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Preface 

Functional analysis owes its OrIgms to the discovery of certain striking 
analogies between apparently distinct disciplines of mathematics such as 
analysis, algebra, and geometry. At the turn of the nineteenth century, a 
number of observations, made sporadically over the preceding years, began 
to inspire systematic investigations into the common features of these three 
disciplines, which have developed rather independently of each other for so 
long. It was found that many concepts of this triad-analysis, algebra, 
geometry-could be incorporated into a single, but considerably more 
abstract, new discipline which came to be called functional analysis. In this 
way, many aspects of analysis and algebra acquired unexpected and pro­
found geometric meaning, while geometric methods inspired new lines of 
approach in analysis and algebra. 

A first significant step toward the unification and generalization of 
algebra, analysis, and geometry was taken by Hilbert in 1906, who studied 
the collection, later called 12 , composed of infinite sequences x = Xb X 2, ... , 

X k , ... , of numbers satisfying the condition that the sum Ik"= 1 X k 2 converges. 
The collection 12 became a prototype of the class of collections known today 
as Hilbert spaces. 

However great his contribution, Hilbert failed to interpret geome­
trically the terms of a sequence as the coordinates of a point, x, in some 
abstract space. This step was taken in 1907 by Schmidt and Frechet, who 
boldly turned to geometric language and noted a complete analogy between 
the structure of Hilbert's collection and that of the family, named !.P 2, of 
square-integrable functions. 

After Riesz' observation that it is quite natural to define a distance 
between the members of !.P 2, the idea of identifying collections (sets) with 
abstract spaces possessing specific geometric structures was finally born. 

The underlying unity of algebra, geometry, and analysis so disclosed 

vii 
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gave strong impetus to further studies continuing to this day. Especially 
important contributions in this direction have been made by Banach, Hahn, 
Moore, Sobolev, and Wiener, to mention only a few. 

The theory of abstract spaces seems to have remained an academic 
construction, carried out for its own sake, until, beginning in 1923, studies 
on quantum mechanics indicated that the theory might provide mathemati­
cal equipment useful in applications to physics. This fact was clearly shown 
in two famous papers by von Neumann published in 1929-1930, in which a 
purely axiomatic approach to the theory of quantum mechanics was 
proposed. In the course of time, the interweaving between quantum 
mechanics and Hilbert space theory became so close that a physical reality 
has been ascribed to certain abstract postulates, for example, the statement 
that it is legitimate to represent dynamical variables by operators in Hilbert 
spaces, and the results of measurements on atomic scale by eigenvalues of 
these operators. 

Another application of functional analysis was presented in 1940 by 
Weyl in a paper on the method of orthogonal projections. This paper was 
later to playa role in the discovery of similarities between the methods of 
Ritz and Trefftz and that of orthogonal projections. Applications of func­
tional analysis have been made in optimization (e.g., Ref. 1), in the gener­
alized moment problem, and, of course, in purely theoretical investigations 
such as existence and uniqueness of solutions to partial differential equa­
tions, calculus of variations, and approximate computations. Oddly enough, 
the impact of functional analysis on engineering sciences has been, up to the 
present time, relatively weak. A few exceptionst are the expositions, in book 
form, of Mikhlin, Gould, and, notably, of Synge. Among the research papers, 
many of these published by Diaz, Greenberg, McConnell, Payne, Prager, 
Washizu, and a few others are of a primarily applied character. More re­
cently, Hilbert space ideas were applied by Eringen, Edelen, and others in 
the development of non local continuum mechanics, and by Christensen in 
nonlinear viscoelasticity. (2-4) 

The objective of the present book is to reduce the gap existing between 
the abundance offacts and methods available in abstract functional analysis, 
and their heretofore limited use in various areas of applied mechanics.! It is 
believed that these techniques can be employed in engineering problems in 
the same way as the standard methods of mathematical analysis, probability 
theory, and others have been utilized for years. This book is a brief review, of 

t Bibliographical details are given later in the text. 
! That this is not an isolated case brings to mind the warning, given long ago by the distin­

guished mathematician, Richard Courant, against "the tendency of many workers to lose 
sight of the roots of mathematical analysis in physics and geometric intuition and to concen­
trate their efforts on the refinement and the extreme generalization of existing concepts."(S) 
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a somewhat elementary character, of applications of functional analysis, 
principally to the theory of elasticity. It is not addressed to those who delight 
in pure logical deductive sequences of reasoning; these can be found in 
abundance in many excellent books on functional analysis. The presentation 
here is intended to appeal primarily to the geometric intuition of the reader, 
being deliberately shorn at each step of those refinements that distinguish 
arguments concerned with questions of rigor. In spite of its simplifications, 
it is nevertheless hoped that the exposition is correct or, at least, that the 
inaccuracies are few and venial. 

The author would like to think that this book will introduce the novice 
to the subject and guide him to a point at which he is ready to broaden his 
knowledge. In addition, an attempt has been made to establish the applicabi­
lity of the methods of abstract (specifically, function) spaces in solving prac­
tical problems as being on a par with the classical methods of Rayleigh-Ritz, 
Trefftz, and others. It is believed that with an increasing interest on the part of 
practitioners, the methods of functional analysis will be enriched and 
perfected. 

In Chapter 1, the reader is reminded of the distinctions between physi­
cal and abstract spaces. Chapter 2 devotes a good deal of attention to the 
study of the (relatively) simple affine (linear) space of three dimensions. This 
chapter initiates a tour through a world of spaces with increasingly exotic 
structures: Euclidean three-dimensional (Chapter 3), Euclidean finite­
dimensional (Chapters 4 and 5), and, finally, infinite-dimensional spaces 
(Chapter 6). Chapter 7 is devoted to establishing the axiomatic system of 
Hilbert space, an applicable representative of which-the function space-is 
studied in Chapters 8-10. 

Chapter 10 completes the theoretical portion of the book; the next five 
chapters explore the possibilities for practical applications of the theory. The 
reader is there introduced to the derivation of bounds and inequalities for 
the estimation of quantities of physical interest, to the methods of hyper­
circle and orthogonal projections, and to the connections between the ideas 
of function space and Rayleigh-Ritz, TrefTtz, and variational methods. 
Almost all of the chapters are followed by problems (122 in all) closely 
related to the text, and introducing worthwhile additional material. Their 
objective is to give the reader a better feeling for the purely theoretical 
questions discussed in the text. A detailed solution is given for each problem, 
all of which are collected in a single chapter at the end of the book. A few 
topics of a related character (such as quantum mechanics) are examined in 
comments following the appropriate chapters. The theory of distributions is 
discussed in Chapter 16. Many illustrative problems are explored directly in 
the text; six of them are carried through to numerical results. 

This book owes much, both in style and in content, to the generous help 
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of my friend and former student, Dr. Allan Dallas, from the Department of 
Mathematical Sciences of the University of Delaware, who read the entire 
text, improving and correcting a number of unclear points and errors in the 
first draft of the book. Of course, those that still remain are the responsibili ty 
of the author. My thanks also go to Mrs. Ruby L. Schaffer and Mrs. Alison 
Chandler for their expert typing. Last, but certainly not least, I express my 
sincere gratitude to the editor of this series, Professor Angelo Miele, for his 
exemplary cooperation, and to the anonymous reviewer whose constructive 
criticism and deep knowledge of the subject have contributed significantly to 
the clarity and correctness of the text. I also gratefully acknowledge the 
gracious cooperation of Mr. Robert Golden, Senior Production Editor, from 
the Plenum Publishing Corporation. 
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I 

It is the nature of a real thing to be inexhaustible 
in content-H. WEYL 

Physical Space. Abstract Spaces 

Whereas the Random House Dictionary of the English Language(6) lists as 
many as nineteen connotations of the word "space," for the purposes ofthis 
exposition it is sufficient to consider only two, which we shall designate more 
specifically by the terms "physical" and "abstract" space. 

The physical space is simply the unlimited expanse of the universe, in 
which all material objects are located and all phenomena occur. 

An abstract or, more precisely, a mathematical space, is a conception, 
the result of a mental construction. It may denote different things: an ideal 
extent of any number of dimensions, a collection (set) of abstract objects 
(points, vectors, numbers, functions, or sequences, for example) or a collec­
tion of real objects (inert bodies, people, animals, and so on). Of the various 
examples of mathematical spaces, probably the most familiar is the 
Euclidean space-the subject of high-school geometry. Two others are the 
space of classical mechanics, assumed to be controlled by Newton's laws of 
motion, and the four-dimensional spatiotemporal world of the theory of 
relativity. 

The mathematical spaces-and there are many of them-are, of course, 
more or less elaborate idealizations of the physical space. In order to serve 
the purposes for which they are conceived, they are described precisely, with 
full logical rigor. For instance, the definition of the high-school Euclidean 
space is given by a system of postulates, known as the axioms of Euclid, 
satisfying three basic requirements of independence, consistency, and 
completeness. 

To each mathematical space one can ascribe a dimension, specified by a 
number which may be infinite. Examples of one- and two-dimensional 
spaces are a straight line and a plane, respectively. 

We denote these particular spaces by gland g 2, respectively, and 
imagine them as resting in a Euclidean space of three dimensions, g 3, the 



2 Chapter 1 

AMORPHOUS SPACE 

+ SPACE WITH SET - THEORETI C STRUCTURE 

SPACES WITH TOPOLOGICAL STRUCTURE SPACES WITH ALGEBRAIC STRUCTURE 

TI - spaces 

T2 - spa ces ·of Hausdorff 
+ T3 - spaces 

• T4 - spaces ./ 
. I trr ./ / 

metric spaces,_ FI / 
t ___ .../// 

j 
Linear (affine) Spaces, 1) 

I I j ~ 

~ - -Normed Linear Spaces,. I 
/ • f7J 

Banach Spaces, W 
I 

Inner Product Spaces 
I ,// . 

Hilbert Spaces, ./( 
I l' 

Euclidean Spaces, () 

TOPOLOGICAL LINEAR SPACES 

Figure 1.1. A family of mathematical spaces. The arrows indicate transition from a general 
structure to a more special one. Space T,: each set consisting of a single point is 
postulated to be closed. Space T2 : for each pair P ,. P 2 of distinct points. there exists 
a pair S ,. S 2 of disjoint open sets such that P, E S ,. P 2 E S 2' Banach space: com­
plete normed linear space. Hilbert space: complete inner product space. Euclidean 
space: the set of all n-tuples of real numbers equipped with the familiar distance 
[D~, (Xi - .1',)2]'12. Symbols PES (P if S) mean P belongs (does not belong) to S. 
Explanations of the terminology used here are given later in the text. 

latter being an idealized image of the physical space, which is believed to 
have three dimensions. The space 8 1 is called a subspace of 6 2 • while both 
8 1 and 82 are subspaces of 8 3 .t 

A detailed examination of the various classes of mathematical spaces 
lies beyond the scope of this book; still, it is both interesting and informative 
to cast a glance at the "genealogical" tree of the most common abstract 
spaces (Figure 1.1). 

Before actually doing this, it is good to recall that, from a purely math­
ematical standpoint, the term space designates, as we have noted, both a 
continuous extent and a set of separate objects. These objects are called 
elements, or members, of the space, and their number may be finite or infinite. 
As long as the elements are not clearly defined, there is no means for decid­
ing whether a given object belongs to the space.t In a similar vein, if there 

t See Comment 1.1 of this chapter. below. 
~ Basically. by a set is meant a well-defined collection of objects. so that it is always possible to 

decide whether an object belongs to the particular collection. Again. by a space we normally 
mean a set with some kind of mathematical structure (see below). 
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should be no defined operations on the elements of the space, the space has 
no structure; it is amorphous, and the question of carrying out analytical 
processes within the space is sterile (Figure 1.1). 

The structure of a space, also called its geometric structure, has three 
aspects: set-theoretic, algebraic, and topologicaI.t 

As is well known, the theory of sets is concerned with the investigations 
of operations on sets and such fundamental mathematical concepts as those 
of function and relation. It serves as a groundwork on which rest the axio­
matic systems of algebra and topology. Concerning the notions of topo­
logy, our interest in this book involves no more than those deriving from the 
idea of the closeness (distance between) the elements of a space. The alge­
braic concepts chiefly used are those of the addition of elements and the 
multiplication of the latter by scalars. Many specific items related to 
the geometric structure will be explained as they arise in the text. At this 
point, it will suffice to briefly examine only some of them. 

A first step towards the establishment of a geometric structure for an 
amorphous space is the introduction of the set-theoretic axiomatics, which 
form the foundation of any branch of mathematics. This leads to the 
definitions of such concepts as the ordering of elements, equality, union, and 
intersection of sets.! 

Further development of the space structure is realized in the designa­
tion of a family of subsets as the "open sets."§ This family, required to satisfy 
a certain set of axioms, defines a so-called topology of the space. Springing 
from this construction are such new concepts as a neighborhood of an 
element, continuity of a function, an accumulation point, convergence of a 
sequence, and compactness.~ Whenever a topology is identified for a space, 
that space with its topology is known as topological space. There is a hier­
archy of types of topological spaces; some types are more specialized cases 
of others. A few of these types are indicated in Figure 1.1, denoted there by 
the symbols Yj, where i = 1,2,3, or 4. An analysis of the definitions of, and 
differences between, these ,Yi-spaces (or any of the other types) would lead 

t A detailed exposition of these topics would require a separate volume. Examples of excellent 
readable accounts include: Berberian,(7) Mikhlin,(8) Naylor and Sell,(9) and Sneddono o, One 
of the several fairly comprehensive texts is that by Taylor.(lll Popular presentations are those 
of Fletcher(12' and Hausner.(!3) The more recent Oden's book(!4, includes many interesting 
exercises and examples from classical and continuum mechanics. Very useful also is Kreyszig's 
book.(! 5) 

t A readable review of the theory of sets is found in, e.g., Lipschutz06 ' 

§ The concept of an "open" set need not be interpreted geometrically. The definition of "open­
ness" depends entirely on the kind of topology. See also the second footnote following 
equation (4.5). 

~ It is good to recall that the limiting process underlying most of these concepts is one of the 
most essential operations of mathematical analysis. 
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us too far afield; let it suffice to note here that the structure of a topological 
space becomes much more fruitful if the topology is generated by a measure 
of closeness, or nearness, of elemen ts, known as the distance function. A space 
equipped with such a measure of distance between its elements is called a 
metric space; each metric space is an example of a topological space. 

A next specialization in structure consists of two simultaneous acts: 
provision of the algebraic structure characteristic of the so-called linear 
vector spaces, t and generalization of the familiar notion of length through 
the concept of the norm (or length) of an element. A space so devised is called 
a normed linear vector space or, briefly, a normed vector space. A particular 
example of a normed space is a so-called Banach space, ~. 

A welcome feature of normed vector spaces is the similarity of their 
structure to that of Euclidean spaces. This similarity becomes even more 
pronounced if the norm of each element is defined in terms of a binary 
operation (i.e., one performed on pairs of elements) called an inner product, 
which is formally analogous to the dot product of ordinary vectors. A space 
so enriched becomes an inner product space, well-equipped for both theoreti­
cal investigations and practical applications. 

Particularly useful inner product spaces are those of the class named 
after the great mathematician David Hilbert. The geometric structure of a 
Hilbert space, Yf', is more complete than that of the general inner product 
space, and, in spite of the presence of certain features not encountered in 
Euclidean spaces, is a direct progenitor of the latter. Thus, a finite­
dimensional real Hilbert space coincides with a Euclidean space of the same 
dimension, except for the nature of, and the operations on, elements: in 
Hilbert space, these are defined in an abstract manner, whereas in a 
Euclidean space, the elements are the familiar points and vectors, with rules 
of operation which are quite concrete. 

As an illustration of a geometric structure, we can examine that of the 
three-dimensional Euclidean space. Its set-theoretical structure is deter­
mined by specifying it as the set of all ordered triples of real numbers x = Xl' 

X2, X3' where x denotes a point of the space and Xl' X2, X3 its coordinates. 
The topological structure of C 3 is established by introducing the concept of 
(Euclidean) distance between two points x and y: d(x, y) = [(Xl - Ylf + 
(X2 - Y2)2 + (X3 - Y3)2]1/2. Finally, the algebraic structure is incorporated 
by defining the addition of elements: X + Y = (x 1 + Yb X2 + Y2, X3 + YJ), 
and the scalar multiplication: (Xx = ((XXb (XX 2 , (XX3)' where (X is a real number. 

Believing a transition from the concrete to the abstract to be more 
natural for a physically minded reader than an opposite course, we shall 

t Many authors use the terms "vector space," "linear space," and "linear vector space" 
interchangeably. 
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begin the exposition proper with an examination of a relatively simple affine 
(or linear) space. It will be the familiar Euclidean space Iff 3 stripped, however, 
of metric. 

Comment 1.1. In the same sense in which a line and a plane are sub­
spaces of Iff 3 of dimension one and two, respectively, the origin is a subspace 
of dimension zero, Iff 0' for it includes the single zero vector. This agrees with 
Definition 2.1 in Chapter 2 of a point as equivalent to the zero vector, as well 
as with the convention that the zero vector, e, generates a singleton set, {e}, 
whose dimension is postulated as being zero. The conventional definition of 
a subspace implies that any subspace must include the zero vector (see the 
remarks following equation (4.1), for example). Thus, if we imagine vectors to 
remain bound and emanate from the space origin, 0, then If 1 and Iff 2 repre­
sent lines and planes passing through 0, respectively. In this understanding, 
the subspace Iff 0 coincides with the point 0. In our future studies, we shall 
meet geometric systems which have all the features of subspaces proper, but 
do not include the space origin. t 

t See Chapter 9 or this book ror a discussion or "translated" subspaces. 
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Basic Vector Algebra 

Vectors are geometric objects existing 
independently of any coordinate system 

-8. FRIEDMAN 

As already stated, elementary geometry deals with properties of, and rela­
tions between, objects (figures) assumed to dwell in an ideal, Euclidean space 
of three dimensions. An important class of these objects is the collection of 
directed line segments, known as "ordinary" vectors. These quantities are 
endowed with both magnitude and direction, and are graphically repre­
sented by arrows. In the first four chapters of this book, a vector will be 
denoted by' a boldface letter or by two letters with an arrow above them, 
such as liB, indicating the origin, A, and the terminus, B, of the vector. 

If one confines one's attention to vectors as the sole geometric elements 
of interest, it becomes natural to apply the terminology "space of vectors" or 
a "vector space" to a space occupied by vectors. By approaching the algebra 
of ordinary vectors from a point of view which is more dogmatic than that 
usually taken, we are afforded a means of gaining an appreciation for the 
issues involved in abstract vector spaces to be discussed later. 

With this in mind, we designate "point" and "vector" as primitive con­
cepts whose properties are intuitively clear. Indeed, the axiomatics to be 
established is considered as giving implicit definition to these concepts.t 

We begin with the following three postulates: 

Axiom 2.1. With each pair of points A and B, given in this order, there 
is associated a single vector, denoted by A] or, briefly, by x, say. 

Axiom 2.2. To each point A and any vector x there corresponds a 
unique point B such that 

AB=x. (2.1 ) 

t The axiomatics follows that given by Rashevski.o 7) 

7 
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The actual meaning of Axiom 2.2 is better understood by thinking of a 
vector as a uniform translation of the entire space (together with its "con­
tents"), rather than as a directed line segment. In this manner, any definite 
vector, say AB, in fact generates a certain vector field, and equalities such as 

-;-;t --- ---x = Al1 = A'B' = A"B" = ... 

define the same vector except at various locations A, A', A", ... of its point of 
application. This fact enables us to shift vectors "parallel" to themselves 
from one point of space to another without impairing their identities, in 
effect treating them as "free." We note that, from this standpoint, the sign of 
equality of vectors (=), used in equations such as (2.1), represents simply the 
sign of the identity of vectors. 

Axiom 2.3. If 

AB= CD, - --then AC = BD. (2.2) 

The pictorial sense of this axiom ist that if two opposite sides of a quadri­
lateral are equal and parallel, then the two remaining sides are also equal 
and parallel (Figure 2.1). This implies that the quadrilateral is a 
parallelogram. 

B~ ____________________ D 

F 

y 

Figure 2.1. Illustration for Axiom 2.3. 

t Note that Axioms 2.1, 2.2, and 2.3 implicitly define the notions of parallelism of vectors, and of 
lines carrying these vectors in such a way that the lines do not meet. For if they did, one could 
shift the concomitant vectors to the intersection point P and obtain two separate equal 
vectors at a single point P, contrary to Axiom 2.2. 
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At this stage, it is convenient to introduce two concepts: (1) of the 
zero vector by means of 

Definition 2.1. 

O=AA, (2.3) 

and (2) of the vector - x (negative of x), of direction opposite to that of the 
given vector x, by means of 

Definition 2.2. 
--+ 

-x = BA, where x = AlI. (2.4 ) 

With these preliminaries established, we introduce the fundamental 
operation of addition of vectors through 

Definition 2.3. Let x and y be two arbitrary vectors, given in this order. 
Choose a point A as the origin of the vector AB = x (Axiom 2.2), and 
construct the vector ED = y at the point B. Points A and D determine the 
vector AD = z (Axiom 2.1) called the sum of the vectors x and y. 
Symbolically, 

x + y = z. (2.5) 

Thus far, there has been established a certain simple axiomatic system. It 
includes two undefined terms ("point" and "vector"), three primitive state­
ments (axioms or postulates), and three definitions. It is interesting to note 
that the system provides a great deal of information about vectors, in spite of 
its simplicity. As illustrations, we offer the following conclusions. 

Conclusion 2.1. Commutative Law of Addition. 

x+y=y+x (2.6) 

or, verbally, the order of addition does not affect the sum of vectors. Indeed, 
using Axiom 2.2, we construct the vector Jj] = x at a point A, and then the 
vector ED = y at the point B, so that 

(2.7) 

by Definition 2.3. Next, at the same point A, we construct the vector AC = )'. 
Since y = AC = lID, we invoke Axiom 2.3, concluding first that All = CD, --and consequently that CD = x. If we now assume that, at the outset, we have 
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erected the vector y = AC at the point A and subsequently attached the 
----+ 

vector CD = x at the point C, we obtain by Definition 2.3, 

AD = y + x. (2.8) 

An inspection of relations (2.7) and (2.8) proves our conclusion. 

In like manner, and just as simply, three further conclusions can be 
reached. 

Conclusion 2.2. 

(x + y) + z = x + (y + z), 

that is, the addition of vectors is associative. 

Conclusion 2.3. 

x+O=x, 

that is, addition of the zero vector does not change a given vector. 

Conclusion 2.4. 

x+(-x)=O. 

(2.9) 

(2.10) 

(2.11) 

With merely the law of vector addition, the vector calculus would provide no 
significant mathematical equipment. Still another binary operation is 
needed, that which forms a vector from a pair composed of a scalar (mean­
ing a real number throughout this book) and a vector. This operation, called 
scalar multiplication, or the multiplication of a vector by a scalar, is defined 
by the following five axioms. 

Axiom 2.4. To each vector x and to each scalar (x, there corresponds a 
vector, denoted by (Xx, called the scalar product of (X and x. 

Informally, the product (Xx may be interpreted as a translation in the 
same "direction," but of different "magnitude" than that provided by x; even 
so, the concepts of "direction" and "magnitUde" remain undefined. What is 
really known is the "ratio" of vectors, "(x = (Xx/x" (including negative ratios 
as well). 

Axiom 2.5. There is 

Ix = x. (2.12) 
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This axiom states that the multiplication of a vector by the scalar 1 does not 
change the vector. 

The statement may seem vacuous, but is actually needed for com­
pleteness of the axiomatics (compare Berberian,(7) Theorem 1, p. 6). 

Axiom 2.6. 

(a + fJ)x = ax + fJx: (2.13) 

the distributivity of scalar multiplication with respect to the addition of sca­
lars is established. 

Axiom 2.7. 

a(x + y) = ax + ay: (2.14 ) 

the distributirity of scalar multiplication with respect to the addition of vec­
tors is established. 

Axiom 2.8. 

a(fJx) = (afJ)x, (2.15 ) 

asserting the associativity of multiplication by scalars. 

Supplemented by the preceding five postulates, the axiomatic system so 
far established is sufficiently reached to admit two basic operations on 
vectors-their addition and their multiplication by scalars. The system thus 
produced is known as the affine (linear) system, while the space of vectors 
satisfying Axioms 2.1-2.8 is called the affine space. 

It is instructive to note certain implications of the last few axioms. 

Conclusion 2.5. For an arbitrary vector x, 

Ox =0. (2.16) 

In fact, by Axiom 2.6, we can write, for any number a, 

Ox = (a - a)x 

= ax - ax 

=0, 

the last equality following by virtue of equation (2.11). This proves our 
assertion. 
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Conclusion 2.6. For an arbitrary scalar a, 

aO = O. 

Chapter 2 

(2.17) 

To show this, we use Conclusion 2.5 and Axiom 2.8 to write, for an arbitrary 
vector, 

aO = a(Ox) 

= (aO)x 

=Ox = O. 

As another illustration, we provide the following theorem, with its proof. 

Theorem 2.1. The diagonals of a parallelogram bisect each other 
(Figure 2.1). 

It should be carefully noted that "bisection" here means nothing other 
than the equality oftwo segments of the severed diagonal, in the understand­
ing of Axiom 2.2. With this in mind, let ABCD be a parallelogram in the 
sense of Axiom 2.3, so that 

---.. ---+ ~--+ 
AB = CD = x, Ac = BD = y. (2.18) 

By Definitions 2.2 and 2.3, -AD = x + y, -CB = x - y. (2.19) 

Suppose that M is the point of intersection of the diagonals, and select 
points E and F on the diagonals AD and CD, respectively, such that 

AE = aAD and IT = aCE, (2.20) 

in the manner of Axiom 2.4. On account of equations (2.19), we have 

AE = a(x + y), IT = a(x - y), (2.21 ) 

as well as 

AI = y + IT = ax + (1 - a)y, (2.22) 

by virtue of the second equation (2.21). Now, let the points E and F coincide; 
then, they must also coincide with the point M, since M is the only point in 
which the diagonals meet. Thus, in this case, ----;-;-t AE = AM = AI' , 

and from the preceding equations, 

(2.23 ) 
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This completes the proof, inasmuch as 

AM = Ai =!AD and cr = eM = !CB. (2.24) 

An important question arising at this stage concerns the absence from 
the established axiomatics of the affine space of any mention of such fun­
damental notions as length (of a line segment, for instance) or the distance 
between two points. Even the term "magnitude of a vector" is (not ac­
cidentally) only vaguely defined, signifying nothing other than the equality 
and ratio of parallel vectors in the sense of Axioms 2.3 and 2.4, respectively. 
We point out that, whereas Definition 2.3 enables us to sum nonparallel 
vectors, it has a rather descriptive character, and says nothing about the 
metrical relations between the vectors to be summed and their sum. 

A peculiar feature of the affine axiomatics brought out in the above 
examples is the omission of the idea of measure in the strict sense of this 
word. Thus, not only are the concepts of length and distance lacking, but 
there is also no definition of the angle between two directions. The latter 
should come as no surprise, for an inclination is measured by a ratio of 
lengths, namely, those of the arc subtending the angle and the pertinent 
radius. 

To clarify this matter, consider the following example. Imagine a triangle 
ABC, formed by three vectors, AB, Be, and CA, resting in an affine space. 
We are permitted to translate the triangle parallel to itself to any location, 
for two identical and identically directed geometric figures at different loca­
tions are, in fact, precisely the same figure from the standpoint of affine 
geometry. However, a rotation of the triangle is not an identity-preserving 
transformation, since such an operation changes the triple of vectors into a 
different triple, the connections of which with the original triple-like any 
relations between nonparallel vectors-are nonexistent (at least in the axio­
matics so far formulatedt). 

The foregoing example clearly shows the incompleteness of a geometric 
structure which fails to account for measure. In point of fact, the entire 
structure of modern civilization rests in part on association of numbers with 
things, only one instance of which is the measurement of extentions (lengths, 
areas, and volumes). It suffices to mention here, among the many other 
examples, the marking of sizes, weights, and prices, the numbering of 
phones, houses, and streets, and the measurement of times and speeds. 

In order to fill the gaps in the affine structure and make it as complete as, 
say, high-school Euclidean geometry, we shall introduce a function which is 
said to be a metric for the space. 

t This conclusion is perhaps surprising to those taking for granted the mobility of material 
objects in our physical space and of geometric objects in high-school geometry. 
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Before examining the latter concept in some detail in Chapter 3, it is worth 
mentioning that the study of nonmetric spaces is not as barren as it may 
seem. Actually, much attention is devoted in the modern literature to topo­
logical spaces devoid of a metric, t although some of these possess properties 
which may generalize or be reminiscent of certain characteristics of the 
structure endowed by a metric. As examples, we cite the topological spaces 
of the type [T i' i = 1, 2, 3, 4, which fit into the hierarchy of spaces as shown 
in the diagram of Figure 1.1. 

Problems 

1. Can the affine geometry distinguish between an ellipse and a circle? Between a 
rhombus and a square? 

2. Show that if x + x = x, then x = O. 
---+ ~ ---+ ------+ ----+ 

3. In a tria1.le ABC there hold AB = y, AC = x, and CB = CM + MB, where 
--+ --+ 
CM = M . Express AM = z in terms of x and y. 

4. Show that the quadrilateral formed by the lines joining the midpoints of consecu­
tive sides of an arbitrary quadrilateral is a parallelogram (Fig. 2.2). 

o 

w 

, , 

B 

, , , , 

Figure 2.2. Illustration for Problem 4. 

c 

y 

t These are constructed by specifying a system of open sets with suitable properties. in place of 
introducing a metric. 
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5. Show that the line joining the midpoints of two sides of a triangle is parallel to 
the third side of the triangle. 

6. Show that, in a parallelogram, a median intersecting a diagonal divides the latter 
into segments whose lengths are in the ratio 2: 1. 

7. Assume that the concepts of a plane and a line lying on a plane have been 
established. Under these assumptions, let a line I lying in the plane of two lines II 
and 12 carrying the vectors A 1 B'I and A 2 B; = A 1 B~, respectively, meet II at the 
point A 1. Show that I must also meet the line 12 . 

8. Define x = (XI. X2, X3), Y = (YI. Y2, Y3),O = (0, 0, 0), wherexj,Yj, i = 1,2,3, are 
scalars. Define also x + Y = (Xl + YI. X2 + Y2, X3 + YJ) and IXX = (IXXI. IXX2, 

IXX3), where IX is a scalar. Consider that x = y if Xj = Yj, i = 1,2,3. Accepting the 
usual algebra of scalars, show that Conclusions 2.1, 2.2-2.4, and Axioms 2.5-2.8 
are verified. 

9. Accepting the definitions of the preceding problem, show that the equality 
(1,0,0) = IX(O, 1,0) cannot hold, whatever the value of IX. 

10. Show that the medians of a triangle intersect at a point which divides each of 
them in the ratio 2: 1 (reckoning from each vertex). 



3 

It is only with the multiplication of vectors by 
one another that the geometry becomes 
rich-J. L. SYNGE 

Inner Product of Vectors. Norm. 

The incorporation of a metric into the axiomatic system of affine spaces 
depends on the method chosen for evaluating the magnitude of arbitrarily 
directed vectors. The procedure universally adopted was probably suggested 
by Grassman and Gibbs. It consists of deriving the notion of length, or norm, 
of vectors from the concept of the inner (also called scalar, or dot) product of 
vectors. We shall subsequently denote the inner product of two vectors, x 
and y say, by the symbol (x, y) instead of the usual notation x . y. As we 
shall see later, this convention makes the transition from Euclidean to 
abstract spaces simpler and more natural. 

It is almost self-evident that, since the postulational basis so far estab­
lished has avoided the concept of length, the latter must either be introduced 
in an a priori manner through a special definition or recognized as primitive 
and intuitively clear. For the time being, we select the second alternative as 
less abstract. Later, we shall demonstrate how, from a system of axioms 
(inspired by the present heuristic approach), one can derive both the notion 
of the length of a vector and the angle between two vectors. 

We first define the length of a vector to be the distance between the 
terminal points ofthe arrow representing the vector. We denote the length of 
a vector x by Ilxll and call it the norm of x. The unit of length is taken the 
same for all vectors, independent of their direction, and it is assumed that the 
rule for effecting the measurement of the length of arrows is known. By its 
very nature, the norm always represents a real non-negative number. 

In order to enrich the axiomatics of affine spaces by the concepts of 
length and angle, it is convenient to supplement the operations of addition 
and scalar multiplication of vectors by a third operation, known as inner 
multiplication. Such an operation, theoretically at least, may, of course, be 
defined in a variety of ways. A particularly fruitful form, however, has 

17 
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proved to be that suggested by Gibbs and endowed with the following 
rather attractive characteristic properties: 
Symmetry 

(x, y) = (y, x). (3.1 ) 

Distributivity (with respect to the second vector) 

(x, y + z) = (x, y) + (x, z). (3.2) 

Homogeneity (with respect to the first vector) 

a(x, y) = (ax, y). (3.3) 

Here x, y, and z are vectors and a is a real scalar. These three properties, 
when combined, define the so-called linearity (or rather bilinearity) of the 
product. A final property, of fundamental importance when extended to 
abstract spaces, involves the positive definiteness of the inner (or, rather, of 
the "self-inner") product, defined by the following conditions: 

(x, x) > 0 

(x, x) = 0 

for x f 0, 

for x = O. 
(3.4 ) 

Explicitly, the Gibbs inner product, accepted as standard for elementary 
vector algebra, is defined by the formula 

(x, y) = Ilxllllyllcos(x, y). (3.5) 

The preceding simple definition not only meets the conditions (3.1 )-(3.4), 
but also seems rather natural, inasmuch as it: (a) involves the product of the 
magnitudes of vectors (and this is reminiscent of the product of scalars), (b) 
includes a function of their mutual inclination-a matter of special impor­
tance, and (c) implies that the inner product may take any real value, since 
the value of the cosine lies between - 1 and 1 inclusive. 

Surely, instead of the cosine, some other function of the inclination 
angle a, such as a itself, a2 , sin a, or tan a, might be selected, but would most 
likely be found deficient. For example, the linearity of the inner product is in 
fact realized by the use ofthe cosine of the angle (the latter being represented 
by a line segment in a unit circle), rather than the length of the circular arc 
sub tending the angle. Again, replacement of the cosine in (3.5) by the sine 
wQuld result in a failure to fulfill the requirement of distributivity. In fact, 
assuming, for simplicity, the perpendicularityt of three vectors x, y, and z 
(Figure 3.1a), we notice immediately that the area of the rectangle 0 AA'" B'" 

t We define the perpendicularity of two intersecting lines as the equality of adjacent angles. It is 
important to note here that, temporarily, our argument is principally intuitive. 
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1------ Yu ----... I.~ 
Figure 3.1. Illustration for the inner product. 

constructed over the sum y + z is, in general, smaller than the sum of the 
areas of the rectangles 0 AA' B' and 0 AA" B"; this, of course, violates the 
relation (3.2). 

Returning to the definition (3.5), we first note the obvious conformity 
with the symmetry requirement (3.1). In order to show that it satisfies (3.2), 
for example, we see that it is permissible to use the concept of the orthogonal 
projection (of a poin t on a line as the foot of the perpendicular from the poin t 
to the line, and of a vector on a line, as the directed line segment joining the 
projections of its end points), upon noting that it derives from our definition 
of perpendicularity. Assume, then, for the sake of argument, that three vec­
tors x, y, and u lie in one plane,t and consider projecting x, y, and z orthog­
onally on u (Figure 3.1b), where z = x + y. Denote by Xu the signed length 

t It is not difficult to relax this requirement. 
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of the orthogonal projection of x on u, so that Xu = II x II cos(x, u). A glance at 
Figure 3.1b reveals that 

Zu = Xu + Yu (3.6) 

or 

Ilx + yllcos Gill = Ilxllcos Gil + Ilyilcos Ct z · (3.7) 

Multiplying both sides of the preceding equation by Ilu II and taking account 
of (3.5), we arrive at the desired result [compare with (3.2)]' 

An important next step is the formation of the inner product of a vector 
with itself, 

(3.8) 

from which we observe that, in terms of the self-inner product, the length or 
norm of a vector is represented by 

Ilxll = J(x,X), (3.9) 

the square root taken, as always, to be the positive one. 
We shall repeatedly find evidence in this book that the relation (3.9), 

perceived from a general point of view, is one of the central equations of 
functional analysis. In the meantime, we return to the definition (3.5) and 
write it in the form 

(x, y) 
cos <P = Ilxll Ilyll' (3.10) 

assuming that neither of the vectors x and y is the zero vector. We conclude 
that if two nonzero vectors are mutually perpendicular, or orthogonal, that 
is, if <P = n/2, then 

(x, y) = O. (3.11 ) 

Clearly, (3.11) holds if either x or y, or both, are zero. We note that the 
converse of this statement is also true, that is, if (3.11) holds, then x and yare 
mutually orthogonal. This conclusion employs the convention that the zero 
vector, 11011 = 0, is perpendicular to every vector (including itself). 

The reader has already been warned that, in our attempt to explain the 
concept of length, we have violated the rules oflogic by basing our argument 
on circuitous reasoning. In fact, the course of our analysis ran as follows: we 
first acknowledged the concept of length to be a primitive concept, next 
introduced the definition of an inner product [equation (3.5)] in a form 
enabling us to arrive at the relation (3.9), and finally recognized the self­
inner product as a motivation for the concept of length, returning us to the 
point of our departure. 
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While such a line of approach may be pedagogically helpful, the reverse 
of this procedure, that is, declaring equation (3.5) to be the definition of the 
inner product, would have been far less cavalier and considerably more 
far-reaching. The explicit meaning of the length of a vector would then 
automatically follow from the metric equation (3.9). With this in mind, we 
enunciate the following definitions. 

Definition 3.1. The length, or norm, of a vector x, denoted by Ilxll, is 
given by 

IIxll=~, (3.12) 

where the inner product satisfies conditions (3.4 ).t 

Definition 3.2. The distance AB between two points A and B is defined 
as the length of the vector All Thus, 

AB = (x, X)12, 
---+ 

where x = AB. (3.13 ) 

With the concept of length thus established, we are now in a position to 
determine the length of any rectifiable curve as well as the angle between any 
two directions. Likewise, the concepts of a circle (as the locus of points 
equidistant from a given point, its center), of an isosceles or equilateral 
triangle, of perpendicularity, congruence, and others, become meaningful. 

A more detailed examination of the concept of the inner product (in its 
general sense) must be deferred to subsequent chapters. At this point, 
however, it is important to emphasize that the incorporation of the notion of 
length into the affine axiomatics constitutes a significant enrichment of the 
latter: the affine space is transformed into the classical Euclidean space-the 
last member of the family of spaces in Figure 1.1 (note the dashed line in this 
figure ). 

To illustrate, consider the following simple examples. 
(a) Let a and b be two orthogonal vectors whose sum is c: 

a ~ b, c = a + b, (3.14 ) 

and whose norms are a, b, and c, respectively. We form the inner product of 
each side of the preceding equation with itself and write 

(c, c) = (a + b, a + b). (3.15) 

t That is, positive definite. An important instance in which it is useful to allow the product 
(x, x) to be indefinite, that is, positive, zero, or negative, depending on the choice of x, is 
mentioned at the end of Chapter 5. 
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By equations (3.3) and (3.8), we have 

IIel12 = II all 2 + 2(a, b) + IIb1l 2, 

and, by the first relation (3.14), 

c2 = a2 + b2• 

Chapter 3 

(3.16) 

This yields the familiar Pythagorean theorem for a right triangle. 

~ -- -(13) Let the vectors a == Al1, b == BC, and e == A C form a triangle ABC in 
which the angle ~ BAC = ~. It is required to prove the law of cosines for the 
triangle. 

We write b = e - a and form the inner product 

(b, b) = (e - a, e - a) 

= (e, c) + (a, a) - 2(a, b), 

= II ell 2 + lIall 2 - 211all IIbllcos~. 

By reverting to the conventional notation, we write 

b2 = a2 + c2 - 2ac cos ~, 

the required result. 

(3.17) 

(y) Just as simply, it can be shown that the diagonals of a rhombus are 
mutually perpendicular (see Figure 3.2). 

By definition of a rhombus, we have lIall = IIbll or 

(a, a) - (b, b) = 0. (3.18) 

But the last equation is easily transformed into 

(a - b, a + b) = 0, (3.19) 

and this proves our assertion [compare the definition of the norm, equation 
(3.8 )]. 

~-. ____________ ~c 

o~ ______ ~ ______ ~ 

Figure 3.2. Perpendicularity of the diagonals of a rhombus. 
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(b) We now prove an inequality of considerable importance in applica­
tions, known as the triangle (or Minkowski) inequality. It states that the 
length of a side of a triangle: (1) is no greater than the sum of the lengths of 
its two other sides; (2) is no less than the absolute value of the difference 
of the lengths of the other sides. To prove the first part of this assertion, 
we write (see triangle OAC in Figure 3.2) 

Iia + bl1 2 = (a + b, a + b) 

= (a, a) + 2(a, b) + (b, b). 

By equation (3.6), and in view of the fact that I cos <P I :::; 1, we have 

lIa + bll 2 :::; lI a ll 2 + 211allllbil + IIbr = (liall + II b IW· (3.20) 

By taking the square root of each side of the preceding inequality, we 
confirm the first part of our claim. 

To verify the second part of the assertion, we note that cos <p 2 -1, 
implying that 

(a, b) 2 -liall lib II (3.21 ) 

and 

(a, a) + 2(a, b) + (b, b) 2 (a, a) - 211all IIbll + (b, b) 

or 

lIa + bll 2 2 (li a ll - IIbllf (3.21a) 

This completes the proof. 
(e) We now write the inequality (3.21), augmented by (a, b):::; lIall IIbll, 

in terms of absolute values and obtain 

I (a, b)1 :::; lI a lill b ll· (3.22) 

The foregoing inequality is known as the Cauchy-Schwarz inequality.t It is 
one of the central inequalities of functional analysis. Its great generality will 
become evident later in this book when we take up abstract spaces whose 
elements need not be conventional vectors. 

The Cauchy-Schwarz inequality assumes a somewhat different mean­
ing if it is written in the form 

lIall II b ll I cos <p I :::; lIall II b ll, (3.23 ) 

and either lIall or IIbll is canceled.; The resulting inequality expresses the 

t The name of Bunyakovsky is also associated with this inequality. 
! Assuming, of course, that neither a nor b is the zero vector. 
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well-known fact that the length of the orthogonal projection of a line seg­
ment on a line is no greater than the length of the segment itself. This is, of 
course, but another way of saying that a leg of a right triangle is no greater 
than its hypotenuse. 

To introduce the basic ideas of Euclidean spaces of not necessarily 
three, but any finite (and, later, an infinite) number of dimensions, it is 
essential to examine certain features of Euclidean geometry in establishing 
certain preliminary facts. This is done in the next chapter. 

Problems 

1. The length of the sum of two perpendicular vectors is 25. The length of one of 
these vectors is 3. Find the length of the second vector and the angle between this 
vector and the sum. 

2. Let a vector v be perpendicular to two sides AB and AC of a triangle ABC. Show 
that v is also perpendicular to ~he third side of this triangle. 

3. Show that, in a circle, the chords joining the end points of a diameter with a point 
on the circumference are perpendicular to each other. 

4. Find the equation of a line passing through two given points. 

5. Do the following "definitions" of inner products satisfy the distributive law (3.2)? 
If not, why not? 
(a) (x, y) = Ilxllllyllcos2(x, y) 
(b) (x, y) = Ilxllllyllsin(x, y). 

6. Verify: (a) the so-called parallelogram rule, 

Ilx + Yl12 + Ilx - Yl12 = 211 x l1 2 + 211y112, 

where the norm derives from an inner product; (b) the identity 

7. For any vectors x and y, prove that 

Illxll - Ilylll :s; Ilx - yll 

and give the geometric interpretation of this inequality. 

8. Show that the relation 

Ilx - Yl12 = Ilx - zl12 + Ily - zl12 - 211x - zlillY - zll . cos(x - z, y - z), 

between any three vectors x, y, and z, is another form of the cosine law (3.17). 
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Linear Independence. 
Vector Components. 
Space Dimension 

In developing the axiomatic system in the preceding chapters, we had in 
mind Euclidean spaces of three or fewer dimensions. The idea of space 
dimension, however, did not explicitly enter into our axiomatics and has 
been so far devoid of any specific meaning. In order to correct this omission, 
it is necessary to adjoin a new postulate to those already adopted. Before 
doing this in the next chapter, we have first to examine the closely related 
concept of linear independence of vectors. 

At the start, let us imagine a representative of the simplest, that is, 
one-dimensional, Euclidean space, iff b realized by a straight line-a carrier 
of collinear vectors, x, say. Suppose that we shift the vectors along the line to 
make their initial points coincide with a point 0 selected as the origin. 
Consider then a vector x 1 from the set {x}. By Axiom 2.4, every vector of the 
set can be represented in the form 

(4.1) 

where 0( is a scalar, - 00 < 0( < 00. Since the foregoing relation is linear in 0(, 

it is natural to say that the vectors of the set depend linearly on Xl. The 
vector Xl itself can be thought of as an "independent" vector. 

We note that, in view of Axiom 2.5 and Conclusion 2.3, equation (4.1) 
generates the zero vector, 0, for 0( = 0, so that the zero vector belongs to the 
set {x}. This, of course, confirms the fact that the origin 0 lies on the given 
line. 

Concentrating, in turn, on a Euclidean space of two dimensions, C 2, 

represented by a plane, we select two coplanar, nonparallel vectors, Xl and 
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X 2 , with their initial points at some origin O. By Definition 2.3, any other 
vector of the set {x} lying in the plane can be represented by the two selected 
vectors 

(4.2) 

where - 00 < IXl' 1X2 < 00. Vectors Xl and X 2 can now be regarded as 
"independent" in the same sense as vector Xl in the preceding example. This 
statement should mean that every vector of the given set can be represented 
as a linear combination of Xl and X2 (viz., is linearly dependent on Xl and X2), 

but neither of the latter two can be expressed solely in terms of the other 
(inasmuch as, by hypothesis, they are not parallel). If IXl = 1X2 = 0, then X 

becomes the zero vector, and this verifies the fact that the plane passes 
through the origin O. 

A similar argument implies that the number of linearly independent 
vectors in the space Iff 3 equals three, Xl> X2, and X 3 , say, provided the vectors 
are neither coplanar nor any two of them are parallel.t As before, every 
other vector in the space depends linearly on Xl' X 2 , and X3 . 

With the preceding examples in mind, the concept oflinear dependence 
(or independence) of an arbitrary number of vectors suggests itself automa­
tically, and we adopt the following. 

Definition 4.1. Given a set of vectors, Xl' X 2 , ... , Xn , it is said that the 
vectors are linearly dependent if there exist scalars IXl' 1X2' ... , IXn' not all zero, 
such that the relation 

(4.3) 
holds. 

Now, if all coefficients lXi, i = 1, 2, ... , n, in the preceding equation are 
zero, the result is trivial. If all coefficients except a single one, say IXk' are 
zero, then IXk Xk = 0, and therefore Xk = O. This being so, we accept the con­
vention that the zero vector depends linearly on any other vector. 

If the relation (4.3) holds only when all coefficients lXi equal zero, we say 
that the vectors Xi are linearly independent. Such is, for instance, the triple of 
coordinate vectors of any Cartesian (rectangular or oblique) coordinate 
system in a Euclidean space Iff 3 . 

Suppose now that there is given a set of vectors {Xi} such that the 
coefficient IXk in the equation (4.3) is different from zero. We divide (4.3) 
through by IXk to obtain 

Xk = PlX l + P2 X2, + ... + Pk-lXk-l + Pk+lXk+l + ... + Pnxn, (4.4) 

t The reader with a geometric turn of mind will find it natural to treat 6 I and 6 2 as subspaces of 
6 3 of some sort. This matter will be examined in some detail in Chapter 6. 
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where Pi = -lXi /lXk, i = 1, 2, ... , n. A glance at the preceding equation con­
vinces us that, if a set of vectors is linearly dependent, then some vector of the 
set can be represented by a linear combination of the remaining vectors of the 
set. 

By way of illustration, imagine that we select two linearly independent 
(that is, two nonparallel) vectors, Xl and x2 ' in Iff 2' We wish to show that the 
vectors Xl and 3x I + 2X2 are also linearly independent. 

Assume that, for some scalars IXI and 1X2' 

IXIX I + 1X2(3xI + 2x 2) = O. 

We must demonstrate that IXI = 1X2 = 0. Upon rearranging, we have 

(IXI + 31X2)XI + 21X2 X2 = O. 

(4.5) 

By hypothesis, however, Xl and X 2 are linearly independent; therefore, 

or IX I = 1X2 = 0, as required. 
A conclusion which can be drawn from the preceding example is that, 

inasmuch as linear combinations of linearly independent vectors may pro­
vide linearly independent vectors, there is always an infinite number of 
equivalent sets of linearly independent vectors. These sets include, however, 
the same number of vectors, in spite of the fact that the vectors themselves 
are different. 

It is customary to say that a set of vectors spans (or determines, or 
generates) a spacet if every vector in the space can be represented as a linear 
combination of the vectors of the set. 

It is interesting to note that the vectors of a spanning set need not be 
linearly independent, and some may be "redundant." However, if they are 
linearly independent, then it is said that they form a basis for the space.t 

So far we have verified that, for n ~ 3, the number of base vectors is the 
same as the "dimension" of the space. We shall show later that this statement 
is also true for n > 3, and that, conversely, if a basis for a space consists of n 
vectors, then the dimension of the space is also n. 

t Throughout this chapter, we assume that the dimension of any space is not greater than three 
(n S; 3 in ~ n), but most of our conclusions remain valid for n > 3. This is discussed in 
subsequent chapters. [As regards spanning, see the text preceding equation (5.17) in Chapter 
5.] 

~ A basis of this type is often called a Hamel basis. The existence of such bases expresses an 
algebraic property of the vector space. These are but one of the many types of bases in­
troduced in analysis. In particular, bases of topological spaces are suitably defined collections 
of "open sets." Models of open sets are an open interval of the real axis ("x axis"), the interior 
of a circle, and the set of all points on one side of a straight line in a plane. Models of closed 
sets are a closed interval of the real axis and the set of points on and within a circle. 
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a 

Space 6 2 spanned by 

X I ,X 2 , and X3 

Chapter 4 

b 

Basis X" X 2 , for the 

space 6 2 

Figure 4.1. A spanning set and a basis. 

As an illustration of the difference between a spanning set and a basis, 
consider a two-dimensional space, represented by a plane in Figure 4.1. 
Inasmuch as the spanning vectors are not necessarily linearly independent, 
the representation of a vector x in terms of these vectors is not unique (cf. 
Figure 4.1a, in which x = atXt + a2 X2 + a3 X3 and x = at'x t + a2'x2 + 
a 3 'x3 )· 

On the other hand, if a set constitutes a basis (Figure 4.1 b), the re­
presentation of any vector x is unique. Thus, if a spanning set is to be 
converted into a basis, some of the spanning vectors may have to be 
discarded. 

It is apparent that in any space there is an infinite number of bases 
(including always the same number of vectors). This follows from the fact 
that in any space the number of sets of linearly independent vectors is 
infinite. Among the possible bases, those composed of orthogonal (in particu­
lar, orthonormal) vectors are most useful.t In IS 3, an orthonormal basis, that 

t Orthonormal vectors are mutually orthogonal unit vectors. 
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is, a basis composed of orthonormal vectors, is formed by the well-known 
unit coordinate vectors (sometimes called versors), ei , i = 1,2,3, Ilei II = 1, 
defining a rectangular Cartesian frame.t Obviously, 

i, k = 1, 2, 3, (4.6) 

where (jik is the Kronecker delta, equal to 1 for i = k and otherwise zero. It is 
intuitively clear that the vectors e i are linearly independent, yet it may be of 
interest to verify this analytically. 

Assume then that the scalars (.(1' (.(2' and (.(3 are such that the relation 

holds. We form the inner product of each side of this equation with e 1 . By 
appeal to equation (4.6), we conclude that (.(1 = 0. In a similar manner, we 
find that (.(2 = (.(3 = 0, which completes our verification. 

Inasmuch as every vector x in a space is represented in terms of the base 
vectors, we can write, for three-space, for example, 

(4.7a) 

where the g;'s are base vectors and the x;'s are components of x.t The preced­
ing equation may be thought of an an analytic representation of the given 
space. 

Similarly, in terms of an orthonormal basis {eJ, a vector x in 83 is given 
by 

(4.7b) 

where the values of the components in (4.7a) and (4.7b) are different. 
By forming inner products of both members of the preceding equation 

successively with the vectors of the basis, we find 

Xi = (x, e;), i = 1, 2, 3. (4.8) 

This shows that the components Xi ofx are the orthogonal projections ofx on 
the base vectors of an orthonormal basis. 

The components of the versors e i are, of course, (1, 0, 0), (0, 1, 0), and 
(0, 0, 1), respectively. By (4.8), the components of the zero vector 0 are 
(0, 0, 0), since the zero vector was assumed orthogonal to any other vector 
(including itself). 

The identification of vectors with sets of their components, initiated in 

t A more familiar notation is, of course, i, j, k. 
t By components (or coordinates) of a vector we mean here signed lengths of component 

vectors Xi whose resultant is the given vector. Thus, X = Li Xi' Xi = Xi ei , for example. 
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this chapter, is a radical departure from our earlier treatment of vectors as 
directed line segments. In the present context, a vector ceases to be a single 
entity invariant with respect to changes of coordinate frames, but is split into 
components and represented by a set of scalars. The values of the latter 
clearly depend on the selected frame of reference. 

Summing up matters, we can state that, by changing our line of treat­
ment, we have abandoned the approach of synthetic geometry and replaced 
it by that of analytic geometry, more convenient for our purposes. 

In order to examine briefly the operations on vectors represented as sets 
of components, let 

(4.9) 

be the sum of two vectors, 

y = PIe I + ... + Pnen, 
(4.10) 

where {ek} is a set of n orthonormal vectors. Such vectors obey condition 
(4.6) for i, k = 1, 2, ... , n, and in the next chapter they are shown to be 
linearly independent.t Adding (4.10) and comparing term by term with (4.9) 
implies that the components of a sum of two (or more) vectors are equal to 
the sums of the corresponding components of the vectors. Similarly, 

(4.11 ) 

so that multiplication of a vector by a scalar is equivalent to multiplication 
of its components by the scalar. 

Let us now consider two vectors in three-space Iff 3 : 

(4.12) 

By forming their inner product, we have 

(4.13) 

For x = y, this gives 

(4.14) 

t See the text following equation {5.16}. Actually, the orthogonality of vectors alone suffices for 
their linear independence. 
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If the coordinates of the end points of a vector x = AB are Xi and x/, i = 1,2, 
3, respectively, then the last equation is . 

( 4.15) 

Either of the two preceding equations expresses the familiar Pythagorean 
theorem extended to three dimensions. They determine the length of a vector 
and the distance between two points, provided the components of the vector 
and the coordinates of the points are known, respectively. 

It is important to emphasize that one of the main objectives in con­
structing the axiomatic system in the preceding chapters was to arrive at 
metric formulas such as (4.14) and (4.15). That the latter turned out to be 
those of Euclidean geometry is not a matter of chance, but is due to the fact 
that the axiomatics was deliberately patterned after that of Euclid. 

The Pythagorean theorem, and specifically its generalization to spaces 
of many (and even infinitely many) dimensions, is one of the central 
theorems of mathematics.t 

With this, we end our review of Euclidean spaces of dimension no 
greater than three, and in the next chapter confine our attention to spaces of 
many dimensions.t A first idea that comes here to mind is a simple extension 
of the basic concepts of three-dimensional geometry to spaces of many 
dimensions. In doing this, we shall be forced to relinquish representation of 
elements and relationships between elements in such spaces, inasmuch as 
our geometric imagination is too limited for this purpose. Even so, many­
dimensional spaces do not involve anything mysterious or metaphysical. 
For a number of years, they have been successfully employed in various 
branches of physics under the name of configuration spaces. 

In theoretical mechanics, for instance, motions of a system composed of 
n free particles (possessing 3n degrees of freedom) are often projected into a 
3n-space in which the system is represented by a single point with 3n coordi­
nates. Likewise, in thermodynamics, states of systems undergoing changes 
are depicted by the so-called Gibbs' diagrams in spaces of many dimensions. 
An even more dramatic example is provided by motions of deformable 
continuous bodies (e.g., vibrations of beams or plates), the representation of 
which requires configuration spaces of an infinite number of dimensions. 

Similar circumstances are met in our everyday experience. As an exam­
ple, we can cite the samplings of opinions by means of polls, the results of 
which are analyzed in so-called sample spaces, often of many dimensions. 

t Compare, e.g., Friedrichs.IIB ) Lanczos, in his book,(I9) goes so far as to state that from the 
Pythagorean theorem "we can deduce all the laws of Euclidean geometry." 

; For brevity, we subsequently refer to spaces of dimension greater than three as many- or 
multidimensional spaces. 
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Problems 

1. Let ej, i = 1, 2, 3, be unit vectors along of the axes of a Cartesian rectangular 
frame. Are the vectors x = 2el + el - e3, Y = et - 3el + 2e3, and z = -2et -
el + 3e3 linearly independent? 

2. Show that the vector v = 3et - 2el - 5e3 depends linearly on the x, y, and z 
defined in the preceding problem. 

3. Let x and y be linearly independent. Are x and x + lOy also independent? 

4. Given x = 2el + 3el + 4e3, y = el + el + e3, and z = 5et + el + 2e3, find the 
norm of v = x + y + z. 

5. Find the projection of the vector x = 4et + 6el - 2e3 on the direction of the 
vector y = - ge t - 3el + 3e3 . 

6. Find the equation of a plane passing through the tip A of the position vector 
o::t = 2et + 10el + 6e3 and perpendicular to the vector n = 4et + 6el + 12e3' 

7. Show that the vectors f t = (3e t + 6el + 6e3)/9, fl = (6e t + 3el - 6e3)/9 and 
f3 = (6e t - 6el + 3e3)/9 form a triad of mutually orthogonal unit vectors. 

8. Which of the three vectors x = (6, 2, 6), y = (8, 16, 4), z = (2, -6, 4), and 
v = (3, 4, 5) may serve as a basis for Euclidean three-space? (x = (6, 2, 6) means 
x = 6et + 2el + 6e3') 

9. Let two non collinear vectors Xt and Xl be given in ,g 1, so that any vector in this 
space (plane) can be represented by z = XXt + YX1' Find the relation between 
z = Ilzll and x and Y if: (a) Xl> Xl form an orthogonal basis, (b) an orthonormal 
basis. 

10. Find a linearly independent subset of the set {x = (2, 4, -3), y = (4, 8, -6), 
z = (2,1,3), v = (8,13, -6)} which spans the same space as the given set. 
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There is nothing mysterious about the idea of 
spaces whose dimensionality is greater than 
three-I. S. SoKOLNIKOFF 

Euclidean Spaces of 
Many Dimensions 

In the preceding chapters, we have studied the main concepts concerning 
vectors in the familiar three-dimensional space. It was pointed out that the 
maximal number of linearly independent vectors was characteristic of those 
sets which could be identified pictorially with either a line, plane, or the 
entire space. Such a close association between the number of base vectors 
and the dimension of a space proves to be so fundamental that the generali­
zation of the very idea of space proceeds virtually parallel to the extension of 
the idea of vector. Clearly, the simplest extension which comes to mind 
consists of imagining a vector in a space whose dimension is greater than 
three. It turns out that this can be done on various levels of abstraction, and 
we shall learn about such constructions in subsequent chapters. At this 
stage, we wish to give some thought to the notion of components, which was 
so characteristic of a vector in Euclidean three-space. With this in mind, we 
adopt the following definition. 

Definition 5.1. Let n be a fixed positive integer. A vector, x, is an 
ordered set of n real scalars, Xl' X 2, ... , X n . We denote this by writing 

(5.1 ) 

and call the scalars the components of x. Guided by the axiomatics adopted 
in Chapter 2, we shall set up the operation on the vectors so defined through 
the definitions given below. 

Before actually doing this, it is important to note that the just-given 
definition requires discarding the pictorial image of a vector as a directed 
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line segment, but relieves the difficulty in dealing with vectors in spaces of 
many dimensions. 

In order to underline the abstract nature of n-dimensional vectors, we 
drop-from now on-their boldface designation and write, in lightface 
type,t 

(5.2) 

where the x/s are the components of x. Again, to avoid confusion, we shall 
mark the components of a vector by a subscript (e.g., x;) and the vectors 
themselves by a superscript (e.g., Xi), except that the base vectors shall be 
denoted temporarily by ei .; 

Relation (5.2) implies that each vector is identified with an ordered 
n-tuple of scalars and, conversely, each ordered n-tuple of scalars represents 
a vector. This relation can be considered to be a counterpart of Axiom 2.1. 
The definition of equality of vectors, corresponding to Axiom 2.2, now reads 

Definition 5.2. Two vectors x = (Xl> X2,···, xn) and Y = (Yl' Y2,···, Yn), 
of the same dimension, are equal, written x = y, if for each k = 1, 2, ... , n, 
there is X k = Yk. 

Definition 5.3. That vector of which each component is zero is the zero 
(or nUll) vector, denoted by 8.§ In the notation of equation (5.2), 

8 = (0,0, ... , 0). (5.3) 

The negative (inverse) of a given vector x is introduced by 

Definition 5.4. 

(5.4) 

The operations of addition of vectors and scalar multiplication are estab­
lished by the following two definitions. 

Definition 5.5. 

x + Y = (Xl + Yl' X2 + Y2' ... , Xn + Yn), (5.5) 

where x = (Xl' X2, ... , xn) and Y = (Yl' Y2, ... , Yn)· 

t This symbolism agrees with the traditional notation in functional analysis. The notation (5.2) 
is often called a n-tuple notation of vectors. 

! To match our previous notation ei • In the future, orthonormal vectors will, for the most 
part, be denoted by i'. As the need arises, however, different notation for orthogonal and 
orthonormal sets will be used (provided no confusion is likely to arise). 

~ Also, occasionally, by 0 if it is clear from the context whether the matter concerns the zero 
vector or the number zero. 
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Definition 5.6. 

ax = (ax I, aX2, ... , axn), 

where x = (Xb X2, ... , xn) and a is a scalar. 

35 

(5.6) 

It is not difficult to verify that the operations on vectors obey the 
following laws. 

(a) Commutativity and associativity of addition: 

x + y = y + x, (x + y) + z = x + (y + z). (5.7) 

These equations correspond to equations (2.6) and (2.9). 
(b) Distributivity and associativity of multiplication: 

a(x + y) = ax +ocy, (oc + f3)x = ocx + f3x, oc(f3x) = (ocf3)x. (5.8) 

These equations correspond to equations (2.14), (2.13), and (2.15). 
(c) Multiplication of a vector by zero gives the zero vector, and by 1, 

the vector itself: 
Ox = e, Ix = x; (5.9) 

compare equations (2.16) and (2.12). 
To illustrate, we can verify the last of relations (5.8) by writing its 

left-hand side as oc(f3x b f3x 2, ... , f3xn), by virtue of Definition 5.6, and (af3x I, 

ocf3x 2, ... , ocf3xn), again by the same definition. Now, reading equation (5.6) 
from right to left, we convince ourselves (with a trivial change of notation) 
that (af3xI' af3x 2, ... , ocf3xn) = OCf3(Xb X2, ... , xn). By equation (5.2), the last 
result reads simply (ocf3)x, which completes the verification. 

Likewise, if oc = 0, Definitions 5.3 and 5.6 imply directly the first of 
relations (5.9). 

The set of all vectors described by Definitions 5.1-5.6 constitutes, for a 
given value of n, what may be called an n-dimensional Euclidean space devoid 
of metric. We denote this space by atn in order to indicate that it is composed 
of n-tuples of real numbers. It is an affine space, in the sense given to that 
term in Chapter 2, and is often called an arithmetic or coordinate space. 

In order to produce a "true Euclidean n-space," it is, in addition, 
required to provide a norm for each (n-dimensional) vector x by the 
definition 

(5.10) 

thus endowing the n-space considered with a metric analogous to that of 
Euclidean three-space.t Furthermore, since the entire geometric structure of 

t It is important to note that there are many other definitions giving specific norms for .!/I. 

(examples of various metrics are given at the end of this chapter), but only the definition (5.10) 
converts JI. into Iff •. Some authors are more liberal, calling any real inner product space 
Euclidean. See, e.g., Halmos.(20) 
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the n-space is modeled on that of Iff 3, it is quite natural to call the n-space a 
Euclidean space of dimension n, Iff n' For n = 3 this space becomes the more 
common one. Definition (5.10) complies with our general requirement that 
the norm (and the self-inner product defined below) be positive definite: 

Ilxll > ° unless x = () and then Ilxll = 0. (5.11) 

It is easily shown that (5.10) satisfies all other properties required of a 
norm, for example, 

II00xli = 10: Illxll, where 10:1 is the absolute value of 0:. (5.12) 

It is now straightforward to take another step and generalize the con­
cept of the inner product [cf. equation (4.13)] by means of the following. 

Definition 5.7. The inner product (x, y) of two vectors, x and y, of the 
same dimension n is given by the formula in Iff n: 

(x, y) = XIYl + X 2 Y2 + ... + XnYn, (5.13) 

where the x;'s and y;'s are the components of x and y, respectively. 

In view of this definition and definition (5.10) of the norm, the relation 
between the latter and the self-inner product is 

II x II = J(x,X). (5.14 ) 

An inspection of equation (5.13) shows that the inner product is symmetric 
and obeys the rules of associativity and distributivity, 

(ax, y) = o:(x, Y), (x, Y + z) = (x, y) + (x, z). (5.15) 

A generalization of the notion of orthogonality of vectors [cf. (3.11)] is 
achieved by means of 

Definition 5.S. Two vectors, x and Y, are said to be orthogonal if their 
inner product vanishes. Symbolically, x .1 Y if (x, y) = 0. 

