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Preface 

The first book of the new, textbook series, entitled Applied Dynamics 

of Manipulation Robots: Modelling, Analysis and Examples, by M. 

Vukobratovic, published by Springer-Verlag (1989) was devoted to the 

problems of dynamic models and dynamic analysis of robots. The present 

book, the second in the series, is concerned with the problems of the 

robot control. 

In conceiving this textbook, several dillemas arouse. The main issue 

was the question on what should be incorporated in a textbook on such 

a complex subject. Namely, the robot control comprises a wide range of 

topics related to various aspects of robotics, starting from the syn

thesis of the lowest, executive, control level, through the synthesis 

of trajectories (which is mainly related to kinematic models of robots) 

and various algorithms for solving the problem of task and robot moti

on planning (including the solving of the problems by the methods of 

artificial intelligence) to the aspects of processing the data obtai

ned from sensors. The robot control is closely related to the robot pro

gramming (i.e. the development of highly-specialized programming lan

guages for robot programming). Besides, numerous aspects of the con

trol realization should be included here. It is obvious that all these 

aspects of control cannot be treated in detail in the frame of a text

book. Therefore, we decided to confine ourselves only to the synthesis 

of control at the executive level, while the other aspects of the con

trol mentioned above, should be treated in the coming volumes of the 

series. To facilitate the understanding of the control synthesis at 

the executive level, the first two chapters of this book deal with the 

problems concerning higher control levels and fundamental aspects of 

the robot control realization. 

After deciding to restrict our attention only to the synthesis of con

trol at the executive level, we posed the following question: whatsho

uld be the necessary background knowledge of the user of this textbook? 

It is known that the control synthesis at the executive level is, on 

the one hand, closely related to theory of automatic control (i.e. the

ory of large-scale technical systems) and on the other, to dynamiCS of 
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active mechanisms. We assume the user of this book has already read 

volume one of this series, so that he is acquainted with the basic 

knowledge on dynamic models of robots. Therefore, in this book (Chap

ter 3) we only briefly consider the dynamic model of a robot without 

repeating many of the concepts related to the robot mechanics. However, 

the problem of the relation to systems theory is much more complex. Ma

ny of the approaches and solutions developed in the general controlsy

stems theory have also been applied, after more or less adaptation, to 

the synthesis of robot control. Someone who wants to study robot con

trol should be familiar with some basic concepts of theory of automa

tic control and theory of large-scale systems. For this reason it was 

necessary to "repeat" in this book some of the approaches of both clas

sical theory of automatic control and theory of control of large-scale 

systems (i.e. at least those approaches that found a wider applicati

on in robotics). In order to avoid the unnecessary broadening of the 

book by including detailed considerations of the concepts and approac

hes that can be found in the related literature on automatic control 

and systems theory we assume the user of this textbook is familiar with 

basic concepts and techniques of automatic control (such as the models 

of linear systems in s-domain, models in state space, classical methods 

of control synthesis, etc.). However, as we have endeavoured to write 

a book which should be as much as possible a self-contained unit, we 

included in it a number of notions of theory of automatic control (e.g. 

the elements of position servo systems, fundamental concepts of the me

thods of pole-placement, the synthesis of the optimal regulator, and 

the like). In doing this we avoid all theoretical corroborations and 

all those details which are not necessary for the understanding of ro

bot control (and which the reader, if need be, can find in the cited 

literature). We hope this approach will enable a wider circle of rea

ders to study robot control, with no need to consult additional lite

rature. 

In planning this textbook, the next dilemma was: which approaches to 

the robot control synthesis should be described and how extensively it 

should be don.e? Presently, a great number of various approaches to ro

bot control are being developed. Many of them have not been verified 

in pract~ce, as they are still at the stage of theoretical and experi

mental studies. It is difficult to decide whether these approaches sho

uld be included in a textbook of this kind or not. We decided first to 

consider thoroughly the classical approach via the servo systems around 

particula;r- jOints, Which is involved in the majority of the present-day 

cOmme;r-cial ;r-obots. We think that, from an educational viewpoint, this 
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approach provides a most convenient way to understanding the dynamic 

behaviour of the robot as a whole. For this reason we consider in de

tail the methods of the analysis of robot's behaviour. From our experi

ence, it is most advisable to choose those approaches which, starting 

from the decentralized control, introduce the correctional signals to 

compensate for the effect of the robot's dynamics. For this reason we 

consider dynamic control via the global one. In this way, the reader 

learns gradually, starting from the most simple servo control and going 

to the complex dynamic control. Thus, an important educational aim is 

achieved: the user of the textbook becomes aware of the crucial impor

tance of choosing the simplest control law in the control synthesis and 

also, that it is equally important to check if such control satisfies 

the robotic system in different dynamic regimes of its operation, Le. if 

a satisfactory accuracy and desired operation speed of the system can 

be achieved. Furthermore, we think it is worth to emphasize the impor

tance of the problems related to variations of the robot parameters, 

and indicate the circumstances when it is necessary to introduce adap

tive control. As in the case of non-adaptive dynamic control, we think 

it necessary for the reader to develop the criterion for introducing 

adaptive control. However, we thought that reviewing of various sche

mes of adaptive control would burden the book very much and that a ba

sic coursebook on robot control should not be stuffed with schemes of 

ada.ptive control which are, mainly, at the stage of the laboratory ap

plication. We thougnt it also necessary to include in the book some 

representative approaches to the dynamic robot control, such as the 

"co!llPuted to;r;-que method," and tne classical approach to systems theory 

v;ia the 1;ip,ea;I) optimal regulator. I:n addition, we decided to present 

the Ca,;t:tesian control which, though still being at the experimental 

stage, is ye;r;-y impo;t:tant for educational purposes as it provides a go

Od insight ip,to certain crucial aspects of robot control. Finally, we 

thought ;it necessary to pay a special attention to the robot control 

with constrained motion of the gripper a.nd to so-called hybrid positi

op./;f'orce cont,;t:ol" as t.hese are specific problems in the field of robo

t.ics which. attract a great deal of attention of a number of researchers. 

Haying ma.de such a cnoice of the subject matter to be included in our 

textbook, we divided it into seven chapters. 

Chapter 1 presents the fundamental control principles of the current 

robotic systems. Without repeating basic concepts of robotic mechanisms 

(whicn can be foun.d in the first book of this series), the chapter bri

efly d,esc;r;-ibes the classification of robots according to the control 
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and then deals with the usual control hierarchy of automatic robots. 

Furthermore, it gives a concise discussion of some characteristic ro

bot tasks and points out that the different requirements are imposed 

before the robot, what should be borne in mind in the control synthe

sis. 

The aim of Chapter 2 is to provide the reader with some basic concepts 

of the kinematic control level and thus enable him to follow the chap

ters to come. Here, we are not concerned with the methods of forming 

kinematic models of robots (which can be found in the appropriate li

terature) but we endeavour to indicate the problems related to solving 

the inverse kinematic problem. 

Chapter 3, which occupies the central place in the book, is devoted to 

the synthesis of servo systems around particular robot jOints. As we 

mentioned above, the servo system approach is prevailingly found with 

the present-day commercial robots. We think it extremely important in 

the teaching to emphasize the specificity of the synthesis of servo 

systems for robots. First part of the chapter presents in short the 

robot models: the model of the mechanical part and the model of the 

actuators, and their assemblying into a unique model. Then, the model 

of the behaviour of one robot jOint is derived under the condition that 

a.ll oth.er jOints are kept locked. Such a joint model is the basis for 

the servo systems synthesis. Section 3.3. describes the synthesis of 

the local servo systems in two ways: in s-domain and by pole-placement 

method. Throughout the chapter, the servo systems are consistently re

presented via the models in s-domain and via the models in state space. 

The elements of servo systems and their transfer functions are presen

ted in detail, although their more precise definitions can be found in 

the l.iterature on automatic control. We wanted the reader to refresh 

his knOWledge on classical servo system and thus be prepared, without 

consulting additional literature, to follow the further consideration 

f'or WhiCh a full understanding of the concepts of a position servo sy

stem is needed. The synthesis in s-domain is given in detail and then 

the sYnthesis is generalized using the method of pole-placement. We 

Oilndeavoured, to simplify this method as much as possible because it is 

he:r:e aPl?l;i.ed on the simple, low-orde;r subsystems. The synthesis of the 

optiJilal l.ocal regulator, as one of alte;rnative approaches to the syn

thesis of se:r:vo systems, is given in Appendix 3.A. without entering 

detail.ed, theoretical. considerations. Section 3.3.4. explains in detail 

the sPOilci:f;icity of the robot's servo systems: the effect of variation 

of the !1IechanisJII ' s inertiality and gravitational moments. The next 



sections d.eal with the nonlinear effects d.ue to the constraints on the 

actuators, friction, and the like, as well as the application of the 

PID regulator. Finally, Section 3.5. is devoted to the problems of trac

king of trajectories at the servo system level, and to the precompen

sator synthesis. We thought it advisable to explain the problems rela

ted to the delay compensation on a simple subsystem model (one joint 

and one actuator). 

Chapter ~ analyzes the behaviour of the robot system as a whole when 

all its joints move simultaneously and the local servo systems are ap

plied. As first, a qualitative analysis of the effects of particular 

d.ynamic forces is given, and then, the robot stability is analyzed us

ing a linearized. model. This analysis is carried out in a gradual way: 

first, the robot's behaViour during the position control (around a gi

Ven position) is analyzed, then, the change of the given position is 

considered, and finally, the trajectory tracking is described. At this 

pOint, nO!l\in.al centralized control is introduced with the aim to expla

in the phenomena of dynamic coupling between the joints, and not as a 

representative approach to solving the problem of dynamic control. Mo

reove;r, a:n th.e shortcomings of this approach to robot control are cle

a;rly stated,. special attention is paid to the effect of the robot's 

d,ynamics when. the local servo systems are used to track trajectories, 

as this approach is most frequent in practice. At that, we wanted to 

make a clear d.istinct;ion between the case when such simple control can 

serve the purpose and. the case when it is necessary to introduce dyna

mic control. 

An analys;is of stability of a nonlinear model during the position con

t;rol and. trac~ing of trajectories, is the subject of Appendix 4.A. The 

stapility an.alys;is of the nonlinear robot model requires the knowledge 
of theory of large-scale systems. A method of analysis of complex systems 

WhiCh, to Ou;r;' opinion, can be w;t.th success applied On robotic systems, 

is p;r;'esented, .in Append,ix 4.A. in a. most simple way so that it may be 

understoOd Py the peade;r;'s which did, not have opportunity to become ac

quainted, with the lite;r;'atu;r;'e in this field,. However, this appendix is 

intended fOr those ;r;'eaders whiCh would like to study more deeply this 

aspect of th,e con,trol synthesis an,d .is not necessary for the understan

ding th,e bas.ic app;r;'oach,es treated in the subsequent chapters. 

chapter 5 treats dynamic global robot control via two main forms: the 

fO;r;'ce feedPac~ and th,e on-lin.e calculation of robot dynamics. The 

IX 
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application of various approximate models of robot dynamics for dyna

mic global control received special attention. At this point, we tho

ught it advisable to exemplify the computer-aided synthesis of control 

by presenting a characteristic programming package'. In Appendix 5 .A. , 

the analysis of robot stability is extended to cover the case when, 

apart from the local servo systems and nominal control, the global dy

namic control is introduced. However, as in the case of Appendix 4.A. 

this appendi~ is not necessary for the understanding of the rest of the 

book. A substantial part of this chapter is devoted to the approach via 

the "computed. torque method" as the one of the most popular approaches 

to robot control. Woe clearly indicate the e~istence of different vari

ants of this approach, as well as some of its shortcomings. As we have 

already mentioned, this chapter presents the possibility of Cartesian 

robot control. The centralized quadratic regulator is described in Ap

pendix 5.B. (again without repeating the known theoretical statements 

which can be found in the literature) as an example of the possible 

application of the control systems theory on robots. Besides, we indi

cate all the shortcomings of this approach which are the reasons why 

such control has not been applied in practice. 

Chapter 6 is devoted to the problems of the variation of robot's para

meters and to the robustness of the control laws considered. To save 

space in the book we confined ourselves to only a qualitative analysis 

of the robustness w-ithout pX'oviding rigorous definitions and analyses. 

We want to help the reader to develop a critical attitude to possible 

in,troduction of adaptive control. 

Chapter- 7 dealS with the most delicate tasks involving the constrained 

g'ripper motion, and especially in the assembly processes. Following the 

p,t:ip,ciple "from the simpler tc:> the !!lore complex", which has been imple

mented. in the whole book, we first describe various "contact situati

ons" occurring in the characteristic "peg-in-hole" task. Then, we deal 

with, the conceptual scheme of the control synthesis for such a task, 

and finally, we treat the problem of the synthesis of hybrid position/ 

(for'ce coptrol in the tasks involving the constrained gripper motion. 

;rp' a sepaX'ate <I.,P,Pen,di;X; at the end of the book we give a short version 

of the prog'ramme package for the synthesis of robot control. We have 

chosen SOme characteristic ,P;t'ogramrnes which can be used. both for the 

syp.thesis of local seX'vo systems and analysis of robot's behaviour for 

di:i;:i;eX'ep.,t cont,t:o); :Laws. :Because of the limited space, we included only 



the analys~s of the linea~ize~ fflodel. It is o~r opinion that these pro

graIl\llles, tho~gh being I?resente~ in a re~~ce~ fo~, mak.e an independent 

package which can serve in the ed~cational practice. The main purpose 

of this appendix is to enable the rea~er to master' the computer appro

ach to the robot oontrol sYnthesis highly important f(!)r the education 

of both the future robot designers and robot userS. Moreover, we hope 

these programmes might inspire the reader to develop his own programmes 

which could. yield the synthesis of SOffle other control laws, as well as 

the adaptation of these programmes to the robot types not included in 

this package. 

Practically each section of the book contains a numerical example il

lustrating the theoretical results given in the text. We endeavoured 

to present all the e~amples for the one and the same robot (with the 

exception of some sections where for the obvious reasons this was not 

possible). We chose a robot having a simple structure (one prismatic 

and two revolute jOints), but which enables the demonstration of the 

~ajority of characteristic phenomena of both the non-dynamic and dyna

mic robot control (such as the mechanism's inertiality, coupling of 

jo;t.p,ts Via the c;J::"oss - inertia terms, and the like, as well as the exam

ple of a jOint totally decoupled from the others in a dynamic sense). 

The majority of the sections end with a set of numerical problems. The

se probleffls are especially important for the use of this textbook. Our 

inte!1tio!1, was to stifflulate the reader to use actively the results pre

:;;e!1ted in the preceeding :;;ection. and thus increase his knowledge thro

ugll an, independ,ent act;i,vity. l!'or this purpose we composed a number of 

exerc;i,ses of :;;everal type:;; which can be conditionally divided into 

tllree group:;;: 

a) Tile purpose of the first group of problems is to illustrate the par

tiCular subject that has been described in the preceeding section. 

Most often they are numerical exercises and for their solving the 

read,er sh(!)uld use the presented res~lts. These problems can be sol

ved analytically (by hand) and they are usually similar to the wor

k,ed-ou.t e~amples, but for a!1other robotic structure. In this way the 

peade;I;' ind,epetidently learnS how the presented theoretical statements 

cap, be applied on different robot tYl?es, and thus gain experience 

i!1, dealip,g with differen.t structures of robotic mechanisms, which 

to a great extent, affect the control synthesis. In addition, we 

wa!1ted to efflj?hasize the ifflj?ortance of making a proper choice of ac

tuators i!1 tne control synthesis. As in the text itself, we exclu-

XI 
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sively dealt with DC electrO-)1lOt.ors, it is left to the reader to apply, 

by solving the exercises, the same approaches, to hydraulic actuators. 

b) The aim of the second group of exercises is to provoke the reader to 

think about the approaches presented and find, in an independent way, 

the explanations of certain statements which have been given in the text 

wi thout proving or detailed explanation. Often, these problems illustra

te the given statements (e.g. the statement on the complexity of imple

mentation of the presented control law is illustrated by the exercises in 

which the user has to determine the number of numerical operations needed 

to calculate the given control, as well as to estimate the "microproces

sor architecture" needed to implement the control law, and the like). 

c) The problems of the third group (marked with the asterisk) assume 

the read.er has a. sound knowled.ge of the related scientific fields. 

These problems imply writing the programmes to synthesize or implement 

a control. law using a microcomputer. Some problems of this group as

sume the previous knowledge of systems theory, and their aim is to 

encourage the reader to delve more deeply into the literature and 

thus prepare himself for independent work. For such a reader, sol

ving these problems should be compulsory. 

we think the thus structured textbook will enable the reader to gain a 

sufficient knowledge for his further work on the problems of control of 

robotic systems and. for implementation of theoretical approaches into 

practice. We want the reader to develop an engineer's approach to the 

subject and. to direct him to use computer approach to the synthesis of 

robot control, as this approach enables efficient linking of mathema

tiCal models and the practical requirements to be realized by current 

robots. »ow well we have succeeded it remains to be judged on the ba

sis of the use of this book as a textbook in teaching practice as well 

as in the research-and-development units for applied robotics. 

Authors eiKpress their thanks to Mr. Dj. Lekovie B.Sc., for his help in 

preparing an educational version of the software for the synthesis of 

control of manipulation robots. Also, they are indebted to Miss. V. 

¢osie for her careful and excelent typing of the whole text. Finally, 

authors extend. their thanks to Prof. L. Bjelica for his high profes

sional contribution to the book translation into English. 

March 1989 Aut h 0 r s 
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Chapterl 
Concepts of Manipulation Robot Control 

1.1 Introduction 

The tasks that are nowdays assigned to robots are becoming more varied 

and more complex. More and more often robotic units are becoming parts 

of flexible technological cells, lines and intelligent technological 

systems. In view of these facts, the organization of robot control 

should be based upon the principle of control hierarchy. 

Hierarchical levels in control systems have appeared in modern develop

ment of the control techniques to meet requirements of more complex 

functioning of some technical systems and their control systems. Robotic 

systems often posses a certain degree of adaptability with respect to 

both changed parameters of the workpiece and the changing environment 

in which the processes take place. 

The control systems of manipulation robots may be of diverse nature, as 

can be seen from their classification presented in Table 1.1. 

This introductory discussion shall give a more detailed description 

only of those automatic systems of robotic control that are of practi

cal importance for industrial application. Reference [1] was served in 

some hand as the conceptual basis for writing Sections 1.1 and 1.2 of 

this chapter. More informations about all types of manipulation robots 

and classification of robots and their control systems, in a broader 

sense more may be found in several books of which here will be mentio

ned only two [2, 3]. To give some basic information about the "non-in

dustrial" robots, in this chapter we shall present briefly the bio

technical and interactive robotic manipulators. 

Bioteehnieal robots are called the systems requiring permanent invol

vement of an operator to control the process of manipulator motion. 

Unlike the automatic systems, biotechnical systems do not possess the 

ability of generating autonomously a desired motion or attaining a cer

tain goal. A manipulation system moves only when the operator acts upon 

it. The simplest kind of these systems is the system of direct control 

- by pressing a push-button or a lever the operator effectuates parti-
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cular degrees of freedom. By releasing the push-button the motion is 

stopped at the desired moment. The positioning accuracy in this case 

in not high because of the lack of a position feedback. In a strict 

sense these systems cannot be called robots but manipulators with com

manding control. 

Another kind of biotechnical controlling systems are various master

-slave systems. The conventional scheme of a copying system contains an 

assigning device which is in a kinematical sense quite similar to the 

robot's arm. The sensors placed at the joints of this device supply 

signals to the servo systems of the corresponding manipulator joint. In 

some cases, the operator's hand is part of the assigning device. Howe

ver, this device is usually supplied with a joystick by means of which 

the operator controls the whole system and brings its tip to a desired 

point in space. The robot end-effector is automatically brought up to 

the corresponding point in the workspace. 

T Y P E V A R I ANT 

I AUTOMATIC 1.1. Programmable (I generation) 

1.2. Adaptive (II generation) 
I. 3. Intelligent (robots with elements of 

artificial intelligence) (III generation) 

II BIOTECHNICAL 11.1. Direct controlled (control of individual 
degrees of freedom) 

II. 2. Master-slave (of one and two-side action) 
I I. 3. Semi-automatic (joystick and computer) 

III INTERACTIVE 111.1. Automated (combination of automatic and 
biotechnical regimes) 

IIL2. Supervised (automatic with functional 
commands of goal) 

111.3. Dialogue (higher forms of interaction 
with operator) 

Table 1.1. Classification of manipulation robots 

Interactive control systems diminish the permanent operator's involve

ment in the control process of biotechnical systems. The primary inter

active systems are the automated systems in which operations are partly 

automated and partly controlled by the operator. Another kind of inter-



active systems uniting the human role and the automatic regime is the 

system of supervisory aontroZ. On the basis of the information from the 

monitor screen about the situation in the workspace the operator sends 

(through a control computer) the commands to the robot, e.g. to bring 

the gripper (tool) to a certain position. The robot carries out the 

operation in automatic regime. When the operation is over, the operator 

instructs the robot (by the aid of the computer) to carry out the next 

operation, and the procedure is repeated. 

1.2 Automatic Manipulation Robots 

Basically, four hierarchical levels of the automatic robot control can 

be established, each of them involving a computer processing of infor

mation. On the basis of the results obtained, the computer forms the 

appropriate control signals. These control signals are then transfer

red from the upper to the lower control levels until they reach the 

realization of motion (executive system). 

The highest level of the control system of a manipulation robot con

tains elements of artificial intelligence. We think here about those 

elements of artificial intellect that enable processing of the sensory 

information (visual, tactile, proximity, etc.) along with recognition 

the situation in which the robot's arms are acting, and modelling the 

scene in one of the appropriate forms. The information are compared to 

those stored in the memory as part of a global plan of the robot task, 

after which this (highest) level adopts the solutions that are neces

sary for execution of the required operation in the recognized situa

tion. At that, the previous working experience of the robot is automa

tically taken into account, i.e. the robot possesses certain self-te

aching abilities. 

The highest control level receives the relevant information from all 

the lower levels and" from various sensors controlling the motion of 

robot's arms and the state of the workspace. In this way the feedback 

loops are established that form the many-fold contures of a complete 

control system. 

The next, lower level, is the strategia ZeveZ at which the global task 

is divided in accordance with the solution generated at the upper le

vel, into the elementary operations. The notion of an elementary 

3 
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operation is not strictly defined as it depends on the particular task 

and system. For example, elementary operations may be as follows: to 

find an object of given characteristics, to pick it up, to bring it to 

a point of given coordinates, or to bring it into the contact with 

another defined object or tool, to put the object down, to fix it, or 

to subject it to certain processing, etc. An elementary operation may 

be even simpler (more elementary). For example, the object searching 

can be split into several more elementary operations of the type: to 

reach a certain point in the workspace, to carry out searching accom

panied by the appropriate surveying or measuring, to determine the 

smallest cross-sectional dimension of the object and to orient appro

priately the manipulator gripper. The operation of transferring the 

object (if the mode of transfer or its trajectory are important too) 

can also be divided into several more elementary operations, for exam

ple: to lift the object to a predetermined height, to carry it along a 

circular trajectory, to place it on a surface of defined slope and 

with the defined spatial orientation of the gripper. The operation of 

joinning two objects can be split as follows: to put the objects on 

pins, to take a set of nuts, to fix the nuts according to a certain 

sequence, etc. The last operation can be divided into several even more 

elementary operations, e.g. after establishing the sequence of screw

ing, or after ascribing a slow screwing of all the nuts in the begin

ing, carry out the final tightening according to a certain sequence. 

At the strategic level, the degree of splitting the task obtained from 

the higher level determines the working algorithm of the strategic le

vel. The modes of automatic planning at strategic level satisfy certain 

criteria of speed, quality and accuracy of execution of the task as a 

whole. However, apart from the information from the higher level, the 

strategic level uses also the feedbacks to get the information about 

all lower levels, as well as of the executive level and the workspace. 

At the strategic level are most frequently planned the elementary ac

tions to be realized by the robot's gripper (e.g. determination of the 

position in the workspace the gripper should be brought in order to 

pick the object, determination of the trajectory to be followed by the 

gripper carrying the object, etc.). The coordinates of the robot's 

gripper with respect to the absolute coordinate frame attached to the 

robot's base, are termed the externaZ coordinates (a precise definiti

on will be given in Chapter 2). Therefore, at the strategic level are 

planned the trajectories of external coordinates of the robot. However, 

the robot's motion is realized via the movements of its particular 



joints; most often, each robot's joint is powered by an appropriate 

actuator. Therefore, to realize the gripper trajectories planned at the 

strategic level, it is necessary to determine how the robot joints are 

to be driven. 

At the lower control level, tactical level, the external gripper coor

dinates are mapped to the robot's joints coordinates (the so-called 

internal coordinates of the robot), i.e. the required motion is distri

buted to the particular degrees of freedom (d.o.f) (joints) of the 

robot. In other words, at the tactical level is determined the motion 

of each manipulator d.o.f. in such a way that their overall motion 

realizes all the elementary operations defined at the strategic level. 

This would be the basic function of the tactical level. However, as 

already pointed out, the elementary operations can be defined in a more 

general way, e.g. to find the object of given characteristics (with no 

detailed searching and the accompanying surveying), or, to transfer an 

object to a certain point in space with no prescribing the trajectori

es of motion. In this case, a detailed task splitting is carried outat 

the tactical level. 

The strategic level can be avoided provided the elements of artificial 

intelligence give the solution with a sufficiently deatiled sequence of 

operations. In such a case, the highest level renders the signals di

rectly to the tactical level. In practice, depending on the nature of 

the task, the functions of levels are generally intertwined. Thus, the 

hierarchy should be understood rather in a conditional sense. 

Like the higher levels, the tactical level too makes use of not only 

the signals supplied by the higher levels, but also all the necessary 

feedback information of the lower (executive) level, concerning the 

executive mechanisms and the workspace. 

Finally, when the necessary movements of particular robot jOints are 

determined at the tactical level, they are transferred to the lowest, 

executive level, for realization. The task of the executive level is 

to realize the given motion of joints in order to perform the desired 

functional movements of the robot mechanism, defined at the strategic 

level. In this way the executive level realizes all operations requi

red (ordered) by the higher levels. The executive level realizes the 

prescribed movements of joints on the basis of the information sup

plied by sensors about the instantaneous positions, velocities, 
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accelerations, moments (forces) at the robot joints, i.e., at this le

vel are realized the feedbacks with respect the position, velocity and 

forces at joints. To achieve a high precision in performing the desi

red movements of joints, and thus to ensure an adequate realization 

of the task given by the higher levels, the executive level should take 

care of the dynamic characteristics of the robot, i.e. about the inter

action of the movements of particular robot jOints. From the point of 

view of the executive control level, a robot is a complex (multidimen

sional) system having more inputs and outputs, the system in which 

generally exist strong interactions between particular d.o.f. Because 

of that, the synthesis of control laws which would guarantee a precise 

realization of the motion defined at the tactical level is a very com

plex task. In this book we shall deal with the problems which are pri

marily concerned with the synthesis of the executive control level. We 

shall consider different control laws ensuring at the executive level, 

the realization of operations prescribed by the higher control levels. 

The hierarchical control of automatic robots is schematically presen

ted in Fig. 1.1. 

It should be noted that a sub-level is usually inserted between the 

strategic and the tactical level. This is the sub-level of the robotia 

language. Nowadays, the control and programming of robots is carried 

out most frequently through specialized robotic languages. In the ro

botic language are given all the elementary operations to be performed 

by the robot. The introduction of robotic languages is dictated by the 

need of simplifying the procedure of giving instructions, which in it

self may be a complex task. Robotic languages are also included into 

the robot controllers. Because of that, the strategic control level is 

often connected to the robot through the language, i.e. this level 

should give the robot instructions (desired operations) in the form of 

a predetermined set of instructions in the given robotic language. Ho

wever, the sub-level of robotic language has also the task of checking 

the consistency of the given elementary operations. In principle, this 

sub-level can be avoided, i.e. it is possible to couple directly the 

strategic level to the tactical control level. In such a case, however, 

it is necessary to transfer some of the functions of this sub-level to 

the strategic level. 

Since the functions of the highest and strategic level are extremely 

complex, they often cannot be realized in the course of robots motion 

and task execution (on-line), but should be carried out before the 



robot begin the work (off-line regime), as is indicated in Fig. 1.1. 

This means that the highest control level defines the task, and the stra

tegic control level, on the basis of the sensors' information, plans 

particular robot operations and, by means of the robotic language, 

gives the appropriate instructions. When the instruction on the desi

red motion is given (in the robotic language) to the tactical level, 

the task itself is then realized in on-line regime. However, such a 

design does not allow adaptation of the robot functioning to the chan

ged conditions during the task execution. Because of that it is pre

sently endeveured to realize the strategic level in on-line regime too, 

i. e.· to plan robot's operations during the task execution itself and in 

accordance with the instantaneous situation in the work space. Since even 

very powerful computers are hardly able to achieve a sufficiently fast. 

r--
off-line regime 

L 
I 
I 
I 
I 
I 

Analysis of situation (environment) 
Defining the task and choice of the 

solution 

Strategic control level: 
Planning trajectories 

Tactical control level: 
Transforming the external into ...... -------, 

the internal coordinates 

Executive control level: 
Realization of internal 

trajectories (servo systems) 

SENSORS 

J 
l 
I 
I 
I 
I 

J 
Fig. 1.1. Schematic diagram of hierarchical control of robotic systems 
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planning of elementary robot operations, only some simpler functions of 

the strategic level can be realized in on-line regime. Because of that 

the more complex operations are defined in the robotic language, whereas 

the strategic level on the basis of the sensors information about the 

actual situation in the workspace plans the elementary movements (e.g. 

the motion of the robot gripper to avoid collision with some movable, 

i.e. changeable obstacles in the work-space). The corresponding hie

rarchy of robot control is presented in Fig. 1.2. 

Robotic language 

Strategic control level: 
determining the trajectories 

Trajectories 
in external 
coordinates 

Tactical control level: 
transforming the trajectories 

from the external into the 
i nterna 1 ones 

Trajectories 
of joints 

Executive level: 
servo systems ensuring the 

realization of desired 
trajectories 

signals 

(Obstacles modelling) 

Robot I S state 

Fig. 1.2. Hierarchical structure of the robot control 

It should be also noticed that the programmable robots (first-genera

tion robots) or the automatically programmable manipulators have no 

higher control levels, but only the tactical and executive level. 



Adaptive robots (robots of second generation) too, have no the highest 

control level, i.e. the level of artificial intelligence; they possess 

the other three control levels. 

With the adaptive robots, the strategic level receives the task from 

the operator in the robotic language, as shown in Fig. 1.2., and the 

robot controller plans automatically the gripper's trajectories. For 

the first-generation robots, the operator has to prescribe the trajec

tories, i.e. positions of the gripper in a direct way and determine the 

trajectories (for avoiding the obstacles, picking up and transferring 

the object) through the appropriate programming language, or through a 

teaching box (see Sect. 1.5). 

1.3 Classification of Automatic Robots 

There are four types of automatic manipulation robots: with fixed 

(rigid) programmes, programmable, adaptive, and "intelligent". 

The term "generation" is often used instead of "type". As manipulators 

with fixed programmes in fact are not, robots, they can be considered 

as the "zero" ("pre-robotic") generation. Hence, the programmable ro

bots are considered as the first, the adaptive as the second, and the 

intelligent ones as the third generation. 

Manipulators with fixed programmes have a control system which is not 

programmable. These are simply mechanical arms. They are firmly linked 

to the technological equipment, subdueing themselves to a certain tech

nological process as a whole. Their application is particularly charac

teristic for substituting manual work in mass production, e.g. on as

sembly lines of watch mechanisms, and similar. However, we are not 

going to consider the problems concerning design and control of these 

manipulators. 

Programmable robots (first generation robots) have the controlled dri

ves at all joints and their control system is easily adapted to vari

ous manual operations. However, after each adjustment these robots re

peat one and the same fixed programme under strictly defined conditi

ons and with fixed arrangement of objects. The majority of contempora

ry industrial robots is of such type and they are applied for perfor

ming some auxiliary operations in pressing, welding, casting, machine 

tools servising and similar. These robots demand technological arrange

ment in the work environment and position of parts. 
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Adaptive robots (second generation robots) are such robots that can, to 

a higher or less degree, orient themselves independently in the envi

ronment which is not fully determined, and to which they can adapt. 

They are equiped with sensors reacting to the situation and with an 

information data processing system aimed at generating adaptive data 

signals, i.e. flexible changes in the manipulator motion programme ac

cording to the real situation. In their modern versions, compact micro

processor systems are widely used. Adaptive industrial robots are ne

eded in all cases when it is difficult to ensure a strictly defined si

tuation, when avoiding obstacles, working with parts on conveyers in 

assembly operations, in arc welding, painting, applying protective la

yers, and other operations. 

Intelligent robots (third generation robots) are equiped with a more 

varied range of sensors with the microcomputer processing of informa

tion, recognition of situations, automatic generation of the solutions 

for further actions by the robot itself, aimed at performing the nece

ssary technological operations in an undetermined environment. These 

robots possess elements of artificial intelligence. 

Transducers (sensors) are used with the robots of second and third ge

neration. With the second generation robots, the force transducers, 

tactile, proximity (ultrasonic) and similar sensors can be used. The 

third generation robots are characterized by the presence of a complex 

of sensory devices, including technical vision, which, together with 

the advanced microcomputer data processing, forms an artificial intel

lect itself, i.e. the behaviour of the robot is more self-contained, 

and to a certain degree corresponds to the rational human behaviour in 

the process of working activity. Besides, the complex of sensory devi

ces may include the equipment for controlling quality of products and 

properties of the environment, in case this is demanded by the automa

tic regulation of the working regime. 

1.4 Characteristic Tasks and Applications of Robots in Industry 

There is hardly any industrial production in which application of in

dustrial robots has not been, at least, attempted. Robots are increa

singly used in the following operations: arc welding, spot welding, 

pressure casting, spray painting, tool machine servicing, material 



handling and paletizing, treatment of castings, applying glue and seal 

layers, assembling, etc. 

It is estimated that presently in the U.S.A., for example, 50-60% of 

robotic technology belongs to the car industry, mainly the jobs of wel

ding and spray painting. A similar situation is also in the West Euro

pe. In Japan, in the car industry is engaged below 30% of the inbuilt 

robotic technology, as robots are prevailingly used in the electronic 

and similar industries. A forcast for the future is a sharp increase in 

the number of robots engaged in the assembly and production control 

jobs. This prediction particularly holds for the electronic, car and 

some other industries. 

To get an insight into some characteristic applications of industrial 

robots we shall briefly review some of pertinent technological proces

ses. 

1. Pressure casting 

This procedure of producing high-quality parts from molten non-ferrous 

metals and alloys, consists in injecting the necessary amount of metal 

melt into a special mould, usually made of two steel parts. 

Generally, these are two basic procedures of pressure cassting: casting 

from a hot chamber and cold-chamber casting. The former procedure is 

faster since it saves the time needed to transport the melt from the 

melting pot to the mould. Hence, this more recent casting method is 

more interesting for robotization. 

However, the procedure of pressure casting involving no human may have 

certain drawbacks. As first, it is the need for manufacturing the 

moulds of better quality in order to minimize the possibility of ad

hesion of castings. 

For economy reasons, one industrial robot and one cooling equipment 

usually serve two horizontal pressure casting machines. The Japanese 

robotic industry has produced several types of simple industrial robots 

that are directly installed onto the casting machines. Of the several 

millions of working hours of the robotized machines employed in pres

sure casting in the U.S.A., less than 3% has been lost because of the 

mis-functioning of the robots. 

11 
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2. Spot welding 

The technique of electric spot welding is presently widely used in the 

technology of joining parts of metal sheets, especially in car indus

try for connecting the body parts, in the industry of electrical house

hold appliences, etc. 

The application of industrial robots for this purpose began in 1969, 

when General Motors introduced a line of 26 UNIMATE robots to do the 

job of car body welding. Only a year after, a line of robots was in

stalled for the same purpose in the Mercedes factory of Daimler Benz. 

Today, more than 4000 robots is engaged in the jobs of spot welding in 

car industry which has reamined the main field of this application. 

The highest efficiency that has been achieved on such a line is about 

100 car bodies per hour. Some of car manufacturers, e.g. volkswagen 

and Renault, have developed special industrial robots only for this 

purpose. The most modern lines for the car body production, including 

their painting, are ROBOGATE with Fiat, and VOLVO in Geteburg, with a 

capacity up to 60 cars an hour. 

2. Arc welding 

The proces of arc welding is especially unhealthy to workers becauseof 

the presence of a strong and harmful ultraviolet radiation and evolving 

smokes that are rather poisonous. This is a typical example of a job 

where the replacement of man by robot represents a genuine humanizati

on of labour. To get a welding seam of a high quality, it is necessary 

to ensure not only a precise positioning of the tool tip along the 

seam, but also an appropriate speed. To ensure the weld gun follows 

the seam and in each time instant has the right position with respect 

to it,S active d.o.f. at least, are needed. In order to obtain a good 

sem it is necessary to use also the external sensors which should en

sure good welding parameters. The advanced robots for arc welding pos

sess an increasing adaptability, i.e. the control systems of higher 

performances. In the U.S.A. there are even today several hundred thou

sand jobs where arc welding is done by hand. Robots are increasingly 

used in a similar technological process of oxyacetylene cutting. 



4. Forging 

The present-day use .of industrial rebets fer this technelegical epera

tien is relatively medest. A very interesting example .of such applica

tien is the preductien .of punched links chains. Te everceme the limi

tatiens .of rebets applicatien fer ferging eperatiens caused by diffi

culties in centrelling quality .of fergings, the attempts have been 

recently made te intreduce suitable sensery devices inte the rebet 

centrel system. Presently, use is widely made .of pheteelectric and 

thermal sensers whese task is te ensure the centinuity .of the techne

legical precess itself, and increase its reliability and safety. These 

sensers are mest .often in-built in the apprepriate place .of the rebet 

gripper. 

5. Spray painting 

The preblem .of spraying a paint frem its selutien te ferm a layer which 

will dry fast and thus prevent the .occurrence .of a preductien bettle

-neck due te the shertage .of man-pewer, is especially present in car 

industry. When the parts .of mere cemplicated shape are invelved, asfer 

example, the car bedies .of different type (processed on the same pre

ductien line), the use .of autematic cabins .or tunnels weuld be very 

cemplicated and expensive. Hence, the use .of industrial rebets with 

their high capacity .of adapting themselves te different kind .of pre

ducts, is the legical selutien te the preblem. The werld leader in this 

field is the Nervegian cempany TRALLFA Niles Underhaug; the number .of 

specialized rebetic units installed by this cempany is higher than in 

any ether car cempany. Since spray painting is an attractive area .of the 

applied industrial rebetics, a number .of cempanies, apart frem TRALLFA, 

is engaged in develeping rebets fer this purpese. In additien, the le

ading car facteries and ether similar cempanies are invelved in the 

prejects .of develeping the fully-autemated and rebetized lines fer 

spray painting. 

6. Application of robots for tool machines servicing 

This is .one .of the mest impertant applicatien fields .of industrial re

bets. They are mainly empleyed with these universal teel machines that 

are used fer preductien .of larger series, but which are net yet large 

eneugh te justify the investment inte buying fully autemated machines 

fer preducing the same parts. Hewever, the applicatien .of industrial 

rebets in manufacturing .of smaller series preducts can be justified by 
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the possibility of quality standardization and increased capacity of 

the production. In such a case use is made of the properties of high 

flexibility of the robotic control system. Thus different production 

programmes covering a wide assortment of products, can be easily stored 

and used when needed. 

In recent years, the industrial robots for small-series production have 

been more often integrated into the groups of numerically controlled 

(NC) machines, making thus a fLexibLe production celL or, wider, afle

xible technoLogical line. 

7. Application of robots in thermaL treatment processes 

Thermal treatment is an almost unavoidable phase in the modern techno

logy of metallic products. It includes hardening, improving, tempering, 

browning, and all other treatment procedures involving the exposure of 

the work-piece either to an abrupt change of temperature or keeping it 

at a fixed temperature for a prolonged time. The application of indus

trial robots in these operations is expediential and is already today 

rather widespread. However, a serious problem arises as how to protect 

the robot's gripper from the frequent action of high temperatures of 

the work-piece. This is achieved either by using special materials, or 

by cooling the gripper parts with water or some other cooling agent. 

8. Application of robots in glass industry 

Glass making, and especially production of sheet glass, is a technolo

gical process which is rather hazardous to workman. The fact that glass 

in some production stages is at very high temperature makes its hand

ling very difficult. In the case of the sheet shattering, small sharp 

pieces of glass scattered around can cause severe, and even mortal, 

injuries to people in the working environment. In the production of 

cathode tubes (TV screens), the products are heavy, hot and very ex

pensive. Thus, apart from a genuine humanization of the labour, the 

application of robots can substantially decrease wast due to breakage. 

Recently, industrial robots have found some unconventional applicati

ons. Thus, due to their high accuracy in positioning and especially due 

to the accuracy of the robot arm position sensors (encoders, resolvers, 

measuring laths) robots can be used instead of the so-called "measu

ring machines", which are the extremely expensive, motor-driven 



rectangular measuring systems of large dimensions, used to control 

large-size products (aircrafts, ships, vehicles, etc.). Fig. 1.3. shows 

a sketch of such a machine for measuring the airplane body dimensions 

by the aid of two measuring robots which are "fingering" the object at 

certain characteristic points; the measurement data are converted into 

dimensions of the working object in its own coordinate frame and stored 

in the memory of the control system and finally protocolled in a prin

ted form. Another, quite different, unconventional use of industrial 

robots is illustrated in Fig. 1.4: an industrial robot ("PUMA" type) 

mounted onto a movable robot ("ROBOCAR") with the purpose of servicing 

several working positions in the so-called "clean" rooms for electro

nics and other highly sofisticated technologies. 

Fig. 1.3. A measuring robot 

Fig. 1.4. A mobile robot with manipulator 
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1.5 Implementation of Control of Manipulation Robots 

There are a number of factors which should be considered when the robot 

control synthesis is concerned, viz. the nature of tasks to be carried 

out, structural and dynamic characteristics of the robot, the equipment 

available for control realization (sensors and microcomputers), etc. 

In the preceding sections we presented a variety of tasks of diffe

rent complexity that can be carried out by robots. The robot design, 

the choice of its geometrical characteristics (number and type of 

joints, mutual position of joint axes, link length, etc), and the cho

ice of appropriate actuators are all determined by the class of desig

nated task. The class of the task determines to a great measure the 

complexity of the robot control system, i.e. the choice and solutionof 

the control. For example, if the robot is to perform simple operations 

(such as the transfer of an object from one place to another in an ob

stacle-free work-space and with the object position prescribed in ad

vance) a simple robotic structure may be adopted, and the control sys

tem reduced to the executive level only. Thus, the desired robot posi

tions can be given directly to the internal robot's angles, i.e. the 

positions to be attained by the particular robot jOints in order to 

bring the robot to the desired position are prescribed in a direct way. 

However, in the case of more complex tasks (e.g. the transfer of work

-pieces in the work-space with obstacles, etc) the robot control should 

be hierarchical, as it has been described above. 

On the other hand, the chosen robotic structure and its dynamic cha

racteristics determine to a great extent the complexity of laws of the 

robot control. In the chapters to follow we shall see that in case when 

the realization of a precise positioning of a robot and/or tracking of 

the desired gripper trajectories in the work-space is concerned, it is 

necessary for some robotic structures to take into account the dyna

mics of the manipulation robot, which substantially complicates the 

control system of the robot. 

However, in the synthesis of the robot control special attention should 

be paid to the possibilities of implementation of a chosen control law. 

Obviously, the more complex control law is chosen, the more complex 

will be its implementation. When choosing a suitable robot control one 

should adopt the one which is as simple as possible from the viewpoint 

of its implementation, but which will, on the other hand, satisfy the 

given requirements. However, this book is not specially concerned with 



the problems of robot control implementation [3]. We shall only briefly 

point out some of the aspects of realization of robotic control units 

which should be taken into account when the choice of appropriate con

trol laws is concerned. 

As with other systems, the robot control may be realized by analogue, 

hybride or microprocessor technique. The analogue technique of robot 

control is characteristic of the manipulators of the "zeroth" genera

tion whose control system is reduced to the executive level only, i.e. 

to the programming units controlling mechanical arms. Such a control is 

practically abandoned in the present-day robots, so that we can say 

that a microprocessor is an obligatory part of any robot control sys

tem. The use of microcomputers has enabled an easy changing of the task 

to be performed (the so-called, reprogramming of robots), and this is 

an important advantage of robots over classical manipulation mechanisms. 

In order to be able to perform various complex tasks mentioned above, 

the robot control systems should comprise both strategic and tactical 

level. These control levels can be practically realized only by the aid 

of computers. 

The advanced robot control system should enable communication with 

other computers, with the operator (through both the terminal and the 

robot teaching unit), with the sensors in the work space, and with the 

robot itself (Fig. 1.5). 

HOST Cm1PUTER 

0000 

11111111 

0000 

TERMINAL 

Y-------~----~ 

~----~~ 

CONTROL 
SYSTEM OF 

ROBOT 

PRINTER TEACHING-BOX 
Fig. 1.5. Robot control system 

SENSORS 

MANIPULATOR 
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The communication with another computer (host computer) should ensure 

the coordination and synchronization of the robot's work with its tech

nological surroundings (other robots, NC machines, moving tracks, etc). 

Such a communication is of special importance for incorporating robots 

into the flexible technological systems in which one central computer 

is controlling several other computers and NC machines, conveyers, all 

being involved in a flexible technological cell or line. In some cases 

it is necessary to realize the communication between the robot control 

system and another computer for processing sensors data (e.g. signals 

obtained from the camera), since the information supplied by the sen

sors are necessary for solving the task at the strategic control level. 

The communication between the robot control unit and the user is reali-

zed either through a terminal or a robot teching box. In communicating 

through a terminal the operator uses various high-level languages to 

programme the task the robot is to carry out (see Sect. 1.2) . An easier 

way of instructing the robot is by using a teaching box. This unit 

enables an easy programming of simple tasks, and by combining them 

(using a robotic language) it is possible to handle more complex tasks. 

The teaching box usually has a certain number of keys for giving the 

robot proper instructions, e.g. to move the gripper to the desired di

rection, to move particular robot jOints, etc. Often, the task assigne

ment can be realized by means of the so-called "pilot-robot" which has 

the same kinematic structure as the robot itself and is supplied with 

the sensors for measuring the jOint coordinates, but having no actua

tors. The operator drives the pilot along the certain paths that should 

be followed by the robot when executing the given task; the control 

system read out the sensors data about joints positions and memorizes 

them. When the pilot-robot motion is recorded, the robot can reproduce 

the given motion on the basis of the data stored in the memory. 

The control system receives the information from the sensors in the 

work space and they are used in planning the robot trajectories at the 

strategic control level. If the sensor information are such that no 

substantial treatment is needed, they are introduced directly to the 

microcomputer of the robot control unit. On the other hand, if the 

sensors information needs further processing, this is done, as mentio

ned above, by means of separate computers. Often, the robot control 

unit has to follow the sensors information during the robot motion and 

on the basis of such information "change" both the motion and operati

on under execution (see Fig. 1.2). 



Hence, an advanced robot control system should ensure all the above 

communications and, on the basis of the assignement received from the 

operator (through the programming language, teaching box, pilot) or 

from the higher control level (i.e. central computer), as well as on 

the basis of the sensory system information, plan the actions to be 

carried out by the robot. As we have explained above, the motion of the 

robot gripper is usually planned at the strategic level, i.e. the tra

jectories to be followed by the gripper are determined at this level 

and then transmitted to the tactical level. 

At the tactical control level, the assigned gripper motion is mapped 

into the robot's jOints trajectories (see Chapter 2). The execution of 

such mapping generally requires a lot of numerical calculation (addi

tions, square roots, multiplications, calculating of trigonometric 

functions, etc). In order the robot could precisely realize the desi

red motion, the mapping of desired positions (and velocities) of the 

robot gripper into the corresponding positions (and velocities) of the 

robot jOints should be carried out every 15 - 30 [ms] *), i.e. every 

15 30 [ms] the gripper coordinates on the desired gripper trajecto-

ry should be mapped into the joints coordinates. This means that the 

microcomputer should complete each transformation within 15-30 [ms], 

i.e. it should be capable to carry out the necessary numerical calcu

lations with a speed which allows the completion of this mapping during 

this time interval. 

When the desired positions and veloci ties are determined, they are realized 

at the executive level. The executive control level should permanently 

generate the signals to the inputs of the actuators whose task is to 

drive the robot joints into the desired positions, i.e. to effectuate 

the joints to move with desired velocities and accelerations. The sig

nals at the executive level are generated on the basis of both the tra

jectories received from the tactical level and the information obtained 

from the inner sensors (i.e. the robot's sensors supplying the infor

motion about the actual positions of joints, their velocities and ac

celerations) . 

The executive control level can be realized either by the analogue 

technique or by the aid of microprocessor. In the former case, the 

robot control unit is provided with a computer for implementation of 

*) This is an average "speed" (sampling rate) needed to carry out the 
mapping at the tactical control level. 
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higher control levels and with the analogue servo systems with actua

tors to move the robot joints. Every 15-30 [ms] the tactical level in 

the microcomputer calculates all the necessary positions and velociti

es of robot jOints, and, by a D/A converter sends them to the analogu

es control device for realization (Fig. 1.6). The analogue servo sys

tems realize the prescribed positions (trajectories) of joints on the 

basis of the information from the robot sensors. This means that, 

starting from the prescribed trajectories (signals from the D/A con

verters) and signals from the sensors, the analogue controller gene

rates the appropriate signals for the actuators at the robot jOints. 

However, because of the existence of strong dynamic interactions bet

ween the individual d.o.f., mentioned above, the control law at the 

executive level has to be very complex for certain robot types and the 

tasks imposing rigorous requirements with respect to the accuracy and 

speed of their realization. The analogue technology is not suitable 

for implementation of complex control laws. In the case the robot con

trol system is realized by the aid of simple servo systems which inde

pendently control the individual jOint actuators (see Chapters 3 and 4) 

these laws are realizable by analogue technique. However, if the con

trol has to include the compensation of complex dynamic interactions, 

occurring between the motion of particular jOints, the realization of 

an analogue control device is much less suitable if compared to the 

implementation of microprocessors. On the other hand, the digital 

technique has substantial advantages as for the possibility of alte

ring and adjusting the control laws, as well as from the viewpoint of 

maintenance, reliability, and robustness under variable external con

ditions [4). 

For these reasons, microcomputers are increasingly used in the imple

mentation of executive control level (Fig. 1.7). Thus the microcompu

ter appears as a site for implementation of all control levels. The 

microcomputer receives the information about the instantaneous states 

of robot joints from the sensors through A/D converters, if the sen

sors used do not supply the information in a digital form. On the ba

sis of these information and the robot trajectories determined at the 

higher levels, the microcomputer computes the appropriate control sig

nals, which are through D/A converters fed into the inputs of the ac

tuators*). Calculation of the signals for actuators is carried out 

*) It should be noticed that between the D/A converter and actuators 
are inserted the appropriate amplifiers, not shown in Fig. 1.7 



C
e

n
tr

a
l 

C
om

pu
te

r 
(o

r 
O

pe
ra

 t
o

r)
 

NI
CR

O
CO

M
PU

TE
R 

(S
TR

A
TE

G
IC

 
AN

D 
TA

C
TI

C
A

L 
LE

V
E

L)
 

AN
AL

O
G

UE
 

SE
RV

O
 
S
Y
S
W
~
S
 

(E
X

E
C

U
TI

V
E

 
LE

V
E

L)
 

F
ig

. 
1

.6
. 

T
h

e 
ro

b
o

t 
c
o

n
tr

o
l 

u
n

it
 
w

it
h

 
a
n

a
lo

g
u

e
 

im
p

le
m

e
n

ta
ti

o
n

 
o

f 
th

e
 

e
x

e
c
u

ti
v

e
 
c
o

n
tr

o
l 

le
v

e
l 

m
 CR

O
CO

M
PU

TE
R 

(S
TR

A
TE

G
IC

, 
TA

C
TI

 C
AL

 
AN

D 
EX

EC
U

TI
VE

 
LE

V
E

L)
 

AC
TU

AT
O

R 

AC
TU

AT
O

R 

F
ig

. 
1

.7
. 

T
h

e 
ro

b
o

t 
c
o

n
tr

o
l 

u
n

it
 
w

it
h

 
d

ig
it

a
l 

im
p

le
m

e
n

ta
ti

o
n

 
o

f 
th

e
 

e
x

e
c
u

ti
v

e
 
c
o

n
tr

o
l 

le
v

e
l 

~
 



22 

according to the selected control law and selected parameters, using a 

suitable programme module. As advanced microcomputers possess the trans

lators for high-level programming languages, the programming on a micro

computer is relatively simple, which enables an easy change of the 

control law. The designer of the control unit should only change (in 

high-level language) the program module of "executive level". On the 

basis of the desired values for coordinates in a given time instant 

(calculated in the corresponding programme module which implements the 

tactical level) and the values of the actual coordinates (i.e. angles 

and velocities) as well as the moments (forces) at the manipulator 

joints (obtained through an A/D converter), this module calculates the 

signals to be supplied (through a D/A converter) to the actuators in

puts. In this way, one and the same hardware (microcomputer) can be 

used for the implementation of different control laws. Moreover, such 

direct digital control of robots enables the development of a general 

purpose controller which would be (after minor alterations, mainly of 

the software) applicable for robots of different types and structure 

[51, which is practically unattainable by the analogue technique. 

However, the realization of a digital robot control system is associa

ted with certain problems. Namely, microprocessors require some period 

of time for execution of each mathematical operation. Thus, the con

trol microcomputer needs certain amount of time to compute (on the ba

sis of a given control law) the control signals for the actuators. The 

time interval between the moment the microcomputer had read the values 

for coordinates from the sensors (i.e. from the A/D converters) and the 

moment it computed the signals and sent them over (through D/A con

verters) to the actuators, is (conditionally) called the sampling peri

od*). During this interval one and the same values of signals are sent 

by the microcomputer to the D/A converters, i.e. the actuators. To di

minish the influence this microcomputer delay has on the robot's beha

viour (i.e. on the precision of realization of the prescribed trajec

tories), the sampling period should be as short as possible in compa

rison to the time constants of the robot dynamics. It appeared that 

the sampling period with the majority of modern robotic systems should 

be below 10 [ms1. It means that in, let say 5 [ms1, the microcomputer 

should (on the basis of the instantaneous values for robot coordinates 

and in accordance with the chosen control law) calculate the control 

signals and send them (through D/A converters) to the actuators. 

*) A more precise definition of the sampling period can be found in 
reference [4]. 



Different control laws require different number of numerical operations 

to be executed to compute the appropriate control signals. If more com

plex control laws are involved, the number of operations to be executed 

by the microcomputer during the sampling period is normally higher. 

Certain simpler control laws require about 30-40 numerical operations 

(additions and multiplications), whereas some others may require seve

ral hundred operations per sampling period. The microprocessor must be 

sufficiently fast to execute the necessary number of operations in 5-10 

[msl. The 8-bit processors can hardly achieve the calculation speed 

needed for the control of advanced robots*). Because of that the 16-bit 

microprocessors are used in advanced robotics, together with numerical 

co-processors which enable an accelerated execution of different nume

rical operations (addition, multiplication, square root, etc). Numeri

cal co-processors ensure the realization of arithmetics with floating 

point which is necessary for calculating more complex control laws. 

However, even the advanced 16-bit microprocessors with numerical co

-processors, capable of doing multiplications in 20 to 30 [psl, cannot 

calculate more complex control laws during the allocated sampling pe

riodof5-10[msl. Besides, it should be borne in mind that the micro

processor has to realize not only the calculation of control signals 

according to the chosen law, but also to carry out the appropriate 

processing of the information obtained from sensors (their scaling, 

etc) as well as processing of the calculated control signals which are 

sent to the D/A converter, in addition to different checkouts, con

straints, and so on. Apart from the executive level, the microproces

sor should also implement the tactical level which includes, as we have 

already mentioned, the mapping of the external coordinates into the 

joint robot coordinates, which has to be done every 15-30 [msl. This 

mapping may require several hundred numerical operations, so that the 

microprocessor should also accomplish these calculations in the allo

cated time. If the control unit includes the strategic control level 

(or, at least some of its elementary functions that has to be realized 

on-line, during the robot's motion), then, the microprocessor should 

ensure the execution of the necessary operations for this level too, 

and all that during the assigned time interval. The present-day com

mercial microprocessors cannot perform all the necessary calculations 

during the sampling period imposed by the robot dynamics (less than 10 [msl). 

*) The 8-bit processors are even today used with manipulators for some 
simple tasks; the executive level is realized either by the analo
gue technique or by the aid of a number of such microprocessors in 
parallel (see below) . 
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For this reason, use is made of several processors working in a pa~al

lel, but which can exchange data between each other through a common 

memory. Usually, one of the processors is dedicated to the strategic 

control level which communicates with the user and the higher control 

level (in the host computer). The tactical control level is imple

mented by second processor, while the third one is dedicated to the 

executive control level. Thus, the robot control is realized by three 

processors. However, this number of processors is often insufficient. 

Hence, more complex control laws have to be realized at the executive 

level by means of several processors. Similarly, for the realization 

of complex algorithms and treatment of sensory data at the strategic 

control level, several processor should also be employed. The use of 

a large number of processors in parallel may substantially complicate 

the realization of the control unit and, on the other hand, affect the 

reliability of the work of the whole system. Therefore, the present

-day 16-bit processors (together with numerical co-processors) are not 

yet capable of implementing some more complex algorithms at the stra

tegic control level; most often one ought to be satisfied with some 

simpler solutions that enable performing certain specific tasks. Fur

ther advances in microprocessor technique and the enhancement of cal

culation speed will bring the progress in general problem solving at 

the strategic level. 

On the other hand, the control law chosen at the executive level should 

be as simple as possible (requiring the smallest number of operations), 

but which can satisfy the desired requirements, in order to avoid the 

application of a large number of processors in parallel. However, im

plementation of many of the complex control laws requiring the calcu

lation of robot's dynamic forces, demands application of several 16-

bit processors in parallel. Such a realization is rather complicated, 

so that such control laws are not used with the majority of commerci

all available robots. Therefore, one of the important criteria in cho

osing the robots control laws, imposed by the control realization, is 

the requirement for the lowest possible number of numerical operations 

to be carried out in calculating control signals during the sampling 

period. 

In the realization of robot control unit, the requirements concerning 

the memory of the microcomputer should be also taken into account. The 

standard RAM (Random Access Memory) capacity of advanced robotic con

trollers is between 64 KB (of the 8-bit words) and 1 MB, which depends 



on the complexity of the algorithm for the control calculation and the 

amount of data to be stored. It should be pointed out that certain 

control laws may require a large memory capacity for storing the data 

calculated (off-line) in advance and which are used during the on-line 

robot control (see Chapter 4). Those robots which should perform com

plex motion for a prolonged time demand the storing of a large amount 

of data about the coordinates that are to be realized. The application 

of these robots is characterized by the use of peripheral magnetic me

mories, such as floppy and hard disc. The function of these peripheral 

memories is to store (either in the appropriate robotic language, or 

in the form of a set of coordinates which the robot has to realize du

ring its motion) the programmes for various tasks to be assigned to 

the robot for execution when needed. Thus, various tasks can be pro

gran~ed in advance, the programmes stored in the peripheral memory 

units, and used afterwards in the course of realization of the indus

trial process. 

All these factors concerning the implementation of the robot control 

should be taken into account in the robot control synthesis. It should 

be mentioned that in the implementation of robot control by micropro

cessors, special attention should be paid to the accuracy of calcula

tions. The data from the sensory system reaching the microcomputer, 

either directly in digital form or through an AID converter, are most 

often 12 - or 16-bit. As we have already mentioned, calculation of the 

control is also carried out by 16-bit processors. In this way, a suf

ficient accuracy can be ensured for the majority of the present'day 

robots and their applications (Le. the microcomputer truncation does not 

significantly affect the robot's behaviour). However, for some speci

fic tasks and some robots, a higher calculation precision may be re

quired. Besides, in the robot control synthesis, care should be taken 

of the reliability and robustness of the chosen control, i.e., it 

should be ensured the control is implemented in a reliable manner 

which is not sensitive to possible disturbances that might occur in 

the external conditions. 
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Chapter 2 
Kinematic Control Level 

2.1 Introduction 

As pointed out in Section 1.2, the tasks for which robots are applied 

in industry and other fields are of very diverse complexity. The more 

complex the task a robot has to perform and the more strict the requi

rements for its performing, the more complex should be the control sy

stem of the robot. The complexity of the robot control also depends, 

as it will be shown in Chapter 4, on the robot's mechanical structure, 

i.e. on the extent and mode the motion of one joint (mechanical degree 

of freedom) of the robot influences the other joint. Because of that, 

different "types" of control systems appear in practice, which in dif

ferent ways solve the problems at both tactical and executive level 

and enable accomplishment of tasks of different class. As will be shown 

below, the "types" of control are most often related to different clas

ses of tasks in robotics, which, on the other hand, have different re

quirements toward the executive control level. This chapter deals with 

the problems concerning the tactical control level, while the subject 

of the coming chapters will be the synthesis of control at the execu

tive level. 

2.2 Direct and Inverse Kinematic Problem-Determination 
of Robot Position 

The most elementary task that appears in robot control is to bring the 

robot to the desired position of the workspace. If we consider the 

tasks encountered in robotics (Section 1.4) we realize that one of the 

simplest tasks is the transfer of an object from one position to ano

ther (Figure 2.1). What is needed here is to bring first the robot 

from the initial position (A) to the workpiece, at such a distance 

from where the gripper can take hold of it (B). To execute the task, 

the gripper has to be oriented in a proper way as to catch the work

piece. The position of the manipulator is, therefore, defined by the 

desired position and orientation of the gripper in the workspace and 

these are determined by the position and orientation of the workpiece 
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itself. The next step is to grip the workpiece *). After that, the work

piece should be transferred to a new position. This new desired posi

tion of the workpiece determines the new position of the gripper, and 

thus, requires a new position of the manipulator (C). If the work spa

ce is not containing obstacles, and if there are no limitations upon 

the mode of transferring the workpiece (e.g. if the orientation of the 

workpiece is not important, in contrast to the case when a vessel con

taining liquid is to be transferred, etc), the manipulator can move 

from B to C in an arbitrary way. When the workpiece is brought to po

sition C, the gripper opens, and the workpiece (having acquired the 

desired position in the workspace) is released. The robot is then po

sitioned again at the initial position A, or it goes directly to posi

tion B. 

c 

B 

Fig. 2.1. The task of transferring a workpiece 
from position B to position C 

We have described this simple task to show that the only problem of 

practical importance in its execution is the accurate positioning of 

the robot and the workpiece which it is carring, 1. e. the brin<;Jin<;J of the 

robot gripper to a desired position and acquiring the adequite orien

tation in the workspace. Such robot positioning is involved in many 

tasks, described in Section 1.4, either as the only task, or as a sub

task in a complex assignement. For example, spot welding requires a 

precise robot positioning in regard the positions needed to carry out 

the operation. In parts assemblying, the problem of accurate position

ing arises at the state of bringing the workpiece to the site of parts 

mateing, though the operation of assemblying is more complicated 

*) In a general case, the gripping phase can be complex too (in the 
case the shape of the workpiece is not defined in advance), but 
these problems are not going to be dealt with here. 



(as it will be shown in Chapter 7). Thus, all robots have to ensure 

the possibility of versatile positioning, and they differ with respect 

to the mode the positioning is programmed and executed, and the acou

racy the desired positioning is accomplished*). It should be noticed 

that mechanical arms with open feedback have also the possibility of 

positioning but their capability of reprogramming the desired positi

ons and assigning new positions is very limited, if compared to robots 

(as it was explained in Section 1.3). 

The primary question arising in robot positioning is, how to assign a 

desired position to the robot. In principle, there are two ways of as

signing the robot's coordinates: 

a) through the so-called internal coordinates of the robot (or the 

robot joints coordinates), or 

b) through the so-called external robot's coordinates. 

In the first book of this textbook series [1] we have explained some 

basic concepts concerning the kinematics and dynamics of robots, such 

as mechanical configuration of the manipulator, link, kinematic pair, 

kinematic chain, etc. Internal robot coordinates are defined by the 

scalar values describing relative position of the one link with res

pect to another link of the same kinematic pair. The internal coordi

nate for a revolute joint is the deflection angle at the joint, where

as, for a translational kinematic pair, it is the linear displacement 

along the joint axis. In Fig. 2.2. the internal coordinates are deno

ted by qi, and the vector of internal coordinates of a robot having n 

simple joints (degrees of freedom) is q = (q1, q2, ••. ,qn)T. (The defi

nitions of a revolute and a linear jOint are given in [1]). 

The external robot coordinates are the Cartesian coordinates of a ter

minal robot link (gripper) with respect to the absolute coordinate 

frame attached to the manipulator base, or, to any other point in the 

workspace, as well as the gripper orientation with respect to the ab

solute coordinate frame (i.e. the angles between the terminal robot 

link and the axes of the absolute coordinate frame). Therefore, the 

*) It should be mentioned that the task of robot positioning is the 
most elementary one, though, as it will be shown later, the requi
rements put before modern robots may be much more complicated (to 
follow a space trajectory, etc). 
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vector of external coordinates s consists of the coordinates xc' Yc' 

Zc of a point on the gripper (e.g. its inertia centre, or the tip) with 

respect to the absolute coordinate frame and the angles e, ~, ~, which 

the axes of the coordinate frame, attached to the gripper, form with 

the axes of the absolute coordinate frame (Fig. 2.2). 

z 
z" 

x 

x 

Z=ZI 

ylll 

./::r q'=y" 

G 

y 

Fig. 2.2. Cartesian coordinates of a manipulator gripper 

The yaw angle ~ corresponds to the rotation about axis z of the fixed 

coordinate frame, the peatch angle e corresponds to the rotation about 

the newly formed axis y (after the rotation for angle ~), whereas the 

roll angle corresponds to the rotation about the new axis x. Thus, the 

external coordinates describe the gripper position with respect to the 

fixed coordinate frame. 

The vector of external coordinates s have, in a general case, m coor

dinates, where m is the number of coordinates needed to describe the 

gripper position in a particular class of manipulation tasks. Most of

ten, it is accepted that m=6, i.e. the position and orientation of the 

gripper with respect to a fixed frame are fully described by the vec

tor of external coordinates: 

s = ( z "', 8., ~) T xc' Y c' c' ~ ~ 

If a certain class of tasks can be described by a smaller number of 

external coordinates, such a vector of external coordinates is adopted 

which does not include these coordinates that are not of interest. For 

example, if the gripper positioning is only to be considered, the vec

tor of external coordinates is of the form x = (xc' Yc' Zc)T. 



It should be noticed that robot external coordinates can be defined in 

different ways. For example, the gripper position can be described by 

cylindrical or spherical coordinates, and the gripper orientation can 

be described by angles adopted in some other way. 

As is known [2J, robots are powered by means of actuators of various 

types. Most often, one manipulator joint is powered by one actuator. 

The motion of the actuator is transformed into the motion (either, ro

tation or translation) of the corresponding joint. As will be shown in 

the next chapter, each actuator is supplied with its own servo system 

which drives the actuator and brings it to the desired position. The

refore, to each actuator it should be assigned the desired position to 

be attained. This means that the executive level needs the robot posi

tion be defined in terms of internal coordinates. For each joints, it 

is necessary to define the angle (or displacement) qOi to be attained, 

and this angle is the input to the corresponding servo system; the 

servosystem activates the actuator, which drives the joint until the 

desired joint position qOi, is attained. In this way, the robot is 

brought to a desired position in the workspace. 

If the manipulator position is assigned through the internal coordina

tes, then the robot positioning is reduced to assigning these coordi

nates at the executive control level, whose servo systems should rea

lize the given joint positions. Therefore, the tactical control level 

is now trivial: the joints coordinates, assigned by higher levels (or 

by the operator), are transferred directly to the executive level. Ho

wever, the question can be raised on how the joint coordinates qOi 

are determined. In the task considered above (Fig. 2.1), the desired 

robot position is defined by the position of the workpiece, i.e. by 

the gripper position that should be attained, or in other words, by 

the Cartesian coordinates. One of possible ways of doing it is by te

aching the robot: the operator, by means of either a joystick, a con

trol panel, or by guiding the robot gripper manually (the robot is 

"loosened", so that the operator can easily guide its gripper) *), or 

in some other way, brings the robot gripper to the desired position 

in the workspace; the joint coordinates qOi corresponding to the de

sired gripper position are stored in the control system, and, when the 

*) The "teaching" method has been considered in [2J. 
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robot works in an automatic mode, these coordinates are assigned to 

the executive level for realization. 

However, such a mode of teaching is not always acceptable. In some ca

ses, it is not possible to realize a manual guiding of the robot beca

use of its weight (size) and type of task (if the robot works in a 

workspace inaccessible to the operator). On the other hand, the robot 

teaching through the internal coordinates, i.e. by bringing the robot 

gripper to a desired position, by assigning the joint coordinates 

(either, via a terminal, a joystick, or a teching unit), can be a te

dious and time consuming job. Because of that, modern robots should 

have the possibility of assigning position in terms of external coor

dinates. This way of position assigning is incomparably more conveni

ent from the point of view of the operator and the higher control le

vels (at which the task of planning trajectories is usually solved in 

terms of Cartesian coordinates). 

However, because the executive level (servo systems) requires that de

sired position is assigned in terms of internal coordinates, it is ne

cessary to ensure conversion of the external coordinates into the cor

responding internal coordinates. As we explained in Chapter 1, this 

problem is solved at the tactical control level, whose task is to con

vert the given values of Cartesian coordinates SO into the correspon-

d · If" t d' t 0 (01 02 on) T lng va ues 0 ]Oln coor lna es q = q , q , ... ,q . 

It is obvious that there is a correspondence between the internal (q) 

and external (s) robot coordinates. To each value of the vector of 

internal coordinates q corresponds a value of the vector of external 

coordinates s, that is: 

s = f(q) (2.2.1) 

where f represents the functional transformation of the vector of in

ternal coordinates into the vector of external coordinates. 

This functional transforming is called "direct kinematic problem" and 

it involves the determination of external coordinates vector s for the 

given internal coordinates (vector q). As the relevant vector of ex

ternal coordinates is generally of dimension m = 6, and the vector of 

internal coordinates is of dimension n, expression (2.2.1) represents 

the transformation of the vector q of dimension n into the vector s of 

dimension m. 



Direct kinematic problem can be solved in different ways. There are 

several procedures enabling the correspondence between internal and 

external coordinates to be determined for different robot structures. 

The primary aim in all of these procedures is to develop an algo

rithm for systematic determination of functional relationship between 

the internal and external coordinates for an arbitrary robotic struc

ture. As the robot control is presently realized by the aid of compu

ters, a number of algorithms has been developed, enabling an easy cal

culation of external coordinates as a function of internal coordinates 

by using computers (microcomputers). The procedures differ in respect 

to a number of mathematical operations that are needed to calculate 

the external coordinates for the given values of internal coordinates, 

in respect of their generality (the applicability to different robotic 

structures), etc. These procedures have been reviewed in [3, 4J. It is 

clear that the transformation f represents a nonlinear trigonometric 

function, and its determination for complex robotic structures, having 

a large number of joints (n ~ 6), requires a large number of mathema

tical operations. The procedures for solving direct kinematic problem 

are generally reduced to the determination of relationship between the 

coordinate frames attached to the particular links. Thus, the relation

ship between the coordinate frame attached to the terminal robot link 

(gripper) and the fixed coordinate frame, represents the solution to 

direct kinematic problem. It should be emphasized that the functional 

transformation (2.2.1) can always be determined in analytic form, i.e. 

it is always possible to determine external robot coordinates as a 

function of internal coordinates in the form of analytic expressions. 

However, as we mentioned above, the task is most often given in terms 

of external coordinates, i.e. the desired robot position is defined by 

the values of external coordinates. Because of that, one of the major 

problems in robotics is to determine the values of internal coordina

tes qO, corresponding to the given external coordinates so. Determina

tion of internal coordinates qO (which are assigned to the executive 

level - the servo systems at joints - where they are realized) for the 

given external coordinates SO is carried out by inverse transformation: 

(2.2.2) 

Determination of the inverse function f- 1 is called "inverse kinematic 

problem". To solve this problem is incomparably more difficult than to 
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solve direct kinematic problem. Determination of f- 1 depends also on 

the dimensions of vectors sand q. In relation to this problem, three 

cases are possible: 

a) m=n, when the number of external coordinates is equal to the number 

of internal coordinates, it is possible to determine a unique q 

corresponding to the given s (under the condition that the manipu

lator is not in the special, so-called "singular" position for which 

several q values correspond to one s)*); 

b) m>n, then, it is not possible (except in some special cases) to de

termine q satisfying s; 

c) m<n, there are more solutions q satisfying the given s; this is the 

case of redundant manipulators (for details see ref. [3]). 

In a general case, for non-redundant manipulators too, the solution of 

inverse problem is not unique, but there is a set of solutions for in

ternal coordinates corresponding to one and the same position and ori

entation of the gripper. 

As the function f, connecting the external and internal coordinates, is 

a nonlinear trigonometric function, solving the inverse problem is equi

valent to search solution to a set of nonlinear equations. Two general 

approaches are known. In the one of them, the vector function f- 1 (so) 

is obtained in an analytic form for each particular manipulator, while 

in the other approach, the solution is sought by one of the known me

thods of numerical analysis. Both approaches have certain advantages 

and disadvantages. 

2.2.1. Analytic solution to inverse kinematic problem 

As the vector function f in (2.2.1), is a complex nonlinear (trigono

metric) function of n variables, the analytic determination of the in

verse function f- 1 is a complex problem which cannot be solved gene

rally, i. e. for an arbitrary robotic structure. For some robotic struc-

*) The problem of singular pOints will be treated briefly in Section 
2.2.2; a detailed consideration of the problem can be found in [3]. 



tures, however, it is possible to obtain an analytic solution of the 

inverse kinematic problem, while for some others, this is not possible. 

Thus, it has been shown, that for robotic structures having three d.o.f., 

two intersecting and two parallel joint axes (Fig. 2.3) is possible to 

obtain an analytic solution to the inverse kinematic problem, i.e. to 

determine explicitly the joint angles qi as a function of external co

ordinates. However, this is not always possible, even for the robots 

with three d.o.f. In [5], it was shown that solving the inverse prob

lem for robots having three d.o.f. can be, in a general case, reduced 

to finding the zeros of a polynom of the fourth power. 

z 

Fig. 2.3. A robot having three jOints with two intersecting and 
two parallel axes (the robot for which is possible to 
solve the inverse problem) 

To obtain an inverse solution in analytic form, for a manipulator ha

ving six d.o.f., it is necessary to split the problem into two inde

pendent subproblems: the determination of the solution for the first 

three joints q1, q2, q3, and determination of the remaining three co

ordinates q4, q5, and q6. The first three jOints form the so-called 

minimal aonfiguration, and the remaining three joints are usually as

sociated with the robot gripper*). An inverse problem can be divided 

in two subproblems (for the minimal configuration and the gripper) , 

provided the terminal three d.o.f. make a spheric joint, i.e. all 

*) It should be noticed that this holds for robots with n=6 d.o.f., 
so-called non-redundant robots. 
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three axes intersect at one point (Fig. 2.4), which in other words, 

means the gripper consists of one link only. In that case a simple 

calculation enables the position of the tip of the minimal configura

tion to Pe determined (on the basis of the given position of the grip

per tip and the given orientation of the terminal link - gripper). Ha

ving the position of minimal configuration determined, it is possible 

to find an analytic solution to the inverse kinematic problem for the 

minimal configuration and thus, determine the internal coordinates q1, 

q2, q3. Then, for the known values q1, q2, q3, the orientation of the 

terminal link of the minimal configuration is determined. This enables 

the determination of internal coordinates q4, q5 and q6 of the spheri

cal gripper joint that satisfy the required gripper orientation. 

Fig. 2.4. The robot with a spherical joint (wrist) 

Certain types of industrial robots possess such mechanical structure 

for which there is an analytic inverse solution. However, with some 

robotic structures, as well as with redundant manipulators, it is not 

possible to determine an analytic solution to the inverse kinematic 

problem, so that a numerical approach has to be used. 

Example 2.2.1. We shall show an example of robotic structure for which 

the inverse function (2.2.2) can be obtained in an analytic form. For 

a cilindrical type of robot (Fig. 2.5) with n=4 d.o.f. the relation 



between the external and internal coordinates (2.1.1) (the vector of 

external coordinates is chosen as s = (x , y , Z , ~)T, where x y c c C 'f' C' c 
and Zc are the coordinates of the gripper gravity centre, and 1> is the 

Euler angle shown in Fig. 2.5), is given as 

(2~+2~+q3)sin 1 003 q1 x q , yc = (2 3 +2 4+q )cos 
C 

(2.2.3) 
2 0 

1> 
4 

Z q + 22 , q c 

1 
q 

Q 

x 

Fig. 2.5. A robot having cylindrical structure (with 4 d.o.f.) 

where 2~ are the lengths of robot links (Fig. 2.5). The inverse func
~ 

tion (2.2.2) can be now defined as: 

q1 arctg(xc/Yc) , 
2 Z _2 0 q c 2 

(2.2.4) 
3 fx2:"7 0 0 4 

q x c +Yc- 24- 23' q 1> 

Therefore, for such a manipulation robot, it is possible to determine 

the inverse kinematic model in an analytic form, i.e. to determine in 

an analytic way the coordinates q corresponding to the desired exter

nal coordinates s. However, as was explained above, this is not pos

sible to achieve for all robotic structures. 
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2.1. For the "spherical" manipulator having 3 d.o.f., presented in 

Fig. 2.6., determine the relation between the internal and ex

ternal coordinates and the inverse kinematic model. 

2.2. For the "anthropomorphic" manipulator having 3 d.o.f., presented 

in Fig. 2.7, determine the relation between the internal and ex

ternal coordinates. Is it possible to determine the inverse kine

matic model in an analytic form? 

x 

Fig. 2.6. A robot of spherical structure having 3 d.o.f. 
1 

~q 

x 

Fig. 2.7. A robot of anthropomorphic structure having 3 d.o.f. 



2.2.2. Numerical solutions to inverse 

kinematic problem 

In essence, an inverse kinematic problem represents the solving of a 

set of nonlinear trigonometric equations with respect to internal co

ordinates q. A set of nonlinear equations can be solved by different 

numerical procedures. Because of that, for those robots for which is 

not possible to determine an inverse kinematic solution in analytic 

form, this problem is solved by one of standard numerical methods. 

We shall consider here a numerical method for solving inverse kinema

tic problem which is often used in practice. Let find the derivations 

with respect to time for the functional relationship between the ex

ternal and internal robot coordinates (2.2.1). Thus, we obtain: 

(2.2.5) 

where J(q) = af/aq denotes the Jacobian matrix of partial derivatives 

of the function f(q), having the dimension mxn. 

Equation (2.2.5) represents the relationship between the vector of 

Cartesian velocities 5 and the vector of joint velocities q. If the 

velocities of Cartesian coordinates SO are given, the joint coordina

tes velocities should be determined from (2.2.5). Here, three cases 

may arise: 

a) m=n, in that case the Jacobian matrix is quadratic, and its inverse 

matrix can be determined: 

q 
-1 • 

J (q) s (2.2.6) 

However, an inverse matrix exists if the matrix determinant J(q) is 

not equal to ~ero; the manipulator positions for which det(J(q» 0 

represent the so-called singular points for which inverse Jacobian 

cannot be determined, i.e. the internal coordinates velocities cannot 

be determined from (2.2.6) (Various procedures for solving the problem 

of singular pOints have been described in the literature). 

b) m>n, it is not possible to determine a q corresponding to the given 

5 (except in some special cases); 
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c) m<n, this is the case of redundant manipulators, for which solution 

is not unique, and some additional criteria should be introduced in 

order to determine the unique q corresponding to the given s; one 

of possibilities is to adopt the so-called minimal inverse solution 

q (2.2.7) 

which gives a q which is, according to the criterion of minimum 

quadratic error, closest to the "exact" solution. 

In this way, the vector of internal coordinates velocities qO can be 

determined for the SO values, assigned by the operator or by higher 

control levels. The tactical level should determine the Jacobian J(q) 

for an instantaneous value of internal coordinates q, carry out the 

inversion of the matrix J(q), and, on the basis of (2.2.6), calculate 

the qO for a given so. The calculated qO should be realized by the exe

cutive control level. This can be done in two ways: either to assign 

the desired internal coordinates velocities qO directly to the execu

tive level (which means that the so-called speed controllers used at 

the executive level can realize the given angular (translational) ve

locities of particular joints), or, to calculate the internal coordi

nates qO and then assign them to the executive level (which now con

sists of position servo systems, as in the case of positioning control). 

In the latter case, it is necessary to determine the internal angles 

qO corresponding to the calculated velocity qO, i.e. to find an inte

gral of velocity: 

t+lIt 
qO(t+lIt) = qO(t) + f qO(T)dT 

t 
(2.2.8) 

The velocity integration may be carried out in different ways, depen

dending on the mode of control realization. After the integration of 

(2.2.8), the internal coordinates obtained should be assigned to the 

executive level. 

However, it has been supposed that the velocities of external coordi

nates SO have been given. As the desired robot positions, assigned to 

the tactical level, are often given in terms of external coordinates, 

it is necessary to solve the inverse kinematic problem for the given 

position so. An inverse Jacobian can be used to solve numerically the 

inverse kinematic problem with respect to position, in the following 

way. Let be given external coordinates SO and let q(k) be an approxi-



mate (assumed) solution to the inverse kinematic problem, that is 

(2.2.9) 

The difference between the exact values of external coordinates SO and 

the values corresponding to the assumed solution f(q(k)) may be appro

ximately expressed in the following way: 

6S (k) = sO_f (q (k)) "" J (q (k)) (q (k+1) _q (k)) (2.2.10) 

where q(k+1) is a more accurate solution to the inverse problem, cor

responding to so. On the basis of (2.2.10), it is obtained that 

q (k+1) "" q (k) +J-1 (q (k)) 6S (k) (2.2.11) 

Expression (2.2.11) can be used as an iterative procedure to determine 

solution to the inverse problem. The procedure is simple: for a given 

so, a solution to the inverse problem q(o) is assumed and correspon

ding values of external coordinates f(q(o)) and error 6S 0 determined; 

then, the Jacobian matrix at point q(o) is determined and also its in

verse matrix (provided that the matrix is not a singular one); further, 

on the basis of (2.2.11), next approximate solution q(1), closer to 

the exact solution, is determined. The procedure is then repeated for 

the new q(1) and the repeatition continued until the error for exter

nal coordinates satisfies the condition 16s(k) 1<2, where 2 is a small 

positive constant defining the desired accuracy of the solution. This 

is, in fact, the classical Newton method for solving a set of nonline

ar equations. The method is characterized by a quadratic convergence, 

which means that it has a high convergence rate toward the exact solu

tion. Obviously, the Newton method gives only one solution to the in

verse kinematic problem, and this is the one closest to the initial 

guess, q (0) • 

It is clear that equation (2.2.11) corresponds to equation (2.2.5) (if 

the velocities are replaced with finite increments, i.e. by the finite 

difference between two iterative solutions). Thus, the inverse Jacobi

an can be used for solving the inverse kinematic problem and for de

termining the internal coordinates for the given external coordinates 

(positions) . 
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In practice, however, the desired gripper velocity (i.e. the external 

coordinates velocities) is often assigned in a direct way. If this is 

done by the "teaching" method, the operator should guide the manipula

tor to the desired positions, and it is obvious that it is easier for 

the operator to guide the robot by assigning the external than by as

signing the internal coordinates (for this reason, the tactical con

trol level is introduced). However, it appears inconvenient to the 

operator, guiding the robot by the aid of a joystick, to assign the 

external coordinates in a direct way. It is more convenient to the 

operator using a joystick to assign the velocity of the robot tip 

(gripper), i.e. the velocities of external robot coordinates. On the 

other hand, it appears (see the next section) that even when the desi

red external coordinates are determined (either by "teaching", or by 

direct assignement of the desired values by the operator or the higher 

control levels) a direct assignement of terminal values of the desired 

coordinates is not suitable; instead, it is necessary to ensure the 

robot "guiding" to the desired position. The robot guiding by assig

ning coordinates velocities is more suitable than by assigning the co

ordinates themselves (in time). For this reason, the desired velocity 

of the robot gripper is assigned in a direct way, and from (2.2.6) the 

velocities of internal coordinates are determined. 

All that has been said above, reffers to the manipulation tasks requi

ring only the position control, i.e. bringing the robot to various po

sitions in the workspace. Even nowdays, such tasks are most common in 

industry. However, a number of tasks appear in practice for which accu

rate robot positioning is not sufficient, but it is necessary to ensu

re that the robot moving from one to another position in the workspace, 

follows the more or less precisely defined paths. For example, in many 

manipulation tasks in the industrial practice, the robot moves in a 

workspace which is not empty, but contains different obstacles; in 

such a workspace the robot cannot move freely (i.e. along an arbitrary 

trajectory): hence, its trajectory should be defined in such a way the 

robot avoids collisions with the obstacles. In addition, in some tasks, 

it is necessary to realize the robot's tip moving along a particular 

path: such a task appears in paint spraying, where the robot has to 

spray paint uniformly over a particular surface. In some cases, a re

quirement may arise for a precise maintaining of the robot tip veloci

ty along a given trajectory. A typical task of this kind is arc wel

ding, where the robot tip should move along a defined seam at a stric

tly defined speed. In a great number of tasks, it is not required an 

explicit realization of a given velocity. Instead, a fixed motion time 



is required, so that the robot's velocity is defined in an indirect 

way. 

In practice, the robot control is frequently accomplished through ve

locity: the gripper velocities are assigned in a direct way. When the 

jOints velocities are determined by the aid of an inverse Jacobian, 

they are (as we mentioned above) sent directly to the executive level 

for realization, or integrated numerically according to (2.2.5) to de

termine the internal coordinates to be assigned to the executive level. 

It can be seen that in the case of velocity control, the problem sol

ving is generally simpler than in the position control: the Jacobian 

can always be determined and its inversion carried out if n=m (except 

at singular points). However, from the point of view of realization, 

a number of problems may arise. In a general case, a Jacobian is a 

complex function of all internal coordinates; the inversion of a Jaco

bian is not a simple task because it requires a relatively large num

ber of mathematical operations (most often the matrix is of dimension 

6 x 6, so that its inversion is a numerically complex problem); for this 

reason a powerful microcomputer (from the point of view of a speed of 

performing numerical operations) is needed in order to achieve a suf

ficiently fast calculation of velocities qO; besides, the problem of 

singular pOints and the problem of redundancy should be additionally 

solved. Similar conclusions hold also for numerical determination of 

internal coordinates by inversion of the appropriate Jacobian. 

Here, we are not going to consider the problem of assigning external 

coordinates velocities so, needed to guide the robot to a given posi

tion; the problem of calculating the trajectories to be followed by 

the robot in order to perform a given task, will be considered in the 

next section. The problems concerning the tactical control level (cal

culation and inversion of Jacobians, the problem of redundancy, etc) 

have been cons idered in [3]. 

Example 2.2.2. For the cylindrical manipulator shown in Fig. 2.5. the 

Jacobian is obtained by differentiating the right-hand sides of equa

tions (2.2.3), that is 

43 



44 

003 1 (Jl 3 +Jl 4 +q )cosq 0 sinq 1 0 

003 . 1 
0 1 0 -(Jl 3 +Jl 4+q )slnq cosq 

J (2.2.12) 

0 0 0 

0 0 0 

E X ere 1 s e s 

2.3. For the robot in Fig. 2.5. determine (in a analytic form) the in

verse of (2.2.12), and check if this robot has singular points. 

2.4. Draw a flow-chart of the algorithm for solving equation (2.2.2) 

by the Newton procedure. 

2.5. For the manipulator in Fig. 2.6, determine the Jacobian and in

verse Jacobian. Are there singular pOints? 

2.6. Do the same, as in the previous exercise for the robot in Fig. 

2.7. 

* 2.7. Write a programme (in one of high-level programming languages) 

for soiving equation (2.2.2) for the manipulator in Fig. 2.7. by 

the Newton procedure. 

2.8. Determine the number of numerical operations (multiplying and 

adding) to be carried out in order to determine an inverse matrix 

of the nxn matrix. Assume n=6. 

2.3 Trajectory Synthesis for Manipulation Robots 

In the preceeding two sections we showed how the problem of control is 

solved at the tacticai level, i.e. how the jOint coordinates or their 

veloci ties are determined on the basis of the given Cartesian coordina

tes or their velocities. Besides, we saw that in some tasks of practi

cal importance, there is a need that the robot tip (gripper) follows a 

predetermined path at a given velocity (and acceleration). Here, we 

shall show, in short, how the trajectories are synthesized in order to 



achieve desired motion of the gripper. This problem has been dealt 

with in detail in r3j. To facilitate understanding of the further con

sideration of control at the executive level that will be presented in 

the chapters to come, we shall discuss only some elementary notions of 

trajectory synthesis. 

A robot gripper trajectory may be assigned in different ways: one of 

them is the robot teaching in which the operator guides the robot 

along a desired trajectory and the control system stores the set of 

pOints through which the robot has passed. However, this method of as

signing trajectories is not convenient for several reasons. It is of

ten required that the operator assign a desired trajectory numerical

ly, through the terminal and in a suitable programming language (or, 

the trajectory is assigned by the higher, strategic control level). 

It is necessary to ensure that the assignement of a desired gripper 

trajectory is realized in the simplest possible way, so that the ope

rator (or the higher control level) supplies a minimal number of tra

jectory parameters; in this way the operator's job is made easier,and, 

at the same time, the amount of data to be stored is minimized. There

fore, it should be determined the minimal and most suitable set of da

ta enabling the assignement of a desired trajectory. For example, if 

the motion is performed between the two given positions along a path 

which represents a geometric figure, it is necessary to define the 

initial and final position, the parameters describing the figure (for 

example, if a circle is assumed between the two points, it is necessa

ry to determine its centre, or the radius and the plane the circle 

lies in), as well as the velocity profile, i.e. the change of the grip

per velocity along the given path. On the basis of these parameters, 

the control system should generate the gripper trajectory that should 

be realized at the tactical and executive level. 

Consider the simplest problem of synthesizing a trajectory between the 

two given robot positions, defined by the vectors of external coordi

nates sA and sB' where the robot tip, when moving from one position to 

the other, has to follow a straight line. As a straight line is defi

ned by two pOints, no additional parameters are required to define the 

gripper path. However, it is necessary to define the change of gripper 

velocity along this straight line. If we suppose that the gripper ve

locity in the initial and final position is equal to zero, a triangu

lar (Fig. 2.8), a trapezoidal (Fig. 2.9), a parabolic, or some other 

kind of velocity profile, may be adopted. Let adopt a triangular velo-
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city profile and let the time needed for robot passing from point A to 

point B be T. In that case, the equations describing the change of ex

ternal coordinates (the Cartesian coordinates of the gripper tip) are: 

(2.3.1 ) 

for T2:.t>T/2 

and the analogous for the other two coordinates, Yc and zc. 

Besides, it can be required that the (Eulerian) angles of the gripper 

change according to a triangular velocity profile, from the initial 

values eA, ~A' ~A to the final values eB, ~B' ~B· In that case, the 

change of external angles in time has the form: 

for 

(2.3.2) 

for 

and the analogous for the other two angles, ~ and ~. 

Fig. 2.8. Triangular velocity 
profile for the robot 
gripper 

t o T t 

Fig. 2.9. Trapezoidal velocity 
profile for the robot 
gripper 

In this way are obtained the trajectories of external coordinates (the 

gripper coordinates and angles) which should be then realized. It is 

easy to show that the external velocities are in this case defined as 



B A 

{ 
4(si- s i) 

t for O,.:t":T/2 2 T 
·0 (2.3.3) si 

4(s~-s~) 
]. ]. (T-t) for T/2<t":T 

2 T 

000 0 Too 0 0 0 0 T 
for i = 1,2, ••• ,6, s = (s1' s2,···,s6) = (xc' yc' zc' e ,1jJ , cfJ ) , 

where s~ denotes the coordinate corresponding to position A and s~cor
responds to position B. Similarly, the accelerations are: 

B A { 4(,,-,,' for O,.:t":T/2 2 T 
.. 0 (2.3.4) s. 

]. B A 
-4 (si-si) 

for T/2<t":T 2 
T 

Therefore, the control system, in this case, generates easily the tra

jectories, as well as velocities and accelerations, in terms of exter

nal coordinates. The trajectories thus generated are converted at the 

tactical level into the trajectories of robot joints. This conversion 

can be accomplished in one of the following ways: 

a) By a direct calculation of internal coordinates from the external 

coordinates on the basis of (2.2.2) (provided an inverse transfor

mation, either analytic or numeric, is possible); in that case the 

joint trajectories qOi(t) are obtained, whose differentiation yields 

the velocities qOi(t) and accelerations qOi(t) along the trajecto

ries of robot jOints; 

b) By calculating joint velocities on the basis of relation (2.2.6), 
·oi ·0 so that the values q (t) are obtained (on the basis of the silt) 

from (2.3.3», whose integration yields the joint trajectories 

qOi(t) and differentiation yields the accelerations qOi(t) along 

the trajectories; 

c) By calculating the joints accelerations qOi(t) along the trajectory 

on the basis of external accelerations sO(t), given by (2.3.4); the 

integration of accelerations qOi (t) yields the velocity qOi (t) along 

the jOint trajectory and the integration of the velocity provides 

the joint trajectory qOi(t). (It is assumed that there are no sin

gular points along the chosen trajectory). When the accelerations 
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of external coordinates SO are given, the joint accelerations are 

obtained on the basis of the relations between the accelerations of 

the external and internal coordinates. This relation is obtained by 

differentiating relation (2.2.5) with respect to time 

oJ Jq + oq 
·2 q (2.3.5) 

On the bubis of this relation, we can determine the joint accelera

tion corresponding to the acceleration of external coordinates so: 

(2.3.6) 

In this way, the joint accelerations along a given trajectory are 

obtained, and then, the internal coordinates qO(t) are generated. 

Generation of trajectories in terms of external and internal coordina

tes may be realized either off-line (at the stage of preparation, ro

bot teaching, so that the trajectories are then stored), or on-line, 

during the robot motion along a desired trajectory, which depends on 

the type of task and the capabilities of the control system. 

It can be seen that in this most elementary case, the trajectory gene

ration is simple. However, if some more complex paths are involved, 

the problem becomes much more complex. Often, the operator, or the 

higher control levels, generate a set of points in space, through which 

the robot gripper should pass (without stopping), so that the gripper, 

moving from one given point to another, follows a straight line, as 

above, or a regular geometric figure*). In this case the problem of 

trajectories generation is much more complex, anditis especially com

plex if the motion time is not given, but it should be minimized [6]. 

The problem of minimization of the time of motion along a given path 

and the problem of optimal distribution of the robot tip veloci ty (from 

the point of view of time or energy), may be dealt with on the basis 

of a complete dynamic model of the robot; the problem is extremly com

plex, and the "optimal" solutions are difficult to realize in practice 

[7]. 

*) This is a frequent case with the robots moving in the presence of 
obstacles, which are recognized by higher control levels, and which 
assign then a set of points through which the robot should pass in 
order to avoid obstacles. 



Here, we are not goint to consider the problems concerning the synthe

sis of robot trajectories, because they have been dealt with in detail 

in [3]. For a better understanding of the further text it is essential 

to bear in mind that the tactical level generates either the jOint po

sitions qOi to be realized, or the joint velocities to be realized, or 

the joint trajectories qOi(t) with corresponding velocities qOi(t) and 

accelerations qOi(t), and the executive level should ensure the trac

king of these trajectories. 

Example 2.3. Consider the transfer of the manipulator shown in Fig. 

2.5. from position A, defined by sA = (-0.064, 0.443, 0.624, O)T to 

position B, defined by sB = (0.2, 0.65, 0.68, 0.3)T. Assume the grip

per moves along a straight line with the triangular velocity profile 

presented in Fig. 2.8, and let the required time of the movement be 

1.5 [s]. The trajectories of external coordinates, based on relations 

(2.3.1) and (2.3.2) are presented in Fig. 2.10. Since the inverse 

transformation of the external into internal coordinates may be deter

mined in the analytic form (2.2.4), it is easy to obtain the corres

ponding joint trajectories qO(t). These jOint trajectories are presen

ted in Fig. 2.11. 

[m] Zc 
o . 6 b---::"---::::::::::= 
0.4 

0.2 

-0.2 0.5 

0,3 

0,2 

1.0 1. 5 t [s 1 0.1 

e [rad] 

0.5 1.0 1.5 t[s] 

Fig. 2.10. Trajectories of external coordinates 
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Fig. 2.11. Trajectories of joint coordinates 
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2.9. Write the functions of the change of the manipulator gripper co

ordinates in time for the case the manipulator, while moving from 

pOint sA to point sB' follows the trapezoidal velocity profile 

(Fig. 2.9), for the time T, and acceleration (i.e. deceleration) 

time is 0.2 T. 

2.10. Repeat the same as in Example 2.3. for the robot in Fig. 2.5, but 

assuming a trapezoidal velocity profile (as in Exercise 2.9), in

stead of the triangular one. 

2.11. Write the functions of the change of the manipulator gripper co-

* 

time for the gripper moving from the ordinates as a function of 
A A A T 

point sA = (xc' Yc' zc) 
B B B T 

to sB = (xc' Yc' zc) and followsing a 

yO, zO). Assu-circle line whose centre 

me a triangular velocity 

is at the point So = (xo , 

profile and a motion time T. 

2.12. Write a programme for generating the joint trajectories for the 

* 

manipulator shown in Fig. 2.7. such that the robot tip moving 

from one point to another tracks a straight line and a triangular 

velocity profile for defined time T. Use relation (2.2.6) and the 

programme from Exercise 2.7. 

2.13. Repeat the task in Exercise 2.12 using relation (2.3.6) instead 

of (2.2.6), i.e. calculate accelerations q directly on the basis 

of s. Compare the results. Which of the two variants of trajecto

ry generation is more suitable? 
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Chapter 3 
Synthesis of Servo Systems for Robot Control 

3.1 Introduction 

In the previous chapter we have considered problems concerning the 

synthesis of tactical control level. In the text to follow we shall 

consider the synthesis of the executive control level. As we have al

ready explained the executive control level has to ensure implementa

tion of trajectories (or, only positions) of joint coordinates of a 

robot. These trajectories are computed at the tactical control level. 

The implementation of the trajectories (positions) directly involves 

dynamic behaviour of the robot. Due to this, first we shall briefly 

present dynamic model of the robot system. The dynamic model of the 

robot "consists" of dynamic model of the mechanism and models of actu

ators which drive the joints of the mechanism. Next, we shall consider 

synthesis of servo system around each jOint (actuator) of the robot. 

In practice, the executive control level is often implemented in the 

form of independent controllers for each joint of robot. As we shall 

explain, robot is a complex system with stronq interactions between 

the motions of its joints. However, the independent control of jOints 

is the simplest control law, and so it is the most appropriate appro

ach from the standpoint of control implementation. In this chapter we 

shall present various methods for synthesis of a local controller around 

each jOint, and in the next chapters we shall discuss certain disad

vantages of this approach to control of robots. We shall also consider 

the methods for improvement of this control in order to meet the requ

irements which are imposed before the robots in industry. 

3.2 Dynamic Model of Robot 

The robotic systems "consists" of mechanism (mechanical part of the 

system), actuators which drive the joints of the mechanism and control 

system (which includes various sensors and other equipment). The mathe

matical model of dynamics of the mechanical part of the system and the 

models of actuators have been considered in detail in [1]. Here we 

shall briefly present the mathematical model of robotic manipulators 



only in a degree which is necessary to understand the synthesis ofcon

trol at the executive control level. 

3.2.1. Mathematical model of mechanical part of system 

The mechanical part of the robotic system is a complex mechanism which 

consists of a number of bodies-links. The links are connected to each 

other by jOints. This type of mechanism is called open kinematic 

chain*). We shall assume that each link of the robot mechanism is a 

rigid body, i.e. we shall neglect elasticity of the robot links. The 

validity of this assumption will be considered latter on. The joints 

between two neighboring links might be rotational or linear (and each 

joint might have one or more degrees of freedom)**). Let us consider 

the robotic system with n joints and n degrees of freedom (d.o.f.). 

Dynamic model of such mechanism might be extremely complex. Let us as

sume that each joint is driven by separate actuator which produce ac

tive force (moment) around the corresponding jOint. The movement of 

the i-th joint is described by the corresponding internal (joint) co

ordinate qi which represents angle between the two neighboring links 

(if rotational pair of links are considered) or, linear displacement 

between two neighboring links (if we consider linear joint). The i-th 

jOint movement is also described by joint velocity qi and acceleration 
i q (see Fig. 3.1. [1). The active (driving) moment Pi of the actuator 

around the i-th joint causes the movement of this jOint. The accelera

tion of the jOint qi is proportional to driving torque P .. The factor 
. 1 

of proportionality between ql and Pi represents the moment of inertia 

of the complete moving part of the mechanism around the i-th joint. 

