . . 0.0
7 8 9 10 11 12 13 0.5 0.6 0.7
B/1073 min71 fgas

Fig. 8.2. Membership functions of (a) the uncertain absorption rate B, and (b) the
uncertain gastroparese factor fgas.

The uncertain biomedical model, given by the model equations (8.1) to
(8.30) and the uncertain parameters in (8.31) to (8.33), can be simulated by
the use of the transformation method in its reduced form, considering the
fuzzy-valued amount of in-blood glucose Gy, (t) as the uncertain output g(t) of
the model. Both the ingestion of food and the injection of insulin are assumed
to take place at the time ¢ = 0, where the initial condition for the in-blood

glucose is set to _
Gp(t =0) = Gp, = 73 mgdl * . (8.34)
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The results for Gy, (t) are shown in Fig. 8.3a by a contour plot with the degree
of membership u = B, (Gp) as the contour parameter in steps of Ay = 0.2.

Additionally, the membership functions of two meaningful results for éb(t),
namely, at ¢; = 150 min and ¢2 = 350 min, are presented in Fig. 8.3b. Note
that the dimension of the volume has been changed from ml to dl to obtain
the dimension of the in-blood glucose in its prevalent form mgdl™*.

a 110 b 1.0
Gy (0) pol - -
medl Gh(t1) G (t2)
90
0.5
70f =
p=1.0 L
50 . . . . . . ! 0.0
0 100 ¢; 200 300 ty 400 60 70 80 90 100
t/min Gy /mgdl™!

Fig. 8.3. (a) Contour plot of the uncertain amount of in-blood glucose Gy (t); (b)
membership functions of Gy (1) and Gy (t2) for t1 = 150 min and ¢2 = 350 min.

Obviously, the amount of in-blood glucose exhibits a maximum range of
uncertainty of about 20 mgdl . Even though this value seems to be fairly
high, it can be rated as absolutely acceptable to all intents and purposes from
a medical point of view. Another feature that can be noticed from Fig. 8.3a
is the significant increase of uncertainty within the first three hours and its
moderate decrease with time. The source of this effect can be located on the
basis of the results that are obtained by the fuzzy arithmetical analysis of the
model. Viewing the degrees of influence p1 (t), p2(t), and p3(t) in Fig. 8.4, we
can provide evidence that the initially increasing uncertainty of the in-blood
glucose Gy, (t) is primarily governed by the uncertainty of the model parameter
p1 = E, which exhibits predominant relative influence in the early stage of
the glucose metabolism. The later preponderance of the relative influence of
the model parameter ps = m., is not of particular interest in practice: firstly,
because its absolute influence on the uncertainty of in-blood glucose levels off
with the degradation of carbohydrates, and secondly, the insulin-dependent
metabolism is usually restarted by a fresh injection after three to six hours in
case of the commonly used short-acting insulin.

Against this background, we can draw the interesting and unexpected con-
clusion that the evolution of the in-blood glucose is significantly more affected
by uncertainties in the parameter of the insulin model than by those related to
the ingested food. Hence, to improve medical therapy, efforts should instead
be focused on the identification of the “individual insulin parameters” of the
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p3
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Fig. 8.4. Degrees of influence pi(t), p2(t), and ps(t) for the uncertain model pa-
rameters p1 = B, P2 = fgas, and ps = Me,.

patents rather than on an exact quantification of the nutritional contents of
the ingested food.

8.2 Enhanced Parameter Identification for the Model of
the Human Glucose Metabolism

Focusing on the modeling of biomedical systems, the identification of the
model parameters turns out to be a non-trivial problem. This is primarily due
to the fact that sophisticated biomedical models are usually rather complex,
nonlinear, and characterized by a large number of parameters. Moreover, sev-
eral of these model parameters feature the property of being highly dependent
on the individual physique of the patient, which requires their re-adjustment
for each individual. The often high-dimensional and nonlinear optimization
problems to be solved for this purpose not only demand significant compu-
tational effort, they also very often lead to results that are only reasonable
from a numerical point of view, but do not have any relation to the actual
physical realities. The major reasons for the failure of these global optimiza-
tion problems — in particular, if only few measured data are available — can
be seen in their high dimension as well as in the fact that the whole set of
measured input/output data is utilized in an undifferentiated way to identify
all the model parameters at once.

Pursuing the approach of HANSs AND NEHLS [67] and KISTNER ET AL.
[79, 80] to overcome this limitation, a fuzzy arithmetical analysis of the
biomedical model is carried out beforehand with the objective of quantify-
ing the influence of each model parameter on the output of the model. On



8.2 Enhanced Parameter Identification for the Human Glucose Metabolism 225

this basis, the overall time range of the model simulation can be divided into
different phases where, in each phase, only a subset of the model parameters
shows major influence on the model output, while the significance of the oth-
ers can be considered as negligible. The decisive factors and advantages of
this approach are the following: first, the overall high-dimensional identifica-
tion procedure can be reduced to a number of lower-dimensional optimization
problems that are much faster to solve, and second, significantly more realistic
values for the model parameters can be achieved due to the fact that in the
reduced optimization problem, only measured data from those time intervals
are used for the identification of the model parameters where the parameters
show significant influence.