An example of a set of orthogonal vectors is provided by the n vectors 

e1 = (1,0, ... ,0), ez = (0,1, ... ,0), ... , en = (0, 0, ... ,1). (5.16) 

In fact, in view of Definition 5.7, we find immediately that 

i, k = 1, 2, ... , n, (5.16a) 

where bik is the already-mentioned Kronecker delta. By (5.14), of course, 
lie; II = 1, i = 1,2, ... , n, so that the set (5.16) is, in fact, an orthonormal set. It 



Euclidean Spaces of Many Dimensions 37 

may be considered as an analog, in Euclidean spaces of dimension greater 
than three, of the triple of versors (4.6), contained in Iff 3.t 

By virtue of their mutual orthogonality, the vectors (5.16) are lineraly 
independent in the sense of Definition 4.1,t and every vector x = (Xl> X 2 , ... , 

xn) in Iffn can be represented (uniquely) as a linear combination ofthe vectors 
of the set (5.16). Indeed, by Definitions 5.5 and 5.6, 

n 

X = (Xl' X2, ... , Xn) = L Xiei = x l (1, 0, ... ,0) + X2(0, 1, ... ,0) 
i= 1 

+ ... + Xn(O, 0, ... , 1), (5.16b) 

where Xl' X 2, ... , Xn are, of course, scalars. 
Consequently, if we agree to extend to 8 n' for n > 3, the concepts of 

spanning set (a set of vectors spans Iff n if every vector in 8 n can be expressed 
as a linear combination of the vectors of the set) and linear independence,~ 
defined previously for 8 3 , then the set (5.16) provides a basis for Iff n , n > 3, in 
the same sense in which this term was understood in Chapter 4 [cf. the text 
following equation (4.5)]. In order to avoid repetition, we shall not pursue 
this question further, postponing to the next chapter a more precise clari­
fication of the concepts of spanning set and basis in finite- and infinite­
dimensional Euclidean spaces. At this point, it is worth emphasizing, 
however, that any basis for (what we have defined as) 8 n is composed of 
exactly n vectors. 

A pictorial representation of an orthonormal basis of dimension n, 
using the conventional graphical symbol for perpendicularity of vectors, is 
given in Figure 5.1a. While not particularly graceful, it may be of some 
assistance in forming a mental image of n-space. 

In analogy to equation (4.8), we deduce from equation (5.16b) 

Xi = (X, e;), i = 1, 2, ... , n, (5.17 ) 

and identify the components Xi with the orthogonal projections~i of the vector 
X on the axes of the orthonormal basis {e;}. 

t Some authors give to the set (5.16) the pictorial name "coordinate vectors" oriented along the 
"axes of the n-dimensional orthogonal Cartesian reference frame." Compare, e.g., Sokolnikoff 
(Ref. 21, p. 13). 

~ Actually, an arbitrary collection of nonzero mutually orthogonal vectors, Xl, x 2, "', x", is 
linearly independent. Suppose that L~~ I akxk = fJ, and form the self-inner product of the 
sum, which must vanish: 0 = IIIW = n~1 IIO:kXkl12 = n~1 IO:kl211xkl1 2 Since IIXk II> 0 for 
all k, necessarily O:k = 0 for all k. 

§ The obvious extension of the notion of linear independence to collections of vectors 8 ",n > 3 
was, in fact, tacitly carried out and employed above during the discussion of orthogonal sets. 

'\' An orthogonal projection is defined here as the norm of the vector, whose end points are the 
projections of the end points of the given vector, prefixed with the appropriate sign. 
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Figure 5.1. (a) Symbolic representation of an orthonormal basis. (b) Resolution ofa vector in the 
space 6 n • 

This being so, we arrive at the decomposition 

x = (x, edel + (x, e2)e2 + ... + (x, en)en (5.18) 

of a vector x referred to an n-dimensional orthonormal basis (Figure 5.1 b). 
Denote now by Xi the ith component vector of a vector x, that is, 

Xi = Xi ei , i = 1, 2, ... , n (do not sum). We take the self-inner product of 
equation (5.18) and, with equation (5.16a) in mind, conclude that (Figure 
5.1b). 

(5.19) 
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Thus, referred to an orthonormal basis, the square of the norm of a vector is 
equal to the sum of the squares of the norms of its vectorial components. 
This brings us back to the Pythagorean theorem, generalized to the setting of 
n-space. 

Just as easily, we can extend the validity of the two fundamental inequa­
lities of Cauchy-Schwarz and Minkowski, discussed in Chapter 3. First, we 
note that, by the positive definiteness of the self-inner product, the form 

( ) 2 2 2 X,X =X1 +X2 +···+xn (5.20 ) 

is positive whenever at least one Xk is nonzero and zero if each X k is equal to 
zero. Accordingly, for any scalar r, 

(x + ry, x + ry) 2 0 (5.21) 
or, expanding, 

R(r) == (y, y)r2 + 2(x, y)r + (x, x) 2 o. (5.22) 
The quadratic equation R(r) = 0 represents a parabola which is, by (5.22), 
supposed to touch the r-axis in at most one point. Hence, the equation 
R(r) = 0 can have at most a single real root. This implies that the 
discriminant 

(x, y)2 - (x, x)(y, y) :S o. (5.23) 
Taking the positive roots and rewriting, we have 

I (x, y) I :S Ilxllllyll, (5.24) 
which is the Cauchy-Schwarz inequality. 

The triangle inequality follows from the identity 

Ilx + Yl12 = (x + y, x + y) 

= (x, x) + 2(x, y) + (y, y) 

upon application of the Cauchy-Schwarz inequality to the middle term. We 
find 

(x, x) + 2(x, y) + (y, y):S IIxl12 + 211xlillYII + IIyl12 
or, after taking square roots, 

Ilx + YII :S Ilxll + Ilyll, (5.25) 
as asserted. 

In component representation, the just-mentioned inequalities take the 
self-explanatory forms 

(XlYl + X 2Y2 + ... + xnYn)2 
:S (x/ + x/ + ... + X/)( y1 2 + y/ + ... + Yn)2 (5.26a) 
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and 

[(Xl + yd2 + (X2 + Y2)2 + ... + (Xn + Yn)2]1/2 

:s:; (X12 + X/ + ... + X/)1/ 2 + (Y1 2 + Y/ + ... + y/y!2. (5.26b) 

An orthonormal basis for n-space can be obtained from an arbitrary set 
of n linearly independent vectors by means of the so-called Gram-Schmidt 
orthogonalization process. 

Assume then that the set 9 1, g2, ... , gn constitutes a basis for Iff n' i.e., is 
linearly independent. We first construct a unit vector (note that gl f. 0) 

(5.27) 

and require that the second vector 

(5.28) 

be orthogonal to e1• This gives 

(e 2, e d = c 21 + c 22 (g 2, e d = 0 (5.29) 

so that 

(5.30) 

The just-written equation has a simple geometric meaning (Figure 5.2). It 
states that-to within the scaling factor c22-the vector e2 is a difference 
between two vectors: the vector g2 (subject to orthogonalization) and the 
vector (g2, e1)eb which is the orthogonal projection of g2 on e1 (or gl)' 

Figure 5.2. Illustration of the Gram-Schmidt process. 
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Consequently, ez gives the component of gz perpendicular to e b as required. 
In order that ez be a unit vector, the scaling factor should be chosen as 

(5.31 ) 

Substitution of this into equation (5.30) yields the second member of the 
orthonormalized basis {gJ 

The next step is to assume that 

(5.32) 

and to determine the coefficients Cij from the orthonormality conditions, 

(5.32a) 

We continue this process until the g/s are exhausted, the general recurrence 
formula being 

(5.32b) 

k = 1, 2, ... , n. 

The norm (5.10), which imparts the features of a metric space to the partially 
unorganized space, was, as already noted, intentionally selected in such a 
form as to convert the space into a Euclidean space. Generally speaking, the 
decision on the form of the metric is left to one's own judgment, and there 
are many special expressions producing norms, each of which may be appro­
priate to adopt in a particular circumstance. Of course, each metric so 
induced leads to a different metric space, even though the rest ofthe axioma­
tic system remains the same. 

By way of example, consider the norm 

(5.33 ) 

equal to the greatest of the absolute values of the components of each vector 
of the space. It is easily verified that this definition satisfies all requirements 
imposed earlier on a norm: it is positive definite, linear (in the sense that 
IllXxll = IIX Illxll), and obeys the triangle inequality, Ilx + yll s Ilxll + IIYII· 

Another example is provided by the norm associated with the so-called 
IAn) spaces, 

(5.34 ) 
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for 1 :S: P < 00. Evidently, for p = 2, IIxl12 transforms into the Euclidean 
norm (5.1O) and, for p = 00, Ilxll oo coincides with the norm (5.33).t 

Some authors make use of the so-called "taxicab" norm 

n 

Ilxll = L IxJ (5.35) 
i= 1 

Euclidean spaces in which the inner product (x, x) > 0 for all vectors except 
the zero vector and has the form (x, x) = L7 = 1 (X;}2 are often called real 
proper Euclidean space. It is, of course, possible to imagine spaces in which 
the product (x, x) is real, but takes both positive and negative values. Such 
spaces are called real pseudo-Euclidean spaces, and play an important role in 
the spatiotemporal world of relativity. Odd as it may seem, in such spaces 
the length of a vector may become imaginary. This happens for the Mink­
owski metric ds2 = - (dXl)2 - (dX2)2 - (dX3)2 + c2(dx4)2, where c is the 
light velocity and the dx;'s are coordinate elements. 

Problems 

1. Using the Gram-Schmidt orthogonalization process, convert the vector triad: 
{gl = (1,1,0), g2 = (0,1,1), g3 = (1,1, I)} into an orthonormal triad. 

2. In an n-dimensional space, there are given m(:o; n) orthogonal vectors fl,f2, ... ,fm . 
Show that for any vector x there is 

3. Is any set {flo f2, ... , fn} of mutually orthogonal nonzero vectors linearly 
independent? 

4. Let elo e2, ... , en be an orthonormal basis in an n-dimensional space, and letfl,f2, 
... , fn be another basis. Find the conditions for the set {};} to be orthonormal. 

5. What is the dimension of the space spanned by the vectors XI = (t, -1, 0, 1), 
X2 = (1, t, 0, -t), X3 = (1, -to 1, t), X4 = (6,18, -8, _4)2? 

6. Show that the vectors (2, 0, 0, 0), (0, 3, 0, 0), (0, 0, 4, 0), (0, 0, 0, 5) span a 
four-dimensional space. Are they linearly independent? 

t Since Ilxll", = lirnp_",[rnaxlx,j(D=1 IxJrnax X,jP)llp] = rnaxlx,j. The associated space is 
often denoted by [",(n). 
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7. Represent the vector x = (2,3,4) as a sum of the vectors e, = (1,0,0), ez = (0, 1, 
0), and a vector h perpendicular to both e, and ez. Give a geometrical interpreta­
tion and find the orthogonal projections of x on hand e, + ez. 

8. Represent a vector f in the space t1. +, by a vector 9 belonging to a subspace 6. of 
g. + , and a vector h in t1. + , perpendicular to t1 •. (Note: a vector is perpendicular 
to a subspace if it is perpendicular to every vector in the subspace.) 



Infinite: becoming large beyond any fixed 
bound-Mathematics Dictionary 

6 

Infinite-Dimensional 
Euclidean Spaces 

The passage from a finite to an infinite number of space dimensions does 
not require fundamental changes in the axiomatic system developed in the 
preceding chapters. It must, however, be carried out with caution, just as in 
the case of any other operation in mathematics involving the infinite: evalu­
ation of improper integrals, summation of infinite series, and other limit 
processes. 

As a first step, we note that, in the same manner as in a finite­
dimensional Euclidean space 8 n' where a vector is identified with a finite 
ordered set of scalars [cf. equation (5.2)], so in what will be called an infinite 
dimensional Euclidean space, devoid of metric, .:jl 00' a vector is identified with 
an infinite ordered set of real scalars, 

(6.1 ) 

Again, the scalars are called the components of x; the ordered set in (6.1) is 
assumed to be countable or denumerable. It is recalled that a set is countable 
if it is finite or if its members may be put in a one-to-one correspondence 
with the set of positive integers.t 

The just-established definition of the collection of objects comprising 
.:jl 00 as the set of all (infinite) sequences of real numbers is perhaps the most 
natural infinite-dimensional generalization of the finite-dimensional space 
is n: instead of considering all n-tuples of real numbers, we should apparently 
now consider all infinite sequences as the most appropriate extension. From 
another point of view, however, this is too naive, the space :Jt 00 being "too 

,. For example, the sets of all integers and of all rational numbers are countable, but the set of 
all real numbers is not. 

45 
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big" to be of use in most cases. To see what is meant by this, recall that 
each element x = (Xl> ••• , xn) of $n has a magnitude (norm) given by 
(Li'= 1 X?)1/2. Now, if we wish our infinite-dimensional space to have a 
similar structure, we should apparently provide each of its elements with a 
norm which is the obvious extension of the norm used in $ n' Thus, we 
come to consider the infinite series L~l Xi 2 as the square of the norm of 
x = (Xl> X2' ••• , Xn , ••• ). However, since this series need not converge for 
many elements in 9'l00, it becomes clear that 9'l00 has too many elements 
for it to carry a (topological) structure directly analogous to that of $n. 

Rather, the best generalization of $ n is the much smaller space h (or $00) 
consisting of all those x = (Xl' X2' ••• , Xn , ••• ) in :Jf oo for which the sum 
Li'= 1 Xi 2 converges, i.e., L~ 1 Xi 2 < 00. Thus, 12 may be dubbed "infinite­
dimensional Euclidean space,"t if for its norm we take this generalized 
Euclidean norm, JJX/l2 = L~ I Xi 2 • In pictorial language, the imposed restric­
tion implies that, while 9'l00 is a space of vectors of which some may have 
"infinite length," 12 is a space of vectors of finite lengths. 

The basic algebraic operations, established earlier for vectors in :Jfn , 

carryover to the case when n becomes infinite. These are the equality of 
vectors, their addition, and multiplication by scalars; the definition of the 
zero vector is likewise a straightforward extension. As an illustration, if 

X = (Xl> X2,' .• , Xi' .•. ) and Y = (YI' Y2, .•. , Yi' ••• ) 

are two vectors in :Jf 00' then their sum is 

X + Y = (Xl + Yt> X2 + Y2, •.• , Xi + Yi' •.. ). (6.1a) 

Evidently, the space endowed with these latter algebraic properties alone 
still remains an affine space, in the sense of Chapter 2. A subspace of 9'l00 is 
made an actual Euclidean space, IS 00 == 12 , if one introduces appropriately 
the concept of the norm of a vector. This is, of course, done in the form 
already noted above, that is, 

00 
/lX/l2 = LX/, (6.1b) 

i= 1 

where the series is assumed to converge. Naturally, the distance between two 
vectors X and Y is now given by 

00 
/Ix - y/l2 = L (Xi - Yi)2; (6.1c) 

i= 1 

the fact that /Ix - y/I < 00, provided that L~l x/ < 00 and Lj;,l Y/ < 00, 

will follow once it has been shown that the Cauchy-Schwarz inequality 
remains valid in 12 , We shall see that this is indeed the case. 

+ Speaking later of (, <Xl' we shall use the symbols "(, <Xl" and "/2" interchangeably. 
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6.1. Convergence of a Sequence of Vectors in g 00 

It should be now clear that in the analysis of a vector space possessing a 
topological structure, specifically that of spaces of an infinite number of 
dimensions, an important part is played by the concept of convergence of 
infinite sequences (and series) of vectors. 

As is well known from calculus, a sequence of scalars {exn} converges to a 
limit ex if, loosely speaking, with increasing index n the terms of the sequence 
approximate ex better and better (within a prescribed accuracy). A necessary 
and sufficient condition for this to happen is the so-called Cauchy condition, 
requiring that for every I: > 0, there exists an Nt such that 

(6.2) 

Quite similar definitions of limit and convergence are set up for se­
quences of vectors, emanating from a point in a Euclidean space of dimension 
three. Imagine then a sequence,t {Xk}, for which the directions and norms of 
its members approximate more and more closely a given vector, x (Figure 
6.la). Let us agree to evaluate the deviation of a generic member of the 
sequence, x\ from the vector x by the value of the norm II x - Xk II. It is then 
said that the sequence {Xk} tends to x if 

for k -+ 00; (6.3 ) 

in the usual notation, this is written! 

for k -+ 00. (6.3a) 

To clarify the geometric meaning of the foregoing definition, let us 
recall that in the space if 3, a c5-neighborhood of a point is envisaged as the 
interior of a sphere of radius c5, centered at the point. We note paren­
thetically that in spaces of many dimensions, a neighborhood of a point is 
the interior of an n-sphere or a hypersphere with center at that point, 
depending on whether the space dimension is finite or infinite, respectively.§ 
In the case under discussion, any neighborhood, however small, of the limit 
vector x always includes all but a finite number of the terminal points of the 
vectors Xk. We describe this situation by calling the end point of x an 

t We recall that. according to our earlier convention. a superscript distinguishes a vector from a 
component of a vector (with a subscript). 

; Convergence in the norm is often called "strong convergence," in contrast to "weak conver­
gence," requiring limn_ oo L[ xn] = L[ x] for every continuous linear functional L [see the second 
footnote following equation (8.20)). 

§ Compare the closing paragraphs in Chapter 9. 
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Figure 6.1. Convergence of a sequence of vectors. 

accumulation (or cluster, or limit) point of the end points of the vector Xk 

(Figure 6.1 b ). 
It is worth noting that, in view of the relation (4.14), limllx - Xkll-4 0 

for k -4 00 implies (in ~ 3) 

for k -4 00, (6.3b) 

where x = (Xl' X2, X3) and Xk = (Xl \ x/, X3 k). Consequently, if Xk -4 X for 

k -4 00, then x/ -4 Xi as k -4 00, for i = 1, 2, 3. Also, conversely, if x/ -4 Xi as 

k -4 00, for each i, then the sequence {Xk} converges to X. 
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Using the generalized triangle inequality (5.25), it is not difficult to 
show that in 0' 3, condition (6.3) implies 

(6.4 ) 

for k, 1-> 00. 

Thus, (6.4) is a necessary conditiont for the convergence of the sequence 
because it follows from the assumption of convergence in the sense of (6.3). 
On account of its similarity with the Cauchy criterion (6.2), a sequence of 
vectors obeying condition (6.4) is said to converge in the sense of Cauchy or 
to be a Cauchy (orfundamenta/) sequence. It can be easily demonstrated that, 
in 0' 3, (6.4) is also a sufficient condition for convergence, that is, if (6.4) holds, 
then (6.3) follows. The same is true of the finite-dimensional Euclidean 
spaces examined in the preceding chapter, in which convergence in the norm 
is a simple generalization of the condition (6.3b). Actually, it can be 
demonstrated (Ref. 22, p. 9) that in any finite-dimensional abstract space (to 
be discussed later), in which a norm is defined, (6.4) is both a necessary and a 
sufficient condition for (6.3) to be true (more precisely, for there to exist an x 
in the space for which (6.3) is true). 

Turning our attention now to the infinite-dimensional space 0'00' in­
cluding vectors with an infinite number of components and satisfying condi­
tions such as (6.1)-(6.1 b), we ex tend the concept of convergence, established 
thus far only for Euclidean spaces of finite dimension. Consequently, with 
the distance between two vectors, x = (x b X 2, ... , Xi' ... ) and Xk = (x 1 k, X 2 \ 

... , x/, ... ), defined as Ilxk - xii = [L;x;l (x/ - XJ2]l/2, we say that a se­
quence of vectors Xk, k = 1, 2, ... , in Iff 00 converges to the vector x in 0' 00 if 

for k -> 00. (6.5) 

In view of the definition of Ilxk - xii, this, of course, implies that x/ -> Xi as 
k -> 00 for each i = 1, 2, .... Thus, the convergence of a sequence of vectors 
in 0' 00 implies the convergence of each sequence of respective components of 
these vectors, under the assumption that x and all the Xk'S are in 0' 00 (that is, 
12)' 

It is demonstrated (Ref. 23, p. 49), but we shall refrain from doing so, 
that for vectors in 12 , a necessary and sufficient condition for convergence of 
a sequence {Xk} to some x in 12 is 

for m, n -> 00, (6.6) 

which is just the Cauchy condition. Consequently, in 12 every Cauchy se-

j- We recall that a necessary condition is a logical consequence of a given statement, that is. if 
(6.3) holds, then (6.4) follows. 
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quence converges. In the geometric language of Figure 6.1, this means that the 
distances Ilx - xkll go to zero simultaneously with the distances Ilxn - xmll, 
and conversely. 

6.2. Linear Independence. Span. Basis 

The concepts of linear independence, span, and basis in Iff 00 are slightly 
more complicated than those defined earlier for Euclidean spaces of finite 
dimension. This will be apparent in the definitions which we now intend to 
set up. 

We first note that, for an infinite set of vectors, there are two possible 
definitions of linear independence. We can state that (Ref. 15, p. 53) 

(1) An infinite set of vectors, {Xl, x 2, ... }, in Iff 00 is linearly independent if 
each of its finite subsets is linearly independent, that is, if 

(6.7) 

implies that all scalars 

0(1 = 0(2 = ... = O(n = 0 (6.8) 

for each positive integer n. Naturally, if this is not the case, the set is said to 
be linearly dependent. 

A characteristic feature of this definition is that, no matter what the 
number of vectors (whether finite or infinite) and the dimension ofthe space, 
only finite combinations of vectors are considered [recall equation (4.3), 
where the set {Xi} is finite]. 

The second possible definition is contained in Ref. 22, p. 13 and Ref. 24, 
p.228. 

(2) A linear combination of an infinite set of vectors xl, x 2 , ••• is a formal 
expression 

where the O(/s are scalars. We wish to state that, if 

0(1X1 + 0(2X2 + ... + O(iXi + ... = 0 

(6.9) 

(6.10) 

implies that 0(1 = 0(2 = ... = 0, then the vectors of the set {Xl, x 2, ... } are 
linearly independent. However, in order for the equality (6.10) to have a 
meaning, an explanation of the concept of convergence of an infinite series of 
vectors must first be provided, since (6.9), in fact, requires that the given 
series have a limit (here zero). Quite like the corresponding definition of 
elementary analysis, we say that if the sequence of partial sums an = I?= 1 Xi 
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of a sequence of vectors Xl, x 2 , .•• where n = 1,2, ... , converges to a vector a, 
that is, 

(6.lOa) 

for n ---. 00, then the infinite series If; I Xi converges, and the vector a is called 
the sum of the series, 

(6.11) 

Clearly, with only slight changes, the preceding can serve as a definition of a 
limit offinite linear combinations of vectors of an infinite set {Xl, x 2 , •.. }. 

With these preliminaries out of the way, we shall agree to accept, from 
now on, definition (2) of the linear independence of an infinite number of 
vectors in an infinite dimensional space, and proceed to introduce the no­
tions of span and basis as in Chapter 5. We thus state that an infinite set of 
vectors {Xl, x 2 , •.. } spans an infinite dimensional space if every vector in the 
space can be represented either as a linear combination of a finite number of 
the vectors of the set or asa limit of such linear combinations. The set is a basis 
for the space if every vector in the space can be represented in a unique 
manner as a linear combination of a finite or infinite number of the vectors 
of the set. 

Unlike the case for a finite-dimensional manifold, an infinite set of 
linearly independent vectors that span a space need not form a basis for the 
space. As an illustration, consider the set of vectorst 

L kth component 
ak = (1,0,0, ... ,0,1,0, ... ), (6.12) 

the second nonzero component of which is the kth component, k = 2, 3, .... 
It can be proved (Ref. 22, pp. 13 and 16), but we shall omit the demonstra­
tion, that the set (6.12) is linearly independent and actually spans the 
Euclidean space ~oo (recall our convention Iff 00 == 12)' 

Consider now the vector 

e l = (1, 0, 0, ... ), (6.13) 

having all its components equal to zero except the first. Clearly, the sequence 
of sums, with the ak's defined by (6.12), 

1 _ (a 2 + a3 + ... + an+ I), 
n 

(6.14) 

t Each element of the sequence (6.12), a' = (a /' a2 ', 00., a:, 00 .), obviously satisfies the conver­
gence criterion L'~ 1 (a, ')2 < 00 and thus belongs to 12 . 
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where n = 1, 2, ... , or, explicitly, the sequence 

a2 a2 + a3 
T = (1, 1,0, ... ), 2 = (I,!,!, 0, ... ), 

a2 + a3 + a4 
3 = (1,1,1,1,0, ... ), ... , 

converges to e1 in the sense of the norm, 

II e1 - ~ (a 2 + a3 + .. ·an + 1) 11-.. ° for n -.. 00, 

inasmuch as the differences 

II e 1 - a1
2 /r = (1 - 1)2 + (0 - 1)2 = 1, 

II el - a
2 

; a
3 /r = (1 - 1)2 + 2(0 _ !)2 =!, 

II e1 - a2 + a; + a4/r = (1 - 1)2 + 3(0 _ 1)2 = 1, ... 

Chapter 6 

(6.15) 

(6.16) 

go monotonically to zero. Thus, e1 is in the span of the vectors (6.12). 
However, these vectors do not form a basis, since-contrary to the definition 
of the latter-there exists no finite or infinite representation of e1 in the 
formt 

(6.17) 

or, explicitly, 

(1,0,0, ... ) = a2(1, 1,0, ... ) + a3(1, 0, 1,0, ... ) + ... (6.17a) 

whatever the values of the scalars a2, a3 , .••. It follows that, in spite of the 
fact that the vectors (6.12) are linearly independent and span the given 
manifold, they do not provide a basis for goo (or rather 12). 

6.3. Linear Manifold 

So far, mostly for simplicity's sake, we have spoken of a space as a 
whole. But from the very definition of the space as a set of vectors, it is 
intuitively clear that one can conceive of "portions" of the space if one 

i' It is important to note that e, = limn_",,((I/n)a2 + (l/n)a 3 + ... + (l/n)an+')isnotin the form 
of (6.17) since the coefficients l/n depend on n. 
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identifies these portions with (sub )sets of vectors belonging to the given set. 
The idea of "linear manifold" arises by considering certain distinguished 
portions of a linear space. It is said that a set of vectors, . If, constitutes a 
linear manifold in a space if, for all scalars a and 13, . f{ contains the linear 
combination ax + f3y whenever it contains the vectors x and y.t 

A typical example of a linear manifold is a plane in 6'3 passing through 
the origin (taking a = 13 = 0 above, we see that a linear manifold must 
contain the zero vector). Still simpler is the line (through the origin) formed 
by the set of vectors ax, where x =1= 0, and a runs through all real numbers. 

Bearing in mind the definitions of a span and a basis in Chapter 4, we 
now extend these concepts to multidimensional spaces. 

(1) We first consider finite-dimensional linear manifolds. 
We say that a finite set of vectors, Xl, x 2 , •.. , x n, forms a basis for a 

finite-dimensional linear manifold, . .If n' if it spans the manifold and the vectors 
are linearly independent. The number of vectors of the basis determines the 
dimension of the manifold. 

(2) Infinite-dimensional linear manifolds, .If 00 • If no finite set of vectors 
spans a given manifold, the dimension of the latter is said to be infinite. The 
situation in this case becomes more complicated. 

A linear manifold is said to be closed if the limit, x, of every convergent 
sequence of vectors, Xl, x 2 , •.• , contained in the manifold belongs to the 
manifold. The convergence of a sequence is understood here in the sense 
established previously. 

We are now in a position to introduce the important concept of a 
subspace, Y, as a closed linear manifold. We note that the definition of this 
term is not universally established, some authors making no distinction 
between a linear manifold and a subspace, and allowing the latter to be 
nonclosed (Ref. 11, p. 84). In the informal spirit of this book, the terms linear 
manifold and subspace (and, often, the space itself) are used interchangeably 
where no confusion is likely to arise. 

It is shown (Ref. 7, p. 61; Ref. 22, p. 15) that every finite-dimensional 
linear manifold is closed, and therefore is a subspace. This is not the case with 
irifinite-dimensional manifolds. To illustrate this point, consider the space 
composed of all vectors of the form (Ref. 7, p. 35; Ref. 22, p. 14) 

(6.18 ) 

that is, of all vectors possessing only a finite number of nonzero components. 
Since any linear combination of these vectors generates a vector belonging 
to the set, the set represents a linear manifold. 

t Some authors, e.g., Synge,(40) introduce systems slightly more general than linear manifolds, 
namely, the com'ex systems. A COnt'ex set is one which contains :lX + {3y whenever it contains 
x and y, and :l + {3 = 1, :l, {3 ::: O. 
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Let us now consider the sequence of vectors 

l = (1, 0, 0, ... ), 

y2 = (1, 1, 0, ... ), (6.19) 

I' = (1,1,1, ... , 11k, 0, ... ), 

selected from the given manifold. We claim that the limit of this sequence is 
the vector (since I:= 1 I1n 2 < 00, y is, in fact, in 12 ) 

Indeed, we have 

y = (1,1,1, ... , 11k, ... ). 

lIy - ynll = II (0, ... ,0, n! 1 ' n! 2' ... ) II 

= ( I ~)1/2 
k=n+ 1 k ' 

(6.20) 

(6.21 ) 

so that Ily - ynll tends to zero as n ---+ 00. Note also that the infinite series 
~oo= 1 (1Ik 2 ) converges. This proves that our claim is correct, by definition 
of convergence of a sequence in 12 , However, all components of yare not 
zero, showing that the limit of the sequence {I'} is not in the original (6.18) 
manifold. It follows that the latter is not a subspace, i.e., is not closed. 

In applications, we often choose as a basis for an infimte-dimensional 
space those vectors that belong to one of a number of well-known families. A 
general proof is then given that the vectors of the family do, in fact, serve as a 
basis. We shall examine this point in more detail in Chapter to. 

Let us now proceed with the infinite-dimensional generalizations of 
other definitions, established before for finite-dimensional Euclidean spaces. 
We first extend the concept of the inner product [equation (5.13)] by putting 

00 

(x, y) = I XiYi 
i= 1 

i = 1, 2, ... , (6.22) 

the last form by appeal to Einstein's convention.t We shall use this abbrevia­
tion repeatedly in the subsequent text (unless the contrary is stated). Clearly, 

t We recall that any term in which the same index appears twice stands for the sum of all such 
terms, the index being given its range of values. 
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the infinite series (6.22) should be convergent in order for the inner product 
and the norm of vectors to remain finite. That is, we actually work within the 
space 12 contained in iff 00 (as remarked above). For the norm we have 

Ilxll = (x/ + x/ + ... + x/ + .. yIZ, (6.23) 

identical with the Pythagorean formula (5.10) except for the number of 
terms, which is now infinite. 

Continuing our extension process, we define the distance between two 
vectors, x and y, by the formula 

[ 
00 J 1/2 

d(x, y) == IIx - yll = (x - y, x - y)l/Z = i~l(Xi _ y;)Z , (6.24) 

reminiscent of the definition (4.15) for a space of finite dimension. 
As regards the orthonormalization of a basis for lz (or of any infinite set 

of linearly independent vectors), the process does not essentially differ from 
that of Gram-Schmidt described in Chapter 5, the only distinction being 
that (from a theoretical standpoint) the construction never ends. 

It is important to emphasize that, although a basis in an infinite­
dimensional space consists of an infinite number of linearly independent 
vectors, not every infinite set of linearly independent vectors constitutes a 
basis. For example, if from an infinite set of base vectors one would eliminate 
a single vector, the remaining set would still be infinite, but would have 
ceased to be a basis because the vectors would no longer possess the 
property of spanning the entire space. In practice, it is often difficult (and 
sometimes impossible) to decide whether a given infinite set of linearly 
independent vectors constitutes a basis for a given space or is simply a 
"mutilated basis," with one or more vectors missing. As a simple illustration 
of such mutilation, one can take the finite basis of three unit coordinate 
vectors e1 = (1, 0, 0), e2 = (0, 1,0), and e3 = (0, 0, 1), in ordinary three­
space, and delete one. Clearly, any effort to represent every vector in the 
space in terms of the remaining two coordinate vectors would be futile. 

It is a fortunate circumstance that, if an orthonormal set of vectors spans 
an infinite-dimensional space, then the set gives a basis for the space (Ref. 22, 
p. 17). Having such a basis, call it {.t;}, we can represent each vector in the 
space by the series 

(6.25) 

where 

(6.26) 
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It can be shown that if the condition of convergence, 

(6.27) 

considered repeatedly above, is satisfied for every vector in the space, then 
also the infinite series giving the scalar product of any two vectors, (6.22), 
converges. In addition, the expansions given by (6.25) will converge. 

We now cite-without proof-the generalization of the Cauchy­
Schwarz inequality, derived earlier for finite-dimensional spaces [equation 
(5.24)], 

or 

I(x, y)1 :s; IIxil IIyll, 
where x = (Xl' X2, ... ) and y = (Yl' Y2' ... ). 

The triangle inequality (5.25) now takes the more general form 

t~l(Xi + yy r2 
:s; lJlx/ rz + t~/iZ tz 

(6.28) 

(6.29) 

(6.30 ) 

Inasmuch as the relationship between a scalar product and the correspond­
ing norm does not depend on the dimension of the space, the equation 

(x, y) = 0 (6.31 ) 

also expresses the perpendicularity of two vectors, x and y, in an infinite­
dimensional space. 

Remark 6.1. To enable the reader to feel more at ease, we have estab­
lished in this chapter several concepts in the context of the fairly easily 
visualized space goo' Actually, most conclusions drawn here also apply in 
infinite-dimensional abstract spaces with norm, examined later in this book. 

Problems 

1. Show that every convergent sequence is Cauchy. 

2. Show that in the subset (open interval) (1, 3), the sequence 3 - (lin), n = 1,2,3, 
... , is Cauchy, but does not converge in the sense of the definition (6.3). 

3. Make a list of all subspaces of the space 8 3 , all elements of which are of the form 
(lXb 1X 2 , 1(3)' where the IX/S are real scalars and at least one of the coordinates is 
zero. Verify that tff 3 itself as well as the zero vector are subspaces of tff 3' 
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4. Let Xl, X 2, ... , xm and i, i, ... , y" be elements of a space 'I '. Show that the 
subspace.'/' I spanned by {Xi} is the same as the subspace.'/' 2 spanned by {Xi} and 
(yi) if each vector yi is linearly dependent on the vectors {Xi}. 

S. If {Xl, x 2 , ... } is an orthonormal set of vectors in an inner product space and 
y" = Li: ~ I Ct.k x\ where the Ct.k'S are scalars, show that the sequence yn is Cauchy if 
Lk~ I Ct./ < 00. 

6. Show that a closed interval [Ct., fJl of the real axis is a closed subset of the space of 
real numbers, represented by the real axis. 

7. The orthogonal complement of a subspace.'/' of an inner product space 'I . is the set 
Y' l of all vectors orthogonal to all vectors x in /1'. It is to be shown that Y"- is 
closed. 

8. Let the set {Xk) be an infinite orthogonal basis for an infinite-dimensional inner 
product space. Why, after removal of merely a single element of this set, does the 
new set fail to be a basis for the space? 

9. Show that in an infinite-dimensional space, there exists an infinite number of 
linearly independent vectors. 
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At the end of the lecture Hilbert stood up and 
asked: "Sir, can you tell me, what is a Hilbert 
space?" -CO Lanczos 

Abstract Spaces. Hilbert Space 

In this chapter we take a decisive step and strip the concepts of "space" and 
"vector" of any concrete meaning; a space then becomes a set endowed with 
a certain structure described by axioms, and a vector an unspecified element 
of the set. 

To illustrate the abstract nature of the corresponding axiomatics, con­
sider a function f(x), of a single variable x, defined in the interval 
-1 :s x :s 1. We regard the function as representative of the (perhaps 
infinite) collection of values of the function, taken for the infinitely many 
values of its argument in the interval [- 1, 1]. From this standpoint, the 
function becomes a set of scalars, and, if the latter are looked upon as 
components of a vector, it is natural to identify the function with a vector in 
a space of infinite dimension. 

A similar, although less direct, approach is employed for functions of 
several variables, systems of functions, and so on. For instance, a stress 
tensor represented by six functions of three or four variables (three spatial 
coordinates and time) can be symbolized by a single vector. The decision to 
consider space elements-independent of their nature-as vectors in some 
such manner places at our disposal the arsenal of implements developed in 
the preceding chapters of our exposition. In this vein, the sum of two func­
tions,f(P) and g(P), is understood as the resultant of two vectors; the scalar 
rx in the product rxf(P) becomes a scaling factor for the vectorf(P); the scalar 
rx itself represents a constant function, hence also a vector (with zero playing 
the role of the null vector). The analogy can be extended further: it can 
appear that we can treat a certain set of functions, call it {<Pi(P)} say, as a 
basis for a given space, with the expansion 

00 

f(P) = I rxi <Pi(P) (7.1 ) 
i= 1 

59 
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being understood as a resolution of the vector f(P) in terms of the base 
vectors. Here, the coefficients a; play the part of components of the vector 
f(x) referred to a coordinate frame defined by the coordinate vectors 4>;(P). 

On this level of abstraction, it is natural to recast our previous axioma­
tics into a form equally abstract. The geometric structure at which we shall 
arrive is called a Hilbert space, the progenitor of Euclidean spaces (cf. Figure 
1.1 ). 

We begin the construction of the axiomatic system of Hilbert space with 
the following: 

Definition 7.1. A vector, or linear, space, j " is a collection of objects, x, 
y, z, ... , (of an unspecified nature), possessing the first two of the six groups 
of properties listed below. The objects are called rectors (or elements) of 'I '.t 

Group A. For every pair of elements, x and y, in j', there exists an 
element x + y in j " called their sum, such that 

(a) x + y = y + x, or addition is commutative, 
(b) x + (y + z) = (x + y) + z, or addition is associative. 
(c) There exists in i 'a unique element e, called the zero vector, with the 

property that x + e = x for every x. 
(d) To every element x in 'I', there corresponds a unique element -x, 

called the negative of x, with the property x + ( - x) == x - x = e, 

Group B. For each scalar a (here and hereafter, always a real number) 
and each x in i " there exists an element ax, called the scalar product of a and 
x, such that whenever y is an element and fJ is a scalar, 

(a) a(x + y) = ax + ay, or multiplication by a scalar is distributive 
with respect to element addition, 

(b) (a + fJ)x = ax + fJx, or mUltiplication by elements is distributive 
with respect to scalar addition, 

(c) (afJ)x = a(fJx), or multiplication by scalars is associative, 
(d) Ix = x for every element x, 
(e) Ox = e, or multiplication of every element by zero gives the zero 

element. 

The alternate name "linear" for a vector space, defined by the preceding 
two groups of properties, arises from the fact that it is precisely spaces of this 
sort on which familiar linear operations (such as differentiation and integra-

;' See any treatise on functional analysis such as. e,g .• Gould (Ref. 25. Chap, 1. Sec, 4 and 
Chap, 4. Sec, 2). Berberian (Ref. 7. p, 39). Sneddon (Ref. 10, Sec. 4.6), Vulikh (Ref. 23. 
Chap. 6), 
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tion, for example) are considered as acting (recall that, in general, a linear 
operation L is one such that L(rxx + py) = rxLx + PLy). 

We note that property (e) of Group B is listed merely for convenience, 
inasmuch as it follows from properties (c) of Group A and (b) of Group B. In 
fact, from (b) of Group B, for rx = 1, P = 0, we have x = 1x = [(0 + 1)x] = 

1x + Ox = x + Ox. By (c) of Group A, then Ox = e. 
It is often said that the axioms of Group A define the additive fabric of 

the vector space; axioms (c), (d), and (e) of Group B define its multiplicative 
fabric; and the remaining axioms [(a) and (b) of Group B) define the rela­
tionships between the two groups of operations. In establishing the linear 
character of 'f " we were, of course, guided by the rules established in the 
preceding chapters for ordinary vectors. 

The fact that to every pair of elements, x and y, and to every pair 
consisting of a vector and a scalar, x and rt, correspond elements x + yand 
rxx in the space, respectively, is expressed by saying that the space is closed 
under addition and scalar multiplication.t 

The third group of properties introduces a metric space character for 'f ' 
through the definition of an inner product of its elements. 

Group C. For every pair of elements in 'f " x and y, there exists a scalar, 
denoted by (x, y) and called the inner product of x and y, such that for every 
scalar rx and every element z, 

(a) (x, y) = (y, x), or the inner product is symmetric, 
(b) (rxx, y) = rx(x, y), 
(c) (x + y, z) = (x, z) + (y, z), 
(d) (x,x»O ifxf~ and (x,x)=O ifx=O. 

The (non-negative) square root of the inner product of an element x with 
itself, (x, X)l!2, is called the norm of x and is denoted by Ilxll. Hence, 

(7.2) 

We note that a linear space 'f ' provided with a metric derived from an inner 
product, that is, a space satisfying the groups of axioms A-C, is called a 
pre-Hilbert space by some authors.t 

The remaining three groups of axioms establish the concepts of dimen­
sion, completeness, and separability for a pre-Hilbert space. 

;' This term should not be confused with that introduced in Chapter 6 [cf. the text preceding 
equation (6.18)] for linear manifolds. 

::: For examples. Berberian (Ref. 7. p. 25) or Taylor (Ref. 11. p. 115). It is important to observe 
that an inner product space is automatically a normed linear space, since the definition (7.2) 
provides an admissible norm, that is, a norm satisfying conditions (7.13) below. 
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Group D. A pre-Hilbert space is n-dimensional if there exist n linearly 
independent vectors, Xl, x 2 , ••• , x n, i.e., such that the equation 

(7.3) 

implies that all coefficients (Xk are zero, but every set consisting of n + 1 
vectors chosen from the space is linearly dependent. If n linearly independent 
elements can be found for any n = 1, 2, ... , the vector space is said to be 
infinite-dimensional. 

Henceforth, we shall be primarily concerned with infinite-dimensional 
spaces. 

Group E. The pre-Hilbert space is complete. This means that every 
sequence consisting of elements of 1/ and converging in the Cauchy sense 
converges to an element in j'. Symbolically, from 

limllxm - xnll = 0 for m, n ---> 00 (7.4) 

there must follow 

for m ---> 00 (7.5) 

for some x in 1/. 

There is an inherent connection between the concepts of completeness 
and closednesst of a linear manifold (mentioned earlier). More precisely, in a 
complete metric linear space (in particular, in a Hilbert space), a complete 
linear manifold is closed and vice versa: a closed linear manifold is complete. 

Most authors call a complete inner-product space (that is, a complete 
pre-Hilbert space) a Hilbert space. To the already-listed properties, the re­
quirement is often added that the Hilbert space be separable; this imparts to 
the space a simpler structure. In fact, most examples of Hilbert spaces en­
countered in applications possess this property of separability. It is said that 
a Hilbert space is separable if it contains a countable set S of points which is 
dense in the space, that is, which is such that any neighborhood of any point 
of the space contains a point of S. Examples of dense sets are the set of all 
rational points in the real line g(, and the set of all points x = (Xl' x 2 , .•• , xn) 

with rational coordinates in the space g(n. Since these sets are countable, the 
spaces g( and g(n are separable. 

The Hilbert space defined by the preceding axioms is sometimes called 
a real Hilbert space, since the scalars involved are assumed to be real; we 

t Compare the text preceding equation (6.18) in Chapter 6. 
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Figure 7.1. Illustration for space completeness. 

63 

denote it by Yf. Axiom (d) of Group C implies that the metric of Yf is 
positive definite. 

It may be of interest to note that completeness is not an "absolute" 
property of a space, but depends on the selected norm. As an illustration, 
consider the space C _ 1:5 t:5 1 of functions x( t) of a single variable t, continuous 
in the interval - 1 :-::; t :-::; 1. Select in this space the sequence offunctions {Xk} 
defined by (Ref. 26, p. 59) 

for 
1 

-1 -1<t<--- - k' 

xk(t) = 1 1 
(7.6) kt for - - < t <-k - - k' 

1 for 
1 
k:-::; t:-::; 1, 

where k = 1, 2, ... , (Figure 7.1). Define the norm by the rule Ilx(t)11 = 
{J~ 1 [x(tW dt}1/2. Then the sequence {Xk} is a Cauchy sequence in the 
selected norm: 

1 2 
r [x'"(t) - xn(tW dt:-::; . ( ) --+ 0 

. -1 mIn m, n 
as m, n --+ 00 . 



64 Chapter 7 

However, {Xk} does not converge in this norm to a function belonging to the 
space C _ 1,; t,; l' Indeed, select the discontinuous function 

~ -1 
x*(t) =, ° 

I 1 

for -1 ::;; t < 0, 
for t = 0, 
for 0::;; t::;; 1. 

From the known Minkowski inequality for integrals,t we have 

U~l[¢(t) - x*(t)P dtr Z 
::;; U~l[¢(t) - xk(t)p dtr!2 

(7.7) 

j . 1 11/2 
+ 1.1-1 [xk(t) - x*(t)P dt j , (7.8) 

where ¢(t) is a continuous function. By the continuity of ¢(t), the left-hand 
member in (7.8) is different from zero; furthermore, as seen from Figure 7.1, 

• 1 

I [Xk(t) - x*(t)P dt --> ° as k --> 00 . (7.9) 
• - 1 

Consequently, the first integral on the right side of (7.8) cannot converge to 
zero as k --> 00, whence the sequence {Xk} cannot converge to any function ¢ 
in the space C -1 ';t'; 1 endowed with the norm defined above. We conclude 
that the space is incomplete. It can be completed, by adjoining appropriate 
elements, to produce the space 5f' 2( -1, 1) of functions square-integrable in 
the Lebesgue sense.! 

On the other hand, we shall now demonstrate that C -1 ';t'; 1 can be 
endowed with another norm, with respect to which completeness is realized. 
Specifically, let the norm on C -1 ';t'; 1 now be given by Ilxll = 

maL Lt ,;l Ix(t)l. Supposing that {Xk} is a Cauchy sequence in this new 
space, it follows that, for any E > 0, there exists a positive integer N, such 
that 

IIxm - xnll = max I xm(t) - xn(t) I < [; (7.10) 
-l,;t,;l 

whenever m, n > No' Now, (7.10) says, in particular, that the sequence of 
{Xk(t)} is a Cauchy sequence of real numbers for any fixed t, -1 ::;; t::;; 1, and 
so must converge to a real number, denoted by XO(t); here, we have appealed 
to the completeness of the real numbers. As noted, this reasoning holds for 
eaGh t, -1 ::;; t::;; 1, whence we have defined a function XO on [-1, 1]. We 

i- Compare inequality (5.25) in Chapter 5. 
~ A square-integrable function is also integrable here. since we are working on the interval 

[ - 1, 1]. For completeness of the space 5/' 2 and Lebesgue integration. compare Oden (Ref. 14. 
pp. 219 and 201). 
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shall complete the proof of our claim by showing that XO is in C -1 StS 1 (that 
is, XO is continuous) and Xk ----> XO in the present norm. Again using (7.10), it 
can easily be shown that the sequence {Xk} converges uniformlyt to 
xO-which is precisely the statement that {Xk} converges to XO in the sense of 
the present norm. Finally, it is well known that the limit of a uniformly 
convergent sequence of continuous functions in [ - 1, 1] is also continuous 
(Ref. 27, p. 135). Thus, XO is continuous and, as we have indicated, Xk ----> XO 

or 

lim Ilxk - x011 = o. (7.11 ) 
k~x 

With this new norm, then C -1 StS 1 is complete. 
In addition to Hilbert space, more general spaces frequently studied are 

the metric spaces, already mentioned in Chapter l. 
A metric space is a set for which the distance between any two of its 

elements has been defined.! This distance, d(x, y), mentioned somewhat 
informally in previous chapters,§ is now required to satisfy the three proper­
ties laid down in the following axiom: 

Axiom M. 

(a) d(x, y) > 0 if x i= y and d(x, y) = 0 if x = y, 
(b) d(x, y) = d(y, x), 
(c) d(x, z) :s;; d(x, y) + d(y, z). 

(7.12) 

The preceding properties are the salient features usually connected with the 
concept of the distance between two points in the familiar three-space, 8 3 , 

They express the positiveness of the distance (or its vanishing if the points 
coincide), its symmetry, and its compliance with the triangle inequality. 

There are many examples of metric spaces, of which it is worthwhile to 
mention the following two. 

(1) The space Cas tS b of all continuous functions x(t) defined on an 
interval a :s;; t :s;; b.«l The distance between any two elements in this space is 
defined as the maximum of the absolute values of the deviations of one 
function from the other in the given interval [a, b], as in (7.10) (cf. Ref. 23, 
p.75) 

d(x, y) = max 1 x(t) - y(t) I. 
a$.l$b 

;- See equation {1O.14} in Chapter 10. 
t Almost all of the metric spaces which we usually consider are also linear spaces. 
§ Compare, e.g., equation {6.24}. 
(' Clearly, this is a generalization of the space C _ 1 "'" 1 just discussed. 

(7.12a) 
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The metric (7.12a) is sometimes called the Chebyshev metric. It is easily 
verified that the definition above is consistent with Axiom M for a metric. 
Furthermore, continuous functions satisfy Axioms A and B, so that Cas / sb is 
a linear vector space, as well as a metric space. 

(2) The space 11 consisting of vectors having an infinite number of 
components, x = (Xl' X2' ... ), and satisfying the condition L~l IXil < 00. 

This is a linear space, and the metric axiom is satisfied if the distance is 
determined by [compare the taxicab norm (5.35)] 

00 

d(x, y) = L I Xi - yJ (7.12b) 
i= 1 

A second important class of spaces consists of the normed spaces. Being 
linear vector spaces, they satisfy Groups A and B of the axioms. In contrast to 
metric spaces, each element, x, of a normed space is associated with a unique 
scalar, IIxll, called the norm of X and defined by the following axiom: 

Axiom N. 

(a) IIxll > ° if X + 0, IIxll = ° if X = 0, 
(b) lIexxll = I ex IlIxll for every scalar ex, (7.13) 

(c) IIx + yll :<s; IIxll + lIyll (the triangle inequality). 

The distance in a normed space is determined by the previously used rela­
tion [compare, e.g., (6.24)] 

d(x, y) = IIx - YII· (7.13a) 

Since, evidently, a Hilbert space is a normed space, the same applies in 
Hilbert spaces. Such a definition of the metric is rather natural, since (7.12) 
follows from (7.13) and (7.13a). 

Ordinarily, a normed space is not required to be complete;t if it is, it 
becomes a so-called Banach space. Analysis in such spaces is of importance 
in connection with many problems, both linear and nonlinear. An example 
of a Banach space is the space fff n with the usual representation of the norm 
[see equation (5.10)]; another is the space of continuous functions Cas / sb 

mentioned before, with norm given by IIxll =maxaS / Sb Ix(t)1 [=d(x,e) 
where d is as in (7.12a)]. Both of these spaces are linear spaces and are 
complete; it can be shown that their norms satisfy the conditions (7.13) (see 
Ref. 28, pp. 44 and 46). 

We now return to the Hilbert space and note that an inspection of the 
proofs of the Cauchy-Schwarz and triangle inequalities given in Chapter 5 

t Compare Group E of properties, above. 
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for a Euclidean n-space indicates that, except for some nonessential details, 
they remain valid for the Hilbert space as well. We are thus permitted to 
transcribe the equations (5.24) and (5.25) verbatim, 

I (x, y) I S; IIxil IIyll (7.14 ) 

and 

(7.15) 

and consider them proven for the Hilbert space. 
It is interesting to note that, while being a Banach space, there is no 

choice of inner product which makes Ca5t5b into a Hilbert space. In fact, 
Group C of the axioms and the equality (7.2) imply that, for any two ele­
ments x and y in a Hilbert space, 

Ilx + YII = (x + y, x + y) 

= IIxll2 + 2(x, y) + IIyll2 
and 

so that 

(7.15a) 

This is, of course (an abstract version of) the parallelogram rule discussed in 
Problem 6 of Chapter 3. 

N ow set b = 3a and define 

x = J ~near 
II 

for 0 S; t S; a, 
for a S; t S; 2a, 
for 2a S; t S; 3a, 

for 0 S; t S; a, 
for a S; t S; 2a, 
for 2a S; t S; 3a, 

both x and y being continuous in the closed interval [0, 3a). Now, since 

IIx - ell = IIxil = max Ix(t)1 
a.:5:t'::;: 3a 

in accordance with (7.6) and (7.10), we have, in the case considered, 

IIxil = IIYII = IIx + yll = IIx - YII = 1. (7.l5b) 

This violates condition (7.15a) and proves our assertion. Also, we have 
justified, as indicated in Figure 1.1, the statement that the class of Hilbert 
spaces is a proper subclass of the family of Banach spaces. 
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Two other important results, besides (7.14) and (7.15), are Bessel's 
inequality and Parseval's equality. 

Before examining these, suppose that we have an orthonormal basis, S of 
vectors x\ k = 1, 2, ... , in a Hilbert space, so that [compare text preceding 
equation (6.25)] 

i, j = 1, 2, .... (7.16) 

Assume, for the time being, that one or more of the vectors of S are excluded 
from the set, so that the remaining set, call it Sine, represents something 
which was called earlier a "mutilated basis." 

We wish to approximate an arbitrary vector in the space by a linear 
combination Lr'= 1 !Y.k Xk of the vectors of the set Sine, where the !Y.k'S are 
coefficients to be determined. The approximation should consist of the mini­
mization of the distance 

(7.17) 

with respect to the coefficients!Y.k • Expanding the scalar product above in 
accordance with the rules C(b) and (c), we have 

(7.18 ) 

The last expression reaches a minimum for 

k = 1,2, ... , (7.19) 

and the coefficients so determined are termed the Fourier coefficients of the 
vector x with respect to the system {Xk}. 

It is interesting to note that the values (7.19) of the coefficients are 
closely connected with those obtained from an approximate representation 

(7.19a) 

upon using the orthogonality conditions (7.16). In fact, inner multiplication 
of (7.19a) with X k leads directly to approximate relations coinciding with 
(7.19). 

The actual minimum of (7.18) is 

min d2 ( x, k~l !Y.kXk) = (x, x) - k~l!Y.k 2, (7.20) 
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so that, in view of the positive definiteness of the inner product [property 
C(d)], 

OC; 

IIxl12 = (x, x) 2': Ir1.k 2• (7.21 ) 
k=l 

This is the Bessel inequality, an objective mentioned previously. Its geome­
tric sense becomes clear if one identifies the set {Xk} with the set of coordinate 
vectors of an infinite-dimensional Cartesian frame, and the coefficients {r1. k } 

with the scalar components of the vector x along the axes of the frame 
[compare equations (7.19)]. In this interpretation, the inequality (7.21) ex­
presses the fact that, if the system of coordinates is "incomplete"-in the 
sense that some of the coordinate axes are disregarded-then the "incom­
plete" sum of the squares of the components of a vector is no greater than 
the square of the norm of the vector. This result should be intuitively 
obvious, inasmuch as the right-hand side of inequality (7.21) represents (in 
the present case) a "truncated" Pythagorean formula for the vector x. 

Imagine now that the "mutilated basis," Sine, is replaced by the basis S. 
In this case, the approximate equality (7.19a) becomes an exact one, and 
Bessel's inequality transforms into the Parseual equality. The geometric 
sense of the latter coincides now with the Pythagorean theorem generalized 
to infinitely many dimensions: 

00 

II xl1 2 = L rJ./. (7.22) 
k=! 

Figure 7.2, illustrating the resolution of a vector x in 8 3 with respect to a 
Cartesian rectangular frame {e j }, i = 1, 2, 3, provides a crude visualization of 

Xl 

ez I / 
I / 
I / X I 
I / 

I I 

1/ 
V 

Figure 7.2. Illustration for the formulas of Bessel and Parse val. 
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both Bessel's and Parseval's formulas. Parseval's equality, referred to the 
actual basis {e;}, i = 1, 2, 3, reads here 

JJxII 2 = Xl 2 + X2 2 + X3 2• (7.23) 

On the other hand, any of the "mutilated bases," feb e2}, {el' e3}' or {e2' e3}, 
leads to a Bessel inequality, 

IIxII2;;:::xI2+x22, IIxII2;;:::x/+x3 2, or IIxII2;;:::x22+x3 2, (7.23a) 

respectively. 
As one more example, let us consider Figure 7.3, illustrating the resolu­

tion of a vector x into its components along the axes of an orthogonal 
multidimensional frame, identified by orthonormal coordinate vectors il, 
k = 1, 2, ... , n. In order for the figure to have visual appeal, the graphical 
representation of the frame is done in the spirit of Figure 5.1. 

If the orthonormal set {ill is a basis and the space of finite dimension, 
then the end point of the train of component vectors, such as A'" I A'-', 
coincides with the extremity of the vector x == OA under decomposition. On 
the other hand, if the set {ill is a basis, but the space is infinite-dimensional, 
then the tip A of the vector x becomes the limit point of the set of terminal 
points of the trains of component vectors as the number n of the latter 
increases infinitely. The corresponding polygon of vectors, OA I A 2 ... An, 
either becomes closed (provided the limit is actually reached) or the gap An A 

Equation (7.21)' Ial:!:(x,x) 
k k 

Figure 7.3. Illustration for Bessel's inequality. 
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tends to zero as n tends to infinity. The latter case is reflected in the Parse val 
equality. If the set {ik } is "deficient," the train of component vectors ends at 
some point Am and a gap of finite width, perhaps small, remains. The corre­
sponding situation is described by the Bessel inequality. 

We conclude this chapter with the remark that the separability of a 
Hilbert space, defined earlier, implies the existence of a countable orthonor­
mal basis. In fact, the statement that a Hilbert space is separable is equiva­
lent to the statement that the space possesses a countable complete 
orthonormal basis (Ref. 7, p. 53). We recall that a set is countable if its 
members can be put into one-to-one correspondence with positive integers. 

7.1. Contraction Mapping 

The far-reaching implications of the completeness of a space are nicely 
illustrated by Banach's principle of contraction mappings. 

For the setting, consider a metric space, with a distance function d(x, y), 
where x, yare elements of the space, and letf(x) be a functiont mapping the 
space into itself. The function f(x) is called a contraction (or contracting) 
mapping if there is a constant ex, ° :s:; ex < 1, such that 

d(f(x),f(y)):s:; exd(x, y) i (7.24) 

for all x, y in the space. Since exd(x, y) < d(x, y), in a contraction mapping 
the distance between any two elements is greater than that between the 
images of the elements (as if the former were "contracted"). If Xn ---+ x for 
n ---+ 00, then d(f(x),f(xn)) ---+ 0, and this implies that every contracting map­
ping function is continuous. 

The principle of contraction mappings says that if f( . ) is a contraction 
mapping on a complete metric space, then there exists one, and only one, 
fixed point of the mapping, i.e., one, and only one, x in the space such that 

f(x) = x. (7.25) 

In case the metric is also a vector space, we can state the result by saying that 
the equationf(y) - y = ° has one, and only one, solution, x. The restriction 
that the mapping be a contraction constitutes a sufficient condition for the 
(existence and) uniqueness of a solution, although equation (7.25) may have 

t For applications of the theoretical foundations of functional analysis expounded so far, we 
shall find it often convenient to depart from our earlier general designation of (unspecified) 
space elements by the letters such as x, y, or z, and to use for junctions the more familiar 
notation such as j and rP or u and l' (the last two symbols mostly for functions of several 
variables ). 
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a unique solution also in cases in which the mappmg fails to be a 
contraction. 

A proof of the above principle is straightforward. 
Let Xo be an arbitrary element in the space considered. Introduce the 

notation Xl = f(xo), X2 = f(xd = P(xo), ... , Xk = f(xk- d = fk(XO)' and 
evaluate the distance d(xn' x m), where m > n, say. Since 

d(xn' xm) = d(f(xn- d,f(Xm-l)) :s; r.x.d(xn_ t. Xm- d 

= r.x.d(f(xn- 2),f(xm - 2)) :s; r.x. 2d(xn_ 2, Xm- 2)' etc., 

then (using the triangle inequality) 

d(xn' xm) :s; r.x.nd(xo, Xm- n) 

:s; r.x.n[d(xo, xd + d(Xl' X2) + ... + d(xm-n-t. xm- n)) 

:s; r.x.nd(xo, xd[1 + r.x. + r.x. 2 + ... + r.x. m - n - 1] 

n 1 
:s; r.x. d(xo, x d -1 - . 

-r.x. 
(7.26) 

But r.x. < 1 so that, for n sufficiently large, the last expression may be made as 
small as we wish. This implies that the sequence {Xk} is Cauchy and, since the 
space is complete, that the limit x of {xn} is in the space, 

(7.27) 

In view of the continuity of the mappingf(x), however, 

f(x) = f( lim Xk) = lim f(Xk) = x, 
k-oo k-oo 

(7.28) 

and this evidences the existence of a fixed point [equation (7.25)]. 
It is now easy to conclude that the latter is unique. In fact, let there be 

two such points, X and y. Then 

f(x) = X, f(y) = y, (7.29) 

and the inequality (7.24) gives 

d(x, y) :s; r.x.d(x, y). (7.30) 

But r.x. < 1, so that, to avoid contradiction, d(x, y) = 0 or X = Y [cf. (7.l2a)]. 
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Example 7.1. Problems of applied mechanics often reduce to solving 
systems of linear nonhomogeneous algebraic equations such as 

n 

L IX;jXj + P; = y;, 
j=l 

i = 1, 2, ... , n, (7.31 ) 

and it is of interest to know beforehand whether the system has, or has not, a 
unique solution.t The principle of contraction mappings may occasionally 
be put to use here. 

Assume then that x = {x;} and y = {y;} are n-tuples of real numbers and 
take the distance in the form 

d(x, y) = max Ix; - Yd, (7.32) 
; 

reminiscent of (7.12a). 
We have for two pairs of elements Xl, x2 and their respective images yl, 

y2, so yl = f(Xl), y2 = f(x 2), wheref(· ) stands for the operation represented 
by the left-hand member of equation (7.31): 

If now 

d(yt, y2) = d(f(Xl ),f(X2)) 

= max I y; 1 - y/ I 
; 

= max /t IXij(X/ - x/)/ 
I J= 1 

n 

::; max L IIXijllx/ - X/ I 
; j= 1 

n 

::; max I x / - x/I max L I IXij I 
j ; j= 1 

n 

= max L I IXijl d(xl, X2). 
j=l 

n 

L I IXij I ::; IX < 1 
j=l 

(7.33) 

(7.34 ) 

for each i = 1, 2, ... , n, then the contraction principle can be applied,t and 

t As is known, such a system may be undetermined (when two or more equations coincide~ 
thus having an infinite number of solutions. 

! We must note that the set of n-tuples of real numbers with the metric defined by (7.32) is. in 
fact, a complete metric space. 
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consequently the operator f(· ) possesses exactly one (fixed) point x* such 
thatf(x*) = x*. Since this is so, the system of equations 

n 

Xi - L t:X.ijXj = Pi' 
j=l 

i = 1, 2, ... , n, (7.35) 

has a unique solution x* = {Xi *} for arbitrary {Pi} provided that 
Lj = 1 I t:X.ij I $; t:X. < 1, i = 1, 2, ... , n. As a numerical illustration, consider the 
following simple system: 

7x + 2y + 2z = 1, 

X + 3y + z = 1, 

X + 2y + 4z = 1. 

We divide the system through by 10, say, and find easily, 

t:X.ll = 0.3, t:X.12 = 0.2, t:X.13 = 0.2, 

t:X.21 = 0.1, t:X.22 = 0.7, t:X.23 = 0.1, 

t:X.31 = 0.1, t:X.32 = 0.2, t:X.33 = 0.6. 

(7.36) 

Inequality (7.34) being satisfied for i = 1, 2, 3, the system has a unique 
solution. Indeed, Cramer's rule yields immediately x* = 1/31, y* = 9/31, 
z* = 3/31. 

Problems 

1. Show that, in a Hilbert space, if the sequences {Xk} and {y"} converge to x and y, 
respectively [see equation (6.3)], then the sequence of inner products {(x\ y"n 
converges to (x, y). 

2. Show that the norm (5.1O)in a Euclidean space It., Ilxll = [D= 1 X?]1/2, X(Xl' X2, 

... , x.~ satisfies the requirements of Axiom N. 

3. Let m vectors Xl, X2, ... , xm span a subspace Y. Show that the dimension n ofthe 
subspace is less than or equal to m (i.e., n::; m). 

4. By applying the Gram-Schmidt procedure in the interval [-1, 1], convert the first 
three terms of the sequence 1, t, t2 , t3 , ••. , of linearly independent vectors into the 
orthonormalized Legendre polynomials Pl(t), P2(t), and P3(t). Verify the ortho­
normality of the vectors obtained. 

5. Show that in a metric space Id(x, z) - d(y, z)1 ::; d(x, y). Give a geometric 
interpretation. 

6. Prove the completeness of the space of continuous functions Ca";,,,;b with respect 
to the Chebyshev metric (7.12a). 
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7. A set in a vector space is convex [see the footnote preceding (6.18)] ifit contains an 
entire line segment [x = PIXI + P2 x2, PI + P2 = 1; in Chapter 9 see the text con­
cerning (9.14)] if it contains the two end points of the line (Xl and x 2 ). Show that a 
closed ball (a "solid" hypersphere, Ilx - ell :s: R, e = radius; refer to the end of 
Chapter 9) in a normed space is convex. Give a geometrical interpretation. 

8. Show that for k = 1, Bessel's inequality (7.21) reduces to the Cauchy-Schwarz 
inequality (5.24). 

9. Show that the space Co,; r,; I is separable defining the distance between two func­
tions according to (7.12a). 
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Function Space 

A surprising application of geometry to analysis 
occurs when we consider continuous functions 
f(x) defined on a given interval a"" x"" b. For 
we may call these functions "vectors" 

-M. HAUSNER 

While the course of reasoning in the preceding chapters led us "from the 
particular to the general"-from a directed line segment, for example, to an 
abstract space element-at this stage we choose to change our approach and 
concentrate on the particular class of abstract spaces known as function 
spaces. A function space is an abstract space, the elements of which are 
functions or sets of functions defined in an appropriate domain. 