This moment of inertia is a complex function of the positions (coordi

nates) of all jOints of the mechanism qj which are in the kinematic 

chain "behind" the i-th jOint, i.e. for j>i. However, besides the eigen 

moment of inertia of the mechanism around the i-th joint, the movement 

of the i-th joint is affected by the so-called cross-inertia terms 

which represent the influence of the accelerations of the rest of the 

joints in the mechanism qj, j*i upon the i-th jOint. Namely, if the 

*) If the gripper of the robot is in a contact with some fixed object 
(with large mass) in the robot working environment, the robot be
comes so-called closed kinematic chain (see Chapter 7) • 

**) 
As it is explained in [1), the complex joints which have more than 
one degree of freedom can be considered as a set of several simple 
jOints (the so-called pairs of the fifth class) with one degree of 
freedom each. Thus, in the text to follow we shall assume that all 
the jOints of the mechanism are simple. 
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j-th joint is accelerated by qj the dynamic moment around the i-th 

jOint appear which is proportional to qj. The factor of proportionali

ty represents this cross-inertia member. The cross-inertia members are 

also complex functions of the positions (coordinates) of the jOints of 

the mechanism qj. Next, the moments due to jOints velocities also in

fluence the movement of the i-th joint. These moments are called Cori

olis and centrifugal moments (forces) and they are proportional to 

product of the joints velocities. At last, gravity forces (moments) 

also affect the movement around the i-th joint, i.e. they also produce 

moments around the i-th joint axis. The gravity force is also complex 

function of all coordinates (positions of joints) qj of the mechanism. 

In accordance to the above considerations, the equation of equilibrium 

of the dynamic moments which act around the i-th joint might be writ

ten in the following form: 

n 
I 

j = 1 
jH 

(3.2.1) 

where H .. denotes the moment of inertia of the mechanism around the 
II 

i-th jOint which is the function of all coordinates of the mechanism q 

(save for the coordinate of the i-th jOint), Hij denote cross-inertia 

terms which also are the functions of all coordinates of the mechanism 
i q, Cjk represent Coriolis and centrifugal effects, gi represents gra-

vity moment around the axis of the i-th joint and it is also function 

of all the coordinates of the mechanism q. The equation (3.2.1) des

cribes the movement of the i-th jOint for both rotational and linear 

jOint. (In the case of linear jOint, Pi is the driving force of the 

actuator, Hij are masses, gi is the gravity force, while in the case of 

rotational joints we operate with driving torque of the actuator (Pi)' 

the moments of inertia (H ij ) and gravity moments (gi». 

If we write down the moment equations (3.2.1) for all n joints of the 

mechanism we obtain the complete model of dynamics of whole robotic 

mechanism. The model of dynamics of the mechanism can be written in 

the matrix form as: 

P H(q)q + h(q, q) (3.2.2) 

where P=(P1 , P2 , ... ,PdT represents the nx1 vector of driving torques 

(forces), H (q) = [H .. (q) 1 is nxn inertia matrix which is the function 

of the vector of c~;rdinates of the mechanism q = (q1, q2, ... ,qn)T, 



h(q, q) = gTC(q)q + g(q) is the vector of dimension nx1, C(q) = 
[C~k(q) J is three dimensional nxnxn matrix which is called matrix of 

Coriolis and centrifugal effects, or "C-matrix", g (q) is the nx 1 vector 

of gravity moments (forces) which is also the function of q. 

As it can be seen, the dynamic model of the mechanism (3.2.2) represents 

the set of n nonlinear differential equations of the second order (the 

total order of this system is obviously 2n). It can also be seen that 

the movement of each jOint is strongly interconnected with the movement 

of all the other joints and that the driving torques of actuators af

fects all the joints in the mechanism (i.e. the driving torque of the 

i-th actuator affects the movement all other jOints in the system). We 

must emphasize that the matrix H and the vector h might be very complex 

nonlinear functions of all the coordinates of the mechanism, which ma

kes the setting of differential equations (the mathematical model 

(3.2.2» very difficult, in general case. The complexity of the model 

depends on the structure of the particular robot mechanism. Due to this 

complexi ty of robot dynamic model, there was developed a large number 

of various methods for automatic setting of the mathematical model of 

the mechanism at digital computer. These methods enable to generate 

automatically the mathematical model of the mechanism of arbitrary 

structure and of arbitrary number of d.o.f. The user has to impose just 

basic data about the mechanism (the mechanism structure, geometric data 

on the links lengths and positions of the centres of gravity of each 

link, masses, and moments of inertia of the links, etc.), and the com

puter automatically generates the equations (3.2.2). The generation of 

dynamic model of robot mechanism might be accomplished by various al

gorithms. These algorithms differs in the law of mechanics which is 

applied to form motion equations (3.2.1) [1J. Thus, the following me

thods are well known: the method for forming differential equations of 

the robot dynamics based on Lagrange's equations, methods based on 

Newton-Euler's dynamic equations, methods based on Appel's equations. 

Here we shall not present various methods for automatic generation of 

dynamic models of open kinematic chains since they can be found else

where [2J. It should be pOinted out that the methods for generation of 

mathematical models of robots differs in number of multiplications and 

additions that they require to compute driving torque once the coordi

nates, velocities and acceleration of the jOints are given (or, to 

compute inertia matrix H and vector h). This is a crucial point from 

the standpoint of application of this methods for computation of dyna

mic models required for control of robotic system. However, this fact 
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will be discussed latter on when we shall consider dynamic control of 

robot (see Chapter 5). 

EXAMPLE 3.2.1. The mathematical model of dynamics of the robot in Fig. 

3.2. with n=3 d.o.f. might be written in the form (3.2.2) where the 

matrix H(q) and the vector h(q, q) are given by: 

H(q) o 

o 

h(q, q) (3.2.3) 

It can be seen that there exist inertial and centrifugal coupling bet

ween the first and the second joint of this robot, while the third 

joint is not dynamically coupled to the first two jOints. 

Fig. 3.1. Rotational and linear joint 

Note: 

I 
~ I 

qL Y 

->- -7 
Vectors r ii and r i +, ,i from the i-th 
and the (i+1)-st joint to the centre 
of mass of the i-th link are defi
ned by: 
->- * 0, 0) T r 11 (£1 ' 
-7 ." O)T r 21 ((£'-£1)' 0, 
->- * £Z)T 
r33 (£3' 0, 3 

Fig. 3.2. Robot with three d.o.f. (two rotational and one linear joint) 
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3.1. Write the mathematical model of the dynamics of the robot in Fig. 

2.5. Are there interconnections between the motions of the jOints 

of this particular robot (see [1])? 

3.2. Repeat the Exercise 3.1. for the robot in Fig. 2.6. 

3.3. Write the dynamic model for the two-joint robot presented in Fig. 

3.3. What are interconnections between the jOints? 

Fig. 3.3. Robot with two rotational joints 

3.4. Determine the minimal number of additions and multiplications and 

special functions (sinus and cosines) which is required to compu

te matrix H(q) and vector h(q, q) if values of vectors q and q 

are given, for robot presented in Example 3.2.1. (Fig. 3.2), and 

for robots in previous three exercises. 

* 3.5. Write the programme, in some high progran~ing language, for com-

* 

putation of matrix H(q) and vector h(q, q) if values of vectors q 

and q are given (q and q are input variables for the programme, 

and Hand h are output variables) for the robot in Fig. 3.2. Re

peat this for the robots in Figs. 2.5, 2.6. and 3.3. Try to mini

mize the number of additions and multiplications in each program-

me. 

3.6. Estimate the minimal sampling period (i.e. the time period requi-

red) for computation of matrix H and vector h (for given q and q) 
if we implement programme written in Exercise 3.5. at: 

a) Microprocessor INTEL-80-80 (which requires 0.8 [ms] for one 

floating-point addition and1.S [ms] for one floating-point 

multiplication) 
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b) Microprocessor INTEL-80-87 (which requires 35 [vs] for one 

floating-point addition and 65 [vs] for one floating-point 

multiplication) . 

Assume that the processor time is consumed just for additions and 

multiplications. 

3.2.2. Models of actuators 

We assume that each joint of the robot is driven by the separate actu

ator. Majority of the robots at the market today are driven by D.C. 

permanent-magnet electro-motors. There are a lot of robots which are 

powered by electrohydraulical actuators, A.C. electro-motors and even 

electropneumatical actuators*). The mathematical models of these actu

ators have been considered in detail in [1]. Here, we shall briefly 

present just the model of D.C. electro-motors, since in this book we 

shall consider just the control of robots driven by D.C. motors. Howe

ver, the reader can easily apply all considerations to other types of 

actuators (see exercises). We shall pay a special attention to direct

-drive actuators, i.e. electrical actuator without reducer. 

Let us assume that the i-th jOint of the robot is driven by permanent mag

net D.C. electro-motor with reducer. The scheme of such D.C. motor is 

given in Fig. 3.4. [1]. The differential equations which describe the 

behaviour of such D.C. motor, are: 

- the equation of mechanical equilibrium of the driving torque and the 

equivalent moment of load at the output shaft of the reducer: 

(3.2.4) 

- the equation of electrical equilibrium in the rotor circuit: 

*) Pneumatic actuators have been applied for so-called mechanical 
hands, while with robots they were not used due to their disability 
to track continuous trajectories. However, appearance of pneumatic 
servo actuators announced their possible application in robotics. 
All considerations of control synthesis in the text to follow, could 
be extended to pneumatic actuators. 



i 
u (3.2.5) 

In the above equations the following notations ~re used: i~ is rotor 
i 1 current [Al, u is rotor control voltage ~Vl, r R is rotor resistance 

[~l'L~ is rotor winding indu:tance [Hl, 81 is output angle of motor 

shaft after reducer [radl, C~ is torque constant (the ratio between the 

torque at the motor shaft and the current in the rotor circuit) [Nm/Al, 

C~ is electromotor force constant (the ratio between the voltage in the 

rotor circuit caused by the rotation of the rotor in the magnetic field 

and the rotational velocity) [V/rad/sl, Fi is viscous damping constant 
. v 

redu;ed ~o output shaft [Nm/rad/sl, J~ is rotor moment of iner~ia, 
[kgm-], J~ is ro~or moment of inertia reduced to output shaft J~ = 

JiNiN i [kgm 2 ],N1 is speed reduction ratio (the ratio between the rota-
M v m v 

tional velocity at the input shaft and the velocity of the output shaft 

of the reducer), Ni is torque reduction ratio (the ratio between the 
m * 

output and input torque at the reducer), Mi is load torque at the re-

ducer output shaft [Nm]. The equation (3.2.4) and (3.2.5) represent 

mathematical model of dynamics of the D.C. motor. The order of the mo

del is obviously n i = 3. The index i denotes that the actuator is dri

ving the i-th joint of the robot mechanism, and i might be i = 1,~, ... 

... Tn. 

i~=CO:S; ~ 
i 1 :N V 

f---1 1 :N~ 

~?ill 
.1 
8 

Fig. 3.4. Scheme of the permanent-magnet D.C. electro-motor 

The model of the D.C. motor can be written in the state space. Let us 

adopt the state vector of the actuator model in the following form: 
i = (8 i • i . i) T h th i. th 1 h . x , e , 1R were ex 1S eni x vector. T en, we can wr1te 

model of the D.C. motor (3.2.4), (3.2.5) in the state space as: 

(3.2.6) 
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where Ai is (n i xn i ) 

tribution vector, and 

Ai and the vectors b i 

matrix of the system, b i is (n i x1) input dis-

f i is (n x1) load distribution vector. The matrix 

and fi are given by: 

o 

o 

o 

Fi 
v - ----

NiNiJ i 
v m M 

CiNi 
E v 

i 
LR 

o o 

o 

o 

- NiNiJ i 
v m M 

o 

(3.2.7) 

In (3.2.7) u i represents the scalar input to the system (i.e. the rotor 

circuit voltage). However, we have to take into account the fact that 

the input signal (voltage) is constrained by amplitude, i.e. the ampli

tude of the input must be below some maximal value u i . This nonlineari-m 
ty of the amplitude saturation type we have to introduce in the model 

(3.2.6) of D.C. motor, so it becomes: 

. i 
= Aixi + biN(u i ) + fiM~ x 

l 
(3.2.8) 

where N (u) is defined by: 

i for i i -u u < -u m m 

N (u i ) i for i 
< 

i 
< 

i u -u u u m m (3.2.9) 

i for i 
> 

i u u u 
m m 

This nonlinearity is presented in Fig. 3.5. 

N\u i) 

Fig. 3.5. Amplitude saturation constraint upon the actuator input 



The model of D.C. motor is obtained as a system of linear differential 

equations of the third order with the nonlinear amplitude constraint 

upon the system input. However, the inductance of the rotor circuit can 

be often neglected, and thus, the model of the actuator becomes system 

of differential equations of the second order (but its form in the sta

te space is given by (3.2.8), too). 

The model of electrohydraulic actuator can be obtained in analogous 

way. We obtain model in the form (3.2.8), too, and its order is n i = 3. 

However, the model of the electrohydraulic actuator can be written as 

a higher order system, or, as the second order system (see [1)). Inthe 

text to follow, we shall consider the model of the actuator in the form 

(3.2.8.) and the elements in matrices Ai, b i , fi are distributed as in 

(3.2.7). Since the distribution of the elements in these matrices for 

electrohydraulic actuators is the same as in (3.2.7), all considerati

ons to follow are valid for both D.C. motors and electrohydraulic ac

tuators. The only difference between the models of D.C. motors and 

electrohydraulic actuators is in the physical meaning of the elements 

in corresponding matrices. We must underline that for the electrohydra

ulic actuators these linear models are very approximate, since in the 

hydraulic actuators nonlinear effects might be significant. Neverthe

less, for the sake of symplicity first we shall consider linear models 

of actuators and in Section 3.3.5. we shall consider the influence of 

the nonlinear effects in actuators upon the servo system control. 

EXAMPLE 3.2.2. For the permanent-magnet D.C. motor of the type IG2315-

-P20 the data taken from the data-sheets are given in Table 3.1. 

Based on these data we can easily obtain the matrices Ai, b i , fi of the 

actuator model acc. to (3.2.7) (for the first two joints of the robot 

in Fig. 3.2., data are given in the first two rows of Table 3.1): 

[: -0.201 

-621.74 

5~.03 ] 

-695.65 

(3.2.10) 
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ACTUATOR 1 2 3 

Ci 
E [ra~/s ] 0.0459 0.0459 0.0459 

Ci 
M [~] 0.0481 0.0481 0.0481 

Ji 
M 

[kgm2] 0.00003 0.00003 0.00003 

Ni 
v [ -] 31. 31. 2616. 

Ni 
m 

[-] 31. 31. 2616. 

ri 
R 

[n] 1.6 1.6 1.6 

Fi 
v [raNdm/ 5] 0.0058 0.0058 0.0154 

L i 
R [H] 0.0023 0.0023 0.0023 

Table 3.1. Data on actuators for the robot in Fig. 3.2. 

E X ere s e s 

3.7. Show that if we assume that LR~O, the model of the D.C. permanent

-magnet electro-motor might be obtained in the form (3.2.8) butas 

the second order model n i 
by: 

2, where the matrices are now given 

l 0 ~ l 0 j i , fi = 

Ni : 7ri - Ni~iJi 
vMR vmM 

(3.2.11 ) 

3.8. Compute the elements of the matrices Ai, b i , fi in (3.2.11) based 

on data given in Table 3.1, for all three joints of the robot in 

Fig. 3.2. 

* 3.9. See Appendix 6. in [1] for models of electrohydraulic actuators. 

Wri te the state space equations and matrices of this model 



* 

for electrohydraulic actuato~ for two cases: if we adopt the 

second order model (n i =2) and for the third order model (n i =3). 

3.10. See Appendix 6 in [1] for models of elect~opneumatic actuators, 

A.C. electro-motors, and direct-drive actuators. 

3.2.3. Total model of the robotic system 

As we have already explained, the robotic system consists of mechani

cal part of the system and actuators which drive the robot joints. The 

model of mechanical part of the system is given by (3.2.2), and the 

model of actuators is given by (3.2.8). Our next task is to combine 

these models into unique model of the robotic system [1]. 

The relation between the model of actuators and the model of the mec

hanism is by coordinates and by moments (loads). The movement of the 

actuator (output shaft of the reducer,if we consider D.C. motors with 

reducers) is the movement of the corresponding joint (rotational or 

linear displacement of the joint). Thus, the rotation of the actuator 

8 i is transformed into the motion of the jOint qi. In the simplest 

cape, the movement of the actuator shaft is equal to the movement of 

the corresponding joint, i.e.: 

(3.2.12) 

However, in general case, the relation between ei and qi might be more 

complex. For example, if the linear displacement of the piston of the 

hydraulic cylinder is transformed into rotation of the jOint (see Fig. 

3.6), then the relation between the actuator coordinate ei and corres

ponding coordinate of the jOint qi is given by cosines formula: 

(3.2.13) 

In general case, the relation between the coordinate of actuator ei 

and coordinate of the corresponding jOint qi is given by: 

or, (3.2.14) 

* We can establish relation between the load Mi upon the actuator (out-

put shaft of D.C. motor (reducer), or, at the piston of hydraulic ac

tuator) and driving torque Pi which acts around corresponding joint of 
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the mechanism, in the similar way. In the simplest case {which corres

ponds to the relation between the coordinates (3.2.12», the load mo

* ment upon actuator Mi is equal to the driving torque Pi (force) around 

the jOint axis: 

* M. 
1 

P. 
1 

(3. 2.15) 

Fig. 3.6. Relation between actuator coordinate and jOint coordinate 

However, if the relation between the coordinate of the actuator and the 

* coordinate of the joint is not linear, then the relation between Mi and 

Pi might also be complex. For example, in the case presented in Fig. 

3.6, the relation between the load upon the piston of the hydraulic 

cylinder and the driving torque which is produced around the joint axis 

is given by: 

a.coss i 
1 

(3. 2 .16) 

We may assume that the relation between the load moment upon the actu

* ator Mi and the moment around joint axis Pi is given in the form: 

* M. 
1 

(3. 2 .17) 

However, for the sake of simplicity we shall consider the case when the 

relation between ei and qi is given by (3.2.12) and the relation bet-

* ween Mi and Pi is given by (3.2.15). 

The total model of the robotic system can be obtained by combining the 



actuators models (3.2.8) and the model of the mechanism dynamics 

(3.2.2). Since the relations between the actuator coordinates and the 

coordinates of the mechanism are given by (3.2.12), we may adopt the 

vector of the state of the total system in the form: 

(3.2.18) 

The state vector of the system is obviously of the order N which is 

given by: 

n 
N I n. 

i=l J. 

(3.2.19 ) 

Thus, the order of the total robotic system is N. Based on (3.2.12) we 

can write: 

. i 
q (3.2.20) 

where Ti is the 1 x n i vector. (For example, if xi is of the order n i =2, 

Ti is given by Ti=(O, 1), and if n i =3 then Ti is given by Ti=(O, 1, O)~ 

Based on (3.2.18) and (3.2.20) we may write: 

q Tx (3.2.21 ) 

where T is the matrix of dimensions nxN given by T 

The model of the mechanical part of the system (3.2.2) might be expres

sed by the state vector of the total system in the following way: 

P H(x)T~ + h(x) (3.2.22) 

We can combine the models of all actuators (3.2.8) of the robot in a 

unique system of differential equations in the matrix form: 

x = Ax + BN(u) + FP (3.2.23) 

where we have used the relation (3.2.15) and where A is the NxN matrix 

given by A=diag(Ai ), Band F are the Nxn matrices given by B=diag(bi ), 

65 



66 

F = diag(f i ), while N(u) denotes n x1 vector given by: 

N (u) (3.2.24 ) 

By u we have denoted the nx1 vector of inputs to the actuator system, 

which is defined by (the order of the system input is evidently n): 

u = (3.2.25) 

If we substitute x from (3.2.23) into (3.2.22), and solve the system by 

P we get: 

P = (In -H (x) TF) -1 [H (x) T (Ax+BN (u) ) +h (x) 1 (3.2.26 ) 

where In is the nxn unit matrix. Evidently the inverse matrix in 

(3.2.26) always exist, i.e. the corresponding matrix is regular. If 

we substitute P from (3.2.26) into (3.2.23) we obtain the total model 

of the robotic system in the following form: 

a(x) + B(x)N(u) 

where by a(x) is denoted the Nx1 vector: 

a(x) [A+F(I -H(X)TF)-1 H (x)TAlx+F(I -H(X)TF)-1 h (x) 
n n 

and by B(x) is denoted the Nxn matrix: 

B(X) B+F(I -H(X)TF)-1 H(x)TB 
n 

(3.2.27) 

In this way we obtain the total model of the robotic system in the 

state space as a system of N nonlinear differential equations. This 

form of model of the robotic system is called the centralized model 

while the model expressed by the models of actuators (3.2.8) and model 

of the mechanism dynamics might be called decentralized form of the 

model. We shall mostly use the decentralized form of the model of the 

robotic system. In this form of model, the robot is described by a set 

of n models of actuators. The actuators might be considered as subsys

tems which are interconnected by the mechanical part of the system (by 

rotiOt mechanism). The "scheme" of the model of the robot is presented 

in Fig. 3.7. 



r-------- .., 
I 0.. I 

: 0-
X 

Fig. 3.7. "Scheme" of the model of the robot: mechanical part of the 

system and n actuators (in each joint one actuator); the 

vectors T. are of dimensions 1xn. and they are defined by 
.1 1 

A 1 
Tix . 
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EXAMPLE 3.2.3. The model for the mechanical part of the robot in Fig. 

3.2. is given by (3.2.3). The actuators for this robots are D.C. motors, 

the model of which are given by (3.2.8) and of the order n. = 2 for all three . . ~ 

joints. We assume that the relation between e~ and q~ is given by (3.2.12), 

and that the relation between M and P is given by (3.2.15). The model 

of the total system can be written in the form (3.2.27), where the 

state vector x is given by x = (q1, q1, q2, q2, q3, q3)T, and the input 

vector u is given by u = (u1 , u 2 , u 3 )T, the order of the total system 

is N=6, the order of the system input is 3, and the vector a(x) is 

given by: 

a(x) 

·2 q 

·3 q 

The matrix SIx) in this particular case is given by: 

o o o 

o 

o o o 
SIx) 

o 

o o o 

o o 

(3.2.28) 

(3.2.29) 



iii where a. k , b., f. are elements of the corresponding matrices and vec-
J J J 
iii i i tors A ~ [a. k ], b ~ [b.], f 

J J 2 
H (and they are functions of q , 

i [f j ], H' k are elements of the matrix 
.1 .2 J 
q , q ) while d 1 , d 2 , DET denote: 

E X ere s e s 

3.11. Data on parameters of the robot in Fig. 3.2. are given in Table 

3.2. The joints of the robot are driven by D.C. motors the values 

of parameters of which are given in Table 3.1. Calculate the nu

merical values of the vector a(x) and matrix B(x) which are given 

by (3.2.28), (3.2.29), for the following values of the state vec

tors: x ~ (0, 0, 0, 0, 0, O)T, x~ (1.57,0.,1.57,0.,0.2, O.)T 

and x ~ (1.57, 0.5, 1.57, 0.5, 0.2, a.1)T. 

LINK 1 2 3 

MASS [kg] 7. - 4. 

x r ii [m] 0.3 O. O. 

r;i [m] O. O. 0.2 

z 
r i i [m] O. 0.2 0.3 

x 
r i+1 • i [m ] -0.3 O. O. 

r; +1. i [m] O. O. 0.2 

z 
r i+1 • i [m] O. -0.3 O. 

Moment of inertia around 0.3 'V O. the z axis [kgm2] -

Table 3.2. Data on robot fromFig. 3.2. (i?ii, i?i+1 i are vectors from the 
i-th and i+1-st joint to the centre of mass of the i-th link) 
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3.12. For the robot in Fig. 3.3. write the total model in the form 

(3.2.27) assuming that each joint is driven by D.C. motor the 

model of which is given by (3.2.8) (adopt the second order mo

dels of actuators). The link masses are m1=2. [kg], m2=1. [kg], 

moments of inertia J 1 = 0.02 [kgm2], J 2 = 0.01 [kgm 2], the 

lengths of links are ~1=O.3 [ml, ~2=0.15 [ml and the centers of 

masses are at the middle-points of the links. Data on D.C. mo

tors are given in the first two rows of the Table 3.1. Calculate 

the values of the vector a(x) and the matrix B(X) for this par

ticular robot and for the following particular values of the sta

te vector x = (q1, ~1, q2, ~2)T = (0., 0., 0., O.)T and x = 

(0.3, 0.3, 0.2, 0.1)T. 

3.13. Show that the vector ~(x) and matrix S(X) might be written in 

the form: 

where IN is the NxN unit matrix. Which of the two forms (this or 

(3.2.27)) of matrices is numerically more convenient? (Instruc

tion: substitute P from (3.2.22) into (3.2.23) and determine x). 

3.14. Show that if we adopt that the order of the model of actuator is 

n i =3 (for all actuators in robotic system) and if models of ac

tuators are given by (3.2.7), (3.2.8), then the matrix B is not 

function of system state i.e. B(X) B. 

3.15. Show that if the relation between 8i and qi is given by (3.2.14) 

* and relation between Mi and Pi is given by (3.2.17) (for all jo-

ints of the robot), then the vector a(x) and matrix B(X) get the 

following forms: 

a(x) - -1 A T [IN-FZ(G(X)).H.G(x)] [Ax+Fz(G(x)) (G(x)x .x+h)] 

A - -1 B(x) = [IN-FZ(G(X)).H.G(x)] B 

where z(q) = diag(zi(qi)-1), q = G(x) (g1 (x 1), g2(x 2) , ... 

... ,gn(xn))T and q = G(x)x + G(x)XT.x. 



3.16~ Write the programme (using some high programming language) to 

compute the vector a(x) and matrix B(x) for an arbitrary robot 

with n d.o.f. for which the matrix H and vector h are computed 

in separate programme. Robot is powered by D.C. motors. The mo

dels of actuators are given by (3.2.8). The input to the program

me is value of the vector of the system state x, the values of 

the corresponding matrix H and vector h and the values of the 

actua.to):;" !llat):;";i.G~S Ai, b i and fi. Combining this programme with 

the programme written in Exercise 3.5. compute the total model 

matrices for the robots in Figs. 3.2. and 3.3. for some particu

lar values of the state vector. 

3.3 Synthesis of Local Servo System 

In the previous sections we have presented the model of dynamics of the 

robotic system. In the text to follow we shall consider synthesis of 

control at the executive control level. As we have explained in the 

previous chapter, the tactical control level generates desired positi

ons and/or trajectories of the so-called internal coordinates (or jOint 

coordinates) and sends them to the executive control level, which has to 

realize them. Thus, the task of the executive control level is to en

sure driving of the robot joints to the the desired positions, or their 

driving along prescribed trajectories. The executive control level has 

to ensure desired positions qO of joint coordinates, or to ensure tra

cking of desired joint trajectories qO(t), velocities qO(t) and acce

lerations gO(t). 

In this chapter we shall consider synthesis of servo system for each 

individual joint (and corresponding actuator) of the robot. We shall 

consider one joint of the robot and we shall synthesize servo system 

which has to realize any desired position qOi, or desired trajectory 

qOi(t) of that joint. Such a control law, which is synthesized for each 

joint of the robot independently, is called decentralized control of 

robot*). This control, which "neglects" dynamics of the total robotic 

system, cannot be applied for all the tasks that are imposed to the 

robots in industry and in other applications. This fact will be consi

dered in the next chapter. However, this control law is the simplest 

*) In literature this control law is often called "naive" decentralized 
control since in synthesis of servo systems for each joint indepen
dently we do not take care of dynamics of the total systems, nor of 
interconnections between the joints. 
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one from the pOint of view of implementation, and this is the reason 

why it is most frequently applied in robot controllers in practice. 

We shall consider the i-th jOint of the robot and its corresponding 

actuator (see Fig. 3.8). Let us assume that all the other jOints are 

locked in some positions, i.e. that they keep constant values of their 

angles (or linear displacements) qj* = const., for j*i, so that just 

the i-th jOint might be moved. Thus, the actuator in the i-th jOint 

moves that jOint and the part of the mechanism which is behind the 

i-th jOint in the kinematic chain. The moment of inertia of the moving 

part of the mechanism reduced to the axis of the i-th joint (for the 

fixed values of the other joints qj*) will be denoted by Hii . This va

lue is, obviously, fixed since the jOints behind the i-th joint are 

locked and H .. does not depend on qi. The mechanism can move just around 
11 

the i-th joint and the load moment around the axis of the i-th jOint 

includes two components only: inertia moment due to rotational or line

ar acceleration qi and gravity moment of the mechanism around the i-th 
. . i * * * 1 * 2* i-1 * i+1 * ]Olnt g. (q , q ). Here q denotes vector q = (q , q , ... , q , q , 

n*lT 
.•. ,q ) • Thus, we can write that the moment around the i-th joint is: 

(3.3.1) 

Gravity moment is in general case, nonlinear function of all joint co

ordinates qj, j=1,2, ••• ,n. It is also function of qi. First we shall 

neglect this gravity term, but latter on we shall take it into account. 

i+1 * 

i-1 * q 

Fig. 3.8. Actuator in the i-th jOint of the robot 
(all the other jOints are locked) 

* The actuator drives the i-th jOint and the load Mi is acting upon that 

actuator. This load is equal to moment Pi which is determined by 



(3.3.1). Thus, the model of the considered system (if just the i-th 

joint is moving and all the other joints are locked) can be easily 

obtained by combining model of the actuator driving the mechanism 

around the i-th jOint (3.2.8) and the model of the load moment (3.3.1): 

·i iii i. i - .. i i * 
x = A x +b N(u )+f (Hiiq +gi(q , q )) (3.3.2) 

If we apply relation between qi and xi given by (3.2.20) we obtain 

·i x 

where Ini denotes the nixni unit matrix. 

(3.3.3) 

If we neglect gravity term in (3.3.3), we obtain model of the actuator 

and the load for this specific case in the following form: 

·i x 

where Ai is n.xn. matrix given by: 
l. l. 

and bi is n.x1 vector given by: 
l. 

(3.3.4) 

In this way we obtain the model describing the behaviour of the indi

vidual actuator in the i-th joint if all the other jOints are locked. 

Our task is to synthesize the control law which will control the actu

ator and the mechanism modelled by (3.3.4). We have to synthesize con

trol which will ensure that the i-th joint will be driven towards the 

desired position qOi imposed by the higher control level, or which 

will ensure tracking of desired trajectory qOi(t). First, we shall 

consider the case when the control system has to ensure just positio

ning of the joint, and afterwards the tracking problem will be addres

sed. First we shall neglect gravity term, and latter on we shall con

sider its effect upon the control of the actuator. We shall synthesize 

the so-called static controlZer first, and afterwards we shall consi

der dynamic controller (i.e. controller which includes feedback loop 

by integral of position error so that the order of the system model 

increases - see Section 3.4). 

73 



74 

EXAMPLE 3.3. Consider the first joint of the robot in Fig. 3.2. Let us 

assume that the second and the third joints are locked in positions 
2* 3 * q O. and q O. Then, the moment of the inertia of the mechanism 

around the axis of the first joint is given by: 

(3.3.5) 

There is no gravity moment around the first joint. Thus, the model of 

the actuator and the mechanism in this case is given by (3.3.4) where 

the matrices Ai and bi are (if we adopt the model of the actuator in 

the form (3.2.8) with matrices given by (3.2.7»: 

o o o 

o o (3.3.6) 

o 1 

zr R 

If we apply the D.C. electro-motor the parameters of which are given in 

Table 3.1. (first row) and if the parameters of the robot mechanism are 

given in Table 3.2, then the matrices (3.3.6) get the following nume

rical values: 

-0.00165 

-621.74 

o ] 0.42 , 

-695.65 

(3.3.7) 

If we compare (3.2.10) and (3.3.7), then it is clear that the model of 

actuator with the mechanism rotating around the axis of the i-th jOint 

(if all other jOints are locked) has the equal form as the model of 

the actuator itself (i.e. they are both linear time invariant system, 

their orders are equal and the distribution of the elements in matri

ces are equal), but the numerical values of the elements of the matri

ces are different (due to the fact that the moment of inertia of the 

mechanism is added to the actuator model). Namely, the only diffe

rence between these two models is in the moment of inertia: in the mo

del (3.3.6) the equivalent moment of inertia of the motor rotor is in

creased by the moment of inertia of the mechanism Hii . 



E x ere 1 s e s 

3.17. Calculate the elements of the matrices Ai, bi in (3.3.6) for the 

first joint of the robot in Fig. 3.2. (Example 3.3) if the second 

joint is locked in position q2* = 1.573 [rad] (data on parameters 

are given in Tables 3.1. and 3.2). How much have changed the nu

merical values of the elements of the matrices with respect to 

(3.3.7) ? 

3.18. Write the expressions for the elements of the matrices Ai and bi 

in (3.3.4) for the first joint of the robot in Fig. 3.2, if we 

adopt the second order model of the actuator n i =2 and if the 

matrices of actuator are given by (3.2.11). Calculate these mat

rices for data given in Tables 3.1. and 3.2. for the following 

two cases: if the second jOint is locked (a) in the position 

q2* = 0, and (b) in the position q2* = 1.573 [rad). 

3.19. Determine the matrices Ai and hi in (3.3.4) for the second and 

the third joints of the robot in Fig. 3.2, if we apply D.C. 

electro-motors which models are given by (3.2.8) and (3.2.7). 

Compute these matrices for data given in Tables 3.1. and 3.2. 

3.20. Determine matrices Ai and bi in (3.3.4) for the three jOints of 

the robot in Fig. 2.5, if D.C. electro-motors are applied which 

models are given by (3.2.7) and (3.2.8). Data on parameters of 

the applied D.C. electro-motors are given in Table 3.3. and data 

on parameters of the robot mechanism are given in Table 3.4. 

ACTUATOR 1 2 3 

V 
CE [ratus) 0.0459 0.0459 0.0459 

CM 
[Nm) 
T 0.0480 0.0480 0.0480 

JM [ kgm2] 0.00003 0.00003 0.00003 

Ny [-] 31.17 2616 1570 

Nm [-] 31.17 2616 1570 

r R [>1] 1.6 1.6 1.6 

Nm 
F y[rad/s) 0.0058 0.0154 0.000923 

LR [H] 0.0023 0.0023 0.0023 

Table3.3. Data on parameters of the actuators for the robot in Fig. 2.5. 
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LINK 1 2 3 

Mass [kg] 10.0 7. 4.15 

Link length [m] 0.213 0.026 0.036* 

Moment of inertia 
around the vertical 0.0294 0.055 0.318 
axis [kgm2] 

Table 3.4. Data on mechanism of the robot in Fig. 2.5. 

(*link length is for qi=O, centre of mass 
of the third link is at distance of O.036[m]) 

3.3.1. Elements of local servo system 

Now we shall consider synthesis of control for the actuator in the 

i-th jOint under assumption that all the other joints are locked. We 

have adopted the model of such system in a form (3.3.4). Thus, the 

system to be controlled is described by linear time-invariant model 

(system of linear differential equations of the order n i ). The ~ontrol

ler has to ensure that for each imposed value of joint angle q01 the 

actuator drives the joint to this desired position. This task can be 

accomplished by classical position servo system. We shall consider 

synthesis of such position servo system around the actuator in thei-th 

jOint. The synthesis of servo system is well known from classical con

trol theory. Here, we shall briefly repeat some of its basic characte

ristics, since the servo systems are essential for understanding robot 

control. 

The servo system can be implemented either by analogue technology, or 

by microprocessors. The elements of the servo systems are basically the 

same in both cases, and only their implementation differs. First, we 

shall consider implementation of servo system by analogue technology, 

and afterwards we shall present its microprocessor implementation. The 

block-diagram of the servo system is presented in Fig. 3.9. [3]. 

Let us consider the elements of the servo system. For the sake of sim

plicity we shall first consider their transfer functions in s-domain, 

and afterwards we shall consider the state space model of the servo 

system. The elements of servo systems are: detector of the error sig

nal, amplifiers, D.C. electro-motor with its mechanical load (actuator 

and the moving part of the robot mechanism), sensor of velocity (e.g. 
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tacho-generator) and sensor of position of the joint (e.g. potentiome

ter). We assume that the voltage corresponding to desired position of 

the i-th jOint qOi is fed at the input Vi of the servo system. If we 

implement the servo system by analogue technology and the tactical con

trol level is implemented by microprocessor, then the desired position 

is fed to the servo system input through D/A converter. The voltage 

signal from D/A converter is proportional to the desired position, i.e. 

the voltage at the servo system input is Vi = K~qOi, where K~ is the 

proportionality coefficient. 

Detectol' of the el'l'ol' signal. At the output of this element the vol

tage,which is proportional to the error of the servo system output po

sition, is produced. The error in positioning of servo system is given 

as a difference between the actual position of the joint qi and the de

sired (imposed) position qOi. This element has two inputs: the first 

input is the input voltage vi to the servo system which is proportio

nal to desired position qOi, and the second input is the voltage v~ 
which is proportional to actual position and which is obtained from the 

position sensor placed in the i-th joint axis. Voltage from the posi

tion sensor (e:g. poten~iome~e:) v~ is proportional to actual position 

of the jOint ql, i.e. v~ = K~ql. (For the sake of simplicity we shall 

assume that the coefficient of proportionality is the same as for the 

input voltage Vi and the desired position qOi). The voltage at the 

output of the detector of the error signal is equal to difference bet

ween these two input voltages: 

(3.3.8) 

i.e. the voltage is directly proportional to the error in positioning 

~qi. This element does not introduce any nonlinearity in the servo 

system. Its transfer function (including the position sensor) can be 

obtain from (3.3.8) as: 

V~(S) 
--i-
~q (s) 

(3.3.9) 

Amplifiel's. The role of the amplifier of the position error in the 

servo system is to amplify the error signal. The amplifier in the ve

locity feedback loop has to amplify the feedback signal by velocity, 

which is obtained from the tacho-generator (as a sensor of velocity). 

In implementation of the servo system by analogue technology these two 



amplifiers are implemented by electronic amplifiers whose time con

stants are considerably lower than the time constants of the electro

-mechanic components in the servosystem (i.e. of the actuator and the 

moving part of the robot mechanism). Due to this, these amplifiers 

might be considered as non-dynamic elements. The transfer function of 

the amplifier of the position error is given by: 

Vi' (s) 

V~(s) 

• I 
K~ 

p 

where Ki' is the gain of the amplifier. p 

(3.3.10) 

The amplifier in the velocity feedback loop has the following transfer 

function: 

Vi" (s) 

V;(S) 

. I 
K~ 

v 
(3.3.11) 

where Ki' is the amplifier gain, v; is the output voltage of the tacho-
v in 

-generator, and V is the output voltage of the amplifier. 

D.C. electro-motor and mechanical part of the robot. This element of 

the servo system consists of the actuator (which might be either elec

tro-hydraulic actuator, or electro-pneumatic, or D.C. electro-motor 

etc.) and the mechanical part of the robot which can rotate around the 

axis of the i-th joint of the robot while the other joints are locked. 

This element has been already considered in the previous section. The 

model of this element in the state space is given by (3.3.4). Its 

transfer function in the s-domain is given by (for the actuator model 

of the third order n.=3 and matrices Ai and bi given by (3.3.6)*»: 
~ 

(3.3.12) 

where Ti 
R is the electric time constant given by: 

Ti 
Li 

R 
R i r R 

(3.3.13) 

while Ti 
m 

is the electro-mechanic time constant given by: 

*) Here, we have neglected the nonlinear amplitude constraint upon the 
actuator input. This nonlinearity we shall consider in Sect. 3.3.5. 
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(3.3.14) 

Ki and Fi are the constants given by: 
D D 

(3.3.15 ) 

We can easily obtain the transfer function (3.3.12) if we remember that 

the state space model (3.3.4) has been formed on the basis of equations 

of mechanical and electrical equilibrium in the D.C. electro-motor 

( 3 . 2. 4) and (3. 2. 5) . 

However, let us remind that we have neglected the gravity moment around 

the i-th jOint. This gravity moment acts as an external load around the 

output shaft of the reducer and it might be treated as an external dis

turbance upon the servo system. The transfer function from the external 

load moment g. to the servo system output qi is given by (if we remember 
1 

the equation of the moment equilibrium around the output shaft of the 

reducer (3.2.4)): 

(3.3.16 ) 

where 

In the case when the electrical time constant of the D.C. motor.T~ is 

significantly lower than the electro-mechanical time constant Tl, then 
m 

we can neglect T~ (which actually means that we adopt the second order 

model of the actuator n i =2), the transfer functions (3.3.12) and 

(3.3.16) get the following forms: 

(T i S+1)s 
m 

(3.3.17) 

(3.3.18) 

The input voltage to the actuator u i is formed combining the output 



signals of the amplifiers, i.e.: 

Vi" (3.3.19 ) 

Tacho-generator. Tacho-generator is the sensor of the velocity. Its 
i output voltage V3 is proportional to the velocity of the movement of 

the joint. As the sensor of the jOint velocity usually serves the ge

nerator which is placed at the output shaft of the D.C. motor (before 

the reducer). This generator generates the voltage in its windings 

which is proportional to the rotational velocity of the output shaftof 

the motor. Since the rotational velocity of the motor is directly pro

portional to the angular (or, linear) velocity of the corresponding 

jOint of the robot, the voltage v~ is generated at the output of the 

tacho-generator which is directly proportional to the angular velocity 

of the joint qi. Thus, the transfer function of the tacho-generatorcan 

be adopted in the form: 

i 
V3 (s) 

qi(s) 

Kin 
V 

(3.3.20) 

Sensor of position. Various sensors can be used to measure the actual po

sition of the joint. One of the most usually applied sensor is simple 

potentiometer. On its output the potentiometer gives the voltage V~ 
which is proportional to the joint position (angle or linear displace

ment) qi. Thus, the transfer function of this element is in the form: 

(3.3.21) 

Obviously, we might assume that all elements in the servo system are 

linear. The total transfer function of the servo system from the input 

qOi(s) to its output (joint position) qi(s) can be obtained by simple 

combining of the transfer functions of the elements according to their 

arrangement in the servo system, as presented in Fig. 3.9. So, in the 

case when the third order transfer function of the actuator and the 

mechanical part of the robot is adopted (3.3.12), we obtain the trans

fer functions from the input of the servo qOi(s) to its output qi(s), 

and from the load disturbance gi(s) to the servo system output, in the 

following forms: 
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(3.3.22) 

i where by Kp we denote the total gain of the position feedback loop (we 

shall call this gain position gain), from the joint coordinate - posi

error 6qi to the input voltage of the actuator vi' 

Vi I (s) 

6qi (s) 
(3.3.23) 

while by Ki we denote the total gain of the velocity feedback loop (we 
v 

shall call this gain velocity gain) from the jOint velocity qi to the 

input voltage of the actuator vi" 

(3.3.24 ) 

In the case when we adopt the second order transfer function (3.3.17) 

of the actuator and the mechanical part of the robot (i.e. when ni~2) , 

we obtain also the second order transfer functions of the complete 

servo: 

K~K~+K~K~S+(T!S+1)S 

_K i 
M 

(3.3.25) 

In this way we obtain the transfer functions in the s-domain for the 

classical servo system with feedback loops by position and by velocity. 

Let us consider briefly the microprocessor implementation of the posi

tion servo system. The direct digital servo contains all the elements 

as the servo implemented by analogue technology, but some of these 

elements in digital version are implemented by the microprocessor. 

Several versions of the microprocessor implementation of servo systems 

are encountered in practice. One of these possible microprocessor im

plementations of the servo is presented in Fig. 3.10. The following 

elements are implemented by microprocessor: the detector of the error 



signal, amplifications in the position and in the velocity feedback 

loops. The other elements are implemented in analogue technology. As 

it can be seen in Fig. 3.10, the signals from the potentiometer and 

tacho-generator are feedback to microprocessor through AID converters *) . 

The microprocessor computes (at the tactical control level) the desired 

position of the jOint qOi. The microprocessor computes control (input 

for the actuator u i ) in the following way: it multiplies the error in 

positioning qi - qOi by the position gain K~, ~nd to the computed value 

it adds the value of the actual joint velocity ql (obtained from the 

tacho generator and through the AID converter) multiplied by velocity 

gain Ki. The resulting numerical value of the input signal for the ac-
v 

tuator is by DIA converter converted to voltage signal as the actuator 

input u i . The second possible microprocessor implementation of servo 

system is presented in Fig. 3.11. In this version the velocity feedback 

loop is implemented in analogue technology, so the microprocessor just 

has to multiply the error in positioning by the position gain. Here, we 

shall not consider in detail the microprocessor implementation of servo 

system. The more details on these problems can be found in literature 

[4]. We just wanted to point out that the scheme of the digital servo 

system is essentially similar to the implementation of the servo system 

by analogue technology. 

EXAMPLE 3.3.1. For the first joint of the robot in Fig. 3.2. the D.C. 

electro-motor is applied, the data on which are given in Table 3.1. 

The data on mechanical part of the robot are given in Table 3.2. In 

Example 3.3. we have calculated the matrices of the model (3.3.6) for 

this joint (if the second and the third jOints are locked in positions 

q2* O. and q3* 0.). Now, we shall determine the transfer function 

in the s-domain for this actuator with the mechanism in which just the 

first joint is moving. If we adopt the third order model of the actua

tor n 1 = 3, then the transfer function in the s-domain is obtained as: 

1 
~ 
u 1 (s) 

185.33 
(3.3.26) 

(s2+695.65s+266.17)s 

If we neglect the electrical time constant T~ (i.e. if we adopt the 

second order model of actuator n 1 =2) we obtain the transfer function: 

*) Instead the potentiometer it is often applied shaft encoder which 
generates directly digital information on the actual position of the 
jOint, so there is no need to apply AID converter to convert analo
gue voltage signal from the sensor to digital number which is used 
by microprocessor. 
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q 1 (s) 
-1-
u (s) 

0.26642 
(3.3.27 ) 

(s+0.382)s 

If we establish servo system around these actuator and jOint, then we 

can obtain the transfer function of the servo as a function of positi

on and velocity gains (this transfer function corresponds to the third 

order transfer function of the actuator and the moving part of mecha

nism (3.3.26)): 

1 
~= 
q01 (s) 

E X ere 

185.33 Ki 
P 

2 i i (s +695.65s+266.17)s+185.33(Kv S+Kp ) 

s e s 

(3.3.28 ) 

3.21. Starting from the model of the actuator and the moving part of 

the robot mechanism in the state space (3.3.4) and the corres

ponding matrices for D.C. electro-motor, show that the transfer 

functions in the s-domain for this system are given by (3.3.12) 

and (3. 3 . 1 6) . 

3.22. Repeat the previous exercise but for the second order model of 

the actuator (n i =2), so that the corresponding transfer functions 

are given by (3.3.17) and (3.3.18). 

3.23. Show that the transfer function of the servo system around the 

first joint of the robot in Fig. 3.2. as a function of position 

and velocity gain is given by (3.3.28), if the transfer function 

of the actuator and the moving part of the robot is given by 

(3.3.26). Determine also the transfer function of this servo 

from the external load g1(s) to the servo system output (the 

jOint angle q1) as a function of position and velocity gains 

(for the third order model of the actuator this transfer functi

on generaly is given by (3.3.22)). 

3.24. Repeat the previous exercise but if the second joint of the ro

bot in Fig. 3.2. is locked in the position q2* = 1.573 [radl. 

(Instruction: the matrices Ai and bi have been already determi

ned in the Exercise 3.17, determine the transfer functions for 

the actuator and the moving part of the robot). 



3.25. Determine the transfer functions of the servos as functions of 

the position and the velocity gains for the actuators and "loads" 

in Exercise 3.19. 

3.26. Determine the transfer functions of the servos (as functions of the po

sition and the velocity gains) around the first three jOints of 

the robot in Fig. 2.5. if we apply D.C. electro-motors, the data 

of which are given in Table 3.3. (the matrices of the actuators 

and "loads" models have been already determined in Exercise 3.20). 

* 3.27. Determine the transfer functions in the s-domain for the hydrau-

lic actuator in the i-th joint of robot and for the moving part 

of the mechanism of robot if we aSSUI!le that only the i-th jOint is 

moving and all the other joints are locked. Determine also the 

transfer functions of the servo around this actuator. (Instruc

tion: the matrices of the electro-hydraulic actuator model in 

the state space have been determined in Exercise 3.9. for two 

cases n i =2 and n i =3; the procedure is completely identical as 

for D.C. electro-motors). Calculate the transfer functions of the 

hydraulic servo system (for the second order model) as functions 

of the position and velocity gains, if data on the electro-hy

draulic actuator are given in Table 3.5. and if this actuator is 

applied in the first jOint of the robot in Fig. 3.2. (assume that 

e1=0.12 q1, where e1 is obtained in [m],if q1 is in [rad], and 
* * P1=0.12 M1 where P 1 is in [Nm], if M1 is in [N]). Calculate these 

transfer functions for two positions in which the second jointof 
2* 2* 

the robot is locked: for q =0. and for q =1.573 [rad], (the 

leakage in hydraulic system is neglected) . 

Mass of piston [kg] 2.65 

Piston area [cmZ] 12.6 

Flow/pressure coefficient of servovalve 

[cm3/ S ] 
0.00075 

NIr7 
Coefficient of proportionality of oil [m3/s] 0.0000833 flow and the current of servova 1 ve IiiJ\ 

Coefficient of the viscous friction'r~1 30. 

Compressibtl tty coefficient [N/m3] 1.7'107 

Cylinder volume [cm3] 756. 

Table 3.5. Data on electro-hydraulic actuator 
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3.3.2. Synthesis of servo system in s-domain 

In the previous section we have determined the transfer function in the 

s-domain for the position servo system around the i-th joint of the 

robot. As we have seen, the transfer function of the servo is obtained 

by combining the transfer functions of the elements in servo. If the 

actuator, sensors and detector of the error signal have been already 

selected, then the transfer function of the servo system depends just 

on the selection of the gains in the position and velocity feedback 

loops. 

The role of the position servo system is to ensure positioning of the 

jOint qi into the desired position qOi. As it is well known [3], the 

transfer function of the system describes the behaviour of the system: 

it shows accuracy of achieving of the goal position of the joint (in 

the steady state regime) and it shows the characteristics of the tran

sient process when the output variable is approaching to the desired 

value (i.e. to the value of the input variable qOi). Obviously, the 

behaviour of the system can be affected by the selection of the posi

tion K~ and the velocity K; gains. Thus, our task in synthesis of the 

servo system for the i-th jOint of the robot is practically reduced to 

the selection of the position and velocity gains. We have to select 

feedback gains in such a way to satisfy certain requirements regarding 

the "quality" of the joint positioning. 

Let us consider the transfer function of the position servo system. For 

the sake of simplicity we shall consider the second order transfer 

function, i.e. we shall neglect electrical time constant T~ of the ac

tuator. Let us consider the transfer function (3.3.25) from the servo 

system input qOi to the output qi. Let us write this transfer function 

in the following form: 

(3.3.29) 

where s1 and s2 are the roots of the characteristic polynome (i.e. the 

roots of the polynome in the denominator of the transfer function 

(3.3.25». These roots might be written in the following form: 

(3.3.30) 



where wi is called the aharaateristia frequenay of the system or the 

~nda~ed natural freguency and si is the damping ratio or, damping faa

tor [5). If we determine the roots s1 and s2 from (3.3.25), then we can 

see that the wi and si are functions of the actuator parameters.and the 

m?ment of inertia of the mechanism, and of the feedback gains K~ and 

K1. Since the actuator and mechanism parameters are fixed values, we 
v . . 

can change w. and s. by changing Kp1 and K1. 
1 1 V 

It is well known that the servo system performance is defined by the 

characteristic frequency and the damping factor. Let us consider the 

response of the servo system to the step input function (the amplitude 

of the step function corresponds to desired angle of the jOint qOi). 

If si<1, then the response of the servo system to the step function in

put is given by: 

where c~ and c~ are constants. In this case the response of the servo 

system is oscillatory around the desired position qOi. The response is 

presented in Fig. 3.12. If si<1 the servo system is underdamped or 

underaritiaaZZy damped. In this case the response is fast, it consists 

of a sinusoidal function superimposed over an exponential function. 

The output of the servo exponentially approaches desired input positi

on, but it overshoots the desired angle. 

If s. > 1 the servo system is overdamped or overari tiaa Uy damped. In this 
1 . 

case the response of the servo to step input signal q01 is given by: 

i oi Ci -(Siwi+wi/S~-1)t cie-(SiWi-wi~t-1)t 
q -q 3e + 4 (3.3.32) 

where cj and c~ are constants. 

The response of the system is also presented in Fig. 3.12. In this case 

the response of the servo is slower, but it is non oscillatory and 

there is no overshoot of the final position. 

At last, if si=1 the servo system is aritiaaZZy damped. The response 

of the servo to step function input is given by: 

where Ci is constant. 
o 

(3.3.33) 
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undercritically damped 

2 

Fig. 3.12. Response of the servo system to step function input 

The response of the servo is presented in Fig. 3.12. In this case the 

response of the servo is fast but non oscillatory, and without over

shoot of the desired position. 

Now, we have to establish criteria for selection of servo feedback 

gains Ki and Ki. Actually, we have to set requirements upon the "qua-
p v 

Ii ty" of the servo system response, which we have to satisfy by appro-

priate selection of feedback gains. 

First requirement concerns appearance of the overshoots in the servo 

system response. It is well known, that with the robots the overshoots 

of the desired position must not be allowed under any circumstances 

[5]. For instance, if the desired position of the robot link is near 

some obstacle in the work space and if the joint overshoots the desi

red position, the link would be driven into the obstacle (Le. the robot 

link would hit the obstacle). This is the reason why for robot it is 

always required not to be undercritically damped, i.e. it must not be 

allowed to be ~i<1. On the other hand, it is required that the servo 

response be as fast as possible, in order to achieve fast positioning 

of the robot (and ensure fast execution of the set task). So, the most 

appropriate response of the robot servo is achieved if ~i=1, i.e. if 

the servo is critically damped. Since the damping factor ~i is direct 

function of the feedback gains we have to select the feedback gains to 

achieve that ~i=1. 

The next requirement which has to be met in selection of the feedback 

gains concerns the influence of the external load upon the servo out

put. In the previous section we have noted that the external load is 

acting upon servo. In the considered case when all jOints are locked 



and just the i-th jOint is moving the external load upon the servo is 

gravity moment gi. The transfer function (3.3.22), or (3.3.25), shows 

the influence of this load upon the servo output (the joint position 

qi). Let us consider the steady state regime when the robot jOint 

stops, i.e. after the transient process is finished (theoretically it 

occurs after infinite time t+oo , practically, a·fter 3~5 time constants 

of the robotic system, i.e. after 3t5 (l/wi~i». Based on tAe trans

fer function (3.3.25), we can determine the steady state error between 

the actual position of the joint qi and the desired set position qOi 

if the constant gravity moment is loading the servo. Namely, since the 

gravity moment is function only of the position of the i-th joint (the 

other joints are locked), when the i-th jOint stops, we might consider 

the gravity moment as constant (i.e. as a step external load). Thus, 

the steady state error is given by: 

(3.3.34) 

where by gi(oo) is denoted steady state gravity moment upon the i-th 

joint. It can be seen that the steady state error of the servo is in

versely proportional to position gain K;. It is obvious that the stea

dy state error represents the accuracy of the servo positioning. 

Thus, we want to keep this error as low as possible. This error also 

inform us about the robot stiffness. If we apply some external load 

upon robot, the robot hand deflects due to finite stiffness of the servo. 

This deflection can be also determined by (3.3.34), where the applied 

external load (multiplied by the quadratic of the effective lever arm 

from the i-th joint to the robot hand) should be substituted for gi(oo). 

It is required that the stiffness of the robot be as high as possible. 

Obviously, if we want to keep steady state error low we must select 

the position gain to be as high as possible. Even more, if we calcu

late the gravity moment gi(oo) and if we define allowable steady state 

error ~qi(oo), i.e. if the allowable tolerance is set (or, if a desired 

stiffness of the robot is imposed), then using (3.3.34) we can deter

mine position gain K; which satisfies the set requirements. 

Based on (3.3.34) it follows that to ensure high precision of the robot 

posi tioning, it is required to select the position gain as high as pos

sible. However, too high position gain involve certain drawbacks. For 

example, too high feedback gains amplify also the noise in the system 

and, thus, their influence might become too strong. 
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It is obvious that the position feedback gain directly affects the 

characteristic frequency of the servo. Based on (3.3.25) and (3.3.30) 

it is easy to show that the characteristic frequency wi and the damping 

factor ~i are given by: 

/NiCiKi 
m M P (3.3.35) 

(3.3.36) 

The characteristic frequency shows the frequency of oscillations of the 

servo system output around the final position during the transient process. 

The robot mechanism has its own resonant frequency with which the struc

ture oscillates due to structural stiffness of the robot links. This 

frequency is called structural resonant frequency or, simply structu

ral frequency. We have shown above that the feedback gains should be 

selected to ensure the servo system to be (over) critically damped. 

However, we have to keep in mind the following facts: the damping ratio 

~i is function of several parameters, and the considered linear model 

of the actuator is just an approximation of the actual (nonlinear) sy

stem behaviour. Thus, although we select feedback gains so that ~i>1, 

the oscillations of the servo system output could appear. The servo sy

stem would oscillate with frequency close to characteristic frequency 

wi. If the characteristic frequency of the servo wi is close to the 

structural frequency wo ' the resonant oscillations of the robot struc

ture will appear, i.e. the oscillations of the servo will excite struc

tural oscillations. It is obvious that such oscillations are not ac

ceptable. Thus, we must require that the characteristic frequency of 

the servo is under the structural frequency woo However, the structu

ral frequency is difficult to determine theoretically (using some mo

del). Usually it is determined experimentally. Due to unreliability of 

determination of the structural frequency wo ' it is often required that 

the characteristic frequency of the servo wi satisfies [5]: 

< 0.5 (3.3.37) 

If the characteristic frequency of the servo satisfies (3.3.37), where 

Wo is the guess value of the structural frequency of the robot mecha-



nism, then the servo will not excite the oscillating modes of the ro

bot, i.e. it will not cause resonant structural oscillations. 

If the expression for the characteristic frequency (3.3.35) is intro

duced in (3.3.37), we obtain the upper limit upon the maximum allowable 

value of the position gain, i.e.: 

(3.3.38) 

In this way we have determined the lower (3.3.34) and the upper limit 

(3.3.38) upon the servo position gain. We have to select the feedback 

gains to meet all the listed requirements. The following procedure in 

selection of the feedback gains can be adopted. First, the position 

gain K~ is selected according to (3.3.34) to satisfy allowable steady 

state error. If the obtained value of position gain satisfy the requi

rement (3.3.38), then this value of position gain can be accepted. 

Otherwise, if the condition (3.3.38) is not satisfied, then we must 

compute position gain from (3.3.38) as a maximum allowable value. In 

that case the required accuracy around the desired set point will not 

be ensured, but we can reduce the steady state error by some other me

thod (see Section 3.4). 

Once the position 

locity gain Ki so 
v 

gain K~ has been selected, we must determine the ve

as to ensure that the damping factor is equal to 

one, i.e. to ensure that the servo is critically damped. Based on 

(3.3.36) we obtain the velocity gain as: 

(3.3.39) 

In this way we select both position and velocity gains for the servo 

controlling the actuator in the i-th jOint of the robot, assuming that 

all the other joints are locked. However, the validity of this soluti

on when all the jointso! the robot are moving simultaneously, will be 

discussed latter on. 

We have considered the second order transfer function of the servo sy

stem and we have presented the synthesis of the feedback gains. In the 

similar way the synthesis of the feedback gains can be carried on if 

the third order transfer function is considered. 
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EXAMPLE 3.3.2. The transfer function of the servo in the first jointof 

the robot presented in Fig. 3.2. is given by (3.3.28). The guess value 

of the structural resonant frequency for this joint is w~ = 12 [rad/sl. 

The feedback gains can be calculated based on (3.3.38) and (3.3.39), 

and their values are: 

K~ < 135.13 [r~d] 
(3.3.40) 

K1 43.6 [ra~/s] v 

where in calculating K; we have taken the upper bound for position gain 

i.e. K~ = 135.13 [V/radl. In this case the steady state error is zero 

since no gravity moment is acting upon the first jOint (rotation around 

the vertical z-axis). 

E X ere 1 s e s 

3.28. Calculate the position and velocity gains for the servo in the 

first joint of the robot in Fig. 3.2. if w1 = 12 [rad/sl, using o 
the third order transfer function determined in Exercise 3.23. 

(for n i = 3), in such a way to satisfy conditions (3.3.38) and 

(3.3.39) . 

3.29. Repeat the previous exercise but if the second joint of the ro

bot is locked in the position q2* = 1.573 [radl and w1 ~ 14 
o 

[rad/sl. (Instruction: use the transfer function obtained in 

Exercise 3.24). How much the feedback gains have changed in res

pect to the previous case when q2* = o.? In order to prevent the 

servo to become underdamped in any position of the robot (i.e. 

to ensure that ~i is always equal or greater than one,si ~ 1), 

which of these two sets of feedback gains should be selected? 

3.30. Repeat the previous two exercises for the same jOint of the robot 

in Fig. 3.2, but if we apply as an actuator the D.C. electro-mo

tor which parameters are given in Table 3.6. Compute (using the 

second order transfer functions of the servo) the servo feedback 

gains for two different positions of the second joint (q2* = o. 

and q2* 1.573 [radl) and determine the relative variation of 



the feedback gains. Explain why in this case the relative varia

tion of the feedback gains is less than for the previous D.C. 

electro-motor (in Table 3.1)? 

CE r V ] lrad/s 0.62 

CM [~] 0.61 

J M [kgm2] O. 035 

Nv [-] 190. 

Nm [-l 154. 

rR [nl 0.3 

Fv [ra~7s] 25.13 

LR [Hl ",0.01 

Table 3.6. Data on D.C. electro-motor (Exercise 3.30) 

3.31. For the servos which transfer functions have been determined in 

Exercise 3.25, determine the feedback gains if w2 = 50 [rad/s], 
3 0 

Wo = 50 [rad/s], the allowable steady state error in the third 

jOint is Illq3(oo) I = 0.01 [ml. The conditions (3.3.34), (3.3.38) 

and (3.3.39) have to be satisfied. 

3.32. For the servos which transfer functions have been determined in 

Exercise 3.26 (for the robot in Fig. 2.5) calculate the feedback 

gains if w1 = 12 [rad/sl, w2 = 50 [rad/s], w3 = 50 [rad/sl and o 0 0 

allowable steady state error in the second joint is Illq2(oo) I = 

0.01 [m]. The conditions (3.3.34), (3.3.38) and (3.3.39) have to 

be satisfied. 

3.33. For the robot in Fig. 3.13. (so-called Stanford manipulator) com

pute the servo feedback gains if the data on the moments of 

inertia of the mechanism Hii , data on D.C. electro-motors and data 

on structural resonant frequencies of the links are given in Table 

3.7. [5]. The conditions (3.3.38) and (3.3.39) have to be satis

fied(the steady state errors are not pre-specified). 
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Fig. 3.13. The Stanford manipulator 

LIN K 1 2 3 

Moment of inertia of 0.5 2.8 6.2 - 2 mechanism Hii[kgm ] 

JMNyNm [kgm2] 0.953 2.193 0.782 

CMNm rNm] 
lA 3.415 8.61 3.41 

CEN y [ ra~/s] 4.043 10.6 4.043 

rR [Il] 0.9 0.8 0.9 

F [ Nm ] y rad/s 0.043 0.21 0.043 

fo = W/21T [Hz] 4. 6. 20. 

Table 3.7. Data on actuators, moments of inertia and structural 
frequencies for Stanford manipulator (for the first 
three joints) [5] 



3. 34 ~ Write the programme (in some high programming language) for compu

tation of servo feedback gains if the input values for the pro

gramme are: data on actuator parameters (D.C. electro-motor), data 

on the moment of inertia of the mechanism Hii , data on structu

ral frequency w of the mechanism, data on maximal allowable ste-o . 

* 

ady state error ~qL(oo), and data on maximal gravity moment in 

the joint. Check by computer the results obtained in the previ

ous exercise. 

3.35. Calculate the servo feedback gains for the hydraulic servo which 

transfer function has been determined in Exercise 3.27. (for two 

positions of the second joint q2* = 0., and q2* 1.573 [radl) 

and which is applied in the first joint of the robot in Fig. 3.2. 

The guess value for the structural frequency is w1 = 12. [rad/sl 
2* 1 2* 0 

for q O. and Wo ~ 14. [rad/sl for q = 1.573 [radl. How 

much have the feedback gains varied for various positions of the 

second joint? Compare these variations with the results obtained 

in Exercise 3.29. 

3.3.3. Synthesis of servo system by 

pole-placement method 

In the previous section we have presented the synthesis in thes-domain 

of the position servo system for the i-th joint of the robot assuming 

that all other joints are locked*). NOw, we shall present the synthe

sis of feedback gains using the state space model of the system. 

The state space model of the actuator and the mechanism (if just the 

i-th joint is moving) is given by (3.3.4). As we have explained in the 

previous sections, the servo system is realized by introducing feed

back loop with respect to the position error of the robot joint (using 

the sensor of position, the detector of the position error signal, and 

amplifier) and feedback by velocity (using the sensor of the actual 

joint velocity and amplifier). The block diagram of the servo in s-do

main is given in Fig. 3.9. and it has been explained in Section 3.3.1. 

Practically, the servo feedback loops mean that the input voltage 

*) Here, we shall not present various classical methods for servo sys-
tem synthesis (such as for example, Bode's method in the frequency 
domain, Niquist method and similar). However, our recommendation is 
that the reader should remind of these methods from the literature 
[3l. 
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signal u i is given by (according to (3.3.19)): 

(3.3.41) 

Since the position and velocity of the joint are the variables in the 

system which are measured by sensors they are the system output va

riables. The system output is given, in this case, by: 

i ·i T 
Yi = (q , q ) (3.3.42) 

In the general case the output vector is of the order k~ > 1 (here, 
]. -

obviously, k~ = 2). The output variables are related to the coordina-

tes of the state vector xi. In general case the relation between the 

output vector Yi and the state vector xi is given by*): 

(3.3.43) 

where C. is the output matrix of dimensions k~xn .. In the particular 
]. ]. ]. 

case,when the output of the system is given by (3.3.42) while the sta-
i i'i T te vector is given by x = (e , e) for n i =2, and if we assume that 

(3.2.12) holds, then the matrix Ci is the unit matrix Ini' If we adopt 
i ·i . i T the third order model of the system n i =3, x=(e , e , ].R) , then the 

matrix Ci is given by: 

[: 0 :] C. 1 
]. 

0 

(3.3.44) 

Now, we can write that the input signal of the actuator (3.3.41) is 

equal to: 

where by k i is denoted the vector of the feedback gains 

k. 
]. 

(3.3.45) 

(3.3.46) 

*) In general case, the relation between the system output and the 
system state might be nonlinear, but we shall consider just the 
linear case. 



The model of the complete servo system in the state space (i.e. the 

model of the actuator and the mechanism (3.3.4) together with the fe

edback loops (3.3.45» can be written in the following form: 

·i x (3.3.47) 

The model (3.3.47) represents the closed-loop model of the system. The 

task of the control system is to ensure that the system output Yi ap

proaches the desired output y~ = (qOi, O)T. In order to ensure posi-
~ . 

tioning of the jOint in the desired set point qO~, we must ensure the 

stability of the system (3.3.47) around the desired state xOi = (qoi, 

0, O)T, i.e. we must ensure that the eigen-values of the closed-loop 

matrix of the system (Ai_bik~C.) are placed in the desired positions 
~ ~ . 

in the complex plane. The eigen-values of the closed-loop matrix (A~ 
Ai T 
b kiC i ) are the poles of the transfer function of the servo system 

(3.3.29). It is well known [3] that the system is stable if the eigen

-values of the closed-loop matrix are in the left part of the complex 

plane (i.e. they must be on the left from the imaginary axis). Besides, 

the poles of the transfer function (3.3.30) must satisfy conditions 

that the damping factor is ~i>1, and that the characteristic frequency 

is less than 0.5 woo Thus, in the servo system synthesis (i.e. in the 

selection of feedback gains), we may specify the desired positions of 

the system poles in the complex plane. Once the positions of the poles 

are specified, the vector of the feedback gains k i can be computed 

which will ensure desired positions of the eigen-values of the closed

-loop matrix of the system. The gain vector is computed from the fol

lowing condition: 

n. 
~ 

K n (s<:'-s) 
j =1 J 

(3.3.48) 

where det( ) denotes the determinant of the corresponding matrix, K is 

the proportionality coefficient, and sj, j=1,2, ... ,ni denote the desired 

positions of eigen-values of the closed-loop matrix in the s-plane. 

Thus, the synthesis of the servo reduces to determination of the gain 

vector k i which has to satisfy the algebraic equation (3.3.48). As it 

is well known, this procedure for control synthesis is called pole 

placement method [6]. 

There are numerous problems related to control synthesis by this method 

if the general case of the multi-input and multi-output system is con

sidered. Here, we shall not treat these problems, since we consider 
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just the synthesis of the feedback gains for local servo systems for 

individual joints of the robot. Evidently, the local servos are with 

single input u i and their output vector is usually given by (3.3.42). 

In this particular case the application of the pole-placement method 

for synthesis of servo feedback gains is simple. Nevertheless, we shall 

briefly mention problem related to the order of the system n i , the or

der of the output k~ and the number of the eigen-values of the closed-
1 

-loop system matrix which might be specified. 

In the previous section we have considered the second order model of 

the servo system (for n i =2). If the servo output is given by (3.3.42), 

then the positions of both eigen-values of the closed-loop matrix can 

be specified, and based on (3.3.48) we can determine the position and 

velocity feedback gains to ensure desired places of the eigen-values. 

This has been practically done in the previous section (but by consi

dering transfer functions), since we have defined poles in order to 

satisfy certain conditions. 

However, if we consider the third order model of the actuator (for 

n i =3), and if the system output is given by (3.3.42) (i.e. if kl=2), 

then we may specify positions of just two eigen-values, while the po

sition of the third eigen-value is free, i.e. it cannot be defined in 

advance. Nevertheless, for the considered servo systems it is always 

possible to ensure that all three eigen-values are in the left part of 

the complex plane (i.e. it can be ensured that the closed-loop system 

is stable). However, there is a constraint upon the allowable positi

ons of the eigen-values in the complex plane, if k~<n .. The eigen-values 
1 1 

cannot be placed so that the absolute values of their real parts are 

arbitrary large. Let us show this fact by a particular example. As we 

have seen in the Section 3.2.2. the matrices of the actuator (3.2.7) 

have the following form (see Exercise 3.9. for the electro-hydraulic 

actuators) : 

(3.3.49) 

(3.3.44) and if we spe

-~~w~±jw~/1-~~2, then 

(3.3.48) as: 

If we assume that the matrix Ci is in the form 

cify two complex conjugate eigen-values s~,2 
we can determine the feedback gains based on 



(3.3.50) 

while the third eigen-value is placed at: 

(3.3.51) 

Based on (3.3.51), we can see that the real part of the third eigen
o -value depends on the specified eigen-values s1 ,2' and if 

(3.3.52) 

then the system is not stable, i.e. the third eigen-value is not in 

the left part of the s-plane. Actually, (3.3.52) determines the upper 

bound upon the absolute values of the real parts of the specified 

eigen-values: one must not require that the eigen-values of the clo

sed-loop system have the real parts ~~w~ greater (by absolute value) 
~ ~ 

than the limit set by (3.3.52). The real-parts of the eigen-values of 

the system determine the speed by ~hich the system output Yi approac

hes to the desired output y~ = (qO~, O)T, i.e. the velocity by which 
~ . 

the joint approaches to the desired position qO~. If we want to incre-

ase the absolute values of the real parts of the eigen-values of the 

closed-loop system matrix, then we must introduce the feedback by the 

third state coordinate. In the case of D.C. electro-motors the third 

state coordinate is the current of the rotor circuit which also might 

be measured (a resistor might be used as a sensor, but the obtained 

signal must be filtered using appropriate filters)*). In this case the 

output matrix Ci becomes unit matrix and the vector of the feedback 

gains is given by: 

(3.3.53) 

where Ki is the gain in the feedback loop by the robot current (the 

third state coordinate). Now, all three eigen-values of the closed

-loop system matrix might be specified. By pole placement method we 

can compute the feedback gains (3.3.53) to place the poles of the sys

tem in the desired locations in complex plane. 

*) 
In the case of the electro-hydraulic actuators the third coordinate 
of the state vector is the difference of pressure in the cylinder 
which also can be, relatively simpl~measured. 
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The scheme of the servo system is presented in Fig. 3.14. in the case 

when the feedback loop by the robot current is introduced. 

We should note that this method for control synthesis can be also 

used to determine the feedback gain if only feedback loop by position 

error is introduced (i.e. if k~ = 1, y. = qi). Namely, the servo might 
1. 1. 

be realized only with the position feedback loop, but the performance 

of such servo system is unsatisfactory regarding the requirements which 

are encountered in robotics. Actually, such a servo cannot satisfy 

both requirements regarding the servo damping and the steady state er

ror. 

EXAMPLE 3.3.3. The data of the D.C. electro-motor applied in the first 

joint of the robot in Fig. 3.2, are given in Table 3.1. If the inertia 

of the mechanism is taken into account, the matrices of the model of 

the actuator and mechanism (3.3.4) have been calculated in Example 3.3. 

For this actuator and mechanism we have to determine the servo feed

back gains using the pole placement method. Let us assume that the fe

edback loops are introduced by all three state coordinates, i.e. by 

joint position, by joint velocity and by rotor current. Let us assume 

that it is required to place the poles of the closed-loop servo in the 

following positions: 

o 
s1 ,2 -6. , -800. 

By the pole-placement method we can calculate the servo feedback gains 

as: 

K~ = 155.43 [r~d]' K~ = 50.568 [ra~/s]' 

If the feedback loop by the rotor current is not introduced, we may 

define just two poles of the closed-loop system. Let us define two 

real poles: 

-5. , -6. 

Based on (3.3.50) we calculate the feedback gains as: 

110.85 [r~d]' 39.372 [_V_] rad/s 
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3.36. The second order model of the actuator and the mechanism (n i =2) 

has the matrices in the following form: 

[~] (3.3.54) 

Determine the expressions for the feedback gains if the poles of 

the closed-loop system are prescribed, in two cases: 

a) if feedback loops by position and by velocity are introduced 

k~ = 2 (two poles are prescribed; examine both cases: when 
1 

the pair of complex conjugate poles are prescribed and when 

the pair of real poles is prescribed), 

b) if feedback loop by position error is introduced only,k~ = 1 
1 

(one pole is prescribed; examine all three cases: if the pres-

cribed pole is real, if the real part of the pair of complex 

conjugate poles is prescribed, and if the imaginary part of 

the pair is prescribed); determine also the second pole which 

is not prescribed. Is it always possible to stabilize the sy

stem by introducing the position feedback only? 

3.37. The third order model of actuator and the mechanism (ni =3) has 

the matrices in the form (3.3.49). If we introduce the feedback 

by position only, determine the expressions for the position fe

edback gain so that the closed-loop servo system has: 

a) real pole in the prescribed position s~ 
1 

or 

b) real part of the pair of complex poles in the prescribed po-
000 

sition Re(s1,2) = -~iwi' or 

of complex poles in the given po

(the complex conjugate pair is 

In all three cases determine the expressions for the rest two 

poles of the closed-loop system. What can you conclude con-



* 

cerning the possibility to stabilize the system by introducing 

the position feedback loop error only? 

3.38. Write the programme (in some high programming language) for deter-

* 

mination of the feedback gains if the input data for the programme 

are: data on actuator, data on the moment of inertia of the mo

ving part of the mechanism H .. , prescribed poles of the closed-
II 

-loop servo system. The programme should include various informa-

tion feedback structure (if the feedback by position error is 

introduced only, or if the feedback loops by position and velo

city are introduced, or if the feedback loops by all three state 

coordinates are introduced). (Instruction: use the expressions 

given in the text and in Exercise 3.37). Using the programme, 

check the results in Example 3.3.3. 

3.39. Write the programme (in some high programming language) for simu-

* 

lation of the closed-loop servo system if initial state xi(O) 

and desired position qOi are given. The input data for the pro

gramme are: data on actuator, data on moment of inertia of the mo

ving part of the mechanism H .. , the vector of feedback gains, 
II . 

the output matrix C., the initial state xl(O) and desired posi-
. l 

tion qOl. (Instruction: use the state space model of the servo 

system (3.3.47) to compute the first derivative of the system 

state vector xi, and then apply some of available numerical methods 

for integration, e.g. use the simplest Euler method for inte

gration, see Section 5.3.; the integration interval should be 

selected to be less than 1 [ms]). Simulate the positioning of 

the first jOint of the robot in Fig. 3.2. around desired position 

qol = 0.5 [rad], if initial state is xl (0) = (0,0, O)T. Data 

on the model of servo are given in Example 3.3; use two sets of 

the feedback gains determined in Exercises 3.28. and 3.29. Com

pare the results of simulation for these two sets of the feed

back gains. 

3.40. The data on electro-hydraulic servo system are given in Table 

3.5, for n i =3 (see Exercise 3.27). Determine the feedback gains 

which should place two poles of the closed-loop system in the 

positions s~,2 = -6. Explain how the feedback loop by the third 

state coordinate can be implemented in the case of electro-hy

draulic servo system? 
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3.3.4. Effects of inertia variation and gravity 

moment of the mechanism on the behaviour 

of servo system 

In the previous sections we have considered the synthesis of local sta

tic servo systems for the individual joints of the robot mechanism. In 

doing this we have considered each joint and its actuator independent

ly from the other joints and actuators of the robot. Namely, we have 

considered the i-th joint of the robot and its actuator, and we have as

sumed that all the other joints are locked. The model of the i-th joint 

and actuator is given by (3.3.4). This model includes the moment of 
- * inertia of the moving part of the mechanism Hii(q ) around the axis of 

the i-th jOint. This moment of inertia depends on the positions of all the 
* other joints, i.e. it depends on the positions q in which the other 

joints are locked. Up to now, we have considered the behaviour of the 
* system for just one set of positions of all the other joints q . For the 

* given values of the vector q we have determined the servo feedback 

gains. Obviously, if the positions qj* (for j>i) of the other joints 

change, the moment of inertia of the mechanism around the i-th jOint 
- * H .. (q ) will also change. Then the feedback gains calculated for the 

l.l. * *) 
previous position q need not be valid any more . The variation of the 

positions of the other jOints of the robot causes also the change of 

the gravity moment of the mechanism around the i-th joint. We have 

neglected the gravity moment in the model (3.3.4), but we have consi

dered its effect upon the servo system positioning (steady state error) . 

The variation of positions of the other joints will reflect the steady 

state error in the i-th joint. 

First, let us consider the effects of the variation of the moment of 

inertia of the mechanism around the axis of the i-th jOint Hii upon 

the performance of the local servo system in the i-th joint. Let us 

consider what happens if the joints change their positions q with res-

* pect to previous positions q for which we have calculated the servo 

feedback gains. The variation of the positions of the jOints qj*qj* 

(j*i) causes the variation of the moment of inertia of the mechanism 
- * around the i-th jOint Hii(q)*Hii(q ). Let us consider the second order 

model of the servo system and the synthesis of the servo feedback 

gains in s-domain (Sect. 3.3.2). We have seen that the damping factor 

of the servo system is given by (3.3.36). We have also shown that it 

is required to ensure that the servo is always critically or overcri ti-

*) See Exercises 3.28.- 3.30. 



cally damped. Let us assume that the feedback gains are selected to 

ensure that the servo is critically damped for the position of the ro
* bot defined by vector q (i.e. if the moment of inertia of the mecha-

nism is H .. (q*». In this case the velocity gain Ki is given by 
~~ v 

(3.3.39). If the other joints of the robot are moved to the new posi-
. .* 

tionsqJ*qJ the damping factor of the servo in the i-th joint becomes: 

~i (3.3.55) 

where Hii (q) is the moment of inertia of the mechanism for the new po

sitions of the joints q. 

- - * We can distinguish two cases. If Hii(q)<Hii(q ), then ~i>l, i.e. the 

servo is overcritically damped in the new position, which means that 

the selected feedback gains ensure acceptable response of the servo in 
- - * the new position of the robot. However, if Hii(q»Hii(q ), then ~i<l, 

i.e. the servo is undercritically damped, which cannot be accepted. 
- - * This means that we must not allow the situation in which Hii(q»Hii(q ) 

to appear. To prevent this, we must determine max H .. (q'), i.e. we must 
q' ~~ 

determine the maximum possible value of the moment of inertia of the 

mechanism around the i-th joint (maximum over all allowable positions 

of joints). For this position of the robot we must calculate the velo

city feedback gain using the expression (3.3.39). By this, we ensure 

that for all possible positions of the robot joints the servo system 

in the i-th joint is overcritically,or critically damped. 

If we have selected the velocity gain in this way, then we can again 

distinguish two cases: 

iii - * a) If JMNvNm»m~x(Hii(q )-Hii(q'», then the variation of the damping 
q 

factor (3.3.55) for various positions of the robot joints is rela-

tively small. In other words, the response of the servo system is 

nea~ly uniform independently on the positions of the other joints of 

the robot. The servo system is nearly critically damped for all po

sitions of the other joints of the robot, and the satisfactory po

sitioning of the i-th jOint might be expected. This case appears 

if a relatively powerful actuator and large gear reducer with high 

reduction ratio are applied. Such actuator and reducer have anequi

valent moment of inertia of the rotor JMiNiN i relatively high with v m 
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respect to the masses and moments of inertia of the robot links. In 

practice it is often the case that relatively powerful actuator and 

large reducer are applied and by this the effects of the variation 

of the moment of inertia of the mechanism are reduced. Namely, the 

large equivalent moment of inertia of the actuator rotor tends to 

mask the variation of the moment of inertia of the mechanism Hii . 

However, the drawback of such a solution lies in the fact that too 

large actuators and reducers are applied, which is undesirable from 

the standpoint of the energy consumption and the prise of the robo

tic system. On the other hand, large reducers often introduce large 

backlash and friction in the system which certainly reflects the 

accuracy of positioning of the servo system. That is why large ef

forts are directed towards introducing the so-called direct drive 

robots, i.e. the robots with actuators having no reducers. For such 

robots the problems of backlash and friction are minimized. 

iii - * b) If JMNvNm«m~x(Hii(q )-Hii(q'», then the damping factor might 
q 

significantly vary depending on the position of the robot (acc. to 
* - * (3.3.55». Thus, for the robot configuration q for which Hii(q ) 

max H .. (q') the critical damping of the servo is obtained (which 
q' 11 

means fast response of the servo), while for the robot configurati

on q for which H .. (q) = min H .. (q') the damping of the servo beco-
11 q' 11 

mes very overcritical (~i»l), which causes slow response of the 

system. Thus, the servo system has a variable performance depending 

on the positions of the other jOints of the robot (although the re

sponse is never oscillatory, nor the overshoots of desired positi

ons appear). To ensure critical damping of the servo for all posi

tions of the other jOints, in this case, (and to ensure uniform per

formance of the robot around all its possible configurations), we 

must introduce compensation for the effects of the variable moment 

of inertia of the mechanism (by introducing so-called global con

trol), or we must implement variable gains which change depending 

on the configuration of the robot (i.e. depending on the actual va

lue of the moment of inertia of the mechanism). These problems will 

be addressed in Chapters 4. - 6. We must underline that the deter

mination of the variable moment of inertia of the mechanism in ge

neral case, is very difficult, since the payload carried by the ro

bot hand might be of variable and unknown parameters (with variable 

mass, dimensions, shape, moments of inertia and so on). If these 

parameters are not known in advance, the problem of their identifi

cation arises and the adaptation of the servo system to the variation 

of the payload parameters has to be considered (see Chapter 6). 
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We have shown in Section 3.3.2. that the position gain can be selected 

based on Expression (3.3.38), i.e. this expression gives the upper 

bound of the allowable value of the position gain. As it can be seen 

* from (3.3.38), the variable moment of inertia of the mechanism Hii(q ) 

also affects the upper bound of the position gain. However, we have 

to keep in mind that the resonant structural frequency of the robot 

also depends on the moment of inertia of the mechanism. This frequency 

decreases if the moment of inertia of the mechanism increases. Wemight 

assume that, in the first approximation, the structural frequency is in

versely proportional to the square root of the moment of inertia of 

mechanism [5]. 

If Wo(Hii ) is the resonant structural frequency for the robot configu

ration q for which the value of moment of inertia of the mechanism 

around the i-th joint is Hii , then we can write that the structural 

frequency wo(Hii ) for some other configuration of the robot mechanism 

(for which the value of moment of inertia of the mechanism is Hii ) is 

given by: 

k WO(Hii)/J!N!N;+Hii 

l,.iNiNi + H .. 
M v m 1.1. 

where k is the proportionality coefficient. 

(3.3.56) 

We have assumed that the position servo gain K~ is computed based on 

(3.3.38) for the robot configuration for which the moment of inertia 
- * of the mechanism is Hii (q ). If the other joints move in some new 

(locked) positions q to which corresponds Hii(q), then the characte

ristic frequency of the servo in the i-th joint becomes, according to 

(3.3.35) and (3.3.38): 

(3.3.57) 

It is obvious that the characteristic frequency of the servo satisfies 

the following inequality: 

(3.3.58) 
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This means that regardless of the variation of the moment of inertia of 

the mechanism, the condition (3.3.37) is always satisfied, if the position 

servo gain is selected to satisfy condition (3.3.38). In other words, 

the constraint upon the maximum value of the position servo gain does 

not depend on the moment of inertia of the robot mechanism, and we can 

select the position servo gain just based on (3.3.38). Such position 

gain will be valid for any configuration of the robot. By so selected 

position servo gain we ensure that the characteristic frequency of the 

system is sufficiently below the resonant structural frequency of the 

system. However, as we have explained above, to ensure that the servo 

is always (over)critically damped we must select the feedback gains 

taking into account the maximum possible moment of inertia of the mecha

nism (or, we might apply variable velocity servo gain). 

Based on the above consideration it follows that the effects of the 

variable moment of inertia of the mechanism upon the servo system per

formance can be eliminated by selection of powerful actuators and lar

ge gear reducers with high reduction ratio, or by applying constant 

position servo gain and variable velocity servo gain, or by global 

control which compensates for the effects of the variation of the mo

ment of inertia of the robot mechanism. 

The second factor which effects the response of the servo if the con

figuration of the robot change, is the gravity moment around the axis 
i * of the i-th joint gi(q , q ). In synthesis of local servo system for 

the i-th joint we have neglected the gravity moment. However, in Sec

tion 3.3.2. we have considered the effects of gravity moment as exter

nal load upon the performance of the servo system. We have shown that 

steady state error due to external load is given by (3.3.34). It is 

obvious that the steady state error is the consequence of the gravity 

moment (if we assume that all the other joints are locked). When the 

i-th joint stops, this gravity moment becomes constant which depends 

* on the configuration of the mechanism q (but it depends also on the 

final position of the i-th joint). The error caused by this gravity 

moment can be calculated by (3.3.34) as the steady state error of the 

servo. 

From (3.3.34) it follows that the error due to gravity moment is in

versely proportional to the position servo gain. However, we have seen 

that the position gain is limited by the condition (3.3.38). Based on 

(3.3.34) and (3.3.38) we can determine the minimal steady state error 
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which might be achieved: 

(3.3.59) 

Obviously, this "minimal" steady state error depends on the gravity 
. * moment g. (ql, q ), i.e. it depends on the positions of all the joints 

l 

of the robot. If we determine the maximal possible gravity moment around 
* the i-th joint (for all possible configurations q ) by (3.3.59) we may 

determine the steady state error which can appear in the positioning 

of the i-th joint. Obviously, this error determines the accuracy of 

the servo in the i-th jOint. If this error is not within the allowable 

tolerances around the desired position of the joint we must compensate 

for the effects of the gravity moment, i.e. we must el~m~nate t~~s un

acceptable steady state error. 

On the other hand, due to variation of the gravity moment for various 

configurations of the robot (i.e. for various positions of the locked 

joints and for various desired positions of the i-th joint), the steady 

state error of the servo also varies for various configurations of the 

robot. This means that the performance of the servo in not uniform for 

all desired set positions, and this is an unacceptable drawback of 

the servo system (from the standpoint of the robot application and pro

gramming). This is also the reason to consider compensation for the gra

vity moment. 

The compensation for the gravity moment might be achieved in several 

ways. One of the solutions isto directly compensate for gravity momen~ 

and the other is by application of the feedback by integral of the po

sition error. Here, we shall consider the first approach, and the se

cond will be addressed in Section 3.4. It should be noted that in some 

applications the steady state error due to gravity moment can be eli

minated by brakes in the jOints, but this solution is not applicable 

for elimination of the errors in tracking the desired trajectories of 

the joints. 

Since the gravity moment around the i-th joint is well known function 

of the joint coordinates (positions), this moment can be computed on

-line in the control microprocessor. Based on the computed value of the 

gravity moment, the microprocessor calculates the voltage signal which 

corresponds to this moment and generates the control signal for the 
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actuator. This additional control signal produces the driving torque, 

which compensates for the gravity moment around the joint. The control 

scheme which includes this direct compensation for the gravity moment 

is presented in Fig. 3.15. For the second order model of the servo sy

stem, the control signal including direct compensation for the gravity 

moment is computed in the following way (if D.C. electro-motor is ap
plied) *) 

(3.3.60) 

* where by gi is denoted on-line c~mputed gravity moment around the i-th 

jOint in the desired position qOl. Here, it is assumed that the angles 

or displacements of all the other joints are measured by appropriate 

sensors and the signals are sent to microprocessor which (based on the 
* obtained valu;s of joint coordinates) computes gi' If the computedgra-

vity moment gi perfectly coincides with the actual gravity moment gi' 

t 

COMPUTATION ri 
* R 

OP 9i CiN i 
qOi M m 

* q 

KM 9 j 

(T's+1 )s m 

+ 

(T~S+1)S 

Fig. 3.15. Position servo system with direct 
compensation for gravity moment 

*) The problem of the direct compensation of the gravity term in the 
case of the third order model of the actuator will be considered 
in Chapter 5. 



then the control signal (3.3.60) will produce the torque which will 

competely compensate for the gravity torque and the steady state error 

due to the gravity moment will be eliminated. The positioning of the 

servo in the desired position qOi in this case will be very accurate. 

However, all parameters of the robot mechanism which are required to 
* compute the gravity moment gi (link lengths, positions of the centers 

of the masses of the links, masses of the links) are usually not known 

accurately. Thus, in the general case, the gravity moments cannot be 

ideally accurately calculated, nor they can be ideally compensated for. 

Nevertheless, in this way we can achieve significant decrease of the 

positioning error. 

In implementing of the presented compensation for the gravity moment, a 

problem of on-line computation of the gravity moment arises, i.e. a 

problem of number of additions and multiplications necessary to compu

te gravity moment. This problem will be addressed in Chapter 5. 

EXAMPLE 3.3.4. For the first jOint of the robot in Fig. 3.2. the posi

tion and velocity servo gains have been computed in Example 3.3.2. for 

the value of moment of inertia of the robot mechanism which corresponds to 

the locked position of the second joint q2* =0. (the corresponding trans

fer function of the servo is given by (3.3.28)). If the second jOint 

moves to another locked position, the moment of inertia of the mecha

nism changes, which causes the variation of the servo damping factor 

according to (3.3.55). The variation of the damping factor when the an

gle q2* varies is given in Table 3.8. It can be seen that the damping 

factor varies significantly if the q2 varies, but it is always ~1>1 
since the velocity servo gain has been calculated for q2* = 0., when 

the moment of inertia of the mechanism around the first jOint is maxi

mal. If we decide to introduce variable velocity feedback gain, then 

its values for various q2* are also given in Table 3.8. These variable 

velocity gains are calculated to maintain the damping factor equal to 

one for all positions of the second joint. Applying such variable fe

edback gains we maintain the uniform performance of the servo in the 

first jOint independently on the position of the second joint. Obvi

ously, the implementation of the servo system with variable velocity 

gain is much more complex than if the fixed feedback gains are applied. 

The performance of the servo system in the first joint of the robot in 

Fig. 3.2. with fixed servo gains has been simulated by computer. The 

responses of the servo for various (fixed) positions of the second 
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jOint q2* are presented in Fig. 3.16. under assumption that the selec-
2* 

ted gains ensure that ~1 = 1 for q = O. 

Position of the ~1 for fixed Velocity gain 

second joint q 2* gain for ~1 =1 - [V/rad/s] 

0.5 

0.3 

0.1 

0° 1. 43.6 

30° 1.003 "'43.5 

60° 1.056 41.2 

90° 1.15 37.7 

120° 1.277 33.8 

150° 1.39 ",31. 

Table 3.8. Variation of the damping factor and 
variable velocity servo gain 

------------- ----- ... -
:.,:.-.=,.: :.-

/.' 
/ .. 

/ .. ' 
/ .. ' 

/.' 
/ .. ' 

/ .. ' 
/ .... 