State-Space Model for the Amount of In-Blood Glucose

As an application, we consider again the biomedical model of the human glu-
cose metabolism for patients that suffer from diabetes mellitus type I. The
submodels for the inflow I.x(t) of exogenic insulin as well as for the inflow
Gex(t) of exogenic glucose into the blood are adopted as they stand in (8.1)
to (8.28) with all parameters considered as crisp. The empirical model for
the amount of in-blood glucose Gy, (t), however, is replaced by a more sophis-
ticated, structured model, which can be expressed by the following system
of nonlinear first-order ordinary differential equations for the state variables
517527"'756:

&L(t) = F1(&,&,8,p) — Fo(é,p1) — F3(&,p1)

— Fy(61,84,p1,P4,P5,p6) + P2 &6 (8.35)
E(t)=—(m+r+1) &+ 7k + 75 &+ Lex(t) (8.36)
Gt =—(ru+76) G +7E, (8.37)
Gt)=—1é+1é, (8.38)
& (t) = —6& + F5(61,8a,p1, 03, 07,8, Do) (8.39)
€o(t) = —p2 & + Gex(t) (8.40)

Gy(t) = pil &i(t) (8.41)

For reasons of simplicity and to avoid confusion, a detailed description of the
involved quantities including their denotation and biomedical meaning will not
be provided here. The origin of the model is well described in [15, 73]. Suffice

it to note here that the parameters v;,72,...,7s, 9, and € can be considered
as quite precisely known, and the functions Fi, Fs, ..., Fy are available either
in analytical form or as a look-up table [73]. The parameters pi,pa, ..., Do,

however, prove to be very patient-specific and need to be re-identified for each
individual.
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Analysis of the Biomedical Model

For the purpose of analyzing the overall biomedical model given by (8.1) to
(8.28) and (8.35) to (8.41), the parameters p;,ps,...,po to be identified in
the final state-space model are considered as n = 9 independent uncertain
parameters, represented by symmetric quasi-Gaussian fuzzy numbers p; of
the form

ﬁi:gfn*(fi,ai,ai) 5 'L.:1,2,...,TL. (842)
The actual settings for the modal values T; and the standard deviations o; of
the fuzzy parameters p;, i = 1,2,...,9, are listed in Table 8.1. The relatively
high values chosen for the standard deviations are intended to allow for a
presumably large uncertainty of the model parameters.

Table 8.1. Settings for the modal values and the standard deviations of the uncer-
tain model parameters.

Parameter Modal value Standard deviation Dimension
D1 0.2 0.03 kg™!

D2 0.1 0.03 min~!

P3 1.0 0.3 —

Pa 1.0 0.3 —

Ds 1.0 0.3 —

Do 1.0 0.3 —

pr 0.5 0.15 —

D8 2.0 0.6 —

Po 1.0 0.3 —

After simulating the model for a period of 20 h, in which several ingestions
and insulin injections are assumed to take place, using the transformation
method in its general form, the analysis part of the method can be evaluated
and the standardized mean gain factors x;(t) can be obtained. They represent
expedient measures which quantify the absolute influence of the uncertainty
of the model parameters p;, i = 1,2,...,9, on the overall uncertainty of the
model output ¢(t) = Gy (t). The resulting curves of the standardized mean
gain factors k;(t) are shown in Figs. 8.5 and 8.6. It is worth mentioning that,
especially in view of the long-term objective of enhanced parameter iden-
tification, which takes advantage of a suitable split of the overall problem,
it is recommended to rate the model parameters on the basis of the abso-
lute influence measures k;(t) rather than using their relative counterparts p;,
1 = 1,2,...,n. The reason for this is seen in the operation of normalization
that is inherent to the latter measures, making comparable quantifications
difficult over a longer time range.
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a 300 : b 300
mi(t) | | ri(t) |
mgdl—1 | mgdl—1

200 - | 200 i

100+ 100}

20
t/h t/h

Fig. 8.5. Standardized mean gain factors: (a) k3(t) (solid line) and rke(t) (dashed
line); (b) ks(t) (solid line) and ko(t) (dashed line).
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Fig. 8.6. Standardized mean gain factors: (a) r2(t) and rs5(t) (solid lines) and k7 (t)
(dashed line); (b) k1(t) (solid line) and k4(t) (dashed line).