To emphasize the fact that functions are visualized as vectors, we shall 
call the elements of a function space function vectorst and denote the latter 
temporarily by the lettersf, g, or h, reminiscent of the traditional notation for 
functions. The letters x, y, and z will meanwhile be assigned to independent 
variables, and the symbol i\ k = 1, 2, ... , to orthonormal systems of 
functions. 

Assume temporarily that the function space has all of the properties of a 
Hilbert spacet except that the requirement C(d) is relaxed, in the sense that 
the self-inner product is supposed to be positive semi-definite, that is, 

(f, f) = 0 (8.1 ) 

not only for f = fJ, but perhaps for some other f -+ f) as well. This liberaliza­
tion of the definition of the metric turns out to be convenient in certain cases 
[compare Diaz (Ref. 29, p. 7)]. 

The explicit definition of the inner product in a given function space will 
depend considerably on the nature of the problem at hand, the form of the 

;. The name "vector functions" shall be reserved for vector-valued functions. 
:; There are many advantages to be gained from working with Hilbert spaces, since they are the 

natural extension of Euclidean spaces; their structure is usually compatible with our spatial 
intuition. In the sequel, a function space will most frequently appear as a Hilbert space (thus 
enjoying all of the properties of the latter, unless stated otherwise). 

77 
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product being either imposed by the problem itself or selected so as to make 
the solution of the problem as simple as possible. 

A useful form for the inner product is the so-called Hilbert product, 

(f, g) = f f(P)g(P) dO, 
n 

(8.2) 

where f(P) and g(P) are functions of position in the domain n. The function 
vectors here stand for single functions. It is apparent that the corresponding 
metric is positive-definite (at least on any space offunctions of interest to us), 
and there is no difficulty in verifying that the Hilbert product~like all 
products listed below~satisfies the requirements imposed on an inner pro­
duct by Group C of the axioms in Chapter 7. The origin ofthe form (8.2) can 
be traced to the familiar form (4.13) of the dot product of two ordinary 
vectors in Euclidean three-space, 

a . b = a;b; (8.3) 

if the summation over the subscripts is extended to infinity [as indicated by 
the formula (6.22) for 12] and replaced by an integration. In fact, suppose 
that a function f (x) of a single variable x ranging over the interval [xa, Xb] is 
viewed as the infinite collection of its values,f(x;), at points x;, Xa :-:;; x; :-:;; Xb' 

In the spirit of our remarks at the opening of Chapter 7, it is natural to 
identify the set of numbers f(x;) with the infinite set of components of the 
function vector f(x). Thus, using the notation 

f(x;)(dx)1/2 =-h, g(x;)(dx)1/2 =- g;, (8.4) 

the integral (8.2) can be thought of as the limit of the sum I?=l hg; for n 
tending to infinity, 

.~ " I f(x)g(x) dx = lim L hg;· 
• X(J "-00 i;;: 1 

(8.5) 

A comparison of the right-hand sides of equations (8.3) and (8.5) makes 
apparent their identical structure, and verifies the claim that the Hilbert 
product is a descendent of the dot product. 

From the form (8.2), the transition to functions of several variables is 
immediate; it suffices to simply treat the symbol n as a designation of a 
domain of two or more dimensions. 

It is interesting to note that, if use is made of the Hilbert metric for 
square integrable functions, the condition of convergence (7.5) becomes 
precisely that of convergence in the mean (discussed later in Chapter 10). This 
follows from the fact that by combining equations (7.5) and (8.2) we have, for 
example, 

(8.5a) 
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where Uk} is a sequence of functions approximating (converging to) the 
given function f 

A somewhat different form for the inner product is provided by the 
Dirichlet inner product, 

(f, g) = I' (flgl + f2g2) dQ. 
on 

(806) 

This product involves function vectors representing ordered pairs of func­
tions, in the present case f(P) == [Jl(P), f2(P)] and g(P) == [gl(P), g2(P)]. 
Function vectors of this type may be called function vectors of the second 
kind. More generally, a function vector representing an n-tuple of functions 
may be called a function vector of the nth kind. The corresponding inner 
product has the form 

• n 

(f, g) = I L J;gi dQ. (8.6a) 
on i= 1 

Returning to equation (8.6), we observe that if (f, f) = 0, i.e., 
Sn (f1 2 + f2 2) dQ = 0, then fl = f2 = O. In spite of this conclusion, the form 
of the inner product (8.6) is often used to generate a positive semi-definite 
metric. In fact, select, for example, fl = fx and f2 = fy, a comma denoting 
differentiation with respect to the succeeding variable. Then the equality 
(f,f) = 0 holds in a two-dimensional domain, not only forfidentically zero, 
but for f = const as well. 

A third realization for the product is the M inkowski inner product, 
involving triples of functions, f = (fl' f2 , f3)' i.e., function vectors of the third 
kind. On account of its definition, 

(f, g) = r (flgl + f2g2 - f3g3) dQ, 
on 

(8.7) 

Minkowski's metric is indefinite. Indeed, by assuming thatf3 = 0, the product 
(f, f) is made non-negative [like the Dirichlet product ·(8.6)], while if 
fl = f2 = 0, the product (f, f) becomes negative. 

Minkowski's metric is ordinarily employed in the Minkowski space­
time world of the theory of relativity and must be left to other, more 
specialized, studies. On the other hand, in various engineering problems, it is 
often convenient to operate in real vector spaces with a positive semi-definite 
inner product. 

While it exceeds the scope and character of this book to go into a 
detailed analysis of such spaces, it is found that in many practical applica­
tions the distinction between a space with a positive-definite and that with a 
positive semi-definite metric may not be so vital. 
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With regard to the positive semi-definiteness of the inner product, the 
latter is required to satisfy the standard axioms (aHc) of Group C in Chap­
ter 7, but axiom (d) is to be replaced by the more liberal 

(x, x) ~ 0. (8.7a) 

In more graphic language, this implies that, if the length of a vector is 
identified with its norm (7.2), a vector with zero length need not be the zero 
vector. 

In this book, we discuss a number of problems in which the inner 
product is assumed to be positive semi-definite. It turns out, however (not 
necessarily by accident), at least in the class of problems considered here, 
that it is not required to enter into the finer aspects of the theory of spaces 
with a positive semi-definite metric, inasmuch as only the simplest of the 
available tools-the Cauchy-Schwarz and Bessel inequalities-will be found 
adequate for our purposes. 

Defining, as before, the norm of x by Ilxll = (x, X)1/2, we have 

II(y, y)x - (y, x)Y112 = ((y, y)x - (y, x)y, (y, y)x - (y, x)y) 

= (y, y)[(y, y)(x, x) - (y, X)2]. (8.7b) 

Thus, if (y, y) > 0, the equality (8.7b) yields the Cauchy-Schwarz inequality 

(x, y)2 :-:::; (x, x)(y, y), (8.7c) 

the equality sign holding for y = lXX, with IX a scalar. By reasoning similar to 
that leading to equation (7.21), it can also be shown that the Bessel 
inequality 

<Xl 

IIxl12 ~ L (x, Xk)2, (8.7d) 
k=l 

where (Xi, xi) = c5 ii ' i, j = 1, 2, ... , retains its validity in the positive semi­
definite case. 

There is a certain connection between the notion of a positive semi­
definite inner product and a so-called semi-norm, reminiscent of the connec­
tion between the norm and the positive definite inner product, and which we 
wish now to examine. 

We first note that the definition of a semi-norm differs from that of a 
norm simply in that requirement (a) in the definition (7.13) of the norm is 
discarded. Thus, denoting a semi-norm by the symbol 11·llsem [frequently, 
there is also used the notation p(. )), we have (see Ref. 15, p. 71 and Ref. 30, 
p.23) 

(b) IIIXXllsem= 1lXlllxllsem, 
(c) Ilx + Yllsem :-:::; Ilxll sem + IIYllsem. 

(8.7e) 
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To this may be added the condition 

(a*) Ilxll.em ~ 0, (8.7f) 

stating that, in contrast to the norm, vanishing of the semi-norm of some x 
does not necessarily imply that x = e. Actually, the latter inequality follows 
from the requirements (b) and (c) above.t In fact, we have, by (c), 

or 

Consequently, by (b), 

Ilx - yll.em = I-lilly - xii ~ Ilyll.em - Ilxll.em · 
As a result, 

and, in particular, 

Ilxll ~ 0, 
which results if we set y = e and observe that Ilell.em = Il0xll.em = 
Ollxll.em = O. 

An example of a semi-normed space is found in the space C~';t';b of 
those functions x(t), of a single real variable t, which have a continuous 
derivative on [a, b], if we set Ilxll.em = J~ I dx/dt 12 dt. A slightly more general 
example of a semi-norm is exhibited by equation (11.15) infra (there is, of 
course, no difficulty in defining the associated space). 

In boundary- or initial-value problems of a complicated type, such as 
those encountered in the theory of elasticity, the structure of the inner pro­
duct may become complicated. As an illustration, consider the theory of thin 
elastic isotropic plates undergoing small deflections, in which the inner pro­
duct of the deflections u(x, y) and v(x, y) is often taken in the form 

(u, v) = ~2 f [(V 2U)(V2V) - (1 - v)(u.xxV,yy + U,yyV,xx - 2u,xy v.XY )] dx dy. 
'0 

(8.8) 

Here, V2 = iJ2/ox2 + 02/oy2, n is the region occupied by the plate, D is its 

t A conclusion identical with (a*), but for the norm as such, can be drawn from conditions (b) 
and (c) in (7.13). That is, (a) in (7.13) need only be stated: "llxll = 0 implies x = e," the 
inequality "lIxll ;0:: 0" being implied by (b) and (c). 
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bending rigidity, and v denotes Poisson's ratio. An alternative form of (8.8), 
following from Clapeyron's theorem, is (Ref. 31, p. 86) 

1 r . [ av J (u, v) = -2 q(u)v dx dy - I Mn(u)-;- - v,,(u)v ds, 
'n 'c un 

(8.9) 

where q(u) is the external load distributed over the surface of the plate, Mn(u) 
and v,,(u) are the bending moment and the transverse force, respectively, 
both acting at the contour C of the plate, and n is the external normal on C 
(Ref. 32, Sec. 22): 

Mn(u) = -D [vV 2u + (1 - v)( cos2 ry. !:~ + sin2 et. ::~ + sin 2et. a~2~J J, 
(8.10a) 

Here, et. is the angle between the normal n and the x-axis and s is the coordinate 
measured along C. 

The symmetry of the inner product in the form (8.9) is guaranteed by 
the Rayleigh-Betti theorem, according to which the right-hand side of (8.9) 
remains invariant under the interchange of the functions u and v (Ref. 31, 
p. 390). Concerning (8.8), it is of interest to note that this type of inner 
product represents, for u == v, the potential energy of a plate subject to 
bending. 

Expressions (8.8) and (8.9) are not the most involved examples of inner 
products; others of much more intricate forms have been used. For instance, 
the following one has been applied in linear viscoelastic problems(33): 

00 J e- sot 

(J, g) = t t \(t + 1)3 [JL * (h,j * gi,j + fi,j * gj,j) + A. * h,i * gk,kl 

2 (r + 1)(r + 2) 2-r e- sol \ 

+ r~o (2 - r)! So (t + 1)r+3fi * gif dt dO., (8.lOc) 

where A. and JL are material parameters defined by the relaxation functions, So 

is the abscissa of convergence of a Laplace transform, and an asterisk de­
notes the convolution operator, 

,I 

a(t) * b(t) = I a(T)b(t - T) dT. (8.lOd) 
• 0 
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In studies of the linear theory of elasticity in three dimensions, the displace­
ment vector u(x, y, z) is represented by a triple of components Ui(X, y, z), 
i = 1, 2, 3. In this manner, it is seen to have the character of a function vector 
of the third kind. In general anisotropic elasticity, we usually define the inner 
product byt 

1 . 
(u, r) = -2 1 CijkIUi.jL·k.1 dV, 

. v 
(8.11) 

where V is the region occupied by the body and the Cijk,'S are the so-called 
elastic moduli. By virtue of the symmetry of the latter with respect to the 
pairs of indices ij and kl, this product obeys the required rule of symmetry 
(8.3). 

An alternative form of the inner product applied in elastic problems 
displays its relationship to the states of deformation and stress, represented 
by the tensors of strain, eij, and stress, Tij' respectively. The latter two being 
connected by the generalized Hooke's law, 

(8.12) 

we may consider a function vector denoted, say, by S (to emphasize our 
concern with elastic states), standing for either of the sets {eij} or {TiJ If both 
are present, it is to be understood that one of them is expressed in terms of 
the other. According to our classification, the function vector S describing 
the elastic state of the body is a vector of the sixth kind, there being six 
independent components of each of the tensors eij and Tij' 

Let us denote the function vectors associated with two different elastic 
states by Sand S', and introduce an inner product in the form 

(S, S') = -21 r Tije;j dV 
. v 

1 . 
= -21 <Aj dV, 

'v 
(8.13 ) 

the latter equality following from the reciprocal theorem. It is worth empha­
sizing that the self-inner product 

1 . 
(S, S) = -2 1 Tijeij dV, 

'v 
(8.14 ) 

that is, the square of the norm of the vector S, represents the potential energy 
stored in the body subject to deformation. Inasmuch as it is shown in the 

t The reader is reminded of the summation convention, observed here and later, and of the 
symbolism ui. j for the derivative cui/cxj • for example. 
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linear theory of elastic isotropic bodies (to which we confine our attention) 
that the energy is a positive-definite quantity, the metric induced by (8.14) is 
positive definite as well. 

Bearing in mind the linearized strain-displacement relations, 

e·· = -21(U' . + U· .) I] I, J J, I , (8.15) 

as well as equation (8.12), it is straightforward to cast equations (8.13) into a 
form similar to (8.11). The resulting metric, however, need not be positive 
definite. 

As already noted, the specific form selected for the inner product is 
closely connected with the nature of the problem at hand. To illustrate this 
point, consider a linear differential operator,t L, which involves ordinary or 
partial derivatives. We write the associated differential equation in the sym­
bolic form 

Lu(P) = f(P), (8.16) 

where u(P) is a function to be determined andf(P) is a function preassigned. 
Both u(P) and f(P) are visualized as function vectors in a vector space. 
Furthermore, since f(P) is treated as a vector, so is Lu. 

Assume that the operator L is symmetric, i.e., 

(Lu, V)H = (u, LV)H' (8.17) 

where the subscript denotes an inner product of the Hilbert type (8.2), 

(Lu, V)H = f Lu' v dO.. 
'n 

(8.17a) 

Here, Lu . v == Li LUi vh where the subscripts denote the components of the 
vectors Lu and v. In this sense, equation (8.17a) is a generalization of equa­
tion (8.2) (and of the familiar dot product of vectors). In what follows, we 
shall omit the dot symbol in those cases in which no confusion is likely to 
arise. 

Assume that L is a positive-definite operator, that is, 

(Lu, U)H > 0 for u f. e. (8.18) 

It is demonstrated in the variational calculus that the quadratic func­
tional (Ref. 8, p. 75) 

<I>[u] == (Lu, U)H - 2(U,f)H' (8.19) 

,. An operator T is a mapping from a space 'II to a space i' such that a vector U E '/1 is 
transformed into a vector rEi: r = Tu. If T = L, a linear operator, then L[u l + u2l = 

L[ull + L[ull and L[:xul = :xL[u]. 
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where 

(Lu, U)H - 2(U,f)H = r U· (Lu - 2f) dQ, 
0Q 

(8.20) 

reaches its minimum for u = uo, the latter being a solutiont of the equation 
(8.16). We recall that a quadratic functional involves products of linear 
terms, and afunctional ("function of a function") is a mapping having as its 
domain a set of functions and as its range a set of scalars.t 

The minimum of <l>(u), realized by the solution uo, is 

(8.21 ) 

where 

(8.21a) 

is the norm of the vector Uo in the Hilbert sense. 
In certain stationary problems of mathematical physics, the inner pro­

duct (Lu, U)H represents (often to within some scale factor) the potential 
energy stored in the body. In elasticity, this energy is the elastic energy 
produced by the action of external load. To demonstrate this claim, consider 
the governing equation of linear isotropic elasticity, 

- [,uV 2u + (.Ie + ,u) grad div u] = F, (8.22) 

where .Ie and ,u are the Lame constants, F is the vector of the body force per 
unit volume of the body, and u is the displacement vector. The preceding 
equation is given the more concise form 

Lu =F (8.23 ) 

by introducing the operator 

L == -[,uV2 + (.Ie +,u) grad div]. (8.23a) 

Assume, for definiteness, that the work of the surface forces is zero 
because either: (a) the boundary n is fixed, 

u = 0 on n, (8.23b) 

+ It is emphasized that "solving (8.16)" means "finding a function which satisfies (8.16) and the 
boundary conditions of the given problem." 

! Examples of functions involving functions u(x) of certain classes are: min., x$b I u(x) I. 
S: u(x) dx. u(x) + du(x)/dxlx=o. inner product (u, L·). where L' is a fixed vector. A functional 
F[u] is said to be linear if F[u + r] = F[u] + F[r] ("additivity") and F[iXu] = iXF[u] for any 
scalar iX ("homogeneity"). 
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or (b) the boundary consists of two portions, ill' on which the displacement 
is fixed, and il2, which is free from external tractions, t(n) , 

(8.23c) 

with il = ill + il2 . 
Either of these assumptions leads to a corresponding inner product 

which is symmetric. 
It is worth emphasizing that the boundary value problems consisting of 

the governing equation (8.22) and the boundary condition (8.23b) or (8.23c) 
are known, respectively, as the first and the third (or mixed) boundary value 
problems of linear elasticity (Ref. 31, p. 80). 

Bearing the assumed boundary conditions in mind and applying 
Clapeyron's theorem, we find easily that (Ref. 31, p. 86) 

r uLu dV = 2 r W(u) dV, 
'v 'v 

(8.24 ) 

where 

W(u) = !,ijeij (8.25) 

is the strain energy per unit volume of the body, expressed in terms of the 
displace men ts. 

Next, we recall the principle of minimum potential energy of an elastic 
system, known as Lagrange's variational principle, stating that of all elastic 
displacements u which satisfy the boundary conditions, those which also 
satisfy the equilibrium equations (8.22), i.e., the actual displacements uo, 
make the potential energy of the system minimum. Symbolically, 

f [W(u) - uF] dV = min 
. v 

(8.26) 

or, by virtue of (8.24), 

r u(Lu - 2F) dV = min. 
'v 

(8.27) 

A comparison of the pair of equations (8.23) and (8.27) with the pair (8.16) 
and (8.20) reveals a similarity between their structures. Hence, by virtue of 
equation (8.21a), the norm of the actual solution U o is 

lIIuolll H = (Luo, uo)J/2, (8.28) 

or, alternatively, 

(8.28a) 
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by appeal to (8.24). This implies that the Hilbert product, in the form 
assumed above, equals twice the elastic strain energy stored in the body. 
This confirms our remark concerning the close relationship between the 
problem as such and the associated inner product. 

As one more example, consider the previously discussed theory of bend­
ing of elastic isotropic plates. 

We place the coordinate axes x and y on the middle plane of the 
plate and direct the z axis perpendicular to the latter. As derived in the 
theory of plates, 

Ux = -w.xz, U y = -w.yz, (8.29) 

where Ux and uy are the displacements in the x and y directions, respectively, 
and w = w(x, y) is the deflection. According to Kirchhoff's hypotheses, the 
normal stress I zz is disregarded and the shear stresses Izx and I zy are con­
sidered to be of secondary influence as compared with the stresses I xx' I YY' 

and Ixy. 

By virtue of Hooke's law, 

E 
(8.30) 

Ixy = -~- exy ' 
1 + v 

where, if desired, the strains can be expressed in terms of the displacements 
(8.29) via the relations (8.15). 

The equations of equilibrium reduce, in the present case, to the single 
equation 

(8.31 ) 

v4 denoting the two-dimensional biharmonic operator and q(x, y) the inten­
sity of the surface load. 

The elastic strain energy per unit area of the plate is 

(8.32) 

or, explicitly, 

(8.33 ) 

The foregoing expression coincides with the integrand in equation (8.8), 
provided u and v are replaced by w. It is instructive to examine the particular 
case of a plate built-in on the contour C, so that 

w=O, ow =0 
on on C. (8.34 ) 
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Integration of the last two terms in equation (8.33) by parts over the area of 
the plate yields the contour integral - Je w,x(d(w,y)/ds) ds, vanishing on 
account of the first of conditions (8.34), 

We next consider the identity 

(V2W)2 = (w V2w) + (w V2w) - [w(V2w) ] ,x ,x ~Y.)' ,x ,x 

-[w(V2w),yL + wV4 w, (8.34a) 

which, in combination with the Gauss-Green formula, gives 

J' . ow f o(V2w) f (V2W)2 dV = J V2w- ds - w-- ds + wV4 w dV, (8.34b) 
v e on e on v 

Since the contour integrals in the latter equation vanish, equation (8.33) 
becomes 

r W(w) dV = ~2 f wV4 w dV. 
'v v 

(8.35) 

In view of the analogy between the conditions (8.34) and the zero-work 
conditions leading to equation (8.27) on the one hand, and the equations 
(8.24) and (8.35) on the other, we have 

J w(DV4 w - 2q) dV = min, 
v 

(8.36) 

this being a particular case of the more general equation (8.27), provided w, 
V4, and q/ D are put in place of u, L, and F, respectively. A similar conclusion 
is reached with regard to the pair of equations (8.23) and (8.31). 

With equations (8.28) and (8.28a) in mind, the norm of the actual 
solution Wo becomes 

(8.37) 

or, alternatively, 

[ J 
1/2 

IliwolliH = 2 L W(wo) dV . (8.37a) 

The last form of the norm demonstrates once more our remark about the 
close connections between the structure of an "appropriate" norm and the 
physical nature of the associated problem. This connection plays an impor­
tant role in the approximate solution of a problem. To illustrate this point, 
suppose that we are interested in torsion of elastic bars. In the general case, 
our task consists in finding the so-called torsion function cfJ(x, y), related to 
the warping of cross sections and satisfying the plane Laplace equation 
within the cross section n, 

(8.38) 
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while being subject to the condition 

a¢ 
an = y cos(n, x) - x cos(n, y) (8.38a) 

on the boundary 00 of 0. The problem thus formulated is the well-known 
Neumann problem. We note that the right-hand side of (8.38a) is a known 
function of position on 00. 

lt is demonstrated in the theory of torsion of bars that the only iden­
tically non vanishing components of stress are the shears 

Tzx = J1lX(¢.x - y), Tzy = J1r:x(¢.}. + x), (8.39) 

where J1 is a Lame constant and r:x is the angle of twist per unit length of the 
bar. Instead of prescribing the twisting moment M z acting on the bar, it is 
often convenient to prescribe the angle r:x produced by M z' and set r:x = 1 for 
simplicity. 

The elastic strain energy being 

(8.40) 

we have the potential energy of torsion, per unit length of the bar, 

(8,41 ) 

By the first Green formula for a harmonic function, 

r (¢~x + ¢:y) dO = r ¢¢.n ds, (8,42) 
'n "i'n 

and, consequently, applying the Gauss-Green theorem, 

r (- Y¢.x + X¢,y) dO = - r ¢¢,n ds. 
'n 'cn 

(8,43 ) 

Finally, 

U(¢) = ~ (P - II¢II~), (8,44) 

where P is the polar moment of inertia of the cross section of the bar and 
II ¢ II D is the metric in the Dirichlet sense, 

II¢II~ = r (¢~x + ¢:y) dO. (8,45) 
'n 
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The last integral, known as the Dirichlet integral, is associated with the inner 
product in the form (8.6), 

(8.46) 

The contour of the bar being known, so also is the polar moment of inertia 
P. Thus, the norm of the function sought is, in fact, determined by the value 
of the potential energy alone. This should come as no surprise if one recalls 
the repeatedly mentioned influence of the physics of the problem on the 
structure of the norm. 

With regard to the problem at hand, we note that, since U(cP) > 0, 
equation (8.44) yields the inequality 

(8.47) 

giving an upper bound for the norm of cPo For a circular cross section, the 
torsion function is constant and the norm zero [but not the strain energy 
(8.41 )]. For a narrow rectangular or an elongated elliptic cross section, one 
can pose approximately cP = xy; in this case, the strain energy is almost 
negligible and the norm is close to reaching its upper bound pl/2. 

On this, we end our discussion of the torsion problem. A more detailed 
analysis of the estimation of solutions of problems by means of bounds is 
postponed to Chapter 11. 

Comment 8.1. It is clear that inner products such as (8.2), (8.6), and 
(8.6a) are all particular cases of the general form 

(1, g) = r (Wtflgl + W 2 i2g2 + ... + Wn ingn) dO, 
'0 

(8.48) 

where the scaling functions wi(O) are known as weighting functions. Inner 
products of this form appear on certain occasions, for example, that in which 
the base vectors are selected as the so-called Legendre polynomials. 

8.1. Theory of Quantum Mechanics 

The ideas of function space have penetrated deeply into contemporary 
physics; there is probably no more dramatic example of their fertility and 
influence on practical applications than the theory of quanta, in which the 
entire structure of the microscopic is assumed to be patterned after the 
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structure of Hilbert space.t The latter, as investigated in this theory, is taken 
to be a complex vector space; such a space differs from the real vector spaces 
discussed earlier (and tacitly assumed elsewhere throughout this book) in 
that the scalars involved are complex numbers (i.e., of the form IX + ifJ, where 
i is the imaginary unit and IX and fJ are real numbers). In view of this fact, the 
following changes are made in Group C of the axioms, defining a real 
Hilbert space:; 

(a) (u, v) = (v, u), 

(b) (IXU 1 + fJu l , v) = IX(U b v) + fJ(Ul' v), 

(c) (u, IXV! + fJV1) = i(u, vd + JJ(u, ['1)' 

(8.49) 

Here, an overbar denotes the complex conjugate [e.g., c = IX - ifJ if 
c = IX + ifJ, and u(x) = a(x) - ib(x) if u(x) = a(x) + ib(x)]. We assume that 
the functions of interest are complex-valued functions of real variables. 
Clearly, both the self-inner product, (u, u) = (u, u), and the ~r~' IluJI = 
j(u,U), are real numbers, as is the modulus, I c I = j cc = + IX + fJ , of 
the complex number c = IX + ifJ. The Hilbert-type inner product (8.2) is 
now altered, becoming 

.00 

(u, v) = .I u(t)V(t) dt, (8.50) 
-00 

while the inner product (5.13) of two complex n-tuples u = (Ub ... , un) and 
v = (VI' ... , t'n) takes the form 

n 

(u, v) = L uJJk , (8.51) 
k=l 

thus making the associated space into the so-called "unitary" space. 
Now, if L is a linear operator acting on a Hilbert space, then the vector 

v resulting from the operation of L on the vector u will, in general, be linearly 

;. In this comment. we restrict ourselves to a cursory examination of the salient points of the 
mathematical fabric of quantum mechanics. To this end, we accept certain simplifying 
assumptions. e.g., the system has one degree of freedom, the operators involved possess 
discrete spectra, and the system is treated as a nonrelativistic one. The reader interested in 
becoming more thoroughly acquainted with the subject should consult any of the standard 
treatises, such as: Mandl,(34) Messiah,(35) Kemble,(36) and Powell and CrasemannP7) An 
excellent introduction to quantum mechanics is to be found in the very readable book of 
Gillespie.(38) Certain points of view adopted in this comment were inspired by the last-cited 
work. 

~ Compare Chapter 7, the text following equation (7.1). 
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independent of u. If it is not, for some u =1= e, that is, if there is a complex 
number A and a nonzero vector u for which 

Lu = AU, (8.52) 

then the number A is called an eigenvalue of L; any vector u as in (8.52) is 
called an eigenvector of L, associated with A (see our remark at the end of 
Chapter 10). 

The operators appearing in quantum mechanics are of the so-called 
Hermitian type. The "hermiticity" of the operators is expressed in the 
condition 

(u, Lv) = (Lu, v) for all u, v. (8.53 ) 

On account of the first of the axioms (8.49), it should be clear that hermiti­
city is a direct generalization of the property of symmetry of operators, 
defined earlier for real vector spaces [see equation (8.17)]. To illustrate this 
property, let us determine when the simple operator of multiplication by a 
complex number c is Hermitian. We have, referring to equation (8.49), 

(u, cv) = c(u, v), 

(cu, v) = c(u, v). 
(8.54) 

Thus, the multiplication operator determined by c is Hermitian if c = C, that 
is, if c is real. Two properties of Hermitian operators are of special impor­
tance. First, we observe that the eigenvalues of an Hermitian operator are 
real. In fact, by virtue of (8.52), we have 

and similarly, 

By hermiticity, we infer that 

(u, Lu) = (u, AU) 

= X(u, u), 

(Lu, u) = (Au, u) 

= A(u, u). 

A(u, u) = A(U, u), 

and, if u =1= e, so A = A: A is real, as asserted. 

(8.55a) 

(8.55b) 

(8.56) 

The second property of Hermitian operators consists of the statement 
that the eigenvectors associated with two different eigenvalues are ortho­
gonal. Indeed, let U1 and U2 be eigenvectors, and let Al and ,12, respectively, 
be the corresponding distinct eigenvalues. Then, 

(Ul' LU2) = (LUI' U2) 
(8.57) 
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But, since the eigenvalues are real, then 

(A'1 - ,1.2)(U1, U2) = 0, 

whence, because ,1.1 #- ,1.2 by hypothesis, we arrive at 

(U b U2) = 0, 

as claimed. 
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(8.57a) 

(8.58) 

In quantum mechanics, it is assumed that the set of eigenvectors asso­
ciated with an Hermitian operator is complete. This means that any vector in 
the underlying Hilbert space can be represented as a (perhaps infinite) sum 
of the eigenvectors.t Inasmuch as a set of eigenvectors corresponding to 
distinct eigenvalue and each of unit norm is orthonormal, it constitutes a 
basis for the space. 

Proceeding now to a review of the essential features of quantum 
mechanics, we must mention three fundamental concepts appearing in the 
formal theory of this discipline. The first of these is the notion of the physical 
state of a system. It is assumed here that in knowing this state, we know 
everything that can possibly be known about the physical aspect of the 
system. The second fundamental concept is that of the observables of 
the system, the latter being simply dynamical variables associated with 
the system, such as position or momentum, or a function of these, e.g., 
the energy of the system. 

The last idea involves the operation of measurement performed on the 
system. In classical understanding, an observable has always a definite value, 
and a measurement of an observable amounts simply to a registering of its 
current value. The viewpoint of quantum mechanics on this matter is ra­
dically different and surprising. According to this position, an observable 
has, generally speaking, no objective value independent of observer; its value 
is, in a sense, "developed" by the very act of measuring. In a similar vein, the 
state of a system, which in classical mechanics is identified with the current 
values of observables of the system (position and momentum, for example) 
becomes now clearly distinguished from the observables at hand. And so, 
while everything that is of interest about the physical aspects of a system is 
assumed to be obtainable from the associated state, other postulates are 
needed in order to clarify what things can be learned and how these facts can 
be deduced from the known state. 

The just-characterized tenets of the formal aspects of quantum 
mechanics find their apparent reflection in the postulational basis of the 
theory. The latter begins with a central postulate asserting the existence of a 
one-to-one correspondence between the properties of a physical system and 

t Compare the remarks on completeness in Chapter 7, preceding equation (7.22). 
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the properties of a Hilbert space. This means, in particular, the following: (1) 
Each state of a given system is represented by a vector, say, 1/1, in a vector 
space. Any possible state 1/1 of the system belongs to the unit sphere, that is, 
111/111 = ~ = 1. This is often called the "normalization" condition. It is 
also assumed that two normalized vectors differing only by a scalar factor of 
unit modulus represent the same physical state: 1/1 1 ~ 1/12 if 1/1 2 = al/l l' where 
I al 2 = 1.t (2) To each observable, 0 A, say, of a given system, there corre­
sponds a linear Hermitian operator LA in a Hilbert space, endowed with a 
complete orthonormal set of eigenvectors A j , i = 1,2, ... , and a correspond­
ing set of eigenvalues AjA, i = 1, 2, ... , so that 

i = 1,2, .... (8.59) 

Conversely, to each operator LA with the foregoing properties in a Hilbert 
space, there corresponds an observable 0 A of a physical system. Perhaps 
most surprising here is the additional postulate that no measurement of 0 A 

can give values differing from the eigenvalues A/, i = 1, 2, .... Of course, 
since the eigenvectors form an orthonormal basis for the space, any state 
vector can be represented by the linear combination 

1/1 A = L (1/1 A, AJA j , (8.60) 
j 

where 

(1/1 A, AJ = J 00 1/1 A(X )Aj(X) dx, 
-00 

(8.60a) 

and x represents some argument of the functions involved. (3) The third 
fundamental axiom of quantum mechanics concerns the probability that a 
measurement of 0 A will yield the eigenvalue A/. This probabilityt is 
assumed to be given by 1(1/1 A, AJ 12. 

The foregoing discussion clearly illustrates how deeply the language 
and formulations of function spaces pervade the realm of quantum 
mechanics.§ A more detailed treatment lying beyond the scope of this 
comment, we close with the following application. 

Let a system with a single degree of freedom, in the form of a particle of 
mass m, move along the x-axis. It is postulated in quantum mechanics that 

t It is easy to show that, in this case, also the norm of 1/12 equals unity. 
t As already noted, we assume, for simplicity, that the spectrum of the operator is discrete. If the 

distribution of the eigenvalues is continuous, the matter becomes more involved. Compare. 
e.g., GiIlespie (Ref. 38, Sec. 4.6b). 

§ Much is owed here to J. von Neumann's work.1391 
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the observables, position x and momentum p = mv(v = dx/dt), are associated 
with the operators (Ref. 38, p. 86) 

. d 
L = -lh-

P dx' 

(8.61a) 

(8.61b) 

respectively, where h = h/2n and h is Planck's constant. It is postulated, 
moreover, that with every physical system, there is associated a Hamiltonian 
(or energy) operator L H , corresponding to the observable total energy of the 
system. As such, it is a Hermitian operator possessing a complete orthonor­
mal set of eigenvectors Hi and a corresponding set of real eigenvalues AiH. 
Hence, 

i = 1, 2, .... (8.62) 

For the one-degree-of-freedom system under investigation, the Hamiltonian 
operator is 

(8.63 ) 

where V is a potential function. Combining equations (8.61) and (8.63) yields 

h2 p 
LH = - 2m dx 2 + V(x). (8.64) 

The foregoing operator is now inserted into equation (8.62) to give the 
celebrated so-called time-independent version of Schrodinger's equation, 

h2 d2 

- --d 2 H;('x) + V(x)Hi(x) = AiHH{x), 
2m x 

i = 1,2, .... (8.65) 

This is, of course, the eigenvalue equation for the Hamiltonian operator L H • 

Problems 

1. Show that iff[ x] is a linear functional (i.e.,f[ x + y] = f[ x] + fry ],f[ iXX] = iXf[x], 
for any two vectors x and y and any scalar iX), then f[O] = O. 

2. (Riesz representation theorem). Show that a linear functional f[x] in g. can be 
represented as a scalar product in the sense of equation (6.22). 

3. Let the linear operator L in 8' 2 transform the vector Xl = (12, 5) in to i = (3, - 4) 
and the vector x 2 = (2, 2) into y2 = (8, 3). Find the vector y3 = Lx3 = (Ylo Y2), 
where x3 = (14,8). 
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4. The operation of one operator upon another, or the composition of two operators, 
is defined by the operation of the first operator on the output of the second. In <5 2 , 

let the operator L 1 transform any vector x = (x I> x 2) into y = (0, x d, and let the 
operator L2 transform any vector x = (XI> X2) into Y = (XI> 0). Find the composi­
tions of Ll acting on L 2, L 1L 2, and L2 acting on LJ, L 2L 1• 

5. Decide whether the form (x, y) = Jb X(T)y(t - T) dT is, or is not, an inner product 
in the sense of Group C of the properties in Chapter 7. 

6. Define the inner product 

(u, v) = ~ Jv lUi. iVi. j + Vj.;) + 1 ~v 2v Ui. i Vj. j J dV. 

Show: (a) that this inner product is symmetric; (b) that (u, u) is positive definite (cf. 
equations (8.15), (8.25), and Hooke's law Tij = 2J1eij + Aekkbij); (c) by appeal to 
(8.22) and the divergence theorem, derive the Rayleigh-Betti reciprocal theorem. 

7. Let an operator L in <5 n carry the orthonormal vectors {e;} into the orthonormal 
vectors {};}, according to the formula}; = Lei. Show that L (called a unitary 
operator) does not change the inner product of any two elements of If n, that is, 
(Lx, Ly) = (x, y). In particular, IILxl1 = Ilxll (an operator possessing the latter 
property is called an isometry). 

8. Suppose that L is a linear operator on an inner product space, for which the 
sequence {Lxm} converges to Lx whenever the sequence {xm} converges to x (this is 
just a criterion for the continuity of L). Show that if limm _ oo xm = x and 
limm _ oc ~ = y, then limm• n _ oo (Lxm, y") = (Lx, y). 
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No one ignorant of geometry may enter 
here-Sill of Platonic Academy 

Some Geometry of Function Space 

To avoid punctiliousness, which would obscure rather than clarify the essen­
tials, we agreed in Chapter 6t to make no distinction between a linear 
manifold and a subspace, giving both the common name "subspace." Prac­
tically, this amounts to assuming that every manifold of interest is closed. 

It is not difficult to convince oneself that a subspace of a vector space is 
itself a vector space, inasmuch as it satisfies all the requirements imposed on 
the latter. We are thus in a position to determine the dimension of a sub­
space by the number of independent vectors, spanning the subspace. Of the 
countless examples of subspaces of function spaces, we cite only the follow­
ing series, the members of which get successively smaller: the set of functions 
of x continuous at a single point of the interval [xa , Xb]; the set of functions 
of x continuous in the entire interval [xa, Xb]; the set of all polynomials in x 
with real coefficients; and, finally, the set of multiples (Xx of x with (X being a 
real factor. 

By its very definition, each subspace includes the zero vector. Yet, it is 
sometimes convenient to generalize the term and study "subspaces" devoid 
of the origin (i.e., of the zero vector). Such subspaces are said to be 
translated, or shifted, and the operation of converting a "regular" subspace 
space into a translated one is called a translation, or shift, of the subspace.! 

From a geometric point of view, a translation of a subspace g 1 or g 2 in 
the space g 3, for instance, is equivalent to a parallel translation of a line or 
a plane passing through the origin to a new location. This is shown in Figure 
9.1a, in which the line Y\, passing through the origin 0 in the plane .cI} 2, is 
shifted parallel to itself to the location 9 l' 

t Compare the text preceding equation (6.18). 
t Some authors employ the term "linear variety" instead of "translated subspace," e.g .. 
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At this stage, it is convenient to distinguish between two categories of 
function vectors: those having their seat within a given subspace, and those 
located outside the subspace, possibly serving as position vectors of points in 
the subspace.t To illustrate this idea, consider the following example. 

A translated subspace .9' 1 (Figure 9.1a) passes through the points P 1 
and P 2 with linearly independent position vectors Xl and x 2 , respectively. 
Let x be the position vector of a generic point P on .9' l' Directly from Figure 
9.1a, 

----+ 2 PP 2 = x-x. (9.1 ) 

Since p;P and P?;. are collinear vectors, then PP-; = exp;p, where 
- 00 < ex < 00. Thus, from the preceding equations. 

(9.2) 

This can also be written as 

(9.3 ) 

As ex varies from - 00 to 00, the extremity of the vector x sweeps the entire 
line .9' l' Hence, either of the equivalent equations (9.2) or (9.3) is the equa­
tion of.9' 1 in vector form. With regard to the vectors xl, x 2 , and x, none of 
them lies on the line .9' 1, so that all three might intuitively be considered as 
"outsiders," that is, as vectors not in ·9'1' but in a space Y 2, of higher 
dimension than the given subspace .9' l' On the other hand, vectors such as 
---+ - -
P 1 P 2 "reside" in the subspace .C/ 1 and are members of ·Cf'1' 

Some authors take a different point of view(41) in assuming that all 
vectors in a function space emanate from a common origin (i.e., are bound). 
In that case, the statement that a vector belongs to a translated subspace 
means that merely the tip of the vector is in this subspace. Consequently, the 
vectors Xl, x 2, and x3 in Figure 9.1b are considered to lie in the subspace /J' 2' 

While no doubt admissible, such an interpretation turns out to be inappro­
priate for our future studies. Of course, the analytical aspect of the matter 
remains unaffected by this, or other, geometric illustration. 

Returning to the question of "intrinsic" and "extrinsic" vectors with 
respect to the subspace .9' b we note that the "extrinsic" representation (9.3) 
of .9' 1 can be converted into a kind of "semi-intrinsic" representation by 
means of the "intrinsic" vector 

(9.4) 

t We follow here the classification of Synge (Ref. 40, Sec. 2.4). 
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This gives 

(9.5) 

where now l is an intrinsic vector and the coefficient IXl is arbitrary. If the 
space origin 0 is shifted, say, to the point P b then Xl = 0, and the equation 
of the line .if I acquires a totally "intrinsic" character, x = IXll. 

Just as equations (9.3) and (9.5) are two alternative representations of a 
translated one-dimensional subspace .if b so also are the equations 

where {Xl, Xl, x 3 } is a set of linearly independent vectors, and 

x = Xl + IXll + 1X3yl 

(9.6) 

(9.7) 

are two alternative representations of a translated two-dimensional sub­
space 9 1 (Figure 9.1b). In equation (9.7), IXl and 1X3 are arbitrary coefficients, 
and yl and yl are two "intrinsic" linearly independent vectors. 

Carrying our generalization a step further, we assign to a translated 
subspace 9 n of dimension n the pair of equations 

(9.8) 

(9.8a) 

where {Xl, ... , Xn+ I} is a set of linearly independent vectors or, alternatively, 

(9.9) 

where, in the last equation, the coefficients lXi are unrestricted and the yi's are 
linearly independent "intrinsic" vectors. The translated subspace .if n itself is 
imagined in the first case as passing through the tips of the vectors x\ k = 1, 
2, ... , n + 1, and in the second case to include the vectors /, k = 1, 2, ... , n. 

Up to this point, our analysis has involved translated subspaces offinite 
dimensions which, by analogy to ordinary planes, might be visualized as 
many-dimensional "planes" and said to be translated n-planes. Examples of 
translated subspaces of infinite dimension are provided by hyperplanes, H(n) , 

where the subscript n = 1, 2, ... does not stand for the dimension, but for the 
so-called class of the hyperplane. As in n-spaces, hyperplanes are reminiscent 
of ordinary planes. Their definition, however, cannot be found in equations 
such as {9.8} or (9.9), but in the so-called normal equation of a plane {Figure 
9.1c}, 

r· ii = p, (9.10) 

where r is a position vector, ii is a unit vector normal to the plane, and p is 
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the distance from the origin to the plane. Consider now any Hilbert space. 
The defining equation of a hyperplane of the first class, H(l)' is 

(x, Xl) = OCl> (9.11) 

where Xl is a fixed vector Xl -+ () and OC I is a fixed scalar (Figure 9.1d). 
Although modeled on equation (9.10), the last equation has a much broader 
sense. First, the selected vector Xl is not necessarily perpendicular to the 
hyperplane; second, the scalar IX 1 is not necessarily the distance from the 
origin to H(l)' 

The irifinite dimensionality of H(1)' as compared to the finite dimension­
ality of a translated n-plane, .9 n' follows from the defining equation. Indeed, 
for n preassigned function vectors y" lying in .9" n' an equation such as (9.9) 
determines completely the functions x populating this subspace. On the 
other hand, the class of functions x defined by equation (9.11) is so extensive 
that its complete representation requires an infinite number of linearly 
independent vectors. This is easily shown by assuming that, for instance, the 
function vector x 1 is constant and its value is equal to IX l' Suppose, for 
definiteness, that we are interested in the space of square integrable 
functions, t !f' 2' Then, with x denoting a function f (x), say, equations (8.2) 
and (9.11) yield 

.• b 

J f(x) dx = 1 (9.12) 
a 

as the single condition imposed on f(x). It is obvious that this condition is 
satisfied by an infinite number of linearly independent functions of a single 
variable, that is a representation of the function vectors in H(1) requires an 
infinite number of linearly independent functions. Accordingly, the dimen­
sion of H(1) is infinite. 

An object more general than H(1) is a hyperplane H(n) , of order n > 1, 
defined by the system of equations 

(x, x'') = IX", v = 1, 2, ... , n, (9.13) 

where the x"s are vectors considered to be "extrinsic" with respect to H(n) , 

their tips marking points in H(n)' The vectors of the set {x"} are assumed to 
be linearly independent. 

Hyperplanes, because they contain a whole straight line if they contain 
two points of the line, are reminiscent of plane-like structures. Inasmuch as 
containing the whole straight line through any two of its points is a stronger 
requirement than convexity of a system (mentioned before in Chapter 6), 
hyperplanes are a fortiori convex structures. 

t Compare the footnote referring to the text preceding equation (10.19), infra. 
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We note in passing that any linear manifold is convex (Ref. 11, p. 130). 
The converse, however, is not always true. This follows, for example, from 
the second of equations (9.3), preventing free choice of the coefficients. 

As we have seen in Chapter 5, it is always possible to replace a set of 
linearly independent vectors, say {x',}, by an orthonormal set, {i''}, derived 
from the former. After such an operation, equations (9.13) become (with 
possibly different oc,.'s) 

( .,,) x, I =oc", v = 1, 2, ... , n. (9.14 ) 

For a selected vector XO and a generic vector x, each with its tip in H(n), the 
vector (cf. Figure 9.1d) 

(9.15) 

joining the extremities of x and xO, lies in H(n). However, both x and XO obey 
conditions (9.14), so that 

(y, i") = 0, v = 1, 2, ... , n. (9.15a) 

This leads immediately to the equations 

x = XO + Y and (y, i") = 0, v = 1,2, ... , n, (9.16) 

as an alternative description of a hyperplane H(n). Figure 9.1d depicts the 
situation. It is seen that the positions of space points, such as the point P, are 
identified by the tips of the intrinsic vectors y radiating from the tip of an 
extrinsic vector xO. This representation is reminiscent of the representation 
(9.9) of space points in If n. 

In carrying out our analysis, we have repeatedly used the concepts of 
perpendicularity of a vector to, and the distance of a point from, a subspace­
without appropriate definition of either. It is now necessary to make up for 
these omissions, assuming at the start that the spaces considered are inner 
product spaces. 

We first recall that, in the ordinary three-space, a vector can be resolved 
into two components, one perpendicular and the other parallel to a given 
plane; similarly, a vector in a linear space can be decomposed into two 
vectors: one perpendicular to a given subspace, and another lying in the 
subspace. Let us first consider plane-like structures, namely, an n-subspace 
in the strict sense, /7 n' a translated subspace, .?J' n' and a hyperplane, H(n). To 
illustrate, we concentrate our attention on a subspace If n represented by 
equation (9.9). In this case, it is convenient to replace the set {I} by a set of 
intrinsic orthonormal vectors W}, 

n 

° " a ·k x = X + L... I'k I , (9.17) 
k=l 

with Xl replaced by xO. 
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As already noted, the sense of the preceding equation is that a vector x, 
extrinsic with respect to the given n-subspace .9" n' can be represented by a 
sum of two vectors: one, xo, not in .9' n' and another represented by a linear 
combination of the intrinsic vectors ik. It should be clear that the choice of 
the vector Xo is left to our discretion, and nothing prevents us from making it 
perpendicular to the vectors ik. We then set 

(9.18) 

and require that 

for k = 1, 2, ... , 11. (9.19) 

We next form the inner product of equation (9.1 7) with a generic vector ik, 
obtaining 

k = 1,2, ... , n, (9.20 ) 

so that, finally, 

n 

X = 11 + L (x, ikV (9.21 ) 
k=! 

In this equation, n is a vector orthogonal to ·9'n and the sum represents a 
vector in fJ' n' From this point of view, it is indeed natural to interpret the 
vector sum 

n 

(9.22) 

geometrically as the orthogonal projection of x on .9" n' The particular terms 
in this sum, (x, ik)i\ play the part of the orthogonal projections of x on the 
ik-axes (in a vectorial sense), while the products (x, ik) are the scalar values of 
these projections. 

It is now tempting to extend the concept of orthogonality to subspaces 
of infinite dimension. Examples of these are hyperplanes represented by the 
system of equations (9.16), where, again, n denotes the order of the hyper­
plane (and not its dimension !). The set {iV} appearing in the system (9.16) 
consists of vectors extrinsic with respect to the hyperplane H(n)' and it would 
seem natural to represent the vector Xo in (9.16) by a linear combination of 
the orthonormal vectors i', 

with y, as coefficients. 

n ",. ,'" L. tv 
\'= 1 

(9.23 ) 
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The question now arises concerning whether the vector XO defined in 
this manner is actually the position vector of a point in H(n)' If this is so, then 
XO must satisfy equations (9.14) defining the hyperplane. Substitution of 
expression (9.23) into equations (9.14) convinces us that this actually is the 
case provided that y, = IX, for every v = 1,2, ... , n. Thus, the equations (9.16) 
defining H(n) are 

x = XO + y, (y, i') = 0, 

where v = 1,2, ... , n, and 

n 

XO = L IX,. i'. 
\'=1 

The last two of the preceding equations give 

n 

(XO, y) = L (y, i'') = 0, 
v=1 

so we can assert that 

(9.24) 

(9.24a) 

(9.25) 

(9.25a) 

where n is a vector orthogonal to a vector y in H(n)' It is now possible to 
assume that the vector XO == n in equation (9.24) is fixed, while the vectors x 
and yare arbitrary, the first extrinsic and the second intrinsic. It follows that 
the vector n is orthogonal to every vector y in H(n) and, consequently, ortho­
gonal to H(n)' By analogy with equation (9.22), one can now think of the 
vector y, defined by equations (9.24) and (9.25), as the orthogonal projection 
of x on H(n)' In this way, we have twice resolved a vector into two compon­
ents: one perpendicular and one "parallel" to an n-linear space [equations 
(9.21) and (9.22)], and one perpendicular and one "parallel" to a hyperplane 
[equations (9.24) and (9.25)]' 

We can now generalize our results in considering the orthogonality of a 
vector to an arbitrary subspace, independent of its structure and dimension­
ality. Denoting the subspace by 51', it is said that a vector x is orthogonal to the 
subspace ,'/, written x -L ,Y', if the vector is orthogonal to every vector in 51'. 

With this definition in mind, we turn our attention to the important 
question of the orthogonality of two subspaces. We say that two subspaces, 
//' and Y''', are orthogonal to each other, denoted by 51" -L 51''', if x' -L x" for 
every x' in ,'/' and every x" in 51'''. Examples of mutually orthogonal sub­
spaces are provided by two perpendicular lines, by a plane and a line perpen­
dicular to it, but not by two perpendicular planes, as it is easy to conclude. 
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As still another example, consider two finite-dimensional subspaces, .9' m and 
.fJ' n' in the form (9.1 7), say, 

m 

" 13k I'k X = Xo + L. 
k=l 

.X = Xo + L 13d\ 
k=l 

(9.26) 

where {i k } and {l} are two respective orthonormal bases. 1f.9' m ~ .9' n' then 
each vector y = L~= 1 13k ik lying in ·fJ'm must be perpendicular to each vector 
y = Lk=l 13k/ lying in ·fJ'n, 

(9.27) 

The preceding equation must hold for any choice of m + n coefficients 13k 
and 13k' It follows that 

(iP,/,) = 0 (9.27a) 

for all p = 1, 2, ... , m and all (J = 1, 2, ... , n, producing the conditions for 
orthogonality of ·fJ'm and .9' n . 

Returning to the general case, let Y be a subspace of a Hilbert space, 
,Yt. It can be shown that every element x in ,Y{ can be represented in a unique 
way in the form (Ref. 23, p. 158) 

x = n + y, (9.28) 

where n is a vector orthogonal to Y, n ~ Y, and y is called the orthogonal 
projection of x on .'1'. It is demonstrated that all vectors n with n ~ Y form a 
subspace, yl., called the orthogonal complement of Y, such that 

(9.29) 

where EB denotes the so-called direct sumt of Y and yl.; equation (9.29) is 
known as a decomposition formula for the Hilbert space. In words, this 
formula expresses the important fact that a Hilbert space can be 
decomposed into two orthogonal subspaces (without any remainder!). We 
shall make use of this conclusion in Chapter 12 during the course of our 
discussion of the hypercircle method (Ref. 42, p. 450). 

t A vector space i' is said to be the direct sum of two of its subspaces Y' and Y'" if every vector 
z in 'f' can be written uniquely as z = x + y where x E.'/" and y E .'/'''. 
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p 

o 
Figure 9.2. Illustration for orthogonal projection of xo' 

We now wish to show that a normal to a subspace ofjinite dimension, 
/1'", drawn from a point outside g" has the property of being the shortest 
distance from the point to the subspace. 

Represent the subspace in the form (9.17) and write 

IIxl12 = (x, x) 
" " = (XO)2 + 2 L Pk(XO, ik) + L Pk 2. (9.30) 

k=l k=l 

Finding the shortest distance of.'1'" from the origin is equivalent to minimiz­
ing the foregoing expression with respect to the coefficients Pk, upon keeping 
the vector XO fixed. This yields 

k = 1,2, ... , n. (9.31) 

Consequently, the vector n minimizing (9.30) is 

" n = XO - L (XO, ik)ik. (9.32) 
k=l 

This coincides with the result (9.21) and implies that the line segment joining 
the origin with the closest point of .'1'" is normal to g", while the vectorial 
sum in (9.32) represents the orthogonal projection of XO on .9'" (Figure 9.2). 

What was just proved for finite-dimensional n-subspaces is also true for 
hyperplanes. To show this, take the inner product of equation (9.24) with 
itself (for XO = n) to obtain 

(9.33) 
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after making use of condition (9.25). Clearly, Ilxll reaches its minimum for 
Ilyll = 0, when it becomes equal to Ilnll. Thus, the normal n to H(n) [equation 
(9.25a)] is the shortest "line segment" joining the origin with the hyperplane. 

In addition to planelike structures (n-subspaces, hyperplanes), it is often 
useful to consider subsets having geometric structure similar to that of a 
sphere. These are the finite-dimensional spheres, denoted here generically by 
·1In , and their generalization to infinite dimensions, the hyperspheres, JI 00' 

An n-sphere, ~ n' is a set in 8 n with the property that each of its points is 
at the same distance from a fixed point, selected as the center of the sphere. 
By the very definition, an n-sphere is a direct idealization of an ordinary 
sphere in Euclidean three-space. Its two- and one-dimensional counterparts 
are a circle and a pair of points, respectively. The equation of an n-sphere 
with center at the space origin is 

(9.34) 

where R is the radius of the sphere. By virtue of equation (9.17), and bearing 
in mind the location of the origin, we conclude that equation (9.34) is equiv­
alent to the pair of equations, 

(9.35) 

and 

(9.36) 

While an n-sphere is reminiscent of an ordinary sphere, it would be hazar­
dous to interpret this similarity in a literal sense. To illustrate, consider a 
two-space, Iff 2, including a two-sphere, that is, a circle Jl 2 (Figure 9.3a). 
Evidently, the circle divides the space iff 2 into two separate regions: the 
inside and the outside of Jl 2 • A three-dimensional being, however, would 
conclude that this separation is not as definite as it seems to a two­
dimensional being residing in 8 2 , Clearly, it is possible to pass continuously 
from the inside to the outside of the circle by marching into the space 
surrounding Jl 2 • With reference to a three-space, therefore, the difference 
between the interior and the exterior of Jl 2 becomes irrelevant. In a similar 
sense, a pair of points representing a one-sphere fails to enclose a line seg­
ment in iff l' In general, we can state that any n-sphere, observed from a 
surrounding space of dimension higher than n, fails to provide an imper­
vious enclosure, although it provides such an enclosure in the n-space. 

If an infinite-dimensional space, the matter is different, for if we wish to 
isolate a portion of such a space, we must utilize a hypersphere, 91 00' as one 
that, being an infinite-dimensional structure, is able to provide an actual 
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enclosure. A hypersphere as such contains the space origin; ifit does not, it is 
called a translated hypersphere. 

A question may now arise as to whether an abstract construct, such as a 
hypersphere, may serve any practical purpose. The discussion in Chapter 12, 
devoted to the method of the hypercircle, should convince the reader that 
the answer is in the affirmative. Indeed, it is shown that the concept of a 
hypersphere is of real help in arriving at approximate solutions to involve 
boundary-value problems. At this point, it should suffice to give the follow­
ing example. 

Let it be required to find an approximate solution to a boundary-value 
problem to within a prescribed accuracy, IS, say. Inasmuch as a function in a 
function space is represented by a vector or, specifically, by the tip of the 
vector, the problem to be examined may be formulated as follows: it is 
required to find a point Papprox in the neighborhood of the point Pexact rep­
resenting the exact solution, the radius of the neighborhood, IS, being 
prescribed. Clearly, the location of Pexact in unknown, but it may be assumed 

a 

p 

b 

Figure 9.3. Spheres and hyperspheres. 
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Figure 9.4. Certain classes of subspaces. 

that one is seeking a function belonging to a certain class, such as the class of 
continuous functions. Since the space of such functions is infinite­
dimensional, the <5-neighborhood in question must be represented by a 
hypersphere of radius <5 in order to provide an uninterrupted enclosure. 

Now let e be the position of the center of a hypersphere and let R be 
its radius. The equation of the hypersphere is then 

(9.37) 

and it divides an infinite-dimensional space into an inside, Ilx - ell < R2, 
and an outside, Ilx - ell> R2. 

In the present case, there is no simple expression, similar to that given 
by equation (9.35) for a point on an n-sphere, for the position vector of a 
point on the hypersphere. However, if j is an arbitrarily directed unit vector 
emanating from the center of the' hypersphere, the equation alternative to 
equation (9.37) is 

x = e + Rj, lUll = 1. (9.38) 
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Clearly, if the exact solution to a problem is represented by the tip of the 
vector e and R = t5 is the admissible error, then every point such that 
Ilx - ell ~ t5 corresponds to an acceptable approximate solution. 

The hypercircle method, mentioned above, narrows the search for an 
approximate solution by the requirement that the representation point of 
the latter lie on a hypercircle, i.e., on the intersection of a hypersphere with a 
hyperplane. 

Instead of pursuing this matter further at present, we conclude this 
chapter with a diagram (Figure 9.4) displaying the relations among certain 
families of convex subsets, arranged according to the increasing complexity 
of their geometric structure. By a ball is meant here a "solid" sphere, that is, a 

a b 

-R o 

-R 
II x " = ()t,~ + x~ ) 112 II x II = max {lx.I, Ix2'} 

c 

-R 

jX2 
R 

/' _..-, 

/~ I I~{ 
I~O I 

d 

\ / 
/ 

---R 

II x II = (IX.'+ Ix21) 

Figure 9.5. Closed balls (disks) Ilxll ::-:; R. 
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spherical "boundary," plus the interior. For example, Ilx - ell ~ R, instead 
of (9.37), is the equation of a hyperball. In contrast to such a closed ball, an 
open ball (11x - ell < R) includes only interior points. It is important to note 
that balls assume various geometrical aspects, depending on the choice of 
norm (or metric). For example, in a Euclidean plane Xb X2, a closed ball 
(disk) Ilxll ~ R becomes the interior plus the circumference ofa circle or one 
of two squares, depending on whether one defines the norm by II x II = 
(XI2+X/)1!2, Ilxll =max{lxll, IX21}, or Ilxll =(Ixll + IX21), respec­
tively; here x == Xl' X2 (Figure 9.5). Note that in an abstract sense, the 
distance of the point A, for example, from the center of the ball in Figure 
9.5b is R, not R/(2t 2 , as would appear from our geometrical intuition. 

A somewhat surprising result is obtained if one considers an open ball 
(open disk) on a Euclidean plane, the center of the ball being at a point a+- e 
and its radius R < Iiali. Let the distance function in the plane be defined by 
(Ref. 43, p. 133) 

-( ) _ Illall + Ilxll 
() a, X - Ilia _ xii 

if Ilxll +- Iiall, 

if Ilxll = Iiall, 

where Ilxll is the usual Euclidean norm. Now if Ilxll +- Iiall, then, by 
definition, c5(a, x) = Iiall + Ilxll < R or Ilxll < R - Iiall < 0, which is impos­
sible. On the other hand, if II x II = II a II, then, the point x lies on the circle with 
radius Iiall and, since Iia - xii < R < Iiall, the ball reduces to an arc on the 
circle (Figure 9.5, heavy line). 

Problems 

1. Using the infinite sequence {J"(t) = t"}, show that the dimension of the space 
C - 1 :5 1:5 1 is infinite. 

2. Show that a finite-dimensional Hilbert space is the direct sum of any subspace .'/' 
and its orthogonal complement .'I'~ [cf. (9.29)]. 

3. Verify that if the norms of two vectors in an inner product space are equal, then 
their sum and difference are mutually orthogonal. Give a geometric 
interpretation. 

4. Show that the dimension of the direct sum of two finite-dimensional subspaces 
equals the sum of the dimensions of the subspaces. 

5. Show that ~ 3 is the direct sum of any coordinate plane and the remaining coordi­
nate axis. 

6. Show that the subspaces of the preceding exercise are mutually orthogonal. 
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7. Let Y' be the (two-dimensional) subspace of,ff 4 with base vectorsf = (f1'/2'/3 '/4) 
and g = (gb g2, g3, g4). Find a basis for the orthogonal complement Y'~ of Y. 
Takef= (2, 4, 6, 4) and g = (4, 8,14, -2). 

8. Let Pry x denote the orthogonal projection of x on a subspace Y in .J'(' (see 
equation (13.3c) infra). Verify the reciprocal relation (Pry Xl, x 2 ) = (xl, Pr.v x 2 ). 
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Since it is almost impossible to obtain the exact 
solution of an elasticity problem except in a few 
special cases, we must be satisfied with 
approximate solutions for practical purposes 

-K. WASHIZU 

Closeness of Functions. 
Approximation in the Mean. 
Fourier Expansions 

It is well known that most problems of applied mechanics either cannot be 
solved rigorously, or the effort to obtain such solutions is too great to justify 
the work expended. Under these circumstances, there is no choice but to 
employ methods leading to approximate solutions. The question then arises 
concerning the evaluation of the accuracy of an approximate solution, that 
is, the closeness of the approximating function-vector to the exact 
solution-vector. 

If the quantities under comparison are numbers, a natural measure of 
their closeness is the absolute value of their difference. If, on the other hand, 
the quantities to be compared are functions, the values of which vary from 
point to point, a decision on how to assess their nearness is not as straight­
forward. To define the closeness of two functions of position, say f(P) and 
F(P), by the absolute value of their difference, I f(P) - F(P) I, without indi­
cating the point of comparison is meaningless. A more appropriate criterion 
is the maximum deviation of the functions from each other, 

d = max I f(P) - F(P)I, (10.1 ) 

where P varies over the common domain of definition of these functions, Q. 

It is clear that, in general, the smaller the value of d, the better one function 
approximates the other. Specifically, if d < E, where E is a positive number, 
usually small, then we say that the functionf(P), for instance, approximates 
the function F(P) uniformly with accuracy E: 

I f(P) - F(P) I < E for all P in Q. (10.2) 
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In a geometric interpretation, the criterion of uniform approximation ex­
presses the fact that the differences of the corresponding (infinitely many) 
values f{P;} and F{P;} of the components of the vectors f{P) and F{P) 
remain less than e; here, Pi is a generic point in the domain Q. 

To achieve a uniform approximation in practical applications is often 
tedious. Moreover, there always arises the question as to whether such an 
approximation is the most desirable. Figure 10.1 illustrates the situation for 
a function of a single variable. The function F{x) is to be approximated in 
the interval [a, b]; functionsfl{x) andf2{x) are the approximating functions 
and e denotes the permissible maximum deviation. It is apparent that, in a 
global sense, the function f2{x)-violating the condition of the uniform 
approximation-represents the function F{x) "better" than the uniformly 
approximating function fl (x). This happens despite the fact that, in a small 
vicinity of the point x = c, the function f2{X) displays a relatively large 
deviation from F{x). 

Instead of a uniform approximation, it is frequently more practical to 
resort to the so-called approximation in the mean. This type of approximation 
of a function has some features reminiscent of the mean of a set of numbers. 
We recall that the mean of order p, Ci.{p), of a set of numbers (1.i' i = 1, 2, ... , n, 
is defined by 

(10.3 ) 

For p = 1 we have the arithmetic mean, while p = 2 yields the mean square. 
The arithmetic mean has the obvious defect of being misleading if the num­
bers involved have different signs so that they cancel each other. A similar 

F(xl 

fj (xl 

(j .. 1,2) 

E 

~ __ ~ __ ~ __________________ ~~x 

a c b 

Figure 10.1. Approximation of the function F(x). 
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remark applies to all odd p. Of the even values of p, the order p = 2 is the 
simplest and most convenient, and is used almost exclusively. 