" .' / .. ' 
~< .. , 

~~~~_+__~~~~~__t---- -----ll~~~~_t_~_~ 

0.2 0.5 0.8 1. t [5] 

2* 
q 

2* 
q 

2* 
q 

o. 

1. 57[rad] 

3.141 [rad] 

Fig. 3.16. Response of the servo system in the first joint 
of the robot in Fig. 3.2. for various (locked) 
positions of the second jOint 

Let us consider the second joint of the robot in Fig. 2.6. and let us 

determine the effects of gravity moment upon the servo system in this 

joint. Let us assume that the D.C. electro-motor is applied, the data 

of which are given in the second column of the Table 3.3., while the 

mass of the second link is m2 = 9. [kg], the distance between the se-
* cond joint and the centre of mass of the second link is £2 = 0.2 [m], 

the distance between the second and the third joint is £2 = 0.5 [m], 

the mass of the third link is m3 = 10. [kg] and the distance between 
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* of mass of the third link is £3=0.2 [ml the third joint and the centre 

(for q3=0.). If we assume that 

joint is w2 = 45 [rad/sl, then 
o 

satisfy the condition (3.3.38) 

the structural frequency for the second 

we calculate the position servo gain to 

and obtain the value K; = 1414. [V/rad). 

The steady state error of the servo due to gravity moment can be cal

culated based on (3.3.59). For various positions of the second and the 

third joint various values of the gravity moment are obtained resul

ting in various steady state errors in the second joint. The variation 

of the steady state error in the second joint for various positions of 

the second and the third joint is given in Table 3.9. 

qo2 q*3 6q2(oo) 92 
[radl [radl [rad) [Nm) 

o. o. o. o. 

1.57 o. 0.000783 86.3 

1.57 0.4 0.00110 126. 

1.57 0.7 0.0014 154. 

1.0 0.7 0.00117 130. 

Table 3.9. Steady state errors and gravity moments in the 
second jOint of the robot in Fig. 2.6. 

E X ere s e s 

3.41. For the first jOint of the robot in Fig. 2.5. determine the servo 

feedback gains (data on the robot and actuators are given inTab

les 3.3. and 3.4). If the resonant structural frequency is esti

mated to be w1 = 12 [rad/s) (for the moment of inertia of the o 
mechanism around the first joint 

tion of the third joint of q3* 

which corresponds to the posi-

0.6 [m) determine the servo 

gains to satisfy the following requirement: 

a) the critical damping has to be maintained for the following 

positions of the third joint q3*=0., 0.20, 0.40, 0.60 [ml 

(Instruction: for each position of the third jOint q3* deter

mine the velocity servo gain so that the servo is critically 

damped ~1=1), or 
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* 

b) the fixed servo gains have to ensure that the system is over

critically damped for all positions of the third jOint. 

3.42. Let us assume that the electro-hydraulic actuator is applied in 

the first joint of the robot in Fig. 3.2. Data on this actuator 

are given in Exercise 3.27. (Table 3.5). The servo gains are se

lected to satisfy usual requirements, for the position of the se

cond joint q2* O. and for the estimated value of the structu

ral frequency of w1 12. [rad/s]. Determine the variation of the o 
damping factor of the servo for various positions of the second 

joint q2* given in Table 3.8. Also determine the values of the 

velocity servo gain which should be applied to maintain the cri

tical damping for all positions of the second joint q2* (see 

Exercise 3.35). 

3.43. a) Calculate the errors in positioning of the robot end pOint due 

to steady state errors of the servo system in the second jOint 

of the robot in Fig. 2.6. The steady state errors of the servo 

are given in Table 3.9. (assume that the distance between the 

centre of mass of the third link and the manipulator endpoint 

is 0.3 [m]). 

* 

b) Determine the reduction of the end point position error, if 

the direct compensation for the gravity moment around the se

cond joint is applied, but instead of actual value of the mass 

of the third link (m3 = 4. [kg]) an estimated value of m3~3. 

[kg] is used for computation of gravity moment. 

3.44. Starting from the open-loop model of the servo system (3.3.4) and 

the closed-loop model (3.3.47) determine the model of sensitivi

ty to variation of the moment of inertia of the mechanism Hii and 

calculate the matrix of the sensitivity model for the servo sys

tem given in Exercise 3.41. Determine the eigen-values of the 

matrix of the sensitivity model for various positions of the 

third joint q3* of the robot which have been considered in Exer

cise 3.41. 

3.45. Repeat Exercise 3.41 but now assuming that at the end point of 

the minimal configuration of the robot there is a gripper with 

a payload of a mass mp 1.5 [kg]. If the mass of the payload is 

not known in advance and if the values of the servo gains are 



taken as in Exercise 3.41. b), determine the minimal damping 

factor which can occur when the payload is present. 

3.46. Repeat Exercise 3.43 but now assuming that at the end point of 

the minimal configuration of the robot there is a payload of a 

mass mp = 1.5 [kg]. Assume that the direct compensation of the 

gravity moment is introduced, but in on-line computation of the 

gravity moment we take an estimated value for mp~O. (since the 

actual value of the mass of the payload is assumed to be unknown). 

Determine the steady state errors of the servo in the second 

joint, and the errors of the positioning of the end point of the 

manipulator. 

3.47. Determine the deflection of the end point of the Stanford mani

pulator (Fig. 3.13), the data of which are given in Tables 3.7. 

and 3.10., due to steady state errors of the servos in the robot 

jOints which are caused by gravity moments around the joints. 

The gravity moments around the robot joints are given in Table 

3.10. (the servo gains are computed according to data given in 

Table 3.7) [5]. 

JOINT r [m] 9i [Nm] 

1 0.54 O. 

2 0.50 69.3 

3 - 81.73 

4 0.25 5.54 

5 0.25 5.54 

6 0.25 O. 

Table 3.10. Gravity moments for Stanford manipulator 
(r is effective lever arm from the jOint 
to the robot end point, gi is gravity moment 

around the jOint axis; for joints 4 and 
iii 

5 adopt KDKp/KM = 220 [Nm/rad]) [5] 
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3.48~ Extend the programme written in Exercise 3.39. to include simula

tion of the servo system if the constant gravity moment is ac

ting upon the servo system. Apply this programme to simulate res

ponse of the robot in Fig. 2.6. (data on servo are given in 

Example 3.3.4) if the constant gravity moment is acting around 

the second jOint and the servo has to drive the joint from ini

tial state x 2 (0) = (0., 0., O)T into desired position qo2 = 1.573 

[radl. Simulate the responses of the servo if the constant gra

vity moment takes various values from Table -3.9. 

3.3.5. Nonlinear effects in local servo system 

We have applied the linear model of the actuator and moving part of the 

mechanism (3.3.4) for synthesis of local servo system. As we have al

ready noted, the linear model of the actuator is an approximation in 

which certain nonlinear effects are neglected. Here, we shall briefly 

consider the effects of these nonlinearities upon the performance of 

the servo system,since we have not taken them into account in the syn

thesis of the servo feedback gains. 

(a) Effect of the actuator input amplitude constraint 

In the model of actuator and the mechanism (3.3.4), we have denoted 

that the amplitude of the input signal for actuator u i is limited, i.e. 

the nonlinearity N(u) given by (3.2.9) has to be taken into account. 

However, the synthesis of the local servo system has been performed 

neglecting this nonlinearity of the amplitude constraint type. 

Let us consider the second order model of the actuator and the mecha

nism and let us assume that the synthesized servo control is in the 

form (3.3.41). If we apply the nonlinearity of the amplitude constraint 

type upon this control, we obtain: 

(3.3.61) 

Based on (3.3.61) we can define the region in the state space xi 

(qi, qi)T for which the control signal does not reach the amplitude 

constraint (the upper bound of the control signal). This region in the 

state space is presented in Fig. 3.17. For the points within the regi

on the nonlinearities (3.3.61) are satisfied, which means that the 
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input signal does not reach upper bound of its amplitude. Thus, for all 

states within this region the amplitude constraint upon the actuator 

input has no effects, and the servo system behaves as it has been des

cribed in the previous sections. 

However, for the states out of this region the nonlinearities (3.3.61) 

are not satisfied, which means that the computed control requires grea

ter signal at the input of the actuator than it is actually allowed for 

the particular actuator. Thus, the performance of the servo system for 

Fig. 3.17. Region of linear behaviour of servo system (for qOi=O.) 

these states cannot be linear, as we have assumed in the synthesis of 

the servo gains. It has been shown [7] that for the states out of the 

region denoted in Fig. 3.17., the closed-loop servo system behaves as 

its poles were moved to the right in the complex plane. We may say that 

higher is the required control signal relative to the maximum allowed value 

u i , the poles of the closed-loop system move more to the right. Theo-
m 

retically, if the state were as far from the region denoted in Fig. 

3.17. that it would require an infinite control signal, then the poles 

of the closed-loop system would coincide with the poles of the open

-loop system. This means, that for the states out of the region pre

sented in Fig. 3.17. the stability of the closed-loop servo system is 

guaranteed (since the poles of the open-loop system in this particular 

case of servo-actuator are in the left half of the complex plane, or 

at the imaginary axis). However, we cannot guarantee the desired spe

ed of the transient process (i.e. the time by which the joint appro

aches to the desired position qOi). Thus, the region denoted in Fig. 

3.17. represents the set of states for which we can expect that the 
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closed-loop servo system will behave as predicted in the synthesis of 

servo gains. If the deviation of the system state around the desired 

set position qOi are within this region, then the servo system will 

ensure desired positioning of the robot jOint. Otherwise, the positio

ning of the jOint will be slower depending on how far is the initial 

position of the joint qi(O) from the imposed desired position qOi. 

(b) Effect of static friction 

In the actuator and on the shaft of the joint there always appears (to 

a certain degree) Coulomb friction. This frictional effect has not 

been taken into account in the model (3.3.4). The static friction op

poses the movement of the joint when it starts to move. Once the joint 

is in motion and when it reaches a certain velocity, the static fric

tion drops to zero and dynamic friction appears which opposes the mo

tion. The dynamic friction is usually less than static friction. The 

Coulomb friction directly affects repeatability of the servo, and, 

obviously, repeatability of the robot end point positioning. Due to 

this friction the position error of the servo might appear, since the 

servo requires an additional signal to overcome the friction moment. 

If the robot is well designed and the reducer gears are well fabricated, 

then the Coulomb friction might be reduced to minimum and it can be 

neglected in the control synthesis. However, if this friction is signi

ficant, we can include an additional term in the servo-control. We can 

add an impulse signal at the actuator input whenever the jOint starts 

to move. The servo system with such additional impulse torque for com

pensation for static friction is presented in Fig. 3.18. The most ap

propriate way to determine the amplitude of this impulse signal (i.e. 

the magnitude of the additional torque) is by experiment. 

(c) Effects of dynamic friction 

Once the jOint is in motion the dynamic friction appears instead of 

the static friction. This friction also can be reduced to a minimum by 

a well design of the robot jOint and reducer and by lubrication of 

contact surfaces between the moving parts in the robot. However, if 

this friction is significant, then it must be compensated for by addi

tional control signal. We may adopt the following approximative expres

sion for dynamic friction moment, i.e. we may write that the moment 

due to dynamic friction around the joint is given by: 



pi i·i + POi dynaml'c sgn(q·.i) t dynamic "" Kdq 

Thus, we can compensate for dynamic friction moment by additional 

control signal generated as presented in Fig. 3.18. In this case again 

the coefficients Kdi (the dynamic friction coefficient) and pi d ' o ynamlc 
might be determined experimentally (i.e. by identification at the ac-

tual robotic system). It should be kept in mind that the actual fric

tion moment is nonlinear function of the joint velocity, but it has 

been verified experimentally that using the compensation presented in 

Fig. 3.18. satisfactory results can be achieved [8]. 

'------------1 K i v 

r~ 
Compensation of CiN i 

[., m 
static friction ..... ___ ...J 

dynamic 

Fig. 3.18. Servo system with friction compensation 

(d) Effect of backlash 

The backlash in the gear reducer and other parts of the robot system 

might have a significant effects upon the servo repeatability and ro

bot end point positioning. For example, the backlash in the gear redu

cer in Fig. 3.19. directly reflects the error in the positioning of 

the robot end pOint. If the effective lever arm from the jOint to the 

robot end point is relatively long, then very small backlash in the 

gear reducer causes the significant error in the robot positioning and 

accuracy of the robot is highly reduced. The repeatability of the ro

bot positioning is also poor if there are backlash in the robot jOints 
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since it is hard to keep the joint position always at the same side of 

the backlash. The backlash can be hardly compensated for by the con

trol system, since its modelling is very complex and unreliable. Thus, 

this effect must be reduced to a minimum by proper design and fabrica

tion of all "critical parts" in the robotic system. Since the gears 

are most critical parts from the standpoint of backlash, their design 

and production must be carefully done, if the high accuracy and re

peatability of the robot are required. As we have already mention, 

these reasons motivated the research towards introducing of so-called 

direct-drive robots, i.e. robots which actuators are with no reducers. 

B 

ACTUATOR 

I _________ _ 

----------

Fig. 3.19. Effect of backlash in gear reducer upon 
robot end point positioning 

(e) Other nonlinear effects 

Besides above listed nonlinear effects in the robot servo system there 

appear some other nonlinearities which might reflect the servo per

formance. Their modelling is usually not simple, but they can often be 

neglected relative to the effects which have been taken into account 

in the linear model of the servo. In other words, we may assume that 

the control synthesized on the basis of the linear model is robust 

enough to overcome these nonlinear effects, so they do not reflect 

significantly the servo system performance. Still, in the process of the 



robot design and the servo system synthesis and implementation, for 

each particular robotic system, we must pay attention of these effects 

[8] • 

We must underline that the linear model of the servo is rough approxi

mation if electro-hydraulic actuators are considered. Namely, the pa

rameters of the linear models of the hydraulic actuators are functions 

of the actuator state (or, "the work regime" of the actuator). This 

problem can be solved if we introduce variable servo gains (depending 

"on work regime"), or if we select the fixed servo gains but which make 

the servo system robust enough to ensure desired performance of the 

servo system regardless of the variation of the actuator parameters. 

It should be also noted that if the servo system is to be implemented 

by microprocessor, then extra nonlinearities due to truncations in the 

microprocessors and AID converters have to be taken into account. If 

the analogue information from the sensors is introduced in microcompu

ter through AID converter, then converter obviously truncates the in

formation since it gives a finite number of digits at its output. This 

truncation also might reflect the accuracy of the servo system and 

the repeatability of the robot. Thus, the selection of microprocessor 

and converters must be carefully done. 

EXAMPLE 3.3.5. Let us assume that the amplitude constraint upon the 

input of the actuator u 1 for the servo system synthesized in the 

Example 3.3.2. is given by u~ = 27 [V]. In this case the finite region 

in the state space for which the inequalities (3.3.61) are satisfied, 

is given in Fig. 3.20. 

Let us consider some state out of this region (e.g. the state q1 = 0.3 

[rad], q1 0.). For this state the control law would require the con

trol signal of u 1 = 40.539 [V] which is not allowed. Due to this, the 

servo behaves as it had the following gains instead the synthesized 

servo gains (see Example 3.3.2) : 

Ki ' 
Ui.Ki 

27 r V ] m P 135.13 "" 90 P IKi.qi+Kiqil 40.539 lrad 
P v 

.. ui.Ki 
27 [ra~/s] Kl. m v 43.6 29.04 v IKi i+Ki.i l 40.539 P q v q 
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Fig. 3.20. Region of linear performance of 
servo system in Example 3.3.5. 

E X ere 1 s e s 

3.49. Consider the third order model of the servo system (3.3.4), the 

state vector of which is given by xi = (qi,.i .i)T h .i q , 1R ' were 1R 

is the current of the rotor circuit. If the feedback loops by 

all three state coordinates are introduced (i.e. if the control 

law is given by u i = _k~xi), if the amplitude of the input sig-
1 

nal of the actuator is constraint by (3.3.61),and if the ampli-

tude of the rotor current is constrained by I i~ I < i~ax' then wri

te the expressions for the boundaries of the finite region in 

the state space for which the servo behaves linearly. Draw this 

finite region in the 3-D state space. 

3.50. For the servo system in Example 3.3.5, draw in the complex plane 

the displacement of the poles of the closed-loop servo, if the 

state of the system moves along lines qi = 0., 6qi<-0.189, and 

qi = 0., 6qi>-O.189 [rad]. (Instruction: calculate the values of 

the poles of the closed-loop servo for several values of 6qi sa

tisfying 6qi<-O.189, and for several values satisfying 6qi>O.198; 

for each state first calculate servo gains as presented in Example 

3.3.5., and then calculate corresponding poles). To which posi

tions are approaching these poles if 6qi+oo? 



3.51. Moments due to dynamic friction pi d . in the joints of Stanford o ynamlc 
manipulator (Fig. 3.13) have been measured experimentally. Their 

values are presented in Table 3.11. In table are also given po

sition gains of individual servos in the robot joints. Determine 

the errors in the positioning of the manipulator end point (i.e. 

repeatability) which are caused by the dynamic friction in the 

joints (in this, assume that the dynamic friction moments act as 

external loads upon the servos) [5]. 

JOINT r [m] Dynamic friction CiNiKi/ri [~] 
moment [Nm] M m P R rad 

1 0.54 1.91 790. 

2 0.50 3.18 1780. 

3 - 12.0 27600. 

4 0.25 0.565 220. 

5 0.25 0.635 220. 

6 0.25 0.424 1480. 

Table 3.11. Moments due to dynamic friction for Stanfort manipulator 
[5] (r is effective level arm from the jOint to the 
manipulator end point) 

* 3.52. For electro-hydraulic servo system considered in Exercise 3.35, 

assume that flow/pressure coefficient of the servovalve varies 

within the limits Ki = (0.0006, 0.0009), while all the other pa
c 

rameters are fixed, as they are given in Table 3.5. 

a) Calculate the position and velocity servo gains to satisfy 

requirements given in Exer~ise 3.35 (w o =12. [rad/s], ~i=1), 

for the following values Kl = 0.0006, 0.0007, 0.0008, 0.0009 
3 2 c 

[cm /s/N/m ]. 

b) If we adopt servo gains calculated for Ki = 0.0007 determine c 
the variation 

kes values Ki 
c 

of the poles of the closed-loop 

= 0.0006, 0.0008, 0.0009. Is it 

servo if Ki ta
c 

acceptable to 

adopt fixed servo gains, or is it necessary to implement 

variable servo gains, as calculated under a)? 
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3.S3. The sketch of the robot is presented in Fig. 3.19. Assume that 

the backlash appears at the points A and B. If the geometric pa

rameters are as follows: d 1 = O.OS [ml, d 2 = 0.60 [ml and r = 

2.S [ml, calculate the repeatability of robot end pOint positio

ning due to backlash of 0.0001 [radlat point A. Next, calculate 

the robot repeatability due to the backlash at point B of value 

O.OOOOS [radl. Repeat this calculations, but if the diametar of 

the larger gear change to d 2 = 0.9 [ml, and the backlash atpoint 

A increases to 0.0002 [rad] (the backlash at point B is the same 

as in previous case). Comment the results obtained in these two 

cases: how the increase of the gear reduction ratio affects the 

repeatability of the robot? 

3.S4. For the robot in Fig. 3.19. calculate the repeatability of the 

robot end point positioning due to truncation of the A/D conver

ter for the servo in the first joint. The A/D converter is con

nected to the position sensor. The position sensor is located at 

the output shaft of the actuator, before the gear reducer. The 

geometric parameters are given in previous exercise. The A/D 

converter is of 12 bits (i.e. it truncates all angles bellow 

360 0 /4096). Calculate the repeatability for both values of the 

gear radius d 2 • 

3.4 Synthesis of Local PID Controller 

Up to now, we have considered so-called static servo systems for indi

vidual joints of the robot. We have considered the movement of thei-th 

jOint while the other joints are kept locked solid. We have shown that 

the servo system ensures positioning of the i-th jOint, but the steady 

state error appears which is caused by external load - gravity moment 

of the mechanism around the i-th joint. The gravity moment can be com

pensated by on-line computation of this moment in control microproces

sor (Fig. 3.1S). This compensation requires computation of the gravity 

moment, which might produce problems due to numerical complexity of 

the expressions for this moment which depends on the robot structure. 

On the other hand, uncertainty in determining the parameters necessa

ry to compute gravity moment, might cause poor compensation of steady 

state errors. The second approach to eliminate the steady state error 



due to gravity moment is by introducing of so-called dynamic servo sy

stems [9]. 

If we allow the other joints to move simultaneously with the i-th 

joint, then an external moment, due to dynamic coupling, will act upon 

the i-th jOint (see Chapter 4). This dynamic moment will also cause an 

error in positioning of the i-th jOint. The effects of this moment, 

Which is cOmpLex function of alL joints coordinates, their velocities 

and accelerations, might also be partially compensated by dynamic servo 

system. 

Here, we shall briefly consider application of dynamic controllers in 

control of the robot. In the dynamic servo system the feedback loops 

by the integrals of the state coordinates of the system (or, of thesy

stem outputs) are introduced. We shall consider the simplest form of 

the dynamic controller - so-called PID controller in which the feed

back loop by the integral of the position error is introduced. 

Namely, it is possible to introduce integrator which integrates the er

ror between the actual position and desired (imposed) position of the 

jOint, and the computed integral of the position error is added to the 

actuator input signal. In this way PID controller is obtained which is 

presented in Fig. 3.21. This controller, thus, besides position (P), 

velocity or, differential (D), includes so-called integral (I) feed

back loop [3]. 

It is obvious that the introduction of the integrator in the control

ler increases the order of the system model. If the second order model 

of the actuator and the moving part of the mechanism is considered 

(n i =2), then by applying of the integral feedback loop we obtain the 

third order model of the complete system (controller and actuator). 

The transfer function of the system (3.3.25) now becomes: 

(3.4.1) 

i where KIN denotes gain in the feedback loop by integral of the positi-

on error. Based on (3.4.1) we may determine the position error as: 

[K iK i 2 (Ti 1) 2] oi() i () , - D VS + mS + s q s -KMsg l, S 
'ql (s) = 
~ i i + iii i 2+ i + 2 

KDKIN KDKps+KDKv S (Tms 1)s 
(3.4.2) 
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91 (load) 

Fig. 3.21. PID (proportional - integral - differential) controller 
(for the second order model of actuator, KiN denotes 
the gain in the integral feedback loop) 

If we assume the step external load acting upon the i-th servo (i.e. 

we assume constant load moment in the i-th joint), then we obtain ste

ady state error as: 

~qi(oo) = lim s~qi(s) 
s~O 

o (3.4.3) 

Thus, we see that the integral feedback loop eliminates the steady 

state error (for step input moment). If all other joints are locked, 

then only the gravity moment is acting around the i-th joint when it 

stops. This moment in steady state conditions might be assumed to be 

constant. Thus, by integral feedback loop we eliminate the positioning 

error of the servo caused by gravity moment around the i-th joint. The 

PID controller ensures more accurate positioning of the robot joint 

than the static controller considered in the previous sections. 

Let us consider briefly the problems related to synthesis of PID con

troller, i.e. let us consider selection of the feedback gains. We may 

use various procedures for synthesis of feedback gains: synthesis in 

frequency domain (Bode's method), root locus methods, etc. We also may 

apply procedures for control synthesis related to state space model of 

the system: pole-placement method, optimal regulator approach etc. 

Let us consider synthesis of PID controller by pole-placement method, 

which we have already considered in Section 3.3.3. The model of the 

actuator and the moving part of the mechanism with the introduced 
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integrator by position error in the state space has the following form 

(if we neglect the effects of the external disturbances): 

!i x (3.4.4 ) 

where Ai is (n i +1)x (n i +1) matrix, bi , ai, are (ni+1)x1 vectors given 

by: 

(3.4.5) 

and xi is (n.+1)x1 augmented state vector of the system, which is given 
. iT~ i T i 

by x~ = (x ,z) . Here, z is the new state coordinate which repre-

sents the integral of the position error: 

t . . 
zi(t) = f(q~-qO~)dt 

o 
(3.4.6) 

_In (3.4.4) the control signal (input signal for actuator) is denoted 

by i u • For the PID controller presented in Fig. 3.21 (ni =2) the control 

signal is generated as: 

(3.4.7) 

where by k i is denoted (ni+1)x1 feedback gain vector which is given by: 

k. 
~ 

(3.4.8) 

The model of the closed-loop system is obtained by combining (3.4.4) 

and (3. 4 . 7) : 

-i oi 
d q (3.4.9) 

The closed-loop system matrix is given by (Ai_bik~). As described in 
~ 

Section 3.3.3, the feedback gains k. have to be selected in such a way 
~ 

that the eigen-values of the closed-loop system matrix are placed in 

the desired locations in the s-plane. In the case of the PID control

ler, since the order of the system is (n i +1), we may specify (n i +1) 

eigen-values (if feedback loops by all the state coordinates are im

plemented). Let us assume that we have specified (n i +1) eigen-values 
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so that all s~ are in the left half of the s-plane. In that case the 
J 

feedback gains k i can be obtained from: 

n i +1 

K n (s~-s) 
j=1 J 

(3.4.10) 

The feedback gains k. which satisfy the relation (3.4.10) can be easily 
l. 

determined. 

Here, we have assumed that the feedback loops by all state coordinates 

xi are implemented. However, it is not always necessary to introduce 

feedback loops by all state coordinates xi. As we have explained in 

Section 3.3.3, it is possible to introduce feedback loops just by the 

system output Yi which is given by (analogously to (3.3.43)): 

(3.4.11 ) 

where y. is k~x1 output vector, and Ci is k~x(n.+1) output matrix. 
l. l. l. l. 

Therefore, the control is introduced as feedback by the system output: 

(3.4.12) 

where now k. is a k~x1 vector of feedback gains. 
l. l. 

If this control is introduced in the model (3.4.4),we obtain the clo

sed-loop matrix of the system as (Ai_bik:C i ). Now, we may specify k~ 
l. l. 

eigen-values sj of the closed-loop system matrix, while the rest (n i +1)-

-k~ eigen-values are free (for k~<n.+1): 
l. l. l. 

kY 
i 

K n (s~-s). 
j=1 J 

n. +1 
l. 

n (Sj-s) 

j=k~+1 
l. 

(3.4.13) 

Based on (3.4.13) we can determine k~ gains in feedback loops by system 
l. 

output. We can examine the conditions under which the unspecified ei-

gen-values Sj are also in the left part of the s-plane (i.e. under 

which they are on the left from the specified eigen-values s~). 
J 

Thus, the problem of synthesis of PID controller is reduced to speci

fication of the desired eigen-values sj in the complex plane. The se

lection of these eigen-values might be performed in various ways. We 

may require that the eigen-values of the closed-loop system matrix are 



on the left from the line Re(s) = -Si' where Si is positive number. By 

this we ensure that the system has sufficiently fast response to step 

input (i.e. that the position of the jOint approaches to desired posi

tion qOi faster than ~ exp(-Sit». 

The feedback loop by integral of position error eliminates the steady 

state error in the controller response to step ~ravit~moment. However, 

if the time variable external moment (disturbance) is acting upon the 

system, then this feedback loop by integral of position error cannot 

compensate for the error in the positioning of the jOint. Letus assume 

that the ramp moment disturbance is acting upon the system, i.e. let 

us assume that the external moment Pl.' (t) satisfies dP, (t)/dt=p~=const. l. l. 
In this case the Laplace transform of the external disturbance moment 

is given by Pi(s)=p~/s2. If we replace this moment in the expression 

for the positioning error in s-domain (3.4.2),we obtain: 

(3.4.14 ) 

Based on this expression we obtain the steady state error as: 

(3.4.15) 

which means that the steady state error of the system response to ramp 

moment disturbance is inversely proportional to the integral feedback 

gain. 

If we want to reduce the steady state error due to ramp moment distur

bance (3.4.15), we should select high integral feedback gain K~N. Ho

wever, to ensure that the pair of the dominant poles of the system is 

as close as possible to the real axis of the s-coordinate system, and 

to ensure fast response of the system (i.e. to ensure that the real 

parts of all the system poles are sufficiently high), we must apply 

relatively high position and velocity feedback gains. Since the high 

feedback gains reflect the characteristic frequency Wi of the system, 

which is constrained by (3.3.37), and since the high feedback gains 

are undesirable regarding the effects of the noise upon the system 

performance, we must make a tradeoff between these opposite require

ments. Namely, in specifying of the desired eigen-values of the closed

-loop system matrix s~ we must take care of the following requirements: 
J 
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to ensure low steady state error (3.4.15), sufficient damping of the 

system, fast response, but also the condition (3.3.37) must be satis

fied. 

We have explained that if all the joints of the robot are locked, save 

for the i-th joint, then just the gravity moment is acting upon the 

i-th joint as external disturbance. This moment is constant in steady 

state conditions. However, if the other joints are also moving, then 

upon the i-th actuator is acting variable moment (load) due to dynamic 

interconnections between the joints movements. This dynamic moment is 

complex function of actual joints coordinates, velocities and accele

rations (see Chapter 4). Therefore, we have to ensure that the error 

due to variable external moment disturbance is as small as possible. 

Obviously, by PID controller we cannot eliminate this error. It is pos

sible to introduce dynamic controller of higher order, i.e. with feed

back loops by higher integrals of the position error. However, such 

controller is too complex and its response might be too slow, so they 

are not often applied in robotics. 

EXAMPLE 3.4. In Example 3.3.4 the PD servo system for the second joint 

of the robot in Fig. 2.6. has been synthesized. The data on the D.C. 

electro-motor are given in Table 3.3. Let us synthesize the PID con

troller for the same joint and actuator by pole-placement method. If 

the second order model of the actuator is considered (ni =2), then we 

can specify n i +1=3 eigen-values of the closed-loop system matrix. Let 

us select the following places of the eigen-values: 

0 -5.45 ± j2.8, 0 -44.6 s1 ,2 s3 

Based on (3.4.10) we compute the feedback gains as: 

K2 1446. V K2 34.36 V K2 4691.2 V 
P [rad] , v [rad/s], I [rad/s] 

The steady state errors due to constant gravity moment are given in 

Table 3.9. for various positions of the second and the third jOint of 

the robot if PD servo system is applied. It is clear that if the PID 

controller is applied these steady state error are reduced to zero. In 

Fig. 3.22. are presented the responses of the PD and PID controllers 

to step input qo2=0. 02+q2 (0) [rad] when the gravity moment is acting aro\.lnd 

the joint axis. (We assume that the gravity moment is not compensated 

by on-line computation as in (3.3.61». From Fig. 3.22. we see that 



the PID controller eliminates the steady state error, but the oversho

ot appears. 

1.573 

1.563 

q2 [rad] 

---- - -.--=------- --/--.,....------------
V 

V __ pro 

___ po 

q3* = 0.7 [ml 

1.553L-------~------r_------+_------~--~ 
0.5 1.5 2 t[sl 

Fig. 3.22. Responses of PD and PID controllers to step 
input and step moment disturbance 

E X ere 1 s e s 

3.55. If the order of the model of the a 7tuator.and joint is n i =3, and 

if the structure of the matrices Al and b1 is given by (3.3.49) 

and (3.4.5), then write the expressions for feedback gains of 

the PID controller which ensure placement of the eigen-values of 

the closed-loop matrix of the system in desired positions. Assu

me that the feedback loops are introduced as follows: 

a) feedbacks by position, velocity and integral of the position 

error; determine the expression for unspecified eigen-value, 

b) feedbacks by all the state coordinates of the system (by po

sition, velocity, current/pressure, and integral of position 

error), 

c) feedbacks by position and integral of the position error, 

only; determine the expressions for the rest two unspecified 

eigen-values and determine conditions to guarantee that these 

eigen-values are on the left from the specified eigen-values. 

133 



1~ 

3.56. The data on the D.C. electro-motor applied in the second jOint 

of the robot in Fig. 2.5. are given in Table 3.3. Determine the 

matrices of the model of actuator and jOint for n i =3 (data on 

the robot mechanism are given in Table 3.4). Determine the feed

back gains of the prD controller to satisfy the following condi

tions: all eigen-values of the closed-loop system matrix should 

be on the left from the line Re(s) = -3., the dominant pair of 

eigen-values has to be as close as possible to real axis, the 

steady state error to ramp moment disturbance (3.4.15) for P~=l 
l 

* 

[Nm/sl should satisfy l~q2(oo) 1<0.01 [ml. Determine the feedback 

gains under assumption: 

a) that the feedback loops by all state coordinates are introdu

ced, 

b) that feedback loops by position, velocity and integral of the 

position error are introduced. 

3.57. How can be prD controller implemented by microprocessor? Deter-

mine the expression for numerical integration of the position 

error by Euler's method for numerical integration. Write the pro

gramme (using some higher programming language) for computation 

of the control signal for prD controller, assuming that the in

put variables for the programme are: desired position of the 

joint gOi, actual values of the jOint position gi and velocity 

qi (which are obtained from the sensors through A/D converters), 

and the selected feedback gains. Minimize the number of additi

ons and multiplications required for computation of u i according 

to (3.4.7). 

3.58. Compare the compensations of the steady state error due to gra

vity moment: by prD controller and by PD servo system with the 

on-line computation of gravity moment. Compare these compensati

ons from the standpoints of: 

a) the number of numerical operations required to compute the 

control signal (compare for example (3.3.61) and (3.4.7) ta

king into account the numerical integration in PID control

ler), 

b) the robustness to variations of the payload parameters, 



* 

c) the settling time (i.e. the time required for the joint 

to settle at the desired position). 

3.59. Extend the programme for computation of the feedback gains on 

the basis of the pole-placement method (required in Exercise 

3.38) to include the integral feedback loop. (Instruction: use 

expressions obtained in Exercise 3.55). 

3.5 Synthesis of Local Servo System for Tnijectory Tracking 

Up to now we have considered local servo system for individual joints 

of the robot. The control task of these servo systems is to position 

the robot joints in the desired positions. The synthesized servo sys

tem for the i-th joint ensures its positioning under assumption that 

all the other joints are locked. 

As we have shown in Chapter 1. the tasks which are imposed in modern 

robotics require not only the accurate positioning of the robot, but 

also the tracking of desired trajectories. This means that the input 

for the local servo system is not constant (desired) position qOi of 

the corresponding jOint (the step function), but the desired trajecto

ry qOi(t), i.e. the time variable signal. Since the set input varies 

by time, the controller has to ensure that the system output (joint 

coordinate qi) varies with time in the same way, i.e. the controller 

output qi has to track imposed trajectory qOi(t). In other words, the 

task of the controller is to minimize the error between the actual 

trajectory of the robot joint qi(t) and the imposed trajectory qOi(t) 

at each moment of time. 

If the input signal for the servo system synthesized in the previous 

sections is time variable function qOi(t) (trajectory), the servo sys

tem output will not track accurately this trajectory. The error between 

the actual trajectory and desired trajectory will appear. Let us assu

me that the imposed trajectory is ramp function, i.e. that it requires 

constant velocity of the jOint qOi(t) = Q~t. The Laplace transform of 
. 2 l 

this input function is qOl(S) = Q~/s . Let us consider the error of 
l 

a static servo system whose transfer function in the s-domain is given 

by (3.3.25), assuming that the order of the actuator model is n i =2. If 

we replace the expression for the ramp function input in (3.3.25), then 

we obtain the Laplace transform of posi tion error between the actual 
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joint trajectory and nominal (desired) trajectory as: 

(3.5.1) 

The steady state position error in tracking of the desired (input) 

trajectory is: 

lim Stlqi (s) 
s~o 

(3.5.2) 

Depending on the velocity Q~ of the input trajectory and on the para
l 

meters of the servo system, the significant error in tracking of the 

imposed trajectory might appear. 

If we set nominal trajectory which requires more"complex variation"of 

the joint position by time, the error in servo system tracking might 

be even higher. For instance, if the nominal trajectory requiring con

stant acceleration of the joint is imposed (qOi(t)=a~t2), then the La-
l 

place transform of the position error in tracking of this trajectory 

can be obtained as (taking into account that the Laplace transform of 

the input trajectory is qOi(s) = a~/s3): 

(3.5.3) 

The steady state error in this case is (under assumption that the de

lay due to velocity terms are compensated for - see the text to fol

low) : 

(3.5.4) 

In this case the error might be high depending on the required accele

ration a~ and on the parameters of the servo. It is obvious that these 
l 

errors in tracking of desired trajectories are consequence of the de-

lays in the servo system, so that the system output cannot follow the 

imposed variation of the input signal. However, this delay can be com

pensated for by introducing of so-called "pre-compensator" (or, feed

forward term). 
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The feedforward term is introduced in the following way: the input signal 

for servo is not desired trajectory qOi(t), but some modified signal 

which takes into account the delay in the servo. Namely, the signal 

which has to "accelerate" (or, "decelerate") the servo proportionally 

to desired acceleration qOi(t), is added to the original input signal 

(corresponding to desired trajectory qOi(t)). This additional signal 

has to reduce the error between the imposed input trajectory qOi(t) 

and actual trajectory qi(t) of the joint (t.e. the servo output). 

First, let us consider the introduction of feedforward term in the s

-domain. It can be easily shown that if the feedforward term is intro

duced as in Fig. 3.23, then the steady state error in tracking the tra

jectory qOi (s) =a'?/s3 is reduced to zero. This means that the delay due to 
1-

both velocity term and acceleration term is compensated for by the fe-

edforward in Fig. 3.23. Similarly, if the input trajectory is given by 

qOi(s) = n'?/s2, the steady state error is also reduced to zero by the 
1-

feed forward term added to servo as in Fig. 3.23. Therefore, by the pre-

-compensator we can ensure that the servo tracks the input time-variab

le trajectory qOi(t). 

Let us consider introduction of the feedforward term using the state

-space model of the servo. Let us consider the model of actuator and 

the moving part of the robot mechanism in the form (3.3.4). We have to 

ensure tracking of a desired nominal trajectory qOi(t). We consider the 

second order model of the system n.=2, so that the state vector xi is 
i i.i T 1-

given by x = (q , q ) . We have to ensure that the actual system sta-

te xi tracks the desired trajectory of the state vector xOi(t) = 

(qOi(t), qOi(t))T. Therefore, we have to ensure that the system state 

xi(t) moves along desired nominal trajectory XOi(t). To ensure this, 

we introduce so-called local nominal programmed control U~i(t) which 

has to satisfy: 

(3.5.5) 

The explanation of the physical meaning of the nominal control term is 

obvious: this is the programmed input signal (so-called open-loop con

trol) which ensures that the system state moves along desired nominal 

trajectory if the following conditions are met [10]: 

(a) if the initial state of the system xi(O) coincides with the nominal 

initial state xOi(O), i.e. if xi(O) = xOi(O), and 



(b) if the model of the servo (3.3.4) is ideally accurate and no exter

nal disturbance is acting upon it. 

Obviously if xi(O) = xOi(O) and if the model of the system were perfect 

(which means that all the parameters of the system were perfectly accu

ratelyidentifie~, and if the signal U~i(t) computed to satisfy (3.5.5) 

is fed to the input of the servo, then the actual state of the system 

xi(t) would be driven along nominal trajectory xOi(t). However, it 

is obvious that in the general case none of the above assumptions are 

satisfied. Due to this, we have to consider the model of the deviation 

of the system state xi(t) from the imposed nominal trajectory xOi(t). 

Based on the model (3.3.4) and (3.5.5) we can obtain the model of the 

state deviation in the following form*): 

(3.5.6) 

where l\xi (t) xi(t)_xOi(t) is n o x1 vector of the deviation of the sy-
l 0 0 0 0 

stem state from the nominal trajectory xOl(t), and l\ul(t)=Ul(t)_UOl(t) 

of the servo input ui(t) from the nominal program-is scalar deviation 

med control uOi(t). Now, we have to determine the additional control 

signal l\Ui(t). The role of this signal is to reduce the deviation of 

the robot state l\Xi(t) from the nominal trajectory, i.e. to ensure that 

l\xi(t)+O. In this way, the problem of synthesis of control for tracking 

of the nominal trajectory for (3.3.4) reduces to the problem of syn

thesis of servo for the model of deviation (3.5.6). Actually, the pro-

blem reduces to synthesis of a regulator which has to ensure the sta

bility of the model of deviation around the equilibrium pOint l\xi=O. 

This problem has been already considered in Section 3.3. We have to 

synthesize servo which will drive the system state to the desired sta

te of the model of deviation l\Xi=O. Since the matrices of the model of 

deviation (3.5.6) Ai and bi are identical to the matrices of the basic 

model of the system (3.3.4), the servo system synthesized in the pre

vious sections can be directly applied for stabilization of the model 

of deviation around the nominal trajectory and the nominal control. 

Thus, the problem of trajectory tracking is reduced to synthesis of 

positional servo system to which local nominal programmed control is 

added. This nominal control signal has to compensate for the variati

ons of the velocity and accelerations along the imposed (nominal) 

*) Here, we have not taken into account the amplitude constraint upon 
the servo input. 
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trajectory. Obviously, the control signal is calculated as*): 

(3.5.7) 

where k i is the feedback gain vector, Ci is the kixni output matrix 

(see Section 3.3.3). The feedback gains can be synthesized by one of 

the previously considered methods: by synthesis in s-domain (Section 

3.3.2), or by pole-placement (Section 3.3.3), or by some other method. 

The scheme of the control is presented in Fig. 3.24. There are twodif

ferences between this scheme and the scheme of simple position servo: 

the scheme in Fig. 3.24. includes computation of local nominal control 

as feed forward signal, and velocity feedback gain k i amplifies the er-
v 

ror between the actual velocity of the jOint and nominal velocity of 

the joint ~qi(t) = qi(t)_qOi(t), instead to amplify just the actual 

velocity signal qi(t) (as in the scheme in Fig. 3.14). 

Computation of 
nominal control 

uOi 
L 

Fig. 3.24. Scheme of servo system with local nominal 
programmed control (the scheme is given 
according to the state space model of 
actuator) 

computation of the local nominal control which satisfies (3.5.6) is 

very simple. Let us assume that the model of the actuator is of the 

second order n i =2. Let us assume that the trajectory qOi(t) is given, 

*) Here, the general case is considered when the feedback loops only by 
the system output Yi are introducedi if the feedback loops are in
troduced by all state coordinates X1, then the matrix C. is the 
unit matrix. 1 



and that by differentation we get variation of the jOint veloci ty qOi (t) 

and acceleration qOi(t) along the desired trajectory. By this the no

minal trajectory of the state xOi(t) and the first derivative of the 

state xOi(t) along the nominal trajectory are defined. Assuming that 

the matrices Ai and £i are in the form (3.3.54), on the basis of 

(3.5.6) we can compute the local nominal control as: 

(3.5.8) 

where 
oi x 2 

bY.X~i is ~enote~ the second coordinate of the state vector (i.e. 
·01 ·01 -01 q and x 2 = q ). Thus, the nominal control can be easily com-

puted based on (3.5.8) and this is applied in the control scheme in 

Fig. 3.24. In this, it should be kept in mind that the actuator input 

amplitude is constrained. Based on (3.2.9), the following inequality 

has to be satisfied: 

luOi(t) I < u i (3 5 9) L - m •• 

If the condition (3.5.9) is satisfied, and if the two above listed con

ditions were also met, then the nominal control (3.5.8) would drive the 

the joint along the desired (nominal) trajectory qOi(t). However, if 

the condition (3.5.9) is not satisfied, the nominal control cannot dri

ve the system along desired trajectory. This means that the actuator 

cannot realize the desired nominal trajectory. The required velocity or 

acceleration of the jOint are too high, and they cannot be realized by 

the applied actuator in the robot joint. The desired trajectory should 

be slow down. In the process of the robot design, the selection of the 

actuators must be properly done. This means, that the actuators in the 

robot joints must be selected to ensure realizations of desired velo

cities and accelerations of all the robot joints (so that the desired 

speed of the robot is guaranteed). Namely, the robot designer must es

timate the velocities and accelerations of the robot jOints that will 

be required in the tasks for which the robot is intended. When he se

lects actuators, he must check the condition (3.5.9) for each jOint and 

for some representative (test) trajectories. If the condition (3.5.9) 

is not satisfied, then the actuator in the corresponding robot jOint 

must be re-selected. Otherwise, the robot will not be able to accomplish 

the desired task*). 
*) It should be notices that this consideration concerns the case when 

each joint of the robot is moved independently, i.e. when the robot 
joints are moved successively, one by one. If the simultaneous moti
on of all robot joints are required, then the dynamic moments due to co
upling between the jOints must be taken into account (see Chapter 4). 
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Analogously to (3.5.9), the nominal programmed control can be determi

ned also in the case when the model of the actuator is of the third 

order n i =3 (see Exercise 3.60). 

Since this programmed control takes into account only dynamics of the 

local actuator and single joint, it is called local nominal control 

[10, 111. It differs from the so-called centralized nominal control 

which takes into account dynamics of the complete robot mechanism and 

which is computed on the basis of the complete model of the robot dy

namics when all the jOints are moving simultaneously (see Chapter 4). 

The model (3.3.4) takes into account the moment of inertia of the me

chanism around the i-th joint (if all the other joints are kept loc

ked). The value of this moment of inertia varies if the other joints 

change their positions. We have shown (Section 3.3.4) that for thesyn

thesis of the servo feedback gains it is required to consider the ma

ximum value of the moment of inertia of the mechanism around the i-th 

joint. However, for the synthesis of the local nominal control we must 

consider the minimum possible value of the moment of inertia of the 

mechanism around the corresponding joint. If we calculate local nomi

nal control taking into account (in (3.5.8» some greater moment of 

inertia, then when the value of the moment of inertia is less, the jOint 

angle would overshoot the desired trajectory. Since the overshoot of 

the desired input trajectory must not be allowed in any case, this me

ans that we must calculate local nominal control taking into account 

the minimum possible value of the moment of inertia of the mechanism 

around the i-th joint (see Exercise 3.62). 

EXAMPLE 3.5. For the first joint of the robot in Fig. 3.2. the model 

of the actuator and the moment of inertia of the mechanism around the 

jOint axis, for q2*=0., is given by (3.3.4) and the elements of the mat

rices Ai and bi are given by (see Exercise 3.18): 

The corresponding transfer function in s-domain is given by (3.3.27). 

We want to synthesize the servo which has to ensure tracking of nomi

nal trajectory qOl (t) given by: 



{ 

°t2 T _a___ 0 < t < -
2' - 2 

01 (t) -
q - 02 0 0 

~ _~(t_~)2+~(t_~) 
8 2 2 2 2' 

T 
"2 < t < T 

This trajectory is presented in Fig. 3.25 for a O 

[rad] 

0.5 

0.4 

0.3 

0.2 

0.1 

o t[s] 

Fig. 3.25. Nominal trajectory for the first joint 
of robot in Fig. 3.2. 

(3.5.10) 

Compensation of the error in tracking of the trajectory due to varia

tion of the velocity and acceleration can be realized by control sche

me given in Fig. 3.23, or by scheme in Fig. 3.24. In this case the lo

cal nominal control is given by: 

. { 
(ao+0.38aOt)/0.27, 0 < t 2- ~ 2 

u01 (t) (3.5.11) 

[-ao+0.38ao(T-t)]/0.27, T t < "2 < T 

while the servo gains can be selected as in Example 3.3.2. (i.e. by 

(3.3.40)). This programmed control compensates for the variation of 

the velocity and acceleration along the nominal trajectory, and so the 

accurate tracking of this trajectory is ensured. In Fig. 3.26. the re

sults of the simulation by digital computer of the tracking of nominal 

trajectory (3.5.10) are given. Two cases are presented: if the nominal 

programmed control is not introduced and if the local nominal control 

(3.5.11) is included in the control scheme. It can be seen that the 

tracking in the latter case is much better, since in the former case 
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the servo does not compensate for the variation of velocity and acce

leration along the nominal trajectory. We assume that the initial error 

between the actual position of the joint ql (0) and the nominal positi

on qOl (0) is liql (0) = ql (0) - qOl (0) = 0.2 [radl. The Fig. 3.26. shows 

how this error liql (t) decreases along the trajectory in the two above 

mentioned cases. The digital simulation of the dynamics of the single 

jOint and complete robot will be addressed in Section 5.3. 

ql 

[radl 

-0.1 

-0.2 

with nominal 
local control 

wi thout nomi na 1 
local control 

Fig. 3.26. Tracking of the nominal trajectory with and without 
nominal programmed control for the first joint of 
robot in Fig. 3.2. 

E X ere 1 s e s 

3.60. For the third order model of the servo (ni =3) in the form (3.3.4) 

where the matrices of system are in the form (3.3.49), show that 

the local nominal control is calculated according to the follow

ing equations (assuming that qOi(t), qOi(t), qOi(t) are given 
i i·i.i T iii T 

and that x = (q, q, l.R) = (xl' x 2 ' x 3 ) ): 

Draw the corresponding control scheme (analogous to the scheme 

in Fig. 3.23. - lit is short sampling interval). 



3.61. For the stanford manipulator shown in Fig. 3.13. the data on 

which are given in Table 3.7, the servo feedback gains (for the 

static servo systems) for all joints have been computed in Exer

cise 3.33. Determine on the basis of (3.5.2) and (3.5.4), the 

steady state errors for: 

a) the input trajectory given by qOi(t) 

qOi(s) = 0.2/s2), 

0.2 t (in the s-domain 

b) the input trajectory given by qOi(t) = 4. t 2 (in the s-domain 

qOi(s) = 4./s3 ), and determine the errors in positioning of 

the manipulator tip point due to these steady state errors, 

if the effective lever arms r between the joints and the ro

bot tip are given in Table 3.11. [5l. 

3.62. The nominal programmed control for the first jOint of the robot 

in Fig. 3.2. is given by (3.5.11) for the nominal trajectory 

(3.5.10). The matrices of the servo model have been computed for 

the positicn of the second joint q2*=0. Calculate these matrices 

for the position of the second joint q2* = 1.573 [radl. Show that 

if the nominal control (3.5.11) is applied in the first joint 

when the second jOint is in the position q2* 1.573 [radl, than 

there can occur overshoot (assume that initial error is zero 

* 

~ql (0) = 0.). Determine the nominal programmed control using the 

value of the moment of inertia of the mechanism which corresponds 

to the position of the second jOint q2* = 1.573 [radl. Which no

minal control has to be applied if the position of the second 

jOint q2* is not known? 

3.63. Write the programme (in some high programming language) for compu-

tation of nominal local programmed control for the case when the 

model of the servo is of the second order (3.5.8) and when the 

third order model of the servo is considered (see Exercise 3.60). 

Minimize the number of additions and multiplications for these 

computations. Next,introcucc the check of the condition (3.5.9). 

By combining this programme with the programme written in Exer

cise 3.57 write the programme for microprocessor implementation 

of the servo which ensures tracking of the desired nominal tra

jectory (the inputs for this programme are nominal trajectory 

qOi(t), actual jOint position gi (t), veloci ty qi(t), and rotor current 

i~(t), and the parameters of the actuator, the moment of inertia 
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* 

of the mechanism around the jOint axis Hii' the servo gains, and 

the output of the programme is the computed input signal for the 

actuator ui(t». 

3.64. Extend the programme written in Exercise 3.39. for simulation of 

the servo system, to include the simulation of tracking of the 

input nominal trajectory with and without local nominal control. 

Assume that the desired nominal trajectory is given by (3.5.10). 

Check the results of simulations in Example 3.5. for the first 

joint of the robot in Fig. 3.2. 
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Appendix 3.A 
Local Optimal Regulator 

In Chapter 3. we have considered synthesis of local servo systems for 

individual robot joints (and actuators) using the transfer function of 

the system and by pole-placement method (using the state space model of 

the system). Other methods for synthesis of simple linear local servo 

system for control of robot joints will not be considered in this book. 

Here, we shall briefly present synthesis of local controller by mini

mization of standard quadratic criterion, i.e. we shall consider syn

thesis of local optimal controller for one single joint and actuatorof 

the robot (when all the other joints are locked). The model of the con

sidered system is again given by (3.3.4). We shall consider synthesis 

of optimal regulator for positioning of the individual joint in the 

desired position qOi 

In the servo system synthesis, considered in Chapter 3, the designerof 

the control system has to specify the desired locations of the closed

-loop system poles in the s-plane, and by this he speciffies desired 

response of the system to some typical input signals (e.g. to step in

put signal and so on). In doing this, the designer does not take into 

account the magnitudes of the input signals for actuators that will be 

generated by the controller, nor the energy required by actuators to 

realize desired positioning of the joint (or, tracking of desired no

minal trajectory). To satisfy requirements regarding the system res

ponse and, at the same time, to minimize the energy consumption, it is 

demanded to synthesize control by minimization of some criterion. This 

criterion should include both desired response of the system and requ

irements regarding magnitudes of the actuator input signals. Various 

criteria for control synthesis have been established. One of thesecri

teria is so-called standard quadratic criterion which includes both 

above mentioned requirements. The standard quadratic criterion is de

fined in the following form (assuming that the model of the system is 

in the form (3. 3 .4)) [1, 2, 3]: 

(3.A.l ) 
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where ~xi is n .• 1 vector of the state deviation from the desired nomi

nal state x Oi ~xOi is defined as x Oi = (qOi, 0, O)T for n.=3, and x oi = 
. T 1 

(qOl, 0) , for n.=2, since the control problem is to ensure positioning 
1 . .., 

of the joint in the desired position qOl) , ~Xl=Xl_X01, Q. is n.xn. po-
111 

sitive definite matrix, ri>O is positive number. For the system descri-

bed by the state space model (3.3.4), we have to synthesize control law 

which will minimize the criterion (3 .A.1) • The minimization of the first 

member in the criterion ~xiQ.~xi represents requirement to minimize the 
1 . 

error between the actual state of the system Xl and the desired (nomi-

nal) state xOi. By this, it is required that the control law ensures 

desired performance of the system, i.e. to ensure that the joint is 

driven to desired position qOi. The second member in the criterion 

uir i u i represents minimiza.tion of the control signal amplitudes, by 

which it is (indirectly) taken into account energy consumption of the 

actuator during the positioning of the joint. 

Therefore, the following problem is set: to synthesize the control of 

the linear system (actuator+joint), the model of which is given by 

(3.3.4), in such a way as to minimize criterion (3.A.1). This optimi

zation problem can be solved analytically. Here, we shall not present 

the proof of the solution of the standard quadratic regulator, since 

it can be found in literature [1, 2, 31. It has been shown that the 

control which minimizes criterion (3.A.1) is obtained in the form which 

is linear by deviation of state ~xi: 

(3 .A. 2) 

Here Ki denotes nixn i positive definite matrix which is the solution 

of the matrix algebraic equation of Ricatti type: 

(3.A.3) 

Therefore, the control law is obtained as a linear feedback with res

pect to deviation of the system state from the nominal (imposed) state 

x Oi The feedback gains are given by: 

k~ 
1 

-1-iT 
r i b Ki 

where k i is n i x1 vector of feedback gains. 

(3.A.4) 

The control scheme practically represents servo system with feedback 



loops by all state coordinates. The scheme is identical to the one 

presented in Fig. 3.14. (or, to the one in Fig. 3.9), the only diffe

rence being the algorithm by which the feedback gains are determined. 

In the schemes in Figs. 3.9. and 3.14, the feedback gains are obtai

ned by selection of the positions of the poles of the closed-loop sys

tem in the s-plane. In the case of the optimal quadratic regulator the 

feedback gains are computed by minimization of the quadratic criterion 

(3.A.1), which reduces to solving of the equation (3.A.3). 

However, in the synthesis of the optimal regulator, the problem of se

lection of the weighting matrices Qi and r i arises. It is obvious that 

the selection of these matrices represents the tradeoff between the 

requirements concerning the system response (i.e. the speed by which 

the desired nominal state is reached), and the requirements which con

cern the energy consumption, i.e. the amplitudes of the actuator input 

signals. If r i is low relative to the members of the matrix Qij then 

this means that the fast positioning of the joint is required regard

less to energy consumption, i.e. regardless how high amplitudes of the 

actuator input signals are demanded. Otherwise, if r i is high 

relative to the members of Qi , then too high actuator input signals u i 

are not allowed, but this might reflect the time required for joint po

sitioning in the desired position qOi. The relation between the selec

tion of the weighting matrices and the system performance might be 

complex, in general case. 

It can be shown, that the poles of the closed-loop system (with the 

optimal quadratic regulator) satisfy the following inequality [2, 3]: 

< -

Ai -l AiT 
where Wi is nixni matrix given by Wi = Qi+Kib r i b Ki , 

minimal eigen-value of the corresponding matrix, and AM 

maximum eigen-value of the corresponding matrix, A( ••• ) 

(3 .A. 5) 

A denotes the 
m 

denotes the 

denotes eigen-

-values of the matrix in the brackets. Based on (3.A.S), we can get an 

estimate of posi tions of the poles of the system if the optimal quadra

tic regulator is applied. 

To ensure desired performance of the system, when the optimal regula

tor is applied (i.e. to ensure sufficiently fast response of the sys

tem) instead criterion (3.A.1) we may consider criterion 
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(3.A.G) 

where f\ is desired stability degree of the closed-loop system (Si>O 

is positive real number). By minimization of criterion (3.A.G) we ob

tain the standard quadratic regulator with prescribed stability degree. 

It can be shown that the control of the system (3.3.4) which minimizes 

(3.A.G) is again obtained in the form (3.A.2), but, now, Ki is nixni 
positive definite matrix which is the solution of the matrix equation 

[2, 31: 

(3.A.7) 

where Ini is the nixni unit matrix. It can be also shown that, in this 

case, the poles of the closed-loop system satisfy the following ine

quality: 

(3 .A. 8) 

i.e. the poles are on the left side from the line Re(s) = -Si (see Fig. 

3.A.1) in the s-plane. Therefore, by the selection of Si (the prescri

bed stability degree) we can specify posi tions of the poles of closed-loop 

system, i.e. we can ensure that the joint approaches the desired posi

tion qOi faster than 'Vexp (- Sit). By this regulator we ensure the stabi

lity degree of the closed-loop system, and the speed of approaching to 

the desired system state is guaranteed. 

Obviously, the optimal regulator requires feedback loops by all thesta

te coordinates xi. If all the state coordinates are not measurable 

(i.e. if we do not want to introduce feedback loop by current 

(pressure), or by velocity), then we may apply so-called output regu

lator [31, or we may apply observer to reconstruct the system state on 

the basis of measured outputs [41. In the above discussion, we have 

restricted ourselves to synthesis of optimal regulator for positioning 

of the single jOint of the robot (when all the other joints are locked). Ho

wever, the optimal regulator can be synthesized to ensure tracking of 

the desired trajectory [1-31. These problems will not be considered in 

this book. 



Im(s) 

o 

Re( s) 

Fig. 3.A.1. Region in the s-plane which is on the left 
from the line Re(s) -Si 

EXAMPLE 3.A.1. For the first joint of the robot in Fig. 3.2, a D.C. elec

tro-motor is applied, data on which are given in Table 3.1. If we take 

into account the moment of inertia of the robot mechanism, the matri

ces of the model of the actuator and the joint (3.3.7) have been cal

culated in Example 3.3. For this system we have to synthesize the opti

mal linear regulator. If we select the following weighting matrices: 

[ 
1.0 O. 

Q i = O. 0.1 

O. O. 

O. ] 
O. 

0.01 

0.1, 3. 

then the feedback gains are obtained according to (3.A.4): 

k. = (129.B, 43.314, 0.057)T 
1 

The poles of the closed-loop system are 

s = -5.92, s2 = -5.72, s3 = -70B.B 

and obviously, they satisfy condition (3.A.B). 
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Chapter 4 
Control of Simultaneous Motions of Robot Joints 

4.1 Introduction 

In the previous chapter we have considered the synthesis of local servo 

system for one single jOint of the robot. We have assumed that only the 

considered joint can move, while all the other joints of the robot are 

kept locked. The robots of the first generation often have implemented 

such a solution of the control system. In this case the joints of the 

robot are moving successively one by one until the goal position of the 

robot hand is reached. During the movement of one joint (until it re

aches its desired position) the rest of the joints are kept locked 

(i.e. they are fixed). The local servos, synthesized in Chapter 3, sa

tisfy such robotic tasks which require the successive movements of the 

robot jOints. 

However, such solution of the control system is not satisfactory for 

the tasks which are imposed to modern robotic systems. The reasons for 

this are numerous. Consider the task requiring only positioning of ro

bot hand in various positions in work space (assume that tracking of 

the nominal traj ectory in space is not required). The successive movements 

of the robot jOints are obviously slow. The time required by the robot 

hand to reach its goal position is equal to sum of the time periods 

required for each single joint to reach its goal position. If we rea

lize simultaneous motion of all jOints towards their goal positions 

(corresponding to the desired position of the robot hand), then the 

time required to reach desired position of the hand is equal to the 

time period necessary to position the jOint for which duration of mo

vement, from the initial to the goal position, is the longest one. It is 

obvious that in the latter case the positioning of the robot hand is 

considerably faster. This fact is very important regarding the appli

cation of robots in industry, where it is often required to execute 

each task as fast as possible. On the other hand, many robotic tasks 

require that the robot hand tracks some desired specified path in the 

working space. Also it is often required that the robot hand keeps 

certain orientation in space (or, changes the orientation in some de

sired manner) during the robot motion. Such tasks cannot be realized 



by successive movements of the robot joints. These tasks requires 

simultaneous movements of all jOints of the robot. 

If the joints of the robot are moving simultaneously, their movements 

are dynamically coupled: the movement of each joint affects the move

ments of the other joints. The load moment acting upon each jOint is 

variable and depends on the movements of all joints of the robot. The 

following problem arises: whether the local servo systems synthesized 

independently for each "isolated"joint, are capable to ensure simulta

neous movements of all joints, or not? If we assign desired positions at 

the inputs of the local servos and allow the jOints to move simultane

ously, would they reach the goal positions in desired way (without 

overshoots, with minimal steady-state errors, etc.)? Similarly, if we 

set desired trajectories of the joints at the inputs of local servos, 

would the servo systems ensure satisfactory tracking of these trajec

tories assuming that the joints are moving simultaneously? In other 

words, the question arises whether the coupling between the jOints can 

"destabilize" the local servos and disturbs the desired movements of 

the robot joints to such extend that the performance of the robot be

comes unacceptable? To answer these questions it is necessary to ana

lyze dynamic interconnections between the joints and to analyze the 

stability of the robotic system. In this chapter we shall consider the 

performances of the robotic system if all the jOints are moving simul

taneously and if only the local servo systems are applied to control 

the robot joints. On the basis of such analysis we shall determine 

whether we can accept the local servo systems (which control each joint 

independently), or we must introduce additional feedback loops to com

pensate for the effects of coupling between the joints, in order to en

sure simultaneous movements of all robot joints. 

4.2 Coupliug Between Joints 

Let us consider simultaneous positioning of several joints of robotic 

system. Performance of the robot is described by the mathematical model 

of the dynamiCS of the mechanism (3.2.2) and the mathematical models 

of the actuators (3.2.8), or by mathematical model of the entire sys

tem (3.2.27). The movement of a single jOint (if all the other jOints 

of the robot are locked) is described by the model (3.3.4), which in

cludes moment of inertia of the mechanism around the axis of the con

sidered jOint. Let us assume that joints are controlled by local servo 

systems. These local servos have been synthesized assuming that only 
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the corresponding joint is moving while the other joints are locked. 

The scheme of the control system of the entire robotic system (if only 

local servo systems are applied) is presented in Fig. 4.1. When the 

other jOints start to move the dynamic forces and moments, described 

by (3.2.2), appear. These dynamic forces act as external load upon the 

servo systems around the robot joints. Let us consider how these for

ces affect the performances of local servo systems. 

(a) Variable moment of inertia. We have already shown (Sect. 3.3.4) 

that the moment of inertia of the robot mechanism around the axis 

of the i-th jOint varies if the other joints change their angles 

(or linear displacements). This means ~hat Hii in the model (3.2.2) 

is function of all joint coordinates qJ for j>i. We have already 

shown that in order to prevent overshoots in the servo system, we 

must determine the maximal value of the moment of inertia of the 

mechanism Hii(q). Then, for this maximum value of the moment of 

inertia we have to determine the feedback gains so as to ensure 

the servo system to be critically damped. If this procedure is 

followed, then when the jOints coordinates change their values and 

the moment of inertia becomes Hii <maxHii (g), it is ensured that the 
q 

servo system around the i-th joint is overcritically damped (and, 

thus, the overshoots cannot appear). However, if all the joints of 

the mechanism are moving simultaneously, during the movement of 

the i-th joint, the moment of inertia of the mechanism Hii around 

this jOint is varying, which might cause an uneven behaviour of 

the servo system. The local servo is always critically or overcri

tically damped (i.e. the overshoots of the set goal position can

not appear), but still the performance of the servo might be un

satisfactory. The compensation for the variable moment of inertia 

might be achieved by variable feedback gains, or by global control 

which will be considered in Chapter 5. 

(b) Cross-inertia members. If we consider the matrix of inertia H(g) , 

we can see that besides the diagonal elements Hii(q) (which varia

tion we have considered above) there are also off-diagonal ele

ments Hij(q) which represent so-called cross-inertia members. The

se members represent the effects of accelerations of the other 
.. j 

joints upon the load moment around the i-th joint Hij(q)q . With 

some robot structures the values of these members might be close 

to the values of the eigen-inertia terms Hii (i.e. Hij~Hii)' and 

therefore their effects might be significant. This inertia coupling 
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between the robot joints represents external load upon the i-th 

joint. vlhen the j-th jOint is accelerated or deceleration the 

inertia coupling causes the external load upon the servo in 

the i-th jOint (the moment is given by H .. (q)qj). As we have alre-
1J 

ady explained, the external load upon the shaft of the actuator 

(D.C. motor) causes errors in the positioning of the jOint, or in 

the tracking of trajectories. However, these moments are signifi

cant if the accelerations are relatively high. When the accelera

tions drop to zero (when the robot stops), these moments also va

nish and they do not affect the positioning of the joints, i.e. 

they do not cause steady state errors in robot positioning. These 

moments can cause errors in tracking trajectories, if high accele

rations qj are demanded. If accurat~ tracking of fact trajectories 

is essential for implementation of a given robotic task, then the

se moments have to be compensated for. As we have shown in previ

ous chapter the constant external load can be compensated in vari

ous ways. However, these moments due to cross-inertia interconnec

tions are variable and they depend on the positions of the robot 

joints qj and on the accelerations qj of the joints. Therefore 

these moments cannot be efficiently compensated by integral feed

back loop. The compensation of these dynamic moments by global 

control will be considered in Chapter 5. 

(c) Gravity moments. The effects of gravity moments upon the local 

servos have already been considered in Section 3.3.4. Here, we 

shall only note that in simultaneous movements of several jOints 

gravity moments become variable, causing errors both in pOSi

tioning and in tracking of traj ectories. Thus, the gravity mo

ments are not any more constant load upon the servo. Therefore, 

they may produce, if not compensated by global control, uneven 

tracking of desired trajectories, and uneven positioning of the 

robot jOints. 

(d) Centrifugal and Corio lis forces (torques). The vector h(q, q) in 

the model of the mechanism dynamics (3.2.2) includes centrifugal 

and Coriolis forces which depend on the joint velocities q. Since 

these forces are directly proportional to squares of the jOint 

velocities, they are significant only if the joints are moving at 

high velocities. When the robot is starting to move or is stopping 

these forces are negligible, which means they do not affect the 

positioning of the robot in any desired positions and do not cause 



steady state errors. However, these forces cause errors in the 

tracking of fast trajectories. If the robot joints are moving at 

high velocities, these forces act as external loads upon the servo 

systems around the jOints. If the precise tracking of fast trajec

tories is not required the effects of these forces can be ignored. 

If the tracking of fast trajectories is essential, we must take 

into account centrifugal and Coriolis forces in the synthesis of 

control. Since the requirements upon the modern robots in industry 

are growing (regarding the accuracy and speed of the desired tra

jectories and so on), it is often required to compensate for these 

dynamic forces. 

Example 4.2. Let us consider the robot in Fig. 3.2. For the perVo 

around the first Joint of this robo~we have synthesized the servo 

gains in Example 3.3.2. assuming that all the other joints of the ma

nipulator are locked (we have aspumed that the joints are ~ocked in 

the positions in which moment of inertia of the mechanism around 

the first joint H11 gets its maximal value). Let us cons~d~r the be

haviour of this servo if all the other joints are ll\OVirg. Let u,!,\ con

sider the positioning of the first joint. pesired position of the jo

int is q01=0.5 [rad] and the initial position of the joint is q1 (0)=0. 

[rad]. If all the other Joints are locked, then the positioning of the 

servo systems is as shown in Fig. 4.2. (bold line). The results are 

obtained by digital simulation using the complete robot dynamic model. 

If the second joint is moving in such a way that it is accelerated at 

q2=1 [rad/s 2 ] (while the third jOint is fixed), then upon the first 

joint is acting the moment due to cross-inertia term H12 (q)q2. The po

sitioning differs from the previous case. 

D.6 0.8 

0.2 0.4 
.. ' 

1 .0 t [5] 
- 0 . 1 

- 0 • 2 
~ •• L 

q n. 
.. 2 1[~] --- q 

52 - D. 3 

- 0.4 ......... q2 5[~] 
5 

- 0 • 5 

l 
Fig. 4.2. Positioning of the first joint of the robot in Fig. 3.2. 

for various accelerations of the second jOint 
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The results of digital simulation are presented in Fig. 4.2, too (das

hed line). It can be seen that the effects of cross-inertia term is 

relatively weak. However, if the acceleration of the second is extre

mely high q2=5. [rad/sl, the effects of these forces will be conside

rably stronger, which can be verified by the simulation of the posi

tioning of the first jOint (also presented in Fig. 4.2. - dotted line). 

E X ere 1 s e s 

4.1. For the robot of cylindrical structure, presented in Fig. 2.5, 
(the data on which are given in Table 3.4), the servo feedbacK 

gains for the third joint have been synthesized in Exercise 3.32. 

Determine the "steady state error" due to Coriolis forces when 

the first jOint is moving at velocity q1=2 [rad/sl, and the third 
·3 joint is moving at velocity q =1 [m/s]. 

4.2. For the manipulator in Fig. 3.2. and for the servo system in its 

first joint, servo gains have been synthesized in Example 3.3.2. De

termine the steady state error in the first joint (when the se

cond jOint is in q2=o.) due to inertial coupling between the first 

and the second jOint if the second jOint is moving at accelera

tion of q2=5. [rad/s 2 1. Check whether this result complies with 

the results of simulation in Fig. 4.2. Explain the differences in 

these results. 

* 4.3. If the actuator for the first joint of the robot in Fig. 3.2. is 

* 

hydraulic actuator, for which the servo has been synthesized in 

Exercise 3.35., determine the steady state error due to inertial 

coupling between the first and the second joint, if the second 

jOint is moving at acceleration of q2=5 [rad/s 21. Compare the 

obtained results with the results in Exercise 4.2. 

4.4. Hri te the programme (in one of high-level programming language) for 

simulation of robot performance. The simulation should include the 

complete dynamic model of the robot. Nrite this programme for par

ticular robot in Fig. 3.2. assuming that the robot joints are 

driven by D.C. actuators (data on actuators are given in Table 

3.1). Each jOint is controlled by its servo system, and the feed

back gains are synthesized as presented in the previous chapter. 

The input data for the programme are: data on actuators (for 
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computing the matrices of the models of actuators (3.2.7», data 

on robot (for computing matrix H and vector h acc. to (3.2.3», 

data on servo gains (for computation of actuators inputs acc. to 

(3.3.41», data on desired positions of the joints qOi, data on 

initial state of the robot x(0)=(x1 (0), x 2 (0), x 3 (0»T, xi(O)= 

(qi(O), qi(O», and data on integration interval. Simulate the si

multaneous positioning of all three joints from the initial state 

x(O)=(O, 0, 0, 0, 0, O)T towards desired positions q01=0.2 lrad], 

qo2=0.1 [rad] and qo3=0.05 lm]. (Instruction: At each sampling in

terval for given x(t) compute matrix H and vector h (using pro

gramme written in Exercise 3.5), compute inputs for actuators acc. 

to (3.3.41), then compute the first derivative of the state x(t) 

acc. to (3.2.27) and apply some method for numerical integration

for example simple Euler's method, see Chapter 5. and Exercise 3.39) . 

4.3 Analysis of Linearized Model of Robot 

In the previous section we have considered the effects of various com

ponents of the dynamic moments (3.2.2) on the performance of the local 

servo systems. It is obvious that the effects of dynamic coupling bet

ween the jOints can be significant. Therefore, it is necessary to exa

mine these effects more precisely. Actually, we have to examine wheth

er the local servo systems can be successfully applied for control of 

simultaneous movements of several robot joints (see Fig. 4.1). The co

upling between robot joints are dynamic moments around joints which 

are described by the dynamic model of the mechanism (3.2.2). These dy

namic forces are in general case, complex functions of angles, veloci

ties and accelerations of joints. Therefore, the analysis of the ef

fects of these forces upon the servo system performances is not simple, 

specially if the trajectory tracking problem is addressed. To do this 

we have to apply various methods for analysis of complex systems which 

have been developed within the control system theory. 

One of the ways to analyze the performances of complex nonlinear sys

tems is by their linearization. The nonlinear model is linearized, 

and then the linear model is analyzed. The basic motive for such an 

approach lies in the fact that many methods for analysis of complex 

linear systems have been developed. However, the results of analysis 

of linear model cannot guarantee the equal performance of the original 

nonlinear system, since the linear model is just an approximation of 
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the actual system*). Namely, if the stability of the nonlinear model 

of the system is analyzed by testing the stability of the linear model 

of the system, then we obtain just necessary, and not sufficient,condi

tions for stability of the nonlinear model of the system. The meaning 

of this is as follows: if linear model of the system is not stable, then 

we can be sure that the nonlinear model also is not stable; however, 

if the linear model is stable, then the nonlinear model is not neces

serily stable. The stability of the linear system guarantees the stabi

lity of the nonlinear model only in some region around the point, in 

the state space, around which the linearization has been performed. 

However, the linear analysis is often applied for analysis of the non

linear systems, due to its simplicity and since it offers an insight 

in the system performance in the close region around the pOint in the 

state space around which the nonlinear model has been linearized. Lat

ter on we shall explain some other reasons which justifies the appli

cation of the linear analysis for robotic systems (see Chapter 5). 

Here, we shall briefly describe how we can obtain the linear model of 

the robot, and we shall consider application of some methods for stabi

lity analysis of the linear systems to the robotic systems. We assume 

that just the local servos are applied for control of robot joints [1, 

2, 3]. 

4.3.1. Linear model of robot 

Let us consider the entire model of the robot in a so-called centrali

zed form (3.2.27) 

a (x) + 13 (x) N (u) (4.3.1) 

where the vector function a(x) and matrix SIx) are given in (3.2.27). 

The vector function a(x) and matrix SIx) are complex nonlinear functi

ons of the system state x. Let us consider the system in the surroun

dings of the point x O in the state space. Let us assume that the "no

minal" state x O corresponds to desired positions of the robot jOints 

qOi, i.e. XO (xo1 , xo2, ... ,xon)T, xOi = (qOi, O)T for n i =2. Let us 

assume that we can determine the input signals u O=(u01 , uo2 , •.. ,uon)T 

*) 
Nonlinear model of the system is also an approximation of the actu-
al system but, obviously, much better approximation, i.e. it is 
much closer to the actual system performance. 



such that the system is in equilibrium in the point xO, i.e. that it 

is satisfied: 

o 

The model of state deviation around the point 
o x , 

the following form, based on (4.3.1) and (4.3.2): 

where a is Nx1 vector function given by: 

(4.3.2) 

UO can be written in 

(4.3.3) 

Here, ~x denotes Nx1 vector of state deviation from the equilibrium 

point xo , i.e. x(t) = x(t)-xo, ~u is nx1 vector of deviation of the 

input signals from the "nominal" signals uo, i.e. ~u(t) = u(t) - uo, 

N(uo, ~u) denotes the nonlinearity of the amplitude saturation type 

according to (3.2.9) *) ! oi i 
for ~ui<_ui_uoi 

-u, -urn m 

oi ~ui) _ui_uoi<~ui<u i oi N(u , ~Ul for -u (4.3.4) 
m m 

oi i for ~ui>u i oi 
-u +u -u m -m 

The model of deviation of the state coordinates from "nominal" point 

xo (4.3.3) has the same form as the original model (4.3.1). The model 

of deviation is the system of differential nonlinear equations. 

We want to linearize the model (4.3.3) in order to obtain linear ap

proximation of the robotic system which will serve for analysis of the 

stability of the entire robotic system. The linear model is obtained 

in the form: 

(4.3.5) 

where AL is NxN matrix and BL is Nxn matrix. Matrices AL and BL are 

obtained according to: 

*) Here it is assumed that UO satisfies JuoJ<u;. 
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A = aa (xo , llx) I 
L a~x for 6X=O' 

, 0 
B(x , 0) (4.3.6) 

o Obviously, the matrices AL and BL depend on x , i.e. on the pOint in 

the state space around which the model is linearized, and this we shall 

consider latter on. Based on (4.3.3) and (4.3.6) we obtain: 

A = ~I aB I 
L allxl llx=O + allx llx=O 

If we introduce a and B as defined in (3.2.27) we obtain: 

A+F(I -HTF)-1 
n 

+ F (I -HTF) -1 [~(TAXo+TBUo) +HTA + "a~ 1 
n ollx ouX 

where aH/allx and ah/allx are matrices of adequate dimensions. 

(4.3.7) 

(4.3.8) 

To obtain matrices AL and BL of the linear model of the system it is 

necessary to determine the linear model of the mechanical part of the 

robotic system, i.e. it is necessary to determine the following mat

rices: 

~ - matrix of dimensions nxnxn aq 

- both of dimensions nxn 

(4.3.9) 

These matrices represent the first derivatives of the matrices H(q) 

and h(q, q) by q and q, for q = qO and q = qo. 

Thus, the problem how to determine the linear model of the robot dy

namics reduces to determination of matrices (4.3.9), i.e. to lineari

zation of the dynamic model of the mechanical part of the robotic sy

stem. The matrices (4.3.9) can be determined in several ways: 

(a) The matrices of the linear model (4.3.9) can be obtained analyti

cally. This means that we can write the original model of dynamics 

of the mechanical part of the robot in analytical form (3.2.2), 

and we can analytically determine the first derivatives of the 

elements of the matrix H(q) and of the vector h(q, q) by the joint 

angles (displacements) q and their (rotational or linear) veloci-



ties q. By this we obtain the matrices (4.3.9). However, since the 

elements of matrices H(q) and h(q, g) are complex nonlinear func

tions on q and q, determination of their derivatives analytically might 

be very tedious and complex task (which might be subject to many 

errors). This is especially the case with robots with many rota

tional joints which models are often very complex functions of q 

and g. These were the reasons which motivated development of me

thods for automatic computer-aided determination of the linear mo

del of mechanical part of the robot by analytical differentiation 

of the matrix H and of the vector h [1]. 

(b) The matrices (4.3.9) might be also determined applying various 

numerical procedures, which might be set at a digital computer. 

These procedures are completely analogous to numerical procedures 

for computation of nonlinear dynamic models of robots (for compu

tation of matrix H(q) and vector h(q, q)). As we have already ex

plained, several algorithms have been developed for numerical com

putation of the matrices Hand h of the mathematical model of dy

namics of the robot mechanism, and these procedures are based upon 

recursive relations between the velocities of the robot links, 

between their accelerations, between their forces and moments. Pa

rallel to these procedures for determination of the matrices Hand 

h, the algorithms for determination of matrices (4.3.9) have been 

developed. These algorithms are based upon the same principles as 

the algorithms for determination of the basic matrices Hand h. 

The algorithm based on D'alembert's principle for numerical deter

mination of the matrices (4.3.9) of the linear model of the dyna

mics of open kinematic chains, is presented in detail in [1]. This 

algorithm set at the digital computer enables computation of numerical 

values of the matrices (4.3.9) for given qO, and gO, for arbitrary 

type and structure of robot (i.e. for robots with arbitrary number 

and types of joints, etc.). In this way, using such program for 

digi tal computer, we can simply determine the matrices of the linear 

model of the robot, but just numerically (Le. for the given data 

on qO and gO we determine the numerical values of the elements of 

the matrices (4.3.9)). 

(c) The matrices of the linear model of the robot (4.3.9) can be de

termined by various procedures for identification. We assume that 

the nonlinear dynamic model of the robot is available and based 

on this model we can numerically identify the linear model which 
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describes the performance of the actual system. The aim is, obvious

ly, to determine the linear model whose response to various inputs 

is as close as possible to the response of the actual system. 

We shall briefly describe a simple procedure for numerical identifica

tion of the linear model of the robotic system. Let us consider the 

"exact" nonlinear model of the state deviation of the robot (4.3.3) 

around the point xo. Let us assume that certain signals eu(t) are fed 

at the system inputs. For such control signals we may integrate nume

rically the system of differential equations (4.3.3) and obtain the 

trajectories of the state vector exIt) which represent the response of 

the robotic system to the given inputs eu(t) (around the nominal point 

xo, uO), for some selected initial state extOl: 

ox(t) - ° ' ° ° a(x, ex) + B(x, ex)N(u, eu(t)) (4.3.' 0) 

Let us assume that we have selected the input signal to satisfy the 

amplitude constraint (4.3.4), i.e. such that N(uo, eu(t)) = eu(t). The 

input signal might belong to various classes of functions (of time). 

Let us observe the response of the nonlinear model (4.3.'0) in m, dis

crete time instants t i , i=,,2, ... ,m,. The matrices of the linear model 

(4.3.5) have to be determined in such a way that they satisfy the fol

lowing equations: 

where [ex] is Nxm, matrix given by [ex] [ex(t,), ex(t2), ..• ,ex(tm,)] 

and [ox/eu] is (N+n)xm, matrix given by: 

ex (t, ) 
[----:---, 

eu(t, ) 

ex(tm,) 
---------] 

eu (tm,) 

Based on (4.3.") it is possible to determine the pair of matrices 

AL(Xo), BL(Xo) via generalized inversion of matrix [ex/eu], i.e. using 

the following equations: 

(4.3.'2) 

Here, it is assumed that the matrix in { } is non-singular. In this 

way we can determine the matrices AL(Xo), BL(Xo) of the linear model 

of the robotic system around the point xO, uO. 



The procedure for numerical identification of the linear model (4.3.5) 

on the basis of nonlinear model (4.3.3) is simple. We have to simulate 

behaviour of the nonlinear model of the state deviation around the point 

xO, u O (4.3.5), if the selected input signals Qu(t) are applied. The 

values of the state c:oordinates QX (E.) and of the first derivatives of 
~ 

the state coordinates ax(t i ), i=1,2, ••. ,m1 (i.e. the response of the 

nonlinear model) are memorized for m1 time instants during the simula

tion. In this,we have to select the sufficiently large number m1 • Nex~ 

we have to compute the matrices AL(Xo ), BL(Xo) according to (4.3.12), 

using the memorized values of Qx(t.) and ex(t.). 
~ ~ 

In computing the matrices ~(xo), BL(Xo) we have to take large number 

of data Qx(t i ) (i.e. to simulate the system performance sufficiently 

long and to memorize many "instants" m1), in order to cover the sur

roundings of the point x O and take into account as much information on 

the system behaviour as possible. By this we ensure that the response 

of the linear model "sufficiently" well approximates the response of 

the original nonlinear model in the surroundings of the pOint xO, u o . 

Actually, the response of the linear model of the system has to "fit" 

the response of the original nonlinear model of the system. However, 

if the number of data to be memorized increases, then numerical prob

lems in solving of the equation (4.3.11) also increase. Namely, nume

rical errors in matrix inversion and matrix product which are required 

in (4.3.12) increase if the dimensions of the matrices increase. Gene

rally speaking, this procedure for identification of the linear model 

of the robotic system is subject to numerous possible numerical errors, 

Which might even lead to unreliable and inadequate linear model. It 

is necessary to ensure that the input signal Qu(t) is "sufficiently 

complex" to excite all significant modes of the robotic system (Le. 

its frequency bandwidth must be sufficiently wide). The above pre

sented procedure is efficient for identification of linear model if 

the original nonlinear model (4.3.3) is stable. Otherwise, if we apply 

some arbitrary input signal Qu(t), then it might happen that Qx(t)+oo, 

and then the identification becomes invalid due to large numerical er

rors. Therefore, first the system (4.3.3) is stabilized introducing 

some feedback loops (for example, simple local servos around the robot 

jOints might be applied to "approximately" stabilize entire robot) . 

Then, the linear model of the stabilized robot is identified. At last, 

we omit from the linear model the introduced feedback loops and by 

this we obtain open-loop linear model of the robotic system. However, 

often it is not easy to "approximately" stabilize robotic system. 
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Due to this, it must be underlined that the numerical aspects highly 

limit the applicability of this procedure for identification of the 

linear model of the robot. Therefore, the more complex and more sophi

sticated procedures for identification of the linear model of the sys

tem might be applied. In these procedures the numerical problems due 

to operations 'with large amount of data are overcome in various ways. 

In the above described identification procedure we have used the non

linear model of the robot to determine the linear model. However, we 

have to notice that the linear model of the robot might be identified 

also by recording the responses of the actual robotic system to vari

ous input signals eu(t), i.e. the linear model might be identified ex

perimentally. Based on records of the responses of the actual robot 

exIt) to various input signals eu,it is possible to identify linear 

model which approximatively describes the performance of the robot dy

namics around the nominal point x O , u O • 

Here, we have presented how we can directly identify the linear model 

of the entire robotic system which includes the models of robot actua

tors. Since the models of actuators are linear (or, we may say that 

the linear models are good approximation of their actual performances), 

we may identify only the matrices of the linear model of the mechani

cal part of the system (4.3.9). If these matrices are identified,it is 

easy to determine the matrices of the linear model of the entire robo

tic system based on (4.3.8). The identification of the linear model of 

the mechanical part of the system can be carried out applying the pro

cedure described above. 

Example 4.3.'. The model of dynamics of the mechanical part of the ro

botic system presented in Fig. 3.2. is given by differential equations 

(3.2.3). Since this model is relatively simple, it is easy to determi

ne the corresponding matrices (4.3.9): 

u 0 

:J aH 0 
~ 0 

r '. 2 

* 2 

:l 
-2m3 l'"l',3 s l.nq -m3l'"l',3sinq 

a H *. 2 
0 

aq2 
-m3 l',1l',3 s l.nq 

0 0 



[: 0 

:] aH 0 (4.3.13 ) 
aq3 

0 

l 0 
*·2·2·1 2 

:1 
-m3 £1£3 q (q +2q )cosq 

ah 0 * ·1 2 2 
3q m3 £1£3(q) cosq 

0 0 

l -2m3 £1 
*·2. 2 * ·2 '1 2 

£3 q sl.nq -2m3 £1£3(q +q )sinq 

3h *·1 . 2 0 
oq 2m3 £1£3 q sl.nq 

0 0 

If the matrices of the actuators models (D.C. electro-motors) are given 

by (3.2.11), then, using the data on the robot and the applied actua

tors given in Tables 3.1. and 3.2., we compute the matrices of the li

near model AL , BL around the point in the state space q02=0.5 [radl, 

q01=0., q02=0. (the values of other state coordinates might be selec

ted arbitrary, they have no effects upon these matrices). We compute 

these matrices according to (4.3.8): 

0 0 0 0 0 

0 -0.832 0 2.56 0 0 

0 O. 0 0 0 
AL 

0 2.56 0 -15. 0 0 

0 0 0 0 0 

0 0 0 0 0 -45. 

(4.3.14 ) 

0 0 0 

0.58 -1 .75 0 

0 0 0 
BL 

-1.78 10.43 0 

0 0 0 

0 0 0.361 

This way of determination of the linear model of the robot might be 

easily applied in the cases of simple robot structures. However, 
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in the cases of complex robot structures with many degrees of freedom, 

this analytic differentiation is very tedious job, so in these cases 

it is much more convenient to apply numerical algorithms set at the 

digital computers to obtain linear model of such robots. As already 

mentioned, the algorithms for automatic computer-aided generation of 

linear models of the robot with arbitrary structure in analytical forms 

have been developed. Therefore, the matrices (4.3.13) can be generated 

automatically by such software packages [4J. 

E X ere 1 s e s 

4.5. Show that the matrices of the linear model of the robot are obtai

ned in the form (4.3.8) if we start from the nonlinear model of 

robot (3. 2 . 27), ( 4 . 3 . 6) and (4. 3 . 7) . 

4.6. For the robot presented in Fig. 2.5., the dynamic model of which 

has been determined in Exercise 3.1, determine analytically the 

matrices (4.3.9) and the matrices of the linear model (4.3.8), if 

D.C. electro-motors are applied (and the models of actuators are 

linear and of the second order) . 

4.7. If data on the manipulator in Fig. 2.5. are given in Table 3.4., 

determine the values of the matrices (4.3.9) (computed in Exer

cise 4.6) for the following nominal state coordinates: a) Xo 

(0, 0, 0, 0, 0, O)T, b) Xo = (0, 0, 0, 0, 0.5, O)T, c) Xo = (0, 

1., 0.2, 0., 0.5, 1.)T. If data on actuators are given in Table 

3.3. compute the values of the elements of the matrices (4.3.6) 

for these three cases. 

4.3.2. Analysis of stability of linear model of robot 

with position control 

The linear model of the robot, obtained by one of the procedures des

cribed in the previous section, represents the time-invariant system 

of N linear differential equations. To examine the performance of this 

system we may apply various well-known methods for analysis of linear 

multi-input mUlti-output systems. In this particular case, we shall 

address the problem of stability of such system. We want to examine 

whether the robotic system is stable around the nominal point XO (i.e. 

around the desired goal positions of the robot joints) if we apply only 



local controllers and the joints are moving simultaneously. Here, 

for the sake of simplicity, under the notion of stability we shall as

sume asymptotic stability [5]. 

To examine stability of a complex linear system we may apply various 

procedures for stability analysis. One 0f the most often applied is to 

determine eigen-values of the matrix of the linear model. If the open

-loop system is considered, we may analyze the stability of the system 

by examining the eigen-values of the matrix AL : 

Ka n (s'?-s) 
j =1 J 

(4.3.15) 

where IN is the NxN unit matrix, Ka is the coefficient of proportiona

lity, sj j=1,2, ... ,N are the eigen-values of the matrix AL • Byanaly

sis of the eigen-values s'? we can easily conclude on stability of the 
J 

open-loop linear model of the system. 

Now, let us consider the stability of the closed-loop robotic system 

if the local servo systems are applied (Fig. 4.1). In this case the 

control law is given by: 

(4.3.16) 

where K is nxKc matrix of feedback gains, C is the output matrix of 

dimensi,?ns KcxN. The matrix of feed~ack gains K includes the position 

gains K~, velocity feedback gains K~ and the gains in the feedback lo-
p . v 

ops by the robots currents K~ (if such feedback loops are applied) , 

and it is given by: 

K1 K' K1 
p v I 

K2 2 K2 0 K p v I 

K 

o 
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It is obvious that the matrix of feedback gains is diagonal and given 

by K = diag(ki). The servo feedback gains k i are synthesized as des

cribed in the previous chapter. The output matrix C is also diagonal 

matrix, given by C = diag(C i ). In the case when local feedback loops 

are applied by all state coordinates xi, then the output matrix C is 

the NxN unit matrix. Here, by Kc is denoted the order of the system 

output which is given by 

n 
I k~ 

i=l 1 

If the control (4.3.16) is applied, i.e., if the local servo feedback 

loops are closed, the matrix of the closed-loop linear model of the 

system is given by AL - KC. To analyze the stability of the r~bot with 

local servo systems around the desired positions of joints qOl, we ha

ve to determine eigen-values of the closed-loop system matrix: 

where Ka is the proportionality coefficient and sj, j=1,2, ... ,n are 

the eigen-values of the matrix AL-BLKC. 

Next, we have to analyze positions of the eigen-values s~ of the clo
J 

sed-loop system matrix in the complex plane. As it is well known, if 

all eigen-values of s~ of the system matrix lie in the left part of 
J 

the complex plane, then the linear model of the robot is stable. If 

any of the eigen-values lies in the right part of the complex plane 

(i.e. if any eigen-value has positive real part), then the system is 

unstable. Thus, we have to test if 

Re(s~) < 0 
J 

for j=1,2, ... ,N (4.3.18) 

However, to ensure satisfactory performance of the robot, i.e. to en

sure sufficiently fast response of the system, it is required that all 

the eigen-values have to lie at the left-hand side of the line Re(s)= 

-a, where a is prescribed stability degree of the particular robot. 

As it has been already explained in Sect. 3.3.3. this requirement me

anS that the linear model of the system has all time constants less 

than 1./a, i.e. the response of the linear model of the system to the 

step inputs (positions) has to approach to the desired positions faster 

than ~exp(-at). Therefore, instead to examine the condition (4.3.18) 

we have to test condition: 



Re(s<:') < -a, 
J 

for j=1,2, ••• ,N (4.3.19 ) 

If the condition (4.3.19) is satisfied we may be sure that the linear 

model of the robotic system approaches the desired state xO faster 

than exp(-at) even when all jOints of the robot are moving simultane

ously towards their goal positions qOi (which correspond to x O) . 

However, to ensure satisfactory performance of the entire robotic sys

tem, it is not only required that the system has sufficiently fast re

sponse (and short settling time), but it is also necessary to prevent 

overshoots of the goal positions (i.e. in the position control it is 