Based on the runs of the curves in Figs. 8.5 and 8.6, a split of the time
axis into the intervals

T: = [0,10]h and Tb = [10,20]h (8.43)

appears to be justified. Obviously, the model parameters ps, pgs, ps, and pg
show significant influence on the model output ¢(t) = Gy (t) in the first time
interval, whereas the parameters p> and ps do so in the second. The influence
of the model parameter p; decreases rapidly in 77, and, after some re-increase,
remains roughly constant in T». Finally, the influence of the model parame-
ters p1 and py proves to be almost negligible in the second time interval; a
significant influence of these parameters can only be observed in the first time
interval.
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Parameter Identification

The problem of identifying the parameters of the state-space submodel in
(8.35) to (8.41) consists in the determination of an optimal value p, for the
parameter vector

p=[p1,p2,.. 19" (8.44)

so that the objective function

N

f) =Y [Gutr) —-G™(t)]”, PeR’, (8.45)
k=1

is minimized, subject to a total number of L conditions and constraints

ap)=0, 1=1,...,1, (8.46)

which result from physiological aspects. The measured values of the in-blood

glucose are given by Gém) (t), while the simulated values are denoted by

éb(tk). To practically solve the nonlinear optimization problem, the method
of sequential quadratic programming [110] is applied. The modal values in
Table 8.1, used for the fuzzy arithmetical analysis of the model, serve as the
starting values for model parameters in the identification procedure.

When the optimization problem in solved in the conventional way, all the
elements of the parameter vector p are identified simultaneously, using the
full set of measured data G{)m) (tx), k = 1,...,N, available. On the other
hand, if the enhanced version of identification is applied, the optimization
procedure is split into a number of lower-dimensional sub-problems which
only use measured data from those time intervals where the parameters show
significant influence. Based on the conclusions drawn from the results of the
fuzzy arithmetical analysis in Figs. 8.5 and 8.6, it is advisable to split the
identification problem for the human glucose metabolism into two parts, as
specified in Table 8.2.

Table 8.2. Recommended split of the overall identification problem.

Model parameters Identification using measured data from

P1,D3,p4,P6,p8,p9  T1 =[0,10]h
P2,D5,P7 T, = [10,20] h
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The parameters that result from the enhanced optimization procedure are
listed in Table 8.3 together with the values identified by the conventional, un-
differentiated optimization. To illustrate the improvement attained by the en-
hanced identification procedure, the model of the human glucose metabolism
is re-simulated twice: once for the conventionally identified model parameters,
and once for the enhanced parameter set. The resulting curves for the amount
of in-blood glucose are shown in Fig. 8.7, where the simulated values of the
conventional case are given by Gy, (t), and those of the enhanced approach by
ég(t). The data measured for the amount of in-blood glucose are denoted by

Gém) (tx). Obviously, the prediction of the in-blood glucose can be significantly
improved by applying the identification procedure in its enhanced version.

Table 8.3. Identified values for the model parameters pi,p2,...,po after conven-
tional and after enhanced optimization with the given starting values.

Parameter Starting Identified value Identified value Dimension
value (conventional) (enhanced)

p1 0.2 0.1160 0.1113 kg !

D2 0.1 0.0803 0.1338 min~!

D3 1.0 0.1630 0.1134 —

P4 1.0 0.1000 0.1000 —

Ps 1.0 1.4521 1.1834 —

Pe 1.0 1.9408 1.9470 —

pr 0.5 1.3495 0.4999 —

ps 2.0 2.8325 2.8870 —

Po 1.0 1.8387 1.8870 —

Although the approach of enhanced identification requires the usually
time-consuming fuzzy arithmetical analysis of the model to be carried out
beforehand, the advantages of this approach clearly outweigh this extra work.
This is mainly because the analysis needs to be carried out only once for a
particular biomedical model, whereas the subsequent identification procedure
has to be performed anew for each patient and for every newly acquired data
set. Thus, with the reduced dimension and the enhanced performance of the
split identification, the fuzzy arithmetical approach constitutes a clear overall
improvement,.
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Fig. 8.7. Estimated amounts of in-blood glucose Gp(t) after enhanced parame-
ter identification (solid line), and Gy (t) after conventional parameter identification
(dashed line); measured amount of in-blood glucose Gém) (tr) (o).
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Control Engineering

A classical controller design needs appropriate models with, preferably, ex-
act parameter values to guarantee the efficient performance of the controller.
In practice, however, this is often not achieved, and the models exhibit un-
certainties that may show up in the form of uncertain model parameters or
uncertain initial or boundary conditions. Consequently, the control results ob-
tained for solutions which use a specific set of values as being the most likely
for the model parameters cannot be considered as representative of the entire
spectrum of possible model configurations. In order to guarantee the effective
and preferably stable control of uncertain systems, so-called robust controllers
should be applied, and various concepts have already been developed for this
purpose (e.g., [96]).