The idea of the mean-square deviation of two collections of n numbers 
{oe;} and {P;}, 

(10.4 ) 

is easily extended to the mean-square del'iation of functions. In the latter case, 
the summation is replaced by an integration, the formula (10.4) becoming 

[1 . Jl/2 
d = til .In[J(P) - F(P)P dO . (10.5) 

In order to clarify the relation between the mean-square deviation of func­
tions and the distance between functions, we write, referring to equation 
(7.13a), 

d(j, F) = Ilf - gil, (10.6) 

or, alternatively, 

d(j, F) = (f - F,f - F)I/2. (10.7) 

For definiteness, we use the Hilbert inner product (8.2), so that the preceding 
equation becomes 

d(j, F) = f.l)f(P) - F(P)P dO r2 (10.8) 

The right-hand sides of equations (10.5) and (10.8) are identical except for 
the multiplicative factor (1/0)1/2. By convention, we suppress this factor and 
call the right-hand side of equation (10.8) the mean-square deviation of the 
functions f(P) and F(P). In a geometric interpretation, therefore, the mean­
square deviation acquires the same meaning as the distance between func­
tions (here with respect to the Hilbert metric). It is an adequate measure of 
closeness, often called briefly the mean distance between functions: 

f 
. J 1/2 Ilf - FII.w = .I}f(P) - F(PW dO . (10.9) 

As repeatedly stressed in Chapter 8, there exist intimate connections be­
tween an inner product and the physical aspect of the corresponding prob­
lem. Specifically, the norm 

Illuo IIiH = (Luo, UO)J/2 

f 
. 11/2 

= 2.1 v W(uo) dV (10.10) 
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of the exact solution, uo, to an elastic problem, with the positive-definitet 
operator, L, acting on uo, was in Chapter 8 found to represent, in some scale, 
the stored potential energy, W(uo).:j: The preceding equation leads to a 
special definition of closeness, which we denote by 

Ilif - FIlIH = (L(f - F), (f - F))JF, (10.11) 

or, explicitly, by 

IIlf - FIIiE = l( ((f - F), L(f - F)) dV J 1/2, (10.12) 

after replacing the subscript H by E. We then say that IIlf - F IIiE repre­
sents the energy distance between the functions. Accordingly,§ 

I· J1/2 IIlulilE = t (u, L(u)) dn (10.13) 

is said to represent the energy norm of a function u(P), pBn. 
There is an obvious connection between the notion of distance (or 

closeness) and the idea of convergence understood as a diminution of dis­
tance between a sequence of functions, say fn' and a given function f~ With 
the three types of distance examined above [equations (10.2), (10.9), and 
(10.12)], we associate three types of convergence: uniform convergence, con­
vergence in the mean, and energy convergence. 

It is said that the sequence fn(P), n = 1, 2, ... , converges to f(P) uni­
formly over a domain n if for each B > 0, no matter how small, 

I fn(P) - f(P) I < B for all n > n(B), (10.14) 

provided the number n(B), independent of P, is large enough. Moreover, this 
condition has to be satisfied for all P in n. We can express this fact dif­
ferently by saying that if with increasing n, 

max I fn(P) - f(P) I -+ 0, (10.15) 

Pin n, then 
u 

fn(P) -+ f(P), (1O.15a) 

where the appended U denotes uniform convergence. Uniform convergence 
is a stringent requirement imposed on a sequence of functions. It is often 

i· See the definition (8.18). Clearly, the present notation f(P) should not be confused with the 
right-hand member of equation (8.16). 

t Compare equation (8.28a) as well as Mikhlin (Ref. 8, Sec. 8). 
§ Compare also Stakgold (Ref. 24, p. 524), where the energy norm is denoted by II u II a . 

• ' Compare Figure 6.1 and the pertinent remarks in Chapter 6. 
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hard to achieve, and since it will find no application in this exposition, there 
is no need to discuss it further. 

The two other types of convergence, that is, convergence in the mean 
and energy convergence, are closely related to function space concepts. To 
illustrate, let us replace the function f(P) in equation (10.9) by a sequence 
fn(P), n = 1, 2, ... , and replace F(P) by f(P). The definition of convergence 
then becomes 

(10.16) 
or 

M 

f,,(P) --+ f(P), (1O.16a) 

provided n --+ 00. Although it is said that either of the equations above 
expresses convergence in the mean, strictly speaking, the order of convergence 
in the mean is p = 2. 

A similar argument implies that either of the conditions 

IlIfn(P) - f(P)III E --+ 0 (10.17) 
or 

E 

fn(P) --+ f(P) (1O.17a) 

defines convergence in energy as n --+ 00. 

Convergence in the mean constitutes a particular case of convergence in 
energy. In fact, if the operator L is replaced by the identity operator (leaving 
a vector unchanged), equation (10.17) reduces to equation (10.16). 

If the operator L stands for multiplication by a scalar function IX(P), the 
criterion of convergence in energy becomes [cf. equation (10.11)] 

f IX(P)[f,,(P) - f(PW dQ --+ 0, 
n 

(10.18) 

for n --+ 00, and defines convergence in the mean with a weighting function 
IX(P). 

It is evident that equations such as (10.16), (10.17), or (10.18) may also 
serve as definitions of corresponding convergences of a series of function 
vectors, provided the symbol f,,(P) is interpreted as a partial sum of the 
series. 

The form of the mean-square distance (10.8) [like that of the Hilbert 
inner product (8.2)] indicates that the finiteness of the norm depends on the 
square integrability of the functions involved. The corresponding spacet !l' 2 

t Mentioned earlier parenthetically, e.g., in connection with equations (7.6) and (9.12); it is, 
occasionally, called a Lebesgue space and denoted in the single-variable case by ;t' 2(a, b), 
where (a, b) indicates the interval of square integrability: J: [f(t)]2 dt < 00. 
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of square integrable functions includes, among others, the important class of 
continuous and piecewise continuous functions, but also many discontin­
uous functions. Relevant examples are contained in the improper Riemann 
integrals 

1 dt 1 dt 
r 174 = 1 and r 172 = 2, 

• 0 t . 0 t 
(10.19) 

the integrands of which are infinite at the lower limit. The space 5e 2 is of 
major interest in studies of the so-called generalized Fourier series. These are 
expansions in terms of sets of orthogonal functions, t from which most bases 
for vector spaces are constructed. Although with no intention to analyze 
Fourier representations in detail, let us focus our attention on the simple 
example of a function of a single variable,f(t), a :s; t:s; b, supposed to be of 
class 5e 2' We select a complete set of orthonormal functions cf>k(t), all of class 
5e 2 , and consider the expansion 

(10.20) 

where 

Ck = (f, cf>k) 
b 

= r J(t)cf>k(t) dt, 
• a 

k = 1,2, ... , (10.21) 

are the Fourier coefficients. The series (10.20) is called the generalized Fou­
rier series ofJ(t) with respect to the set {cf>k(t)}. Classical examples of sets of 
orthonormal functions are the following popular systems. 

(a) The classical trigonometric system, 

1 cos t sin t cos nt sin nt 
(10.22a) 

orthogonal in the interval [0, 2n] or, in view of the periodicity of trigono­
metric functions, in any interval of length 2n. A more general form of this 
system, 

lInt 1 . nt 1 nnt 1 . nnt 
(21)1/2' zm cos I' 11/2 SIn I' ... , zm cos -1-' zm SIn -1-' ... , 

(1O.22b) 

represents a system orthonormal in an arbitrary interval of length 21. 

t The general form of the Fourier coefficients is given by equations (7.19). 
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From the preceding systems, other orthonormal systems are derived, 
for example, a pure sine system, 

(2)1/2 (2)1/2 
~ sin t, ~ sin 2t, ... , (lO.22c) 

and a pure cosine system, 

( 1)1/2 (2)1/2 (2)1/2 
~ '~ cos t, ~ cos 2t, ... , (lO.22d) 

both orthogonal in the interval [0, n]. Either of the systems above is 
completet in the space !f' 2 and can serve as a basis for this space.! I t does not 
seem superfluous to recall that removal of even a single term from either of 
the systems above would deprive it of the property of being a basis (at least 
from a theoretical viewpoint), even though such a curtailed system would still 
include an infinite number of elements. 

(b) Bessel functions of the first kind of an arbitrary positive order p, 

21/ 2JlA1t) 21/2Jp'2 t) 
lJp+ 1()"1 /) , lJp+ 1(A2/) , ... , 

(lO.22e) 

also form an orthonormal system in the interval [0, I > 0] with the weighting 
function t. This means that 

2 {I 
12 J ().../)J (A I). tJ p(Ai t)J p(Ak t) dt = c5 ik , 

p+ 1 I p+ 1 k 0 
(lO.22f) 

where A1 < A2 < A3 < ... are the positive roots of the equation 

(10.22g) 

A series formed of the preceding functions is known as Fourier-Bessel series. 
(c) Legendre polynomials, 

!po(t), ~P1(t), ... , (n + !)1/2Pn(t), ... , (10.22h) 

form a system orthonormal in the interval [- 1, 1] and 
!f' 2( - 1, 1). The first few of the Legendre polynomials are 

Po(t) = 1, P1(t) = t, P2(t) = !(3t2 - 1), 

P3(t) = !(5t3 - 3t), P4 (t) = k{35t4 - 30t2 + 3). 

A corresponding series is called a Legendre-Fourier series. 

t A maximal orthonormal set in an inner-product space is called complete. 

complete in 

(lO.22i) 

t More exactly, for the spaces :.f 2(0, 2lt), :.f 2(0, 21), and :.f 2(0, It), respectively. 
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(d) Still another systemt of orthonormal functions is provided by the 
set 

(1O.22j) 

where n is an integer and the interval of orthogonality is [-1t, 1t]. 
We conclude our list of certain of the common orthonormal systems by 

recalling that the latter arise rather naturally from the so-called eigenvalue 
problems. For instance, trigonometric, Bessel, and Legendre functions 
spring from differential equations constituting particular cases of the Sturm­
Liouville equation (Ref. 44, Chap. 3), 

d r dyj 
dt lP(t) dt + [q(t) + Ar(t)] = O. (10.23) 

Here, the coefficient functions p(t), q(t), and r(t) are continuous functions of 
the variable t, and A is a parameter with values in the discrete set of so-called 
eigenvalues [cf., e.g., equation (1O.22g)]. Solutions of the eigenvalue problems 
associated with the corresponding eigenvalues are known as eigenfunctions. 
In the cases mentioned above, the eigenfunctions are just the four orthonor­
mal systems (a)-(d). As such, they are reminiscent in many ways of the 
coordinate vectors of rectangular reference frames, while the corresponding 
Fourier coefficients play the part of components of vectors under decompo­
sition along the axes of the frame. 

Problems 

1. Determine the function to which the sequence {In(t) = t"} converges pointwise in 
the interval [0, 1]. Draw a picture. Is the convergence uniform? 

2. Let the sequence {In} be given by fn(x) = n for 0 < x < l/n,fn(x) = 0 at all remain­
ing points of the interval 0 ~ x ~ 1. Show that the fact that fn(x) .... f(x) = 0 at 
every point of the interval does not imply convergence to f(x) in the mean. 

3. A sequence {In} in a Hilbert space is said to converge weakly to f if 
limn_ 00 Un' g) = (f, g) for all elements 9 in the space. The sequence converges 
strongly to f if limn _ 00 II fn .... f II = O. Show that a strongly convergent sequence 
also converges weakly to the same limit. 

t This system is listed principally for the purpose of acknowledging the existence of complex­
vector spaces, for which Groups A and B of the axioms of Chapter 7 need be altered only by 
allowing the scalars to be complex numbers. The axioms of Group C, defining an inner 
product, must be partially modified as well. 



Closeness of Functions. Approximation in the Mean. Fourier Expansions 121 

4. Find the arithmetic mean and the mean-square distances between the functions 
I(x) = x 2 and g(x) = x3 in the interval -1 S x S 1 [cf. formula (10.9)]' 

5. Show that a necessary and sufficient condition for an orthonormal set to be 
complete in a Hilbert space [cf. the footnote after equation (1O.22b)] is that for any 
vector x in the space the Parseval equality be satisfied. 

6. Let the set {1/21/2, cos t, sin t, ... , cos nt, sin nt} be a basis for the subspace.'f of 
2' 2 ( -n, n). What is the dimension of !/'? Is the set orthonormal in the interval 
-n S t S n? By (7.17), the vector J. in yJ nearest to a given element x, i.e., the one 
for which Ilx - I. II is a minimum, is represented by I. = oco(I/21/2) + OCI cos t + 
PI sin t + ... + oc. cos nt + P. sin nt where {OCi}, {Pi} are the Fourier coefficients of 
x. Find the latter, taking the inner product in the form (x, y) = (l/n) J~. xy dt. 
Write the corresponding Bessel inequality. 

7. Show that the set of eigenvectors of a linear operator L, corresponding to the 
eigenvalue A, i.e., the set of solutions of Lx = AX in the linear space 'I . in which L 
acts [cf. equation (10.23)], constitutes a subspace .<f of 'I '. 

8. The adjoint of an operator L in a Hilbert space is the operator L * such that 
(Lx, y) = (x, L*y) for all x, y (see equation (11.82) infra). Show that any eigen­
vector of L belonging to the eigenvalue A is orthogonal to any eigenvector of L* 
belonging to A * if A i= A *. 



Assuming results, once one is persuaded they are 
true, rather than trying to prove them, has all the 
advantages of thievery over honest toil 

-BERTRAND RUSSELL 

II 

Bounds and Inequalities 

For all the pessimism of Lord Russell, there seems little doubt that a search 
for an approximate solution, where an exact solution cannot be obtained, is 
both theoretically defensible and practically unavoidable. This fact, 
however, does not absolve us from the obligation of estimating the error of 
the approximation solution, either by a direct computation or, more often, 
by finding the so-called bounds. In this chapter, we devote our attention to 
the second question, by examining some methods of constructing bounds for 
solutions of boundary value problems.t 

Two relations are essential in our discussion: the Cauchy-Schwarz 
inequality (7.14), 

(f, g f -:;; (f, f)(g, g), 

and the Bessel inequality (7.21), 
n 

I (f, ik)2 -:;; (f, f); 
k=! 

(11.1) 

(11.2) 

here,f and g are arbitrary vectors and W} is a set of orthonormal vectors. As 
the space under consideration, we choose a Hilbert space. 

As already noted, the geometric content of the Cauchy-Schwarz 
inequality is that the length of the orthogonal projection/, of a vector f on a 
vector g (Figure 11.1) is not greater than the length off Bessel's inequality, 
on the other hand, expresses the fact that the square of the length of a vector 
is not less than a partial sum of squares of its components along the axes of a 
Cartesian rectangular frame; equality occurs when the sum includes all 
components, in which case we arrive at the Pythagorean equation (5.19). 

;- The exposition is mainly based on the memoir of Diaz.(29) The reader interested specifically in 
the question of bounds will find much important material in this notable work. 
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~: 
I 9 o _ 

f' 

Figure 11.1. Illustration for the Cauchy-Schwarz inequality. 

Figure 11.2 illustrates the situation for a vector f with vectorial components 
fk = (f, ik)i\ k = 1, 2, 3. Clearly, Ilf112> IIfl112 + Ilf2112, but IIfl12 = 

Ii= 1 II f k 112. Generally speaking, Bessel's inequality furnishes a lower bound 
for the norm of a vector. If the coordinate vectors, say g\ are not normalized, 
we can write the inequality (11.2) in the form 

n (f, gk)2 
I -( k k) ~ (f,f). 

k= 1 g, g 
(11.3) 

F or a single vector, i.e., if n = 1, (11.3) reduces to the Cauchy-Schwarz 
ineq uali ty (11.1). 

Having the lower bound provided by Bessel's inequality, it is natural to 
look for an upper bound for the norm of a vector. This can be accomplished 
as follows (Figure 11.3). 

Let {ik} denote a set of n orthonormal function vectors selected so that 
the function of interest,f, is orthogonal to the subspace .ct' spanned by these 
vectors (recall that orthogonal vectors are linearly independent), 

for k = 1, 2, ... , n. (11.4) 

In Figure 11.3, the subspace /1" is visualized as the plane.ct' 2 of the vectors i 1 

and i2. A right triangle, OFG, is then constructed withfas a leg and a vector 
g as its hypotenuse. We have 

(g - f,f) = 0, (11.5) 

Figure 11.2. Illustration for the Bessel inequality. 
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so that 

But 

F 

o 
Figure 1l.3. Illustration for the upper bound for f 

or, generally, in a many-dimensional space, 

n 

Ilg-fI12;;:: I(g,;k)2. 
k=1 

125 

(11.6) 

(11.7) 

(11.8 ) 

Figure 11.3 displays the situation in three-space, in which Ilg - f 112 > 
(g, ;1)2, Ilg - fl12 = (g, ;1)2 + (g, ;2f. Combining (11.6) and (11.8) gives 
immediately 

n 

IIgl12 - Ilf112;;:: I (g, ;k)2 
k=1 

or, changing the notation, 
n 

(f,f) ~ (g, g) - I (g, ;k)2. (11.9 ) 
k=l 

This inequality provides an upper bound for the norm of the vector f Evi­
dently, all the more there is 

(I, f) ~ (g, g), (11.9a) 

showing that an upper bound for the norm of an arbitrary function f­
however crude it might be-is furnished by any function g, provided the 
difference 9 - f between the two functions is orthogonal to the function of 
interest f From the graph displayed in Figure 11.3, it is apparent that the 
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condition (11.5) is actually too restrictive, our argument remaining valid if 
this condition is replaced by a weaker one, namely, 

(g - f,f) ~ O. (11.10) 

Indeed, in this case, the angle OFG may turn out to be obtuse ( ~ OFG in 
Figure 11.3), and the norm of g, now replacing the norm of g, may be larger 
than the latter (~> OG). Consequently, the inequalities (11.9) and (11.9a) 
hold also in the more general case after replacing 9 by g. 

Upon collecting results, we conclude that, for any two numbers m and n, 
there is 

(11.11) 

where {gk} is an arbitrary set of orthonormal vectors, 9 is a function such that 
(g - f,f) ~ 0, and {hk} is a set of orthonormal vectors orthogonal to the 
vector of interest, f Increasing the numbers m and n sharpens the bounds. 
This improvement process can be carried as far as we wish, inasmuch as, in 
general, the lower bounds increase and the upper bounds decrease monoton­
ically with increasing m and n, respectively. A hidden catch, however, is that 
the bounds include the (unknown) function f, the norm of which they are 
meant to approximate, and one is caught in a vicious circle. To escape from 
the difficulty and render the inequality (11.11) useful, it is necessary to 
appeal to the information provided by the differential equation and the 
boundary conditions of the problem at hand. 

and 

As a simple illustration, consider the Neumann problem 

of an = h on an, f h ds = O,t 
eQ 

(11.12) 

(11.13) 

where V2 is the plane Laplacian and h is a function prescribed on the 
boundary an of n. As a first step, we introduce an appropriate inner prod­
uct, appearing as a Dirichlet-type product (8.6). Indeed, by Green's first 
identity, we have 

J gV2f dx dy + J (fxg,x + /yg,,) dx dy = f 9 Ofn ds, 
Q Q oQ U 

(11.14) 

t This condition is imposed to ensure the existence of a solution of the Neumann problem. 
(Solution is unique to within an additional constant only.) 
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and it is natural to take the second area integral, i.e., the bilinear Dirichlet 
integral, as the inner product off and g. It follows from this that the norm of 
the function f is represented by the Dirichlet integral,t 

I/fl1 2 = r U:x + f:x) dx dy 
'n 

(11.15) 

and, in view of equations (11.12) and (11.13), equation (11.14) takes the form 

(I, g) = r gh ds. 
'<'n 

(11.16) 

We thus conclude that, for a given function g, the inner product (I, g) is 
known, and the inequality (11.3) yields a lower bound for the norm of the 
solution vector as 

(fen gh dS)2 IIfl12 
IIgl12 ~ , 

(11.17) 

where the norm of 9 is given by a Dirichlet integral like (11.15). 
A derivation of an upper bound for the norm of f is slightly more 

complicated, as shown by the following procedure (Ref. 45, p. 107). 
We start with the Gauss-Green theorem 

r (!,xg1 + fyg2) dx dy + r f(gl.x + g2,y) dx dy = r f(gl nx + g2ny) ds, 
on 'n °rn 

(11.17a) 

where gl and g2 are two functions, so far unspecified, and nx and ny are the 
components of n. For gl =fx and g2 =fy the foregoing equation becomes 

(11.17b) 

after referring to equation (11.12). From the Cauchy-Schwarz inequality, 
there follows 

It (!'xg1 + fyg2) dx dy r ~ IIfl12 t (g1 2 + g/) dx dy. (11.17c) 

We now assume that 

gl, x + g2, y = 0 in n (11.17d) 

t We note that the inner product (11.14) is p<Jsitive semi-definite, and the norm (11.15) is, in 
fact, a semi-norm (cf. their respective definitions in Chapter 8). In the present case, it is 
alternatively conceivable to introduce a norm on a family of equivalent classes of functions, 
declaring two functions equivalent if, and only if, they differ by a constant. 
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and [note that If 0 (gl nx + g2 ny) ds = 0 by the second condition (11.13)] 

(11.17e) 

In view of these assumptions, equation (11.17a) reduces to 

(11.17f) 

so that finally, by (11.17b) and (11.17f), the inequality (11.17c) provides the 
desired upper bound, 

IIfl12 s r (g1 2 + g/) dx dy. 
'0 

(11.17g) 

Conditions (11.17d) and (11.17e), imposed on the functions gl and g2, are 
somewhat restrictive, and it is convenient to replace the first of them by the 
requirement that g 1 = g,y and g2 = - g,x, where g is some function suitable 
for our purposes. This function obeys the following boundary condition: 

og ox oy of 
:;-=gx~ +gy:;- = -gxny+g"nx =:;- on C. 
uS 'us 'us ' " un 

(11.17h) 

With this in mind, the inequality (11.17g) becomes 

IIfl12 s r (g:x + g:y) dx dy, 
'0 

(11.18) 

and in combination with the inequality (11.17), furnishes two-sided bounds 
for the norm of the function of interest. However, there remains the question 
of just how close the bounds actually approach the exact value of II f II. 

At this point, it may be in order to verify the fact that our choice of the 
norm for the Neumann problem, in the form of a bilinear Dirichlet integral, 
was not accidental, but resulted from certain natural connections existing 
between the Laplace equation and the Dirichlet integral. In fact, it is 
demonstrated in the variational calculus that the Laplace equation is a 
differential description of a class of phenomena possessing an alternate char­
acterization using an integral approach, which consists of making the value 
of the Dirichlet integral stationary. As a simple illustration, consider the 
one-dimensional problem of minimizing the functional 

, 1 (dy )2 
I[y] = t dx dx (11.19) 

under the conditions that 

y(O) = 0, y(l) = 1. (11.20) 
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Suppose that Yo = Yo(x) is the function which actually minimizes I[y], and 
that 

.Y(x) = Yo(x) + EI'/(X) (11.21) 

is any admissible function that satisfies the conditions (11.20) and serves as a 
comparison function. Here, I'/(x) is an arbitrary, sufficiently regular, function 
with 1'/(0) = 1'/(1) = 0, and E a parameter assumed to be small as compared 
with unity. By replacing y by y, we make the functional (11.19) a function of 
E, a stationary value of which occurs for E = O. This yields 

1'1 dyo dl'/ dx = 0 
'0 dx dx ' 

(11.22) 

and, since 1'/ vanishes at x = 0 and x = 1 and (11.22) holds for all functions 1'/ 
described above, thent after integrating by parts, 

~:~ = O. (11.23) 

The foregoing equation is the so-called Euler-Lagrange equation associated 
with the variational problem M[y] = O. It is evident that the boundary value 
problem (11.23) and (11.20) represents a Dirichlet problem in its simplest 
form. On the other hand, equation (11.19) turns out to yield the Dirichlet 
metric (11.15) reduced to a one-dimensional case. 

As a general remark, it is important to remember that the connection 
between the norm and the actual values of the function of interest is some­
what loose, inasmuch as the norm here is an integral, rather than a point­
wise, description of a function.! 

Returning to the matter of the accuracy of the bounds derived hereto­
fore, we now have to examine certain procedures enabling one to improve 
the bounds. 

To begin, let us attempt to determine bounds for a functionfin terms of 
the following: a given function c, a set ofn orthonormal functions W}, and a 
set of n scalars {ctJ representing the projections off on the vectors hi: 

i = 1, 2, ... , n. (11.24 ) 

It is required that 

Ilf - cl1 2 = r2, (11.25) 

where r is a given constant. 

t This follows from the basic lemma of the calculus of variations, e.g., Weinstock (Ref. 46, p. 16). 
t It should also be noted that, since the functionals minimized (such as here l[y]) are "level" at 

the exact solution (here Yo), it is understandable that l[yl provides a better estimate for I[Yol 
than any approximate (admissible though it be) solution y does for Yo. 
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Under these assumptions, it can be shown that (Ref. 29, p. 11) 

n If n Jl/2 f n J1 /212 
Jl a/ + IlilcI12 - Jl (c, hi)2 ( - Jl ((Xi - (C, hiW I::; IIfl12 

f n 11/212 (2 - i~l ((Xi - (C, hiW I' 
(11.26) 

We omit the proof of the foregoing inequality, inasmuch as for our purposes 
it is rather more appropriate to exhibit some of its geometric aspects. We 
first identify equation (11.25) as the equation of a hypersphere (9.37),81 00' of 
radius r and center at the tip of the vector c. We observe that equations 
(11.24) describe a hyperplane of class n, H(n)' If these two intersect, the 
"curve" of intersection is a hypercircie, r(n), of class n because one of the 
meeting sets is of this class (Figure 11.4 illustrates the situation). Note that 
equations (11.24) and (11.25) clearly demonstrate thatfis the position vector 
of a point common to :J4 00 and H(n), so that the tips of all such f's trace 
the hypercircle r(n)' 

In order to form a mental image of the resulting configuration, it is 
convenient to draw a corresponding sketch in two dimensions and confine 
the number of hi vectors to a single one, say hk (Figure 11.5). A hypersphere 
is then represented by a circle (81 00' or 81 00" in Figure 11.5) and a hyperplane 
byaline (H(n»)' The hypercircle of intersection reduces to a pair of points (AI' 
and A / for :J4 00 ') symmetrically located with respect to the subspace 
Y n = fD=l ckhk} (a line in Figure 11.5), or to a pair AI" and A2", if the 
location of :J4 00" is asymmetric. The line Y n , in the case considered, becomes 
the subspace .'1" 1 of all vectors Ck hk, where hk is a unit vector perpendicular to 

Figure 11.4. An intersection of a hyperplane with a hypersphere. 
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Figure 11.5. Bounds for a function f 

the line H(n) and Ck is a scalar. The perpendicularity of the lines ·Cf'l and H(n) 

follows from the fact that the tip of every [vector lies on H(n), while the 
orthogonal projection !Y.k = (f, hk) of any [vector on hk is the same for all 
vectors! A similar conclusion is reached if a vector in H(n) is represented as a 
difference of two position vectors; for example, 

---+ 
y == Al'A2' = f" - f'· 

Applying (11.24) tor and!, and subtracting gives 

(y, hk) = 0, 

(11.27) 

(11.27a) 

as asserted. In the location .]1 00" the center C of the sphere lies on Y 1 anQ is 
identified by the position vector 

DC == c' = (c', hk)hk. (11.28) 

Now, the distance OB' is, by (11.24), 

(11.29) 

and 
(B'A')2 = r2 - (B'C)2 

= r2 - [(c', hk) - !Y.k]2. (11.30 ) 



132 Chapter II 

Hence, 
11f'112 = (OB')2 + (B'A')2 

= ~k2 + r2 - [(C', hk) - ~kY. (11.30a) 

In the situation considered, the vector c in the inequality (11.26) coincides 
with the present vector c' and, by (11.28) and for a single vector h\ the 
inequality reduces to an equality coinciding with equation (11.30a). It should 
be clear that, for a number of hk-vectors greater than one, the right-hand side 
of equation (11.30a) must be summed over the index k. It is interesting to 
note that, for all the superficial simplicity of Figure 11.5, the pair of points 
A l' and A 2' stands for a hypercircle, the dimensionality of which is finite. It 
is also apparent that every vector f (including, of course, vectors f' andf") 
whose tip lies on the hypercircle is determined by the formula 

n 

1If'1I2 = IIrll 2 = L [~/ + r2 - (~k - (c, hkW]1/2. (11.31) 
k=1 

In the general case, the center of the hypersphere does not lie on the line Y) n 

(sphere :?4 00" in Figure 11.5), and there exist two different limit positions 
(producing two bounds),jmin andfmw of the vector f It seems sufficient to 
derive one of them, say, the lower bound for the norm IIfll, represented by 
the segment II fmin II = ~. 

By inspecting the simplified model displayed in Figure 11.5, we find 

OB' = (fmin, hk) = ~k' 

OC'" = (c, hk), C"D" = (c", hk) - ~'" 

(OA")2 = (OB,)2 + (B' A,,)2, (11.32) 

= ~k 2 + {[(OC")2 - (OC"')2]1/2 - [r2 - (C"D")2]1/2}2. 

The last of the foregoing equations takes the form 

IIfmin 112 = ~/ + {[II c" II 2 - (c", hkV]1/2 - [r2 - ((c", hk) - ~k)2]1/2f, 
(11.33) 

which, after summation over the index k and suppressing of the double 
primes, coincides with the left-hand side of inequality (11.26). If we disregard 
the sums in the latter inequality, that is, make all ~;'s and hi'S vanish, we 
obtain 

[Ilell - rJ2 .s; IIfll2 .s; [lIcll + rJ2. (11.34 ) 

The two-dimensional sketch displayed in Figure 11.6, representing the fore­
going inequality, illustrates a well-known theorem of plane geometry, 
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Figure 1l.6. l\Iustration for inequality (11.34). 

namely, that the length of a tangent to a circle from an exterior point is no 
less than the distance from the point to the circle, and no greater than the 
length of the secant from the point through the center of the circle. The 
function space aspect of this observation is that, by selecting an arbitrary 
function, say e, one can construct bounds for the norm of the unknown 
function f, provided the norm r of the difference of the two is given [cf. 
(11.25)]' In our simplified model, the upper bound in the inequality (11.34) is 
most naturally deduced from the triangle OFC in Figure 11.6 (in which 
II f - ell = r), after an appeal to the triangle inequality. The lower bound, on 
the other hand, is a direct consequence of the fact that a side of a triangle is 
not less than the difference of the two remaining sides. 

It is worth noticing that the distance C*C" in Figure 11.5, equal to 
lie" - (e", hkWl1 for n = 1, becomes lie" - I.~= 1 (e", hkWl1 for n > 1; con­
sequently, the equality lie" - I.~=l (e", hkWl1 = ° would imply that the 
center of the hypersphere lies on the line (or rather in the subspace) ,cr' n . 

In applications, it is practical to modify the form of the inequality 
(11.26). This is necessitated by the unwelcome circumstance that the bounds 
involve the vector e and the scalars {ocJ, all of which depend on the unknown 
functionf, via equations (11.24) and (11.25) (provided r is preassigned). The 
dilemma may be circumvented by the following procedure. We select two 
vectors, g and h, and two orthonormal sets, {ilk} and {It}, obeying the follow­
ing conditions: 

(g - f, h - f) = 0, 

(g - f, It) = 0, 

(h - f, in = 0, 

(gi, It) = 0, 

(11.35a) 

(11.35b) 

(11.35c) 

(11.35d) 
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Figure 11.7. Illustration for relations (11.36). 

where i = 1, 2, ... , sand k = 1, 2, ... , t. The conditions above are represented 
graphically by the sketch shown in Figure 11.7. 

Upon casting equation (11.35a) into the form 

( f_ 9 + h _ 9 - h f_9+h+9-h)=o 
22' 2 2 

and expanding, we arrive at the equation 

(11.36) 

With this in mind, we set 

g+h 
c=-2-' r = II g; h II, (11.37) 

and n = s + t, gi = hi for i = 1,2, ... , sand fik = hS + k for k = 1,2, ... , t. From 
(11.35b) and (11.35c), there follow (f, gi) = (h, gi) for i = 1,2, ... , sand 
(f, fik) = (g, fik) for k = 1, 2, ... , t. In this way, the unknown vector f is 
replaced by the given vectors 9 and h. Inequality (11.26) takes now the 
somewhat clumsy, but some serviceable, form 

where 
S t 

F = I (h, gi)2 + I (h, fik), 
i=l k=l 

G = Ilg; hW 

H = Ilg; hW 

S (g + h _i)2 t (g + h )2 Jl -2-' 9 - k~l -2-' 'R' , 

S (9-h .)2 t (9-h )2 Jl -2-' g' - k~l -2-' fik . 

(11.38) 

(11.39) 
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o 

Figure 11.8. Bounds for a function( 

If s = t = 0, i.e., the sets of orthonormal vectors are disregarded, the just­
written inequality simplifies to 

(// g; h II_II g; h // r ~ IIfl12 ~ (// g; h // + // g; h // r; (11.40) 

this is an inequality companion to (11.34). 
Let us now examine a second important inequality, a geometric inter­

pretation of which is given by the sketch in Figure 11.8, representing a more 
general version of inequality (11.26), inasmuch as it involves at the same 
time the surface and the interior of the hypersphere. The intersection of the 
latter with a hyperplane constitutes now a solid circle (a disk). On the 
symbolic diagram shown in Figure 11.8, a hypersphere !Jd 00' is represented by 
a circle, a hyperplane H(n) by a line, and their intersection by the chord 
A l' A 2' (rather than by a pair of points A I' and A z' as in Figure 11.5). The set 
of functions admitted for competition is now considerably richer than 
before, due to the fact that it includes vectors whose tips lie on the entire 
chord A I' A 2'. As a result of this, the equality (11.25) is replaced by the 
inequality 

(11.41 ) 
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If the center C' of the hypersphere lies on Y'1o then the vectorsfassociated 
with the intersection of 31 00' and its interior and H(n)' and at greatest dist­
ance from the zero vector (at the origin 0), are those vectors whose tips lie 
on the circumference of the hypercircle of intersection. These vectors obey 
the earlier condition (11.25). A similar conclusion is reached with regard to 
the locations !JI 00" and !JI 00'" ofthe hypersphere: the "longest" vector f asso­
ciated with the intersection is the one whose tip lies on the circumference of 
the hypercircle (fmax in Figure 11.8). In both situations, therefore, the norm 
of the unknown vector f is bounded from above, and the bound coincides 
with the upper bound in (11.26) or (11.38). Accordingly, 

n I[ n 11/2 [n 11/212 
IIfl12 ~ i~1 (Xl + 1 II c l1 2 - J1 (c, hi)2 + r2 - i~1 (lXi - (c, hiW I ' 

(11.42) 

or 

(11.43) 

where F, G, and H are defined by (11.39). 
In order to find a lower bound, it is necessary to examine two cases: (a) 

the line Y'1 meets the disk of intersection (point B', hyperspheres (]I 00' and 
!JI 00")' and (b) the line Y'1 misses this disk (hypersphere !JI 00"'). Since the 

--+ 
vector 0 B' == fo is the orthogonal projection of every f vector on the sub-
space Y'1, we have fo = (f, hkW for n = 1 and fo = Ll= 1 (f, hi)hi in the 
general case when n > 1. In the latter event, there is 

n 

lifo 112 = L IX/, (11.44) 
i= 1 

where the coefficients lXi are defined by (11.24). Let us now examine more 
closely each of the cases (a) and (b) in turn. 

(a) In this case,Jo is the vector closest to the zero vector at the origin O. 
Thus, there is always Ilfll ~ lifo II, and (11.43) becomes 

n 

L lXi2 ~ IIfl12 ~ F + (G 1/2 + H1/2)2. (11.45) 
i= 1 

The lower bound is here immediately identified with that given by the Bessel 
inequality (7.21). 

(b) In this case, the hypersphere is at the location !JI 00'" and the situation 
does not differ from that displayed in Figure 11.5 (hypersphere (]I 00" of that 
figure). Consequently, the inequality (11.26) and its modification (11.38) 
remain true. This completes the discussion. 
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o 
Figure 11.9. Upper bounds for a function f 

For s = t = 0, whence the sets hi and gi are disregarded, the pertinent 
inequality coincides with the inequality (11.40), provided 

// g ; h II_II g ; h // > o. (11.46) 

If this expression is zero or negative, however, the lower bound in (11.40) 
must be replaced by 

(11.47) 

and the result is trivial. The inequality (11.46) is represented graphically in 
Figure 11.9. From the triangle OFC, it is not hard to infer that 

Ilfll ~ // g; h // + FC (11.48) 

Similarly, from the rectangle ADBF, we find that FC = II(g - h)/211. This 
furnishes the upper bound already appearing in the inequality (11.40), but 
missing in (11.47). 

It is interesting to give some thought to the role of bounds versus that of 
approximation in the mean, examined in Chapter 10. To illustrate, letfbe a 
vector whose bounds, respectively, approximation, are to be determined. We 
select a set of n orthonormal vectors {gi} and determine the coefficients Ci 

such that the combination I? = 1 Ci gi gives the best mean approximation for f 
within the subspace spanned by the gj's. Evidently, 

(11.49) 
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By adding and subtracting Ii = 1 (f, gif, we obtain 

lit - it1 Cigi W = IIfl12 - it1 (f, gi)2 + it [Ci - (f, gi)J2, (11.50) 

showing that the best approximation in the mean is achieved if the 
coefficients Ci are selected as 

(11.51 ) 

Consequently, 
n 

f::::; I (f, gi)gi (11.52) 
i= 1 

is the best approximation in the mean off in terms of the orthonormal set 
{gi}. 

We now form the inner product of the foregoing approximate equality 
with itself to obtain 

n n 

(f, J)::::; I L (f, gi)(f, gk)(gi, gk) (11.53) 
i=1 k=1 

n 

(f, J)::::; I (f, gi)2. (11.54) 
i= 1 

The right-hand member of this formula coincides with the lower bound in 
the inequality (11.45) [compare equations (11.24)]; we thus conclude that the 
lower bound is actually furnished by the best mean approximation "n i L.i=1 cig· 

The procedures for constructing bounds discussed above are, of course, 
but a few examples of the many general lines of approach possible. Apart 
from these, it is often practicable to adopt an ad hoc procedure especially 
adjusted to the problem in hand. The following examples illustrate this 
point. 

Example 11.1. A cylindrical bar of arbitrary simply connected cross 
section Q is subjected to torsion by terminal couples M z' It is required to 
find the torsional rigidity D = M z let. of the bar, where et. is the twist per unit 
length. 

Let the axis, i.e., the locus of centroids of the cross sections of the bar, 
coincide with the z axis of a Cartesian rectangular system x, y, z, and let the 
material of the bar display a general rectilinear anisotropy such that the 
planes parallel to the xy plane are planes of elastic symmetry. As in 
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the isotropic case [cf. the text preceding equation (8.38)], the problem may 
be formulated in terms of either of two functions: Prandtl's stress function 
rfJ = rfJ(x, y) or the torsion function ¢ = ¢(x, y). In terms of the former, the 
only identically non vanishing stress components have the form 

The stress-strain relations being now 

2ezx = ass,zx + a4S'zy, 

2ezy = a44 Tzy + a 4s Tz Y' 

(11.55) 

(11.56) 

where the ai/s (i, j = 4, 5) are elastic compliances, the single compatibility 
equation becomes 

a44rfJ.xx - 2a4SrfJ.xy + assrfJ.}'Y = -2 in n, 

and is supplemented by the boundary condition 

rfJ = 0 on an. 

(11.57) 

( 11.58) 

This leaves us with a Dirichlet problem for the generalized Poisson equation 
(11.57). 

In terms of the torsion function, the stress-strain relations are (Ref. 47, 
Sect. 29) 

(11.59) 

where ~ = a44 a5 5 - ai5 . The stress here must satisfy a single equation of 
equilibrium. This leads to the following equation for the torsion function:t 

a44¢.xX - 2a4S ¢.xy + ass¢.yy = 0 in n. (11.60) 

The boundary condition (8.38a) now becomes 

(a44¢.x - a45 ¢,y) cos(n, x) - (a45 ¢.x - a55 ¢,y) cos(n, y) 

= (a45 x + a44Y) cos(n, x) - (a55 x + a45 y) cos(n, y) on an, (11.61) 

producing, in combination with the preceding equation, a Neumann prob­
lem for a generalized Laplace equation. 

t For isotropy. a45 = 0 and a44 = a 55 = l/Il. so that equations (11.59)and (11.60) reduce to the 
former equations (8.39) and (8.38). respectively. 
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It is not difficult to verify that the torsional rigidity of the bar is(48) 

(11.62) 

where 

and 

p = r (a ss x 2 + 2a4sxy + a44y2) dx dy 
'Q 

(11.62a) 

Dl = f [(a4S x + a44 y)4>,x - (assx + a4sy)4>,y] dx dy, (11.62b) 
'Q 

The first of the preceding expressions is a known quantity depending on the 
form of the cross section; the second involves the unknown torsion function, 

In order to apply a vector space approach based on a positive definite 
metric,t we introduce an inner product in the form 

(u, v) = J [a44 u,x v,x - a4S (u,x V,y + U,yV,x) + aSSu,yv,y] dx dy, (11.63) 
Q 

where u and v are sufficiently regular functions of x and y. The preceding 
bilinear form is symmetric in u and v and positive definite when: (a) u and v 
are identified with Prandtl's function IjI, or (b) when they are identified with 
the torsion function 4>, both of these functions satisfying the conditions 
(11.58) and (11.61) on the boundary an, respectively. 

In fact, the strain energy per unit length of the twisted bar, 

_IJ( 2 2 V - 2 Q a44 Tzy + 2a4S Tzx Tzy + ass Tzy ) dx dy (11.64 ) 

in case (a) becomes 

2 

V = iX2 t[a44(IjI,x)2 - 2a4SIjI,xljl,y + ass(IjI,y}2] dx dy, (11.65) 

which, on account of its physical meaning, is a positive-definite function 
(Ref. 48, p.327). Thus, by virtue of equation (11.65), (t/!, IjI) is positive 
definite, as claimed. 

t We note that it would suffice to employ a positive semi-definite metric, since, as demonstrated 
in Chapter 8 [cf. equation (8.7c)J, the Cauchy-Schwarz inequality-the only vector space tool 
used in the problem under discussion-holds for spaces with a positive semi-definite metric. 
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In case (b) we have 

(</1, </1) = r [a44(</1,x)2 - 2a45 </1.x</1. y + a55 (</1.yV] dx dy. 
'r! 

(11.66) 

Since (11.66) has the same form as (11.65), we can assert that the form (11.66) 
is also positive definite. A direct verification of the latter fact can be given as 
follows. 

There are reasons for concluding(48) that a44 and a55 are both positive 
and that ! a45 ! < a44 if, for definiteness, we assume that a44 < a5 5' Then, if 
a45 > 0, (</1, </1) is certainly greater than the non-negative quantity 

I' a44(</1.x - </1,y}2 dx dy 2: 0. (11.67) 
'r! 

On the other hand, if -a45 > 0, then (</1, </1) is greater than 

r ! a45 ! (</1,x + </1,y}2 dx dy > 0. (11.68) 
'r! 

It follows that (</1, </1) 2: 0, and hence that the inner product (11.66) satisfies 
the requirements imposed on a metric. 

Modeling our discussion on the isotropic case(49), we find bounds for D 
from the Cauchy-Schwarz inequality (11.1), 

(u, V)2 S; (u, u)(v, v), (11.69) 

where u and v are vectors, 
A lower bound is obtained by selecting a sufficiently regular function 

f = f(x, y) satisfying Prandtl's condition (11.58). Upon setting u = t/J and 
v = fin equation (11.63) and using equations (11.57) and (11.58), we arrive at 
the relation 

(t/J,f) = 2 I' f dx dy. 
'r! 

(11.70 ) 

Likewise, putting u = t/J and v =fin equation (11.69) and recalling that(31) 

D = 2 I' t/J dx dy, 
'r! 

(11.71) 

we have 

D 4(Jn f dx dy)2 
2: Sr! [a44(fx)2 - 2a45 fx fy + a55(fy)2] dx dy' 

(11.72) 

where the right-hand member is a known quantity. The upper bound is 
obtained by taking recourse to the torsion function. We first select a 
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sufficiently regular, but otherwise arbitrary, function 9 = g(x, y), We then 
pose u = </J and v = 9 in the equation 

f v[a44 u,xx - 2a4su,xy + aSSu,yy] dx dy + (u, v) 
'0 

= r v[a44 u,x - a4S u,,) cos(n, x) + (ass u" - a4S u,x) cos(n, y)] ds, 
'co 

(11.73) 

obtained easily from (11.63), Next, applying equations (11.60) and (11.61), 
we arrive at 

(g, </J) = r g[(a4Sx + a44Y) cos(n, x) - (ass x + a4S y) cos(n, y)] ds, 
'rO 

(11.74) 

where, for a given form of the cross section, the value of the integral is 
known, It is found convenient to cast the preceding expression into the form 

(g, </J) = r [(a4S x + a44y)g,x - (a5S x + a45 y)g,y] dx dy, (11.75) 
'0 

and set u = </J and v = 9 in the Cauchy-Schwarz inequality to obtain 

( -I,. -1,.) > (g, </J )2 
'1', 'I' - (g, g) , (11.76) 

the numerator in this inequality being positive definite for the same reason 
as stated earlier for expression (11.66), 

The right-hand member is here a known quantity; the left-hand 
member coincides with D 1 by equation (11.62b) if the latter is transformed 
by appeal to the Gauss-Green theorem and equation (11.60), Consequently, 
by virtue of equation (11.62), we have explicitly 

1 
D~ 2 

a44 aSS - a4S 

I {J [(a4S x + a44y)g,x - (a5S x + a45y)g,y] dx dy}2J (11.77) 
x (- J [a44(g,xf - 2a4Sg,xg,y + ass(g)2] dx dy , 

The preceding formula furnishes an upper bound for the torsional rigidity, If 
the bounds fail to be sufficiently close, the estimates may be improved by 
using any of the known methods guaranteeing successive sharpening of 
bounds(SO), Instead of discussing this matter from a general point of view, we 
content ourselves with the following numerical example, 
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The faces of an orthotropic bar of rectangular cross section, axb, are 
parallel to the planes of elastic symmetry. 

We assume the function f in the form 

satisfying condition (11.58). The g function, associated with the warping of 
the cross section via the torsion function, should, for better results, be taken 
in the form 

g = xy, (ll.77a) 

exhibiting the expected symmetry. With these assumptions in mind and 
using the notation 

we have 

a55=~G ' 
13 

G13 ab3 f3(c) ::s:; D ::s:; G13 ab3f3*(c), 

where f3( c) and f3*( c) are known functions of the ratio c (clearly a45 = 0 for 
an orthotropic material). Table 11.1 lists the bounds as functions of the 
parameter c. These are compared with the exact values calculated by 
Saint-Venant.(51) 

It is of interest to note that for c = 1 and the torsion function in the 
form (l1.77a), the Rayleigh-Ritz method in combination with Lagrange's 
variational principle yields the same value 0.167 for f3*(1) as that listed in the 
table, that is, an upper bound for D. This result seems to confirm the conclu­
sion of Diaz and Weinstein(45. 50) that the Rayleigh-Ritz method, used for 

Table 11.1. Values of the functions P(c) and p*(c) 

Error 
of the 

ti(e) Saint-Venant tJ*(e) Mean mean 
e lower bound solution upper bound value value 

0.139 0.141 0.167 0.153 8.5 0
0 

1.25 0.169 0.172 0.207 0.186 8.2 
1.50 0.192 0.196 0.231 0.212 8.2 
1.75 0.209 0.214 0.251 0.230 7.5 
2.00 0.222 0.229 0.267 0.245 7.0 
2.50 0.239 0.249 0.287 0.263 5.6 



144 Chapter 11 

solving Dirichlet and Neumann problems for the Laplace equation, always 
furnishes an upper bound for the solution. 

As a second demonstration of the usefulness of the machinery afforded 
by inner product spaces, we apply their theory to the solution of a problem 
involving bending of an anisotropic plate. We are interested here in finding 
bilateral bounds for the exact solution, and make use of a (practically) 
positive semi-definite metricCS2 ). This problem, slightly more difficult than 
the preceding ones, assumes knowledge of singular solutions of partial differ­
ential equations [see, e.g., Ref. 53]. 

Example 11.2. We first note that while the familiar nonhomogeneous 
biharmonic equation(24, 54-57)_and more applied equation(48, 59, 60)_ 

a4w a4w a4w 
ax4 + 2 ax2 ay2 + ay4 = f(x, y) 

has been investigated rather extensively, much less attention has been 
devoted to the generalizations of this equation appearing, for example, in the 
theory of thin elastic anisotropic plates. 

These are, in particular, the equations of the forms 

a4w a4w a4w 
Dll ax4 + 4D 16 ax3 ay + 2(D12 + 2D66 ) ax 2 ay2 

and 
a4w a4w a4w 

Dl ax4 + 2D3 ax2 ay2 + D2 ay4 = q, (11.78) 

where the Dij's and D/s denote constants interpreted as bending rigidities of 
a plate experiencing a deflection w = w(x, y) under the action of a transverse 
load q(x, y). The last equation describes an "orthotropic" plate-the term 
coined by M. T. Huber. 

The governing equations above can be supplemented by a variety of 
boundary conditions. The most common are as follows: 

(a) Clamped, or built-in, contour an: 

w = 0, aw = ° on an, (11.78a) an 
where n denotes the outer normal on the contour an. 

(b) Freely supported contour: 

w = 0, Mn = ° on an, (11.78b) 
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where Mn denotes the bending moment acting in the plane perpendicular to 
the contour at each point. 

(c) Free contour (compare with (8.10a) and (8.lOb) for isotropy): 

Mn=O, on an. (11.78c) 

Here, v" is the transverse force on the contour, computed as the sum of the 
shear force Qn and the derivative of the twisting moment M nt in the direction 
tangent to the contour. 

(d) Contour acted upon by distributed bending moment m and vertical 
force p, both reckoned per unit length of the contour: 

Mn=m, v,,=p on an. (11.78d) 

(e) Contour deformed due to the distributed deflection wand inclina­
tion j imposed on the contour: 

W= w, CW 
=j an on an. (11.78e) 

The solution of boundary value problems involving such generalized 
harmonic operators(47. 61-65) is relatively difficult; often, exact solutions 
cannot be found via known techniques. This is especially true when the 
boundary of the domain occupied by the plate is irregular. In such cases, the 
derivation of bilateral bounds for the solution seems to be of help, inasmuch 
as it evidences the error involved in any approximate solution which can be 
obtained. 

As a starting point, we assume the existence and the uniqueness of the 
solution of the boundary value problems associated with equation (11.78). 
With this in mind, we describe a method for obtaining bilateral bounds for 
the solution function w(x, y) at a point (xo, Yo) of a plane domain n with 
boundary an, the point (xo, Yo) being given. We follow here, basically, the 
imaginative procedure proposed by Diaz and Greenberg for the conven­
tional biharmonic boundary value problem, so that the conclusions of the 
present reasoning may be considered as a generalization of the results ob­
tained by these authors in the paper referred to above. 

Making use of the idea of Huber, we introduce the notation 

and cast equation (11. 78) into the form 

a4w a4w a4w 
[;4 ax4 + 2p[;2 ax2 ay2 + ay4 = p, ( 11.79) 
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where p = q/D 2 . The assumption of a solution of the homogeneous version 
of the preceding equation in the form w = w(x + f.ly), where f.l is, in general, a 
complex parameter, leads to the characteristic equation 

f.l4 + 2PE2f.l2 + E4 = 0, 

whose solutions depend on the value of the parameter p. These are found to 
be, for p > 1, 

II = +Ei[p2 + (p2 _ 1)1/2]1/2 rl.2.3.4 - - , 

for p = 1, 

f.ll. 2 = f.l3. 4 = Eip, 

and, for p < 1, 

f.ll. 2 = ±ot:i, 

i denoting the imatinary unit and 

f.l3.4 = ± fJi, 

_ (~)1/2 .(i _ p)1/2 
C(, fJ - 2 ± I 2 . 

Clearly, 

so that equation (11.79) can be reduced to the form 

V2
2V/W = p, 

where 

In what follows, we confine our attention to the case p ::;; 1, of more 
practical interest; this shall be subsequently justified. Using the Gauss~ 
Green theorem, we arrive at the formula 

r V/<jJV/I/I dO. = f <jJV2
2V/I/I dO. + I' IV/I/I o,<jJ - <jJ a, (V/I/I)j ds, 

.(1 '(I ·,'ol an an 
(11.79a) 

generalizing the first classical Green identity. Here and later, 

a, 2 a a 
-=C(l-+m-, an ax oy 

Op 2 a a 
-=fJl-+m­an ax oy 

with I and m denoting the direction cosines of the unit outer normal n to the 
contour 00.. 
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Upon adding to (11.79a) its complementary identity, we arrive at the 
symmetric form 

~ t(V/e/JV/1/1 + V,/e/JV/I/1) dO. = te/JV,2V/1/1 dO. 

+ ~ I' I V, 21/1 O'Je/J + V/l/1a,¢ - e/J [~(V/I/1) + Of! (V, 21/1)) Ids. (11.79b) 
2 . till en en en en I 
We note that, by Cauchy's inequality for integrals, 

[{2 e/J(o.)l/1(o.) dO. r :s: J~ e/J2(o.) dO. J~1/12(o.) dO., 

we have 

(t V, 2e/JV/1/1 dO. r :s: .UV/e/J)2 dO. t (V/I/1)2 dO.. 

Let us now introduce the symmetric inner product on a vector space of 
functions continuous in the closed domain 0. together with all their partial 
derivatives up to the fourth order inclusive, 

(e/J, 1/1) == -21 r (V,2e/JV/1/1 + V,2I/1V/e/J) dO. 
'12 

producing the square of the norm of the function 1/1 in the form 

(1/1,1/1) = r V,2I/1V/1/1 dO.. 
'Q 

(11.79c) 

Evidently the preceding self-product can in general be positive, nega­
tive, or zero; for our further derivations, however, it will be essential that it 
remain non-negative. If we limit ourselves to the most practical applications, 
we can easily convince ourselves that our requirement is fulfilled over a 
broad range of real materials, from plywood to boron-epoxy composites. 
For each of these strikingly different materials, the parameter p < 1 (Table 
11.2), and this condition is sufficient for the positive semi-definiteness of the 

Table 11.2, Values of £4 and, 

Material Ddh3/12 D1 /h 3/12 D3/h3/ 12 £4 P 

Plywood [birch with 
bakelite glue(119), 

1.7 x 105 0.14 X 105 0.183 X 105 12.1 0.375 kgfcm- 2] 

Boron-epoxy 
composite(66) (psi) 30.97 x 106 3.54 X 106 3.02 X 106 0.74 0.289 
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product (11. 79c). In order to prove this, one only needs to set 
(02t/J/oX2)/(02t/J/oi) == z and conclude that 

V,2t/JV/t/J = (~:~ f(lh 2 + 2pe2z + 1) ~ 0 

provided p :s; 1. 
We now arrive at a useful inequality by introducing two functions hI 

and h2 such that, with no field equation for hI and no boundary condition 
for h2' 

hI = W on an, (11.80a) 

o,h l O,W °lihi ofJw 
on an (11.80b) -an an , an an 

and 

V,2V/h2 = V,2V/W in n. (11.80c) 

For definiteness, we also assume that the function w obeys the following 
boundary conditions: 

w =f, on an. 

Evidently, 

since the product (hI - W, h2 - w) vanishes on account of the identity 
(11.79b) and the conditions (11.80a H 11.80c). This implies that 

(hI - W, hI - w)1 
(h h ) I :s; (h I - h 2, hI - h 2)' 

2 - W, 2 - W 
(11.80d) 

Following Mossakowski, we select a singular solution, s, of the equation 

2 2 1 ( ) V, Vii W = - c5 x - 0, y - 0 , 
D2 

where c5 is the Dirac function (see Chapter 16 for a definition), in the form 
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where 

We interpret this solution as the deflection of a plate loaded by a con­
centrated unit force applied at the origin of the coordinates x, y. From the 
condition of static equilibrium, it follows that 

where Do = G2Dz · 
It is not difficult to verify that, for p = 1 and IX = P = G, 

so that for the isotropic case, we recover the classical singularity of the 
biharmonic equation, 

1 
S = _g_r2 In r. 

rrD 

A lengthy, but routine, calculation, using the identity (11.79b), leads to 
the following representation for the,! value of w at the origin: 

where 

) _ IXP 1_ 
w(O,O - Don, 
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Following Diaz and Greenberg, we introduce three auxiliary functions 
ho, h3' and h4' such that 

V,2Vr/hO = 0 in n, 

ho = -s, 
oho os oho os 

on on, , --
ox ox oy oy 

h3 = ho, 
Oh3 oho Oh3 oho 

on on, 
ox ox 

, 
oy oy 

V,2Vr/h4 = 0 in n. 

Now, by the Cauchy-Schwarz inequality, 

(hI - W, h3 - hO)2 ::;: (hI - W, hI - W)(h3 - ho, h3 - ho), 

or, by appeal to (11.8Od), 

(11.81b) 

(hI - W, h3 - h4)2 ::;: (hI - h2' hI - h2)(h3 - h4' h3 - h4). (11.81c) 

Green's identity, after some manipulation, implies that 

(hI - W, h3 - ho) = (hI> h3) - r h3 V, 2Vr/W dn 
'n 

1 I' I 2 0 P h3 2 0, h3 10, ( 2) 0 P ( 2 )J I 
-l'rn IV' w~+Vp W~-h3lon Vp W + on V, W Ids. 

The only expression in the preceding equation involving the unknown func­
tion W is the contour integral. It is easily eliminated, however, by observing 
that it coincides with the first contour integral in equation (11.81a). Making 
use of the inequality (11.81c), we thus arrive at the basic inequality, 

I cxfJ J 2 lDo w(O, 0) - b ::;: ac, 

where 

I· (- ) 2 2 1 I' I 2_0pW 2_0,W 
b = s + h3 V, VIi W dn - -2 IV, S -0 + V p s-o 

on °rnl n n 

10, ( 2-) Op ( 2-)J I -wlonVps+onV,s I ds -(h I ,h3). 

Analogous reasoning, using inequality (11.80d), leads to the second 
basic inequality, 

I cxfJ J 2 lD6 w(O, 0) - b' ::;: ac, (11.81d) 
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where 

b' = r sV, zV/w dO. 
'n 

We now turn our attention to a numerical example in which we set, for 
definiteness and simplicity of writing, p = 1; this implies that rx = f3 = £. We 
also assume that the plate is circular, of radius 1, that it is acted upon by a 
uniform load q, and is built-in on the boundary in the sense that 

w=O, 
aw ow 
- =- =0 ex ey on 00.. 

The origin of the Cartesian coordinates x, y (or of the polar coordinates 
r, ¢) we locate at the center of the plate. If in the inequality (11.81d) one 
considers b' as an approximate value of w(O, 0), then, in the case under 
considera tion, 

DZlql'_ 11'1 z o"s _a,,( zh)ld w(O, 0) ~ -z 1- s dO.l + I V£ hz --;- - s :'In V, z I s. 
£ D z . n . en un u 

A lengthy, but straightforward, calculationt gives 

q I 1 + £z 1[ ()Z] I w(O, 0) ~ -3-1--- + 4 2a In w + 1 - £ I 
16£ Dz 8 

C/l[ 1-£1 + - 1- (}, + £5 - 4a)( 1 + In w) + (y - £5)--
2 £ 1 + £ 

t It may be of interest to note that, of the two seldom-seen integrals 
g" [sin2 x/{p + q cos x)] dx and I [see (11.81e)] appearing in this calculation, the first was 
meticulously analyzed by Brodovitskii, while the second does not seem to lend itself to 
evaluation in a simple form. See Brodovitskii.(67) 
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where 

_ 1 + £2 
(1.=-2-' 

_ 1 _ £2 
13=-2-' y = 3£2 + 1, 

=(~)2 
W 2 ' (11.81e) 

1 .2" 

1= 4 t sin2 2tjJ In(ex + 73 cos 2tjJ) dtjJ, 

and we have selected 

h2 = C(1 - x 2 _ y2)2, 

with C = q/8D2(3£4 + 2£2 + 3), in order to satisfy the condition (11.80c). 
The conditions imposed on the functions hi and h4 are satisfied if we 

simply set hi = h4 = 0 identically in n + an. 
For an isotropic material ex = £ = 1, 73 = 0, y = b = 4, Do = D, and 

C = q/64D. Conditions (11.81b) are then obeyed by the function 
h3 = q(1 - r2)/16nD. With these in mind, the inequality (11.81d) reduces to 

(w(O,O)- ~Dr =0, 

demonstrating that-by sheer accident-b' turns out to be the exact value of 
the deflection at the center of the plate (cf., e.g., Timoshenko,(32) p. 60). 

Let us next consider an orthotropic plate with a pronounced difference 
in its principle bending rigidities characterized by the parameter £ = 3, that 
is, by Di /D2 = 81. With the same assumptions as before concerning the 
functions h b h 2, and h4, we set 

1 
h3 = - 16n£3D2 (ex + 73 cos 2ljJ) In(a + p cos 2ljJ) 

in n + an, thus complying with the boundary conditions (11.81 b). A lengthy 
calculation leads to the following inequality: 

(w(O, 0) - 0.032 64~J2 < 0.OOI(64~2r 
The exact value of the deflection(47) is w(O, 0) = 0.030q/64D 2, so that by 
taking w(O, 0) ~ b', we commit an error not exceeding 6.7%. The resulting 
bound (I 0.030q/64D2 - 0.032q/64D 2 I ::; 0.0Iq/64D 2) can be improved by 
any of the known iteration procedures; see, e.g., Ref. 58, Sect. 3. 
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11.1. Bounds for a Solution at a Point 

11.1.1. The L* L Method of Kato--Fujita 
So far in this chapter, procedures for obtaining bounds for integral 

("mean-square") approximations of unknown vectors have been given. In 
this section we intend to present a method proposed by Kato and Fujita for 
deriving pointwise bounds for solutions of boundary value problems(68 71). 

We first recall that a linear differential operator L* is called the adjoint 
of a linear differential operator L if 

(Lu, v) = (u, L*v). (11.82) 

The preceding equation serves to define L*. In case L* = L, we say that the 
operator L is self-adjoint. If the boundary conditions associated with L* differ 
from those associated with L, some authors say that L* is the formal adjoint 
of L and that L is formally self-adjoint if L = L*. We shall not distinguish, 
however, between formal and exact adjoits at this point (see, however, Chap­
ter 15, Sec. 15.3, as well as Refs. 22 and 72). 

It is shown that if L* is the adjoint of L, then H == L* L is a self-adjoin t 
operator in a Hilbert space containing the domain of L(73). 

To illustrate, set L = d/dx. To find the adjoint, we write for some 
interval a ::;; x ::;; b, with u = v = 0 at x = a and x = b, 

, b 

(Lu, v) = I vu' dx 
, a 

I

b , b , b 

= vu -.I uv' dx = -.I uv'dx. 
a a a 

But (u, Lv)=J~uv'dx and, comparing with (11.83), we 
L* = -d/dx. Now H = L*L = d2/dx 2 and 

, b 

(Hu, v) = - I u"v dx 
, a 

, b 

= J u'v'dx. 
a 

This result, when compared with 
, b 

(u, Hv) = - I uv" dx 
, a 

,b 

=.1 u'v'dx, 
a 

proves our assertion. 

(11.83) 

find that 

(11.84 ) 

(11.84a) 



154 Chapter 11 

The central theorem of the Kato-Fujita method concerning linear dif­
ferential equations of the class 

L*Lu =f, (11.85) 

where f is a known vector, is as follows: 
Let Uo be the solution of the equation (11.85) subject to certain boun­

dary conditions. We set IX = (uo, g) where g is a given vector, and choose 
vectors h, ho, hb and h2 such that hand ho are any conveniently selected 
vectors and 

L*h2 = g. 

Then the following inequality obtains(69): 

where 

I IX - -!(fl + y) I :::; ~ be, 

fl = (h, g) + (f, ho) - (Lh, Lho), 

y = (h 1, h2 ), 

c5 = IILho - h211, I: = IILh - hl II· 

(11.86) 

(11.87) 

(11.87a) 

It should be noted that many problems in mathematical physics can be 
reduced to the form (11.85), so that the Kato theorem has a wide range of 
application. 

As an example, assume that Lu == grad u, where u is a function of the 
variables x and y ranging over a domain n with the boundary an. We have, 
for v = [vx, vy] and i and T as coordinate vectors, 

f (-au -au) - -
(Lu, v) = n i ax + j ay . (ivx + jVy) dx dy 

= r [(uvxL + (uvy).y] dx dy - r u(vx.x + Vy,y) dx dy 
'n 'n 

= r [uvxnx + uvynJ ds - r u div v dx dy. (11.88) 
'cn 'n 

Disregarding the line integral,t we infer that 

L*v = -div v. 

t For L* to be an exact adjoint of L, it suffices that u = 0 on en. 

(11.89) 
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Consequently, L*Lu = fbecomes 

-div grad u = f 

or -V2u = f, (11.90) 

which is the familiar Poisson equation. By a similar argument, it is shown 
that Lu == V 2u implies that L*v = V 2u, whence L*Lu =fbecomes 

V 2V 2 U = f in n, 
au 

u = ~ = 0 on an. an (11.91) 

Following Fujita, we apply Kato's theorem to the Poisson problem 

-V2u = f in n, 

u = 0 on an. 
(11.92) 

(l1.92a) 

As shown above, L* = - div in the present case. For simplicity, we also 
assume thatf = 1. We now take g = b(P), the Dirac function with singularity 
at a preassigned point P = (x, y). Consequently,t 

(11.93 ) 

--+ 
In view of equation (11.86), we select, with r = PQ, where Q is a point in n, 

and (r = I PQ I ) 

1 
h2 = - ~ grad In r, 

2n 

(11.94 ) 

(11.95) 

the latter being a singular solution of the equation -div h = b(P) (Ref. 72, 
p. 71). Furthermore, we put 

~-~lnr 
h = 0 and ho = 1 ~n 

for r -::; 1, 
(11.96) 

for r > 1. 

t Compare a definition and the third property of Dirac function, equations (16.3), in Chapter 
16. 
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With these in mind, we evaluate /3 and y from equations (11.87a), finding 

. I 

/3 = (f, ho) = - I In r . r dr 
'0 

_1. 
- 4, (11.97a) 

1 . 
y = (h, h2 ) = - I do., 

- 4n'f! 
(11.97b) 

where Q is the preassigned domain of integration. Imagine that the latter is 
bounded by an ellipse x 2 I a2 + yZ Ib z = 1 and set b = 1 for convenience. 
Then the "approximation" of c.( = uo(O) for P at the origin is 

a + 1 
8 

(11.98) 

the "error" being measured by the value of dil2. This gives for a = 1, 2, and 
3, uo(O) ~ 0.25, 0.375, and 0.45, respectively. The pertinent exact values(74) 
are 0.25, 0.4, and 0.45, so that the relative errors of our crude approximation 
are 0%, 6.2%, and 8.9%, respectively, which are practically tolerable. 