required that all jOints do not overshoot their set goal positions). 

In Sect. 3.3. we have explained the reasons why the overshoots of 

desired positions of the robot jOints are not acceptable. The local 

servo systems have been synthesized to prevent the appearance of the 

overshoots of the goal positions, if each jOint is moving independent

ly. However, if simultaneous motions of several joints are permitted the 

overshoots in some joints might appear due to dynamic coupling between 

the joints motions. Actually, it is quite obvious that the eigen-valu

es of the linear model of the entire robotic system differs from the 

eigen-values of the models of the decoupled subsystems (The decoupled 

subsystems are independent joints with their local servo systems). We 

have to examine whether the eigen-values of the closed-loop linear mo

del of the robot (with local servo systems applied) satisfy the condi

tion: 

1m (s<:') 
J 

o for j=1,2, •.. ,N (4.3.20) 

Actually, we require that all eigen-values of the linear model of the 

robotic system are real. However, this condition is too restrictive. 

The system performance is mainly affected by the so-called dominant 

eigen-values which are the closest to the imaginary axis (i.e. which 

are with the greatest real parts), while the eigen-values which are 

far from the imaginary axis in the left half of the complex plane have 

considerably less effects (since they are related to shorter time con

stants of the system). 'rherefore, we can relax the requirement (4.3.20) , 

so that we require that the dominant eigen-values of the linear model 

matrix have to be real (or very close to the real axis), while the 

other eigen-values (far in the left half of the complex plane) might 

be complex. However, for all eigen-values it is generally required 

that they should be as close as possible to the real axis. 
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This means that the analysis of the stability of the linear model of 

the robot with the closed local servo feedback loops is relatively 

simple: we have to determine the eigen-values of the matrix of the 

closed-loop linear model, and then,we have to examine whether these 

eigen-values satisfy the conditions (4.3.19) and (4.3.20) (this latter 

condition might be partially fulfilled, as explained above). If these 

conditions are met we may state that the linear model of the robotic 

system is exponentially stable around the point x O , u O [3] with expo

nential stability degree a. We can also state that the linear model 

has no overshoots. However, by this the exponential stability of the 

entire nonlinear model of the system is not proved, which means that 

we cannot guarantee that the actual system will have the satisfactory 

performance if several joints are moving simultaneously*). If the con

dition (4.3.19) is not met (even for a=O.) we may state that the robot 

system is not stable. Namely, the stability of linear model of the ro

bot gives necessary (but not sufficient) conditions for stability of 

the nonlinear model of the robotic system. Therefore, if condition 

(4.3.19) is not met we may be sure that the synthesized local servo 

systems do not ensure satisfactory performance of the robot. In that 

case there is no need for further analysis of the stability of the non

linear model of the robot, but we have to re-select the local control

lers until we stabilize the linear model of the system. When we deter

mine the local servos which stabilize the linear model of the system, 

we have to examine the stability of the nonlinear model of the system 

(see Appendix 4.A). 

In the analysis of stability of the linear model of the robot in the 

above described way, the main problem lies in determination of eigen

-values of the system matrix since this matrix might be of relatively 

high order. If we consider a robot with n=6 degrees of freedom (6 jo

ints) and if all its actuators are modelled by simple linear models of 

orders n i =3, the entire system is of order n.n i =18. Computation of the 

eigen-values of such high order matrix is related to numerical prob

lems. However, there are numerous algorithms (and corresponding com-

*) It has been shown [6] that the robotic system in general can be 
asymptotically stabilized around the desired positions of the 
jOints if we close local servo feedback loops by position error and 
by velocity. However, the exponential stability of the nonlinear 
model of the rObot is not gUaranteed if the linear model is expo
nentially stable. Also we cannot guarantee that nonlinear model 
will have no overshoots. The tracking of input trajectories by lo
cal servos if several jOints are moving simultaneously must be exa
mined for each particular robot separately (see Appendix 4.A). 



mercially available computer programmes) for computation of the eigen

-values of the high order matrices. rherefore, the problem of computa

tion of eigen-values of linear model of robot will not be addressed 

here. 

We have presented above how we can form the linear model matrices of 

the closed-loop robotic system if only local static servo systems are 

applied. It is easy to extend this procedure to the case when local 

dynamic controllers are applied. It is quite obvious that in that ca

se the order of the entire model of the system becomes higher (for 

example if in n=6 jOints we apply PID controllers, and if we consider 

the models of actuators of the orders n i =3, the matrix of the linear 

model of the system is of the order nx(ni+1)=24 - see Exercise 4.9). 

Up to now we have considered the linear model of the robot around one 

point x O in the state space (and around the corresponding nominal con

trol signals u O which satisfiy (4.3.2». As we can see in equations 

(4.3.8), (4.3.9) the values of the elements of the matrices of the 

linear model of robot depend on the point x O around which the nonline

ar model is linearized. (As we already explained the inertia matrix H 

depends on the jOints positions qO and the vector h depends on the 

joints positions qO and velocities qo). Therefore, in general case, 

for various pOints in the state space XO we obtain various linear 

models of the system. If we consider eigen-values of the open-loop 

linear model matrix, we see that they move in the complex plane as it 

is moving the point XO in the state space around which the system is 

linearized. If we select the local feedback gains, the matrix of the 

closed-loop linear model of the entire robot varies depending on the 

point xc, and therefore its eigen-values also vary. According to this 

considerations, if we want to examine the performance of the robot 

when the local controllers are applied and when the several joints are 

moVing simultaneously, we have to examine the linear model of the ro

bot around. several points in the state space. Theoretically, we should 

eXa!l\ine the system in the infinite number of points xO, but practical

ly this can be redllced to examination several "characteristic" points 

in t.h.e state space. It cannot be precisely defined around which and 

around. how !l\any points in the state space we have to determine the 

linear models of the robot and to analyze the system stability. For 

each particular robotic system we have to analyze variations of the 

eigen-values of the system depending on the pOint in the state space arollnd. 

which the system is linearized. In this way, we have to examine whether 
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the conditions (4.3.19) and (4.3.20) are met for "all" points in the 

state space (i.e. for all possible positions and velocities of the ro

bot joints), and to examine whether the local controllers stabilize 

the robotic system in the "entire" state space*). Namely, the goal is 

to determine such local controllers which will ensure stability of the 

robotic system around "all" points in the state space. Since the line

ar model of the robot varies as varies the point around which the sys

tem is considered, to keep the eigen-values of the linear model in 

approximately fixed positions in the complex plane (i.e. to ensure 

uniform performance of the robot independently on the specified goal 

positions of the robot) we should have to apply variable local gains. 

Actually, we should have to apply gains which vary in dependence on 

the actual positions (and velocities) of the robot joints. However, 

the implementation of the variable feedback gains is not simple, so 

we prefer to apply such unique local feedback gains, which could ensu

re that the robot performance is (approximatively) uniform in all po

ints in the state space. Therefore, the aim is to determine such fe

edback gains which ensure that the positions of the dominant eigen

-values in the complex plane of the linear model of the robot move mi

nimally if the point XO around which the system is linearized is "mo

ving" in the state space. Selection of such uniform local controllers, 

might be realized by various iterative procedures set at a digital 

computer (see Chapter 5). 

Example 4.3.2. For the robot in Fig. 3.2. the matrices of the open-loop 

linear model have been determined in Example 4.3.1. For all three jo

ints the local static controllers have been synthesized (see Example 

3.3.2). The feedback loops by position and velocity of the jOint have 

been introduced in local servo. Data on actuators have been given in 

Table 3.1. and data on the robot mechanism have been given in Table 

3.2. In Table 4.1. the local feedback gains are given and eigen-values 

of the local decoupled subsystems (i.e. if each joint with its actua

tor is considered independently on the rest of the system). Based on 

(4.3.17) the eigen-values of the matrix of the linear model of the en

tire closed-loop robotic system are determined. These eigen-values are 

given in Table 4.1, too. The eigen-values of the open-loop linear 

"') It is obvious that the state space of each particular robotic sys-
tem is limited by the kinematic constraints (allowable rotations or 
displacements of the robot jOints) and by the actuators capabiliti
es (in regard to the allowable velocities and accelerations of the 
jOints) . 



Subsystem Local servo Eigen-values Eigen-values Eigen-values 
of decoupled of open-loop of closed-loop joint gains subsystem 1 inear model 1 inear model 

1 Kp=135.13 -6. o. -3.45 

1 

<= 43.6 -6. o. -14.7 

K~=126 -25. o. -22.3 

2 
K2= 8.65 -25. -0.38 -25. v 

3 Kp=1674.4 -25. -15.44 -25. 

3 

K3= v 13.44 -25. -44.98 -90. 

Table 4.1. Local servo gains, eigen-values of decoupled subsystems, 
eigen-values of the open-loop and closed-loop linear 
model of the robot in Fig. 3.2. 

o - decoupled servo systems 
• - matrix of the open-loop 

linear model of robot 
x - matrix of the closed-loop 

linear model of robot 

-90 -45 -24 -22 -14 

Re(s)=-3 

Re(s) 

-10 -6 -4 

Fig. 4.3. Eigen-values of decoupled subsystems and of matrices of 
.~open-loop and closed-loop linear model of the robot in 

the complex plane 

model of the entire robot are also given in Table 4.1. The eigen-va

lues in all three cases (eigen-values of the local decoupled servos, 

eigen-values of the open-loop and closed-loop linear model of the ro

bot) are presented in Fig. 4.3. in the complex plane. We see that the 
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eigen-values of the closed-loop system matrix are at the left - hand 

side of the line Re(s) = -3. which means that the linear model of the 

robot is exponentially stable with the stability degree a = 3. Since 

all the eigen-values of the closed-loop system matrix are real, this 

means that the condition (4.3.20) is also satisfied. However, this 

does not guarantee that the nonlinear model of the robot (which is, 

obviously, much closer to the actual robotic system) is exponentially 

stable and that it has satisfactory performance when several joints 

are moving simultaneously. 

E X ere t s e s 

4.8. For the robot in Fig. 3.2. (which has been considered in Example 

3.2, local serVO gains are given in Table 4.1, data on the robot 

are given in Tables 3.1. and 3.2.) write the matrix of the linear 

model with the closed local servo loops and check the eigen-valu

es given in Table 4.1. 

4.9. Starting from the matrices of the open-loop linear model (4.3.8), 

write the expressions for the matrices of system with the closed 

local servo loops, if in all n joints PID controllers are applied 

(i.e. if local feedback loops by position error, velocity and in

tegral of position error are introduced around each jOint). For 

the robot in Fig. 3.2. (for which the matrices of the open-loop 

linear model are given by (4.3.14)) write the expression for the 

matrix of the linear model if in all three jOints are applied PID 

controllers (write this matrix as a function of local servo gains) . 

4.10. For the robot in Fig. 2.5. the matrices of the open-loop linear 

mod.el have been determined in Exercise 4.6. Determine the matrix 

of the closed-loop linear model in the following cases: a) if in 

all joints just local position feedback loops are introduced, 

b) if in all joints local position and velocity feedback loops 

are introduced, c) if in all joints local PID controllers are ap

plied. 

4.11. In Exercise 4.7. the matrices of linear model of the robot inFig. 

2.5. are determined around three different "nominal" states. Lo

cal serVO systems have been synthesized and the obtained servo 

feedback loops are given in Table 4.2. Determine the matrices of 

the linear model of the robot if these local controllers are ap-



plied. Determine these matrices for the same three "nominal" sta

tes as in Exercise 4.7. 

Position Velocity 

~ feedback feedback gain 
Joint gain [Nm/rad] [Nm/rad/s] 

[N/m] [N/m/s] 

1 40.2 11.9 

2 1723.8 17. 

3 1036.3 10.4 

Table 4.2. Local servo gains for robot in Fig. 2.5. (data on robot 
are given in Tables 3.3. and 3.4) 

4.4 Synthesis of Decentralized Control for Simultaneous 
Motions of Robot Joints 

In previous sections we have considered the stability of the robotic 

system with position control if all joints are moving simultaneously. 

We have analyzed the stability of the robot using linear model of the 

system, and this is obviously an approximative procedure. In doing 

this we have restricted ourselves to consider just the case when local 

serVO systems are applied around robot joints. Certainly, the stabili

ty analysis using linear model of robot can be applied in the cases 

when any other control law is applied for control of the robot (see 

Chapter 5). However, decentralized control of robots (by local servo 

systems synthesized for each joint independently) is still most frequ

ently en.countered in practice, and therefore we shall pay special at

tenti.on to this control law. 

As we have seen in the previous section, in position control of robot 

in local servos we may apply nominal control signal UO which has to 

compensate for gravity moments in the desired goal position (see Fig. 

4.1). This additional control signal UO need not to be introduced, 

since we can compensate for the effects of gravity moments applying 

some other methods. We have synthesized local servo systems in Ch. 3. 

We have seen that in simultaneous positioning of several jOints of ro

bO~dynamic coupling between the joints appears and this coupling is 

not compensated py local servos. If the effects of dynamic coupling 
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during positioning of the jOints are "strong", the local servos might 

become inefficient for simultaneous position control. By analysis of 

stability of robot around the set goal positions of the joints we may 

check whether the local servos, synthesized for each joint indepen

dently, are sufficient to ensure satisfactory simultaneous positioning 

of the robot. Instead approximative linear analysis presented in previ

ous section, we have to analyze the entire nonlinear model of the ro

bot (see Appendix 4.A). If the analysis shows that the robot positio

ning is not satisfactory (regarding the speed of transient process etc.) 

when selected local servos are applied, we have to re-select local 

servos. Local servos can usually ensure efficient simultaneous positi

oning of robot jOints. 

The problem is much more complex if the tracking of desired path of 

a robot endeffector in workspace is required. Aswe have already expla

ined, in many robot tasks it is required that the robot hand tracks 

some desired path in space sO(t), and, even more, the velocity and acce

lerations of the robot hand have to vary along this path in some pres

cribed way. To achieve this, the control system has to determine, at 

the tactical control level (see Chapter 2), trajectories of all robot 

jOintsqOi(t) which correspond to the desired path of the hand sO(t). 

The robot jOints must simultaneously realize these trajectories in or

der to ensure that the robot hand moves along desired path (and change 

its velocity and acceleration in prescribed manner). The requirements 

regarding the dynamic performance of the robot might be very strong in 

such control tasks. Often it is required to ensure not only accurate 

tracking of the joints angles trajectories qOi(t) but to ensure trac

king of desired variations of the joints velocities and accelerations 

(in order to synchronize the joint motions and realize desired varia

tions of the robot hand velocities and accelerations). If desired nomi

nal trajectories of joints angles are with high velocities and accele

rations, then the dynamic moments (coupling between the joints) might 

be very high and they might have strong effects upon the system beha

viour. Here, we shall consider implementation of such robot tasks by 

simple local servo systems. 

Let assume that desired path of the robot hand is assigned by specifica

tion of external coordinates of the robot as a function of time sO(t) 

(by this also the desired velocities and accelerations of the robot 

hand are given). At the tactical control level trajectories of the 

jOints are computed qOi(t) to correspond to the set desired path 



of the endeffector sO (t) . The computed trajectories qOi (t) of the joints 

are forwarded to local servos which have to ensure their tracking, i.e. 

they have to ensure that the actual joint angles are as close as pos

sible to qOi(t) at each moment t during the task execution (and by 

this to achieve that actual joint velocities q(t) are as close to de

sired trajectories gO(t), and the same holds for accelerations). The 

problem is whether the local servos systems can adequately track input 

trajectories qOi(t) if all joints of the robot are moving simultane

ously. Actually, our problem is to examine whether the local servo sys

tems can ensure tracking of jOints trajectories and realization of the 

desired gripper movement. 

The problem of trajectory tracking by local controller has been alrea

dy addressed in Sect. 3.5. We have shown that if we introduce feed

forward term in local servo we can ensure satisfactory tracking of de

sired input trajectory qOi(t), assuming that all the other joints are 

locked. 

The feedforward term is synthesized in the form of local nominal con

trol which has to satisfy (3.5.5). Actually, if only the i-th joint is 

moving and all the other joints are kept locked,the dynamics of the 

i-th joint and its actuator is described by 

i=1 ,2, ... ,n (4.4.1) 

where notations have been explained in Sect. 3.3. Local nominal con

trol is synthesized to satisfy the following equations*): 

·oi x 
~i oi ~i oi 
A x + b uL (4.4.2) 

where xOi (t) is the nominal trajectory of the i-th subsystem. (Under 

subsystem we assume actuator and joint if all the other joints are 

locked, and the subsystem model is given by (4.4.1)). Calculation of 

the local nominal contpol u~i(t) has been presented in Sect. 3.5. This 

local nominal control ensures implementation of nominal trajectories 

for decoupled subsystems (4.4.1) assuming that no perturbation is ac

ting upon the system, that the model is perfect and that xi(O)=xoi(O). 

*) For the sake of simplicity we shall assume that the local nominal 
control is synthesized using the same H .. as for the synthesis of 
the local servo gains, although this is~~not appropriate approach 
(see Sect. 3.5). 
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If these conditions are not fulfilled, the state of the subsystem 

(4.4.1) deviates from the nominal trajectory xOi(t). The model of 

deviation of the subsystem from its nominal trajectory is given by: 

·i A i Ai i 
~x = A~x + b ~u (4.4.3) 

where we have neglected the amplitude constraint upon the actuator 

input u i . As we have shown in Sect. 3.5. the control ~ui which stabi

lizes the model of deviation of the decoupled subsystem (4.4.3) redu

ces to local servo system (which has been synthesized in Sect. 3.3). 

Therefore, the control which stabilizes the individual joint around 

the nominal trajectory qOi(t) (i.e. which stabilizes the decoupled 

subsystem (4.4.1) around xOi(t)) is in the form: 

(4.4.4) 

assuming that only the position and velocity feedback loops are intro

duced. Obviously, such control is very simple: each joint is 

controlled independently from the rest of the system. Each local con

troller has only information on the actual state of the corresponding 

joint (position and velocity). Therefore, such local controllers re

present decentralized control of robot. 

We may apply this control (4.4.4) for tracking of nominal trajectories 

of the jOints qOi (t) also in the case when all jOints are moving simul

taneously, i.e. we may try to ensure simultaneous tracking of nominal 

trajectories of all jOints of the robot by such decentralized control 

law. However, this control has been synthesized neglecting the actual 

coupling between the joints which appears when all joints are simulta

neously moving. The simultaneous motion of all joints is described by 

the model: 

(4.4.5) 

where Pi is driving torque around the i-th joint given by model 

(3.2.2) • 

If we compare the model of entire robot when all joints are moving 

simultaneously (4.4.5), with the model of decoupled subsystems (4.4.1), 

we can see that the coupling between the joints has not been taken 

into account in control law (4.4.4). The coupling between the actuators 



is given by fip .• Actually, upon the actuators are acting dynamic mo-
~ 

ments Pi which are complex functions of the jOints positions, veloci-

ties and accelerations (3.2.2). In synthesis of (4.4.4) we have taken 

into accounts just "decoupled dynamics" of the robot mechanism, i.e. 

we have assumed that upon the actuator is acting driving torque Pi gi

ven by: 

(4.4.6) 

where Hii is an estimate of the moment of inertia of the mechanism 

around the i-th joint (see Sect. 3.3). Therefore, in synthesis of con

trol (4.4.4) difference between actual coupling fi p . and couplingfip.: 
~ ~ 

(4.4.7) 

has not been taken into account, which means that effects of dynamic 

interconnections between the actuators are not compensated by the lo

cal controllers (4.4.4). We have to examine the influence of these 

factors (4.4.7) upon the stability of the entire robot around the no

minal trajectories. In other words, we have to examine whether the 

dynamics of the robotic system (4.4.7) which has not been taken in the 

synthesis of the control (4.4.4) can "spoil" tracking of the desired 

nominal trajectories. To answer these questions we have to analyze so

-called practical stability of the system around the nominal trajecto

ry x O (t)=(x01 (t), x 02 (t), ... ,xon (t)). lfowever, this analysis is o~t of 

the scope of this book and it can be found elsewhere [7, 8]. Byanaly

sis of the practical stability of the robot around the nominal trajec

tory we get an answer to the question whether the control law (4.4.4) 

is able to overcome the effects of the factor (4.4.7) upon the stabi

lity of the robot. If the influence of coupling is relatively weak, 

the decentralized control (4.4.4) might overcome it, and the implemen

tation of the imposed nominal trajectories of the jointsqOi(t) can be 

ensured, regardless the fact that in the control synthesis we have not 

taken into account the actual coupling between the jOints. In such a 

case, the control (4.4.4) would be sufficient to realize simultaneous 

tracking of all nominal trajectories of the joints, and by this to 

realize desired nominal path of the robot hand. 

The scheme of the control (4.4.4) is presented in Fig. 4.4. The con

trol represents n local controllers around the robot jOints. The de

centralized structure of this control is quite obvious. The main 
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advantage of this control law relative to other control laws (which 

will be considered in the next chapters) lies in its simplicity. Name

ly, the control (4.4.4) includes only local servo loops and the local 

nominal control. The local nominal control does not include computati

on of nominal driving torques Pi and, thus, it does not require compu

tation of the dynamic model of the mechanical part of the robot. The

refore,the local nominal control which is computed via (3.5.5) can be 

easily computed on-line using cheap microprocessors. 

However, we must underline once again that the control (4.4.4) does 

not compensate for the dynamic coupling between joints, and, there

fore, the tracking of fast trajectories by such control might be poor. 

If relatively slow trajectories are to be realized (so that the dyna

mic coupling between jOints is relatively weak) and if high accuracy 

in trajectory tracking is not required, then the local controllers are 

usually sufficient. This is specially the case if powerful actuators 

and reducers with high reduction ratio are applied. In that case the 

constant value of the equivalent moment of inertia of the actuator is 

high relative to the variable values of the moment of inertia of the 

mechanism, and, as we have seen in Section 3.4.4, the equivalent moment 

of inertia of the actuator masks the effects of the variable moment of 

inertia of the mechanism. Powerful actuators and reducers might reduce 

to a high extend relative effects of coupling upon the behaviour of 

local servos. If the powerful actuators are applied, then relatively 

high local gains might be applied and local servos are less sensitive 

to effects of an external load (dynamic coupling) upon them. 

However, in modern robotics it is required to ensure accurate tracking 

of fast trajectories. On the other hand, it is quite obvious a tenden

cy to apply cheaper actuators requiring less power and to apply smal

ler reducer gears in order to reduce their weight and to reduce the 

backlash and friction. As we have already mentioned in Chapter 3, the 

number of installed robots with direct-drive actuators is increa

sing. The equivalent moment of inertia of such actuators is relatively 

small. In these cases the application of only local controllers (4.4.4) 

usually is not acceptable, but we have to apply a control which takes 

into account dynamic coupling between joints r9]. Such dynamic control 

which compensates for dynamic coupling between joints will be conside

red in the next sections. 

It should be noticed that the decentralized control (4.4.4) is still 

applied to control many current robots on the market. 
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The reasons for these are extreme simplicity of the implementation of 

this control, and the fact that majority of robots in industrial prac

tice are not indented for precise tracking of fast trajectories, but 

they just ensure position control and tracking of relatively slow no

minal motions. 

It should be also noticed that the linear analysis, considered in the 

previous section, can be used for approximative analysis of the robot 

performance if the decentralized control (4.4.4) is applied for simul

taneous tracking of the nominal trajectories of all joints. Around 

"each" point on the nominal trajectory xO(t) in the state space the 

linear model of the entire robotic system is varying. Generally spea

king, we should determine the linear models of the robot around an 

infinite number of points at the nominal trajectory xO(t), and examine 

their stability when local controllers (4.4.4) are applied. In this way 

we can get an answer whether the robot is stable in the surroundings 

of the nominal trajectory xO(t). Actually, as we have already explai

ned, we get only necessary condition for nonlinear system stabili ty, but 

not sufficient conditions. However, in practice, instead an infinite 

number of points it is sufficient to examine the system stability 

around several "characteristic" pOints at the nominal trajectoryxo(t) 

For these "characteristic" points, the linear models have to be deter

mined and their stability has to be checked. Since the linear models 

vary along the nominal trajectory, the eigen-values of the linear mo

del matrix also vary. To keep uniform performance of the robot along 

the desired nominal trajectory, we should introduce variable local fe

edback gains. As we have already explained, implementation of variable 

feedback gains is not simple. Therefore, we should try to select con

stant local servo gains which ensure approximately uniform behaviour 

of the robot along the nominal trajectory. However, for each particu

lar robot we should examine whether we can determine such unique local 

servo gains so that the robot system behaves uniformly in the entire 

working space and for all allowable working regimes (velocities and 

accelerations) . 

Example 4.4. For the robot in Fig. 3.2. we have synthesized local con

trollers (4.4.4) around its joints in Examples 3.3.2, 3.5. and 4.3.2. 

(local nominal control and local servo feedback gains). The nominal 

trajectories of the robot joints are selected in such a way that the 

joints move from the point A defined by coordinates (0.0 [radl, 0.4 

[radl, 0.0 [ml) towards the point B with coordinates (0.5 [radl, 



0.6 [radl, 0.08 [ml). The joints velocities have triangular profiles. 

The movement should be accomplished in T = , [sl. The desired nominal 

trajectories of the joints are given in Fig. 4.5. The digital simula

tion of simultaneous tracking of these nominal trajectories by the 

synthesized local controllers are presented in Fig. 4.6. (for all 

three jOints). 

0.6 -..------
q02 _---- ............ . -0.5 

0.4 

0.3 

0.2 

0.1 

----- ---

.. ' .... ........ 

0.1 0.2 

qOl ..•..••..... 

......... 

0.4 

.. ' 
...... 

0.6 

.. ' 

0.8 

Fig. 4.5. Nominal trajectories of jOints of the robot in Fig. 3.2. 

In the figure also is presented the tracking of the nominal trajecto

ries if local nominal control (feedforward) is not introduced, but 

only the local servo feedback loops are applied (dashed line). It can 

be seen that in this latter case the tracking is relatively poor, sin

ce the controllers do not compensate for the variation of the accele

rations along the nominal trajectories even at the subsystem level. 

The simulation in both cases assumes that the initial errors of the 

jOints coordinates in respect the nominal trajectories qOi(O) are 

lIq'(O) = -0.1 [rad], lIq2(0) = -0.05 [rad], lIq3(0) = -0.01 [ml, l\C~i(O)=O 
for i = 1, 2, 3. 

E X ere 1 s e s 

4.12. Draw detail scheme of control considered in Example 4.4 fo~ the 

robot in Fig. 3.2. The control includes local nominal control 

and local (static) servo systems in all three joints (feedback 

loops by position and by velocity as in (4.4.4)). Which is the 

total number of feedback loops in this control scheme? 
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4.13. Compare the simulation of nominal trajectory tracking for the 

first jOint of the robot in Fig. 3.2. in two cases: when all the 

other joints are locked (Example 3.5. - the results of simulati

on are given in Fig. 3.26) and when all the jOints simultaneous

ly track their nominal trajectories (Example 4.4. - the results 

of simulation are given in Fig. 4.6). Explain the reasons which 

cause differences in trajectory tracking in these two cases. 

Would these differences appear in the tracking of trajectory of 

the third jOint of this robot? 

4.14. Determine the minimal number of real operations (multiples and 

adds) that has to be performed to compute nominal local control 

and local servo control according to (4.4.4) in all three joints of 

the robot in Fig. 3.2. (the control scheme has been considered 

in Exercise 4.12). Assume that the second order models of actua

tors are used to compute local nominal control and assume that 

local servo loops are introduced by position and velocity (assu

me that nominal qOi, qOi and actual qi, qi are given). Determine 

the minimal number of microprocessors which have to be implemen

ted in parallel in order to compute input signals for all three 

actuators acc. to (4.4.4) at each 3 [ms] (sampling period whith

in which the control computer has to compute new values of con

trol signals for actual qi, qi and nominal qOi, qOi), if we ap

ply microprocessors: 

a) INTEL-80-80 (assume that one floating point add takes about 

0.8 [ms], and one floating-point multiply takes about 1.5 

[ms]), or 

b) INTEL-80-87 (addition takes about 35 [~s], and multiply takes 

65 [~s]). 

Assume that computer time is consumed only for additions and 

multiplications. 

4.15. Explain in detail the statement presented in section 4.4. that 

with the direct-drive actuators application of only local servos 

for control of simultaneous motion of joints might be poor (take 

into account equivalent moment of inertia of such actuator and 

allowable local feedback gains) . 
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* 4.16. Extend the programme written in Exercise 4.4. for simulation of 

simultaneous motion of all joints to include local controllers 

with local nominal control (use also the program written in 

Exercise 3.64). Check the results of simulation in Example 4.4. 

(Fig. 4.6). 

4.4.1. Synthesis of nominal programmed control 

In the previous text we have explained that the simple local control

lers cannot always ensure simultaneous motions of the robot jOints 

along desire nominal trajectories. It is often required to apply some 

control law which takes into account dynamic coupling between the mo

tions of the joints. A possible extension of decentralized control is 

to introduce so-called centralized nominal programed control. 

In Section 4.3. we have considered simultaneous position control of 

robot joints and we have considered analysis of linear model of the 

robot around the desired positions of the robot joints. In that case 

the control system has to ensure that the robot state will be driven 

toward the desired nominal state xO (which corresponds to the desired posi

tions qOi of the jOints). We have assumed that the nominal control sig

nals UOi , determined based on (4.3.2), are introduced at the actuators 

inputs. These nominal signals ensure that the robot is in equilibrium 

in the point xO, i.e. that x = O. for x = xO. However, if the robot 

hand has to move along some defined path sO(t) in workspace (with de

sired variations of velocities and accelerations), then the system 

state x(t) has to move along nominal trajectory xO(t) which corres

ponds to nominal trajectories of the jOints qoi(t). It is obvious that 

the local nominal control u~i~t) synthesized in Section 3.5. ensures 

tracking of the trajectory qOl(t) of the i-th jOint, only if all the 

other jOints are kept locked. If all joints are moving simultaneously, 

u~i (t) does not ensur':l moving of the actual subsystem state xi (t) along 

desired trajectory X 01 (t), since the influence of the other jOints 

(dynamic moment Pi) has not been accounted in computation of U~i(t). 
Therefore, in order to compute feed forward which will take into acco

unt the coupling between the joints along the nominal trajectories 

qOi(t), we have to consider the entire model of the system (4.3.1). 

We have to determine programmed control UOi(t) which satisfies (analo

gously to (4.3.2)) [2,6]: 



tE (0, T) (4.4.8) 

Control UOi(t) represents a set of time-variable signals uO(t)=(uo1 (t), 

u0 2 (t) , ... ,uon(t»T which have to satisfy (4.4.8) along the desired 

nominal trajectories. If these signals are fed at the inputs of actua

tors of the robot, they will realize the movement of the robot state 

along the nominal trajectory xOi(t) assuming that the following condi

tions are fulfilled (analogously as in Section 3.5): 

(a) the actual initial state of the system x(O) has to coincide with 

the nominal initial state x(O) = xO(O), 

(b) the model of the entire system (4.4.8) must be perfect (all para

meters of the system must be perfectly identified, etc.), 

(c) no disturbance is acting upon the system. 

If all these conditions are satisfied, the signals uOi(t) would drive 

the robot joints so that their angles vary in ti~e as prescribed 

qOi(t). Thus, if the control satisfying (4.4.8) is applied, the system 

is in equilibrium along the trajectory XOi(t). 

The model of deviation of the system state around the nominal trajec

tory xOi(t) and the nominal control uOi(t) can be observed. The model 

of deviation is obtained in the form which is equivalent to the model 

of deviation around the point xO, u O (4.3.3): 

(4.4.9) 

We have to keep in mind that the Nxl vector a and the Nxn matrix Bare 

time variable functions of 6x(t) since they depend on nominal trajec

tory xO(t). Similarly, the constraint upon the amplitude of the input 

signals u i becomes time dependent N(uoi(t), 6U i ) since it depends on 

uOi(t). The model of deviation is in equilibrium for 6x = O. (since if 

6u = 0, then it follows 6x = 0.). 

Analogously to the linearization of the model of the state deviation 

around the point xO, UO which is obtained in the form (4.3.5), we can 

obtain linear model of deviation of the robot state around the nominal 

trajectory xO(t) and control uO(t): 
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(4.4.10) 

where the matrices AL(NXN) and BL(Nxn) are, now, time dependent, since 

they depend on nominal trajectory. Now, we should analyze stability of 

time-variable linear model. However, it is sufficient to consider li

near model of the robot in a several "characteristic" points at the 

nominal trajectory and we have to examine eigen-values of the matrices 

of these linear models. 

The nominal control uOi(t) which satisfies (4.4.8) represents program

med control, since it is a function just on time and it does not de

pend on the actual state of the system. Since it is computed using the 

total centralized model of the robot (4.4.8) it is called centralized 

nominal programmed control (to differ it from the local nominal con

trol which is computed using the models of local (decoupled) subsys

tems (3.5.5) without taking into account the coupling between the sub

systems). The centralized nominal control represents feedforward along 

the trajectory which compensates not only for the delays in the system 

caused by the variations of the joints velocities and accelerations 

along the nominal trajectory, but also compensates for the dynamic co

upling between the joints of the robot caused by their simultaneous 

motions. This centralized nominal control compensates for the effects 

of nominal coupling between the joints and therefore it reduces the 

effects of the interconnections between the joints. 

Let us briefly explain the above statement that the nominal centrali

zed control uO(t) reduces the effects of coupling between the jOints. 

Let us consider the model of the robot in the form (4.4.5). The centra

lized nominal control satisfies (analogously to (4.4.8)): 

xOi(t) (4.4.11 ) 

where p?(t) is the so-called nominal driving torque in the i-th joints 
1. 

which must satisfy: 

p?(t) 
1. 

(4.4.12) 

The model of the robot actual performance is given by (4.4.5). From 

(4.4.5) and (4.4.11) we can obtain the model of deviation of the sys

tem state from the nominal trajectory xO(t) and the nominal control 

uO (t) (analogously to (4.4.9)): 



i=1,2, ••• ,n (4.4.13) 

where /lXi XOi(t) is the vector of deviation of the state of the 

i-th actuator (subsystem) from its nominal trajectory, /lP i = Pi-P~(t) 
is the deviation of the moment in the i-th joint from the nominal mo

ment P~(t), /lui = u i - uOi(t) is the deviation of the input signal of 
1 ci 

the i-th actuator from the nominal control u (t). For the sake of 

simplicity, in (4.4.13) we have neglected the constraint upon the am

plitude of the actuator input signal. The control /lUi has to be syn

thesized to stabilize the model of deviation of the state (4.4.13) 

around the nominal trajectory and control. The synthesis of the con

trol /lui is performed in the following way. Instead the actual model 

of the state deviation (4.4.13) we consider approximative model in the 

following form: 

i=1,2, .•. ,n (4.4.14) 

where /lP i is the deviation of the moment from the nominal moment, but 

for approximative model of the robot dynamics (4.4.6). Therefore, /lP i 
is given by 

(4.4.15) 

where H .. is the estimated constant value of the moment of inertia of 
11 

the mechanism around the i-th joint. It is obvious that the model 

(4.4.14) represents the set of models of the individual jOints and 

their actuators considered independently one from another. Now, the 

control /lUi, which stabilizes the model (4.4.14), can be obtained as 

a set of local servo systems around the robot joints. The local servos 

can be synthesized for each joint independently from the other jOints. 

The synthesis of such independent local servos has been considered in 

Chapter 3. The local servo systems stabilize the approximative model 

of deviation (4.4.14). The local servo systems are synthesized to sta

bilize each joint decoupled from the other joints. If just position 

and velocity servo loops are introduced in each local servo, then the 

control signal for each actuator is obtained as 

(4.4.16) 

The scheme of the robot control, if the centralized nominal control 

and local servo systems around robot joints are applied, is presented 
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in Fig. 4.7. Actually, the nominal programmed control signals calculated 

by the centralized model of the robot, are added to signals from simple 

local servo systems. 

If we apply the control presented in Fig. 4.7, we may guarantee that the 

approximative model of the robot dynamics (4.4.14), (4.4.15) is stabi

lized around the nominal trajectory xOi(t). However, it is qUite obvi

ous that this control does not guarantee the stabilization of the "ac

tual" model of the robot (4.4.13). The actual coupling between the jo

ints of the robot is not described by (4.4.15) (as assumed in synthe

sis of local servos), but actual coupling are total dynamic moment in 

the joints: 

(4.4.17) 

The total dynamic moment in the joint Pi is described by the dynamic 

model of the mechanical part of the system (3.2.2). 

The local servo systems stabilize the decoupled models of the joints 

(and actuators) in which the actual coupling between the jOints 6P i is 

neglected. Therefore, the actual coupling between the joints 6P i (i.e. 

the deviation of the actual coupling from the nominal coupling P~(t)) 
l 

has not been compensated neither by local servo systems, nor by nominal 

centralized control. Actually, the difference: 

(4.4.18 ) 

has not been taken into account in the synthesis of the control (4.4.16). 

Therefore, we have to examine the effects of these factors upon the 

stability of the robot system. This analysis is presented in Appendix 

4.A.2. If the effects of these "factors" upon the stability of the en

tire system is relatively "weak", then the control (4.4.16) is suffi

cient to stabilize the robot and to ensure acceptable tracking of the 

nominal trajectory. 

By comparison of the equation (4.4.7) (representing the uncompensated 

coupling when local controller (4.4.4) are applied) and the equation 

(4.4.18), we can see that if the centralized nominal control (4.4.16) 

is applied, then the uncompensated coupling is decreased by the value 
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of nominal coupling p?(t). Namely, local controllers (4.4.4) do not 
~ 

compensate for nominal dynamic torques P~(t). Therefore, the effects of 
~ 

coupling (4.4.7) upon the system performance (when just local control-

lers (4.4.4) are applied), might be considerably stronger than the ef

fects of the difference between the actual and nominal coupling (4.4.18) 

(which is uncompensated in the case when the centralized nominal con

trol is added to local servos). In other words, the stabilization of 

the robot around the nominal trajectory is much efficient if centrali

zed nominal control is applied than if just local controllers with lo

cal nominal control are applied. 

However, the application of the centralized nominal control suffers 

from certain drawbacks. Let us consider how we can compute centralized 

nominal control. In Section 3.5. we have shown how we can compute lo

cal nominal programmed control. Let us assume that the nominal trajec

tory xO(t) of the system state is given, i.e. let us assume that the 

nominal trajectories xOi(t) of all coordinates of the states vectors of 

all subsystems (actuators) are given. Let us assume that all models of 

the actuators are of the second orders n.=2 and that the matrices of 
~ 

models (3.2.6) are in the form: 

(4.4.19 ) 

The state vector of the system in this case is given by x(t)=(x1T (t), 

x 2T (t), ... ,xnT (t))T = (ql, ~1, q2, ~2, ... ,qn, ~n)T. If the trajectori

es of the jOint angles (linear displacements) qOi(t) and of the velo

cities ~Oi(t) are given, by differentation we can get the desired va

riation of the joint accelerations qOi(t) along the nominal trajecto

ries. On the basis of the dynamic model of the mechanical part of the 

system (3.2.2), nominal driving torques P~(t) can be computed accor-
~ 

ding to (4.4.12). These nominal driving torques have to be realized 

around the robot joints in order to ensure that the robot joints chan

ge their angles in time according to the desired functions qOi(t). If 

all three above listed conditions were fulfilled, the realization of 

nominal driving torques P~(t) would cause desired movement of all ro-
~ 

bot jOints. To realize the nominal driving torques, we have to realize 

the nominal programmed signals uO(t) = (U01 (t), u02 (t) , ... ,uon(t))T at 

the inputs of actuators. These nominal signals have to satisfy (4.4.11) 

and, therefore, they are computed as (taking into account the models of 



195 

actuators (3.2.6) and (4.4.19»: 

(4.4.20) 

where by X~i(t) is denoted,the second coordinate of the state ~ector of 

the i-th actuator (i.e. ,X~l(t) denotes the nominal velocity gOl(t) of 

the i-th joint), and X~l(t) denotes the acceleration of the i-th joint 

qOi(t). Based on (4.4.20) we can compute the centralized nominal pro

grammed control uOi(t). It can be seen that expression (4.4.20) for 

the centralized nominal control differs from expression (3.5.8) forthe 

local nominal control, due to the term fip~(t) which represents the ef-
1 

fects of nominal driving torques, i.e. of the nominal coupling caused 

by simultaneous motions of all jOints. When uOi(t) is computed by 

(4.4.20), we have to test whether the nominal control is within the 

permitted amplitude limits: 

(4.4.21) 

If (4.4.21) is not fulfilled for any joint, that means that the given 

nominal trajectory cannot be realized by the particular robot and its 

actuators. In that case we have either to slow down the desired motion 

of the robot, or, if the robot is under design, we may re-select actu

ators (see Sect. 3.5). 

It is obvious that the centralized nominal control requires computati

on of the nominal driving torques P~(t). The nominal driving torques 
1 

are computed on the basis of total dynamic model of the mechanical part 

of the robot. As we have already explained, the dynamic model of the 

robot might be extremely complex nonlinear equations. Therefore, com

putation of nominal driving torques for the given nominal angles, ve

locities and accelerations might require the control computer to per

form a large number of adds and multiplies in a short sampling in

terval. If the centralized nominal control has to be computed 

on-line (during the execution of motions of the robot), then we have 

to ensure that the control computer computes the values of the nominal 

driving torques and the values of the nominal programmed control ac

cording to (4.4.20), at rate of 5-10 [msl. This means that within 5-10 

[msl the microcomputer has to calculate once P~(t) for given qO(t), 
, 1 

gO(t), gO(t) and to calculate U01(t) for all jOints. Therefore, the 

microcomputer which is capable to achieve desired rate of computation 

must be relatively powerful and expensive (or, several microprocessor 
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might be applied in parallel, but this certainly complicates implemen

tation of control system). 

However, the nominal driving torques and centralized nominal program

med control are exclusively functions of nominal (imposed) trajectories 

of the jOints angles, velocities and accelerations, and they do not de

pend on actual (realized) coordinates of the robot. If the desired no

minal trajectories of the joints are known in advance, then the nominal 

driving torques and the nominal programmed control might be computed 

off-line (in advance) and memorized in the control microcomputer. In some 

industrial applications the process to be realized by the robot is per

formed in strictly pre-defined conditions, in defined environment and 

in precisely pre-specified manner. In such cases the nominal trajecto

ries of the robot hand (and corresponding nominal trajectories of the 

joints) might be defined in advance. Then, we can compute nominal con

trol off-line in the phase of robot teaching to perform the set task. 

In this way we avoid computation of the nominal programmed control in 

real time, during the task execution. The control computer may compute 

nominal driving torques and control relatively slowly. During the exe

cution of the movements of the robot, the control computer has just to 

take, from its memory, prepared, computed values of the nominal control 

signals and to send them at the actuators inputs (obviously, the con

trol signals of local servo systems are added to these nominal control 

signal according to the scheme in Fig. 4.7). In this way requirements, 

regarding the necessary speed of computation, that are imposed upon the 
* ) control microcomputer are reduced. 

However, such a solution has certain drawbacks. In modern industry 

(specially if we think on flexible manufacturing systems) the robot 

tasks are often executed in variable conditions, which cannot be strict

ly pre-defined, and therefore it is not possible to compute in advance 

nominal trajectories of the robot. On the other hand, many tasks (mo

vements), which robots have to realize, might be very complex, consis

ting of a large number of various elementary movements, so that the 

ammount of data on nominal trajectories which have to be memorized 

might be enormous (specially if we take into account that we must me

morize nominal trajectories and off-line computed nominal programmed 

control for n joints). To memorize so large ammount of data on nominal 

*) The nominal control might be computed and memorized with lower sa.m-
pIing rate then 10-15 [ms], and then, in on-line control the compu
ter can determine the nominal control signals by interpolation bet
ween the memorized values. 



trajectories and on nominal control, large capacity of the computer 

memory is required, which also increases the price of the control mi

crocomputer. 
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Due to these reasons, the application of off-line computed and memori

zed nominal programmed control is limited to only a narrow set of ro

bots tasks in which all conditions are pre-defined and which require 

only a few short movements of the robot to be repeated for many times. 

However, the nominal programmed control suffers from some other draw

backs, too. The centralized nominal programmed control compensates just 

for so-called nominal coupling between the robot joints along the no

minal trajectory. The actual coupling between the joints which appears 

when the joints coordinates deviates from the nominal trajectories is 

not compensated for by nominal control. This means that the effects of 

the centralized nominal control are limited. As we have explained abo

ve, application of the centralized nominal control together with the 

local servos (Fig. 4.7) does not always guarantee that the robot is 

stabilized around the nominal trajectory (see Appendix 4.A). It might 

be necessary to introduce, besides the centralized nominal control, an 

additional global control which has to compensate for the actual coup

ling between the jOints (see Chapter 5). 

The computation of the centralized nominal control is based on the to

tal dynamic model of the robot. This means that the nominal control is 

efficient only if all parameters of the robot (geometric data, masses 

and moments of inertia, friction coefficients, data on actuators, etc.) 

are identified very accurately. This requirement cannot be often sa

tisfied, and therefore the efficiency of the centralized nominal pro

grammed control, computed on the basis of the total dynamic model of 

the robot, might be even unefficient regarding the compensation of the 

nominal coupling between the joints. Namely, nominal programmed con

trol is not robust (see Chapter 6). 

In modern industry it is usually required that the robot plans its mo

vements in real time (using information, obtained from cameras or other 

sensors, on actual state in its workspace or using information from 

other subsystems, conveyers, other robots cooperating in the same pro

cess and so on). In such tasks many parameters are unknown in advanced 

and they might vary during tasks executions. In such tasks application 

of nominal centralized control is not efficient. The decentralized con

trol (4.4.4) which includes local nominal control is much simpler for 
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application. The decentralized controller (4.4.4) can be easily imple

mented on-line and it is much more appropriate for the tasks which re

quire on-line planning of the robot paths and on-line generation of the 

jOints trajectories. However, in comparison to the centralized nominal 

control, local controllers are less efficient in reducing the effects 

of coupling, since they do not even compensate for the nominal coupling. 

Example 4.4.1. For the robot in Fig. 3.2. the nominal trajectories of 

the joints have been given in Fig. 4.5. Based on these trajectories 

qOi(t) we can easely obtain the velocities of the joints qOi(t) and 

corresponding accelerations qOi(t). Based on dynamic model of the mec

hanical part of the robot (3.2.3) and corresponding data (given in 

Table 3.2), we calculate the nominal driving torques which are presen

ted in Fig. 4.8. Based on the models of actuators (D.C. electro-motors 

- data on which are given in Table 3.1) we compute centralized nominal 

programmed control for all three joints (eq. (4.4.20)). The centrali

zed nominal control is presented in Fig. 4.9. 
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Fig. 4.8. Nominal driving torques for trajectories in Fig. 4.5. 

The linearized model of this robot has been presented in Example 4.3.1. 

The matrices of the linearized model are given by (4.3.13). The varia

tions of the elements of the linearized model of the robot along the 

nominal trajectories in Fig. 4.5. are presented in Fig. 4.10 (AL = 

[a .. ], BL = [b .. ]). The eigen-values a of the matrices of the open-
1J 11 

-loop linearized model of the robot AL also very along the nominal 

trajectories as presented in Fig. 4.11. Let us assume that at the 
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Fig. 4.10. Variations of elements of linearized model matrix of 
robot along nominal trajectory (robot from Fig. 3.2) 

t[s] 

inputs of the actuators are fed the nominal centralized control sig

nals (from Fig. 4.9) and that the local servos with constant feed

back gains are applied. If the local servo feedback loops are closed 

with the feedback gains given in Table 4.1 (see Example 4.3.2), then 

the eigen-values of the matrix of the linearized model of the robot 

also varies along nominal trajectories as presented in Fig. 4.12. 

However, based on Fig. 4.12 we can conclude that the eigen-values of 

the matrix of the closed-loop system vary slightly and that they stay 
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at the left hand side from the line Re(s)=-3 along the entire nominal 

trajectory. This means that the linearized model of the system around 

the nominal trajectory is exponentially stable with stability degree 

of a=3. Since all eigen-values of the closed-loop system matrix are 

real along the nominal trajectory, this means that the local servos 

together with the nominal programmed control UOi(t) are sufficiently 

robust to ensure satisfactory performances of the linearized model of 

the robot along the nominal trajectory. However, the problem is whe

ther such control can satisfy nonlinear model of the robot, or we 

must introduce variable local gains, or additional global control 

has to be applied. 

Re(a) 
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0.2 0.5 0.8 t[s] 

-0.05f~----------------------------------------

-16.+----------------------------------
= 

-45.+----------------------------------

Fig. 4.11. Variation of eigen-values of matrix of open-loop 
linearized model of robot along nominal trajectory 
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Fig. 4.12. Variation of eigen-values of matrix of closed-loop 
linearized model of robot along nominal trajectory 



Exercises 

4.17. For the robot in Fig. 2.5. the trajectories of the joints are 

given by the following time functions: 

o < t .:: 0.5[s] 

2 
- -;- - t 2 ) 0.5<t'::1[s], where a 1 

3 a 0.4 [m2 ], 
s 

T = 1 [s] 

0.5 [ra2d], 
s 

Compute the nominal driving torques if all data on the mecha

nism are given in Table 3.4. and compute the centralized nomi

nal control if the models of actuators are of the second order 

and if data on D.C. electro-motors are given in Table 3.3. 

4.18. For the robot considered in the previous exercise compute the 

local nominal control and compare it with the centralized no

minal control. 

4.19. For the robot in Example 4.4.1. check whether the nominal dri

ving torques are corectly computed (Fig. 4.8) in the following 

time instants t=O., t=T/2, and t=T. Also check the nominal con

trol (Fig. 4.9). 

4.20. For the third order models of actuators n i =3 in the form 

(3.2.6) where the matrices are in the form (3.2.7) show that 

the centralized nominal control is computed according to the 

following equations (assuming that qOi, qOi, qOi are imposed 
i i·i.i T iii T and that x = (q , q , lR) = (x1 , x 2 , x 3 ) ): 

(I'It - small), 

i=1 ,2, •.. ,n 
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4.21. Calculate the nominal programmed control for the robot in Ex

ample 4.4.1. if all models of actuators are of the third orders, 

using the expressions given in Exercise 4.20. Compare these re

sults with the nominal control presented in Fig. 4.9. 

4.22. Explain why in expressions (4.4.20) for the centralized nominal 

control (or in expressions in Exercise 4.20) we use matrices of 

actuators without taking into account the moments of inertia of 

the mechanism, while in the expressions for the local nominal 

control (3.5.8) (or, in Exercise 3.60) we use the matrices which 

include the moments of inertia of the mechanism around the cor

responding jOints axes. 

4.23. Explain why in Example 4.4.1. the eigen-values of the open-loop 

linearized model of the robot (Fig. 4.11) vary much more along 

the nominal trajectory than the eigen-values of the matrix of 

the system with the closed local servo loops (Fig. 4.12)? 

* 4.24. Write in one of high-level programming language the programme 

for computation of the nominal driving torques (for the robot 

in Fig. 3.2) and for computation of the centralized nominal con

trol (if the models of actuators are either of the second, or of 

the third order). Try to minimize the number of adds and multi

plies required for these computations. The programme inputs are 

the nominal trajectories of the joints qOi(t), velocities qOi(t), 

and accelerations qOi(t), and the outputs are the nominal dri

ving torques P~(t) and the centralized nominal control uOi(t), 
1 

i=1, 2, 3. Combining this programme with the programme written 

in Exercise 3.57 write the programme which will implement (by 

micro-computer) the control law presented in Fig. 4.7 (for par

ticular robot in Fig. 3.2). 
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Appendix 4.A 
Stability Analysis of Nonlinear Model of Robot 

In Chapter 4. we have shown how we can analyze the linearized model of 

robot in the case when the nominal centralized control is applied to

gether with the local controllers (local servo systems) and the simul

taneous movements of the robot joints are required. As we have already 

underlined, the analysis of linearized model gives necessary, but not 

sufficient conditions of stability. Nonlinear model of the robot should 

be analyzed. Therefore, here we shall consider the analysis of the non

linear model of robot. Due to high nonlinearity of the dynamic model 

of robot, in general case, it is not possible to solve analytically 

the system of differential equations (which represents the model of 

the robotic system). Therefore, we have to apply methods for stability 

analysis which do not require explicit solution of the nonlinear model 

of the system. There is a number of methods for analysis of stability 

of large-scale nonlinear systems. These methods mightbegeneraly clas

sified into two groups: the input-output stability methods and the me

thods via Liapuno~s stability [1-4]. Here, we shall consider the lat

ter approach for stability analysis. 

We shall analyze the stability of the nonlinear model of robot when the 

local servo systems are applied and when all joints might move simul

taneously. First we shall consider the stability of the robot when it 

has to be positioned in various positions in work space. In doing this 

we assume that the control signals which compensate for gravi ty moments 

(forces) in the goal position, are implemented. Therefore, the imposed 

goal positions might be regarded as equilibrium points in the state 

space, and we may analyze the asymptotic (or exponential) stability of 

the robot around these imposed goal positions. 

Next, we shall analyze the stability of the system around the nominal 

trajectory, i.e. we shall examine the robot capability to realize the 

desired trajectories. We shall assume that besides the local servo sy

stems, the nominal centralized control is also applied. The applicati

on of the centralized nominal control (as we have explained in Section 

4.4.1) ensures that the robotic system is in equilibrium along the nomi-



nal trajectory. Therefore in this case the asymptotic (or exponential) 

stability of the robot can be analyzed, too. If the nominal centrali

zed control is not applied, but just the local nominal control and lo

cal servos are implemented, then the robotic is not in equilibrium along 

the nominal trajectory. Thus, in this case we cannot analyze asympto

tic stability of the system around the equilibrium point, but we have 

to analyze the so-called practical stability of the system. 

In presentation of the method for the stability analysis we shall not 

give rigorous proofs for each step of the procedure, but we shall try 

to present the method in a simple way. The more rigorous formal treat

ment of the subject might be found in the literature [1-9]. 

4.A.1 Analysis of asymptotic stability of robot position control 

First, we shall consider the problem of stability of the nonlinear mo

del of the robot in the position control. Let us assume that desired 

position of the robot is imposed qOi, i=1,2, .•• ,n, (i.e. the goal posi

tions of all joints). The state vector x O corresponds to the imposed 

position qO (assuming that all joints velocities have to be zero in 

the goal positions qO = 0). We shall assume that control UO is deter

mined which satisfies (4.3.2), i.e. this control compensates the gra

vity moments in the imposed positions qO (since when the robot stops, 

just the gravity moments are acting around the joints axes). If the 

control signals satisfying (4.3.2) are applied at the actuator inputs, 

then when the robot reaches the desired state XO the first derivative 

of the state vector must be equal to zero iO=o, which means that the 

system is in the equilibrium state. Since the state x O is the equilib

rium state of the robotic system, we may analyze the asymptotic stabi

lity of the robot around this state. We have to examine whether the 

control ensures that for any initial state x(O) the system is driven 

to the imposed position qO. As it is well known [2], the equilibrium 

state of the system XO is asymptoticaly stable if for each number £>0, 

there exists a number 8>0, such that (here I I· I I denotes the norm of 

the vector) 

II fix (0) II <£ (4.A.1l 

where flx(t) = x(t)-xo is the deviation of the system state from the 

equilibrium state xO, implies 
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II1Ix(t) II < 15 for t 2. 0 (4.A.2) 

and that there exists a number ~>O such that I 11Ix(o) I I<~ implies 

lim x (t) (4.A.3) 
t-+-oo 

Since we are considering stationary system it is obvious that the ini

tial moment might be any time instant (and therefore this is also uni

form asymptotia stability of the system). It is obvious that if the 

robot is asymptotically stable around the imposed positions qO, then 

the control system ensures positioning of the robot in the desired 

(goal) position. However, from (4.A.3) if follows that the robot might 

reach the desired position (state) in theoretically infinite time. The 

asymptotic stability does not say anything about the speed by which 

the robot approaches the desired position. Since it is necessary to 

ensure sufficiently fast positioning of the robot, we have to examine 

exponential stability of the system. It is well known [21 that the equ

ilibrium state of the system XO is exponentially stable, if there exist 

two numbers n>O and n>O which are independent from the initial state 

x(O) and which satisfy 

(4.A.4) 

This practically means that the state XO is exponentially stable if 

each motion of the system (starting from any initial state x(O» con

verges towards xO faster than the exponential function exp(-nt). The

refore, by examination of the exponential stability of the robotic sy

stem we estimate the rate of its Positioning*). 

The analysis of the asymptotic (exponential) stability of the robotic 

system around the imposed position can be realized by application of 

the Liapunov's direct method [31. The basic idea of the Liapunov's di

rect method is to analyze a nonlinear system of arbitrary high order 

by one scalar (positive) function of the system state. If it is possi

ble to select such a continuously differentiable positive definite 

scalar function of the system state v(lIx), that its first derivative 

by time v(lIx) is negative definite function (except for v(O)=O.), then 

*) We have to note that we have already used these concepts in Chapter 
3 concerning the local control synthesis. We also note that under 
the notion of the robot stability (asymptotic, exponential, practi
cal) we actually assume the stability of the robot state, or tra
jectory. 



the considered system is asymptotically stable around the equilibrium 

state xO. This means that for any initial state of the system x(O) the 

selected function v(6x) must continually decrease along the solution 

of the model of the system x(t) until it reaches its minimum vIOl, (sin

ce v (0) = 0), which means that the system will reach its equilibrium 

state xO. Therefore, the method enables analysis of the stability of 

the system without solving the differential equations which describe 

the system behaviour. (Actually, the nonlinear differential equations 

representing the model of the system cannot be solved analytically in 

general case). Here, we shall not prove the validity of this method. 

It should be underlined that the basic problem in application of this 

method lies in the selection of the Liapunov's function for the consi

dered system. There is no general procedure for unifold selection of 

the Liapunov's function which will guarantee the fulfillment of the 

stability conditions. In other words, the Liapunov's method gives just 

sufficient but not necessary conditions of the system stability: if 

the selected Liapunov's function satisfies that its derivative along 

the system solution is negative definite, then we may guarantee that 

the system is asymptotically stable. However, if this condition is not 

fulfilled, we cannot say anything about the system stability. The sy

stem might be stable, although the selected Liapunov's function does 

not fulfill the above mentioned conditions. Since the procedures for 

selection of the Liapunov's function are missing, the stability analy

sis by Liapunov's method might be conservative. If we do not select 

an adequate Liapunov's function we may get negative results of the 

stability test although the system is actually stable. This means that 

we would require the stronger conditions to ensure system stability 

than they are actually necessary. (In other words, we would require 

higher feedback gains than they are actually necessary to ensure the 

system stability). Therefore, it is necessary to pay special attention 

to selection of the Liapunov's function in order to minimize the con

servatism of the stability test. 

Here, we have presented just a few general notes on the direct Liapu

nov's method for the stability analysis. The basic problem in applica

tion of this method to analysis of stability of large scale nonlinear 

systems lies in the selection of the adequate Liapunov's function: the 

complex high order nonlinear system (which means the system with high 

number of the state coordinates) is substituted by a scalar function. 

To minimize the conservatism of this method, a number of aggregate

-decomposition methods for stability analysis of large-scale systems 
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has been developed. The basic idea of all these methods is to ensure 

the least conservative tests of the system stability by an insight in 

the physical structure of the system. Actually, the idea is to "use" 

the system structure in the stability analysis. In this it is assurnrned 

that the majority of the large-scale systems might be decomposed to a 

number of subsystems of the lower order. In essence all aggregate-de

composition methods for stability analysis follows the same procedure 

[1] : 

a) The system is decomposed to a number of subsystems of lower order 

(in doing this it is the most important to observe the physical 

structure of the system and to decompose the system according to 

its physical features; in this way the subsystems are determined 

which physical interconections are weak - under assumption that such 

subsystems can be identified at all) . 

b) Each local subsystem is analyzed independently from the rest of the 

system (decoupled subsystems) and the "measure" of their local sta

bility is estimated. 

c) The quantitive estimates of the interconnections between the subsys

tems are determined. 

c) The conditions for the stability of the entire (complex) system are 

determined on the basis of the quantitative estimates of the stabi

lity of the local subsystems and on the basis of the quantitative 

estimates of the interconnections between the subsystems. 

Itis clear that if there is no interconnections between the subsystems 

(i.e. if the subsystems are completely decoupled), then the stability 

of the entire large-scale system is guaranteed by the local stability 

of the subsystems. If the coupling between the stable subsystems is 

relatively weak, the entire system will be stable. Therefore, the me

thods for stability analysis are better if stronger coupling between 

the subsystems is allowed but yet they can prove the stability of the 

complete system. The majority of methods assume that the subsystems 

are the stabilizing elements in the system while the coupling between 

the subsystems is "the source" of instability. Concerning the applica

tion of the Liapunov's direct method, two approaches can be recognized: 

by application of scalar Liapunov's function [4] and by concept of Lia

punov's vector function [1, 5, 6]. The concept of the Liapunov'svector 

function assumes that the stability of each subsystem is represented 



by one scalar Liapunov's function, which can be used as a component of 

the Liapunov's vector function. In this wayan aggregate model of the 

system is obtained as a vector differential inequalit~ the order of 

which is equal to the number of subsystems. The stability of the sub

systems and of the aggregate model ensures the stability of the entire 

system. Here, we shall not consider various methods for analysis of 

the large-scale systems. There is a number of papers which elaborate 

these methods and also a number of very good survey papers on these 

topics [1, 4]. 

We shall restrict ourselves to only one method which can be efficient

ly applied for the stability analysis of robotic systems. The robotic 

systems in general meets the assumption that it can be considered as a 

set of subsystems and these subsystems represent stabilizing elements 

in the system. In principle, it is possible to decompose the robotic 

system to subsystems in various ways. The most adequate decomposition 

from the point of view of physical features of the system, is to con

sider each joint of the robot and its actuator as a local subsystem. 

Namely, as a local subsystem we may adopt one joint with its actuator 

as it has been considered in the previous chapter. The coupling between 

such subsystems is represented by dynamic moments (forces) which are 

produced due to simultaneous motions of several joints. Such decompo

sition is justified also from the point of view of the control synthe

sis. The local controllers have been synthesized based on these sub

systems (see Chapter 3). 

Let us consider the model of the robotic system in the form of the mo

dels of actuators (3.2.6) and the model of the mechanical part of the 

system (3.2.2). Let us consider the model of deviation of the system 

state around the desired (nominal) state XO (i.e. around the desired 

position qO). Let us assume that the nominal control u O , which satis

fies (4.3.2), is applied. Therefore it is fulfilled that xo=O. If the 

control uO satisfies (4.3.2), then it must also satisfies the models 

of actuators: 

i=1 ,2, ... ,n (4 .A. 5) 

where p~ is the moment around the i-th jOint when the robot is in the 
6 o1T o2T onT T state x (x , x , ... ,x ): 

(4 .A. 6) 
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The model of deviation of the system state and control of the i-th ac

tuator from the desired state x O and the corresponding nominal control 

u O can be written in the following form: 

·i lIx i=1,2, ... ,n (4 .A. 7) 

where lIx i is the deviation of the state vector of the i-th actuator 

from the nominal state (position) lIx i = xi_xOi, lIUi is the deviation 
i i oi of the i-th input from the nominal signal lIu = u -u , lIPi is the de-

viation of the driving torque from its nominal value, liP. = P.-P~, and 
111 

this deviation of the driving torque is described by the model of the 

mechanical part of the system: 

o .. 0 • 
lIP i = Hi(q, lIq)lIq+hi (q, lIq, lIq), 

i oi q -q 

i=l, 2, ... ,n (4.A.8) 

In the previous chapter we have considered the independent motion of 

each joint of the robot and we have synthesized local controller for 

each isolated actuator and joint. Each actuator and joint might be 

considered as a subsystem. The model of the i-th joint motion is given 

by (3.3.1). The model of the i-th actuator and the jOint is given by (3.3.4). 

The model of deviation of the actuator and jOint around the nominal 

point xOi, uOi can be written, analogously to (4.A.7), in the form: 

·i lIx i=1,2, ... ,n (4 .A. 9) 

The model (4.A.9) describes the motion of the i-th actuator and the 

i-th joint when all the other jOint are kept locked. When the joints 

are moving simultaneously the model of the state deviation around the 

nominal is given by (4.A.7) and (4.A.8). By combining (4.A.9), (4.A.7) 

and (4.A.8) the model of the deviation of the state of the robotic sy

stem from the nominal can be written in the following form: 

·i lIx 

liP. 
1 

i=1,2, ... ,n 

where Hii has been already explained in relation to (3.3.4). 

(4.A.10) 

(4. A.11) 



It is very simple to show that the models (4 .A. 7), (4 .A. 8) and (4 .A.1 0) , 

(4.A.11) are equivalent. 

The robotic system might be "decomposed" to subsystems which corres

pond to "decoupled" joints and actuators. In other words, the system 

might be observed as a set of n subsystems (4.A.9) which are intercon

nected by f i 8P. where 8P. is given by (4.A.11). In this way we satisfy 
1 1 
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the assumption that the robotic system can be decomposed to subsystems, 

and therefore we may apply the above described procedure for stability 

analysis of the large-scale systems. As we shall show in the text to 

follow, it is also fulfilled the assumption that the local subsystems 

(4.A.9) are stabilizing elements in the system, while the coupling 

~i8P. is the destabilizing factor. However, on the contrary from some 
1 

other large-scale systems (for example power systems, economic systems 

etc.) the subsystems of the robotic system might be "strongly" coupled. 

Here, we shall present a method for analysis of asymptotic stabilityof 

the robotic systems [7, 8] at the finite regions in the state space, 

i.e. the method for estimation of regions of asymptotic stability of 

system,which has been developed for general large-scale systems by 

Weisenberger [9]. Namely, instead to examine the stability conditions 

in the entire state space, which in general case is very complex due 

to system nonlinearity, the system is considered at the finite regions 

in the state space. In other words, the robotic system is considered 

for the limited variations of the joints angles, velocities and the 

rotor currents (i.e. for limited variations of the state coordinates). 

Due to constraint upon the amplitude of the actuators inputs (4.3.4) 

the system can be stabilized just in some bounded regions in the state 

space (see Section 3.3.5). 

We have assumed that the robot has to be positioned in the position qO, 

i.e. we want to stabilize the robot around the state xo = (xo 1T , x02T , 

... ,xonT)T, where xOi = (qOi, O)T*). In this we shall assume that we 

want to ensure positioning of the robot for some limited (allowed)vari

ation of the joints angles, i.e. we shall assume that the variation of 

the angle of the i-th joint must satisfy 

*) If we consider the third order model of the actuator n.=3 the nomi

nal state of the actuator is defined by xOi = (Oi 0 1.Oi)T where q , ,1R 

i~i is the nominal value of the current in the rotor curcuit for 

the given nominal positions qO of the robot joints. 
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(4.A.12) 

where 6Q!ax is the maximal allow~d deviation of the angle of the i-th 

joint from the given position qOl. This also means that the initial 

position of the joint qi(O) must satisfy (4.A.12). Let us assume that 

we have synthesized local controller around the i-th joint in the form 

(static controller - see Section 3.3). 

oi 
u Ki 6· i 

v q (4.A.13) 

Due to amplitude constraint upon the input (4.3.4) and limited varia

tions of the joint angle (displacement) (4.A.12), on the basis of 

(4 .A.14) 

we may determine the contraint upon the velocity of the i-th joint 

(4.A.15) 

Constraints (4.A.12) and (4.A.15) define the finite set, in the state 

space of the i-th subsystem, for which we have to ensure the robot po

sitioning. In other words, we have to ensure stability of the robot 

around the nominal point x Oi for all states in the finite region (in 

the i-th subsystem state space) which is defined by (4.A.12) and (4.A.15). 

This finite set of states (finite region) is presented in Fig. 4.A.1. 

(similar to Fig. 3.17). 

Let us denote by Xi the set of states given by: 

X. 
l 

(4.A.16) 

If we define such sets Xi for all n jOints of the robot, then for the 

entire robot is defined the set X which represents the product of the 

sets Xi corresponding to subsystems, i.e. in the state space of the 

entire system, the region X is defined by: 

(4.A.17) 

The region (4.A.17) in the state space of the robot (the dimension of 

this space is N) can be written as: 



{x: IlIq 1 I II 1 IU01 _K1 l1ql_K1 l1ql I 1 
X < < u m' qmax' P v 

IlIq21 
2 02 2 2 2·2 2 

< lIqmax' lu -Kpllq -Kv llq I < u rn I ••• 

... ,llIqnl < II n IUon_K~lIqn_K~lIqnl < un} (4.A.18) qmax' - m 

Our task is to examine whether the robot is asymptotically (exponenti

ally) stable in the region X around the imposed state XO if just the 

local controllers are applied. 

·i i\q 

i oi 
[= urn +U 

Fig. 4.A.l. Finite region in the state space of 
the i-th local subsystem 

We have adopted the robot decomposition into n-subsystems given by 
hi -

(4.A.9) which are interconnected by the factors f lIPi. By this we have 

performed the first step in the stability analysis of the entire non

linear model of the robot. The second step is to examine stability of 

the local subsystems if the interconnections between them are neglec-

ted. We have to examine whether or not the subsystem (4.A.9) is asym

ptotically stable around the point 

cal feedback loops are closed*) : 

i lIX = 0 in the region Xi if the 10-

lIXi = AillXi-bik~lIXi = (Ai_bik~)lIXi 
l l 

(4.A.19) 
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*) Here, we shall restrict ourselves to consider the case when ni=2and 
when iust the static controllers are applied. The cases when n' =3 and 
when the dynamic controllers are introduced are considered in t 7, 8]. 
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where as before k i = (K~, K;)T is the vector of the feedback gains. In 

(4.A.19) we have ommitted the nonlinear constraint upon the amplitude 

of the input due to assumption that the subsystem is observed at the 

region Xi in which (4.A.16), or (4.A.14), is fulfilled. 

In the previous chapter we have synthesized the local feedback gains 

in such a way to ensure exponential stabilityof the subsystem (4.A.19). 

Namely, the local controller ensures that all the poles of the closed

-loop subsystem are on the left from the line Re(s) = -Si (in the s-

-plane). Therefore, it is clear that the subsystem is exponentially 

stable with the exponential stability degree of Si' However, to analy

ze the stability of the entire robotic system, we have to examine sta

bility of the subsystem by introducing the subsystems Liapunov's func

tions. 

Let us select as a candidate for the Liapunov's function of the i-th 

subsystem (4.A.19) the following function: 

V. 
1 

(4.A.20) 

where H. is the n.xn. positive definite matrix. Let us consider the 
111 

derivative of this function along the solution of the closed-loop sub-

system (4.A.19): 

T ·i 
vi(along solution of (4.A.19»=(gradvi ) 6x 

(4.A.21l 

It can be shown that for the stability analysis of the entire system 

it is the most convinient if the subsystems Liapunov's functions are 

selected in such a way that it is satisfied*): 

vi(along solution of (4.A.19» ~ -Sivi (4.A.22) 

Therefore, we have to select the matrix Hi in (4.A.20) in such a way 

that the derivative of the function vi along the solution of (4.A.19), 

which is given by (4.A.21), satisfies the inequality (4.A.22). To ful

fill this requirement we introduce a non-singular transformation nixni 

matrix Ti such that 

*) The proof of this statement can be found in [1]. 



(4.A.23) 

where Ai is the diagonal matrix given by 

or A. =t-o~ w~l 
1 i i 

-W 1 -0 1 

(4 .A. 24) 

iii . 
where -0 1 , -0 2 or -0 1 ± w~ are the eigen-values of the matrix.of.the 

closed-loop subsystem, i.e. the eigen-values of the matrix (Al_blk~). 
Since the closed-loop subsystem matrix (Ai_bik~) is stable (i.e. a~l 

1 

its eigen-values are in the left part of the s-plane), it is possible 

to determine the matrix T. which satisfies (4.A.23). For example, if 

the eigen-values of the m~trix (Ai_bik~) are real and not equal, it 
1 . 

can be shown that the transformation matrix Ti satisfying (4.A.23) is 

given by: 

(4.A.25) 

wh~re.sl' s2 are the eigen-vectors (of dimensions nix~) ?f the m~trix 

(Al_blk~). The eigen-vectors satisfy the equations (Al-blk~)s.-o~s.=O, 
1 A - 1 J JJ 

j=l,2. Now, we can select the matrix Hi in the following way: 

H. 
1 

(4.A.26) 

It is obvious that if we select the matrix Hi by (4.A.26), then it 

holds: 

2A.H. 
1 1 

(4.A.27) 

If we substitute (4.A.27) into the expression for the first derivative 

of the Liapunov's function, along the solution of the subsystem, (4.A.21) 

we get 

. 
vi(along solution of (4.A.19)) 

iT A i 
I1x A.H.l1x Iv. < 

1 1- 1 -

< -minlo~lv. < -S.v. 
J 1 - 1- 1 

(4 .A. 28) 

since it holds Si ~ min 10~1. Therefore, if we select the matrix Hi by 
j=l,2 J 

(4.A.26), we can ensure that the first derivative of the Liapunov's 

function satisfies (4.A.22). This means that such selection of the 
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Liapunov's function ensures exact estimate of the subsystem stability. 

Namely, since the solution of the differential inequality (4.A.22) is 

given by V.<V. (0) exp(-S.t), based at (4.A.22), we may state that, 
l l l 1/2' 

(taking into account obvious inequalities Am (H.) IIt.xl(t) II < v. (t) 
1/2 h ill 

and vi (0) < AM (Hi) IIt.x (0) II): 

where AM is the maximal, and Am 

rix R .• The inequality (4.A.29) 
l 

(4.A.29) 

is the minimal eigen-value of the mat

has the following meaning: the subsys-

tern is exponentially stable with the exponential stability degree Si' 

This means that we have determined the Liapunov's function by which 

the exponential stability degree of the subsystem is accurately esti

mated. 

Since we have assumed that the subsystem state vector t.x i belongs to 

region (finite set) Xi (and therefore in (4.)1..19) and (4.A.21) we have 

not taken into account the constraints upon the input amplitude), we 

may state that the differential inequality (4.A.22) is satisfied for 

the re9ion Xi' In other words, if the initial conditions are such that 

(4.A.16) is satisfied, then the local subsystem is exponentially stab

le with the stability degree 6i . 

Next, we have to estimate the region Xi by the Liapunov's function. To 

do this, let us introduce the region (set) in the subsystem state spa

ce X. which is defined by: 
l 

(4 .A. 30) 

where v io > 0 is the constant which has to be determined. In Fig. 4.A.2. 

the regions X. are presented for various values of v .. The region X. l lO l 
represents an estimate of the region X. if all points of the region X. 

l l 

belongs also to the region Xi' Therefore, all regions Xi which are in-

scribed in the region Xi (Fig. 4.A.2) might be considered as estimates 

of the region Xi' The best estimate is the region which covers the 

largest "area" (but, still, is inscribed in the region Xi)' Therefore, 

we have to determine the largest number v io for which the region Xi 

given by (4.A.30) completely belongs to the region Xi' 
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Fig. 4.A.2. Estimates of the stability regions 
of the local decoupled subsystems 

NOw, let us proceed to the third step in the stability analysis of the 

entire robotic system. The selected Liapunov's functions candidates vi 

guarantee stability of the local sUbsystems if the coupling between 

them is completely ignored. (If the subsystems are actually decoupled 

this will guarantee the stability of the entire system). We have to 

estimate quantitatively the nonlinear coupling between the subsystems. 

As we have already said, the coupling between the subsystems is given 
..... i - -

by f ~Pi where ~Pi is given by (4.A.11). According to the model of the 

mechanical part of the system (4.A.11), the driving torques Pi are the 

complex nonlinear functions of system state. Therefore to estimate the 

coupling might be very complex job. It is obvious that: 

lim ~Pi ~ 0 (4.A.31) 
~x~O 

since ~x ~ 0 means that ~qi ~ 0, ~qi ~ 0 and ~qi ~ 0 for all joints. 

Therefore, we may determine the numbers ~ij which satisfy the inequa

lities: 

T~i - ~ 
(gradv<) f ~P< < L ~ .. v., 

~ ~ j=1 ~J J 
i=1,2, ... ,n (4.A.32) 

for all values of the state vector ~x which belong to the region X 

(4.A.18). ~ve have to determine such number Sij which ensures that the 

inequalities (4.A.32) are fulfilled for all possible values of the 

state vector of the robotic system x belonging to the region X. In 

this, the numbers Sij must satisfy: 
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~ .. > 0 
~J -

for i '* j (4.A.33) 

Determination of the numbers ~ij in general case is not simple due to 

the fact that ~Pi is the complex nonlinear function of all state co

ordinates of the robotic system. It will be shown in the text to fol

low, that it is necessary to determine the least numbers ~ij which 

fulfilltheinequalities (4.A.32). In the cases of simple robot struc

tures the numbers ~ij might be estimated analytically. However, in the 

general case the determination of these numbers requires implementati

on of the digital computers. By application of computer programmes it 
- *) is possible to examine the values of ~Pi for "all" points in the re-

gion X in the state space of the system. In this way we can determine 

the numbers ~ij which fulfill inequalities (4.A.32). Various numerical 

procedures for searching along the region X and for determination of 

the minimal numbers ~ij which satisfy (4.A.32), might be applied. 

The numbers ~ij represent the quantitative estimates of the coupling 

between the subsystems (i.e. between the robot joints motions). 

At last, we proceed to the fourth step in the stability analysis - and 

that is establishment of the sufficient conditions for the stability 

of the entire robotic system using the estimates of the subsystems 

stability and quantitative estimates of coupling. To examine the sta

bility of the entire system, let us select the Liapunov's function can

didate for the entire (interconnected) system (4.A.7) in the following 

form [9]: 

v max (v./v.) 
i=1,2, ... ,n ~ ~o 

(4.A.34) 

As we have explained before, the entire system (4.A.7) (or, (4.A.10), 

(4.A.11» is asymptotically stable, if the first derivative of the se

lected Liapunov's function candidate is negative along the solution of 

the model of the system (i.e. for all states in the considered region). 

Let us consider the first derivative of our Liapunov' s function candidate: 

v max (v./v.) 
i=1,2, ... ,n ~ ~o 

(4.A.35) 

*) It is obvious that the exam~n~ng of ~Pi can be performed for a fi
nite number of points in the region X, but since system is smooth 
such approach is quite acceptable. 



where max denotes max vi of all vi' i=1,2, ••. ,n (and not the maximum 

of the derivative vi)' 

The first derivative of the Liapunov's function for the i-th subsystem 

must satisfy: 

T ·i 
vi(along solution of (4.A.10» = (gradvi ) ~x 

T' i 'i oi i T'i -(gradvi ) [A~x +b N(u , ~u ) 1 + (gradv i ) f ~Pi (4.A.36) 

Taking into account that the local control has been introduced in the 

form (4.A.13) and that we consider only solutions of the system which 

completely belong to the finite region X given by (4.A.18), we may 

write: 

vi(along solution of (4.A.10» 

Based on (4.A.28) and (4.A.32) we may write: 

n 

vi(along solution of (4.A.10» ~ -Sivi + L s .. v J' j =1 l.J 

(4 .A. 37) 

(4.A.38) 

Let us note that the expressions (4.A.38) are valid for all subsystems 

(for each i=1,2, ..• ,n) if the system state belongs to the region X. 

Let us restrict our consideration to the case when the system state 

belongs to the region X given by 

(4.A.39) 

As we have already shown, the regions Xi are estimates of the finite 

regions Xi' and therefore the region X is an estimate of the finite 

region X. All states belonging to the region X must also belong to the 

region X (but, vice versa does not hold). The region Xi is defined by 

(4.A.30). Therefore, if the state belongs to the region X it must be 

fulfilled: 

vi < v io for i=1,2, •.. ,n (4.A.40) 
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It can be proved that if the following inequalities are fulfilled: 

n 
-a.v. + I E· .v. ~ 0 

1 10 j=1 1J JO 
for each i=1 , ... ,n (4.A.41) 

then it must hold: 

for vi/v iO = max(v./v. ) 
j J JO 

(4.A.42) 

This means that if the conditions (4.A.41) are fulfilled, then the 

following relation is then the following relation is also fulfilled 

(taking into account (4.A.35) and (4.A.38»: 

v(along solution of (4.A.10» max (~./v.) < 0 (4.A.43) 
i=1,2, ... ,n 1 10 -

In other words, if the condition (4.A.41) is satisfied, then the first 

derivative of the selected Liapunov's candidate (4.A.34) along the so

lution of the model of the entire robotic system is negative for all 

states belonging to the finite region X. Therefore, if the conditions 

(4.A.41) are fulfilled the nonlinear model of the robotic system is 

asymptotically stable around the imposed position qO, for all states 

whithin the frame of the finite region X. The finite region X repre

sents an estimate of the asymptotic stability region of the robotic 

system. 

The conditions (4.A.41) might be written in a more convinient form. 

Let us introduce a matrix G of dimensions nxn whose elements are given 

by: 

(4.A.44) 

where <5.. is the Kronecker's symbol (<5 •• = 0 for i*j, <5 •. = 1 for i=j). Let 
1J 1J 1J T 

us introduce an nx1 vector Vo which is given by v 0 = (v 10' v 20'···'v no) . Now, 

the conditions (4.A.41) might be written in the following form: 

Gvo < 0 (4.A.45) 

The matrix inequality (4.A.45) represents the sufficient condition for 

the robotic system to be asymptotically stable in the region X defined 

by (4.A.30), (4.A.39), or, we may state that (4.A.45) is the suffici

ent condition for the region X to represent an estimate of the asymp

totic stability region of the system. If the condition (4.A.45) is 

fulfilled we may guarantee that the model of the robotic system is as

asymptotically stable around the desired set position qO for all ini

tial states belonging to the region X. This means that all solutions 



of the nonlinear model of the robot starting from any state which be

longs to the finite region X must terminate in the desired nominal 

state x O , assuming that just the local controllers (4.A.13) are applied. 

Even more, based on the above analysis we may estimate the speed by 

which the robot positioning will be realized (i.e. how fast will the 

robot be driven towards the desired position qO). Based on (4.A.35), 

if follows: 

v (x ( t» < v (x ( 0) ) exp ( - 11 t ) (4 . A. 46 ) 

where 11 is the degree of the exponential "shrinkage" of the region to 

which the system state must belong during the transient process (during 

positioning) and it is given by: 

n 
min 1- S . v. + I ~ .. v. I /v. 

i=l,2, ... ,n l lO j=l lJ JO lO 
(4 .A. 47) 

Based on (4.A.46) we may estimate that the robot state approaches the 

imposed state XO by the speed which is higher than exp(-11t), where 11 

is given by (4.A.47). Based on (4.A.46) it follows: 

1/2 A 

max AM (H.) 

IllIx(t) II < i=l,2: ... ,n 1/2 Al IllIx(O) Ilexp(-11t) 
mln A (H.) 

i=l,2, ... ,n m l 

(4 .A. 48) 

which means that the system is exponentially stable around the imposed 

desired position with the exponential stability degree which is higher 

or equal to 11 defined by (4.A.47). Now, we have just to check whether 

it is fulfilled that 11>a, where a is desired exponential stability de

gree. 

Using the described procedure we are able to investigate whether the 

selected local control ensures positioning of the robot in the desired 

position when all joints are moving simultaneously. It is obvious that 

we may use this method to synthesize the decentralized control (i.e. 

for the synthesis of the local controllers) which will ensure the accu

rate positioning of the robot when all the joints are moving simulta

neously. This procedure for control synthesis will be considered in 

Chapter 5. 

If we consider the sufficient conditions (4.A.45) for the asymptotic 

stability of the robotic system we may conclude the following: the 
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stability tests will be "relaxed"if the exponential stability degrees 

of the local subsystems 6i are greater (by absolute values), and if 

the numbers ~ .. , which estimate the coupling between the subsystems 
1J 

(joints), are low. If we introduce the local controllers only, then we 

cannot affect the coupling between the subsystems, but we can increase 

the exponential stability degrees of the isolated subsystems. However, 

the increase of the exponential stability degrees require increase of 

the local feedback gains. The high feedback gains are unconvinientsin

ce they might excite resonant structural oscillations of the mechanism 

and since they amplify the noise in the system (see Chapter 3). 

Regarding the presented method for the stability analysis, it is obvi

ous that it is less conservative if we could obtain better (more pre

cise) estimates 6i and ~ij (i.e. if we may determine 6i as highas pos

sible and numbers ~ij as low as possible) . 

It should be noticed that the numbers ~ij which fulfill (4.A.32) have 

to be determined for the estimated regions X (4.A.39) and not for the 

regions X (4.A.18), since the regions X are "inscribed" in the regions 

X. By this we can obtain lower numbers ~ij' and the stability is any

way proved just in the estimated regions X. 

The asymptotic stability of the position control of robots, if just 

local controllers are applied, might be proved in simpler way by ap

plication of the Liapunov's method. Namely, starting from the dynamic 

model of the robot it is possible to directly determine the Liapunov's 

function candidate for the entire system which satisfy that its first 

derivative is negative along the solution of the system, if just the 

local controllers are applied for the robot positioning [10, 11]. Ho

wever, this approach doesnot work when tracking of the nominal trajec

tories is in question. Therefore, we presented the more complex agreg

gate-decomposition method for the stability analysis also in the case 

of position control of robots, since it can be easely extended to the 

traj ectory servoing problem, as will be presented in the text to follow. 

Let us briefly explain how we may directly prove asymptotic stability 

of the position control of the robot when only local servos are appli

ed. Let us consider the dynamic model of the mechanical part of the 

robot (3.2.2) in the form: 



Let us consider the second order models of the actuators which might 

be written in the following form: 

i 1,2, ... ,n 

All symbols have been described in Section 3.2. 
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Let us assume that local servo systems are applied which include per

fect on-line compensation of gravity term, i.e. the actuator inputsig

nals are computed as: 

If we combine the model of the mechanical part of the system, models 

of actuators and applied control we get model of the entire system in 

the following form: 

where J is the nxn matrix defined by J diag(N;N;J~), D is the nxn 

matrix defined by: 

Kv is the nxn matrix: 

K v 

Kp is the nxn matrix: 

We have to analyze asymptotic stability of the system described by 

this model around the point qO, i.e. around the point 6q = O. Actually 

since gO 0., qO = O. (position control is considered), we may write 

the model of the system deviation around the nominal (desired) positi

on as: 
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In order to analyze stability of this system let us select the Liapu

nov function candidate for the entire system in the following form 

[10, 11]: 

Since both matrices Kp and [H(g)+J] are positive definite, the Liapu

nov's function candidate is positive v > 0 for all 6q and 6q, except 

for 6g = 0., 6q = O. The first deviative of this function along the 

solution of the system model is given by: 

·T ( () ).. 1 ·T·· + 6g H g +J 6g + 2 6g H6g 

At this point we shall exploit the relation which is well known from 

theory of robot dynamics: 

Using this relation, we get for the derivative of the Liapunov's func

tion candidate: 

This means that the first derivative of the Liapunov's function of the 

entire system is negative for all system states (save for 6q = 0, but 

6q * 0 for g * gO). 

By this it is proved that the system is asymptotically stable if only 

local controllers are applied. This explaines why the robot work well 

whith the simple servo control. However, as already mentioned above, 

if trajectory control is in question this analysis cannot be applied. 

4.A.2 Analysis of asymptotic stability of trajecotry control 

We have considered the problem of stability of the entire nonlinear 

model of the robotic system around the prescribed position, i.e. in 

the position control of robot. Now, we shall consider the problem of 
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trajectory control of robotic systems, i.e. the problem of the system 

stability around the specified trajectory. We shall assume that the 

robot is controlled by local controllers synthesized for each jOint 

independently, as it has been explained in the previous chapter. Howe

ver, there are two possible variants regarding the feedforward term 

which has to compensate for delay along the nominal trajectory. The 

first solution is to introduce the nominal programmed control synthe

sized on the basis of complete centralized dynamic model of the robot 

(Fig. 4.7), as it has been explained in Section 4.4.1. The second solu

tion it to apply local feedforward terms in the form of the local no

minal programmed control synthesized on the basis of the models of iso

lated actuator and joint (i.e. the model of the local subsystem), as 

it has been presented in Section 4.4. (Fig. 4.4). 

Here, we shall consider the case when the centralized nominal program

med control is applied. 

Let us define the stability conditions of the system around the impo

sed nominal trajectory. Here, we shall consider so-called praatiaal 

stabi lity of the robot around the specified nominal traj ectory. We shall 

not present in detail various definitions of the practical stability 

of the system, since they can be found in the literature [12J. We shall 

adopt a definition which is adequate for requirements appearing in ro

botics. Let us assume that the nominal trajectory of the state vector 

of the robot xO(t), tE (0, ,) is given. liVe assume that the trajectory 

xO(t) is continual with respect to all coordinates of the state vector 

x. Let us assume that the maximal deviation of the actual initial sta

te x(O) from the nominal initial state xO(O) is defined by the positi

ve number Xl such that 

Ilx(O) - xO(O) II 
-I 

< X (4.A.49) 

The robotic system is practically stable around the specified nominal 

trajectory xO(t) if for each x(O) which fulfilles (4.A.49) the actual 

trajectory x(t) fulfilles the following condition 

Ilx(t) - xO(t)11 2. xtexp(-at) , tE(O, T) (4.A.50) 

where Xt>XI and a are positive numbers independent of Xl. This defini

tion of the practical stability of the system in essence represents 

the exponential stability of the system around the nominal trajectory 

at the finite time interval and at the finite region in the state 
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space. Our task is to examine if the synthesized control ensures that 

for all initial states of the system which fulfill (4.A.49) the actual 

trajectory of the system satisfies (4.A.50). 

Let us consider the case when the nominal control uO(t), tE(O, T) is 

applied, which is synthesized based at the centralized model of the 

robot, i.e. let us apply the control uO(t) which satisfies (4.4.11). 

The task is to examine the stability of the model of deviation (4.4.13). 

The practical stability of the robot around the specified trajectory, 

when the nominal centralized control is applied, might be considered 

as the problem of the exponential stability of the deviation model. Na

mely, for the model of the state deviation (4.4.13), the followingsta

tement holds: 6x=O and 6u=O implies 6X=O. This means that 6x=O is the 

equilibrium point of the model of the state deviation. The conditions 

of the practical stability (4.A.49), (4.A.50) of the robotic system around 

the nominal trajectory xO(t) correspond to the following conditions of 

the exponential stability of the model of deviations. If the model of 

deviations (4.4.13) is exponentially stable around the point 6x=O with 

the exponential stability degree greater or equal to a for all initial 