In contrast to the classical concepts of robust control, a novel methodology
is introduced in this chapter, which follows the approach proposed by HANSS
AND KISTNER [64]. It addresses the problem of the linear quadratic regula-
tor (LQR) design for systems with structured, parametric uncertainties, and
provides a solution that is based on a combination of classical controller de-
sign and fuzzy arithmetic. Explicitly, we consider the problem of an inverted
double pendulum, which is to be controlled in its unstable upright position.
Uncertainty will be incorporated in the form of fuzzy values for several model
parameters, such as the mass, the moment of inertia, friction in the hinges, as
well as the position of the center of gravity of the inner and the outer pendu-
lum. Subsequently, the equations of classical LQR design will be evaluated by
means of the transformation method, leading to an optimal feed-back vector
with fuzzy-valued components. Finally, to obtain a crisp-valued output sig-
nal of the controller as the stabilizing torque for the inverted pendulum, the
fuzzy-valued quantities in the fuzzy-parameterized control concept must be
defuzzified. Different concepts for achieving this objective will be presented
and compared.
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Inverted Double Pendulum

As an application of the fuzzy-arithmetical approach of LQR design for sys-
tems with uncertain parameters, we consider a double pendulum, as shown
in Fig. 9.1, which is to be controlled in its unstable upright position. The
pendulum consists of an inner and an outer arm, each characterized by its
mass myq», its length Iy /5, its moment of inertia Jy /o (with respect to the
center of gravity), and the distance a;/» of its center of gravity Cy/; from the
respective hinge. After introducing the angles ¢(t) and 9 (t) as the generalized
coordinates

@ (t) = (t) and g2(t) =1(t) (9.1)

to uniquely describe the position of the inner and the outer arm, we can derive
the equations of motion for the double pendulum by using the Euler-Lagrange

equations
d /0L oL ~
al — =Q;, i=12. 9.2

d¢ (3di> 0¢; @ ' (02)

The Lagrangian function L is the difference between the kinetic and the po-
tential energy of the system, and @; and Q2 denote the generalized non-
conservative forces. If we assume the friction in the hinges to be proportional
to the relative angular velocities with the factors d; and ds, then the nonlinear
equations of motions can be obtained in the form

Ag+Boyp+C=M{), (9.3)
DG+Ep+F=0 (9.4)
with the coefficients

A=Jy+muad +moli (9.5)
B = mylyas cos(p — ) , (9.6)

C = malyasp? sin(p — ) — (myay + maly) gsing
+ (dy + do)p — dot) (9.7)
D = mylias cos(p — ) , (9.8)
E = Js+maaj , (9.9)
F = —myliax¢? sin(p — 1) — maasgsint — da( — 1) | (9.10)

and with the torque M (t) representing the input variable of the system.

If we compare the model given by (9.3) to (9.10) with an experimental set-
up of the system, it is obvious that the model can only provide a simplified
copy of the prototype. In fact, there are a number of components and effects
which the model does not account for, such as the physical properties of
the hinges, the coupling of the motor to the pendulum, and possible sensors
mounted on the set-up. Moreover, to apply the methods of linear controller
design, the model has to be linearized for the desired operating point, and
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m2,l2,J2

Fig. 9.1. Inverted double pendulum with parameters and input/output signals.

the originally nonlinear equations are replaced by their linear counterparts.
Against this background, it is recommended that the influence of uncertainty
be attributed to a number of parameters of the model.

Controller Design

To stabilize the pendulum in its upright position, the design of a linear
quadratic regulator proves to be a practical approach. For this purpose, the
nonlinear equations of motion in (9.3) to (9.10) have to be linearized about
the unstable fixpoint ¢* = 0 and * = 0, assuming that ¢ and v differ only a
small amount from the desired values ¢* and 1*. After introducing the state

vector
T

x = [11,72,73,74] " = [0(t), $(£),9(t), % (£)] (9.11)

and the system input
w=M(t), (9.12)

the linearized model of the inverted double pendulum can be expressed in the

linear state form
zt=Ax + bu, z(0)=x, (9.13)

with
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0 1 0 O 0
21 G22 23 G24 ba
0 0 0 1 » b 0 (0.14)
Q41 Q42 Q43 Q44 ba
and
1 2
as = Ie (J2 + m2a2) (m1a1 + mzll) 9, (9.15)
1
o2 = —6 [MQllazdz + (J2 + m2a§)(d1 + d2)] > (916)
1
a23 = — = m3ailig , (9.17)
1
Qg = 6 do [Jz + mzaz(ll + az)] N (918)
1
aq1 = —5 mzagll (mlal + m2ll)g y (919)
1
Qgp = e {[Jl +myad +mali(ly + az)] dy + mzllazdl} ) (9.20)
1
Q43 = c Mol (Jl + mlaf + mglf) g, (9.21)
1
Qg4 = —5 ds [Jl + mlaf + moly (ll + az)] ) (922)
1
by = 6 (J2 + mza,%) s (923)
1
b4 = —6 m2l1a2 5 (924)
G = (Jo +moa3) (J1 + miai +moli) —m3l3a3 . (9.25)