The approximation r:J. ~ 1(/3 + y) can, if desired, be considerably 
improved by introducing additional trial vectors and representing the func­
tions h, ho, hI' and h2 as linear combinations of these vectors with 
coefficients determined by minimizing the values of <5 2 and £2 from the last 
two of equations (11.87a). 

Fujita found that a close correspondence exists between the 
L* L-method and the method of the hypercircle examined in the next chapter. 
In the language of the theory of elasticity, the vector hI corresponds to the 
vector S defining the elastic state of the body; the conditions of compatibility 
satisfied by S translate into the requirement that hI belongs to the range of 
the operator L; the equations of equilibrium have their counterpart in the 
first of equations (11.86); finally, the solution vector So corresponds to the 
vector Luo. 

11.1.2. The Diaz-Greenberg Method 
The Diaz-Greenberg procedure for obtaining pointwise bounds for 

solutions of boundary value problems consists in making use of Green's 
function or tensor. Below, the method is illustrated with an example of a 
two-dimensional nonhomogeneous biharmonic problem. 
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Consider the boundary value problem 

V 2V 2 W = q in Q, 

w =f and ow/an = g on an, 

157 

(11.99) 

(11.99a) 

where n is a plane region in the xy-plane with boundary an. Concretely, the 
function w = w(x, y) may be interpreted as the deflection of a thin elastic 
plate acted upon by a transverse load of intensity p(x, y) = qD, where D is 
the flexural rigidity of the plate. 

We introduce five auxiliary functionst ho, hl' h2, h3' and h4 such that: 

(a) (11.100) 

ho = - r2 In rand aho a 2 
- = - - (r In r) on an; (11.100a) 
an en 

here, r is the magnitude of the radius emanating from a fixed point P as the 
origin and ho is the regular part of the Green's function 

G(x, y; P) = r2 In r + ho(x, y), (11.101) 

r2 In r being a fundamental solution of the biharmonic equation V2V2¢ = O. 
(b) hl = hl(x, y) is a function satisfying the boundary conditions 

(11.99a), 

hl = f and 
ah l a;:; = g on an. 

(c) h2 = h2(x, y) is a function satisfying equation (11.99), 

V 2V 2h2 = q in n. 

(11.102) 

(11.103) 

(d) As a counterpart to hl and h2' the function h3 obeys the boundary 
conditions (11.100a), 

ah3 a 2 - == - - (r In r) on an. 
an an 

(11.104 ) 

(e) Finally, the function h4 is a solution of the equation (11.100), 

(11.105) 

t See Ref. 54 and Ref. 75. Our discussion is patterned after the first of these papers. Compare 
also the remarks concerning the Washizu method, infra. 
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In order to proceed further, we first recall the second Green identity in 
the form 

We now interchange u and von the right-hand side of the preceding equa­
tion and equate the results. We next surround-in the well-known manner­
the fixed point P in Q by a circle CJ of radius (j and remove the interior of 
this circle from Q to obtain the domain Q1. Finally, we take u = wand 
v = r2 In r, apply in Q1 the equation obtained from Green's identity, and, 
after passing to the limit with (j --+ 0, arrive at the central equation 

/• 2 2 r (aV2S 2 aw) 8nw(P) = SV V w dx dy + w-a- - V S- ds 
'n 'en n an 

r ( 2 as aV2w) + V w - - S -- ds, 
'rn an an (11.107) 

where S == r2 In r. 
Following Diaz and Greenberg, we introduce a positive semi-definite 

inner product in the form 

we write 

(u, v) = r V 2UV 2 V dx dy; 
'n 

(h1 - h2' h1 - h2) = (h1 - W + W - h2' h1 - W + w - h2) 

= (h1 - W, h1 - w) + (w - h2' W - h2 ), 

(11.108) 

since (h1 - W, W - h2 ) = 0 by Green's identity, after considering the proper­
ties of the functions h1 and h2 • The preceding identity implies that 

(h _ h h _ h ) > l(h1 - W, h1 - w) 
1 2, 1 2 - I(h _ h _ ) 

I 2 W, 2 W. 

By similar reasoning, there is 

(h - h h _ h ) > /(h3 - ho, h3 - ho) 
3 4, 3 4 - I(h _ h h - h ) I 4 0, 4 0 . 

We now observe that, by the Cauchy-Schwarz inequality, 

(11.109) 

(11.110) 

(h z - W, h4 - ho)Z ~ (h2 - W, h2 - w)(h4 - ho, h4 - ho), (11.111) 
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so that, in view of the inequalities (11.109) and (11.111), 

(h z - W, h4 - ho)Z -:;: (hl - h2' hl - hl)(h3 - h4' h3 - h4). (11.112) 

Turning our attention to Green's identity (11.106), we conclude that 

(hl - W, h4 - ho) = (hz, h4) + (ho, W - h2) - (w, h4) 

- (h J) I' [t72(, h )oho h oVZ(w - hz)l d 
- 2, 14 + v \-j; - Z --;-- - 0::> s 

'm un un 

-I' (V2h40W_WOVZh4)dS. (11.113) 
'r'o on on 

We observe that the only integral on the right-hand side of the foregoing 
equation involving unknown quantities is 

I == I' (VZW oho _ ho OV1W) ds. 
',co en on 

(11.114) 

Since ho = - S on an, this is the same integral as the last one in equation 
(11.107), save for a minus sign [cf. equations (1.100a)]. Adding and subtract­
ing the two remaining line integrals on the right-hand side of (11.113) from 
the right-hand side of (11.107) and combining with the inequality (11.112), 
we easily arrive at the desired formula 

[8nw(P) - a]Z -:;: /3y, (11.115) 

where 

, ( oV2(r2 In r) )' + Ln f an - Vl(rZ In r)g ds + .In qrZ In r dx dy, (11.116) 

/3 = (h l - hz, hl - h1), 

Y = (h3 - h4' h3 - h4), 

We can consider a to be an approximate value of 8nw(P) and /3r' as the 
"error" of this approximation. 

To give an idea of the effectiveness of the Diaz-Greenberg procedure, 
consider the following simple example. 

Example 11.3. A circular plate of radius a and bending rigidity D* is 
built-in at its boundary (f = g = 0 on an) and subjected to a uniform load of 
intensity p. It is required to find an approximate value a of the deflection of 
the plate at its center, at which we set r = O. Bearing in mind that the third 
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and fourth integrals on the right-hand side of equation (11.116) vanish, we 
select the remaining auxiliary functions ho, h2' and h4 as follows: In view of 
the conditions (11.100) and (l1.100a), we set 

ho = - r2 In r in n, 

aho a 2 
- = - - (r In r) on an. an or 

Referring to equation (11.103), we make 

h q4 C 2 '() 2=64r + 1r lOa, 

(11.117) 

(11.118) 

where C 1 is a coefficient to be determined later. Finally, in accordance with 
equations (11.102) and (11.105) we simply set 

in n. (11.119) 

In order to determine the coefficient C 1, we minimize the inner product /3; 
this, of course, can only sharpen the bound. Requiring 

we find 

. a(qr2 )2 
2n I - + 4C 1 r dr = min, 

'0 4 

A straightforward calculation then yields 

nqa4 pa4 

ex = -8- and w(O) = 64D*' 

(11.120) 

(11.120a) 

(11.121) 

We were thus fortunate enough to select the trial functions hi' i = 0, 1, 2, and 
4, in such forms as to obtain the exact value of the deflection at the center of 
the plate (Ref. 32, p. 60). 

In general, there will be a need to improve the bounds given by the 
inequality (11.115). In this case, an iteration procedure is applied, consisting 
of the addition of finite linear combinations of functions to some of the 
functions hi and minimization of the right-hand side of (11.115) in order to 
determine the coefficients involved in these combinations (as done above 
with regard to the function h2)' 

11.1.3. The Washizu Procedure(76) 
The Washizu technique is somewhat reminiscent of the procedure of 

Diaz and Greenberg, in that it makes use of fundamental solutions of differ­
ential equations, containing the basic singularities of Green's functions. It 



Bounds and Inequalities 161 

has been applied for the derivation of bounds for solutions of problems of 
elasticity in the general two- and three-dimensional cases, bending of plates, 
and torsion of bars. We confine ourselves below to an examination of the 
application of the method in the theory of bending of thin plates, governed 
by the system composed of the following equations: 

(a) Equations of equilibrium in the presence of a transverse load 
P = P(Xl' X2), 

m ij .ij + P = 0, (11.122) 

where mij' i, j = 1, 2, denote the bending and twisting moments, and Xl == x, 
X 2 == yare Cartesian rectangular coordinates parametrizing the middle 
plane. 

(b) Compatibility equations, 

Kij = -w. ij ' (11.123 ) 

where K oj ' i, j = 1, 2 are the curvatures of the middle plane of the plate and W 

its deflection. 
(c) Constitutive equations, 

(11.124 ) 

with D* as the bending rigidity and v as Poisson's ratio. 
(a l ) Substitution of (11.123) and (11.124) into (11.122) yields the second 

form of the equilibrium condition, 

D*w.ijij = p. (11.125) 

(d) With the notation 

mn = mu [2 + m22 m2 + 2m12/m, 

mns = m12W - m2) + (m22 - mu)/m, (11.125a) 

(amu am12) (am22 am12) q= --+-- + --+--m 
n aX l aX2 aX2 aX l 

(I, m are the direction cosines of the direction n, perpendicular to the direc­
tion s), the boundary conditions become 

(11.126) 

on a certain portion anl of the contour an = annl + an2 of the plate and 

(11.127) 
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on the remaining portion a02 of the contour. Clearly, nand s denote direc­
tions, respectively, normal and tangential to the contour. We introduce the 
following state vectors: 

S, denoting the actual solution of the problem, 
sm, obeying equations (11.122) [= (11.125)] and (11.126) on ao l , 

Sc, obeying equations (11.123) and (11.127) on a02 , 

<1>, denoting a (singular) fundamental state satisfying equation (11.123) 
and either of equations (11.122) or (11.125) in which p is replaced by the 
delta function with the singularityt at P = (eb ~2): 

(l1.127a) 

um, satisfying the homogeneous version of equation (11.122) 
[=(11.125)] and equating -<I> on ao l , 

Uc, satisfying equations (11.123) and equating -<I> on a02 , 

W, satisfying equations (11.123), the homogeneous version of equations 
(11.122) [= (11.125)], and equal to -<I> on both aOl and a02 • 

In order to avoid formal difficulties resulting from the presence of the 
pathological delta function in equation (l1.127a), it is convenient to imagine 
that this function is replaced by some well-behaved function such as (\(r) = 

ke- kr2 jn, r2 = (Xl - ~lV + (X2 - ~2)2, belonging to a so-called c5-sequencet 
and tending to c5 for k --+ 00. All required operations are then performed 
under this assumption, and the passage to the limit for k --+ 00 is executed 
at the end of the pertinent calculations. 

Now let S' and S" denote vectors representing two arbitrary elastic 
states. We introduce an inner product in the space of these vectors in the 
form 

(S', S") = r m;jk;j dx dy 
0Q 

= r m;jk;j dx dy, 
0Q 

(11.128) 

where x = Xl' Y = X2, and 0 is the region occupied by the plate. Note that in 

i- Note that a solution of the equation W. ijij = ,,(x 1 - ~ I' X 2 - ~ 2) is (1/8n)r 2 In r; see. e_g .. 
Greenberg.(72) Below we shall use the fundamental solution of the biharmonic equation in the 
form r2 In r satisfying equation (lU27a)_ 

t See, e.g_. Greenberg (Ref. 72, pp_ 11 and 60)_ A simple calculation shows that, for k -> 00. 

x: -kr2 . e I 2nk -- r dr -> 1. 
'0 n 

". -> 0 if r =1= 0, and ". -> 00 if r = O. 
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(11.128) the reciprocal theorem of elasticity has been used. Replacing in the 
equation above vector SIr by the vector UC, we obtain 

(UC, S') = r mijkfj dx dy 
'fl 

= - r m;jw~ij dx dy 
'fl 

= - r wCmij.ij dx dy + ~ mij.jWCni ds - ~ mijW~inj ds. 
'fl 'ffl 'ffl 

(11.129) 

A straightforward calculation, using the formulas (11.125a), yieldst the cen­
tral relation of Washizu's procedure, 

'l awC 1 ' (UC, S') = ~ vn'wC - -a m~s ds - I WCmij.ij dx dy. 
','fl S 'fl 

(11.130) 

Bearing in mind the symmetry of the inner product, we replace UC by S' and 
S' by <I> and write the resulting form of the preceding equation in two ways, 
namely, 

(S, <1» = (<I>, S) = [S, <I>]l'fll + [S, <I>]<'fl2 + [S, <I>]fl' 

(<I>, S) = [<I>, S]"fll + [<I>, S]<'fl2 + [<I>, S]fl' 

where the following notation has been used: 

i = 1,2, 

[S, <I>]fl = - r wm~.ij dx dy, 
'fl 

with obvious changes regarding the brackets [<I>, S]. 

(11.131) 

(11.132a) 

(11.132b) 

A lengthy, but not particularly instructive, computation(76) taking into 
account the properties of the functions sm, SC, um, UC, and W leads to the 
following relation: 

[S, <I>]fl = [<I> + uc, S]l'fll - [S, <I> + Um ]"fl2 

+ r p(<I> + UC) dx dy + (S, um - UC). 
'fl 

(11.133) 

t Note that - fco m~.(aw<!as) ds = fen (am~Jas)w ds, by the continuity of m~, w< as a function of 
the coordinate s measured along the contour. 
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Figure 11.10. Orthogonality of the vectors S - sm and S - S'. 

Chapter 11 

We can write the last term in the preceding equation in two forms: 

(s um _ Ue) = /(sm, u m - Ue) + (S - sm, u m - Ue), (11.134) 
, \ (se, Um _ Ue) + (S _ se, Um - Ue). 

But the state S - sm satisfies the homogeneous forms of equations (11.122) 
and (11.126),and the state (S - se) satisfies equations (11.123) and the homo­
geneous forms of equations (11.127). Consequently, these states correspond 
to the states lj,< and Yq' in Chapter 12.t Since this is so, they are orthogonal, 

(S - sm, S - se) = o. (11.135) 

From Figure 11.10, we thus infer that 

liS - smll \ e m 

liS _ selli ~ liS - s II· (11.136) 

It follows by the Cauchy-Schwarz inequality that equation (11.133) can be 
used to write the two inequalities 

/ [S, ell]n -([ell + Ue, S]ont - [S, ell + Um]on2 

- tp(ell + Ue) dx dy + (se, Um - Ue)}/ ~ IIsm - sell II Um - uell 
(11.137) 

and 

I [S, ell]n - {[ell + Ue, S]Ont - [S, ell + Um]On2 

- tp(ell + Ue) dx dy + (sm, Um - Ue)}/ ~ IIsm - selilium - uell. 
(11.138) 

t See the text referring to Figure 12.5. 
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Suppose that as the fundamental function <l> we take the singular solution of 
the equation (11.127a), that is,t w = <l> = r2 In r. Then equation (11.132b) 
becomes 

[S, <l>]n = D* f W<l>.ijij dx dy 
'n 

=D* f w8nb(x-~bY-~2)dxdy 
'n 

= 8nD*w(~1' ~2)' 

(11.139) 

where we have used equation (11.127a) and the property of the Dirac 
function. 

Example 11.4. Circular Plate (Numerical Example). As a simple illus­
tration, consider the example already discussed in the preceding section, that 
is, a circular plate of radius a built-in along its contour and subject to a 
uniform load p. In this case, 0 = O2 and 0 1 is absent. We take UC in the form 
- a2 In a and SC == 0, each satisfying the conditions imposed on these func­
tions. Bearing in mind that the state S satisfies the homogeneous boundary 
conditions obtained from (11.127), we find from the inequality (11.137) the 
"approximate" value of the deflection at the center of the plate: 

or 

,I 

8nD*w(0)::::: -2n I p(r2 In r - a2 In a)r dr 
'0 

pa4 

w(O) ::::: 64D* (1 + 4 In a). (11.140) 

For the radius a set equal to 1, this result coincides with the exact solution 
(11.121 ). 

Problems 

1. Expand the function 

/0 
f(t} = It 

for - n < t < 0, 

for ° <::; t < n 

into a trigonometric Fourier series in the interval -n < t < n after normalizing 
the trigonometric functions. Verify Bessel's inequality (11.2) for n = 1,2,3,4,5. 
Also verify the inequalities (11.1) and (11.3) for n = 1 and n = 5, respectively. 

i' Various modifications of this expression may also turn out to be serviceable. See Washizu 
(Ref. 76, Table 4). 
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2. Expand the function f(t) = t into a trigonometric Fourier series in the interval 
o ::; t ::; n by considering its graph as a segment of that of an even sawtooth-like 
function of period 2n. Verify the Parseval equality (cf. p. 69) after normalizing the 
trigonometric functions. 

3. Prove the Cauchy-Schwarz inequality for the Hilbert inner product by reducing 
the expression IIfl1 2 11g11 2 - (f, g)2 to a non-negative-valued integral. 

4. Examine the proof of the basic lemma of the calculus of variations (see, e.g., R. 
Weinstock, Calculus of Variations, McGraw-Hill, New York, 1952, p. 16). 

5. Modeling the discussion on the example solved in the text, perform the simplified 
calculations for the torsion of an isotropic bar. 

6. Find an upper bound for the function f(t) from Problem I by making use of the 
inequality (11.9) and a single term il. 

7. Referring to the bounds given by inequality (11.34) for a function fin terms of a 
function c and a constant r [cf. equation (11.25)], supply a verification by setting 
f(t) = t and c(t) = IXt(IX = a constant) for -7C ::; t::; 7C and 0 < IX ::; I. 

8. Verify inequality (11.40) in the special case obtained by settingf= t, g = t, and 
h=IXt, -7C::;t::;7C. 

9. Find the formal adjoint L* of the operator L == e2X(u" + IXU'), 0 ::; X ::; 1, with the 
associated boundary conditions u(l) = 0, u'(O) = O. Determine the boundary con­
ditions associated with the operator L* in order for L* to be the strict adjoint of L. 
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The Method of the Hypercircle 

The method of the hypercircle, initiated by Prager and Synge in 1947(77) for 
approximating solution of boundary value problems of mathematical phy­
sics, translates the analytical content of a problem into the language of 
function space, thereafter studying the problem in geometric terms. 
Although the fundamental relations of the method turn out to follow almost 
directly from the Cauchy-Schwarz and Bessel inequalities, the remarkable 
pictorial merits of the method make it a useful instrument for the approxi­
mate solution of concrete problems. Our exposition is based on Refs. 40 and 
77. 

The starting point of the hypercircle method for application to prob­
lems of elastostatics-in which we are primarily interested-is the represen­
tation of the elastic states of material continua by vectors in vector space. A 
vector then stands for the state of stress and deformation of the entire body, 
the general stress-strain relations for an anisotropic material being (using 
the summation convention involving repeated indices) 

(12.1 ) 

where dijk1 denotes the tensor of elastic compliance. If the material is isotro­
pic, we have 

eij = 21/1 ('ij - 2/1 ~ 3.A. 'kkbij ), (12.2) 

where .A. and /1 are the Lame coefficients and bij designates the Kronecker 
delta. 

As is well known, in order for the body to remain continuous and at 
rest, it is required that the deformations obey the equations of compatibility, 
while the stresses must satisfy the equations of equilibrium. We shall see 
later that the hypercircle method involves the relaxation of these require-

167 
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ments, and operates with elastic states which may violate the demands of 
either of these two systems of equations. The validity of the constitutive 
equations, however, is maintained. 

We recall in this connection that the standard (fundamental) boundary 
value problems of elasticity involve a prescribed distribution of either 
displacements, Ui , or external forces, t(n)i' on the surface of the body.t In 
view of this, it is usually convenient to formulate the entire problem in terms 
of displacements or in terms of stresses, respectively. In the first case, the 
strains are constructed from the strain-displacement relations (8.15), 

e·· = -21(U' . + u· .) lJ l.) ).1 , (12.3 ) 

and the stresses from the constitutive equations (12.1) or (12.2). The compa­
tibility equations, 

e ij, kl + ekl, ij - e ik, jl - e jl, ik = 0, (12.4 ) 

are then satisfied automatically, provided the displacements are sufficiently 
regular functions of position. This fact is verified directly by substituting 
from equations (12.3) into equations (12.4). The sole static conditions re­
maining to be satisfied in this case are the equilibrium equations, 

rij,j + Fi = 0, (12.5) 

where Fi denotes the body force. 
Inasmuch as, in the alternative considered, the only unknown functions 

are the displacements, it is convenient to cast the preceding equations into 
the form (8.22), 

J1U i , kk + (A. + J1)Ukk, i + Fi = 0. (12.6) 

The resulting boundary value problem consists, therefore, of the field equa­
tions (12.6) and the boundary conditions imposed on the displacements. 

In solving problems of the second type (external tractions prescribed on 
the boundary), we must satisfy the equilibrium equations in the form (12.5) 
and-via Hooke's relations-the compatibility equations (12.4). On the sur­
face of the body, the stresses are to obey the equilibrium equations, 

(12.7) 

where ni denotes the external normal. 

t As already noted in Chapter 8 [cf. equations (8.23c)), the third (or mixed) boundary value 
problem involves the prescription of displacements on a part of the surface and the distribu­
tion of external tractions over the remaining portion. There may also be combinations in 
which, at the same points of the surface, some components of the displacement and some 
components of the external traction are prescribed. In such cases, the specified components of 
the surface displacement must be orthogonal to the specified components of the surface 
traction. See, e.g., Pearson (Ref. 78, Sec. 6.5). 
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It is worth keeping in mind that the fulfillment of the equilibrium 
equations does not automatically guarantee the compatibility of the defor­
mations associated with the given state of stress. On the contrary, it is quite 
conceivable that, despite the equilibrium of stresses, the partial differential 
equations for the displacements, (12.3), have no solution, whence the 
deformed elements of the body cannot be brought together to form a coher­
ent whole. 

In what follows, we consider a fairly general boundary value problem of 
linear elasticity, involving a body occupying the region V bounded by the 
surface n. The equations to be satisfied by the exact solution S are: 

(a) compatibility equations (12.4), 
(b) equations of equilibrium (12.5), 

'ij. j + F j = 0 in V, 

(c) traction boundary conditions, 

(12.7a) 

(12.7b) 

where J; is a function of position prescribed on the portion nr of n, and 
(d) displacement boundary conditions, 

(12.7c) 

where gj is a function of position prescribed on the portion nu of n. We 
require that nr + ~ = n. 

The fundamental feature of the Prager-Synge hypercircle method con­
sists of approaching the exact solution of an elastic problem by means of a 
pair of incomplete (in a sense, defective) solutions.t Both of these solutions 
are to obey the constitutive equations relating stress to strain. 

One of these pseudosolutions, distinguished by the index " is supposed 
also to satisfy the equilibrium equations, 

'Ij. j + F j = 0 in V, (12.7d) 

and the traction boundary conditions, 

(12.7e) 

The elastic state so defined, denoted by S" is expected to violate the compa­
tibility equations (12.4) via the constitutive equations. This violation implies 
that there exists no (compatible) system of displacement associated with the 
system of stress 'Ij, inasmuch as the relations (12.3) are now meaningless. 

t More precisely, a pair of tensor fields T;j and e;j which approximate the tensor fields Tij and eij 
corresponding to the true solution ui • 
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The second incomplete solution, designated by S', is supposed to satisfy 
the equations (12.4), 

(12.7£') 

so that the strain-displacement relations (12.3), 

uf. j + uj. i = 2e~j in V, (12.7f") 

have a solution u;' which satisfies the displacement boundary conditions, 

u/ = gi on n". (12.7g) 

The state S' is permitted to violate the equilibrium equations (in the form 
(12.6), for example) and consequently does not guarantee the equilibrium of 
the body. 

We now introduce a vector space of elastic states endowed with an inner 
product discussed previously [cf. (8.13)], 

(Sb S2) = f rte~ dV, 
'v 

(12.8 ) 

where the indices 1 and 2 denote (perhaps different) elastic states. The dis­
tance in this space, then, is defined in terms of the strain energy.t 

An appeal to Hooke's law now gives 

f (2jlei~ + Ae~kc5iJe~ dV = r (2jle~ + Aefkc5ij)ei~ dV 
'v 'v 

or, more concisely, 

f ri~e~ dV = r r~ei~ dV, 
. v 'v 

(12.9) 

the last form expressing the familiar Betti~Rayleigh reciprocity relation. 
An important conclusion from the latter equation is that the inner 

product is symmetric, (SI' Sz) = (Sz, SI), as it must be. Furthermore, since 
the elastic strain energy is assumed to be a positive definite quantity, so is the 
metric obtained from 

(S, S) = r rijeij dV. 
'v 

(12.10) 

It is clear that each of the classes of vectors {ST} and {S'} constitutes a 
subspace in the function space of states. We designate these subspaces by 
9 *T == {ST} and /7' / == {S'}, respectively, and assume, for the time being, that 

t The connection between the two energy metrics (10.13) and (12.10) needs no explanation if 
one merely refers to the definition (8.14). 
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Figure 12.1. The translated subspaces .'7' and .'/'. 

both are translated subspaces, i.e., neither contains the space origin. Since 
the space origin corresponds to the natural (stress- and deformation-free) 
state of the body, this assumption implies that there are no states corre­
sponding to F; == O,/; == 0, and g; == 0 in the subspaces.9 *r and.9 /' respec­
tively. We note that, in this case, the vectors sr and SE play the roles of 
position vectors of points in.9 / and.9 /' respectively, and constitute, in the 
earlier terminology, extrinsic vectors.t Vectors having as their extremities 
the tips of state vectors of type sr or SE, respectively, are denoted by yr and y" respectively, and the corresponding subspaces by 

gr == {Y'}, /1" == rYE} (12.10a) 

(see Figure 12.1). Inasmuch as yr and yE, being intrinsic vectors, constitute 
differences of position vectors in {sr} and {SE}, respectively, they satisfy hom­
ogeneous governing and boundary conditions. Thus, each element of {yr} 
satisfies the equations 

TL.j = 0 in V, 

Tfjnj = 0 on Or; 

(12.l0b) 

(12.l0c) 

each element of {Y'} satisfies the compatibility equation (12.4) and 

u;' = 0 on n", (12.10d) 

where, recall, ° = Or + n". 

j. Compare the discussion of intrinsic and extrinsic vectors in Chapter 9 in connection with 
Figure 9.1. For conciseness, we denote a point (state) and position vector of the point by the 
same letter S; we also use interchangeably the expressions "state (point) S" and "position 
vector S." 
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An important property of the translated subspaces g>r and .fin, essential 
for making use of the hypercircJe method,t is that they are mutually ortho­
gonal, the orthogonality concerning, of course, vectors Y' and yr. lying in the 
subspaces g>r and Y., respectively. 

In fact, there is 

(Y" yr.) = f rije~j dV 
v 

1 ' 
= -I r'.(u' . + u'· .) dV 2 I] I,] ].1 

'v 

by symmetry of the strain tensor, 

= r rijnju;' dO. - r rL. jUi' dV = ° 
'n 'v 

= r rIj nj u/ dQ + r rij nju/ - r rij. jU/ dV = 0, 
"ill: . flu "V 

(12.11 ) 

the last result by virtue of the conditions (12. lOb H 12.lOd). 
It is almost self-evident that the objective of the procedure is the {leter­

mination of the point, or points, of intersection (S in Figure 12.1) of the 
translated subspaces /1" and yr., inasmuch as any such point represents an 
elastic state satisfying all conditions of, and, consequently, furnishing the 
exact solution to, the problem. At this stage, the important question arises 
concerning the number of elements contained in any conceivable set of 
intersections of 9' and Y'. To the rescue comes a uniqueness theorem of the 
function space, which states that two orthogonal translated subspaces, such 
as Y' and Y', intersect in at most one point. A simple proof of the theorem 
proceeds as follows. 

Suppose that there exist two points, Sl and S2' common to the ortho­
gonal translated subspaces Y' and Y'. The vector Sl - S2 then lies in both 
subspaces 51" and g".t In view of the orthogonality of the subspaces, 
however, every vector lying in one subspace is orthogonal to every vector 
lying in the other. Thus, Sl - S2 is orthogonal to itself, so that 

(12.12) 

t This was linked by McConnell with the possibility of deriving the differential problems from 
variational principles. Compare Ref. 40, p. 292. 

t Compare the remarks on the convexity of a linear manifold in Chapters 6 and 9. 
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and, by the positive definiteness of the metric, S 1 - S 2 is the zero vector. It 
follows that S 1 = S 2 = S, say, and the uniqueness of the point of intersection 
of /1" and !i" is established. 

We now make two important assumptions. (1) We suppose that the 
elastic boundary value problem of interest has a solution and that this 
solution is unique.t We note here that, although for our physical intuition 
the existence of a unique solution (whose representation vector lies in a 
prescribed space) seems, in most practical situations, to be an undeniable 
fact, this is not necessarily so from the standpoint of a rigorous mathemati­
cal analysis. Actually, for each class of problems, existence and uniqueness of 
solutions must be proved, and such proofs often turn out to be the hardest 
points of the theory.! (2) Our second assumption is that the subspaces !i" 
and .9r include all imaginable (admissible) states Y' and yr. Practically, 
there is little chance that such a welcome situation occurs. First, the sub­
spaces .Ii" and /1" cannot include all admissible functions one can imagine. 
Second, it is doubtful whether one could be fortunate enough to select, even 
from such "complete" subspaces, just the right pair offunctions whose com­
bination satisfies all conditions of the problem at hand. Instead of pursuing 
this fairly delusive course, therefore, it seems more logical to satisfy oneself 
with a more modest procedure: to introduce two finite-dimensional sub­
spaces which do not necessarily intersect and to simply expose the points of 
their closest approach. It should be intuitively clear (an aspect to be 
examined later in more detail) that information about the points of closest 
approach-called vertices and denoted by V' and V', respectively-enables 
one to establish bounds for the exact solution. 

Thus, we shall replace the infinite-dimensional translated subspaces .9' 
and .9' by certain translated subspaces, .9 m' and .9/, of finite dimensionali-

;. Here a solution means a pair of tensor fields eij and Tij satisfying the constitutive relations, the 
equilibrium equations, the compatibility equations, and the boundary conditions. The 
displacement field U i corresponding to eij and Tij need not be unique. 

~ It is not our intention to discuss these questions in any detail. We wish only to note that, 
according to classical elastostatics (cf. Love, Sokolnikoff), which makes appeal to the positive­
definiteness of the strain energy function, there is at most one displacement field in the case of 
the second (displacement) and the third (mixed), but not of the first (traction) boundary value 
problem concerning a bounded isotropic body. Modern approaches use different criteria and 
are more selective. For example, it is found that necessary and sufficient conditions for the 
unique solution of , the displacement boundary value problem are II + ° and - 00 5, v 5, !, 
while for uniqueness of the solution of the traction boundary value problem, sufficient condi­
tions are - 1 < v < 1 and a star-shaped form of the body (necessary conditions still being 
uncertain). Compare Love (Ref. 110, p. 170), Sokolnikoff (Ref. 31, p.87), Knops and 
Payne,(llll Wang and Truesdell,(1I1) Fichera,(1I3) and Gurtin.(114) We remind the reader that 
in the present chapter, indeed, throughout the entire book, our discussions concern elastic 
systems assumed to be in stable equilibrium. 
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Figure 12.2. Orthogonality of V' - V' and .'1" and .'1". 

ties m and n, respectively. While this decision considerably impoverishes the 
class of admissible functions, it makes our goal more realistic. 

A first question demanding resolution concerns the uniqueness of ver­
tices. The appropriate proof is reminiscent of that of the uniqueness of 
intersection of ,cjJT and .cjJf.. Then let V' and V' be vertices, and let S' and Sf be 
two arbitrary points in !in and /,j", respectively (Figure 12.2).t The vector 
V' - V' is orthogonal to both subspaces ,cjJT and .?j", inasmuch as II V' - V'" 
is the shortest distance from the point V' to ,Cj" and from the point V' to ,Cj" ; 

this property is possessed by a normal to each subspace alone.! 
Consequently, 

Likewise, 

(vr - V', V' - Sf) = 0, 

(V' - V', V' - Sf) = 0. 

(V' - Sr, VI - Sf) = 0, 

We now write the identity 

S' - S' = (S' - V') + (V' - V') + (V' - S), 

(12.13) 

(12.14) 

( 12.15) 

i' Clearly, a similar proof will hold with .V" and .'1" replaced by 'I .. ' and .V.', respectively. 
~ Compare the statement preceding equation (9.30). 
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and take the inner product of each side with itself. In view of equations 
(12.13) and (12.14), the cross terms vanish and there remains 

(S' - S", S' - S') = (S' - Vr, S' - V') 

+ (S' - V', S' - V') + (V' - V" V' - V'). (12.16) 

Suppose now that there exists another pair of vertices, say, 0 and Y'. If this 
is so, then the square of the distance between the new vertices must be equal 
to the minimum of the right-hand side of equation (12.16), which is (V' - V" 
V' - V'). Thus, 

(V' - Yc, Y' - Y') = (V' - V', V' - V'), (12.17) 

and, in view of the vanishing of the first two terms in equation (12.16), that 
Y' = V' and Y' = V'. This proves the assertion 

Let us now select a single state S' from the translated subspace .CJ" and 
evaluate the product (S, S'), where S is the exact solution of the given prob­
lem corresponding to the intersection point S of the translated subspaces .9" 
and .9" (provided such an intersection exists). 

At this stage, we wish to derive some formulas which will be of use in 
future discussions. For this purpose, we select two states S' and S', and 
evaluate the product (S - S', S - S'), where S is the exact solution of the 
given problem, corresponding to the intersection point S of the translated 
subspaces .9" and .9" (provided such an intersection exists). We have 

(S - Sf, S - S') = r (eij - efj)(rij - rIj ) dV 
'1' 

= r (u;.j - uL)(rij - rIj) dV 
'1' 

= r [(u; - u;')(rij - <JL dV 
'V 

= r (u; - U;')(t(nli - tlnl ;) d0. 
'n, 

+ r (u; - u;')(r;j - rL)nj d0. 
on,. 

- r (u; - u;')(rij. j - rIj. j) dV. 
'V 

(12.18) 
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Figure 12.3. The hypersphere, equation (12.20). 

All of the above integrals vanish: the first and second on account of (12.7b) 
and (12.7e) as well as (12.7c) and (12.7g), respectively; the third one in view 
of (12.7a) and (12.7d). Thus, finally, 

(S - So, S - 5') = 0 (12.19) 

or, if we assume that the translated subspace .9"' includes the space origin, 0 
(so that .9"', in fact, coincides with 9"'), and choose the state S' == e, 

(S, S - Sf) = 0, (12.20) 

which implies, in turn, that 

(12.21 ) 

A comparison of the last equation with equation (9.37) indicates that equa­
tion (12.21) represents a hypersphere with center Co at the point !Sf and the 
radius !115'11 (Figure 12.3); in the present case, the origin 0 lies on the 
hypersphere. Equation (12.20) now implies that the vectors Sand S - 5', 
sub tending the diameter 5' - e, are orthogonal. The presence of the origin 
on the hypersphere indicates the possibility of the natural (stress-free) state 
of the body associated with the trivial solution, S == e. 

Retaining the assumption that the space origin is located in the sub­
space 9"', let us select two states, Sf from .9"f and S' from .9"" the latter 
perhaps different from zero. Subtracting the relation (12.20) from (12.19) 
gives 

(S - Sr, S') = 0 (12.22) 

or, explicitly, 

(S, So) = (Sr, se). (12.23 ) 
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Hyperplane HI I I 

Hypersphere 

Figure 12.4. The hypercircle rill [equations (12.21) and (12.23)]' 

Imagine now that we select two particular admissible states sr and Sf., 
different from zero, so that (sr, Sf.) = a1, say, is a given fixed scalar. Since Sf. 
is a fixed nonzero vector, comparison of equations (12.23) and (9.11) shows 
that the point S is on a certain hyperplane of the first class, H(ll' whose 
equation is (X, se) = a1, with X as the variable point on H(1) (Figure 12.4). 
On the other hand, on account of equation (12.21), the point S is on a 
hypersphere with center at!sr and radius !llsrll. It follows that the point S, 
representing the exact solution, lies on the intersection of a hyperplane and a 
hypersphere, that is, on a hypercircle r(11' the latter being of class one 
because one of the intersecting partners is of this class. It is helpful to keep in 
mind here that, despite its pictorial name, a hypercircle is, in fact, a set of 
infinite dimensionality. Figure 12.4, in which If. = Sf./II Sf. II is a unit vector in 
the Sf.-direction, illustrates the situation. Writing the equation of the hyper­
circle in the form 

(X, J") = (sr, J"), (12.24) 

we conclude that the projection on Sf. of the variable vector X, as its tip 
moves along r(ll' is constant and equal to (sr, Ie). Thus, Sf. J.- H(l)' and the 
normal Nf. from the origin to H(l I is 

Nf. = (sr, J")I'. (12.25) 
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Now, since the product 

(S - N" S - S') = (S, S - S') - IINtIIW, S - S') (12.26) 

vanishes on account of equations (12.20) and (12.24), it follows that the 
points Nt and S' are the extremities of a diameter of r(1) passing through the 
tip of Nt. Furthermore, Figure 12.4 indicates that the center of the hyper­
circle is a't the point 

c = S' + -!(N' - St) 
= -!(N' + S'). (12.27) 

Again, from the right triangle ON'S', we infer that the radius of the hyper­
circle is 

(12.27a) 

12.1. Bounds on an Elastic State 

Let us again select two particular states S' and st. Then the vector N' in 
(12.25) is to be considered as given, since S' is known and I' = St/IIS'II. 
Figure 12.4 illustrates the fact (easily corroborated analytically) that, among 
all states represented by the points on the hypercircle r(l)' the state repre­
sented by the vector N' is the closest to, and the vector S' the most distant 
from, the zero vector of the natural state O. This observation provides the 
following bounds for the unknown exact solution, 

IINtl1 s IISII s 1fS'11 (12.28) 

or, more explicitly, 

(S', 1')2 S (S, S) s (S', S'). (12.28a) 

A weaker lower bound for (S, S) is obtained by applying the cosine theorem 
to the triangle 012. We find 

2(S', S') - (S" S') = (S', S') - (S' - S', S' - S'). (12.28b) 

But, from the right triangle 123, 

liSt - (Sr, I')I'II S liSt - sell, (12.28c) 

so that, from the last two equations, 

2(S', S') - (S', S') s (S', I'f (12.28d) 
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Combining this inequality with the inequality (12.28a) yields one of the 
central inequalities of the hypercircle method, 

2(S', Sf) - (st, St) ~ (S', 1')2 ~ (S, S) ~ (S', S'). (12.28e) 

It should be noted that the preceding formula is derived for a hypercircle of 
class one, and that-unless we are lucky-the bounds may be far off and, 
consequently, of limited usefulness. Another knotty point is that the bounds 
do not involve directly the stresses and displacements actually sought, but 
only implicitly via the total strain energy stored in the body. 

In order to improve the closeness of the bounds, it is mandatory to 
introduce into the competition more than a single vector from each of the 
subspaces ,clJT and /1". Such additional (auxiliary) states are usually required 
to satisfy the homogeneous equations of equilibrium, or compatibility, and 
homogeneous boundary conditions. Denoting them by Y/ and ~" respec­
tively, where p and q are to take values in certain index sets, we have, 
following (12.lOb}-(12.lOd), 

and 

<L = 0 in V, 

tlj'nj = 0 on nr , 

(12.28f) 

(12.28g) 

(12.28h) 

where tlj' and u~q are the stresses and displacements associated with the 
states Yp rand Yq', respectively. 

The actual equilibrium equations and conditions on the boundary are 
accounted for by the states denoted as So r and So t and are called fundamental 
states. By analogy to (12.7d), (12.7e), we thus have 

and 

tlJ,j+Fi=O in V, 

tlJn j = J; on nn 
(12.28i) 

(12.28j) 

(12.28k) 

where tlJ and u~o are the stresses and displacements associated with the 
states So r and So" respectively. 

We assume for the time being that the space origin lies outside the 
translated subspaces denoted earlier by /lJT and /J't. Later, we shall shift the 
space origin into one of these subspaces for convenience.t 

;. The location of the origin in both translated subspaces would, of course, indicate that the only 
solution to the problem is the trivial zero vector. 
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Summarizing our remarks, we have decided to select in the translated 
subspaces .9' and .9' some finite-dimensional translated subspaces.f}' m' and 
.f}'n', respectively, and to approximate the exact solution to the problem, S, 
by means of the following systems of elastic states: 

(a) State So' (denoted earlier by S') called thefundamental state in.9 m'. 
This state satisfies the equilibrium equations (including the body force) and 
the stress boundary conditions, that is, equations (12.28i) and (12.28j). 

(b) State So' (denoted earlier by Sf) called thefundamental state in !l'n'. 
This state satisfies the compatibility equations and the displacement boun­
dary conditions, that is, equations (12.4) and (12.28k). 

(ad States Yp', p = 1,2, ... , m; these are states augmenting the funda­
mental state So'. They satisfy the homogeneous equations of equilibrium and 
homogeneous stress boundary conditions, that is, equations (12.28f) and 
(12.28g). 

(b I ) States ~', q = 1, 2, ... , n; these are states auxiliary to the fun­
damental state So'. They satisfy the compatibility equations and homogen­
eous displacement boundary conditions, that is, equations (12.4) and 
(12.28h). 

We now define the translated subspaces .f}' m' and .9 n' by the following 
equations, respectively: 

m 

S' = So' + I rxp Yp', 
p=I 

(12.29) 
n 

S'=S '+ "{3 Y' o L.qq, 
q=I 

where S' and S' represent current position vectors emanating from the space 
origin 0 (Figure 12.5a), So' and So' position vectors of certain points in .f}' m' 

and /1'/, respectively, and {Yp '} and {~'} vectors lying in the corresponding 
subspaces; {rxp} and {{3q} are arbitrary coefficients. As shown in Chapter 5, it 
is always possible to replace a set of independent vectors (and both {Y/} and 
{~'} are considered to be such sets) by an orthonormal set. With no loss in 
generality, therefore, we assume that 

p, r = 1, 2, ... , m, 
(12.30) 

q, s = 1, 2, ... , n. 

Since the numbers of orthonormal vectors in {Y/} and {Yq'} are equal to the 
dimensions of the corresponding subspaces, .9 m' and !l' n', respectively, the 
sets {Y/} and {~'} form bases for these subspaces. 

By virtue of the orthogonality of.9 m' and .9n', we have 

(Y' y')=o p' q (12.31) 

for each p = 1, 2, ... , m and each q = 1, 2, ... , n. 
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The diagram in Figure 12.5a displays the state of affairs. The translated 
subspaces .fl" and g" meet at the point marking the exact (unknown) solu­
tion to the problem. To make the situation more general, the space origin 0 
is located (for the time being) exterior to both translated subspaces /1" and 
/1". The specialized translated subspaces Y m' and /7' n " embedded corre­
spondingly in Y' and Y', display points of closest mutual approach marked 
by the tips of the vectors Vm' and v,,", respectively. Their separation 
IlVm' - v,,' II is, according to the definition of vertices, the least distance 
between Y m' and Yn'. By appeal to equations (12.29) and (12.31), it is not 
difficult to verify that 

(s - S' S' - se) = (s ' - S ' + "IX y' S ' - S e + "IX y,) , 0 0 L., p P' 0 0 L., P P 
P P 

+ (s ' - S e _ "P yr. S ' _ S e _ "p ye) 00 L.,qq'O 0 L.,qq 
q q 

(12.32) 

In order to minimize the right-hand side of this equation, one need only 
minimize the first two products separately, inasmuch as the parameters IXp 

and Pq are independent of each other. Carrying out the differentiations, with 
equation (12.31) in mind, we find 

IXp = -(So' - So", Yp'), 

Pq = (So' - So" ~e), 

p = 1, 2, ... , m, 

q = 1,2, ... , n. 
(12.33) 

Substitution into equations (12.29) yields the locations of the vertices as 
m 

Vm' = So' - L (So' - So', Y/)S/, 
p=l 

(12.34) 
n 

V/ = So' + L (So' - So e, ~e)sq'. 
q=l 

As already noted, the segment joining the vertices is orthogonal to the 
vectors lying in the subspaces (for example, to ~' and ~e); this is designated 
in Figure 12.5a by the conventional orthogonality sign. 

One of the conclusions of our earlier discussion was that the extremity 
of the exact solution vector, S, lies on the hypercircle, r(l)' produced by the 
intersection of the hypersphere (12.21) and the hyperplane (12.23) of class 
one (Figure 12.4). It is now of importance to find out how the situation 
changes if we select the combinations (12.29) and replace the translated 
subspaces .fIn and .9" by the finite-dimensional translated subspaces Y m' 

and Yn'. 
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At the outset, we observe that, in view of the orthogonality of these 
subspaces, the vectors S - Vm' and S - Y,,' (lying in the respective sub­
spaces) are mutually orthogonal (Figure 12.5a). By similar reasoning, every 
vector Yq' is orthogonal to S - Vm' and every vector Yp' to S - Y,,'. 
Symbolically, 

(S - Vm', S - Y,,') = 0, 

(S-Y.' ¥')=o m' q for q = 1, 2, ... , n, (12.35) 

(s - Y.' ¥') = ° n' p for p = 1, 2, ... , m. 

The first of the preceding relations can be cast into the form 

(S -![Vm' + Y,,'] -![Vm' - Vn'], S -![Vm' + Y,,'] + i[Vm' - Vnf.]) = 0, 

(12.35a) 

or, using the notation 

C = !(Vm' + Y,,'), 

R = !llVm' - y"f.II, 
(12.35b) 

into either of the equivalent forms (J = arbitrarily directed unit vector from 
point C), 

(S - C, S - C) = (RJ, RJ) (12.36a) 

or 

(12.36b) 

If one thinks of S as a current position vector and compares the latter 
relation with relation (12.21) (inspect Figure 12.4a), one concludes that the 
tip of S lies on a hypersphere, a diameter of which is Vm' - Y,,'. Consequently, 
the position vector of the center of the hypersphere and the radius of the 
latter are given by the two equations (12.35b), respectively; here, Vm' and V/ 
are known vectors defined by equations (12.34). 

The still remaining equations (12.35), when compared with equation 
(12.23), imply that the point S lies on a hyperplane H(m+n) of class m + n. It 
follows that the point S representing the exact solution lies on the intersec­
tion of a hypersphere and a hyperplane of class m + n, that is, on a hyper­
circle r(m+n) of class m + n. 

Now let X be the position vector of a point on the hypercircle r(m+n)' In 
view of equations (12.35), the hypercircle is defined by 

(X - Vm', X - Y,,') = 0, 

(X - Vm" Yq') = 0, 

(X - y"f., Y/) = 0, 

q = 1, 2, ... , n, (12.37) 

p = 1,2, ... , m. 
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From the last of the preceding equations, we have 

(X - ![Vm' + v,,'] + ![Vm' - v" f.], Y/) = (X - c, Y/) 

= 0, p = 1, 2, ... , m, (12.38) 

where reference was made to equations (12.35), as well as to the orthogona­
lity of the vector Vm' - v"f. and the subspace!l' m'. Similarly, from the second 
of equations (12.37) 

(X - C, Yqf.) = 0, q = 1,2, ... , n. (12.39) 

Accordingly, a vector joining a generic point on the hypercircle and the 
point C is orthogonal to all Y/'s and all Yq"s (Figure 12.5a). 

Let us now return to equations (9.14) and (9.l5a) in Chapter 9, identify­
ing the vectors Y/ and Yq' with those denoted there by iV. We conclude that 
the sets {Y/} and {Yq f.} are orthogonal to the hyperplane, and, consequently, 
that the point C lies on the hyperplane. 

Combining equations (12.38) and (12.39) with equations (12.35b) and 
(12.36b), we conclude that the hypercircle is defined by the system of the 
following equations: 

IIX - q =R2, 

(X-C, Yp') =0, 

(X-C, Yq')=O, 

p = 1,2, ... , m, 

q = 1,2, ... , n. 

(12.40) 

New bounds for the exact solution are now found easily by inspecting the 
triangle Sv"f.Sf. in Figure 12.5b. Here, Sf. is an arbitrary point in /1'/ and the 
angle at v"f. is a right angle, since the vector S - v"f. is orthogonal to every 
vector Sf. - v,,' in the subspace /7' n'. Thus, 

(S - Sf., S - Sf.) = (S - v" f., S - v"f.) + (Sf. - v" f., Sf. - v" f.). (12.41) 

Likewise, from the right triangle Vm ' S v" " 

(S - v" f., S - v"f.) ~ (v"f. - Vm\ v"f. - Vm'), (12.42) 

and the last two formulas give the bounds for II S - Sf. II contained in 

(Sf. _ v.f. Sf. _ V. f.) < (S _ Sf. S _ Sf.) < (Sf. _ v.f. Sf. - v.f.) n' n - , - n' n 

(12.43) 

Bya similar argument applied to the translated subspace!l' m" we easily derive 
a second inequality, symmetric to (12.43), 

(sr - Vm" S' - Vm') ~ (S - sr, S - sr) ~ (sr - Vm" sr - Vm') 

+ (v"f. - Vm\ v"f. - Vm'), (12.44) 

where again S' is an arbitrary point in .9 m'. 
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An inspection of these two inequalities implies that the error committed 
by selecting any vector S' or S' in place of the exact solution S does not 
exceed II v,,' - Vm' II· This result is of major importance in practical applica­
tions of the hypercircle method. 

Let us now reflect upon our earlier remark to the effect that, in order to 
account for the natural state, it is necessary to place the space origin in either 
of the translated subspaces fIn or fj'" (or .iJ>m' or .9'/, respectively): see 
Figure 12.5c. Assume then that the space origin is in .9'E. A decision of this 
sort simplifies certain of the formulas derived earlier, at the cost, however, of 
stripping them of the symmetry they possess. Equations (12.13) and (12.14) 
reduce to 

(V' - V', V' - Sf) = 0, 

(V' - V', V') = 0, (12.45) 

(V' - s" V') = 0 

(compare Figure 12.5c). The second of the preceding equations implies that 
the segment connecting the vertices is orthogonal to the vector VE • This, of 
course, should be clear since, in the present case, the last-named vector lies in 
the subspace Y'. 

A glance at the equation (12.16) leads now to the following inequalities 
(after setting S" == 0): 

(S" S') 2 (V' - V', V' - V'), 

(S', S') 2 (S' - V', S' - V'), 

(S', S') 2 (V', V'), 

(12.46) 

(12.47) 

(12.48) 

where, as before, S' is an arbitrary point in .9". From Figure 12.5c the 
geometric sense of the foregoing inequalities is clearly expressed in the state­
ment that the distance liS' - ell is greater than any of the distances 
II V' - V' II, II S' - V' II, or II V' - ell· 

The assumption that the translated subspace .9" (respectively, .9' n ') 

includes the origin implies similar simplifications when the class of the 
hypercircle is greater than one. In this case, we set So' = 0 in the second 
group of equations (12.29) and, in Figure 12.5a, place the origin in the 
subspace .iJ>/. In order to derive an upper bound for (S, S), we now replace 
S' in the inequality (12.28a) by Vm' and obtain 

(12.49) 

Likewise, we replace S' by v"E and S' by Vm' in the left terminal expression in 
the formula (12.28e). This gives 

(12.50) 
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and, combined with (12.49) and the second of equations (12.45), yields finally 
the symmetric inequality 

(12.51 ) 

We note, bearing in mind that the location of the space origin is in the 
translated subspace !J'/, that we can also infer this two-sided inequality 
directly from Figure 12.5a. 

Inequalities (12.51) and (12.28e) constitute two central formulas of the 
hypercircle method. The first of these is given a more serviceable form if one 
refers to the relations (12.34) with So' set equal to the zero vector. With the 
aid of the orthogonality relations (12.30), we then arrive at the equations 

n 

(v.,', v.,') = L (So" Yq')2, 
q=l 

m 
(12.52) 

(Vm" Vm') = (So', So') - L (So" YP'), 
p=l 

and finally at the inequality, 
n m 

L (So', Yq')2 :::; (S, S):::; (So', So') - L (So', YP')2. (12.53) 
q=l p=l 

This completes the discussion of the general aspects of the hypercircle 
method. As an illustration, we concentrate on the following rather specific 
problem.(79) 

Example 12.1. Elastic Cylinder in Gravity Field (Numerical Exam­
ple). An elastic, heavy, solid, circular cylinder of mass density p, Young's 
modulus E, diameter 2a, and height 21 is enclosed in a perfectly rigid case 
(Figure 12.6). The direction of the gravity field g is parallel to the axis of the 
cylinder, the latter being referred to a cylindrical coordinate system R, 0, Z 
with origin at the mass center and the Z-axis pointing upwards. To avoid 
carrying nonessential constants, we put K = pga/E and introduce the non­
dimensional variables r = R/a, z = Z/a, 'ij = iij/E, u = (I/Ka)u R , and 
w = (I/Ka)uz , with UR and Uz as the radial and axial components of the 
displacement, respectively, and iij as the actual stress. In the present case of 
axial symmetry, the equilibrium equations are 

0", o',z 'rr - '00 _ 0 
O + 0 + - , r z r 

(12.54) 
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z 

Figure 12.6. Cylinder enclosed in a rigid case. 

The strain components and Hooke's law are defined in the customary 
manner. In conformity with the assumption of rigid enclosure, we adopt the 
following boundary conditionst: 

u=w=o 
u=w=o 

for z = ± 1 and 0:::; r :::; 1, 

for - 1 :::; z :::; 1 and r = 1. 
(12.55) 

Since the work of the gravity field is equal to the work of the weight of the 
body located at the center of mass, we have 

(S, S) = 4m}, (12.56) 

where £5 = fl/a is the nondimensionalized sagging of the mass center,(40, 80) 
while the inner product of two state vectors and the metric are defined by 
equations (12,8) and (12.10), respectively. Equation (12,56) implies that any 
bounds for (S, S) will automatically produce bounds for £5, 

We now approach the exact solution of the problem at hand, S, by 
means of two sets of approximations: the set {S'} of states satisfying the 
equilibrium equations, and the set {S'} of states satisfying the compatibility 
equations and the displacement boundary conditions, We recall that the 
translated subspaces /i" == {sr} and ,9' == {S'} are mutually orthogonal, and 
that the tip of the exact solution vector coincides with the point of intersec­
tion of ,Cj?r and ,fj", We now confine our attention to portions,9 mr and ,9.' of 
the translated subspaces gr and ,9', respectively, and expose the vertices Vm r 

t We note that, since the displacements are prescribed on the entire boundary, the problem 
under discussion is a displacement boundary value problem, in which !l. = !l (and !l, is 
absent). 
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and v"r. as the points of closest approach of .'7' m' and .'7' n'. As already ex­
plained before, the terminal points of the vectors S, Vm', and v,," lie on a 
hypercircle with center at C = (Vm' + v,,£)/2 and radius R = II Vm' - v" " 11/2, 
while the vertices coincide with the end points of a diameter of the hyper­
circle (Figure 12.7). 

The relation of fundamental importance now is the inequality (12.51), 

(12.57) 

To make use of the latter, we represent the approximate solutions in the 
forms (12.29), 

m 

S' = So' + L ak Y,/, 
k=l 

n 
(12.58) 

Sf = L PI Y,r., 
1= 1 

where it is assumed, as before, that the space origin lies in .'7'n' (i.e., So" = 0). 
We repeat that the auxiliary states Yk' satisfy the homogeneous equilibrium 
equations, while the states Y,£ obey the compatibility equations and hom­
ogeneous displacement boundary conditions. Again, the ak's and P/s are 
those coefficients determined from the condition that the distance II S' - Sr.11 
be minimal. The vectors ~' and Y,r. being, in general, not orthonormal, we 
find the location of the vertices from the equations 

m 

(Vm', Vn') = (So" So') + L ak(SO', ~'), 
k=l 

n 
(12.59) 

(v,,', v"f) = L P/(SO', Y,f), 
1= 1 

where the coefficients ak and PI are determined from the equations (Ref.40, 

Figure 12.7. Translated subspaces Ym' and Yn'. 
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pp. 119 and 341) 
m 

L ap(Y/, Y,.') + (So " Y,.') = 0, r=1,2, ... ,m, 
p=l 

(12.60) 
n 

L /3q(Yq", 1',") - (So', 1',") = 0, s=1,2, ... ,n. 
q=l 

We next select the following three sets of displacement components from the 
translated subspace .9' n': 

(1) u = 0, 

(2) u=O, w=(r2-1)(1-,:2),:2; 

(3) u = r(r2 - 1)(1 - Z2).:, w = 0; 

(12.61 ) 

these satisfy the displacement boundary conditions (12.55), the conditions of 
symmetry, and they possess certain intuitively conceived characteristics of 
the resulting deformation. With these in mind, we construct three vectors in 
the subspace .9' nE with A and J1 as the Lame constants. 

Vector Y1': 

e== = -2(r2 - 1).:, 

Trr = Too = -2lcK(r2 - 1)z/E, 

Tz= = -2K(2J1 + ;,)(r2 - 1)z/E, 

Vector Yz': 

err = eoo = 0, 

2lcK ( 2 )( 2 
Trr = Too = E r - 1 1 - 2z )z, 

erz = !r(r2 - 1)(1 - 3z 2 ); 

2K 
Trr = - [J1(3r 2 - 1) + A(2r2 - 1)](1 - Z2)Z, 

E 

2AK 2 2) 
T zz = E(2r - 1)(1 - z z, 

(12.62) 

(12.63 ) 

(12.64) 
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In like manner, we select four vectors in the subspace gmT (with v as Pois­
son's ratio): 

Vector Y1 T: 

1 [ 2 ( 2 2 3)] err = eIJIJ = - r z - v r z +"3Z , 
I( 

2 (1 2 2) ezz = -"3Z - vr z, 
I( 

Vector Y/: 

z 
err = eIJIJ = -(1 - v), 

I( 

'tzz = 2z, 'trz = r; 

2v 
err = eIJIJ = -z, 

I( 

Vector Y/: 

4v 2 
err = eIJIJ = - r z, 

I( 

2z 
ezz = --, 

I( 

4 2 ezz = - -r z, 
I( 

(12.65) 

2v 
ezz = - -z. 

I( 

2v 
ezz = - -z. 

I( 
(12.66) 

(12.67) 

(12.68) 

As the vector So'. we chooset 'tzz = I(Z, err = eIJIJ = -VZ, ezz = z. For the sake 
of brevity, we now choose to set v = o. 

A lengthy calculation gives the inner products appearing in the rela­
tions (12.60) as follows: 

(Y1 ')2 = 881tl(/45, 

(Y3')2 = 851tl(/315, 

(Y2', Y3') = 41tl(/315. 

(Y2')2 = (Y1', Y/) = 1041tl(/315, 

(Y1', Y3') = -41tl(/45, (12.69) 

t We repeat that, since the stresses on the boundary of the body are not prescribed, it is only 
hoped that those associated with the selected stress systems provide acceptable approxima­
tions to the actual stresses on n (associated with the state S). 
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Similarly, for the pertinent vectors in the subspace ,'7' m', we find 

(Y1 ,)2 = 102n/105K, 

(Y3')2 = 14n/3K, 

(y/)2 = 4n/3K, 

(Y4')2 = 41n/9K, (Y1 ', Yz') = 2n/3K, 

(Y1', Y3') = -6n/5K, (Y1', Y4') = -44n/45K, 

(Yz', Y3') = (Yz', Y4') = 0, (Y3" Y4') = 4n/K. 

Moreover, 

(S' Y f) = 2nK/3 0, 1 , (So', Y2') = 2nK/15, (So', Y3') = 0, 

191 

(12.70) 

(So')2=2nK/3, (So', Y1') = 4n/15, (So', Y2') = 0, (12.71) 

(So', Y3') = (So', Y4') = -4n/3. 

Substitution of the above results into equations (12.60) gives the values of 
the coefficients: :;(1 = 0.2066K,:;(2 = -O.l033K, :;(3 = 0.2020K, :;(4 = 0.1597K; 
/31 = 0.3348, /32 = 0.0649, /33 = 0.1072. 

It is now a straightforward matter to find from (12.59) that 

(V'V')=02319nK n' n • , (12.72) 

Consequently, the bounds for the squared norm of the exact solution S 
become 

0.2319nK ::; (S, S) ::; 0.2399nK. (12.73) 

With the arithmetic average of the values in (12.72) equal to 0.2359nK, the 
deviation of (Vm', Vm') from (v,,', v,,') evaluated with respect to their arith­
metic average amounts to 3.39%. This seems to be an acceptable difference, 
considering the small number of vectors Y/ and Yq' adopted in the 
calculations. 

The last formula, together with (12.56), implies that the non­
dimensionalized sagging of the mass center below the geometric center of the 
cylinder is contained between the bounds given in 

0.0580K ::; t5 ::; O.0600K, (12.74) 

or, in a dimensional form, 0.0580 ::; I1E/ pga2 ::; 0.0600. By the very construc­
tion of the hypercircIe, the position vector of its center, C, constitutes a good 
approximation to the exact solution (Figure 12.8). In the present case, the 
squared norm II q 2 = (C, C) = 0.2339nK. Remaining, of course, between the 
bounds of (12.73), it differs insignificantly from the arithmetic mean of 
(12.72), equal to 0.2359nK. 

As already noted in connection with the fundamental inequality 
(12.28e), the bounds derived above by the hypercircIe method (compare 
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o 
Figure 12.8. Sketch for equation (12.58). 

(12.73), for example) bracket the quantities of interest (such as the deforma­
tion, strain, or stress) in an integral manner, that is, indirectly via the strain 
energy stored in the body. In order to obtain what may be called pointwise 
bounds for the unknown quantities, modified procedures must be applied.t 
We shall discuss this point in some detail a little later in this chapter, in 
Section 12.2. 

At this stage, it is attractive to look at the problem, not so much from an 
axiomatic, but rather from a plainly utilitarian point of view. We observe 
that equations (12.61 )--(12.68) contain a great amount of information about 
the stress and strain distributions in the body which would be good to 
utilize. The difficulty, however, is that each constituent distribution is asso­
ciated with a particular representative vector (So" Yk " or Yk', k = 1,2,3), and 
the rule for combining them into a single, resultant distribution is unclear. 
Actually, what is needed is the knowledge of a scaling factor for each particu­
lar distribution, that is, its "weight" in a linear combination of the available 
distribution<;. Inasmuch as each function vector is associated with the corre­
sponding stress tensor, there is some justification for theorizing that the 
scaling factors of the particular stress tensors are the same as those of the 
corresponding function vectors. With this hypothesis in mind, we turn to 

;- In the present case. the only pointwise bounds obtained involve the vertical component of the 
displacement vector at the origin of coordinates [see the inequality (12.74)]' 
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equations (12.58), in which the values of the coefficients are borrowed from 
equations (12.60). We then write the equations 

m 

rl~) = rl90 + '" (1.k rlt)k 
'J IJ ~ 'J' k=1 

n 

rl~) = '" {31 rl')1 
lJ ~ 'J' 

1= 1 

(12.74a) 

in which the notation should be self-explanatory. As the resultant of the 
partial sums r!.f' and rt?, we take the arithmetic mean reminiscent of the 
mean of function vectors (12.35b). It is shown below that, despite the fact 
that the suggested procedure lacks strict theoretical motivation, the numeri­
cal results obtained compare favorably (at least for the problem under 
discussion) with those obtained by the approximate method of Galerkin. 
Oddly enough, Galerkin's method also lacks a sufficiently general substan­
tiation [e.g., Ref. (8)]. 

Suppose now that by appeal to our heuristic hypothesis, we wish to 
find, say, the stress component r zz at two points: r = 0, Z = -1, and r = 1, 
Z = -!- From equations (12.74a) we obtain 

r zz = 1[I(Z + 1(1.1Z3 - 2(1.3Z - 4(1.4r2z - 21({31(r2 - 1)z 

(12.75) 

so that 

rzAO, -1) = -0.76661(, (12.76) 

The exact values of the stress components are, of course, unknown, but we 
might conclude that the accuracy of the results (12.76) is sufficiently good by 
recalling the closeness of the bounds in inequality (12.73). 

Such a conjecture is confirmed by invoking a different approximating 
method, such as the well-known Galerkin procedure which, more often than 
not, leads to adequate results. 

We thus assume that u = Lm Am lPm(r, z) and w = Lm Em !/Im(r, z), where 
Am and Em are constant coefficients to be determined later, and the functions 
lPm and !/1m satisfy the homogeneous boundary conditions imposed on the 
displacemen ts. 

The Galerkin equations then become (Ref. 74, p. 159) 

I, 1 , 1 [or or r - r J 2n r dr 1 lPm(r, z) ~ + ~ + rr 00 dz = 0, 
'0 '-1 or oz r 

2 fl d II ,I, ( ) [orrz orzz rrz J n r r 'I'm r, Z ---;- + ---;- + - - I( dz = 0, 
o -1 Ur uZ r 

(12.77) 



194 

for v = 0, reducing to 

.1 . 1 ~02U 1 ou 1 02U U 1 02W J 
2nK I r dr I -0 2 + --0 + --0 2 - - + -2-0 0 <Pm(r, z) dz = 0, 

'0 '-1 r r r z z r r z 

• 1 • 1 ~02W 1 1 ow 1 02W 1 02U 1 1 OU J 
2nK I rdr I -+---+--+---+----1 

• 0 . - 1 OZ2 2 r or 2 or2 2 or OZ 2 r OZ 

x I/Im(r, z) dz = O. 