conditions which satisfy 

I 16X (0) I I .::. xl (4 .A. 51) 

then the actual trajectory of the robot meet the condition (4.A.50) for 

all initial states fulfilling (4.A.49), and therefore the robot is prac

tically stable around the specified nominal trajectory. This means that 

if we prove that the model of the state deviations around the nominal 

(4.4.13) is exponentially stable around the point 6x=O, then we may 

state that the robot is practically stable around the imposed nominal 

trajectory in the sense of conditions (4.A.49), (4.A.50). We have to 

note that, in the general case, the exponential stability of the model 

of deviations is stronger condition than the practical stability of the 

robot around the specified trajectory. However, it is simpler to exa

mine the exponential stability of the model of the state deviations, 

and, therefore, we shall apply this procedure: we shall examine the ex

ponential stability of the model of the state deviations (4.3.22) and 

by this we shall check if the robot is practically stable around the 

set nominal trajectory. 

Therefore, we have to examine the exponential stability (with the pre

scribed. stability degree a) of the model of the state deviation around 
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the point ~x=O for all initial conditions which belong to the finite 

region defined by (4.A.51). We shall examine the system stability if 

the nominal centralized programmed control and the local servo systems, 

synthesized for each actuator and joint independently (see Chapter 3) , 

are applied: 

(4 .A. 52) 

Let us consider the case when the static local servos are applied. The 

stability analysis of the deviation model can be carried on analogous

ly to the procedure presented in Appendix 4.A.1. for the case of robot 

position control. The application of the agreggation-decomposition me

thod for stability analysis of the complex nonlinear system is perfor

med according to the steps described in the previous section. 

First, we shall consider the model of deviation (4.4.13) in an approxi

mative form as a set of decoupled subsystems each corresponding to one 

jOint and its actuator, in the form (4.A.9), where, now, ~xi represents 

the deviation of the subsystem state vector from the nominal trajecto

ry ~xi(t) = xi(t)_xoi(t), and uOi(t) denotes the nominal programmed 

control synthesized at the basis of the complete model of the system 

(4.A. 21): 

(4 .A. 53) 

Let us examine the stability of the decoupled subsystems (4.A.53) (in 

which couplings are ignored) if the static controllers are applied 

(4.A.54) 

As in the previous case, the nonlinearity of the amplitude saturation 

type upon the actuator input N(uOi , ~ui) bounds the region in the sta

te space in which the system can be stabilized. The amplitude constra

int upon the input ~ui defines the set of points in the state space 

(the region): 

(4.A.55) 

The bounderies of this region are obviously time dependent. Instead 

"the time-varaying region" defined by (4.A.55) we shall adopt the re

gion which is inscribed in (4.A.55) and which is defined as 
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X. 
1. 

max uOi (t) } 
tE (0, T) 

(4.A.56) 

However, it should be remembered that we want to examine exponential 

stability of the system for the finite region of the initial states 

which is defined by (4.A.51). The condition (4.A.51) bounds the region 

by all state coordinates of the robotic system. We may assume that by 

the condition (4.A.51) the finite region of the subsystem (4.A.53) is 

also defined, so that the subsystem is considered at the region given 

by: 

X~ 
1. 

i=1, 2, ... ,n (4.A.57) 

-I -I 
where the constraint Xi might be adopted as Xi 

Similarly we may assume that the region (4.A.50) might be presented in 

the "decoupled" form, i.e. by the regions in the subsystems state spa-

ce: 

Ilxi (t) _xoi (t) II < x~exp (-at) } 
1. 

where xt are the numbers which might be calculated as x~ 
1. 1. 

The set of states X~ represents the region of the initial conditions 
1. 

for which the subsystem stability should be guaranteed. Let us assume 

that X~ is the subset of X. given by (4.A.56). In other words, let us 
1. 1. 

assume that for all initial states of the subsystems for which we want 

to examine the system stability, the control u i (4.A.54) does no vio

late the constraint upon the actuator input amplitude *). This means that 

for all initial states belonging to the region (4.A.57) we may assume 

that the subsystem behaves as linear and that the nonlinearity 

N(uOi(t), 6Ui ) might be ignored: 

(4.A.58) 

The stability of the subsystem (4.A.58) will be examined as presented 

in the previous section. The Liapunov's function candidate for the 

subsystem (4.A.58) is adopted in the form: 

v. 
1. 

(4 .A. 59) 

*) The case when the set of states (4.A.57) is not the subset of 
(4.A.56) we shall not consider. The solution to this case can be 
found in [8]. 



where the matrix H. can be computed according to (4.A.27). In this ca
l. 

se the first derivative of the Liapunov's function for the decoupled 

subsystem (4.A.58) satisfies the condition: 

vi(along the solution of (4.A.58)) ~ -Sivi (4 .A. 60) 

where Si is the exponential stability degree of the decoupled subsys

tem (i.e. the eigen-value of the closed-loop subsystem matrix (Ai -

bik~) which real part has the least absolute value. The espression 
l. 

(4.A.60) is valid for all initial states of the subsystem which belong 

to the finite set (4.A.57). 

The set of initial states of the subsystems X~ might be estimated by 
l. 

the subsystems Liapunov's functions, as described in the previous sec-
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tion. The region Xi which estimates the region xi is given by (4.A.20), 

where the highest numbers v io have to be determined, such that all po

ints in the region Xi belong also to the region xi (i.e. the region 
I Xi must be "inscribed" into the region Xi) . 

The next step in the stability analysis is to examine the coupling be

tween the sUbsystems (4.A.53). The coupling between the subsystems is 

given by ti~Pi where ~Pi is given by (4.A.11), i.e. 

It is obvious that it holds: 

lim ~P.+O 
l. 

~x+O 

(4 .A. 61) 

(4 .A. 62) 

The condition (4.A.62) is fulfilled since we assume that the applied 

nominal centralized control uOi(t) "perfectly" compensates for the no

minal moments P~, and therefore the coupling between the subsystem 

(4.A.53) represents the deviation of the actual driving torques from 

the nominal moments. When the actual state of the robot approaches the 

nominal trajectory xO(t) (i.e. when Ilx+O), then the actual moments Pi 

must convergate to the values of the nominal moments P~(t), and, the-
l. 

refore, the coupling LIP. must convergates towards zero. Due to (4.A.62), 
l. 

we can determine the numbers ~ .. which satisfy the following inequali
l.J 

ties: 

for tE(O, T), i=1,2, ... ,n (4.A.63) 
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This means that the numbers ~ij have to be determined such that the 

inequalities (4.A.63) are fulfilled for all deviations from the nomi

nal trajectory xO(t) which satisfy the conditions (4.A.30). In deter

mining the numbers ~ij we have to examine the deviation of the moment 

Pi from P~(t) for "all" pOints along the nominal trajectory xO(t), i.e. 

not just for the initial state xo(O), but along the "whole" trajectory, 

for "each" tE(O, T). 

We must keep in mind that the practical stability of the robot requi

res that the system state belongs to the region given by (4.A.50), 

(i.e. the region to which the actual state of the robot must belong is 

exponentially "shrinking" around the nominal trajectory). Therefore, 

the inequalities (4.A.63) must be fulfilled for all states around the 

nominal trajectory which belong to the region (4.A.50). This region 

might be estimated by the following region (expressed by the subsys

tems Liapunov's functions): 

(4.A.64) 

X (t) = X1 (t) xX 2 (t) x ... xXn (t) 

It is obvious that X(t) (4.A.64) is an estimate of the region (4.A.50), 

since the numbers v. are determined in (4.A.30) so that all pOints of 

X. must belong to X~~ on the other hand, it must be satisfied that -t -I ~ -t ~I -
X >X , and therefore Xi>Xi ' and Xi(t) is the subset of Xi(t). 

It is clear that if ~ij are determined numerically by digital computer, 

it is possible to examine the deviation of P. from P~(xo(t» for a fi-
~ ~ 

nite number of points at the nominal trajectory. In other words, in-

stead to determine the numbers ~ij by examination of the moments in 

the robot jOints around the specified position, as we did in the pre

vious case, here we have to examine the deviations of the moment from 

the nominal moments along the nominal trajectory. This might be perfor

med by determination of the coupling 6Pi(6X) for "the sufficient num

ber of states" 6X (fulfilling the condition (4.A.64», and around "the 

sufficient n.umber of points" at the nominal trajectory xO (0), xO (t1 ) , 

... ,xo(t~). It is possible to establish an algorithm which will search 

for the least numbers ~ij which satisfy the inequalities (4.A.63), by 

determination of the values of the coupling 6Pi(6X). 



Once the numbers Bi , estimating the exponential stability degrees of 

the decoupled subsystems, and the numbers ~ .. , estimating the actual 
1) 

coupling between the subsystems, are determined, we may apply the same 

procedure as before for the stability analysis. It is easy to show that 

if the following condition is fulfilled 

(4.A.65) 

where the nxn matrix G is given by: 

(4.A.66) 

and the n x 1 vector Vo is given by Vo = (v10 ' v 20 , ... ,vno )T, then the 

model of the deviations (4.4.13) is asymptotically stable around the 

point ~x=O for all states belonging to the finite region X. Even more, 

if the test (4.A.65) is fulfilled then we may say that the model 

(4.4.13) is exponentially stable around the point ~x=O for all states 

in the region X, and the exponential stability degree can be estimated 

by: 

n 
n . min I-Sivio + L~' .v. I/v. 

1=1,2, .•. ,n j::1 1J)0 10 
(4.A.67) 

If n ~ a is fulfilled we may state that the model of deviation is ex

ponentially stable around the point ~x=O with the prescribed exponen

tial stability degree in the finite region X. As we have presented 

above, the exponential stability of the model of deviation is suffici

ent condition for the robotic system to be practically stable around 

the specified nominal trajectory. This means that the analysis of the 

practical stability of the robot around the nominal trajectory has been 

red.uced. to testing of the condition (4.A.65) and determination of the 

number n which fulfilles (4.A.67). If the test (4.A.65) is satisfied 

and if n ~ a, then it can be guaranteed that the model of the robot is 

practically stable around the nominal trajectory, but just in the es

timated. regions (4.A.64). The procedure for the stability analysis 

!IIight be used. to establish an algorithm for iterative estimation of the 

region X in which the system is practically stable. The numbers v io in 

(4.A.64) a.nd. ~ij in (4.A.63) have to be iteratively determined until 

"the largest" region in which the robot is stable is determined. If the 

estimated region of the practical stability X(O) completely "covers" 

the region (4.A.51) we may guarantee the practical stability of the 

nonlinear model of the robot. 

231 
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We have to note once again that the basic drawback of the presented 

procedure for the stability analysis of the robot lies in its conser

vativity. The condition (4.11..65) might be too conservative. If the test 

(4.11..65) is not fulfilled, the robot still might be practically stable 

around the specified trajectory. Therefore, in analyzing the robotsta

bility by the presented procedure we must carefully interpret the re

sults of the test. In estimating of the stability degrees of the local 

subsystems (the numbers Si) and in estimating of the coupling between 

the subsystems (the numbers ~,,) we must try to get the best possible 
1.J 

estimates (i.e. to determine the largest numbers Si satisfying 

(4.11..60), and the least numbers ~" satisfying (4.11..63». 
1.J 
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ChapterS 
Synthesis of Robot Dynamic Control 

5.1 Introduction 

As we have explained in previous chapter, during simultaneous motions 

of robot joints there appear dynamic forces (torques) which act around 

the joints axes and affect the performances of local servo systems. To 

ensure accurate tracking of nominal trajectories (imposed by the hig

her tactical control level) we have to compensate for the effects of 

these dynamic forces. If the executive control level has to ensure only 

positioning of the robot hand in various pOSitions in work space, or to 

ensure tracking of "slow" trajectories of the robot hand, then the ef

fects of these dynamic forces might be relatively weak and they might 

be ignored. Therefore, the local servos might accomplish such control 

tasks. In the previous chapter we have shown how we can examine whether 

or not the local servos could ensure accurate tracking of desired tra

jectories. If local servo systems can not "overcome" the effects of dy

namic forces, we must introduce additional control loops which take 

into account these dynamic forces. Such control law, which accounts 

for dynamic characteristics of robotic systems is called dynamic con

tro'l of robots. 

In the previous chapter we have already considered one possibility to 

introduce dynamic control law. We have introduced centralized nominal 

control which takes into account dynamics of rObot, but only at the no

minal level. We have considered adventages and drawbacks of this type 

of dynamic control. 

One of the problems in introducing of dynamic control lies in comple

xity of dynamic model of robot, and therefore, implementation of con

trol which has to compensate for dynamic effects, might be complex, 

too. Due to this, our aim is to synthesize dynamic control which is 

the Simplest possible, but which meets imposed requirements. 

In this chapter we shall consider several forms of dynamic control 

laws. First, we shall consider synthesis of global dynamic control 

which has to compensate directly for the effects of dynamic forces 

upon performance of local servos. We shall consider various forms of 
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such dynamic control. However, the synthesis of dynamic control is com

plex due to complexity of dynamic model of robot, and, therefore, it is 

difficult to realize this synthesis without the aid of a digital compu

ter. The computer-aided synthesis of control for robot is often applied 

today. These algorithms, set at a computer, have to help a robot deSig

ner to select the simplest control law which still satisfies the requi

rements regarding the accuracy of trajectory tracking. In this chapter 

we shall consider such a computer-aided procedure for synthesis of dy

namic control of robots. 

In this chapter we shall consider yet another approach to dynamiC con

trol of manipulation robots. We shall consider well-known procedure for 

control synthesis using so-called "computed torque method". We shall also 

consider Cartesian based control of robots. In Appendix we shall brief

ly present a well-known procedure for synthesis of control for complex 

systems by centralized optimal regulator which is interesting more from 

the theoretical standpoint than for its real applicabili ty in robotics. 

5.2 Synthesis of Global Control 

In the previous chapter we have presented how, by stability analysis, 

we can test whether local servo systems can meet the requirements re

garding the accuracy of tracking of imposed nominal trajectory. If lo

cal servos can meet the imposed requirements, there is no need to in

troduce any additional control loops. However, if local servos do not 

guarantee sufficiently accurate positioning,or tracking of trajectori

es we must either re-select local servo systems, or we must introduce 

additional global control. The re-selection of local servos ussualy 

means increasing of the stability degrees of the local subsystems. To 

meet requirements regarding the stability of the over-all system, it 

is required to increase the stability degrees of subsystems Si. Howe

ver, increase of the stability degrees Si means that the servo feed

back gains are to be increased. The high feedback gains are not accep

table since they might excite resonant structural oscillations and due 

to effects of noice in servo systems (see Section 3.2.2). Therefore, 

this solution (by increasing of Si) might be applied up to certain li

mit. If we cannot increase any more the local feedback gains, and the 

required accuracy in tracking of nominal trajectories is not achieved 

yet, we must introduce additional global feedback loops. 



Local servo systems are supplied with information (feedback loops) on 

the state (position, velocity) of the corresponding local subsystem 

(joint) only. Dynamic forces (moments) which act upon the servo are 

functions, in general case,of all state coordinates (angles, velociti

es and accelerations of all jOints). To compensate for these forces we 

have to introduce not only the local feedback loops, but also global 

cross-feedback loops. The purpose of these cross-feedback loops (from 

one subsystem (joint) to another) is to compensate for dynamic forces 

and ensure satisfactory tracking of the nominal trajectories of all 

robot jOints. 

First, let us consider the case when centralized nominal control, syn

thesized using the complete model of robot (Fig. 4.7), it introduced. 

The control already compensates for the nominal dynamic moments pO(t) 
*) 1 

(4.4.12) . 
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However, during the realization of the imposed trajectories qOi(t) the

re appear deviations of the actual trajectories of joints from nominal, 

and dynamic moments also deviates from nominal driving torques P~(t). 
1 

As we have already explained, the model of deviation of the dynamics of 

the mechanical part of the system from "the nominal dynamics" might be 

written in the form: 

(5.2.1) 

The model of deviation of the i-th actuator from the nominal dynamics 

(i.e. around the nominal trajectory xO(t), and nominal centralized con

trol UO (4.4.11» might be written in the form: 

·i t,x i=1,2, ... ,n (5.2.2) 

where t,x i xi_xoi is the deviation of the actual state vector of the 

i-th actuator around the nominal trajectory xOi(t), t,u i = ui_uoi is 

deviation of the i-th input signal from the nominal control signal 

uOi(t), and t,P. = P.-P~ is deviation of the i-th driving torque from 
111 

the nominal driving torque. 

In chapters 3 and 4 we have synthesized local controllers in the form 

of local servo systems around the individual joints which stabilize 

*) We shall consider tracking of the nominal trajectories, and it can 
be easely reduced to the case of position control of robots. 
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subsystems (actuator and joint) given by (3.3.4). The models of devia

tions around the nominal trajectory and control xOi(t), uOi(t) for such 

decoupled subsystems (in which actual coupling has been neglected) are 

given by: 

(5.2.3) 

Local controller has been selected in the form of linear feedback con

trol (in the case of static controllers): 

(5.2.4) 

where k i is the vector of feedback gains in the i-th servo. Local servos 

(5.2.4) ensure stabilization of local decoupled subsystems (5.2.3), 

i.e. they guarantee that the closed-loop local subsystems: 

(5.2.5) 

are exponentially stable around the nominal trajectory xOi(t), uOi(t). 

(In Eq. (5.2.5) the amplitude constraint upon the actuator input has 

been ignored). 

Thus, the local servos guarantee stability of subsystems (5.2.5) if they 

were decoupled from each other. However, it is obvious that the actual 

subsystems are not decoupled. The models (5.2.3) do not represent ac

curate model of the complete actual system, but just very approximati

ve model. The model of the actual system (5.2.2) might be written in 

the form 

(5.2.6) 

where ~Pi is given by 

(5.2.7) 

- ··i In (5.2.7) the dynamics of the joint (represented by Hii~q ) has been 

"submitted" from ~Pi since it has been included in the model of sub

system (5.2.3) and compensated by local control. The difference betwe

en the accurate model (5.2.6) and approximative model formed of decoupled 

subsystems (5.2.3), is in the term fi~Pi. Obviously, the nominal pro-
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grammed control (4.4.11) and the local control (5.2.4) do not compen

sate for this term. This term represents interconnection (coupling) 

between the subsystems (5.2.3) which has not been taken into account 

neighter in nominal programmed control synthesis, (4.4.11), nor in 

synthesis of local control (5.2.4). If the effects of this term are 

strong, we have to introduce additional global control in order to com

pensate for these effects. 

Therefore, we introduce dynamic control in the following form: 

(5.2.8) 

where 6U? is the scalar global control which has to compensate for co
l 

upling between subsystems (5.2.3), i.e. to compensate for the effects 

of the term f i 6P,. This term is given by (5.2.7) which obviously re-
1 

presents dynamic forces which act upon the i-th joint due to the move-

ments of the other joints of the robots. Actually, this term represents 

deviation of the dynamic forces from their nominal values. Since these 

dynamic forces 6Pi enter linearly into the model (5.2.6), the global 
* control can be introduced in the following way. Let us assume that 6Pi 

represents some scalar function, measured or calculated, which corres

ponds to deviation of the dynamic forces from nominal forces 6P i , i.e. 

which satisfies the following inequality, (for all pOints in the state 

space around the nominal trajectory xO(t»: 

16P~ (x) I < 16P, (x) I, 
1 - 1 

(5.2.9) 

where sign() denotes the sign of the value in brackets. Thus, the glo

bal control in the i-th joint (servo system) might be introduced in the 

form [1]: 

(5.2.10) 

-G i 
where by Ki (6x ) is d7noted the scalar function of the state vector of 

the i-th subsystem 6Xl. The function K?(6x i ) might be selected in va
l 

rious ways. 

The aim is to ensure compensation for the coupling, i.e. for the dyna

mic forces which act upon the i-th joint. If this global control is 
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applied in the i-th controller, then the model of deviation of the sy

stem state from the nominal becomes: 

(5.2.11 ) 

where, for the sake of simplicity, the amplitude constraint upon the 

input signal has been ignored. It is obvious that K~(~xi) has to be 

selected in such a way as to minimize the term 

Let us assume that the model of the i-th actuator is of the second or

der (ni =2). Then, the vectors fi and hi are in the following forms: 

(5.2.12) 

If we consider the model of the i-th sUbsystem (5.2.11) with the ap-
Ai -

plied global control, it is obvious that the effects of coupling f ~Pi 

is compensated for, if the global control is introduced in the follow

ing form: 

(5.2.13 ) 

where K~>O is scalar global feedback gain. The selection of this glo
~ 

bal gain will be adressed in the text to follow. NOw, the system model 

becomes 

(5.2.14 ) 

where amplitude constraint upon the input signal has been again igno

red. The effect of coupling fi~p, has been reduced to fi(~p._K~~P~), 
~ * ~ ~ ~ 

taking into account that the function ~Pi fulfilles (5.2.9). The sche-

me of such control (5.2.8), (5.2.13) is presented in Fig. 5.1. 

However, such global control directly compensates for the coupling be

tween the subsystems (i.e. the dynamic forces acting upon the i-th jo

int), only if we adopt the second order models of actuators as suffi

ciently accurate. The second order model of actuator is approximative 

since it ignores the delay between the actuator input and the driving 

torque (force produced by the actuator). If this delay cannot be igno

red, the introduced global control cannot efficiently compensate for 
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dynamic forces. Therefore, in the synthesis of global control we have 

to take into account this delay between the input signal u i and the 

driving torque p~). One of methods to solve this problem is considered 

in Appendix 5.A. 

In the synthesis of the global control we have to select the scalar 

gain K~ in (5.2.13). This is the global feedback gain. It is obvious 

that the compensation for the coupling between the subsystems (i.e. the 

compensation for the dynamic forces acting upon the i-th subsystem), 

depends on the selection of K~. It is clear that if we select higher K~ 
1 1 

then the global control will compensate for "larger portion" of coup
Ai -

ling f ~Pi. However, if we assume that we have realized the function 
* * -6P i in such a way that it satisfies 6P i = 6P i , then it is obvious that 

the global gain K~ must be less than 1 (i.e. K? < 1), otherwise an 
1 1 -

"overcompensation" will appear. If we select K~ to be equal 1 (K~=1), 
1 1 

the global control would compensate for total coupling (in ideal case, 

* if the delay in actuator can be ignored and if it is fulfilled 6Pi = 

6P i ). However, since we can never ensure such an ideal compensation that 

6P~ = 6P., the global control might cause oscillatory behaviour of the 
1 1 

system (specially in close suroundings of the nominal trajectory when 

6P i is very small). On the other hand, too high feedback gains are not 

acceptable, due to reasons already explained in Chapter 3. Therefore, 

we must select the global gain to be as low as possible,but to ensure 

the stabilization of the robot. In the global control synthesis we have 

to analyze the stability of the robot with the selected global control 

(see Appendix 5.A), and determine the minimal gains K~ which ensure de-
1 

sired stability of the robot. 

Up to this point, we have considered the case when the global control 

is applied together with local servo systems and the centralized nomi

nal control. We have explained that the centralized nominal control 

suffers from certain drawbacks. Thus, instead the centralized nominal 

control we may apply local nominal control together with local servos, 

which is much simpler for implementation (Fig. 4.4). However, the lo

cal nominal control does not compensate even for the nominal dynamic 

forces. Therefore,the effects of these forces upon the servo systems 

performances are considerably stronger than in the previous case. This 

*) In D.C. electro motors this delay is defined by the electrical con-
i stant TR of the rotor curcuit. This constant is often very small 

but it cannot be always ignored, specially in the case of large 
D.C. motors having massive windings with high inductances. 
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means that it is much"harder"to ensure accurate tracking of nominal 

trajectories (or positioning), if just local nominal control is appli

ed. Further, it is necessary to introduce global control which has to 

compensate not only for the difference between the actual dynamic co

upling and the nominal coupling, but for the complete dynamic forces 

(moments) which load the local servo systems. 

The global control might be introduced in an analogous way to the pre
* vious case. The only difference is that instead of function ~Pi which 

corresponds to the deviation of the dynamic forces from the nominal 
- * forces ~Pi (5.2.7), here we must introduce a function Pi which corres-

ponds to total actual dynamic forces Pi (3.2.2). We select the functi
* on Pi to satisfy the following inequality for all states around the no-

minal trajectory: 

* sign(P i (x» 

* 

(5.2.15) 

sign (P i (x) ) 

If such function Pi(x) is introduced, the global control might be re-

presented in the form (5.2.10): 

~u~ 
l 

(5.2.16) 

The global control might get particular form which is analogous to 

(5.2.13) : 

~u~ 
l 

(5.2.17) 

Here K~>O again denotes scalar global gain. Next, we have to examine 

directly the practical stability of the system if the following control 

is applied: 

(5.2.18) 

i.e. if together with local nominal control and local servo feedback 

loops we apply the global control (5.2.17). As we have already said, 

the analYpis of the practical stability of the robotic system is out of 

the scope of this book, and it can be found elsewhere [2J. 

* So f~r we have not explained yet how we can realize the functions ~Pi 

or Pi' which play the central roles in the global control law. The 
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realization of these functions represents the basic problem in global 

control synthesis. We shall consider two possible realizations of the

se functions, i.e. of the global control: via force feedback and by 

on-line computation of dynamic couplings. We shall consider the case 

when the local servo systems, the feedforward terms in tne form of the 

local nominal control and the global control in the form (5.2.16) are 

applied, since such control is much more applicable for industrial 

robots. However, all considerations can be easely extended to the con

trol law which includes the feedforward terms in the form of the cen

tralized nominal control and the global control in the form (5.2.10). 

5.2.1. Force feedback as global control 

., 
The function Pi has to correspond to dynamic forces Pi' which act upon 

the servo system as coupling from other jOints. Dynamic force (moment) 

Pi which acts upon the i-th jOint can be directly measured using force 

transducers. If we implement force transducer in the joint we may ob

tain direct information on the effects of coupling upon this joint. In ., 
that case the function Pi can be made equal to the actual ~ynamic mo-

ment (force) P., taking into account "joint dynamics" ii .. q~ 
~ ~~ 

P. 
~ 

In other words, the global control directly compensates for dynamic 

forces, which are measured by sensors. If we introduce global control 

in the form (5.2.17) and if we assume tnat the actuator is of the se

cond order ni~2, and if we adopt K~=1, then by force feedback we would 

obtain the total compensation of coupling, i.e. the system would be 

ideally deaoupZed to subsystems (local servos). By introducing for-

ce feedback we achieve that the system behaves as a set of local sub

systems among which there are no interconnections (i.e. the subsystems 

would behave as we have considered in Chapter 3. when we have assumed 

that, except the i-th jOint, all the other jOints are locked). Actually, 

even force feedback cannot completely decouple robotic system: due to an 

amplitude constraint upon the actuator inputs, the global control by 

force feedback is also constrained, and therefore for large deviations 

from the nominal trajectories it cannot completely compensate for the 

actions of dynamic moments. On the other hand, information from sensors 

are not perfectly equal to actual dynamic moments since they always 

include noice. 



The control scheme which includes, becides local nominal control and 

local servo systems, the global control in the form of force feedback 

is presented in Fig. 5.2. The force feedback, as global control, has 

certain adventages: 
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a) Simp~e controZ structure. By introducing of force feedback we do not 

complicate significantly the control structure in respect to decen

traZi:zed' structure of control (Fig. 4.4). Practically in the joint 

for which the global control is required, we introduce only one new 

feedback loop-a feedback by force measured by force transducers. 

b) Minimal computation. Force feedback does not require additional com

putation since information from the force transducers gives total 

information on coupling. It is sufficient to multiply information 

from force transducer by global gain. (It is also required to sub

mitte from measured moment P. the value H, ,qi). This means that such 
1 11 

global control does not require additional computation time in a 

control microcomputer. 

c) Robustness to parameter variations. Since force transducers measure 

the total dynamic forces, this information does not depend on the 

parameters of the robot mechanism and actuators. If some parameters 

of the mechanism var~ this global control ensures compensation for 

dynamic forces regardles to parameters variations. In other words, 

the force feedback guarantees robustness of the control system to 

variations of parameters of the mechanism (for example, to varia tion of 

payload parameters, see Chapter 6), and to uncertaini tes of robot model

ling. 

However, the application of force feedback also suffers from certain 

drawbacks: 

a) Technical problems of force transducers implementation. To measure 

directly the forces acting in the joint, we have to build the force 

transducers directly in a shaft of actuator (reducer), or at some 

other place on the mechanism. Low stiffness of the force transducers 

might produce serious problems since it reduces the structural stif

fness of the mechanism but it has been shown that these problems ca,n 

be successfully solved [3, 4]. 
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b) Price of force transducers. The high-quality force sensors, which 

can precisely measure the forces might be relatively expencive. In

stead to apply faster (and expencive) microprocessors, in this case 

we use force transducers the price of which might be also high and 

increase the total cost of the control system. Therefore, the robot 

designer has to consider which of these two options is from the 

techno-economical aspects more acceptable: force feedback, or on

-line computation of coupling (see Section 5.2.2). 

c) Noice at force transducers. The force sensors, as well as all other 

sensors, in their output information always include certain noice. 

Most often this noice is negligable and can be ignored, specially 

if high-quality force transducers are used. However, the problem 

lies in the fact that these transducers are built directly in the 

mechanisms shaft which might vibrate due to their elastic modes. These 

vibrations are transfered to the sensors outputs (force informati

on), and then they are amplified in the control system. This might 

lead to resonant vibrations of the mechanism. Therefore the global 

gain K~ must be limited, and filters have to be applied to filter 
1 

the signals from the force sensors [3, 4l. 

Example 5.2.1. For the robot in Fig. 3.2. we shall show the effects of 

application of global control in a form of force feedback. Let us assume 

that we have to ensure tracking of the nominal traj ectories presented in 

Fig. 4.5. If we apply just local programmed control and local feedback 

loop!> (local feedback gains are given in Table 4.1. - Example 4.3.2), 

then tracking of the trajectories is quite unsatisfactory (Example 

4.4). Therefore, it is required to apply global control which compen

sates for effects of coupling. Obviously, it is sufficient to apply 

global control just in jOint 1 and 2. Let us apply force feedback in 

these joints. If we put force transducers in these joints, then it can 

be shown that, to stabilize the robot, we have to apply global gains 

which are at lea.st: 

0.5; 0.5 

Thus, the global control is applied in the form (5.2.17): 

llU~ 0.5. (0.28/0.26) (P1-3.49.q1) 

G ··2 llu 2 0.5· (5.28/4.96) (P 2-O.16.q ) 
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where Pi are the dynamic moments in the joints which are measured by 

force sensors built in the actuator shafts. In Fig. 5.3 the simulation 

of tracking of nominal trajectories from Fig. 4.5. is presented, if 

the local nominal control, local servos and the global control in the 

form of force feedback are applied. 

0.8 1.0 t[sl 
-0.02 

-0.05 

-0.08 

-0.1 

tqi[rctdl, [ml 

Fig. 5.3. Trajectory tracking for robot in Fig. 3.2. with 
force feedback as global control 

5.2.2. On-line computation of dynamic forces 

for global control 

* The second possible implementation of function Pi for global control is 

by on-line computation of dynamic moments in joints, i.e. of the coupling 

between joints. By potentiometers in the jOints (or by some other sen

sors) we get information on the actual positions of all jOints qi. By 

tachogenera.tors we obtain information on the joints velocities qi. In 

this we get information required to compute actual values of matrix of 

inertia H(q) and of vector of centrifugal, Coriolis and gravity moments 
. i . i 

h(q, q). If we forward the information on q , q from sensors to a control 

microcomputer, it can compute these elements of the dynamic model of mecha

nism Of robot (3.2.2). On the basis of models of actuators (3.2.6) and 

of the mechanisFt (3.2.2), we can determine accelerations of the joints 

.:.ii, Or they might be computed by numerical differentation of the jOints 

veloc:t,t±es q;l, Or they can be measured by accelerometers. 

In this way a microcomputer computes values of the driving torques Pi (x) , 

or the coupling between the servo systems p, (x). Therefore, a microcom-
* 1 

PI! ter generat,es function Pi (x) which is, theoretically, equal to actual 

coupling. 



However, this solution has certain drawbacks. The basic problem rela

ted to on-line computation of the coupling lies in complexity of dynamic 

model of robot. In general case the model of the mechanism dynamics 

(3.2.2) might be very complex and it requires a large number of adds 

and multiplies to be performed by a microcomputer in order to compute 

matrix H(q) and vector h(q, q). Various computer-oriented methods for 

computation of dynamic models of robots have been developed. These 

methods differ in their efficiencies from the standpoint of the amount 

of computation necessary to compute matrix H and vector h. Here, we 

shall not consider various methods for computation of dynamic model of 

robot [5, 61. Let us mention that the methods for computer generation 

of dynamic models of robots in symbolic forms are the most efficient 

for computation of dynamic moments Pi [7]. 
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If the robot is moving fastly, the dynamic moments Pi' i.e. matrix H 

and vector h, also might vary fastly. Therefore, the microcomputer must 

compute their values at each 10-20 [ms1. This means that a control 

microcomputer has to be fast enough to compute new values of matrix H 

and vector h, (i. e. of driving torque Pi (x», at rate of 1 0 - 20 [ms]. 

Since for execution of each computational operation a microprocessor 

requires some period of time, this means that to compute driving tor

que Pi a microprocessor might require much longer time than 10-20 [ms1. 

To achieve samp 7;i'ng period' which is compatible with dynamic characte

ristics of the robot, a control microprocessor should be very fast, and that 

meanS tha.t it might be relatively expencive. For certain robot structu

res a number of computational (real) operations, to be performed at 

each sampling period in order to compute coupling Pi(x), might be so 

high that even the current microprocessors hadrly can achieve it [61. 

In such Case we may apply several microprocessors in parallel, which 

mea.ns that the required computation load has to be distributed over two 

or more microprocessors. Such solution, obviously causes some new techni

cal problems (for example, how to distribute computations over micro

processors, how to exchange data between microprocessors, how to sync

hronized microprocessors execution, etc.). 

However, it is not always necessary to compute complete (total) dyna

m.tc jIlodels of ;robots, i.e. it is not always necessary to compute all 

components of dynamic moments (forces). As we have explained in Sect. 

4.2, the effects of all components of dynamic moments upon performan

ces of servos is not, equal. Therefo;re, it is not necessary to compute 

* all components of dynamic coupling, but in the function Pi we may 
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include only those components whose effects upon the system performan

ce is significiant. In other words, the global control might use just 

approximative models of dynamics of robot. Let us consider some appro

ximative models of robots which might be used for the global control [8]: 

a) If relatively slow motions of robot are considered, whith which ve

locity and inertia terms are not significiant, the global control 

might include only gravity moments, so that: 

(5.2.19 ) 

computation of gravity moments usually is simple and if we compen

sate for these moments, we may eliminate static error in the robot 

positioning as well the error during trajectory tracking (see Sect. 

3.3.5) . 

b) In Sections 3.3.5 and 4.2. we have considered the effects of vari

able inert.ia of the mechanism around each jOint Hii (q). These eigen

-inertia terms may be compensated for by the global control, if on-line 

computation of eigen-moments of inertia of mechanism and of corres

ponding accelerations is implemented at control microcomputer: 

(5.2.20) 

In this way we may achieve more uniform performance of local servo 

systems since the effects of variations of moments of inertia of 

mechanism are compensated for. 

c) If we consider fast motions of the robot, with high accelerations and 

deacceler,a tions, cross- inertia terms produce signif iciant dynamic 

load upon the servo systems and, by this, errors in trajectory trac

King appear. If we introduce real-time computation of these cross

-inertia terms, then we may achieve compensation of their effects. 

In th.a,t case app;t:oXimative model of the robot dynamics is given by: 

* ,n, , 
Pi = f1ii (q)gl + ,I HiJ' (g)ejJ + gi (q) - Hiiql 

. J=1 
(5.2.21 ) 

j*i 

computation of cross-inertia terms often requires a large number of 

rea.l operations and therefore it should be carrefully studied whe

ther all cross-inertia terms are necessary to be computed. 



d) At last, if very fast motions of robot are considered, with which 

it is necessary to achieve high accuracy in tracking of trajecto

ries (along entire trajectory, not only when the robot reaches its 

final position at the end of the motion), then we have to compen

sate even for Coriolis and centrifugal forces, which depend on jo

int velocities. Often the computation of these dynamic forces is 

the most complex, and, therefore, we have to pay special attention 

to analysis whether it is justified to compute them on-line. If we 

include Coriolis and centrifugal forces in the model (5.2.21) we 

obtain complete "exact" model of the robot mechanism dynamics: 

n . 
I H ... (q)qJ + h.(q, q) 

j=1 IJ I 
(5.2.22) 
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As it follows from the above considerations, we have to carrefullystu

dy which components of dynamic moments we have to compensatefordepen

ding on specific robot and specific task. The adventage of such appro

ach to synthesis of global control lies in the fact that it enables 

compensation for only those components of moments which are essential 

in particular case. In this way the global control can be simplified 

and unenecessary computations ina control microcomputer are avoided. A 

decision which approximative model is acceptable for particular robot 

and task, might be made by analysis of the robot stability, as explai-
* ned ip Appendix 5.A. In doing this, for the function Pi we should use 

various approximative models starting from the simplest one (5.2.19) up 

to the complete model (5.2.22). 

It should be also poted, that all components of dynamic moments do not 

require the same computational rate. Some of them vary faster then 

others, SO it is not necessary to compute them at the same rate. Gene

;r:a.l:ly spea,k;tng, ;it ;is often sufficient to compute dynamic components at 

the rate which are from 10 to 20 [ms], and this is for several time less 

than sepV'o rate which for industrial robots must be between 1 and 5 [ms] . 

(i.e. the rate at which local servo control must be computed). It is 

also necessary to analyze which is the lowest rate at which each com

ponent of dynamic moment might be computed. 

However, on-line computation of dynamic forces suffers from some other 

drawbacks, too. This form of global control assumes that all parame

ters of the robot are precisely identified and that they do not vary, 

which is not true in general case. In industrial applications of ro

bots, this assumption is often valid, since the processes are oft.en 
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known in advance. However, as we shall consider in Chapter 6, with 

current robots parameters of a payload are often not known in advance. 

Therefore, the compensation for the effects of payloads upon the robot 

dynamics is not simple if we apply on-line computation of dynamic mo

ments. Actually, it is necessary to implement on-line identification 

of unknown parameters of a payload. In other words, the global control 

by on-line computation of dynamic coupling is not robust to parameters 

variations, and to uncertainities of the robot modelling. 

The control scheme which includes on-line computation of dynamic mo

ments is presented in Fig. 5.4. It can be seen that the structure of 

this control scheme is much more complex than in the case of force fe

edback. This considerably complicates the implementation of control 

and its maintaince, and reduces the reliability of the system. 

Example 5.2.2. In Example 5.2.1. we have synthesized global control in 

the form of force feedback for the robot presented in Fig. 3.2. NOw, 

we shall present global control for this robot which applies on-line 

computation of the robot dynamics. We shall use approximative model of 

the robot dynamics. As in the previous case, we have to ensure accura

te tracking of trajectories in Fig. 4.5. We shall apply local servo 

systems and l,ocal nominal control. By analysis of practical stability 

of the robot, the simplest approximative model of the robot dynamics 

is d,etermined which can be u.sed for computation of couplings in the 

robot jO,ints, and to ensure accurate tracking of the nominal trajecto

ries. It can be shown that the global control might be introduced by on

~line computat,ion of inertia moments in the first and in the second 

joint. (:f;or the third joint there is no need to appl,y global control). 

'rAe minimal global :f;eedback gains whicA ensure robot stabilization in 

this Case a:re ~~ = 0.8 and :K~ = 0.8, so that the global control gets 

t.he following form: 

The tracking of trajectories in Fig. 4.5. with such global control 

(together with the local servos and the local nominal control) is pre

sented in Fig. 5.5. 
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0.6 0.8 1.0 t[s] 

-0.02 

-0.05 

-0.08 

-0.01 

Fig. 5.5. Tracking of nominal trajectories for robot in Fig. 3.2. 
with global control in form of on-line computation of 
dynamic moments 

E X ere 1 s e s 

5.1. Why the global control (5.2.13) is approximative? Explain the sta

tement that such control ignores delay in actuator. 

5.2. Draw the control scheme for the robot in Fig. 3.2. if the control 

considered in Example 5.2.1. is applied. (Local programmed con

trol, local servo feedback loops, global control in the form of 

force feedback). Determine the minimal number of real operations 

(adds and multiples) that have to be performed at each sampling 

interval in order to compute this control (the local nominal con

trol is computed as in Example 3.5). 

5.3. Estimate nmnbe;r- of microproce$$ors that have to be applied in pa

;r-allel in order to implement the control considered in Exercise 

5.2, and t.o achieve a servo rate of 5 [ms] (for computation of 10-

ca.l $ervos, l,ocal nOlllinal cont;r-ol and global control) if we use: 

a) microp;r-oces$ors of type INTEL-80-80 (which takes for one floa

ting-point mUltiply 1.5 [ms], and for one floating-point add 

0.8 rmsJ). 

p) microprocessors of type INTEL-80-87 (which takes for one floa

ting-pOint, mul,t,iply 65 [j.lsl, and for one floating-point add 
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35 [~sl). (Instruction: According to the number of multiplica

tions and additions determined in previous exercise, determine 

the processor time required for computation of control at one 

sampling interval, assuming that the processor time is taken 

only for multiplies and adds (overhead is neglected), and then 

determine the number of processors required to achieve sampling 

rate of 5 emsl). 

5.4. For the robot in Fig. 3.2. determine approximative models in forms 

(5.2.19)-(5.2.22). For each approximative robot determine the num

ber of real operations necessary to compute dynamic forces. Try to 

minimize these numbers. Assume that accelerations of the joints 

are given (that they are obtained by differentation of velocities). 

Assume that for computation of sinus and cosinus it is required 

1 multiple and 2 adds. 

5.5. Using results obtained in Exercise 5.4. determine the total num

ber of real operations which have to be performed at each sampling 

interval in order to compute local nominal control, local servos 

(see Examples 5.2.1. and 5.2.2) and global control in the form 

(5.2.17) if various approximative models (5.2.19)-(5.2.22) are 

used. Estimate the number of microprocessors that have to be ap

plied in parallel, for each of four control versions, in order to 

achieve sampling rate for local servos and local nominal control 

of 5 [msl and for global control of 10 [msl. Assume that we use 

the same microprocessors as in Exercise 5.3. Compare the results 

to those in Exercise 5.3. 

'" 5.6. In one of high-level programming language write the programme for 

* 

implementation of global control for the robot in Fig. 3.2. The 

global control is in a form: a) of force feedback as in Example 

5.2.1 (assuming that the measured values of forces Pi are inputs 

for programme), or b) of on-line computation of dynamic moments as 

in Example 5.2.2. - using approximative dynamic models. Try to 

minimize the number of multiples and adds. (Inputs for programme 

are actual values of joint angles qi, velocities qi and accelera

tions qi, and outputs are global control signals). 

5.7. For the robot in Fig. 3.2. determine expressions for calculation 

of joints accelerations qi as function of qj, qj, j=1,2,3, using 

the second order models of actuators (n i =2) and approximative 
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dynamic models (5.2.19)-(5.2.22) - see Exercise 5.4. If we use 

this procedure for determination of joints accelerations, then 

determine for how much increases the number of real operations 

necessary to on-line compute dynamic moments by approximative mo

dels (5.2.19)-(5.2.22), in respect to the previous case (considered in 

Exercise 5.4) in which we have assumed that accelerations are gi

ven. (Given accelerations means that they are either directly mea

sured by accelerometers, or they are computed by numerical diffe

rentation of velocities qi according to equationqi "" (qi(t+Tn) -
qi(t»/Tn - where Tn is the sampling interval). In which way we 

can reduce the number of real operations necessary to compute ap

proximative models, if the accelerations are obtained by models of 

actuators and mechanism. Solve the above problem (determination of 

jOints accelerations on the basis of actual joints angles and ve

locities using the second order models of actuators and approxi

mative models of dynamics of robot mechanism) in general case, for 

a robot of an arbitrary structure with n jOints. 

5.3 Computer-Aided Synthesis of Robot Control 

From our previous discussion we may conclude that the selection of con

trol law at the executive control level is strongly dependent on type 

and structure of a robot and on a task which is assigned to it. If we 

consider simple control tasks which can be reduced to position control 

or to tracking of slow trajectories (requiring no high accuracy), then 

we may adopt only local servo systems (eventually, we may also intro

duce local feedforward terms in a form of local nominal control). In 

such cases effects of dynamics of the entire robotic system are weak 

and therefore, we may ignore them. This approach has been applied in 

control of many robots at the market. However, if very accurate trac

king of fast trajectories is required, then the effects of dynamic for

ces upon the performances of servo systems might be strong, and then we 

have to apply dynamic control which compensates for these forces. We 

have seen that the dynamic control might be introduced in various ways: 

by nominal centralized control, by global control in the form of force 

feedback, or via on-line computation of dynamic forces using various 

approximative models of robot dynamics. In dependance on complexity of 

th,e robot structure and, on reqUirements which are imposed before the 

robot,we may introduce dynamic control of various degree of complexity. 

For example, the global control need not to be applied in all joints. 



255 

In some joints just gravity moments have to be compensated for, in the 

other inertia moment require to be compensated for, etc. The aim is to 

determine the simplest dynamic control which still satisfy requirements 

imposed before the robot in particular tasks. However, this problem is 

not simple since it demands analysis of the robot dynamic performances. 

In Chapter 4 we have shown how we can analyze the stability of the ro

bot and in Appendix S.A. we shall present how we can synthesize global 

control by robot stability analysis. Obviously, such analysis is rela

ted to large amount of computations, which means that we have to use 

digital computer. Therefore, the computer-aided synthesis of control 

for manipulation robot is needed. 

Application of computers for control synthesis of large-scale dynamic 

system is broadly encountered, today. Here, we shall briefly describe 

a software package for computer-aided synthesis of control for manipu

lation robots, which is based upon the above considered methods for con

trol synthesis*). Since in the previous text we have explained in de

tail theoretical background for analysis of the robot performance and 

for synthesis of dynamic control, here we shall just briefly describe 

basic structure (flow-chart) of this software package [9]. 

The software package enables synthesis of the executive control level 

for robots of arbitrarY structure with various number of jOints and 

actuators. The user of the package has to impose data on robot and the 

package helps him to synthesize the control. Namely, the control syn

thesis is interactive. Instead of completely automatic synthesis of 

control, here interactive synthesis of control is applied in which the 

computer only helps the designer of the robotic system to select the 

most appropriate control law for the specific robot and task. The 

software package might be regarded as an assistive device which enab

les the designer to use his experience in the control system design 

[10]. 

The package is modular, i.e. it consists of several modules which the 

user can easely combine. We shall briefly describe the basic modules. 

The flow-chart of the package is presented in Fig. 5.6. 

*) 
The package has been developed in Institute Mihailo Pupin, Beograd. 
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Fig. 5.6. Flow-chart of software package for control synthesis of robots 
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Analysis of nonlinear model of robot 
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Fig. 5.6. (Continue 2) 



1. Mod~le fo~ t~p~t data on ~obot mechanism. This module enables the 

~se~ to tmpose data about geomet~y and st~uctu~e of the ~obot 

mechanism fo~ which he wants to synthesize the cont~ol. The use~ 

has to impose data on lengths of the links, o~ientation of the jo

int axes, types of the jOints (rotational or linea~). The use~ also 

has to specify data on masses and moments of ine~tia of the links. 

Based on these data, the software package automatically sets kine

matic and dynamic models of ~obot, which are used in the synthesis 

of cont~ol. The use~ need not to take care di~ectly on these mo

dels, but the package uses them automatically in cont~ol synthesis 

wheneve~ they a~e needed. In this pa~ticular package, the procedu

~e for automatic setting of dynamic models of robots based on 

D'Alambert's p~inciple has been used [11]. 

2. Module for input data on actuato~s. In this module the user has to 

select type of actuato~ which he wants to apply for his ~obot (or, 

which has been applied to drive al~eady designed robot), and the 

basic data on actuato~s (moment of inertia of the ~otor, moment and 

electromoto~ constants of the moto~, elect~ical resistance of the 

rotor circuit, if D.C. motors are applied as actuators). Based 

on these data the package automatically sets the models of actua

tors. Package includes D.C. electro-motors and hydraulic actuators. 

3. Module for imposing the desired trajectory. The user has to speci

fy the task which the ~obot has to implement, i.e. the user has to 

choose whether the robot has just to be positioned in various posi

tions in its work space, or whether it should move "point-to-point", 

or if it should track the desi~ed trajectory. The user has to impo

se data on the desired positions, or trajectories of the gripper of 

the robot. The t~ajectories might be imposed in va~ious ways. Ba

sed on these data, the algorithm, using the kinematic model of the 

robot, dete~ines the cor~esponding positions or trajectories of 

the robot jOints, i.e. it solves the so-called inverse kinematic 

problem (see Chapter 2). In this way the desired (goal) positions, 

or trajectories of the robot joints are defined, and the executive 

cont~ol level has to implement them. 

4. Module fOr sYnthesis of local servo systems. The package can syn

thesize the local se~vo systems using various methods in accordan

ce with the use~ option. The package selects servo feedback gains 

fo~ all joints of the ~obot. 
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5. Mod-ule for nOll\inal control synthesis. The package enables automatic 

computation of the nominal driving torques which correspond to the 

imposed. paths of the robot gripper, and synthesis of the nominal pro

grammed. control based on the complete dynamic model of the robot. 

The package also includ,es computation of the local nominal control on 

the basis of local subsystems models. 

6. Module for synthesis of g.lobal control. The user is able (if he wis

hes so) to synthesize the global control using this software package. 

The global control has to compensate for dynamic coupling between 

the joints and, by this, to increase accuracy of tracking of de

sired trajectories. The global control can be introduced either as 

force feedback, or as on-line computation of dynamic moments. In 

the latter case the package helps the user to select the approxima

tive model of the robot dynamics which can be used for computation 

of the global control. Namely, the package enables iterative selection 

of the sill\plest approximative model by which imposed requirements 

can be satisfied [10]. 

7. Mod.ule for analysis of robot performance. This module analyzes the 

the stability of the robot with the selected control law. First the 

stability of the linearized model of the system is analyzed, and 

then, the stability of the entire nonlinear model of the robot is 

verified. The software package automatically linearizes the dynamic 

ll\od,el of robot and by testing eigen-values of the linearized model 

with the selected control, it examines whether the linearized model 

Of the system is stable or not. If the linearized model is stable, 

then the nonlinear model is examined. The analysis of the stability 

of the nonlinear model of the robot is performed by aggregation-de

composition methods for analysis of stability of large-scale sys

tems (Appendix 4.A). However, the analysis is performed automati

cally, and, thus, the user need not to learn much about these ra

ther complex algorithms. For the user it is quite sufficient to obta

in an answer whether the robotic system is stable with the selected 

control law, or not. If the answer is positive, the selected con

tr·ol can be accepted. Qtherwise, he has to re-select either local 

se;t'yos, op global cOntrol (see flow-chart in Fig. 5.6). 

8. Mod.ule far simulation of robot dynamics. The module for simuZation 

Of ;t'obot dynamics enables verification of r.obot behaviour with va

rious control laws. Using this modUle, the designer of the robot 

obtains precise intight into the performance, quality and speed of 

the robot which, h,elps h,im to make a final decision in selecting the 



most appropriate control law. The package also permits simulation of 

only local isolated subsystems (joints) in order to get better in

sight into effects of dynamic interactions behveen the joints of 

the robot. 

9. Module for synthesis of control in time-discrete domain. This modu

le enables synthesis of control in time-discrete domain. Such con

trol synthesis is necessary since the control of current robotic 

systems is implemented exclusively by microprocessors. This means 

that the feedback gains have to be synthesized taking into account 

a sampling period, i.e. the period which is taken by microprocessor 

to compute new values of control signals according to the selected 

control law. This module also helps the user to select microproces

sor achitecture which is required for implementation of the synthe

sized control (taking into account computational capability of 

microprocessors). The control synthesis in time-discrete domain and 

microprocessor implementation of various control laws are out of 

the scope of this book. 

Besides above listed modules, the package includes some auxiliary mo

dules, for example module for graphic presentation of a robot structu

re and graphic representation of results of trajectory synthesis, no

minal control synthesis, simulation etc. 

At the end of this brief description of the package we have to make 

two notes. As we have explained before, in stability analysis of the 

robot with the selected control, first the linearized model of the ro

bot is analyzed, and then the nonlinear model is analyzed. One of the 

reasons for such approach is that analysis of the linearized model inclu

ding automatic linea.rization of dynamic model of the robot consumes 

much less computation time than the analysis of the nonlinear model. 

The analysis of the stability of the nonlinear model (due to estimati

on of dynamic coupling between joints in defined surroundings of nomi

nal trajectorY - see Appendix 4.A) might, in general case, require re

latively long computation time. In order to increase speed of computer-ai

ded analysis of the robot performances, first the fast analysis of the 

linearized model is performed. The analysis of the linearized models 

gives sufficient, but not necessary conditions of the system stabili

ty. Th.is means, that if the linearized model is stable (according to 

adopted definition of stability), then we should proceed to stability 

analYsis of the nonlinear model. If the analysis of the stability of 

the nonlinear model of the robot gives positive answer, than we can 
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guarantee that the robot is stabilized by the selected control law. 

However, if the linearized model is not stable, there is no need to 

analyze the nonlinear model, since, in that case, the robot is obviously 

unstable. In that case, we have to re-select control (or, feedback 

gains) and repeat analysis of the linearized model. This procedure 

should be repeated until (desired) stability of the linearized model 

is achieved. After that we have to proceed to the analysis of nonline

ar model. We have to keep in mind that the analysis of the stability 

of the nonlinear model gives sufficient but not necessary conditions 

for the system stability (see Appendix 4.A), and if the answer of the 

computer is that the stability tests are not fulfilled, we must not 

state that the robot is not stable. In other words, the user has to combine 

the results of stability analysis of the linearized and of the nonlinear 

models, using his own experience, and in that way to get an answer 

whether or not the robot is stabilized by the selected control, or re

-selection of control law and parameters has to be done. 

The second note concerns the simulation of the robot dynamics. The 

simulation of the robot reduces to numerical integration of dynamic 

model of robot (i.e. of the set of nonlinear differential equations 

(3.2.27)). For the numerical integration we may use various algorithm~ 

which can be found in literature. The most simple procedure, (but also 

the least accurate method) is EuZer's method, which reduces to compu

tation. of the next system state (the state of the system at the next 

sampling interval t+6T) on the basis of the state at the instant t, 

according to simple equation: 

X(t+6T)=x(t)+6T·i(t)=x(t)+6T·[i(x(t»+§(x(t»N(u(t»] (5.3.1) 

where AT is the integration intervaZ (i.e. the time interval at which 

we compute a new state). For the given instant state x(t) we have, in 

accordance to a selected control law, to compute values of the control 

signals, i.e. th,e values of the elements of the input vector u(t) . 

'I:n,en, we h.ave to compute expre!3 s ion at tn,e right-hand side of the equ-

ation (3.2.27) , and, then, based on expression (5.3.1) to compute the 

!3ta,te ;i.n the next sampling interval x (t+6T) . Then, the procedure is 

repea,ted at the next interval. ObViously, the user must impose the 

in.itia.l state x(O), a,nd tn,e integration interval 6T (which must be 

!3ufficiently sn,ort to enSllre that the numerical integration (5.3.1) 

gives sta,te trajectory whicn, is close to "actual" trajectory of the 

system). Tn,is mO!3t simpl,e procedllre for numerical integration of the 

differential equations (tn,e model of the robot dynamics) suffers from 



drawbacks regarding numerical accuracy, and therefore it is often 

necessary to apply more complex (and less approximative) procedures 

for numerical integration. 

E X ere 1 s e 

5.8~ Write in a high-level programming language a programme for simu

lation of the dynamics of the robot in Fig. 3.2. if local nominal 

Gontrol, local servo systems and global control in the form of on

-line computation of inertia moments in the first and in the se

cond joints are applied (as in Example 5.2.2). Repeat simulation 

results presented in Example 5.2.2. Use the programmes written in 

Exercises 4.16 and 5.6. 

5.4 Computed Torque Method for Robot Control Synthesis 

To this point we have considered the dynamic robot control based upon 

the decentralized approach to control [121. In this approach, the lo

cal servo systems at particular robot jOints are synthesized first. Such 

control has a decentralized structure: each of the local servo systems 

possesses information only about the state of its own subsystem (actu

ator and jOint) which it controls. As we have already seen, to ensure 

the accurate positioning and tracking of fast trajectories, such decen

tralized control is not always sufficient, so that it is necessary to 

introduce the control which takes into account the dynamics of the sy

stem as a whole. For this purpose, certain control signals have been 

"added" to the decentralized control structure to compensate the ef

fect of the coupling between the subsystems. Such control, called the 

nominal programmed control is calculated on the basis of the complete, 

centralized robot model. The global control using either force feed

backs, Or the on-line calculated moments has also the role to compen

sate the dynamic forces acting as the coupling between the subsystems. 

Both kinds of dynamic control are the deviation from the decentralized 

structure, because the control signals for the particular actuators 

are calculated as a function of states of all subsystems (not only of 

the corresponding subsystem). Therefore, such control possesses a cen

tralized structure. However, the main aim in this approach is to re

tain, to the most possible extent, the decentralized structure, and 
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introduce the global, cross feedback loops only t):1.ere where it is neCeS~ 

sary. In doing so, as we have already shown (Section 5.3) the starting 

point is always a decentralized structure whose main features are sim

plicity and reliability, and the centralized control components are 

introduced later on. 

Here, we shall consider an opposite approach: starting from the global 

system model, the control is synthesized with the centralized structu

re and then, the unnecessary feedbacks are eliminated. Such a centra

lized approach is theoretically consistent but is much more complicated 

and might lead to complex control laws. 

It should be pointed out that the majority of the present day commer

cial robots possess a decentralized structure: each joint is control

led by a separate local servosystem. Centralized control schemes are 

rarely used with robots because the majority of the commercial robots 

have not been intended for solving dynamic tasks (accurate tracking of 

fast trajectories), for which the centralized structure is justified. 

The "computed torque method" or "inverse dynamics" method is one of the 

centralized approaches to the robot control synthesis. The idea is to 

include, in a direct way, the mathematical model of the robot dynamics 

into the control law [13-15]. 

For the simplicity sake, let us consider first the model of the dyna

mics of the mechanical robot part, while the models of the actuators 

will be introduced afterwards. The dynamics of the mechanical part of 

the robot is described by the model in the form of (3.2.2)*): 

p fI(q)q T h(q, q) (5.4.1) 

To ensure tracking of the given trajectories of the robot joints given 

by qOi(t), let suppose the control system generates the driving torqu

es by calculating them from the following control law: 

PIt) = Hs (q)[qo(t)+K1 (q(t)~qo(t»TK2(q(t)-qo(t»]Ths(q, q) 

(5.4.2) 

*) For an explanation of the notations see Section 3.2.1. 
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where Hs (q) is the inertia matrix of dimensions nxn, calculated on the 

basis of the actual (measured) values of the jOints angles q, hs(q, q) 
the vector of Coriolis', centrifugal and gravitational moments, calcu

lat.ed on the basis 0f the actual values of angles q, and velocities q, 
K1 is the matrix of the position feedback gains, of order nxn, and K2 

is the matrix of velocity feedback gains, (nxn). The control system 

(computer), on the basis of sensory information about positions q and 

velocities q of the joints, should calculate Hs' hs and P from (5.4.2). 

When the torques thus calculated are realized at the robot joints, it 

is obtained (by introducing (5.4.2) into (5.4.1)): 

+hs (q, q) = H(q)q+h(q, q) (5.4.3) 

If the calculation of the matrix Hs and vector hs is perfectly accura

te, then 

H(q), hs (q, q) = h(q, q) (5.4.4) 

On the basis of (5.4.3) and (5.4.4) we obtain: 

(5.4.5) 

If we introduce the vector of deviation of the actual robot coordina

tes q(t) from the nominal trajectory qO(t), ~q(t)=q(t)-qo(t), then 

(5.4.5) can be written as 

(5.4.6) 

If the gains K1 and K2 have been chosen such to ensure the solution of 

the system of differential equations (5.4.6) is asymptotically stable, 

the actual robot coordinates q(t) will asymptotically approach the no

minal trajectories qO (t). In other words, if K1 and K2 are chosen to 

be such that the linear model (5.4.6) is asymptotically stable, itwill 

al,so gua.ra.ntee an asymptotic sta.bility of the nonlinear robot model 

around the nOll\inal, trajectorY qO(t) • 

In order to ensure the linear model (5.4.6) is asymptotically stable, 

the gains K1 and K2 can be selected in various ways. One of the possi

ble solutions is to select these gain matrices in the diagonal forms, 
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K1 diag(K~i), K2 = diag(K~i). Then, the model (5.4.6) splits into a 

set of n independent second-order differential equations: 

i=1,2, ... ,n (5.4.7) 

The choice of gains K~L and K~i is now simple. It should be ensured the 

roots of the equation (in the s-domain) 

0, i=1 ,2, ... ,n (5.4.8) 

are in the left half of the complex plane*). Instead of the asympto

tic stability of the model (5.4.6), (i.e. of the decoupled equations 

(5.4.7», an exponential stability may be required: it suffices the 

solutions of equations (5.4.8) be in the complex plane on the left to 

the straight line Re(s) = -a, where a is the required degree of expo

nential stability. In that case, the nonlinear robot model is also ex

ponentially stable around the nominal trajectory. It is easy to show 

that, in this way, the practical robot stability can also be guaranteed. 

The control scheme corresponding to the control law (5.4.2) is presen

ted in Fig. 5.7. It is quite obvious that this scheme represents a com

bination of the control system with closed feedback loops (with res

pect to q and q) and nonlinear control signals calculated on the basis 

of the nonlinear robot model. In this scheme, the compensation of the 

variable gravitational, centrifugal and Coriolis forces is ensured. 

The feed.back gains are directly adjusted in accord with the changes in 

matrix R(q), i.e. in accord with the change of the moments of inertia 

of the mechanism; a precompensating signal is introduced with respect 

to the nominal acceleration qO(t), to compensate for the delay along 

the nominal trajectory. 

The main problem in the implementation of the dynamic control (5.3.2) 

is in the requirement that the complete model of the robot dynamics is 

calculated on-line, which, as we explained in Section 5.2.2, is gene

rally very difficult to attain, even by emploing very fast micropro

cessors. Here, similar to global control, instead of an exact calcula

tion of the matrix Hs and vector h s ' different approximative models 

can be used. All the approximate models of the robot dynamics (5.2.19) 

*) 
Obviously, it is desirable to require the roots are real, so that 
the damping ratio would be ~ > 1. 



- (5.2.22) that have been mentioned in relation to the on-line calcu

lation of robot dynamics in the global control can also be applied he

re. For example, if the approximate dynamic model (5.2.20) is adopted, 

which includes only the diagonal elements of the matrix Hs(q) (the own 

inertia moments) and gravitational moments, then, the calculation of 

the driving moments is reduced to: 

(5.4.9) 

In this way, the calculation can be substantially simplified, though, 

for certain robot types, it may be still complex. On the other hand, 

in each specific case (for the specific robot type and its structure, 

as well as the specific class of task) it should be examined if such 

simplified control can satisfy the required stability conditions (as 

relations (5.4.4) do not, obviously, hold any more) . 

In order to avoid too complicate calculation of the matrix Hs and vec

tor hs in real time, the elements of matrices Hand C, and gravitatio

nal moments gi can be calculated in advance (off-line) for the diffe

rent values of angles q, and stored in a computer [16]. Here, C repre-
i sents the matrix of the centrifugal and Coriolis effects C = Cjk - see 

the model (3.2.1). During the robot's motion, for the actual instanta

neous va.lues of joints angles q, the corresponding values for Hs' C 

and gi are taken from the memory and, on the basis of the measured 

velocities q, vector hs is calculated: 

(5.4.10) 

where g (q) =[gi (q)] is the vector of gravitational moments (n x 1). In 

this way, the amount of calculation in real time is substantially re

duced (it is only necessary to calculate (5.4.10) and multiply the 

stored matrices Hs by the term in the square bracket in (5.4.2». This 

approach has all the shortcomings of the off-line calculation of nomi

nal control. First of all, it reqUires a large memory capacity. The 

scheme for realization of such control is shown in Fig. 5.8. 

Apart from the problems related to large amount of calculation, the 

computed torque method suffers also from other shortcomings. This is 

related to the problem of the robustness of such control to variations 
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of the robot (and payload) parameters. The assumption in this control 

synthesis has been that all the robot parameters were ideally known in 

advance - see (5.4.4). If these parameters are changed it is necessary 

to examine robustness of such a solution. The robustness investigation 

is complicated by the complex centralized structure of the control. It 

has been shown that this control scheme is ratner sensitive to both pa

rameter variations and to model uncertainities. Namely, it is evident 

that the control scheme is developed under assumption of perfect model

ling of the robot and actuators dynamics. Due to presence of unmodel

led high frequency modes of the systems (i.e. flexibility of the links, 

joints actuators and reducers which are not included in the rigid body 

model of the mechanism and of the actuators) the presented control 

scheme is v-alid only if the feedback gains are properly adjusted to 

prevent excitation of these high frequency modes. Therefore, the feed

back gains must not be too high, but this might cause that the system 

becomes sensitive to parameter variations (since robustness to parame

ter uncertainties is generally achieved by high feedback gains, i.e. 

by high control bandwidth). This method can be applied for the synthe

sis of adaptive control, but its realization is complex [17]. 

The main problem in this approach is in the complex, a priori chosen, 

centralized control structure which is making difficult the synthesis 

and choice of a simplest acceptable solution. Because of that, in the 

centralized control, it is much more difficult to develop a synthesis 

procedure which would utilize the robot designer's experience (see 

Section 5.3). 

Finally, let us note that in considering the "computed torque" method 

we have neglected the dynamics of the actuators. If the models of the 

actuators have been chosen in the form of (3.2.11), (second-order ac

tuators models) it is easy to show that the input signals to the actu

ators to realize the driving torques (5.4.2) are (J~ = J~N~N!): 

CiCiNiNi . 
MEv m)ql} 

i r R 
(5.4.11) 

where H! ~nd I~ are the i-th rows of matrix Hs' i.e. of the unit mat

rix In' h~ the i-th element of vector h s ' while the other symbols, 
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related to the D.C. electro-motors, have been explained for equations 

( 3 • 2 . 4) and ( 3 . 2 . 5) • 

It should be noticed that the problem of variable and unknown parame

ters in the "computed torque" method can be overcome by using the ro

bust control [18] which represents a combination of the computed tor

que approach and the so-called "sliding mode" [19]. However, this at

tempt has not been developed sufficiently to be realized in practice, 

and it is still at the stage of theoretical investigations. 

Example 5.4. For the manipulator in Fig. 3.2, we shall write the ex

pression for the driving torques in the "inverse dynamics" method 

(5.4.2). The gains K~i and K~i have been chosen such that the roots of 

(5.4.8) are both -5 (for all three joints, i=1,2,3). The obtained fe

edback gains are K~i = -25, K~i = -10, i=1,2,3. The driving torques 

should be calculated (using the model of the robot dynamics (3.2.3» 

from the following expressions: 

[ -03 3 .3] m3 q (t)-256q (t)-106q (t) -m3g 

E X ere i s e s 

5.9. Prove that expression (5.4.11) represents the voltages at the in

puts of D.C. motors which would generate the driving torques 

(5.4.2) if the models of the motors had been given in the form 

(3.2.6), (3.2.11). 



5.10. For the manipulator in Fig. 3.2, the driving torques using the 

"computed torque" method are given as in Example 5.4. Hrite the 

expressions for the input signals to the actuators (5.4.11) cor

responding to these driving torques for particular robot. If the 

approximative models (5.2.19) - (5.2.22) are used instead of the 

exact model of the robot dynamics, write the expressions for the 

driving to;r-ques (Le. inputs to the actuators) using the "compu

ted torque" method. Minimize the number of numerical operations 

which should be carried out. 

5.11. For each of the set of voltage inputs to the actuators (5.4.11) 

written in the preceeding exercise for the robot in Fig. 3.2. 

determine, using the approximate models (5.2.19) - (5.2.22), the 

number of operations (multiplies and adds) needed for their cal

culation (for the given q and q). Determine the minimal number 

of microprocessors which should work in parallel to calculate 

these input signals (for all three actuators) every 10 [ms], if 

the microprocessor used is: 

a) INTEL-80-80 (one addition operation lasts 0.8 [ms], and one 

multiplication 1.5 [ms]), 

b) INTEL-80-87 (addition 35 [~sJ, multiplication 65 [~s]). Sup

pose the processor time is used only for the operations of ad

dition and multiplication (the calculation of a sine or cosi

ne function is equivalent to two adds and one multiply opera

tion) . 

5.12. For the control laws in Exercise 5.10, determined on the basis 

of the approximate models (5.2.15) - (5.2.22) for the robot in 

Fig. 3.2, draw the control scheme taking into account the model 

of the actuators. 

* 5.13. write in a high programming language the programme for the on-

-line calculation of the input signals (5.4.11) to the actuators 

of the robot in Fig. 3.2. which would correspond to the driving 

torques in Example 5.4. (using the "computed torque"method). The 

programme input data are the robot actual and desired cordinates 

qi, qOi and velocities qi, qOi and desired accelera tions qOi, and 

the output data are the input signals to the actuators u i , i=l, 

2,3 (the data about the robot are also inputs). 
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5.14~ Explain what is the similarity a,nd th.e difference between the 

control law (5.4.11) according to the computed torque method and 

the control law presented in Section 5.2.2. which is composed of 

the local nominal control, local servo systems feedbacks, and 

global control in the form of on-line calculation of the comple

te model of the robot dynamics. 

5.15. If in Example 5.7. the poles of equation (5.4.8) are set (both) 

at the position -20, instead of -5, what would be the gains K~i 
and K~i, i=1,2,3. What are the real gains in the feedback loops 

with respect to the position and velocity (the gains from the 

error 6qi and 6qi to the actuators inputs u i ). Are these gains 

acceptable, and how the poles of equation (5.4.8) should be cho

sen to constraint these gains? 

5.16. Explain what would be the role of variation of the gains in the 

feedback loops with respect to the position and velocity as a 

function of the inertia of the mechanism. What would be achieved 

in respect of the uniformity of functioning of the system? 

5.5 Cartesian Based Control of Robot 

As we have already pOinted out (Chapter 1), the task assigned to the 

robot is usually described in the so-called external (Cartesian) coor

dinates. In other words, the task is defined by assigning the path (or 

position) to be realized by the robot hand together with the workpiece. 

If the task is defined by the operator, by the direct lead-through me

thod, or using the corresponding programming (robotic) language, it is 

much Simpler to define the path, i.e. the action to be performed by 

the robot hand. Similarly, if the task is assigned by higher control 

levels, it is usually defined "what the gripper should do with the 

workpiece". On the other hand, the robot's joints are powered by the 

a.ctuators, and they should be controlled to realize the desired posi

tions or trajectories of the robot hand. To this point we have assumed 

the hierarchical robot control: at the higher, tactical level, thetra

jectories of the external (Cartesian) coordinates are transformed into 

the trajectories (positions) of the robot joints, while at the lower, 

executive level, the calculated joints coordinates are realized. In 

the previous chapters we considered the problems of realization of the 

given joints trajectories (positions), assuming they had been calcula-



ted on the basis of the gripper trajectories (Chapter 2). A global 

scheme of such control is shown in Fig. 5.9. 

Such hierarchical solution to the robot control is practically used 

with all present day commercial robots. As we have seen, to realize 

the obtained joints coordinates, different control laws can be appli

ed. Such control is called joint-based control [20J. It is obvious that 

this control requires the solving of the inverse kinematic problem, 

which is usually reduced to the inversion of the Jacobi matrix, and 

this may require a great number of numerical operations (i.e. a power

ful microprocessor is needed to attain the sufficiently short sampling 

period). It is intuitively clear that another solution to the control 

problem is possible. As the task is usually defined in terms of exter

nal (hand) coordinates it would be possible to control the robot using 

directly these coordinates. The joints positions (and velocities), me

asured by the corresponding sensors (potentiometers, shaft-encoders, 

technogenerators, and the like) are transformed into the external co

ordinates (the hand coordinates) sIt) and compared with the desired 

(nominal) hand trajectories sO(t), so that the errors are also obtai

ned in terms of external coordinates. On the basis of the error in the 

hand coordinates, the control signals to the robot actuators are gene

rated. A block-scheme of such control is presented in Fig. 5.10. This 

control is called the Cartesian coordinates based control (or the con-

trol in the task-space coordinates [20, 21J, because the control is 

based on the errors in the coordinate frame in which the task is as

signed, e.g. the frame related to tool, or workpiece, etc.). 

After the microprocessor has calculated the error in the hand coordi

nates, it is possible to apply different control laws to generate the 

appropriate control signals. It should be borne in mind that the job 

to be done is to generate the inputs to the actuators, by which parti

cular robot joints are powered. One of the possible solutions is to 

transform the error (using the inverse Jacobian), calculated in terms 

of Cartesian coordinates 6s = sIt) - sO(t) into the error of the in

ternal coordinates 6q, and then, to generate the inputs to the actua

tors according to one of the control laws considered (e.g. for the 

l~cal servo systems, the control is generated acc. to u i = -K~6qi -

K~q, and the like). In this way, it is possible to calculate not only 

the error with respect to the position but also the errors with res

pect to the joints velocities. However, this solution reqUires the ap

plication of the inverse Jacobian whose calculation usually requires a 
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large amount of calculation so that it has no substantial advantage 

over the solution presented in Fig. 5.9. On the other hand, the in

verse transformation from the external into the internal coordinates 

is in this case carried out within the control loop, so that it may be 

required that the inverse Jacobian is calculated during a much shorter 

sampling period than in the scheme in Fig. 5.10. 

Another solution to the Cartesian based control is, starting from the 

error in the hand coordinates ~s, to calculate the forces (moments) 

which should be produced on the hand so that the hand would follow the 

desired trajectory sO(t) (i.e. the given position so). Let denote by F 

the mxl vector which is composed on the force components and corres

ponding moments acting at the gripper mass centre (i.e. around the hand 

mass centre)*). The components of the force and moment at the hand re

present their projections to the axes of the Cartesian (or task speci

fic) coordinate frame with respect to which the external coordinates 

have been defined. Therefore, the control law in terms of hand coordi

nates defines the link between the vector F and the error in Cartesian 

coordinates (as well as, the error in the Cartesian coordinates velo

cities) : 

F (5.5.1 ) 

The Cartesian forces and moments thus obtained should be applied to 

the robot hand. In order to realize these forces and moments, the cor

responding torques (forces) to be produced by the actuators about the 

jOints axes, should be determined. The link between these tor~ues abo

ut the joints axes P and the vector of hand forces F is (in the static 

case) defined as: 

P = JT(q)F (5.5.2) 

where J(q) is the Jacobi matrix (mxn), defined in Chapter 2. The tor

ques to be realized about the joints are given by (5.5.2). It is easy 

to determine the voltage signals to be applied to the actuators inputs 

to realize these torques. The global Cartesian control thus obtained 

is schematically represented in Fig. 5.11. The main advantage of this 

* ) If the task is assigned with respect to the mass centre or the tip 
of the workpiece, and the external coordinates are refferred to 
this point, then the vector F is also defined with respect to this 
point. Actually, F should be reffered to the same coordinate frame 
to which s is reffered. 



sO(t) qO(t) 
Joints based u(t) Robot and q - Inverse kinematics control law - actua tors 

I--

q 

Fig. 5.9. conceptual scheme of joint based control 

sO(t) IIS(t) Cartesian control law u(t) Robot and actuators q( 
-

t) 

s(t) Direct kinematics 

Fig. 5.10. Conceptual scheme of Cartesian based control 

t sOt t) 

Calculation of F P 

~~ F=f(IIS, 6S, so) f--- } f---- Robot and actuators I--

+ -

s(t) q(t) 
Direct kinematics 

Fig. 5.11. Conceptual scheme of Cartesian based control 
(for simplicity, velocity feedbacks and cal
culation of signals to actuators omitted) 

control structure over the scheme in Fig. 5.10. is in that the calcu

lation of the inverse kinematics is avoided. Instead of the inverse 

Jacobian, a transposed Jacobian is used, and the direct robot kinema

tics is calculated (i.e. the hand coordinates are calculated on the 

basis of the joint coordinates). These calculations require an incom

parably smaller number of numerical operations. 
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The control law expressed in external (hand) coordinates (5.5.1) might 

be of different nature. Practically, all the control laws expressed in 

the jOint coordinates, considered in this chapter and the preceeding 

ones, might be, (after cartain modifications) also applied for the Car

tesian control. Thus, for example, the decentralized control might al

so be applied in the external coordinates [21J. In that case, each com

ponent of the vector F (the Cartesian force and moment) is obtained 

only through the errors in corresponding external coordinates; 

i ·i 
K s ve 

(5.5.3) 

where Fi denotes the i-th component of vector F, to which corresponds 

the i-th component (si) of the vector s, Ki Ki are the position and 
pe' ve 

velocity gains in feedback loops by hand coordinates. It is obvious 

that (5.5.3) represents the control law which should ensure the robot 

positioning at the desired position so, while for the case of tracking 

the gripper trajectory sO(t) a precompensating term, and the like (ana

logous to the solution explained in Section 3.5), should be introdu

ced. Similarly, it is possible to adopt the control law in the Carte

sian coordinates which would correspond to the optimal regulator (Ap

pendix 5.B), or which would include the complete dynamic model of the 

robot, i.e. which would represent the computed torque method applied 

in Cartesian coordinates [22J. 

Apart from the obvious advantages of such control schemes in respect 

of the reduction of the number of numerical operations to be carried 

out by the microprocessor to generate the control signals (due to the 

avoidance of the Jacobian inversion), the Cartesian control has also 

certain disadvantages. The feedback gains synthesis in these schemes 

is extremely complicated, because the analysis of stability in exter

nal coordinates is made difficult. It appears that, in order to achie

ve satisfactory positioning (or tracking of trajectories) using the 

decentralized control in external coordinates (5.5.3), it is not pos

sible to adopt the fixed gains Ki , Ki , but these have to vary in de-
pe ve 

pendence of the robot position. It should be borne in mind that the 

calculation of hand coordinates on the basis of the measured jOint co

ordinates q and the transposed Jacobian in the scheme in Fig. 5.12. 

are within the control loop, so that it is possible to require their 

calculation much more frequently that in the case of the scheme shown 

in Fig. 5.9. (where the calculation of the inverse Jacobian is requi

red, but outside the control loop). It would be possible to avoid the 

calculation of the hand coordinates on the basis of the jOint coordi-



nates if the hand coordinates were measured directly, which would re

quire the use of the corresponding sensors. 

It should be noted that the Cartesian robot control is still at the 

stage of theoretical and laboratory investigations so that the present 

day commercial robots are controlled solely in the joint coordinates. 

E X ere 1 s e s 

5.17. Explain how the position and velocity gains in (5.5.3) should be 

chosen in the decentralized control on the basis of the Cartesi

an coordinates, to ensure the robot exhibits no overshoots, nor 

the oscillatory motion, and the characteristic frequency is not 

close to the resonant frequency of the structure. 

* 5.18. Draw the control scheme for the robot in Fig. 3.2. which corres-

* 

ponds to the computed torque method in hand coordinates [22l. For 

this purpose write the dynamic model of the robot in the Carte

sian coordinates, assuming the external robot coordinates are given 
T 

by s=(xc ' Yc' zc) ,where xc' yc' zc are the robot tip coordina-

tes with respect to the coordinate frame fixed to the robot base 

(at the first jOint). Determine the minimal number of numerical 

operations (adds and multiplies) to be carried out on each sam

pling interval to calculate input signals to the actuators using 

the computed torque method in external coordinates for the given 

robot (use expressions (5.5.1>, (5.4.2) (5.5.2), (5.4.11». As

sume the adopted mOdels of actuators are of second order. 

5.19. Repeat the same as in the preceeding problem for the robot in 

Fig. 3.3, assuming the robot is in the horizontal plane, so that 

the external robot coordinates are given by s = (xc' Yc)T, xc' 

Yc are the coordinates of the robot tip with respect to the co

ordinate frame fixed at the first robot jOint. Determine the 

number of operations needed to control this robot (to calculate 

inputs to the actuators on each sampling interval) using the com

puted torque method in the jOint coordinates, assuming the nomi

nal trajectory is given in terms of Cartesian coordinates; these 

Cartesian coordinates are first transformed (using the inverse 

kinematic model) into the jOint coordinates, and then, the con

trol signals are calculated according to (5.4.2) and (5.4.11>. 
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* 

Compare the obtained number of operations to that needed to cal

culate the control (input) signals to the actuators using the 

computed torque method on the basis of the Cartesian coordina

tes. (Assume that actuators are D.C. motors whose models are of 

the second order, so that (5.4.11) holds). 

5.20. It has been shown that the dynamics of the robot hand might be 

expressed by the model written in Cartesian (hand) coordinates 

[22]. The dynamic model of the robot hand in Cartesian space 

might be written as: 

F A(S)s + Il(s, s) + p(s) 

where F is 6x1 Cartesian force-moment vector, s is 6x1 vector of 

Cartesian coordinates of the robot hand (positions and orienta

tions), A(s) is the 6x6 inertia matrix in Cartesian space, Il(s, 

s) is the 6x1 vector of the hand centrifugal and Coriolis moments, 

and p(s) is the 6.1 vector of gravity forces. Compare this model 

to the model (3.2.2) in joint coordinates and show that the fol

lowing relations hold: 

p(s) = J-T(q)g(q) 

P = JT(q)F 

(Instruction: Use the fact that 

·T • • • 1·T oH • 
q C(q)q = H(q)q - 2 q oq q) 

Starting from the above written model in the Cartesian space, 

show that the Cartesian control on the basis of computed torque 

method might be written as: 



where sO(t) is desired hand path, Kpe is matrix of position fe

edback gains, Kve matrix of velocity feedback gains. Try to re

arange last expression to obtain more convinient form for compu

tation, using above relations between models in jOint space and 

in Cartesian space. Draw the corresponding control scheme. 
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Appendix S.A 
Stability Analysis of Robot with Global Control 

The analysis of asymptotic (and exponential) stability of the robot 

around the nominal trajectory xO(t) if just the nominal centralized 

control and decentralized controller (local servos around individual 

joints) are applied, has been presented in Appendix 4.A. Here,we shall 

briefly consider stability analysis when global control is also applied. 

Let us consider the case when the centralized nominal control and loca.l 

servos are applied. In Section 5.2. we have introduced global control 

in the form (5.2.13). However, as we have explained, this global con

trol directly compensates for coupling between the joints (subsystems) 

only if we may ignore delay between actuator input and driving torque 

produced by the actuator. If this delay can not be neglected, this dy

namic control cannot completely compensate for dynamic moments (which 

act as an external load upon the actuator). Therefore, in global con

trol synthesis we have to take into account this delay between the in

put signal u i and the driving torque Pi' 

In stability analysis of the nonlinear model of the system we have in

troduced Liapunov function of subsystem vi(~xi) as a scalar function 

of the subsystem state ~xi (see Appendix 4.A.1). It can be shown that, in 

order to directly compensate for the effects of coupling upon the sys

tem stabilit~ the global control can be introduced in the following 

form: 

(5.A.1l 

where K~ is scalar gZobaZ gain (constant), while gradv1. denotes the 
1 . 

derivative of function Vi(~Xl) by the coordinates of the vector ~xi. 

However, the Eq. (S.A.1) is defined only if (gradv.)TSi",O. Since v. is 
.11 

the function of the subsystem state AXI, then in some pOints in the 

subsystem state space (gradvi)TSi might be equal to ° (or, it might 

get values close to 0). In these pOints, the global control signals 

(5 .A.1) would become extremely high (theoretically infinite) • However, 
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the amplitude of the total actuator input signal is constrained N(u i ), 

and, therefore, in the paints in which (gradv.)Tbi+O, the global con-
~ 

trol is not realized according to (S.A.1), but some limited input sig-

nal is realized. We may introduce a number Ei>O which satisfies the 

following inequality: 

(S.A.2) 

for all points I'.x in the surrounding of the nominal trajectory xO(t), as

suming that it is already fulfilled that luOi(t)_k~l'.xil<ui. Now, the 
~ - m 

global control might be introduced in the form: 

{ 
-K~r (gradv.) TBi]-1 (gradv.) Tfil'.p~ 

G ~ ~ ~ ~ 

I'.u. = 
~ G -1 T'i T'i * -K.E. sign[(gradv.) b ] (gradv.) f I'.P. 

~ ~ ~ ~ ~ 

(5 .A. 3) 

The global control (S.A.3) is defined for all points in the state spa

ce of the i-th subsystem. The scheme of this global control is presen-
* ted in Fig. S.A.1. In (S.A.3) I'.P i denotes function which satisfies 

(S.A.9) and which can be implemented in one of two ways described in 

Section 5.2: either by the force feedback, or by on-line computation 

of dynamic moments (using approximative models of robot dynamics) . 

Thus, the robot control is given by (5.2.8) and (S.A.3). It is obvious 

that the global control (S.A.3) directly reduces the effects of dy

namic coupling upon the asymptotic (exponential) stability of robot. 

Namel~ if we apply control (5.2.8), (S.A.3) the first derivative (by 

time) of Liapunov function vi (I'.x i ) of the i-th subsystem gets the fol

lowing form: 

vi(along solution of (5.2.11), (S.A.3)) 

(S.A.4) 

NOW, the analysis of the stability of the nonlinear model of the robot 

is performed in completely analogous way to that one presented in Ap

pendix 4.A. 
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The only difference is that now we have to take into account the glo

bal control (5.A.3) when we estimate the coupling between the subsys

tems (joints). 

* Instead of numbers ~ij' now we introduce numbers ~ij which fulfill 

the following inequalities: 

n * 
< 2 ~ .. v., 

j = 1 1J J 

n * 
< I ~ .. v., 

j=1 1) J 

for 
TA· 

I (gradv.) b 1 1 >E:. 
1 1 

for (5.A.5) 

* The numbers Sij estimate not only the coupling 6Fi between the subsys-

tems, but they also estimate the effects of the global control upon 

the system stability. The inequalities (5.A.5) must be satisfied for 

all pOints in the state space around the nominal trajectory xO(t) which 

fulfill (4.A.30). Since the global control is selected to compensate 

* for coupling between the subsystems, then the numbers Sijmust satisfy: 

for i,j = 1,2, •.. ,n (5.A.6) 

Now, the analysis of the exponential stability of the model of the 

state deviation around the nominal trajectory (5.2.11) can be perfor

med by testing the following inequalities: 

* G vo < 0 (5.A.7) 

* where the elements of the nxn matrix G are given by: 

* * G .. = -1\6 ij + Sij 1J 
(5.A.8) 

If the conditions (5.A.6) are fulfilled, then, obviously, the tests of 

the exponential stability (5.A.7) will be "easier" fulfilled than the 

tests (4.A.65), which are valid when the global control is not applied. 



In other words, by the application of the global control, the effects 

of coupling are reduced and therefore the fulfillment of the exponen

tial stability tests is relaxed. As we have explained in Appendix 4.A, 

the fulfillments of conditions (4.A.65) and of n>a (where n is given 

by (4.A.67), and a is the demanded degree of the shrinkage of the re

gion around the nominal trajectory to which the state of the system 

has to belong during the trajectory tracking) guarantee that the ro

bot is practically stable around the trajectory. When we introduce the 

global control, then the degree of shrinkage of the region, around the 

nominal trajectory, to which the state of the robot belongs can be es

timated by (instead by (4.A.67)): 

* n 
n * 

. min I-Sivio + I I; .. v. I/v. 
1=1,2, ... ,n j=1 1J JO 10 

(5.A.9) 

* Obviously, the conditions (5.A.6) imply that n >n, i.e. if the global 

control is introduced, then the region, to which the system state be

longs, must have greater degree of shrinkage than if just the nominal 

control and local controllers are applied. 

We can see that the global control (S.A.3) can stabilize the robot by 

compensating for the effects of dynamic moments. The function K~(~xi) 
1 

in this case is selected in such a way that the global control direct-

ly compensates for the effects of coupling upon the system stability. 

However, to implement the global control (5.A.3) we have to realize 
T~i -1 T~i 

on-line computation of the expression [(gradvi ) b 1 (gradvi ) f which 

demands a few float,ing-point mul tipl ies and adds for each subsystem in 

which we introduce the global control~) 

G i The simpler solution for the function Ki(~x ) in (5.2.10) is in the 

form (5.2.13). The stability analysis with the global control (5.2.13) 

can be performed in analogous way as in the case of (5.A.3). Now, the 

numbers ~ij estimating both the coupling and the global control have 

to satisfy inequalities: 

(5.A.10) 

for all states in the region defined by (4.A.30). If the second order 

model of the actuator (subsystem) is considered (n i =2), then we get: 

*) Precisely, we have to realize (2ni+1) multiplies, (2ni-2) adds and 
one floating-point division for each control signal. 
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T'i - G * n * (gradv].,) f (6P].,-K].,6P].,) ~ E t, ,v, 
j = 1 ].J J 

(5 .A. 11) 

However, for n i =3 the last inequalities do not hold. In that case, the 

global control (5.2.13) does not compensate directly for the coupling, 

but we may adopt it as an approximative form (which, in essence, igno-
* res the delay in the actuator). Once we determine the numbers t ij which 

satisfy (S.A.l0), the procedure for stability analysis is reduced to 

examination of the tests (S.A.7) and determination of n according to 

(S.A. 9). 

We can test stability conditions (S.A.7) for various forms of global 

control. We can use various approximative dynamic models of the robot 

* * for on-line computation of 6P i and determine Sij acc. to (S.A.S) and 

check for which of these models the stability tests (S.A.7) are fulfil

led. The same holds if we implement force feedback as the global con

trol. In this way we can iteratively determine in which joint we must 