Based on the linear state form of the model and assuming the measurability
of the complete state vector x, a linear quadratic regulator with the control
law

u(t) = —kT z(t) (9.26)

can be designed, where the optimal feed-back vector k then minimizes the
objective functional

J= % / ()T Qz(t) + u™ (t) Ru(t)]dt . (9.27)

The matrix @ denotes a positive semi-definite weighting matrix for the vector
x of state variables, and R is the positive definite weighting parameter for the
manipulated variable u. Resulting from the optimization problem, the optimal
feed-back vector k is determined by

1
k=2 PTp, (9.28)
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where P is the symmetric and positive definite solution of the Riccati equation

ATP+PA—%PbbTP+Q:0. (9.29)

Conventional LQR Design for the Uncertain System

If the system to be controlled proves uncertain and its parameters are not
precisely known, the controller is conventionally designed for some assumptive
model parameterization where the crisp-valued model matrices A* and b*
are assumed to be the most likely estimation for the real matrices A and b
of the system. The equations of conventional controller design then present
themselves as

1
A TP+ PrA* - =P b TP +Q=0, (9.30)
1
k* = — P"p* 9.31
= Py (931)
and the output signal of the controller is given by
w*(t) = —k*T x(t) . (9.32)

A conventional controller of this type will later serve as a reference to allow
some ranking of the controllers of fuzzy-arithmetical LQR design with respect
to their performance.

Fuzzy-Arithmetical LQR Design for the Uncertain System

Following the fuzzy arithmetical approach, the uncertainty in the model pa-
rameters are taken into account in the form of fuzzy-valued parameters. The
matrices in the equations of LQR design are then fuzzy valued, and the trans-
formation method should be applied to determine the optimal feed-back vector
k of the fuzzy type. The relevant equations then present themselves as

~T~ o~ ~ 1 ~~~T~
A P+PA—EPbb P+Q=0, (9.33)

~ 1 ~T~
k=—=P b. 9.34
= (9.34)

Since the controller that results from this concept is derived from the equations
of classical LQR design on the one hand, and is characterized by parameters
of fuzzy value on the other hand, it is called the fuzzy-parameterized optimal
controller in the ensuing.

Due to the fact that every real-world application of the controller requires
a crisp output value to be available for the manipulated variable u(t), a funda-
mental problem of fuzzy-parameterized optimal control is to find a practical
strategy of defuzzificattion to obtain a meaningful crisp-valued controller out-
put u(t). Three different options for attaining this objective are presented and
discussed in the following. The defuzzification operator ‘defuzz’ that is used in
this context is based on the definitions (5.34) to (5.38) formulated in Sect. 5.3.
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Option 1: Defuzzification of the Controller Output

After incorporating the optimal feed-back vector k of (9.34) into the control
law in (9.26), we obtain the fuzzy-valued controller output

) = —k 2(1) . (9.35)

As the apparently easiest and most straightforward approach, a crisp-valued
representation u(l)(t) of the optimal input variable of the system can be
achieved by directly defuzzifying the fuzzy-valued controller output %(t) of
(9.35) according to

u (1) = u®(t) = defuza(u(t)) . (9.36)

This approach, however, proves to be problematic, as it shows serious draw-
backs with respect to two important aspects of control theory:

e Real-time Operation

Both the calculation of the controller output @(t) and its defuzzification
into the crisp value u")(¢) have to be carried out on-line to ensure suc-
cessful applicability for real-world control systems. However, this objective
may not be achieved due to the excessive computational requirements of
the procedure, especially if the transformation method is applied in its
general form and if the number n of uncertain model parameters is high.

e Stability

Considering the transformed representations of the feed-back vector k and
the controller output @(t), each set of corresponding elements of these ar-
rays stands for one specific parameter configuration of the system with
its optimal controller signal assigned. Even though each of these configu-
rations separately shows stable control behavior, this property cannot be
guaranteed for the controller with the defuzzified output u() (¢) if applied
to an arbitrary configuration of the uncertain system.

Despite these drawbacks, the results of this method will be included in the
following for completeness and for purposes of comparison.

Option 2: Defuzzification of the Feed-Back Vector

As a second approach, the fuzzy-valued feed-back vector k can be defuzzified
into the crisp-valued feed-back vector

k° = defuzz (k) (9.37)
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prior to its incorporation into the feed-back control law. A crisp-valued con-
troller output can then be obtained though

u® () = —k*" x(t) = defuza(k ) () . (9.38)

This method clearly reduces the drawbacks of option 1 in the fields of real-time
operation and stability:

Real-time Operation

Since the determination of the feed-back vector k as well as its defuzzi-
fication into k° can be performed off-line, the on-line applicability of the
controller is guaranteed.