We take the displacement components in the form 

U = Al r(r2 - 1)(1 - Z2)Z + A2r3(r2 - 1)(1 - Z2)Z3, 

W = Bl(r2 - 1)(1 - Z2) + B2(r2 - 1)(1 - Z2)Z2, 

Chapter 12 

(12.78) 

(12.79) 

and arrive easily at the following system of four simultaneous linear equa­
tions for the coefficients AI' A 2, B 1, and B 2 : 

17 107 2 2 
- 1261 Al - 4725 A2 + 45 Bl - 315 B2 = 0, 

107 893 1 1 
- 4725 Al - 103950 A2 + 105 Bl + 945 B2 = 0, 

2 1 44 52 1 
45 Al + 105 A2 - 45 Bl - 315 B2 = - 3' 

(12.80) 

2 1 52 52 1 
315 Al + 945 A2 - 315 Bl - 315 B2 = - 15' 

A straightforward calculation gives, for example, Bl = 0.3184 and 
B2 = 0.0701, so that, via equations (12.79), the normal stress component 

rzAr, z) = -2K(r2 - l)r[B I + (2Z2 - I)B2] (12.81) 

at the points (0, -1) and (1, -1) becomes 

rzAO, -1) = -0.7770K, rzz{1, -1) = -0.2125K. (12.82) 

A comparison of the preceding results with those of (12.76) seems to confirm 
the anticipated accuracy of the hypercircie solution and the acceptability of 
our working hypothesis. 

12.2. Bounds for a Solution at a Point 

In discussing, in this section, the application of the hypercircie method 
to the derivation of bounds for a solution (and possibly its derivatives) at a 
point of a physical domain, we take a slightly different standpoint from that 
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which was appropriate in the examination of problems of a particular elastic 
class in the preceding section. There is little need to emphasize that, for 
practical purposes, pointwise bounding is considerably more important than 
the estimation of a solution in an integral manner via the elastic strain 
energy, for example, as was done before. 

Let us then consider a pair of intersecting orthogonal translated sub­
spaces 17" and 17'" with the space origin in 17)// say (Figure 12.9a). We select two 
auxiliary translated subspaces .9',' and /1'." of dimensions rand s, immersed 
in .9" and .9''', respectively. S is the point of intersection of .9" and .9''' and 
corresponds to the exact solution of a problem, V' and V" are vertices of.9',' 
and g.", respectively, and C is the center of the hypercircle r(r+.) of class 
r + s; as explained before (cf., e.g., Figure 12.5), the hypercircle passes 

a 

b I, 
I '" 
I 
I 

I 
I 
I I L _______ L __ 

~---..+, 

A'=.r. (A,lj)I1 ,-I 

o A 
Figure 12.9. Intersection of orthogonal subspaces. 
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through the vertices and includes the point S. As bases for the subspaces Y/ 
and Y'S"' we adopt sets of orthonormal vectors h', k = 1, 2, ... , r and It, 
1= 1, 2, ... , s contained in these subspaces, respectively. If in equations 
(12.40) Y/ is replaced by Ik" Yq' by I/" and X - C by J, where J is a unit 
vector, then the equations defining the hypercircle r(r+s) become 

(X - C, X - C) = R2, 

(J,Ik')=O, k=I,2, ... ,r, (12.83) 

(J, I,") = 0, 1= 1, 2, ... , s, 

where C is the center of the hypercircle and R is its radius. Combining 
equations (12.35b) and (12.34), setting So' = 0, and changing the notation, 
we have 

r 

V=So- I(So,IdIk' 
k=l 

s 
(12.84 ) 

V" = L (So, I,")I/, 
/= 1 

and 

C = !(V' + V"), R = !IIV' - Villi, (12.84a) 

So being a preassigned vector in the translated subspace .9':, 
Equations (12.83) can be cast into the parametric form [compare the 

passage from (9.37)-(9.38)] 

X = C + RJ, 

11111 = 1, 

(J, Ik') = 0, 

(J, I/,) = 0, 

k = 1,2, ... , r, 

1= 1, 2, ... , s. 

(12.85) 

One can now imagine, for convenience, that Y'/ and .C?S" are indepen­
dent, i.e., their intersection is the zero vector. Then the last two of equations 
(12.85) become simply 

(J, IJ = 0, i = 1, 2, ... , r + s. (12.86) 

Since the preceding relations are true for any direction J of the radius ofthe 
hypercircle and for any Ii' i = 1, 2, ... , r + s, in Y'r+s = Y'/(f)Y',", one can 
express this fact by saying that the subspace 'C?r+s of dimension (r + s) is 
orthogonal to the hypercircle r(r+s)' 

Consider now an arbitrary vector A in a space including the subspace 
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·Y"r+s' We resolve A into two components: A' lying in ·Y"r+s and Ao ortho­
gonal to Y r + s (Figure 12.9a). Accordingly, 

r+s 

A = Ao + L (A, IJl i , 
i= 1 

(Ao, IJ = 0, i = 1, 2, ... , r + s. 
The inner product of the first of equations (12.85) with A gives 

(X, A) = (c, A) ± R I (A, J) I. 

By (12.87a), however, 

which yields the important inequality 

(c, A) - RllAo II <:;; (X, A) <:;; (c, A) + RllAo II, 
where Ao is determined from (12.87). 

(12.87) 

(12.87a) 

(12.88) 

(12.89) 

(12.90) 

By appealing to our space intuition, we draw in Figure 12.9b a 
diametert of the hypercircle "parallel" to the vector Ao and construct the 
orthogonal projections of the position vectors X' and X" of the end points of 
this diameter on A. It is easily verified that the lower and upper bounds in 
(12.90) are attained for 

and 

respectively. 

X' = C - RAo/llAo II 

X" = C + RAo/llAo II, 

We now turn our attention to the Dirichlet problem, 

(12.91 ) 

(12.92) 

in a three-dimensional domain V = Vl + V2 with bounding surface S 2 

(Figure 12.10). At a point P of V, the latter being referred to a Cartesian 
rectangular coordinate system ~i' i = 1,2, 3, a second Cartesian rectangular 
coordinate system X;, i = 1, 2, 3, is constructed; it is required to find point­
wise bounds for the function t/J(O, ~ = (~b ~2' ~3) at the arbitrarily selected 
point P within V. 

As is well known, such a Dirichlet problem for the Laplace equation is 
encountered in many areas of mathematical physics: electrostatics, heat 
conduction, fluid dynamics, elasticity, and others. 

i" Note that for this diameter, J = ± Ao III Ao II. 
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v .. !. 
I 

Figure 12.10. Sketch for the derivation of pointwise bounds. 

We start the discussion by recalling that the fundamental solution of 
Laplace's equation in three dimensions (containing the basic singularity of 
the Green's function) is 

1 
JjJrund = -;:. 

Following, e.g., Maple(8l), we introduce the vector 

for r ~ a, 

o for r < a, 

(12.93) 

(12.94 ) 

where a is the radius of a sphere drawn within the domain V with center at P. 
We denote by VI the domain occupied by the sphere and by at. the boun­
dary of VI' 

Now let A and S denote vectors in a function space corresponding to 
the vectors mi and JjJ.i' i = 1, 2, 3, respectively, where JjJ constitutes the 
solution to the problem (12.92). With this in mind, we cast the inequality 
(12.9O) into the form 

/(S, A) - (C, A)/ :s; RI/Aoll, (12.95) 
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and calculate the first of the foregoing inner products: 

(S, A) = f ljI.imi dV 
'V 

= I' (IjImJi dV - f IjImi. i dV 
'v 'v 

(12.96) 

= r IjImi ni dS 1 + r IjImi ni dS 2, 
'Sl • S2 

in which we have used the Gauss-Green theorem and the fact that mi. i = O. 
Noticing that on the boundary S 1 there is ni = nli = - Xi/a and 
mi = - xda 3 , we have 

1 . . 
(S,A)=zlljldS 1 + IljImi ni dS2' 

a . Sl • S2 
( 12.97) 

The function IjI being harmonic, Gauss' theorem of the arithmetic mean 
implies that the first integral in the preceding equation is equal to 4nljl(P), 
where P is the center of the sphere V1 . Substituting (12.97) into (12.95), we 
obtain finally 

j4nljl(p) + J
S2

1j1mini dS 2 - (c, A)j ~ RIIAoll. (12.98) 

All quantities appearing herein, except IjI(P), are knownt [cf. (12.84a) and 
(12.87a)) provided the associated hypercircle was earlier constructed. (We 
assume that this was accomplished.) Instead of carrying out the pertinent 
calculations, however, we shall content ourselves with examining a much 
simpler situation. Namely, suppose that we were fortunate enough to make 
the radius of the hyper circle very small, R ::::: O. Then C ::::: s,t 

(c, A) ::::: (S, A) = f miljl,i dV, 
. v 

(12.99) 

and it is easy to verify that (12.98) implies that, approximately, 

(12.100) 

close to the exact result. 

t Upon selecting the states So. {I.'}, and {I,"} at the outset of the calculations (cf. Problem 12.1), 
we automatically determine V' and V" by (12.84) and C and R by (12.84a). Likewise, selecting 
in advance the state A, one determines Ao by (12.87) and (12.87a). 

t Since, by definition, state S (representing the exact solution) lies on the hypercircle, by 
shrinking the latter to its center, we necessarily accept C as the approximation of S. 
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Similar reasoning applied to a plane domain yields the formula 

(12.101) 

where a is the radius of a circle whose circumference is C 1. If 1/1 is interpreted 
as the conjugate torsion function, for which 1/1 = r2/2 on the boundary of the 
cross section of a bar subjected to twist, t and if the cross section V becomes a 
circular disk of radius a, then 

(12.102) 

This is a rigorous result which, incidently, holds at any point of a circular 
cross section where 1/1 = const.(31) 

By repeating the reasoning applied above to the function 1/1, it is a 
straightforward matter to derive bounds for the first and second partial 
derivatives of 1/1. The associated Maple functions turn out to be mi. p and 
mi. pq' p, q = 1, 2, respectively. 

12.3. Hypercircle Method and Function Space Inequalities 

A digression seems now to be in order for the purpose of corroborating 
our earlier remark about the intrinsic connections existing between the hyper­
circle procedure and the inequalities of Cauchy and Bessel, as was first 
observed in Ref. (29). 

We first wish to recall two central formulas of the hypercircle method 
valid for linear elasticity, namely, the inequality (12.28e), 

(sr, 1')2 :c:; (S, S) :c:; (sr, sr), 

and the inequality (12.53), 
n m 

L (So', Yq')2 :c:; (S, S) :c:; (Sot, So') - L (So" Y/V 
q=1 p=1 

(12.103) 

(12.104) 

Sincet I' = S'/IIS'II and (S" S') = (S, S'), we can immediately cast the left­
hand member of inequality (12.103) into the form 

(S S')2 
(;" S') :c:; (S, S), (12.105) 

making manifest its identity with the Cauchy-Schwarz inequality (7.14). 

t The position of the origin of the coordinates is of no consequence in this problem. 
t See equation (12.23) and the text following. 
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Likewise, writing (12.23) for two states sr' and sr" and considering that, 
by definition,t any auxiliary state Yq' is equivalent to a difference between 
two fundamental states, we obtain, after subtracting, (S, Yqf.) = (S', Yqf.). 
With reference to (12.3) and (12.29), the left inequality of (12.104) thus 
becomes 

" I (S, Yq f.)2 :c;; (S, S), (12.106) 
q=l 

turning but to coincide with the Bessel inequality (7.21) written for an 
n-space. 

There is no difficulty in arriving at similar conclusions with regard to 
the right-hand sides of the inequalities (12.103) and (12.104). For this 
purpose, it is enough to appeal to equation (12.19). In fact, use of the relation 
(S, S) = (S, S') makes it possible to reduce the right-hand side of inequality 
(12.103) directly to the Cauchy-Schwarz form 

(S, S')2 :c;; (S, S)(S', S'). (12.107) 

Similarly, writing equation (12.19) for two states S" and S''' and subtracting 
yields 

(S, S" - S''') = o. (12.108) 

By its very definition, however,t an auxiliary state lj,r is equivalent to a 
difference between two fundamental states S', Thus, 

(S, Y/) = 0 (12.109) 

for every value of p between 1 and m. Accordingly, the m + 1 vectors 
S/!!S!! and Y/, p = 1,2, ... , m form an orthonormal set. 

Returning to the inequality (12.104), we drop the subscript 0 and trans­
form its right-hand side so as to obtain 

m 

(S, S) + L: (S', y/)2 :c;; (S', S') 
p=l 

and 

(S', !!~!! r + P~l (S', y/)2 :c;; (S', S'), (12.110) 

the last form implied by the relation (12.19) (after squaring). This result 
coinciding with Bessel's inequality (7.21), our assertion is confirmed. 

t Compare point (bd following equation (12.28k), 
t Compare point (ad following equation (12.28k), 
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12.4. A Comment 

As already noted, a hypercircle of class one, r(1)' is generated by the 
intersection of a hypersphere [equation (9.37)] centered at Co, given by 

IIX - Co 112 = Ro2 

and a hyperplane H(1) of class one [equation (9.14)], given by 

(X, 1) = IX, 

(12.111) 

(12.112) 

where I is a unit vector normal to the hyperplane (Figure 12.11; see also 
Figure 12.4). A parametric representation ofr(1) is, of course, given by (9.38), 

X = C + Rl, (12.113) 

where 11111 = 1, (1, 1) = 0, and C is the center of r(l)' In order to find C and 
R in terms of Co, I, and R o , we observe that, from Figure 12.11, 

C = Co + /31, (12.114 ) 

with /3 a scalar. But (X, 1) = (C, 1) = IX, so that (C, 1) = (Co, 1) + /3 = IX and 

C = Co + [IX - (Co, 1)]1. (12.115) 

Figure 12.11. A hypercircle of class one. 
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Now, (X - C, 1) = 0 = (X - C, C - Co). Consequently, 

(X - Co, X - Co) = (X - C + C - Co, X - C + C - Co) 

= (X - C, X - C) + (C - Co, C - Co). (12.116) 

By appeal to (12.113) and (12.115), this yields finally 

(12.117) 

Problems 

1. Derive the governing equations (12.6). 

2. How many dimensions of the function space Y 2( -1t, 1t), described with respect to 
the standard trigonometric base vectors (1, sin t, cos t, sin 2t, ... ), are needed to 
represent the states: (a) sin t, cos t, cos 2 t; (b) sin t, cos t, sin t· cos t? 

3. Let each of the states S I = leU)} and S 2 = {el]>} satisfy the compatibility equations 
(12.4). Does the state iXS I + pS 2 (iX, P are scalars) satisfy these equations? 

4. An (intrinsic) vector X - Y joining any two points X and Y of a one-space has the 
representation X - Y = Y I S I + Y 2 S 2, where X, Y, S 10 S 2 are position vectors. 
Show that YI + Y2 = 0. 

5. Compute bounds for (I I', [/) and (I I', [/ + [/), where Ii, i = 1, 2, 3 are unit 
vectors and [2' and [3' are mutually orthogonal. 

6. Let.'/' I and Y' 2 be two mutually orthogonal subspaces in a Hilbert space and let S 
be any vector in .'i'l (BY' 2. Show that S has a unique representation S = S I + S 2, 

where S I is in Y'I and S 2 is in Y' 2 . 

7. Consider a hyperplane H(2) of class two including the tips of all vectors S corre­
sponding to functions !(t), -1t:S: t :s: 1t, which are such that (S, [I) = a, 
(S, [2) = b, where [I, [2 are two orthonormal vectors and a, b are scalars. Find the 
length of the normal N from the space origin to the hyperplane. 

8. Find the representation of a function!(t), a :s: t :s: b such that S~ [f(tj]2 dt = eX and 
S~ !(t)t dt = J1 by using an analog of the hypercircle method [compare (Ref. 40, 
p. 95)]. 
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The Method of Orthogonal 
Projections 

The concept of the orthogonal projection of a function vector on a subspace 
was already discussed in Chapter 9. We now wish to proceed with the 
development of a fruitful method employing this concept, known as the 
method of orthogonal projections. 

To introduce the basic ideas, imagine an n-dimensional function space, 
'I On, a function f in this space, and a k-dimensional subspace .Cf k of 'I on such 
that k < n (Figure 13.1 in which k = 2 and n = 3). 

Let gl' g2' ... , gk be an orthonormal basis for.Cf k> and let gl' g2, ... , gk' 
... , gn be an orthonormal basis for 'I on. By definition of a basis, any function 
fin 'I-n can be represented in the form 

f = (Ill gl + ... + Ilkgk) + (Ilu 1 gu 1 + ... + Ilngn) 

(13.1) 

where f* and f -L designate the expressions in parentheses, respectively. 
Again by definition of a basis,f* (represented in terms ofthe basis in .Cf k) is a 
vector in .Cf k' On the other hand, f -L-as seen from its representation in 
(13.1)-is not in ·Cf'k' It is, in fact, perpendicular to all vectors in .Cf'k> as 
demonstrated by the following argument. In view of the orthogonality of the 
basis gl' ... , gn' there is 

i= 1,2, ... ,k. (13.2) 

However, any function in .Cf' k can be represented linearly in terms of the basis 
9 1, ... , gk' Thus, f -L is perpendicular to every vector in Y\ and, as a 
consequence, to .Cf k itself. Since f* is in .Cf k' then 

f* 1- f-L (13.3a) 

20S 
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Figure 13.1. Illustration of an orthogonal projection (n = 3, k = 2). 

or 

(13.3b) 

The so-constructed function J* is known as the orthogonal projection of the 
function J on the subspace.'/' k' The reason for its significance will be given a 
little later on. At this point, we can state that any function in 'I' n can be 
represented as the sum of its orthogonal projection on a subspace !f kin Y n 

and a function orthogonal to //' k' As seen from the symmetry of equation 
(13.1), there is no essential difference between the parts played by the vectors 
J* and J.l in the decomposition. Accordingly, J.l can be thought of as the 
orthogonal projection of J on the subspace !f n _ k which is orthogonal to /I} k • 

Denoting the projection of Jon Y'l by Pr /I}d, we can write equation (13.1) in 
the symmetric form 

(13.3c) 

where.'/' k.l denotes the complementary subspace perpendicular to /I} k . 

The method oj orthogonal projections is closely related to the preceding 
resolution. This is a result of the fact thatJ* is a very special function in.'/' k' 

namely, the function closest to f The term "close" is here understood in the 
sense of the least distance [see Chapter 10], which implies that J* also 
gives the best possible approximation to J of all the vectors in /I} k • 

In order to verify this statement, let us refer to Figure 13.2, in which the 
subspace .'/' k is symbolized by a plane in the three-space 'I'n , J* is the 
orthogonal projection of the given vector J on .Cf' k' and l' is any function in 
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Y k different from f*· Since f - f* is orthogonal to Sk' then f - f* is also 
orthogonal to I' - f*: 

(f - f*,f' - f*) = 0. (13.4) 

In view of the orthogonality condition (13.4), taking the inner product of the 
identity 

f - I' = (f -f*) + (f* - 1') 

with itself gives 

(f - f',f - 1') = (f - f*,f - f*) + (f* - f',f* - 1') (13.5) 

or 

(13.5a) 

This represents a Pythagorean theorem for the symbolic triangle of functions 
ABC. But Ilf* - 1'112> 0, so that 

IIf-f'lI > IIf-f*1I forf'=I=f*, (13.6) 

as asserted. 
In geometric language, the foregoing inequality expresses the elemen­

tary fact that the hypotenuse II f - I' II of the right triangle ABC is greater 
than a leg of this triangle. Analytically, this means that, of all functions in a 

Figure 13.2. Illustration for equation (13.6) (n = 3, k = 2). 
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given subspace, the closest to a given function is the orthogonal projection of 
the given function on the subspace. 

Since J - J* is orthogonal to every function h in .Y k (Figure 13.2), 

(f-J*,h)=O or (f*,h)=(f,h) (13.7) 

for all h in .Y k' If 9 l' ... , 9 k is a basis in .Y k, then, by definition of a basis, 

i = 1,2, ... , k (13.8) 

(sum over the index i), whence either of equations (13.7) can be replaced by 
the equivalent system 

(f*, g;) = (f, gil, i = 1,2, ... , k. (13.9) 

It is important to emphasize at this point that the subspace .Y k' populated 
by the vectorsJ* [see equation (13.11)], and the subspace .Yn - b populated 
by the vectorsJ -L = J - J*, can be used together to construct the entire space 
'I ~ n' In fact, every vector J in r n is represented in terms of a basis that is 
composed of the bases for .Y k and .Y n _ k taken together. Symbolically, 

(13.10) 

where the sign EB denotes the so-called direct sum, alluded to in Chapter 9 
[equation (9.29)].t Evidently, the subspaces are mutually orthogonal, 

(13.11) 

inasmuch as every vector in .CJl k is orthogonal to every vector in .CJl n _ k and 
vice versa. 

It is now both informative and instructive to illustrate our somewhat 
abstract discussion by two concrete problems. 

Example 13.1. Arithmetic Progression (Numerical Example). It is 
required to find the arithmetic progression 9 closest to the three-element 
sequence J = (3, 4, 6), where the closeness is understood in the sense of our 
earlier convention, by which the distance between two functions is measured 
by the norm of the difference of the functions [see equation (10.6)]. The norm 
itself is defined to be the square root of the sum of the squares of the 
components of the function [see equation (5.10)]. 

t This actually follows from the general projection theorem, according to which, if Cf' is a 
subspace in a Hilbert spaceY(, and ,,/,~ is its orthogonal complement (cf. Chapter 9 in this 
book), and ,y( = ,,/, EB //'~. See, e.g., Lipschutz (Ref. 82, p. 281). In practical applications 
(leading mostly to approximate solutions) one is often unable to satisfy the requirement of 
the projection theorem that the linear manifolds involved be closed (cf. p. 53 supra). 
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Let the vector g represent a function g(n) that takes three discrete 
values,t g(l) = ct, g(2) = ct + /3, g(3) = ct + 2/3, so that 

g = (ct, ct + /3, ct + 2/3); (13.12) 

ct and /3 are certain scalars, to be determined later. 
Now let the vector fbe represented by a function[(n) taking the follow­

ing discrete values: 

f(I)=3, f(2) = 4, f(3) = 6, 

so that 

Represent g in the form 

f = (3,4,6). 

g = (ct, ct, ct) + (0, /3, 2/3) 

= ctg 1 + /3g2' 

(13.13) 

(13.14) 

where gl = (1, 1, 1) and g2 = (0, 1,2) are two vectors spanning some two­
dimensional subspace .'1'2' We call .Cf' 2 the subspace of arithmetic progres­
sions and treat it as a subspace of the space 'I ' of sequences of three elements. 
It is thus required to find the progression g( n) in .'l' 2 closest to the sequence 
vector f = (3, 4, 6). 

By the property of the orthogonal projection, g(n) is the orthogonal 
projection off (n) on .'1' 2 and, consequently, obeys the relations (13.9): 

(g, gd = (f, gd, 

(g, g2) = (f, g2)' 

Upon substituting from equation (13.14), we find 

ct(gl' gl) + /3(gl' g2) = (f, gl), 

ct(gl' g2) + /3(g2' g2) = (f, g2)' 

Recalling the definition of the inner product of sequences, and bearing in 
mind that 

gl = (1, 1, 1), 

we arrive at the system 

g2 = (0, 1,2), 

3ct + 3/3 = 13, 

3ct + 5/3 = 16, 

t We follow here Hausner (Ref. 13, p. 134). 

f = (3, 4, 6), 

(13.15) 
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from which, trivially, IX = 167 and f3 = l Thus, the arithmetic progression 
closest to the sequence (3, 4, 6) is 

( 17 26 35) 
6'0'0' 

We note that the problem at hand may also be approached quite dif­
ferently by minimizing the expression 

II! - gil = {(3 - IX)2 + [4 - (IX + f3W + [6 - (IX + 2f3WP/2 (13.16) 

with respect to the parameters IX and f3 [cf. equations (5.10) and (6.24)]' This 
operation brings us back to equations (13.15) and completes the solution. By 
proceeding along this line, one looks, in fact, for a function, the deviation of 
which from the given function is measured according to Gauss' criterion of 
the mean-square error. This observation discloses an algebraic facet of the 
problem, invisible in our earlier geometric approach. 

Our second illustration of the orthogonal projection method involves a 
problem in heat conduction. 

Example 13.2. A Heated Bar (Numerical Example). A long bar of un i­
form cross section is heated by an electric current of intensity 1. The amount 
of heat generated in the bar, per unit of volume and unit of time, is 

h = 1 2/(1, (13.17) 

where (1 is the electrical conductivity [Ref. 83, equation (23.148)]' Consider­
ing the heat supplied by the internal sources, we cast the equation of heat 
conduction into the form [Ref. 83, equation (6.31a)] 

v2e = -1 in n, (13.18) 

where lJ = kfJ/h, fJ is the absolute temperature, k is the thermal conductivity, 
n is the region occupied by the cross section of the bar, and 
V 2 = a2/ax2 + a2/ay2. 

The governing equation (13.18), of Poisson's type, is complemented by 
the boundary condition 

lJ = 0 on an (13.19) 

if we assume (as we do) that the surface of the bar is kept at the temperature 
zero (an being the contour of n). 

Following Mikhlin (Ref. 8, pp. 340 and 408), we introduce the vector 
functiont 

v = -grad e, (13.20) 

-;- In this problem. we find it convenient to denote vectors by boldface type. 
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so that equation (13.18) becomes 

V· v = 1 in n, 

where V is the gradient operator. 
It is now required to find a vector v == (xx, l) such that: 

(a) v satisfies equation (13.21) in n, 
(b) - v is the gradient of a function e such that 
(c) lJ vanishes on en. 
Symbolically, 

eG 
L'x= -~, 

eX 

ee 
l'y = - ey in n 

G = 0 on an. 
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(13.21) 

(13.22a) 

(13.22b) 

(13.22c) 

We seek the solution vector in a linear space 'I, in which a Hilbert-type 
product (8.2) and a norm (7.2) are defined. Specifically, we define 

'I . = .Cf" (J).'/"', (13.23 ) 

where .'/" is the subspace of irrotational vectors v1, such that for some 0*, 

V 1 = - VlJ* in n, (13.24a) 

where 

0* = 0 on an, (13.24b) 

while .'/'" is the subspace of solenoidal vectors v 2, such that 

V'v2 =O in.Cf'''. (13.25) 

These subspaces satisfy 

.Cf" 1. .,,/". (13.26) 

We first prove the assertion (13.26). Using a known relation from vector 
calculus, we have, for v 1 in .'/" and v 2 on .Cf''', 

v1 . V2 = - VO* . V2 

= -V, (O*V2) + O*V' V2 
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or, by appeal to the divergence theorem, 

(Vb V2)= f VI' V2 dx dy 
'Q 

= - r V2 • n8* ds + f 8*V' V2 dx dy. 
'oQ • Q 

Chapter 13 

(13.27) 

The first of the preceding integrals vanishes by virtue of the relation 
(13.24b); the second integral vanishes because of the condition (13.25). This 
proves the assertion (13.26). 

We are now permitted to represent the solution vector V as a sumt 

(13.28) 

In order to find the solution explicitly, it is convenient to seek the solution 
vector in the form 

v= V + W, (13.29) 

where V satisfies the equation 

V' V = 1 in n. (13.30) 

For this purpose, we select the vector V in the simple form, 

(13.31 ) 

Since the solution vector is to satisfy equation (13.22a), W must be a solution 
of the homogeneous equation 

o~+o~=o inn. ox oy (13.32) 

In view of equation (13.25), the meaning of the equation above is that W lies 
in .cr''': W s{ V 2} (compare Figure 13.3, crudely depicting the relation 
.cr" .1 .cr'''). Since the conditions (13.22b) and (13.22c), taken together, coin­
cide with conditions (13.24) defining YO', we conclude that the vector v lies in 
Y', i.e., vs{vd. Moreover, in view of equation (13.29), there is 

V =v- W, (13.33 ) 

so that v is the orthogonal projection of V in .cr" and - W is the orthogonal 
projection of V in .cr'''. Since V is a known (or, rather, an easily selected) 
vector, it is sufficient to determine W in order to arrive at the solution vector 
v. Actually, it is easier to determine the solenoidal vector W than to deal with 
the projection of V in .cr". 

t This should come as no surprise if one recalls the Helmholtz theorem of vector calculus. See, 
e.g .. Wills (Ref. 84. p. 121). 
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Figure 13.3. Illustration for equations (13.29). r = V + W. 

We now show the application of the foregoing analysis in the cases involv­
ing three types of cross sections: an elliptical, equilateral triangular, and in 
the form of a circular sector.(85) 

A. An Elliptical Cross Section (Figure 13.4) 

In view of the symmetry of the cross section and certain physical con­
siderations, the function lJ turns out to be an even function of x and y. 
Hence, alJjox is odd in x and even in y, while alJjay is odd in y and even 
in x. 

y 

----~----_F----;_-,-----x 

Figure 13.4. An elliptical cross section. 
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We select the vector V in the form (13.31), obeying the conditions of 
symmetry. In finding an approximation to v 2 :: W, it is helpful to recall that, 
by a generalization of the Weierstrass approximation theorem,(n.86) any 
real function of n real variables, continuous on a closed bounded subset of 
;}In' can be approximated uniformly by polynomials in the n variables. We 
may thus write 

n 

-V2 ~ L OCiV2i, 
i= 1 

(13.34 ) 

where the oc/s are certain coefficients to be determined later and the V2/S are 
monomials in x and y (linearly independent) satisfying equation (13.25). 
Since our objective is here rather modest, we content ourselves with the 
value n = 3. 

Suppose, then, that we take three terms of the representation (13.34), so 
that the vector giving the approximate solution is 

v:: (x; 0) - OCl(X; - y) - OC 2(X3; -3x2y) - oc3(3xy2; - y3). (13.35) 

It is easily verified that the expression above satisfies all the imposed condi­
tions. Now, since V2 is the orthogonal projection of V on !f", it is also that 
vector closest to the vector v (of all vectors in !fIll. Symbolically, 

1(oc;):: IIV - v2 11 2 

= r (V-V2' V- v2)dxdy=min. 
'n 

(13.36) 

From the conditions 01(OCi)/OOCi = 0, i = 1, 2, 3, we conclude 

a2 
(13.37) 

It follows that the solution vector is 

a2 
v::(x;O)- 2 b2(X; -y). 

a + 
(13.38) 

We now refer to equation (13.20) and find the temperature distribution as 

b2x2 + a2y2 
-9 = 2(a 2 + b2 ) + C, (13.39) 

where the integration constant C is evaluated from the boundary condition 
(13.19). Consequently, 

(13.40) 



The Method of Orthogonal Projections 215 

y-__ ~~ ______ ~_________X 

Figure 13.5. An equilateral triangular cross section. 

This completes the solution, and it is not difficult to verify that, while look­
ing for an approximate solution, we have unexpectedly arrived at the exact 
solution of the problem at hand (Ref. 74, p. 263). 

B. An Equilateral Triangular Cross Section (Figure 13.5) 

This cross section has an axis of symmetry coinciding with the x-axis. 
This implies that 8rJ/8y is odd in y. We select the vector V in the form 
(13.31), and approximate Vl by means of three vectors V 2i , i = 1,2,3, giving 

v == (x; 0) - ct l (3x 2 ; -6xy) - ctz(aZ; 0) - ct3( -3i; 0). (13.41) 

Before proceeding further, we should convince ourselves that the expression 
above is consistent with the requirement (13.20). Observing that this obtains 
provided we set ct 3 = ctlo we proceed as in Case A and find, after some 
elementary calculations, that ct l = et z = 1/4a. Hence, finally, the solution 
vector is 

1 1 
v == (x; 0) - 4a (3x Z - 3yZ; -6xy) - 4a (a Z; 0). (13.41a) 

Upon using equation (13.20) once more and setting rJlx=o. y=o = 0, as 
required by the boundary condition, we find the temperature distribution 

(13.42) 

It is easily verified that we were again fortunate enough to arrive at the exact 
solution (Ref. 74, p. 266). 

C. A Circular Sector (Figure 13.6) 

As our last example, let us consider a circular sector of radius a and 
central angle 2et; it is assumed that I et I < n/4. Evidently, the temperature 
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Figure 13.6. A cross section in the form of a circular sector. 

field is symmetric with respect to the x-axis. We note that, in polar coordin­
ates r, ljJ, 

OU lou 
grad U = or e, + ~ oljJ e"" 

(13.43) 

d . ow, w, low", 
IV W = a,.- + 7 + ~ oljJ , 

where e, and e", are unit vectors along the radius and in the azimuthal 
direction, respectively (the remaining notation being self-explanatory). With 
equations (13.25) and (13.30) and the symmetry of the cross section in mind, 
we set 

V20 == (~ cos 2ljJ; - ~ sin 2ljJ), 

V . = r1l1[/2x-l cos - A,.. - 1"'7t/22-1 SIO _ A,. ( 
M . M ) 

2. 21X 0/, 21X 0/ , 

. n+l 
1=-2-' n = 1, 3, 5, .... 

(13.44) 

A lengthy, but simple, calculation, retracing the earlier argument, leads to 
the following system of equations: 

~=o 
OlXo ' 

a 4 . a4 an7t/2x+ 2 

16 SIO 21X = lXo -8 IX + L lX(n+ 1)/2 (/2 2)( /2 2) 
n=1.3.5.... nn IX+ nn IX-

x sin(;: - 2 )IX; 
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i = 1,2,3, ... , 

am,,/22+2 am,,;22+2 
( 1)(m+ 3)/2 - rJ. 
- (mn/rJ.)(mn/2rJ. + 2) - 0 2(mn/2rJ. + 2)(mn/2rJ. - 2) 

(mn) am";2 
X sin 2rJ. - 2 rJ. + rJ.(m+ 1)/2 mn rJ.2, 

m = 1,3,5, .... ( 13.45) 

For definiteness, we choose a = 1 and rJ. = n/6, and (with the help of a 
computer) arrive at the following values for the coefficients: 

0: 0 ~ + 1.998962, 
Ci l ~ -0.763349, 
C( 2 :::: +0.049491, (13.46) 
C(3 ~ -0.017217, 
::(4 ::::: +0.008693. 

Assuming 81,=0, we thus obtain 

_ r2 r2 2rJ. nn e 2-J. '\' ",,/22 -J. (1347) = - -4 + rJ.0 -4 cos,+, + _ L.. rJ.(n+1)/2 -r cos -2 '+', . 
"-1.3,5.... nn rJ. 

where the first few coefficients are given by equations (13.46). To verify the 
satisfaction of the boundary conditions, we check the accuracy of the preced­
ing equation at the points r = 1, ¢ = 0 and r = 1, ¢ = ± rJ.. It turns out that 
the values of 8 at these points are +0.000056 and -0.006032, respectively, 
instead of zero. This seems to be acceptable accuracy, in view of the fact that 
the series (13.47) converges rapidly and five terms of the latter were used in 
the calculations. 

13.1. Theory of Approximations 

It is quite often demanded that a continuous or discrete analytic for­
mula be selected which approximately represents a function determined by a 
table, a graph, or an analytic expression too complicated or otherwise un­
suitable for the purpose at hand. An example of such an approximation 
procedure is found in Example 13.1, where the method of orthogonal projec­
tions in Hilbert space is used. In order to more fully cla.rify the part played 
by function space methods in the theory of approximations, it is instructive to 
take recourse to a class of spaces more primitive (general) than the Hilbert 
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spaces, for instance, to the normed linear spaces. We recallt that a vector 
space is a normed linear space if there is a real number II x II, called the norm 
of x, associated with each vector x in the space; the norm satisfies the 
requirements imposed by Axiom N [equations (7.13)]. 

In the following we denote the normed linear space by. I . and choose it 
to be an ensemble of continuous real-valued functions I(P) of n real vari­
ables, the common domain of definition of which is Y, a closed subset of the 
n-dimensional point space dln .; 

We shall use a particular type of norm, representing a generalization of 
the type (5.33),§ to the present setting of a continuous domain Y, 

IIIII = maxl/(P)I, (13.47a) 
P E.'/ 

and known as the uniform, or Chebyshev, norm. 
In the manner of the definition (6.24), we define a distance between two 

vectors I(P) and g(P) by 

d(j, g) = III - gil 

= max I I(P) - g(P) I· (13.48) 

Our problem now is: given a function F(P) in . I . and a particular linear 
subspace ,(/) m spanned by m linearly independent functions J; in . I " it is 
required to find the coefficient Ci in the sum 

m 

J(P) = L Ci J;(P) (13.48a) 
i= 1 

such that J(P) is the "best" approximation of F(P). In the language of 
function space (Figure 13.7), the problem requires: (a) an inspection of the 
minimal "error" 

(J = inf liF - !II, (13.49) 
f E.'/ m 

where d = liF - III is the error (in the selected norm) in approximating F by 
IE .'/' m; (b) to find the set .'7' c Y m of functions J for which 

IIF - JII = a. (13.50) 

Clearly, the number (J is the shortest distance (in the selected norm) of the 
vector F from the subspace Y m' and the set .'7' is the set of vectors J closest to 
the vector F (or the set of points "nearest" to the "tip" T of the vector F). 

t Compare Chapter 1 and Figure 1.1. 
~ That is, a set of n-tuples of real numbers. 
~ Ilf(P)11 = maxlf(Pl),f(Pz), ... ,f(P.)I· 
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Figure 13.7. Illustration for the formula (13.50). 

Inasmuch as the geometry of a normed space does not include the idea of 
perpendicularity (no concept of the inner product having been introduced), 
there need not exist a unique point in /I'm nearest to T (or such a point at 
alIt). In fact, as will be shown below, there may be infinitely many such 
points. 

Example 13.3. Linear Approximation. (Numerical Example). Buck(88) 
gives the following elegant example of a linear approximation of the vector 
F(x. y) = xy by a vector 

I(x, y) = C1 + c2(x + y) + C3(X2 + y2) (13.51) 

from the subspace ''/3 with the base 1, x + y, and x 2 + y2. As the space. j " 

we select the space of continuous functions of two variables x and y defined 
in the square 0 ~ x ~ 1, 0 ~ y ~ 1. As the norm, we select the uniform norm 
(13.47a). 

We first require that the error 

IIF-III ~l (13.52) 

This implies that, for 0 ~ x ~ 1 and 0 ~ y ~ 1, 

xy - i ~ Cl + C2(X + y) + C3(X2 + y2) ~ xy + l (13.53) 

;. It is shown, however, that among the approximating functions of the form P(x)/Q(x), where 
P(x) and Q(x) are polynomials, there exists at least one function for which 
max.Sx<b IIP(x)/Q(x) - F(x)11 has a minimum, cf., e.g., Achieser (Ref. 87, p. 53). 



220 

We take, in turn, (x, y) = (0, 0), (0, 1), (1,0), and (1, 1), obtaining 

-i:::; C l :::; i, 
- i :::; C 1 + C 2 + C 3 :::; i, 

! :::; C 1 + 2cz + 2C3 :::; i. 

Chapter 13 

(13.54a) 

(13.54b) 

(13.54c) 

Adding the first and last of the equations above and comparing with the 
second gives the necessary conditions 

C l = -i, (13.55) 

From these and the inequality (13.53), there follows 

(13.56) 

The foregoing results are plotted in Figure 13.8 with reference to a coordin­
ate system c l , C2, C3. 

It is seen that the subspace .9 of the best approximating functions [in 
the given norm and obeying the condition (13.52)] is not represented by a 
single point, but by an entire "line segment" whose terminal points are the 
functions 

(13.57) 

Figure B.S. Illustration for the formulas (13.55) and (13.56). 
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For all the functions of this segment, 

l = rxll + (1 - rx) l2 , o -:; rx -:; 1, (13.58) 

the error (J in equation (13.50) is equal to l A different statement of this fact 
is that the surface of the ball (solid hypersphere) (J -:; * centered at T 
"touches" the "plane" .'f 3 along a "line segment" JI -:; J -:; J2 . 

Problems 

I. Construct a subspace of the Hilbert space !f' 2( -n, n), of square-integrable func­
tions on [ -n, n], which is orthogonal to the subspace of functions spanned by 
sin kt, where k = 1, 2, .... 

2. Determine the orthogonal complements: (1) in a 3, of a subspace a I represented 
by a straight line; (2) in a 3, of a subspace a 2 represented by a plane; (3) in 6 2 , of a 
subspace a I represented by a straight line. 

3. Let .'I' be a subspace of a Hilbert spacek, so that each/ink possesses a unique 
decomposition as / = Pr'l I + Pr'l . .I; where Pr y I is in Y', Pr'l , lis in Y''.. Verify 
that Prl (II + f~) = Prl f~ + Prl f~· 

4. With notation as in Problem 3, show that Pry(cf) = cPr'I(I), where c is a scalar. 

5. Let ax, ar , and az denote three subspaces in a3 represented by the coordinate 
axes x, y, and ::, respectively, and let a rz be the subspace represented by the plane 
y::. (a) Show analytically the correctness of the answers to Problem 2, (1) and (2). 
(b) What are the orthogonal projections of a vector l' in a 3 on a ).z and a x? 

6. In a 3 with an orthogonal basis (g b 9 2, 9 3}, the orthogonal projections of a vector 
u on the subspaces spanned by gl and g2 (straight lines Y" and yon) are u' and un, 
respectively. Find the orthogonal projection u'" of u on the subspace spanned by gl 
and g2 (plane y"n) in terms of u' and un. 

7. If .'1' is a closed subspace of a Hilbert spacek, show that Y' = yH, where .'1'1'. is 
the orthogonal complement of .'1'1 

8. Defining the norm of a continuous function, after Chebyshev, as II/II = 
maxa"x "b I I(x) I--see equation (13.47a)-show that the following relation holds: 
lief II = I c I II I II, where c is any scalar. 

9. With notation is in Problem 8, show that III+ gil :s: IIIII + Ilgll. 
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The Rayleigh-Ritz and 
Trefftz Methods 

14.1. The Rayleigh-Ritz Method 

The Rayleigh-Ritz method belongs to the so-called direct methods of the 
calculus of variations, inasmuch as it is applied to problems formulated in an 
integral rather than a conventional, that is, differential, form. More often 
than not, the procedure involves the minimization of integrals containing 
unknown functions and their derivatives, without first deriving from these 
integrals equivalent (the so-called Euler-Lagrange) differential equations. 

The method was first proposed by Lord Rayleigh in his celebrated 
theory of sound, in connection with the vibrations of elastic systems (strings, 
beams, and plates). Rayleigh, making use of the principle of conservation of 
energy, was able to show the remarkable accuracy of the approximate values 
of frequencies and modes of vibrations obtained by means of his method. 

It is worth recalling that, in the theory of vibrations, the frequencies and 
modes represent, respectively, the eigenvalues and eigenfunctions of the 
boundary value problem describing the particular process of vibration. 
Specifically, the frequencies, A.n , are represented through the so-called Ray­
leigh quotient, 

( ) _ (Lu, u) 
P u - ( )' u, u 

(14.l ) 

where L is the differential operator of the problem and u is a function in the 
domain of L; the inner product is here of the Hilbert type. If u = Un' an 
eigenfunction of L, then p(un) = A.n. In general Un is not known, but it is 
shown that, for U = Un' p(u) has a stationary value. Moreover, if we take a 
function U which is close to Un' we expect that the value of p(U) will be close 
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to An.t It is worth noting that the numerator and denominator in the right­
hand member of equation (14.1) are closely related to the potential and 
kinetic energies of the vibrating system, respectively. 

A significant development of Rayleigh's ideas was effected by Ritz, who, 
in a series of articles published during the years 1908 and 1909, approached 
the problem from a more general point of view. 

Before examining the Rayleigh-Ritz procedure in the context of func­
tion space concepts, it is instructive to recall the main points of this 
procedure. 

Suppose, then, that a given integral I[!] is to be minimized or, more 
generally, made stationary over a domain of functions f To achieve this, we 
choose a set of functions, say {cf>;}, called coordinate functions, which, 
although being to some extent arbitrary, are nonetheless bound to be admis­
sible, i.e., to satisfy (ordinarily) the boundary, initial, and some regularity 
conditions. As a next step, we form a linear combination, In, of n of the 
functions cf>i, called the Ritz expression, 

(14.2) 

and determine the coefficients Ci from the requirement that the functional 
f[!n] be stationary over all values of the coefficients. This implies that 

af[ln] = 0 
aCi ' 

i = 1, 2, ... , n. (14.3 ) 

Frequently, the integrand in the functional f[!] turns out to be a quadratic 
form in f and its derivatives, that is, a homogeneous polynomial of the 
second degree. Consequently, a solution of the foregoing system of (linear) 
equations in the c/s presents no difficulties. A substitution of the so-deter­
mined coefficients into equation (14.2) furnishes immediately the required 
approximate solution. 

There are often reasons to believe that the greater the number n of 
coordinate functions utilized, the smaller the expression for fn deviates from 
the exact solution. A proof of the convergence of the Rayleigh-Ritz process, 
however, is in general difficult (if attainable at all),t and one is usually 
satisfied if one assures that a certain number of the values f[J,J of f[!] 
provide a nonincreasing sequence, 

(14.4 ) 

t See, e.g., Friedman (Ref. 22, p. 207fT), and Timoshenko (Ref. 89, Sec. 61). We recall, however, 
that since p(u) is "flat" at Un' the value p(u) usually provides a better approximation for p(un) 

than u does for Un' 

! Some questions of convergence of sequences of Rayleigh-Ritz approximations are now suc­
cessfully treated in the theory of finite elements. See, e.g., Oden (Ref. 90, p. 120). 
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Here,];', k = 1, 2, ... , n, denote the functions fk minimizing the functional J[!] 
over all linear combinations of the <P;, i = 1, ... , k. The inequality (14.4) 
follows, naturally, from the fact that each new approximation fk includes 
functions of the preceding approximation fk-l; this implies the non­
increasing values of successive minima. Since, by hypothesis, J[!] possesses 
an unqualified minimum, the sequence J[];.] is bounded from below and thus 
converges. It need not, however, converge to the min J[!]. If the coordinate 
functions are mutually orthogonal, then a general formula for the 
coefficients Ci can be found directly, without appeal to the whole system 
(14.3). 

It is often convenient to single out a particular coordinate function from 
the Ritz expression (14.2) by setting 

n 

fn = <Po + L Ck<Pk' (14.5) 
k=l 

In this case, the distinguished function <Po is often required to satisfy any 
preassigned nonhomogeneous boundary conditions, while the remaining 
functions obey boundary conditions of the homogeneous type. Along with 
that just described, other modifications of Ritz expression are of use. For 
instance, if a given problem involves more than one independent variable, 
say three, x, y, and z, then it might be practical to set 

n 

fn(x, y, z) = L Ck<Pk(X)l/!k(Y, z), (14.6) 
k=l 

where the functions <Pk are selected in advance and the functions I/!k are to be 
determined from other conditions. There are situations in which one should 
refrain from using linear combinations of the coordinate functions and form 
the Ritz expression as a transcendental function of the parameters Ck • 

While the Ritz expression is usually required to satisfy all, or at least 
some of, the prescribed auxiliary conditions, it does not, in general, satisfy 
the governing equation (or equations). In order to minimize this deficiency, 
the Rayleigh-Ritz method is normally applied in combination with a vari­
ational principle, such as that of the minimum potential energy of Lagrange 
or of the minimum complementary energy of Castigliano.t The first-named, 
expressed in terms of displacements, automatically secures the best possible 
satisfaction of the equations of equilibrium and the stress boundary condi­
tions. The Castigliano principle, on the other hand, is expressed in terms of 
stresses and automatically guarantees the best possible satisfaction of the 
compatibility equations and the displacement boundary conditions. 

t See, e.g., SokolnikolT (Ref. 31, Sees. 107 and 108). We have here in mind elastic problems. 
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The inherent connections between the Rayleigh-Ritz method and the 
geometry of function space are amply illustrated by the following example. 

Example 14.1. Bounds for Torsional Rigidity. Suppose that one is 
required to find the torsional rigidity D of a bar of uniform and simply 
connected, but otherwise arbitrary, cross section.t It is known that the 
potential energy of a bar subjected to torsion is 

J1fX2 , 
U = 2.1}(I/I.x)2 + (l/I,y)2] dx dy + F1(x, y), (14.7) 

where 0 is the region occupied by the cross section, J1 is a Lame constant, (J, is 
the angle of twist per unit length, F 1 (x, y) is a known function depending on 
the form of the cross section, and 1/1 is the so-called conjugate torsion function, 
harmonic in 0 and obeying the boundary condition 

./, __ x2 + y2 
'I' 2 (14.8) 

on the contour ao of 0.(31. 74) 

The torsional rigidity of the bar is 

(14.9) 

where 1 p is a polar moment of inertia of 0 about the centroid. 
By the theorem of minimum potential energy, the functional (14.7) 

attains its minimum when 1/1 is the exact solution of the problem. From 
equation (14.7) it is seen that this happens when the Dirichlet integral, 
1[1/1] = JQ [(I/I,x)2 + (I/I.}V] dx dy [cf. equation (8.45)] becomes minimum 
with the stipulation that 1/1 satisfies condition (14.8). 

In the calculus of variations it is demonstrated (Ref. 91, Chap. 4) that 
the just-described minimization of the Dirichlet integral is equivalent to 
solving the differential (Dirichlet) boundary-value problem 

x2 + y2 
VI/I=O inn, 1/1= 2 =f onaO. (14.10) 

Now let us introduce a Dirichlet-type inner product of functions in the form 
[cf. equation (8.6)] 

(¢1' ¢2) = r (¢1. A2, x + ¢1, y¢2. y} dx dy, (14.11 ) 
'Q 

t Weinstein. IS 0) We review here some of the results obtained in this paper. Compare also the 
problem in Chapter 8 following equation (8.38). 
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so that 

1[</1] = (</1, </1) or 11</111 = [/(</1W/ 2 • (14.11a) 

Retracing the argument which led to inequality (14.4), we conclude not only 
that 

(14.12) 

but also that every approximate solution l{! [satisfying condition (14.8)] 
furnishes an upper bound for the actual minimum of the functional I[ IjJ ]. 
Symbolically, 

IIIjJ II :; Ill{! II, 

l{! =f on an. 
(14.12a) 

(14.l2b) 

An inspection of equation (14.9) shows that this result furnishes simultan­
eously a lower bound for the torsional rigidity D. 

It is easily verified that the inequality (14.12a) is a direct consequence of 
the Cauchy-Schwarz inequality (3.22). In fact, there is 

(14.13a) 

and by the first Green identity, 

(1jJ, l{! -1jJ) = r [1jJ.Al{! -IjJL + IjJjl{! -1jJ).J dx dy 
.f! 

= r (l{! -1jJ)IjJ.n ds - r (l{! _1jJ)V21jJ dx dy 
.' ("In • n 

=0, (14.13b) 

in view of the fact that IjJ = l{! = f on an and V21jJ = 0 in n. This implies that 

(1jJ, l{! -1jJ) = (1jJ, l{!) - (1jJ, 1jJ) = 0, (14.13c) 

so that, replacing (1jJ, l{!) by (1jJ, 1jJ) in (14.13a), we recover the inequality 
(14.12a). 

The remarkable geometric sense of the latter inequality is depicted in 
Figure 14.1, in which relation (14.13b) translates into the perpendicularity 
of the vectors IjJ and l{! - 1jJ. Thus, in geometric language, the inequality 
(14.12a) expresses the theorem that, in a right triangle, the length of a leg is 
less than that of the hypotenuse. 
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appr~lIimate 
solution 

Figure 14.1. Illustration for equation (14.13b). 
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Example 14.2. Biharmonic Problem. As another illustration, it is infor­
mative to examine a geometric interpretation of the Rayleigh-Ritz method 
when applied to a biharmonic problem. Let it then be required to find a 
function w = w(x, y) satisfying the differential equation 

V4 w = qo/D in Q, (14.14) 

as well as the boundary conditions 

w=o, ow = ° on an, an (14.14a) 

where an is the contour of the region nand n is the normal to an. 
The function sought may be interpreted as the deflection of a thin 

elastic plate of bending rigidity D, clamped at the contour, and acted upon 
by a transverse load of uniform intensity qo. The problem so defined belongs 
to the class of so-called semi-homogeneous boundary value problems be­
cause one defining equation [here (14.14)] is nonhomogeneous, but the re­
maining two are not. Using the Rayleigh-Ritz procedure, which ensures 
satisfaction of the boundary conditions, it is convenient to invert the roles by 
making the governing equation homogeneous(92); this automatically con­
verts the associated boundary conditions into nonhomogeneous forms. In 
order to achieve this, we find a particular integral of equation (14.14), denot­
ing the integral and its normal derivative on the contour an by f and g, 
respectively: 

Wo =f, 
awo an = g on an. (14.15) 
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Let the plate be located in the strip 0 ~ x ~ a. We select the integral in the 
form 

_ 4qoa4 ~ ~. knx 
Wo - 5D L. k5 SIn , 

n k=1.3.... a 
(14.16) 

reminiscent of the deflection of an infinite plate strip of width a, uniformly 
loaded. It can be verified that the foregoing expression satisfies the field 
equation (14.14) provided the load is represented in the form of a Fourier 
series, 

4qo ~ 1. knx 
qo = - L. - SIn -, 

n k=1.3 .... k a 
(14.17) 

odd in x and having period 2a. 
If Wo obeys the condition (14.15), then the component w of the actual 

solution, taken in the form 

W = Wo + w, (14.18) 

is required to satisfy the homogeneous version of equation (14.14) in n, and 
the conditions 

w =-f, 

on the contour on. 

ow 
- =-g on (14.19) 

As a consequence, the original problem is reduced to that of finding a 
function w satisfying the homogeneous equation 

(14.20) 

and the nonhomogeneous conditions (14.19). 
We now employ the Rayleigh-Ritz procedure and select a function 

u(x, y) in Ritz form satisfying the boundary conditions 

OU ow 
u = W, on = on on on. (14.21) 

This function is required to minimize the potential energy of the plate, 

. ,. ou ,. 
U(u) =, W(u) dn + . Mn(u)-;) ds - v,,(u)u ds = min, (14.22) 

'n 'cn un 'cn 

where the first integral is given by equation (8.33) and the remaining two by 
equation (8.9), in which we set q = O. We assume that u has been determined 
by the Rayleigh-Ritz procedure, considering it hereafter as known. 
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By appeal to the Clapeyron theorem (8.9), we have 

(w, u - w) = - r IrMn(W)~ (u - w) - v,,(w)(u - w) 1 ds. (14.23) 
. en an J 

In the preceding equation, the integrand vanishes by (14.21) so that 

Accordingly, 

(w, u - w) = O. 

(w, u) = (w, w + (u - w)) 

= (w, w) + (w, u - w) 

= (w, w). 

By the Cauchy-Schwarz inequality (3.22), 

(u, W)2 ~ (u, u)(w, w), 

and disregarding the trivial case (w, w) = 0, use of (14.25) gives 

(w, w) ~ (u, u). 

(14.24) 

(14.25) 

(14.26) 

(14.27) 

This result corroborates our previous finding that from a geometric point of 
view, the Rayleigh-Ritz procedure leads to an elementary theorem for a 
right triangle. Figure 14.1 illustrates this fact, provided Ij; and If; are replaced 
by wand u, respectively. 

It is evident that, in the example just examined, the Rayleigh-Ritz 
method furnishes an upper bound for the norm (represented by an energy 
integral) of the solution vector, but not for the solution vector itself. In this 
connection, we have no information about the deviation of the approximat­
ing function from the exact solution w. The situation is even less certain if 
one is interested in the derivatives of the function at hand inasmuch as the 
closeness of functions does not guarantee the closeness of their derivatives. 
Such a situation usually arises if one applies the Lagrange principle for­
mulated in terms of displacements, and one is concerned with the stress field, 
that is, with the second derivatives of displacements. As a simple example, 
consider a cantelever beam of bending rigidity EJ, acted upon by a terminal 
load. Applying a combination of Lagrange's principle with the Rayleigh­
Ritz method, we represent the deflection of the beam in the form 

( nx) w = C 1- COSt' 

where I is the span of the beam. An elementary calculation gives the follow-
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ing values for certain measures of the deviation of the approximating solu­
tion from the exact one: 

maximum deflection, w(l), - 1.0" '" 

dW/ " slope at the free end, dx x = /' + 3.2 0' 

d2 w / maximum moment, -EJ -d 2 ' -19.0°", 
X x=/ 

d\v / shear force, - EJ d .3 ' + 27.5 0
0-

x x=/ 

The increase of the error with repeated differentiations, evident in the fore­
going list, indicates that the only possibility of diminishing the error is to 
directly associate the functional to be minimized with the quantity of inter­
est. This was done, for example, in the torsion problem examined earlier [cf. 
equations (14.9) and (14.11a)). 

14.2. The Trefftz Method 

We now turn our attention to a second, less popular, method of the 
calculus of variations, known as the Trefft: method. This method is, in a 
sense, the direct opposite of the Rayleigh-Ritz method, inasmuch as the 
approximate solution is selected here to satisfy the governing equation, but 
permitted to violate the boundary conditions. The main attractiveness of the 
Trefftz method rests in the fact that, occasionally, it is found to furnish 
bounds complementary to those provided by the Rayleigh-Ritz procedure. 
As an illustration, consider the following problem. Let us find bounds for the 
solution of the biharmonic equation 

satisfying the boundary conditions 

w = -f and 
cw 
- = -g on an. all 

(14.28) 

(14.28a) 

Let w be the exact solution of the problem. We select an inner product of 
vectors in the form (8.9). By the Cauchy-Schwarz inequality, 

(u, W)2 <:::: (u, u)(w, w), (14.29) 
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and, from equation (8.9) (after replacing v by w), 

(u, w) = r [Mn(u)g - v,,(u)fJ ds, 
'cn 

(14.30) 

where u is the function introduced earlier as that which satisfies equations 
(14.21) and (14.22). 

Combining the last two formulas, we have 

{fcn [Mn(u)g - v,,(u)fJ dS}2 ( ) 
() :-:; w, w. 
u, u 

(14.31 ) 

All functions in the left-hand member of this inequality are known; thus, the 
procedure furnishes a lower bound for the norm of the exact solution and, in 
combination with the inequality (14.27), bounds the norm ofthe solution on 
both sides.t As was the case in the Rayleigh-Ritz method, the function space 
language here also suggests a pictorial representation of the inequality 
(14.31). Indeed, introducing the notation 

Sen [Mn(u)g - Vn(u)f] ds = A 
(u, u) , (14.32) 

we cast equation (14.31) into the compact form 

(Au, Au):-:; (w, w). (14.33) 

Now, 

(Au, w - Au) = A(u, w) - A2(u, u) 

=0, (14.34 ) 

in view of equations (14.30) and (14.32). A geometric interpretation of this 
result, not difficult to discover, is that the multiple Au (of the approximate 
solution) and the vector difference ofthe exact solution wand the A-multiple 
of the approximate solution are mutually orthogonal (Figure 14.2). The 
exact solution represents here the hypotenuse of a right triangle (OAB in 
Figure 14.2), and the A-multiple of the approximate solution is a leg of this 
triangle. A graphical representation of this result, as well as of the pertinent 
result of the Rayleigh-Ritz procedure, is given in Figure 14.3. 

As another illustration of the Trefftz technique, we wish to examine the 
Dirichlet problem, approached before via the Rayleigh-Ritz method [see 

t Note that the function w satisfying the equations (14.20) and (14.19) is now denoted by w, 
without an overbar. 
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A w-Aii B 

Aii 
solution 

A - approximation 

o 
Figure 14.2. Illustration for the Trefftz procedure. 

equations (14.10)]. Then, let it be required to find an approximate solution 
to the boundary value problem, 

V2w = 0 in n, 
W =/ on an. 

(14.35) 

(14.35a) 

As noted before, this problem is equivalent to minimizing the Dirichlet 
integral, 

I· [(W. x )2 + (W)2] dx dy = min, (14.36) 
on 

under the condition (14.35a). The integrand in the preceding equation evi­
dently represents the square of the magnitude of the gradient of wand, in the 
Dirichlet notation of (8.46), equation (14.37) takes the compact form 

(w, W)D = min. (14.37) 

The Trefftz procedure is usually carried out in two consecutive steps. First, a 
set, {ct>;}, of functions satisfying the governing equation-in the present case, 
equation (14.35)-is selected. The functions are linearly independent, and it 

Aii 
Trefftz 

solution 

Figure 14.3. Two-sided bounds. 
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is desirable that they form a complete set according to the following criter­
ion: for any function w harmonic in n, and for any positive number e 
(however small), there is 

f {[(w - Wn ),x]2 + [(w - Wn ),y]2} dx dy < e, 
'n 

(14.38) 

provided n is sufficiently large, where 

(14.39) 

with the ck's as some constant coefficients, In order to determine the latter, a 
simple device is to require the approximate satisfaction of the boundary 
conditions through 

f [w(s) - wn(s}f ds = min, 
'en 

(14.39a) 

where w is defined by (14.35a). According to TrefTtz himself, however, it is 
better to go back to equation (14.36) and demand that the functional be 
minimized with respect to the deviation of Wn from w: 

(14.40) 

TrefTtz' idea can be applied to boundary value problems of a considerably 
more general type than that of (14.35). Instead of the variational equation 
(14.36), for instance, one can consider the equation 

f [Aw~x + 2Bw,xw,y + CW~y + Ew2 - 2rw) dx dy = min, (14.41) 
n 

with the associated Euler-Lagrange equation 

L(w) == (Aw,x + Bw,y},x + (Bw,x + Cw,y},y - Ew = -r(x, y), (14.42) 

where A, B, C, E, and r are given functions of x and y. Suppose, for 
definiteness, that the function w satisfies the condition 

w(s) = f(s) on an, (14.42a) 

and take the solution of equation (14.42) in the form 

n 

wn=w+ LCk¢k, (14.42b) 
k=l 

where w is a particular integral of (14.42) and ¢k, k = 1, 2, ... , n, are solu-
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tions of the homogeneous version of (14.42). We introduce a "gradient-type" 
inner product 

(u, r)G = r [Au.xL'.x + B(u.xL".). + u.yL'.x) + Cu.),r.), + EuL'] dx dy 
'n 

(14.42c) 

and, following Trefftz, require that the square of the distance Ilw - Wn IIG be 
mlllimum: 

(14.42d) 

It is clear that the condition of the vanishing of the derivatives of the preced­
ing functional with respect to the parameters Ck yields a system of linear 
equations in these parameters, 

k=1,2, ... ,n, (14.43 ) 

from which the latter can be determined explicitly provided the unknown 
function w is eliminated. To achieve this, we apply the Gauss-Green 
theorem, 

(u, 17)c; + r uL(I') dx dy = r uL*(r) ds, (14.44) 
. n . cn 

where 

L*(L') = (Ar.x + Bv)cos(n, x) + (Bv. x + Cr)cos(n, y). (14.44a) 

In the foregoing identity, we set 

n 

U = W + I Ck ¢k - wand t' = ¢l, 
k=l 

1=1,2, ... ,n, (14.44b) 

obtaining the system of equations 

(wn - w, ¢1)C; + r (wn - W)L(¢I) dx dy - r (wn - W)L*(¢I) ds = 0, 
'n 'fn 

1= 1, 2, ... , n. (14.45) 

At this stage, we note that the condition (14.42d) implies that 

a 
-a (W - W n , W - wn ) = 2(w - W n , ¢l) 

Cl 

= 0, I = 1, 2, ... , n, (14.46) 

so that the first term in equation (14.45) vanishes. Similarly, L(¢l) = 0 for 
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any I = 1, 2, ... , n. Thus, after accounting for the boundary condition 
(14.42a), we arrive at TrefTtz' system of equations, 

± Ck f rPkL*(rPl) ds = f (f - w)L*(rPl) ds, 1= 1, 2, ... , n, (14.47) 
k=l 'fQ 'oQ 

from which the values of the coefficients Ck are readily calculated. 

14.3. Remark 

As demonstrated, the Rayleigh~Ritz procedure, applied to the semi­
homogeneous biharmonic problem (14.19)-(14.20), furnishes an upper 
bound for the norm of the solution vector [equation (14.27)]' On the other 
hand, employing the TrefTtz method, we are able to determine a correspond­
ing lower bound [equation (14.33)]. An upper bound for the norm of the 
solution of a Dirichlet problem [equation (14.12a)] was also provided by the 
Rayleigh~Ritz procedure. A general extrapolation from these examples, to 
conclude that things always turn out this way would, however, be ill­
founded. Actually, there exists no general proof to support the belief that, by 
utilizing functions which satisfy the boundary conditions, but fail to obey the 
governing equation, one invariably arrives at an upper bound for the func­
tional in question. Likewise unfounded is the claim that the application of 
functions satisfying the governing equation, but failing to obey the boundary 
condition, always furnishes a corresponding lower bound (Ref. 50, p. 153). 

14.4. Improvement of Bounds 

In practical applications, bounds derived for quantities of interest often 
turn out to be unacceptably far ofT, and it is required to take recourse to 
procedures that enable one to improve the closeness of bounds. 