apply global control and which approximative model might be used for 

it. So, we Can determine the simplest form of the global control which 

ensures fulfillment of the conditions (S.A.7), and this procedure has 

been applied in the software package for computer-aided synthesis of 

control for manipulation robots (see Section 5.3). 

At last, let us mention that if the local nominal control and local 

servo systems are applied, then we may also introduce the global control 

which is analOgOUs to the form (S.A.3). The global control (5.2.16) is, 

now, introduced in the form: 

for I (gradv,) Tb i I >E, 
]. ]. 

(S.A.12) 

The only difference between global control (S.A.3) and (S.A.12) is in 

* * implementation of the function Pi(x) instead of the function 6P i (X) 

since in this case the global control has to compensate for the total 

dynamic moments Pi(x). However, if just the local nominal control, the 

local cOntrollers and the global control (S.A.12) are applied we can

not analyze robot for its asymptotic (or exponential) stability, but 

we have to analyze practical stability of the system and that is out 

of the scope of this book. 



Appendix S.B 
Centralized Optimal Regulator 

We shall consider the problem of synthesis of the centralized robot 

control for the positioning and tracking of trajectories, which is ba

sed on an optimization procedure. As with other complex systems, with 

the robot control synthesis too, a dilemma arises of whether to carry 

out the so-called optimal or suboptimal synthesis. In the optimal syn

thesis the control should be such to minimize a certain numerical cri

terion. In the given task we want to ensure the robot is tracking the 

given trajectories with a defined accuracy (or, it is positioned with 

certain accuracy), the control is as simple (and cheap) as possible 

from the standpoint of implementation and maintainance, robust to va

riations of the parameters, reliable, etc. It is difficult, however, 

to express all these requirements in terms of preCise numerical crite

ria. On the other hand, when the criteria are defined, the optimal con

trol synthesis is associated with serious numerical problems yielding 

usually extremly complex and unacceptable control laws [11. 
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Nevertheless, there have been a number of attempts to realize the ro

bot control synthesis by minimizing a certain criterion. For example, 

the synthesis has been carried out by minimizing the time necessary to 

position the robot at a certain point [21, or by minimizing the acce

lerations at the joints [31. However, many of the problems in these 

optimizations require significant simplifications, resulting in the 

unacceptable solutions. 

The optimal quadratic regulator represents an analytic solution to con

trol, which minimizes the standard quadratic criterion, when applied 

onto a linear system. This approach can also be used for the synthesis 

of robot control. 

Let the trajectories of all the coordinates of the robot state vectors 

xO(t) be given (by the higher control level). The task is to ensure the 

tracking of the trajectories. The robot model in the centralized form 
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is given by (3.2.27)*): 

a (x) + B (x) N (u) (5.B.1) 

Let us suppose the nominal centralized control uO(t), satisfying 

(4.4.8), has been introduced: 

tE (0, .r) (5.B.2) 

The model of the robot state deviation around the nominal trajectory 

xO(t) and nominal control uO(t) is given by (4.4.9): 

(5.B.3) 

It should be ensured, that the model of deviation is being stabili

zed around 6x =0 (i.e. around the nominal trajectory xO(t)). The so

-called standard quadratic criterion is introduced in the form: 

(5.B.4) 

where Q(t) and QT are the positive semidefinite matrices of dimensions 

NxN, and ~(t) is a nxn positive matrix. The quadratic criterion (5.B.4) 

includes two requirements: the first and the third term express the 

minimization of states deviations from the nominals (which is required 

in the task) and the second term represents the minimization of the 

input signals (i.e., indirectly, the energy) - see the explanation in 

Appendix 3.A. 

If we would endeavour to minimize the criterion (5.B.4), using the non

linear robot model (5.B.3), we would encounter a lot of problems, for, 

only a numeric solution to control could be found, and not a solution 

in analytic form - as a function of state coordinates. This means, we 

would obtain an open loop control of the robot (for each initial 

state, a different numerical solution is obtained, which is extremly 

difficult to realize). To solve this optimization problem in an analy

tic form, an approximate, linearized model of the robot should be con

sidered [4]. 

*) For an explanation of the notation see Chapters 3 and 4. 



In Section 4.4. we showed how, starting from the nonlinear model of 

deviations (5.B.3), we can obtain the linearized time-varying robot 

model in the :l;orm of (4.4.10) 

(5.B.5) 

It is known [4] that the optimal control minimizing the critetion 

(5.B.4) for the linearized model (5.B.5), is obtained in the form of 

the centralized regulator: 

,',u(t) -D(t),',x(t) (5.B. G) 

where K(t) is the positive definite symmetric matrix, NxN, which is 

the solution of the Riccati type differential matrix equation: 

-i< (t) 

(5.B.7) 

Matrix D(t) is the NxN matrix of feedback gains. The solution (5.B.G) 

holds under the assumption that the matrix pair AL' BL is controllable 

on the interval (0, T), that all the system states coordinates 4x are 

measured by sensors, and the constraint on the input amplitude N(uo , 

,',u) is neglected. 

It is obvious that the control (5.B.G) is linear with respect to the 

robot state coordinates ,',x(t) , i.e. it represents a set of linear fe

edbacks with respect to the coordinates ,',x(t) to the inputs ,',u(t) with 

the gains equal to the elements of matrix D(t). However, these gains 

are time-v'arying, which makes the realization much more difficult and 

requires a large memory capacity to store the time-varying gains, cal

culated, in advance. The on-line solving of differential equation 

(5.B.?) is hardly attainable. 

To simplify the realization of the control law, instead of the linear 

time-varying model (5.B.5), we use the linearized time-invariant robot 

model which is obtained by "averaging with respect to time" of the mo

del (5.B.5). Thus we obtain an approximate model in the form: 

(5.B.B) 
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where AL is a constant NxN matrix, while BL is a constant matrix of 

dimensions Nxn. Instead of the criterion (5.B.4), we introduce: 

(5.B.9) 

where Q is a positive semidefinite NxN matrix, and R is a positive de

finite nxn matrix. It should be noted that the criterion is defined on 

an infinite time interval (around the nominal trajectory), but, since 

the linearized model (5.B.8) is time-invariant, this makes no problem. 

It is known that the control minimizing the criterion (5.B.9) for the 

model (5.B.8) is given as the linear regulator with constant gains: 

lIu(t) (5.B.l0) 

where K is a positive definite NxN matrix which is the solution of the 

algebraic matrix equation of Riccati type: 

(5.B.l1) 

where D represents the nxN matrix of constant feedback gains. Such 

linear optimal regulator is represented schematically in Fig. 5.B.l. 

/ 
p1 

/ MECHANICAL 
/ 

/ PART OF 
ROBOT ---

"- SM 
'\ 

'\ xn P 
n 

Fig. 5.B.1. Scheme of linear optimal regulator 

The linear optimal regulator has the following shortcomings: 

(a) The control structure of the optimal regulator is centralized and 

complex, and requires a large number (Nxn) of feedback loops, which 

complicates the implementation of the control system. 



(b) The optimal regulator guarantees the stability of a linearized ro

bot model. As the robot model is, generally, highly nonlinear, it 

is questionable if such linear control can also stabilize actual 

model. Of course, it is possible to analyze stability of the non

linear robot model when the linear regulator has been applied. 

(c) Robustness of the linear regulator should also be analyzed, beca

use the regulator has been synthesized for the linearized robot 

model and for certain fixed values of its parameters. 

(d) The "optimality" of the linear regulator is also guestionable,both 

because of the approximate nature of the model and because of an 

arbitrary choice of the weighting matrices Q and ~, on which, to a 

great extent, depends behaviour of the system when the linear re

gulator is applied. Various methods have been developed for selec

tion of the weighting matrices to satisfy certain requirements [1], 

but such an approach complicates substantially the synthesis. 

In order to overcome the problems arising from the application of the 

approximate linearized model (S.B.8), instead of the exact nonlinear 

model, it is possible to introduce the additional nonlinear control. 

Let write the nonlinear robot model (S.B.3) in the form: 

(S .B.12) 

where f is the vector function of the order N, given as: 

f(lIx(t» - 0 a(x (t), lIx(t) )-ALlIX(t) (S.B.13) 

Here we assumed that BL = B(Xo(t), x(t». It can be proved that the 

control minimizing the criterion (S.B.9) for the model (S.B.12) is gi

ven in the form [S] 

lIu(t) (S.B.14) 

In other words, the control is in the form: 

(S .B.1S) 

where lIUlin is the linear, and 1I~ nonlinear part of the control law. 
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The block-scheme of such control is presented in Fig. S.B.2. An essen

tial difference between the scheme in Fig. S.B.l. and the one in Fig. 

S.B.2. is in the introducing the nonlinear control component which, in 

the latter case, plays the role of the global control for the compen

sation of nonlinear effects in the robot model. Obviously, the robot 

control (S.B.14) is extremely complex: besides of the complex structu

re of the optimal regulator (6ulin ) the on-line calculation of the 

complete robot model is introduced, which brings about all the prob

lems related to the implementation and robustness (see Section S.2.2). 

It should be noticed that we have assumed that the nominal programmed 

control uO(t) had been introduced. However, the optimal regulator can 

also be applied in the case when the nominal control was not being in

troduced, but it is necessary, then, to examine the practical stabili

ty of the robot around the nominal trajectory. 

+ 

ROB 0 T 

+ + 

s Y S T ~ M 

Calculation of 
flM(t» 

M(t) 

6X(t) 

Fig. S.B.2. Scheme of linear optimal regulator 
with additional nonlinear control 
which compensates for the model 
nonlinearities (acc. [S]) 

x(t) 

+ 



Example 5.B. For the robot in Fig. 3.2, the linearized time-varying 

system model around the nominal trajectories, presented in Fig. 4.5., is 

given in Example 4.3.4. After time-averaging, the linear time-invariant 

model is obtained whose matrices are: 

0 0 0 0 0 

0 -0.132 0.254 2.77 0 0 

0 0 0 1. 0 0 
AL 

0 -1.54 -1.14 -15.6 0 0 

0 0 C 0 0 

0 0 0 0 0 -45. 

0 0 0 

0.58 -1.75 0 

0 0 0 
B = L -1.78 10.43 0 

0 0 0 

0 0 0.361 

If the weighting matrices in the criterion (5.B.9) are chosen as 

Q diag ( 0 • 1, O. 1, O. 1, O. 1, O. 1, o. 1 ) , 

~ diag(5., 0.5, 0.05) 

solving the matrix equation of Riccatti type gives: 

13180. 1730. 2379. 313. O. O. 

1730. 706. 233. 123. O. O. 

2379. 233. 452. 43. o. O. 
K 

313. 123. 43. 21. O. O. 

O. O. O. O. 5810. 135. 

O. O. O. O. 135. 3. 

The matrix of feedback gains is: 
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D [ 
89. 

= 362. 

O. 

38. 

51.9 

O. 

11. 5 

77 .1 

O. 

6.6 

10.2 

O. 

o. 
O. 

964.2 

o. ] 
O. 

22.2 

Tracking of the nominal trajectories using such optimal regulator with 

and without nominal centralized control introduced, is shown in Fig. 

5.B.3. As can be seen, in the latter case, tracking is 

0.2 0.4 t[s] t[s] 
-0.02 -0.01 

-0.04 -0.02 

-0.06 
-0.03 

wi th nomi na 1 
-0.08 centra 1 i zed -0.04 

control 

-0.1 without -0.05 
nominal 

Ilql[rad] 
control 

Ilq2[rad] 

Fig. 5.B.3. Tracking of nominal trajectories using centralized 
optimal regulator with and without nominal control 
(for the robot in Fig. 3.2) 
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Chapter 6 
Variable Parameters and Concept of 
Adaptive Robot Control 

6.1 Introduction 

In the proceeding considerations we assumed the robot models and their 

parameters are being known and determined in advance. Such an assumpti

on holds for the majority of robot parameters, such as masses and iner

tia moments, link lengths, positions of jOints axes, inertia moments of 

motors, etc. However, some robot parameters change during the work, and 

they are not always known in advance: these parameters are for example 

some of the motors parameters, coefficients of viscous and static fric

tion, etc. A common feature of all these parameters is that they change 

very slowly, so that they can be considered to be quasi-stationary. Very 

often, their determination is rather difficult. The values of these pa

rameters can be identified when the robot starts to work, and they sho

uld be checked from time to time and updated appropriately. Most of

ten, these parameters do not affect significantly the functioning of 

the control system, and they may be considered as being known. A spe

cial group form the parameters which can undergo fast and drastic chan

ges during the robot's work, and which cannot be always known in advan

ce. To this group belong, primarily, the parameters of the working ob

ject. 

In the course of task execution, the robot can move with an empty grip

per, grasp the payload and transfer it from one place to another in its 

workspace (or do some operation on it). In practice, the payload parame

ters (mass, in.e;r-tia mOments, shape and dimensions) are often known in 

advance. However, in some cases in. the industry, the working obj ect is 

not defined tn advance, bu,t it can have different parameters in depen

dence of the conditions and other circumstances under which the task is 

being executed at a given moment. This case appears in modern industry 

mOx;e and more often, especially in those situations when the robot ;is 

part of a fle;x:i,'b~e technological system, in which the tasks are frequ

ently changed, so that many of task elements cannot be determined in 

advance, a,nd the cont;r-ol system has to make decisions on the basis of 

the information obtained f;r-om the sensors, or other subsystems. Thus, 

the assumption on the known (determined in advance) parameters of the 

robot system becomes then untenable. 
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This chapter is devoted to the problems concerning the variation of the 

robot parameters, and especially of the payload parameters. We shall 

consider first the problems of control robustness to the variation of 

payload parameters and then we shall tackle briefly the problem of im

plementation of adaptive robot control. 

6.2 Robustness of Control to Variations of Robot Parameters 

If the robot (workpiece) parameters change during the work, the control 

has to ensure the reliable and smooth functioning of the robot irres

pective of the parameters variations. In other words, the robot control 

should be robust to the changes of the workpiece parameters. The theory 

of control robustness has been fully developed, so that a precise defi

nition of the notion of robustness and different theoretical aspects of 

this problem will not be the subject of our concern here. Instead, we 

are going to outline several practical problems related to the variati

on of workpiece parameters. 

rt is obvi(!)u.s that the variations in workpiece parameters may substan

tially influence the behaviour of the robot control system (the quality 

of trajectories tracking, etc.). If the control has been synthesized 

under the assumption that the workpiece parameters d have a value do 

(where d i.s a vector of the workpiece parameters) and the changed pa

rameters are do+AQ (Ad is the parameter change), it is obvious that the 

robot's behaviour will not be the same as supposed in the control syn

thesi.s. The changes of the workpiece parameters, such as the shape and 

dimensions, influence the operation of grasping the object by the ro

bot gripper. The problem of grasping, however, is beyond the scope of 

th;is book. Most often, this problem is solved at higher control levels 

(stJ:;'ateg;ic and tactical), and this is done on the basis of the infor

mation obtained from various senSOrs (tactile sensors, proximity sen

sors, cameras, etc.) (1]. The mass of the workpiece, its inertia moments 

and dimensions (position of the mass centre) influence substantially 
the robot dynamics, i.e. these parameters are included in the dynamic 

model of the robot mechanism: 

a(q, d)q + h(q, q, d) (6.2.1) 

where, as we have already sa.id, d is a vector of the workpiece parame

ters of the dimension 4xl. d = (m ,J , J , J )T where m is the p px py pz' p 



workpiece mass, and J px ' J py ' J pz are the inertia moments about main 

inertia axes (variations in the distance of the workpiece mass centre 

from the gripper might be usually neglected). The variation in the pa

rameters d, from the value do to do+~d causes a variation in the dyna

mic behaviour of the robot. If the variation of parameters Ad is known 

in advance, the control system can be prepared in advance to compen

sate for this change. However, as we explained it above, this variati

on is not, generally, known in advance, so that the control system 

should be robust enough to overcome this variation, i.e. it should en

sure that the change of parameters does not cause the robot's malfunc

tioning. 

Let consider briefly the robustness of particular components of con

trol law, synthesized in the preceeding chapters, to the variation of 

the workpiece parameters. 

The local servo system at the i-th joint was synthesized under the as

sumption that only the i-th joint moves, while all others are kept lo

cked (Chapter 3). In Section 3.3.4. we discussed the influence of the 

var;iations of the moment of inertia and gravitational moments on the 

behaviour of the system. The workpiece parameters influence both the 

inertia. I\lol\lent of the I\lechan.ism about the axis of the i-th joint and 

grav,;tta.tiona,l, 1\l0men.t of the mechanism. It can be easily shown that the 

moment of inertia about the i-th joint is a linear function of the work

piece parameters d,: 

0' where Rii(d) is the value of the moment of inertia of the 

about the i-th jOint for the case of the no-load gripper, 

(6.2.2) 

mechanism 

H~. (q) >0 is 
1.1. 

a 4x1 vector whose all the elements are positive. Suppose the velocity 

gain ot:· the servo system ~ ~as been ch,osen on the basis of (3.3.39), 

for th,e mechanism position q and t:or the parameters values d , for _ * 0 
which the moment of inertia about th,e i-th jOint Hii(q , do) is: 

(6.2.3) 

If the mechanism is shifted to another position q, and the workp;iece 

parameters becol\le do +Ad, the moment of inertia a.bout the i-th joint 

will be: 

(6.2.4) 
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On the basis of (3.3.55), the servo system damping at the i-th joint 

for the joints position q and the parameters value do+Ad is: 

where Ji 
R 

(6.2.5) 

Now, an analysis can be carried out as in Section 3.3.4. As was shown, 

in order to ensure the servo system is always (over)critically dam

ped, i.e. that si~1, the chosen velocity gain should be such to cor

respond to a maximal moment of inertia of the mechanism. Furthermore, 
- * it should be ensured that Hii(q , do) ~ Hii(q, do+Ad), to satisfy 

S. > 1. It is easy to show that this requirement can be fulfilled if such 
1- * 

mechanism position q is chosen, for which 

-0 * 
Hii (q ) 

o 
max Hii(q), (6.2.6) 

q 

and if do = max d, so that all the elements of the Ad have to be nega

tive. Therefore, the servo system gains should be synthesized for the 

largest allowed values of the workpiece parameters. 

As we have explained above, it is not necessary the workpiece parame

ters be known in advance, but for each robot in the stage of its de

signing it is necessary to determine the range of variations of these 

parameters, i.e. their maximum allowed values (the so-called, maximal 

robot load - the largest workpiece mass which can be carried by the ro

bot). If the servo system gains are calculated for the maximum values 

of the payload parameters, the servo system will be (over)critically dam

ped. However, if the allowed variation of robot parameters is large, 

the servo system damping will change from the critical (for d=do ) to 

the highly overcritical (for d=O): 

(6.2.7) 

i T d * -0 * . 
This means, if J R + doHii (q ) + Hii (q ) » J~ + H~i (q), then si (d=O)>>1, 

i.e. for the no-load gripper, the servo system would be highly over

damped, which indicates the robot's beh.aviour would be extremely 



nonuniform. As this nonuniformity is undesirable, such a solution is 

not satisfactory. 

As can be seen, the influence of workpiece parameters depends substan

tially on the parameters of the robot mechanism itself, H~. (q*) and on 
i i 110 * 

servomotor rotor JR' If J R + Hii (q ) » the moment of inertia of the 

d T H~. (q *), then the damping 
o 11 

i.e. the mass and the moment 

of the "no-load" robot, cannot be high, 

of inertia of the workpiece exhibit no 

great effect. In other words, if the moment of inertia of the motor 

rotor J~ and of the mechanism itself are significantly larger then the 
T d * moment of inertia produced by the workpiece doHii (q ), the influence 

of the workpiece on the servo system's behaviour is not significant. 

This means that in the case of the relatively large motors and heavy 

mechanism links, compared to the nominal robot payload, the influence 
T d * i -0 * of the payload is not significant. Contrary, if doHii(q )>> JR+Hii(q), 

i.e., if the mechanism (and the motor) are relatively light in compa

rison with the planned workpiece mass, the influence of the workpiece 

may be great. 
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A similar analysis may also be carried out for the gravitational mo

ments. The workpiece mass influences the gravitational moment about the 

i-th jOint axis and contributes to the servo system's steady state er

ror. The steady state error can be eliminated in different ways, as we 

demonstrated it in Section 3.3.4. One of the ways is through the on

-line calculation of gravitational moments. However, as the workpiece 

parameters are not known in advance, compensation of the gravitational 

moments, caused by the presence of the workpiece, cannot be achieved 

in this way. How large will be the steady state error which the work

piece causes at the i-th servo system, it depends on the gripper pOSi

tion with respect to the i-th joint axis, as well as on the allowed 

mass of the workpiece. If the servo system would always be compensated 

with respect to the maximum allowed mass of the workpiece, then, in 

the case of no-load gripper, it would cause a steady state error of the 

opposite sign. 

When all the robot joints move simultaneously, the workpiece parameters 

affect the dynamic forces (moments) (6.2.1) that are loading the servo 

systems. The workpiece parameters influence all the force components 

that had been considered in Section 4.2. These forces may substantial

ly change in dependence of the mass and the moments of inertia of the 

workpiece carried by the robot (or, if the gripper is not loaded). The 
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dynamic control, whose task is to compensate dynamic force, must also 

take into account the dynamics of the workpiece. 

If the nominal centralized control is applied, it should also "include" 

the working object. If the workpiece parameters (and their variation) 

are known in advance, i.e. if it is known whether the gripper at a par

ticular moment is carrying the workpiece (and what are the parameters 

characterizing it), or the gripper is "empty", the nominal programmed 

control can be calculated from the overall model (6.2.1) (including 

also the workpiece). However, if the workpiece parameters are not known, 

the nominal control has to be calculated for the absence of the work

piece, which means that the workpiece dynamics will not be compensated, 

not even at the nominal level (along the nominal trajectory), which 

causes a delay in tracking of the trajectory. If, however, the nominal 

centralized control was synthesized under the assumption of the maxi

max payload parameters d, it might happen that the given trajectory is 

"overshooted" which is, as we have explained before, unacceptable. If 

the mass and moment of inertia of the workpiece are small in compari

son with the mass and inertia moments of the mechanism links, the de

lay in the trajectory tracking may be negligible. 

A similar situation also arises when the local nominal control is ap

plied: the control has to be calculated under the assumption of a mi

nimal moment of inertia of the mechanism about the jOint axis, which 

means that the no-load gripper should be assumed in order to avoid the 

overshoots of the trajectory. Rowever, if such a control is involved, 

the dyn,amics of the m,echanism and of workpiece become more pronounced, 

beca~se the nominal con,trol does not compensate for the nominal mecha

nism's dyp.amics. 

Finally, if a,ll the requirements concerning the accuracy of fast tra

jectories tracking a.re such that the global control has to be introdu

ced this cop.t'rol should also cOmPensate the effect of workpiece dyna

mics. If the global cOntrol introduced is in the form of force feed

back, then the robot will be robust to the variation of workpiece pa

rameters, because the force sensOrS measure the total dynamic forces, 

irrespective of whether they come from the mechanism, or from the 

workpiece (Section 5.2.1). Such control can compensate fOr the effect 

of )::loth th,e mechani,sm dynamics and the workpiece dynamics, irrespecti

ve of their para,meters. AS we explained a,bove, the major sho;r:tcoming 

of this solution is the direct cop.nection between the sep.sors and the 
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inpu,ts to the a,ctuators, which may cause the system to oscillate, a,s a 

result of elastic effects directly "transmitted" to the control system. 

If dynamic forces are calculated on-line using one of the approximate 

models (Section 5.2.2), the workpiece parameters may be taken into ac

count, provided they are known. If, however, they are not known, the 

global control cannot compensate for the change of the workpiece para

meters. The same holds for computed torque method (Section 5.4). 

As can be seen from all the above, the extent to which the variation 

in workpiece parameters will influence the robot's behaviour depends 

mostly on the relative ratio of the allowed variations of the workpie

ce (the robot's "capacity") and the mechanism (links) parameters. If 

the maximum workpiece mass assumed is small in comparison to the mas

ses of links, the workpiece effect may be considered a,s wea,k, a,nd the 

local nominal a,nd globa,l control is sufficiently robust to overcome 

this effect. If, on the other ha,nd, the maximum workpiece mass assumed 

is of the same order of magnitude as (or larger than) the mass of ro

bot links, then, the workpiece effect becomes significant, and the qu

estion arises of whether the control synthesized is sufficiently ro

bust to ensure a uniform a,ndaccurate tra,cking of tra,jectories (i.e. 

posi tioning) when, the workpiece is cha,nged. Furthermore, if the links 

ma,sses a,re sma,ll, or they are of the same order of magnitude, as the 

ma,ss of the working object, some additional problems usually arise: 

t)::le linkS )::la,ving small masses are relatively thin, so, when loaded 

with "heavy" objects, the resulting etas tic effects are greater than 

in the ca,se of "heavy" and "rigid" links. A ")::leavy" working object ca

uses elastic bending of the links, which generates a new problem, either 

fro!1l the point of view of the accuracy of positioning and the robot's 

trajectories tracking, or the appearance of oscillations (especially 

in the force feedbacks). The need to overcome the effects of these 

elastic modes by the robot control system makes the synthesis and rea

lization of the control much more complicated [2]. However, the novel 

"elastic" robots that have appeared recently (suitable from the point 

of view of material expenditure, energy consumption and reduction of 

actuators power) have a relatively great allowed load and a more com

plex control system capable of overcoming both the changes in workpiece 

and the elastic effects. In all the above considerations, we have as

sumed the robot links to be rigid; the control of elastic manipulators 

is beyond the scope of this book. 
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It should be emphasized that the effect of the unknown workpiece mass 

(as well as of other unknown and variable mechanism parameters) is 

very important for the direct-drive robot. For this reason, the adap

tive control has to be used with these robots, which will be conside

red in the following section. 

Example 6.2. Using the manipulator shown in Fig. 3.2, we shall demon

strate how the workpiece parameters influence the manipulator's beha

viour. We shall assume that a workpiece of maximal mass mp = 5 [kg] 

might be placed at the mass centre of the third link, and the corres-
2 2 ponding inertia moments are: J px = 0.01 [kgm ], J py = 0.01 [kgm ], and 

J pz = 0.02 [kgm2]. Let assume first the servo systems at all three jo

ints be synthesized without taking into account the workpiece (i.e., 

for mp = 0). The corresponding servo systems gains are given in Table 

4.1. (see Example 4.3.2). The positioning of the first link for the 

case of no-load and the case the robot is carrying workpieces of dif

ferent masses is illustrated in Fig. 6.1. As we can see, the overshoot 

of trajectories appears when the robot is loaded by a workpiece, beca

use the system is undercritically damped. For this reason, the servo 

systems gains hav€ to be synthesized by taking into account the maxi

mum workpiece mass allowed. The gains synthesized are presented in 

Table 6.1. and the corresponding simulation of positioning (Fig. 6.2) 

shows the servo system is always overcri tically damped. It is also evi

dent that the positioning time in the two cases is not the same. 

---O.5+-------------------------------~~~~~~,~ 

0.3 

/ 

0.1 
/ 

./ 

0.2 

/ 
/ 

0.4 

/' 
/' 

0.6 0.8 1.0 t[s] 

Fig. 6.1. Positioning of the first robot joint for different 
workpiece masses (the robot shown in Fig. 3.2. and 
the gains in Table 4.1) 



q 1 [radl 

0.5 ---

0.25 

0.1 

0.2 0.5 0.8 1.0 t[sl 

Fig. 6.2. Positioning of the first robot jOint for different 
workpiece masses (the robot shown in Fig. 3.2. and 
the gains in Table 6.1) 

JOINT 1 2 3 GAINS 

Kp 
V 

[raal 132.5 128.6 1714. 

Kv 
V [raarsl 60.2 13.1 166. 

Table 6.1. Servo systems gains for the case of workpiece 
mass m = 5 [kgl (the robot shown in Fig. 3.2) 

P 

If it is necessary to ensure the tracking of trajectories presented in 

Fig. 4.5, then the nominal centralized programming control, calculated 

under the assumption of the no-load gripper, should be introduced. The 

tracking of trajectories using such nominal control for different work

piece masses is illustrated in Fig. 6.3. It can be seen that the grea

ter is the workpiece mass, the greater is the delay. The trajectory 

tracking illustrated in Fig. 6.4. corresponds to the centralized con

trol that has been calculated assuming the maximum workpiece mass. It 

is evident that the tracking of trajectories by applying such control 

for the no-load robot is not satisfactory. 
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Finally, if the tracking of trajectories shown in Fig. 4.5. is reali

zed by using the local nOminal control, local feedbacks and global con

trol in the form of force feedbacks (Example 5.2.1), the tracking of 

trajectories is, practically, of the same quality, irrespective of the 

workpiece parameters (Fig. 6.5). This illustrates the robustness of 

such control to the variation of workpiece parameters. 
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0.01 

-0.01 
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Aq 1 [rad] 
_________ mp=S[kg] 

••••.••••••• mp=2.S[kg] 

·~ •.• ?4 0.6 0.~ .••• 1/· t[s] 

,,~ ..... ::;/ 
for mp=O ---

1-.n 2 Aq ><>V. Aq ",0. 

0.02 

0.01 

-0.01 

-0.02 

Fig. 6.3. Tracking of trajectories using nominal centralized 
control and local feedbacks, for different workpiece 
masses (nominal control calculated for mp = 0) 

0.02 

0.01 

-0.01 

-0.02 

Aql [rad] 

0.6 0.8 1. t[s] 

-mp=O 
••••••••• mp=2.S[kg] 

for mp=S[kg] Aq 1,>J() Aq 2...o 

0.02 

0.01 

t[s] 
-0.01 

-0.02 

Fig. 6.4. Tracking of trajectories using nominal centralized 
control and local feedbacks, for different workpiece 
masses (nominal control calculated for mp = 5 [kg]) 
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Aq2[rad] 0.03 
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-0.0 

-0.03 

1. t[s] 

Fig. 6.5. Tracking of trajectories using local nominal control, local 
feedbacks and global control in the form of force feedbacks 
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E x ere 1 s e s 

6.1. Prove the expression (6.2.2) is correct. 

6.2. Explain the statement that the local programmed control should be 

synthesized under the assumption of the "no-load" robot gripper 

(in the case when the workpiece parameters are not known). How 

can the workpiece parameters influence the tracking of trajecto

ries by the local nominal control? 

6.3. a) For the second joint of the manipulator presented in Fig. 2.6. 

and the servo system gains in Example 3.3.4, calculate the 

steady state error at the second joint, caused by the gravita

tional moment at the position qo2 = 1.573 [rad], qo3 = 0.7 [m]. 

Use the data on the mechanism and the actuator at the second 

joint from Example 3.3.4. Assume the workpiece masses at the 

end of the third link are mp = 0 [kg], mp 1.5 [kg], m =3[kgl. p 

b) If the compensation of gravitational moment is introduced by 

its on-line calculation (Fig. 3.15, equation (3.3.60)) find 

out when a greater steady state error is made: (1) when the 

compensating moment is calculated neglecting the workpiece 

mass, and the workpiece mass involved is mp = 3 [kg], or, (2) 

when the compensating moment is calculated for the workpiece 

mass m = 3 [kg], and the positioning has been done for the 
p 

"no-load" robot. Calculate what will be the error in position-

ing of the robot hand caused by these steady-state errors. 

6.4. Repeat the previous exercise a), but assuming now the third link 

mass is m3 = 2 rkg], and the other data are the same as above. 

* 

Why the relative increase in steady state error when the robot is 

carrying the heaviest object, in comparison to the "no-load" ro

bot, is now much larger than in the preceeding case. Assuming the 

tip of the third link is elastically bent for 0.02 [roml under the 

action of a moment of 1 [Nm], calculate the error in the manipula

or tip positioning, caused by the steady state error at the se

cond joint and the elastic deformation of the link, for different 

masses of the workpiece. 

6.5. Explain why the procedure for the analysis of practical robotsta-

bility through the analysis of the exponential stability (Section 
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4.A.2), when the centralized nominal control is applied, cannot 

be used when the workpiece parameters has been changed with res

pect to their "nominal" values (for which the nominal control has 

been calculated). 

6.3 The Concept of Adaptive Robot Control 

Up to now we have considered the various control laws in which all the 

control parameters (gains) are constant and which do not vary in de

pendence of either the robot working regime, or the variation in the 

robot's parameters. Such non-adaptive control can be, as we have seen, 

sufficiently robust, so that the changes in workpiece parameters (as 

well as in other variable parameters of the system) do not influence 

the robot's behaviour. The control robustness depends on the chosen 

law, the information included in that law, the choice of gains, as well 

as on the ratio of the variable parameters and the known constant pa

rameters of the system. A direct analysis of the practical robot sta

bility can serve to investigate the robot stability for the variable 

workpiece parameters, and thus, to test the robustness of the non-adap

tive control to the variation of these parameters. Thus, it is possib

le to determine the range of variation of the workpiece parameters for 

which the non-adaptive control synthesized, can guarantee the robot 

stability [3, 4]. Although the workpiece parameters are not known, it 

is always possible to estimate the range of variation in workpiece pa

rameters that is to be expected in a particular task. If the analysis 

of practical stability shows the non-adaptive control chosen is suffi

ciently robust to encompass the predicted range of parameters change, 

such control can be considered as satisfactory. The majority of com

mercial robots use exactly this solution: they make use of the control 

with fixed gains, which assumes a certain allowable variation in the 

workpiece parameters. 

However, if the predicted variation in the workpiece parameters would 

exceed the capability of the robust control to "overcome" it, the con

trol with variable gains should be introduced. Such control can adapt 

to the variation in workpiece parameters. For example, if a variable 

velocity gain is realized at the local servo systems, it is possible 

to achieve the servo systems have always the same damping, and thus 

work uniformly, irrespective of the variation in workpiece parameters 

(Section 3.3.4). The servo systems gains should change then in depen-



dence of the robot position and workpiece parameters (i.e. in depen

cence of the moments of inertia of the mechanism and the workpiece 

about the joint axis). The adaptive control thus realized can guarantee 

a satisfactory behaviour of the robot for a wide range of variations 

in the workpiece parameters. 
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Adaptive robot control can be realized in different ways [5, 6]. In 

the majority of the approaches, the control parameters and gains are 

adjustedin dependence of the instantaneous values of the variable sys

tem parameters. Thus in the above example, it is the velocity gains 

that should adapt to the change of workpiece parameters. If the work

piece parameters are known (defined at higher control levels, or via 

the robot programming language), the executive level should only adjus

ed the servo systems gains in dependence of the parameters values. In 

other words, in the stage of task planning at the strategic level, or 

in the course of the robot programming, the workpiece parameters should 

be defined and servo systems gains determined in accordance with the 

instantaneous values of workpiece parameters. The gains can be calcu

lated on-line according to the procedure described in Section 3.3.2, 

and they are determined as a function of moments of inertia of the me

chanism and workpiece about the joint axis. Alternatively, the gains 

can be calculated in advance for different moments of inertia (work

piece parameters), stored in the computer memory, and, when the infor

mation about the workpiece parameters is obtained, those gains values 

are taken from the memory that correspond to the actual values of the 

payload parameters. 

However, if the payload parameters are not known in advance, it is ne

cessary to ensure their id~ntification in the course of the robot wor~ 

The on-line identification of these parameters can be realized in dif

ferent ways. The information about the error of tracking of a given 

trajectory may be the basis for the identification of variations in 

the system's parameters. This identification is also possible to rea

lize via the functions of sensitivity of the robot model to the para

meters variations. However, such an identification usually requires a 

large amount of calculation, which is obvious if we bear in mind the 

complexity and nonlinearity of the robot model. Because of the need to 

determine robot parameters in on-line regime (in the course of the mo

vement), in order to ensure a fast adaptation of control parameters, 

the identification can be implemented only with the aid of a fast and 

powerful microcomputer. The identification can be considerably accele

rated and simplified by introducing force sensors to measure either 
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moments at robot joints, or the forces at the points of contact of the 

payload and the gripper (see Section 7.3). On the basis of the infor

mation about forces (moments), the parameters of the working object 

can be determined in a relatively simple way (with much less calcula

tion involved). In this way, the transition process which lasts while 

the identification algorithm is carrying the determination of workpie

ce parameters and while the adjustment of servo gains is completed, is 

substantially shorthened. 

The structure of such adaptive control is illustrated in Fig. 6.6. This 

approach to adaptive control is called the indirectly decentralized 

adaptive control, because it retains a decentralized structure with 

respect to the local servo systems [6]. The advantage of such control 

is in its relative simplicity: it does not require a great deal of cal

culation and neither substantially complicates the control structure. 

Certainly, this is only one of the possible variants of adaptive robot 

control. Various algorithms have been developed for centralized [7, B] 

and decentralized [9,10] adaptive control, suchasaretheseZf-tuning 

(decentralized or local) PID controllers, the approach using the model 

referenced adaptive control etc. 

The main problem with all these algorithms for adaptive control is their 

numerical complexity, which makes their implementation difficult and 

expensive. For this reason, it is always advisable to examine if the 

implementation of such control is necessary, or the problem can be sol

ved using the robust non-adaptive control, whose implementation is usu

ally much simpler. 

Example 6.3. For the manipulator presented in Fig. 3.2. we have synthe

sized the non-adaptive control in the form of local nominal control 

and local servo system feedbacks whose gains are given in Table 4.1 

(Example 6.2). The tracking of nominal trajectories (Fig. 4.5) fordif

ferent workpiece masses is illustrated in Fig. 6.7. As can be seen, 

the tracking for the workpiece masses m = 5 [kg] is much less satis-p 
factory than in the case of the no-load robot. For this reason, the 

adaptive control is included (Fig. 6.6) in which the identification of 

workpiece mass is realized on the basis of the force measurements at 

the points of contact of the gripper and the workpiece. On the basis 

of the identified mass (and moments of inertia) of the workpiece, the 

mechanism moments of inertia and velocity servo gains are calculated 
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on-line, which should be such to ensure the damping of all servo sys

tems is permanently critical. 

The tracking of trajectories for different workpiece !'lasses is illustra

ted in Fig. 6.8. It can be seen that during the transition process, 

while the workpiece para!'leters are identified and the gains adjusted, 

the tracking is poor, but it improves from the moment of completion of 

the transition process. As the transition period is short, the adapti

ve control ensures a satisfactory tracking of trajectories for a wide 

range of changes in workpiece parameters. 

l.Iq 1 [radj 

0.02 0.02 

0.01 0.01 

-0.01 

Fig. 6.7. Tracking of nominal trajectories with non-adaptive 
decentralized control for different workpiece masses 

l.Iq 1 [rad] 
0.02 0.02 

0.01 0.01 

-0.01 

-0.02 -mp=o -0.02 

--- mp=5[kg] 

Fig. 6.8. Tracking of nominal trajectories with adaptive 
decentralized control for different workpiece 
masses 
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6.6. For the manipulator presented in Fig. 3.2. determine the velocity 

gains at all three servo systems, so that all of them are criti

cally damped for the position qol = 0, q02 = 0, go3 0, if the 

workpiece parameters are: a) mp = 2.0 [kg], J = J = J pz = 
2 px py 

0.005 [kgm ]; b) mp = 5 [kg], J = J = J o. 01 [kgm 2]; c) px py pz 
mp = 10 [kg], J px = J py = J pz = 0.02 [kgm 2 ]. The manipulator data 

are given in Table 3.1. and Table 3.2., while the resonant frequ

encies of the structure about the particular joints for mp=O are 

given in Exercise 3.28. and Exercise 3.31. 

6.7. Determine the number of operations (adds and multiplies) to be 

carried out for the given workpiece parameters (m , J , J , J ) . P px py pz 
and the given mechanism position gOl to determine inertia moments 

of the mechanism about all three jOint axes of the manipulator 

shown in Fig. 3.2., and on the basis of them, calculate the velo

ci ty servo gains such that the servo systems are critically damped 

(see the preceeding exercise). Try to minimize the number of ope

rations. 

6.S. If the force feedbacks are used to identify the workpiece parame

ters for the robot shown in Fig. 3.2., the algorithm for one ite

ration to calculate the mass and inertia moment of the workpiece 

requires ns = 30 adds and nM = 25 multiplies. Taking into account 

the result of the preceeding problem, determine the number of 

microprocessors to be used in parallel to identify the workpiece 

parameters, calculate inertia moments of the mechanism about all 

three jOints, and calculate the velocity gains at all three ser

vos (as in the preceeding problem) every 50 [ms], using the micro

processor: 

a) INTEL-80-S0 (one add operation lasts O.S [ms], and one multi

ply 1.5 [ms]), or 

b) INTEL-80-S7 (add 35 [~s], multiply 65 [~s]). 

Assume the machine time is used only for addition and multiplica

tion (calculation of a sine or a cosine function is equivalent to 

one multiply plus two adds). 
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6.9~ Write in a high programming language a programme for on-line cal

culation of velocity gains for all three joints of the robot shown 

in Fig. 3.2. as a function of workpiece parameters (mp ' J px ' J py ' 

J ) which should be considered as the input variables to the 
pz 

* 

programme. Determine the velocity gains such that all three servo 

systems are critically damped for all three values of workpiece 

parameters and all mechanism positions qOi. The instantaneous po

sitions of the mechanism joints qOi should also be considered as 

input data. (For the input data qOi and mp ' J px ' J py ' J pz ' de

termine the outputs K~, i = 1,2,3). Try to minimize the number of 

operations. 

6.10. Assume the velocity gains for the servo systems of the robot pre-

* 

sented in Fig. 3.2. have been calculated in advance for 6 diffe

rent values of workpiece mass mp = 0, 1, 2,3, 4, 5 [kg] and then 

stored. When the identification algorithm has determined the ac

tual workpiece mass, the velocity gain is obtained by the linear 

interpolation in between the stored values. Write in a high pro

gramming language a programme which will, for the input value of 

the workpiece mass mp ' calculate the velocity gains for the servo 

systems by linear interpolation, using the stored values. How 

much this programme is simpler than the programme in 6.9? As the 

velocity gain in this case changes only as a function of work

piece mass, what are the robot's jOints positions for which the 

velocity gains should be calculated and stored? Explain what are 

benefi ts and what is lost by assuming the velocity gains vary only 

in dependence of the workpiece mass, and not of the robot posi

tion? 

6.11. Explain what are the advantages and what are disadvantages of in-

direct adaptive control via the force measurement in comparison 

to global force feedback (Section 5.2.1). (Suggestion: Take into 

account elastic effects of robot links and their "transmission" 

to the control system, on the one hand, and the complexity of 

calculation, on the other). 
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Chapter 7 
Control of Constrained Motion of Robot 

7.1 Introduction 

In all the tasks we have considered up to now, the robot does not come 

into contact with the objects in the workspace, apart from those that 

are being transferred. However, this does not hold for the one of the 

most important industrial application of robots, namely, for the as

sembly of machine parts. In this case, the robot comes into contact 

with the objects in its environment and experiences actions of the 

external environmental forces. Similarly, in the processes like cut

ting, grinding, polishing and forging, the robot gripper has to act 

upon the given object by certain forces. These external forces acting 

on the robot gripper make the robot control much more complex. Hence, 

this chapter will be devoted to the synthesis of control for the ro

bots involved in the realization of the tasks of this type. First our 

attention will be focused on the assembly process, as one of the most 

important and most delicate tasks in which the action of external for

ces is encountered. However, some general approaches to control of 

constrained motion of robots will be also presented. 

If the robot comes into contact with the objects in the workspace, the 

reaction forces acting upon the robot are the functions of both the mo

ments in the joints and coordinates and velocities of all the joints. 

When a robot moves in free space. it represents an open kinematic chain; 

when it comes into contact with the external objects, the robot beco

mes a closed kinematic chain. 

Dynamic models of closed kinematic chains are more complex than the 

models of open kinematic chains, which makes the synthesis of the ro

bot control more complex. 

First, we shall consider briefly the problems encountered in the robo

tic assembly processes, from the point of view of both modelling and 

control synthesis. Then, we shall present some of the solutions to these 

problems that are nowdays successfully used in the industrial robotics, 

and then we shall consider some schemes for solving constrained motion 

control of robots in general case. 
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7.2 An Analysis of Assembly Process by Robots 

Assembly of parts is one of the most sophisticated tasks of the indus

trial robotics. Therefore, the solving of this problem is of greatest 

importance, especially if we bear in mind the application of robots in 

the flexible technological lines. As is known, the industry automation 

is achieved by application of either specialized machines-automates, 

or the robots for automatic assembly of parts. The application of highly

-specialized automates is justified only in the mass production of the 

one and the same products in large series (let say, at least one mil

lion copies a year, and for a number of years). In the case of smaller 

series, the development and application of the highly specialized ma

chines is not justified any more, because these machines usually can

not be used when some, even minor, changes in the shape and dimension 

of the product are to be introduced. As the products of modern indus

try are manufactured in the relatively small series, which are in ad

dition, frequently changed, the introduction of flexible technological 

systems is the preferable choice for the realization of automated pro

duction. The central role in these flexible system is played by robots, 

which enable an easy reprogramming and switching from the production 

of the one product to another. Therefore, it is essential that the pro

cess of assembly by robots is effectively solved, not only from the 

point of view of the efficiency, accuracy, and speed of work, but al

so from the point of view of an easy change of the working task and 

maximal flexibility (though the robot flexibility is inevitably limi

ted by its mechanical characteristics and adaptability to the varia

tion in task conditions). 

Assembly processes may vary substantially in dependence of the type of 

elements involved, the mode of their joining, etc, but in all cases, 

the following stages can be distinguished: the stage of approaching 

the object, the stage of its grasping, the stage of transferring the 

object to the sp0t of assembling, the stage of its joining to another 

element, etc. It is clear that the robot in realizing this complex pro

cess has to perform three kinds of motion: the so-called "gross motion" 

related to the robot movement in the obstacle-free space (e.g. the 

transfer of the working object from one place to another, etc), "fine 

motion", related to the robot motion in an environment containing ob

jects (for example, the stage of grasping the workpiece, the stage of 

mating, etc), and "interface motion", representing all transition 

kind of motion between gross motion and fine motion (for example, the 
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stage of approaching the workpiece, or, the stage just before mating 

the objects, etc). In the preceeding chapters we have considered the 

gross motion: the robot moves with a high speed along the given tra

jectories (or, between the given positions), and, as we have seen, the 

degree of accuracy required for the realization of this motion deter

mined whether dynamic or nondynamic control had to be synthesized 

(Chapters 4-6). The interface motion, which, according to some analy

ses [1], takes the greatest amount of the assembly time, can be redu

ced substantially by ensuring a high precision of the gross motion (in 

the robot stopping and in approaching the workpiece). In other words, 

the control synthesis for the interface motion can be carried out in a 

way quite analogous to that used for the gross motion. 

Here we shall focus our attention on the realization of the fine moti

on in case the robot gripper comes into contact with the objects in 

its environment. More precisely, we shall focus our attention on the 

very stage of mating two elements, which represents the most sophisti

cated stage in an assembly process. The stage of parts mating may be 

realized in various ways, depending on the nature of the elements in

volved; one of the possibilities is to use two robots, each of them 

holding one of the two elements that are to be assembled. In princip

le, the mating stage can be reduced to the problem of inserting the 

workpiece (peg) held by the robot into a fixed hole, as shown in Fig. 7.1. 

It is obvious that the assembly process involving bilateral manipula

tion (two manipulators-robots) may also be reduced to this case. 

The problem of controlling the robot during the assembly of machine 

elements (insertion of the peg into a fixed hole) is, in principle, 

the problem of accura te posi tioning. If all geometrical parameters of 

the peg and of the hole and their positions in space were ideally known, 

and if the robot positioning (tracking of the given trajectories) was 

ideally accurate, then, it would be possible to insert the peg into the 

hole using only the robot control that has been considered in the pre

vious chapters. However, as none of the conditions could ever be ful

filled, the peg insertion into the hole is inevitably accompanied by 

the occurrence of contact between the peg and the hole, which results 

in the appearance of the reaction forces. The effects of these forces 

are of crucial importance for a successful assembly operation. To pre

vent potential demaging of the assemblying objects, it is obvious that 

such robot control should be ensured which would minimize these forces. 

However, it should be noticed that in some tasks the robot itself has 

to exert certain force on the elements, in order to realize the assem-



bly operation. Hence, the appearance of the reaction forces between 

the elements at the stage of their mating is practically unavoidable. 

Therefore, to synthesize the control which would take into account the 

effects of these forces, it is necessary to carry out a detailed ana

lysis of all the diverse phenomena appearing in this process. First of 

all, it is necessary to analyze the static and dynamic forces acting 

via the workpiece upon the robot gripper. 

Fig. 7.1. Mating phase of the "peg-in-hole" task 

The analysis of the assembly process may be approximately reduced to 

an analysis of the static forces appearing between the workpiece (ro

bot gripper) and the hole. Of course, a complete and precise notion of 

all the aspects of this process can be obtained by a dynamic analysis, 

i.e. by setting out a complete dynamic model of the robot experiencing 

the reaction force of the hole [2]. Now we shall analyze briefly the 

forces appearing during the insertion operation and the situations 

which may arise in the stage of the insertion. 

Consider the insertion of a cylindrical object (peg) whose base diame

ter is 2rm into a cylindrical hole of the diameter 2Rm' Itis straight-
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forward that the quantity 2(R -r ) represents the clearance gap bet-m m 
ween the object and the hole. Obviously, the larger this gap is, the 

simpler is the insertion process. For this reason, the assembling ca

pability of a robot is judged from the minimal value of the gap betwe

en the elements that can be assembled by the robot without causing any 

damage to the objects, while ensuring fully reliable assembling of 

the elements. To insert the peg into a hole, it is necessary to ensure 

the peg is accurately positioned at the mouth of the hole, which is usu

ally achieved on the basis of either precise information about the dis

position (arrangement) of the objects in the workspace (known in ad

vance), or the sensory information (visual feedback, and similar). The 

task of precise initial positioning is of the greatest importance for 

a successful assembly operation. 

Let us analyze briefly the forces which can arise due to the peg-hole 

interaction when the peg is brought to the mouth of the hole [2, 31. 

The purpose of this analysis is to examine the effect of friction and 

the problem of potential jamming, as well as the possibility of using 

force feedbacks for controlling the manipulator with the aim of avoi

ding the undesired effects of hole reaction forces on the insertion. 

As we have already pointed out, regardless of how well the manipulator 

has been positioned, contact between the peg and the hole may occur, 

so that reaction forces result. 

In this force analysis none of the aspects of dynamics is neglected. 

It is assumed that the dynamic coefficient of friction between the peg 

and the hole surface is the same everywhere and that it equals the sta

tic coefficient of friction. This assumption has been introduced for 

simplicity sake, but may easily be removed. Furthermore, it is assumed 

that both the peg and hole walls are completely rigid, so that, in our 

considerations deformation is not considered as this would make the 

model much more complex. 

Obviously, the given peg and hole geometry ensures that, upon inserti

on, contact occurs simultaneously at most two points. (This does not 

hold for special cases of coaxiality of the peg and cylindrical hole, 

when contact may occur at an infinite number of points along the joint 

generatrix). One of the two contact paints has to be between the hole 

edge and the peg cylindrical surface, and the other on the edge of the 

peg cylinder base and hole cylindrical surface. It is assumed that the 



peg has already entered the hole, i.e. no jamming has occured at the 

hole edge itself. 

In analyzing the forces arising during the insertion, four possible 

situations are considered (under the above assumption that the peg has 

already passed the hole base) [2]. 

1. No contact occurs between the hole and the object. 

2. One contact point exists. 

3. Two contact points exist. 

4. Contact is realized along the joint generatrix. 

Let us consider each of these situations, respectively. 

Case 1, when there is no contact between the hole and peg, represents 

free manipulator movement without reaction forces from the hole, so 

this situation does not differ dynamically from the task of transfer

ring the workpiece in free space along a desired trajectory and with a 

desired orientation. The manipulator dynamics is described by the ma

thematical model of open chain dynamics. 

Case 2 introduces the problem of the unknown reaction force acting upon 

the manipulator and affecting its dynamics. The problem of determining 

the reaction force at the hole-object contact points arises. Fig. 7.2. 

illustrates the case of contact between the hole edge and the cylindri

cal surface of the peg, while Fig. 7.3. shows another possibility of 

single contact, namely, contact between the edge of the cylindrical 

base of the peg and the cylindrical surface of the hole. Both figures 

show the hole and peg section along the plane determined by the con

tact point and the symmetry axis of the hole cylinder. The reaction 

forces at contact points are marked in the figures. Three components 

of the reaction force at the point Kl or K2 are to be determined in 

the direction of the coordinate frame axes fixed at the contact point. 

In fact, the perpendicular component of the reaction force NKl (per

pendicular to the peg cylinder generatrix on which the point Kl is si

tuated, i.e. perpendicular to the hole cylinder generatrix on which K2 

is situated) is to be determined, as well as the tangential component 

TKl (or TK2 ) in the direction of slipping (if it occurs) of the peg 

along the hole edge (Fig. 7.2) or hole surface (Fig. 7.3). 
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Fig. 7.2. Case of one contact point 
in assembly process - con
tact between hole edge and 
peg surface 

Fig. 7.3. Case of one contact point 
in assembly process - con
tact between edge of peg 
and hole cylinder surface 

Two cases are possible. Case 2.a), when friction is such that slipping 

exists in the peg-hole contact, and 2.b), when no slipping occurs, so 

that the peg has no tangential linear velocity. Assuming that the coef

ficient of friction ~ between the peg material and hole material is 

known, the following condition should be investigated 

i 1,2 (7.2.1) 

In case 2.a) the peg has a linear velocity at the contact point in the 

direction of TKi and the reaction force has to satisfy the slipping 

condition 

i 1 ,2 (7.2.2) 

In case 2.b) the reaction force at the momentary contact point satisfies 

the condition (7.2.1). In case 2.a) the contact point changes, and the 

tangential linear velocity of the object at the point Ki has to be in 

the direction TKi . In case 2.b) the peg can have only rotational velo

city about the point Ki and the contact point does not change. This 

imposes certain constraints on the peg acceleration, namely, the peg 

as a rigid body can have three degrees of freedom, i.e. three rotation 

accelerations about the contact point Ki, while the three degrees of 

freedom of translation with respect to the contact point are constrai

ned (linear accelerations in case 2.b) at the point Ki are equal to 

zero). It is quite obvious that in case 2.a) the peg's linear velocity 

at the point Ki can have a tangential component only, while the velo

city component in the same direction of but in the sense opposite to 

NKi must be equal to zero. (If this velocity component has the same 

direction and sense as NKi' contact is only fictitious) . 



In case 2 the forces acting upon the peg are: the inertia force of the 

peg itself F , the peg gravitational force G = mp g, the forces by o 0 

which the manipulator (i.e. the gripper) acts upon the peg R~ (~ = 1, 

2, ..• ,L, where L denotes the number of contact pOints between the peg 

and gripper at which forces R~ act on the peg), and the reaction force 

R . due to contact at the point K .. The dynamic equilibrium equation 
K1 1 

of forces acting upon the peg (according to D'Alembert's principle) is 

(7.2.3) 

The moments acting on the peg round the centre of mass are: the moment 

due to the inertial forces of the object itself Mo' the moment from to 

the manipulator via the gripper, i.e. via forces at the gripper-peg 

contact points, and the moment due to reaction forces at the object

-hole contact points. Equilibrium of the moments about the centre of 

mass of the peg (according to D'Alembert's principle) is 

L 
+ + + \ + + 
Mo + r K · x RK . + L r 0 x R = 0 

10 1 ~=1 ,,0 ~ 
(7.2.4) 

-+ 
where r Kio is the position vector from the centre of mass of the peg 0 

to the contact point Ki, ~£O (~ 1, 2, ... ,L) is the position vector 

from the peg's centre of mass 0 to the peg-gripper contact pOint. 

Equations (7.2.3) and (7.2.4) determine the peg dynamics in the case 

of a single point of contact between the object and hole. 

The manipulator dynamics represents the dynamics of a closed kinematic 

chain. 

Case 3, when two points of contact exist, is illustrated in Fig. 7.4. 

Contact points K1 and K2 are the same as in Case 2. Depending on the 

character of the reaction forces at contact points, the following ca

ses may occur: Case 3.a), slipping occurs at both contact points; case 

3.b) no slipping occurs at any contact point - the peg is jammed; 3.c) 

it may happen that slipping occurs at one contact point and not at the 

other - in that case the peg rotates about the point without slipping 

and loses contact at the other point (if this rotation is permitted 

by the geometry). However, it may also happen that slipping cannot oc

cur at one contact point (e.g. K2) but can occur at the other (K1), 

the peg would then rotate about K2, but this is not possible on account 

of the geometry. In this case, the object becomes jammed. 
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Which of these three cases will occur it depends on the nature of the 

reaction forces at the points K1 and K2, i.e. the following conditions 

should be investigated. 

(7.2.5) 

If the condition (7.2.5) is satisfied, there is no slipping at any con

tact point and case 3.b) occurs. In case 3.a) the reaction forces sa

tisfy the following conditions 

(7.2.6) 

In case 3.c) a combination of these conditions occurs, namely, 

(7.2.7) 

However, in this case, it should be checked whether the peg rotation, 

which would result on account of the condition (7.2.7) is permitted by 

the hole geometry. If it is not, jamming which is dynamically undeter

mined will occur, a peg deformation may result, which would require 

the introduction of new degrees of freedom (peg and hole flexibility 

and the like). The dynamics of peg jamming will not be considered here 

since the elements are assumed to be absolutely rigid bodies and mani

pulator control should ensure that peg jamming and deformations are 

avoided. It will suffice to note that no jamming occurs during assem

bling, i.e. that manipulator control is synthesized in such a way that 

jamming is avoided. Force feedback must ensure, therefore, that the 

peg always gets from the manipulator a moment contrary to the external 

forces moment. Accordingly, case 3.b) should be avoided by applying 

appropriate control. In case 3.b), since there is no slipping at con

tact pOints, both the rotational and linear peg acceleration are con

strained to zero, which gives 6 conditions for determining the reacti

on forces that are to satisfy the condition (7.2.5). 

In case 3.a) the peg may have only tangential linear velocity at con

tact points (if geometry permits them), while linear velocity and ac

celeration at point Ki in the same direction of but opposite sense to 

NKi are forbidden, which, together with the condition (7.2.6) provides 

the necessary conditions for determining the reaction forces at points 

Ki. 



In case 3.c) conditions (7.2.7) and those constraining peg acceleration 

to exist in the same direction of but opposite sense to NKi yield the 

conditions necessary to determine the reaction forces and peg accele

rations; the realizability of these conditions will depend on the geo

metry. 

Fig. 7.4. Case of two contact 
points 

Fig. 7.5. Case of contact along 
joint generatrix 

The equations of dynamic equilibrium of forces and moments acting on 

the peg in this case are of the form 

(7.2.8) 

o (7.2.9) 

Case 4 can be reduced to case 2. The reaction force due to the hole 

acts on the peg along the joint generatrix of the peg's cylindrical 

surface and hole cylinder (Fig. 7.5). As the reaction force acts uni

formly at all contact pOints along the generatrix, the reaction forces 
->-

may be represented by one resultant force RK acting at the mid-point 

of the line of contact between the peg and hole. This special case may 

be treated like the case with one contact point. Equations (7.2.1) -

(7.2.4) hold, so that either slipping or jamming may occur (i. e. 

the peg cannot slip along the generatrix), but in the last case rota

tion separating the peg from the hole wall is possible and case 2. 

occurs (if rotation is permitted by the geometry) . 

Let us construct the mathematical model of the robot during the inser

tion process. Starting from the model of the robot dynamics (3.2.2) 

for the robot moving in free space (open kinematic chain), the mathe

matical model of the robot dynamics during the insertion of the peg 

into the hole can be written in the form [3] 

p (7.2.10) 
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where the notation used is the same as in (3.2.2), J K1 , J K2 are the 

(nx3) matrices, determined by the position vectors of the peg-hole con

tact points K1 and K2 with respect to the joints axes, RK1 , RK2 are the 

(3 x 1) vectors of the reaction forces of the hole, while 01 , O2 are Kro

necker's symbols which can assume the following values: 

{~ 
if there is contact at point K1 

if there is no contact at K1 

f: if 
there is contact at point K2 

if there is no contact at K2 

The reaction forces RK1 and RK2 are complex functions of the angles, 

velocities and accelerations of the joints (i.e. of the driving moments 

P at the mechanism joints). Here, we shall not be concerned with the 

problems of expressing these forces as explicit functions of q, q and 

q but we shall retain the model in the form of (7.2.10). 

However, the model (7.2.10) is not smooth. At the instants of the ob

ject-hole contacts (when 61 and O2 change their values), theoretically 

"instantaneous jumps" of the system state vector (q, q) occur as a con

sequence of the impact of the elements. Modelling of the impact pro

cess is extremly complex so that the model of the robot dynamics too 

is difficult to compose, to simulate it in an exact way, and thus ana

lyze it. It is quite clear that at the moments of the impact, after 

instantaneous changes in the velocites (and positions) of particular 

joints, the model of the robot dynamics changes its structure: from an 

open kinematic chain (3.2.2) it becomes a closed kinematic chain (7.2.10). 

By combining the model of the mechanical part of the robot (7.2.10) 

and the models of the actuators at robot jOints, the global dynamic 

model is obtained describing the robot in the assembly process. 

E X ere 1 s e s 

7.1. For the manipulator presented in Fig. 7.6, determine the matrix 

J K1 in the model (7.2.10) if the peg-hole contact is as shown in 

the figure. Write the matrix according to the notation used in 

the figure (the robot has n=4 jOints). Show that J K1 represents 

Jacobian matrix for the contact point. 
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Fig. 7.6. Cylindrical robot (with 4 d.o.f.) in assembly process 

7.2. If the models of the actuators at the robot jOints are given by 

(3.2.4) (second order models), write the global robot model in 

centralized form (analogous to (3.2.27» if the peg insertion 

process proceeds with reaction forces acting on the working ob

ject. The model of the mechanism dynamics is given by (7.2.10). 
->- ->-

(In the total model, the reaction forces RK1 and RK2 should be 

retained) . 

7.3 Robot Control in the Stage of Parts Mating 

Control of the robot during the assembly process involves solving two 

major problems: planning of such trajectories which will provide the 

elements are brought to a desired mutual position and ensure their ma

ting, and reducing the (undesired) reaction forces acting between the 

assembled elements. These two problems are interrelated: the proper 

planning of trajectories diminish the error in mutual positioning of 

the elements, and thus, reduce reaction forces. On the other hand, re

action forces provide the basis for planning the trajectories (to mo

dify the given trajectories) yielding the parts mating. 

In order to reduce the effect of reaction forces acting between the 

elements it is advisable to measure these forces so that the informa

tion obtained can serve as the basis for realization of suitable con-
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trol. Thus a visual feedback (camera) or proximity sensors enable plan

ning of the robot trajectories to the very stage of parts mating, i.e. 

to the moment just before the insertion of the peg into the hole. Ho

wever, during the insertion itself, the measurement of reaction forces 

provides the best information about the mutual position of the elements 

being mated. Because of that, the robotic assembly process is often 

solved with the aid of force sensors, introduced to measure the reac

tion forces acting between the peg and the hole. 

As for the disposition of force sensors, different solutions are pos

sible. They can be placed either on the robot itself, or mounted on 

the support of the assembled object (at the hole). Obviously, the for

mer solution is more convenient from the pOint of view of flexibility 

and reprogrammability, and it does not require changes in the robot 

environment. Sensors can be placed at different points on the robot. 

The closer the sensors are to the contact point of the object and hole, 

the more accurate information about reaction forces is obtained on the 

basis of force measurement. One of the possible solutions is to mount 

the force sensors on the gripper, just at the contact points of the 

workpiece and the gripper (Fig. 7.7) [4]. The force sensors at contact 

pOints measure the object-hole reaction forces (if contacts exist) and 

the dynamic forces of the object itself. Namely, the forces at the con

tact points of the object and the gripper, Ri' have to satisfy relati-
+ 

ons (7.2.8) and (7.2.9). In order the measurement of R ~ would supply an 

accurate information about the reaction forces RK1 and RK2 , it is ne

cessary to calculate (on the basis of the known robot angles q, velo

cities q and accelerations q) both the inertia force of the object Fo 

and moment it due to the inertia forces of the obj ect. Obviously, for 
o 

relatively low speeds of the gripper motion and small mass and inertia 

moment of the object, these forces can be neglected. A shorthcoming of 

such a solution to sensors disposition is that, because of the need to 

measure relatively small forces, sensors of high precision and sensi

tivity have to be used. On the other hand, from the point of view of 

design, it might be difficult to install sensors at the contact points. 

A solution which is used most often is to mount force sensors at the 

gripper (wrist) jOint (Fig. 7.8). This is usually realized in the form 

of the so-called Maltese cross by which the forces and moments at the 

wrist joint are measured [5, 6]. The sensors are disposed in all four 

cross branches in order to obtain direct information about all three 

force components and all three moment components appearing at the grip

per jOint. However, the measured components of forces and moments do 



not represent the direct information about reaction forces acting at 

the working object, because, in these forces are also included the dy

namic forces of the gripper and working object. Since the gripper mass 

is usually much larger than, or equal to, the workpiece mass, the mea

sured forces provide "worse" information about reaction forces if com

pared with the above solution of force sensors disposition (Fig. 7.7). 

On the other hand, to measure force in the wrist joint is technically 

much simpler. Besides, as the gripper velocities and accelerations du

ring the assembly process are small, dynamic forces forces and moments 

of the gripper and workpiece can be neglected. (It should be borne in 

mind that the acceleration of the workpiece and gripper in the direc

tion of the hole reaction forces is equal to zero). 

Fig. 7.7. Experimental gripper with force sensors at 
the object-gripper contact points [4] 

Certainly, there are some other technical solutions for sensors pla

cing on the robot (for example, force sensors can be placed on the ro

bot base, or in the jOints, as considered in Section 5.2, and the like). 

It is obvious that the "further" from the workpiece forces sensors are 

placed, the "more fouled" information about the reaction forces is ob

tained, so that the dynamic robot model has to be used to calculate, 

on the basis of the measured forces, the actual reaction forces acting 

upon the workpiece. 
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equipped with 
strain gauges 

Fig. 7.8. Typical device with force sensors at 
the wrist jOint [5, 6J 

Regardless of where they are situated, force sensors provide informa

tion about the reaction forces acting between the objects in the as

sembly process (i. e. about reaction forces of the hole on the workpie

ce held by the gripper). After these forces have been measured, it is 

possible to establish a feedback loop from the sensor (i.e. from the 

calculated momentary values of reaction forces) to the inputs of the 

actuators at the jOints. In other words, some additional signals (de

pendent of the reaction forces measured) should be fed to the actua

tors whose task is to realize the compensating movements of the robot 

joints and thus, minimize the reaction forces. Therefore, such compen

sating control should be realized (via the reaction force feedbacks) 

which will minimize the workpiece-hole reaction forces and achieve 

compliant motion of the robot and workpiece. Obviously, it is necessa

ry to realize the motion of the gripper and workpiece in the same di

rection of but in the opoosite sense to the action of the reaction 

force. 

Force feedbacks can be realized in various ways [7J. Sometimes, itsuf

fices to introduce feedbacks at the gripper joints. The control law 

may be either linear or nonlinear. A simple form of force feedback 

might be realized when force sensors are installed at the points of 

contact of the workpiece and the robot hand. 
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Let us suppose the sensors ~t the workpiece-gripper contact points mea

sure the reaction forces acting between the workpiece and gripper, R£, 
->-

on the basis of which the reaction forces of the peg-hole RKi can be 

determined. The torques at robot joints which should be applied in or

der to minimize reaction forces, and thus, realize the insertion of the 

peg into the hole may be represented in the following way: 

6P~ (7.3.1) 
1 

where rk1i and rK2i are the position vectors from the axis centre of 

the i-th joint to the contact point K1 and K2 respectively (see Figs. 

7.2 - 7.5) and ~, is the unit vector of the i-th joint axis. Let us 
1 ->- ->-

suppose the inertia forces of the object Fo' gravitati~n force Go and 

the moment due to inertia forces of the object itself Mo' can be neg

lected (which is, as we have already said, a realistic assumption in 

regard to small veloci tes and accelerations of the workpiece in the sta

ge of parts mating). On the basis of relations (7.2.8) and (7.2.9) for 

the case of the occurrence of two contact points (i.e. on the basis of 

(7.2.3) and (7.2.4) for the case of one contact point between the ob

ject and hole), expression (7.3.1) can be written (taking into account 
+ + + + + + 

that r K1i = rK10+roi' r K2i rK20+roi): 

6P~ 
1 

+ L + L + + + 
(r ,x I R + I r, xR,)e, 

01 £ = 1 £ £ = 1 ",0 N 1 
(7.3.2) 

where r , is the position vector from the centre of axis of the i-th 
01 

joint to the mass centre of the workpiece. If we suppose the workpiece 

parameters are known, expression (7.3.2) can be calculated on the basis 

of the force sensors information, i.e. from the measured forces RJ>.. On 

the basis of the values obtained for the compensating torques 6P~, it 
1 

is possible to determine the compensating signals to the actuators in-

puts which should realize these torques. If we assume the actuators 

models are of second order (i.e. if the delay in the rotor circuit can 

be neglected), the compensating signals can be calculated in the form: 

(7.3.3) 

where K~>O is the gain in the force feedback loop, and fi and hi are 
1 

defined by (5.2.12). On the basis of (7.3.2) and (7.3.3) a feedback 

loop can be established from the force sensors (which measure reaction 
->-

forces between the object and gripper R£) to the actuators inputs. The 

block-scheme of such control is shown in Fig. 7.9. It is not necessary 
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to introduce force feedbacks into all joints, i.e. the compensating 

moments ~p~ need not to be realized by all the robot joints. The cho-
~ 

ice of the control structure depends on the mechanical robot structure 

because the compensating moments at the gripper tip should be realized 

via the torques at jOints. This means that the position vector of the 

gripper (i.e. of the workpiece) with respect to particular jOints roi ' 

as well as the directions of the particular joints (i.e. the orts ei ) 

determine what are the joints to which force feedbacks should be intro

duced and what are the joints at which these feedbacks might be neg

lected. 

A special problem in the 

represents the choice of 

control laws (7.3.2) and 

implementation of the laws (7.3.2) and (7.3.3) 

gains K~. It should be borne in mind that the 
~ 

(7.3.3) include the robot parameters which 

need not to be known precisely. On the other hand, the force sensors, 

however precise they may be, introduce always certain noise in the for

ces measured. Therefore, should the compensating torque be realized 

exactly according to (7.3.2), it could result in an oscillatory beha

viour of the robot,. The role of feedback gains K~ is to prevent such oscil-
~ 

latory behaviour. However, it is difficult to determine these gains at 

the stage of robot design (since the modelling of these high frequency 

modes of the system is very complex) but they are best determined ex

perimentally. Obviously, the appearance of oscillations when force fe

edbacks are applied in the assembly process may also be prevented in 

some other ways (e.g. by introducing a damping feedback loops, and the 

like) • 

We have considered here a simple scheme of robot control for the as

sembly process which involves force feedbacks. It should be borne in 

mind that this control scheme cannot solve the assembly problem in a 

general way. Moreover, even in the simplest case, this scheme cannot 

guarantee that peg jamming will be avoided. It is necessary to develop 

a special strategy (Le. to plan the gripper motion) so to prevent jam

ming. 

As can be seen,a force feedback can be applied in combination with the 

posi tion,veloci ty, and (possibly) current feedbacks. Namely, in the sche

me in Fig. 7.9. the feedbacks employed in the position robot control 

have been retained, to which force feedbacks have been superimposed. The in

teraction of these two parts of control scheme has not been analyzed. 

However, a case may arise when the robot positioning feedbacks and 

force feedbacks are in a "collision". This problem will be considered 

in the following section. 
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Several examples of successful robotic assembly using force feedbacks 

have been realized under laboratory conditions and some of them are 

described in Ref. [8]. However, the force feedback has not found yet a 

wider use with the commercially available robots. The reason is in un

resolved problems related to the force feedback application [7]. 

Much better performances in the robotic assembly have been achieved 

using the specially constructed grippers which enable a passive (with 

no actuators involved) addaptation of the gripper during the assembly 

task. Different types of the so-called passive compZiance have been de

veloped, the best known being the "Remote Centre Compliance" (RCC) de

veloped in the Charles Stark Draper Laboratory [9]. In this solution, 

a special system of springs is situated between the end-effector and a 

wrist of the robot which enables easy movements of the workpiece both 

in the plane perpendicular to the hole axis and in the plane of the 

rotation about the corresponding axes (Fig. 7.10). In this way the ro

bot (gripper) acqUires certain additional degrees of freedom which enab

le a better compZiance of the peg position to the hole axis, facilli

tating thus the peg insertion into the hole. Actually, these passive 

devices exploit the fact that to achieve easy insertion of the peg into 

the hole it is necessary to ensure low lateral and rotational stiffness 

of the gripper. Such low stiffness gripper allow the peg to "comply 

~ith the hole", i.e. compliance between the peg and the hole is obtai

ned. RCC owes its name to the fact that this device places the compli

ance center at the tip of the peg. A compliance center is a point at 

mechanical system such that a force applied at that point causes only 

a translation, while a torque applied around this point causes only 

rotation around the point. Therefore, if compliance center exists or 

is artificially created, as RCC does, at the right position on the peg, 

it allows efficient insertion of the peg into the hole. The advantage 

of this solution is in that the control system is not complicated ei

ther by special feedbacks or additional calculation. In this way, the 

speed of assembling is increased significantly. However, a disadvan

tage of these devices is that one passive compliance cannot be applied 

for different pegs and holes (differing in the dimension, shape, and 

the like), but usually for each peg-hole combination a proper mechani

cal adaptor has to be used. As the major characteristic of a robot is 

its reprogrammabiZity (i.e. the ability to switch from one production 

task to another, that is from one working place to another, what is 

achieved in a simple and quick way by reprogramming the robot), the 



application of these passive compliances diminishes robot's capabili

ties and reduces the robot to the level of a classical machine capable 

of doing a narrow set of tasks. A frequent solution is that a set of 

different adaptors is developed for a robot, and when the task is beinq 

changed, the adaptor is changed accordingly. 

connection 
with robot 

RCC 

gri pper 

workpiece 

Fig. 7.10. Scheme of a passive compliance (RCC) 

Further development of RCC has led to the instrumented RCC (IRCC) whose 

purpose is also to realize passive adaptation but which includes mea

surement of contact forces and moments, so that this information can 

be used in the feedback [10]. 

Example 7.3. We shall briefly describe an experimental study of the 

force feedback in the robotic insertion of the workpiece into the hole 
[4 ]. 

For the purpose to study experimentally force feedback loops and their ap

plication in robotics a force sensor which could measure all the three 

components of the force acting between the robot gripper and workpiece 

has been used. Besides, a special gripper (Fig. 7.11) has been develo

ped and attached to the tip of the minimal configuration of the mani

pulation robot UKS-2. 

Both jaws sides of the experimental gripper were supplied with three

-component force sensors. The gripper was designed in such a way that 

t):J,e jil,ws sides bearing force sensors move parallel with each other. 

Eac):J, force sensor contained three one-component sensors to measure the 
forces acting between the payload and gripper. The sensors used were 
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from the WAZAU company (Be rlin), and their measuring range was 20 N. 

The force sensors are semiconductors of the strain gauge type of ave

rage sensitiv ity of 1.505 mV/N and have exhibited v ery good reproduci

bility. The gripper was covered with rubber to ensure uniform pressure 

and friction needed for the efficient gripping of the payload. The 

screws with nuts and springs enabled mechanical adjustment of "zero" 

in each of the three measuring directions. 

Fig. 7.11. Experimental gripper with force sensors to measure 
reaction force s between the gripper and workpiece 

The experimental gripper with the force sensors was attached to the 

tip of the minimal configuration of the industrial manipulator UMS-2 

shown in Fig. 7.6. The robot possesses n=4 d.o.f. (three for the mini

mal configuration and one for the gripper rotation). The robot control 

was r e alized using a PDP-11-03 microcomputer and either the analogue 

or direct digital servo systems. 

The force sensors mounte d on the gripper enabled direct measurement of 
+ T 

the forces R£ = (Rx £ ' Ry £ ' Rz £ ) . The values of forces obtained from 

the force sensors are fed via AID converter to the microcomputer. The 



additional compensating torques which are to be realized by the actua

tors can be calculated in a direct way as: 

2 
lIP~ = I -; . xR 

1 1,=1 1,1 1, 

In the particular case of the UMS-2 robot, the compensating Moments 

can be calculated in the following way: 

(7.3.4) 

where d denotes the half-width of the gripper jaws (i.e. the distance 

from the left to the right force sensor; this distance is measured by 

means of a corresponding linear potentiometer and, via AID converter 

led to the microcomputer) . 

The aim of the experiment was to investigate the force feedbacks in 

the process of "fine motion". The manipulator task was to insert a 

prismatic object into a hole. The clearance gap was relatively large 

- up to 0.5 mm, so that the insertion could be carried out in a rela

tively simple way and with no contact occurring between the object and 

hole. However, to examine the effect of the force feedback, we have po

sitioned the manipulator in such a way that the object and hole come 

into contact and the resulting reaction forces were measured by the 

force sensors on the gripper. It was possible to arrange that the re

action force had only one (x) component in the absolute coordinate fra

me. This component could be compensated by the movement of the first 

(revolute) manipulator joint. This means that we have established the 

force feedback to the first jOint and the global force gain for the 

same joint has been varied. 

The time-history of the forces appearing at the sensor (i.e. the modu

le of the force vector) during the object insertion are presented in 

Fig. 7.12. If the global force feedback is opened (by putting the gain 

K~=O) these forces will reach their maximum. If the control also in

cludes the force feedback (and through it additional driving torques 

calculated by the microcomputer are applied) these forces become smal

ler (see the result for K~;:1 in Fig. 7.12). However, if the global gain 
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is too high, the robot may start to oscillate and reaction forces may 

even increase (see the case when K;=2). Fig. 7.13. shows the maximum 

amplitude of the force Fx measured by the force sensor on the gripper 

(actually, the sensor measures the reaction force RK acting between 

the payload and hole, because the payload dynamics forces can be neg

lected*)) as a function of the global gain applied in the force feed

back K;. It is observed that the maximum reaction force decreases 

3 

-I 

- K~=O. 

-3 
•••• _ ••• K~=I. 

---- K~=2. 

\\ " 6 t[s] , ~ I ,-It" , 
'. , 
I: ,. I 
~ . I 
, ..• : I 

~.i' I 
"." \J 

Fig. 7.12. Experimental reaction forces measured in the "peg-in-hole" 
task for different force feedback gains 

*) 

2 

0.5 2 

Fig. 7.13. Dependence of maximum reaction force on the force 
feedback gain in the "peg-in-hole" task 

We have chosen a relatively light object (mp =O.3 kg) in order to 

diminish the effect of its dynamics on the insertion process. 



for K~ 2 1 and increases again for K~ > 1. This means that force gain 

should be carefully selected in order to avoid oscillatory motion of 

the robot when the force feedback gain is too high. 

E X ere 1 s e s 
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7.3. write the expressions for the compensating torques in the robot 

joints (7.3.2) for the case the peg and hole are in contact (Figs. 
+ 

7.2 - 7.5), if the Rg, forces are measured at the points of contact 

of the workpiece and gripper (as in Fig. 7.11) and if the assump-
+ + 

tion on neglecting the inertia forces Fo ' gravitational force Go 

and the moment due to the inertial forces of the workpiece itself 

M , is not valid (i. e. it is necessary to introduce these for-
o 

ces and the moment into (7.3.2)). Determine these forces and mo-

ments via coordinates and velocities of the robot joints for the 

robot UMS-2 in Fig. 7.6. Was such correction necessary? 

7.4. In the experiment described in Example 7.3, the control of the ro

bot shown in Fig. 7.6. is realized by means of a microprocessor 

which on-line calculates the nominal centralized control accord

ing to (4.4.20), local servo system (both the position and velo

city) feedbacks according to (4.4.16) and additional compensating 

moments (on the basis of the forces measured at the gripper-object 

contact points) according to expressions (7.3.4), (the correspon

ding signals for the actuators are calculated using (7.3.3)). Wri

te down a dynamic model for the robot UMS-2 in Fig. 7.6 and the 

models of the actuators (D.C. servomotors - second order models) . 

Determine what is the minimal number of numerical operations (ad

ditions and multiplications) needed to calculate the control sig

nals (i. e. the inputs to actuators u i ), on the basis of the given nomi

nal trajectories qOi, qOi on the actual coordinates qi and joint ve

locities qi (i = 1, 2, 3, 4) and on the basis of forces measured 
T T 

by force sensors (Rx1 ' Ry1 ' Rz1 ) and (Rx2 ' Ry2 ' Rz2) ,as well 

as of the gripper jaws d at each sampling period. Assume the no

minal joint acceleration qOi is obtained by numerical differenti

ation of the nominal velocity qOi ,., (qo(t+lIt)-qo(tll/llt, where lit 

is the sampling period. Take that the calculation of a sine or 

cosine function requires one multiply and two add operations. 

7.5. On the basis of the results of the preceeding exercise, determine 

what is the shortest sampling period that can be attained (i.e. 
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what is the shortest time needed to calculate input signals for 

the actuators), if the control is realized using: 

a) PDP-11-03 microprocessor (one add operation lasts 100 [~s], 

and one multiply operation 250 [~s]), 

b) a microprocessor INTEL-SO-SO (one add O.S [ms] one multiply 

1.5 [ms]) , 

c) a microprocessor INTEL-SO-S7 (one add 35 [~s], one multiply 

65 [~s]). 

Assume the processor time is used only for the operations of ad

dition and multiplication. 

7.6. Draw a detailed scheme for the control of the UMS-2 robot accor

ding to Example 7.3 and Exercise 7.4, so that all the necessary 

AID and DIA converters, sensors and actuators are marked. 

* 7.7. Write in a high-level programming language a programme to calcu-

late the control (inputs to the actuators) for the robot UMS-2 

according to Example 7.3. and Exercise 7.4. during one sampling 

period. Assume the programme input variables are: the nominal jo

ints coordinates qOi(t) and velocites qOi(t), actual jOints coor

dinates qi (t) and velocities qi (t) , sensory forces (R 1 (t) , R 1 (t) , 
T T x Y 

Rz1 (t)) and (Rx2 (t), Ry2 (t), Rz2 (t)) and the information on the 

gripper jaws d(t); whereas the programme output variables are: 

the input signals to the actuators ui(t) at the time instant t 

(i.e. at the current sampling period). Assume all the necessary 

data about the mechanism, actuators and feedback gains are given 

(and represent either input data or constants in the programme) . 

7.4 Hybrid Position/Force Control of Robots 

To the moment, we have considered in this chapter special task in ro

botics, namely, the robotic assembly of machine parts and elements. As 

we have seen, this task can be divided into a series of subtasks (sta

ges), the most sophisticated of them being the stage of parts mating 

itself. The task of the robotic assembly belongs to a wider class of 

tasks in which the robot comes into contact with the objects in the 



workspace, so that these objects "act" upon the robot by reaction for

ces and thus constrain the robot motion in certain directions. In other 

words, in this class of tasks, the robot motion in the particular di

rections is constrained by its contact with one or more surfaces. For 

example, when the robot comes into contact with a surface in the work

space, the robot's motion in the direction perpendicular to that sur

face is constrained, but the robot can act upon that surface by a cer

tain force (Fig. 7.14). It is obvious that the task of part assembl

ing (i. e. of inserting a peg into a hole, Fig. 7.1) belongs to the class 

of tasks with partialy constrained motion. As we have already mentioned, 

to this class of tasks also belong the tasks of robotic cutting, for

ging, grinding, deburring and many others. 
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In this section we shall consider some basic problems concerning the 

control in this class of tasks. It is quite obvious that, in these 

tasks, it should be ensured the robot position in certain directions 

(in which its motion is not constrained) is controlled (its position

ing is realized in accord with some definite requirements, i.e. the 

robot should track a desired trajectory), while in some other directi

ons (in which the robot motion is constrained) the force or moment ap

plied by the robot is to be controlled. Therefore, in these tasks in

volving partial constraint to the robot motion, some of the robot's 

d.o.f. are controlled by position, and other by force. Because of that 

this type of control is named hybrid position/force .control [11, 121. 

The robot control in the stage of parts mating, considered in Section 

7.3, belongs to this type of control. 

However, we have not considered yet the general relationship between 

position control and force control, but we have only described the for

ce feedback control in a special case of inserting the workpiece into 

a hole. In this sectioh we shall broaden the notion of position con

trol and force control to encompass the whole class of tasks involving 

partially constrained motion of the robot. 

When the robot comes into contact with an object in the workspace, then, 

in dependence of the specific mechanical and geometrical characteris

tics of the given contact, various constraints are imposed to the ro

bot gripper motion and to forces the hand can realized. A set of such 

constraints which are a na,tural consequence of the par.ticular relation

ship between the robot and environment (i.e. of the nature of the con

tact between them) is called natural constraints. For example, with 

the robot shown in Fig. 7.14. the robot gripper motion in the direction 
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perpendicular to the contact surface is naturally constrained, i.e. 

there is a natural constraint with respect to position. If the fricti

on is neglected, the gripper cannot realize an arbitrary force in the 

direction tangential to the surface so that there is a natural con

straint with respect to force (the force is zero). 

To facilitate determination of these constraints to the hand position 

or to the force by which the hand acts on its surroundings, for each 

particular task, an appropriate coordinate frame of (or constpaint 

fpame) is adopted and placed at the position which suits best the par

ticular task. Two characteristic manipulation tasks together with the 

corresponding constraints are illustrated in Fig. 7.15 [12, 13]. As 

can be seen, the coordinate frame with respect to which restrictions 

are defined may be either fixed or movable. 

The constraints in Fig. 7.1S.a) have been defined under the assumption 

that the friction between the gripper and crank handle ensures reliab

le grasping and that the handle can rotate with respect to the crank 

arm. The robot gripper position constraints are defined by the gripper 

velocity components with respect to the chosen coordinate frame, which 

is often more convenient than to define position constraints in a di

rect way. Similarly, the force constraints are specified via prescri

bing the values to components of the vector force and moment at the 

gripper with respect to the same coordinate frame. It is obvious that 

the gripper position constraint comprises the constraints with respect 

to position and/or orientation of the gripper, while force constraints 

include the constraints with respect to forces and/or moments acting 

upon the gripper. 

The constraints in Fig. 7.15.b) have been derived under the assumption 

that the force in the direction y is limited to zero, since the slot 

in the screw head allows the screw driver to slip in this direction. 

All these natural constraints are determined by the nature of the con

tact itself, not by the desired manipulator motion. 

When the desired robot motion and/or the forces to be realized by the 

robot gripper are prescribed, the so-called aptificial constpaints are 

thus defined. To define a task to be realized by the robot, is to de

fine the artificial constraints to the gripper motion and to the for

ces to be realized by the gripper. In Fig. 7.15. apart from the natu

ral constraints, we have also presented the artificial constraints 
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Fig. 7.14. Robot contact with a surface: constraints to robot motion 
in the direction perpendicular to the surface 

Natural constraints Artificial constraints 

x O. F O. z O. F O. c z c x 

Yc O. F O. 
Y 

O. M O. 0 
M O. Wx wY W 

Y Y x 

Wz O. M 
z 

O. 

(al Turning crack 

Artificial constraints Natural constraints 

Yc O. F O. x O. F O. x c Y 
0 F O. z pw 

X y c z z 
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M O. O. M O. w W W 
Z Z x x z 

M O. W O. 
Y Y 

(bl Turning screwdriver 

Fig. 7.15. Natural and artificial constraints on robot for 
two tasks [12] 
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which are determined by the production task given by the operator or 

by a higher control level (i.e. the desired robot motion and forces it 

has to realize). For example, in the task illustrated in Fig. 7.15.b) 

it is required the gripper moves about axis z with an angular velocity 

wO,but it does not move in the direction y, while in the direction z z 
it has to move with speed pwo and not to exert any force on the screw 

z 
head in the direction x and neither produces moments about axes x and 

y (here, p denotes the step of the screw spiral groove); all these re

quirements directly define the artificial constraints. It is obvious 

that when there is a natural constraint on the gripper motion in acer

tain direction (i.e. with respect to a certain d.o.f.) in the coordi

nate frame of constraints, then it is necessary to define the artifi

cial constraint with respect to force in that direction, and vice ver

sa. In every task, each gripper d.o.f. in the constraint frame should 

be controlled in such a way to satisfy either a position constraint, 

or a force constraint. 

Therefore, the hybrid robot control should ensure the position control 

in the direction (in the constraint coordinate frame) in which there 

is a natural force constraint, and to ensure control of the gripper 

force in the direction in which there is a natural constraint to the 

gripper position. Such control should be realized that it might be ap

plied for different combinations of these constraints with respect to 

an arbitrary (suitable) constraint coordinate frame [13]. 

We have already pointed out that the constraint coordinate frame can 

be defined in different ways, which depends on the nature of the par

ticular task. This frame may be fixed to the tip of the robot gripper 

or to either a mobile or fixed part of the objects in the workspace 

(e.g. on a mobile tool, at the hole into which the peg is being inser

ted, etc.). Actually, the selection of this frame depends on specific 

production task. Therefore this coordinate frame is usually reffered 

as task-specific frame. However, the constraints defined with respect 

to this coordinate frame may easily be transformed into the co.nstraints 

on the gripper position and constraints on the force acting on the grip

per with respect to the coordinate frame used to define the external 

robot coordinates s, and vector forces at the gripper F (Cartesian 

frame - see Section 5.5). For simplicity sake we shall assume that the 