Stability

On the basis of the defuzzified feed-back vector k°, the poles of the closed-
loop uncertain system can be determined by computing the eigenvalues of
the closed-loop system matrix

—A-bk® . (9.39)

The poles are then available in the form of complex fuzzy numbers %§2)

%gz), %§2>, and %f), represented by two-dimensional fuzzy vectors over the
universal set C of complex numbers. As a generalization of the stability
condition to the concept of fuzzy-valued poles, the uncertain control sys-

tem can be characterized as stable if the a-cuts

Y

cuta (7)) = {c €C| pa(c) > a} . ac[0,1],  (9.40)

of the poles 7~r£2), r = 1,2,3,4, only consist of complex numbers ¢ with

negative real parts for all a € [0, 1]. If this condition cannot be fulfilled for
every a € [0, 1], there exists, however, a certain as € [0, 1] so that stability
of the closed-loop system can be guaranteed for all & > ;. The threshold
value ay can be interpreted as the minimum degree of crispness that is
required for the uncertain model parameter to guarantee stability of the
closed-loop control system. Considering the correspondence between the
level of membership and the interval of uncertainty for a decomposed fuzzy
number, this minimum degree a; of crispness corresponds to a maximum
amount of uncertainty that is still acceptable for the model parameters.

Option 3: Defuzzification of the Poles and Pole Placement

In the third approach, the feed-back vector k is retained uncertain, and we
can formulate the uncertain closed-loop system matrix as

AY A%k (9.41)

cl
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Strictly speaking, this formulation presumes that there is an uncertain feed-
back signal u%(t) acting in the closed-loop system. Even though this option
cannot be implemented in reality, it can be considered theoretically as long
as all the uncertain variables are used in their transformed representations.

_In a further step, the fuzzy-valued “intermediate” poles A1, A2, A3, and
A4 are to be determined, which result as the eigenvalues of the closed-loop

~(3
system matrix Ail). They are defuzzified into their crisp counterparts
Ao = defuzz(X,) , r=1,2,3,4. (9.42)

With the defuzzified representations of the open-loop system matrix A and
the matrix b, B B
A° =defuzz(A) and b° = defuzz(b) , (9.43)

an optimal crisp-valued feed-back vector k® can then be determined by pole
placement, that is, the four unknown elements of the single-column matrix
k3 are chosen such that the eigenvalues of the crisp-valued (4 x 4)-matrix

A° —p° kBT (9.44)

are equal to the four defuzzified intermediate poles A, A5, AS, and Aj. The
output signal of the controller is then determined by

u®(t) = —k®Tx(t) . (9.45)

Similarly to option 2, this method reduces the drawbacks of option 1 in terms
of real-time operation and stability:

e Real-time Operation

The determination of the feed-back vector k and the intermediate poles
)\1, )\2, )\3, and )\4, as well as the defuzzification procedures and the final
pole placement can be performed off-line, so that the on-line applicability
of the controller is again guaranteed.

e Stability

In accordance with option 2, the poles of the closed-loop uncertain system
can be determined by computing the eigenvalues of the closed-loop system
matrix

AV Z A _pE®T (9.46)

~(3)

The poles are then available in the form of the complex fuzzy numbers ;™
Nés), és), and 7@(1 ), and the uncertain control system can be characterized

as stable if the a-cuts

cuta(7®) = {c €C| o (c) > a} . ac[0,1],  (947)
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of the poles 7~r£3), r =1,2,3,4, are all characterized by negative real parts
for every a € [0, 1]. Again, if this condition cannot be fulfilled for every
a € [0,1], a threshold as € [0,1] can be defined so that stability of the
closed-loop system can be guaranteed for all a > as.

Numerical Results

To illustrate the performance of the LQR approach for uncertain systems by
avoiding undesirable effects, such as noise, and by guaranteeing equal con-
ditions for all tests, we apply the different versions of fuzzy-parameterized
controllers to numerical simulations of the nonlinear model of the inverted
pendulum given by (9.3) to (9.10). The actual parameter settings are derived
from an experimental set-up by identifying the parameters from test runs for
both the intact and the partially disassembled set-up. The parameters of the
nonlinear model will be referred to as the real values of the model parameters.