Suppose, then, that by using the Rayleigh~Ritz method, one has 
reached an approximate solution, w, for, say, a Dirichlet problem [equations 
(14.10)]' Let the exact solution of this problem be designated by u. By the 
orthogonality condition (14.13c), we have 

(W - u, W - u) = (w - u, w) - (w - u, u) 

= (w - u, w) 

= (w, w) - (u, u). (14.48) 
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This gives the error of an upper bound in terms of the Dirichlet metric 
(14.11). In order to make the error smaller, it is helpful to employ a Ritz 
expression in the form (14.5), 

n 

w=wo - LCk 4>b 
k=l 

(14.49) 

in which Wo satisfies the nonhomogeneous boundary condition (14.10), 

Wo = f on an, (14.50) 

while we suppose that the functions 4>k obey the homogeneous boundary 
conditions 

k = 1,2, ... , n. (14.51 ) 

Evidently, w = f on an, as required. 
According to the general expression on the left in (14.48), the error of 

the approximate solution (14.49) is found from 

(w - u, w - u) = (wo - u - ± Ck4>k, Wo - U - i Ck4>k) 
k=l k=l 

n 

= (wo - u, Wo - u) + L C; Ck(4)i' 4>k) 

n 

i= 1 
k=l 

- 2 L ck(Wo - u, 4>k)· 
k=l 

(14.52) 

If all the coefficients Ck are set equal to zero, then the error of the approxi­
mate solution becomes (wo - u, Wo - u), as before. Making use of the re­
presentation (14.49), however, we enlarge the family of functions admitted 
for competition. This circumstance, naturally, decreases (or, at least, does 
not increase) the error of the approximate solution. Before actually 
determining the error, it is of interest to recall that, according to our earlier 
geometric interpretation, the vectors Wo and u play the parts of the hypoten­
use and a leg of a right triangle, respectively (Figure 14.4). Thus, 

(u, Wo - u) = 0 

= (u, w - u + i Ck4>k) 
k=l 

n 

= (u, W - u) + L (u, ck4>d· (14.53 ) 
k=l 
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By the first Green identity (14.l3b), however, 

. au . 
(u, Ck¢k) = tn Ck¢k an ds - .in Ck¢k V 2u dx dy 

=0, (14.53a) 

since u is harmonic and the auxiliary functions ¢k vanish on the boundary. 
Therefore, 

(u, w - u) = 0, (14.54) 

and w again admits an interpretation as being the hypotenuse of a right 
triangle, a leg of which is u (Figure 14.4). 

The question that now arises is how the hypotenuse w can be made to 
approach the leg as closely as possible. In geometric language, this is to 
require that the distance II w - u II or its square, 

IIw - ull 2 = (w - u, w - u), (14.55) 

be made as small as possible. To achieve this, we minimize the right-hand 
member of equation (14.52) with respect to the coefficients Ck , obtaining the 
system of equations 

i = 1, 2, ... , n, (14.56) 

where use was made of relations (14.53a), and an asterisk is attached to mark 
the values ')f the coefficients associated with the minimum. 

It is readily verified by inspection that a geometric interpretation of the 
preceding equations amounts to the following: if the distance represented by 

U 
exact 

solution 

Figure 14.4. Illustration for the Rayleigh-Ritz procedure. 
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Figure 14.5. Illustration for condition (14.56). 

the norm in (14.55) becomes minimum, then the sum Iz= 1 Ck *¢k coincides 
with the orthogonal projection of the vector Wo onto the subspace Y) 
spanned by the functions ¢i (Figure 14.5). This is equivalent to the statement 
that the vector w is orthogonal to the subspace Y'. 

Problems 

1. Let {un} be a minimizing sequence for a functional F[u], i.e., such that F[un]--> 
min F[ u] for n --> 00. Show that in a Hilbert spacek, each minimizing sequence 
converges to the solution Uo [see equation (6.3) in Chapter 6t] of the equation 
Lu = r, (1), u, r E .Jr, where L is a linear symmetric coercive operation and the 
function F[u] = (Lu. u) - 2(u. r), (2), associated with (1). takes its minimum for 
u = uo. Note that symmetry implies (Lu, r) = (u, Lr), u, r Ek, while coerciveness 
signifies that (Lu. u) :2 ellul1 2 for some e > 0, for each u E fl. 

2. Select as a basis of the Hilbert spacek a set of coordinate functions rpi [cf. 
equation (14.2)], and consider the subspacesk n C .Y{', a basis for each of which 
consists of rp 10 rp 2 •... , rpn' Let Land F[ u] denote the operator and the functional 
defined in the preceding problem, respectively. Show that the sequence Un con­
verges to the solution Uo of Lu = r. where Un E .k n, Un = min. Etf" F[ u], for each n. 

3. Find the error. in the norm, resulting from replacing Uo by Un, where Uo and Un are 
as in Problem 1. Assume that the inverse operator e I exists (note: e I Lu = 
Le IU = Iu = u. where I = identity operator) and is bounded. i.e., lie lull <::: ellull, 
e = a constant. 

i' Convergence "in the norm," lim II Uo - Un II = 0 for n --+ 00, is often known as a strong conver­
gence, while convergence of the type lim F[ un] = F[ uo] is considered to be weak. in case the 
limiting relation holds for erery continuous linear functional onYl . 
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4. Considering.Yt. c .Yt as in Problem 2 above, show that, if the functional F[ u] has 
its least value at the element u = u., U. E J{'., then the vector Lu. - v is perpen­
dicular to each of the vectors cp;, i = 1, 2, ... , n. 

5. Show that for an elastic plate subject to a transverse load q and having built-in 
edges, the terms associated with the coefficients Pi in the Galerkin equations are 
symmetric (cf. the solution of the preceding problem). Select the inner product in 
the Hilbert form. 

6. Show that(1l7) if a function u satisfies Poisson's equation V 2u = q in n, and a 
function v obeys the boundary conditions v = av/an = 0 on an, then the bihar­
monic functional (cf. Problem 1 above) satisfies F[v] = [(V4V, v) - 2(v, q)]n ~ 
-(u, u)n. Use the inner product in the Hilbert form. 

7. ShOW(118) that the functional F[u;] = Ii'=1 (LiUi, Ui) becomes minimum for 
Ui = uo, i = 1, 2, ... , n, where the operators Li are symmetric and positive definite 
[(L;, u, u) > 0, u '" 0], the operator L is coercive [(Lu, u) ~ c21IuI12], L = D=1 L;, 
Ii' = 1 Li Ui = f, and Uo is the solution of the equation Lu = f 

8. Show that, of all functions satisfying Poisson's equation V2u + f = 0 in n, (1), the 
solution Uo which satisfies the boundary condition u = 0 on an makes the func­
tional F[u] = In (VU)2 dn minimum. Select the Dirichlet-type scalar product for 
the corresponding bilinear form F[ u, v]. 
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Function Space and 
Variational Methods 

In the preceding chapters, specifically in Chapters Sand 14, we were afforded 
opportunities to make comments on the relations between the concepts of 
function space and those of the calculus of variations. It seems worthwhile to 
return to these questions by examining certain of their aspects from some­
what different points of view. We first examine the so-called inverse problem, 
in which one looks for a functional whose critical points (i.e., extrema and 
saddle points) are the solutions of the given differential equation. 

15.1. The Inverse Method 

Looking retrospectively at our exposition, we should recognize the im­
portant part played in our derivations by the idea of an inner product. 
Several different mathematical forms have been given to this concept, such 
as Ii Ui Vi in Euclidean spaces [equation (6.22)], and Sn u(P)v(P) dO., 
Sn Ii Ui(P)Vi(P) do., and Sv uij vij dV in Hilbert spaces of functions [equa­
tions (S.2), (S.6a), and (S.14)]. Even more elaborate expressions proved to be 
serviceable; recall that given by equation (S.S), 

D' 
(u, L') = -2 I [V 2UV 2 L' - (1 - V)(U.xxL·. yy + u.yyL'.xx - 2u.xy L'.XY)] dx dy (15.1) 

on 

or that involving convolution of functions, 

of 

u(t)*v(t) = I u(r)v(t - r) dr (15.2 ) 
° 0 

[equation (S.10d)]. 

241 
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a b 

Domain D Ranoe R 

Figure 15.1. Basic concepts. 

The just-named, and similar, forms have three characteristic properties 
in common: they are symmetric, positive definite, and linear in each of the 
two component function vectors, that is, they are bilinear. 

In the first four cartesian forms listed above, all vectors belong to a 
single space, say 011 (Figure 15.1a, in which the elements are denoted Ui, i = 1, 
2, ... ). In bilinear forms such as {IS. 1), in which differential operations 
appear, the function vectors belong to two spaces: one, call it "-'7/, comprising 
the domain of the operators, and the other, say t~, including the range of the 
operators, and usually different from )7/ (Figure 15.1b). Actually, it would be 
more exact, in this latter case, not to apply the standard inner product 
notation (, ), but a separate one, for example, [,]. 

It turns out to be useful to consider the standard inner product as a 
particular case of a general bilinear form associated with two spaces and 
stripped of the properties ordinarily attributed to the symbolt (v, u). We 
shall denote this form by <v, u), where U E 011 and v E i~. 

Consider now the equation 

Lu{P) = f{P) (15.3 ) 

[ef. equation (8.16)], where L is a linear differential operator with domain,:t, 
D, in a linear space 1If and range, R, in a second linear space ,'. u{P) is a 
function to be determined andf{P) is a function preassigned; clearly, u E J7/ 
and v = Lu E j/- (Figure 15.1b). 

t That is, symmetry and positive definiteness. 
! We recall that the domain D of an operator, or mapping, L is the set of vectors u for which the 

expression Lu is defined. The set of vectors v = Lu, generated as u varies over D, is called the 
range of the operators. For the concept of mapping, see the footnote preceding equation 
(8.16). 
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The symmetry of L, defined earlier [equation (8.17)] by 

(LUb U2) = (u 1 , LU2), 
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(15.4 ) 

is now replaced by the more general requirement that the operator L be 
symmetric with respect to the selected bilinear form <u, v), that is, that the 
equality 

(15.5) 

holds for every pair of elements uland u 2 in D. It is clearly visible that the 
property of symmetry of an operator is not absolute, but is relative to the 
bilinear form selected(llS).t 

Our objective now is to establish a variational formulation for equation 
(15.3), in which the operator L is symmetric with respect to the selected 
bilinear form <v, u). We have examined a similar problem in Chapter 8,t 
but there the associated bilinear form had all the properties of a conven­
tional inner product, while, in the present case, the only requirement 
imposed on the bilinear form is that it is nondegenerate on Jl/ and 'I '. This 
means that, by definition, if 

for L"o E 'I' and every u E 41, then Vo = e, (15.5a) 

and if 

<v, uo) =0 for Uo E Jl/ and every v E 'I', then Uo = e. (15.5b) 

Let us now introduce the functional [cf. equation (15.3)] 

F[u] == !<Lu, u) - <f, u). 

We have§ 

LlF[ u] = F[ u + bU] - F[ u ] 

or, after employing (15.6), 

LlF[u] = !«Lu, bu) + <L bu, u) + <L bu, bu») - <f, bu). 

Thus, 

bF[u] = <Lu. bu) - <f, bu), 

(15.6) 

,. Clearly, if 'II = t is a Hilbert space and one replaces the bilinear form < L', u> by the inner 
product (t·, u) on 'II, then the symmetry equation (IS,S) reduces to the familiar form 
(LuI' u2 ) = (u l ' 4); cr. (8.17). 

~ Compare the text following equation (8.18). 
§ We recall that the variation bu of a function vector u is any function vector bu (most often 

small) which, when added to u, gives a new (so-called comparison) function u + bu. 
The variation of bF[u] of a functional F[u] is obtained from the total increment of the 

functional, ~F[ u], after disregarding terms of order in bu higher than the first. 
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where we have considered (15.5). Finally, 

JF[u] = <Lu - f, Ju). (15.7) 

Now, if Uo is a solution of(15.3), then Luo - f = 0 and JF[uo] = 0, so that Uo 
makes the functional F[ u] stationary.t 

Conversely, it is easily shown that the stationary points of F[ u] are 
solutions of the equation (15.3). Indeed, if UO is a stationary point of F[u], 
then for every Ju in D, we have 

By the nondegeneracy condition (15.5a), therefore, 

Luo - f= 0, 

(15.8) 

as claimed. Summing up, we conclude that if a given operator L is symmetric 
with respect to a selected nondegenerate bilinear form <v, u), then it is 
always possible to arrive at a variational formulation for equation (15.3), the 
corresponding functional being given by (15.6). This result(115) is of great 
significance, although superficially it may seem somewhat trivial. In fact, a 
variational formulation for the entire class of initial value problems, for 
example, cannot be achieved as long as we persist in using the procedures of 
the classical calculus of variations (as we did in Chapter 8). Even the fun­
damental principle of Hamilton must artificially be converted into the treat­
ment of motions between two terminal configurations, instead of 
considering the initial conditions alone(116). Likewise, such a simple opera­
tor as L = d/dt, in the field of functions obeying the initial condition u(O) = 0 
and defined for 0 S t S 1, evades variational formulation because (in the 
classical context) it fails to be symmetric.; On the other hand, if we take as the 
bilinear form the convolution integral (15.2), we have§ 

.1 du 
<Lu, v) = I -d v(1 - t) dt . ° t 

.1 du 
= u(l)u(O) - u(O)u(l) + I u(l - t)-d dt . ° t 

= <Lt", u), (15.9) 

t See the discussion in Chapter 8, where the functional (8.19) is reminiscent of the present 
functional (15.6) if the operation < .) is replaced by the operation (,). 

t We have (u, r) = H u(t)r(t) dt and (Lu, r) = H (du/dt)r(t) dt = u(l)t'(I) - (u, Lt"). so that 
(Lu, t·) i= (u, Lt·) even if we assume that, e.g., r(l) = O. 

~ This approach was initiated by M. E. Gurtin,l93l who departed from the custom of using 
Cartesian forms of the inner product and employed the convolution of two functions. 
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by virtue of the known symmetry of a convolution integral and the assump­
tion that v is in the given space (that is, v(O) = 0). Since, as the matter stands, 
the possibility of a variational formulation depends, in turn, on the possibi­
lity of finding a bilinear form with respect to which the given operator is 
symmetric, the question arises as to whether the discovery of such a form is 
always possible. Magri(l15) has shown that the answer is in the affirmative 
and that, moreover, there exists an infinity of such forms. 

In the example being discussed, the functional to be subject to varia­
tion, (15.6), is 

1 .1 .1 

F[u] =:2.10 u(1 - t)u'(t) dt - .10 u(1 - t)f(t) dt, (15.10) 

so that the variation of F[ u] becomes 

.1 du .1 

bF[u] = I bU(l - t)-d dt + ![bu(l - t)u(t)]6 - I bll(l - t)f(t) dt 
'0 t '0 

.1 fdU j = t bll(1 - t) dt - f(t) dt + -![bu(O)lI(l) - bll(l)lI(O)]. (15.11 ) 

Inasmuch as 1I(0) remains unvaried and bll(l - t) and bu(l) are arbitrary, 
one arrives at the Euler-Lagrange equation of the problem in the anti­
cipated form (15.3); in addition, one recovers u(O) = 0 as the condition 
imposed on the space of comparison functions. 

15.2. Orthogonal Subspaces 

New and interesting aspects of the function space-variational calculus 
connections come to light if one goes back to Chapter 12 and analyzes 
certain conclusions which can be drawn from the orthogonality of the sub­
spaces denoted there by [/T and [/' (Figure 15.2). For convenience, let us list 
the equations obeyed by the states S' and S' making up the subspaces .eFT 
and .Cf?', respectively. 

States S': 
(a) equations of equilibrium, 

(15.12) 

(b) stress boundary conditions, 

(15.13) 
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Figure 15.2. Orthogonal subspaces .'1" and .'/". 

States Sf: 
(a) compatibilityequations,t 

(15.14) 

(b) displacement boundary conditions, 

(15.15) 

In the equations above,}; and gi denote functions prescribed on the portions 
Q, and n.. of the surface of the body, respectively, where n = Q, + nu. 

With the Pythagorean theorem in mind, we conclude, upon inspecting 
Figure 15.2, that 

liS - S'112 + liS - Sf. II 2 = liS' - Sfl12 (15.16) 

or, explicitly, 

[(S, S) - 2(S, S')] + (S', S') + [(S, S) - 2(S, se)] + (S', Sf) 

= (S', S') - 2(S', Sf.) + (S', Sf.), (15.17) 

where S is the position vector of the point of intersection of the subspaces yJt 
and .Cf'f, corresponding to the exact solution of the problem at hand. 

The following inequalities follow easily from equation (15.16): 

(S - S', S - S'):S; (S' - Sf, S' - Sf), (15.18) 

(S - Sf, S - Sf) :s; (S' - Sf, S' - Sf.). (15.19) 

t Looked upon as a system of six differential equations for the determination of three displace­
ment components when six strain components are prescribed. They are usually represented 
(after differentiation) in the form: eij . ., + e.,. ij - eik,jl - e jl , ik = 0; compare equation (12.4), 
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Likewise, equation (15.17) yields 

(S, S) - 2(S, S') ~ (S', S') - 2(S', S') (15.20) 

and 

(S, S) - 2(S, S') ~ (S" S') - 2(S', S'). (15.21) 

Direct consequences of the foregoing inequalities are the following three 
minimum principies(40): 

(a) The difference liS' - S'11 2 between two arbitrary states S' and S' 
reaches its minimum (actually, zero) for S' = Sand S' = S. 

(b) If S' is a generic state in .Cf" and S' is a fixed state in .Cf", then the 
difference liS' - S' 112 reaches its minimum for S' = S. The same conclusion 
concerns the difference (S', S') - 2(S', S'). 

(c) If S' is a generic state in Y' and S' is a fixed state in Y" then the 
difference liS' - S'11 2 reaches its minimum for S' = S. The same conclusion 
concerns the difference (S', S') - 2(S', S'). 

By appeal to the definition (12.8), we now have (by symmetry of eij and 

(S', S') = r e;jr;j dV 
'v 

= f (u;,'r;j).j dV - r u;"r;j.j dV 
'v 'v 

= r U;,'r;jnj dO. - I' U;"r;j,j dV, (15.22) 
'n 'v 

the last step by applying the Gauss-Green theorem. 
The definitions (15.12}-(15.15) of the states S' and S' enable one to cast 

the preceding equation into the form 

(S', S') = f u/'i; dO. + f gir;jnj dO. + f U;"Fi dV. 
Or ~nu .,v 

(15.23) 

Accordingly, 

!(S' - S', S' - S') = !(S', S') + !(S', S') - (S', S') 

= W + W - J' u·" f'. dO. -I' g·r~·n. dO. - f u·"F. dV l Ji I I} J I l , 

~ '~ v 

(15.23a) 
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where Wand W denote the strain energies associated with the states Sand 
S', respectively [cf. equations (8.25) and (12.8)]' 

We now refer to principles (b) and (c) above, and carry out the minimi­
zation of the difference (S - S" S - S')2 by simultaneously holding either 
S' or S fixed. We examine two cases. 

Case (b l ). ST held fixed. In this case, the actual state of equilibrium is 
associated with the value S' = S and the minimum of the expression 

I1 == W(eiJ - r ui ]; dO. - r UiFi dV, (15.24) 
on, ° v 

provided the displacements satisfy the boundary conditions (15.15) on o.u; 
W(eij) is here the actual strain energy expressed in terms of strains. 

A glance at the preceding equation convinces us that I1 represents the 
potential energy of the system. Accordingly, the minimum principle (bd 
turns out to be the classical principle of minimum potential energy of an 
elastic system (Ref. 31, p. 385). 

Case (e l ). S' held fixed. In this case, the actual state of equilibrium is 
associated with the value S = S and with the minimum of the expression 

I1* == W(Tij) - r git(n)i dO., (15.25) 
on. 

provided the state of stress satisfies the equilibrium equations (15.12) and the 
boundary conditions (15.13) prescribed on~; W(Tij) is here the actual strain 
energy expressed in terms of stresses, and t(n)i denotes the surface tractions 
Tij nj on Ou. In this case, I1* represents the complementary energy of the 
system, and the minimum principle (c l ) turns out to be the classical principle 
of minimum complementary energy (Ref. 31, p. 389). 

These principles can be written briefly in the forms 

JI1 = ° and JI1* = 0, (15.26) 

respectively, where J designates the variation. 
Alternatively, we can turn to the inequalities (15.20) and (15.21), for 

simplicity setting the body force equal to zero, and convert the principles 
(15.26) into the forms 

(S" So) - 2 r u;']; dO. ~ (S, S) - 2 r Ui j; dO. (15.27) 
'!~ o!~ 

and 

(S" S') - 2' t(n)igi dO. ~ (S, S) - 2 r t(n)igi dO.. 
'n. on. 

(15.28) 
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15.3. Laws' Approach 

A remarkably ingenious derivation of the work and energy principles of 
linear elasticity (the latter having already been discussed in the preceding 
section in the context of orthogonal subspaces) was given by Laws.t Laws is 
concerned with the development of "energy" (that is, integral) bounds for the 
solution of the class of problems (11.85), i.e., 

L*Lu =f, (15.29) 

where L* is the formal adjoint of the linear operator L, defined by 

(r, Lu) = <L*r, u) + {r, u}. (15.30) 

Here, <u!, U2) is the inner product of rector-valued functions u! and U 2 

belonging to one function space,Yf, and (rio r 2) is the inner product of 
tensor-valued functions r! and r 2 belonging (in general) to a function space 
H;t braces, such as {r, u}, stand for a bilinear expression involving functions 
defined on the boundary S of the volume V occupied by the material body 
under consideration. 

As follows from Section 11.1.1 of Chapter 11, the class of equations of 
the type (15.29) is rather comprehensive, including the classical equations of 
Laplace, Sturm-Liouville, and plate and beam theories, to mention only a 
few. 

A well-known realization of equation (15.30) is Green's second identity 

. . . (CU cr) I rV 2u dV = I uV 2 [. dV + I [';;- - u~ dO.. 
. v . v . n en en 

(15.31) 

For our future purpose, and to appreciate the extraordinary elegance of 
Laws' procedure, it is appropriate to make use of the so-called direct 
notation,~ which represents the ultimate in simplicity and coincides, in fact, 
with the notation used in functional analysis. To this end, we shall denote 
ordinary vectors such as the displacement ui , i = 1, 2, 3, by the letter u, 
second-order tensors such as the stress tensor rij or the strain tensor e ij by 
the letters rand e, respectively, and fourth-order tensors such as the stiff­
nesses Cjkl and the compliances Sijkl by C and S, respectively. 

t Laws.(94) Compare also Arthurs,(9S) as well as Noble and Sewell.(OO) 
~ Generally speaking, Latin lowercase letters may also denote, for example, scalar-valued func­

tions (such as the temperature) and Greek lowercase letters denote vector-valued functions 
(such as the heat flux vector). Of course, from the standpoint of functional analysis. either of 
these functions is a vector in a vector space. 

§ Also known as matrix, or dyadic, notation. 
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With this in mind, we write the constitutive equation of a general aniso­
tropic elastic body in the form 

,= Ce, (15.32) 

which, in index notation, translates intot 

(15.32a) 

Inverting (15.32) gives 

e = S" (15.33) 

so that CS = 1, where 1 is the unit fourth-order symmetric tensor.t The 
vector of surface tractions (15.13) is represented by 

t = Tn, (15.33a) 

where n is a unit normal, and the equations of equilibrium (15.12) by 

div, + j= O. (15.33b) 

By appeal to the strain-displacement relations (15.14), we can cast the con­
stitutive equation (15.32) in the form 

,= Lu (15.34) 

(in index notation, 'ij = Cijkm uk•m ). It is now not difficult to show that 

L*, = -div " (15.35) 

so that the equilibrium equations (15.33b) take the desired form (of the 
Lame equations) 

L*Lu =f 

In fact, let us accept the following definitions of inner products§: 

and 

<u, v) = r uv dV in yt' 
'V 

(,(1), ,(2») = r ,(1)(S,(2») dV in H. 
'V 

(15.36) 

(15.37) 

(15.38 ) 

t Note that, in the direct notation, the summation is always understood to be performed over 
the closest indices of the adjacent symbols, e.g., over k and I in (15.32), over i in uv '" u; L";, and 
so on. 

t In index notation: CuklSkimn = {);m{)j.· 

§ In index notation: (u, v) = S. u;v; dV and (r(l), r(2) = I, r\]ISuklrk~1 dV = I, r\]lelJi dV, by 
(15.33). Thus, the product (r(l), r(21) is a measure of elastic energy. 
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We then have, using equations (15.33a), (15.34), and the divergence theorem, 

(r, Lu) = r re dV 
'V 

= - r (div r)u dV + r u(rn) dO.. 
'v 'n 

(15.39) 

A comparison of the preceding equation with the defining equation (15.30) 
gives the anticipated result 

<L*r, u) = - r (div r)u dV, 
. v 

(15.40) 

so that 

L*r = -div r, (15.40a) 

as well as 

{r, u} = r u(rn) dO.. 
'n 

(15.41 ) 

With these rather formal preliminaries out of the way, a derivation of the 
four central theorems of linear elasticity lies, so to speak, on the surface. 

The reciprocal theorem of Betti and Rayleigh involves two different 
systems of forces acting on the same body; the boundary conditions may 
differ in the two cases. Let U 1 and U z be solutions of the equations 

L* Lu = 11 and L* Lu = 12 , 

respectively. By appeal to the constitutive equation (15.34), we set 

From (15.33) and (15.38), we now have 

(r1o r2) = r r 1e2 dV, 
'v 

( r 2, r d = I' r 2 e 1 d V 
'V 

(15.42) 

(15.43) 

(15.44) 
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which proves the theorem. An alternative form of (15.44) is obtained by 
making use of the defining equation (15.30), as well as the formulas (15.42) 
and (15.43). We find 

(15.44a) 

The proof of the Clapeyron formula (31) turns out to be just as elementary. It 
states that if 

T = Lu ( 15.45) 

is the solution of equation (15.36), then, by (15.30) in combination with the 
relations (15.33b), (15.34), and (15.35), there is 

(T, T) = <f, u) + {T, u}. (15.46) 

By virtue of (15.38), however, (T, T) = 2W, where W is the elastic strain 
energy stored in the body; similarly, in view of (15.37) and (15.41), the sharp 
brackets and the braces in the preceding equation denote the work of the 
body forces and the surface tractions, respectively. Expressed in words, 
therefore, equation (15.46) declares that the energy of deformation of a body 
in equilibrium under a given system of forces equals half the work done by 
these forces acting through the displacements of the load points. 

In order to derive the energy theorems, it is necessary to assume that the 
distance-measured in terms of the elastic strain energy-between a varied 
state and the actual state is positive. In physical language, this hypothesis 
translates into the conventional assumption that the increase of strain 
energy from the actual value (T, T) to a varied value, (r, r) say, is a positive­
definite function. In symbols, 

(r - T, r - T) ~ 0 

or 

(T, T) ~ 2(T, r} - (r, r). (15.47) 

Now let not only the true state, but also the varied state be compatible with 
the constitutive equation (15.34): 

T = Lu and r = Lu. (15.48) 

We insert (15.48) into (15.47) and make use of relation (15.29). This yields 

(T, T) ~ 2<f, u) + 2{T, u} - (Lu, Lu) (15.48a) 

or, by appeal to Clapeyron's theorem (15.46), alternatively, 

(T, T) - 2<f, u) - 2{T, u} s (r, r) - 2<f, u) - 2{T, u}. (15.48b) 
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Since (r, r) = 2W and (r, r) = 2W, either of the last two inequalities ex­
presses the theorem of minimum potential energy. 

In order to derive the theorem of minimum complementary energy, we 
assume that the varied state satisfies the equation of equilibrium (15.42). By 
(15.34), then, 

L*r =f (15.49) 

Taking advantage of the inequality (15.47) and relations (15.30) and (15.34) 
gives easily 

(r, r) - 2(f; u) :s: 2{r, u} - (r, r) 

or, finally, with the help of Clapeyron's theorem, 

(r, r) - 2{r, u} :s: (r, r) - 2{r, u}. 

(15.50) 

(15.50a) 

This completes the proof because each side of the preceding inequality repre­
sents the complementary energy of the body in the appropriate state. 

As observed by Laws, a trick to rid oneself of the unwelcome terms 
{r, u} and {r, u} in the inequalities (15.48b) and (15.50), respectively, consists 
of a special choice of the trial functions, that is, u and r. In the first boundary 
value problem of elasticity, for instance, in which the displacements on the 
boundary of the body are prescribed, it is sufficient to select the trial func­
tions so that the displacements u obey these conditions. We then find that 
{r, u} = {r, u} and that, consequently, the unwanted terms in (15.48b) cancel. 
In order to arrive at a similar cancellation in the inequality (15.50a), we 
require that {r, u} = {r, u} for all r. 

The discussion in the case of the second boundary value problem of 
elasticity proceeds in a similar fashion. 

A combination of the inequalities (15.48b) and (15.50) finally gives 
upper and lower bounds for the expression (r, r) - 2<f, u): 

2{r, u} - (r, r):s: (r, r) - 2<f, u) :s: (r, r) - 2<f, u), (15.51) 

where we have used another trial function, il, which satisfies the displace­
ment boundary conditions, so that {r, u} = {r, il}. 

15.4. A Plane Tripod 

We wish to conclude this predominantly theoretical discussion with a 
simple, but at the same time delightful, illustration given by Prager(97) of the 
effectiveness of the geometric approach to variational principles. Figure 
15.3a displays a plane tripod with elastic legs connecting the joint D with 
three fixed points A, B, and C. A force F is applied to the joint, generating 
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Figure 15.3. A plane tripod. 
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forces Fj , i = 1, 2, 3, in the legs DA, DB, and DC, respectively. In order for 
the joint to remain in equilibrium, the resultant of the forces acting on the 
joint should vanish:t 

3 

F + I Fj =0. (15.52) 
j= 1 

Assume that the elastic elongations of the bars under the action of the axial 
forces F j are! 

i = 1,2,3, (15.53) 

where the Cj denote the elastic compliances; the elongations are supposed to 
be small. 

Let us now impose an arbitrary, but small, displacement 6 on the joint 
D and form the dot product of J with each member of equation (15.52). The 
elongations 6j , i = 1, 2, 3, that the imposed displacement produces in the 
bars are equal to the respective orthogonal projections of g on the axes of 
the bars. Accordingly, 

3 

F 6F + L F j 6 j = 0, (15.54) 
j= 1 

- -where 6F is the component of 6 along the line of action of the force F. Since 
the displacement J is arbitrary (except that it is small and compatible with 
the geometric conditions), the equation above expresses the principle of 
virtual work applied to the given structure. It is important to realize that 
there is no interdependence here between the forces F j and the displacements 
6 j produced by the virtual displacement of the joint. 

It is not difficult to convince oneself that the tripod shown in Figure 
15.3a is a statically indeterminate structure. This means, among other things, 
that by a suitable operation (e.g., by turning a turnbuckle in one of the bars), 
it is possible to produce forces in the bars, even in the complete absence of an 
external load (i.e., for F = 0). Assuming that the forces so generated satisfy 
the condition of equilibrium of the joint D, we turn the corresponding state 
of the structure a state of self-equilibrated stress. 

A second state of interest is that in which the external force F, in 
combination with a certain system of internal forces F j , satisfies* the equa­
tion of equilibrium (15.52).§ 

We shall call this state a state of equilibrium (F =1= 0). 

t We find it convenient to denote vectors in physical space by an overhead arrow, function 
vectors by boldface type, and points in function space by lightface type. 

t Do not sum here or hereafter. 
§ For the statically indeterminate system under discussion, there exists an infinite number of 

such systems {F,}. Only one of these is the system actually generated by the given force F. 
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Finally, it is convenient to consider a state in which, in the presence of 
the force ft, the joint D becomes shifted by an amount J. In this case, we 
determine the associated elongations of the bars, c5 i , i = 1, 2,3, and evaluate 
the forces in the bars from the formula Fi = c5Jci . The last-named forces 
aare not bound, in general, to be in equilibrium with the force i (unle~s they 
accidentally turn out to be the actual forces produced by the force F). We 
shall call the state of stress just described a compatible state of stress. 

It is now convenient to introduce the reduced forces 

i = 1, 2, 3, (15.55) 

and to treat these forces as coordinates relative to a Cartesian rectangular 
system (Figure 15.3b) in a function space of elastic states. In such a space, the 
components of a state vector S are f1' f2' f3' and the square of the distance of 
a point S (defined by the position vector S) from the space origin 0 is 

31 3 

L J/ = - L Ci Fi 2 

i=l 2 i =1 
(15.56) 

1 3 

="2 i~l Fi c5 i , 

the last expression following in view of the relation (15.53). This result 
implies that the square of the distance OS is equal to the strain energy 
associated with the state of stress represented by the point S. 

In our new notation, a state of self-equilibrated stress is defined by the 
equations of equilibrium [see equation (15.52) and Figure 15.3a], 

(15.57) 
sin 1J(1 sin 1J(2 sin 1J(3 

f1 (C 1)1/2 + f2 (C Z)1/2 + f3 (C3)1/2 = 0, 

each of which represents a plane passing through the origin of the coordin­
ates f 1, f2' f3 . The line of intersection ofthese planes OS' includes all possible 
states of self-equilibrated stress, and will be called the line of self-equilibrated 
stress. 

In those states called above the states of equilibrium, the left-hand mem­
bers of equations (15.57) remain unchanged, but the zeros on the right-hand 
sides ~ust be replaced by the components - F x/(2)1!2 and - Fy/(2)1/2 of the 
force F, respectively. The resulting system of equations determines a line 
parallelt to the line OS'; we shall call this line, which passes through a point 
S*, say, a line of equilibrium states (Figure 15.3b). 

t This obtains in view of the fact that the coefficients of like variables in the equations of the 
corresponding planes are proportional to each other (here, even equal). 
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With regard to the compatible states of stress, let S" denote a point 
corresponding to such a state, and let Sh" and Sv" be the vectors of compa­
tible states corresponding to unit horizontal and vertical displacements of 
the joint D, respectively. In this case, the general joint displacement for 
horizontal and vertical displacements (jh and (jv, respectively, is associated 
with the state 

(15.58) 

As (jh and (j" vary, the point S" moves over a plane n, passing through the 
origin and determined by the vectors Sh" and Sv". We shall call this plane the 
plane of compatible states (Figure 15.3b). 

It is easy to demonstrate that the line of self-equilibrated stress (respec­
tively, of equilibrium states) is perpendicular to the plane n so that 

S/· S" =0, (15.59) 

where S' is a state of self-equilibrated stress and S" is some compatible state. 
In fact, 

3 

S' . S" = L f;' H' 
i= 1 

3 

= " F' (j." ~ l " 
(15.60) 

i= 1 

the last expression produced by virtue of the relations (15.53) and (15.54). 
The right-hand member of the foregoing equation represents the work of the 
residual stress done on the displacements of a compatible stress. According 
to the principle of virtual work (15.54), this work vanishes because F = 6 in 
this case; this proves our assertion. 

Returning to Figure 15.3b, one must keep in mind that in the actual 
state of stress, the forces acting on the joint D are in equilibrium and the 
deformations of the bars produced by these forces are compatible. It follows 
that the actual state of stresst is represented by the point S of intersection of 
the line L* and the plane n. Since the segment OS also represents a compa­
tible component of an arbitrary equilibrium state S*, then the point S coin­
cides with the orthogonal projection, S*", of S* on n. The self-equilibrated 
component, S*', of S* is OS*', where S*' is the foot of the perpendicular from 
S* to the line r.. 

Inasmuch as the point S is that point on the line of equilibrium states 
which is closest to the origin, and since the distance in the state space is 
measured in terms of the elastic strain energy, our geometric analysis sug­
gests the following ~ 

t It is interesting to note that this fact, expressed here in geometric terms, proves that the 
problem under discussion has a unique solution. 
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Minimum Principle. The strain energy of a given structure remaining in 
equilibrium under the action of external load becomes minimum for the 
actual state of stress. 

It is not difficult to recognize that the just-formulated principle is the 
well-known principle of minimum strain energy, commonly associated with 
the name of Castigliano. 

A companion maximum principle was established by Prager in the 
following way. Imagine that we are given a point S* corresponding to an 
equilibrium state, but that we do not know the locations of the line L* and 
the plane n. The only conclusion that is justified in this case is that the angle 
OSS*, where S denotes the actual state of stress, is a right angle. If this is so, 
we are permitted to identify the point S with a point on a sphere, say :11, a 
diameter of which is OS*. After Prager, we call the sphere a sphere of states 
standardized with respect to S*. If s is a state vector in the state space, then 
the tip of this vector lies on the sphere of standardized states if 

s . (S* - s) = O. (15.61) 

It is not difficult to convince oneself that the standardized compatible states 
are represented by the points on the circle r along which the plane of 
compatible states n intersects the sphere :11. One of the diameters of this 
circle (the circle of standardized compatible states) is the segment as. In 
terms of strain energy, this result can be stated as the following: 

Maximum Principle. The strain energy of a given structure subject to a 
compatible deformation reaches its maximum for the actual state of stress. 

We note that if s in equation (15.61) denotes a compatible state, then by 
the definition (15.55) of the coordinates of the state space, 

S* . s = ± S;*s; = ± F;*{S)1/ 2 F;(S)1/ 2
, 

;=1 ;=1 2 2 

where F;* and F; are the forces in the bars in a state of equilibrium due to a 
compatible displacement of the joint D. By virtue of equations (15.53) and 
(15.54), therefore, 

1 3 
S* . S = -2 I F;* b;. 

;= 1 
(15.62) 

However, the product s . s represents the strain energy associated with the 
state s; thus, rephrased in terms of energy, the equality S* . s = s . s states 
that the strain energy of a standardized compatible state is equal to half the 
work of the given load done on the displacement of the joint associated with 
a compatible state. 
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Problems 

1. The presence of a derivative in the functional (15.10) may be occasionally 
undesirable. Show that this can be avoided by selecting in the problem con­
sidered the form <u, v) = Jb u(t)m- t v(r) dr] dt instead of (15.2). Is the latter 
form symmetric? 

2. Show that the definition <u, v) = (u, Lv), where (,) denotes an inner product, 
implies (15.5). Find F[u] from (15.6) for the case considered in the preceding 
problem, selecting the inner product In the Hilbert form (8.2): 
(u, v) = In u(P)v(P) dO.. 

3. Prove that two subspaces, Y! and .C/' 2, comprising vectors S! and S 2 of two 
equilibrium states of an arbitrary elastic body, respectively, are orthogonal to 
each other provided that the body force is absent and the surface tractions 
(surface displacements) in one state are associated with zero displacements (zero 
tractions) in the second state. 

4. A unit orthotropic cube with elastic constants E i , vij, i = 1, 2, 3 is subject to 
consecutive actions of oppositely directed tractions rW and r~21 applied to two 
pairs of parallel faces with normals n! and n 2, respectively. Find the condition 
for the orthogonality of the corresponding states. 

5. Any number A. for which there exists a nonzero vector u satisfying (L - A.)u = 0, 
L being a linear operator,t is an eigenvector of L corresponding to the eigenvalue 
A..t Assume that L is symmetric, i.e., (Lu, t') = (u, Lv), and denote Rayleigh's 
quotient by p(u) == (u, Lu)j(u, u). If u = Un, an eigenvector of L, then p(un) = A.n , 

the associated eigenvalue. Show that p(u) has a stationary value whenever u is an 
eigenvector Un' 

6. The best approximation to a vector y by a linear combination of n vectors {Xi} is 
the vector I7=1 aixi such that the (error) norm Ily - Ii=! aixi II is minimized. 
Find the best approximations to the function e·t, IX = const, in the space of 
functions CO,;t$! selecting as the norm: (1) the p = oo-norm [equation (5.34)], 
i.e., Ilyll = maXO$t$! ly(t)l; (2) Ilyll = m [y(t)J2 dtp /2, taking n = 1 andx! = c, 
a constant. 

7. The deflection u(x) of an elastic string, acted upon by a transverse continuous 
load p(x) and subject to tension S, is governed by the equation - Su" = p(x), 
o < x < I, (1). The string has length I and is fixed at the ends: u(O) = u(l) = 0, (2). 
Show that the operator L, Lu = - Su" on the domain D of all functions u(x) in 
C2(0, 1) satisfying conditions (2) is symmetric. Show that if u is a solution of (1) 
and (2), then u is also a solution of the problem ll(u) = min, where 

. S JI .1 
ll(u) = -2 (U')2 dx - I pu dx 

o '0 

is the total potential energy of deformation. 

t Compare the text concerning equation (8.16). 
1: Compare the text concerning equation (8.52). 
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8. Let F[u] = b(u, u) - 21(u) be a functional defined on a subspace S of a Hilbert 
space, where b(u, v) is a symmetric bilinear form [b(u, /:) = b(r, u), b(c:xuj + fluz, 
v) = c:xb(u j, v) + flb(uz, v)] and I(u) is a linear functional [l(C:XUj + uz) = c:xl(ud + 
I(uz)]' Show that: (a) if F[v] is stationary for u E S, then b(u,f) = l(f) for each 
JE S; (b) if u is such a function, then F[u] = -b(u, u) = -I(u). 

9. During the last decade, there has been interest in studying boundary value 
problems in which boundary conditions are expressed by inequalities. This hap­
pens, for example, in the case of unilateral constraints (as when a beam, after its 
deflections reach certain values, comes in contact with an obstacle), or when 
friction is present on the boundary of a body(Z4. 98). Now let {v(x)} be a set S of 
sufficiently smooth functions defined on the interval [0, 1] and satisfying the 
condition v(l) :2 O. Show that S is a convex set, and that if u satisfies the inequa­
lity b(u, 1: - u) - I(/: - u):2 0, (1), for all v E S, then u also makes F[v] = b(v, 
v) - 21(v) minimum (b and I are as in Problem 8). 

to. Show that if a bilinear form b(v, w), with v and w in a Hilbert space, has the 
properties of an inner product, then [b(v, w)J2lb(w, w) s; b(l', r) S; b(w, w) 
provided that b(w, w) "" 0 in the case of the left-hand bound and b(w - r, r) = 0 
in the case of the right-hand bound. 
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Distributions. Sobolev Spaces 

We conclude this book with a glimpse at the means available for treating 
some unorthodox situations encountered in various areas of physics and 
engineering, in particular, in dynamics, electromagnetism, quantum field 
theory, and optimization. We here have in mind problems in which such 
classical requirements as the regularity and differentiability of functions, 
convergence of series, and smoothness of boundary conditions cannot be 
maintained, but must be relaxed, either in part or completely. This happens 
most frequently when we are concerned with temporal impulses (i.e., high 
intensity actions of very short duration), localized (concentrated) forces and 
couples acting on structural systems, point sources of various kinds, point 
masses, point charges, and finally, supports along lines or at isolated points. 

16.1. Distributions 

To analyze such singular, or outright "improper" situations, it has been 
found imperative to extend the conventional concept of an "ordinary" func­
tion to the new, partially revolutionary, concept of generalized function. This 
extension was accomplished with the construction of the theory of distribu­
tions (or generalized junctions, as suggested in a somewhat different form by 
Sobolev(99») developed comprehensively by Schwartz.(100 103) Including 
"improper" functions along with "ordinary" functions, the class of gener­
alized functions is enriched beyond the family of point functions in a manner 
similar to that in which the transcendental functions enlarge the class of 
algebraic functions, or the infinitely distant points enlarge the class of ordin­
ary points.t As is well known, the first "improper" ("symbolic," "patholo-

t It should be emphasized that the extension of the classical ideas was prompted less by a 
purely academic interest than by the desire to solve practical problems. 
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gic") function was that introduced by Dirac (in 1927) as the delta function 
c5(x), considered nowadays to be a type of limit of anyone of a family of 
"delta sequences," such as 

for Ixl < k, 

for Ix I > k, 

for k > O. It is easily seen that, for each k, 

J 00 c5 k(x) dx = 1. 
-00 

Clearly, for any function ¢(x) that is continuous at x = 0, we have 

.00 1 . k 

!~~ .1_ 00 c5 k(x )¢(x) dx = !~~ 2k.l_ k ¢(x) dx 

= lim 21k ¢(~k)2k = ¢(O), 
k-O 

(16.1 ) 

(16.2) 

(16.3 ) 

where - k ~ ~k ~ k, the next-to-Iast step following from the first mean value 
theorem of the integral calculus (involving definite integrals of continuous 
functions). It is, therefore, tempting (but, from the classical viewpoint, incor­
rect) to conclude that, if we define the point function c5 by c5(x) = 
limk_o + c5 k(x), we obtain a function with the curious properties 

c5(x) = 0, x # 0, 
.00 I c5(x)dx=l, 

• - 00 

(16.4 ) 

J 00 c5(x )¢(x) dx = ¢(O) 
-00 

for any continuous function ¢(x). It is customary to call the latter a testt 
function and consider it instead to be a member ofthe relatively narrow class 
of test functions belonging to the space Co 00. This space consists of all 
infinitely differentiable functions (1) defined for - 00 < x < 00 (or, more 
generally, :Jln ) and (2) vanishing outside of some finite interval (or a finite 

t Some authors call the functions of the class Co 00 "finite" functions; see, e.g., Ref. 26. The 
notation Co 00 (where 00 stands for "infinite differentiability" and 0 for "vanishing outside 
some finite interval") is often replaced by K. 
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portion n of 9f n).t The most decisive of the equations (16.4), namely, the last, 
is now accepted as the definition of the improper function c5(x). A similar 
device is employed to define other symbolic functions so that, figuratively 
speaking, these functions are determined by the values they produce [here 
4>(0)] from the test functions 4>. Since the just-mentioned equation of the 
group (16.4) assigns a number (4)(0)) to a function (4)), it constitutes a 
functional,! say,f The result of the action off on 4> is often writtenf4> rather 
thanf(4)), but we shall denote this number more conveniently by <1; 4». As 
we shall see shortly, it is often possible (and, for the most part, convenient) to 
represen t the functional < f, 4» in the form 

<f, 4» = roc f(x)4>(x) dx, 
. - oc 

(16.4a) 

similar to that appearing in (16.4). 
What emerges here is the idea of exteriding the notion of a function via 

its identification with a functional associated with (or generated by) the 
function. Such an approach is not new, but has long been utilized in the 
theory of the well-known Fourier series. In the latter, the classical definition 
of a (real) function, f, as a rule associating a unique real number y = f(x) 
with each element x of a set of real numbers, is actually replaced by a 
characterization of f by means of a set of Fourier coefficients, the latter 
constituting nothing else but functionals (integrals) involving certain auxi­
liary functions. And so, for example, a cosine expansion of a function f 
defined in [0, 1t] includes coefficients in the form 

2 ,rr 

bn = -I f(x)cos nx dx, 
1t. 0 

(16.4b) 

in which the presence of the auxiliary functions {cos nx} is clearly visible. 
The analogy between the formulas (16.4a) and (16.4b) is thus apparent, 

with the auxiliary functions playing the role of test functions. 
With regard to the space of test functions Co 00, the latter is clearly a 

linear space, with the usual pointwise definitions of addition and scalar 

t Of greatest interest here is the so-called support of a function on .#1". Precisely, the support of 
a function f(x) in Q is the closure of the set of elements x in Q such that f(x) 1= O. For the 
definition of "closure" of a set, as the set in addition to all its accumulation points, compare 
the text preceding equations (6.3b). The reader is reminded that the symbol3t denotes the set 
of real numbers and the symbol .51" denotes the set of ordered n-tuples of real numbers [cf. the 
text following equation (5.9)). We note that the space of test functions can be selected in 
various ways (e.g., as a space of continuous functions), but it turns out most useful to impose 
on this space the severe smoothness requirements accepted above. 

t See the remarks about functionals and their linearity in the second footnote following equation 
(8.20). 
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multiplication. The introduction of the standard topology on this space is 
slightly complicated, requiring acquaintance with concepts whose 
clarification lies beyond the scope of this book. Thus, rather than elaborate 
upon the topological structure postulated for Co 00 in more complete treat­
ments (e.g., Ref. 10), we merely note that there is no norm compatible with 
this structure; the space Co 00 with this standard topology does, however, 
admit a rather_ simple characterization, of the concept of convergence, 
namely, a sequence of functions </Jl' ... , </Jb ... in Co 00 (.:ai'n) converges to a 
function </J in Co 00 (.~ n) if and only ifi' 

(a) there exists a common bounded region n in ·:Jfn outside of which all 
the functions </Jk vanish (this is, of course, equivalent to saying that the 
supports of all these functions are included within a sufficiently large ball), 
and 

(b) the sequence of partial derivatives 
n r _ I olrl</Jk I 

{Dn </Jk} = IOX~1 ... ox~. /' Irl = Lr;, 
converges uniformly in n to the partial derivative 

olrl</J 
Dr</J=---n - ox'il ... ox~. 

;~ 1 
(16.5) 

(16.5a) 

for any multi-index r = (r b ... , rn) of "length" I r I ~ O. Returning now to the 
idea of a functional, it is said that a linear functionalf on Co 00 is continuous if, 
whenever a sequence of test functions {</Jk} converges to </J in Co 00, i.e., 
satisfies the just-listed conditions (a) and (b), then the numerical sequences 
<f, </Jk) tend to <f, </J). 

Following the nomenclature suggested by Schwartz, each continuous 
linear functional on the space Co oo('~n) is said to be a distribution (or, more 
exactly, an n-dimensional distribution). 

Distributions can be "generated" by functions of various degrees of 
smoothness; this construction can be effected (Stakgold,(24) p. 92) even for 
those of such a broad class as the locally integrable functions in.~ n' For such 
a functionf(x), the integral In I f(x) I dx exists for every bounded domain n 
in JI n:l: and the associated "n-dimensional" distribution takes the form 

<f, </J) = r f(x)</J(x) dx, (16.6) 
~ -:In 

where x = (x b X2' ... , xn ) and JR. denotes the n-tuple integral J~ 00 '" J~ 00 • 

+ Many authors give a slightly different formulation of the condition (b) by introducing the 
notion of the so-called null sequences (tending to zero). See, e.g., Stakgold (Ref. 24, p. 90). 

t More generally, a function is locally integrable in a domain if it is integrable over every closed 
and bounded portion of the given domain (here.f4 .). The condition of local integrability is less 
stringent than, e.g., either continuity or piecewise continuity. 
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A distribution which can be represented in the form (16.6), via some 
locally integrable functionf(x), is called regular.t All other distributions are 
termed singular, but are often symbolically represented in the same form 
(and we shall follow this custom) by consideringf(x) as some sort of gener­
alized function. In this case, of course, there is no function f on .:f/I n -in the 
classical sense-which, when multiplied by ¢ and integrated over ~ n' pro­
duces <f, ¢). Rather, the right-hand side of (16.6) is then to be regarded as 
merely a collection of symbols, another expression for <f, ¢), and not as an 
integraL We have already encountered an example of this usage in the last of 
equations (16.4), which can now be given the more general form 

<6, ¢) = r 6(x)¢(x) dx = ¢(O), (16.6a) 
. R, 

where ¢(x) E Co x. It can be shown that there is no point function 6 on ·1fn 

which can give such a result upon "acting" on each test function ¢. It is 
worth emphasizing that, in practice, the identification of a distribution­
generating function with the associated distribution itself is so complete that 
it is quite normal to speak of distributions as if they were not merely func­
tionals, but (whether ordinary or improper) functions themselves. This is, in 
particular, true of the Dirac function. by which is usually meant the 6-
function itself and the functional (16.6a). Likewise, for the moment assuming 
that ordinary manipulations are valid for the delta function, we can write 
formally for its "derivative" 6' and ¢ E Co 00, 

<6', ¢) = .C}'(x)¢(x) dx = 6(x)¢(x) [X) - .C
oo

6(X)¢'(x) dx = -¢'(O), 

(16.7) 

where we have considered that, by definition, the test functions vanish at 
infinity. 

At this stage, we also remark that, while the ordinary derivative of the 
Heaviside unit step function, 

10 
H(x) = \1 

for x < 0, 

for x > 0, 
(16.8) 

is zero for both x < ° and x > 0, we should have, for its "distributional 
deri va ti ve," 

,00 ~oo 

<H', ¢) =.1 H'(x)¢(x) dx = -.I H(x)¢'(x) dx 
-00 -00 

= - roo ¢'(x) dx = ¢(O). (16.9) 
• 0 

t For regular distributions alone, strictly speaking, the sign <,) becomes identical to that of the 
inner product (, ) of the Hilbert type [ef. equation (8.2)]' 
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Comparison of (16.9) with the last of equations (16.4) implies that H'(x) = 

<5(x).t These (of course, purely formal) properties of the delta function and 
its "derivative" of generating linear functionals prompted Schwartz to re­
place the questionable "improper" functions by certain well-defined linear 
functionals. 

It should be clear that the relation (16.7) actually suggests that the 
"derivative" of <5 should be the distribution <5' given by <S, <fJ) = - <fJ'(0) for 
<fJ E Co 00. In (16.13), we shall set down a definition of (partial) derivative of a 
distribution which is consistent with this observation (this is not 
surprising-the basis for the definition will be nothing more than the for­
mula for integration by parts !). 

Now let h denote an infinitely differentiable function and <fJ E Co 00; then 
also h<fJ E Co 00. This observation allows us to define multiplication of a 
distributionfby an infinitely differentiable function h: we set (by analogy to 
the familiar S",. h(x )f(x )<fJ(x) dx = Ix. f(x )h(x )<fJ(x) dx for three well­
behaved functions) 

< hf, <fJ) = < f, h<fJ). 

As an illustration, take f = <5 and h to be given simply by h(x) = x. We 
claim that then M = 0, that is, 

<M, <fJ) = 0, 

o also denoting here the null distribution, <0, <fJ) = 0 for each <fJ E Co 00. 

Indeed, 

<M, <fJ) = <<5, h<fJ) = h(O)<fJ(O) = 0 . <fJ(0) = 0 (16.10) 

for each <fJ E Co 00, proving our claim.; 
The Dirac function is not the only improper function. Examples of 

others are dipoles, quadrupoles, and similar derivatives of the <5-function or 
combinations of the latter with its derivatives.(104) 

If f(x) is a locally integrable function on a domain n, and Dr denotes a 
partial differentiation of order r with respect to certain of the n variables, we 
can introduce a distribution f by the equation 

<f, <fJ) = r f(x)Dr<fJ dx, 
.. ·Jln 

(16.11 ) 

t The two distinct derivatives coincide in a sense if, in the ordinary calculus, one accepts the 
traditionally rejected idea that at the point x = 0 of the discontinuity of H(x), a derivative 
exists and is infinite. A "graph" of b'(t) displays two spikes along the axis of ordinates pointing 
in opposite directions. Compare, e.g., Lighthill (Ref. 103, p. 12). 

; Note that two distributions are equal if they produce the same action on each test function. 
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As an example, for n > 1, we can take 

. 1 
<f, ¢) = J;t. Ilx _ Xo II D/¢(x) dx (16.12) 

for some Xo in '~n' Below we use the equation (16.11) to define a central 
object in (16.17). It is quite natural to consider differentiation oj distributions. 
To this end, letting OJ J denote the partial derivative with respect to the 
variable Xj ofa distributionJon ·jfn, we define 

. oj 
<cjl; ¢) == J".OXj ¢(x) dx 

= -<'1; cj ¢) (16.13) 

for each test function ¢. For a derivative of order r, we shall then have, after 
repeated applications of (16.13), 

(16.14) 

where or denotes the derivative c;1, c'i, ... , c~· with respect to the n variables, 
and the multi-index r = (r 1, r 2, ... , r n) has "length" 

(16.15) 

Suppose now that the distributions appearing in (16.14) are induced by 
locally integrable functions u and v, respectively. Then (16.14) becomes, 
explicitly, upon constructing each member of (16.14), 

. . or¢ 
I. u¢ dx = ( - 1 )Irl I v;"l r 0 dx. 

uX' ... x r • . . itn • ·1In 1 n 

(16.16) 

In this case, many authors (e.g., Refs. 8 and 99) say that u is the rth gener­
alized derivative of v, and denote u by the collection of symbols 
orv/ox;' ... ox~·, i.e., by using the same notation as is used in the case in 
which v has an rth derivative in the usual (classical) sense. The preceding 
equality is then written 

. or ¢ . orv 
j V dx = ( - 1 )Irl I ¢ dx 

11. ox;'··· ox~· '''. ox;' ... ox~· ' 
(16.17) 

which is formally the rule for integration by parts (since ¢ E Co (0); if v has 
continuous partial derivatives of all orders::::; I r I, then (16.17) follows in the 
classical manner, of course. 

As another example(22. 24. 105), consider the discontinuous sawtooth­
like functionJ(x) on:Yl of period 2n [i.e.,f(x + 2n) = J(x)] and given in the 
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interval [ - n, n] by the equations (Figure 16.1a) 

n-x 
for 0< x S; n, 

2 

f(x) = 0 for x = 0, (16.18) 

n+x 
for -n S; x < o. ---

2 

Clearly, the function is continuous except at the points X k = 2kn, k = 0, ± 1, 
± 2, ... , where it suffers jumps of magnitude n. The function satisfies the 
Dirichlet conditions (Ref. 27, p. 181) and has the Fourier series 

f(x) = I sinkx. 
k=l k 

(16.19) 

As seen from (16.18),f(x) is differentiable except at the points x = 2kn, where, 
however, the left- and right-hand derivatives exist. 

a 

b 

-2"'­

'---" 

f(x) 

x 

6f4 :'-

I~ 
6f3: '(xl 

6f:---
2, 

~ -6', ___ ./F(xl ___ :6'4 
._----t/ .... ----f" »'--

'0' " ... __ -4. 3 

~f2 
~--6', 
0, 

Figure 16.1. Illustration for equations (16.18) and (16.20). 

x 
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Before we proceed further, let us note that, while conventionally the 
Heaviside function (16.8) is not differentiable at the point x = 0, from the 
standpoint of the distributional calculus, its derivative is found to be equal 
to the delta function [cf. equations (16.4) and (16.9)]' This result is easily 
extended to functions with multiple simple jumps (Figure 16.1b). 

Then let f(x) be a function infinitely differentiable for all values of x 
except a!, a2, ... , an' where it has left- and right-hand derivatives, but suffers 
jumps of amounts Nb ... , !1.f", respectively. Denote by T the purely formal 
derivative off obtained by disregarding the jumps; thus, for instance, fl' = 0. 
Clearly, T is a piecewise continuous function. Next, construct the function 
(Figure 16.1b) 

n 

F(x) =f(x) - I NkH(X - ak), (16.20) 
k=! 

evidently continuous and having a piecewise continuous derivative, F', in the 
ordinary sense. In view of this, F' represents the distributional derivative of 
F,t as well. Thus, differentiating (16.20) in the distributional sense, we have 

n 

F' = f' - I Nkb(X - ad· (16.20a) 
k=! 

But, as illustrated by Figure 16.1 b, the derivative of the continuous function 
F is indistinguishable from the purely formal derivative,J', of the discontin­
uous function! Therefore, considering that F' ==T, one obtains the distribu­
tional equation 

n 

f' = T + L Nkb(X - ak)' (16.21 ) 
k=! 

For f = H(x), T = fl' = 0, n = 1, and at = 0, this yields the already-noted 
relation H'(x) = b(x). In words, equation (16.21) states that in order to 
obtain the distributional derivative of a function with simple jumps, one 
must augment the purely formal derivative of this function by the contribu­
tions of the jumps of amount !1.fk b(x - ad for the jump at ak, k = 1,2, ... , n. 

Now, returning to the main problem under scrutiny [equation (16.18)J, 
observe that in the present case we must take ak = 2kn, !1.fk = n, and 
T = -l With these in mind, equation (16.21) becomes 

oc 

f'(x) = -1 + n L b(x - 2kn). (16.21a) 
k= - OCJ 

With regard to the Fourier representation (16.19), we note that, while the 

i" Compare the remark following equation (16.29), infra. 
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series does not converge uniformly tof(x), it does converge in the distribu­
tional sense. In fact, by integrating the series (16.19), we arrive at the series 
- L:'= 1 (cos kx/k2), converging uniformly (and, therefore, distributionallyt) 
to a function whose derivative is f(x). This being so, it is legitimate to 
differentiate the integrated series term-by-term in order to regain (16.19). A 
repeated differentiation in the distributional sense now gives 

00 

f'(x) = Leos kx, (16.22) 
k=l 

so that, comparing (16.22) with (16.21a), we arrive at the classically awkward 
result 

00 1 1 00 

k=~ }(x - 2kn) = 2n + ~ k~l cos kx. (16.23) 

From a conventional viewpoint, the left-hand member of the preceding 
equation is absurd, while the right-hand member stands for a series that does 
not converge. In the distributional sense, however, equation (16.23) is mean­
ingful, insofar as it expresses the fact that the operation of both members on 
a test function ¢(x) E Co 00 is the same. Indeed, multiplying by ¢(x) and 
integrating from - 00 to 00, we find; that, for every test function ¢(x), 

00 1 .. 00 1 00 .00 

k=~oo ¢(2kn) = 2nLoo ¢(x) dx + ~ k~l Loo cos(kx)¢(x) dx. (16.24) 

In applications, one often meets linear partial differential equations with 
constant coefficients. Denoting the corresponding operators concisely by 

(16.25) 

we find, for two functions ¢, ljJ E Co 00, after using Green's theorem, 

r ljJ P¢ dx = r ¢P*ljJ dx, 
• ·1tn ~'-~n 

(16.26) 

where 

(16.26a) 

i" Note our earlier definition of convergence. 
~ Compare additional remarks in Stakgold (Ref. 24, p. 139). 
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is the adjoint (Ref. 72, p. 8) of P(O). This suggests introduction ofthe follow­
ing distribution, PI. corresponding to the distribution f: 

<PI. <jJ) = r Pf<jJ dx 
.. . iI" 

= r fP*<jJ dx = <I. P*<jJ). 
.. . 41" 

(16.27) 

In particular, for the (self-adjoint) Laplace operator, 

(16.28) 

we have p* = P, so that the distribution 'fil2f is determined by the equation 

<'fil2I. <jJ) = r 'fil2f <jJ dx 
.. . 11" 

= r f'fil2<jJ dx = <I. 'fil2<jJ). (16.29) 
•. JI" 

Elaborating upon our earlier example, it is not difficult to show that if a 
function f is continuously or piecewise continuously differentiable, then Its 
distributional derivative coincides with that taken in the ordinary sense. On 
the other hand, existence of a distributional derivative does not imply exist­
ence of a derivative in the ordinary sense (Ref. 99, sect. 5). Naturally, ordin­
ary and generalized derivatives of a function (if they exist) may appear as 
quite different objects. As an illustration, we need only refer to the ordinary 
and distributional derivatives of the Heaviside function examined above [cf. 
equation (16.9)]. 

It is of interest to note a rather classically unexpected fact that existence 
of distributional derivatives of some order 1 r 1 > 1 does not automatically 
imply existence of distributional derivatives of order less than 1 r I. 

16.2. Sobolev Spaces 

As an example of application of the calculus of distributions, consider a 
point source of heat of constant intensity Q = qpc, equal, say, to k, for 
simplicity, where k is the conductivity of a medium considered to be infinite 
in extent, q is the strength of the source, and p and c are the mass density and 
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specific heat of the medium, respectively. The equation governing the tem­
perature field e = e(r) outside the source ist 

r = Ilxll. (16.30) 

Considering the presence of the singularity at r = 0, we select as a function 
space the Sobolev space W 2 • 1, including all functions which, together with 
their first and second generalized partial derivatives, are integrable over the 
entire space .qf 3' The space is discussed briefly below. 

It is immediately seen that for r =I 0, e = l/r is a solution of equation 
(16.30), and one can introduce the distribution induced by l/r. 

That is, the function given by l/r, locally integrable, 

, 1 I - dx, 
'K r 

exists for any closed and bounded set K in ·Jf3 . Consequently, the integral 

, 1 
< r - 1, </J> = I - </J dx 

'.if, r 

exists for any (test) function </J E Co 00('~3)' In this manner, we see that the 
function r- 1 can be considered as a continuous linear functional on 
Co 00 (J!l 3 ), i.e., as a distribution. 

We thus have [cf. the symbolism in (16.29)] 

<V2r- 1 , </J> = r r- 1V 2 </J dx, 
, .if, 

(16.31) 

Applying the third Green's identity to the region Ilxll > c > 0, and bearing in 
mind the properties of a test function, we transform the preceding integral 
into 

, r 1 d</J 11 -I . -- + </J 2. dS, 
'S, r dr r 

where S, denotes the surface of the ball of radius c, centered at the origin. 
Note that dS = c2dw, where dw is the element of surface area of the unit 
sphere. In the limit, as c ---. 0, we findt 

(16.32) 

t See, e.g., Nowinski (Ref. 83, equation (9.66)]. It is assumed that the source is located at the 
origin of a spherical coordinate system r, ::1, p. 

t A more general discussion can be found in SneddonO O) 
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sot 

V2 (_1 ) = -b(r), 
4nr 

(16.33) 

This gives the temperature field in the form 8(r) = !nr,~ 
In applications of the distributional calculus to differential equations of 

mathematical physics and engineering, it is often appropriate to work within 
one of the Banach spaces (that is, normed complete linear spaces, as noted at 
the beginning of this chapter) known as Sobolev spaces§ and denoted by 
Wk. P(O), Wk. P(O) is the space of real-valued functions <p E 5i' p(O) whose gen­
eralized derivatives of orders ::::; k exist and belong to 5i' p(O),~ Functions 
equal almost everywhere (that is, everywhere except perhaps on a set of zero 
"measure" or, imprecisely, zero volume) are considered to be identical. In 
the space W' P(O), the norm is defined by 

I' 11!P 
11<P111\'k.P(Q) = I L I las<pIP dx/ . 

lsi sk '0 

(16.34 ) 

The main reason for introducing Sobolev spaces is to be found in the search 
for so-called weak solutions of boundary value problems.tt Suppose, for in­
stance, that one considers the torsion problem for a shaft of square cross 
section n, of side a, in terms of Prandtl's stress function F: 

F=O 
a 

for x, y = ± 2' 

(16.35) 

(16.35a) 

where g(x, y) = - 2Gct, G is the shear modulus, and ct is the angle of twist per 
unit length, Let F be a solution in the usual sense; we multiply both sides of 
(16.35) by a test function <p E Co ""(0) and integrate over 0, We have, apply­
ing the divergence theorem in 0, 

r V 2 F<p dx dy = r FV 2 <p dx dy, 
'0 '0 

(16.36) 

t Recall (16.3) and what was said earlier about equality of improper functions [see footnote 
following equation (16.1O)]' 

t Compare Carslaw and Jaeger (Ref. 106, p. 261). Note that the general form of the heat 
conduction equation in the stationary case is V2(J = -Q{x, y)/k. Clearly, -!nr is the fun­
damental solution of the Laplace equation in three dimensions. See Greenberg (Ref. 72. 
p. 114). 