position constraints have been defined with respect to the coordinate 

frame for which the external coordinates s and external forces F were 

defined, so that the natural and artificial constraints are defined 
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with respect to the coordinates of the vector s and vector F. Actually, 

it should be borne in mind that it is necessary, using the correspon

ding transformation matrices, to transform the position constraints 

and force constraints from the task-specific coordinate frame into the 

coordinate frame of the external coordinates s and forces F. 

Let us suppose that in the i-th direction, in which a natural constraint 

occurs on the i-th component of vector F, is defined a desired trajec

tory (position) of the corresponding i-th component of vector s which 

defines the artificial constraint on the gripper position in the i-th 

direction s?(t). Of course, it is assumed that the component of the 
l 

external (Cartesian) coordinates vector si is defined with respect to 

the same direction as the i-th component of F., i.e. s = (x , y , z , 
TTl C C C 

ljJ, S, <p) and F = (Fx ' Fy ' F z ' Mz ' My' Mx) , where xc' Yc' and zc are 

the coordinates of a fixed point at the gripper with respect to the 

corresponding coordinate frame and ljJ, S, <p are the Euler angles of the 

gripper (see Section 2.2), whereas Fx' Fy and F z are the projections 

of the external resultant forces acting on the gripper, onto the axes 

of the same coordinate frame, and Mz ' My" Mx ' are the components of 

the external moments at the gripper with respect to the axes the Euler 

angles are being defined. Similarly, we can suppose that in the j-th 

direction, in which there is a natural constraint on the j-th compo

nent of vector s, is given a desired "trajectory" (value) of the cor

responding component of vector F which defines the artificial constraint 
o on the hand force in the j-th direction, Fj(t). 

The task of hybrid control is to realize simultaneously the prescribed 

nominal trajectories (positions) of the gripper coordinates s?(t) and 
l 

prescribed nominal trajectories of the force components of the gripper 

F~(t). Hybrid control is based upon the position and force feedbacks, 
J 

i.e. upon the assumption that the control system possesses the infor-

mation about the actual position of the robot (hand) and the informa

tion on the actual forces acting on the hand. Thus, the control is re

alized on the basis of the error in pos.i tion and error in the realized 

force. 

For simplicity sake, matrix S has been introduced with the purpose of 

choosing the gripper's d.o.f. that are position controlled or force 

controlled [12, 13]. SeZection matrix S is of diagonal form, the i-th 

element on the diagonal has the value if the i-th gripper d.o.f. is 

force controlled (i.e. if the artificial constriant is prescribed with 

respect to the i-th component of the vector F), and the value 0, if 
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the i-th gripper d.o.f. is position controlled (i.e. if s~(t) has been 

prescribed). It is obvious that the dimensions of matrix S are mxm 

(where m is the order of the external coordinates vector s and of the 

force vector F; m<6 - see Section 2.2). For different tasks and dif

ferent conditions of the robot-environment contacts the elements of 

matrix S change during the task execution (because the natural constra

ints change) . 

On the basis of the information about actual joint positions q(t) ob

tained from the position sensors at joints, actual values of the ex

ternal (Cartesian) coordinates s(t) are calculated using expression 

(2.2.1). Thus, the control system calculates the error with respect to 

the hand coordinates (i.e. the difference between the actual coordina

tes and the prescribed nominal trajectories sO(t)): 

LIS(t) = s(t)-so(t) = f(q(t))-so(t) (7.4.1) 

However, as we have said above, only certain components of the vector 

s are "constrained" by the nominal trajectories (positions) sO(t), and 

these are those components which have a natural constraint on the for

ce component. Because of that, only the "reduced" vector of error in 

the gripper position ~se(t) is relevant to the control, and it is: 

(7.4.2) 

By measuring forces R£ (by means of the force sensors mounted on the 

robot or on the objects in the workspace - see Section 7.3) the infor

mation is obtained about the forces by which the environment acts upon 
-7 

the robot. From the measured R£, using the corresponding transformati-

on matrices, the actual instantaneous value of the vector F(t) is cal

culated as 

F(t) (7.4.3) 

where L is the number of sensors (force transducers), TF £ is the (mx3) 

transformation matrix of the information from the £-th sensor to the 

vector F. In this way, the error in the vector F components in the 

control system can be obtained as the difference between the actual 

forces acting on the gripper F(t) and the desired nominal trajectories 

of the force (and moment) components FO(t): 
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lIF(t) (7.4.4) 

As with the position s, for force control too (for the specific task 

and contact situation) only certain components of F are relevant, i.e. 

it is relevant the error vector with respect to the gripper force liFe' 

defined as 

(7.4.5) 

Thus, for the specific contact situation, i.e. for a defined S, the 

error in the control system with respect to the gripper posi tion (7.4.2) 

and the error with respect to the force on the gripper (7.4.5) are ob

tained. These errors are "divided" into the hand d.o.f. controlled by 

position (orientation) and the hand d.o.f. controlled by force (moment) . 

On the basis of these errors the controller should generate input sig

nals to the actuators at the robot joints. In this way, different con

trol laws, connecting the signals to the actuators inputs and the er

rors with respect to the position lise and the errors with respect to 

force liFe' can be applied. 

Fig. 7.16. represents a general scheme of hybrid control [12]. The con

trol consists of two complementary sets of feedbacks loops (the upper 

with respect to position, the lower ones with respect to force) each 

of them including its own control law and the both controlling one and 

the same object - the robot. The control laws have to include the trans

formation of the external (hand) coordinates into the joint torques 

(i.e. input signals to the actuators). It is obvious that both sets of 

the feedbacks control each robot jOint in a "cooperative" manner, though 

each of the hand d.o.f. is controlled only by one of the feedback sets. 

The control can be realized in external coordinates, and this is done 

according to the solutions presented in Section 5.5. (Fig. 5.11). If 

the decentralized control in external (Cartesian) coordinates is adop

ted, the joints torques can be calculated (in the static case) from 

the relations (using (5.5.2) and (5.5.3)): 

LIP 

[S(t)-SO(t)]-K (I -S)s} ve m (7.4.6) 

where KF denotes a matrix of dimensions mxm which can be adopted in 

the form KF = diag(K~), Kpe and Kve are the matrices of dimensions mxm, 
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K 
pe 

gain, 

diag(Ki ), K diag(Ki ). Here Ki denote~ the force feedback 
pe ve. ve F 

whereas Ki and Kl are the position and velocity feedback gains 
pe ve 

in Cartesian coordinates (see Section 5.5). The hybrid control thus 

obtained is decentralized with respect to external coordinates. This 

control law is completely realized at the level of hand coordinates; 

the error calculated in terms of hand coordinates and hand forces is 

multiplied first with the feedback gains, and then, the transformation 

is carried out into the joints torques to be realized by the corres

ponding actuators. (The input signals to the actuators that realize 

the calculated torques LIP (7.4.6), can be determined from (5.4.11». 

Another possible solution is to calculate the position and force er

rors in the hand coordinates and to transform them into the errors of 

internal (joints) coordinates and of jOints torques. First, it is cal

culated 

-1 
J (q) lise (t) (7.4.7) 

(7.4.8) 

and then, the control is realized in the joint coordinates (i.e. joints 

torques are calculated): 

(7.4.9) 

Here, lIPp (t) is the vector of correctional torques due to the position 

control which can be realized via the PIO control law: 

(7.4.10) 

where Kpp' Kpv' KpI are the respective nxn matrices of the position, 

velocity and integral feedback gains (in joint po~ition control). 

In (7.4.9) lIPF (t) denotes the vector of correctional moments due to 

the force control. This control can be realized as the PI control law: 

(7.4.111 

where KFP and KFI are the (nxn) matrices of the proportional and inte

gral gains in the force feedbacks loops. If the matrices Kpp' Kpv' 

KpI ' KFP and KFI are adopted in diagonal form, the control is dec en-



tralized with respect to both position and force (decentralization at 

the jOints level). However, it is obvious that the control about each 

jOint "participates" in both the position control and force control. 

A block-scheme of such a control is shown in Fig. 7.17 [12]. 

It is evident that such control represents a combination of the con

trol in Cartesian coordinates and the control in joint coordinates: 

the difference between the given position sO(t) and the actual posi

tion s(t), as well as the difference between the given force FO(t) and 

the actual force at the gripper F(t) are calculated at the level of 

Cartesian coordinates and the feedback gains are introduced at the 

joints level. Hybrid control can also be realized in the joints coor

dinates: the given position sO(t) and force FO(t) are transformed from 

the Cartesian coordinates (into gO(t) and pO(t)) and then, the control 

is applied which realizes the desired gO(t) and P~(t). To realize the 

given joints positions (trajectories), different control laws can be 

applied, which have been considered in the previous chapters. The given 
o forces (moments) PF(t) are realized by means of force feedbacks, by 

+ 
transforming the R£ forces measured by the force sensors into the for-

ces at (moments about) the robot joints (see Section 7.3). 

However, irrespective of the concrete law adopted for the realization 

of the position control and force control, the essence of hybrid con

trol is in the cooperative realization (by all the joints actuators) 

of both the given positions (I -S)so(t) and the given force at the 
m 

gripper SFo(t), and a consistent position/force control is ensured by 

choosing the appropriate S values, i.e. the artificial constraints on 

the positions and forces are assigned (in a complementary way) . 

In should be pointed out that the hybrid control is still at the stage 

of laboratory investigations and only some partial solutions of such 

control have been used with commercial robots, for some special purpo

ses (e.g. for assembly). As we have already said in the preceeding 

chapter, these solutions involve either force feedbacks or some pas

sive compliances. 

One of the basic problems in hybrid control is the automatic determi

nation of the natural and artificial constraints on the positions and 

forces in different tasks. As we have already mentioned, the natural 

and artificial constraints are dependent of the contact situation and 

specific task conditions, and these may change in the course of the 
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Fig. 7.16. General scheme of hybrid control [12] 

J 

q 

Fig. 7.17. Block-scheme of hybrid control [12] 



task execution (depending on whet~er, and in what a way, the robot 

comes into contact with the objects in its environment). When a task 

has been assigned either by the operator or by the higher control le

vel, these constraints should be defined for all the situations which 

may appear during the task execution. Defining constraints may be a 

very complex job, so that the task assignement may be really painsta

king and may require complex programming (in a high robotic language). 

Because of that, it has been endeavoured to develop the automatic plan

ners [14] which would automatically determine the set of constraints 

for all the possible situations that may arise in a particular task. 

Thus the user (the operator of higher control level) would assign in a 

global way, a desired production task result (e.g. do assembly of two 

elements, and the like) and the automatic planner would generate a set 

of artificial constraints which would ensure the task realization. The 

strategic control level should define the set of matrices S for every 

possible situation, as well as the set of artificial constraints with 

respect to positions and forces (in dependence of the given situation 

in the task execution). Moreover, the automatic planner should also 

predict (with the aid of sensors and the like) the way in which the 

robot controller can recognize the situational changes (the robot-ob

ject relationship in the workspace) and thus determine what are the 

artificial constraints (strategy) which should be assigned at a given 

moment. Methods of automatic planning are still at the experimental 

stage, because the general solutions are extremely complicated, which 

is understandable if we have in mind all the variety and great comple

xity of possible situations [14]. 

On the other hand, the hybrid control requires that the Same actuators 

realize both the position control and force control. The problem of 

choosing a control law and feedback gains has not been generally sol

ved. The choice of the force feedback gains is hindered by the lack of 

a reliable model of the robot-environment contact, as well as by the 

insufficiently known relationship between the position control and 

force control. It appears difficult to realize the robust hybrid con

trol which would (using a unique control law and unique feedback gain~ 

satisfy different contact situations, i.e. for the different natural 

and artificial constraints [15]. One of the fundamental problems is 

how to ensure a stable robot work with the force feedbacks for diffe

rent strategies. 

In the control laws considered above, (7.4.6) and (7.4.7) - (7.4.11), 

only some of the necessary terms have been introduced. To improve 
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the position control, some additional elements can be introduced into 

these control laws. For example, it is possible to introduce into the 

position control either a feedforward (local or centralized nominal 

control), global control, or to apply computed torque method (Section 

5.4). A feedforward element [121, and the like, can be also introduced 

into the force control. Such hybrid control which takes into account 

the robot dynamics is called dynamic hybrid control [15, 161. 

However, instead to consider dynamic control of robot applying the mo

del of the robot's dynamics expressed in joint coordinates, as we did 

in Sections 5.2. and 5.4, we may apply the model expressed in external 

(hand) coordinates. Since in hybrid control we intend to control di

rectly the position of the hand and forces applied by the hand upon the 

environmental objects, it is natural to express the complete robot dy

namics in the hand coordinates [161. Actually, as the natural and arti

ficial constraints upon the gripper positions and forces are defined 

with respect to suitable constraint frame which depends on the speci

fic task (task frame), it is convinient to express the robot dynamics 

in such task-space frame. It can be shown [16] that the dynamic model 

of the robot, when expressed in such task-space coordinates, is obtai

ned in the form similar to that one expressed in the jOint coordinates 

(3.2.2). Such dynamic model expressed in task-space coordinates might 

be used for dynamic hybrid control, i.e. for the control scheme which 

controls both position of the gripper and the forces applied by the 

gripper and accounts for the entire dynamics of the robotic system. By 

such dynamic control, all forces in the system (inertial, centrifugal, 

Coriolis, gravity) are compensated for. However, the computation of 

the "inertia matrix" and the vectors corresponding to Coriolis, cen

trifugal and gravity moments in the dynamic model expressed in task

-space coordinates (or hand coordinates) is even more complex than com

putation of the matrix H and the vector h of the model (3.2.2). It has 

been shown [17] that the current microprocessor might achieve adequate 

sampling rate even if the computation of the entire dynamic model in 

the hand coordinates is included in the control law. However, the main 

problems with this approach are its sensitivity to variation of the 

contact situation and to parameters variation, and the problem of se

lection of appropriate feedback gains for position part of the control 

scheme and for the force part of the control scheme [18, 191. The dy

namic hybrid control (similarly to the "computed torque method" consi

dered in Section 5.4) appears to be sensitive to unmodelled high fre

quency modes of the system (flexibilities and nonlinearities in the 



manipulator links anq joints, in actuators and specially in actuators 

transmission systems, contact situation between the robot hand and en

vironment, flexibility of force sensors, etc. ~17J). This is not supri

sing, since. dynamic hybrid control might be regarded as an extension 

of "computed torque method" for position/force control. This sensiti

vity is even more present in dynamics expressed in hand coordinates 

when force control has to be included, since force sensors and contact 

with the environment contribute to the model uncertainities. 

The interaction between the position control part and force control 

part has to be clarified. It is the question how a robotic system pri

marily designed for position control might be used for both position 

and force control. Therefore, a lot of both theoretical and practical 

problems have to be solved before the hybrid position/force control 

will be applied within industrial robotics [20]. 

It should be noted that, in the above considerations, we have tacitly 

adopted several approximations. For example, we have neglected the fric

tion forces which complicate the assignement of the artificial constra

ints with respect to positions and forces [14]. Besides, we have neg

lected the effect of robot dynamics in the relations (7.4.3) and 

(7.4.8) . 

E X ere 1 s e s 

7.8. Determine natural constraints on the position and force for the 

gripper which is not in contact with any surface in the workspace 

(open kinematic chain). 

7.9. Determine natural constraints on the positions and forces of the 

gripper for the contact situations shown in Figs. 7.2 - 7.5. Cho

ose the appropriate coordinate frames to define the constraints, 

while neglecting the friction between the peg and hole. Determine 

the artificial constraints which would allow the peg insertion 

into the hole. How can the control system "recognize" the contact 

situations presented? How does the friction influence the reali

zation of this task? 

7.10. If the force sensors are mounted on the gripper at the points of 

contact of the gripper and workpiece as in Fig. 7.7, determine 

the transformation matrices TFe from (7.4.3), if the vector of 
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force (and moment) F(t) at the gripper has been defined with res

pect to the coordinate frame whose origin is at the workpiece ~ass 

centre and the axes are along the main inertia axes of the work

piece. If the workpiece dynamics is taken into account, how will 

relation (7.4.3) change? 

7.11. Repeat the preceeding task but assuming the force sensors have 

been situated at the gripper joints as in Fig. 7.8, and the grip

per possesses a spheric joint as in Fig. 2.4. Consider how the 

dynamics of the gripper and of the workpiece can influence the 

relationship between the forces (and moments) at the gripper F(t) 
.... 

and the forces R t measured at the gripper joint. 

7.12. Draw a scheme of the hybrid position/force control, if the con

trol is realized in the joint coordinates: the given position 

sO(t) and the given force FO(t) are transformed from the Cartesi

an into the joint coordinates (qo(t) and P~(t)) and the nominals 

qO(t) and P~(t) are realized by the local controllers about joints 

with respect to the position and force (the local position con

trollers are as in Fig. 4.1). 

7.13. In the preceeding problem, define the hierarchical levels of the 

robot control: strategic, tactical and executive and determine 

their functions. 

* 7.14. Draw a scheme of the hybrid position/force control in the case the 

* 

position control is realized via the computed torque method (in 

joint coordinates), whereas the force control is realized by a 

decentralized force controller (in the Cartesian force coordina

tes) . 

7.15. Starting from the model of the robot dynamics written in external 

(Cartesian) coordinates (see Exercises 5.18 - 5.20) [16] draw a 

control scheme of the dynamic hybrid control which includes com

pensation of the total robot dynamics by "computed torque method" 

in Cartesian coordinates. Assume that the position control is re

alized by simple PD controllers in Cartesian coordinates (5.5.3) 

and the force control is realized by PD controller of Cartesian 

forces. This means that the commanded Cartesian force FD is com

puted analogously to (7.4.6), but the inertia matrix A(S) and 

centrifugal moments vIs) and gravity moments pes) - all in Carte-



sian space - have to be introduced (see Exercise 5.20): 

P = KpS[PM(t)-pO(t)]+A(S){(I -S)[SO(t)-K (S(t)-SO(t»-
D m pe 

- K (s(t)-so(t»]} + \1(s, s)+p(s) 
ve 
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where S is the force selection matrix and PM(t) is measured force vec

tor. Then, the jOint torques have to be determined (according to 

(5.5.2» which will realize this commanded Cartesian force PD. Try to 

optimize computation of joint torques taking into account relation be

tween the inertia matrix A(S), Centrifugal term \1(s, s) and gravity 

term p(s) in Cartesian space and these terms in joint space (see Exer

cise 5.20). 

7.5 Stiffness and Impendance Control of Robots 

As we explained in the previous section, hybrid position/force control, 

although promising to solve efficiently the problems related to control 

of contrained motion of robots, still cannot be effectively applied in 

practice. On the other hand, we have mentioned that the passive com

pliance devices (such as RCC) are very efficient for control of some 

specific tasks involving control of constrained motion of robots. The

se devices actually introduce compliance between the robot and the en

vironment and enable compliance motion of robots. The basic idea of an 

alternative approach to control of constrained motion of robot, so-cal

led stiffness control, is to introduce active compliance between the 

robot and the environment (in the directions where it is needed) rat

her than to achieve compliance in a passive way [21]. 

In order to accurately control the position (or trajectory) of the ro

bot gripper it is required to apply very stiff servo controllers around 

the joints of the robot. As explained in Chapter 3, the high stiffness 

of the controller ensures that the servo will reject all disturbances 

which might act upon it (from the dynamic forces of the robot itself, 

of from the external forces acting upon the robot, etc.). As it has 

been shown the stiffness of the servo is determined by the selected 

feedback gain. Although position control requires high stiffness of 

the servo, it is limited by the condition that the servo must not ex

cite unmodelled structural modes of the system. Therefore, a finite 

stiffness of the servo can be ensured, leading to finite stiffness of 

the robot hand. 
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On the other hand, the force control requires that the system stiffness 

be as low as possible. Ideally the zero stiffness of the servo will 

allow to achieve desired force regardless of position disturbances. 

This means that in order to realize force control we should decrease 

the stiffness of the servo. If the stiffness of the joints servo sys

tems is decreased the robot gripper will also behave as having low 

stiffness which will enable appropriate force control. It is well-known 

from some practical experiments (see Sect. 7.3) that the robot is much 

more successful in inserting a peg into a hole if the stiffness of the 

servos is decreased. (However, such solution leads to a poor position

ing of the robot when it has to be used as positioning device) . 

If we have to realize such control tasks which require that the robot 

hand position has to be controlled in some directions and the force 

applied by the hand must be controlled in other directions, then we 

need the robot hand to exibit maximal stiffness in some directions 

(those in which its position should be controlled) and minimal stif

fness in other (in those in which force applied by the hand has to be 

controlled). The idea of the stiffness control is to try to control 

the gripper stiffness in various directions depending on the specific 

task. Since the gripper stiffness depends on the joint stiffness, we 

can compute the stiffness of the joint servos necessary to achieve a 

desired gripper stiffness. Therefore, we have to adjust stiffness of 

the servos in the robot jOints (by adjusting the feedback gains) in 

order to obtain desired stiffness of the gripper. 

Let us consider one possible solution to this problem [21J. Let us try 

to make that the hand of the robot behaves as a general spring with 

six degrees of freedom. The small displacements of the hand as (spring) 

should cause the force F of the hand which can be expressed by (we shall 

write the expression in hand coordinates, but actually task-space co

ordinates should be used to express the hand stiffness characteristics) : 

F -K 8s 
pe (7.5.1) 

where Kpe is a diagonal 6x6 matrix representing the general stiffness 

matrix of the robot hand. Remember that 6s includes both linear dis

placements and rotational displacements of the hand, while F is the 

6x1 vector which includes both hand forces and hand moments. Therefore 



Kpe consists of three linear stiffness and three rotational stiffness. 

Now, we want the hand to exibit different stiffness in various direc

tions depending on the specific task: the stiffness has to be low in 

those directions in which the force have to be controlled, and they 

must be high in the directions where the hand position has to be ensu

red. Therefore, we have to select the matrix Kpe according to the spe

cific task being executed by the robot. 

We have to determine the torques in the jOints that would produce the 

force (7.5.1) at the robot hand. We recall the static relation between 

the hand force F and the joint torques P (5.5.3). Therefore, we have 

to produce the joints torques 

(7.5.2) 

in order to achieve the force F (7.5.1). On the other hand, the rela

tion between the small displacements of the hand oS and the small dis

placements of the joints oq is given by (according to (2.2.5)): 

OS J(q)&q (7.5.3) 

Combining (7.5.1)-(7.5.3) we obtain: 

p (7.5.4) 

Thus, we obtain the relation between the small joint displacements and 

the joint torques which ensures that the robot hand behavesasa spring 

with six degrees of freedom (7.5.1) and with desired stiffness in va

rious directions. Actually, we have to apply such control law which 

will ensure the relation between joint torques P and the joints displa

cements oq given by (7.5.4), and by this the desired behaviour of the 

robot hand (7.5.1) will be achieved. 

In [21 J the following control law is proposed: 

p (7.5.5) 

where now ~q is the vector of deviation of the joints angles from the 

desired position qO, i.e. ~q=q_qO, and K is a diagonal matrix Kv = . v 
diag(K~). By selecting stiffness matrix Kpe according to a specific 

task and by applying control law (7.5.5), we might achieve that the 
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robot hand behaves as desired in a specific task: in some directions 

it will have high stiffness, while in the other the stiffness will be 

low. Thus, by Jacobian matrix J(q) we have mapped the hand stiffness 

into the joint stiffness. The role of the damping factor Kv6q is to 

keep the damping ratio of the system to be (over)critical (and there

fore velocity feedback gains Ki might be also adjusted). It should be 
v 

noted the stiffness matrix JTK J between the joint torques and joints pe 
displacement is not diagonal, which means that the coordination of the 

joints must be ensured in order to achieve desired stiffness of the 

hand. 

The stiffness control might be realized also via Cartesian control 

(5.5.2), (5.5.3) in the following way [15] (gravity moments might be 

directly compensated for): 

p (7.5.6) 

where K is now 6x6 diagonal matrix Kve = diag(Ki ), Ki is the gain ve ve ve 
in the feedback loop by the i-th Cartesian (hand) velocity s, and ~s 

is the 6x1 vector of the deviation of the hand coordinates from the de

sired position so, ~s = s-so. Here, we directly specify the desired 

stiffness Kpe and desired damping Kve of the robot hand. The desired 

stiffness is specified according to the specific task requirements, as 

explained above, and the velocity feedback gains are selected to keep 

the damping of the system in each direction to be (over) critical. This 

means that in directions in which the stiffness is decreased, the ve

locity gain Ki also must be decreased, and vice versa. ve 

It should be noted that in the stiffness control we have not to speci

fy just the desired stiffness Kpe of the robot hand (and damping Kve) , 

but the control system also has to define desired position sO (or, qO). 

If pure position control is considered this is the actual desired goal 

position of the robot hand. However, in constrained motion control in 

directions in which the forces applied by the robot gripper have to be 

controlled, the desired position xO has to be specified in such a way 

that the desired force FO is achieved. The determination of the sO which 

corresponds to desired FO is not simple since the contact between the 

robot and environment (i.e. the actual stiffness of the environment) 

considerably affects the relation between SO and FO. Namely, the envi

ronment itself exibits certain stiffness: under the action of hand for

ces upon the environmental surface, a deformation of this surface ap-



pears so that the reaction force FE of the environment (equal to ap

plied hand force F) is given by: 

where KE is an effective stiffness of the environment and sE is con

tact point between the robot and environment. Therefore, the stiffness 

of the environment plays main role regarding efficiency of th,is control. 

If the assembly process is considered we have to ensure desired move

ment of the robot hand in some directions (e.g. in direction in which 

a peg is inserted into a hole) and in others we have to ensure that 

the reaction forces are zero. Therefore, by specifying SO in an assem

bly process we specify artificial compliance center in similar way that 

the passive compliance (RCC) does, but in this case the compliance cen

ter might be reprogrammed. 

It also should be noted that stiffness control does not require expli

cit application of force sensors (and therefore it belongs to a class 

of so-called implicit foY'ce control). However, in practice, applicati

on of force sensors to measure forces at the robot hand are required 

in order to maintain the desired forces. If we assume that we measure 

the actual forces at the robot hand F, than we can add a term in the 

control law (7.5.6) which will take into account the error between the 

desired force Fa and actual force F: 

p (7.5.7) 

where KF is the 6x6 diagonal matrix of the force feedback gains (the 

force feedback is implemented in Cartesian space coordinates). 

It is qUite obvious that the stiffness control of robots is quite si

milar to simple position control which we have considered in Chapters 

3. and 4. Therefore, it is qUite understandable that it shows similar 

characteristics. The stiffness control, besides being simple, is ro

bust to parameter variations and uncertainities. Therefore, a few in

dustrial robots already use some kind of stiffness control for some 

specific tasks which include constrained motion of the robot. However, 

the stiffness control is efficient only at low speeds. If the high 

speeds in the constrained motion control is required, the dynamics of 

the robot system has to be taken into account. 
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One possible extension of the stiffness control is by so-called imp en

dance control; [22]. The impend.ance control besides controlling the ro

bot hand stiffness, attempts to take into account its dynamic charac

teristics. Actually, the impendance control attempts to make the robot 

hand behaves as a system of appropriate inertia characteristics i.e. 

as a system with desired mass. Thus, this approach intends to con

trol mechanical impedance of the hand against environment and therefo

re it gets its name: impendance control. This approach instead. to con

trol directly forces or positions of the robot hand, attempts to con

trol entire dynamic reZation between forces (applied by the hand upon 

the environment) and the hand positions. 

Numerous problems concerning impendance control still have to be sol

ved. Stability of impendance controller has been studied, as well ex

perimental tests have been carried on which show that this control also 

might be sensitive to unmodelled high frequency dynamics in the robot 

system and to contact situation, i.e. stiffness of the environments 

[23, 24]. The application of force sensors both in joints and/or at the 

robot gripper still has to be elaborated. 

In should be mentioned that both stiffness and impendance control might 

be regarded as a form of realization of hybrid pOSition/force control. 

However, under hybrid position/force control it is usually assumed con

trol scheme which includes explicit force feedback [12], while stif

fness and impendance control represent implicit force control (although 

the explicit force feedback loops as in (7.5.7) might be included). 

The control of constrained motion of robots is a challenging research 

area, whose successful solution will considerably affect further ap

plication of robots in industry and increase their efficiency and pro

ductivity. 

E X ere 1 s e s 

7.16. Assume a six degrees of freedom robot which has to apply a force 

in z-direction (vertical) upon a frictionless horizontal plane, 

and to move along the plane. Select the stiffness matrix Kpe in 

the stiffness control (7.5.6) for this specific task. 

7.17. Assume that the task from the Exercise 7.16. has to be performed 

by four degrees of freedom robot presented at Fig. 7.6. Determine 
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the Jacobian matrix ~o~ this robot and write explicitely both 

control laws (7.5.5) and (7.5.6) (or (7.5.7). Introduce selection 

matrix S. Compare this control laws to that one applied in Sec

tion 7.3. Determine the number o~ operations (adds and multiples) 

that has to be performed (at each sampling interval) by control 

microprocessors to apply these control laws. 

7.18. Consider the contact situations presented in Figs. 7.2 - 7.5. 

Determine how the stiffness matrix of the robot hand Kpe 

be selected in order to ensure insertion of a peg into a 

(Neglect the friction between a peg and a hole). 

has to 

hole. 

7.19~ Consider one-degree of freedom robot in a contact with environ

ment. The system is presented in Fig. 7.18. The system consists 

of a mass m and the environment and a force sensor. The environ

ment and a force sensor are modelled as a spring with stiffness 

kE [24]. Assume that the force F acting upon the mass can be di

rectly controlled. Hrite the dynamic model of this system (fric

tion is neglected). Assume that the force sensor gives direct in

formation on force F = kEx. 

sensor + environment 

Fig. 7.18. Simple model of the one-link robot in a 
contact with the environment [24] 

a) Write the stiffness control law for this system (according to 

(7.5.7)) . 

b) Write impendance control law for this system [22], assuming 

that the system has to behave as having apparent mass md , i.e. 

we want that the system behaves as: 

where md is desired apparent mass, Kp is desired stiffness 

and Kv is velocity feedback gain. 
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* 

c) Compare control laws determined under a) and b). 

d) The mass is m = 10 [kg], and assumed environment stiffness kE 

is 103 [N/m]. Determine the velocity feedback gain if we want 

to make system (over)critically damped and the desired stif

fness is Kp = 100 [N/m] in both control laws (assume that the 

desired mass in the impendance control is md = 50 [kg]). What 

will happen if the actual environment stiffness is kE = 10 6 

[N/m] 7 

e) Consider opposite case. Assume that the environment stiffness 

kE is large 10 6 [N/m] and compute the adequate velocity feed

back gain. How will the system behave if the actual environ

ment stiffness is low (i.e. kE = 10 3 [N/m])7 

7.20. If in the system considered in the previous exercise, friction 

force is taken into account, will the system exibit better sta

bility characteristics or not [25]7 
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Appendix 
Software Package for Synthesis of Robot Control 

In this Appendix listings of subroutines of a very reduced version of 

the software package for computer-aided synthesis of control of robo

tic systems are given. The package enables synthesis of the decentra

lized control for the robot of arbitrary structure (with up to 6 de

grees of freedom - up to 6 simple jOints). The package includes the 

following functions: 

- Read data on a robot for which the user wants to synthesize control 

(structure and geometry of the robot, kinematic and dynamic parame

ters of the robot, data on actuators); these data have to be defined 

by the user in corresponding files-see description of input data fi

les. 

- Form dynamic model of the robot which consists of the model of mec

hanical part of the robot and of the models of actuators (the model 

of mechanical part is formed by programmes which listings are given 

in the book: Dynamics of Manipulation Robots: Modelling, Analysis 

and Examples, by M. Vukobratovic). 

- Determine the maximum moments of inertia of the mechanism around the 

axes of joints and form the models of the subsystems (actuator + 

moment of inertia of mechanism). 

compute the local servo systems feedback gains for individual joints 

of the robot and actuators, using one of two available methods (ac

cording to the user choice): 

- by imposing of resonant structural frequence around the given jOint 

and by requiring that the damping ratio must be equal to 1, or 

- by optimal quadratic regulator for individual joint (the user has 

to specify the weighting matrices and the prescribed (desired) de

gree of exponential stability, and the user might, if he wants so, 

introduce an tntegral feedback loop (FID regulator)). 
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- Determine the transfer functions of the open and closed-loop subsys

tems (actuator + jOint). 

- Compute trajectories of the joints for the specified initial and fi

nal positions with both triangular and trapezoid velocity profile 

(with specified movement time and with specified time of accelerati

on/deceleration). 

- Compute nominal driving torques in the joints for the specified tra

jectories and compute nominal centralized or local programmed con

trol. 

- Form linearized model of the robot in the specified points on the 

nominal trajectory, determine eigen-values of the open-loop and clo

sed-loop matrices of the linearized model (with local servo feedback 

loops) and check stability in accordance to the user requirements, 

and re-compute the local control if the conditions of stability of 

the linearized model are not fulfilled. 

- Simulate the robot dynamics around the specified nominal trajec

tory for the given initial conditions and various control laws (ac

cording to the user wishes) : 

- with the selected local servo systems, 

- with or without the nominal centralized control or with the local 

nominal control, 

- with or without global control, and for each joint the user might 

specify: 

- the global control in the form of force feedback, or, 

- the global control by on-line computation of driving torques 

which uses approximative models of robot which has to pe selec

ted by the user (as an approximative model computation of only 

inertia matrix of the robot might be introduced, or on.ly gravity 

moments, or centrifugal and Coriolis moments might be calculated, 

or the liser might include computation of complete dynamic model 

of the robot all the global control) , 



selected form of the global gain (5.2.13) or (5.A.3) (the latter 

form is allowed only if the se;r:vo is synthes;L<led as loc"l opti

mal quadratic regulator) . 

In this Appendix the description of the package structure is given, 

and the listings of all subroutines, with brief description of each 

subroutine. The guide for forming of the task is also given. The pro

grammes are written for VAX FORTRAN V.4.1 and they have been tested 

at the VAx-750 computer un.der operating system VIiS 4.7, but they 

can beeasely used at other computers which are supplied with FORTRAN 

compiler. 

The user has to prepare corresponding data files for hiS selected ro

bot, according to guideline given in the text to follow. 

In the Appendix is also given an example of application of the package 

for control computation for a robot with three joints presented in Fig. 

3.2. The data on the robot are given in Tables 3.3.1. and 3.3.2. The 

example includes synthesis of the local servos according to the impo

sed resonant frequencies of structure, computation of the trajectories 

of the joints with the triangular velocity profile, analysis of stabi

Ii ty of the linearized mod.el of the robot in two pOints at the nominal 

trajectory, an.d simulation of tracking of the nominal trajectory with 

t.he nominal centralized control and the local servo systems. The lis

ting of ,,11 demanded input data files for this specific robot are gi

ven (these da.ta files must be provided by the user), and listing of 

the interaction between the user and the package also is given. The 

pa.cKage fo;r:ms seve;r:al output data files which include simUlation re

sults and, ;r:esul,ts of control synthesis. These data files are also des

cribed. Re):,e, only t/1,e listing of the output data file which contains 

computed local servo gain for the specific example is given, but the 

other output d.ata files are not given due to lack of space. 

Note: Note t.h.at in t/1,e presented package many options are not intro

duced in order to condense the programmes and due to lack of 

space. The u.ser can simply extend many functions and easely 

in.t,rodl1ce various options which will increase the applicability 

of this pacKage (;for example, the user might introduce computa

tion of the local feedback gains by pole-placement method - see 

Section 3.3.3, introduce specification and generation of the 

nominal trajectories in external (Cartesian) coordinates - see 

Chapter 2, introduce simulation of only individual (decoupled) 
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subsystems etc.). In lot of subroutines which read data from the 

input data files and which communicate with the user, the neces

sary verifications and testing of the data, specified by the 

user, and also protection functions to prevent nonregular hand

ling of the system are ommi tted, and this might produce certain prob

lems in the application of this package. We recommand the user 

to extend this package by himself in the above described sence, 

and to add necessary protections (some of them are already in

cluded in several subroutines in order to instruct the user how 

this can be realized wherever it is necessary). We have also to 

note that in writting these programmes the attempt has been to 

simplify them as much as possible, in order to make them simple 

for an user having no experience in software programming. Howe

ver, in a few subroutines we have used some more sophisticated 

programming procedures for educational purposes. 

To use this package user needs programmes for modelling of mec

hanical part of the robot. As mentioned before, the programme 

support for modelling of robot dynamics is given in the listed 

reference. However, the user may write his own programme for 

modelling dynamics of his particular robot. He has to write pro

gramme which for given joint angles q and velocities q computes 

the inertia matrix H(q) and the vector h(q, q) (see Exercise 

3.5). The programme should be called MODEL and it should inclu

de the following two commons: COMMON/UG/ SI(6), SIDOT(6), and 

COMMON/DINAM/ HH(6,6), H1 (6), where SI(6) is vector containing 

values of joint angles, SIDOT(6) corresponds to joint velociti

es, HH(6,6) is inertia matrix, H1 (6) is vector h. 



DESCRIPTION OF SUBROUTINES 

Task KG includes the following subroutines: 
KG - the main routine which calls all other subroutines 

SMINIC - reads the initial values of variable, data 
on auxiliary parameters and so on. 

INPUT KIN - reads data on the kinematics of the 
- selected robot 

MODEL - the main subroutine for computation of the 
inertia matrix H and the vector of centrjf. 
Coriolis and gravity moments h - this sub
routine and all subroutines called are 
given in ref. M. vukobratovic: Applied 
Dynamics of Robots, Springer-Verlag,Berlin, 
1989. 

COLIAS - the subroutine for the mechanims assem
bling in the special case 

MODCHK - testing of succesfull assembling of the 
mechanism according to the user's data 

INPUT DIN - reads the data on the dynamic parameters 
of the robot 

SM MAX IN - computes the maximal and minimal values 
- - of the moments of inertia of the mecha

nism around the joints axes 
INPUT ACT - reads data on the actuators in the robot 

joints and forms the models of actuators 
and joints 

INPUTL - r~ads data on the actuators 
SMOPRG - synthesizes the local optimal regulators with 

or without the integral feedback loop 
SMOREG - solves the algebraic equation of Riccati 

type 
SMEIG3 - auxiliary subroutine for determination 

of the eigen-values and eigen- vectors 
of a given quadratic matrix 

SMLOC E - synthesizes the local control feedback gains 
(synthesis in S - domain) 

TRAJEK - computes the nominal trajectories 
(in the joints coordinates) 

SMNOMP - computes the nominal moments and the nominal 
(centralized or local) programmed control 

LINANA - subroutine for analysis of the linearized 
(total) model of the robot via determination 
of the eigen-values of the system matrix with 
or without the local controllers 

SMLINM - forms matrices of the open-loop lineari
zed model of the robot 

SMLGAD - forms matrices of the closed-loop linea
rized model of the robot 

SMEIGN - auxiliary subroutine for computation of the 
eigen-values and eigen-vectors of a given 
quadratic matrix 

SMSIMD - simulates the total dynamic model of the robot 
SMOPTN - subroutine for imposing the control law 

which will be simulated 
SMINGL - for imposing the form and the gain of the 

global control in simulation 
SMCONT - computes the local control during the 

simulation 
SMCONG - computes the selected global gains during 

the simulation 
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LIAPlS - computes subsystem Liapunov's function 
GRADlS - computes gradient of the subsystem 

Liapunov's function 
SMMINV - the auxiliary subroutine for matrix 

inversion 
The auxiliary SSP subroutines which are used in the task: 

GMPRD - for matrix multiplication 
MINV - invert a given quadratic matrix 
EIGENP,COMPVE,REALVE,HESQR,SCALE - subroutines 

for computation of eigen-values and eigen
vectors of a given quadratic matrix 

The above listed subroutines uses the INCLUDE-files with 
the COMMON-areas: 

MODELM.MOD - COMMON-s for the subroutines related 
to the MODEL of the mechanism 
dynamics - see above given reference 

CONFIG.MOD - " 
INl:SMCOM.COM - COMMON-s with variables whose 

description is given in the 
corresponding subroutines 

The subroutine SMLOC E uses the auxiliary data-file 
INl:CONF.DAT for the-sake of better communication 
with the user. 
Note: for description of INl see the text to follow 



369 

HIERARCHICAL STRUCTURE OF THE TASK 

LEVEL: I II III IV V 
KG 

SMINIC 
INPUT KIN 

MODEL 
COLIAS 
MODCHK 

INPUT DIN 
SM MAX IN 

MODEL 
INPUT ACT 

INPUTL 
SMOPRG 

SMOREG 
SMEIG3 

EIGENP(SCALE ... ) 
GMPRD 
MINV 
EIGENP 

SCALE 
COMPVE 
REALVE 
HESQR 

SMLOC E 
TRAJEK 
SMNOMP 

MODEL 
LINANA 

SMLINM 
MODEL 
MINV 

SMLGAD 
SMEIGN 

EIGENP(SCALE ... ) 
SMSIMD 

SMOPTN 
SMINGL 

MODEL 
SMCONT 
SMCONG 

LIAPIS 
GMPRD 

GRADIS 
GMPRD 

SMMINV 
MINV 
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INSTRUCTION HOW TO FORM THE TASK: 
l.SET AT THE DIRECTORY WHERE ALL SUBROUTINES ARE 

LOCATED AND ASSIGN THE FOLLOWING LOGICAL NAMES 
ASS [directory name1 INl: - the directory where data-files 

are located 
ASS [directory name] IN2: 
ASS [directory name] KRO: - directory where source codes 

are located 

2.Type the following commands for compilation of the subrou
tines: 

$@KG.CPL [ret] 

Form the library kro:MODEL.OLB which includes all subrouti
nes necessary to form the model of the robot dynamics (the 
subroutines are listed in the above given reference). 
Form the library kro:EIGENP.OLB with all SSP subroutines 
which are listed above. 

3.Type the following command for linking of the task: 
$@KG.LNK 

4.The task is executed by the following command: 
$ R kro:KG 

Before the running of the task the user has to check whether 
all necessary input data-files are formed, containing the 
data for the given robot (the data-files have the name of 
the specific robot selected by the robot) - see instruc
tions for forming of the data-files. 

$ ! COMMAND FILE FOR SUBROUTINES COMPILATION 
$ for kro:input kin, input din, input act,inputl,colias,modchk 
$ for kro:smloc-e - -
$ for kro:domp 
$ for kro:sm max in 
$ for kro:trajek-
$ for kro:sminic 
$ for kro:smnomp 
$ for kro:linana,smlinm,smlgad,smeign,smoptn 
$ for kro:smoprg,smoreg,smeig3,smorel,smeigl,smore2,smeig2 
$ for kro:smsimd,smingl,smcong,smminv,smcont,liapls,gradls 
$ lib/create kro:kg 
$ lib kro:kg kro:*.obj 
$ delete kro:*.obji* 
$ for kro:kg 

$ ! COMMAND FILE FOR LINKING THE TASK: KG 
$ LINK kro:KG,KG/LIB,MODEL/LIB,EIGENP/LIB 



******************************************************************** 

* DESCRIPTION OF INPUT/OUTPUT DATA FILES * 
******************************************************************** 

The package enables the synthesis of control, linear 
analysis and simulation of any robot (with up to 6 
degrees of freedom). The user has to prepare the data
files which contains data on the robot for which he 
wants to synthesize the control. The package as its 
output generates the output data-file and/or prints 
output data at the terminal. 

All input/output data-files get their names according 
to the following rule: 

ROBOT NAME. EXT 
where ROBOT NAME is a string of five characters which 
contains the name of the robot selected by the user, 
EXT denotes the type of data which is put in the cor
responding data-file (see the text to follow). When 
the user decides for which robot he wants to synthesi
ze the control, he has to prepare the data-files with 
data on his robot and in doing this he has to to obey 
te above given rule on the files names. 

The package requires the following input data-files: 

ROBOT NAME.DAT - default values of certain parameters and 
initial defining of the actuator matrices 
for the sake of software reliability 

ROBOT NAME.CNF - data on geometry, structure and kinematics 
of the robot 

ROBOT NAME.DNM - data on dynamic parameters of the robot 
ROBOT NAME.ACT - data on the robot actuators 
ROBOT NAME.TRA - data on specified joint trajectories 
ROBOT NAME.INT - data on required exponential stability 

degrees of the robot and on time instants 
at the nominal trajectory in which the 
user wants to analyze the stability of the 
linearized model of the robot 

As an output the package generates the following data-files 
(names are given according to the above mentioned rule): 

ROBOT NAME.LOC - data on synthesized local feedback gains 
ROBOT NAME.ANG - the nominal joint trajectories as functions 

of time 
ROBOT NAME.DIN - the nominal joint trajectories, the nominal 

driving torques, the nominal programmed 
control as functions of time 

ROBOT NAME.SIM - simulation results: deviations of the state 
coordinates from the nominal, actual con
trol signals, actual driving torques, 
actual power of actuators and actual 
energy consumptions as functions of time 
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******************************************************************* 

* DESCRIPTION OF DATA-FILE ***.DAT * 
******************************************************************* 

The data-file ROBOT NAME.DAT contains default data on 
actuators and parameters of control laws. The data on 
actuators are given in this file only for the sake of 
increasing the system reliability, although the actual 
data on actuators are set in the data-file ROBOT NAME . 
. ACT and then the models of actuators are formed. The
refore, in this data-file the user might copy data on 
the actuators matrices for any robot (it is recommended 
to overtake data from the given example for the robot 
UMSPR). The actual data for the selected actuators for 
the specific robot, the user has to impose in the data
-file ROBOT NAME.ACT (see description of this data
file) . 

File ROBOT NAME.DAT has to be formed according to the 
following sequence: 

1) N - the maximal number of degrees of freedom of the 
robot (the actual value is given in the file 
ROBOT NAME.CNF) - format 14 

2) NI(I) - the order of the actuator in the i-th 
joint - format 14 

3) A(ni(i),ni(i),i), B(ni(i),i), F(ni(i),i) - the 
matrices of the model of the i-th actuator -
- format 3E15.5 

data 2)-3) are repeated in the file N-times 
(it is recommended to copy data 1)-3) from the 
file UMSPR.DAT - see Example) 

4)Q(NI(j),NI(j)) - weighting matrix by the state in the 
standard quadratic criterion for the local 
optimal regulator - it must be positive 
semidefinite and of dimensions NI(j)xNI(j) 
where NI(j)=max(NI(i)) - format 3E15.5. 

5) R(i) - the weighting elements by the control signals 
in the standard quadratic criteria for the 
local optimal regulators - must be N positive 
numbers - format 3E15.5 

6) QI(i) - the weighting elements by the "integral" 
state coordinates in the standard quadratic 
criteria for the local optimal regulators -

- must be N positive numbers - format 3E15.5 
7) IOPTOR(i),IOPTV(i),IOPTI(i) - indicators whether in the 

i-th local controller is applied or not: 
- optimal quadratic regulator 
- velocity feedback 
- feedback by rotor current (pressure) 

indicatiors are 1 if yes, 0 if not - format 14 
Data under 7) have to repeat N times (for N local 
controllers). 



********************************************************************* 

* DESCRIPTION OF DATA-FILE ***.CNF * 
********************************************************************* 

The data-file includes data on the robot structure. In the text 
to follow brief descriptions of the variables for which data have 
to be set are given and the corresponding formats are denoted. 
The detailed description of the variables can be found in the 
previously mentioned reference. 

1) Number of degrees of freedom of the robot (format lX,Il) -
number of simple joints. 

2) Indicator of the type of the first joint (0 - rotational, 1-
linear) (format lX,F15.6) 

3) X coordinate of the unit vector of the first joint with respect 
to the coordinate frame attached to the first link ell 
(format lX,F15.6) 

4) Y coordinate of the unit vector of the first joint with respect 
to the coordinate frame attached to the first link ell 
(format lX,F15.6) 

5) z coordinate of the unit vector of the first joint with respect 
to the coordinate frame attached to the first link ell 
(format lX,F15.6) 

6) X coordinate of the unit vector of the second joint with respect 
to the coordinate frame attached to the first link e12 
(format lX,F15.6) 

7) Y coordinate of the unit vector of the second joint with respect 
to the coordinate frame attached to the first link e12 
(format lX,F15.6) 

8) Z coordinate of the unit vector of the second joint with respect 
to the coordinate frame attached to the first link e12 
(format lX,F15.6) 

9) X coordinate of the vector from the first joint to the mass cen
ter of the first link with respect to the coordinate frame 
attached to the first link rll 1m] (format lX,F15.6) 

10) Y coordinate of the vector from the first joint to the mass cen
ter of the first link with respect to the coordinate frame 
attached to the first link rll 1m] (format lX,F15.6) 

11) z coordinate of the vector from the first joint to the mass cen
ter of the first link with respect to the coordinate frame 
attached to the first link rll 1m] (format lX,F15.6) 

12) X coordinate of the vector from the second joint to the mass cen
ter of the first link with respect to the coordinate frame 
attached to the first link r12 1m] (format lX,F15.6) 

13) Y coordinate of the vector from the second joint to the mass cen
ter of the first link with respect to the coordinate frame 
attached to the first link r12 [m] (format lX,F15.6) 
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14) z coordinate of the vector from the second joint to the mass cen
ter of the first link with respect to the coordinate frame 
attached to the first link r12 1m) (format lX,FI5.6) 

15) 

16) 

17) 

18) 

19) 

20) 

If the joint is linear, then at this place in the file ***.CNF 
the following data on the robot structure have to be set: 

The special vector for the linear joint "uii" X coordinate 
(format lX,F15.6) 

The special vector for the linear joint "uiill Y coordinate 
(format 1X,F15.6) 

The special vector for the linear joint "uii" Z coordinate 
(format lX,FlS.6) 

The special vector for the linear joint "ui,i+l" X coordinate 
(format lx,FlS.6) 

The special vector for the linear joint "ui,i+l" Y coordinate 
(format lX,F1S.6) 

The special vector for the linear joint "ui,i+l" Z coordinate 
(format lX,FI5.6) 

Description of the futher data to be set are identical as these 
given for the first joint and they repeat n times for all joints 
of the robot (n - number of joints) 

At the very end of the file the data on the unit vector of the 
axis of the first joint with respect to the absolute coodinate 
frame are given: 

x coordinate of the unit vector of the axis of the first joint 
with respect to absolute coordinate frame "eO"(format 1X,FlS.6) 

Y coordinate of the unit vector of the axis of the first joint 
with respect to absolute coordinate frame "eO"(format 1X,F1S.6) 

z coordinate of the unit vector of the axis of the first joint 
with respect to absolute coordinate frame "eO"(format 1X,F1S.6) 



***************************************************************** 
* DESCRIPTION OF DATA FILE ***.ACT * 
***************************************************************** 

Data file ***.ACT includes data on actuators which have been 
adopted for the specific robot. In the text to follow the 
description of the variables whose values have to be given in 
this file, as well as formats of these values are listed. 

1) The first line in the file represents the types of the 
actuators in the robot joints. Each actuator is denoted by 
two character symbol: 

i) for D.C. electro-motors the symbol is DC 
ii) for hydraulic actauator the symbol is HD 

The format of data on the actuators types is 6(lX,A2). 

Depending on the selected type of the actuator, in the next 
lines of the data-file the following data have to be set (for 
the actuator in the first joint): 

- for D.C. electro-motors: 
2) The second line contains a data on the order of the 

actuator model; the vaule migh be: 2 or 3 - format lX,FIS.6 

3) The third line contains a value of the mechanical constant of 
the actuator Kern multiplied by the moment reduction ration of 
the gear reducer [Nm/A] - format IX,FIS.6 

4) The electromotor constant Kme multiplied by the speed reduction 
ratio of the gear reducer [V/rad/s] - format Ix,FIS.6 

S) The moment of inertia of the rotor [kg*m**2] - format IX,FIS.6 

6) The coefficient of the viscous friction multiplied by the speed 
reduction ratio and the moment reduction ratio of the gear redu
cer [Nm/rad/s] - format IX,FIS.6. 

7) The resistance of the rotor curcuit [Om] - format IX,FIS.6 

8) The absolute value of the maximal allowed input voltage signal 
(for positive values of signals) for D.C. motor [V) - format 
IX,FIS.6. 

9) The absolute value of the maximal allowed input voltage signal 
(for negative values of signals) for D.C. motor [V) - format 
IX,FIS.6. 

10) The speed reduction ratio of the gear reducer-format IX,FIS.6. 

11) The moment reduction ratio of the gear reducer-format lX,FlS.6. 

12) The inductivity of the rotor curcuit [H] - format lx,FlS.6. 

13) The maximal driving torque of the motor [Nm) - format lX,F15.6. 

14) The motor maximal power [WI - format lX,FlS.6. 
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15) This values is of no use for D.C. motor model and therefore 
any number might be put - format lX,F15.6 

16) 

- for hydraulic actuator: 

2) The coefficient of viscous friction [Nm/m/s]; lx,F15.6. 

3) The piston area [m**2]; lX,F15.6. 

4) The cylinder volume [m**3]; lX,F15.6. 

5) The mass of piston [kg]; lX,F15.6. 

6) The coefficient of the oil compressibility [N/m**2];lX,FlS.6. 

7) The gradient of the flow-preassure characteristics of the servo
-valve [m**3/s/N/m**2]; lX,F15.6. 

8) The coeficient of the proportionality between the current in the 
servo-valve coil and the oil flow [m**3/s/mA]; lx,FlS.6. 

9) The absolute value of the maximum allowed input current for the 
servo-valve (for positive values of current) [mAl; lX,FlS.6. 

10) The absolute value of the maximum allowed input current for the 
servo-valve (for negative values of current) [mAl; lX,F15.6. 

The next lines of this file contain values of the same parameters 
of the actuators in the next joints of the robot, and therefore the 
descriptions of the lines 2-15 repeat for the next sets of values 
(16-29, 30-43, etc.). The file contains the sets of data on n actua
tors in the n joints of robots. 



********************************************************************* 
* DESCRIPTION OF DATA-FILE ***.DNM * 
********************************************************************* 

The data-file ***.DNM includes data on dynamic parameters of the 
robot. In the text to follow brief descriptions of the variables 
whose values have to be set in this data-file are given as well 
as formats in which the values must be set in the file. 

1) The link type (1- link of the cane type, 0 - not cane) 
(format 1x,F15.6) 

2) Link mass [kg] (format lX,F15.6) 

3) Moment of inertia of link "Jxx" or "Js" depending on the link 
type [kg*m**2] (format 1X,F15.6) 

4) Moment of inertia of link "Jyy" or "In" depending on the link 
type [kg*m**2] (format 1X,F15.6) 

5) Moment of inertia of link "Jzz" (if link type 1) or any number 
(if link type 0) [kg*m**2] (format 1X,F15.6) 

6) Maximal allowable angle (displacement) of joint [rad or m] 
(format 1X,F15.6) 

7) Minimal allowable angle (displacement) of joint [rad or m] 
(format 1X,F15.6) 

Next data are repeated for all links of the robot 
according to the same sequence. 

********************************************************************* 
* DESCRIPTION OF DATA FILE ***.TRA * 
********************************************************************* 

The data file includes data for the given robot which are used in 
trajectory generation. The description of the values for which 
the data have to be set are presented according to the sequence 
in which they are set in the file. 

1) QO(I) - the vector of the initial positions of the joints given 
in: [m] - if the joint is linear 

[rad] - if the joint is rotational 
(format 1x,6FIO.5) 

2) QF(I) - the vector of the terminal positions of the joints given 
in: [m] -if the joint is linear 

[rad] -if the joint is translational 
(format 1X,6FIO.5) 

3) H sampling period at which the values of joints coordinates 
along the trajectory are computed in [s] 
(format lX,6FlO.5) 

4) T - time duration of the nominal movement (between the initial 
and terminal positions) in [5] 
(format lX,6FlO.5) 
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******************************************************************* 
* DESCRIPTION OF DATA-FILE ***.INT * 
******************************************************************* 

The data-file ROBOT NAME.INT contains data on the time 
instants along the nominal trajectory in which the ana
lysis of the linearized model stability is required. The 
exponential stability of the robot linearized model around 
the nominal trajectory is tested. The desired exponential 
stability degrees have also to be imposed. The user has to 
prepare this file according to the following structure: 

- the number of points along the nominal trajectory of 
the robot in which the linearized model has to be 
analyzed - format 14 

time instant at the nominal trajectory in which 
the analysis of stability of the linearized model 
is required - format E15.5 (the user must 
carefully specify the instant which is within 
the adopted duration of tpe nominal movement 
- this duration is specified in the file 

***.TRA) 
- the exponential stability degree of the linea

rized model arond the nominal trajectory which 
the user wants to achieve - format E15.5 (this 
value must be positive and usually there is no 
sense to impose values greater than 20. due 
to numerical problems, save for some special 
cases) 

The last two data have to be specifeid as many times 
as is the number of the points at the nominal trajecto
ry around which the user wants to analyze the robot 
stability (this number is specified in the first line 
of the file). 



********************************************************************** 
* DESCRIPTION OF DATA-FILE ***.LOC * 
********************************************************************** 

The output data-file ROBOT NAME.LOC contains the data 
on the computed feedback gains of the local controllers. 
The data-file has the following form: 

- position feedback gain of the local controller 
around the first jOint [V/rad) or [Vim) if D.C. 
electro-motor is applied, [mA/rad) or [mAIm) if 
hydraulic actuator is applied - format F12.S 

- velocity feedback gain of the local controller 
around the first joint [V/rad/s),[V/m/s) or 
[mA/rad/s), [mA/m/s) - format F12.S 

- gain in the feedback loop by the rotor current 
if D.C. motor is applied [VIA), or by pressure 
if hydraulic actuator is applied in the first 
joint [mA/N/m**2) - format F12.5 

- integral feedback gain in the local controller 
around the first joint [v/rads), [v/ms) or 
[mA/rads),[mA/ms) - format F12.S 

The data on the feedback gains in the local 
controllers in the other joints are repeated according 
to the same sequence - the data are given for all 
joints of the specific robot. 

~***************************************************** ********* 
* DESCRIPTION OF DATA-FILE ***.ANG * 
*************************************************************** 

The output data-file ROBOT NAME.ANG contains data on 
the nominal trajectory. The file is the output of the 
subroutine TRAJEK. The structure of the file is as 
follows: 

TE - time instant [s) - format E13.5 
0(6) - nominal trajectories of the robot joints 

the values of the joint coordinates in the 
instant TE at the nominal trajectory 
[rad) or [m) - format 6E13.S 
In the line there are N data (N the number of 
the joints of the specific robot) 

00(6) - nominal trajectories of the joint velocities 
[rad/s) or [m/s) - format 6E13.5 
In the line there are N data. 

000(6) - nominal trajectories of the joint accelera
tions [rad/s**2) or [m/s**2)-format 6E13.5 
In the line there are N values. 

The listed data are repeated (at each time interval of 
0.01 [s) m times, where m is an integer number obtai
ned if the time duration of the nominal movement (defi
ned in the file ***.TRA) is devided by 0.01. 
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********************************************************************** 
* DESCRIPTION OF DATA-FILE ***.DIN * 
********************************************************************** 

The output data-file ROBOT NAME.DIN contains the data on 
the nominal trajectories, the nominal driving torques, 
the nominal programmed control, the nominal power and 
energy. The file is the output of the subroutine SMNOMP. 
The structure of the file is as following: 

TIME - the time instant [s] - format E13.5 
0(6) - nominal trajectories of the robot joints -

values of the joint coordinates at the nomi
nal trajectory at the time instant TIME 
[rad] or [m] - format 6E13.5 
In the line there are N data (N the number of 
joints of the user's specific robot). 

00(6) - nominal trajectories of the joint velocities -
[rad/s] or [m/s] - format 6E13.5 
There are N data in the line. 

000(6) - nominal trajectories of the joint accelera
tions [rad/s**2] or [m/s**2] - format 6E13.5 

There are N data in the line. 
PO(6) - nominal driving torques around the joints of 

the robot (in the time instant TIME [Nm] or 
[N] - format 6El3.5. 

There are N data in the line. 
UO(6) - the nominal programmed control for the actua

tors of the joints [V] or [mAl-format 6El3.5 
There are N data in the line. 

POWER(6) - the required nominal power in the robot 
joints [W] - format 6E13.5. 
There are N data in the line. 

ENERG(6) - the demanded nominal energy in the joints 
of the robot [Ws] - format 6E13.5. 
There are N data in the line. 

These data are repeated (at each time interval of 0.01 [s]) 
m times, where m is the integer number which is obtained when 
the time duration of the nominal movement (specified in the 
file ***.TRA) is devided by 0.01. 



*************************************************************** 
* DESCRIPTION OF DATA-FILE ***.SIM * *************************************************************** 

The output data-file ROBOT NAME.SIM contains data on 
simulated (actual) trajectory, driving torques, actual 
control signals, power and energy consumptions. The 
file is an output of the subroutine SMSIMD and repre
sents the results of the simulation of the robot dy
namics in tracking of the nominal trajectory with 
the selected control law. 
The structure of the file is as follows: 

TIME - time instant [s) - format E13.5 
Y(18) - the simulated deviations of the actual 

state coordinates from the nominal trajectory 
(from the file ***.ANG)- the sequence of da
ta is: the deviation of the joint angle from 
the nominal [rad) or [m), the deviation 
of the joint velocity from the nominal [rad/s) 
or [m/s), deviation of the currenl (pressure) 
of the actuator from the nominal values (if the 
third order modelis applied) [A) or [bar) -
the data are repeated for N joints [N is the 
number of the user's specific robot) -
- format 6E13.5. 

P(6) - simulated (actual) driving torque around the robot 
joints (in the instant TIME) [Nm) or [N) -
- format 6E13.5. - torques deeloped during the trac
king of the nominal trajectory 
In the line there are N data. 

UO(6) - simulated (actual) control signals for the 
actuators [V) or [mA) - format 6E13.5. 
In the line tere are N data. 

POWER(6) - simulated (required) actual power in each joint of 
the robot [W) - format 6E13.5. 

In the file there are N data. 
ENERG(6) - demanded energy in the robot joints [ws) 

- format 6E13.5. 
In the line there are N data. 

These data are repeated (at each time interval of 0.01 [s)) 
m times, where m is the integer number which is obtained when 
the time duration of the nominal movement (specified in the 
file ***.TRA) is devided by 0.01. 
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C---------------------------------------------------------------------
C ROUTINE: KG 
C---------------------------------------------------------------------
C FUNCTION: THE MAIN ROUTINE OF THE TASK-
C IT CALLS THE FOLLOWING SUBROUTINES: 
C SMINIC - reads the initial values of variable, data 
C on auxiliary parameters and so on. 
C INPUT KIN - reads data on the kinematics of the 
C selected robot 
C INPUT DIN - reads the data on the dynamic parameters 
C of the robot 
C INPUT ACT - reads data on the actuators in the robot 
C joints and forms the models of actuators 
C and joints 
C SMOPRG - synthesizes the local optimal regulators with 
C or without the integral feedback loop 
C SMLOC E - synthesizes the local control feedback gains 
C (synthesis in S - domain) 
C TRAJEK - computes the nominal trajectories 
C (in the joints coordinates) 
C SMNOMP - computes the nominal moments and the nominal 
C (centralized or local) programmed control 
C LINANA - subroutine for analysis of the lineari-
C zed (total) model of the robot via determi-
C nation of the eigen-values of the system 
C matrix with or without the local control-
C lers 
C SMSIMD - simulates the total dynamic model of the 
C robot 
C------------------------------------------------------------------
C INPUT VARIABLES: 
C FILE(S) - name of the robot 
C N - number of joints of user's robot 
C ALFAI(6) - prescribed degrees of the exponential 
C stability of local subystems 
C ICNVLN - indicator whether the linearized 
C model of the system is stable or not 
C-------------------------------------------------------------------
C OUTPUT VARIABLES: 
C IOPTOR(6) - indicators whether the local optimal 
C regulator is applied in the joint 
C IOPTIN(6) - indicators whether the local integal 
C feedback loop is applied in the local 
C controler, or not 
C-------------------------------------------------------------------
C 

include 'in2:smcom.com' 

COMMON/OPTPR/ ICNVLN 
COMMON/file/ filetS) 
COMMON/rbsl/ i 
CHARACTER*1 file,filep*S,a$ 

C--------------------------------------------------------------------
C 
C READ NAME OF THE ROBOT (up to S characters) 
C All input/output data-file on robot have the 
C given name of the robot (by convention ROBOT NAME.ext, 
C where ext points to the type of data in the data-file; 
C for example ROBOT NAME.CNF contains data on the robot 
C structure and geometry) 
C 



WRITE (6,2) 
READ (5,3) filep 
DO ipom~1,5 

file(ipom)=filep(ipom:ipom) 
END DO 

C 

C raed auxiliary data on the robot 
C 

CALL sminic 
C 
C read data on the robot 
C 

CALL input kin 
CALL input-din 
CALL input-act 

C-----------------=------------------------------------------------
C 
C 
C 
C 

computation of the local controllers around all n joints 
of the robot (n - number of joints) 

TYPE 111 
9 DO i=1,n 
C 
C user's decision if he wants to apply local optimal 
C controller or not, and if he wants to introduce 
C the integral feedback loop in the i-th joint 
C 

C 

TYPE 100,i 
READ(S,101)yes 
IF(yes.eq.'Y')then 

ioptor(i)=1 
ioptin(i)=O 
type 104,i 
read(S,101)yes 
if(yes.eq.'Y')ioptin(i)=l 

C set the prescribed exponential stability degree for the 
C i-th subsystem (joint) 
C 

C 

10 TYPE 10S,i 
READ(5,106)alfai(i) 

IF(alfai(i).lt.1 .• or.alfai(i).gt.20.)go to 10 

C if the local optimal regulator is seleceted 
C 

CALL smoprg(i) 
else 

C 
C if the synthesis in the S-domain is selected 
C 

C 

C 

CALL smloc e 
ioptor(i)=O 

end if 

end DO 

C data on local feedack gains are written in the 
C output data-file ***.LOC (if the user wants so) 
C 

TYPE 107 
READ(S,10l)yes 
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IF(yes.eq.'Y') then 
OPEN(unit=2,name=filepll'.LOC',type='NEW') 

DO 11 i=l,n 
WRITE(2,106)pkl(i) 
WRITE(2,106)pk2(i) 
WRITE(2,106)pk3(i) 

11 WRITE(2,106)pk4(i) 
CLOSE(2) 
end IF 

C-----------------------------------------------------------------
C 

C computation of the nominal trajectories (in the joints 
C coordinates) 
C 

CALL trajek 
C 
C computation of the nominal programmed control 
C 

CALL smnomp 
C-----------------------------------------------------------------
C 
C linear analysis - linearization of the entire model 
C of the robot and computation of the eigen-values of 
C the open-loop and the closed-loop system matrix 
C (when the local controllers are applied) 
C 

C 

TYPE 102 
READ(5,101)yes 
IF(yes.ne.'Y')GO TO 18 
CALL linana 

IF(icnvln.EQ.O)THEN 

ELSE 

end IF 

TYPE *,' The linearized model is stabilized with' 
TYPE *,' the prescribed exponential stability degree' 

TYPE *,' The linearized model is not adequatly' 
TYPE *,' stabilized by the selected local controllers' 
TYPE 108 
READ(5,101)yes 
IF(yes.EQ.'Y')GO TO 9 

C--------------------------------------------------------------------
C 
C simulation of the entire dynamic nonlinear model of robot 
C 

18 CALL smsimd 
TYPE 112 
READ(5,101)yes 
IF(yes.EQ.'Y') GO TO 18 

C--------------------------------------------------------------------
C 
2 
3 
5 

100 

102 
101 
104 

105 

1 

I 

format ($,lx,'THE ROBOT NAME [max. length 5 characters]:') 
format (as) 
format (il) 
format(' Do you want synthesis of local optimal regulator',I, 
$,' for the',I3,'th joint [YIN]?:') 
format(II,$,' Do you want linear analysis [YIN]?:') 
format(a1) 
format($,' Want to apply integral feedback loop for the',i3, 
'th joint [YIN]?:') 
format($,' Imose the exponential stability degree for the', 



1 
106 
107 

1 
108 

1 
110 

1 
111 

1 
112 

C 

i3,'th jOint [1.-20.]:') 
format(f12.S) 
format($,' want to write the feedback gains in the file [YIN] 
?:' ) 
format($,' want to re-synthesize the local controllers 

[YIN]?:' ) 
format(II,' Simulation of nonlinear dynamic model of 

the robot' ,II) 
format(/I,' Synthesis of local controllers around robot 

joints',//) 
format(//,$, , want another simulation of robot [YIN]?:') 

end 

C----------------------------------------------------------------
C SUBROUTINE: SMINIC 
C----------------------------------------------------------------
C FUNCTION: READ DATA REQUIRED FOR THE CONTROL 
C SYNTHESIS - READ DATA FROM THE FILE 
C ROBOT NAME. DAT 
C----------------------------------------------------------------
C 

C 

C 

SUBROUTINE SMINIC 

INCLUDE 'IN2:SMCOM.COM' 

byte FTOT(14) 
byte FILE(S) 
COMMON/FILE/ FILE 

DATA FTOT(1)/'I'/,FTOT(2)/'N'/,FTOT(3)/'1'/,FTOT(4)/':'/, 
1 FTOT(10)/'.'I,FTOT(11)/'D'/,FTOT(12)/'A'I, 
2 FTOT(13)/'T'I,FTOT(14)/0/ 

C---------------------------------------------------------------
C 

C 

C 

C 

C 

DO 1=l,S 
FTOT(I+4)=FILE(I) 
END DO 

OPEN(UNIT~2,NAME=FTOT,TYPE='OLD',ERR=3000) 

NUK=O 

READ(2,100)N 
100 FORMAT(I4) 
101 FORMAT(3E15.5) 

C default data on actuators 
C 

C 

C 

DO 1 I=l,N 

READ(2,100)NI(I) 
READ(2,101)((A(J,K,I),K=1,NI(I»,J=1,NI(I» 
READ(2,101)(B(J,I),J=1,N1(1» 
READ(2,101)(F(J,1),J=1,N1(1» 

C computation of the total order of the robotic system 
C 
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NUK-NUK+NI(I) 
1 CONTINUE 

C 

C 
READ(2,101)«QQ(I,J,1),I=1,NI(1»,J=1,NI(1» 

DO 10 II=2,N 
DO 10 1=1,3 
DO 10 J=1,3 

10 QQ(I,J,II)=QQ(I,J,l) 

C 

READ(2,101)(R1(I),I=1,N) 
READ(2,101)(QI(I),I=1,N) 

DO 11 I=l,N 
READ(2,100)IOPTOR(I),IOPTV(I),IOPTI(I) 

11 CONTINUE 
C 

C 
3000 
3001 

CALL CLOSE(2) 
RETURN 

TYPE 3001,FILE 
FORMAT(' DIAG*** File ',5A1,'.DAT cannot be found') 
RETURN 
END 

C---------------------------------------------------------------------
C SUBROUTINE: INPUT KIN 
C ••••••••••••••••••••••• • -:- •••••••••••••••••••••••••••••••••••••••••••• 
C FUNCTION: THE MAIN SUBROUTINE FOR INPUT DATA ON 
C KINEMATIC PARAMETERS OF THE USER'S SPECIFIC ROBOT 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C INPUT: N - number of the joints (NJ = N) 
C 10 - the order number of the joint 
C OUTPUT: Kinematic parameters of the user's robot 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

C 

C 

C 

SUBROUTINE INPUT KIN 

INCLUDE 'CONFIG.MOD' 
INCLUDE 'MODELM.MOD' 
COMMON /MODSW/KOD 
COMMON/LINSPE/ UD(6,3),UG(6,3) 
COMMON/ORDGLB/ NUK,NJ 
COMMON/FILE/ FILE(5) 
BYTE file 

COMMON /INTR/ SIMB(19,6) 
DIMENSION EPOC1(3) 
CHARACTER*2 OPC1 
CHARACTEr*4 POM1 
CHARACTER*9 FILEP,FILEP2,FILEP4 

FILEP=CHAR(FILE(1»//CHAR(FILE(2»//CHAR(FILE(3»// 
> CHAR(FILE(4»//CHAR(FILE(5»//'.CNF' 

c .................................................................. . 
C read data from the file ***.CNF 
C 

INEW=O ! Indicator of new file 1:o1d; O:new 
DESNI=l ! initialization of the coordinate frame 

C DESNI=l - right, DESNI=O - left frame 
OPEN (55,FILE=FILEP,STATUS='OLD',ERR=11) 
INEW=l 



WRITE (6,14) FILEP 
14 FORMAT (/,lX,' DIAG*** Fi1e:',a10,' is found',/) 

read (55,'(lX,i1)') n 
nj=n 

DO IPOM=l,n 
DO JPOM=1,19 

READ (55,'(lX,F15.6)') SIMB(JPOM,IPOM) 
END DO 

END DO 
DO IPOM=1,3 

READ (55,'(lX,F15.6)') EPOC(IPOM) 
END DO 
CLOSE (55) 
if (inew.eq.1) GO TO 12 

11 WRITE (6,13) FILEP 
13 FORMAT (/,lX,'DIAG*** File ',a10,' cannot be found') 

STOP 
C 
C variables substitutions 
C 
12 do ipom=l,n 

C 

ksi2(ipom)=simb(1,ipom) 
do kpom=1,3 

eu(ipom,kpom)=simb(kpom+l,ipom) 
eul(ipom,kpom)=simb(kpom+4,ipom) 
rOu(ipom,kpom)=simb(kpom+7,ipom) 
if (ipom.eq.n) then 

rt(kpom)=simb(kpom+10,ipom) 
else 

rOu(ipom+n,kpom)=simb(kpom+lO,ipom) 
end if 

end do 
end do 

C examine the values of the variables 
C 

C 
C 
C 

C 
C 
C 
C 
C 

> 

> 

> 
> 

> 

do ipom=l,n 

the vector ei must be the unit vector 

eum=sqrt(eu(ipom,l)*eu(ipom,l)+ 
eu(ipom,2)*eu(ipom,2)+eu(ipom,3)*eu(ipom,3) ) 

if (eum.gt.1.01.0R.eum.lt.O.99) then 
write (6,'("+DIAG*** vector ei" ,i2, 

is not unit vector")') ipom 
stop 

end if 
end do 
do ipom=l,n 

the vector ei,i+1 must be unit vector 
but there is no need to examine the vector 
ei,i+1 in the terminal joint of the robot 

if (ipom.lt.n) then 
eu1m=sqrt(eu1(ipom,1)*eul(ipom,1)+ 

eu1(ipom,2)*eul(ipom,2)+eul(ipom,3)* 
eu1(ipom,3» 

if (eu1m.gt.1.01.0R.eulm.lt.O.99) then 
write (6,'("+DIAG*** The vector ei+1" ,i2, 

" is not unit vector")') ipom 
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c 
c 
c 

c 

stop 
end if 

end if 
end do 

examine whethel' there is at least one linear joint 

do ipom=l,n 
if (ksi2(ipom).eq.l) 

end do 
iflO=l 

if (ifIO.eq.l) then 

do ipom=l,n 
if (ksi2(ipom).eq.l) 

!IFLO=ljthere is at least 
one linear joint 

!=Ojthere is no linear joints 
then 

do kpom=l,3 
ud(ipom,kpom)=simb(kpom+l3,ipom) 
ug(ipom,kpom)=simb(kpom+l6,ipom) 

end do 
else 

do kpom=l,3 
ud(ipom,kpom)=O 
ug(ipom,kpom)=O 

end do 
end if 

end do 

C examine the values of input data 
C 

do ipom=l,n 
C 
C test whether the vectors uii,ui,i+l are unit vectors or not 
C the vector uii must be unit vector 
C 

c 

> 
> 

> 

if (ksi2(ipom).eq.l) then 
udm=sqrt(ud(ipom,l)*ud(ipom,l)+ 

ud(ipom,2)*ud(ipom,2)+ 
ud(ipom,3)*ud(ipom,3)) 

if (udm.gt.l.Ol.or.udm.lt.O.99) then 
write (6,'(" DIAG*** vector uii" ,i2, 

"is not unit vector" )') ipom 
stop 

end if 
end if 

end do 

C the vector ui,i+l must be unit vector 
C 

do ipom=l,n 
if (ksi2(ipom).eq.l) then 

ugm=sqrt(ug(ipom,l)*ug(ipom,l)+ 
> ug(ipom,2)*ug(ipom,2)+ 
> ug(ipom,3)*ug(ipom,3)) 

if (ugm.gt.l.Ol.or.ugm.lt.O.99) then 
write (6,'(" DIAG*** Vector ui,i+l" ,i2, 

> " is not unit vector" )') ipom 
stop 

end if 
end if 

end do 



C 
C 
C 
C 

> 

> 

> 

END 

else 
epocm=sqrt(epoc(1)*epoc(1)+epoc(2)*epoc(2)+ 

epoc(3)*epoc(3» 
if (epocm.lt .. 99.or.epocm.gt.l.Ol) then 

stop 
end if 

end if 

test collinearity of the joints axes and the link 
axes and assembling of the kinetic chain 

do ipom=l,n 
call colias(ipom) 

end do 
kod=l 
call model 
call modchk(imod) 
if (imod.lt.O) then 

write (6,'(/," FATAL*** ASSEMBLING OF THE MECHANISM: 
UNSUCCESSFUL")') 
return 

else 
write (6,'(/," DIAG*** Assembling of the mechanism: 
SUCCESSFUL")') 

end if 
return 

C---------------------------------------------------------------------
C SUBROUTINE: COLIAS 
C---------------------------------------------------------------------
C FUNCTION: GENERATING OF THE VECTORS NECESSARY FOR 
C THE MACHANISM (KINEMATIC CHAIN) ASSEMBLY 
C IF THE VECTORS (Rii,ei) or (Ri,i+l,ei+l) ARE 
C COLINEAR 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C KSI2 joint type 
C EPOC the unit vector of the axis of the first joint 
C with respect to absolute coordinate frame 
C UD special unit vector for the i-l-st link if 
C the i-th joint is linear 
C UG special unit vector for the t-th link if the 
C joint is linear 
C ROU link vectors (Rii and Ri,i+l) 
C EU the unit vector of the axis of the i-th joint 
C EUl the unit vector of the axis of the i+l-st 
C joint 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C IASl indicator whteher the i-th link is special 
C since (Ei 1 1 Ri i): IAS1=0 the link is not 
C "special", IAS1=1 the link is "special" 
C IAS2 indicator whether the i-th link is "special" 
C since (Ei, i+lll Ri, i+l) : 
C =0 the link is not "special" 
C =1 the link is "special" 
C RAS the vectors for the mechanism assembling if 
C the i-th link is "special" 
C--------------------------------------------------------------------
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C 

C 

C 

SUBROUTINE COLIAS(I) 

INCLUDE 'IN2:CONFIG.MOD' 
COMMON/LINSPE/ UD(6,3),UG(6,3) 
REAL IDEL(3) 
DIMENSION IAS(6) 

IAS1( I)-O 
IAS(I)-O 
IAS2(I)-0 

IF(I.EQ.1.AND.KSI2(I).EQ.1)GO TO 567 
ROPOC(1)--EPOC(3) 
ROPOC(2)=-EPOC(1) 
ROPOC(3)=-EPOC(2) 
GO TO 4000 

567 DO 403 K=1,3 
ROPOC(K)=UD(I,K) 

403 CONTINUE 
4000 IND=O 

M=I 
IF(KSI2(I).EQ.1)GO TO 444 
DO 15 K-1,3 
IMUL1=0 
IF(ROU(M,K).EQ.0.)IMUL1=1 
IMUL2-0 
IF(EU(I,K).EQ.0.)IMUL2=1 
IF(IMUL1.NE.IMUL2)GO TO 200 
IF(IMUL1.EQ.0.AND.IMUL2.EQ.0)GO TO 56 
IDEL(K)=O. . 
GO TO 15 

56 IDEL(K)=ROU(M,K)/EU(I,K) 
15 CONTINUE 
C 

300 IF(IDEL(l).EQ.O.)GO TO 101 
IF(IDEL(2).EQ.0.)GO TO 102 
IF(IDEL(3).EQ.0.)GO TO 103 
IF(IDEL(1).EQ.IDEL(2).AND.IDEL(2).EQ.IDEL(3))GO TO 104 
IAS(I)=O 
GO TO 200 

104 IAS(I)=l 
GO TO 201 

103 IF(IDEL(1).EQ.IDEL(2))GO TO 104 
IAS(I)=O 
GO TO 200 

102 IF(IDEL(3).EQ.0.)GO TO 105 
IF(IDEL(1).EQ.IDEL(3))GO TO 104 
IAS(I)-O 
GO TO 200 

105 IAS(I)=l 
GO TO 202 

101 IF(IDEL(2).EQ.0.)GO TO 106 
IF(IDEL(3).EQ.0.)GO TO 105 
IF(IDEL(2).EQ.IDEL(3))GO TO 104 
IAS(I)=O 
GO TO 200 

106 IF(IDEL(3).EQ.0.)GO TO 107 
GO TO 105 

107 TYPE 1016 
1016 FORMAT(' FATAL***** The unit vectors of the joint axis and of 



*the link are zero-vectors*******') 
STOP 

200 RAS(M,l)-O. 
RAS(M,2)-0. 
RAS(M,3)~0. 
GO TO 204 

201 RAS(M,l)-l. 
RAS(M,2)~0. 
RAS(M,3)-0. 
GO TO 204 

202 IF(ROU(M,l).EQ.O.)GO TO 599 
RAS(M,l)=O. 
RAS(M,2)=1. 
IF(IND.EQ.l)RAS(M,2)=-1. 
RAS(M,3)=0. 
GO TO 204 

599 RAS(M,l)=l. 
IF(IND.EQ.l)RAS(M,l)--l. 
RAS(M,2)-0. 
RAS(M,3)-0. 
GO TO 204 

444 IASl(I)=l 
DO 446 K=l,3 
RAS(M,K)=UG(I,K) 

446 CONTINUE 
GO TO 666 

445 IAS2(I)=l 
DO 447 K=l,3 
RAS(M,K)=-UD(I+l,K) 

447 CONTINUE 
GO TO 900 

204 IF(IND.EQ.l)GO TO 500 
IASl(I)=IAS(I) 

666 M=I+N 
IF(KSI2(I+l).EQ.l)GO TO 445 
IF(I.EQ.N)GO TO 505 
DO 25 K-l,3 
IMULl=O 
IF(ROU(M,K).EQ.O.)IMULl-l 
IMUL2=0 

IF(EUl(I,K).EQ.0.)IMUL2=l 
IF(IMULl.NE.IMUL2)GO TO 600 
IF(IMULl.EQ.0.AND.IMUL2.EQ.0)GO TO 79 
IDEL(K)-O. 
GO TO 25 

79 IDEL(K)-ROU(M,K)/EUl(I,K) 
25 CONTINUE 

IND-l 
GO TO 300 

500 IAS2(I)=IAS(I) 
900 RETURN 
505 IAS2(I)-0 

RETURN 
600 IAS2(I)=0 

RAS(M,K)-O. 
RAS(M,K)-O. 
RAS(M,K)=O. 
RETURN 
END 
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C---------------------------------------------------------------------
C SUBROUTINE: MODCHK 
C---------------------------------------------------------------------
C 
C 
C 

FUNCTION: EXAMINES IF THE MECHANISM (KINEMATIC CHAIN) CAN BE 
SUCCESSFULLY ASSEMBLED; PRINTS THE TRANSFORMATION 
MATRIX AND CHARACTERISTIC KINEMATIC PARAMETRS 

C --------------------------------------------------------------------
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

INPUT 

OUTPUT 

VARIABLES: 
Q (3,3) Transformation matrix of the terminal 

lAX 
SI 
E 

RP 
RT 
RTT 

link (after mechanism assembling) - An 
indication of the terminal link orientation 
joint coordinates 
the unit vectors of the joints axes with 
respect to absolute coordinate frame 

position vectors with respect to abs. frame 

VARIABLES: 
ICHK indicator of assembling of the mechanism 

ICHK=O successful assembling 
ICHK=-l unsuccessfull assembling - data on 

the mechanism are not consistent 
and the user must change data in the 
file ***.CNF 

SUBROUTINE MODCHK(ICHK) 

INCLUDE 'IN2:CONFIG.MOD' 
INCLUDE 'IN2:MODELM.MOD' 
DIMENSION RPl~6,6,3),RP2(6,6,3),RP3(6,6,3),RP4(6,6,3), 

> RP5(6,6,3) 

ICHK=O 
DO 1 1-1,3 
LL=O 
DO 2 K=l,3 
IF(Q(I,K).NE.O) LL=LL+l 

2 CONTINUE 
IF(LL.EQ.O) ICHK=-l 

1 CONTINUE 
TYPE *,' CHARACTERISTIC KINEMATIC VARIABLES' 
TYPE *,' ----------------------------------, 
TYPE *,' Joint coordinates: ' 
TYPE 1099,(SI(I),I=l,N) 

1099 FORMAT(6(E13.5)) 
TYPE * 
TYPE *,' Transformation matrix of the terminal link An:' 
TYPE 100,«Q(I,J),J-1,3),I=l,3) 

100 FORMAT(lX,3F10.5) 
TYPE * 
TYPE *,' Joint axes with respect to absolute coord. frame' 
DO 202 I=l,N 
TYPE 333,I,(E(I,K),K=l,3) 

333 FORMAT(/,' E(',I1,')- ',3(F10.5)) 
202 CONTINUE 

TYPE * 
TYPE *,' position vectors of the centers of masses and of 

> joints' 
DO 303 I=l,N 
IF(I.EQ.N) GO TO 505 



J-I+l 
IF(I.EQ.3) GO TO 997 
IF(I.EQ.4) GO TO 996 
DO 339 K-l,3 
RP4(I,J,K)_RP(I,I,K)+RP(J,J,K)-RP(J,I,K) 

339 CONTINUE 

444 

997 

887 

996 

774 

505 
677 

666 
303 

* 

TYPE 444,I,I,(RP(I,I,K),K=1,3),I,J,(RP4(I,J,K),K=1,3) 
FORMAT(/,' R(' ,11,',' ,II,' )-' ,x,3FB.3, 
, R(',Il,',',Il,')-',X,3FB.3) 
GO TO 303 
DO BB7 K=1,3 
RPl(I,J,K)=RP(I,I,K)-RP(J,I,K) 
CONTINUE 
TYPE 444,I,I,(RP(I,I,K),K=1,3),I,J,(RPl(I,J,K),K=1,3) 
GO TO 303 
DO 774 K=1,3 
RP2(I,I,K)=RTT(I,I,K) 
RP3(I,J,K)=RTT(I,I,K)+RP(J,J,K)-RP(J,I,K) 
CONTINUE 
TYPE 444,I,I,(RP2(I,I,K),K=1,3),I,J,(RP3(I,J,K),K-l,3) 
GO TO 303 
DO 677 K=1,3 
RP5(I,I,K)=RP(I,I,K)+RTO(K) 
TYPE 666,I,I,(RP5(I,I,K),K=1,3),(RTO(K),K=1,3) 
FORMAT(/,' R(',Il,',',Il,')=',x,3FB.3,' RTO- ',3FB.3) 
CONTINUE 
RETURN 
END 

C---------------------------------------------------------------------
C SUBROUTINE: INPUT DIN 
C ••••••••••••••••••••••• • -:- ••••••••••••••••••••••••••••••••••••••••••• 
C FUNCTION: THE MAIN SUBROUTINE FOR INPUT DYNAMIC 
C PARAMETRS OF THE ROBOT MECHANISM 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C NJ - number of joints of the user's specific robot 
C 10 - the order number of the joint 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C DYNAMIC PARAMETERS FOR THE USER'S SPECIFIC ROBOT 
C---------------------------------------------------------------------
C 

* 

SUBROUTINE INPUT DIN 

REAL 1(6) ,lz(6) ,mm(6) ,js(6) ,jn(6) ,jx(6) ,jy(6) ,jz(6) 
COMMON/tipl/ nx,ksil(6),ksi2(6),ksi3(6) 
COMMON/MIN/ MM,JS,JN,JX,JY,JZ 
COMMON/SPMOM/ GM(6,3),G(6) 
COMMON/ORDGLB/ NUK,NJ 
COMMON/FILE/ FILE(5) 
BYTE file 

CHARACTER opcl*l 
DIMENSION SIMB(17,6) 
COMMON/HMAX/ HMAX(6) 
COMMON/HMIN/ HMIN(6) 
COMMON/MOD MAX MIN/ QMAX(6),QMIN(6) 
CHARACTER*9 FILEP,FILEP2 
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C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
14 format (/,lX,' DIAG*** File:',aIO,' has been found',/) 
13 format (/,lX,' DIAG*** File ',aIO,' cannot be found',/) 
2 format ('+',a6,':',F15.6) 
4573 format (lx,'want to compute maximal moments of inertia of the 

> mechanism',/,lx,' (otherwise you have to directly specify 
> them) [Y/N]:'$) 

4575 format (a2) 
4572 format (/,lx,' DIAG*** Computation of maximal moments of 

> inertia',/) 
4574 format (lx,' Specify the maximal moment of inertia around the' 

> ,i2,' joint:',$) 
C 
C read data from the data-file ***.DNM 
C 

FILEP=CHAR(FILE(1))//CHAR(FILE(2))//CHAR(FILE(3))// 
> CHAR(FILE(4))//CHAR(FILE(5))//'.DNM' 

OPEN (55,FILE=FILEP,STATUS='OLD',ERR=II) 
INEW=l 
WRITE (6,14) FILEP 
DO IPOM=l,NJ 

DO JPOM=1,7 
READ (55,'(lx,FI5.6)') SIMB(JPOM,IPOM) 

END DO 
END DO 
close (55) 
if (inew.eq.1) GO TO 12 

11 inew=O 

C 

WRITE (6,13) FILEP 
CLOSE (55) 
STOP 

C check parameter KSI1: if it is not 0 or 1 it is put to 0 
C 
12 do ipom=l,nj 

C 

if (simb(1,ipom).ne.O.and.simb(1,ipom).ne.1) then 
simb(l,ipom)=O 

end if 
end do 

C substitution of the variables 
C 

do ipom=l,nj 
ksi1(ipom)=simb(1,ipom) 
mm(ipom)=simb(2,ipom) 
g(ipom) =mm(ipom)*9.81 
qmax(ipom)=simb(6,ipom) 
qmin(ipom)=simb(7,ipom) 
if (ksi1(ipom).eq.O) then 

jx(ipom)=simb(3,ipom) 
jy(ipom)=simb(4,ipom) 
jz(ipom)=simb(5,ipom) 

else if (ksi1(ipom).eq.1) then 
js(ipom)=simb(3,ipom) 
jn(ipom)=simb(4,ipom) 

end if 
end do 
write (6,4573) 
read (5,4575) opc1 
if (opc1.eq.'Y') then 

write (6,4572) 



C 
C computation of the maximal moments of inertia of the mechanism 
C around the joint axes 
C 

call sm max in 

do ipom=l,nj 
write (6,'("Max. mom.inert. H",il,il,"max-",f15.6 

> )' )ipom,ipom,hmax(ipom) 
write (6,'("Min. mom.inert. H",il,il,"min=",f15.6 

> )')ipom,ipom,hmin(ipom) 

C 

wr i te (6,' ( " ..................... ")') 
end do 

else 

C the user wants to specify the maximal moments of inertia 
C 

END 

do ipom=l,nj 
write (6,4574) ipom 
read (5,*) hmax(ipom) 

end do 
end if 
RETURN 

C********************************************************************* 
C SUBROUTINE: SM MAX IN 
C----------------------=---=------------------------------------------
C FUNCTION: COMPUTES THE MAXIMAL AND THE MINIMAL VALUES OF 
C THE MOMENTS OF INERTIA OF THE MECHANISM AROUND 
C THE ROBOT JOINTS FOR ALL ALLOWABLE VALUES OF 
C THE JOINTS ANGLES (LINEAR DISPLACEMENTS) - THE 
C SUBROUTINE CALLS SUBROUTINE MODEL TO COMPUTE 
C THE MOMENTS OF INERTIA (inerta matrix HH) FOR 
C VARIOUS JOINTS ANGLES AND SEARCHES FOR THE MA-
C XIMAL AND MINIMAL VALUES OF MOMENTS OF INERTIA 
C AROUND THE ROBOT JOINTS (diagonal elements in 
C the inertia matrix HH(i,i)) 
C--------------------------------------------------------------------
C INPUT VARIABLES: 
C NS - number of joints of the user's specific robot 
C QMI(6) - the vector of the minimal allowable values of the 
C joints angles (displacements) 
C QMA(6) - the vector of the maximal allowable values of the 
C joints angles (displacements) 
C HH(6,6) - inertia matrix of the robot for given joints angles 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C HMAX(6) - vector of the computed maximal values of the 
C moments of inertia of the mechanism around the 
C robot joints 
C HMIN(6) - vector of the computed minimal values of the 
C moments of inertia of the mechanism around the 
C robot joints 
C---------------------------------------------------------------------
C SUBROUTINE REQUIRED: 
C MODEL - computates the inertia matrix for the given 
C values of the joints angles (computes HH) 
C---------------------------------------------------------------------
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C 

C 

SUBROUTINE SM MAX IN 

byte file (5) 
common/file/ file 
INCLUDE 'MODELM.MOD' 
COMMON /HMAX/ HMAX(6) 
COMMON /HMIN/ HMIN(6) 
COMMON /MOD MAX MIN/ QMA(6),QMI(6) 
DIMENSION DELTA(6) 
COMMON/ORDGLB/ NUK,NS 

C initialization 
C 

C 
C 
C 
C 

C 

DO I=1,NS 
HMAX(I)=-1. 
HMIN(I)=1.E+06 
SI(I)=QMI(I) 

determination of increment of the joint angles at which 
the moments of inertia of the mehanism are computed 

DELTA(I)=(QMA(I)-QMI(I»/3. 
END DO 

C branching according to the number of joints of the robot 
C 

GO TO (1,2,3,4,5,6) NS 
C 

C if the robot has one joint only 
C 
1 CALL MODEL 

DO I=1,NS 

C 

IF (HH(I,I).GT.HMAX(I» HMAX(I)=HH(I,I) 
IF (HH(I,I).LT.HMIN(I» HMIN(I)=HH(I,I) 

END DO 
RETURN 

C if the robot has two joints 
C 

2 SI(2)=QMI(2) 

C 

DO J2=1,3 
CALL MODEL 
DO I=l,NS 

IF (HH(I,I).GT.HMAX(I» HMAX(I)=HH(I,I) 
IF (HH(I,I).LT.HMIN(I» HMIN(I)=HH(I,I) 

END DO 
SI(2)=SI(2)+DELTA(2) 

END DO 
RETURN 

C if the robot has three joints 
C 
3 SI(2)=QMI(2) 

DO J2=1,3 
SI(3)=QMI(3) 
DO J3=1,3 

CALL MODEL 
DO I=1,NS 

IF (HH(I,I).GT.HMAX(I» HMAX(I)=HH(I,I) 
IF (HH(I,I).LT.HMIN(I» HMIN(I)=HH(I,I) 

END DO 
SI(3)=SI(3)+DELTA(3) 



C 

END DO 
SI(2)=SI(2)+DELTA(2) 

END DO 
RETURN 

C if the robot has four joints 
C 
4 SI(2)=QMI(2) 

C 

DO J2=1,3 
SI(3)=QMI(3) 
DO J3=1,3 

SI(4)=QMI(4) 
DO J4=1,3 

CALL MODEL 
DO I=l,NS 

IF (HH(I,I).GT.HMAX(I)) HMAX(I)=HH(I,I) 
IF (HH(I,I).LT.HMIN(I)) HMIN(I)=HH(I,I) 

END DO 
SI(4)=SI(4)+DELTA(4) 

END DO 
SI(3)=SI(3)+DELTA(3) 

END DO 
SI(2)=SI(2)+DELTA(2) 

END DO 
RETURN 

C if the robot has five joints 
C 
5 SI(2)=QMI(2) 

C 

DO J2=1,3 
SI(3)=QMI(3) 
DO J3=1,3 

SI(4)=QMI(4) 
DO J4=1,3 

SI(5)=QMI(5) 
DO JS=1,3 

CALL MODEL 
DO I=l,NS 

IF (HH(I,I).GT.HMAX(I)) HMAX(I)=HH(I,I) 
IF (HH(I,I).LT.HMIN(I)) HMIN(I)=HH(I,I) 

END DO 
SI(S)=SI(S)+DELTA(S) 

END DO 
SI(4)=SI(4)+DELTA(4) 

END DO 
SI(3)=SI(3)+DELTA(3) 

END DO 
SI(2)=SI(2)+DELTA(2) 

END DO 
RETURN 

C if the robot has six joints 
C 
6 SI(2)=QMI(2) 

DO J2=1,3 
SI(3)=QMI(3) 
DO J3=1,3 

SI(4)=QMI(4) 
DO J4=1,3 

SI(S)=QMI(S) 
DO J5=1,3 
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SI(6)-QMI(6) 
DO J6=l,3 

CALL MODEL 
DO I=l,NS 
IF (HH(I,I).GT.HMAX(I)) HMAX(I)-HH(I,I) 
IF (HH(I,I).LT.HMIN(I)) HMIN(I)-HH(I,I) 

END DO 
SI(6)-SI(6)+DELTA(6) 

END DO 
SI(S)=SI(S)+DELTA(S) 

END DO 
SI(4)=SI(4)+DELTA(4) 

END DO 
SI(3)=SI(3)+DELTA(3) 

END DO 
SI(2)=SI(2)+DELTA(2) 

END DO 
RETURN 
end 

C---------------------------------------------------------------------
C SUBROTINE: INPUT ACT 
C------------------------=--------------------------------------------
C FUNCTION: COMPUTES THE MODELS OF THE SUBSYSTEMS -
C ACTUATOR MODELS INCLUDING "MAXIMAL" MOMENT 
C OF INERTIA OF THE MECHANISM AROUND THE JOINT 
C AXIS 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C ACTUATOR PARAMETERS WHICH ARE READ IN THE 
C SUBROUTINE INPUL 
C HMAX(6) - maximal moments of inertia of the mechanism 
C around the joints axes (computed in SM MAX IN) 
C OPCl - user's option: to print the computed matrices-or not 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C THE MATRICES OF THE ACTUATOR'S STATE MODEL 
C dx/dt = A * x + b * u + f * P 
C (here: x is the state vector of the i-th actuator model 
C u is the input, P is the load - driving torque) 
C NS - number of joints of the user's specific robot 
C NI(6)- vector contaning the selected orders of the actuator 
C models 
C A(3,3,6) - three dimensional matrix which includes A matrices 
C of the actuators models for all NS actuators 
C B(3,6) - two dimensional matrix including control distribution 
C b vectors of the actuators models 
C F(3,6) - two dimensional matrix including load distribution 
C f vectors of the actuators models 
C a$(6) - character vector including information on actuators 
C types 
C AHM,BHM,FHM - matrices analogue to A, B, F but which 
C include the maximal moments of inertia of 
C the mechanism HMAX - matrices of the subsystems' 
C state models 



C---------------------------------------------------------------------
C SUBROUTINE REQUIRED: 
C INPUTL - reads data on the selected actuators for the robot 
C and computes the matrices A,B,F of actuators'models 

C---------------------------------------------------------------------
C 

C 

SUBROUTINE INPUT ACT 

COMMON/SUBSYS/ A(3,3,6),B(3,6),F(3,6) 
COMMON/SUBSHM/ AHM(3,3,6),BHM(3,6),FHM(3,6) 
COMMON/ACTORD/ NI(6),KI(6) 
COMMON/ORDGLB/ NUK,NS 

COMMON/TIP ACT/ A$(6) 
COMMON/HMAX/ HMAX(6) 
DIMENSION RMEL(6) 
CHARACTER*2 A$,OPC(15),B$,OPC1*1 

C •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
2 FORMAT (A1) 
3 FORMAT (lX,F16.5) 
30 FORMAT (lX,'--------------------------------------------------

1453 
1256 
1387 

*--------------') 
FORMAT (lX,A19) 
FORMAT (/,lX,A11,I2) 
FORMAT (lX,'Do you want to print the matrices of subsystems 

* models',/,' (which include the maximal mom. of inertia) 
* [ YIN 1 : ' , $ ) 

C---------------------------------------------------------------------
C 
C 
C 
C 

call subroutine to read data on actuators and computes 
the matrices A,B,F of the actuators' models 

CALL INPUTL 
* ........................................................................................................................................ . 

WRITE (6,1387) 
READ (5,2) OPC1 
DO I=l,NS 

OPC(l)~A$(I) 
RMEL(I)-F(2,I) 

C--------------------------------------------------------------------. 
C 
C computation of the matrices AHM, BHM, FHM 
C 

* 

C~-l./RMEL(i)/(-l./RMEL(i)+Hmax(I) 

FHM(2,i)=F(2,i)*C 
AHM(1,2,I)=1. 
IF (NI(i).EQ.2) THEN 

AHM(2,2,i)=A(2,2,i)*C 
BHM(2,i)=B(2,i)*C 
RMEL(i)=RMEL(i)*C 

ELSE 
AHM(2,2,i)=A(2,2,i)*C 
AHM(2,3,i)=A(2,3,i)*C 

AHM(3,2,I)=A(3,2,I) 
AHM(3,3,I)=A(3,3,I) 
BHM(3,I)aB(3,I) 
RMEL(i)-RMEL(i)*C 

END IF 
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C-------------------------------------------------------------------
C 
C print matrices 
C 

IF (OPC1.EQ.'Y') THEN 
WRITE (6,1256) , Subsystem:',I 
WRITE (6,1453) 'Subsystem matrix A:' 
WRITE (6,'«NI(I»F16.5)') ((AHM(J,K,I), 

> K=1 , NI ( I ) ) , J=1 , NI ( I ) ) 
WRITE (6,1453) 'Subsystem vector b:' 
WRITE (6,3) (BHM(J,I),J=1,NI(I)) 
WRITE (6,1453) 'Subsystem vector f:' 
WRITE (6,3) (FHM(J,I),J=1,NI(I)) 
WRITE (6,30) 

END IF 
END DO 
END 

C---------------------------------------------------------------------
C SUBROUTINE: INPUTL 
C---------------------------------------------------------------------
C FUNCTION: READS DATA ON THE ACTUATORS PARAMETERS SPECI-
C FlED BY THE USER IN THE FILE *** .ACT AND 
C COMPUTES THE ACTUATORS MODELS IN THE STATE 
C SPACE 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C PARAMETRS OF THE ACTUATORS SPECIFIED IN THE FILE 
C ***.ACT 
C NS - number of joints of the user's specific robot 
C A$ - charactet vector including information on the 
C actuators types (DC - D.C. electro-motor, HD -
C hydraulic actuator) 
C NI(6) - vector including ordrers of the actuators 
C models as selected by the user 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C A,B,F - matrices of the actuators' models in the 
C state space - see explanation in the subroutine 
C INPUT ACT 
C---------------------------=-----------------------------------------
C NOTE: Due to lack of space in this subroutine all necessary 
C tests of the input data are omitted. The user is 
C adviced to add himself this protective tests in 
C order to protect his package from invalid values of 
C input parameters 
C---------------------------------------------------------------------
C 

c 

SUBROUTINE INPUTL 

COMMON/SUBSYS/ A(3,3,6),B(3,6),F(3,6) 
COMMON/SUBSHM/ AHM(3,3,6),BHM(3,6),FHM(3,6) 
COMMON/ACTORD/ NI(6),KI(6) 
COMMON/ORDGLB/ NUK,NS 
BYTE FILE 
COMMON/FILE/FILE(5) 

CHARACTER*2 A$ 
CHARACTER*4 DC$(15),HD$(15) 
CHARACTER*1 POM,PP,A1*80 



DIMENSION DC(15,6),HD(15,6) 
COMMON/TIP ACT/ A$(6) 
COMMON/UMAX/ UMAX(2,6),UMAXl(6) 
CHARACTER*9 FILEP,FILEP2 
DATA A$/'DC','DC','DC','DC','DC','DC'/ 

C---------------------------------------------------------------------
14 FORMAT (/,lX,' WARNING*** File:',alO,' is found',/) 
13 FORMAT (/,lX,' DIAG*** File ',alO,' cannot be found') 
21 format (' DIAG*** The specified order of the actuator ',iI' is 

> not allowed') 
C---------------------------------------------------------------------
C 
C read data from the file ***.ACT 
C 

11 

C. 
C 
C 
C 
12 

FILEP=CHAR(FILE(1»//CHAR(FILE(2»//CHAR(FILE(3»// 
> CHAR(FILE(4»//CHAR(FILE(5»//'.ACT' 

INEW=O 
OPEN (55,FILE=FILEP,STATUS='OLD',ERR=11) 
INEW=l 
WRITE (6,14) FILEP 
READ (55,'(6(lX,A2»') (A$(IPOM),IPOM=l,NS) 
DO IPOM=l,NS 

IF (A$(IPOM).EQ.'DC') THEN 
DO JPOM=1,15 

READ (55,'(lX,F15.6)') DC(JPOM,IPOM) 
END DO 

ELSE IF (A$(IPOM).EQ.'HD') THEN 
DO JPOM=1,15 

READ (55,'(lX,F15.6)') HD(JPOM,IPOM) 
END DO 

END IF 
END DO 
CLOSE (55) 
IF (INEW.EQ.1) GO TO 12 
INEW=O 
WRITE (6,13) FILEP 
RETURN 

if the secected actuator is D.C. electro-motor (DC) 

do i22=1,ns 
if (a$(i22).eq.'DC') then 

umax(1,i22)=dc(7,i22) 
umax(2,i22)=dc(8,i22) 
n=dc(1,i22) 
ni(i22)=dc(1,i22) 
a(1,1,i22)=O. 
a(1,2,i22)=1. 
a(2,1,i22)=O. 
a(1,3,i22)=O. 
b(1,i22)=O. 
f(1,i22)=O. 
f(3,i22)=O. 
f(2,i22)=-1./dc(9,i22)/dc(lO,i22)/dc(4,i22) 
if(n.lt.2.or.n.gt.3) then 

write (6,21) i22 
stop 
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C. 
C 
C 

C 

> 

> 

> 

> 

> 

else if (n.eq.2) then 
a(2,2,i22)=-(dc(2,i22)*dc(3,i22)/dc(6,i22)+ 

dc(5,i22))/dc(4,i22)/DC(9,122)/DC(10,122) 
b(2,i22)=dc(2,i22)/dc(4,i22)/dc(9,i22)/ 

dc(6,i22)/DC(9,122) 
a(2,3,i22)=0. 

else if (n.eq.3) then 
a(2,2,i22)=-dc(5,i22)/dc(4,i22)/DC(9,122)/ 

DC(10,122) 
a(2,3,i22)=dc(2,i22)/dc(9,i22)/dc(4,i22)/ 

DC(10,122) 
a(3,1,i22)=0. 
a(3,2,i22)=-dc(3,i22)*dc(9,i22)/dc(11,i22)/ 

DC(9,122) 
a(3,3,i22)=-dc(6,i22)/dc(11,i22) 
b(2,i22)=0. 
b(3,i22)=1./dc(11,i22) 

end if 

if selected actuator is hydraulic (HD) 

else if (a$(i22).eq.'HD') then 
umax(1,i22)=hd(7,i22) 
umax(2,i22)=hd(8,i22) 
n=hd(1,i22) 
ni(i22)=hd(1,i22) 
a(1,1,i22)=0. 
a(1,2,i22)=1. 
a(2,1,i22)=0. 
a(1,3,i22)=0. 
b(1,i22)=0. 
f(1,i22)=0. 

f(3,i22)=0. 
f(2,i22)=-1./hd(4,i22) 
if(n.lt.2.or.n.gt.3) then 

write (6,21) i22 
stop 

else if (n.eq.2) then 
a(2,2,i22)=-hd(5,i22)/hd(4,i22)-.01*hd(2,i22)* 

> hd(2,i22)/(hd(4,i22)*hd(3,i22)) 
b(2,i22)=100.*hd(10,i22)*hd(2,i22)/(hd(4,i22)* 

> hd(3,i22)) 
else if (n.eq.3) then 

pomp=400.*hd(9,i22)/hd(6,i22) 
a(2,2,i22)=-hd(5,i22)/hd(4,i22) 
a(2,3,i22)=.OOOl*hd(2,i22)*hd(11,i22)/hd(4,i22) 
a(3,1,i22)=0. 
a(3,2,i22)=-hd(2,i22)*pomp/hd(11,i22) 
a(3,3,i22)=-hd(3,i22)*pomp*.Ol 
b(2,i22)=0. 
b(3,i22)=pomp*hd(lO,i22)*10000./hd(11,i22) 
f(3,i22)=0. 

end if 
end if 

end do 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 
C print actuators models 



do iOzz=1,ns 
write (G,'(/," Actuator model in the joint:" ,12)' )IOZZ 
write (G,*) , Matrix A:' 
IO=IOZZ 

* 
write (G,'(1x,<ni(io»f15.G)') «a(jp,jl,io),jl=1,ni(io) 

write (G,*) , Vector b:' 
),jp=1,ni(io)) 

write (G,'(lx,f15.G)') (b(jp,io),jp=1,ni(io)) 
write (G,*) , Vector f:' 

END 

write (G,'(lx,f15.G),//') (f(jp,io),jp=l,ni(io)) 
end do 
RETURN 

C---------------------------------------------------------------------
C SUBROUTINE: SMOPRG 
C---------------------------------------------------------------------