The length parameters [; and [ of the arms of the pendulum can be
regarded as crisp parameters with the values

Iy =l =045m, (9.48)

while the following parameters of the model shall be considered as uncertain:
the masses m; and ms, the friction factors d; and ds, the distances a; and as
of the centers of gravity from the respective hinges, and the squared radii of
gyration k? and k3, which quantify the moments of inertia J; and J» by

Jo=mik? and Jy=myks. (9.49)
Settings for the Conventional LQR Design

Assuming that some estimations of the model parameters are available, con-
ventional LQR design can be performed with the estimated parameters being
incorporated into the matrices A* and b* in (9.30) to (9.32). Some of the
estimations may result from simple measurements, while others may be de-
rived from assumptions of elementary physical laws. The latter case applies
especially for the values of the parameters a; /» and kf 5, Which originate from
the assumption that the arms of the pendulum are homogeneous thin rods.
In the following, the estimated parameter settings will be referred to as the
assumed values of the model parameters. Both the real values of the simu-
lated nonlinear model and the assumed values of conventional LQR design are
listed in Table 9.1.

The controller obtained by the conventional approach of LQR design will
serve as a reference controller, and the resulting signals for the angles of the
inner and the outer arm of the pendulum are denoted by ¢*(t) and *(¢).
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Table 9.1. Crisp parameters p;, 1 = 1,2,...,8, of the conventionally controlled
inverted pendulum with their assumed values and their real values.

Parameter Assumed value Real value
p1=m1 0.80 kg 0.89kg

P2 = M2 0.10 kg 0.11kg

p3s = a1 11/2=0.225m 0.076 m

P4 = a2 15/2=10.225m 0.210m

ps = k2 13/12 =~ 0.01688 m? 0.03802 m?

pe = k3 13/12 =~ 0.01688 m? 0.02517 m?

pr =d1 0Nmsrad ™! 0.001 Nmsrad ™!
ps = d2 0Nmsrad™! 0.001 Nmsrad ™!

Settings for the Fuzzy-Arithmetical LQR Design

In conventional LQR design the assumed values directly provide the crisp
settings for the parameters, but these values only serve as the modal values of
the fuzzy numbers used to represent the uncertain model parameters in fuzzy-
arithmetical LQR design. That is, the formerly crisp parameters py, ps, ..., ps
of the model are replaced by the uncertain parameters p1, ps, .. ., pg, which are
considered as n = 8 independent parameters of the model. They are quantified
by quasi-Gaussian fuzzy numbers p; of the form

ﬁi :gfn*(fi,UIi,Uri) ) 7::]-72)"'7,”’7 (950)

with the actual settings T;, o1,, and o,,, as well as the resulting worst-case
intervals W;, listed in Table 9.2. In the present case, certain approximate a
priori knowledge about the variation of the model parameters is available,
and because of the possibly asymmetric shape of the membership functions, a
priori knowledge about the suppositionally predominant direction of variation
of the parameters can be taken into account. For example, the mass m of the
inner arm of the pendulum is assumed to be potentially higher rather than
lower, and the corresponding distance a; of the center of gravity to be smaller
rather than larger. These settings attempt to take into account the physical
properties of the motor which is attached to the bottom of the inner arm of
the pendulum.

After incorporating the fuzzy-valued parameters p1,pz, . . ., ps into the ma-
trices A and b of (9.33) and (9.34), three different fuzzy-parameterized con-
trollers can be achieved, depending on the defuzzification option applied. The
resulting signals for the angles of the inner and the outer arm of the pendulum
are denoted by o) (¢) and 1) (¢), @ () and ¥ (t), and @) (¢) and ) (¢),
with the superscript expressing the defuzzification option.



9 Control Engineering 241

Table 9.2. Modal values T; and standard deviations o1, and o,,, as well as resulting

worst-case intervals W, for the uncertain model parameters p;, i =1,2,...,8.
Parameter T; oy o Wi = [wy;, w;]
p1=m 0.80 kg 1%z 10%7T, 0.776,1.04] kg
D2 = Mo 0.10 kg 10% 72 10%72 0.07,0.13] kg

p3 = a1 0.225m 30%Ts 1%Ts 0.0225,0.2318] m

D1 = a2 0.225 m 10%Zs 10% T4 0.1575,0.2925] m
ps = k? 0.01688m? 1%%s 30%Ts 0.01617,0.03207] m?
0.01617,0.03207] m”
0,0.01] Nmsrad™*

0,0.01] Nmsrad™*

pe=Fk3  001688m> 1%Zs 30%Ts
pr = d1 0 0 0.0033 Nmsrad ™'

[
[
[
[
[
[
[
[

ps =d2 0 0 0.0033 Nmsrad ™!