§ Compare Sobolev (Ref. 99, Sec. 7) and Kufner, Oldrich, and Fucik (Ref. 107, Chap. 5). 
-j We recall that !.f' p denotes the set of all functions whose pth powers are integrable. 

tt See, e.g .• Stakgold (Ref. 24, p. 171), as well as the elegant paper by Weinacht l08 
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so that 

r FV 2 4> dx dy = r g(x, y)4>(x, y) dx dy. 
'n 'n 

(16.36a) 

A function F(x, y) satisfying the latter equation is known as a solution in the 
weak sense of the original problem, provided that the equality holds for each 
4> E Co 00(0). More generally, if 9 is a locally integrable function, then a 
locally integrable functiont F is a weak solution of (16.35) if it satisfies 
(16.36a) for each 4> E Co 00(0). 

Clearly, equation (16.35) can also be treated distributional/yo That is, if 9 
is a distribution, it is said that a distribution F is a solution of (16.35) if, for 
each 4> E Co 00(0), 

<F, V2 4» = <g, 4». (16.37) 

In this way, we recognize three classes of solutions of differential equations: 
the classical solutions, the weak solutions, and the distributional solutions. 

Evidently, a solution in the classical sense is a solution in the weak 
sense. Furthermore, by combining the left-hand side of equation (16.36) with 
the right-hand side of (16.36a), and selecting the test function so as to coin­
cide with an approximate solution to (16.35) and satisfy, say, the boundary 
condition (16.35a), we find a close connection between the definition of a 
weak solution and the Galerkin method. In any case, the function F(x, y) in 
(16,36a) is subjected to no other restrictions, a requirement considerably 
more liberal than the original, requiring that the function obey condition 
(16.35a) and belong to the class C 2 : Indeed, in the present case, the demand 
that FEW' 1 would do. 

We could also proceed slightly differently, applying the divergence 
theorem to the left-hand side of equation (16.36) and, bearing in mind condi­
tion (16.35a) and the properties of a test function, arrive at 

" 
(OF 04> of 04» " -;--- -;--- + -;- -;- dx d y = - g(x, y)4>(x, y) dx d y. 

'n uX uX uy uy 'n 
(16,38 ) 

Also here we note requirements on the function F weaker than membership 
in the class C2 • It suffices, namely, that F E WI. 1. In general, if one assumes 
that a weak solution is an element of a Sobolev space,! one understands the 
partial derivatives in the distributional sense. 

t The restriction of local integrability is understandable if one recalls the remark concerning the 
representation (16.6). 

t An interesting application of Sobolev spaces is due to Szefer and Demkowicz.(!09) 
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Chapter 2 

1. No, because of the absence of the concepts of length and angle, there is no means 
of distinguishing, say, the major axis of the ellipse from its minor axis, or a right 
angle in the square from an acute or obtuse one in the rhombus. 

2. By (2.10), 0 + x = x. If also x + x = x, then 0 + x = x + x, so that 

0+ [x + (-x)] = x + [x + (-x)]. 

Hence, by (2.11), 0 + 0 = x + 0 or, by (2.10), 0 = x + o. A comparison with 
(2.10) proves the assertion. 

----+ ----+ 
3. We have x + eM = z, y - MB = z or, upon B 

adding, z = !(x + y). 

Y \ 
_) M 

I; _ - -
A~ ______________ ~ ______ ~ C 

x 

4. We first note that by a midpoint of a side, say AB, is meant the point M I such 
that AM"; = MJ} in the sense of Axiom 2.2. We have: M 1M; = (x + y)/2, 
~ ~ ~ 

M2M3 = (y + z)/2, M3M4 = (z + w)/2, M4MI = (w + x}/2. But x + y + z + 
w = O. Thus, 

similarly, ~ = AT;M;. By Axiom 2.3, the assertion is verified. 

275 
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----+ --- ---+ 5. We have, from the trianlle ABC, 2AM I + 2BM 2 = 2AM3. From the triangle 
AM I M 3 , AM~ + MIM3 = AM~. Comparing the preceding equations gives 
M 1M; = BM; = M 2 C, as asserted. 

'- , 
'-

'­
'-

B 

'*, 
'-

'- , I 
I 

/ 

I 
I 

I 
I 

AL-__________________ ~'~ __________________ ~ C 

6. We have 

AS = exAM 
= ex(AR + EM) = ex(AR + iAD). 

Now if DS = pM. then 

AS = AD + ru = AD + pl5B = AD + p(AB - AD) 
= (1 - P)AD + PAR = pliB + (1 - P)AD. 

(a) 

(b) 

Comparison of (a) and (b) gives (l = i, so that AS = iAiT + jAD. But 
liS = AB - AS = j(AB - AD) and DS= AS - AD = i(AB - AD), which 
proves the assertion. 

B M C 

" " , 
" 

/ ... ." S 

" 2 
" " " " " A " D 

7. Since A2 B; = AlB;, the lines II and 12 are "parallel"; by Axiom 2.2, then the line 
II is the unique line through A I "parallel" to 12 . If I did not meet 12, it would be a 
second "parallel" to 12 through Ai> contrary to Axiom 2.2. 
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------------~--------t_------------- ~I 
AI 8 1 

8. Verification of Axiom 2.5, for example: 

Ix = (lxI, !xl, 1X3) 

= (Xlo Xl, X3) 

= X. 

277 

9. (1,0,0) = (0, ex, 0). By the definition of equality in Problem 8, there would follow 
1 = 0, which is absurd. 

10. Denote the position vectors of the vertices of the triangle by Xj, i = 1, 2, 3, 
respectively, and that of the hypothetical point of intg.sectio!!..Q.Ul.1e meditns S by 
s. For the median AIBio we have, by Problem 3, AIBI = t(AIAz + AIA3)' Thus, 

----.. 1 ----+ -----+ 
tl = Xl + AIBI = Xl + "1(AlAz + AlA3) 

X I 
II 

I 

= Xl + ~[(Xz - xd + (X3 + xdl = ~(X3 + Xl)' 



278 Answers to Problems 

Let 

Sl = Xl + IXAlB~ = Xl + IX(t l - xd 

= Xl + IX[!(X3 + X2) - xd = (1 - IX)Xl + (IX/2)(X2 + X3)' 

For the remaining two medians, a cyclic permutation of indices yields, e.g., 
S2 = (1 - P)X2 + (P/2)(X3 + xd, and there is a unique point S of intersection of 
the medians if (1 - IX) = P/2, (1 - P) = IX/2, or, finally, if IX = P = l In this case, 
S = Sl = S2 = S3 = i(Xl + X2 + X3), and U = jAlBl, for example. 

Chapter 3 
--+ --+ --+ 

1. If, in a triangle ABC, there hold AB 1. AC and II ABII = 3, then, by the Pythagor-
ean theorem (3.16), there follows IIACII = 4. Consequently, tan ~ ACB = l 

--+ --+ --+ 
2. Denote AB = X, AC = y, BC = z. By hypothesis, (v, x) = 0, (v, y) = O. By (3.2), 

upon subtracting, (v, y - x) = O. But y - X = z, and the assertion is proved. 

3. Denote the center of the circle by O,~e diamet~f interest ~ AOB~d a point 
on the circumference by C. Also let OB = X (so OA = -x), OC = y, AC = z. and ---+ --+ ~ :II. "-+ --=--+ ~ --+ 
BC=w. Then AC=OC-OA or z=y+x, while BC=OC-OB or 
w = y - x. But (z, w) = (y + X, y - x) = IIyl12 - IIxl1 2 = 0, since Ilxll = Ilyli. 

4. See Figure 9.la and the pertinent argument in Chapter 9. Note that a straight 
line is a carrier of all vectors of the form lXX, - 00 < tJ. < 00 if it carries the vector 
x. 

5. Suppose that both inner products obey the distributive law. This implies that 

Ilxlllly + zllcos2(x, y + z) = Ilxllllyllcos2(x, y) + Ilxllllzllcos2(x, z), (IX) 

and that 

Ilxlllly + zllsin(x, y + z) = Ilxllllyllsin(x, y) + Ilxllllzllsin(x, z), (P) 

respectively. By a general theorem on orthogonal projections, however, 

Ilxlllly + zllcos(x, y + z) = IlxllliYllcos(x, y) + Ilxllllzllcos(x, z). (,') 

We multiply the preceding equation through by cos(x, y + z) and 
cotan(x, y + z), respectively, and observe that equations (IX) and (P) contradict 
equation (y), except in particular cases in which cos(x, y) = cos (x, z) = 
cos(x, y + z) and sin(x, y) = sin (x, z) = cotan(x, y + z), respectively. 

6. Consider the distributivity of the inner product (3.2). 

7. Consider the triangle inequality (3.20). 

8. Use an appropriate notation. 
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Chapter 4 

1. Linear independence of x, y, and z imples that 1X1X + 1X2 Y + 1X3 Z = 0 only if 
1X1 = 1X2 = 0(3 = O. But the ej- vectors are linearly independent, so that the 
coefficien ts in 

(21X1 + 0(2 - 21X3)e1 + (1X1 - 31X2 - 1X3)e2 + (-1X1 + 21X2 + 31X3)e3 = 0 

must vanish. The trivial result 1X1 = 1X2 = 1X3 = 0 follows, since the determinant 

~ = l ~ 
-1 

1 
-3 

2 

-2 
-1 

3 

differs from zero (actually, ~ = -14). Therefore, x, y, and z are linearly 
independent. 

2. v depends linearly on x, y, z if, and only if, we can find Pb P2, and P3 such that 
3el - 2e2 - Se3 = P1X + P2 y + P3 z. Inserting from Problem 1 and considering 
that the e;-vectors are linearly independent gives Pl = - 2, P2 = 1, P3 = - 3. 

3. x and x + lOy are independent if, and only if, 1X1X + 1X2(X + lOy) = 0 implies 
1X1 = 1X2 = O. But this is (1X1 + 1X2)X + 101X2Y = 0 and, since x and yare indepen­
dent, there follows 1X1 = 1X2 = O. Thus, also x and x + lOy are independent. 

4. There is v = Sel + Se2 + 7e3 and, by (3.9), 

Ilvll = [(Sel + Se2 + 7e3, 8el + Se2 + 7e3W/2. 

Since the ej-vectors are orthonormal, Ilvll = (138)1/2. 

S. A unit vector along the y-direction is y/llyll. Thus, the projection sought is 
Xy = (x, y)/IIYII [see equation 3.S)]. But (x, y) = -36 - IS - 6 = -60, and 
Ilyll = (SI + 9 + 9)1/2 = (99)1/2. Consequently, Xy = -60/(99)1/2. 

6. Let the position vector of a generic point P on the plane be r = Xl el + 
X2e2 + X3e3' The vector n must be perpendicular to AP = r - 01, lying on the 
plane. Thus, 

(xel + X2 e2 + X3 e3 - [2el + lOe2 + 6e3], 4e1 + 6e2 + 12e3) = 0 

or 2Xl + 3X2 + 6X3 = 70, and is the desired equation of the plane. 

7. Use equations (4.12) and (4.13). 

S. Inspection shows that x = y/2 + z, so that x depends linearly on y and z. The 
remaining vectors are linearly dependent if lXy + pz + yv = 0 for some IX, p, I', not 
all zero. But the only solution of the system SIX + 2P + 3}1 = 0, IOIX - 6p + 
4}1 = 0, 41X + 4P + S}' = 0 is IX = P = I' = 0 (the determinant of the system is 
nonzero). 
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9. We have Z2 = IIzl12 = (Xl> XI)X 2 + 2XY(Xh X2) + i(X2, X2). In case (a): (XI, 
X2) = 0; in case (b): (XI. xd = (X2, X2) = 1, in addition to (XI. X2) = O. 

10. We first observe that y = 2x, so that y can be eliminated. The remaining vectors 
are linearly dependent only if IXX + py + yv = 0 for some IX, p, and y, not all of 
which are zero. This requires 

21X + 2P + 8y = 0, 41X + p + 13y = 0, -31X+3p-6y=0. 

But the determinant of this homogeneous system vanishes, so that one of the 
equations of the system is a consequence of the remaining two (v = - 2z + ~x). 
The independent subset, therefore, includes only two vectors, X and z, say. 

Chapter 5 

1. Using (5.27), we normalize g I to obtain II = (1/21/2) (1, 1, 0). Equation (5.31) 
then gives C22 = Ht 1/2, whence, from (5.30), the second orthonormal vector 
becomes 12 = (j)1/2(-1, 1,1). For k = 3, equations (5.32b) yield C33 = 31/2 and 
13 = 31/2(!, -!, i). 

2. We construct an orthonormal basis for the n-space, 

i1,j2, ... ,jm,im+l, ···,in, 

which includes the m given n-vectors. In terms of this basis, 

~ (x,j;)j; 
X= 1... ---. 

i = ; (j;, j;) 

An inner multiplication of both sides with x gives the desired inequality for 
m:c; n. 

3. Assume that, for some scalars, IX b IX 2, ... , IXn, we have IX I II + ... + IXk Ik + ... + 
IXn J. = 0, and take the inner product with Ik· This gives IXk II Ik II = 0 for any Ik. 
Since Ik + 0, each IXk = 0, and the set Ud is linearly independent. 

4. We represent Ik = Ii'=1 lX\k)ei and, taking a self-inner product, find that 
Ii'= I lX\k)IX\') = (\" where 15k! is the Kronecker delta. 

5. Suppose that the Xi are linearly dependent: 

1X(1, -1, 0, ~) + P(I, ~, 0, -1) + y(l, -1, 1,1) = (6, 18, - 8, - 4). 

It follows that 

11X + P + y = 6, -IX + ~P - h = 18, y = -8, ~IX -1P + 1Y = -4. 

The preceding system is consistent, its solution being: IX = 4, P = 12, y = -8; 
e.g., X4 = 4x I + 12x 2 - 8x 3. Since the remaining vectors x b x 2, and x 3 are 
linearly independent (verify!), the space is three-dimensional. 
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6. Linear independence is trivially verified. The vectors span 6 4 , since for any 
vector x = (x" X2, X3, X4), there is 

(x" X2, X3, X4) 

= '~' (2, 0, 0, 0) + ~2 (0, 3,0,0) + :3 (0, 0, 4, 0) + '~4 (0,0,0, 5). 

7. Represent x = x,(I, 0, 0) + X2(0, 1,0) + x3(a, p, I'), where h = (a, p, I'), Ortho­
gonality of h to e, and e2 demands that a = p = 0, and the foregoing relation 
yields x, = 2, X2 = 3, X3 = 4 if we set,' = lor h = (0,0,1). From the Pythagor­
ean theorem, x = (29)12; the orthogonal projections of x on hand e, + e2 are 4 
and (13)112, respectively. 

8. The vector g in <5" can be represented in the form g = a, e, + ... + a" e", where 
led is an orthonormal basis in <5 n' It is required that (h, eJ = (f - g, eJ = 0, 
i = 1, 2, ... , n. This gives aj = (f, ej), i = 1, 2, ... , n, and the representation is 
f= D~, (f, ej)ej + h. 

Chapter 6 

1. Let the sequence {Xk) tend to x, i.e., by (6.3), limllx - xkll = ° for k --> 00. By the 
triangle inequality (5.25), 

Ilxm - x"11 = II(xm - x) + (x - x")11 s Ilxm - xii + Ilx - x"ll· 

Since the right-hand side --> ° + ° as m, n --> 00, the assertion is proved. 

2. We have 11(3 - l/m) - (3 - l/n )11 sill/mil + Ili/n II --> ° + 0, as m, n --> 00, by 
triangle inequality. Thus, the sequence is Cauchy, but the only possible limit, 3, 
lies outside the open interval (1, 3), so that the sequence does not converge in the 
sense of (6.3). 

3. The following sets constitute subspaces of <5 3 : {(a" a2, O)}, {(a" 0, (3)}' {(O, a2, 
a3)}' {(a" 0, O)}, {(O, a2, O)}, {(O, 0, (3)}, as well as {(a" a2, (3)}, {(O, 0, O)}. Note that 
6 3 and 8 = (0, 0, 0) satisfy all conditions imposed on a subspace. 

4. By hypothesis, there are scalars }'k j , j = 1, 2, ... , n, k = 1, 2, ... , m, such that 
Y· "'m j k r . 1 2 I' I h (f" • d' (f' =L...k~'/kX lOr) = , , ... ,n. tlsceart at.],lscontame m'}'2,sowe 
need only show the reverse inclusion. Then let x E .'l' 2, whence there are scalars 
ako k = 1, 2, ... , m, and Pj, j = 1, 2, ... , n, for which x = D' ~, ak Xk + IJ~, pj yi. 
U sing the linear dependence of each yi on the set {Xk}; ~" X = Ii:' ~, ak Xk + 
IJ~, {3j I;~, Ik jxk = Ii:'~, (ak + IJ~, {3j/'k j)Xk. Thus, x E .'/'" showing that 
y 2 is contained in Y,. Therefore, .'l', = .'l' 2. 

5 We have Ily"+P - .v" II 2 - II"'n+ p a xkl1 2 = "'n+p IIC( xkl1 2 = "'n+p (N 2) • - ~k=n+ 1 k £-k=n+ 1 k L..)c=n+ 1 IAok , 

the last two steps by the orthonormality of {Xk}. Since, by hypothesis, the series 
Ik~' C(k 2 converges, the Bolzano-Cauchy condition of convergence implies that 
I~~~+, C(/ --> ° as n, p --> 00 (see Ref. 120, p. 383). This proves the assertion. 
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6. Let ex :0; x" :0; fJ and Ilx - x"1I == I x - x" I -+ 0 as n -+ 00. Suppose that x is not in 
[ex, fJ], for instance, x < ex, so that ex - x = I: > O. Now for sufficiently large n, 
x" - x:o; I x" - x I < I: = ex - x. Thus, x" < ex, which contradicts our assump­
tion. Similarly, we cannot have fJ < x. 

7. We form a sequence {y"} in .'f'~, convergent to some vector y. By assumption, for 
any x in .9" and for each n, there is (x, y") = O. By the Cauchy~Schwarz inequality 
(5.24), /(x, y)1 = I(x, y)-(x, Y")I = I (x, y-Y")I:o; IIxlilly-Y"1I-+0. Thus, 
(x, y) = 0 and y is orthogonal to any x in .9" or y is in .'f'~. 

8. Let the element Xl of e be removed from the given basis. If the modified set were 
still a basis, by definition of a basis, the element could be represented in the form 
Xl = Lk= I (Xl, Xk)Xk. By the orthogonality of {Xk}, however, then Xl = 0 + 0 + ... , 
so that Xl = e, contrary to the assumption. 

9. Select an arbitrary vector Xl and find a vector x2 independent of Xl. Such a 
vector exists, for otherwise the space would be of finite dimension. The process 
can be repeated indefinitely with a similar argument. 

Chapter 7 

1. To (xk, l) - (x, y) we add and subtract (x, y), (Xk, y), and (x, l). This gives 

(Xk, l) - (x, y) = (xk - x, l- y) + (x, l- y) + (y, Xk - x). 

Using the Cauchy~Schwarz and triangle inequalities gives 

I (x\ l) - (x, y)/ :0; Ilxk - xII IIl- yll + IIxlllll- yll + IIYllllxk - xll-+O 

as k -+ 00 by hypothesis. 

2. (a) If x of e, then IIxll > 0; if x = e = (0, 0, ... ,0), then IIxll = o. 
(b) lIexxll = [If=, (exXi)2]1/2 = lexl If=1 (Xi)2]1/2 = lexlllxll-
(c) IIx + YII2 = [If=, (Xi + y.)2 = If=, (Xi 2 + 2XiYi + y/):o; IIxr + IIYII2 

+ 21(x, y)1 :0; II x ll 2 + lIyII 2 + 211 x llllYil = (lI x ll + lIylW 

3. By definition of a spanning set, Y' consists of all vectors of the form x = exl Xl + 
... + exmxm. If the set {Xi} is linearly independent, then n = m by definition [see 
Group D, equation (7.3)] of the dimension of a subspace. If the set is linearly de­
pendent, then at least one ofthe Xi'S, say xm for simplicity, can be represented as a 
linear combination of the remaining vectors; hence, Xl, x 2, ... , xm - I span .9". 
Thus, n is certainly less than m, since there are at most m - 1 linearly indepen­
dent vectors in Y' in this case. 

4. From (5.27), we first find PI(t) = 1/(J'-1 dtt 1!2 = 1/21!2; (5.30) and (5.31) then 
give C22 = (3/2)1/2, P2(t) = (3/2)1/2 t ; thus, C33 = 1(5/2)1/2, P3(t) = (1/2)(5/2)1/2 x 
(3t 2 - 1). 
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5. From the triangle inequality (7. 12(c)], d(x, z) - d(y, z) :0:; d(x, y); interchanging the 
roles of x and y, d(y, z) - d(x, z) :0:; d(y, x), or -d(y, x) :0:; d(x, z) - d(y, z). Since 
d(y, x) = d(x, y), by (7. 12(b)], we find Id(x, z) - d(y, z)1 :0:; d(x, y), by combining 
the preceding inequalities. 

6. Let a sequence of functions {x"} belonging to C.<;'<;b be Cauchy, i.e., d(x", xm) = 
max.<;'<;b I x"(t) - xm(t) I ..... 0 as n, m ..... 00. Since this says that the sequence 
{x"(t)} is Cauchy for each t, there exists x(t) = Iim"_", x"(t) for each t by the 
completeness of the real numbers. The function x so defined will be shown to be 
in C.:Sr<;b, with x" ..... x in C.:S'<;b. We have Ix"(t) - x(t)1 :0:; Ix"(t) - xm(t)1 + 
Ixm(t) - x(t)1 :0:; max.:s,:sb Ix"(r) - xm(r)1 + Ixm(t) - x(t)1 for any t in [a, b] 
and for any m, n. Given £ > 0, choose m so large (depending on t) that the second 
term is less than £/4, and the first term is less than £/4 for all sufficiently large n 
(independent of t). Thus, I x"(t) - x(t) I :0:; £/2 for all sufficiently large n, indepen­
dent of t, whence maX.:s':sb Ix"(t) - x(t)1 < £ for all sufficiently large n. This 
shows that x" ..... x as n ..... 00 in the norm of C.<;'<;b. Finally, for t and r in [a, b] 
and any n, write 

Ix(t) - x(r)1 :0:; Ix(t) - x"(t)1 + Ix"(t) - x"(r)1 + Ix"(r) - x(r)1 

:0:; 2 max Ix(z)-x"(z)1 + Ix"(t)-x"(r)l. 
a~z":;b 

Given £ > 0, choose n so that the first term is £/2. Since x" is uniformly continuous, 
the second term is less than £/2 provided that It - r I is sufficiently small. Hence, 
I x( t) - x( r) I < [; if I t - r I is sufficiently small, showing that x is (uniformly) 
continuous on [a, b]. Thus, C.<;,:Sb is complete. 

7. For any points Xl and x2 in the closed ball, Ilx l - ell :0:; R, IIx2 - ell :0:; R. Take 
any poin t y on the line segmen t through x I and x2 : y = fJ I X I + (1 - fJ dx2 where 
o < fJ I < 1. Then 

Ily - ell = IlfJlx l + (1 - fJdx2 - ell = IlfJlx l + (1 - fJdx2 - fJle - (1 - fJdell 

:0:; fJlllxl - ell + (I - fJdll x2 - ell, 

by Axiom N (b), (c), :0:; fJ I R + (1 - fJ dR = R. This proves the assertion. 

8. For k= 1, inequality (7.21) becomes Ilxll2:l(x, xl)1 where Ilxlll = 1. Taking 
Xl = y/llyll, where y of B, we obtain Ilxll 2: (x, y/llyll), whence I (x, y)1 :0:; Ilxllllyll, 
just the Cauchy-Schwarz inequality. 

9. Take an arbitrary function x(t) in Co:s, <; I. Let So denote the set in Co <;, <; I of all 
polynomials Po(t) with rational coefficients. By the Weierstrass approximation 
theorem [cf. the text preceding equation (13.34)], there exists a polynomial P(t) 
such that [see (7.12a)] maxos,:s I Ix(t) - P(t)1 < £/2, £ > O. Likewise, there exists 
a polynomial Po(t)ESo such that maxo<;':S1 IP(t)-Po(t)1 <£/2. Hence, 
d(x, Po) = maxo<;':S1 Ix(t) - Po(t)1 < £ by the triangle inequality. This proves 
the assertion [cf. the text following (7.5)], since the set So is countable. 
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Chapter 8 

1. By the linearity of f[ x] and the equality 0 = 0 + 0, there is f[0] = frO + 0] = 
frO] + frO] or frO] - frO] = 0 = frO]. Alternately, observe that frO] = f[Ox] = 
of[x] = o. 

2. For an arbitrary vector x = (x b X 2, ..• , x.) and an orthonormal basis e b e 2, ... , 

e., there is f[x] = f[D'=1 xje;] = D=I x;![ej] = D=I xjaj = (x, a), where 
a = (at. a2, ... , a.) is the vector given by aj = f[ e;]. 

3. Since Xl and x 2 are linearly independent vectors in Iff 2, we can write 
x 3 = IXI(12, 5) + 1X2(2, 2) = (121XI + 21X2, 5IXI + 21X2)' By hypothesis, 12IXI + 
21X2 = 14, 5IXI + 21X2 = 8, so IXI = 6/7, 1X2 = 13/7. Thus (by linearity of L), 
y3 = 6/7YI + 13/7Y2 = (122/7, 15/7). 

4.LIL2.x=Ld,=LI(·XbO)=(0,xd for any X=(XJ,X2)' L2L l x=L 2y= 
L2(0,xd=(0,0) for any X=(XJ,X2)' Note that L2LI +L I L 2; in fact, 
LI L2 = Lb while L2 LI = O. 

5. Properties (b) and (c) are clearly satisfied, e.g., (x + y, z) = f~ [x(r) + 
y(r)]z(t - r) dr = (x, z) + (y, z). Property (a) is satisfied by the known convolu­
tion relation f~ x( r )y( t - r) dr = f~ x( t - r )y( r) dr (obtained by a simple change 
of variable). Property (d) generally is not satisfied, as shown by the following 
example. Let x(r) = cos r, so that (x, x) = n; cos r cos(T - r) dr = 
-!(sin T + T cos T). For T = 11:, say, we have (x, x) = -11:/2 < O. 

6. Hint: apply the divergence theorem to (u, u). 

7. Note that (ej, ej) = (f;,jj) = Dij. Using the summation convention, let x == IXjej, 
y = fJjej. Then (Lx, Ly) = 1X;/3iLej, Lej) = IXjfJiJ;,fj) = IXjf3j Dij = (lXjej, 
f3j ej) = (x, y). 

8. There is (Lxm, y") - (Lx, y) = (L(xm - x), y") + (Lx, y" - y). By the Cauchy­
Schwarz inequality, I (L(xm - x), Y")I s; IIL(xm - x)II IIY"II. Now, the sequence 
{IIY"II} is bounded since it converges (to IIyll). Also IIL(xm - x)II = IILxm­
LxII ..... 0 for m ..... 00 by hypothesis. Thus, limm •• -<Xl (L(xm - x), y") = O. Similarly, 
the Cauchy-Schwarz inequality shows that Iim._<Xl (Lx, y" - y) = 0 because 
IIY" - yll ..... 0 for n ..... 00. These facts give the desired result. 

Chapter 9 

1. Simply observe that the given sequence is an infinite linearly independent set. 
For, suppose L7=0 IXj t j = 0, -1 s; t s; 1. Setting t = 0 gives 1X0 = O. Differentiat­
ing the relation and setting t = 0 gives IXI = O. The process can be continued 
indefinitely, so that C _ I <;, s I is infinite dimensional, since no finite set of vectors 
can span C-Is,Sl' 

2. Let ii, i 2, .•. , i' be an orthonormal basis for Y and let x be any vector in Jr. 
Construct the orthogonal projection x of x on .Y'. Clearly, x = Li:= I (x, ikW-
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Next, consider y = x-x. We have (y, ik) = (x, ik) - (x, ik) = 0, and so y.l Y. 
Consequently, x = x + y with x in .'/' and y in .,/,J., i.e., .Jf = .'/'\B.'/'J.. 

3. Let (x, x) = (y, y). Then 0 = (x, x) + (x, y) - (x, y) - (y, y) = (x, x + y)­
(y, x + y) = (x + y, x - y); the sum and difference represent the diagonals of a 
rhombus. 

4. Let {It, f Z, ... ,jm} and {gl, gZ, ... , gn} be bases for the subspaces Y' and Y", 
respectively, and let 'I . denote the space Y' \BY". By definition of a direct sum, 
every vector z in 'I' may be represented in the form z = x + y, where x E .'/" and 
y E Y". Clearly, we can write x = Li~ 1':1.;'P and y = Ii' ~ I ':1.;" g" whence it fol­
lows that the set {I l,f Z, ... ,fm, gl, g2, ... , gn} spans 'I '. Suppose now that this set 
is linearly dependent: e = Li~ I fi;' P + Ii' ~ I fit gi = e + e for some scalars fi I', 
il z', ... , ilm', ill ", ilz", ... , iln ", at least one of which is nonzero. The uniqueness of 
representation of e as the sum e + e, however, implies that separately 
L~ I il;' P = e and Li~ I il;"gi = e. But {Ii} and {gi} are sets of linearly indepen-
dent vectors; hence, il;' = 0, i = 1, ... , m, iX;" = 0, i = 1, ... , n, and our assumption 
is false. Consequently, the set {I1',fI, ... ,fm, gl, g2, ... , gn} is a basis for 'I . and 
the dimension of 'I . is m + n. 

5. Let .'/" and .'/''' represent the xy-plane and z-axis, respectively, both subspaces of 
8 3 , Any U = (uJ, Uz, U3) in 6 3 can be written in a unique way as U = U' + u", 
where u' = UI el + Uz ez and u" = U3 e3' Thus, 8 3 = .'/"\BY"'. 

6. Every U'=Ulel+uZeZ+Oe3 and every u"=Oel+Oe2+u3e3' Now, (u', 
u") = ([Ulel + uzez] + Oe3, O[el + ez] + U3e3) = ([Ulel + UZe2], O[el + e2]) + 
([U I el + Uz ez], U3 e3) + (Oe3, O[el + e2]) + (Oe3, U3 e3) = 0, since (elo e3) = (ez, 
e3) = 0 by definition. 

7. We are looking for any two linearly independent vectors of the form x = (x 10 X2, 
X3, X4) such that (x,f) = Lf~ I XJi = 0 and (x, g) = Lf~ I Xigi = 0 hold for 
each of them. We are thus free to choose two of the coordinates Xi at our 
convenience. If we take, say, X2 = 0, X4 = 1 and then Xz = -1, X4 = 0, we find 
x I = - 17, x 3 = 5 and x I = 2, x 3 = 0, respectively. Thus, an acceptable basis for 
.,/,J. isJ= (-17,0,5,1) and g = (2, -1,0,0). 

8. Let Xl = Xl + Xl and x 2 = x2 + xZ, where Xl, XZ E.'/' and Xl, x2 E yJ., so 
Pry Xl = Xl and Pry XZ = xZ. Then (Pry Xl, XZ) = (Xl, XZ + XZ) = (Xl, x2) and 
(Xl, PrY' XZ) = (Xl + xt, XZ) = (Xl, XZ). This proves the assertion. 

Chapter 10 

1. Clearly, the limit function is given by f(t) = 0 for 0 ~ t ~ 1 andf(t) = 1 for t = 1. 
The convergence is not uniform because SUPO-S'-Sl If.(t) - f(t)1 = 1 cannot be 
made arbitrarily small for all sufficiently large n. 

2. For any x in [0, 1] there is Iimn~oofn(x) = 0, but gf/(x) dx = fbi· nZ dx = 
n~ 00. 
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3. By the Cauchy-Schwarz inequality, I (fn - f, g)1 ::;: Ilfn - fllllgll· Since 
II!. - f II ---> 0 for n ---> 00, then, for any fixed g, also (fn - f, g) ---> 0 for n ---> 00. 

4. The arithmetic mean distance is r-1 (x 2 - x 3 ) dx = 2/3 "" 0.667; the mean­
square distance is [J~ 1 (x 2 - X3 )2 dx ]1/2 "" 0.828. 

5. Necessity: (1) Construct the Fourier series (7.19a) for an arbitrary element x in 
the space in terms of a complete orthonormal set {.pl S == Ir; 1 ai .pi, where 
ai = (x, .pi). (2) Bessel's inequality (7.21) implies that Ii = 1 ai 2 ::;: II X 112 for each n, 
so that the a-series converges (as a series of positive terms with bounded partial 
sums). (3) By the orthonormality of {.pl 

n 

L a./, 
m+1 

and by the con vergence of the a-series, II Sn - Sm II ---> 0 for m, n ---> 00. Bu t the space is 
complete so that limn~oo Ii=l ai.pi exists and equals Ir;l ai.pi = s. (4) We find, 
if n ~ i, (x - S, .pi) = ai - (S, .pi) = ai - (Sn' .pi) + (Sn - S, .pi) = (Sn - S, .pJ The 
Cauchy-Schwarz inequality gives I (x - S, .pi) I ::;: II Sn - SIIII.pi II = II Sn - S II ---> 0 
for n ---> 00. The result holding for each i, we have (x - S, .pi) = 0, i = 1, 2, .... By 
the completeness of {.pi}, x - S = 0 or x = S = Ii=l ai.pi' Consequently, 
IIxl12 = Ir;l a/, the Parseval equality. 

Sufficiency: Let the Parseval equality be satisfied. We take the subspace Y 
generated by {.pn}, and represent any element x in the Hilbert space in the form 
x = y + z, where y = Pry x and z ~ //' (i.e., z ~ all .pn in .'I'). Now (x, .pn) = 
(y, .pn), so that x and y have the same Fourier coefficients an' By the Pythagorean 
theorem, IIxl12 = IIyl12 + IIzl12 and, by Bessel's inequality (7.21), IIxl12 = IIYl12 + 
II Z 112 ~ II Yl12 ~ I a/ = II x 11 2, the last equality since x satisfies Parseval's equa­
lity. Then each inequality is actually an equality, and IIYl12 + IIzl12 = IIYI12, so that 
z = () and x = y, i.e., x belongs to .'I'. 

A simple intuitive illustration of the correspondence existing between a complete 
orthonormal system in a complete space and the associated Parseval equality is 
provided in Chapter 7, in which a connection between an orthonormal triad of 
coordinate vectors in 8 3 and the Pythagorean theorem is examined (cf. the text 
describing Figure 7.2). 

6. The dimension of .':1' is 2n + 1. The set is orthonormal. By (7.19), e.g., 
ak = (x, cos kt) = lin J"-. x cos kt dt. Bessel's inequality: 

n n 

IIxl1 2 = lin r x 2 dt ~ I a/ + I f3/. 
i=O i= 1 

7. For two eigenvectors x, y E l' belonging to A, we have Lx = Ax, Ly = Ay. By the 
linearity of L, L(ax + f3y) = aLx + f3Ly = A(ax + f3y) for any two scalars a and 
f3. Thus, the vector ax + f3y belongs to A, i.e., ax + f3y is in Y', whence .':1' is a 
subspace. 

8. By hypothesis, Lx = AX, L*y = A*Y, where X and yare eigenvectors associated 
with A for L and A * for L*, respectively. Now A(X, y) = (Ax, y) = (Lx, y) = 

(x, L*y) = (x, A*Y) = A*(X, y) or (A.* - A)(X, y) = O. Thus, (x, y) = 0 if A* 0/= A.. 
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Chapter 11 

1. For the first term of the series, inequalities (11.1) and (11.3) reduce to t > l 

2. We find t = (n/2) - (4/n) I:= I. 3.5. '" (cos nt/n 2) or, after normalization, 
t = (n 3 2/2)(1/nI2) - 2(2/n)12 I:=1. 3. 5 .. " 1/n2(2/n)12 cos nt. Parseval's equa­
lity gives n4 /96 = 1 + 1/34 + 1/54 + "', which is exactly the expansion (342) of 
n4 /96 on p. 64 of L. B. Jolley, Summation of Series, Dover, 1961. 

3. Jp(x) dx / g2(X) dx - Uf(x)g(x) dx r 
= ~ (f2(X) l I' g2(y) dy 1 dx + ! (g2(X) l ff2(y) dyj dx 

2. . J 2. . 

-/f(x)g(x) lJf(y)g(y) dyj dx = ~ J U [J(x)g(y) - g(x)f(y}]2 dX) dy. 

6. Set, for example, i l = cos 2t/nl!2 and g = ext, ex 2: 1. Upon using (11.4), we find 
(J,f) ~ 2ex 2n 3 /3 (note that in the present case, (J,f) = n3 /3). Verify that i l is 
normalized, thatf 1.. it, and that the condition (11.10) is satisfied. 

7. For f= t and c = xt, -n ~ t ~ n, equation (11.25) gives r = (1 - ex)(2n3/3)12; 
moreover, Ilcil = :«2n3/3)12. Thus, (2ex - 1)2(2n3/3) ~ IIfl12 ~ 2n3/3; x = 1 im­
plies equality, while the hypersphere reduces to a point. Note that, in the present 
case, II f 112 = 2n3/3. 

8. Condition (11.35a) is obviously satisfied. We find ex 2 (2n 3/3) ~ IIfl12 ~ 2n3/3; 
ex = 1 implies equality, while there must be I xl ~ 1, in general. Note that, in the 
present case, II f 112 = 2n3 /3 . 

. I . I 

9. (Lu, v) = I e'X(u" + au')v dx = I (e"xu')'v dx 
• 0 • 0 

,I 

= eV(l)v(l) + u(O)v'(O) + I (e"xv')'u dx. 
, 0 

Thus, L*v = (eX v')' = e"X(v" + exv'), and the required boundary conditions are 
u(I) = 0, v'(O) = 0; see equation (11.82). Since L* = L, the operator L is called 
self-adjoint. 

Chapter 12 

2. (a) four; base vectors 1, sin t, cos t, cos 2t; (b) three; base vectors sin t, cos t, 
sin 2t. 
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4. By equations (9.3), X=IXISI+IXZSZ, Y=fJISI+fJZSZ, where IXI+lXz= 
fJI + fJz = 1. Thus, X - Y = (IXI - fJdSI + (lXz - fJz)Sz and 

YI + Yz = (IXI - fJd + (lXz - fJz) = O. 

5. By the Cauchy-Schwarz inequality, - 1 ~ (I I', I /) ~ 1. Also 1 (I I', 12' 

+ 13')1 ~ IIII'li 11 / 2' + 13'11 = (12' + 1/, Iz' + 13')1/2 = [(lz', 1/) + (/3',/3')]1/2 
= 21/2. 

6. Let S = SI' + S/ = SI" + Sz", where SI', SI" are in .Y"I and S/, Sz" are in .Y"z. 
Set T = SI' - SI" = S z" - Sz'. Since the intrinsic vector T is in both ,Y'I and.Y" z 
while .Y" I ~ Y 2, then T is perpendicular to itself and must be the zero vector. 
Thus, SI" = SI'" Sz' = S2'" 

7. By (12.25) extended to H(2), we have N = (S, IIW + (S, 12W [see also (9.14)]. 
Therefore, IINII = (a 2 + b Z)li2. 

8. We establish the correspondences X ...... f(t) and S ...... g(t) = t and find IISII 2 = 
f~ t Z dt = (b 3 - a3)j3. Upon normalizing, 1= SjllSil = 31/Zj(b3 - a3)1/2 t. We 
now recognize in the equalities f~ (f(tW dt = !Xz, f~ tf(t) dt = 73 the equations 
(12.111) and (12.112), respectively, in which Co = e, R02 = liZ, 
IX = 73[3j(b3 - a3W/ Z. It follows that the tip of the vector X is on a hypercirde of 
class one with a parametric representation (12.113). Equations (12.115) and 
(12.117) imply that 

3 
C = IXI ...... -b3 3 pt, 

-a 

z - 2 73 z 3 R =IX - -b3 3' -a 

Thus, "approximately," f(t) :::; [3j(b 3 - a3 )]73t. 

Chapter 13 

1. Take, for example, the subspace spanned by {cos kt} or by any subset thereof. 

2. (1) The plane perpendicular to the given line and passing through the origin. 
(2) The line perpendicular to the given plane and passing through the origin. 
(3) The line perpendicular to the given line and passing through the origin. 

3. Consider the orthogonal decompositions fl = fl * + fl.L and fz = fz * + f2.L, 
where Pry I; = 1;*, Pry.L fi = fi.L, i = 1, 2. Adding: fl + f2 = (fl * + f2*) + 
(f/ + f/)· But (fl * + f2*) E .Y" and (f1.L + f/) E,Y'.L, whence Pr",(fl + f2) = 
fl * + f2* = Pry fl + Pry f2, by the uniqueness of the orthogonal 
decomposition. 

4. Letf = f* + f.L be the orthogonal decomposition off Then, by mUltiplying by c, 
we infer directly that cf = cf* + cf.L is the orthogonal decomposition of cf Thus, 
Pry(cf) = cf* = cPry fl reasoning as in the preceding solution. 
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5. (a) The subspaces rffx and rffyZ include all vectors Vx = (IX, 0, 0) and Vyz = (0, P, y), 
respectively, where IX, P, yare scalars, By (5.13), therefore, for (1) and (2) in 
Problem 2, we have, for every Vx in 8x and every Dyz in 8 yz , (l'x, Dyz ) = (;1.' 0 + 
o . P + 0 . y = 0, so that 8 x c rff~., 8 yz C .1x "". If v = (iX, JJ, y) is in .1~z, then 
0= (v, vyz ) = JJP + yy for every P and ". Thus, JJ = }' = 0, so v = (iX, 0, 0). Hence, 
.9';% C .9' x' Similarly, .9' x"" C 8' y.' We conclude: 8' x = .9';., .g'YZ = .9' x"". 

(b) Prc,., v = vY'; Prc, v = Vx ' where v = (IX, P, y). 

6. By (13.1): u' = !1,'gJ, u" = !1,"g2, U = Plgl + P2g2' By (13.9): (u', gd = (u, gd, 
(u", g2) = (u, g2), (u"', gd = (u, gl), (u"', g2) = (u, g2)' Upon substituting the first 
three of the preceding equations into the remaining four, we find !1,' = (u, 9 d/(g b 

gl), (X" = (u, g2)!(g2, g2), and likewise for Pi and P2' Thus, 

7. Let x be any vector in ,'f. Then for any y E ._'f\ we have y 1. x. Hence, x 1. y"", 
which means that x is in ya. Since x E Y implies that x E ,,/,""L, then /f c ,,/,a. 
Conversely, assume that x E .'fa. By (9.29), we can set x = y + z, where y E .'f 
and Z E Y"". But if y E y, then also y E ,,/,""\ so that Z = x - y E ya or 
Z 1. .'f"". Since Z E Y"" and Z 1. Y"", then z = () and x = y E Y. Consequently, 
ya c y. Since,'f c ya and ya c Y', then Y = ,'fa. 

8. The functionf(x), being continuous, has its maximum at a point xo, a:::; Xo :::; b. 
But if If(xo)l;::: If(x)l, a:::;x:::;b, then also lef(xo)l;::: lef(x)l. Thus, 

Ilefll = max lef(x)1 = lef(xo)1 = lellf(xo)l= lei max If(x)1 = leillfll· 
a$x~b a$x$b 

9. We have, for each x, a:::;x:::;b, If(x)+g(x)l:::; If(x)1 + Ig(x)l:::; 
max.,;y,;b If(y)1 + max.,;y,;b Ig(y)1 = Ilfll + Ilgll· Thus, also 

max If(x) + g(x)1 :::; Ilfll + Ilgll· 
a:5,x::;b 

Consequently, Ilf + gil = maX.,;x,;b If(x) + g(x)1 :::; Ilfll + Ilgll· Note that 
max.,;x,;b I f(x) + g(x) I does not generally occur at the same value of x as the 
maximum of either I f(x) I or I g(x) I· 

Chapter 14 

1. Since Uo is the solution of (1), for any Un = Uo + h, hE ff, we have F[un ] = 
(L(uo + h), Uo + h) - 2(uo + h, v) = F[uo] + (L(u n - uo), Un - uo) by symmetry 
of L. But F[uo] = min F[u], and since F[u.] -> min F[u], we must have 
(L(u n - uo), Un - uo) -> O. Now, by coerciveness, Ilu. - Uo 112:::; (l/e)(L(u. - Uo), 
U. - Uo), so that u. -> Uo strongly. 
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2. We represent the solution Uo in the form Uo = Lj';, 1 C(i <Pi and let the element 
rnE .Jrn be given by vn=L7=1 C(i<Pi' Then for n->oo, we have L"n->UO and 
F[ un] -> F[ uo]. Let Un EYI n be the element of Yin for which F[ un] = minu dO' F[u]. 
Keeping in mind that F[uo] = minuEK F[u], we have evidently F[uo] :S F[un] :S 

F[ Vn]. Since F[ un] -> F[ uo], also F[ un] -> F[ uo], and by the conclusion of the 
previous problem, Un -> Uo . 

3. The error is IIUn - Uo II. We have L(un - uo) = LUn - v, and C 1 L(un - uo) = 
C I(Lun - v) or Un - Uo = C I(Lun - u), whence Ilun - Uo II = lie I(Lun - v)11 :S 

cllLun - vii. 

4. Any Un E ff n can be represented as Un = 2:7=1 Pi <Pi' Thus, 

F[ Un] = (Lun, Un) - 2(un, v) 

= (J/i(L<PJ, J/i <Pi) - {t/i <P;, v) 

n n 

= L P;/3AL<Pi, <Pj) - 2 L PMi' v). 
i, j= 1 i= 1 

Setting of[Un]/OPi = 0, i = 1, 2, ... , n, we arrive at the equations 

.± PAL<pj' <Pi) - (r, <pd = (.± PjL<pj - V, <Pi) 
)=1 )=1 

This proves our assertion. The latter equations are known as Galerkin's 
equations. It is often advantageous to select coordinate functions {<Pi} satisfying 
the boundary conditions if the problem of interest is a boundary value problem. 

50' In Green's third identity Sn (vV 2u - uV 2 v) dO = Sm [v(ou/on) - u(ov/on)] ds, we 
replace U by 2:7=1 PiV2<Pi and u by <Pj' j = 1, 2, ... , n. Bearing in mind the 
boundary value problem under discussion, viz., V4 w = q/D in 0 and 
w = ow/on = ° on on, we select <Pis satisfying the boundary conditions and find 
the Galerkin equations Sn <pj 2:7= 1 Pi V4 <Pi dO = Li= 1 Pi Sn V2<Pi V2<Pj dO = 
Sn (q/D)<pj dn, j = 1, 2, ... , n. By inspection, the symmetry is proved. 

6. We have, using the third Green identity, Sn qv dO = Sn vV2u dO = 
Sn uV2v dO + Sm (v(ou/on) - u(ov/on) ds = Sn uV2r dO. Hence, 

F[v] + r u2 dO = r [vV4 v - 2vq + u2] dO = r [(V2vV - 2vq + u2] dO 
°n'n 'n 

= ( [(V2l')2 - 2uV2v + u2 ] dO = '" (V 2v - U)2 dO ;:- 0, 
'n 'n 

and our assertion is proved. 
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7. Set ej = Uj - uo, i = 1, 2, 
f - Luo = 0, (a). Now, 

F[u;] = F[uo + e;] = I (Lj(uo + e;), (Uo + e;)) 
i=l 

= I [(Lj uo, Uo) + (Lj uo, e;) + (Ljej, Uo) + (Lj ej, e;)] 
i= 1 

= (Luo, uo) + I (Lj ej, e;), 
i == 1 

291 

where we have used equation (a) and the symmetry of the operators L j • Thus, 
F[uo + e;] = (Luo, uo) + I~ = 1 (Lj ej, ej) ~ (Luo, uo) on account of definiteness 
of the L;'s. Consequently, F[ u;] ~ (Luo, uo), with equality for Bj = 0 or Uj = uo, 
i = 1, 2, ... , n. We note that the inner product (Luo, uo) represents the square 
of the norm earlier denoted by IIluo IIiH [cf. equation (10.10)]. 

8. The bilinear form associated with F[ u] is F[ u, r] = In VuVr dO. = F[ u] + 
2F[u, r] + F[r], (3). Now let u satisfy the boundary condition (2) and let r be a 
harmonic function. Then, by the first Green identity: F[ u, v] = In VuV t' dO. = -
In uV 2r dO. + Im u(cr/cn) ds = 0, (4). Now if u is a solution of Poisson's equa­
tion and Uo is the solution to the boundary value problem under scrutiny, then 
r = u - Uo is a harmonic function, and, on account of (4), equation (3) yields 
F[ u] = F[ Uo + r] = F[ uo] + F[ r] > F[ uo]. Thus, assuming that [' =1= 0, F[u] be­
comes minimum for u = Uo. 

Chapter 15 

1. The symmetry of the alternative form is easily shown by interchanging the order 
of integration. Furthermore, 

<Lu, u) = ([dU(t)/dt] [(-'U(T) dT 1 dt 

1-, 11 1 1 
= u(t) .1'0 U(T) dT 0 + .1'0 u(t)U(1 - t) dt = Jo'U(t)U(1 - t) dt, 

where the integral was differentiated with respect to the parameter t and account 
was taken of the condition u(O) = O. 

2. We have <Lu, u) = (Lu, Lu) = g (du/dt)2 dt and <f, u) = (f, Lu) = 
I~ f(du/dt) dt. 

3. By equation (12.8), (Slo S2) = Iv Tfjerj dV = 1/2 II (uf. j + uUTrj dV = 
I v [(u/TMj - U/TG.j] dV, where the symmetry of Tij and the arbitrariness of 
dummy indices were considered. Use of the Gauss-Green theorem and the rela-
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tions (15.12) and (15.13) now gives: (St. S2) = Is u/,fjnj dS-
Iv u/,t.j dV = Is u;lf/ dS - Iv u/F; dV = O. 

4. On account of the orthotropy, we have eW = ,W/Et. e~11 = -VI2,W/Et. 
e~2d = ,~2d!E2' eW = -V21 ,W/E2, where Vl2 is associated with a contraction in 
the 2-direction under tension in the I-direction. By (12.8), we have 

(SI> Sd = (,W)2/E l, (S2, S2) = (,~2W/E2 

(SI> S2) = -V21,W,~21/E2 = -vI2'W,~21/EI. 
Now 

cos ~ [SI, S2] = (SI> S2)/IIS1111IS211 = -V21(Et/E2)1/2 = -vdE2/El)I/2. 

Thus, the states fail to be orthogonal, since Poisson's constants are different from 
zero. Incidentally, we arrive here at the well-known relation El V21 = E2 V12. 

5. Take u(x) = un(x) + w(x), where £ is a real number. We have p(u) = [An(Un, 
un) + 2£An(Un, v) + £2(V, Lv)]/[(un, Un) + 2£(un, v) + £2(V, v)] = A. + £2[(V, Lv)­
An(V, v))/[(un, Un) + 2€(u n, v) + £2(V, v)], after utilizing the symmetry of L. Hence, 
the functional p(u) has a stationary value for £ = 0, inasmuch as d(£2)/d£ = 0 for 
£ = 0, and out claim is proved. 

6. (1) Since e" - e is a continuous monotonic function defined in a closed interval, 
it takes its extreme values at the ends of the interval, where the approximation 
error also has its extreme values. We make the error at the ends equal if 
1 e" - e 1.=0 = 1 e" - e 1.= I. This gives e = 1(1 + e') and the error norm 
1(e' - 1). 
(2) In this case, the best approximation corresponds to the value of e that 
minimizes {fA [e21 - e]2 dt}I/2. This gives e = (e' - 1)/1X and the error norm 
[(e 2• - 1)/21X - (e" - W/1X2]1/2. 

If IX = 1, the error norms in the cases in question are about 0.86 and 0.49, 
respectively. 

7. The symmetry of L on the domain D is easily shown by repeated integration by 
parts of the integral (Lv, w) = -S I~ v"w dx, where v, WED. Now let v be a 
virtual displacement!, v ED;! then fl(v) = (S/2) I~ (V')2 dx - I~ pv dx.j But (Lv, 
v) = -Svv'l~ + S I~ (V')2 dx ~ 0 and fl(v) = 1-(Lv, v) - (p, v). Take v = w + f, 
where wand fE D. Then fl(v) - fl(w) = 1(L(w + f), w + f) -1(Lw, w) - (p, 
f) = (Lw - pJ) + (Lf,f). Setting w = u, the solution of the Problems (1) and (2), 
and considering that (Lf, f) ~ 0 for any fED, we prove our assertion. 

8. (a) If F[v] is stationary for v = u, then, setting v = u + £ffor any fE S, we have 

0= (d/d£){F[u + £f)}.=o 

= (d/d£)[b(u, u) + 2£(u,j) + £2b(f,f) - 2/(u) - 2€l(f)),=0 = 2b(u,f) - 21(f), 

as claimed. 
(b) If u is the solution defined above, then by simply settingf = u in the preceding 
equation, we obtain the desired result. 
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9. We first recall that a set S is convex [compare the footnote preceding equation 
(6.18)],ifwhenevervand wareinS,so is exv + pw, where ex, p ~ 0, ex + p = 1. Now, 
if v, WE S, ex, p ~ 0, and ex + p = 1, then exv(l) + pw(l) ~ 0, so that S is convex, 
and if u, v E S, then u + y(v - u) E S for each y, 0..:; y ..:; 1. Consequently, if u 
satisfies (1) and v E S, then F[ v] = F[ u + v - u] = b( u + v - u, u + v - u) -
21(u + v - u) = F[u] + b(v - u, v - u) + 2[b(u, v - u) - l(v - u)] ~ F[u], and 
our assertion is proved. 

10. The left-hand bound is gained by observing that b(v - w, v - w) ~ 0 and replac­
ing w by wb(v, w)/b(w, w); note that b(v, w) is here a number. In order to obtain 
the right-hand bound, we write b(w, w) = b(v + w - v, v + w - v) = b(v, 
v) + 2b(w - v, v) + b(w - v, w - v) ~ b(v, v). 
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Anisotropy, 138, 144, 152 
Approximation 

best, 259 
in the mean, 114, 137, 138 
linear, 219 
mean-square, 114, 115, 153 
theory of, 217-221 
uniform, 113 

Ball, 110, III 
Banach space: see Space 
Bar, heated, 210-217 
Basis, 27, 51, 52, 55, 285 

of Hamel, 27 
"mutilated", 55, 68 
orthogonal, 32, 57 
orthonormal, 29, 32, 37, 38, 42, 68, 70, 

281,284 
Bessel inequality, 68, 69, 71, 75, 123, 165, 

167,200 
Betti-Rayleigh relation, 163, 170,251 
Biharmonic problem, 144-152,228-231 
Boundary conditions, 144, 145, 157, 168, 

169, 173, 187, 190 
Bounds, 123-166 

on elastic state, 178-186 
improvement of, 236-239 
lower, 124, 127, 133,227 
pointwise, 153-165, 194-200 
two-sided, 128, 132, 144, 145, 233 
upper, 124, 125, 128, 133,227 

Castiglia no principle, 225, 258 
Cauchy (fundamental) sequence, 49, 56, 57, 

63, 72, 281, 283 
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Cauchy-Schwarz inequality, 23, 39, 46, 56, 
66,75,80, 123, 127, 140, 142,147, 
150, 158, 164, 166, 167,200, 
227,282,284,288 

Clapeyron theorem, 82, 86, 230, 252 
Closeness of functions, 113, 116 
Closure, 263 
Compatibility equations, 168-170, 203 
Complement, orthogonal, 57, 105,208,221, 

289 
Configuration space, 31 
Constitutive relations, 167, 173,250 
Constraints, unilateral, 260 
Continuum mechanics, nonlocal, viii 
Contraction mapping, 71-74 
Convergence 

Cauchy condition of, 47, 49, 281 
in energy, 116, 117 
in the mean, 78, 116, 117 
pointwise, 120 
of sequences, 47, 49, 51, 56, 74, 264, 283 
of series, 51, 54, 55 
strong, 47, 120, 239 
uniform, 65, 116,285 
weak,47,120,239 

Convexity, 53, 75, 101, 102, 109, 110,293 
Convolution, 82, 241, 244, 284 
Coordinate 

function, 224, 239 
vector, 37 

Cylinder, elastic, 186-194 

Decomposition, orthogonal, 105, 221, 288 
Derivative 

distributional, 265 
generalized, 267 
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Derivative (Continued) 
ordinary, 265 

Deviation 
maximum, 113 
mean-square, 115 

Diaz-Greenberg method, 156-159 
Dirac (delta) function, 148, 155, 165,262, 

265 
Direct sum, 105, III, 208 
Dirichlet 

integral of, 90, 127,226 
problem of, 129, 139, 197,226,232 

Distance, vii 
between functions, 65, 75, 115 
between points, 4, 13, 21, 31 
between vectors, 46, 55, 65, 66, 73, 218 
in energy, 116 
mean, 115, 121,286 
mean-square, 115, 121 
of point from subspace, 102, 106 
shortest from subspace, 106 

Distributions, 261-271 
differentiation of, 267 
equality of, 266 
regular, 265 
singular, 265 

Eigenvalue, 92, 94, 120, 259 
Eigenvector (eigenfunction), 92, 93, 120, 

121,259,286 
Einstein convention, 54 
Equilibrium equations, 168, 186 
Euler-Lagrange equation, 129,223,234, 

245 

Fixed point, 71, 72 
Form 

bilinear, 242, 243, 260 
nondegenerate, 243 

Fourier coefficient, 68, 263 
Fourier series, 165, 166 

generalized, 118, 119 
Function 

generalized, 261, 265 
locally integrable, 264 
space, 77-95 
square integrable, 78 
vector, 77-79, 84 
vector of nth kind, 79 

Functional analysis, vii 
Functional, 85, 243, 263 

linear, 47, 85, 95, 264, 272 
quadratic, 84, 85, 224 

Functional (Continued) 
variation of, 243, 245 

Fundamental solution, 162, 165 

Galerkin equations, 193, 240, 290 
Galerkin method, 193, 274 

Index 

Gauss-Green theorem, 88, 142, 146, 199, 
235,247,291 

Gram-Schmidt procedure, 40-42, 55, 74, 
280 

Green's function, 157, 198 
Green's identity, 158,272,290,291 

Hamilton principle, 244 
Heaviside function, 265, 269, 271 
Helmholtz theorem, 212 
Hilbert space: see Space 
Hypercircle, 130, 132, 156, 177, 183, 184, 

196,202 
central formulas of, 186, 200 
method of, 108, 167-203 

Hyperplane, 100-103, 107, 130, 177, 183, 
202 

Hypersphere, 47, 75, 107, 109, 130, 132, 
135, 176, 183, 202 

translated, 108 

Inequalities, 123-166 
Inner (dot) product, 17-20,24,36,54, 

61,241 
of Dirichlet, 79, 240 
of elastic state vectors, 170 
of Hilbert, 78, 91, 166,240,259 
of Minkowski, 79 
positive definite, 18, 36, 140 
positive semi-definite, 77, 79, 80, 127, 

147,158 
Integrability, square, 117 
Invariant, 30 
Isometry, 96 

Kronecker delta, 29, 167 

Lagrange principle, 86, 143, 225, 230 
Lame coefficients, 167, 189 
Laplace equation, 139, 197,249 
Lebesgue space, 117 
Legendre polynomials, 74,90, 119 
Length 

of line segment, 4, 13 
of vector, 17,20,21,31 

Limiting process, 3 
Linear combination, 26, 50, 51 
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Linear independence, 25, 26, 32, 37, 50, 51, 
279-281,284,285 

Linear manifold: see Manifold 
Linear space: see Space 
Linearity (bilinearity), 18 
L· L operator: see Operator, L * L 

Manifold 
c1osed,53 
finite-dimensional, 53 
infinite-dimensional, 53 
linear, 52-54 

Mapping, 84 
Measure, 13 
Metric, 14,35,41,61,65,73, III 

indefinite, 19, 79 
of Chebyshev, 66, 74 
of Dirichlet, 129 
of Minkowski, 42 
positive definite, 63, 65, 140, 141 
positive semi-definite, 79, 80, 140, 144 

Metric space: see Space, metric 
Minimum complementary energy, 253 
Minimum potential energy, 253 
Minkowski inequality: see Triangle 

(Minkowski) inequality 

Neighborhood, 47 
Neumann problem, 126, 139 
Norm, 4, 17,20,21,36,37,41,55,61, 

63,66, III 
of Chebyshev, 218, 221 
in energy, 116 
semi-, 80, 127 
taxicab, 42, 66 

n-plane, 100 
n-sphere, 47, 107, 109 
n-subspace, 102, 106, 109 

translated, 100, 101, 102 

Observable, 93 
Operator 

adjoint of, 121, 153, 154, 166, 249, 271 
coercive, 239, 240, 289 
composition, 96 
continuity of, 96 
differential, 84, 223 
domain of, 242 
of elasticity, 85 
formally self-adjoint, 153 
Hamiltonian, 95 
Hermitian, 92, 95 
identity, 117 

Operator (Continued) 
linear, 84, 95 
L* L, 153-156, 249-253 
positive-definite, 84, 116 
range of, 242 
self-adjoint, 153,271,287 
spectrum of, 94 
symmetric, 84, 243, 291 
unitary, 96 

Orthonormal functions, 118, 119, 129 

Parallelogram rules, 8, 12, 14, 15,24,67 
Parseval equality, 68-70, 121, 166, 286 
Plate 

anisotropic, 144-152 
isotropic, 81, 87, 157, 159, 161, 165 

Poisson equation, 139, 155,210,240,291 
Potential energy, 83 
Prandtl function, 139, 140,273 
Progression, arithmetic, 208 

303 

Projection, orthogonal, viii, 19,24,29, 37, 
43,103-106,112,221,278,281 

method of, 205-217 
Pythagorean theorem, 22, 31, 55, 69, 123, 

207,246,278,281 

Quantum mechanics, viii, 90-95 

Rayleigh-Betti theorem, 82 
Rayleigh-Ritz method, ix, 143,223-231,236 
Rayleigh-Ritz quotient, 223, 259 
Riesz representation theorem, 95 
Ritz expression, 224, 225 

Scalar, 10, 30 
Scalar product, 10 
Schrodinger equation, 95 
Semi-norm, 80, 127 
Sequence, convergent: see Convergence 

of functionals, 224 
minimizing, 224, 239 

Set, 2 
closed, 27, 57 
complete, 69, 93, 119, 121,286 
convex, 53, 75 
countable, 45, 71 
dense, 62 
open, 3, 14,27 
orthonormal, 55, 70, 126 
singleton, 5 
spanning, 27, 28, 37, 55; see also Span 

Solution 
classical, 273 
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Solution (Continued) 
distributional, 274· 
weak, 273, 274 

Space 
affine, 2, 5, II, 35 
amorphous, 2 
arithmetic, 35 
of Banach, 2, 4, 66, 76 
Ca~t~b,63,65, 74, 75 
complete, 61, 62, 65, 73, 74, 283, 286 
completion, 64 
dimension, 27, 31, 36,47,61,62,203,282 
Euclidean, 1,2,4,5,21,31,36 

infinite-dimensional,45-56, 107 
n-dimensional,33-42 

of Hilbert, 2, 4, 59-71, 77, 94, 105, III, 
221 

inner product, 2, 4, 119 
1,,66 
I" viii, 46,51,54 
Ip ,41 
I~, 42 
f" vii, 101, 117, 119,221 
linear, 4, 60 

complex, 120 
mathematical (abstract), I 
metric, 2, 65 
normed,2,4,66,218 
origin of, 5 
physical, I 
pre-Hilbert, 61 
ln, 35, 62 
'R~, 45, 46 
separable, 61, 62, 71, 75 
of Sobolev, 271-274 
~;, 2,14 
topological, 2, 3, 14 
topology of, 3 

Space structure 
algebraic, 2, 4 
set-theoretic, 2, 3, 4 
topological, 2 

Span, 27, 32, 42,51,53,55,281,282,288; 
see also Set 

State 
auxiliary, 179, 180 
of compatible stress, 256 
fundamental, 179, 180 
of self-equilibrated stress, 255, 256 
of system, 167, 170, 180 
S',169 
ST, 170 
vector of, 167, 169 

String, elastic, 259 

Sturm-Liouville equation, 120,249 
Subspace, 5, 53, 56, 57 

class of, 109 
~'H71 
~T, 171 

Index 

translated, 97-100, 102, 171, 179, 180, 187 
Subspaces, orthogonal, 104, 105, 172, 187, 

203, 245-248 
Support, 263 

Test function, 262, 263 
Torsion of bars, 88, 138-144,226,273 

function, 141, 143, 226, 273 
Torsional rigidity, 141,226-227 
Trefftz method, ix, 231-236 
Triangle (Minkowski) inequality, 23, 39, 64, 

66,278 
Tripod, 253-258 

Uniqueness theorem of elasticity, 173 

Variational calculus, basic lemma of, 129 
Variational equations, 233, 234 
Variational methods, 84, 128, 172, 223, 

241-253 
Variational principles, 247, 248, 253, 258 
Vector 

algebra, 7-15 
components, 29, 30, 33-35, 45, 78 
extrinsic, 99, 103, 171 
intrinsic, 99-101, 171 
irrotational, 211 
length of, 17,21,31 
norm of, 17,21,35 
orthogonal to subspace, 43, 102-104 
scalar multiplication of, 10, II, 35, 60 
solenoidal, 211 
space, 7; see also Space, linear 
zero, 5,9,20, 29,34,61 

Vectors 
addition of, 9, 10,35,60 
equal, 8, 34 
free, 8 
mutually orthogonal, 20, 30, 36, 37, 42, 

56, \02 
n-tuple notation of, 34 
orthonormal, 29, 42, 55, 57, 70, 103,_ 

118,119, 126, 133, 180,203 
parallel,8 

Versor, 29, 37 
Vertices, 173-175 
Virtual work, 255 

Washizu method, 160-165 
Weierstrass theorem, 214-283 