C FUNCTION: COMPUTES LOCAL OPTIMAL REGULATOR FOR THE 
C SUBSYSTEMS WHICH MIGHT BE EITHER OF THE 
C SECOND OR OF THE THIRD ORDER, WITH OR 
C WITHOUT INTEGRAL FEEDBACK LOOP 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C I - The order number of the local subsystem for 
C which we want to synthesize the local controller 
C NI(I) - the order of the i-th subsystem 
C ASHM(NI(I),NI(I),I) - matrix of the i-th subsystem 
C (which includes the value of 
C the maximal moment of inertia 
C of the mechanism around the 
C axis of the i-th joint) 
C BSHM(NI(I),I) - vector of the input distribution 
C of the i-th subsystem 
C ALFAI(I) - the presribed exponential stability 
C degree for the i-th subsystem 
C IOPTOR(I) - user's option: 
C =0 the user does not want optimal 
C regulator around the i-th joint 
C =1 the user wants optimal regulator 
C IOPTV(I) =0 without the velocity feedback 
C =1 with the velocity feedback 
C IOPTI(I) =0 without the feedback loop by the 
C rotor current 
C (if D.C. motor is applied) 
C (or, by the pressure if hydraulic 
C actuator is applied) 
C =1 with the feedback loop by current 
C IOPTIN(I) - option of introduction of the integral 
C feedback loop: 
C =0 no 
C =1 yes 
C QQ(NI(I),NI(I),I) - weighting matrix by the subsystem state 
C in the standard quadratic criterion for 
C the i-th subsystem 
C Rl(I) weighting element by the control Signal in 
C the local standard quadratic criterion 
C QI(I) - weighting element by the integral coordi-
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C nate (integral of the position error in 
C the PID regulator) in the local standard 
C quadratic criterion for the i-th subsys. 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C PKI(I) - position feedback gain for the i-th subsystem 
C PK2(I) - velocity feedback gain 
C PK3(I) - feedback gain by current 
C PK4(I) - integral feedback gain 
C---------------------------------------------------------------------
C SUBROUTINES REQUIRED: 
C SMOREG - computes gains of the local linear optimal 
C regulator (same holds for SMOREl and 
C SMORE2 but for different subsystem orders 
C different matrices dimensions; these two 
C subroutines might be ommitted) 
C---------------------------------------------------------------------
C 

C 

C 

SUBROUTINE SMOPRG(i) 

INTEGER*2 I 

COMMON/GAINS/ PKl(6),PK2(6),PK3(6),PKG(6),PK4(6) 
COMMON/SUBSHM/ ASHM(3,3,6),BSHM(3,6) 

COMMON/ACTORD/ NI(6),KI(6) 
COMMON/OPTION/ IOPTOR(6),IOPTV(6), 

1 IOPTI(6),IOPTG(6),IPOM(l8),IOPTIN(6) 
COMMON/SUBCRT/ QQ(3,3,6),Rl(6),QI(6) 
COMMON/STDGIM/ ALFAI(6) 

DIMENSION QS(3,3),AS(3,3),BS(3,l),PK(3) 
DIMENSION QSS(4,4),ASS(4,4),BSS(4,l),PKS(4) 
DIMENSION QS2(2,2),AS2(2,2),BS2(2,l),PKS2(2) 

C---------------------------------------------------------------
C 
C preparation of the auxiliary matrices ASS,AS, BSS,BS, 
C AS2,BS2,QS,QSS,QS2 - for the various orders of the 
C subsystems 
C 

C 

C 

C 

DO 1 Il=l,NI(I) 
BSS(Il,l)=BSHM(Il,I) 
BS(Il,l)=BSHM(Il,I) 

DO 1 J=l,NI(I) 
ASS(Il,J)=ASHM(Il,J,I) 

1 AS(Il,J)=ASHM(Il,J,I) 

NS=NI(I) 

C option: is the integral feedback loop introduced or 
C not- if yes the subsystem order is increased by 1 
C 

C 

IF(IOPTIN(I).EQ.l)NS=NS+l 
IF(IOPTIN(I).EQ.O)GO TO 3 

DO 2 J=l,NI(I) 
QSS(NS,J)=O. 
QSS(J,NS)=O. 
ASS(NS,J)=O. 
ASS(J,NS)=O. 

2 CONTINUE 



C 

C 
C 
C 

3 
C 

51 
50 

C 
C 
C 
C 

21 

C 

C 
C 
C 
C 

C 
C 
C 
4453 

54 
C 
C 
C 
C 

C 

55 

C 
5599 
10 

C 
C 
C 

4 

BSS(NS,l)=O. 
ASS(NS,l)=l. 
QSS(NS,NS)=QI(I) 
GO TO 50 

preparation of auxiliary matrices if the subsystem order is 2 

IF(NI(I).NE.2)GO TO 50 

DO 51 Il=l ,NI (I) 
BS2(Il,1)=BSHM(Il,I) 
DO 51 J=l,NI(I) 
AS2(Il,J)=ASHM(Il,J,I) 
CONTINUE 

preparation of auxiliary matrix QSS and the prescribed expo
nential stability degree 

DO 21 Il=1,NI (I) 
DO 21 J=1,NI(I) 
QSS(I1,J)=QQ(I1,J,I) 
QS(I1,J)=QQ(I1,J,I) 
RS=R1(I) 
ALFA=ALFAI(I) 

IF(IOPTIN(I).EQ.1)GO TO 4 
IF(NS.EQ.2)GO TO 4453 

computation of optimal regulator if the subsystem 
order is 3 and integral feedback loop is not introduced 

CALL SMOREG(AS,BS,QS,RS,ALFA,NS,PK,I) 
GO TO 5599 

preparation of the auxiliary matrix QS2 

DO 54 Il=1,NI(I) 
DO 54 J=1,NI(I) 
QS2(I1,J)=QQ(I1,J,I) 

computation of optimal regulator if the subsystem order 
is 2 and integral feedback loop is not introduced 

CALL SMORE2(AS2,BS2,QS2,RS,ALFA,NS,PKS2,I) 

DO 55 J=1,NI(I) 
PKS(J)=PKS2(J) 
PKS(3)=0. 
PKS(4)=0. 
GO TO 5 

DO 10 J=1,NI(I) 
PKS(J)=PK(J) 
PKS(4)=0. 
GO TO 5 

regulators with the introduced integral feedback loops 

IF(NS.EQ.4)GO TO 56 
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C 
C 
C 

57 

C 
C 
C 
C 

58 

C 
C 
C 
C 

if the subsystem order is 2 prepare the auxiliary matrices 

DO 57 J=I,NI(I) 
AS(J,NS)=O. 
AS(NS,J)=O. 
BS(NS,l)=O. 
AS(NS,l)=l. 
QS(NS,NS)=QI(I) 

computation of optimal regulator if the subsystem order 
is 2 and integral feedaback loop is introduced 

CALL SMOREG(AS,BS,QS,RS,ALFA,NS,PK,I) 
DO 58 J=l,NS 
PKS(J)=PK(J) 
PKS(3)=0. 
PKS(4)=PK(3) 
GO TO 5 

computation of optimal regulator if the susbsystem order is 
3 and integral feedback loop is introduced 

56 CALL SMOREl(ASS,BSS,QSS,RS,ALFA,NS,PKS,I) 
C---------------------------------------------------------------------
C 
C 
C 

c 

5 

2000 

1 

2001 
1 
2 
3 

C 

print the computed feedback gains 

PKl(I)=PKS(l) 
PK2(I)=PKS(2)*IOPTV(I) 
PK3(I)=PKS(3)*IOPTI(I) 
PK4(I)=PKS(4)*IOPTIN(I) 

WRITE(5,2000)I 
FORMAT(3X,'Local servo feedback gains in the ',I3,'-th joint', 

I) 
WRITE(5,200l)PKl(I),PK2(I),PK3(I),PK4(I) 
FORMAT(3X,'Position feedback gain',G12.5,1, 
3X,'Velocity feedack gain',G12.5,1, 
3X,'Gain in feedback loop by current/pressure',G12.5,1, 
3X,'Integral feedback gain',G12.5,/) 

IF(IOPTOR(I).EQ.l)WRITE(5,2002)ALFA 
2002 FORMAT(3X,'Exponential stability degree of local subsystem' 

1 ,GlO.5,/) 
RETURN 
END 



C--------------------------------------------------------------------
C SUBROUTINE: SMOREG 
C--------------------------------------------------------------------
C FUNCTION: COMPUTATION OF THE LINEAR OPTIMAL REGULATOR 
C FOR THE GIVEN LINEAR SYSTEM 
C (THIS IS WELL-KNOWN PROCEDURE FOR SOLVING OF 
C THE ALGEBRAIC EQUATION OF THE RICCATI TYPE -
C see ref. e.g. Vukobratovic M, 
C Stokic D., Control of Manipulation 
C Robots:Theory and Application, springer-
C -Verlag,1982. 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C KK - The order number of the subsystem for which the 
C local optimal regulator is synthesized 
C N - the order of the subsystem 
C A(N,N) - the subsystem matrix 
C B(N) - the input distribution matrix of the 
C subsystem 
C Q(N,N) weighting matrix by the state vector in the 
C local standard quadratic criterion 
C R - the weighting matrix by the control signal 
C ALFA - the prescribed exponential stability degree 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C PKK(N) - optimal regulator feedback gains 
C RK(4,4,KK) - the matrix - solution of the algebraic 
C equation of Riccati type for the i-th 
C subsystem 
C---------------------------------------------------------------------
C SUBROUTINES REQUIRED: 
C EIGENP - computes the eigen-values of the given 
C quadratic matrix (SSP-subroutine) 
C GMPRD - matrix multiplication (SSP-subroutines) 
C MINV - matrix inversion (SSP-subroutines) 
C SMEIG3 - auxiliary subroutine for computation of the 
C eigen-values of the given quadratic matrix 
C--------------------------------------------------------------------
C 

C 

SUBROUTINE SMOREG(A,B,Q,R,ALFA,N,PKK,KK) 

COMMON/SUBLIA/ RK(4,4,6) 

DOUBLE PRECISION AA,EVRA,EVRIA,VECRA,VECIA 
DIMENSION A(N,N),B(N,1),BT(1,3),Q(N,N),PKK(1,N) 
DIMENSION C(1,3),INDIC(6),CPOM(3,3),POM(6,3),LL(3),MM(3) 
DIMENSION PP(3,3),PPP(3,3),P(3,3) 
DIMENSION REALEV(3) 
DIMENSION AA(6,6),EVRA(6),EVRIA(6),VECRA(6,6),VECIA(6,6) 
DOUBLE PRECISION DA(3,3) 

C-----------------------------------------------------------------
C 
C 
C 
C 

C 

The order of the subsystem input is equal to 1 (the input 
is scalar) - in general case the input order is M 

M=l 

C transpose the matrix B and compute B*(R**-l)*BT 
C 

DO I I=l,N 
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DO 1 J=1,M 
BT(J,1)=B(1,J) 

1 C(J,1)=BT(J,1)/R 
C 

CALL GMPRD(B,C,CPOM,N,M,N) 
C 
C form expanded matrix of the susbsystem 

C 

C 

DO 2 1=1,N 
DO 2 J=1,N 
AA( I, J) =A( I, J) 
DA(1,J)=A(1,J) 
AA(I+N,J)=-Q(I,J) 
AA(I,J+N)=-CPOM(I,J) 
AA(I+N,J+N)=-A(J,I) 

2 CONTINUE 

C eigen-va1ues of the open-loop subsystem matrix 
C 

TYPE 500,KK 
500 FORMAT(/,3X,' Eigen-values of the open-loop matrix of the' ,I, 

C 

C 

1 3X,1l,'.th subsystem (actuator+joint)') 
CALL SMEIG3(N,N,DA,REALEV) 

DO 3 I=1,N 
II=1+N 
AA(II,II)=AA(II,II)-ALFA 

3 AA(I,I)=AA(I,I)+ALFA 

C computation of the eigen-values and the eigen-vectors of the 
C expanded matrix of the subsystem 
C 

NN=N+N 
C 

CALL E1GENP(NN,NN,AA,EVRA,EVRIA,VECRA,VECIA,IND1C) 

C 
C form of the solution of the algebraic equation of Riccati type 
C according to the procedure presented in above reference 
C 

C 

C 

C 

C 

M4=0 
1=1 

19 IF(I.GT.NN)GO TO 20 
IF(EVRA(I).GT.O)GO TO 7 
M4=M4+1 

IF(EVRIA(I).NE.O)GO TO 17 
DO 5 J=l,NN 
POM(J,M4)=VECRA(J,I) 

5 CONTINUE 
GO TO 7 

17 1=I+1 
DO 16 J=1,NN 
POM(J,M4)=VECRA(J,I) 

16 POM(J,M4+1)=VECIA(J,I) 

M4=M4+1 
7 CONTINUE 



C 

20 
C 

C 
C 
C 

C 

21 

1=1+1 
GO TO 19 
CONTINUE 

DO 21 I=l,N 
DO 21 J=l,N 
PP(I,J)=POM(I,J) 
P(I,J)=POM(I+N,J) 

inverse of the matrix PP 

CALL MINV(PP,N,DET,LL,MM) 

C calculate (PP**-l)*P 
C 

C 
C 
C 
C 
C 
C 

657 
C 
C 
C 

C 

1008 

200 
C 
C 
C 

C 

12 
C 
C 
C 

C 

C 

1009 
1 

CALL GMPRD(P,PP,PPP,N,N,N) 

memorize the solution PPP of the Riccati's algebraic equation 
in the matrix RK - necessary for computation of the subsystem 
Liapunov's function which is required for computation of the 
gain of global control (see subroutines LIAP1S and GRAD1S) 

DO 657 I=l,N 
DO 657 J=l,N 
RK(I,J,KK)=PPP(I,J) 

computation of the feedback gains of the optimal regulator 

CALL GMPRD(C,PPP,PKK,M,N,N) 

WRITE(3,1008) 
FORMAT(/,3X,' Feedback gains of the optimal regulator' ,/) 
WRITE(3,200)«PKK(I,J),J=1,N),I=1,M) 
FORMAT(3X,3E15.5) 

computation of the closed-loop subsystem matrix 

CALL GMPRD(CPOM,PPP,P,N,N,N) 

DO 12 I=1,N 
DO 12 J=1,N 
DA(I,J)=A(I,J)-P(I,J) 

computation of the eigen-values of the closed-loop 
subsystem matrix 

WRITE(5,1009) 
FORMAT(/,3X,'Eigen-values of the closed-loop subsystem 
matrix' ,/) 

CALL SMEIG3(N,N,DA,REALEV) 
RETURN 
END 
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C---------------------------------------------------------------------
C SUBROUTINE: SMEIG3 
C---------------------------------------------------------------------
C FUNCTION: AUXILIARY SUBROUTINE TO COMPUTE EIGEN-
C -VALUES OF THE GIVEN QUADRATIC MATRIX 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C NN - Matrix order 
C n 
C DA(NN,NN) - Quadratic matrix 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C REALEV(NN) - Vector of the real parts of the eigen-
C values 
C--------------------------------------------------------------------
C SUBROUTINES REQUIRED: 
C EIGENP - SSP-subroutine to compute the eigen-values 
C of the given quadratic matrix 
C REALVE,COMPVE,SCALE,HESQR - Auxiliary subroutines 
C called by EIGENP 
C--------------------------------------------------------------------
C 

SUBROUTINE SMEIG3(NN,NM,DA,REALEV) 

DOUBLE PRECISION DA(NN,NN),EVR(3),EVI(3),VECR(3,3) 
DOUBLE PRECISION VECI(3,3) 
DIMENSION REALEV(NN) 
DIMENSION INDIC(3) 

c-------------------------------------------------------------------
C 
C 
C 
C 

C 

C 

call subroutine EIGENP to compute the eigen-values of 
the input matrix DA 

CALL EIGENP(NN,NM,DA,EVR,EVI,VECR,VECI,INDIC) 

DO 10 I=1,NN 
10 REALEV(I)=EVR(I) 

WRITE(5,102) 
DO 6 I=1,NN 

6 WR1TE(5,103)I,EVR(I),EVI(1),IND1C(I) 
102 FORMAT(//,3X,'Eigen-values ',/,3X,'No. 

11m. part indic',/) 
103 FORMAT(3X,I4,2E15.5,I4) 

RETURN 
END 

Real part 



C---------------------------------------------------------------------
C SUBROUTINE: SMLOC E 
C------------------------------=--------------------------------------
C FUNCTION: COMPUTES LOCAL FEEDBACK GAINS FOR THE ISO-
C LATED SUBSYSTEMS (ACTUATOR + JOINT ASSUMING 
C THAT ALL THE OTHER JOINTS ARE KEPT LOCKED); 
C CONTROL IS SYNTHESIZED TO KEEP THE DAMPING 
C RATIO CLOSE TO 1 AND TO KEEP CHARACTERISTIC 
C FREQUENCY OF THE SERVO (NATURAL UNDAMPED 
C FREQUENCY) BELLOW ONE HALF OF THE RESONANT 
C STRUCTURAL FREQUENCY OF THE MECHANISM 
C (SPECIFIED BY THE USER) 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C I - the order number of the subsystem for which the servo 
C gains are to be synthesized 
C NI(i) - the order of the i-th subsystem 
C AHM, BHM - matrices of the subsystem's model (see subrou-
C tine INPUT ACT) 
C the user's options: -
C uO - resonant structural frequency of the mechanism around 
C the i-th joint [rad/s] 
C OPC - the user wants feedback loop by current/press. (Y/N) 
C ZETA - damping factor of the non-dominant pair of poles 
C OMEGA N - natural undapmed frequency of the non-dominant 
C - pair of poles - for the third order subsystem 
C only 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C PK1(i} - position feedback gain [v/rad],[v/m],[mA/rad], 
C [mAIm] 
C PK2(i} - velocity feedback gain [v/rad/s] etc. 
C PK3(i} - gain in feedback loop by current/pressure [VIA] 
C---------------------------------------------------------------------
C 

SUBROUTINE SMLOC E 

COMMON/SUBSYS/ A(3,3,6),B(3,6),F(3,6) 
COMMON/SUBSHM/ AHM(3,3,6),BHM(3,6},FHM(3,6} 
COMMON/ACTORD/ NI(6),KI(6) 
COMMON/GAINS/ PK1(6},PK2(6),PK3(6},PK4(6),PK5(6},PK6(6} 
BYTE FILE 
COMMON/FILE/FILE(5) 
CHARACTER*9 
COMMON/HMAX/ 
COMMON/RBSL/ 
COMMON/TIP ACT/ 
CHARACTER*I OPC 
CHARACTER*30 1$pom*60 

FILEP 
HMAX(6) 
I 
.a.$ (6) 

* .................................................................... . 
2 FORMAT (A1) 
3 FORMAT (lX,F16.5) 
4 FORMAT (lX,A27,I1,A2,E12.5) 
6 FORMAT (' Want to introduce feedback loop by current/pressure 

> [Y/N]?:',$) 
7 FORMAT (lX,'Specify the resonant structural frequency',/,' of 

> the mechanism [rad/s]') 
10 FORMAT (lX,F12.5,35X,A30,I1) 
25 FORMAT (lX,'W(S)=',F12.5,'/(S**2+',F12.5,'*S)',/) 
26 FORMAT (lX,'W(S)=',F18.5,'/(S**3+',F18.5,'*S**2+',F18.5, 

> ' *S )' ,I) 
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30 FORMAT (lX,'-----------------------------------------------__ _ 
>-----------------',/) 

35 FORMAT (lX,'G(S)=' ,F12.5,'/(S**2+',F12.5,'*S+',F12.5,')',/) 
36 FORMAT (lX,'G(S)=',F18.5,'/(','S**3+',F18.5,'*S**2+', 

> F18.5,'*S+',F18.5,')',/) 

* ................................................................................................................................... 

37 

WRITE (6,7) 
WRITE (6,37) I 
FORMAT (lX,'for 
READ (5,*) uO 

the servo in ',i2,' -th joint [rad/s1:' ,$) 
uO 

c 
C the specified frequency is modified to determine the gains for 
e the case of two equal dominant poles of the closed-loop sub-
e system;this modification does not affect the computed feedback 
C gains but the algorithms for their computation requires it; 
C the frequency is not modified if there is just one dominant 
C pole 
C 

C 

e 

e 

U02=UO 
UO=UO*2.5 

IF (NI(I).EQ.3) THEN 
WRITE (6,6) 
READ (5,2) ope 

END IF 
WRITE (6,30) 

if(ni(i).eq.2)then 
ifl2=l 
ierrind=l 
go to 100 

end if 

opc - feedback loop by 
current 

C present the containts of the auxiliary file conf.dat 
C in order to enable the user to select the poles of the closed-
e -loop subsystem (in the case the order of the subsystem is 3) 
C 

open (23,file='conf',status='old') 
do ipom=l,lO 

read (23,'(a60)') l$pom 
write (6,'(lx,a60)') l$pom 

end do 
close(23) 

1 write (6,'(lx," If you want to calculate feedback gains" ,/ 
> that the pole placement be as in Fig.l, then" ,/ 
> " specify 1, otherwise the gains will be computed",/ 
> " to place the poles as presented in Fig.2.:",$)') 

ierrind=l 
read (5,'(il)',err=1500) ifl2 

c---------------------------------------------------------------------
C 
C computation of the feedback gains 
C 

100 IF (ifl2.eq.l) THEN 
C 
C the pair of dominant poles is complex (or real and equal) and 
C non-dominant pole is real (Fig.l.) 
C 



c 

> 

> 
> 

> 
> 

dpot-uO/lO. 
pot=2. 
IF (ni(i).eq.2) THEN 

pkl(i)=(uO/5 .)**2/bhm (2,i) 
pk2(i)=(2.*uO/5.+ahm(2,2,i))/bhm(2,i) 

ELSE 
IF (opc.EQ.'N') THEN 

alf=-ahm(2,2,I)-ahm(3,3,I) 
pk3(I)=0 
bet=alf*2.*uO/5.-3.*(uO/5.)**2 
gam=alf*(uO/5.)**2-2.*( uO/5.)**3 
pkl(I)=gam/ahm(2,3,I)/bhm(3,I) 
pk2(I)=(bet-ahm(2,2,I)*ahm(3,3,I)+ahm(2,3,I) 

*ahm(3,2,I))/ahm(2,3,I)/bhm(3,I) 

ELSE 
alf=(pot+1.)*uO 
pk3(I)=(alf+ahm(2,2,I)+ahm(3,3,I))/bhm(3,I) 
bet=alf*2.*uO/5.-3.*(uO/5.)**2 
gam=alf*( uO/5.)**2-2.*(uO/5.)**3 
pkl(I)=gam/ahm(2,3,I)/bhm(3,I) 
pk2(I)=(bet-ahm(2,2,I)*ahm(3,3,I)+ahm(2,3,I) 

*ahm(3,2,I)+ahm(2,2,I)*pk3(I))/ahm(2,3,I) 
Ibhm(3,I) 

DO WHILE (pk2(i).LT.0.OR.pk3(i).LT.0) 
pot=pot+dpot 
alf=(pot+1.)*uO 
pk3(I)=(alf+ahm(2,2,I)+ahm(3,3,I))/bhm(3,I) 
bet=alf*2.*uO/5.-3.*(uO/5.)**2 
gam=alf*(uO/5.)**2-2.*(uO/5.)**3 
pkl(I)=gam/ahm(2,3,I)/bhm(3,I) 
pk2(I)=(bet-ahm(2,2,I)*ahm(3,3,I)+ahm(2,3,I) 

END DO 

*ahm(3,2,I)+ahm(2,2,I)*pk3(I)) 
lahm(2,3,I)/bhm(3,I) 

END IF 
s3=2.*uO/2.-alf 
WRITE (6,'(11" Non-dominant pole is (S3):",ElO.3)')S3 

END IF 
ELSE 

IF (ni(i).eq.3) THEN 

C the dominant pole is real and the nondominant pair of poles 
c are complex (or real) - Fig.2. 
C the third order subsystem 
c 
5 

888 

> 

> 

WRITE (6,'(" The damping coefficient (zeta[O.-l.]):", 
I," of the non-dominant pair of poles:",$)') 

ierrind=2 
read (5,*,err=1500) zeta 
WRITE (6,'(" Natural undamped frequency (omega n)" 

,I" of the non-dominant pair of poles:",$)') 
ierrind=3 
READ (5,*,err=1500) omega n 
IF (opc.eq.'Y') THEN -

omegad=omega n/10. 
DO WHILE (pk2(i).LE.O.OR.pk3(i).LE.O) 

omega n=omega n+omegad 
alfa=2.*zeta*omega n+u02/2. 
pk3(i)=(alfa+ahm(2~2,i)+ahm(3,3,i))/b(3,i) 
beta=omega n*omega n+zeta*omega n*u02 
pk2(i)=(beta+ahm(2~3,i)*ahm(3,2~i) 
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C 

> 
> 

> 
> 

+ahrn(2,2,i)*pk3(i)*b(3,i) 
-ahrn(2,2,i)*ahrn(3,3,i»/ahrn(2,3,i)/b(3,i) 

garna=.5*u02*ornega_n*ornega_n 
pkl(i)=garna/ahrn(2,3,i)/b(3,i) 

END DO 
ELSE 

ornega n=(-ahrn(2,2,i)-ahrn(3,3,i)-u02/2.)/2./zeta 
garna=~5*u02*ornega_n*ornega_n 
pkl(i)=garna/ahrn(2,3,i)/b(3,i) 
beta=ornega n*ornega n+zeta*ornega n*u02 
pk2(i)=(beta+ahrn(2~3,i)*ahrn(3,2~i) 

END IF 
ELSE 

+ahrn(2,2,i)*pk3(i)*b(3,i) 
-ahrn(2,2,i)*ahrn(3,3,i»/ahm(2,3,i)/b(3,i) 

C the second order subsystem 
C 

C 

s2=u02*2. 

s2d=u02/10. 
DO WHILE (pk2(i).LE.0.l) 

s2=s2+s2d 
pkl(i)-u02/2.*s2/bhm(2,i) 
pk2(i)=(u02/2.+s2+ahm(2,2,i»/bhm(2,i) 

END DO 
END IF 

END IF 

C print computed gains and open-loop and clsed-loop subsystem 
C transfer functions 
C 

WRITE (6,'(lX,"Local feedback servo gains:",/)') 
WRITE (6,4) 'position servo gain KP(',I,')=',PK1(i) 
WRITE (6,4) 'Velocity servo gain KV(',I,')=',PK2(i) 
IF (NI(I).EQ.3) THEN 

WRITE (6,4) 'Curr./pr. servo gain KS(',I,')=',PK3(i) 
END IF 
WRITE (6,30) 
WRITE(6,'(lX,"Open-loop transfer function:",/)') 
IF (NI(I).EQ.2) THEN 

WRITE (6,25) bhm(2,i),-ahm(2,2,i) 
ELSE 

WRITE (6,26) ahm(2,3,i)*bhm(3,i),-(ahm(2,2,i)+ahm(3,3,i», 
> ahm(2,2,i)*ahm(3,3,i)-ahm(2,3,i)*ahm(3,2,i) 

END IF 
WRITE (6,30) 
WRITE (6,'(lX,"Closed-loop transfer function:",/)') 
IF (NI(I).EQ.2) THEN 

WRITE (6,35) bhm(2,i)*pkl(i),-ahm(2,2,i)+bhm(2,i)*pk2(i), 
> bhm(2,i)*pkl(i) 

ELSE 
bpom2=pk3(i)*bhm(3,i)-ahm(3,3,i)-ahrn(2,2,i) 
bpoml=ahm(2,3,i)*(pk2(i)*bhm(3,i)-ahm(3,2,i»-ahm(2,2,i)* 

> (pk3(i)*bhm(3,i)-ahm(3,3,i»-ahm(2,1,i) 
bpomO=pkl(i)*bhm(3,i)*ahm(2,3,i)-ahm(2,1,i)*(pk3(i)* 

> bhm(3,i)-ahm(3,3,i» 
WRITE (6,36) bhm(3,i)*ahm(2,3,i)*pkl(i),bporn2,bpoml,bpomO 

END IF 



WRITE (6,30) 
RETURN 

1500 WRITE (6,'(" DIAG**· Input conversion error")') 
go to (1,5,888) ierrind 
END 

C---------------------------------------------------------------------
C SUBROUTINE: TRAJEK 
C---------------------------------------------------------------------
C FUNCTION: GENERATES NOMINAL TRAJECTORIES OF THE 
C ROBOT JOINTS - BETWEEN TWO SPECIFIED 
C TERMINAL POSITIONS WITH TRIANGULAR OR 
C TRAPEZOID VELOCITY DISTRIBUTION 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C FILE(5) robot name 
C N 
C QO(I) 
C QF(I) 
c 
c 
C 
C 
C 
C 
C 
C 
C 
C 

H 

T 
BETA 

number of joints of the user's specific robot 
initial values of the joint coordinates 
values of the terminal point of the joint tra
jectories (from the input file ***.TRA) 
sampling interval at which the trajectories 
are computed 
time duration of the nominal movement (traj.) 
parameter defining the trapezoidal profile of 
velocity distribution 

A DLMB 
(trajectory) 

+ 
1 

1 

1 

I· 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

----1----+--------------+------+---------------> o Tl T2 T TE(time) 

TI-T*BETA 
T2=T*(1.-BETA) 

C PROFIL character variable for the user's selection 
C of the desired profile of the velocity dis-
C tribution along the nominal trajectory 
C KSI2(6) indicator of the joint type (1- linear, 
C 0 - rotational) 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C TE time instant 
C Q(6) positions of the joints angles at the nominal 
C trajectory at the moment TE 
C DQ(6) velocities " 
C DDQ(6) accelerations 
C these values are written in the output file ***.ANG 
C---------------------------------------------------------------------
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C 
SUBROUTINE TRAJEK 

CHARACTER *2 PROFIL,FILEP*9,STAMPA*1,FILET*9 
CHARACTER *4 IND(6) 
BYTE FILE(5) 
COMMON/FILE/FILE 
COMMON/DINT TR/ H 
COMMON/ORDGLB/ NUK,N 
COMMON/TIPL/NPOM,KSIl(6),KSI2(6),KSI3(6) 
DIMENSION QO(6),QF(6),Q(6),DQ(6),DDQ(6),DLTQ(6) 
REAL LMB 

C---------------------------------------------------------------------
C 
C read data from the input file ***.TRA 
C 

FILET=CHAR(FILE(1))//CHAR(FILE(2))//CHAR(FILE(3))// 
* CHAR(FILE(4))//CHAR(FILE(5))//'.TRA' 

open(unit=7,file=filet,status='old') 
read(7,2l0)(qO(i),i=1,n) 
read(7,2l0)(qf(i),i=1,n) 
read(7,2l0)h,t 

200 format(lx,i3) 
210 format(lx,6flO.5) 

close(unit=7) 
C 
22 FORMAT(6(4X,A5,4X)) 
100 FORMAT(6E13.5) 
C 

C 

TE=O. 
M=T/H 

C indication of the joint type (TRA/ROT) 
C 

C 

DO I=l,N 
IND(I)=' rad ' 

IF(KSI2(I).EQ.l)THEN 
IND(I)=' [m] , 
END IF 

END DO 

type * 
type *,' Synthesis of the joints nominal trajectories' 
TYPE 40 

40 FORMAT(/,$,' Want to ~rint the nominal trajectories [YIN]?:') 
READ(5,45)STAMPA 

45 FORMAT(Al) 
C 

TYPE 10 
10 FORMAT($,' Select the velocity profile-triangular or trapezoid 

* [TA/TP]:') 
READ(5,20)PROFIL 

20 FORMAT(A2) 
C 

FILEP=CHAR(FILE(1))//CHAR(FILE(2))//CHAR(FILE(3))// 
* CHAR(FILE(4))//CHAR(FILE(5))//'.ANG' 

OPEN(UNIT=4,FILE=FILEP,STATUS='NEW') 
C 

IF(PROFIL.EQ.'TA')GO TO 70 
C------------------------------------------------------------------



C 
C trapezoid velocity profile 
C 
25 TYPE 30 
30 FORMAT(' Specify the trapezoid profile -

* by defining parameter BETA',/,$,' (duration of the 
* acceleration/deacceleration phase as a part of',/, 
* , total trajectory duration) [0.0-0.5]:') 

READ (5,35) BETA 
35 FORMAT (FlO.5) 

IF((BETA.LT.0.0).OR.(BETA.GE.0.5)) GO TO 25 
C 
C 

C 

Tl=BETA*T 
T2= (1. -BETA) *T 

C Computation of the scalar parameters of the velocity 
C profile LMB and DDLMB and CONST 
C 

C 

P=1./((BETA*T**2)*(l.-BETA)) 
Pl=l./(T*(l.-BETA)) 
CONST=0.5*BETA/(l.-BETA) 

50 CONTINUE 

C 

IF(TE.GT.T)GO TO 65 
IF(TE.LT.Tl) THEN 

LMB=0.5*p*TE**2 
DLMB=P*TE 
DDLMB=P 

ELSE IF(TE.LT.T2)THEN 
LMB=Pl*TE-CONST 
DLMB=pl 
DDLMB=O. 

ELSE IF(TE.LE.T) THEN 
LMB=-0.5*p*(T-TE)**2+l. 
DLMB=P*(T-TE) 
DDLMB=-P 

END IF 

C computation of the nominal positions, velocities and 
C accelerations 
C 

C 

DO I=l,N 
DLTQ(I)=QF(I)-QO(I) 
Q(I)=QO(I)+LMB*DLTQ(I) 
DQ(I)=DLMB*DLTQ(I) 
DDQ(I)=DDLMB*DLTQ(I) 
END DO 

C write the trajectories in the file ***.ANG 
C 

C 

WRITE(4,lOO)TE 
WRITE(4,lOO)(Q(I),I=l,N) 
WRITE(4,lOO)(DQ(I),I=l,N) 
WRITE(4,lOO)(DDQ(I),I=l,N) 

C print at the screen 
C 
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C 

IF(STAMPA.EQ.'N')GO TO 110 
WRITE(6,22)(IND(I),I=1,N) 
WRITE(6,100)TE 
WRITE(6,100)(Q(I),I=1,N) 
WRITE(6,100)(DQ(I),I=1,N) 
WRITE(6,100)(DDQ(I),I=1,N) 

110 TE=TE+H 
GO TO 50 

65 CONTINUE 
C 

CLOSE(UNIT=4) 
RETURN 

C--------------------------------------------------------------------
C 
C 
C 
70 

C 

triangular velocity profile 

CONTINUE 
T1=T/2. 

C computation of parameters 
C 

P=4./(T**2) 
150 CONTINUE 

C 

C 

C 

IF(TE.GT.T) GO TO 160 

IF(TE.LT.T1)THEN 
LMB=0.5*p*TE**2 
DLMB=P*TE 
DDLMB=P 

ELSE 

END IF 

LMB=-0.5*P*(T-TE)**2+1. 
DLMB=P*(T-TE) 
DDLMB=-P 

DO I=l,N 
DLTQ(I)=QF(I)-QO(I) 
Q(I)=QO(I)+LMB*DLTQ(I) 
DQ(I)=DLMB*DLTQ(I) 
DDQ(I)=DDLMB*DLTQ(I) 
END DO 

C write in the output fIe ***.ANG 
C 

C 

WRITE(4,100)TE 
WRITE(4,100)(Q(I),I=1,N) 
WRITE(4,100)(DQ(I),I=1,N) 
WRITE(4,100)(DDQ(I),I=1,N) 

C print at the screen 
C 

C 

IF(STAMPA.EQ.'N')GO TO 90 
WRITE(6,22)(IND(I),I=1,N) 
WRITE(6,100)TE 
WRITE(6,100)(Q(I),I=1,N) 
WRITE(6,100)(DQ(I),I=1,N) 
WRITE(6,100)(DDQ(I),I=1,N) 



90 TE=TE+H 
GO TO 150 

160 CONTINUE 
C 

CLOSE(UNIT=4) 
RETURN 
END 

C---------------------------------------------------------------------
C SUBROUTINE: SMNOMP 
C---------------------------------------------------------------------
C FUNCTION: COMPU~ES THE NOMINAL DYNAMICS OF THE ROBOT 
C - NOMINAL DRIVING TORQUES AND NOMINAL CEN-
C TRALIZED OR LOCAL CONTROL 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C FILE(5) - robot name 
C QOl(6) - nominal angles (displacements) of the joints 
C QT01(6) -nominal velocities of the joints 
C QUO(6) - nominal accelerations of the joints 
C the data on nominal trajectory are read from 
C the file ***.ANG 
C NI(I) - the order of the i-th subsystem 
C N - number of joints of the user's specific robot 
C A,B,F - matrices of the actuators' models (see 
C explanations in subroutine INPUTL) 
C UMAX(2,6) - contraints upon the actuator inputs 
C HMIN - minimal values of the moments of inertia of 
C the mechanism around the joints axes (see ex-
C planation in subroutine SM MAX IN) 
C HH(6,6) - inertia matrix of the robot for given joints 
C angles(SI) and velocities (SIDOT) - computed 
C in the subroutine MODEL 
C Hl(6) - vector of centrifugal, Coriolis and gravity 
C moments for given SI and SIDOT - subrout.MODEL 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C pO(6) - nominal driving torques 
C UO(6) - nominal programmmed control -feedforward 
C (centralized or local) 
C POWER(6)- nominal power at each actuator 
C SENERG(6) - nominal power consumption of each actuator 
C DXO(I) - nominal currents/pressures 
C---------------------------------------------------------------------
C SUBROUTINES REQUIRED: 
C MODEL - computes the dynamic model of the robot 
C mechanism (computes inertia matrix Hand 
C centrifugal, Coriolis, gravity moments h 
C for the given nominal trajectories) 
C-----------------------------------------------------------------

SUBROUTINE SMNOMP 
C 
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DIMENSION XPOM(6) 
DIMENSION QUO(6) 

C 
DIMENSION SENERG(6),POWER(6) 

C 

COMMON/NPOM1/ QOO(6),QTOO(6),QUOO(6),POO(6) 
COMMON/NPOM2/ Q01(6),QT01(6),QU01(6),P01(6) 
COMMON/SUBSYS/ A(3,3,6),B(3,6),F(3,6) 
COMMON/NKOORD/ PO(6),XO(18),UO(6) 
COMMON/ACTORD/ NI(6) 
COMMON/UMAX/ UMAX(2,6) 
COMMON/HMIN/ HMIN(6) 
COMMON/SKOORD/ DXO(18),PXO(6) 
COMMON/ORDGLB/NUK,NN 
COMMON/FILE/FILE(S) 
BYTE FILE 

INCLUDE 'IN2:MODELM.MOD' 
COMMON/MODOPC/ MOD,ITIP 
CHARACTER*9 FILEP C----------------------_________________________________________ _ 

C 

TYPE * 
TYPE *,' Computation of the nominal dynamics of the robot' 
TYPE *,' - nominal driving torques and nominal' 
TYPE *,' programmed control -' 
type 399 

399 FORMAT(/,$,, want centralized or local nominal programmed 
1 control? [C/L]:') 

read(S,401)YES 
C 
C set indicator ILOC: ILOC=O - local nominal control, 
C ILOC=1 - centralized nominal control 
C 

C 

C 

ILOC=1 
IF(YES.EQ.'L')ILOC=O 
TYPE 400 

400 FORMAT($,' want to print the nominal dynamics [YIN]?:') 
READ(S,401)YES 

401 FORMAT(A1) 

MOD=O 
ITIP=O 
N=NN 

C openning of the files ***.ANG to read nominal trajectories 
C and ***.DIN to write the computed nominal control and 
C nominal driving torques 
C 

FILEP=CHAR(FILE(1))//CHAR(FILE(2))//CHAR(FILE(3))// 
1 CHAR(FILE(4))//CHAR(FILE(S))//'.ANG' 

OPEN(UNIT=1,NAME=FILEP,STATUS='OLD',ERR=1110) 
C 

FILEP=CHAR(FILE(1))//CHAR(FILE(2))//CHAR(FILE(3))// 
1 CHAR(FILE(4))//CHAR(FILE(S))//'.DIN' 

OPEN(UNIT=2,NAME=FILEP,STATUS='NEW') 
C 
C read nominal trajectories from the file ***.ANG 
C VR2 is the time instant along the nominal trajectory 
C 



C 

READ(1,100)VR2 
READ(1,100)Q01 
READ(1,100)QT01 
READ(1,100)QUO 

100 FORMAT(6E13.5) 

C the auxi1aiar~ vectors SI and SIDOT - through them the 
C values of the joint angles and velocities are sent to the 
C subroutine MODEL to compute matrix HH and vector H1 
C 

C 

DO 1 I=l,N 
SENERG(I)=O. 
SI(I)=Q01(I) 

1 SIDOT(I)=QT01(I) 

C call subroutine MODEL to compute HH and HI for given joints 
C angles and velocities (nominal trajectory) 
C 

CALL MODEL 
C 
C computation of the nominal driving torque pxO in the initial 
C point of the nominal trajectory and computation of the third 
C actuator state coordinate (if its order is 3) 
C 

C 

C 

DO 2 I=1,N 
PXO(I)=Hl(I) 
DO 77 J=l,N 
PXO(I)=PXO(I)+HH(I,J)*QUO(J) 

77 CONTINUE 

IF(NI(I).EQ.2)GO TO 2 
DXO(I)=QUO(I)-A(2,2,I)*QT01(I) 

C if the centralized nominal control is computed then the total 
C nominal driving torque is taken into account 
C if the local nominal control is computed then just the 
C estimation of the mechanism moment of inertia around the 
C joint axis is taken into account 
C 

IF(ILOC.EQ.I)THEN 
DXO(I)=DXO(I)-F(2,I)*PXO(I) 

ELSE 
DXO(I)=DXO(I)-F(2,I)*HMIN(I)*QUO(I) 

END IF 
DXO(I)=DXO(I)/A(2,3,I) 

2 CONTINUE 
999 FORMAT(3X,6El2.3) 

C---------------------------------------------------------------------
C 
C 
C 
C 
C 

memorize the nominal torques PXO in pO 
and the nominal trajectory in QOO,QTOO,QUOO (the previous 
point) and the time instant in VR1 

3 VR1=VR2 
DO 4 I=l,N 
PO(I)=PXO(I) 
QOO(I)=QOl(I) 
QTOO(I)=QT01(I) 
QUOO(I)=QUO(I) 

4 XO(I)=DXO(I) 
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C 
C read next point at the nominal trajectory from the file 
C 

C 

C 

READ(l,100,END=977)VR2 
READ(l,100)Q01 
READ(l,100)QT01 
READ(l,100)QUO 

POM=VR2-VR1 

C compute QUO(6) - nominal accelerations 
C and send nominal joints angles and velocities through the 
C auxiliary vectors 51 and SIDOT into subroutine MODEL 
C 

C 

5 DO 6 I=l,N 
5I(I)=Q01(I) 
5IDOT(I)-QT01(I) 

6 CONTINUE 

C call MODEL to compute HH and H1 for the nominal trajectory 
C 

CALL MODEL 
C 
C computation of the nominal driving torques, power and energy 
C consumption, nominal state vectors and programmed control 
C 

C 

C 

C 

DO 7 I=l,N 
PXO(I)=H1(I) 
DO 88 J=l,N 
PXO(I)=PXO(I)+HH(I,J)kQUO(J) 

88 CONTINUE 

POWER(I)=ABS(PO(I)*QTOO(I)) 
SENERG(I)-5ENERG(I)+POWER(I)*POM 

IF(NI(I).EQ.2)GO TO 89 

C computation of the third state coordinate of the actuator 
C model (if its order is 3) 
C 

C 

C 

C 

DXO(I)=QUO(I)-A(2,2,I)*QT01(I) 

IF(ILOC.EQ.1)THEN 
DXO(I)=DXO(I)-F(2,I)*PXO(I) 

EL5E 
DXO(I)=DXO(I)-F(2,I)*HMIN(I)*QUO(I) 

END IF 

DXO(I)=DXO(I)/A(2,3,I) 

C computation of the derivative of the third state coordinate 
C 

XPOM(I)=(DXO(I)-XO(I))/POM 
C 

C computation of the nominal control if the model order is 3 
C 

C 

UO(I)-(XPOM(I)-A(3,2,l)*QTOO(I)-A(3,3,I)*XO(I))/B(3,I) 
GO TO 90 



C if the order of the actuator state model is 2, directly 
C compute the nominal control 
C 

89 UO(I)-QUOO(I)-A(2,2,I)*QTOO(I) 
C 

IF(ILOC.EQ.l)THEN 
UO(I)=(UO(I)-F(2,I)*PO(I))/B(2,I) 

ELSE 
UO(I)=(UO(I)-F(2,I)*HMIN(I)*QUOO(I))/B(2,I) 

END IF 
C 
C 
C 

amplitude contraint upon the actuators inputs 

90 IF(UO(I).LT.UMAX(1,I).AND.UO(I).GT.(-UMAX(2,I)))GO TO 7 
TYPE 101,VRl,I,UO(I) 

7 
C 
C 
C 

CONTINUE 

set computed values to 0 if they are less than 0.0001 

DO 7722 I-l,N 
IF(ABS(QOO(I)).LT.O.OOOOl)QOO(I)=O. 
IF(ABS(QTOO(I)).LT.O.OOOl)QTOO(I)=O. 
IF(ABS(QUOO(I)).LT.O.OOOl)QUOO(I)=O. 
IF(ABS(PO(I)).LT.O.OOOl)PO(I)=O. 
IF(ABS(UO(I)).LT.O.OOOl)UO(I)=O. 
IF(ABS(POWER(I)).LT.O.OOOl)POWER(I)=O. 
IF(ABS(SENERG(I)).LT.O.OOOl)SENERG(I)=O. 

7722 
C 

CONTINUE 

C write nominal dynamics in the output file ***.DIN 
C 

WRITE(2,100)VRl 
WRITE(2,100)(QOO(I),I=1,N) 
WRITE(2,100)(QTOO(I),I=1,N) 
WRITE(2,100)(QUOO(I),I=1,N) 
WRITE(2,100)(PO(I),I=1,N) 
WRITE(2,100)(UO(I),I=1,N) 
WRITE(2,100)(POWER(I),I=1,N) 
WRITE(2,100)(SENERG(I),I=1,N) 

C 
C print nominal dynamics at the terminal screen 
C 

IF(YES.NE.'Y')GO TO 3 
TYPE 200,VRl 

200 FORMAT(' Time:',F12.s,' [s)') 
TYPE 20l,(I,I-l,N) 

201 FORMAT(' Joint numbers ',6(4X,Il,sx)) 
TYPE 202,(QOO(I),I-l,N) 

202 FORMAT(' Angles [rad) or [m):',6ElO.3) 
TYPE 203,(QTOO(I),I-l,N) 

203 FORMAT(' Velocit.[rad/s-m/s):',6ElO.3) 
TYPE 204,(QUOO(I),I=1,N) 

204 FORMAT(' Acceler. [rad/s**2):',6EIO.3) 
TYPE 20s,(PO(I),I=1,N) 

205 FORMAT(' Driving torques[Nm):',6ElO.3) 
TYPE 206,(UO(I),I=1,N) 

206 FORMAT(' Control sign.[V-mA):',6ElO.3) 
TYPE 207,(POWER(I),I=1,N) 

207 FORMAT(' Power [WI: ',6EIO.3) 
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208 

C 
C 

101 

C 
977 

C 
C 
C 

C 

C 
6680 

1110 
1111 

1 
2 
3 
4 

TYPE 208,(SENERG(I),I=1,N) 
FORMAT(' Energy [WsJ: 
GO TO 3 

, ,6E10.3) 

FORMAT(' DIAG*** Nominal control signal are greater than the' ,I, 
, allowable amplitude constraints at the actuators inputs' ,I, 
, (change nominal kinematics, or change actuators)',/,3X, 
, time =', F1S.S, ' in the joint No. ',12,' the required nominal 
signal =', G1S.S) 

CONTINUE 

write the terminal point at the trajectory into output file 

WRITE(2,100)VR1 
WRITE(2,100)(QOO(I),I=1,N) 
WRITE(2,100)(QTOO(I),I=1,N) 
WRITE(2,100)(QUOO(I),I=1,N) 
WRITE(2,100)(PO(I),I=1,N) 
WRITE(2,100)(UO(I),I=1,N) 
WRITE(2,100)(POWER(I),I=1,N) 
WRITE(2,100)(SENERG(I),I=1,N) 

CLOSE (2) 

CONTINUE 
CLOSE (1) 
RETURN 
TYPE 1111, FILEP 
FORMAT (lX,'DIAG*** File' ,a9,lx,' cannot be found') 
CLOSE (1) 
STOP 
END 

C---------------------------------------------------------------------
C SUBROUTINE: LINANA 
C---------------------------------------------------------------------
C FUNCTION: THE SUBROUTINE FOR EXPONENTIAL STABILITY 
C ANALYSIS OF THE LINEARIZED MODEL OF THE 
C ROBOT; CALLS SUBROUTINES FOR FORMING OF 
C THE LINEARIZED MODEL OF THE ROBOT AND FOR 
C COMPUTATION OF THE EIGEN-VALUES OF THE 
C LINEAR MODEL; THE STABILITY OF THE SYSTEM 
C IS TESTED IF ONLY LOCAL CONTROLLERS ARE 
C APPLIED 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C FILE(S)-name of the user's robot 
C N - number of joints of the user's robot 
C TO - time instant at the nominal trajectory 
C YO(12)- nominal joints angles and velocities at the 
C time instant TO (the nominal state vector of 
C the mechanical part of the system) 
C DXO(6)- Nominal accelerations of the joint coord. 
C PO(6) - Nominal driving torques in the time instant TO 



C TIMIN(*) - vector of time instants in which the analy-
C sis of the system stability is required -
C this is specifified by the user in ***.INT 
C ITMIN - number of points at the nominal trajectory in 
C which we have to analyze the robot stability 
C ALFAIM - desired exponential stability degree of the 
C linearized model of the robot 
C IOPTIN(6) - option: integral feedback loop(l-yes,O-no) 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C REALEV(NUK) - Real parts of the eigen-values of the 
C linearized global system 
C RIMAG(NUK) Complex parts " 
C ICNVLN - Indication whether the linearized model 
C of the system is stabilized or not 
C---------------------------------------------------------------------
C SUBROUTINES REQUIRED: 
C SMLINM - Forming of the matrices of linearized mo-
C del of the robotic system (open-loop system) 
C SMLGAD - Introduce local feedback loops in the mat-
C rices of the linearized model of the system 
C SMEIGN - Auxiliary subroutine for computation of the 
C eigen-values of the given quadratic matrix 
C----------------------------------------------------------------------
C 

C 

C 

C 

C 

SUBROUTINE LINANA 

COMMON/ORDGLB/ NUK,N 
COMMON/STDGIM/ ALFAI(6),ALFAIM 
COMMON/ACTORD/NI(6) 
COMMON/OPTION/IPOMl(42),IOPTIN(6) 
COMMON/OPTPR/ ICNVLN 
COMMON/AUXIL/ TO,PO(6),YO(12),DXO(6),UO(6) 
COMMON/CTIMIN/ TIMIN(60),ITMIN 

BYTE FILE(5) 
COMMON/FILE/ FILE 
COMMON/CAUXIL/ ITERC,REALPS 
COMMON/INTGAI/ NUKI 

DOUBLE PRECISION AL(24,24) 
DIMENSION AO(24,24),BL(24,6) 
DIMENSION REALEV(24),RIMAG(24) 

DIMENSION HU(6,6) 

BYTE FTOT(14),FTOT1(14) 
DATA FTOT(1)/'I'/,FTOT(2)/'N'/,FTOT(3)/'1'/,FTOT(4)/':'/, 

1 FTOT(lO)/'.'/,FTOT(ll)/'D'/,FTOT(12)/'I'/,FTOT(l3)/'N'/ 
2 FTOT(14)/O/ ' 

DATA FTOT1(1)/'I'/,FTOT1(2)/'N'/,FTOT1(3)/'l'/,FTOT1(4)/':'/, 
1 FTOT1(10)/'.'/,FTOTl(11)/'I'/,FTOT1(12)/'N'/, 
2 FTOT1(13)/'T'/,FTOT1(l4)/O/ C-------------------------------____________________________________ _ 

C 

C 

TYPE * 
TYPE *,' Stability analysis' 
TYPE * 

DO 199 1=1,5 
FTOT1(I+4)=FILE(I) 
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199 
C 
C 
C 
C 

9000 
C 
C 
C 

C 

FTOT(I+4)=FILE(I) 

computation of NUKI - the order of the total systems with 
local integral feedback loops 

NUKI=O 
DO 9000 I=l,N 
NUKI=NUKI+NI(I)+IOPTIN(I) 

open file containing nominal dynamics computed in SMNOMP 

OPEN(UNIT=1,NAME=FTOT,TYPE='OLD',ERR=3100) 

C open file ***.INT specified by the user which contains the 
C desired stability degrees and the moments at the nominal 
C trajectories "in which" the user wants to analyze the 
C stability of the linearized model 
C 

C 

102 

C 

3100 
3103 

C 
3101 
3104 

OPEN(UNIT=2,NAME=FTOT1,TYPE='OLD',ERR=3101) 

READ(2,102)ITMIN 
FORMAT(I4) 
GO TO 3102 

TYPE 3103, FILE 
FORMAT(' DIAG*** File ',5A1,'.DIN cannot be found') 
RETURN 

TYPE 3104,FILE 
FORMAT(' DIAG*** File ',5A1,'.INT cannot be found') 
RETURN 

C------------------------------------------------------------------
C 
C 
C 
C 

3102 
C 
C 
C 

1 

C 

reset the counter ITERC of points at the nominal 
trajectory in which analysis has to be performed 

ITERC=l 

read data on nominal dynamics from ***.DIN 

READ(1,100,END=3201)TO 
READ(1,100)(YO(I),I=1,N) 
READ(1,100)(YO(I),I=N+1,N+N) 
READ(1,100)(DXO(I),I=1,N) 
READ(1,100)(PO(I),I=1,N) 
READ(1,100)(UO(I),I=1,N) 

C auxiliary read of power and energy - not necessary in 
C this routine 
C 

100 

C 
3201 

C 
3202 

READ(1,100)(UO(I),I=1,N) 

READ(1,100)(UO(I),I=1,N) 
FORMAT(6E13.5) 
GO TO 3202 

CLOSE(UNIT=l) 
GO TO 3203 

CONTINUE 



C 
C test if the next point at the nomonal trajectory around which 
C the stability of the system has to be analyzed is reached or 
C not; if it is reached - go to stability analysis 
C otherwise - read the next data at the nominal trajectory 
C 

IF(TO.LT.TIMIN(ITERC)-O.OOOl)GO TO 1 
C 
C read data on desired stability degree 
C 

3203 READ(2,101)TIMIN(ITERC) 
READ(2,101)ALFAIM 

101 FORMAT(E15.5) 
C---------------------------------------------------------------------
C 
C 
C 
C 
C 
C 
C 

C 
10 

compute matrices of the linearized model of the system in the 
user's selected point at the nominal trajectory (without local 
feedback loops) 
AO(NUKI,NUKI),BL(NUKI,N)-

CALL SMLINM(AO,BL,HU) 

Matrices of the open-loop linearized 
model of the robot 

C put AO into matrix AL to get double-precision computation 
C 

7773 
C 

412 
1 
2 

C 
C 
C 

C 
C 
C 
C 
C 
C 

11 
C 
C 
C 
C 

411 
1 
2 

C 
C 
C 

NN=NUKI 
NM=NUKI 
DO 7773 KKK=1,24 
DO 7773 JJJ=1,24 
AL(KKK,JJJ)=AO(KKK,JJJ) 

WRITE(6,412) TIMIN(ITERC) 
FORMAT(/,' Eigen-values of the open-loop matrix of',/, 
, linearized model of the robot in the time instant' ,F12.5,' 

[s]' ,/) 

computation of eigen-values of the open-loop system matrix 

CALL SMEIGN(NN,NM,AL,REALEV,RlMAG) 

introducing of the local feedback gains in the matrix of the 
open-loop linearized model of the system AO 
the matrix AL s obtained: the matrix of the closed-loop linea
rized model of the robotic system 

CALL SMLGAD(AO,AL,BL) 

computation of the eigen-values of the linearized model of 
the system in the selected point at the nominal tajectory 

WRITE(6,411)TIMIN(ITERC) 
FORMAT(/,3X,' Eigen-values of the closed-loop matrix of', 

/,' linearized model of the robot in the time instant 
',F12.5,' [s]',/) 

CALL SMEIGN(NN,NM,AL,REALEV,RlMAG) 

search for the greatest eigen-value of the system matrix 
(the eigen-value with the greatest value of the 
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C 
C 

15 
C 

4422 
C 

real part) 

PALFA-REALEV(l) 
DO 15 I=2,NUKI 
IF(REALEV(I).GT.PALFA)PALFA=REALEV(I) 

WRITE(6,4422)PALFA 
FORMAT(/,3X,' Achieved stability degree of the robot',F10.5,/) 

IF(PALFA.GT.O)TYPE *,' WARNING*** The robot is not stabilized' 
C 
C Check if the exponential stability degree of the global system 
C is greater than the desired stability degree 
C 

IF«PALFA).GT.(-ALFAIM))GO TO 50 
C 
C increment of the counter of points at the nominal trajectory 
C 

ITERC=ITERC+l 
C 
C check if the system stability is tested in all desired points 
C at the nominal trajectory or not: if yes - terminate analysis 
C otherwise go to read the next point at the nominal trajectory 
C 

IF(ITERC.LE.ITMIN)GO TO 1 
C 
C message whether the linearized model of the robot is stable 
C in desired way if just local controllers are applied 
C 

ICNVLN=O 
C 

GO TO 111 
C 

50 ICNVLN-1 
C 

111 RETURN 
END 

C---------------------------------------------------------------------
C SUBROUTINE: SMLINM 
C---------------------------------------------------------------------
C FUNCTION: COMPUTES THE MATRICES OF THE LINEARIZED 
C MODEL OF THE ROBOT; COMPUTES THE OPEN-
C -LOOP MATRICES OF THE TOTAL SYSTEM BY 
C ADDING THE MATRICES OF THE ACTUATORS 
C MODELS TO THE MATRICES OF THE LINEARIZED 
C MODEL OF THE ROBOT MECHANICAL PART 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C N - Number of joints of the user's robot 
C NUK - system order 
C NUKI - order of the system with local integral feed-
r back loops 



C 
C 
C 
C 
C 
C 
C 
C 

NI(N) - orders of the subsystems (actuators) 
A(NI(I),NI(I),I)-subsystem matrix of the i-th 
B(NI(I),N) - input distribution vector of the 

models 
actuator 
i-th 

actuator 
F(NI(I),N) - load distribution vector of the i-th 

actuator 
YO(2*N) 

C PO(N) 
C DXO(N) 
C OPTIONS: 

-nominal trajectory of the joint angles 
velocities (at the given time instant) 

- nominal driving torques 
- nominal accelerations of joint angles 

and 

C IOPTIN(N)- Integral feedback loop in the local con-
C troller (l-yes,O-no) 
C INPUT VARIABLES FROM THE CALLED SUBROUTINES: 
C H(N,N) - inertial matrix H of the mechanical part of 
C the system for the given state 
C HO(N) - vector of gravity, centrifugal and Coriolis 
C moments (forces) h for the given state 
C DH(N,N,N)- the first derivative of the matrix H by the 
C joint angles 
C DHO(N,N) - the first derivative of the vector h by the 
C joint angles 
C DHODOT(N,N) - the first derivative of the vector h by 
C the joint velocities 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C AO(NUKI,NUKI) - system matrix of the open-loop 
C linearized model of the robot 
C BL(NUKI,N) input distribution matrix of the 
C linearized model of the robot 
C MODLIN - indicator for computation of the linea-
C rized model of mechanical part of the 
C robot in subroutine MODEL (I-compute, 
C O-not) 
C---------------------------------------------------------------------
C SUBROUTINES REQUIRED: 
C MODEL - computes the nonlinear and the linearized 
C model of the mechanical part of the robot 
C for the given joint angles and velocities 
C (computes matrices H,HO,DH,DHO,DHODOT) 
C MINV - SSP subroutine - inverts the given quad-
C ratic matrix 
C---------------------------------------------------------------------
C 

C 

SUBROUTINE SMLINM(AO,BL,HU) 

COMMON/DHCOM/ DH(6,6,6),DHO(6,6),DHODOT(6,6) 
COMMON/DINAM/ H(6,6),HO(6) 
COMMON/MODOPC/ MOD,ITIP,MODLIN 
COMMON/SUBSYS/ A(3,3,6),B(3,6),F(3,6) 
COMMON/OPTION/IPOMI(42),IOPTIN(6) 
COMMON/ACTORD/ NI(6),KI(6) 
COMMON/ORDGLB/ NUK,N 
COMMON/AUXIL/ TO,PO(6),YO(12),DXO(6),UO(6) 
COMMON/UG/ SI(6),SIDOT(6) 
COMMON/INTGAI/ NUKI . 
DIMENSION AO(NUKI,NUKI),BL(NUKI,N) 
DIMENSION HP(6,6),HV(6,6),HU(N,N) 
DIMENSION LL(6),MM(6) 
DIMENSION Y(12),DXU(6),YI(12) 
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C---------------------------------------------------------------------
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

C 

C 

C 
C 
C 
C 
C 

C 

C 

C 

C 

C 

C 
C 
C 

C 

C 

C 

C 
C 
C 

C 

C 
C 

2 

3 

4 

computation of the model of the mechanical part: nonlinear 
and the linearized model matrices for the given nominal state 

put nominal state in the auxiliary vectors SI and SIDOT 
to be transferred into subroutine MODEL 

DO 2 I=l,N 
SI(I)-YO(I) 
SIDOT( I )=YO( I+N) 

set indicator to 1 - to compute the matrices of the 
linearized model 

MOD=O 
MODLIN=l 

CALL MODEL 

MODLIN=O 

form matrices: HU (matrix by the accelerations) 
HP (matrix by the joints angles) and HV (matrix by the joints 
velocities) in the linearized model of the robot 

DO 3 I=l,N 
II=2-NI (l) 

DO 3 J=1,N 
II=II+NI (J) 

HP(I,J)=DHO(I,J) 

HV(I,J)-DHODOT(I,J) 

HU(I,J)=H(I,J) 

DO 3 JJ=l,N 
HP(I,J)=HP(I,J)+DH(I,JJ,J)*DXO(JJ) 

introducing of the matrix F 

DO 4 I=l,N 
DO 4 J=l,N 

HU(I,J)=-F(2,I)*HU(I,J) 

HP(I,J)=F(2,I)*HP(I,J) 

HV(I,J)=F(2,I)*HV(I,J) 

adding of the unit matrix to matrix HU 

DO 5 I=1,N 
HU(I,I)=HU(I,I)+1. 

set initially matrix BL to zero 



DO 5 J-l,NUKI 
5 BL(J,I)=O. 

C 
C invert the matrix HU 
C 

NN=N 
CALL MINV(HU,NN,D,LL,MM) 

C 
C form matrices AO and BL 
C 

C 

DO 6 I=I,NUKI 
DO 6 J=I,NUKI 

6 AO(I,J)=O. 
C 

C 

C 

C 
15 

C 

C 

C 
77 

C 

C 
7 

C 

C 

79 
C 
C 
C 

C 
78 

C 

C 

C 

C 

JJ=O 
11=1 
DO 11 I=I,N 

III=II+l 

IF(NI(I).EQ.2)GO TO 15 
BL(II+2,I)=B(3,I) 

DO 7 J=I,NI(I) 
JJ=JJ+l 

AO(II,JJ)=A(I,J,I) 

IF(NI(I).EQ.2)GO TO 77 
AO(II+2,JJ)=A(3,J,I) 
IF(IOPTIN(I).EQ.O)GO TO 7 
AO(II+3,JJ)=0. 
GO TO 7 

IF(IOPTIN(I).EQ.O)GO TO 7 

AO(II+2,JJ)=0. 

CONTINUE 

IF(IOPTIN(I).EQ.O)GO TO 78 
JJ=JJ+l 

DO 79 J=I,NI(I) 
AO(II+J-l,JJ)=O. 

introducing of "integral state coordinates" 

AO(II+NI(I),JJ-NI(I»=1. 

12=1 

DO 10 I1=I,N 
13=12+1 

AO(III,I2)-HU(I,Il)*A(2,1,Il) 

AO(III,I3)=HU(I,Il)*A(2,2,Il) 

IF(NI(Il).EQ.2)GO TO 8 
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C 

C 
8 

C 

9 
C 

C 

C 
10 

C 

C 

AO(III,I2+2)=HU(I,Il)*A(2,3,Il) 

BL(II+l,Il)=HU(I,Il)*B(2,Il) 

DO 9 IJ=I,N 
AO(III,I2)=AO(III,I2)+HU(I,IJ)*HP(IJ,Il) 
AO(III,I3)=AO(III,I3)+HU(I,IJ)*HV(IJ,Il) 

I2=I2+NI(Il) 

IF(IOPTIN(Il).EQ.O)GO TO 10 
12=12+1 

CONTINUE 

II=II+NI(I) 
IF(IOPTIN(I).EQ.l)II=II+l 

11 CONTINUE 
RETURN 
END 

C---------------------------------------------------------------------
C SUBROUTINE: SMLGAD 
C---------------------------------------------------------------------
C FUNCTION: ADDS LOCAL FEEDBACK GAINS INTO THE 
C MATRICES OF THE LINEARIZED MODEL OF THE 
C ROBOT AND BY THIS FORMS THE MATRIX OF THE 
C CLOSED-LOOP LINEARIZED MODEL OF THE SYSTEM 
C (JUST LOCAL SERVO LOOPS ARE ADDED) 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C NUK - system order 
C N - number of joints 
C NUKI - order of the total system if integral feed-
C back loops are introduced 
C AO(NUKI,NUKI) - system matrix of the open-loop linea-
C rized model (computed in SMLINM) 
C BL(NUKI,N) - input distribution matrix of the linea-
C rized model of the robot (SMLINM) 
C NI(N) - orders of the actuators models 
C PKl(N) position feedback gain (computed in SMLOC E 
C or in SMOPRG) 
C PK2(N) - velocity feedback gain 
C PK3(N) current (pressure) feedback gain 
C PK4(N) - integral feedback gain 
C OPTION: 
C IOPTIN(N) - local controller with integral feedback 
C loop (1 -yes, O-no) 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C AL(NUKI,NUKI) - matrix of the closed-loop linearized 
C model of the robot - local feedback 
C gains included 
C---------------------------------------------------------------------



C 

C 

SUBROUTINE SMLGAD(AO,AL,BL) 

COMMON/GAINS/ PKl(6),PK2(6),PK3(6),PKG(6),PK4(6) 
COMMON/INTGAI/ NUKI 
COMMON/OPTION/ IPOM(42),IOPTIN(6) 
COMMON/ACTORD/ NI(6) 
COMMON/ORDGLB/ NUK,N 

DIMENSION AO(NUKI,NUKI),BL(NUKI,N) 
DOUBLE PRECISION AL(NUKI,NUKI) 

C----------------------------------------------------------------------
C 
C add local gains to the open-loop system matrix 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

DO 1 I=l,NUKI 
DO 1 J=l,NUKI 

1 AL(I,J)=AO(I,J) 

11=0 
JJ=l 

DO 2 I=l,N 
II=II+NI(I) 

AL(II,JJ)=AL(II,JJ)-BL(II,I)*PKl(I) 
AL(II,JJ+l)=AL(II,JJ+l)-BL(II,I)*PK2(I) 

IF(NI(I).EQ.2)GO TO 3 

AL(II,JJ+2)=AL(II,JJ+2)-BL(II,I)*PK3(I) 
AL(II,JJ+3)=AL(II,JJ+3)-BL(II,I)*PK4(I) 

GO TO 4 

3 AL(II,JJ+2)=AL(II,JJ+2)-BL(II,I)*PK4(I) 

4 JJ=JJ+NI(I) 

IF(IOPTIN(I).EQ.l)II=II+l 

IF(IOPTIN(I).EQ.l)JJ=JJ+l 

2 CONTINUE 
RETURN 
END 
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C---------------------------------------------------------------------
C SUBROUTINE: SMEIGN 
C---------------------------------------------------------------------
C FUNCTION: COMPUTATION OF EIGEN-VALUES OF THE 
C GIVEN QUADRATIC MATRIX 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C NN - matrix order 
C NM 
C AL(NN,NN) - quadratic matrix 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C REALEV(NN) - vector of the real parts of the eigen-
C -values of the given matrix 
C---------------------------------------------------------------------
C SUBROUTINES REQUIRED: 
C EIGENP - SSP subroutine to compute eigen-values of the 
C given quadratic matrix 
C REALVE,COMPVE,HESQR - auxiliary subroutines called by 
C subroutine EIGENP 
C---------------------------------------------------------------------
C 

C 

SUBROUTINE SMEIGN(NN,NM,AL,REALEV,RlMAG) 

DOUBLE PRECISION AL(NM,1),EVR(24),EVI(24),VECR(24,24) 
DOUBLE PRECISION VECI(24,24) 

DIMENSION REALEV(NN),RIMAG(NN) 
DIMENSION INDIC(24) 

C---------------------------------------------------------------------
C 
C call subroutine EIGENP to compute eigen-values of AL 
C 

C 

C 

CALL EIGENP(NN,NM,AL,EVR,EVI,VECR,VECI,INDIC) 

DO 10 I=1,NN 
RIMAG(I)=EVI(I) 

10 REALEV(I)=EVR(I) 

WRITE(6,102) 
DO 6 I=1,NN 

6 WRITE(6,103)I,EVR(I),EVI(I),INDIC(I) 
102 FORMAT(3X,' Eigen-values: ',/,3X,'NO. 

1 Complex part Indic.',/) 
103 FORMAT(3X,I4,2E15.5,I4) 

RETURN 
END 

Real part 



C---------------------------------------------------------------------
C SUBROUTINE: SMSIMD 
C---------------------------------------------------------------------
C FUNCTION: SIMULATES THE ROBOT DYNAMICS WITH VARIOUS 
C USER SELECTED CONTROL LAWS 
C THE SIMULATION IS PERFORMED BY NUMERICAL INTEGRA-
C TION OF THE NONLINEAR DYNAMIC MODEL OF THE ROBOT; 
C FOR NUMERICAL INTEGRATION THE SIMPLE EULER'S MET-
C HOD IS APPLIED: 
C X(next)=X(current)+DINT*XT(current) 
C WHERE X IS THE STATE VECTOR OF THE SYSTEM, XT IS 
C THE FIRST DERIVATIVE OF THE STATE VECTOR, DINT 
C IS THE INTEGRATION INTERVAL DEFINED BY: 
C next instant- current instant +DINT 
C SUBROUTINE COMPUTES THE FIRST DERIVATIVE OF THE 
C STATE VECTOR (AT THE CURRENT INSTANT - ONCE AT 
C EACH INTEGRATION INTERVAL) BY COMPUTATION OF 
C THE RIGHT SIDE OF THE DIFFERENTIAL EQUATIONS OF 
C THE ROBOT MODEL IN THE STATE SPACE USING THE 
C CURRENT VALUE OF THE STATE VECTOR 
C NOTE: This is the simplest method for numerical inte-
C gration. It is easy to extend the programme to 
C include other more reliable and more precise 
C methods for numerical integration 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C FILE(5) - Robot's name 
C N - number of joints for the user's robot 
C NUK - the order of the entire system 
C YSINT(18)-initial error of the system state vector 
C (deviation of the state vector from the 
C nominal state at the initial moment) 
C YSOI(12)- nominal trajectory - values in the previous 
C point: (1-6) joints anles (displacements) 
C (7-12) joints velocities 
C YS02(12)- nominal trajectory - next point 
C QU01 - nominal accelerations at the previos point 
C QU02 at the next point 
C VR1,VR2 - time instants at the nominal trajectory in 
C which the nominal trajectory is calculated 
C and memorized in the file ***.ANG 
C NI(6) - the orders of the actuators models 
C A(3,3,6)- matrices of the actuators models 
C AHM(3,3,6) subsystems models-see INPUT ACT 
C (include moment of inertia of mechanism) 
C B(3,6) - input distribution vectors of actuators 
C models 
C BHM(3,6)- of subsystems 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

models 

F(3,6) 
(include moment of inertia of mechanism) 

- load distribution vectors of actuators 
models 

FHM(3,6)-

UMAX(2,6) 

HMIN(6) -

of subsystems 
models 
(include moment of inertia of mechanism) 

amplitude constraints upon the actuators 
inputs 
minimal moments of inertia of mechanism 
(see SM_MAX_IN) 
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C 
C 
C 
C 
C 
C 
C 

HH(6,6) - inertia matrix of the mechansm for the 
given value of joints angles 

Hl(6) - vector of centrifugal,Coriolis and gra
vity moments (forces) for given joints 
angles and velocities 

OPTIONS: (for each joint) 
IOPCNN(6) apply nominal control (1), or not (0) 

C IOPCNM(6) apply centralized nominal control(l),or 
C apply decentralized nominal control(O) 
C IOPTGG(6) global control is applied in the form of 
C on-line computation of gravity, centrifu-
C gal and Coriolis moments around the i-th 
C joint (O-no,l-yes) 
C IOPTGH(6) global control is applied in the form of 
C on-line computation of the inertia moments 
C around the i-th joint (O-no, I-yes) 
C IOPTG(6) =0 global control is not applied in 
C the i-th joint 
C =1 global control gain is in the form 
C PKG(I)*(gradv*F)/(gradv*B) 
C =2 global control gain is in the form 
C PKG(I)*F(2,I)/B(3,I) 
C TINTS - time interval for printings at terminal 
C display 
C DINT - integration interval 
C PKl,PK2,PK3,PK4 - local feedback gains 
C (see SMLOC E) 
C PKG(6) - global feedback gaIns 
c--------------------------------------------------------------------
C OUTPUT VARIABLES: 
C DY(18) - Deviation of the state vector from the 
C nominal trajectory (at the current 
C sampling interval) 
C Pl(6) actual (simulated) driving torques in the 
C joints developed during traking of the 
C nominal trajectory 
C U(6) - actual (simulated) control (actuator 
C input) signals 
C TIME time moment along the simulation 
C SPOWER(6) -actual required power in each joint 
C SENERG(6) -actual (simulated) energy consumption 
C---------------------------------------------------------------------
C LOCAL VARIABLES: 
C YSP(18) -actual state vector at the current inte-
C gration interval 
C YSOP(18) -nominal state vector at the current interval 
C YSO at the next interval 
C POP(6) -nominal driving torques at the current 
C interval 
C PO(6) at the next interval 
C YO(12) -nominal joints angles and velocities at the 
C current integration interval 
C QUO(6) - robot accelerations 
C DYS(18) - the first derivative of the actual state 
C vector at the current integration interval 
C---------------------------------------------------------------------
C f~JBROUTINES REQUIRED: 
C MODEL - computes the inertia matrix H and the vector h 
C of gravity, centrifugal and Coriolis moments 
C for the given joints angles SI and velocities 



C SIDOT 
C SMOPTN - enables selection of a control law which will 
C be simulated 
C SMCONT - computes local control signals for the given 
C deviations of the state coordinates from 
C the nominal trajectory DX(3) 
C SMCONG - computes the global gains for the given 
C deviations of the state vector DX(3) 
C---------------------------------------------------------------------
C 

C 

C 

C 

C 

C 

SUBROUTINE SMSIMD 

BYTE FILE(S) 
COMMON/FILE/FILE 

INCLUDE 'IN2:SMCOM.COM' 

INCLUDE 'IN2:MODELM.MOD' 

COMMON/MODOPCI MOD,ITIP 
COMMON/NOVLON/AHMN(2,2,6),BHMN(2,6) 
COMMON/OPTNOM/IOPCNM(6),IOPCNN(6) 
COMMON/NKOORDI YSOP(18),PO(6),UO(6) 
COMMON/SIMTIMI TIME 
COMMON/POMINTI POMINT(6) 

DIMENSION YSP(18),DY(18),DYS(18),POP(6),P1(6) 
DIMENSION DX(3) 
DIMENSION YSO(18) 
DIMENSION U(6),PKGP(6) 
DIMENSION YS01(12),YS02(12) 
DIMENSION YOPOM(12) 
DIMENSION SENERG(6),SPOWER(6) 
DIMENSION DX1(3),DXP(6) 
DIMENSION QU01(6),QU02(6),QUO(6) 
DIMENSION H11(6),H10(6) 
DIMENSION YO(12),HP(6),HPOM(6,6),HPOM3(6,6) 
DIMENSION LL(6),MM(6) 

BYTE FTOT(14),FTOT1(14),FTOT2(14) 
DATA FTOT( 1)/' 1'1, FTOT( 2 )/'N' I, FTOT( 3 )/' l' I, FTOT( 4 )/':' 1 

1 FTOT(10)/'.'I,FTOT(11)/'A'I,FTOT(12)/'N'I, 
2 FTOT(13)/'G'I,FTOT(14)/OI 

DATA FTOT1(1)/'I'I,FTOT1(2)/'N'I,FTOT1(3)/'1'1, 
1 FTOT1(4)/':'I,FTOT1(10)/'.'I,FTOT1(11)/'S'1 
2 FTOT1(12)/'I'I,FTOT1(13)/'M'I,FTOT1(14)/OI 

DATA FTOT2(1)/'I'I,FTOT2(2)/'N'I,FTOT2(3)/'1'1, 
1 FTOT2(4)/':'I,FTOT2(10)/'.'I,FTOT2(11)/'L'I, 
2 FTOT2(12)/'O'I,FTOT2(13)/'C'I,FTOT2(14)/OI 

C---------------------------------------------------------------------
C 

DO 1 1=1,5 
FTOT(I+4)=FILE(I) 
FTOT2(I+4)=FILE(I) 

1 FTOT1(I+4)=FILE(I) 
TYPE 6699 

6699 FORMAT(/,' Simulation of tracking of the nominal trajectory') 
TYPE *,('-',1-1,54) 

C 
C open file ***.ANG containing data on the nominal 
C joint trajectories 
C 
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C 
999 
998 

C 
C 
C 
C 
C 

55 
C 
C 
C 

C 

C 

6697 

6696 

6695 

6691 
C 

C 
C 
C 

6694 

OPEN(UNIT=1,NAME=FTOT.TYPE='OLD',ERR=999) 
GO TO 55 

TYPE 998,(FILE(I),I=1,5) 
FORMAT(3X,'DIAG*** FILE:' ,5Al,' .ANG cannot be found') 
RETURN 

Options: the integration interval is set to 0.0001 [s]; user 
might introduce variable integration interval and impose 
it in the file ***.DAT 

DINT=O.OOOI 

test whether the file with simulation results already exists 

OPEN(UNIT=2,NAME=FTOTl,TYPE='OLD',ERR=6691) 
TYPE 6697,FILE 
FORMAT(/,' WARNING*** File ',SAl,'.SIM already exists') 

TYPE 6696 
FORMAT($,, want to form a file with new simulation [YIN]?:') 
ACCEPT 6695,YES 
FORMAT(Al) 
IF(YES.NE.'Y')GO TO 6694 

CLOSE(UNIT=2) 
CALL ASSIGN(2,FTOTl,14) 

GO TO 6698 

if the user doesnot want new simulation-exit from the routine 

CLOSE(UNIT=2) 
CLOSE(UNIT=l) 
RETURN 

C--------------------------------------------------------------------
C 
C 
C 

6698 
C 

C 

C 
C 
C 
C 

2002 
2003 

2000 

open file ***.LOC containing synthesized local feedback gains 

OPEN(UNIT=3,NAME=FTOT2,TYPE='OLD',ERR=2000) 

DO 2002 I=l,N 
READ(3,2003)PKl(I) 
READ(3,2003)PK2(I) 
READ(3,2003)PK3(I) 
READ(3,2003)PK4(I) 
FORMAT(F12.5) 

CLOSE(UNIT=3) 
GO TO 2001 

if there is no file ***.LOC with local feedback gains - exit 
from the routine 

TYPE *,'DIAG*** File ***.LOC cannot be found' 
CLOSE(UNIT=l) 
RETURN 

C--------------------------------------------------------------------
C 
C 
C 

call subroutine to select control law which will be simulated 



2001 
C 

2112 
10001 

> 
5597 

10002 

10003 

c 
c 
C 
10005 
C 

CALL SMOPTN 

NN=N+N 
FORMAT($,' want printings at the display during simulation 
[YIN)?:' ) 
TYPE 10001 
ACCEPT 6695,YES 
IF(YES.NE.'Y')TINTS=O. 
IF(YES.NE.'Y')GO TO 10005 
TYPE 10002 
FORMAT($,' How oten [s - FlO.51?:') 
READ(5,10003,ERR=5597)TINTS 
FORMAT(FlO.5) 
IF(TINTS.GE.O.Ol)GO TO 10005 
TYPE *,' DIAG*** The values less than 0.01 are not allowed' 
GO TO 5597 

Intialize time counter for printings 

TSTAMP=O. 

c------------------------------------------------------------------
c 
C initialization of the variables for simulation 
C 

C 

DO 9 I=l,N 
U(I)=O. 
SENERG(I)=O. 
POMINT(I)=O. 

9 SPOWER(I)=O. 

C read initial point at the nominal trajectory 
C 

C 

READ(l,lOO)VRl 
TIME=VRl 
READ(l,lOO)(YSOl(I),I=l,N) 
READ(l,lOO)(YSOl(I),I=N+l,NN) 
READ(l,lOO)QUOl(I) 

100 FORMAT(6E13.5) 

C put nominal angles and velocities in the auxiliary vectors 
C SI and SIDOT to transfer data to the subroutine MODEL 
C 

C 

C 

DO 40 I=l,N 
SI(I)=YS01(I) 

40 SIDOT(I)=YSOl(I+N) 

ITIP=O 
MOD=O 
IPS=l 

C call subroutine MODEL to calculate inertia matrix H and vector 
C h for the nominal joints angles and velocities (initial point) 
C 

C 
C 
C 
C 

2010 

CALL MODEL 

in auxiliary vector HlO the nominal vector h is memorized 
calculate the nominal driving torques (initail point) 

DO 41 I=l,N 
POP(I)=Hl(I) 
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H10(I)=H1(I) 
DO 41 J=l,N 

41 POP(I)=POP(I)+HH(I,J)*QU01(J) 
C 

C 

C 
C 
C 
C 

1 
C 
C 
C 
C 

44 
C 
C 
C 
C 
C 
C 

C 

11=2 

DO 43 1=l,N 
YSOP(11)=YS01(1+N) 
YSOP(11-1)=YS01(I) 
1F(NI(1).EQ.2)GO TO 44 

if the actuator model is of order 3 then compute the nominal 
value of the third state coordinate of the i-th actuator 

YSOP(II+1)=(QU01(I)-A(2,2,I)*YSOP(II)-F(2,1)*POP(I))/ 
A( 2, 3, I) 

test whether centralized or local nominal control is to be ap
plied 

IF(10PCNM(I).EQ.1)GO TO 43 

computation of the subsystem matrices to include minimal va
lues of the moments cf inertia of the mechanim around the 
joints axes (necessary for computation of nominal local 
control) 

FHM(2,1)=1./(HM1N(1)+1./F(2,1)) 
POM=(1./F(2,1))*FH"(2,I) 
AHM(2,2,1)=A(2,2,I)*POM 
IF(NI(I).EQ.2)GO TO 43 
AHM(2,3,1)=A(2,3,1)*POM 

YSOP(1I+1)=(QUO(I)-AHM(2,2,1)*YSOP(11))/AHM(2,3,1) 
43 11=1I+N1(I) 

C 
C computation of the actial initial state coordinates (since 
C initial errors of state coordinates are imposed in SMOPTN) 
C 

DO 10 I=l,NUK 
10 YSP(I)=YSOP(I)+YSINT(I) 

C******************************************************************** 
C Start cycle for simulation 
C 

2 
C 
C 
C 
C 

CONTINUE 

compute deviation (errors) between actual state coordinates 
(YSP) and the nominal state coordinates (YSOP) 

DO 77 I=l,NUK 
77 DY(I)=YSP(I)-YSOP(I) 

C 
C write data on simulated robot performance in file ***.S1M 
C 

WRITE(2,100)TIME 
WR1TE(2,100)(DY(1),I=1,NUK) 
WRITE(2,100)(P1(I),I=1,N) 
WR1TE(2,100)(U(I),1=1,N) 
WR1TE(2,100)(SPOWER(I),1=1,N) 
WRITE(2,100)(SENERG(I),I=1,N) 



C 
C 
C 

101 

10006 

10007 

10008 

4097 
4098 

4049 

4095 
10009 

4096 
4099 
4094 

10010 

103 

print at terminal display 

IF(TSTAMP.GT.TIME+O.OOl.OR.TINTS.EQ.O.)GO TO 119 
TSTAMP=TSTAMP+TINTS 
TYPE 101,TIME 
FORMAT(/,' Time:',F10.5,'[s]') 
TYPE 10006,(I,I=1,N) 
FORMAT(' No. of joint ',6(4X,I1,5X» 
TYPE 10007 
FORMAT(' Deviations of the actuator state coordinates') 
TYPE 10008 
FORMAT(' Angles [rad] or [m]:' ,$) 
II=l 
DO 4097 I=l,N 
TYPE 4098 ,DY( II) 
II=I I+NI ( I) 
FORMAT('+',$,E10.3) 
TYPE 4049 
FORMAT( '+',' 
II=2 
TYPE 10009 

, ) 

DO 4095 I=l,N 
TYPE 4098,DY(II) 
II=I I+NI (I) 
FORMAT(' Ve1ocit.[rad/s-m/s]:',$) 
TYPE 4049 
TYPE 10010 
II=3 
DO 4099 I=l,N 
IF(NI(I).EQ.2)GO TO 4096 
TYPE 4098,DY(II) 
GO TO 4099 
TYPE 4094 
II=II+NI ( I) 
FORMAT('+',$,10X) 
FORMAT(' Current/pressure[A]:' ,$) 
TYPE 4049 
TYPE 103,(P1(I),I=l,N) 
FORMAT(' Driving torques[Nm]:',6E10.3) 
TYPE l04,(U(I),I=l,N) 

104 FORMAT(' Control signals [Vj:',6E10.3) 
119 CONTINUE 

C--------------------------------------------------------------------
C 
C 
C 
C 

C 

read data on nominal trajectory from the file ***.ANG -
- at the instant VR2 

READ(1,100,END=9000)VR2 
READ(1,100)(YS02(I),I=1,N) 
READ(1,100)(YS02(I),I=N+1,NN) 
READ(1,100)(QU02(I),I=1,N) 

POM1=VR2-VRl 
C---------------------------------------------------------------------
C 
C 
C 
C 

C 
91 

computation of nominal centralized or decentralized programmed 
control; incement simulation time for DINT 

TIME=TIME+DINT 
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C 
C 
C 
C 

C 

7777 
C 

3 
C 
C 
C 
C 

4 
C 

C 
C 
C 
C 

interpolation along the nominal trajectory at the integration 
intervals between the moments VR2 in which the nominal 
trajectory has been computed and memorized in the file ***.ANG 

POM=(TIME-VRI)/POMI 

DO 7777 I=l,NUK 
DY(I)=YSP(I)-YSOP(I) 

DO 3 I=l,NN 
YO(I)=(YS02(I)-YSOl(I))*POM+YSOl(I) 

call MODEL to calculate matrix H and vector h for the 
nominal values of joints angles and velocities 

DO 4 I=l,N 
QUO(I)=(QU02(I)-QUOl(I))*POM+QUOl(I) 
SI(I)=YO(I) 
SIDOT( I) =YO (I+N) 

CALL MODEL 

computation of the nominal driving torques 
and the nominal control 

DO 5 I=l,N 
PO(I)=Hl(I) 
Hll ( I ) =Hl ( I ) 
DO 5 J=l,N 

5 PO(I)=PO(I)+HH(I,J)*QUO(J) 
C 

C 

II=2 
DO 6 I=l,N 
YSO(II-!)=YO(I) 
YSO( II )=YO( I+N) 
IF(NI(I).EQ.2)GO TO 67 
III=II+l 

C if the actuator order is 3 
C 

IF(IOPCNM(I).EQ.O)GO TO 349 
C 
C computation of the nominal value of the third state coordinate 
C of the i-th actuator-if the computation of the nominal driving 
C torque is included in the computation of the nominal control 
C 

1 
C 
C 
C 

1 

C 
C 
C 
C 

349 
C 
C 

YSO(III)=(QUO(I)-A(2,2,I)*YSO(II)-F(2,I)*PO(I)) 
/A( 2,3, I) 

computation of the centralized nominal control 

UO(I)=((YSO(III)-YSOP(III))/DINT -A(3,2,I)*YSOP(II)
A(3,3,I)*YSOP(III))/B(3,I) 

GO TO 6 

if the nominal driving torque is not introduced in the nominal 
control (if local nominal control is required) 

YSO(III)=(QUO(I)-AHM(2,2,I)*YSO(II))/AHM(2,3,I) 

computation of the local nominal control 



C 

C 
C 
C 
67 

UO(I)=((YSO(III)-YSOP(III))/DINT-AHM(3,2,I)*YSOP(II)-
1 AHM(3,3,I)*YSOP(III))/B(3,I) 

GO TO 6 

if the order of the i-th actuator model is 2 

UO(I)=(QUO(I)-AHM(2,2,I)*YSOP(II)-IOPCNM(I)*FHM(2,I)*(POP(I)-
1 HMIN(I)*QUO(I)))/BHM(2,I) 

6 II=II+NI(I) 
C-------------------------------------------------------------------
C 
C 
C 
C 

C 

SIMULATION - computation of the right hand sides of the diff. 
equations of the stat0 nonlinear model of the robot 

11=1 
DO 7 I=l,N 
SI(I)=YSP(II) 
SIDOT(I)=YSP(II+1) 

7 II=II+NI(I) 

C call MODEL to compute matrix H and vector h for the actual 
C joints angles and velocities 
C 

CALL MODEL 
C-------------------------------------------------------------------
C 
C 
C 
C 
C 

C 

computation of control signals for all actuators according 
to the selected control law (DX(3)-deviation of state coord. 
of the i-th actuator from the nominal trajectories) 

11=1 
111=2 
11=3 
DO 8 I=l,N 
DX(l)=DY(II) 
DX(2)=DY(III) 
IF(NI(I).EQ.3)DX(3)=DY(Il) 

C computation of local control signals 
C 

C 

CALL SMCONT(I,U1,DX) 
DYS(II)=A(1,2,I)*YSP(III) 

C computation of the selected global feedback gains 
C 

C 

CALL SMCONG(I,PKG1,U1,DX) 
U1=U1+IOPCNN(I)*UO(I) 

C PKGP(6) - vector of the global feedback gains computed 
C for the actual state of the actuator (susbsystem) 
C 

C 

U(I)=U1 
PKGP(I)=PKG1 

C HP - auxiliary vector for computation of the right sides 
C of differential equations of the robot model-the second 
C equations in the models of actuators in the state space 
C 

HP(I)=A(2,2,I)*YSP(III)+F(2,I)*H1(I)+A(2,3,I)*YSP(I1) 
IF(NI(I).EQ.3)GO TO 68 
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C 
C if the order of actuator model is 2 
C 

IF(IOPTG(I).EQ.O) GO TO 69 
C 
C computation of the global control according to the 
C selected option 
C 

Ul-Ul+PKGl*(IOPTGH(I)*(HlO(I)-POP(I))*IOPCNM(I)+ 
* IOPTGG(I)*(Hl(I)-IOPCNM(I)*HlO(I))) 

C 
C amplitude constraints upon the actuator inputs 
C 

C 

C 

69 IF(Ul.GT.UMAX(l,I))Ul-UMAX(l,I) 
IF(U1.LT.-UMAX(2,I))Ul=-UMAX(2,I) 

U(I)=Ul 
HP(I)=HP(I)+B(2,I)*Ul 

68 II=II+NI(I) 
III=II+l 
I1=III+1 

8 CONTINUE 

C end of control computation 
C (at current integration interval) 
C----------------------------------------------------------------
C 
C computation of the auxiliary matrix HPOM 
C 

C 

DO 70 I=l,N 
DO 70 J=l,N 

70 HPOM(I,J)=-HH(I,J)*(F(2,I)+B(2,I)*PKGP(I)*IOPTGH(I)) 
DO 71 I=l,N 

71 HPOM(I,I)=HPOM(I,I)+l. 

C matrix inversion 
C 

CALL SMMINV(HPOM,HPOM3) 
C 
C multip1iaction by the velocity dependent moments 
C 

II=2 
DO 72 I=l,N 
DYS(II)=O. 
DO 73 J=l,N 

73 DYS(II)=DYS(II)+HPOM(I,J)*HP(J) 
72 II=II+NI(I) 

C 
C computation of the actual joints torques 
C 

74 
C 

C 

DO 74 I=l,N 
II=2 
Pl(I)-Hl(I) 
DO 74 J=l,N 
Pl(I)=Pl(I)+HH(I,J)*DY5(II) 
II-II+NI(J) 

11=0 
DO 75 I=l,N 
II=II+NI (I) 



C computation of the actual power and energy consumptions 
C 

C 

SPOWER(I)=ABS(Pl(I)*YO(I+N» 
SENERG(I)=SENERG(I)+SPOWER(I)*DINT 
IF(NI(I).EQ.2)GO TO 75 

C if the order of the actuator is 3 -add the global control 
C 

C 

IF(IOPTGH(I).EQ.O) GO TO 76 
U(I)=U(I)+PKGP(I)*(IOPTGH(I)*(Pl(I)-Hl(I)-

1 IOPCNM(I)*(POP(I)-HlO(I»)+IOPTGG(I)* 
2 (Hl(I)-HlO(I)*IOPCNM(I») 

C amplitude constraints upon the actuator inputs if the 
C order of the actuator model is 3 
C 

76 IF(U(I).GT.UMAX(l,I»U(I)=UMAX(l,I) 
IF(U(I).LT.-UMAX(2,I»U(I)=-UMAX(2,I) 

C 
C computation of the first derivative of the third state 
C coordinate of the i-th actuator model (if its order is 3) 
C 

DYS(II)=A(3,2,I)*YSP(II-1)+A(3,3,I)*YSP(II)+B(3,I)*U(I) 
75 CONTINUE 

C----------------------------------------------------------------
C 

DO 90 I=l,NUK 
C 
C memorize the nominal state vector at the previous interval 
C 

YSOP(I)-YSO(I) 
c 
C numerical integration by Euler's method 
C 

90 YSP(I)=YSP(I)+DYS(I)*DINT 
C-----------------------------------------------------------------
C 
C memorize nominal torques from the previous integration 
C interval 
C 

C 

DO 92 I=l,N 
H10(I)=H11(I) 
POP(I)=PO(I) 

92 CONTINUE 

C memorize the values of the nominal trajectory at the 
C previous point if the current time has reached the next 
C time instant in which nominal trajectory has been 
C imposed in file ***.ANG 
C 

C 

C 

IF(TIME.LT.(VR2-0.5*DINT»GO TO 91 
DO 93 I=l,N 
QU01(I)=QU02(I) 
II=I+N 
YS01(I)=YS02(I) 

93 YS01(II)=YS02(II) 
VRl-VR2 

GO TO 2 

C end of simulation cycle 
C*******************·w.*************************************** 
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C 
9000 CONTINUE 

CLOSE(UNIT=l) 
CLOSE(UNIT=2) 
TYPE *,' WARNING*** End of simulation' 
RETURN 
END 

C---------------------------------------------------------------------
C SUBROUTINE: SMOPTN 
C---------------------------------------------------------------------
C FUNCTION: INTERACTIVE SPECIFICATION OF THE CONTROL LAW 
C OPTIONS FOR SIMULATION OF THE ROBOT DYNAMICS 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C N - number of joints of the user's robot 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C YSINT - deviation of the initial state from 
c the nominal trajectory 
C OPTIONS: 
C IOPCNN(I)- nominal control in the i-th joint 
C to be applied or not (1-yes,0-no) 
C IOPCNM(i)- type of nominal control in the 
C i-th joint (1-centralized,0-local) 
C---------------------------------------------------------------------
C SUBROUTINES REQUIRED: 
C SMINGL - enables specification of global 
C control 
C---------------------------------------------------------------------

SUBROUTINE SMOPTN 
C 

INCLUDE 'IN2:SMCOM.COM' 
C 

COMMON/OPTNOM/IOPCNM(6),IOPCNN(6) 
C---------------------------------------------------------------------
C 
2000 FORMAT(A1) 

TYPE 101 
101 FORMAT(' Want simulation with the already adopted control law' 

1 ,/,$,' (otherwise you have to specify it) [YIN]?:') 
ACCEPT 2000,YES 
IF(YES.EQ.'Y')GO TO 2 
TYPE 102 

102 FORMAT(' Want to apply nominal control in any joint' 
1 ,/,$,' (either centralized or decentralized) [YIN]?:') 

ACCEPT 2000,YES 
IF(YES.EQ.'Y' )GO TO 1 
DO 33 I=1,N 

33 IOPCNN(I)=O 
GO TO 5 

1 DO 34 I=l,N 
TYPE 103,1 

103 FORMAT($,' Want to apply nominal control in the ',13, 
1 '-th joint [YIN]?:') 



C 

C 

C 

C 

104 
1 

3 
34 

5 
105 

2 

35 

6 
106 

1 

107 
1 

37 

ACCEPT 2000,YES 
IF(YES.NE.'Y')GO TO 3 
IOPCNN(I)=l 
TYPE 104,1 
FORMAT($,' Want centralized nominal control in the',I3,'-th 
joint [YIN]?:') 

ACCEPT 2000,YES 
IOPCNM(I)=O 
IF(YES.EQ.'Y')IOPCNM(I)=l 
GO TO 34 
IOPCNN(I)=O 
CONTINUE 

TYPE 105 
FORMAT($,' want to apply global control [YIN]?:') 
ACCEPT 2000,YES 
IF(YES.EQ.'Y')CALL SMINGL 
GO TO 6 

DO 35 I=l,N 
IOPCNN(I)=l 
IOPCNM(I)=l 

TYPE 106 
FORMAT($,' want to specify some specific initial conditions 
[YIN]?:') 
ACCEPT 2000,YES 
IF(YES.NE. 'Y' ) RETURN 
TYPE 107 
FORMAT(' Specify initial conditions (for joint angles) [rad] 
or [m]:') 
DO 37 I s 1,NUK 

YSINT(I)=O. 

II=l 
DO 36 I=l,N 
TYPE 108,1 

108 FORMAT($,' Joint',I3,'.') 
ACCEPT 2001,YSINT(II) 
II=II+NI (I) 

2001 FORMAT(F10.5) 
36 CONTINUE 

RETURN 
END 
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C---------------------------------------------------------------------
C SUBROUTINE: SMINGL 
C---------------------------------------------------------------------
C FUNCTION: INTERACTIVE SPECIFICATION OF THE GLOBAL 
C CONTROL LAW FOR SIMULATION - THE USER HAS 
C TO SPECIFY A FORM OF THE GLOBAL CONTROL 
C AND THE GLOBAL FEEDBACK GAIN 
C---------------------------------------------------------------------
C INPUT VARIABLE: 
C N number of joints of the user's robot 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C PKG(I) - attenuation of the global control in the 
C i-th joint 
C OPTIONS: (for each joint) 
C IOPTG(i) =0 global control is not to be applied in 
C the i-th joint 
C =1 the global gain is in the form: 
C PKG(i)*(gradv*F)/(gradv*B) 
C =2 the global gain is in the form: 
C PKG(i)*F(2)/B(2) 
C IOPTGF(i) =0 force feedback is not to be applied 
C in the i-th joint 
C =1 force feedback is applied 
C IOPTGG(i) - the global control is in the form of 
C "on line" computation of gravity, centri-
C fugal, and Coriolis moments around the 
C i-th joint (0 -no, 1 -yes) 
C IOPTGH(i) - the global control is in the form of 
C "on-line" computation of inertial moments 
C around the i-th joint (0 - no, 1 -yes) 
C---------------------------------------------------------------------
C 

SUBROUTINE SMINGL 

COMMON/OPTION/IOPTOR(6),IOPTV(6),IOPTI(6), 
1 IOPTG(6),IOPTGF(6),IOPTGG(6),IOPTGH(6) 

COMMON/GAINS/ PK1(6),~K2(6),PK3(6),PKG(6) 
COMMON/ORDGLB/ NUK,N 

C---------------------------------------------------------------------
C 

C 

C 

DO 666 I=1,N 
IOPTG(I)=O 
IOPTGF(I)=O 
IOPTGG(I)=O 

666 IOPTGH(I)=O 

TYPE 901 
901 FORMAT(' Want to apply equal global control law in all joints' 

1 ,/,$,' [Y/N]?:') 
ACCEPT 2000,YES 

2000 FORMAT(A1) 
IF(YES.EQ.'Y')GO TO 100 

DO 10 I=l,N 
TYPE 9000,1 

9000 FORMAT($,' Want global control in the ',13, 
1 '-th joint [YIN]?:') 

ACCEPT 2000,YES 
IF(YES.EQ.'Y')IOPTG(I)=1 



C 
IF(IOPTG(I).EQ.O)GO TO 10 
TYPE 902,1 

902 FORMAT($, , want force feedback in the ',13, 

C 

1 '-th joint [YIN]?:') 
ACCEPT 2000,YES 
IF(YES.EQ.'Y')IOPTGF(I)=l 

IF(YES.EQ.'Y')GO TO 10 

TYPE 903,1 
903 FORMAT($,' want "on-line" computation of gravity,',I,$ 

1 'centrifugal and Corio1is moments in the ',13, 
2 '-th joint [YIN]?:') 

ACCEPT 2000,YES 
1F(YES.EQ.'Y' )10PTGG(I)=l 
1F(YES.EQ.'Y')GO TO 10 

C 
TYPE 9004,1 

9004 FORMAT(' Want "on-line" computation of inertial moments',I, 
1 $,' in the ',I3,'-th joint [YIN]?:') 

ACCEPT 2000,YES 
1F(YES.EQ.'Y')10PTGH(1)=l 

10 CONTINUE 

C 
100 
9006 

20 

C 
200 
25 

9016 
1 
2 

30 

C 
300 
35 

C 

GO TO 500 

TYPE 9006 
FORMAT($,' want force feedback in all joints [YIN]?:') 
ACCEPT 2000,YES 
1F(YES.NE.'Y')GO TO 200 
DO 20 1=l,N 
10PTG(1)=l 
10PTGF(I)=l 
GO TO 500 

DO 25 1=l,N 
10PTGF(I)=O 
TYPE 9016 
FORMAT(' Want "on-line" computation of gravity, 
centrifugal and coriolis moments' ,I, 
$,' in all joints [YIN]?:') 

ACCEPT 2000,YES 
IF(YES.NE.'Y')GO TO 300 
DO 30 I=l,N 
IOPTG(I)=l 
10PTGG(I)=l 
GO TO 500 

DO 35 I=l,N 
10PTGG(I)=O 

TYPE 9007 
9007 FORMAT(' Want "on-line" computation of inertial moments', 

C 

1 1,$,' in all joints [YIN]?:') 
ACCEPT 2000,YES 
1F(YES.NE.'Y')GO TO 700 
DO 40 I=l,N 
10PTG(I)=l 

40 10PTGH(1)=l 

449 



450 

500 

501 

9008 

C 

1 

9009 
1 

60 

3000 

600 
9010 

1 

70 

700 

80 
C 

DO 501 I=l,N 
IF(IOPTGF(I).EQ.O) GO TO 501 
IOPTGG(I)=l 
IOPTGH(I)=l 
TYPE 9008 
FORMAT($,' want equal attenuation of global control in 
all joints [YIN]?:') 
ACCEPT 2000,YES 
IF(YES.EQ.'Y')GO TO 600 
DO 60 I=l,N 
TYPE 9009,1 
FORMAT($,' Specify global attenuation for the ',13, 
'-th joint [0.-1.]:') 
ACCEPT 3000,PKG(I) 

FORMAT(F10.5) 
GO TO 61 

TYPE 9010 
FORMAT($,' Specify global attenuation for all joints 
[0.-1.]:' ) 
ACCEPT 3000,POM 
DO 70 I=l,N 
PKG(I)=POM 
GO TO 61 
DO 80 I=l,N 
IOPTGH(I)=O 
IOPTG(I)=O 

61 TYPE 800 
800 FORMAT($,' want simplified form of the global control 

1 gain [YIN]?:') 
ACCEPT 2000,YES 
IF(YES.NE.'Y')GO TO 6633 
DO 90 I=l,N 

90 IOPTG(I)=2 
C 

6633 

6644 
C 

DO 6644 I=l,N 
IF(IOPTOR(I).EQ.O) THEN 

IOPTG(I)=2 
TYPE 400, I 

END IF 
IF(PKG(I).NE.O)GO TO 6644 
IOPTG(I)=O 
IOPTGF(I)=O 
IOPTGG(I)=O 
IOPTGH(I)=O 
CONTINUE 

400 FORMAT (' DIAG*** Since in the' ,I2,'-th joint optimal', 
> I,' regulator has not ben synthesized you must', 
> I,' select simplified form of global gain') 

RETURN 
END 



C---------------------------------------------------------------------
C SUBROUTINE: SMCONT 
C---------------------------------------------------------------------
C FUNCTION: COMPUTES THE LOCAL CONTROL SIGNAL FOR THE 
C I-TH ACTUATOR AND FOR GIVEN STATE VECTOR 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C I the order number of the actuator(subsystem) 
C OX deviation of the actual state vector (during 
C simulation) from the nominal trajectory for 
C the i-th subsystem (DX(l) - position error, 
C DX(2)-velocity error, DX(3)- error in rotor 
C current, or pressure) 
C PKl(I) position local feedback gain 
C PK2(I) velocity " 
C PK3(I) gain in feedback loop by current/pressure 
C PK4(I) integral feedback gain 
C DINT - integration interval 
C--------------------------------------------------------------------
C OUTPUT VARIABLE: 
C Ul local control signal for the i-th subsystem 
C for the given OX 
C--------------------------------------------------------------------
C 

C 

C 
C 
C 
C 
C 

SUBROUTINE SMCONT(I,Ul,DX) 

COMMON/GAINS/ PKl(6),PK2(6),PK3(6),PKG(6),PK4(6) 
COMMON/ORDGLB/ NUK,N 

DIMENSION DX(3) 
COMMON/ACTORD/ NI(6) 
COMMON/INTI NT/ DINT 
COMMON/POMINT/ POMINT(6) 

POMINT(I)-auxiliary vector for the numerical integration 
necessary to implement feedback loop by integral 
of the position error DX(l) 

C--------------------------------------------------------------------
C 

C 

1 
2 
3 

Ul=-PKl(I)*DX(l)-
PK2(I)*DX(2) 
-PK3(I)*DX(3) 
-PK4(I)*POMINT(I) 

POMINT(I)aPOMINT(I)+DX(l)*DINT 
RETURN 
END 
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C---------------------------------------------------------------------
C SUBROUTINE: SMCONG 
C---------------------------------------------------------------------
C FUNCTION: COMPUTES GLOBAL CONTROL GAIN FOR THE I-TH 
C JOINT - ACTUATOR 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C I - the order number of the actuator/joint 
C (subsystem) 
C DX(3) - deviation of the i-th subsystem state 
C from the nominal trajectory 
C ul - local control signal for the i-th subsystem 
C F(3,I)- load distribution vector in the i-th actu-
C ator model 
C B(3,I)- input distribution vector in the state model 
C of the i-th actuator 
C NI(I) - order of the i-th subsystem 
C V - Liapunov's function value for the i-th sub-
C system for the given state vector DX(3) 
C GRADV(3) - gradient of the Liapunov's function for 
C the i-th subsystem for the given DX 
C IOPTG(I) - type of the global gain for the i-th 
C subsystem (see subroutine SMINGL) 
C PKG(I) - global control attenuation in the i-th 
C joint - user's selection (see SMINGL) 
C--------------------------------------------------------------------
C OUTPUT VARIABLE: 
C PKGl - global gain for the i-th subsystem 
C--------------------------------------------------------------------
C SUBROUTINES REQUIRED: 
C LIAPIS - computes the value of the subsystem 
C Liapunov's function for the given DX 
C GRADIS - computes the gradient of the subsystem 
C Liapunov's function for the given DX 
C--------------------------------------------------------------------

SUBROUTINE SMCONG(I,PKGl,Ul,DX) 
C 

INCLUDE 'IN2:SMCOM.COM' 
C 

DIMENSION DX(3),GRADV(3) 
C--------------------------------------------------------------------
C 
C 
C 
C 

C 

C 

if IOPTG(i) is equal to 0 - the global control is not 
applied in the i-th joint 

IF(IOPTG(I).NE.O)GO TO 1 
PKGl=O 
RETURN 

1 IF(IOPTG(I).EQ.2)GO TO 6 

C call subroutines to compute Liapunov's function and 
C its derivative for the i-th joint and given DX 
C 

CALL LIAPlS(DX,V,I) 
CALL GRADlS(DX,GRADV,I,V) 

C 
C computation of GRADV*F and GRADV*B 
C 



2 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 

50 

6 

FG=O. 
BG=O. 
DO 2 J=l,NI(I) 
FG=FG+GRADV(J)*F(J,I) 
BG=BG+GRADV(J)*B(J,I) 

if GRADV*B is smaller than 0.001- it is constrained to 0.001 

IF(ABS(BG).GT.0.001)GO TO 50 
BG=SIGN(O.OOl,BG) 

computation of the global gain according to: 
GRADV*F/(GRADV*B) multiplied by attenuation PKG(I) 
specified by the user 

PKG1=-PKG(I)*FG/BG 
RETURN 

if the user has selected the simplified form of 
global gain IOPTG(I)=2 

IF(NI(I).EQ.2)PKG1=-PKG(I)*F(2,I)/B(2,I) 
IF(NI(I).EQ.3)PKG1=-PKG(I)*F(2,I)/B(3,I) 
RETURN 
END 

C---------------------------------------------------------------------
C SUBROUTINE: LIAP1S 
C---------------------------------------------------------------------
C FUNCTION: COMPUTES THE LIAPUNOV'S FUNCTION FOR THE 
C I-th SUBSYSTEM FOR THE GIVEN VALUE OF THE 
C SUBSYSTEM STATE VECTOR 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C I - the order number of the subsystem 
C DX - the state of the i-th susbsystem (deviation of 
C the state vector from the nominal) 
C NI(I) - the order of the subsystem model 
C RK(4,4,I) - Liapunov's matrix for the i-th sub-
C system (solution of the Riccati's 
C algebraic equation - see subroutine 
C SMOREG) 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C V - the Liapunov's function for the i-th subsystem 
C for the given state vactor value DX 
C---------------------------------------------------------------------
C SUBROUTINES REQUIRED: 
C GMPRD - SSP subroutine for matrix multiplication 
C---------------------------------------------------------------------
C 

SUBROUTINE LIAP1S(DX,V,I) 

DIMENSION DX(3),HPOM(3,3) 
DIMENSION DGX(3) 
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C 
COMMON/SUBLIAI RK(4,4,6) 
COMMON/ACTORDI NI(6) 

C---------------------------------------------------------------------
C 
C HPOM - auxiliary matrix 
C 

C 

DO 1 J=1,NI(I) 
DO 1 JJ=1,NI(I) 

1 HPOM(J,JJ)=RK(J,JJ,I) 
NN=NI(I) 

C multiplication of the Liapunov's matrix by the state OX 
C 

CALL GMPRD(HPOM,DX,DGX,NN,NN,1) 
C 
C multiplication by the transpose of OX 
C 

V=O. 
DO 2 J=1,NI(I) 

2 V=V+DX(J)*DGX(J) 
C 

IF(V.GE.O)GO TO 200 
TYPE 201 

201 FORMAT(' DIAG*** Local controller is not synthesized as',l, 

C 
200 

1 local optimal regulator, and',l, 
2 therefore simplified form of the global',l, 
3 gain must be selected') 

CALL EXIT 

V=SQRT(V) 
RETURN 
END 

C---------------------------------------------------------------------
C SUBROUTINE: GRAD1S 
C---------------------------------------------------------------------
C FUNCTION: COMPUTES GRADIENT OF THE GIVEN LIAPUNOV 
C FUNCTION OF THE ij-th SUBSYSTEM ANO 
C FOR THE GIVEN SUBSYSTEM STATE VECTOR 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C IJ - the order number of the subsystem 
C ox - the subsystem state vector 
C V - value of the subsystem Liapunov'S function 
C for the given state vector OX 
C NI(ij) - order of the ij-th subsystem 
C RK(3,3,IJ) -Liapunov's matrix for the ij-th 
C subsystem 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C DGX - the gradient of the Liapunov's function 
C of the ij-th subsystem for the given OX 
C---------------------------------------------------------------------
C SUBROUTINE REQUIRED: 
C GMPRO - SSP subroutine for matrix multiplication 



C---------------------------------------------------------------------
C 

SUBROUTINE GRADlS(DX,DGX,IJ,V) 

DIMENSION DX(3),DGX(3),HL(3,3) 
COMMON/ACTORD/ NI(6) 
COMMON/SUBLIA/ RK(4,4,6) 

C---------------------------------------------------------------------
C 
C put the Liapunov's matrix in the auxiliary matrix HL 
C 

C 

NN=NI(IJ) 
DO 1 I=l,NN 
DO 1 J=l,NN 

1 HL(I,J)=RK(I,J,IJ) 

C multiplication of the Liapunov's matrix by the value 
C of the subsystem state vector DX 
C 

CALL GMPRD(HL,DX,DGX,NN,NN,I) 
C 
C multiplication of DGX by l./V 
C 

IF(V.LT.O.OOOOOl) THEN 
v=O.OOOOOl 

END IF 
DO 2 I=l,NN 

2 DGX(I)=DGX(I)/V 
RETURN 
END 

C---------------------------------------------------------------------
C SUBROUTINE: SMMINV 
C---------------------------------------------------------------------
C FUNCTION: AUXILIARY SUBROUTINE WHICH CALLS THE 
C SSP SUBROUTINE MINV FOR THE MATRIX 
C INVERSION (for various matrix dimen-
C sions) 
C Note: This subroutine is not obligatory 
C it could be omitted if matrix H is dimen-
C sioned in different way - depending 
C on the FORTRAN compiler 
C---------------------------------------------------------------------
C INPUT VARIABLES: 
C N - the matrix order 
C HPOM - the matrix to be inverted 
C---------------------------------------------------------------------
C OUTPUT VARIABLES: 
C HPOM3 - inverse of the matrix HPOM 
C---------------------------------------------------------------------
C SUBROUTINE REQUIRED: 
C MINV - SSP subroutine for the matrix inversion 
C---------------------------------------------------------------------

SUBROUTINE SMMINV(HPOM,HPOM3) 
C 
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C 

COMMON/ORDGLB/ NUK,N 
DIMENSION HPOM3(N,N),HPOM(6,6) 
DIMENSION LL(6),MM(6) 

DO 1 I=l,N 
DO 1 J=l,N 

1 HPOM3(I,J)=HPOM(I,J) 
C 

C 
CALL MINV(HPOM3,N,D,LL,MM) 

DO 2 I=1,N 
DO 2 J=1,N 

2 HPOM(I,J)=HPOM3(I,J) 
RETURN 
END 

C 
C INCLUDE FILE 
C 'DL1:[107,21]SMCOM.COM' 
C 
C Fail includes COMMON - areas 
C 

C 

C 

C 

COMMON/SUBSYS/ A(3,3,6),B(3,6),F(3,6) 
COMMON/ORDGLB/NUK,N 
COMMON/ACTORD/ NI(6),KI(6) 

COMMON/SUBSHM/ AHM(3,3,6),BHM(3,6),FHM(3,6) 
COMMON/HMAX/ HMAX(6) 
COMMON/HMIN/ HMIN(6) 

COMMON/STDGIM/ ALFAI(6),ALFAIM 

C 
COMMON/INTINT/ DINT 

COMMON/OPTION/IOPTOR(6),IOPTV(6),IOPTI(6),IOPTG(6) 
COMMON/OPTION/IOPTGF(6),IOPTGG(6),10PTGH(6),10PT1N(6) 
COMMON/SUBCRT/ QQ(3,3,6),R1(6),Q1(6) 

C 

COMMON/GAINS/ PK1(6),PK2(6),PK3(6),PKG(6),PK4(6) 
COMMON/UMAX/ UMAX(2,6),UMAX1(6) 
COMMON/UM/ UQMAX(2,6),UDMAX(2,6) 
COMMON/SUBL1A/ RK(4,4,6) 
COMMON/CTIM1N/ T1M1N(60),ITM1N 

COMMON/STIN1T/ YSINT(18) 

Fig. 1 
I 
I 
I 
I 
I 

1m Fig. 2 
I 
I 
I 
I 
I 

S3 I *S2 : I 

1m 

-*-{j-------+-----*-----+--> 
S1=S2 I Re 

I 

--------{j-----+-----*----+--> 
*S3 :wO S1 I Re 

I 

A. Auxiliary file CONF.DAT 
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6 ; defauld data 
3 

.OOOOOE 00 .10000E 01 .OOOOOE 00 ;auxiliary data 

.OOOOOE 00 -.11320E 02 .47S00E 02 ion actuators 

.OOOOOE 00 -.11333E 04 -.66178E 02 

.OOOOOE 00 .OOOOOE 00 .74900E 02 

.OOOOOE 00 -.03140E 02 .OOOOOE 00 
3 

.OOOOOE 00 .10000E 01 .OOOOOE 00 

.OOOOOE 00 -.11320E 02 .47S00E 02 

.OOOOOE 00 -.11333E 04 -.66178E 02 

.OOOOOE 00 .OOOOOE 00 .74900E 02 

.OOOOOE 00 -.188S0E 01 .OOOOOE 00 
3 

.OOOOOE 01 .!OOOOE 01 .OOOOOE 00 

.OOOOOE 00 -.97700E 01 .4l040E 02 

.OOOOOE 00 -.8S000E 03 -.49629E 02 

.OOOOOE 00 .OOOOOE 00 .S6100E 02 

.OOOOOE 00 -.32S00E 00 .OOOOOE 00 
3 

.OOOOOE 00 .10000E 01 .OOOOOE 00 

.OOOOOE 00 -.16600E 03 .BOOOOE 03 

.OOOOOE 00 -.30000E 03 -.BOOOOE 02 

.OOOOOE 00 .OOOOOE 00 .BOOOOE 02 

.OOOOOE 00 -.33000E 03 .OOOOOE 00 
3 

.OOOOOE 00 .10000E 01 .OOOOOE 00 

.OOOOOE 00 -.16600E 03 .BOOOOE 03 

.OOOOOE 00 -.30000E 03 -.BOOOOE 02 

.OOOOOE 00 .OOOOOE 00 .BOOOOE 02 

.OOOOOE 00 -.33000E 03 .OOOOOE 00 
3 

.OOOOOE 00 .10000E 01 .OOOOOE 00 

.OOOOOE 00 -.16600E 03 .BOOOOE 03 

.OOOOOE 00 -.30000E 03 -.BOOOOE 02 

.OOOOOE 00 .OOOOOE 00 .BOOOOE 02 

.OOOOOE 03 -.33000E 03 .OOOOOE 00 

.10000E 01 ;weighting matrix Q 
.10000E 00 ;for optimal regulator 

.10000E-01 
.10000E 00 .SOOOOE 01 .SOOOOE 01 ;weighting elements 
.SOOOOE 01 . SOOOOE 01 .SOOOOE 01 ;by control for reg . 
.00000E-04 .00000E-02 .10000E-04 ;weighting elemnst 
.10000E-04 . 10000E-04 .10000E-04 ;by integral coord . 

1 ;options on feedback 
1 ;loops 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 A· ~xample - input - file QMSPR.DAT 
1 
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3 
0.000000 itype of joint- KSI2 1 
0.000000 i joint unit axis- ei (x) 1 
0.000000 ijoint unit axis- ei (y) 1 
1.000000 ijoint unit axis- ei (z) 1 
0.000000 ii+1 joint unit axis- ei, +1 (x) 1 
0.000000 ii+1 joint unit axis- ei, +1 (y) 1 
1. 000000 ii+1 joint unit axis- ei, +1 (z) 1 
0.300000 i1ink vectors- Rii (x) 1 
0.000000 ilink vectors- Rii (y) 1 
0.000000 ilink vectors- Rii (z) 1 

-0.300000 ilink vectors- Ri,i+1 (x) 1 
0.000000 ilink vectors- Ri,i+1 (y) 1 
0.000000 ilink vectors- Ri,i+1 (z) 1 
0.000000 ispec. vect. for lin. j.- ui (x) 1 
0.000000 ispec. vect. for lin. j .- ui (y) 1 
0.000000 ispec. vect. for lin. j .- ui (z) 1 
0.000000 ispec. vect. for lin. j.- ui,i+1 (x) 1 
0.000000 ispec. vect. for lin. j .- ui,i+1 (y) 1 
0.000000 ispec. vect. for lin. j.- ui,i+1 (z) 1 
0.000000 itype of joint- KSI2 2 
0.000000 ijoint unit axis- eii (x) 2 
0.000000 ijoint unit axis- eii (y) 2 
1.000000 ijoint unit axis- eii (z) 2 
0.000000 ii+1 joint unit axis- ei, +1 (x) 2 
0.000000 ii+1 joint unit axis- ei, +1 (y) 2 
1. 000000 ii+1 joint unit axis- ei, +1 (z) 2 
0.000000 ilink vectors- Rii (x) 2 
0.000010 i1ink vectors- Rii (y) 2 
0.200000 ilink vectors- Rii (z) 2 
0.000000 ilink vectors- Ri,i+1 (x) 2 
0.000000 ilink vectors- Ri,i+1 (y) 2 

-0.300000 ilink vectors- Ri,i+1 (z) 2 
0.000000 ispec. vect. for lin. j .- uii (x) 2 
0.000000 ispec. vect. for lin. j.- uii (y) 2 
0.000000 ispec. vect. for lin. j.- uii (z) 2 
0.000000 ispec. vect. for lin. j.- ui,i+1 (x) 2 
0.000000 ispec. vect. for lin. j .- ui,i+1 (y) 2 
0.000000 ispec. vect. for lin. j.- ui,i+1 (z) 2 
1.000000 itype of joint- KSI2 3 
0.000000 ijoint unit axis- eii (x) 3 
0.000000 ijoint unit axis- eii (y) 3 
1.000000 ijoint unit axis- eii (z) 3 
0.000000 ii+1 joint unit axis- ei,i+1 (x) 3 
0.000000 ii+1 joint unit axis- ei,i+1 (y) 3 
0.000000 ii+1 joint unit axis- ei,i+1 (z) 3 
0.000000 ilink vectors- Rii (x) 3 
0.200000 ilink vectors- Rii (y) 3 
0.300000 ilink vectors- Rii (z) 3 
0.000000 ilink vectors- Ri,i+1 (x) 3 

-0.200000 ilink vectors- Ri,i+1 (y) 3 
0.000000 ilink vectors- Ri,i+1 (z) 3 
1.000000 ispec. vect. for lin. j.- uii (x) 3 
0.000000 ispec. vect. for lin. j .- uii (y) 3 
0.000000 ispec. vect. for lin. j .- uii (z) 3 
1. 000000 ispec. vect. for lin. i .- ui,i+1 (x) 3 

A. Example - input - file UMSPR.CNF 



0.000000 
0.000000 
0.000000 
0.000000 
1.000000 

;spec. vect. for lin. j.- ui,i+1 (y) 
;spec. vect. for lin. j.- ui,i+1 (z) 

First joint ax s-ext. coordinate(x) 
; First joint ax s-ext. coordinately) 
; First joint ax s-ext. coordinate(z) 

A. Example - input - file UMSPR. CNF (cent.) 

0.000000 ;type of link 
7.000000 ;mass of link 
0.000000 ;moment of inertia Jxx/Js 
0.000000 ;moment of inertia Jyy/Jn 
0.300000 ;moment of inertia Jzz 
3.140000 ;qmax 

-3.141000 ;qmin 
0.000000 ;type of link 
0.000010 ;mass of link 
0.000000 ;moment of inertia Jxx/JS 
0:000000 ;moment of inertia Jyy/Jn 
0.000000 ;moment of inertia Jzz 
3.141000 ;qmax 
0.000000 ;qmin 
0.000000 ; type of link 
4.000000 ;mass of link 
0.010000 ;moment of inertia Jxx/Js 
0.010000 ;moment of inertia Jyy/Jn 
0.000000 ;moment of inertia Jzz 
0.500000 ;qmax 
0.000000 ;qmin 

A. Example - input - file UMSPR.DNM 

DC DC DC 
2.000000 
1.500000 
1.430000 
0.000030 
0.005829 
1.600000 

24.000000 
24.000000 
31.000000 
31.000000 
0.002300 

20.000000 
10.000000 

0.000000 
0.000000 
2.000000 
1.500000 
1. 430000 
0.000030 
0.005800 
1.600000 

24.000000 
24.000000 
31.170000 
31.170000 

;Act.model order 
;Mechanical constant 
;E1ectromotor constant 
;Rotor moment of inertia 
;Viscous coefficient 
;Rotor resistance 
;Input amplitude constraint-upp. bound 
;Input amplitude constraint-low bound 
;Gear speed ratio 
;Gear torque ratio 
;Rotor inductivity 
;Max. torque 
;Motor power 
;Auxiliary variable 
;Auxiliary variable 
;Act. model order 
;Mechanical constant 
;Electromotor constant 
;Rotor moment of inertia 
;Viscous coeficient 
;Rotor resistance 
;Input amplitude constraint-upp. bound 
;Input amplitude constraint-low bound 
;Gear speed ratio 
;Gear torque ratio 

A. Example - input - file UMSPR.ACT 

3 
3 

1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
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0.002300 
20.000000 

100.000000 
0.000000 
0.000000 
2.000000 

125.000000 
120.000000 

0.000030 
40.000000 
1. 600000 

24.000000 
24.000000 

2616.000000 
2616.000000 

0.002300 
20.000000 

100.000000 
0.000000 
0.000000 

;Rotor inductivity 
;Max. torque 
;Motor power 
;Auxi1iary variable 
;Auxiliary variable 
;Act. model order 
;Mechanical constant 
;Electromotor constant 
;Rotor moment of inertia 
;Viscous coeficient 
;Rotor resistance 
;Input amplitude constraint-upp. bound 
;Input amplitude constraint-low bound 
;Gear speed ratio 
;Gear torque ratio 
;Rotor inductivity 
;Max. torque 
;Motor power 
;Auxiliary variable 
;Auxiliary variable 

A. Example - input - file UMSPR.ACT (cant.) 

0.0 
0.0 
0.01 

0.4 
0.6 
0.6 

2 
O.OOOOOE+OO 
3.00000E+00 
0.60000E+00 
3.00000E+00 

O. 
O. 

init.p. 
term. p. 
samp. in. 
durati.on 

A. Example - input - file UMSPR.TRA 

number of points for test 
instant at nom. traj. 
prescribed stability degree 
instant at nom. traj. 
prescribed stability degree 

A. Example - input - file UMSPR.INT 



THE ROBOT NAME [max. length 5 characters]: UMSPR 

DIAG*·* File: UMSPR.CNF is found 

CHARACTERISTIC KINEMATIC VARIABLES 

Joint coordinates: 
O.OOOOOE+OO O.OOOOOE+OO O.OOOOOE+OO 

Transformation matrix 
0.00000 1.00000 

-1.00000 0.00000 
0.00000 0.00000 

of the terminal 
0.00000 
0.00000 
1.00000 

link An: 

Joint axes with respect to absolute coord. frame 

E(l)= 

E(2)= 

E(3)-

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 

1.00000 

1.00000 

1.00000 

Position vectors of the centers of masses and of joints 

R(l,l}= 

R(2,2)= 

R(3,3}= 

0.300 

0.000 

0.200 

0.000 

0.000 

0.000 

0.000 R(1,2)= -0.300 0.000 0.000 

0.200 R(2,3)= 0.000 0.000 -0.300 

0.300 RTO= -0.200 0.000 0.000 

DIAG.** Assembling of the mechanism: SUCCESSFUL 

DIAG •• * File: UMSPR.DNM has been found 

want to compute maximal moments of inertia of the mechanism 
(otherwise you have to directly specify them) [YIN]: Y 

DIAG*** Computation of maximal moments of 

ax. mom. inert. H11max
in. mom. inert. H11min= 

ax. mom. inert. H22max
in. mom. inert. H22min-

ax. mom. inert. H33max= 
in. mom. inert. H33min= 

3.490068 
2.050324 

0.160016 
0.160016 

4.000003 
4.000001 

inertia 

A. Example - interaction between user and package 

(bold letters are user's answers) 
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WARNING*** File: UMSPR.ACT is found 

Actuator model in the jOint: 1 
Matrix A: 

0.000000 1.000000 
0.000000 -46.703224 

vector b: 
0.000000 

32.518211 
vector f: 

0.000000 
-34.686089 

Actuator model in the joint: 2 
Matrix A: 

0.000000 1.000000 
0.000000 

vector b: 
0.000000 

32.164471 
vector f: 

0.000000 
-34.308769 

-46.194183 

Actuator model in the joint: 3 
Matrix A: 

0.000000 1.000000 
0.000000 -45.858898 

vector b: 
0.000000 
0.380534 

vector f: 
0.000000 

-0.004871 
Do you want to print the matrices of subsystems models 
(which include the maximal mom. of inertia) [YIN): Y 

Subsystem: 1 
Subsystem matrix A: 

0.00000 
0.00000 

Subsystem vector b: 
0.00000 
0.26642 

Subsystem vector f: 
0.00000 

-0.28418 

Subsystem: 2 
Subsystem matrix A: 

0.00000 
0.00000 

Subsystem vector b: 
0.00000 
4.95604 

1.00000 
-0.38264 

1.00000 
-7.11780 

A. Example - interaction between user and package 



Subsystem vector f: 
0.00000 

-5.28644 

Subsystem: 3 
Subsystem matrix A: 

0.00000 
0.00000 

Subsystem vector b: 
0.00000 
0.37326 

Subsystem vector f: 
0.00000 

-0.00478 

1.00000 
-44.98249 

Synthesis of local controllers around robot joints 

Do you want synthesis of local optimal regulator 
for the 1th joint [YIN)?: N 
Specify the resonant structural frequency 
of the mechanism [rad/s) 
for the servo in 1 -th joint [rad/s): 12. 

Local feedback servo gains: 

Position servo gain 
Velocity servo gain 

KP(l)= 0.13513E+03 
KV(1)= 0.43606E+02 

Open-loop transfer function: 

W(S)= 0.26642/(5**2+ 0.38264*S) 

Closed-loop transfer function: 

G(S)= 36.00000/(S**2+ 12.00000*S+ 36.00000) 

Do you want synthesis of local optimal regulator 
for the 2th joint [Y/N)?: N 
Specify the resonant structural frequency 
of the mechanism [rad/s) 
for the servo in 2 -th joint [rad/s): 50. 

Local feedback servo gains: 

position 
Velocity 

servo gain 
servo gain 

KP(2)= 0.12611E+03 
KV(2)= 0.86525E+01 

A. Example - interaction between user and package 
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Open-loop transfer function: 

W(S)= 4.95604/(S**2+ 7.11780*S) 

Closed-loop transfer function: 

G(S)- 625.00000/(S**2+ 50.00000*S+ 625.00000) 

Do you want synthesis of local optimal regulator 
for the 3th joint [YIN)?: N 
Specify the resonant structural frequency 
of the mechanism [rad/s) 
for the servo in 3 -th joint [rad/s): 50. 

Local feedback servo gains: 

Position 
Velocity 

servo gain 
servo gain 

KP(3)= 0.16744E+04 
KV(3)= 0.l3442E+02 

Open-loop transfer function: 

W(S)= 0.37326/(S**2+ 44.98249*S) 

Closed-loop transfer function: 

G(S)= 625.00000/(S**2+ 50.00000*S+ 625.00000) 

want to write the feedback gains in the file [YIN) ?: Y 

Synthesis of the joints nominal trajectories 

want to print the nominal trajectories [YIN)?: N 
Select the velocity profile-triangular or trapezoid [TA/TP): TA 

Computation of the nominal dynamics of the robot 
- nominal driving torques and nominal 

programmed control -

want centralized or local nominal programmed control? [C/L): C 
want to print the nominal dynamics [YIN)?: N 

DO you want linear analysis [YIN)?: Y 

Stability analysis 

A. Example - interaction between user and package 



Eigen-values of the open-loop matrix of 
linearized model of the robot in the time instant 

Eigen-values: 
No. Real part 

1 
2 
3 
4 
5 
6 

O.OOOOOE+OO 
-0.16505E+02 
-0.43290E+00 
-0.53679E-08 

O.OOOOOE+OO 
-0.44982E+02 

Complex part Indic. 

O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 

2 
2 
2 
2 
2 
2 

Eigen-values of the closed-loop matrix of 
linearized model of the robot in the time instant 

Eigen-values: 
No. Real part 

1 
2 
3 
4 
5 
6 

-0.23935E+02 
-0.34195E+01 
-0.98590E+02 
-O.14510E+02 
-0.25000E+02 
-0.25000E+02 

Complex part Indic. 

O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 

2 
2 
2 
2 
2 
2 

Achieved stability degree of the robot -3.41955 

Eigen-values of the open-loop matrix of 
linearized model of the robot in the time instant 

Eigen-values: 
No. Real part 

1 
2 
3 
4 
5 
6 

-0.16519E+02 
-0.43022E+00 

0.16400E-10 
0.272S1E-08 
O.OOOOOE+OO 

-0.44982E+02 

Complex part Indic. 

O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 

2 
2 
2 
2 
2 
2 

Eigen-values of the closed-loop matrix of 
linearized model of the robot in the time instant 

Eigen-values: 
No. Real part 

1 
2 
3 
4 
5 
6 

-O.23929E+02 
-0.3420SE+01 
-0.98602E+02 
-0.14S06E+02 
-0.25000E+02 
-0.25000E+02 

Complex part Indic. 

O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 

2 
2 
2 
2 
2 
2 

Achieved stability degree of the robot -3.42049 

0.00000 [sl 

0.00000 [sl 

0.60000 [sl 

0.60000 [sl 

A. Example - interaction between user and package 
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The linearized model is stabilized with 
the prescribed exponential stability degree 

Simulation of tracking of the nominal trajectory 

WARNING*** File UMSPR.SIM already exists 
want to form a file with new simulation [YIN)?: Y 
Want simulation with the already adopted control law 
(otherwise you have to specify it) [YIN)?: Y 
want to specify some specific initial conditions [YIN)?: Y 
Specify initial conditions (for joint angles) [rad) or [m): Y 
Joint 1. -0.03 
Joint 2. -0.03 
Joint 3. -0.03 

Want printings at the display during simulation [YIN)?: Y 
How oten [s - FlO.5)?: 0.1 

Time: O.OOOOO[s) 
No. of joint 1 2 3 
Deviations of the actuator state coordinates 
Angles [rad) or [m):-0.300E-Ol-0.300E-Ol-0.300E-Ol 
Ve1ocit.[rad/s-m/s): O.OOOE+OO O.OOOE+OO O.OOOE+OO 
Current/pressure[A): 
Driving torques[Nm): O.OOOE+OO O.OOOE+OO O.OOOE+OO 
Control signals [V): O.OOOE+vv O.OOOE+OO O.OOOE+OO 

Time: 0.10000[s) 
No. of joint 1 2 3 
Deviations of the actuator state coordinates 
Angles [rad) or [m):-0.28lE-OI-0.l14E-OI-0.142E-01 
Velocit.[rad/s-m/s): 0.611E-Ol 0.135E+00 0.195E+00 
Current/pressure[A): 
Driving torques[Nm): 0.229E+Ol 0.463E+00-0.429E+02 
Control signals [V): 0.2S5E+Ol 0.104E+Ol 0.206E+02 

Time: 0.20000[s) 
No. of joint 1 2 3 
Deviations of the actuator state coordinates 
Angles [rad) or [m):-0.208E-OI-0.272E-02-0.246E-02 
Ve1ocit.[rad/s-m/s): 0.766E-Ol 0.497E-Ol 0.48SE-Ol 
Current/pressure[A): 
Driving torques[Nm): 0.67SE+00 0.223E+00-0.428E+02 
Control signals [V): 0.828E+00 0.999E+00 0.297E+Ol 

Time: 0.30000[s) 
No. of joint 1 2 3 
Deviations of the actuator state coordinates 
Angles [rad) or [m):-0.138E-Ol 0.134E-03-0.308E-03 
Ve1ocit.[rad/s-m/s): 0.S99E-OI-0.194E-02 0.663E-02 
Current/pressure[A): 

Driving torques[Nm):-0.214E+01-0.391E+00-0.398E+02 
Control signals [V):-0.221E+Ot 0.514E+00-0.7S1E-Ol 

A. Example - interaction between user and package 



Time: 0.39998[s) 
No. of joint 1 2 3 
Deviations of the actuator state coordinates 
Angles [rad) or [m]:-0.889E-02 0.672E-03-0.339E-04 
Velocit.[rad/s-m/s): 0.404E-01 0.206E-02 0.761E-03 
Current/pressure[A): 
Driving torques[Nm]:-0.189E+01-0.454E+00-0.393E+02 
Control signals [V):-0.196E+Ol 0.876E-OI-0.456E+00 

Time: 0.49997[s] 
No. of joint 1 2 3 
Deviations of the actuator state coordinates 
Angles [rad) or [m]:-0.558E-02 0.682E-03-0.349E-05 
Velocit.[rad/s-m/s]: 0.264E-01-0.144E-02 0.801E-04 
Current/pressure[A): 
Driving torques[Nm]:-0.166E+01-0.423E+00-0.392E+02 
Control signals [V]:-0.174E+01-0.202E+00-0.497E+00 

Time: 0.59999[s] 
No. of joint 1 2 3 
Deviations of the actuator state coordinates 
Angles [rad) or [m]:-0.346E-02 0.508E-03-0.344E-06 
Velocit.[rad/s-m/s): 0.166E-01-0.195E-02 0.801E-05 
Current/pressure[A): 
Driving torques[Nm]:-0.150E+01-0.398E+00-0.392E+02 
Control signals [V):-0.158E+01-0.495E+00-0.502E+00 

WARNING*** End of simulation 

want another simulation of robot [YIN]?: " 

A. Example - interaction between user and package 

135.12567 
43.60567 

0.00000 
0.00000 

126.10879 
8.65252 
0.00000 
0.00000 

1674.42932 
13.44234 

0.00000 
0.00000 

A. Example - output - file UMSPR.LQC 
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Subject Index 

Compliance center, 332 Active compliance, 353 

Actuators, 58, 259 Computed torque method, 264, 351 

Adaptive control, 307 

Adaptive robots, 2, 10 

Aggregation-decomposition method 

for stability analysis, 268 

Amplifier, 78 

Computer-aided synthesis of control, 

255, 363 

Coriolis forces, 54, 156 

Critically damped, 89 

Cross-inertia members, 54, 155 

Analogue implementation of 

control, 17, 76 

Cylindrical structure of robot, 37 

Analytical linearization of robot Damping factor, 89 

model, 162 Decentralized adaptive control, 308 

Analytic solution to inverse Decentralized Cartesian control, 

kinematic problem, 34 276 

Anthropomorphic structure of Decentralized control of robot, 71, 

robot, 38 263 

Approximate models of robot, 248 Decentralized form of model, 66 

266 Decomposition, 208, 211 

Arc welding, 12 Decoupling, 242 

Artificial constraints, 340 Detector of error signal, 78 

Assembly, 314 Dialogue robots, 2 

Asymptotic stability, 170, 205,222 Direct compensation for gravity 

Automatic planning, 349 moment, 112 

Automatic robots, 2, 9 D.C. electro-motors, 58 

Direct digital control, 22 

Backlash, 121 Direct-drive actuators, 63 

Biotechnical robots, Direct drive robots, 108, 183 

Direct kinematic problem, 32 

Cartesian (external) coordinates, 29 Dynamic control of robot, 233, 254 

Cartesian based control, 273 

Centralized adaptive control, 307 

Centralized control structure, 263 

Centralized model, 66 

Centralized nominal control, 190 

Centralized optimal regulator, 287 

Dynamic 

Dynamic 

Dynamic 

Elastic 

Electro 

controller, 73, 

hybrid control, 

friction, 120 

effects, 301 

hydraulic, 58, 

126 

350 

62, 88 

Centrifugal effects, 54, 156 Estimate of stability region, 220 

Characteristic frequence of servo, Executive control level, 5, 19 

89 

Closed kinematic chain, 214 

Compliance, 332, 353 

Explicit force control, 358 

Exponential stability, 172, 206 

External (Cartesian) coordinates, 4 



Feedforward, 136 

Fine motion, 315 

Flexible production cell, 14 

Flexible technological line, 22, 

14, 315 

Flexible technological systems, 

18, 295 

Force control, 325 

Joint (internal) coordinates, 5, 29 

Kinematic (tactical) control level, 

27 

Liapunov's direct method, 206 

Linearization of robot model, 159 

162 

Force feedback for global control, Linear joint, 53 

242 Linear model of robot, 160, 288 

Force transducers, 243, 387 

Forging, 13 

Global control 237, 260, 281 

Global feedback loops, 235 

Gross motion, 315 

Hierarchical control, 3, 7, 8 

Hybrid implementation of control, 

17 

Hybrid position/force control 339 

Identification of parameters, 

295, 307 

Impendance control, 358 

Implicit force control, 357 

Indirect decentralized adaptive 

control, 309 

Interactive robot 

automated, 2 

supervised, 2 

dialogue, 2 

Integration interval, 262 

Intelligent robots, 2, 10 

Interface motion, 317 

Internal (joint) coordinates, 5 

Inverse dynamics method, 264 

Inverse kinematic problem, 33 

Jacobian matrix, 39, 274 

Joint based control, 273 

Local nominal programmed control, 

138, 179 

Local optimal regulator, 147 

Local servo system, 76, 259 

Master-slave systems, 2 

Mathematical model of actuators, 58 

79, 259 

Mathematical model of mechanical 

part of robot, 53 

Microprocessor implementation of 

control, 17, 76, 84 

Minimal configuration, 35 

Mobile robots, 15 

Model of state deviation, 139 

Model-referenced adaptive control, 

308 

Natural constraint, 339 

Nominal programmed control-centra

lized, 188, 259 

Nominal programmed control-local, 

138, 179, 260 

Nominal trajectory, 138 

Nonlinearities in servo, 118 

Nonlinear control, 291 

Numerical linearization of robot 

model, 163 

Numerical solution to inverse 

kinematic problem, 39 
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On-line computation of dynamic 

model for global control, 246 

Off-line computation of nominal 

control, 196 

Open kinematic chain, 314 

Optimal control, 287 

Optimal regulator, 147, 287 

Overcritically damped servo, 89 

Overshoot, 89 

Parallel processing, 24, 247 

Parts mating, 316 

Passive compliance, 332 

Path planning, 4 

Payload parameters, 296 

Peg-in-hole task, 317 

Pneumatic actuators, 52 

Pole placement method, 99 

Position control, 168 

PID controller, 127 

Position sensor, 81 

Practical stability, 233, 181,225 

Pre-compensator, 136 

Pressure casting, 11 

Programming language, 45 

Programmable robots, 2, 9 

Real time control, 197 

Redundant manipulators, 34, 40 

Repeatibility of servo, 120 

Reprogrammability, 17, 332 

Robotic language, 6, 45 

Robustness, 197, 243, 269, 291 

Rotational joint, 53 

Sampling period, 22, 247, 260 

Semi-automatic robots, 2 

Self-tuning PID controller, 308 

Sensor information processing, 18 
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