Additional Settings

The weighting matrix @ and the weighting parameter R in the equations of
linear quadratic regulator design are chosen as

Q=1 and R=1, (9.51)

where I denotes the identity matrix. The decomposition number m is set to
m = 10, and the transformation method is applied in its general form. The
simulation time is chosen as tg, = 45, and the sample time as At = 0.01s.
Finally, the initial conditions incorporated into the initial state vector xo are
assumed to be

©(0) =5° ~ 0.09rad , P(0) = =5° ~ —0.09rad , (9.52)
@(0) =0rads™, $(0) =0rads™!. (9.53)

The curves obtained for the angles ™) (t), 2 (t), o3 (t), p*(t), and 1) (¢),
P (t), p3)(t), ¥*(t) of the fuzzy-parameterized controllers (options 1 to 3)
and of the conventional reference controller are shown in Figs. 9.2 and 9.3.
As we can see from these diagrams, for option 3 the fuzzy-parameterized
controller shows a considerably more improved performance in comparison
to the conventional reference controller. In particular, the inner arm of the
pendulum, which is characterized by the angle (t), reaches the desired up-
right position in a much shorter time. The fuzzy-parameterized controller for
option 1 ranks second while option 2 ranks third, showing only a slight im-
provement compared to the conventional LQR approach. These observations
can be substantiated when, as a measure of performance, the mean quadratic
deviation I' of the arms from the upright position is introduced according to
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t/s

Fig. 9.2. Angle of the inner arm of the pendulum: o™ (t), @ (¢), and ¢® (¢)

(solid lines) for the fuzzy-parameterized controllers; ¢* (t) (dashed line) for the con-
ventional controller.

t/s

Fig. 9.3. Angle of the outer arm of the pendulum: o™ (¢), %®(¢), and ¢® (¢)

(solid lines) for the fuzzy-parameterized controllers; ¥ (t) (dashed line) for the con-
ventional controller.
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N
% S ok A1) +p(k A?, (9.54)

k=1

I'=

where At is the sample time and N the number of sampled data points within
the time interval [0, tsip], i.., N = 1 4 tgm/At. The mean quadratic devia-
tions "M, '® and I'®) of the fuzzy-parameterized controllers as well as the
reference value I'™* of the conventional concept are listed in Table 9.3.

The quantitative results emphasize the conclusions already drawn from the
simulation plots and they affirm the outstanding role of the fuzzy-arithmetical
concept 3. This is even more apparent since option 1 proves impractical due
to the drawbacks mentioned above. Indeed, the strength of the concept of
option 3 lies in the special combination of classical controller design and fuzzy
arithmetic associated with a well-timed defuzzification phase directed at the
constitutive quantities of the system — the poles. This conclusion is confirmed
by the fact that the performance of the fuzzy-parameterized controller 2 is
significantly worse when compared to controller 3 although it also incorporates
uncertainties into the model by fuzzy-valued model parameters. Similar results
can be obtained by an even simpler control concept where the fuzzy-valued
model parameters are defuzzified right after their definition, and conventional
LQR design is applied with the defuzzified parameter values used as crisp
settings. This concept shows a relative improvement of 5.96% compared to
the reference controller and thus ranks only slightly behind the concept of
option 2.

Table 9.3. Performance measure and degree of relative improvement of the fuzzy-
parameterized controllers in reference to the conventional LQR. concept.

Controller concept Performance measure Improvement
Conventional I =2.7608 —
Fuzzy-parameterized: 1 r® =21745 21.24%
Fuzzy-parameterized: 2 ' =25770 6.65%
Fuzzy-parameterized: 3 r'® =1.8041 34.47%

With regard to the stability of the uncertain system controlled by the
fuzzy-arithmetical LQR approach of option 3, the stability threshold as can
be determined on the basis of (9.46) and (9.47). For the given parameter
configuration and the discretization number m = 10, the threshold results in
as = 0.1, which is equal to Ay = 1/m. This implies a narrowing of the original
worst-case intervals W; of the uncertain model parameters p;, i = 1,2,...,8,
to the modified worst-case intervals S; for which stability of the closed-loop
control system can be guaranteed (Table 9.4). Nevertheless, there is evidence
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that the narrowing can be reduced if a larger decomposition number m is

selected, involving a smaller value of Ap.

Table 9.4. Original worst-case intervals W; and stable worst-case intervals S; of

the uncertain model parameters p;, i = 1,2,...,8, for controller option 3.
Parameter Wi = [wy;, wy;] Si =[sy;,8:;] for as=0.1
p1 = [0.776,1.04] kg [0.7828,0.9717] kg
Do = Mo [0.07,0.13] kg [0.0785,0.1215] kg
P = a1 [0.0225,0.2318] m [0.0801,0.2298] m
D1 = a2 [0.1575,0.2925] m [0.1767,0.2733] m
ps = ki [0.01617,0.03207] m? [0.01652,0.02775] m?
pe = k3 [0.01617,0.03207] m?  [0.01652,0.02775] m?
pr=dy [0,0.01] Nmsrad™! [0,0.0071] Nmsrad™"

Ps = do [0,0.01] Nmsrad ™! [0,0.0071] Nmsrad !

Finally, it should be mentioned that although only one specific initial con-
dition for the inverted pendulum has been considered in this example, the
fuzzy arithmetical approach surpasses the conventional controller in its per-
formance independent of the initial conditions defined.
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